Science.gov

Sample records for binds negatively charged

  1. Tuning the affinity of anion binding sites in porin channels with negatively charged residues: molecular details for OprP.

    PubMed

    Modi, Niraj; Bárcena-Uribarri, Iván; Bains, Manjeet; Benz, Roland; Hancock, Robert E W; Kleinekathöfer, Ulrich

    2015-02-20

    The cell envelope of the Gram negative opportunistic pathogen Pseudomonas aeruginosa is poorly permeable to many classes of hydrophilic molecules including antibiotics due to the presence of the narrow and selective porins. Here we focused on one of the narrow-channel porins, that is, OprP, which is responsible for the high-affinity uptake of phosphate ions. Its two central binding sites for phosphate contain a number of positively charged amino acids together with a single negatively charged residue (D94). The presence of this negatively charged residue in a binding site for negatively charged phosphate ions is highly surprising due to the potentially reduced binding affinity. The goal of this study was to better understand the role of D94 in phosphate binding, selectivity, and transport using a combination of mutagenesis, electrophysiology, and free-energy calculations. The presence of a negatively charged residue in the binding site is critical for this specific porin OprP as emphasized by the evolutionary conservation of such negatively charged residue in the binding site of several anion-selective porins. Mutations of D94 in OprP to any positively charged or neutral residue increased the binding affinity of phosphate for OprP. Detailed analysis indicated that this anionic residue in the phosphate binding site of OprP, despite its negative charge, maintained energetically favorable phosphate binding sites in the central region of the channel and at the same time decreased residence time thus preventing excessively strong binding of phosphate that would oppose phosphate flux through the channel. Intriguingly mutations of D94 to positively charged residues, lysine and arginine, resulted in very different binding affinities and free energy profiles, indicating the importance of side chain conformations of these positively charged residues in phosphate binding to OprP.

  2. The negatively charged regions of lactoferrin binding protein B, an adaptation against anti-microbial peptides.

    PubMed

    Morgenthau, Ari; Beddek, Amanda; Schryvers, Anthony B

    2014-01-01

    Lactoferrin binding protein B (LbpB) is a bi-lobed membrane bound lipoprotein that is part of the lactoferrin receptor complex in a variety of Gram-negative pathogens. Despite high sequence diversity among LbpBs from various strains and species, a cluster of negatively charged amino acids is invariably present in the protein's C-terminal lobe in all species except Moraxella bovis. The function of LbpB in iron acquisition has yet to be experimentally demonstrated, whereas in vitro studies have shown that LbpB confers protection against lactoferricin, a short cationic antimicrobial peptide released from the N- terminus of lactoferrin. In this study we demonstrate that the negatively charged regions can be removed from the Neisseria meningitidis LbpB without compromising stability, and this results in the inability of LbpB to protect against the bactericidal effects of lactoferricin. The release of LbpB from the cell surface by the autotransporter NalP reduces the protection against lactoferricin in the in vitro killing assay, attributed to removal of LbpB during washing steps, but is unlikely to have a similar impact in vivo. The protective effect of the negatively charged polysaccharide capsule in the killing assay was less than the protection conferred by LbpB, suggesting that LbpB plays a major role in protection against cationic antimicrobial peptides in vivo. The selective release of LbpB by NalP has been proposed to be a mechanism for evading the adaptive immune response, by reducing the antibody binding to the cell surface, but may also provide insights into the primary function of LbpB in vivo. Although TbpB and LbpB have been shown to be major targets of the human immune response, the selective release of LbpB suggests that unlike TbpB, LbpB may not be essential for iron acquisition, but important for protection against cationic antimicrobial peptides.

  3. The Negatively Charged Regions of Lactoferrin Binding Protein B, an Adaptation against Anti-Microbial Peptides

    PubMed Central

    Morgenthau, Ari; Beddek, Amanda; Schryvers, Anthony B.

    2014-01-01

    Lactoferrin binding protein B (LbpB) is a bi-lobed membrane bound lipoprotein that is part of the lactoferrin receptor complex in a variety of Gram-negative pathogens. Despite high sequence diversity among LbpBs from various strains and species, a cluster of negatively charged amino acids is invariably present in the protein’s C-terminal lobe in all species except Moraxella bovis. The function of LbpB in iron acquisition has yet to be experimentally demonstrated, whereas in vitro studies have shown that LbpB confers protection against lactoferricin, a short cationic antimicrobial peptide released from the N- terminus of lactoferrin. In this study we demonstrate that the negatively charged regions can be removed from the Neisseria meningitidis LbpB without compromising stability, and this results in the inability of LbpB to protect against the bactericidal effects of lactoferricin. The release of LbpB from the cell surface by the autotransporter NalP reduces the protection against lactoferricin in the in vitro killing assay, attributed to removal of LbpB during washing steps, but is unlikely to have a similar impact in vivo. The protective effect of the negatively charged polysaccharide capsule in the killing assay was less than the protection conferred by LbpB, suggesting that LbpB plays a major role in protection against cationic antimicrobial peptides in vivo. The selective release of LbpB by NalP has been proposed to be a mechanism for evading the adaptive immune response, by reducing the antibody binding to the cell surface, but may also provide insights into the primary function of LbpB in vivo. Although TbpB and LbpB have been shown to be major targets of the human immune response, the selective release of LbpB suggests that unlike TbpB, LbpB may not be essential for iron acquisition, but important for protection against cationic antimicrobial peptides. PMID:24465982

  4. The HIV-1 Nucleocapsid Protein Recruits Negatively Charged Lipids To Ensure Its Optimal Binding to Lipid Membranes

    PubMed Central

    Kempf, Noémie; Postupalenko, Viktoriia; Bora, Saurabh; Didier, Pascal; Arntz, Youri; de Rocquigny, Hugues

    2014-01-01

    ABSTRACT The HIV-1 Gag polyprotein precursor composed of the matrix (MA), capsid (CA), nucleocapsid (NC), and p6 domains orchestrates virus assembly via interactions between MA and the cell plasma membrane (PM) on one hand and NC and the genomic RNA on the other hand. As the Gag precursor can adopt a bent conformation, a potential interaction of the NC domain with the PM cannot be excluded during Gag assembly at the PM. To investigate the possible interaction of NC with lipid membranes in the absence of any interference from the other domains of Gag, we quantitatively characterized by fluorescence spectroscopy the binding of the mature NC protein to large unilamellar vesicles (LUVs) used as membrane models. We found that NC, either in its free form or bound to an oligonucleotide, was binding with high affinity (∼107 M−1) to negatively charged LUVs. The number of NC binding sites, but not the binding constant, was observed to decrease with the percentage of negatively charged lipids in the LUV composition, suggesting that NC and NC/oligonucleotide complexes were able to recruit negatively charged lipids to ensure optimal binding. However, in contrast to MA, NC did not exhibit a preference for phosphatidylinositol-(4,5)-bisphosphate. These results lead us to propose a modified Gag assembly model where the NC domain contributes to the initial binding of the bent form of Gag to the PM. IMPORTANCE The NC protein is a highly conserved nucleic acid binding protein that plays numerous key roles in HIV-1 replication. While accumulating evidence shows that NC either as a mature protein or as a domain of the Gag precursor also interacts with host proteins, only a few data are available on the possible interaction of NC with lipid membranes. Interestingly, during HIV-1 assembly, the Gag precursor is thought to adopt a bent conformation where the NC domain may interact with the plasma membrane. In this context, we quantitatively characterized the binding of NC, as a free

  5. Bid binding to negatively charged phospholipids may not be required for its pro-apoptotic activity in vivo

    PubMed Central

    Manara, Anna; Lindsay, Jennefer; Marchioretto, Marta; Astegno, Alessandra; Gilmore, Andrew P.; Esposti, Mauro Degli; Crimi, Massimo

    2010-01-01

    Bid is a ubiquitous pro-apoptotic member of the Bcl-2 family that has been involved in a variety of pathways of cell death. Unique among pro-apoptotic proteins, Bid is activated after cleavage by the apical caspases of the extrinsic pathway; subsequently it moves to mitochondria, where it promotes the release of apoptogenic proteins in concert with other Bcl-2 family proteins like Bak. Diverse factors appear to modulate the pro-apoptotic action of Bid, from its avid binding to mitochondrial lipids (in particular, cardiolipin) to multiple phosphorylations at sites that can modulate its caspase cleavage. This work addresses the question of how the lipid interactions of Bid that are evident in vitro actually impact on its pro-apoptotic action within cells. Using site-directed mutagenesis, we identified mutations that reduced mouse Bid lipid binding in vitro. Mutation of the conserved residue Lys157 specifically decreased the binding to negatively charged lipids related to cardiolipin and additionally affected the rate of caspase cleavage. However, this lipid-binding mutant had no discernable effect on Bid pro-apoptotic function in vivo. The results are interpreted in relation to an underlying interaction of Bid with lysophosphatidylcholine, which is not disrupted in any mutant retaining pro-apoptotic function both in vitro and in vivo. PMID:19463967

  6. Hydrogen Bonding and Binding of Polybasic Residues with Negatively Charged Mixed Lipid Monolayers

    SciTech Connect

    Lorenz, C.; Feraudo, J.; Travesset, A.

    2008-01-23

    Phosphoinositides, phosphorylated products of phosphatidylinositol, are a family of phospholipids present in tiny amounts (1% or less) in the cytosolic surface of cell membranes, yet they play an astonishingly rich regulatory role, particularly in signaling processes. In this letter, we use molecular dynamics simulations on a model system of mixed lipid monolayers to investigate the interaction of phosphatidylinositol 4,5-bisphosphate (PIP{sub 2}), the most common of the phosphoinositides, with a polybasic peptide consisting of 13 lysines. Our results show that the polybasic peptide sequesters three PIP{sub 2} molecules, forming a complex stabilized by the formation of multiple hydrogen bonds between PIP{sub 2} and the Lys residues. We also show that the polybasic peptide does not sequester other charged phospholipids such as phosphatidylserine because of the inability to form long-lived stable hydrogen bonds.

  7. Linear free energy relationships for metal-ligand complexation: Bidentate binding to negatively-charged oxygen donor atoms

    NASA Astrophysics Data System (ADS)

    Carbonaro, Richard F.; Atalay, Yasemin B.; Di Toro, Dominic M.

    2011-05-01

    Stability constants for metal complexation to bidentate ligands containing negatively-charged oxygen donor atoms can be estimated from the following linear free energy relationship (LFER): log KML = χOO( αO log KHL,1 + αO log KHL,2) where KML is the metal-ligand stability constant for a 1:1 complex, KHL,1 and KHL,2 are the proton-ligand stability constants (the ligand p Ka values), and αO is the Irving-Rossotti slope. The parameter χOO is metal specific and has slightly different values for five and six membered chelate rings. LFERs are presented for 21 different metal ions and are accurate to within approximately 0.30 log units in predictions of log KML values. Ligands selected for use in LFER development include dicarboxylic acids, carboxyphenols, and ortho-diphenols. For ortho-hydroxybenzaldehydes, α-hydroxycarboxylic acids, and α-ketocarboxylic acids, a modification of the LFER where log KHL,2 is set equal to zero is required. The chemical interpretation of χOO is that it accounts for the extra stability afforded to metal complexes by the chelate effect. Cu-NOM binding constants calculated from the bidentate LFERs are similar in magnitude to those used in WHAM 6. This LFER can be used to make log KML predictions for small organic molecules. Since natural organic matter (NOM) contains many of the same functional groups (i.e. carboxylic acids, phenols, alcohols), the LFER log KML predictions shed light on the range of appropriate values for use in modeling metal partitioning in natural systems.

  8. Linear Free Energy Relationships for Metal-Ligand Complexation: Bidentate Binding to Negatively-Charged Oxygen Donor Atoms

    PubMed Central

    Carbonaro, Richard F.; Atalay, Yasemin B.; Di Toro, Dominic M.

    2011-01-01

    Stability constants for metal complexation to bidentate ligands containing negatively-charged oxygen donor atoms can be estimated from the following linear free energy relationship (LFER): log KML = χOO(αO log KHL,1 + αO log KHL,2) where KML is the metal-ligand stability constant for a 1:1 complex, KHL,1 and KHL,2 are the proton-ligand stability constants (the ligand pKa values), and αO is the Irving-Rossotti slope. The parameter χOO is metal specific and has slightly different values for 5 and 6 membered chelate rings. LFERs are presented for 21 different metal ions and are accurate to within approximately 0.30 log units in predictions of log KML values. Ligands selected for use in LFER development include dicarboxylic acids, carboxyphenols, and ortho-diphenols. For ortho-hydroxybenzaldehydes, α-hydroxycarboxylic acids, and α-ketocarboxylic acids, a modification of the LFER where log KHL,2 is set equal to zero is required. The chemical interpretation of χOO is that it accounts for the extra stability afforded to metal complexes by the chelate effect. Cu-NOM binding constants calculated from the bidentate LFERs are similar in magnitude to those used in WHAM 6. This LFER can be used to make log KML predictions for small organic molecules. Since natural organic matter (NOM) contains many of the same functional groups (i.e. carboxylic acids, phenols, alcohols), the LFER log KML predictions shed light on the range of appropriate values for use in modeling metal partitioning in natural systems. PMID:21833149

  9. Binding of β-Amyloid (1–42) Peptide to Negatively Charged Phospholipid Membranes in the Liquid-Ordered State: Modeling and Experimental Studies

    PubMed Central

    Ahyayauch, Hasna; Raab, Michal; Busto, Jon V.; Andraka, Nagore; Arrondo, José-Luis R.; Masserini, Massimo; Tvaroska, Igor; Goñi, Félix M.

    2012-01-01

    To explore the initial stages of amyloid β peptide (Aβ42) deposition on membranes, we have studied the interaction of Aβ42 in the monomeric form with lipid monolayers and with bilayers in either the liquid-disordered or the liquid-ordered (Lo) state, containing negatively charged phospholipids. Molecular dynamics (MD) simulations of the system have been performed, as well as experimental measurements. For bilayers in the Lo state, in the absence of the negatively charged lipids, interaction is weak and it cannot be detected by isothermal calorimetry. However, in the presence of phosphatidic acid, or of cardiolipin, interaction is detected by different methods and in all cases interaction is strongest with lower (2.5–5 mol %) than higher (10–20 mol %) proportions of negatively charged phospholipids. Liquid-disordered bilayers consistently allowed a higher Aβ42 binding than Lo ones. Thioflavin T assays and infrared spectroscopy confirmed a higher proportion of β-sheet formation under conditions when higher peptide binding was measured. The experimental results were supported by MD simulations. We used 100 ns MD to examine interactions between Aβ42 and three different 512 lipid bilayers consisting of palmitoylsphingomyelin, dimyristoyl phosphatidic acid, and cholesterol in three different proportions. MD pictures are different for the low- and high-charge bilayers, in the former case the peptide is bound through many contact points to the bilayer, whereas for the bilayer containing 20 mol % anionic phospholipid only a small fragment of the peptide appears to be bound. The MD results indicate that the binding and fibril formation on the membrane surface depends on the composition of the bilayer, and is the result of a subtle balance of many inter- and intramolecular interactions between the Aβ42 and membrane. PMID:22947861

  10. Binding of cationic pentapeptides with modified side chain lengths to negatively charged lipid membranes: Complex interplay of electrostatic and hydrophobic interactions.

    PubMed

    Hoernke, Maria; Schwieger, Christian; Kerth, Andreas; Blume, Alfred

    2012-07-01

    Basic amino acids play a key role in the binding of membrane associated proteins to negatively charged membranes. However, side chains of basic amino acids like lysine do not only provide a positive charge, but also a flexible hydrocarbon spacer that enables hydrophobic interactions. We studied the influence of hydrophobic contributions to the binding by varying the side chain length of pentapeptides with ammonium groups starting with lysine to lysine analogs with shorter side chains, namely omithine (Orn), alpha, gamma-diaminobutyric acid (Dab) and alpha, beta-diaminopropionic acid (Dap). The binding to negatively charged phosphatidylglycerol (PG) membranes was investigated by calorimetry, FT-infrared spectroscopy (FT-IR) and monolayer techniques. The binding was influenced by counteracting and sometimes compensating contributions. The influence of the bound peptides on the lipid phase behavior depends on the length of the peptide side chains. Isothermal titration calorimetry (ITC) experiments showed exothermic and endothermic effects compensating to a different extent as a function of side chain length. The increase in lipid phase transition temperature was more significant for peptides with shorter side chains. FTIR-spectroscopy revealed changes in hydration of the lipid bilayer interface after peptide binding. Using monolayer techniques, the contributions of electrostatic and hydrophobic effects could clearly be observed. Peptides with short side chains induced a pronounced decrease in surface pressure of PG monolayers whereas peptides with additional hydrophobic interactions decreased the surface pressure much less or even lead to an increase, indicating insertion of the hydrophobic part of the side chain into the lipid monolayer.

  11. Negative electron binding energies observed in a triply charged anion: Photoelectron spectroscopy of 1-hydroxy-3,6,8-pyrene-trisulfonate

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Xing, Xiao-Peng; Wang, Xue-Bin; Wang, Lai-Sheng; Sergeeva, Alina P.; Boldyrev, Alexander I.

    2008-03-01

    We report the observation of negative electron binding energies (BEs) in a triply charged anion, 1-hydroxy-3,6,8-pyrene-trisulfonate (HPTS3-). Low-temperature photoelectron spectra were obtained for HPTS3- at several photon energies, revealing three detachment features below 0 electron BE. The HPTS3- trianion was measured to possess a negative BE of -0.66eV. Despite the relatively high excess energy stored in HPTS3-, it was observed to be a long-lived anion due to its high repulsive Coulomb barrier (RCB) (˜3.3eV), which prevents spontaneous electron emission. Theoretical calculations were carried out, which confirmed the negative electron BEs observed. The calculations further showed that the highest occupied molecular orbital in HPTS3- is an antibonding π orbital on the pyrene rings, followed by lone pair electrons in the peripheral -SO3- groups. Negative electron BE is a unique feature of multiply charged anions due to the presence of the RCB. Such metastable species may be good models to study electron-electron and vibronic interactions in complex molecules.

  12. Poly-l-lysines and poly-l-arginines induce leakage of negatively charged phospholipid vesicles and translocate through the lipid bilayer upon electrostatic binding to the membrane.

    PubMed

    Reuter, Marcel; Schwieger, Christian; Meister, Annette; Karlsson, Göran; Blume, Alfred

    2009-09-01

    Poly-l-lysines (PLL) and poly-l-arginines (PLA) of different polymer chain lengths interact strongly with negatively charged phospholipid vesicles mainly due to their different electrical charges. 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG), 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) and their mixtures (1/1 mol/mol) with the respective phosphatidylcholines of equivalent chain length were chosen as model membrane systems that form at room temperature either the fluid L(alpha) or the gel phase L(beta) lipid bilayer membranes, respectively. Leakage experiments revealed that the fluid POPG membranes are more perturbed compared to the gel phase DPPG membranes upon peptide binding. Furthermore, it was found that pure PG membranes are more prone to release the vesicle contents as a result of pore formation than the lipid mixtures POPG/POPC and DPPG/DPPC. For the longer polymers (>or=44 amino acids) maximal dye-release was observed when the molar ratio of the concentrations of amino acid residues to charged lipid molecules reached a value of R(P)=0.5, i.e. when the outer membrane layer was theoretically entirely covered by the polymer. At ratios lower or higher than 0.5 leakage dropped significantly. Furthermore, PLL and PLA insertions and/or translocations through lipid membranes were analyzed by using FITC-labeled polymers by monitoring their fluorescence intensity upon membrane binding. Short PLL molecules and PLA molecules of all lengths seemed to translocate through both fluid and gel phase lipid bilayers. Comparison of the PLL and PLA fluorescence assay results showed that PLA interacts stronger with phospholipid membranes compared to PLL. Isothermal titration calorimetry (ITC) measurements were performed to give further insight into these mechanisms and to support the findings obtained by fluorescence assays. Cryo-transmission electron microscopy (cryo-TEM) was used to visualize changes in the vesicles' morphology after addition of the

  13. Thunderstorm Charge Structures Producing Negative Gigantic Jets

    NASA Astrophysics Data System (ADS)

    Boggs, L.; Liu, N.; Riousset, J. A.; Shi, F.; Rassoul, H.

    2016-12-01

    Here we present observational and modeling results that provide insight into thunderstorm charge structures that produce gigantic jet discharges. The observational results include data from four different thunderstorms producing 9 negative gigantic jets from 2010 to 2014. We used radar, very high frequency (VHF) and low frequency (LF) lightning data to analyze the storm characteristics, charge structures, and lightning activity when the gigantic jets emerged from the parent thunderstorms. A detailed investigation of the evolution of one of the charge structures by analyzing the VHF data is also presented. The newly found charge structure obtained from the observations was analyzed with fractal modeling and compared with previous fractal modeling studies [Krehbiel et al., Nat. Geosci., 1, 233-237, 2008; Riousset et al., JGR, 115, A00E10, 2010] of gigantic jet discharges. Our work finds that for normal polarity thunderstorms, gigantic jet charge structures feature a narrow upper positive charge region over a wide middle negative charge region. There also likely exists a `ring' of negative screening charge located around the perimeter of the upper positive charge. This is different from previously thought charge structures of the storms producing gigantic jets, which had a very wide upper positive charge region over a wide middle negative charge region, with a very small negative screening layer covering the cloud top. The newly found charge structure results in leader discharge trees in the fractal simulations that closely match the parent flashes of gigantic jets inside and outside the thundercloud. The previously used charge structures, while vital to the understanding of gigantic jet initiation and the role of charge imbalances inside the cloud, do not produce leader discharge trees that agree with observed gigantic jet discharges.Finally, the newly discovered gigantic jet charge structures are formed near the end of a convective pulse [Meyer et al., JGR, 118

  14. Interaction of linear polyamines with negatively charged phospholipids: the effect of polyamine charge distance.

    PubMed

    Finger, Sebastian; Schwieger, Christian; Arouri, Ahmad; Kerth, Andreas; Blume, Alfred

    2014-07-01

    The binding of cationic polyamines to negatively charged lipid membranes is driven by electrostatic interactions and additional hydrophobic contributions. We investigated the effect of polyamines with different number of charges and charge separation on the phase transition behavior of vesicles of phosphatidylglycerols (dipalmitoylphosphatidylglycerol and dimyristoylphosphatidylglycerol) to differentiate between effects caused by the number of charges, the charge distance, and the hydrophobicity of the methylene spacer. Using differential scanning calorimetry and Fourier transform infrared spectroscopy complemented with monolayer experiments, we found that the binding constant of polyamines to negatively charged lipid vesicles depends as expected on the number of charges. However, for diamines, the effect of binding on the main phase transition of phosphatidylglycerols (PGs) is also strongly influenced by the charge distance between the ammonium groups in the backbone. Oligoamines with charges separated by two or three methylene groups bind more strongly and have larger stabilizing effects on the lipid gel phase of PGs. With multivalent polyamines, the appearance of several transition peaks points to effects of molecular crowding on the surface, i.e., binding of only two or three charges to the surface in the case of spermine, and possible concomitant domain formation.

  15. Production of negatively charged radioactive ion beams

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Stracener, D. W.; Stora, T.

    2017-08-01

    Beams of short-lived radioactive nuclei are needed for frontier experimental research in nuclear structure, reactions, and astrophysics. Negatively charged radioactive ion beams have unique advantages and allow for the use of a tandem accelerator for post-acceleration, which can provide the highest beam quality and continuously variable energies. Negative ion beams can be obtained with high intensity and some unique beam purification techniques based on differences in electronegativity and chemical reactivity can be used to provide beams with high purity. This article describes the production of negative radioactive ion beams at the former holifield radioactive ion beam facility at Oak Ridge National Laboratory and at the CERN ISOLDE facility with emphasis on the development of the negative ion sources employed at these two facilities. ).

  16. Probing Molecular Docking in a Charged Model Binding Site

    PubMed Central

    Brenk, Ruth; Vetter, Stefan W.; Boyce, Sarah E.; Goodin, David B.; Shoichet, Brian K.

    2011-01-01

    A model binding site was used to investigate charge–charge interactions in molecular docking. This simple site, a small (180 Å3) engineered cavity in cyctochrome c peroxidase (CCP), is negatively charged and completely buried from solvent, allowing us to explore the balance between electrostatic energy and ligand desolvation energy in a system where many of the common approximations in docking do not apply. A database with about 5300 molecules was docked into this cavity. Retrospective testing with known ligands and decoys showed that overall the balance between electrostatic interaction and desolvation energy was captured. More interesting were prospective docking scre”ens that looked for novel ligands, especially those that might reveal problems with the docking and energy methods. Based on screens of the 5300 compound database, both high-scoring and low-scoring molecules were acquired and tested for binding. Out of 16 new, high-scoring compounds tested, 15 were observed to bind. All of these were small heterocyclic cations. Binding constants were measured for a few of these, they ranged between 20 μM and 60 μM. Crystal structures were determined for ten of these ligands in complex with the protein. The observed ligand geometry corresponded closely to that predicted by docking. Several low-scoring alkyl amino cations were also tested and found to bind. The low docking score of these molecules owed to the relatively high charge density of the charged amino group and the corresponding high desolvation penalty. When the complex structures of those ligands were determined, a bound water molecule was observed interacting with the amino group and a backbone carbonyl group of the cavity. This water molecule mitigates the desolvation penalty and improves the interaction energy relative to that of the “naked” site used in the docking screen. Finally, six low-scoring neutral molecules were also tested, with a view to looking for false negative predictions

  17. Iodide uptake by negatively charged clay interlayers?

    PubMed

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-09-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI(aq)) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Architecture and RNA binding of the human negative elongation factor

    PubMed Central

    Vos, Seychelle M; Pöllmann, David; Caizzi, Livia; Hofmann, Katharina B; Rombaut, Pascaline; Zimniak, Tomasz; Herzog, Franz; Cramer, Patrick

    2016-01-01

    Transcription regulation in metazoans often involves promoter-proximal pausing of RNA polymerase (Pol) II, which requires the 4-subunit negative elongation factor (NELF). Here we discern the functional architecture of human NELF through X-ray crystallography, protein crosslinking, biochemical assays, and RNA crosslinking in cells. We identify a NELF core subcomplex formed by conserved regions in subunits NELF-A and NELF-C, and resolve its crystal structure. The NELF-AC subcomplex binds single-stranded nucleic acids in vitro, and NELF-C associates with RNA in vivo. A positively charged face of NELF-AC is involved in RNA binding, whereas the opposite face of the NELF-AC subcomplex binds NELF-B. NELF-B is predicted to form a HEAT repeat fold, also binds RNA in vivo, and anchors the subunit NELF-E, which is confirmed to bind RNA in vivo. These results reveal the three-dimensional architecture and three RNA-binding faces of NELF. DOI: http://dx.doi.org/10.7554/eLife.14981.001 PMID:27282391

  19. Devices that can identify positive vs. negative charge

    NASA Astrophysics Data System (ADS)

    Lincoln, James

    2017-10-01

    When your clothes come out of the dryer, covered with static, do you know whether they are positively or negatively charged? In this article, I discuss a variety of devices that can determine sign of the charge on an insulator or conductor. Purposefully, none of these methods utilize comparison with a known charge. Some of these ideas have been previously published, and I am extending them, but many are original. These demonstrations provide students and teachers with an opportunity to contrast the actual flow of charge with conventional current and to compare the behavior of positive and negative charges with what we expect from protons and electrons.

  20. Sialic acid mediates the initial binding of positively charged inorganic particles to alveolar macrophage membranes.

    PubMed

    Gallagher, J E; George, G; Brody, A R

    1987-06-01

    Pulmonary macrophages phagocytize inhaled particles and are postulated to play a role in the development of pulmonary interstitial fibrogenesis. The basic biologic mechanisms through which inhaled particles bind to macrophage membranes and subsequently are phagocytized remain unclear. We hypothesize that positively charged particles bind to negatively charged sialic acid (SA) residues on macrophage membranes. Alveolar Macrophages (AM) were collected by saline lavage from normal rat lungs. The cells adhered to plastic coverslips in serum-free phosphate buffered saline at 37 degrees C for 45 min and then were maintained at 4 degrees C for the binding experiments. Even distribution of SA groups on AM surfaces was demonstrated by scanning electron microscopy of wheat germ agglutinin (WGA) conjugated to 50 nm gold spheres. The WGA is a lectin that binds specifically to sialic acid, and pretreatment of AM with this lectin prevented the binding of positively charged carbonyl iron (C-Fe) spheres, aluminum (Al) spheres, and chrysotile asbestos fibers to AM surfaces. Limulus protein, another lectin with binding specificity for SA, similarly blocked the binding of positively charged spheres and chrysotile asbestos fibers but not negatively charged glass spheres or crocidolite asbestos fibers. Con A and ricin, lectins that bind to mannose and galactose residues, respectively, did not block particle binding. When both positively charged iron spheres and negatively charged glass spheres were prebound to AM membranes, subsequent treatment with WGA displaced only the positively charged spheres from macrophage surfaces. Con A and ricin had no effect on prebound positively charged C-Fe and Al spheres.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Interactions of Cationic Peptides and Ions with Negatively Charged Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Taheri-Araghi, Sattar

    In this thesis we study the interactions of ions and cationic peptides with a negatively charged lipid bilayer in an ionic solution where the electrostatic interactions are screened. We first examine the problem of charge renormalization and inversion of a highly charged bilayer with low dielectric constant. To be specific, we consider an asymmetrically charged lipid bilayer, in which only one layer is negatively charged. In particular, we study how dielectric discontinuities and charge correlations among lipid charges and condensed counterions influence the effective charge of the surface. When counterions are monovalent, e. g. , Na+, our mean-field approach implies that dielectric discontinuities can enhance counterion condensation. A simple scaling picture shows how the effects of dielectric discontinuities and surface-charge distributions are intertwined: Dielectric discontinuities diminish condensation if the backbone charge is uniformly smeared out while counterions are localized in space; they can, however, enhance condensation when the backbone charge is discrete. In the presence of asymmetric salts such as CaCl2, we find that the correlation effect, treated at the Gaussian level, is more pronounced when the surface has a lower dielectric constant, inverting the sign of the charge at a smaller value of Ca2+ concentration. In the last chapter we study binding of cationic peptides onto a lipid-bilayer membrane. The peptide not only interacts electrostatically with anionic lipids, rearranging their spatial distributions, but it can also insert hydrophobically into the membrane, expanding the area of its binding layer (i. e. , the outer layer). We examine how peptide charges and peptide insertion (thus area expansion) are intertwined. Our results show that, depending on the bilayer's surface charge density and peptide hydrophobicity, there is an optimal peptide charge yielding the maximum peptide penetration. Our results shed light on the physics behind the

  2. Is the negative glow plasma of a direct current glow discharge negatively charged?

    SciTech Connect

    Bogdanov, E. A.; Saifutdinov, A. I.; Demidov, V. I.; Kudryavtsev, A. A.

    2015-02-15

    A classic problem in gas discharge physics is discussed: what is the sign of charge density in the negative glow region of a glow discharge? It is shown that traditional interpretations in text-books on gas discharge physics that states a negative charge of the negative glow plasma are based on analogies with a simple one-dimensional model of discharge. Because the real glow discharges with a positive column are always two-dimensional, the transversal (radial) term in divergence with the electric field can provide a non-monotonic axial profile of charge density in the plasma, while maintaining a positive sign. The numerical calculation of glow discharge is presented, showing a positive space charge in the negative glow under conditions, where a one-dimensional model of the discharge would predict a negative space charge.

  3. Electrostatic Power Generation from Negatively Charged, Simulated Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; King, Glen C.; Kim, Hyun-Jung; Park, Yeonjoon

    2010-01-01

    Research was conducted to develop an electrostatic power generator for future lunar missions that facilitate the utilization of lunar resources. The lunar surface is known to be negatively charged from the constant bombardment of electrons and protons from the solar wind. The resulting negative electrostatic charge on the dust particles, in the lunar vacuum, causes them to repel each other minimizing the potential. The result is a layer of suspended dust about one meter above the lunar surface. This phenomenon was observed by both Clementine and Surveyor spacecrafts. During the Apollo 17 lunar landing, the charged dust was a major hindrance, as it was attracted to the astronauts' spacesuits, equipment, and the lunar buggies. The dust accumulated on the spacesuits caused reduced visibility for the astronauts, and was unavoidably transported inside the spacecraft where it caused breathing irritation [1]. In the lunar vacuum, the maximum charge on the particles can be extremely high. An article in the journal "Nature", titled "Moon too static for astronauts?" (Feb 2, 2007) estimates that the lunar surface is charged with up to several thousand volts [2]. The electrostatic power generator was devised to alleviate the hazardous effects of negatively charged lunar soil by neutralizing the charged particles through capacitive coupling and thereby simultaneously harnessing power through electric charging [3]. The amount of power generated or collected is dependent on the areal coverage of the device and hovering speed over the lunar soil surface. A thin-film array of capacitors can be continuously charged and sequentially discharged using a time-differentiated trigger discharge process to produce a pulse train of discharge for DC mode output. By controlling the pulse interval, the DC mode power can be modulated for powering devices and equipment. In conjunction with a power storage system, the electrostatic power generator can be a power source for a lunar rover or other

  4. Enhancing biocompatibility of D-oligopeptide hydrogels by negative charges.

    PubMed

    Hyland, Laura L; Twomey, Julianne D; Vogel, Savannah; Hsieh, Adam H; Yu, Y Bruce

    2013-02-11

    Oligopeptide hydrogels are emerging as useful matrices for cell culture with commercial products on the market, but L-oligopeptides are labile to proteases. An obvious solution is to create D-oligopeptide hydrogels, which lack enzymatic recognition. However, D-oligopeptide matrices do not support cell growth as well as L-oligopeptide matrices. In addition to chiral interactions, many cellular activities are strongly governed by charge-charge interactions. In this work, the effects of chirality and charge on human mesenchymal stem cell (hMSC) behavior were studied using hydrogels assembled from oppositely charged oligopeptides. It was found that negative charges significantly improved hMSC viability and proliferation in D-oligopeptide gels but had little effect on their interactions with L-oligopeptide gels. This result points to the possibility of using charge and other factors to engineer biomaterials whose chirality is distinct from that of natural biomaterials, but whose performance is close to that of natural biomaterials.

  5. Arabinogalactan proteins are incorporated in negatively charged coffee brew melanoidins.

    PubMed

    Bekedam, E Koen; De Laat, Marieke P F C; Schols, Henk A; Van Boekel, Martinus A J S; Smit, Gerrit

    2007-02-07

    The charge properties of melanoidins in high molecular weight (HMw) coffee brew fractions, isolated by diafiltration and membrane dialysis, were studied. Ion exchange chromatography experiments with the HMw fractions showed that coffee brew melanoidins were negatively charged whereas these molecules did not expose any positive charge at the pH of coffee brew. Fractions with different ionic charges were isolated and subsequently characterized by means of the specific extinction coefficient (K(mix 405nm)), sugar composition, phenolic group content, nitrogen content, and the arabinogalactan protein (AGP) specific Yariv gel-diffusion assay. The isolated fractions were different in composition and AGP was found to be present in one of the HMw fractions. The AGP accounted for 6% of the coffee brew dry matter and had a moderate negative charge, probably caused by the presence of uronic acids. As the fraction that precipitated with Yariv was brown (K(mix 405nm) = 1.2), compared to a white color in the green bean, it was concluded that these AGPs had undergone Maillard reaction resulting in an AGP-melanoidin complex. The presence of mannose (presumably from galactomannan) indicates the incorporation of galactomannans in the AGP-melanoidin complex. As the uronic acid content in the more negatively charged melanoidin-rich, AGP-poor HMw fractions decreased, it was hypothesized that acidic groups are formed or incorporated during melanoidin formation.

  6. Binding affinities of amino acid analogues at the charged aqueous titania interface: implications for titania-binding peptides.

    PubMed

    Sultan, Anas M; Hughes, Zak E; Walsh, Tiffany R

    2014-11-11

    Despite the extensive utilization of biomolecule-titania interfaces, biomolecular recognition and interactions at the aqueous titania interface remain far from being fully understood. Here, atomistic molecular dynamics simulations, in partnership with metadynamics, are used to calculate the free energy of adsorption of different amino acid side chain analogues at the negatively-charged aqueous rutile TiO2 (110) interface, under conditions corresponding with neutral pH. Our calculations predict that charged amino acid analogues have a relatively high affinity to the titania surface, with the arginine analogue predicted to be the strongest binder. Interactions between uncharged amino acid analogues and titania are found to be repulsive or weak at best. All of the residues that bound to the negatively-charged interface show a relatively stronger adsorption compared with the charge-neutral interface, including the negatively-charged analogue. Of the analogues that are found to bind to the titania surface, the rank ordering of the binding affinities is predicted to be "arginine" > "lysine" ≈ aspartic acid > "serine". This is the same ordering as was found previously for the charge-neutral aqueous titania interface. Our results show very good agreement with available experimental data and can provide a baseline for the interpretation of peptide-TiO2 adsorption data.

  7. Increased negatively charged nitrogen-vacancy centers in fluorinated diamond

    SciTech Connect

    Cui, Shanying; Hu, Evelyn L.

    2013-07-29

    We investigated the effect of fluorine-terminated diamond surface on the charged state of shallow nitrogen vacancy defect centers (NVs). Fluorination is achieved with CF{sub 4} plasma, and the surface chemistry is confirmed with x-ray photoemission spectroscopy. Photoluminescence of these ensemble NVs reveals that fluorine-treated surfaces lead to a higher and more stable negatively charged nitrogen vacancy (NV{sup −}) population than oxygen-terminated surfaces. NV{sup −} population is estimated by the ratio of negative to neutral charged NV zero-phonon lines. Surface chemistry control of NV{sup −} density is an important step towards improving the optical and spin properties of NVs for quantum information processing and magnetic sensing.

  8. The sheath structure around a negatively charged rocket payload

    NASA Technical Reports Server (NTRS)

    Neubert, T.; Gilchrist, B. E.; Banks, P. M.; Mandell, M. J.; Sasaki, S.

    1990-01-01

    The sheath structure around a rocket payload charged up to 460 V negative relative to the ambient ionospheric plasma is investigated experimentally and by computer simulations. The experimental results come from the Charge 2 sounding rocket experiment in which the payload was split into two separate sections (mother and daughter) connected with a conducting, insulated tether. In one of the experimental modes, the voltage between the payloads was increased linearly from 0 to 460 V in 2.5 s. A floating probe array was mounted on the mother with probes located 25, 50, 75, and 100 cm from the rocket surface. The internal impedance of the array was smaller than the probe/plasma impedance, which influenced the potential measurements. The measurements contain signatures, resulting from the outward expansion of the ion sheath with increasing negative mother potential. This conclusion is substantiated by computer simulations of space charge limited flow.

  9. Improving the biodistribution of PSMA-targeting tracers with a highly negatively charged linker.

    PubMed

    Huang, Steve S; Wang, Xinning; Zhang, Yuqing; Doke, Aniruddha; DiFilippo, Frank P; Heston, Warren D

    2014-05-01

    Prostate specific membrane antigen (PSMA) is overexpressed in prostate cancer and in tumor vasculature. Small molecule based inhibitors of PSMA have promised to provide sensitive detection of primary and metastatic prostate tumors. Although significant progress has been made, many of the radiolabeled imaging agents exhibit non-specific background binding. Prevailing tracer designs focus on high affinity urea-based inhibitors with strategically placed hydrophobic patches that interact favorably with the substrate tunnel of PSMA. We hypothesized that a novel PSMA inhibitor design incorporating highly negatively charged linkers may minimize non-specific binding and decrease overall background. Through iterative redesign, we generated a series of PSMA inhibitors with highly negatively charged linkers that connect to urea inhibitors and bulky radionuclide chelates. We then performed in vivo imaging and biodistribution studies with the radiolabeled tracers. The tracers derived from our iterative redesign have affinities for PSMA comparable to the "parent" urea ligand Cys-C(O)-Glu. Using a fluorine-18 labeled PSMA targeting tracer, we found that these highly negatively charged molecules exhibit rapid renal excretion with minimal non-specific binding. The biodistribution data at 2 hr showed 4.6%ID/g PC3-PIP tumor uptake with spleen, liver, bone, and blood background levels of 0.1%, 0.17%, 0.1%, and 0.04%, respectively. Placement of multiple negative charges in the linker region of PSMA tracers significantly reduced the non-specific background binding without significant reduction of binding affinity. This increased tumor/background contrast in positron emission tomography promises to provide more sensitive tumor detection while decreasing the overall radiation exposure to patients. © 2014 Wiley Periodicals, Inc.

  10. Targeting Negative Surface Charges of Cancer Cells by Multifunctional Nanoprobes.

    PubMed

    Chen, Bingdi; Le, Wenjun; Wang, Yilong; Li, Zhuoquan; Wang, Dong; Ren, Lei; Lin, Ling; Cui, Shaobin; Hu, Jennifer J; Hu, Yihui; Yang, Pengyuan; Ewing, Rodney C; Shi, Donglu; Cui, Zheng

    2016-01-01

    A set of electrostatically charged, fluorescent, and superparamagnetic nanoprobes was developed for targeting cancer cells without using any molecular biomarkers. The surface electrostatic properties of the established cancer cell lines and primary normal cells were characterized by using these nanoprobes with various electrostatic signs and amplitudes. All twenty two randomly selected cancer cell lines of different organs, but not normal control cells, bound specifically to the positively charged nanoprobes. The relative surface charges of cancer cells could be quantified by the percentage of cells captured magnetically. The activities of glucose metabolism had a profound impact on the surface charge level of cancer cells. The data indicate that an elevated glycolysis in the cancer cells led to a higher level secretion of lactate. The secreted lactate anions are known to remove the positive ions, leaving behind the negative changes on the cell surfaces. This unique metabolic behavior is responsible for generating negative cancer surface charges in a perpetuating fashion. The metabolically active cancer cells are shown to a unique surface electrostatic pattern that can be used for recovering cancer cells from the circulating blood and other solutions.

  11. Targeting Negative Surface Charges of Cancer Cells by Multifunctional Nanoprobes

    PubMed Central

    Chen, Bingdi; Le, Wenjun; Wang, Yilong; Li, Zhuoquan; Wang, Dong; Ren, Lei; Lin, Ling; Cui, Shaobin; Hu, Jennifer J.; Hu, Yihui; Yang, Pengyuan; Ewing, Rodney C.; Shi, Donglu; Cui, Zheng

    2016-01-01

    A set of electrostatically charged, fluorescent, and superparamagnetic nanoprobes was developed for targeting cancer cells without using any molecular biomarkers. The surface electrostatic properties of the established cancer cell lines and primary normal cells were characterized by using these nanoprobes with various electrostatic signs and amplitudes. All twenty two randomly selected cancer cell lines of different organs, but not normal control cells, bound specifically to the positively charged nanoprobes. The relative surface charges of cancer cells could be quantified by the percentage of cells captured magnetically. The activities of glucose metabolism had a profound impact on the surface charge level of cancer cells. The data indicate that an elevated glycolysis in the cancer cells led to a higher level secretion of lactate. The secreted lactate anions are known to remove the positive ions, leaving behind the negative changes on the cell surfaces. This unique metabolic behavior is responsible for generating negative cancer surface charges in a perpetuating fashion. The metabolically active cancer cells are shown to a unique surface electrostatic pattern that can be used for recovering cancer cells from the circulating blood and other solutions. PMID:27570558

  12. Membrane Permeabilization Induced by Sphingosine: Effect of Negatively Charged Lipids

    PubMed Central

    Jiménez-Rojo, Noemi; Sot, Jesús; Viguera, Ana R.; Collado, M. Isabel; Torrecillas, Alejandro; Gómez-Fernández, J.C.; Goñi, Félix M.; Alonso, Alicia

    2014-01-01

    Sphingosine [(2S, 3R, 4E)-2-amino-4-octadecen-1, 3-diol] is the most common sphingoid long chain base in sphingolipids. It is the precursor of important cell signaling molecules, such as ceramides. In the last decade it has been shown to act itself as a potent metabolic signaling molecule, by activating a number of protein kinases. Moreover, sphingosine has been found to permeabilize phospholipid bilayers, giving rise to vesicle leakage. The present contribution intends to analyze the mechanism by which this bioactive lipid induces vesicle contents release, and the effect of negatively charged bilayers in the release process. Fluorescence lifetime measurements and confocal fluorescence microscopy have been applied to observe the mechanism of sphingosine efflux from large and giant unilamellar vesicles; a graded-release efflux has been detected. Additionally, stopped-flow measurements have shown that the rate of vesicle permeabilization increases with sphingosine concentration. Because at the physiological pH sphingosine has a net positive charge, its interaction with negatively charged phospholipids (e.g., bilayers containing phosphatidic acid together with sphingomyelins, phosphatidylethanolamine, and cholesterol) gives rise to a release of vesicular contents, faster than with electrically neutral bilayers. Furthermore, phosphorous 31-NMR and x-ray data show the capacity of sphingosine to facilitate the formation of nonbilayer (cubic phase) intermediates in negatively charged membranes. The data might explain the pathogenesis of Niemann-Pick type C1 disease. PMID:24940775

  13. Spin-triplet negatively charged excitons in GaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Shields, A. J.; Pepper, M.; Simmons, M. Y.; Ritchie, D. A.

    1995-09-01

    We observe magnetic-field-induced transitions in the interband optical spectra of GaAs quantum wells with a small excess electron density. Their strengthening with excess electron density, in addition to their light polarization dependence, demonstrate that these correspond to (excited) spin-triplet states of the negatively charged exciton. The second-electron binding energy of both singlet and triplet X- strengthens with field.

  14. Preparation of agarose with low net negative charge density using an inexpensive anion exchanger.

    PubMed

    Polson, A; Swart, P; Spies, H S; van der Merwe, K J

    1986-01-01

    A method of preparing agarose of low net negative charge density by the use of Chromium tanned gelatin is described. Using commercial agarose (agarose c) as standard of comparison the product has a sulphate content approximately 0.1 that of agarose c and its pyruvate content was reduced to zero as shown by NMR in DMSO. The product was still able to adsorb and desorb serum glycoproteins similar to agarose c indicating that charge on the agarose c gel particles played a minor role if any on the binding of the serum glycoproteins.

  15. Cation specific binding with protein surface charges

    PubMed Central

    Hess, Berk; van der Vegt, Nico F. A.

    2009-01-01

    Biological organization depends on a sensitive balance of noncovalent interactions, in particular also those involving interactions between ions. Ion-pairing is qualitatively described by the law of “matching water affinities.” This law predicts that cations and anions (with equal valence) form stable contact ion pairs if their sizes match. We show that this simple physical model fails to describe the interaction of cations with (molecular) anions of weak carboxylic acids, which are present on the surfaces of many intra- and extracellular proteins. We performed molecular simulations with quantitatively accurate models and observed that the order K+ < Na+ < Li+ of increasing binding affinity with carboxylate ions is caused by a stronger preference for forming weak solvent-shared ion pairs. The relative insignificance of contact pair interactions with protein surfaces indicates that thermodynamic stability and interactions between proteins in alkali salt solutions is governed by interactions mediated through hydration water molecules. PMID:19666545

  16. Loss of microvascular negative charges accompanied by interstitial edema in septic rats' heart.

    PubMed

    Gotloib, L; Shostak, A; Galdi, P; Jaichenko, J; Fudin, R

    1992-01-01

    We studied the effect of Gram-negative sepsis on negative charges of heart capillaries and myocardial cells. We used a rat model of multiorgan failure, with ruthenium red (RR) and polyethyleneimine (PEI) as cationic binding tracers. Twenty-four hours after induction of sepsis, negative charges had decreased in glycocalyx and basement membrane of myocardial capillary endothelial cells. There were substantial amounts of interstitial edema. Density of anionic charges in the sarcolemmal glycocalyx complex of cardiac cells was markedly reduced. Myocardial cells' mitochondria consistently showed morphologic changes, whose severity ranged between stages II and IV C of Trump. Thirteen days after induction of sepsis, capillary endothelial and myocardial cells had recovered almost completely and showed no intracellular edema. Gram-negative sepsis caused a significant reduction in negative charges normally present in the microvascular wall as well as on myocardial cells. Consequently, several membranes limiting the various compartments of heart tissue lost their structural integrity. This morphometric data could explain the development of protein-rich interstitial edema and defective cell volume regulation observed in cardiac muscle of endotoxin-shocked animals. This myocardial edema may be at the origin of the cardiac dysfunction observed in both experimental and human septic shock.

  17. Study on space charge compensation in negative hydrogen ion beam.

    PubMed

    Zhang, A L; Peng, S X; Ren, H T; Zhang, T; Zhang, J F; Xu, Y; Guo, Z Y; Chen, J E

    2016-02-01

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H(+) beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H(-) beam from a 2.45 GHz microwave driven H(-) ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results.

  18. Study on space charge compensation in negative hydrogen ion beam

    SciTech Connect

    Zhang, A. L.; Chen, J. E.; Peng, S. X. Ren, H. T.; Zhang, T.; Zhang, J. F.; Xu, Y.; Guo, Z. Y.

    2016-02-15

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H{sup +} beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H{sup −} beam from a 2.45 GHz microwave driven H{sup −} ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results.

  19. Electron interactions with positively and negatively multiply charged biomolecular clusters

    NASA Astrophysics Data System (ADS)

    Feketeová, Linda

    2012-07-01

    Interactions of positively and negatively multiply charged biomolecular clusters with low-energy electrons, from ~ 0 up to 50 eV of electron energy, were investigated in a high resolution Fourier-Transform Ion Cyclotron Resonance mass spectrometer equipped with an electrospray ionisation source. Electron-induced dissociation reactions of these clusters depend on the energy of the electrons, the size and the charge state of the cluster. The positively charged clusters [Mn+2H]2+ of zwitterionic betaines, M = (CH3)2XCH2CO2 (X = NCH3 and S), do capture an electron in the low electron energy region (< 10 eV). At higher electron energies neutral evaporation from the cluster becomes competitive with Coulomb explosion. In addition, a series of singly charged fragments arise from bond cleavage reactions, including decarboxylation and CH3 group transfer, due to the access of electronic excited states of the precursor ions. These fragmentation reactions depend on the type of betaine (X = NCH3 or S). For the negative dianionic clusters of tryptophan [Trp9-2H]2-, the important channel at low electron energies is loss of a neutral. Coulomb explosion competes from 19.8 eV and dominates at high electron energies. A small amount of [Trp2-H-NH3]- is observed at 21.8 eV.

  20. Construction principle for stable multiply-negative charged molecular systems. Part II. Triply-negative charged systems

    NASA Astrophysics Data System (ADS)

    Scheller, M. K.; Cederbaum, L. S.

    1994-06-01

    Following a recently introduced construction principle, triply-negative charged compounds are designed and investigated. The specific series of systems discussed are M2X3-5 alkali and M2X3-7 earth alkali halides. For the highly ionic members in these series considerable evidence for their stability to fragmentation and to electron autodetachment is obtained at various levels of theory.

  1. Complexes of Negatively Charged Polypeptides with Cationic Lipids

    NASA Astrophysics Data System (ADS)

    Subramanian, G.; Li, Youli; Safinya, Cyrus R.

    1997-03-01

    Complexes of cationic lipids with oppositely charged proteins are promising candidates for new biomolecular materials. In addition to being used as a direct vehicle for protein transfection, they also find applications as templates for synthesis of molecular sieves. In spite of these wide ranging applications, the structure and interactions in these complexes have largely remained unclear. Here we report on the study of complexes formed between the cationic lipid didodecyldimethylammonium bromide (DDAB) with negatively charged polypeptide poly glutamic acid (PGA) both in the presence and absence of the neutral lipid dilauroylglycerophosphocholine (DLPC). X-ray diffraction of the complexes indicates a condensed lamellar lipid structure with the polypeptide intercalated between the layers. We present a comprehensive phase diagram on this system based on X-ray diffraction data. This work is supported in part by grants NSF DMR-9624091, PRF-31352 AC7, and CU LAR STP/UC 96-118.

  2. Negative ion-uranium hexafluoride charge transfer reactions

    NASA Astrophysics Data System (ADS)

    Streit, Gerald E.; Newton, T. W.

    1980-10-01

    The flowing afterglow technique has been used to study the process of charge transfer from selected negative ions (F-, Cl-, Br-, I-, SF6-) to UF6. The sole ionic product in all cases was observed to be UF6-. Data analysis was complicated by an unexpected coupling of chemical and diffusive ion loss processes when UF6- product ions were present. The rate coefficients for the charge transfer processes are (k in 10-9 cm3 molecule-1 s-1) F-, 1.3; Cl-, 1.1; Br-, 0.93; I-, 0.77; and SF6-, 0.69. The rate constants agree quite well with the classical Langevin predictions.

  3. Negative thermal expansion induced by intermetallic charge transfer.

    PubMed

    Azuma, Masaki; Oka, Kengo; Nabetani, Koichiro

    2015-06-01

    Suppression of thermal expansion is of great importance for industry. Negative thermal expansion (NTE) materials which shrink on heating and expand on cooling are therefore attracting keen attention. Here we provide a brief overview of NTE induced by intermetallic charge transfer in A-site ordered double perovskites SaCu3Fe4O12 and LaCu3Fe4-x Mn x O12, as well as in Bi or Ni substituted BiNiO3. The last compound shows a colossal dilatometric linear thermal expansion coefficient exceeding -70 × 10(-6) K(-1) near room temperature, in the temperature range which can be controlled by substitution.

  4. Glutamic acid 181 is negatively charged in the bathorhodopsin photointermediate of visual rhodopsin

    PubMed Central

    Sandberg, Megan N.; Amora, Tabitha L.; Ramos, Lavoisier S.; Chen, Min-Hsuan; Knox, Barry E.; Birge, Robert R.

    2011-01-01

    Assignment of the protonation state of the residue Glu-181 is important to our understanding of the primary event, activation processes and wavelength selection in rhodopsin. Despite extensive study, there is no general agreement on the protonation state of this residue in the literature. Electronic assignment is complicated by the location of Glu-181 near the nodal point in the electrostatic charge shift that accompanies excitation of the chromophore into the low-lying, strongly allowed ππ* state. Thus, the charge on this residue is effectively hidden from electronic spectroscopy. This situation is resolved in bathorhodopsin, because photoisomerization of the chromophore places Glu-181 well within the region of negative charge shift following excitation. We demonstrate that Glu-181 is negatively charged in bathorhodopsin based on the shift in the batho absorption maxima at 10K [λmax band (native)= 544±2 nm, λmax band (E181Q)= 556±3 nm] and the decrease in the λmax band oscillator strength (0.069±0.004) of E181Q relative to the native protein. Because the primary event in rhodopsin does not include a proton translocation or disruption of the hydrogen-bonding network within the binding pocket, we may conclude that the Glu-181 residue in rhodopsin is also charged. PMID:21319741

  5. Glutamic acid 181 is negatively charged in the bathorhodopsin photointermediate of visual rhodopsin.

    PubMed

    Sandberg, Megan N; Amora, Tabitha L; Ramos, Lavoisier S; Chen, Min-Hsuan; Knox, Barry E; Birge, Robert R

    2011-03-09

    Assignment of the protonation state of the residue Glu-181 is important to our understanding of the primary event, activation processes and wavelength selection in rhodopsin. Despite extensive study, there is no general agreement on the protonation state of this residue in the literature. Electronic assignment is complicated by the location of Glu-181 near the nodal point in the electrostatic charge shift that accompanies excitation of the chromophore into the low-lying, strongly allowed ππ* state. Thus, the charge on this residue is effectively hidden from electronic spectroscopy. This situation is resolved in bathorhodopsin, because photoisomerization of the chromophore places Glu-181 well within the region of negative charge shift following excitation. We demonstrate that Glu-181 is negatively charged in bathorhodopsin on the basis of the shift in the batho absorption maxima at 10 K [λ(max) band (native) = 544 ± 2 nm, λ(max) band (E181Q) = 556 ± 3 nm] and the decrease in the λ(max) band oscillator strength (0.069 ± 0.004) of E181Q relative to that of the native protein. Because the primary event in rhodopsin does not include a proton translocation or disruption of the hydrogen-bonding network within the binding pocket, we may conclude that the Glu-181 residue in rhodopsin is also charged.

  6. The sheath structure around a negatively charged rocket payload

    SciTech Connect

    Neubert, T.; Gilchrist, B.E.; Banks, P.M.; Williamson, P.R. ); Mandell, M.J.; Katz, I. ); Sasaki, S.; Oyama, K.I. ); Raitt, W.J.; Meyers, N.B. )

    1990-05-01

    The sheath structure around a rocket payload charged up to 460 V negative relative to the ambient ionospheric plasma is investigated experimentally and by computer simulations. In one of the experimental modes, the voltage between the payloads was increased linearly from 0 to 460 V in 2.5 s. In this case the tethered mother/daughter functioned as a double probe, the negative probe (mother) reaching large negative potentials, while the positive probe (daughter) stayed close to the ambient plasma potential. A floating probe array was mounted on the mother with probes located, 25, 50, 75, and 100 cm from the rocket surface. The internal impedance of the array was smaller than the probe/plasma impedance, which influenced the potential measurements. However, the measurements contain signatures, which the authors interpret as resulting from the outward expansion of the ion sheath with increasing negative mother potential. This conclusion is substantiated by NASCAP/LEO computer simulations of space charge limited flow. At high potentials, the observed ion current flowing to the mother increased more strongly with bias potential than found from the simulations. It is suggested that the enhancement of the current is generated by secondary electrons emitted by the ions bombarding the payload skin. The effects of the motion of the mother (540-580 m/s) and of the ambient magnetic field have been assessed by the code. It was estimated that the ion current to the mother was increased by 20% relative to a stationary payload, while the incorporation of a magnetic field had no practical influence on the simulation results.

  7. Laboratory Infrared Spectroscopy of Gaseous Negatively Charged Polyaromatic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Gao, Juehan; Berden, Giel; Oomens, Jos

    2014-06-01

    Based largely on infrared spectroscopic evidence, polycyclic aromatic hydrocarbon (PAH) molecules are now widely accepted to occur abundantly in the interstellar medium. Laboratory infrared spectra have been obtained for a large variety of neutral and cationic PAHs, but data for anionic PAHs are scarce. Nonetheless, in regions with relatively high electron densities and low UV photon fluxes, PAHs have been suggested to occur predominantly as negatively charged ions (anions), having substantial influence on cloud chemistry. While some matrix spectra have been reported for radical anion PAHs, no data is available for even-electron anions, which are more stable against electron detachment. Here we present the first laboratory infrared spectra of deprotonated PAHs ([PAH-H]-) in the wavelength ranges between 6 and 16 μm and around 3 μm. Wavelength-dependent infrared multiple-photon electron detachment is employed to obtain spectra for deprotonated naphthalene, anthracene, and pyrene in the gas phase. Spectra are compared with theoretical spectra computed at the density functional theory level. We show that the relative band intensities in different ranges of the IR spectrum deviate significantly from those of neutral and positively charged PAHs, and moreover from those of radical anion PAHs. These relative band intensities are, however, well reproduced by theory. An analysis of the frontier molecular orbitals of the even- and odd-electron anions reveals a high degree of charge localization in the deprotonated systems, qualitatively explaining the observed differences and suggesting unusually high electric dipole moments for this class of PAH molecules.

  8. Negatively-charged particle pickup in the Enceladus plume

    NASA Astrophysics Data System (ADS)

    Jones, G. H.; Arridge, C. S.; Coates, A. J.; Wellbrock, A.; Kriegel, H.; Meier, P.

    2013-09-01

    One of the key discoveries of the Cassini spacecraft's traverses of the Enceladus plume was that of negatively-charged nanograins and ions, as detected by CAPS- ELS. The trajectories of these charged particles are expected to be affected by the motional electric field in the vicinity of the moon, especially those of the low mass ions. During some Enceladus encounters, the particles have been observed arriving at the spacecraft in the local ram direction, i.e. close to being at rest with respect to Enceladus, presumably shortly after their formation and before the acceleration associated with the pickup process. During other encounters however, the ions have been observed to arrive at the spacecraft well away from the ram direction, in the gyroplane at ~90 degrees to the local magnetic field direction, indicating their pickup by the local plasma flow. We present an overview of observations of these negative pickup nanograins in the Enceladus plume, and our interpretation of these observations, and attempts to trace the origins of the grains using a hybrid simulation of the plume.

  9. Ion-channel entrances influence permeation. Net charge, size, shape, and binding considerations.

    PubMed Central

    Dani, J A

    1986-01-01

    Many ion channels have wide entrances that serve as transition zones to the more selective narrow region of the pore. Here some physical features of these vestibules are explored. They are considered to have a defined size, funnel shape, and net-negative charge. Ion size, ionic screening of the negatively charged residues, cation binding, and blockage of current are analyzed to determine how the vestibules influence transport. These properties are coupled to an Eyring rate theory model for the narrow length of the pore. The results include the following: Wide vestibules allow the pore to have a short narrow region. Therefore, ions encounter a shorter length of restricted diffusion, and the channel conductance can be greater. The potential produced by the net-negative charge in the vestibules attracts cations into the pore. Since this potential varies with electrolyte concentration, the conductance measured at low electrolyte concentrations is larger than expected from measurements at high concentrations. Net charge inside the vestibules creates a local potential that confers some cation vs. anion, and divalent vs. monovalent selectivity. Large cations are less effective at screening (diminishing) the net-charge potential because they cannot enter the pore as well as small cations. Therefore, at an equivalent bulk concentration the attractive negative potential is larger, which causes large cations to saturate sites in the pore at lower concentrations. Small amounts of large or divalent cations can lead to misinterpretation of the permeation properties of a small monovalent cation. PMID:2421791

  10. Negatively charged lipid membranes promote a disorder-order transition in the Yersinia YscU protein.

    PubMed

    Weise, Christoph F; Login, Frédéric H; Ho, Oanh; Gröbner, Gerhard; Wolf-Watz, Hans; Wolf-Watz, Magnus

    2014-10-21

    The inner membrane of Gram-negative bacteria is negatively charged, rendering positively charged cytoplasmic proteins in close proximity likely candidates for protein-membrane interactions. YscU is a Yersinia pseudotuberculosis type III secretion system protein crucial for bacterial pathogenesis. The protein contains a highly conserved positively charged linker sequence that separates membrane-spanning and cytoplasmic (YscUC) domains. Although disordered in solution, inspection of the primary sequence of the linker reveals that positively charged residues are separated with a typical helical periodicity. Here, we demonstrate that the linker sequence of YscU undergoes a largely electrostatically driven coil-to-helix transition upon binding to negatively charged membrane interfaces. Using membrane-mimicking sodium dodecyl sulfate micelles, an NMR derived structural model reveals the induction of three helical segments in the linker. The overall linker placement in sodium dodecyl sulfate micelles was identified by NMR experiments including paramagnetic relaxation enhancements. Partitioning of individual residues agrees with their hydrophobicity and supports an interfacial positioning of the helices. Replacement of positively charged linker residues with alanine resulted in YscUC variants displaying attenuated membrane-binding affinities, suggesting that the membrane interaction depends on positive charges within the linker. In vivo experiments with bacteria expressing these YscU replacements resulted in phenotypes displaying significantly reduced effector protein secretion levels. Taken together, our data identify a previously unknown membrane-interacting surface of YscUC that, when perturbed by mutations, disrupts the function of the pathogenic machinery in Yersinia.

  11. Negative thermal expansion induced by intermetallic charge transfer

    PubMed Central

    Azuma, Masaki; Oka, Kengo; Nabetani, Koichiro

    2015-01-01

    Suppression of thermal expansion is of great importance for industry. Negative thermal expansion (NTE) materials which shrink on heating and expand on cooling are therefore attracting keen attention. Here we provide a brief overview of NTE induced by intermetallic charge transfer in A-site ordered double perovskites SaCu3Fe4O12 and LaCu3Fe4−xMnxO12, as well as in Bi or Ni substituted BiNiO3. The last compound shows a colossal dilatometric linear thermal expansion coefficient exceeding −70 × 10−6 K−1 near room temperature, in the temperature range which can be controlled by substitution. PMID:27877801

  12. Laboratory infrared spectroscopy of gaseous negatively charged polyaromatic hydrocarbons

    SciTech Connect

    Gao, Juehan; Berden, Giel; Oomens, Jos

    2014-06-01

    Based largely on infrared spectroscopic evidence, polycyclic aromatic hydrocarbon (PAH) molecules are now widely accepted to occur abundantly in the interstellar medium. Laboratory infrared spectra have been obtained for a large variety of neutral and cationic PAHs, but data for anionic PAHs are scarce. Nonetheless, in regions with relatively high electron densities and low UV photon fluxes, PAHs have been suggested to occur predominantly as negatively charged ions (anions), having substantial influence on cloud chemistry. While some matrix spectra have been reported for radical anion PAHs, no data is available for even-electron anions, which are more stable against electron detachment. Here we present the first laboratory infrared spectra of deprotonated PAHs ([PAH-H]{sup –}) in the wavelength ranges between 6 and 16 μm and around 3 μm. Wavelength-dependent infrared multiple-photon electron detachment is employed to obtain spectra for deprotonated naphthalene, anthracene, and pyrene in the gas phase. Spectra are compared with theoretical spectra computed at the density functional theory level. We show that the relative band intensities in different ranges of the IR spectrum deviate significantly from those of neutral and positively charged PAHs, and moreover from those of radical anion PAHs. These relative band intensities are, however, well reproduced by theory. An analysis of the frontier molecular orbitals of the even- and odd-electron anions reveals a high degree of charge localization in the deprotonated systems, qualitatively explaining the observed differences and suggesting unusually high electric dipole moments for this class of PAH molecules.

  13. Binding of polymyxin B nonapeptide to gram-negative bacteria.

    PubMed Central

    Vaara, M; Viljanen, P

    1985-01-01

    The binding of the outer membrane-disorganizing peptide polymyxin B nonapeptide (PMBN) to gram-negative bacteria was studied by using tritium-labeled PMBN. Smooth Salmonella typhimurium had a binding capacity of ca. 6 nmol of PMBN per mg (dry weight) of bacteria, which corresponds to ca. 1 X 10(6) to 2 X 10(6) molecules of PMBN per single cell. The binding was of relatively high affinity (Kd, 1.3 microM). The isolated outer membrane of S. typhimurium bound ca. 100 nmol of PMBN per mg of outer membrane protein (Kd, 1.1 microM), whereas the cytoplasmic membrane bound 9 to 10 times less. Other bacteria which are susceptible to the action of PMBN (Escherichia coli strains, Pseudomonas aeruginosa, Haemophilus influenzae) also bound large amounts of PMBN. The S. typhimurium pmrA mutant, Neisseria gonorrhoeae, and Proteus mirabilis (all known as resistant to polymyxin and PMBN) bound 3.3, 4, and 12 times less than S. typhimurium, respectively. The binding of PMBN to S. typhimurium was effectively inhibited by low concentrations of polymyxin B, compound EM49 (octapeptin), polylysine, and protamine. Spermine, Ca2+, and Mg2+ also inhibited the PMBN binding although they were ca. 160, 700, and 2,400 times less active (based on molarity) than polymyxin B, respectively. No binding inhibition was found at the tested concentrations of streptomycin, tetralysine, spermidine, or cadaverine. PMID:2988430

  14. Astronomers Discover First Negatively-charged Molecule in Space

    NASA Astrophysics Data System (ADS)

    2006-12-01

    Cambridge, MA - Astronomers have discovered the first negatively charged molecule in space, identifying it from radio signals that were a mystery until now. While about 130 neutral and 14 positively charged molecules are known to exist in interstellar space, this is the first negative molecule, or anion, to be found. "We've spotted a rare and exotic species, like the white tiger of space," said astronomer Michael McCarthy of the Harvard-Smithsonian Center for Astrophysics (CfA). By learning more about the rich broth of chemicals found in interstellar space, astronomers hope to explain how the young Earth converted these basic ingredients into the essential chemicals for life. This new finding helps to advance scientists' understanding of the chemistry of the interstellar medium, and hence the birthplaces of planets. McCarthy worked with CfA colleagues Carl Gottlieb, Harshal Gupta (also from the Univ. of Texas), and Patrick Thaddeus to identify the molecular anion known as C6H-: a linear chain of six carbon atoms with one hydrogen atom at the end and an "extra" electron. Such molecules were thought to be extremely rare because ultraviolet light that suffuses space easily knocks electrons off molecules. The large size of C6H-, larger than most neutral and all positive molecules known in space, may increase its stability in the harsh cosmic environment. "The discovery of C6H- resolves a long-standing enigma in astrochemistry: the apparent lack of negatively charged molecules in space," stated Thaddeus. The team first conducted laboratory experiments to determine exactly what radio frequencies to use in their search. Then, they used the National Science Foundation's Robert C. Byrd Green Bank Telescope to hunt for C6H- in celestial objects. In particular, they targeted locations in which previous searches had spotted unidentified radio signals at the appropriate frequencies. They found C6H- in two very different locations-a shell of gas surrounding the evolved red giant

  15. Controllable transition from positive space charge to negative space charge in an inverted cylindrical magnetron

    SciTech Connect

    Rane, R. Ranjan, M.; Mukherjee, S.; Bandyopadhyay, M.

    2016-01-15

    The combined effect of magnetic field (B), gas pressure (P), and the corresponding discharge voltage on the discharge properties of argon in inverted cylindrical magnetron has been investigated. In the experiment, anode is biased with continuous 10 ms sinusoidal half wave. It is observed that at a comparatively higher magnetic field (i.e., >200 gauss) and lower operating pressure (i.e., <1 × 10{sup −3} mbar), the discharge extinguishes and demands a high voltage to reignite. Discharge current increases with increase in magnetic field and starts reducing at sufficiently higher magnetic field for a particular discharge voltage due to restricted electron diffusion towards the anode. It is observed that B/P ratio plays an important role in sustaining the discharge and is constant for a discharge voltage. The discharge is transformed to negative space charge regime from positive space charge regime at certain B/P ratio and this ratio varies linearly with the discharge voltage. The space charge reversal is indicated by the radial profile of the floating potential and plasma potential in between two electrodes for different magnetic fields. At a particular higher magnetic field (beyond 100 gauss), the floating potential increases gradually with the radial distance from cathode, whereas it remains almost constant at lower magnetic field.

  16. Controllable transition from positive space charge to negative space charge in an inverted cylindrical magnetron

    NASA Astrophysics Data System (ADS)

    Rane, R.; Bandyopadhyay, M.; Ranjan, M.; Mukherjee, S.

    2016-01-01

    The combined effect of magnetic field (B), gas pressure (P), and the corresponding discharge voltage on the discharge properties of argon in inverted cylindrical magnetron has been investigated. In the experiment, anode is biased with continuous 10 ms sinusoidal half wave. It is observed that at a comparatively higher magnetic field (i.e., >200 gauss) and lower operating pressure (i.e., <1 × 10-3 mbar), the discharge extinguishes and demands a high voltage to reignite. Discharge current increases with increase in magnetic field and starts reducing at sufficiently higher magnetic field for a particular discharge voltage due to restricted electron diffusion towards the anode. It is observed that B/P ratio plays an important role in sustaining the discharge and is constant for a discharge voltage. The discharge is transformed to negative space charge regime from positive space charge regime at certain B/P ratio and this ratio varies linearly with the discharge voltage. The space charge reversal is indicated by the radial profile of the floating potential and plasma potential in between two electrodes for different magnetic fields. At a particular higher magnetic field (beyond 100 gauss), the floating potential increases gradually with the radial distance from cathode, whereas it remains almost constant at lower magnetic field.

  17. New effects of a long-lived negatively charged massive particle on big bang nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Kusakabe, Motohiko; Kim, K. S.; Cheoun, Myung-Ki; Kajino, Toshitaka; Kino, Yasushi; Mathews, Grant J.

    2014-05-01

    Primordial 7Li abundance inferred from observations of metal-poor stars is a factor of about 3 lower than the theoretical value of standard big bang nucleosynthesis (BBN) model. One of the solutions to the Li problem is 7Be destruction during the BBN epoch caused by a long-lived negatively charged massive particle, X-. The particle can bind to nuclei, and X-bound nuclei (X-nuclei) can experience new reactions. The radiative X- capture by 7Be nuclei followed by proton capture of the bound state of 7Be and X- (7Bex) is a possible 7Be destruction reaction. Since the primordial abundance of 7Li originates mainly from 7Li produced via the electron capture of 7Be after BBN, the 7Be destruction provides a solution to the 7Li problem. We suggest a new route of 7Bex formation, that is the 7Be charge exchange at the reaction of 7Be3+ ion and X-. The formation rate depends on the ionization fraction of 7Be3+ ion, the charge exchange cross section of 7Be3+, and the probability that excited states 7Bex* produced at the charge exchange are converted to the ground state. We find that this reaction can be equally important as or more important than ordinary radiative recombination of 7Be and X-. The effect of this new route is shown in a nuclear reaction network calculation.

  18. Interaction of poly(L-lysines) with negatively charged membranes: an FT-IR and DSC study.

    PubMed

    Schwieger, Christian; Blume, Alfred

    2007-04-01

    The influence of the binding of poly(L-lysine) (PLL) to negatively charged membranes containing phosphatidylglycerols (PG) was studied by DSC and FT-IR spectroscopy. We found a general increase in the main transition temperature as well as increase in hydrophobic order of the membrane upon PLL binding. Furthermore we observed stronger binding of hydration water to the lipid head groups after PLL binding. The secondary structure of the PLL after binding was studied by FT-IR spectroscopy. We found that PLL binds in an alpha-helical conformation to negatively charged DPPG membranes or membranes with DPPG-rich domains. Moreover we proved that PLL binding induces domain formation in the gel state of mixed DPPC/DPPG or DMPC/DPPG membranes as well as lipid remixing in the liquid-crystalline state. We studied these effects as a function of PLL chain length and found a significant dependence of the secondary structure, phase transition temperature and domain formation capacity on PLL chain length and also a correlation between the peptide secondary structure and the phase transition temperature of the membrane. We present a system in which the membrane phase transition triggers a highly cooperative secondary structure transition of the membrane-bound peptide from alpha-helix to random coil.

  19. Charge heterogeneity: Basic antibody charge variants with increased binding to Fc receptors

    PubMed Central

    Hintersteiner, Beate; Lingg, Nico; Zhang, Peiqing; Woen, Susanto; Hoi, Kong Meng; Stranner, Stefan; Wiederkum, Susanne; Mutschlechner, Oliver; Schuster, Manfred; Loibner, Hans; Jungbauer, Alois

    2016-01-01

    ABSTRACT We identified active isoforms of the chimeric anti-GD2 antibody, ch14.18, a recombinant antibody produced in Chinese hamster ovary cells, which is already used in clinical trials.1,2,3 We separated the antibody by high resolution ion-exchange chromatography with linear pH gradient elution into acidic, main and basic charge variants on a preparative scale yielding enough material for an in-depth study of the sources and the effects of microheterogeneity. The binding affinity of the charge variants toward the antigen and various cell surface receptors was studied by Biacore. Effector functions were evaluated using cellular assays for antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. Basic charge variants showed increased binding to cell surface receptor FcγRIIIa, which plays a major role in regulating effector functions. Furthermore, increased binding of the basic fractions to the neonatal receptor was observed. As this receptor mediates the prolonged half-life of IgG in human serum, this data may well hint at an increased serum half-life of these basic variants compared to their more acidic counterparts. Different glycoform patterns, C-terminal lysine clipping and N-terminal pyroglutamate formation were identified as the main structural sources for the observed isoform pattern. Potential differences in structural stability between individual charge variant fractions by nano differential scanning calorimetry could not been detected. Our in-vitro data suggests that the connection between microheterogeneity and the biological activity of recombinant antibody therapeutics deserves more attention than commonly accepted. PMID:27559765

  20. Negatively Charged Lipids as a Potential Target for New Amphiphilic Aminoglycoside Antibiotics: A BIOPHYSICAL STUDY.

    PubMed

    Sautrey, Guillaume; El Khoury, Micheline; Dos Santos, Andreia Giro; Zimmermann, Louis; Deleu, Magali; Lins, Laurence; Décout, Jean-Luc; Mingeot-Leclercq, Marie-Paule

    2016-06-24

    Bacterial membranes are highly organized, containing specific microdomains that facilitate distinct protein and lipid assemblies. Evidence suggests that cardiolipin molecules segregate into such microdomains, probably conferring a negative curvature to the inner plasma membrane during membrane fission upon cell division. 3',6-Dinonyl neamine is an amphiphilic aminoglycoside derivative active against Pseudomonas aeruginosa, including strains resistant to colistin. The mechanisms involved at the molecular level were identified using lipid models (large unilamellar vesicles, giant unilamelllar vesicles, and lipid monolayers) that mimic the inner membrane of P. aeruginosa The study demonstrated the interaction of 3',6-dinonyl neamine with cardiolipin and phosphatidylglycerol, two negatively charged lipids from inner bacterial membranes. This interaction induced membrane permeabilization and depolarization. Lateral segregation of cardiolipin and membrane hemifusion would be critical for explaining the effects induced on lipid membranes by amphiphilic aminoglycoside antibiotics. The findings contribute to an improved understanding of how amphiphilic aminoglycoside antibiotics that bind to negatively charged lipids like cardiolipin could be promising antibacterial compounds.

  1. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    NASA Astrophysics Data System (ADS)

    Teyssedre, G.; Vu, T. T. N.; Laurent, C.

    2015-12-01

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30-60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10-14-10-13 m2 V-1 s-1 for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.

  2. Unveiling Residual Molecular Binding in Triply Charged Hydrogen Bromide

    SciTech Connect

    Penent, F.; Lablanquie, P.; Palaudoux, J.; Gamblin, G.; Carniato, S.; Andric, L.; Hikosaka, Y.; Ito, K.

    2011-03-11

    We present an experimental and theoretical study of triply charged hydrogen bromide ions formed by photoionization of the inner 3d shell of Br. The experimental results, obtained by detecting the 3d photoelectron in coincidence with the two subsequent Auger electrons, are analyzed using calculated potential energy curves of HBr{sup 3+}. The competition between the short-range chemical binding potential and the Coulomb repulsion in the dissociative process is shown. Two different mechanisms are observed for double Auger decay: one, a direct process with simultaneous ejection of two Auger electrons to final HBr{sup 3+} ionic states and the other, a cascade process involving double Auger decay characterized by the autoionization of Br*{sup +} ion subsequent to the HBr{sup 2+} fragmentation.

  3. Experimental evidence on removing copper and light-induced degradation from silicon by negative charge

    SciTech Connect

    Boulfrad, Yacine Lindroos, Jeanette; Yli-Koski, Marko; Savin, Hele; Wagner, Matthias; Wolny, Franziska

    2014-11-03

    In addition to boron and oxygen, copper is also known to cause light-induced degradation (LID) in silicon. We have demonstrated previously that LID can be prevented by depositing negative corona charge onto the wafer surfaces. Positively charged interstitial copper ions are proposed to diffuse to the negatively charged surface and consequently empty the bulk of copper. In this study, copper out-diffusion was confirmed by chemical analysis of the near surface region of negatively/positively charged silicon wafer. Furthermore, LID was permanently removed by etching the copper-rich surface layer after negative charge deposition. These results demonstrate that (i) copper can be effectively removed from the bulk by negative charge, (ii) under illumination copper forms a recombination active defect in the bulk of the wafer causing severe light induced degradation.

  4. Experimental evidence on removing copper and light-induced degradation from silicon by negative charge

    NASA Astrophysics Data System (ADS)

    Boulfrad, Yacine; Lindroos, Jeanette; Wagner, Matthias; Wolny, Franziska; Yli-Koski, Marko; Savin, Hele

    2014-11-01

    In addition to boron and oxygen, copper is also known to cause light-induced degradation (LID) in silicon. We have demonstrated previously that LID can be prevented by depositing negative corona charge onto the wafer surfaces. Positively charged interstitial copper ions are proposed to diffuse to the negatively charged surface and consequently empty the bulk of copper. In this study, copper out-diffusion was confirmed by chemical analysis of the near surface region of negatively/positively charged silicon wafer. Furthermore, LID was permanently removed by etching the copper-rich surface layer after negative charge deposition. These results demonstrate that (i) copper can be effectively removed from the bulk by negative charge, (ii) under illumination copper forms a recombination active defect in the bulk of the wafer causing severe light induced degradation.

  5. Negatively charged gold atoms in subnanometric particles: experimental evidence from an X-ray photoelectron spectroscopy study.

    PubMed

    Boccia, Alice; Zanoni, Robertino; Arduini, Arturo; Pescatori, Luca; Secchi, Andrea

    2012-11-01

    The results of an X-ray Photoelectron Spectroscopy study conducted on a series of gold nanoparticles recently reported by us, stabilized by monodentate, bidentate, tridentate and tetradentate thiolate calix[n]arene ligands, are presented here. By virtue of the different denticity of the ligands, the nuclearity of the resulting particles can be tuned down to the subnanometric range. From the present XPS results, a clear correlation among the experimental binding energy of single Au 4f peak components and the specific Au state of charge is proposed, where the smaller (i.e., nanometer) fraction of the series selectively shows negatively charged Au atoms. Our findings are relevant for the open discussion of a specific role played by negatively charged Au atoms in catalytic reactions, especially at low temperatures.

  6. Effect of positively and negatively charged liposomes on skin permeation of drugs.

    PubMed

    Ogiso, T; Yamaguchi, T; Iwaki, M; Tanino, T; Miyake, Y

    2001-01-01

    To clarify the effect of the surface charge of liposomes on percutaneous absorption, the permeation of liposomal drugs through rat skin was investigated in vitro and in vivo. Liposomes were prepared using egg yolk lecithin (EPC, phase transition temperature, -15 to -17 degrees C), cholesterol and dicetylphosphate (DP) or stearylamine (SA) (10:1:1, mol/mol). Also examined was the penetration behavior of positively and negatively charged liposomes, using a fluorescent probe (Nile Red). The in vitro penetration rate of melatonin (MT) entrapped in negatively charged liposomes was higher than that of positively charged ones (p<0.05). When the percutaneous absorption of ethosuximide (ES) encapsulated was estimated in vivo, the absorption of ES from negatively charged liposomes was slightly higher than that from positively charged liposomes. Additionally, the absorption of ES from both types of liposomes was superior to that from the lipid mixtures consisting of the same composition as the vesicles. The percutaneous absorption of betahistine (BH) from a gel formulation containing negatively charged liposomes of BH was much more than that from the formulation with positively charged ones, with 2-fold higher AUC (p<0.05). Histological studies revealed that the negatively charged liposomes diffused to the dermis and the lower portion of hair follicles through the stratum corneum and the follicles much faster than the positive vesicles at the initial time stage after application. Thus, the rapid penetration of negatively charged liposomes would contribute to the increased permeation of drugs through the skin.

  7. Negatively Charged Lipid Membranes Promote a Disorder-Order Transition in the Yersinia YscU Protein

    PubMed Central

    Weise, Christoph F.; Login, Frédéric H.; Ho, Oanh; Gröbner, Gerhard; Wolf-Watz, Hans; Wolf-Watz, Magnus

    2014-01-01

    The inner membrane of Gram-negative bacteria is negatively charged, rendering positively charged cytoplasmic proteins in close proximity likely candidates for protein-membrane interactions. YscU is a Yersinia pseudotuberculosis type III secretion system protein crucial for bacterial pathogenesis. The protein contains a highly conserved positively charged linker sequence that separates membrane-spanning and cytoplasmic (YscUC) domains. Although disordered in solution, inspection of the primary sequence of the linker reveals that positively charged residues are separated with a typical helical periodicity. Here, we demonstrate that the linker sequence of YscU undergoes a largely electrostatically driven coil-to-helix transition upon binding to negatively charged membrane interfaces. Using membrane-mimicking sodium dodecyl sulfate micelles, an NMR derived structural model reveals the induction of three helical segments in the linker. The overall linker placement in sodium dodecyl sulfate micelles was identified by NMR experiments including paramagnetic relaxation enhancements. Partitioning of individual residues agrees with their hydrophobicity and supports an interfacial positioning of the helices. Replacement of positively charged linker residues with alanine resulted in YscUC variants displaying attenuated membrane-binding affinities, suggesting that the membrane interaction depends on positive charges within the linker. In vivo experiments with bacteria expressing these YscU replacements resulted in phenotypes displaying significantly reduced effector protein secretion levels. Taken together, our data identify a previously unknown membrane-interacting surface of YscUC that, when perturbed by mutations, disrupts the function of the pathogenic machinery in Yersinia. PMID:25418176

  8. An analysis of five negative sprite-parent discharges and their associated thunderstorm charge structures

    NASA Astrophysics Data System (ADS)

    Boggs, Levi D.; Liu, Ningyu; Splitt, Michael; Lazarus, Steven; Glenn, Chad; Rassoul, Hamid; Cummer, Steven A.

    2016-01-01

    In this study we analyze the discharge morphologies of five confirmed negative sprite-parent discharges and the associated charge structures of the thunderstorms that produced them. The negative sprite-parent lightning took place in two thunderstorms that were associated with a tropical disturbance in east central and south Florida. The first thunderstorm, which moved onshore in east central Florida, produced four of the five negative sprite-parent discharges within a period of 17 min, as it made landfall from the Atlantic Ocean. These negative sprite-parents were composed of bolt-from-the-blue (BFB), hybrid intracloud-negative cloud-to-ground (IC-NCG), and multicell IC-NCGs discharges. The second thunderstorm, which occurred inland over south Florida, produced a negative sprite-parent that was a probable hybrid IC-NCG discharge and two negative gigantic jets (GJs). Weakened upper positive charge with very large midlevel negative charge was inferred for both convective cells that initiated the negative-sprite-parent discharges. Our study suggests tall, intense convective systems with high wind shear at the middle to upper regions of the cloud accompanied by low cloud-to-ground (CG) flash rates promote these charge structures. The excess amount of midlevel negative charge results in these CG discharges transferring much more charge to ground than typical negative CG discharges. We find that BFB discharges prefer an asymmetrical charge structure that brings the negative leader exiting the upper positive charge region closer to the lateral positive screening charge layer. This may be the main factor in determining whether a negative leader exiting the upper positive region of the thundercloud forms a BFB or GJ.

  9. Surface charge of trypanosoma cruzi. Binding of cationized ferritin and measurement of cellular electrophoretic mobility.

    PubMed

    De Souza, W; Arguello, C; Martinez-Paloma, A; Trissl, D; Gonzáles-Robles, A; Chiari, E

    1977-08-01

    The surface charge of epimastigote and trypomastigote forms of Trypanosoma cruzi was evaluated by means of binding of cationized ferritin to the cell surface as visualized by electron microscopy, and by direct measurements of the cellular microelectrophoretic mobility (EPM). Epimastigote forms had a mean EPM of -0.52 micrometer-s-1-V-1-cm and were lightly labeled with cationized ferritin. In contrast, bloodstream trypomastigotes had a much higher EPM (-1.14), and the surface was heavily labeled with cationized ferritin. When trypomastigotes from staionary phase cultures were isolated on DEAE cellulose columns, the mean EPM was found to be significantly lower (-0.63), and labeling with cationized ferritin decreased. With a mixed population containing epimastigote, trypomastigote, and intermediate forms, EPM values ranging between -0.70 to -1.14 were found. From these observations we conclude that there is a definite increase in negative surface charge during development from epi- to trypomastigote forms of T. cruzi.

  10. Biogenic and Synthetic Peptides with Oppositely Charged Amino Acids as Binding Sites for Mineralization

    PubMed Central

    Lemloh, Marie-Louise; Altintoprak, Klara; Wege, Christina; Weiss, Ingrid M.; Rothenstein, Dirk

    2017-01-01

    Proteins regulate diverse biological processes by the specific interaction with, e.g., nucleic acids, proteins and inorganic molecules. The generation of inorganic hybrid materials, such as shell formation in mollusks, is a protein-controlled mineralization process. Moreover, inorganic-binding peptides are attractive for the bioinspired mineralization of non-natural inorganic functional materials for technical applications. However, it is still challenging to identify mineral-binding peptide motifs from biological systems as well as for technical systems. Here, three complementary approaches were combined to analyze protein motifs consisting of alternating positively and negatively charged amino acids: (i) the screening of natural biomineralization proteins; (ii) the selection of inorganic-binding peptides derived from phage display; and (iii) the mineralization of tobacco mosaic virus (TMV)-based templates. A respective peptide motif displayed on the TMV surface had a major impact on the SiO2 mineralization. In addition, similar motifs were found in zinc oxide- and zirconia-binding peptides indicating a general binding feature. The comparative analysis presented here raises new questions regarding whether or not there is a common design principle based on acidic and basic amino acids for peptides interacting with minerals. PMID:28772478

  11. New effects of a long-lived negatively charged massive particle on big bang nucleosynthesis

    SciTech Connect

    Kusakabe, Motohiko; Kim, K. S.; Cheoun, Myung-Ki; Kajino, Toshitaka; Kino, Yasushi; Mathews, Grant J.

    2014-05-02

    Primordial {sup 7}Li abundance inferred from observations of metal-poor stars is a factor of about 3 lower than the theoretical value of standard big bang nucleosynthesis (BBN) model. One of the solutions to the Li problem is {sup 7}Be destruction during the BBN epoch caused by a long-lived negatively charged massive particle, X{sup −}. The particle can bind to nuclei, and X-bound nuclei (X-nuclei) can experience new reactions. The radiative X{sup −} capture by {sup 7}Be nuclei followed by proton capture of the bound state of {sup 7}Be and X{sup −} ({sup 7}Be{sub x}) is a possible {sup 7}Be destruction reaction. Since the primordial abundance of {sup 7}Li originates mainly from {sup 7}Li produced via the electron capture of {sup 7}Be after BBN, the {sup 7}Be destruction provides a solution to the {sup 7}Li problem. We suggest a new route of {sup 7}Be{sub x} formation, that is the {sup 7}Be charge exchange at the reaction of {sup 7}Be{sup 3+} ion and X{sup −}. The formation rate depends on the ionization fraction of {sup 7}Be{sup 3+} ion, the charge exchange cross section of {sup 7}Be{sup 3+}, and the probability that excited states {sup 7}Be{sub x}* produced at the charge exchange are converted to the ground state. We find that this reaction can be equally important as or more important than ordinary radiative recombination of {sup 7}Be and X{sup −}. The effect of this new route is shown in a nuclear reaction network calculation.

  12. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    SciTech Connect

    Teyssedre, G. Laurent, C.; Vu, T. T. N.

    2015-12-21

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30–60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10{sup −14}–10{sup −13} m{sup 2} V{sup −1} s{sup −1} for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.

  13. Hyperactive Arg39Lys mutated mnemiopsin: implication of positively charged residue in chromophore binding cavity.

    PubMed

    Mahdavi, Atiyeh; Sajedi, Reza H; Hosseinkhani, Saman; Taghdir, Majid

    2015-04-01

    Mnemiopsin, a Ca(2+)-regulated photoprotein isolated from Mnemiopsis leidyi, belongs to the family of ctenophore photoproteins. These proteins emit blue light from a chromophore, which is tightly but non-covalently bound in their central hydrophobic core that contains 21 conserved residues. In an effort to investigate the role of Arg39 (the sole charged residue in coelenterazine binding cavity of ctenophore photoproteins) in bioluminescence properties of these photoproteins, three mutated forms of mnemiopsin 1 (R39E, R39K and R39M) were constructed and characterized. The results indicate that while the luminescence activity of R39K mutated mnemiopsin has increased about nine fold compared to the wild type, R39M and R39E mutated mnemiopsins have entirely lost their activities. The most distinguished properties of R39K mutated photoprotein are its high activity, slow rate of luminescence decay and broad pH profile compared to the wild type. The complete loss of bioluminescence activity in mutated photoproteins with negatively charged and aliphatic residues (R39E and R39M, respectively) shows that the presence of a positively charged residue at this position is necessary. The results of spectroscopic studies, including CD, intrinsic and extrinsic fluorescence measurements and acrylamide quenching studies show that, while the substitutions lead to structural rigidity in R39E and R39M mutated mnemiopsins, structural flexibility is obvious in R39K mutated mnemiopsin. The presence of a more localized positive charge on ε-amino group of Lys compared to guanidinium group of Arg residue in close proximity to the choromophre might affect its fixation in the binding cavity and result in increased bioluminescence activity in this mutated photoprotein. It appears that the polarity and flexibility of positively charged residue at this position finely tunes the luminescence properties of ctenophore photoproteins.

  14. Maximizing Ion Current by Space Charge Neutralization using Negative Ions and Dust Particles

    SciTech Connect

    A. Smirnov; Y. Raitses; N.J. Fisch

    2005-01-25

    Ion current extracted from an ion source (ion thruster) can be increased above the Child-Langmuir limit if the ion space charge is neutralized. Similarly, the limiting kinetic energy density of the plasma flow in a Hall thruster might be exceeded if additional mechanisms of space charge neutralization are introduced. Space charge neutralization with high-mass negative ions or negatively charged dust particles seems, in principle, promising for the development of a high current or high energy density source of positive light ions. Several space charge neutralization schemes that employ heavy negatively charged particles are considered. It is shown that the proposed neutralization schemes can lead, at best, only to a moderate but nonetheless possibly important increase of the ion current in the ion thruster and the thrust density in the Hall thruster.

  15. Surface sliding friction of negatively charged polyelectrolyte gels.

    PubMed

    Kagata, Go; Gong, Jian Ping

    2007-04-15

    The friction between two polyelectrolyte gels carrying the same or opposite sign of charges has been investigated using a rheometer. It is found that the friction was strongly dependent on the interfacial interaction between two gel surfaces. In the repulsive interaction case, especially, the friction was extremely low. The friction behavior is attempted to be described in terms of the hydrodynamic lubrication of the solvent layer between two like-charged gel surfaces, which is formed due to the electrostatic repulsion of the two gel surfaces. From the theoretical analysis (hydrodynamic mechanism), the friction behaviors were explained qualitatively, all of the experimental results, nevertheless, could not be understood well. The viscoelastic feature of the gel and the non-Newtonian behavior of water at the friction interface are considered to be important to elucidate the gel friction.

  16. Charging-delay induced dust acoustic collisionless shock wave: Roles of negative ions

    SciTech Connect

    Ghosh, Samiran; Bharuthram, R.; Khan, Manoranjan; Gupta, M. R.

    2006-11-15

    The effects of charging-delay and negative ions on nonlinear dust acoustic waves are investigated. It has been found that the charging-delay induced anomalous dissipation causes generation of dust acoustic collisionless shock waves in an electronegative dusty plasma. The small but finite amplitude wave is governed by a Korteweg-de Vries Burger equation in which the Burger term arises due to the charging-delay. Numerical investigations reveal that the charging-delay induced dissipation and shock strength decreases (increases) with the increase of negative ion concentration (temperature)

  17. Negatively charged donors in parabolic quantum-well wires under magnetic fields

    NASA Astrophysics Data System (ADS)

    Zhai, Li-Xue; Liu, Jian-Jun

    2007-09-01

    The ground state of a negatively charged donor (D-) in a parabolic GaAs quantum-well wire in the presence of a magnetic field is investigated using the finite difference method within the quasi-one-dimensional effective potential model. The magnetic effects on the binding energies of the ground state of a D- center are calculated for various parabolic potentials. The distance between the electrons and the donor ion and the distance between the two electrons are also calculated, respectively, as a function of the strength of the parabolic potential and the magnetic field. We find that the interplay of the spatial confinement and the magnetic confinement of electrons in quantum-well wires leads to complicated behavior of the binding energies of the D- center and that the increase of the electron-donor ion attraction dominates the increase of the electron-electron repulsion as the spatial and magnetic confinement increases for the ground state of a D- center in a parabolic quantum-well wire.

  18. Spatial charge configuration regulates nanoparticle transport and binding behavior in vivo

    PubMed Central

    Han, Hee-Sun; Martin, John D.; Lee, Jungmin; Harris, Daniel K.; Fukumura, Dai; Jain, Rakesh K.; Bawendi, Moungi

    2013-01-01

    Detailed Charge arrangements: A new set of zwitterionic quantum dots were synthesized and used to study the influence of microscopic charge arrangements on the in vivo behavior of nanoparticles. Experiments using cultured cells and live mice demonstrate that the microscopic arrangement of surface charges strongly influence nonspecific binding, clearance behavior, and in vivo transport of nanoparticles. PMID:23255143

  19. Segregation of negatively charged phospholipids by the polycationic and farnesylated membrane anchor of Kras.

    PubMed

    Janosi, Lorant; Gorfe, Alemayehu A

    2010-12-01

    The Kras protein, a member of the Ras family of bio-switches that are frequently mutated in cancer and developmental disorders, becomes functional when anchored to the inner surface of the plasma membrane. It is well known that membrane attachment involves the farnesylated and poylcationic C-terminus of the protein. However, little is known about the structure of the complex and the specific protein-lipid interactions that are responsible for the binding. On the basis of data from extensive (>0.55 μs) molecular dynamics simulations of multiple Kras anchors in bilayers of POPC/POPG lipids (4:1 ratio), we show that, as expected, Kras is tethered to the bilayer surface by specific lysine-POPG salt bridges and by nonspecific farnesyl-phospholipid van der Waals interactions. Unexpectedly, however, only the C-terminal five of the eight Kras Lys side chains were found to directly interact with the bilayer, with the N-terminal ones staying in water. Furthermore, the positively charged Kras anchors pull the negatively charged POPG lipids together, leading to the clustering of the POPG lipids around the proteins. This selective Kras-POPG interaction is directly related to the specific geometry of the backbone, which exists in two major conformational states: 1), a stable native-like ensemble of structures characterized by an extended geometry with a pseudohelical turn; and 2), less stable nonnative ensembles of conformers characterized by severely bent geometries. Finally, although the interface-bound anchor has little effect on the overall structure of the bilayer, it induces local thinning within a persistence length of ∼12 Å. Our results thus go beyond documenting how Kras attaches to a mixed bilayer of charged and neutral lipids; they highlight a fascinating process of protein-induced lipid sorting coupled with the (re)shaping of a surface-bound protein by the host lipids. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Enhanced antidepressant-like effects of the macromolecule trefoil factor 3 by loading into negatively charged liposomes

    PubMed Central

    Qin, Jing; Yang, Xu; Mi, Jia; Wang, Jianxin; Hou, Jia; Shen, Teng; Li, Yongji; Wang, Bin; Li, Xuri; Zhu, Weili

    2014-01-01

    Immunocytes, mainly neutrophils and monocytes, exhibit an intrinsic homing property, enabling them to migrate to sites of injury and inflammation. They can thus act as Trojan horses carrying concealed drug cargoes while migrating across impermeable barriers to sites of disease, especially the blood–brain barrier (BBB). In this study, to target circulating phagocytic cells, we formulated negatively charged nanosize liposomes and loaded trefoil factor 3 (TFF3) into liposomes by the pH-gradient method. According to the optimized formulation (5:1.5 of lipid to cholesterol, 10:1 of lipid to drug, 10 mg/mL of lipid concentration, and 10 mmol/L of phosphate-buffered saline), 44.47% entrapment efficiency was obtained for TFF3 liposomes with 129.6 nm particle size and −36.6 mV zeta potential. Compared with neutrally charged liposomes, the negatively charged liposomes showed a strong binding capacity with monocytes and were effectively carried by monocytes to cross the BBB in vitro. Furthermore, enhanced antidepressant-like effects were found in the tail-suspension and forced-swim tests in mice, as measured by decreased immobility time, as well as increased swimming time and reduced immobility in rats. These results suggested that negatively charged liposomes could improve the behavioral responses of TFF3, and our study opens up a new way for the development of effective therapies for brain disease by increasing the permeability of the BBB. PMID:25419129

  1. Complexation of 1,4-bis(pyridinium)butanes by negatively charged carboxylatopillar[5]arene.

    PubMed

    Li, Chunju; Shu, Xiaoyan; Li, Jian; Chen, Songhui; Han, Kang; Xu, Min; Hu, Bingjie; Yu, Yihua; Jia, Xueshun

    2011-10-21

    The binding behavior of substituted 1,4-bis(pyridinium)butane derivatives (X-Py(CH(2))(4)Py-X, X = H, 2-methyl, 3-methyl, 4-methyl, 2,6-dimethyl, 4-pyridyl, and 4-COOEthyl) 1(2+)-7(2+), with negatively charged carboxylatopillar[5]arene (CP5A) has been comprehensively investigated by (1)H NMR and 2D ROESY and UV absorption and fluorescence spectroscopy in aqueous phosphate buffer solution (pH 7.2). The results indicated that the position of the substituents attached on pyridinium ring dramatically affects the association constants and binding modes. 3- and 4-Substituted guests (1(2+), 3(2+), 4(2+), 6(2+), 7(2+)) form [2]pseudorotaxane geometries with CP5A host, giving very large association constants (>10(5) M(-1)), while 2,6-dimethyl-substituted 5(2+) forms external complex with relatively small K(a) values [(2.4 ± 0.3) × 10(3) M(-1)] because the 2,6-dimethylpyridinium unit is too bulky to thread the host cavity. Both of the binding geometries mentioned above are observed for 2(2+), having one methyl group in the 2-position of pyridinium. Typically, the association constant of [2]pseudorotaxane 1(2+)⊂CP5A exceeds 10(6) M(-1) in water, which is significantly higher than those of previously reported analogues in organic solvents. The remarkably improved complexation of bis(pyridinium) guests by the anionic host was due to electrostatic attraction forces and hydrophobic interactions.

  2. Negatively charged liposomes show potent adjuvant activity when simply admixed with protein antigens

    PubMed Central

    Yanasarn, Nijaporn; Sloat, Brian R.; Cui, Zhengrong

    2011-01-01

    Liposomes have been investigated extensively as a vaccine delivery system. Herein the adjuvant activities of liposomes with different net surface charges (neutral, positive, or negative) were evaluated when admixed with protein antigens, ovalbumin (OVA, pI = 4.7), Bacillus anthracis protective antigen protein (PA, pI = 5.6), or cationized OVA (cOVA). Mice immunized subcutaneously with OVA admixed with different liposomes generated different antibody responses. Interestingly, OVA admixed with net negatively charged liposomes prepared with DOPA was as immunogenic as OVA admixed with positively charged liposomes prepared with DOTAP. Immunization of mice with the anthrax PA protein admixed with the net negatively charged DOPA liposomes also induced a strong and functional anti-PA antibody response. When the cationized OVA was used as a model antigen, liposomes with net neutral, negative, or positive charges showed comparable adjuvant activities. Immunization of mice with the OVA admixed with DOPA liposomes also induced OVA-specific CD8+ cytotoxic T lymphocyte responses and significantly delayed the growth of OVA-expressing B16-OVA tumors in mice. However, not all net negatively charged liposomes showed a strong adjuvant activity. The adjuvant activity of the negatively charged liposomes may be related to the liposome’s ability (i) to up-regulate the expression of molecules related to the activation and maturation of antigen-presenting cells and (ii) to slightly facilitate the uptake of the antigens by antigen-presenting cells. Simply admixing certain negatively charged liposomes with certain protein antigens of interest may represent a novel platform for vaccine development. PMID:21615153

  3. First-principles calculation of a negatively charged boron-vacancy center in diamond

    NASA Astrophysics Data System (ADS)

    Kunisaki, Aiko; Muruganathan, Manoharan; Mizuta, Hiroshi; Kodera, Tetsuo

    2017-04-01

    As the boron doping in diamond has been well established, and a negatively charged boron-vacancy (BV) center has an active electron paramagnetic resonance, the BV center is an attractive candidate for spin information devices. Using the first-principles calculation, we report the electronic structure of the BV center in diamond for its various charge states. A geometrically optimized BV center in the diamond supercell exhibited C 3 v symmetry. The BV+1 charge state did not exhibit any spin splitting defect levels, while the BV0 and BV‑2 charge states showed a small energy separation between spin-polarized states. On the other hand, the negatively charged BV‑1 center possesses bound states with a larger separation inside the diamond bandgap. Moreover, it has the spin-triplet ground state and the spin-conserved triplet excited state. These characteristics indicate that the BV‑1 center in diamond is a good candidate for qubit operation.

  4. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis.

    PubMed

    Ziegler, André; Blatter, Xiaochun Li; Seelig, Anna; Seelig, Joachim

    2003-08-05

    Cell-penetrating peptides (CPPs) traverse cell membranes of cultured cells very efficiently by a mechanism not yet identified. Recent theories for the translocation suggest either the binding of the CPPs to extracellular glycosaminoglycans or the formation of inverted micelles with negatively charged lipids. In the present study, the binding of the protein transduction domains (PTD) of human (HIV-1) and simian immunodeficiency virus (SIV) TAT peptide (amino acid residues 47-57, electric charge z(p) = +8) to membranes containing various proportions of negatively charged lipid (POPG) is characterized. Monolayer expansion measurements demonstrate that TAT-PTD insertion between lipids requires loosely packed monolayer films. For densely packed monolayers (pi > 29 mN/m) and lipid bilayers, no insertion is possible, and binding occurs via electrostatic adsorption to the membrane surface. Light scattering experiments show an aggregation of anionic lipid vesicles when the electric surface charge is neutralized by TAT-PTD, the observed stoichiometry being close to the theoretical value of 1:8. Membrane binding was quantitated with isothermal titration calorimetry and three further methods. The reaction enthalpy is Delta H degrees approximately equal to -1.5 kcal/mol peptide and is almost temperature-independent with Delta C(p) degrees approximately 0 kcal/(mol K), indicating equal contributions of polar and hydrophobic interactions to the reaction heat capacity. The binding of TAT-PTD to the anionic membrane is described by an electrostatic attraction/chemical partition model. The electrostatic attraction energy, calculated with the Gouy-Chapman theory, accounts for approximately 80% of the binding energy. The overall binding constant, K(app), is approximately 10(3)-10(4) M(-1). The intrinsic binding constant (K(p)), corrected for electrostatic effects and describing the partitioning of the peptide between the lipid-water interface and the membrane, is small and is K

  5. Effect of space charge on the negative oxygen flux during reactive sputtering

    NASA Astrophysics Data System (ADS)

    Moens, F.; Kalvas, T.; Van Steenberge, S.; Depla, D.

    2017-03-01

    Negative ions often play a distinctive role in the phase formation during reactive sputter deposition. The path of these high energetic ions is often assumed to be straight. In this paper, it is shown that in the context of reactive magnetron sputtering space charge effects are decisive for the energetic negative ion trajectories. To investigate the effect of space charge spreading, reactive magnetron sputter experiments were performed in compound mode with target materials that are expected to have a high secondary ion emission yield (MgO and CeO2). By the combination of energy flux measurements, and simulations, a quantitative value for the negative oxygen ion yield can be derived.

  6. Unstable, metastable, or stable halogen bonding interaction involving negatively charged donors? A statistical and computational chemistry study.

    PubMed

    Yang, Zhuo; Xu, Zhijian; Liu, Yingtao; Wang, Jinan; Shi, Jiye; Chen, Kaixian; Zhu, Weiliang

    2014-12-11

    The noncovalent halogen bonding could be attributed to the attraction between the positively charged σ-hole and a nucleophile. Quantum mechanics (QM) calculation indicated that the negatively charged organohalogens have no positively charged σ-hole on their molecular surface, leading to a postulation of repulsion between negatively charged organohalogens and nucleophiles in vacuum. However, PDB survey revealed that 24% of the ligands with halogen bonding geometry could be negatively charged. Moreover, 36% of ionizable drugs in CMC (Comprehensive Medicinal Chemistry) are possibly negatively charged at pH 7.0. QM energy scan showed that the negatively charged halogen bonding is probably metastable in vacuum. However, the QM calculated bonding energy turned negative in various solvents, suggesting that halogen bonding with negatively charged donors should be stable in reality. Indeed, QM/MM calculation on three crystal structures with negatively charged ligands revealed that the negatively charged halogen bonding was stable. Hence, we concluded that halogen bonding with negatively charged donors is unstable or metastable in vacuum but stable in protein environment, and possesses similar geometric and energetic characteristics as conventional halogen bonding. Therefore, negatively charged organohalogens are still effective halogen bonding donors for medicinal chemistry and other applications.

  7. Clinical study on the treatment of chronic wound with negatively-charged aerosol

    PubMed Central

    Xie, Xiaoxia; Chen, Lei; Zhang, Zhao-Qiang; Shi, Yan; Xie, Julin

    2013-01-01

    Background: Aerosols are defined as the mixture of liquid or solid particles/droplets that are stably suspending in air. When carrying a certain amount of negative charge, they will be defined as negatively-charged aerosol. This report investigates the effect of negatively-charged aerosol on the healing of chronic wound. Methods: 140 patients with chronic wound were assigned randomly into two groups. Normal, routine treatment was applied on chronic wounds of 73 patients depending on wounds situation (control group). While another 67 similar patients received negatively-charged aerosol therapy (2 hours per time, twice a day) and were used as experimental group. Wound healing assessment including the patients’ complication, detection of bacteria in wound secretions, and evaluation of wound healing. Results: The results of our study showed that after the application of negatively-charged aerosols, and condition and infection rate of wounds from experiment group were better and lower than that of control group. In comparison with control group, the relative size of wounds from experiment group was significantly smaller (P<0.05) at post-treatment day 0, 7, 14, 21 and 28. Also, the time required for wound healing in the experimental group was significantly shorter (P<0.05) than that in the control group. Conclusion: Negatively-charged aerosol therapy can accelerate wound healing speed and improve the healing of chronic wounds. Thus, we wound recommend the consideration of Negatively-charged aerosol therapies in addition to normal wound treatment in cases of chronic wound. PMID:24040472

  8. Protein surface-distribution and protein-protein interactions in the binding of peripheral proteins to charged lipid membranes.

    PubMed Central

    Heimburg, T; Marsh, D

    1995-01-01

    The binding of native cytochrome c to negatively charged lipid dispersions of dioleoyl phosphatidylglycerol has been studied over a wide range of ionic strengths. Not only is the strength of protein binding found to decrease rapidly with increasing ionic strength, but also the binding curves reach an apparent saturation level that decreases rapidly with increasing ionic strength. Analysis of the binding isotherms with a general statistical thermodynamic model that takes into account not only the free energy of the electrostatic double layer, but also the free energy of the surface distribution of the protein, demonstrates that the apparent saturation effects could arise from a competition between the out-of-plane binding reaction and the lateral in-plane interactions between proteins at the surface. It is found that association with nonlocalized sites results in binding isotherms that display the apparent saturation effect to a much more pronounced extent than does the Langmuir adsorption isotherm for binding to localized sites. With the model for nonlocalized sites, the binding isotherms of native cytochrome c can be described adequately by taking into account only the entropy of the surface distribution of the protein, without appreciable enthalpic interactions between the bound proteins. The binding of cytochrome c to dioleoyl phosphatidylglycerol dispersions at a temperature at which the bound protein is denatured on the lipid surface, but is nondenatured when free in solution, has also been studied. The binding curves for the surface-denatured protein differ from those for the native protein in that the apparent saturation at high ionic strength is less pronounced. This indicates the tendency of the denatured protein to aggregate on the lipid surface, and can be described by the binding isotherms for nonlocalized sites only if attractive interactions between the surface-bound proteins are included in addition to the distributional entropic terms. Additionally

  9. Ionic Surfactant Binding to pH-Responsive Polyelectrolyte Brush-Grafted Nanoparticles in Suspension and on Charged Surfaces.

    PubMed

    Riley, John K; An, Junxue; Tilton, Robert D

    2015-12-29

    The interactions between silica nanoparticles grafted with a brush of cationic poly(2-(dimethylamino) ethyl methacrylate) (SiO2-g-PDMAEMA) and anionic surfactant sodium dodecyl sulfate (SDS) is investigated by dynamic light scattering, electrophoretic mobility, quartz crystal microbalance with dissipation, ellipsometry, and atomic force microscopy. SiO2-g-PDMAEMA exhibits pH-dependent charge and size properties which enable the SDS binding to be probed over a range of electrostatic conditions and brush conformations. SDS monomers bind irreversibly to SiO2-g-PDMAEMA at low surfactant concentrations (∼10(-4) M) while exhibiting a pH-dependent threshold above which cooperative, partially reversible SDS binding occurs. At pH 5, SDS binding induces collapse of the highly charged and swollen brush as observed in the bulk by DLS and on surfaces by QCM-D. Similar experiments at pH 9 suggest that SDS binds to the periphery of the weakly charged and deswollen brush and produces SiO2-g-PDMAEMA/SDS complexes with a net negative charge. SiO2-g-PDMAEMA brush collapse and charge neutralization is further confirmed by colloidal probe AFM measurements, where reduced electrosteric repulsions and bridging adhesion are attributed to effects of the bound SDS. Additionally, sequential adsorption schemes with SDS and SiO2-g-PDMAEMA are used to enhance deposition relative to SiO2-g-PDMAEMA direct adsorption on silica. This work shows that the polyelectrolyte brush configuration responds in a more dramatic fashion to SDS than to pH-induced changes in ionization, and this can be exploited to manipulate the structure of adsorbed layers and the corresponding forces of compression and friction between opposing surfaces.

  10. Toward a molecular understanding of protein solubility: increased negative surface charge correlates with increased solubility.

    PubMed

    Kramer, Ryan M; Shende, Varad R; Motl, Nicole; Pace, C Nick; Scholtz, J Martin

    2012-04-18

    Protein solubility is a problem for many protein chemists, including structural biologists and developers of protein pharmaceuticals. Knowledge about how intrinsic factors influence solubility is limited due to the difficulty of obtaining quantitative solubility measurements. Solubility measurements in buffer alone are difficult to reproduce, because gels or supersaturated solutions often form, making it impossible to determine solubility values for many proteins. Protein precipitants can be used to obtain comparative solubility measurements and, in some cases, estimations of solubility in buffer alone. Protein precipitants fall into three broad classes: salts, long-chain polymers, and organic solvents. Here, we compare the use of representatives from two classes of precipitants, ammonium sulfate and polyethylene glycol 8000, by measuring the solubility of seven proteins. We find that increased negative surface charge correlates strongly with increased protein solubility and may be due to strong binding of water by the acidic amino acids. We also find that the solubility results obtained for the two different precipitants agree closely with each other, suggesting that the two precipitants probe similar properties that are relevant to solubility in buffer alone. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Toward a Molecular Understanding of Protein Solubility: Increased Negative Surface Charge Correlates with Increased Solubility

    PubMed Central

    Kramer, Ryan M.; Shende, Varad R.; Motl, Nicole; Pace, C. Nick; Scholtz, J. Martin

    2012-01-01

    Protein solubility is a problem for many protein chemists, including structural biologists and developers of protein pharmaceuticals. Knowledge about how intrinsic factors influence solubility is limited due to the difficulty of obtaining quantitative solubility measurements. Solubility measurements in buffer alone are difficult to reproduce, because gels or supersaturated solutions often form, making it impossible to determine solubility values for many proteins. Protein precipitants can be used to obtain comparative solubility measurements and, in some cases, estimations of solubility in buffer alone. Protein precipitants fall into three broad classes: salts, long-chain polymers, and organic solvents. Here, we compare the use of representatives from two classes of precipitants, ammonium sulfate and polyethylene glycol 8000, by measuring the solubility of seven proteins. We find that increased negative surface charge correlates strongly with increased protein solubility and may be due to strong binding of water by the acidic amino acids. We also find that the solubility results obtained for the two different precipitants agree closely with each other, suggesting that the two precipitants probe similar properties that are relevant to solubility in buffer alone. PMID:22768947

  12. Water freezes differently on positively and negatively charged surfaces of pyroelectric materials.

    PubMed

    Ehre, David; Lavert, Etay; Lahav, Meir; Lubomirsky, Igor

    2010-02-05

    Although ice melts and water freezes under equilibrium conditions at 0 degrees C, water can be supercooled under homogeneous conditions in a clean environment down to -40 degrees C without freezing. The influence of the electric field on the freezing temperature of supercooled water (electrofreezing) is of topical importance in the living and inanimate worlds. We report that positively charged surfaces of pyroelectric LiTaO3 crystals and SrTiO3 thin films promote ice nucleation, whereas the same surfaces when negatively charged reduce the freezing temperature. Accordingly, droplets of water cooled down on a negatively charged LiTaO3 surface and remaining liquid at -11 degrees C freeze immediately when this surface is heated to -8 degrees C, as a result of the replacement of the negative surface charge by a positive one. Furthermore, powder x-ray diffraction studies demonstrated that the freezing on the positively charged surface starts at the solid/water interface, whereas on a negatively charged surface, ice nucleation starts at the air/water interface.

  13. Influence of bismuth on the charging ability of negative plates in lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Lam, L. T.; Ceylan, H.; Haigh, N. P.; Manders, J. E.

    To examine the influence of bismuth on the charging ability of negative plates in lead-acid batteries, plates are made from three types of oxides: (i) leady oxide of high quality which contains virtually no bismuth (termed 'control oxide'); (ii) control oxide in which bismuth oxide is blended at bismuth levels from 0.01 to 0.12 wt.%; (iii) leady oxide produced from Pasminco VRLA Refined™ lead (0.05-0.06 wt.%Bi). An experimental tool—the 'conversion indicator'—is developed to assess the charging ability of the test negative plates when cycling under either zero percent state-of-charge (SoC)/full-charge or partial state-of-charge (PSoC) duty. Although the conversion indicator is not the true charging efficiency, the two parameters have a close relationship, namely, the higher the conversion indicator, the greater the charging efficiency. Little difference is found in the charging ability, irrespective of bismuth content and discharge rate, when the plates are subjected to zero percent SoC/full-charge duty; the conversion indicator lies in the range 81-84%. By contrast, there is a marked difference when the negative plates are subjected to PSoC duty, i.e. consecutive cycling through 90-60, 70-40, 80-40 and 90-40% SoC windows. Up to 0.06 wt.%Bi improves the charging ability, especially with a low and narrow PSoC window (40-70% SoC) of the type that will be experienced in 42 V powernet automobile and hybrid electric duties. To maximize this beneficial effect, bismuth must be distributed uniformly in the plates. This is best achieved by using VRLA Refined™ lead for oxide production.

  14. Dust acoustic solitary wave with variable dust charge: Role of negative ions

    SciTech Connect

    Ghosh, Samiran

    2005-09-15

    The role of negative ions on small but finite amplitude dust acoustic solitary wave including the effects of high and low charging rates of dust grains compared to the dust oscillation frequency in electronegative dusty plasma is investigated. In the case of high charging rate, the solitary wave is governed by Korteweg-de Vries (KdV) equation, but in the case of low charging rate, it is governed by KdV equation with a linear damping term. Numerical investigations reveal that in both cases dust acoustic soliton sharpens (flatens) and soliton width decreases (increases) with the increase of negative-ion number density (temperature). Also, the negative ions reduce the damping rate.

  15. Numerical modelling of needle-grid electrodes for negative surface corona charging system

    NASA Astrophysics Data System (ADS)

    Zhuang, Y.; Chen, G.; Rotaru, M.

    2011-08-01

    Surface potential decay measurement is a simple and low cost tool to examine electrical properties of insulation materials. During the corona charging stage, a needle-grid electrodes system is often used to achieve uniform charge distribution on the surface of the sample. In this paper, a model using COMSOL Multiphysics has been developed to simulate the gas discharge. A well-known hydrodynamic drift-diffusion model was used. The model consists of a set of continuity equations accounting for the movement, generation and loss of charge carriers (electrons, positive and negative ions) coupled with Poisson's equation to take into account the effect of space and surface charges on the electric field. Four models with the grid electrode in different positions and several mesh sizes are compared with a model that only has the needle electrode. The results for impulse current and surface charge density on the sample clearly show the effect of the extra grid electrode with various positions.

  16. Nuclear charge symmetry breaking and the 3H-3He binding energy difference

    NASA Astrophysics Data System (ADS)

    Brandenburg, R. A.; Chulick, G. S.; Kim, Y. E.; Klepacki, D. J.; Machleidt, R.; Picklesimer, A.; Thaler, R. M.

    1988-02-01

    We study the 3H- 3He binding energy difference, taking into account the Coulomb interaction and charge symmetry breaking of the nuclear force consistent with recent NN experimental data. Realistic interactions are generated which describe the charge symmetry violations reflected in the different nucleon-nucleon scattering lengths. The influence of nuclear charge symmetry breaking on the perturbative Coulomb contribution to the 3He binding energy is discussed. It is shown that the experimental mass difference can be explained by these and theoretical estimates of other known effects.

  17. Negative space charge effects in photon-enhanced thermionic emission solar converters

    SciTech Connect

    Segev, G.; Weisman, D.; Rosenwaks, Y.; Kribus, A.

    2015-07-06

    In thermionic energy converters, electrons in the gap between electrodes form a negative space charge and inhibit the emission of additional electrons, causing a significant reduction in conversion efficiency. However, in Photon Enhanced Thermionic Emission (PETE) solar energy converters, electrons that are reflected by the electric field in the gap return to the cathode with energy above the conduction band minimum. These electrons first occupy the conduction band from which they can be reemitted. This form of electron recycling makes PETE converters less susceptible to negative space charge loss. While the negative space charge effect was studied extensively in thermionic converters, modeling its effect in PETE converters does not account for important issues such as this form of electron recycling, nor the cathode thermal energy balance. Here, we investigate the space charge effect in PETE solar converters accounting for electron recycling, with full coupling of the cathode and gap models, and addressing conservation of both electric and thermal energy. The analysis shows that the negative space charge loss is lower than previously reported, allowing somewhat larger gaps compared to previous predictions. For a converter with a specific gap, there is an optimal solar flux concentration. The optimal solar flux concentration, the cathode temperature, and the efficiency all increase with smaller gaps. For example, for a gap of 3 μm the maximum efficiency is 38% and the optimal flux concentration is 628, while for a gap of 5 μm the maximum efficiency is 31% and optimal flux concentration is 163.

  18. Bionic design for surface optimization combining hydrophilic and negative charged biological macromolecules.

    PubMed

    Ran, Fen; Song, Haiming; Niu, Xiaoqin; Yang, Aimei; Nie, Shengqiang; Wang, Lingren; Li, Jie; Sun, Shudong; Zhao, Changsheng

    2014-06-01

    While polyethersulfone (PES) membrane represents a promising option for blood purification, the blood compatibility must be dramatically enhanced to meet today's ever-increasing demands for many emerging application. In this study, we report a bionic design for optimization and development of a modified PES membrane combining hydrophilic and negative charged biological macromolecules on its surface. The hydrophilic and ionic charged biological macromolecules sulfonated poly(styrene)-b-poly(methyl methacrylate)-b-poly-(styrene) (PSSMSS) and poly(vinyl pyrrolidone)-b-poly(methyl methacrylate)-b-poly-(vinyl pyrrolidone) were synthesized via reversible addition-fragmentation chain transfer polymerization and used together to modify PES membranes by blending method. A hydrophilic membrane surface with negative charged surface coating was obtained, imitating the hydrophilic and negatively charged structure feature of heparin. The modified PES membranes showed suppressed platelet adhesion, and a prolonged blood clotting time, and thereby improved blood compatibility. In addition, the blood clotting time of the modified membranes increased with the blended PSSMSS amounts increment, indicating that both the hydrophilic and negative charged groups play important roles in improving the blood compatibility of PES membranes. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Charging behavior of Al2O3 and AlN under positive and negative charge injection using a kV electron beam

    NASA Astrophysics Data System (ADS)

    Belhaj, M.; Paulmier, T.; Hanna, R.; Arnaout, M.; Balcon, N.; Payan, D.; Puech, J.

    2014-02-01

    Under electron irradiation, insulating materials may charge either negatively or positively depending on their electron emission properties and characteristics of the incident electrons. The electrical behavior of these materials is linked to the sign of the injected charge. The aim here is to describe an electron beam based method that can be used to study the electrical behaviors of insulators under either positive or negative charge injection. The method was tested on ceramics samples, Al2O3 and AlN. It was shown that the electrical behaviors of both materials under e-irradiation are very different according the sign of the injected charge. Negative charging results to stable space charge for Al2O3 and on the contrary it leads to a fast charge-decay for AlN. Remarkably, reversed trends are observed for positive charge injection. The practical consequences of these results are then discussed.

  20. Process for preparing negative plates for use in a dry charge battery

    SciTech Connect

    Wegner, P.C.

    1986-02-11

    This patent describes a process for the production of lead-containing negative plates for use in a dry charge battery. The process cnsists of drying wet negative plates while protecting them from oxidation. This improvement is accomplished by treating the wet negative plates prior to the drying operation with an aqueous soluton of an oxidation inhibiting agent selected from salicylic acid, and 2-naphtol. The plates are then protected against oxidation during drying; and dry negative plates are obtained which are resistant to the absorption of water from the atmosphere on storage but are wet immediately by battery acid in use.

  1. Altering the GTP binding site of the DNA/RNA-binding protein, Translin/TB-RBP, decreases RNA binding and may create a dominant negative phenotype.

    PubMed

    Chennathukuzhi, V M; Kurihara, Y; Bray, J D; Yang, J; Hecht, N B

    2001-11-01

    The DNA/RNA-binding protein, Translin/Testis Brain RNA-binding protein (Translin/TB-RBP), contains a putative GTP binding site in its C-terminus which is highly conserved. To determine if guanine nucleotide binding to this site functionally alters nucleic acid binding, electrophoretic mobility shift assays were performed with RNA and DNA binding probes. GTP, but not GDP, reduces RNA binding by approximately 50% and the poorly hydrolyzed GTP analog, GTPgammaS, reduces binding by >90% in gel shift and immunoprecipitation assays. No similar reduction of DNA binding is seen. When the putative GTP binding site of TB-RBP, amino acid sequence VTAGD, is altered to VTNSD by site directed mutagenesis, GTP will no longer bind to TB-RBP(GTP) and TB-RBP(GTP) no longer binds to RNA, although DNA binding is not affected. Yeast two-hybrid assays reveal that like wild-type TB-RBP, TB-RBP(GTP) will interact with itself, with wild-type TB-RBP and with Translin associated factor X (Trax). Transfection of TB-RBP(GTP) into NIH 3T3 cells leads to a marked increase in cell death suggesting a dominant negative function for TB-RBP(GTP) in cells. These data suggest TB-RBP is an RNA-binding protein whose activity is allosterically controlled by nucleotide binding.

  2. 6S RNA binding to Eσ70 requires a positively charged surface of σ70 region 4.2

    PubMed Central

    Klocko, Andrew D.; Wassarman, Karen M.

    2009-01-01

    SUMMARY 6S RNA is a small, noncoding RNA that interacts with σ70-RNA polymerase and down-regulates transcription at many promoters during stationary phase. When bound to σ70-RNA polymerase, 6S RNA is engaged in the active site of σ70-RNA polymerase in a manner similar enough to promoter DNA that the RNA can serve as a template for RNA synthesis. It has been proposed that 6S RNA mimics the conformation of DNA during transcription initiation, suggesting contacts between RNA polymerase and 6S RNA or DNA may be similar. Here we demonstrate that region 4.2 of σ70 is critical for the interaction between 6S RNA and RNA polymerase. We define an expanded binding surface that encompasses positively charged residues throughout the recognition helix of the helix-turn-helix motif in region 4.2, in contrast to DNA binding that is largely focused on the N-terminal region of this helix. Furthermore, negatively charged residues in region 4.2 weaken binding to 6S RNA but do not similarly affect DNA binding. We propose that the binding sites for promoter DNA and 6S RNA on region 4.2 of σ70 are overlapping but distinct, raising interesting possibilities for how core promoter elements contribute to defining promoters that are sensitive to 6S RNA regulation. PMID:19538447

  3. Bactericidal action mechanism of negatively charged food grade clove oil nanoemulsions.

    PubMed

    Majeed, Hamid; Liu, Fei; Hategekimana, Joseph; Sharif, Hafiz Rizwan; Qi, Jing; Ali, Barkat; Bian, Yuan-Yuan; Ma, Jianguo; Yokoyama, Wallace; Zhong, Fang

    2016-04-15

    Clove oil (CO) anionic nanoemulsions were prepared with varying ratios of CO to canola oil (CA), emulsified and stabilized with purity gum ultra (PGU), a newly developed succinylated waxy maize starch. Interfacial tension measurements showed that CO acted as a co-surfactant and there was a gradual decrease in interfacial tension which favored the formation of small droplet sizes on homogenization until a critical limit (5:5% v/v CO:CA) was reached. Antimicrobial activity of the negatively charged CO nanoemulsion was determined against Gram positive GPB (Listeria monocytogenes and Staphylococcus aureus) and Gram negative GNB (Escherichia coli) bacterial strains using minimum inhibitory concentration (MIC) and a time kill dynamic method. Negatively charged PGU emulsified CO nanoemulsion showed prolonged antibacterial activities against Gram positive bacterial strains. We concluded that negatively charged CO nanoemulsion droplets self-assemble with GPB cell membrane, and facilitated interaction with cellular components of bacteria. Moreover, no electrostatic interaction existed between negatively charged droplets and the GPB membrane.

  4. Negative Ion CID Fragmentation of O-linked Oligosaccharide Aldoses—Charge Induced and Charge Remote Fragmentation

    NASA Astrophysics Data System (ADS)

    Doohan, Roisin A.; Hayes, Catherine A.; Harhen, Brendan; Karlsson, Niclas Göran

    2011-06-01

    Collision induced dissociation (CID) fragmentation was compared between reducing and reduced sulfated, sialylated, and neutral O-linked oligosaccharides. It was found that fragmentation of the [M - H]- ions of aldoses with acidic residues gave unique Z-fragmentation of the reducing end GalNAc containing the acidic C-6 branch, where the entire C-3 branch was lost. This fragmentation pathway, which is not seen in the alditols, showed that the process involved charge remote fragmentation catalyzed by a reducing end acidic anomeric proton. With structures containing sialic acid on both the C-3 and C-6 branch, the [M - H]- ions were dominated by the loss of sialic acid. This fragmentation pathway was also pronounced in the [M - 2H]2- ions revealing both the C-6 Z-fragment plus its complementary C-3 C-fragment in addition to glycosidic and cross ring fragmentation. This generation of the Z/C-fragment pairs from GalNAc showed that the charges were not participating in their generation. Fragmentation of neutral aldoses showed pronounced Z-fragmentation believed to be generated by proton migration from the C-6 branch to the negatively charged GalNAc residue followed by charge remote fragmentation similar to the acidic oligosaccharides. In addition, A-type fragments generated by charge induced fragmentation of neutral oligosaccharides were observed when the charge migrated from C-1 of the GalNAc to the GlcNAc residue followed by rearrangement to accommodate the 0,2A-fragmentation. LC-MS also showed that O-linked aldoses existed as interchangeable α/β pyranose anomers, in addition to a third isomer (25% of the total free aldose) believed to be the furanose form.

  5. Differential effects of DEAE negative mode chromatography and gel-filtration chromatography on the charge status of Helicobacter pylori neutrophil-activating protein.

    PubMed

    Hong, Zhi-Wei; Yang, Yu-Chi; Pan, Timothy; Tzeng, Huey-Fen; Fu, Hua-Wen

    2017-01-01

    Helicobacter pylori neutrophil-activating protein (HP-NAP) is involved in H. pylori-associated gastric inflammation. HP-NAP is also a vaccine candidate, a possible drug target, and a potential diagnostic marker for H. pylori-associated diseases. Previously, we purified recombinant HP-NAP by one-step diethylaminoethyl (DEAE) negative mode chromatography by collecting the unbound fraction at pH 8.0 at 4°C. It remains unclear why HP-NAP does not bind to DEAE resins at the pH above its isoelectric point during the purification. To investigate how pH affects the surface net charge of HP-NAP and its binding to DEAE resins during the purification, recombinant HP-NAP expressed in Escherichia coli was subjected to DEAE negative mode chromatography at pH ranging from 7.0 to 9.0 at 25°C and the surface charge of purified HP-NAP was determined by capillary electrophoresis. A minimal amount of HP-NAP was detected in the elution fraction of DEAE Sepharose resin at pH 8.5, whereas recombinant HP-NAP was detected in the elution fraction of DEAE Sephadex resin only at pH 7.0 and 8.0. The purified recombinant HP-NAP obtained from the unbound fractions was not able to bind to DEAE resins at pH 7.0 to 9.0. In addition, the surface charge of the purified HP-NAP was neutral at pH 7.0 to 8.0 and was either neutral or slightly negative at pH 8.5 and 9.0. However, recombinant HP-NAP purified from gel-filtration chromatography was able to bind to DEAE Sepharose resin at pH 7.0 to 9.0 and DEAE Sephadex resin at pH 7.0. At pH 8.5 and 9.0, only the negatively charged species of HP-NAP were found. Thus, recombinant HP-NAP with different charge status can be differentially purified by DEAE negative mode chromatography and gel-filtration chromatography. Furthermore, the charge distribution on the surface of HP-NAP, the presence of impure proteins, and the overall net charge of the resins all affect the binding of HP-NAP to DEAE resins during the negative purification.

  6. Differential effects of DEAE negative mode chromatography and gel-filtration chromatography on the charge status of Helicobacter pylori neutrophil-activating protein

    PubMed Central

    Pan, Timothy; Tzeng, Huey-Fen

    2017-01-01

    Helicobacter pylori neutrophil-activating protein (HP-NAP) is involved in H. pylori-associated gastric inflammation. HP-NAP is also a vaccine candidate, a possible drug target, and a potential diagnostic marker for H. pylori-associated diseases. Previously, we purified recombinant HP-NAP by one-step diethylaminoethyl (DEAE) negative mode chromatography by collecting the unbound fraction at pH 8.0 at 4°C. It remains unclear why HP-NAP does not bind to DEAE resins at the pH above its isoelectric point during the purification. To investigate how pH affects the surface net charge of HP-NAP and its binding to DEAE resins during the purification, recombinant HP-NAP expressed in Escherichia coli was subjected to DEAE negative mode chromatography at pH ranging from 7.0 to 9.0 at 25°C and the surface charge of purified HP-NAP was determined by capillary electrophoresis. A minimal amount of HP-NAP was detected in the elution fraction of DEAE Sepharose resin at pH 8.5, whereas recombinant HP-NAP was detected in the elution fraction of DEAE Sephadex resin only at pH 7.0 and 8.0. The purified recombinant HP-NAP obtained from the unbound fractions was not able to bind to DEAE resins at pH 7.0 to 9.0. In addition, the surface charge of the purified HP-NAP was neutral at pH 7.0 to 8.0 and was either neutral or slightly negative at pH 8.5 and 9.0. However, recombinant HP-NAP purified from gel-filtration chromatography was able to bind to DEAE Sepharose resin at pH 7.0 to 9.0 and DEAE Sephadex resin at pH 7.0. At pH 8.5 and 9.0, only the negatively charged species of HP-NAP were found. Thus, recombinant HP-NAP with different charge status can be differentially purified by DEAE negative mode chromatography and gel-filtration chromatography. Furthermore, the charge distribution on the surface of HP-NAP, the presence of impure proteins, and the overall net charge of the resins all affect the binding of HP-NAP to DEAE resins during the negative purification. PMID:28328957

  7. Calcium diffusion enhanced after cleavage of negatively charged components of brain extracellular matrix by chondroitinase ABC

    PubMed Central

    Hrabětová, Sabina; Masri, Daniel; Tao, Lian; Xiao, Fanrong; Nicholson, Charles

    2009-01-01

    The concentration of extracellular calcium plays a critical role in synaptic transmission and neuronal excitability as well as other physiological processes. The time course and extent of local fluctuations in the concentration of this ion largely depend on its effective diffusion coefficient (D*) and it has been speculated that fixed negative charges on chondroitin sulphate proteoglycans (CSPGs) and other components of the extracellular matrix may influence calcium diffusion because it is a divalent cation. In this study we used ion-selective microelectrodes combined with pressure ejection or iontophoresis of ions from a micropipette to quantify diffusion characteristics of neocortex and hippocampus in rat brain slices. We show that D* for calcium is less than the value predicted from the behaviour of the monovalent cation tetramethylammonium (TMA), a commonly used diffusion probe, but D* for calcium increases in both brain regions after the slices are treated with chondroitinase ABC, an enzyme that predominantly cleaves chondroitin sulphate glycans. These results suggest that CSPGs do play a role in determining the local diffusion properties of calcium in brain tissue, most likely through electrostatic interactions mediating rapid equilibrium binding. In contrast, chondroitinase ABC does not affect either the TMA diffusion or the extracellular volume fraction, indicating that the enzyme does not alter the structure of the extracellular space and that the diffusion of small monovalent cations is not affected by CSPGs in the normal brain ionic milieu. Both calcium and CSPGs are known to have many distinct roles in brain physiology, including brain repair, and our study suggests they may be functionally coupled through calcium diffusion properties. PMID:19546165

  8. Large negatively charged organic host molecules as inhibitors of endonuclease enzymes.

    PubMed

    Tauran, Yannick; Anjard, Christophe; Kim, Beomjoon; Rhimi, Moez; Coleman, Anthony W

    2014-10-07

    Three large negatively charged organic host molecules; β-cyclodextrin sulphate, para-sulphonato-calix[6]arene and para-sulphonato-calix[8]arene have been shown to be effective inhibitors of endonuclease in the low micromolar range, additionally para-sulphonato-calix[8]arene is a partial inhibitor of rhDNase I.

  9. Positive zeta potential of a negatively charged semi-permeable plasma membrane

    NASA Astrophysics Data System (ADS)

    Sinha, Shayandev; Jing, Haoyuan; Das, Siddhartha

    2017-08-01

    The negative charge of the plasma membrane (PM) severely affects the nature of moieties that may enter or leave the cells and controls a large number of ion-interaction-mediated intracellular and extracellular events. In this letter, we report our discovery of a most fascinating scenario, where one interface (e.g., membrane-cytosol interface) of the negatively charged PM shows a positive surface (or ζ) potential, while the other interface (e.g., membrane-electrolyte interface) still shows a negative ζ potential. Therefore, we encounter a completely unexpected situation where an interface (e.g., membrane-cytosol interface) that has a negative surface charge density demonstrates a positive ζ potential. We establish that the attainment of such a property by the membrane can be ascribed to an interplay of the nature of the membrane semi-permeability and the electrostatics of the electric double layer established on either side of the charged membrane. We anticipate that such a membrane property can lead to such capabilities of the cell (in terms of accepting or releasing certain kinds of moieties as well regulating cellular signaling) that was hitherto inconceivable.

  10. Ion-exchange molecularly imprinted polymer for the extraction of negatively charged acesulfame from wastewater samples.

    PubMed

    Zarejousheghani, Mashaalah; Schrader, Steffi; Möder, Monika; Lorenz, Pierre; Borsdorf, Helko

    2015-09-11

    Acesulfame is a known indicator that is used to identify the introduction of domestic wastewater into water systems. It is negatively charged and highly water-soluble at environmental pH values. In this study, a molecularly imprinted polymer (MIP) was synthesized for negatively charged acesulfame and successfully applied for the selective solid phase extraction (SPE) of acesulfame from influent and effluent wastewater samples. (Vinylbenzyl)trimethylammonium chloride (VBTA) was used as a novel phase transfer reagent, which enhanced the solubility of negatively charged acesulfame in the organic solvent (porogen) and served as a functional monomer in MIP synthesis. Different molecularly imprinted polymers were synthesized to optimize the extraction capability of acesulfame. The different materials were evaluated using equilibrium rebinding experiments, selectivity experiments and scanning electron microscopy (SEM). The most efficient MIP was used in a molecularly imprinted-solid phase extraction (MISPE) protocol to extract acesulfame from wastewater samples. Using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS) analysis, detection and quantification limits were achieved at 0.12μgL(-1) and 0.35μgL(-1), respectively. Certain cross selectivity for the chemical compounds containing negatively charged sulfonamide functional group was observed during selectivity experiments. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Air Purification Effect of Positively and Negatively Charged Ions Generated by Discharge Plasma at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Nishikawa, Kazuo; Nojima, Hideo

    2001-08-01

    In this paper, the air purification effect of positively and negatively charged ions generated by discharge plasma at atmospheric pressure is reported. We have developed a novel ion generation device which consists of a cylindrical glass tube and attached inner and outer mesh electrodes. With the application of AC voltage between the electrodes, positively charged ions and negatively charged ions have been generated at atmospheric pressure. The ion densities of 3.0× 104--7.0× 104 counts/cm3 have been obtained with the AC voltage of 1.8-2.3 kV (effective value). We have examined the air purification properties of this device. By the operation of this device, the initial oxygen nitride (NO) density of 10 ppm in 1 m3 (in cigarette smoke) was decreased to 1 ppm after 30 min. The number of suspended germs in air has been significantly reduced by the use of this type of ion generation device.

  12. Evaluation of electrostatic binding of PAMAM dendrimers and charged phthalocyanines by fluorescence correlation spectroscopy.

    PubMed

    Garcia-Fernandez, Emilio; Paulo, Pedro M R; Costa, Sílvia M B

    2015-02-14

    We have assessed host-guest interactions between PAMAM dendrimers and charged phthalocyanine probes by Fluorescence Correlation Spectroscopy (FCS). Our results show strong binding in water at low ionic strength with an affinity that decreases from KB ∼ 10(9) to 10(8) M(-1) upon decreasing the phthalocyanine charge of z = -4, -2 and -1. The binding affinity also decreases significantly upon salt addition leading to KB values of ca. 10(5)-10(6) M(-1). The changes of binding affinity probed by varying the phthalocyanine charge, and by changing the ionic strength or pH conditions, allowed us to evaluate the electrostatic contribution (Kel) in dendrimer-phthalocyanine interactions. In particular, this approach afforded values of electrostatic potential for PAMAM dendrimers in water at low ionic strength and at dendrimer concentrations in the nanomolar range. The electrostatic potential of PAMAM generations 4 and 7 are around 50 mV in close agreement with theoretical estimates using the Poisson-Boltzmann cell model. Interestingly, the nonelectrostatic binding is significant and contributes even more than electrostatic binding to dendrimer-phthalocyanine interactions. The nonelectrostatic binding contributes to an affinity of KB above 10(5) M(-1), as measured under conditions of low dendrimer charge and high ionic strength, which makes these dendrimers promising hosts as drug carriers.

  13. Charged particle flows in the beam extraction region of a negative ion source for NBI

    SciTech Connect

    Geng, S.; Tsumori, K.; Nakano, H.; Osakabe, M.; Nagaoka, K.; Takeiri, Y.; Kaneko, O.; Kisaki, M.; Ikeda, K.; Shibuya, M.

    2016-02-15

    Experiments by a four-pin probe and photodetachment technique were carried out to investigate the charged particle flows in the beam extraction region of a negative hydrogen ion source for neutral beam injector. Electron and positive ion flows were obtained from the polar distribution of the probe saturation current. Negative hydrogen ion flow velocity and temperature were obtained by comparing the recovery times of the photodetachment signals at opposite probe tips. Electron and positive ions flows are dominated by crossed field drift and ambipolar diffusion. Negative hydrogen ion temperature is evaluated to be 0.12 eV.

  14. Ionization Efficiency of Doubly Charged Ions Formed from Polyprotic Acids in Electrospray Negative Mode

    NASA Astrophysics Data System (ADS)

    Liigand, Piia; Kaupmees, Karl; Kruve, Anneli

    2016-07-01

    The ability of polyprotic acids to give doubly charged ions in negative mode electrospray was studied and related to physicochemical properties of the acids via linear discriminant analysis (LDA). It was discovered that the compound has to be strongly acidic (low p K a1 and p K a2) and to have high hydrophobicity (log P ow) to become multiply charged. Ability to give multiply charged ions in ESI/MS cannot be directly predicted from the solution phase acidities. Therefore, for the first time, a quantitative model to predict the charge state of the analyte in ESI/MS is proposed and validated for small anions. Also, a model to predict ionization efficiencies of these analytes was developed. Results indicate that acidity of the analyte, its octanol-water partition coefficient, and charge delocalization are important factors that influence ionization efficiencies as well as charge states of the analytes. The pH of the solvent was also found to be an important factor influencing the ionization efficiency of doubly charged ions.

  15. Use of stabilizing mutations to engineer a charged group within a ligand-binding hydrophobic cavity in T4 lysozyme.

    PubMed

    Liu, Lijun; Baase, Walter A; Michael, Miya M; Matthews, Brian W

    2009-09-22

    Both large-to-small and nonpolar-to-polar mutations in the hydrophobic core of T4 lysozyme cause significant loss in stability. By including supplementary stabilizing mutations we constructed a variant that combines the cavity-creating substitution Leu99 --> Ala with the buried charge mutant Met102 --> Glu. Crystal structure determination confirmed that this variant has a large cavity with the side chain of Glu102 located within the cavity wall. The cavity includes a large disk-shaped region plus a bulge. The disk-like region is essentially nonpolar, similar to L99A, while the Glu102 substituent is located in the vicinity of the bulge. Three ordered water molecules bind within this part of the cavity and appear to stabilize the conformation of Glu102. Glu102 has an estimated pKa of about 5.5-6.5, suggesting that it is at least partially charged in the crystal structure. The polar ligands pyridine, phenol and aniline bind within the cavity, and crystal structures of the complexes show one or two water molecules to be retained. Nonpolar ligands of appropriate shape can also bind in the cavity and in some cases exclude all three water molecules. This disrupts the hydrogen-bond network and causes the Glu102 side chain to move away from the ligand by up to 0.8 A where it remains buried in a completely nonpolar environment. Isothermal titration calorimetry revealed that the binding of these compounds stabilizes the protein by 4-6 kcal/mol. For both polar and nonpolar ligands the binding is enthalpically driven. Large negative changes in entropy adversely balance the binding of the polar ligands, whereas entropy has little effect on the nonpolar ligand binding.

  16. Structural Basis for Negative Cooperativity in Growth Factor Binding to an EGF Receptor

    SciTech Connect

    Alvarado, Diego; Klein, Daryl E.; Lemmon, Mark A.

    2010-09-27

    Transmembrane signaling by the epidermal growth factor receptor (EGFR) involves ligand-induced dimerization and allosteric regulation of the intracellular tyrosine kinase domain. Crystallographic studies have shown how ligand binding induces dimerization of the EGFR extracellular region but cannot explain the high-affinity and low-affinity classes of cell-surface EGF-binding sites inferred from curved Scatchard plots. From a series of crystal structures of the Drosophila EGFR extracellular region, we show here how Scatchard plot curvature arises from negatively cooperative ligand binding. The first ligand-binding event induces formation of an asymmetric dimer with only one bound ligand. The unoccupied site in this dimer is structurally restrained, leading to reduced affinity for binding of the second ligand, and thus negative cooperativity. Our results explain the cell-surface binding characteristics of EGF receptors and suggest how individual EGFR ligands might stabilize distinct dimeric species with different signaling properties.

  17. Dust charging processes with a Cairns-Tsallis distribution function with negative ions

    SciTech Connect

    Abid, A. A.; Khan, M. Z.; Yap, S. L.; Terças, H.; Mahmood, S.

    2016-01-15

    Dust grain charging processes are presented in a non-Maxwellian dusty plasma following the Cairns-Tsallis (q, α)–distribution, whose constituents are the electrons, as well as the positive/negative ions and negatively charged dust grains. For this purpose, we have solved the current balance equation for a negatively charged dust grain to achieve an equilibrium state value (viz., q{sub d} = constant) in the presence of Cairns-Tsallis (q, α)–distribution. In fact, the current balance equation becomes modified due to the Boltzmannian/streaming distributed negative ions. It is numerically found that the relevant plasma parameters, such as the spectral indexes q and α, the positive ion-to-electron temperature ratio, and the negative ion streaming speed (U{sub 0}) significantly affect the dust grain surface potential. It is also shown that in the limit q → 1 the Cairns-Tsallis reduces to the Cairns distribution; for α = 0 the Cairns-Tsallis distribution reduces to pure Tsallis distribution and the latter reduces to Maxwellian distribution for q → 1 and α = 0.

  18. Dust charging processes with a Cairns-Tsallis distribution function with negative ions

    NASA Astrophysics Data System (ADS)

    Abid, A. A.; Khan, M. Z.; Yap, S. L.; Terças, H.; Mahmood, S.

    2016-01-01

    Dust grain charging processes are presented in a non-Maxwellian dusty plasma following the Cairns-Tsallis (q, α)-distribution, whose constituents are the electrons, as well as the positive/negative ions and negatively charged dust grains. For this purpose, we have solved the current balance equation for a negatively charged dust grain to achieve an equilibrium state value (viz., qd = constant) in the presence of Cairns-Tsallis (q, α)-distribution. In fact, the current balance equation becomes modified due to the Boltzmannian/streaming distributed negative ions. It is numerically found that the relevant plasma parameters, such as the spectral indexes q and α, the positive ion-to-electron temperature ratio, and the negative ion streaming speed (U0) significantly affect the dust grain surface potential. It is also shown that in the limit q → 1 the Cairns-Tsallis reduces to the Cairns distribution; for α = 0 the Cairns-Tsallis distribution reduces to pure Tsallis distribution and the latter reduces to Maxwellian distribution for q → 1 and α = 0.

  19. The dynamics of charged particles in the near wake of a very negatively charged body - Laboratory experiment and numerical simulation

    NASA Technical Reports Server (NTRS)

    Morgan, M. Alvin; Chan, Chung; Cooke, David L.; Tautz, Maurice F.

    1989-01-01

    A numerical simulation that is cylindrical in configuration space and three-dimensional in velocity space has been initiated to test a model for the near-wake dynamics of a very negatively charged body, with reference to the plasma environment around spacecraft. The simulation parameters were closely matched to those of a laboratory experiment so that the results can be compared directly. The laboratory study showed that the electrons and ions can display different temporal features in the filling-in of the wake; and that they can both be found within one body diameter of an object with a highly negative body potential. It was also found that the temperature of the electrons in the very near wake could be somewhat colder than the ambient value, suggesting the possibility of a filtering mechanism being operative there. The simulation results to date largely corroborate the density findings.

  20. Photodissociation and charge transfer dynamics of negative ions studied with femtosecond photoelectron spectroscopy

    SciTech Connect

    Zanni, Martin Thomas

    1999-12-01

    This dissertation presents studies aimed at understanding the potential energy surfaces and dynamics of isolated negative ions, and the effects of solvent on each. Although negative ions play important roles in atmospheric and solution phase chemistry, to a large extent the ground and excited state potential energy surfaces of gas phase negative ions are poorly characterized, and solvent effects even less well understood. In an effort to fill this gap, the author's coworkers and the author have developed a new technique, anion femtosecond photoelectron spectroscopy, and applied it to gas phase photodissociation and charge transfer processes. Studies are presented that (1) characterize the ground and excited states of isolated and clustered anions, (2) monitor the photodissociation dynamics of isolated and clustered anions, and (3) explore the charge-transfer-to-solvent states of atomic iodide clustered with polar and non-polar solvents.

  1. Ligand Binding to WW Tandem Domains of YAP2 Transcriptional Regulator Is Under Negative Cooperativity

    PubMed Central

    Schuchardt, Brett J.; Mikles, David C.; Hoang, Lawrence M.; Bhat, Vikas; McDonald, Caleb B.; Sudol, Marius; Farooq, Amjad

    2014-01-01

    YAP2 transcriptional regulator drives a multitude of cellular processes, including the newly discovered Hippo tumor suppressor pathway, by virtue of the ability of its WW domains to bind and recruit PPXY-containing ligands to specific subcellular compartments. Herein, we employ an array of biophysical tools to investigate allosteric communication between the WW tandem domains of YAP2. Our data show that the WW tandem domains of YAP2 negatively cooperate when binding to their cognate ligands. Moreover, the molecular origin of such negative cooperativity lies in an unfavorable entropic contribution to the overall free energy relative to ligand binding to isolated WW domains. Consistent with this notion, the WW tandem domains adopt a fixed spatial orientation such that the WW1 domain curves outwards and stacks onto the binding groove of WW2 domain, thereby sterically hindering ligand binding to both itself and its tandem partner. Although ligand binding to both WW domains disrupts such interdomain stacking interaction, they reorient themselves and adopt an alternative fixed spatial orientation in the liganded state by virtue of their ability to engage laterally so as to allow their binding grooves to point outwards and away from each other. In short, while the ability of WW tandem domains to aid ligand binding is well-documented, our demonstration that they may also be subject to negative binding cooperativity represents a paradigm shift in our understanding of the molecular action of this ubiquitous family of protein modules. PMID:25283809

  2. Ligand binding to WW tandem domains of YAP2 transcriptional regulator is under negative cooperativity.

    PubMed

    Schuchardt, Brett J; Mikles, David C; Hoang, Lawrence M; Bhat, Vikas; McDonald, Caleb B; Sudol, Marius; Farooq, Amjad

    2014-12-01

    YES-associated protein 2 (YAP2) transcriptional regulator drives a multitude of cellular processes, including the newly discovered Hippo tumor suppressor pathway, by virtue of the ability of its WW domains to bind and recruit PPXY-containing ligands to specific subcellular compartments. Herein, we employ an array of biophysical tools to investigate allosteric communication between the WW tandem domains of YAP2. Our data show that the WW tandem domains of YAP2 negatively cooperate when binding to their cognate ligands. Moreover, the molecular origin of such negative cooperativity lies in an unfavorable entropic contribution to the overall free energy relative to ligand binding to isolated WW domains. Consistent with this notion, the WW tandem domains adopt a fixed spatial orientation such that the WW1 domain curves outwards and stacks onto the binding groove of the WW2 domain, thereby sterically hindering ligand binding to both itself and its tandem partner. Although ligand binding to both WW domains disrupts such interdomain stacking interaction, they reorient themselves and adopt an alternative fixed spatial orientation in the liganded state by virtue of their ability to engage laterally so as to allow their binding grooves to point outwards and away from each other. In short, while the ability of WW tandem domains to aid ligand binding is well documented, our demonstration that they may also be subject to negative binding cooperativity represents a paradigm shift in our understanding of the molecular action of this ubiquitous family of protein modules.

  3. Gram-negative trimeric porins have specific LPS binding sites that are essential for porin biogenesis

    PubMed Central

    Arunmanee, Wanatchaporn; Pathania, Monisha; Solovyova, Alexandra S.; Le Brun, Anton P.; Ridley, Helen; Baslé, Arnaud; van den Berg, Bert; Lakey, Jeremy H.

    2016-01-01

    The outer membrane (OM) of gram-negative bacteria is an unusual asymmetric bilayer with an external monolayer of lipopolysaccharide (LPS) and an inner layer of phospholipids. The LPS layer is rigid and stabilized by divalent cation cross-links between phosphate groups on the core oligosaccharide regions. This means that the OM is robust and highly impermeable to toxins and antibiotics. During their biogenesis, OM proteins (OMPs), which function as transporters and receptors, must integrate into this ordered monolayer while preserving its impermeability. Here we reveal the specific interactions between the trimeric porins of Enterobacteriaceae and LPS. Isolated porins form complexes with variable numbers of LPS molecules, which are stabilized by calcium ions. In earlier studies, two high-affinity sites were predicted to contain groups of positively charged side chains. Mutation of these residues led to the loss of LPS binding and, in one site, also prevented trimerization of the porin, explaining the previously observed effect of LPS mutants on porin folding. The high-resolution X-ray crystal structure of a trimeric porin–LPS complex not only helps to explain the mutagenesis results but also reveals more complex, subtle porin–LPS interactions and a bridging calcium ion. PMID:27493217

  4. Characterization of a highly negative and labile binding protein induced in Euglena gracilis by cadmium

    SciTech Connect

    Gingrich, D.J.; Weber, D.N.; Shaw, C.F.; Garvey, J.S.; Petering, D.H.

    1986-03-01

    The physiochemical properties and physiological significance of the cadmium-binding protein (CdBP) of the algae Euglena gracilis have been studied. Following in vivo exposure of cells to 0.4 or 1.3 ..mu..g/mL of Cd/sup 2 +/, all the cytosolic Cd is bound to high molecular weight species. At 4.7 ..mu..g/mL, appreciable CdBP has formed in cells grown under illumination or in the dark. The large pool of very low molecular weight zinc species previously reported is increased when cells are exposed to high cadmium levels. Two distinct species, BP-1 and BP-2 are resolved by ion-exchange chromatography on DEAE-Sephadex. Unusually high conductivities are required to displace them, indicating that they are very negatively charged proteins at pH 8.6. The pH for half-titration of bound Cd/sup 2 +/ is between 5 and 6. Neither form of the CdBP cross-reacts with antibodies to rat liver metallothionein (MT) antibodies. The structural, chemical, and functional differences between the Euglena CdBPs and mammalian MTs are discussed. When cells are exposed to high levels of Cu, a CuBP is induced, and the very low molecular weight zinc band is depleted.

  5. Simulation of space charge compensation in a multibeamlet negative ion beam

    SciTech Connect

    Sartori, E. Veltri, P.; Serianni, G.; Maceina, T. J.; Cavenago, M.

    2016-02-15

    Ion beam space charge compensation occurs by cumulating in the beam potential well charges having opposite polarity, usually generated by collisional processes. In this paper we investigate the case of a H{sup −} ion beam drift, in a bi-dimensional approximation of the NIO1 (Negative Ion Optimization phase 1) negative ion source. H{sup −} beam ion transport and plasma formation are studied via particle-in-cell simulations. Differential cross sections are sampled to determine the velocity distribution of secondary particles generated by ionization of the residual gas (electrons and slow H{sub 2}{sup +} ions) or by stripping of the beam ions (electrons, H, and H{sup +}). The simulations include three beamlets of a horizontal section, so that multibeamlet space charge and secondary particle diffusion between separate generation regions are considered, and include a repeller grid biased at various potentials. Results show that after the beam space charge is effectively screened by the secondary plasma in about 3 μs (in agreement with theoretical expectations), a plasma grows across the beamlets with a characteristic time three times longer, and a slight overcompensation of the electric potential is verified as expected in the case of negative ions.

  6. Anomalous charge and negative-charge-transfer insulating state in cuprate chain compound KCuO2

    NASA Astrophysics Data System (ADS)

    Choudhury, D.; Rivero, P.; Meyers, D.; Liu, X.; Cao, Y.; Middey, S.; Whitaker, M. J.; Barraza-Lopez, S.; Freeland, J. W.; Greenblatt, M.; Chakhalian, J.

    2015-11-01

    Using a combination of x-ray absorption spectroscopy (XAS) experiments and first-principles calculations, we demonstrate that insulating KCuO2 contains Cu in an unusually high formal 3+ valence state, and the ligand-to-metal (O-to-Cu) charge-transfer energy is intriguingly negative (Δ ˜-1.5 eV) and has a dominant (˜60 % ) ligand-hole character in the ground state akin to the high Tc cuprate Zhang-Rice state. Unlike most other formal Cu3 + compounds, the Cu 2 p XAS spectra of KCuO2 exhibit pronounced 3 d8 (Cu3 +) multiplet structures, which account for ˜40 % of its ground state wave function. Ab initio calculations elucidate the origin of the band gap in KCuO2 as arising primarily from strong intracluster Cu 3 d -O 2 p hybridizations (tpd); the value of the band gap decreases with a reduced value of tpd. Further, unlike conventional negative-charge-transfer insulators, the band gap in KCuO2 persists even for vanishing values of Coulomb repulsion U , underscoring the importance of single-particle band-structure effects connected to the one-dimensional nature of the compound.

  7. Dust negative ion acoustic shock waves in a dusty multi-ion plasma with positive dust charging current

    SciTech Connect

    Duha, S. S.

    2009-11-15

    Recent analysis of Mamun et al.[ Phys. Lett. A 373, 2355 (2009)], who considered electrons, light positive ions, heavy negative ions, and extremely massive (few micron size) charge fluctuating dust, has been extended by positive dust charging current, i.e., considering the charging currents for positively charged dust grains. A dusty multi-ion plasma system consisting of electrons, light positive ions, negative ions, and extremely massive (few micron size) charge fluctuating stationary dust have been considered. The electrostatic shock waves associated with negative ion dynamics and dust charge fluctuation have been investigated by employing the reductive perturbation method. It has been shown that the dust charge fluctuation is a source of dissipation and is responsible for the formation of dust negative ion acoustic (DNIA) shock structures. The basic features of such DNIA shock structures have been identified. The findings of this investigation may be useful in understanding the laboratory phenomena and space dusty plasmas.

  8. Binding of Polycarboxylic Acids to Cationic Mixed Micelles: Effects of Polymer Counterion Binding and Polyion Charge Distribution.

    PubMed

    Yoshida; Sokhakian; Dubin

    1998-09-15

    Mixed micelles of cetyltrimethylammonium chloride (CTAC) and n-dodecyl hexaoxyethylene glycol monoether (C12E8) bind to polyanions when the mole fraction of the cationic surfactant exceeds a critical value (Yc). Yc corresponds to a critical micelle surface charge density at which polyelectrolyte will bind to this colloidal particle. Turbidimetric titrations were used to determine Yc for such cationic-nonionic micelles in the presence of acrylic acid and acrylamido-2-methylpropane sulfonate homopolymers (PAA and PAMPS, respectively) and their copolymers with acrylamide, as function of pH, ionic strength, and polyelectrolyte counterion. In 0.20 M NaCl, Yc for PAA is found to be remarkably insensitive to pH, i.e., virtually independent of the apparent polymer charge density xiapp. On the other hand, the expected inverse relationship between Yc and xiapp is observed either for PAA when NaCl is replaced by TMACl (tetramethylammonium chloride), or when xiapp is manipulated using acrylic acid/acrylamide copolymers at high pH. The effective charge density of PAA is thus seen to be suppressed by specific sodium ion binding, indicating that the influence of salts on the interaction of polycarboxylic acids with colloidal particles may differ qualitatively from their effect on the analogous behavior of strong polyanions. Comparisons between homo- and copolymers of acrylic acid were carried out also to test the hypothesis that the "mobility" of charges on PAA at moderate pH (degree of ionization less than unity) could make this "annealed" polymer exhibit the behavior of a more highly charged one. The results, while consistent with this expectation, were obscured by the likely effect of copolymer sequence distributions. Copyright 1998 Academic Press.

  9. Charged extracellular residues, conserved throughout a G-protein-coupled receptor family, are required for ligand binding, receptor activation, and cell-surface expression.

    PubMed

    Hawtin, Stuart R; Simms, John; Conner, Matthew; Lawson, Zoe; Parslow, Rosemary A; Trim, Julie; Sheppard, Andrew; Wheatley, Mark

    2006-12-15

    For G-protein-coupled receptors (GPCRs) in general, the roles of extracellular residues are not well defined compared with residues in transmembrane helices (TMs). Nevertheless, extracellular residues are important for various functions in both peptide-GPCRs and amine-GPCRs. In this study, the V(1a) vasopressin receptor was used to systematically investigate the role of extracellular charged residues that are highly conserved throughout a subfamily of peptide-GPCRs, using a combination of mutagenesis and molecular modeling. Of the 13 conserved charged residues identified in the extracellular loops (ECLs), Arg(116) (ECL1), Arg(125) (top of TMIII), and Asp(204) (ECL2) are important for agonist binding and/or receptor activation. Molecular modeling revealed that Arg(125) (and Lys(125)) stabilizes TMIII by interacting with lipid head groups. Charge reversal (Asp(125)) caused re-ordering of the lipids, altered helical packing, and increased solvent penetration of the TM bundle. Interestingly, a negative charge is excluded at this locus in peptide-GPCRs, whereas a positive charge is excluded in amine-GPCRs. This contrasting conserved charge may reflect differences in GPCR binding modes between peptides and amines, with amines needing to access a binding site crevice within the receptor TM bundle, whereas the binding site of peptide-GPCRs includes more extracellular domains. A conserved negative charge at residue 204 (ECL2), juxtaposed to the highly conserved disulfide bond, was essential for agonist binding and signaling. Asp(204) (and Glu(204)) establishes TMIII contacts required for maintaining the beta-hairpin fold of ECL2, which if broken (Ala(204) or Arg(204)) resulted in ECL2 unfolding and receptor dysfunction. This study provides mechanistic insight into the roles of conserved extracellular residues.

  10. Positively and Negatively Charged Cesium and (C60) m Cs n Cluster Ions.

    PubMed

    Renzler, Michael; Kranabetter, Lorenz; Goulart, Marcelo; Scheier, Paul; Echt, Olof

    2017-05-25

    We report on the formation and ionization of cesium and C60Cs clusters in superfluid helium nanodroplets. Size distributions of positively and negatively charged (C60) m Cs n(±) ions have been measured for m ≤ 7, n ≤ 12. Reproducible intensity anomalies are observed in high-resolution mass spectra. For both charge states, (C60) m Cs3(±) and (C60) m Cs5(±) are particularly abundant, with little dependence on the value of m. Distributions of bare cesium cluster ions also indicate enhanced stability of Cs3(±) and Cs5(±), in agreement with theoretical predictions. These findings contrast with earlier reports on highly Cs-doped cationic fullerene aggregates which showed enhanced stability of C60Cs6 building blocks attributed to charge transfer. The dependence of the (C60) m Cs3(-) anion yield on electron energy shows a resonance that, surprisingly, oscillates in strength as m increases from 1 to 6.

  11. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions.

    PubMed

    Valerio-Lizarraga, Cristhian A; Lallement, Jean-Baptiste; Leon-Monzon, Ildefonso; Lettry, Jacques; Midttun, Øystein; Scrivens, Richard

    2014-02-01

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H(-) beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  12. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    SciTech Connect

    Valerio-Lizarraga, Cristhian A.; Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard; Leon-Monzon, Ildefonso; Midttun, Øystein

    2014-02-15

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup −} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  13. Modeling the selective partitioning of cations into negatively charged nanopores in water

    NASA Astrophysics Data System (ADS)

    Yang, Lu; Garde, Shekhar

    2007-02-01

    Partitioning and transport of water and small solutes into and through nanopores are important to a variety of chemical and biological processes and applications. Here we study water structure in negatively charged model cylindrical [carbon nanotube (CNT)-like] nanopores, as well as the partitioning of positive ions of increasing size (Na+, K+, and Cs+) into the pore interior using extensive molecular dynamics simulations. Despite the simplicity of the simulation system—containing a short CNT-like nanopore in water carrying a uniformly distributed charge of qpore=-ne surrounded by n (=0,…,8) cations, making the overall system charge neutral—the results provide new and useful insights on both the pore hydration and ion partitioning. For n =0, that is, for a neutral nanopore, water molecules partition into the pore and form single-file hydrogen-bonded wire spanning the pore length. With increasing n, water molecules enter the pore from both ends with preferred orientations, resulting in a mutual repulsion between oriented water molecules at the pore center and creating a cavity-like low density region at the center. For low negative charge densities on the pore, the driving force for partitioning of positive ions into the pore is weak, and no partitioning is observed. Increasing the pore charge gradually leads to partitioning of positive ions into the pore. Interestingly, over a range of intermediate negative charge densities, nanopores display both thermodynamic as well as kinetic selectivity toward partitioning of the larger K+ and Cs+ ions into their interior over the smaller Na+ ions. Specifically, the driving force is in the order K+>Cs+>Na+, and K+ and Cs+ ions enter the pore much more rapidly than Na+ ions. At higher charge densities, the driving force for partitioning increases for all cations—it is highest for K+ ions—and becomes similar for Na+ and Cs+ ions. The variation of thermodynamic driving force and the average partitioning time with the

  14. The association of defensin HNP-2 with negatively charged membranes: A combined fluorescence and linear dichroism study.

    PubMed

    Pridmore, Catherine J; Rodger, Alison; Sanderson, John M

    2016-04-01

    The association of defensin HNP-2 with negatively charged membranes has been studied using a new approach that combines fluorescence and linear dichroism (LD) spectroscopies with simulated LD spectra in order to characterise the binding kinetics and bound configurations of the peptide. Binding to membranes composed of mixtures of diacylglycerophosphocholines (PC) with either diacylglycerophosphoglycerol (PG) or diacylglycerophosphoserine (PS) was conducted at lipid:peptide ratios that yielded binding, but not membrane fusion. HNP-2 association with membranes under these conditions was a 2 stage-process, with both stages exhibiting first order kinetics. The fast initial step, with a half-life of < 1 min, was followed by a slower step with a half-life of > 3 min. Conversion between the states was estimated to have an enthalpy of activation of approximately 10 kJ mol(-1) and an entropy of activation of -0.2 kJ K mol(-1). LD spectra corresponding to each of the membrane bound states were generated by non-linear regression using a standard kinetic model. These spectra are interpreted in comparison with spectra calculated using the program Dichrocalc and reveal that the peptide associates with membranes in a small number of stable configurations. All of these configurations have a significant proportion of β-sheet structure residing in the plane of the membrane. Two configurations support structures previously proposed for defensins in membranes. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Surface modification of poly(ether sulfone) membrane with a synthesized negatively charged copolymer.

    PubMed

    Zou, Wen; Qin, Hui; Shi, Wenbin; Sun, Shudong; Zhao, Changsheng

    2014-11-18

    In this study, we provide a new method to modify poly(ether sulfone) (PES) membrane with good biocompatibility, for which diazotized PES (PES-N2(+)) membrane is covalently coated by a negatively charged copolymer of sodium sulfonated poly(styrene-alt-maleic anhydride) (NaSPS-MA). First, aminated PES (PES-NH2) is synthesized by nitro reduction reaction of nitro-PES (PES-NO2), and then blends with pristine PES to prepare PES/PES-NH2 membrane; then the membrane is treated with NaNO2 aqueous solution at acid condition; after surface diazo reaction, surface positively charged PES/PES-N2(+) membrane is prepared. Second, poly(styrene-alt-maleic anhydride) (PS-alt-MA) is synthesized, then sulfonated and treated by sodium hydroxide solution to obtain sodium sulfonated (PS-alt-MA) (NaSPS-MA). Finally, the negatively charged NaSPS-MA copolymer is coated onto the surface positively charged PES/PES-N2(+) membrane via electrostatic interaction; after UV-cross-linking, the linkage between the PES-N2(+) and NaSPS-MA changes to a covalent bond. The surface-modified PES membrane is characterized by FT-IR spectroscopy, X-ray photoelectron spectroscopy (XPS) analyses, and surface zeta potential analyses. The modified membrane exhibits good hemocompatibility and cytocompatibility, and the improved biocompatibility might have resulted from the existence of the hydrophilic groups (sodium carboxylate (-COONa) and sodium sulfonate (-SO3Na)). Moreover, the stability of the modified membrane is also investigated. The results indicated that the modified PES membrane using negatively charged copolymers had a lot of potential in blood purification fields and bioartificial liver supports for a long time.

  16. Optimizing charge neutralization for a magnetic sector SIMS instrument in negative mode

    SciTech Connect

    Pivovarov, Alexander L.; Guryanov, Georgiy M.

    2012-07-15

    Successful self-adjusted charge compensation was demonstrated for a CAMECA magnetic-sector secondary ion mass spectrometer applied in negative mode. Operation with the normal-incidence electron gun (NEG) potential positively biased relative to a sample potential enables substantial broadening of the Cs primary-ion-current density range available for analysis of insulators. The decrease of the negative NEG potential by 30 V allows the highest value of primary current density used for the analysis of a silica sample to increase by a factor of more than 6. By applying the improved charge neutralization technique, accurate Na depth profiles for SiO{sub 2} samples were obtained within detection limits of {approx}3 Multiplication-Sign 10{sup 15} atoms/cm{sup 3}.

  17. Characteristics of EMI generated by negative metal-positive dielectric voltage stresses due to spacecraft charging

    NASA Technical Reports Server (NTRS)

    Chaky, R. C.; Inouye, G. T.

    1985-01-01

    Charging of spacecraft surfaces by the environmental plasma can result in differential potentials between metallic structure and adjacent dielectric surfaces in which the relative polarity of the voltage stress is either negative dielectric/positive metal or negative metal/positive dielectric. Negative metal/positive dielectric is a stress condition that may arise if relatively large areas of spacecraft surface metals are shadowed from solar UV and/or if the UV intensity is reduced as in the situation in which the spacecraft is entering into or leaving eclipse. The results of experimental studies of negative metal/positive dielectric systems are given. Information is given on: enhanced electron emission I-V curves; e(3) corona noise vs e(3) steady-state current; the localized nature of e(3) and negative metal arc discharge currents; negative metal arc discharges at stress thresholds below 1 kilovolt; negative metal arc discharge characteristics; dependence of blowoff arc discharge current on spacecraft capacitance to space (linear dimension); and damage to second surface mirrors due to negative metal arcs.

  18. Negative charge emission due to excimer laser bombardment of sodium trisilicate glass

    SciTech Connect

    Langford, S.C.; Jensen, L.C.; Dickinson, J.T. ); Pederson, L.R. )

    1990-10-15

    We describe measurements of negative charge emission accompanying irradiation of sodium trisilicate glass (Na{sub 2}O{center dot}3SiO{sub 2}) with 248-nm excimer laser light at fluences on the order of 2 J/cm{sup 2} per pulse, i.e., at the threshold for ablative etching of the glass surface. The negative charge emission consists of a very prompt photoelectron burst coincident with the laser pulse, followed by a much slower plume of electrons and negative ions traveling with a high density cloud of positive ions, previously identified as primarily Na{sup +}. Using combinations of {bold E} and {bold B} fields in conjunction with time-of-flight methods, the negative ions were successfully separated from the plume and tentatively identified as O{sup {minus}}, Si{sup {minus}}, NaO{sup {minus}}, and perhaps NaSi{sup {minus}}. These negative species are probably formed by gas phase collisions in the near-surface region which result in electron attachment.

  19. Electromagnetic Radiation in the Atmosphere Generated by Excess Negative Charge in a Nuclear-Electromagnetic Cascade

    NASA Astrophysics Data System (ADS)

    Malyshevsky, V. S.; Fomin, G. V.

    2017-01-01

    On the basis of the analytical model "PARMA" (PHITS-based Analytical Radiation Model in the Atmosphere), developed to model particle fluxes of secondary cosmic radiation in the Earth's atmosphere, we have calculated the characteristics of radio waves emitted by excess negative charge in an electromagnetic cascade. The results may be of use in an analysis of experimental data on radio emission of electron-photon showers in the atmosphere.

  20. Reversal of negative charges on the surface of Escherichia coli thioredoxin: pockets versus protrusions.

    PubMed

    Mancusso, Romina; Cruz, Eduardo; Cataldi, Marcela; Mendoza, Carla; Fuchs, James; Wang, Hsin; Yang, Xiaomin; Tasayco, María Luisa

    2004-04-06

    Recent studies of proteins with reversed charged residues have demonstrated that electrostatic interactions on the surface can contribute significantly to protein stability. We have used the approach of reversing negatively charged residues using Arg to evaluate the effect of the electrostatics context on the transition temperature (T(m)), the unfolding Gibbs free energy change (DeltaG), and the unfolding enthalpy change (DeltaH). We have reversed negatively charged residues at a pocket (Asp9) and protrusions (Asp10, Asp20, Glu85), all located in interconnecting segments between elements of secondary structure on the surface of Arg73Ala Escherichia coli thioredoxin. DSC measurements indicate that reversal of Asp in a pocket (Asp9Arg/Arg73Ala, DeltaT(m) = -7.3 degrees C) produces a larger effect in thermal stability than reversal at protrusions: Asp10Arg/Arg73Ala, DeltaT(m) = -3.1 degrees C, Asp20Arg/Arg73Ala, DeltaT(m) = 2.0 degrees C, Glu85Arg/Arg73Ala, DeltaT(m) = 3.9 degrees ). The 3D structure of thioredoxin indicates that Asp20 and Glu85 have no nearby charges within 8 A, while Asp9 does not only have Asp10 as sequential neighbor, but it also forms a 5-A long-range ion pair with the solvent-exposed Lys69. Further DSC measurements indicate that neutralization of the individual charges of the ion pair Asp9-Lys69 with nonpolar residues produces a significant decrease in stability in both cases: Asp9Ala/Arg73Ala, DeltaT(m) = -3.7 degrees C, Asp9Met/Arg73Ala, DeltaT(m) = -5.5 degrees C, Lys69Leu/Arg73Ala, DeltaT(m) = -5.1 degrees C. However, thermodynamic analysis shows that reversal or neutralization of Asp9 produces a 9-15% decrease in DeltaH, while both reversal of Asp at protrusions and neutralization of Lys69 produce negligible changes. These results correlate well with the NMR analysis, which demonstrates that only the substitution of Asp9 produces extensive conformational changes and these changes occur in the surroundings of Lys69. Our results led us to

  1. Negatively charged ions on Mg(0001) surfaces: appearance and origin of attractive adsorbate-adsorbate interactions.

    PubMed

    Cheng, Su-Ting; Todorova, Mira; Freysoldt, Christoph; Neugebauer, Jörg

    2014-09-26

    Adsorption of electronegative elements on a metal surface usually leads to an increase in the work function and decrease in the binding energy as the adsorbate coverage rises. Using density-functional theory calculations, we show that Cl adsorbed on a Mg(0001) surface complies with these expectations, but adsorption of {N,O,F} causes a decrease in the work function and an increase in the binding energy. Analyzing the electronic structure, we show that the presence of a highly polarizable electron spill-out in front of Mg(0001) causes this unusual adsorption behavior and is responsible for the appearance of a hitherto unknown net-attractive lateral electrostatic interaction between same charged adsorbates.

  2. Insertion of TAT peptide and perturbation of negatively charged model phospholipid bilayer revealed by neutron diffraction.

    PubMed

    Chen, Xiaochao; Sa'adedin, Farid; Deme, Bruno; Rao, Pingfan; Bradshaw, Jeremy

    2013-08-01

    TAT peptide is one of the best-characterized cell penetrating peptides derived from the transactivator of transcription protein from the human immunodeficiency virus 1. The aim of this study was to investigate the interaction between TAT peptide and partially negatively-charged phospholipid bilayer by using lamellar neutron diffraction. The main findings are the existence of a contiguous water channel across the bilayer in the presence of TAT peptide. Taken in combination with other observations, including thinning of the lipid bilayer, this unambiguously locates the peptide within the lipid bilayer. The interaction of TAT peptide with anionic lipid bilayer, composed of an 80:20 mixture of DOPC and DOPS, takes place at two locations. One is in the peripheral aqueous phase between adjacent bilayers and the second is below the glycerol backbone region of bilayer. A membrane thinning above a peptide concentration threshold (1mol%) was found, as was a contiguous transbilayer water channel at the highest peptide concentration (10mol%). This evidence leads to the suggestion that the toroidal pore model might be involved in the transmembrane of TAT peptide. We interpret the surface peptide distribution in the peripheral aqueous phase to be a massive exclusion of TAT peptide from its intrinsic location below the glycerol backbone region of the bilayer, due to the electrostatic attraction between the negatively-charged headgroups of phospholipids and the positively charged TAT peptides. Finally, we propose that the role that negatively-charged headgroups of DOPS lipids play in the transmembrane of TAT peptide is less important than previously thought. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Antimicrobial lipopeptide tridecaptin A1 selectively binds to Gram-negative lipid II

    PubMed Central

    Cochrane, Stephen A.; Findlay, Brandon; Bakhtiary, Alireza; Acedo, Jeella Z.; Rodriguez-Lopez, Eva M.; Mercier, Pascal; Vederas, John C.

    2016-01-01

    Tridecaptin A1 (TriA1) is a nonribosomal lipopeptide with selective antimicrobial activity against Gram-negative bacteria. Here we show that TriA1 exerts its bactericidal effect by binding to the bacterial cell-wall precursor lipid II on the inner membrane, disrupting the proton motive force. Biochemical and biophysical assays show that binding to the Gram-negative variant of lipid II is required for membrane disruption and that only the proton gradient is dispersed. The NMR solution structure of TriA1 in dodecylphosphocholine micelles with lipid II has been determined, and molecular modeling was used to provide a structural model of the TriA1–lipid II complex. These results suggest that TriA1 kills Gram-negative bacteria by a mechanism of action using a lipid-II–binding motif. PMID:27688760

  4. Antimicrobial lipopeptide tridecaptin A1 selectively binds to Gram-negative lipid II.

    PubMed

    Cochrane, Stephen A; Findlay, Brandon; Bakhtiary, Alireza; Acedo, Jeella Z; Rodriguez-Lopez, Eva M; Mercier, Pascal; Vederas, John C

    2016-10-11

    Tridecaptin A1 (TriA1) is a nonribosomal lipopeptide with selective antimicrobial activity against Gram-negative bacteria. Here we show that TriA1 exerts its bactericidal effect by binding to the bacterial cell-wall precursor lipid II on the inner membrane, disrupting the proton motive force. Biochemical and biophysical assays show that binding to the Gram-negative variant of lipid II is required for membrane disruption and that only the proton gradient is dispersed. The NMR solution structure of TriA1 in dodecylphosphocholine micelles with lipid II has been determined, and molecular modeling was used to provide a structural model of the TriA1-lipid II complex. These results suggest that TriA1 kills Gram-negative bacteria by a mechanism of action using a lipid-II-binding motif.

  5. Adsorption of barium and calcium chloride onto negatively charged alpha-Fe(2)O(3) particles.

    PubMed

    Pochard, Isabelle; Denoyel, Renaud; Couchot, Pierre; Foissy, Alain

    2002-11-01

    Adsorption of cations (Na(+), Ca(2+), Ba(2+)) onto negatively charged (pH 10.4) hematite (alpha-Fe(2)O(3)) particles has been studied. The oxide material was carefully prepared in order to obtain monodisperse suspensions of well-crystallized, quasi-spherical particles (50 nm in diameter). The isoelectric point (IEP) is located at pH 8.5. Adsorption of barium ions onto oxide particles was carried out and the electrophoretic mobility was measured throughout the adsorption experiment. Comparison with calcium adsorption at full coverage reveals a higher uptake of Ba(2+). In both cases it shows also that chloride ions coadsorb with M(2) ions. Simultaneous uptake of the positive and negative ions explains why the electrophoretic mobility does not reverse to cationic migration. A theoretical study of the surface speciation has been carried out, using the MuSiC model. It reveals the presence of negative as well as positive sites on both sides of the point of zero charge (PZC) of the hematite particles, which may explain the coadsorption of Ba(2+) and Cl(-) at pH 10.4. The effective charge of the oxide particles, calculated from the electrophoretic mobility, is in very good agreement with the results found with the MuSiC modelization and the chloride/barium adsorption ratio. It also verifies the theory of ionic condensation. Calorimetric measurements gave a negative heat for the overall reaction occurring when Ba(2+)/Cl(-) ions adsorb onto hematite. Despite the fact that anions (Cl(-) and OH(-)) adsorption onto mineral oxides is an exothermic phenomenon, it is likely that barium and calcium adsorption is endothermic, denoting the formation of an inner-sphere complex as reported in the literature.

  6. Characterization of a highly negative and labile binding protein induced in Euglena gracilis by cadmium.

    PubMed Central

    Gingrich, D J; Weber, D N; Shaw, C F; Garvey, J S; Petering, D H

    1986-01-01

    The physiochemical properties and physiological significance of the cadmium-binding protein (CdBP) of the algae Euglena gracilis have been studied. Following in vivo exposure of cells to 0.4 or 1.3 micrograms/mL of Cd2+, all the cytosolic Cd is bound to high molecular weight species. At 4.7 micrograms/mL, appreciable CdBP has formed in cells grown under illumination or in the dark. An analogous ZnBP could not be isolated from control or Zn-exposed (20 micrograms/mL) cells, but zinc and a trace of copper were bound to the CdBP when 2-mercaptoethanol (2-ME) is added to the homogenates of Cd-treated cells and the buffers used during isolation. The large pool of very low molecular weight zinc species previously reported is increased when cells are exposed to high cadmium levels. Two distinct species, BP-1 and BP-2 are resolved by ion-exchange chromatography on DEAE-Sephadex. Unusually high conductivities (25 and 40 mSiemen) are required to displace them, indicating that they are very negatively charged proteins at pH 8.6. The pH for half-titration of bound Cd2+ is between 5 and 6. EDTA (0.4 M) and the CdBP isolated by gel-exclusion chromatography react biphasically with pseudo-first-order rate constants of 4 +/- 3 X 10(-4) sec-1 and 7 +/- 2 X 10(-5) sec-1. Neither form of the CdBP cross-reacts with antibodies to rat liver metallothionein (MT) antibodies. The structural, chemical, and functional differences between the Euglena CdBPs and mammalian MTs are discussed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3011392

  7. High flux and antifouling properties of negatively charged membrane for dyeing wastewater treatment by membrane distillation.

    PubMed

    An, Alicia Kyoungjin; Guo, Jiaxin; Jeong, Sanghyun; Lee, Eui-Jong; Tabatabai, S Assiyeh Alizadeh; Leiknes, TorOve

    2016-10-15

    This study investigated the applicability of membrane distillation (MD) to treat dyeing wastewater discharged by the textile industry. Four different dyes containing methylene blue (MB), crystal violet (CV), acid red 18 (AR18), and acid yellow 36 (AY36) were tested. Two types of hydrophobic membranes made of polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) were used. The membranes were characterized by testing against each dye (foulant-foulant) and the membrane-dye (membrane-foulant) interfacial interactions and their mechanisms were identified. The MD membranes possessed negative charges, which facilitated the treatment of acid and azo dyes of the same charge and showed higher fluxes. In addition, PTFE membrane reduced the wettability with higher hydrophobicity of the membrane surface. The PTFE membrane evidenced especially its resistant to dye absorption, as its strong negative charge and chemical structure caused a flake-like (loose) dye-dye structure to form on the membrane surface rather than in the membrane pores. This also enabled the recovery of flux and membrane properties by water flushing (WF), thereby direct-contact MD with PTFE membrane treating 100 mg/L of dye mixtures showed stable flux and superior color removal during five days operation. Thus, MD shows a potential for stable long-term operation in conjunction with a simple membrane cleaning process, and its suitability in dyeing wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Negatively Cooperative Binding of High Density Lipoprotein to the HDL Receptor SR-BI†

    PubMed Central

    Nieland, Thomas J.F.; Xu, Shangzhe; Penman, Marsha; Krieger, Monty

    2011-01-01

    Scavenger receptor class B, type I (SR-BI) is a high-density lipoprotein (HDL) receptor, which also binds low density lipoprotein (LDL), and mediates the cellular selective uptake of cholesteryl esters from lipoproteins. SR-BI also is a co-receptor for hepatitis C virus and a signaling receptor that regulates cell metabolism. Many investigators have reported that lipoproteins bind to SR-BI via a single class of independent (not interacting), high affinity binding sites (one site model). We have re-investigated the ligand concentration dependence of 125I-HDL binding to SR-BI and SR-BI-mediated specific uptake of [3H]CE from [3H]CE-HDL using an expanded range of ligand concentrations (<1 µg protein/ml, lower than previously reported). Scatchard and non-linear least squares model fitting analyses of the binding and uptake data were both inconsistent with a single class of independent binding sites binding univalent lipoprotein ligands. The data are best fit by models in which SR-BI has either two independent classes of binding sites, or one class of sites exhibiting negative cooperativity due to either classic allostery or ensemble effects (‘ lattice model’). Similar results were observed for LDL. Application of the ‘infinite dilution’ dissociation rate method established that the binding of 125I-HDL to SR-BI at 4 °C exhibits negative cooperativity. The unexpected complexity of the interactions of lipoproteins with SR-BI should be taken into account when interpreting the results of experiments that explore the mechanism(s) by which SR-BI mediates ligand binding, lipid transport and cell signaling. PMID:21254782

  9. Role of the central metal ion and ligand charge in the DNA binding and modification by metallosalen complexes.

    PubMed

    Mandal, S S; Varshney, U; Bhattacharya, S

    1997-01-01

    Several metal complexes of three different functionalized salen derivatives have been synthesized. The salens differ in terms of the electrostatic character and the location of the charges. The interactions of such complexes with DNA were first investigated in detail by UV-vis absorption titrimetry. It appears that the DNA binding by most of these compounds is primarily due to a combination of electrostatic and other modes of interactions. The melting temperatures of DNA in the presence of various metal complexes were higher than that of the pure DNA. The presence of additional charge on the central metal ion core in the complex, however, alters the nature of binding. Bis-cationic salen complexes containing central Ni(II) or Mn(III) were found to induce DNA strand scission, especially in the presence of co-oxidant as revealed by plasmid DNA cleavage assay and also on the basis of the autoradiogram obtained from their respective high-resolution sequencing gels. Modest base selectivity was observed in the DNA cleavage reactions. Comparisons of the linearized and supercoiled forms of DNA in the metal complex-mediated cleavage reactions reveal that the supercoiled forms are more susceptible to DNA scission. Under suitable conditions, the DNA cleavage reactions can be induced either by preformed metal complexes or by in situ complexation of the ligand in the presence of the appropriate metal ion. Also revealed was the fact that the analogous complexes containing Cu(II) or Cr(III) did not effect any DNA strand scission under comparable conditions. Salens with pendant negative charges on either side of the precursor salicylaldehyde or ethylenediamine fragments did not bind with DNA. Similarly, metallosalen complexes with net anionic character also failed to induce any DNA modification activities.

  10. Instability range of microsolvated multiply charged negative ions: prediction from detachment energy of stable hydrated clusters.

    PubMed

    Pathak, A K; Samanta, A K; Maity, D K; Mukherjee, T; Ghosh, S K

    2011-02-01

    We have presented a first-principle theory-based derivation of an exact expression for the solvent number-dependent electron-detachment energy of a solvated species in the thermodynamic limit. We also propose a generalized equation bridging the electron detachment energies for small and infinitely large clusters, thus providing a new route to calculate the ionization potential of a negatively charged ion from the electron-detachment energies of its stable hydrated clusters. Most importantly, it has the ability to predict the instability range of microhydrated anions. The calculated results for the ionization potential for a number of ions are found to be in good agreement with the available experimental results, and the predicted instability range for the doubly charged anions SO₄²⁻ and C₂O₄²⁻ is also consistent with experimental and ab initio results.

  11. Space charge mediated negative differential resistance in terahertz quantum well detectors

    NASA Astrophysics Data System (ADS)

    Delga, A.; Doyennette, L.; Buffaz, A.; Berger, V.; Jasnot, F. R.; de Vaulchier, L. A.; Péré-Laperne, N.; Liu, H. C.

    2011-07-01

    In terahertz quantum well infrared photodetectors, a built-in-charge-mediated regime transition of the electronic transport is thoroughly investigated. The very strong current discontinuity and negative differential resistivity behavior are explained in terms of band structure reorganizations. The analysis of bias versus current measurements reveals that the transition occurs when the first two wells of the structure become partially drained, and the second well enters the ionized regime before the first one. Both many-body effects and a careful model of the contact have to be considered to account for these features. The source of the built-in charge is identified as intersubband impact ionization. The regime transition is one of its few experimental proofs, and provides an original approach to investigate hot electron kinetics in multi-quantum-well structures.

  12. Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer.

    PubMed

    Azuma, Masaki; Chen, Wei-tin; Seki, Hayato; Czapski, Michal; Olga, Smirnova; Oka, Kengo; Mizumaki, Masaichiro; Watanuki, Tetsu; Ishimatsu, Naoki; Kawamura, Naomi; Ishiwata, Shintaro; Tucker, Matthew G; Shimakawa, Yuichi; Attfield, J Paul

    2011-06-14

    The unusual property of negative thermal expansion is of fundamental interest and may be used to fabricate composites with zero or other controlled thermal expansion values. Here we report that colossal negative thermal expansion (defined as linear expansion <-10(-4) K(-1) over a temperature range ~100 K) is accessible in perovskite oxides showing charge-transfer transitions. BiNiO(3) shows a 2.6% volume reduction under pressure due to a Bi/Ni charge transfer that is shifted to ambient pressure through lanthanum substitution for Bi. Changing proportions of coexisting low- and high-temperature phases leads to smooth volume shrinkage on heating. The crystallographic linear expansion coefficient for Bi(0.95)La(0.05)NiO(3) is -137×10(-6) K(-1) and a value of -82×10(-6) K(-1) is observed between 320 and 380 K from a dilatometric measurement on a ceramic pellet. Colossal negative thermal expansion materials operating at ambient conditions may also be accessible through metal-insulator transitions driven by other phenomena such as ferroelectric orders.

  13. Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer

    PubMed Central

    Azuma, Masaki; Chen, Wei-tin; Seki, Hayato; Czapski, Michal; Olga, Smirnova; Oka, Kengo; Mizumaki, Masaichiro; Watanuki, Tetsu; Ishimatsu, Naoki; Kawamura, Naomi; Ishiwata, Shintaro; Tucker, Matthew G.; Shimakawa, Yuichi; Attfield, J. Paul

    2011-01-01

    The unusual property of negative thermal expansion is of fundamental interest and may be used to fabricate composites with zero or other controlled thermal expansion values. Here we report that colossal negative thermal expansion (defined as linear expansion <−10−4 K−1 over a temperature range ~100 K) is accessible in perovskite oxides showing charge-transfer transitions. BiNiO3 shows a 2.6% volume reduction under pressure due to a Bi/Ni charge transfer that is shifted to ambient pressure through lanthanum substitution for Bi. Changing proportions of coexisting low- and high-temperature phases leads to smooth volume shrinkage on heating. The crystallographic linear expansion coefficient for Bi0.95La0.05NiO3 is −137×10−6 K−1 and a value of −82×10−6 K−1 is observed between 320 and 380 K from a dilatometric measurement on a ceramic pellet. Colossal negative thermal expansion materials operating at ambient conditions may also be accessible through metal-insulator transitions driven by other phenomena such as ferroelectric orders. PMID:21673668

  14. A negative charge in transmembrane segment 1 of domain II of the cockroach sodium channel is critical for channel gating and action of pyrethroid insecticides

    SciTech Connect

    Du Yuzhe; Song Weizhong; Groome, James R.; Nomura, Yoshiko; Luo Ningguang; Dong Ke

    2010-08-15

    Voltage-gated sodium channels are the primary target of pyrethroids, an important class of synthetic insecticides. Pyrethroids bind to a distinct receptor site on sodium channels and prolong the open state by inhibiting channel deactivation and inactivation. Recent studies have begun to reveal sodium channel residues important for pyrethroid binding. However, how pyrethroid binding leads to inhibition of sodium channel deactivation and inactivation remains elusive. In this study, we show that a negatively charged aspartic acid residue at position 802 (D802) located in the extracellular end of transmembrane segment 1 of domain II (IIS1) is critical for both the action of pyrethroids and the voltage dependence of channel activation. Charge-reversing or -neutralizing substitutions (K, G, or A) of D802 shifted the voltage dependence of activation in the depolarizing direction and reduced channel sensitivity to deltamethrin, a pyrethroid insecticide. The charge-reversing mutation D802K also accelerated open-state deactivation, which may have counteracted the inhibition of sodium channel deactivation by deltamethrin. In contrast, the D802G substitution slowed open-state deactivation, suggesting an additional mechanism for neutralizing the action of deltamethrin. Importantly, Schild analysis showed that D802 is not involved in pyrethroid binding. Thus, we have identified a sodium channel residue that is critical for regulating the action of pyrethroids on the sodium channel without affecting the receptor site of pyrethroids.

  15. Positive and negative contribution to birefringence in a family of carbonates: A Born effective charges analysis

    NASA Astrophysics Data System (ADS)

    Jing, Qun; Yang, Guang; Hou, Juan; Sun, Maozhu; Cao, Haibin

    2016-12-01

    It is an important topic to investigate the birefringence and reveal the contribution from ions to birefringence because it plays an important role in nonlinear optical materials. In this paper, the birefringence of carbonates with coplanar CO3 groups were investigated using the first-principles method. The results show that the lead carbonates exhibit relative large birefringence. After detailed investigate the electronic structures, and Born effective charges, the authors find out that anisotropic electron distribution in the CO3 groups and Pb atoms give positive contribution, while the negative contribution was found from fluorine atoms, meanwhile the Ca, Mg, and Cd atoms give very small contribution to birefringence.

  16. Self-organization and oscillation of negatively charged dust particles in a 2-dimensional dusty plasma

    NASA Astrophysics Data System (ADS)

    Song, Y. L.; Huang, F.; Chen, Z. Y.; Liu, Y. H.; Yu, M. Y.

    2016-02-01

    Negatively charged dust particles immersed in 2-dimensional dusty plasma system are investigated by molecular dynamics simulations. The effects of the confinement potential and attraction interaction potential on dust particle self-organization are studied in detail and two typical dust particle distributions are obtained when the system reaches equilibrium. The average radial velocity (ARV), average radial force (ARF) and radial mean square displacement are employed to analyze the dust particles' dynamics. Both ARVs and ARFs exhibit oscillation behaviors when the simulation system reaches equilibrium state. The relationships between the oscillation and confinement potential and attraction potential are studied in this paper. The simulation results are qualitatively similar to experimental results.

  17. Importance of separated efficiencies between positively and negatively charged particles for cumulant calculations

    NASA Astrophysics Data System (ADS)

    Nonaka, Toshihiro; Sugiura, Tetsuro; Esumi, ShinIchi; Masui, Hiroshi; Luo, Xiaofeng

    2016-09-01

    We show the importance of separated efficiency corrections between positively and negatively charged particles for cumulant calculations by toy models and analytical calculations. Our results indicate that S σ in published net-proton results from the STAR experiment will be suppressed about 10% in central collisions and 20% in peripheral collisions at the beam energy of √{sN N}=200 GeV if the separated efficiencies are used to perform the efficiency correction, while no sizable efffect can be seen for κ σ2 .

  18. Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy

    PubMed Central

    Jakubík, J; Janíčková, H; El-Fakahany, EE; Doležal, V

    2011-01-01

    BACKGROUND AND PURPOSE Conventional determination of agonist efficacy at G-protein coupled receptors is measured by stimulation of guanosine-5′-γ−thiotriphosphate (GTPγS) binding. We analysed the role of guanosine diphosphate (GDP) in the process of activation of the M2 muscarinic acetylcholine receptor and provide evidence that negative cooperativity between agonist and GDP binding is an alternative measure of agonist efficacy. EXPERIMENTAL APPROACH Filtration and scintillation proximity assays measured equilibrium binding as well as binding kinetics of [35S]GTPγS and [3H]GDP to a mixture of G-proteins as well as individual classes of G-proteins upon binding of structurally different agonists to the M2 muscarinic acetylcholine receptor. KEY RESULTS Agonists displayed biphasic competition curves with the antagonist [3H]-N-methylscopolamine. GTPγS (1 µM) changed the competition curves to monophasic with low affinity and 50 µM GDP produced a similar effect. Depletion of membrane-bound GDP increased the proportion of agonist high-affinity sites. Carbachol accelerated the dissociation of [3H]GDP from membranes. The inverse agonist N-methylscopolamine slowed GDP dissociation and GTPγS binding without changing affinity for GDP. Carbachol affected both GDP association with and dissociation from Gi/o G-proteins but only its dissociation from Gs/olf G-proteins. CONCLUSIONS AND IMPLICATIONS These findings suggest the existence of a low-affinity agonist-receptor conformation complexed with GDP-liganded G-protein. Also the negative cooperativity between GDP and agonist binding at the receptor/G-protein complex determines agonist efficacy. GDP binding reveals differences in action of agonists versus inverse agonists as well as differences in activation of Gi/o versus Gs/olf G-proteins that are not identified by conventional GTPγS binding. PMID:20958290

  19. Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy.

    PubMed

    Jakubík, J; Janíčková, H; El-Fakahany, E E; Doležal, V

    2011-03-01

    Conventional determination of agonist efficacy at G-protein coupled receptors is measured by stimulation of guanosine-5'-γ-thiotriphosphate (GTPγS) binding. We analysed the role of guanosine diphosphate (GDP) in the process of activation of the M₂ muscarinic acetylcholine receptor and provide evidence that negative cooperativity between agonist and GDP binding is an alternative measure of agonist efficacy. Filtration and scintillation proximity assays measured equilibrium binding as well as binding kinetics of [³⁵S]GTPγS and [³H]GDP to a mixture of G-proteins as well as individual classes of G-proteins upon binding of structurally different agonists to the M₂ muscarinic acetylcholine receptor. Agonists displayed biphasic competition curves with the antagonist [³H]-N-methylscopolamine. GTPγS (1 µM) changed the competition curves to monophasic with low affinity and 50 µM GDP produced a similar effect. Depletion of membrane-bound GDP increased the proportion of agonist high-affinity sites. Carbachol accelerated the dissociation of [³H]GDP from membranes. The inverse agonist N-methylscopolamine slowed GDP dissociation and GTPγS binding without changing affinity for GDP. Carbachol affected both GDP association with and dissociation from G(i/o) G-proteins but only its dissociation from G(s/olf) G-proteins. These findings suggest the existence of a low-affinity agonist-receptor conformation complexed with GDP-liganded G-protein. Also the negative cooperativity between GDP and agonist binding at the receptor/G-protein complex determines agonist efficacy. GDP binding reveals differences in action of agonists versus inverse agonists as well as differences in activation of G(i/o) versus G(s/olf) G-proteins that are not identified by conventional GTPγS binding. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  20. The free solution mobility of DNA and other analytes varies as the logarithm of the fractional negative charge

    PubMed Central

    Stellwagen, Nancy C.; Peters, Justin P.; Dong, Qian; Maher, L. James; Stellwagen, Earle

    2015-01-01

    The free solution mobilities of single- and double-stranded DNA molecules with variable charge densities have been measured by capillary electrophoresis. DNA charge density was modified either by appending positively or negatively charged groups to the thymine residues in a 98 base pair (bp) DNA molecule, or by replacing some of the negatively charged phosphate internucleoside linkers in small single-or double-stranded DNA oligomers with positively charged phosphoramidate linkers. Mobility ratios were calculated for each data set by dividing the mobility of a charge variant by the mobility of its unmodified parent DNA. Mobility ratios essentially eliminate the effect of the background electrolyte on the observed mobility, making it possible to compare analytes measured under different experimental conditions. Neutral moieties attached to the thymine residues in the 98-bp DNA molecule had little or no effect on the mobility ratios, indicating that bulky substituents in the DNA major groove do not affect the mobility significantly. The mobility ratios observed for the thymine-modified and linker-modified DNA charge variants increased approximately linearly with the logarithm of the fractional negative charge of the DNA. Mobility ratios calculated from previous studies of linker-modified DNA charge variants and small multi-charged organic molecules also increased approximately linearly with the logarithm of the fractional negative charge of the analyte. The results do not agree with the Debye-Hückel-Onsager theory of electrophoresis, which predicts that the mobility of an analyte should depend linearly on analyte charge, not the logarithm of the charge, when the frictional coefficient is held constant. PMID:24648187

  1. Distinctive Binding of Avibactam to Penicillin-Binding Proteins of Gram-Negative and Gram-Positive Bacteria.

    PubMed

    Asli, Abdelhamid; Brouillette, Eric; Krause, Kevin M; Nichols, Wright W; Malouin, François

    2016-02-01

    Avibactam is a novel non-β-lactam β-lactamase inhibitor that covalently acylates a variety of β-lactamases, causing inhibition. Although avibactam presents limited antibacterial activity, its acylation ability toward bacterial penicillin-binding proteins (PBPs) was investigated. Staphylococcus aureus was of particular interest due to the reported β-lactamase activity of PBP4. The binding of avibactam to PBPs was measured by adding increasing concentrations to membrane preparations of a variety of Gram-positive and Gram-negative bacteria prior to addition of the fluorescent reagent Bocillin FL. Relative binding (measured here as the 50% inhibitory concentration [IC50]) to PBPs was estimated by quantification of fluorescence after gel electrophoresis. Avibactam was found to selectively bind to some PBPs. In Escherichia coli, Pseudomonas aeruginosa, Haemophilus influenzae, and S. aureus, avibactam primarily bound to PBP2, with IC50s of 0.92, 1.1, 3.0, and 51 μg/ml, respectively, whereas binding to PBP3 was observed in Streptococcus pneumoniae (IC50, 8.1 μg/ml). Interestingly, avibactam was able to significantly enhance labeling of S. aureus PBP4 by Bocillin FL. In PBP competition assays with S. aureus, where avibactam was used at a fixed concentration in combination with varied amounts of ceftazidime, the apparent IC50 of ceftazidime was found to be very similar to that determined for ceftazidime when used alone. In conclusion, avibactam is able to covalently bind to some bacterial PBPs. Identification of those PBP targets may allow the development of new diazabicyclooctane derivatives with improved affinity for PBPs or new combination therapies that act on multiple PBP targets.

  2. Negative isotope effect for charge transport in acenes and derivatives--a theoretical conclusion.

    PubMed

    Jiang, Yuqian; Peng, Qian; Geng, Hua; Ma, He; Shuai, Zhigang

    2015-02-07

    The isotope effect (IE) on charge transport in polyacenes was proposed in 1970 to judge the transport mechanism. However, there had not been a definitive answer for more than 40 years as to whether such an IE is positive or negative, both theoretically and experimentally, because either theory was too approximate or the experimental estimate was too rough to make a judgment. Employing the quantum nuclear tunneling model for organic semiconductors, we investigate the IE on both hole and electron transport for acenes and their derivatives. We show that both (13)C-substitution and deuteration lead to a negative IE. By introducing phenyl, chlorine, or alkyl side-chains into acenes, the IE becomes more remarkable, especially for hole transport. The vibrational relaxation processes involving in-plane bending of ring or alkyl side-chain motions are found to be responsible for the IE.

  3. A Hypersweet Protein: Removal of The Specific Negative Charge at Asp21 Enhances Thaumatin Sweetness

    PubMed Central

    Masuda, Tetsuya; Ohta, Keisuke; Ojiro, Naoko; Murata, Kazuki; Mikami, Bunzo; Tani, Fumito; Temussi, Piero Andrea; Kitabatake, Naofumi

    2016-01-01

    Thaumatin is an intensely sweet-tasting protein that elicits sweet taste at a concentration of 50 nM, a value 100,000 times larger than that of sucrose on a molar basis. Here we attempted to produce a protein with enhanced sweetness by removing negative charges on the interacting side of thaumatin with the taste receptor. We obtained a D21N mutant which, with a threshold value 31 nM is much sweeter than wild type thaumatin and, together with the Y65R mutant of single chain monellin, one of the two sweetest proteins known so far. The complex model between the T1R2-T1R3 sweet receptor and thaumatin, derived from tethered docking in the framework of the wedge model, confirmed that each of the positively charged residues critical for sweetness is close to a receptor residue of opposite charge to yield optimal electrostatic interaction. Furthermore, the distance between D21 and its possible counterpart D433 (located on the T1R2 protomer of the receptor) is safely large to avoid electrostatic repulsion but, at the same time, amenable to a closer approach if D21 is mutated into the corresponding asparagine. These findings clearly confirm the importance of electrostatic potentials in the interaction of thaumatin with the sweet receptor. PMID:26837600

  4. A Hypersweet Protein: Removal of The Specific Negative Charge at Asp21 Enhances Thaumatin Sweetness.

    PubMed

    Masuda, Tetsuya; Ohta, Keisuke; Ojiro, Naoko; Murata, Kazuki; Mikami, Bunzo; Tani, Fumito; Temussi, Piero Andrea; Kitabatake, Naofumi

    2016-02-03

    Thaumatin is an intensely sweet-tasting protein that elicits sweet taste at a concentration of 50 nM, a value 100,000 times larger than that of sucrose on a molar basis. Here we attempted to produce a protein with enhanced sweetness by removing negative charges on the interacting side of thaumatin with the taste receptor. We obtained a D21N mutant which, with a threshold value 31 nM is much sweeter than wild type thaumatin and, together with the Y65R mutant of single chain monellin, one of the two sweetest proteins known so far. The complex model between the T1R2-T1R3 sweet receptor and thaumatin, derived from tethered docking in the framework of the wedge model, confirmed that each of the positively charged residues critical for sweetness is close to a receptor residue of opposite charge to yield optimal electrostatic interaction. Furthermore, the distance between D21 and its possible counterpart D433 (located on the T1R2 protomer of the receptor) is safely large to avoid electrostatic repulsion but, at the same time, amenable to a closer approach if D21 is mutated into the corresponding asparagine. These findings clearly confirm the importance of electrostatic potentials in the interaction of thaumatin with the sweet receptor.

  5. Activation energy of negative fixed charges in thermal ALD Al2O3

    NASA Astrophysics Data System (ADS)

    Kühnhold-Pospischil, S.; Saint-Cast, P.; Richter, A.; Hofmann, M.

    2016-08-01

    A study of the thermally activated negative fixed charges Qtot and the interface trap densities Dit at the interface between Si and thermal atomic-layer-deposited amorphous Al2O3 layers is presented. The thermal activation of Qtot and Dit was conducted at annealing temperatures between 220 °C and 500 °C for durations between 3 s and 38 h. The temperature-induced differences in Qtot and Dit were measured using the characterization method called corona oxide characterization of semiconductors. Their time dependency were fitted using stretched exponential functions, yielding activation energies of EA = (2.2 ± 0.2) eV and EA = (2.3 ± 0.7) eV for Qtot and Dit, respectively. For annealing temperatures from 350 °C to 500 °C, the changes in Qtot and Dit were similar for both p- and n-type doped Si samples. In contrast, at 220 °C the charging process was enhanced for p-type samples. Based on the observations described in this contribution, a charging model leading to Qtot based on an electron hopping process between the silicon and Al2O3 through defects is proposed.

  6. Cell-penetrating compounds preferentially bind glycosaminoglycans over plasma membrane lipids in a charge density- and stereochemistry-dependent manner.

    PubMed

    Prevette, Lisa E; Benish, Nicolas C; Schoenecker, Amber R; Braden, Kristin J

    2015-12-01

    Cell-penetrating compounds (CPCs) are often conjugated to drugs and genes to facilitate cellular uptake. We hypothesize that the electrostatic interaction between the positively charged amines of the cell-penetrating compounds and the negatively charged glycosaminoglycans (GAGs) extending from cell surfaces is the initiating step in the internalization process. The interactions of generation 5 PAMAM dendrimer, Tat peptide and 25 kDa linear PEI with four different GAGs have been studied using isothermal titration calorimetry to elucidate structure-function relationships that could lead to improved drug and gene delivery methods to a wide variety of cell types. Detailed thermodynamic analysis has determined that CPC-GAG binding constants range from 8.7×10(3) to 2.4×10(6)M(-1) and that affinity is dependent upon GAG charge density and stereochemistry and CPC molecular weight. The effect of GAG composition on affinity is likely due to hydrogen bonding between CPC amines and amides and GAG hydroxyl and amine groups. These results were compared to the association of CPCs with lipid vesicles of varying composition as model plasma membranes to finally clarify the relative importance of each cell surface component in initial cell recognition. CPC-lipid affinity increases with anionic lipid content, but GAG affinity is higher for all cell-penetrating compounds, confirming the role these heterogeneous polysaccharides play in cellular association and clustering.

  7. Speciation dynamics of metals in dispersion of nanoparticles with discrete distribution of charged binding sites.

    PubMed

    Polyakov, Pavel D; Duval, Jérôme F L

    2014-02-07

    We report a comprehensive theory to evaluate the kinetics of complex formation between metal ions and charged spherical nanoparticles. The latter consist of an ion-impermeable core surrounded by a soft shell layer characterized by a discrete axisymmetric 2D distribution of charged sites that bind metal ions. The theory explicitly integrates the conductive diffusion of metal ions from bulk solution toward the respective locations of the reactive sites within the particle shell volume. The kinetic constant k for outer-sphere nanoparticle-metal association is obtained from the sum of the contributions stemming from all reactive sites, each evaluated from the corresponding incoming flux of metal ions derived from steady-state Poisson-Nernst-Planck equations. Illustrations are provided to capture the basic intertwined impacts of particle size, overall particle charge, spatial heterogeneity in site distribution, type of particle (hard, core-shell or porous) and concentration of the background electrolyte on k. As a limit, k converges with predictions from previously reported analytical expressions derived for porous particles with low and high charge density, cases that correspond to coulombic and mean-field (smeared-out) electrostatic treatments, respectively. The conditions underlying the applicability of these latter approaches are rigorously identified in terms of (i) the extent of overlap between electric double layers around charged neighbouring sites, and (ii) the magnitude of the intraparticulate metal concentration gradient. For the first time, the proposed theory integrates the differentiated impact of the local potential around the charged binding sites amidst the overall particle field, together with that of the so-far discarded intraparticulate flux of metal ions.

  8. Phagocytosis and transforming activity of crystalline metal sulfide particles are related to their negative surface charge

    SciTech Connect

    Abbracchio, M.P.; Heck, J.D.; Costa, M.

    1982-01-01

    Crystalline nickel sulfide (alpha NiS) and cobalt sulfide (CoS2) particles can cause greater cell transformation and cellular toxicity than the respective amorphous metal sulfide particles. Cultured mammalian cells phagocytose the crystalline metal sulfide particles more readily than the amorphous ones. In the case of the nickel sulfides, the crystalline metal sulfide particles had negatively charged surfaces (Zeta potential: -27.012 mV) in contrast to the amorphous particles, which were positively charge (Zeta potential: +9.174 mV). X-ray photoelectron spectroscopy analysis of amorphous and crystalline NiS particles revealed that the outermost surface (1-4 nm) of the two particles had striking differences in Ni/S ratios and in their sulfur oxidation states. Rendering particles' surfaces more negative by reduction with lithium aluminum hydride enhanced their phagocytosis, and in the case of amorphous NiS chemical reduction resulted in an incidence of morphological transformation of Syrian hamster embryo cells comparable to that observed with untreated crystalline alpha NiS.

  9. Disappearance of the negative charge in giant DNA with a folding transition.

    PubMed Central

    Yamasaki, Y; Teramoto, Y; Yoshikawa, K

    2001-01-01

    In the present study we measure the electrophoretic mobility of giant T4 DNA (166 kbp) by electrophoretic light scattering for the elongated and folded compact states at different spermidine (trivalent cation) concentrations in 50 mM sodium maleate buffer (pH 6.0). It is found that the electrophoretic mobility of elongated DNA in the absence of the multivalent cation is seven times greater than that of fully folded compact DNA, where, with the increase of the concentration of spermidine, an abrupt transition is generated after a gradual decrease of the mobility. An analysis of the electrophoretic mobility suggests that the folded compact DNA chains almost completely lose their negative charges, by taking into account the difference of friction mechanism between an elongated and folded compact state. From the single chain observation by use of fluorescence microscopy, it is found that a phase-segregated structure is generated at intermediate concentrations of spermidine. The gradual decrease of the electrophoretic mobility in the transition region is, thus, attributed to the formation of the segregated state, exhibiting partial electroneutralization in the folded part. Disappearance of the negative charges in the completely folded compact DNAs is discussed in relation to the mechanism of transition, in terms of a first-order phase transition. PMID:11371456

  10. The negatively charged carboxy-terminal tail of β-tubulin promotes proper chromosome segregation.

    PubMed

    Fees, Colby P; Aiken, Jayne; O'Toole, Eileen T; Giddings, Thomas H; Moore, Jeffrey K

    2016-06-01

    Despite the broadly conserved role of microtubules in chromosome segregation, we have a limited understanding of how molecular features of tubulin proteins contribute to the underlying mechanisms. Here we investigate the negatively charged carboxy-terminal tail domains (CTTs) of α- and β-tubulins, using a series of mutants that alter or ablate CTTs in budding yeast. We find that ablating β-CTT causes elevated rates of chromosome loss and cell cycle delay. Complementary live-cell imaging and electron tomography show that β-CTT is necessary to properly position kinetochores and organize microtubules within the assembling spindle. We identify a minimal region of negatively charged amino acids that is necessary and sufficient for proper chromosome segregation and provide evidence that this function may be conserved across species. Our results provide the first in vivo evidence of a specific role for tubulin CTTs in chromosome segregation. We propose that β-CTT promotes the ordered segregation of chromosomes by stabilizing the spindle and contributing to forces that move chromosomes toward the spindle poles. © 2016 Fees et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. The negatively charged carboxy-terminal tail of β-tubulin promotes proper chromosome segregation

    PubMed Central

    Fees, Colby P.; Aiken, Jayne; O’Toole, Eileen T.; Giddings, Thomas H.; Moore, Jeffrey K.

    2016-01-01

    Despite the broadly conserved role of microtubules in chromosome segregation, we have a limited understanding of how molecular features of tubulin proteins contribute to the underlying mechanisms. Here we investigate the negatively charged carboxy-terminal tail domains (CTTs) of α- and β-tubulins, using a series of mutants that alter or ablate CTTs in budding yeast. We find that ablating β-CTT causes elevated rates of chromosome loss and cell cycle delay. Complementary live-cell imaging and electron tomography show that β-CTT is necessary to properly position kinetochores and organize microtubules within the assembling spindle. We identify a minimal region of negatively charged amino acids that is necessary and sufficient for proper chromosome segregation and provide evidence that this function may be conserved across species. Our results provide the first in vivo evidence of a specific role for tubulin CTTs in chromosome segregation. We propose that β-CTT promotes the ordered segregation of chromosomes by stabilizing the spindle and contributing to forces that move chromosomes toward the spindle poles. PMID:27053662

  12. The free solution mobility of DNA and other analytes varies as the logarithm of the fractional negative charge.

    PubMed

    Stellwagen, Nancy C; Peters, Justin P; Dong, Qian; Maher, L James; Stellwagen, Earle

    2014-07-01

    The free solution mobilities of ssDNA and dsDNA molecules with variable charge densities have been measured by CE. DNA charge density was modified either by appending positively or negatively charged groups to the thymine residues in a 98 bp DNA molecule, or by replacing some of the negatively charged phosphate internucleoside linkers in small ssDNA or dsDNA oligomers with positively charged phosphoramidate linkers. Mobility ratios were calculated for each dataset by dividing the mobility of a charge variant by the mobility of its unmodified parent DNA. Mobility ratios essentially eliminate the effect of the BGE on the observed mobility, making it possible to compare analytes measured under different experimental conditions. Neutral moieties attached to the thymine residues in the 98-bp DNA molecule had little or no effect on the mobility ratios, indicating that bulky substituents in the DNA major groove do not affect the mobility significantly. The mobility ratios observed for the thymine-modified and linker-modified DNA charge variants increased approximately linearly with the logarithm of the fractional negative charge of the DNA. Mobility ratios calculated from previous studies of linker-modified DNA charge variants and small multicharged organic molecules also increased approximately linearly with the logarithm of the fractional negative charge of the analyte. The results do not agree with the Debye-Hückel-Onsager theory of electrophoresis, which predicts that the mobility of an analyte should depend linearly on analyte charge, not the logarithm of the charge, when the frictional coefficient is held constant. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Identification of singlet and triplet states of negatively charged excitons in CdTe-based quantum wells

    NASA Astrophysics Data System (ADS)

    Astakhov, G. V.; Yakovlev, D. R.; Crooker, S. A.; Ossau, W.; Christianen, P. C. M.; Rudenkov, V. V.; Karczewski, G.; Wojtowicz, T.; Kossut, J.

    2004-02-01

    We present comprehensive study of negatively charged exciton in high magnetic fields for filling factors < 1. In magneto-optical spectra the fine structure was found to be contributed by neutral exciton and different a set of bound states of charged exciton. These states were identified due to their unique polarization properties charecteristics in emission and absorption spectra.

  14. Excitation of Kelvin Helmholtz instability by an ion beam in a plasma with negatively charged dust grains

    SciTech Connect

    Rani, Kavita; Sharma, Suresh C.

    2015-02-15

    An ion beam propagating through a magnetized dusty plasma drives Kelvin Helmholtz Instability (KHI) via Cerenkov interaction. The frequency of the unstable wave increases with the relative density of negatively charged dust grains. It is observed that the beam has stabilizing effect on the growth rate of KHI for low shear parameter, but for high shear parameter, the instability is destabilized with relative density of negatively charged dust grains.

  15. Space Charge Neutralization of DEMO Relevant Negative Ion Beams at Low Gas Density

    SciTech Connect

    Surrey, Elizabeth; Porton, Michael

    2011-09-26

    The application of neutral beams to future power plant devices (DEMO) is dependent on achieving significantly improved electrical efficiency and the most promising route to achieving this is by implementing a photoneutralizer in place of the traditional gas neutralizer. A corollary of this innovation would be a significant reduction in the background gas density through which the beam is transported between the accelerator and the neutralizer. This background gas is responsible for the space charge neutralization of the beam, enabling distances of several metres to be traversed without significant beam expansion. This work investigates the sensitivity of a D{sup -} beam to reduced levels of space charge compensation for energies from 100 keV to 1.5 MeV, representative of a scaled prototype experiment, commissioning and full energy operation. A beam transport code, following the evolution of the phase space ellipse, is employed to investigate the effect of space charge on the beam optics. This shows that the higher energy beams are insensitive to large degrees of under compensation, unlike the lower energies. The probable degree of compensation at low gas density is then investigated through a simple, two component beam-plasma model that allows the potential to be negative. The degree of under-compensation is dependent on the positive plasma ion energy, one source of which is dissociation of the gas by the beam. The subsequent space charge state of the beam is shown to depend upon the relative times for equilibration of the dissociation energy and ionization by the beam ions.

  16. Molecular Statics Calculations of Proton Binding to Goethite Surfaces: Thermodynamic Modeling of the Surface Charging and Protonation of Goethite in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Felmy, Andrew R.; Rustad, James R.

    1998-01-01

    Molecular statics calculations of proton binding at the hydroxylated faces of goethite are used to guide the development of a thermodynamic model which describes the surface charging properties of goethite in electrolyte solutions. The molecular statics calculations combined with a linear free energy relation between the energies of the hydroxylated surface and the aqueous solvated surface predict that the acidity constants for most singly (aqua or hydroxo), doubly (μ-hydroxo), and triply (μ 3-hydroxo or μ 3-oxo) coordinated surface sites all have similar values. This model which binds protons to the goethite 110 and 021 faces satisfactorily describes the surface charging behavior of goethite, if pair formation between bulk electrolyte species, i.e., Na +, Cl -, and NO 3-, is included in the model. Inclusion of minor species of quite different charging behavior (designed to describe the possible presence of defect species) did not improve our predictions of surface charge since the protonation of the major surface sites changed when these minor species were introduced into the calculations thereby negating the effect of small amounts of defect species on the overall charging behavior. The final thermodynamic model is shown to be consistent with the surface charging properties of goethite over a range of pH values, NaNO 3, and NaCl concentrations.

  17. A particle agglutination assay for rapid identification of heparin binding to coagulase-negative staphylococci.

    PubMed

    Pascu, C; Hirmo, S; Ljungh, A; Wadström, T

    1996-10-01

    The heparin-binding properties of six different species of coagulase-negative staphylococci were examined by a particle agglutination assay. Heparin (mol. wt 4000-6000), mildly treated with sodium periodate, was covalently coupled to amino-modified latex beads (0.72 micron diameter). The particle agglutination assay was validated by comparing results with the adhesion (percentage binding of adherent cells) of coagulase-negative staphylococcal strains to heparinised microtitration plates. Of 38 different coagulase-negative staphylococcal strains tested, 30 showed agglutination reactivity with heparin-coated latex beads. Strains of different coagulase-negative staphylococcal species agglutinated heparin-coated latex beads to various extents (e.g., cells of Staphylococcus haemolyticus strains reacted more strongly than cells of S. epidermidis strains). The agglutination reaction was significantly inhibited by fucoidan, suramin, lambda-carrageenan and other sulphated compounds, but not by non-sulphated carbohydrate polymers such as hyaluronic acid. Agglutination of staphylococcal cells with heparin-coated latex beads was completely blocked by a cell-surface extract. These results suggest that structures responsible for heparin binding are exposed on the cell surface.

  18. Structural characterization and the determination of negative cooperativity in the tight binding of 2-carboxyarabinitol bisphosphate to higher plant ribulose bisphosphate carboxylase.

    PubMed

    Johal, S; Partridge, B E; Chollet, R

    1985-08-15

    When CO2/Mg2+-activated spinach leaf ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) is incubated with the transition-state analog 2-carboxyarabinitol 1,5-bisphosphate, an essentially irreversible complex is formed. The extreme stability of this quaternary complex has allowed the use of native analytical isoelectric focusing, anion-exchange chromatography, and nondenaturing polyacrylamide gel electrophoresis to probe the mechanism of the binding process and the effects of ligand tight-binding on the structure of the protein molecule. Changes in the chromatographic and electrophoretic properties of the enzyme upon tight binding of the inhibitor reveal that the ligand induces a conformational reorganization which extends to the surface of the protein molecule and, at saturation, results in a 16% decrease in apparent molecular weight. Analysis of ligand binding by isoelectric focusing shows that (i) incubating the protein with a stoichiometric molar concentration of ligand (site basis) results in an apparently charge homogeneous enzyme population with an isoelectric point of 4.9, and (ii) substoichiometric levels of ligand produce differential effects on each of the charge microheterogeneous native enzyme forms. These stoichiometry-dependent changes in electrofocusing band patterns were employed as a probe of cooperativity in the ligand tight-binding process. The tight-binding reaction was shown to be negatively cooperative.

  19. Negatively charged silver nanoparticles with potent antibacterial activity and reduced toxicity for pharmaceutical preparations.

    PubMed

    Salvioni, Lucia; Galbiati, Elisabetta; Collico, Veronica; Alessio, Giulia; Avvakumova, Svetlana; Corsi, Fabio; Tortora, Paolo; Prosperi, Davide; Colombo, Miriam

    2017-01-01

    The discovery of new solutions with antibacterial activity as efficient and safe alternatives to common preservatives (such as parabens) and to combat emerging infections and drug-resistant bacterial pathogens is highly expected in cosmetics and pharmaceutics. Colloidal silver nanoparticles (NPs) are attracting interest as novel effective antimicrobial agents for the prevention of several infectious diseases. Water-soluble, negatively charged silver nanoparticles (AgNPs) were synthesized by reduction with citric and tannic acid and characterized by transmission electron microscopy, dynamic light scattering, zeta potential, differential centrifuge sedimentation, and ultraviolet-visible spectroscopy. AgNPs were tested with model Gram-negative and Gram-positive bacteria in comparison to two different kinds of commercially available AgNPs. In this work, AgNPs with higher antibacterial activity compared to the commercially available colloidal silver solutions were prepared and investigated. Bacteria were plated and the antibacterial activity was tested at the same concentration of silver ions in all samples. The AgNPs did not show any significant reduction in the antibacterial activity for an acceptable time period. In addition, AgNPs were transferred to organic phase and retained their antibacterial efficacy in both aqueous and nonaqueous media and exhibited no toxicity in eukaryotic cells. We developed AgNPs with a 20 nm diameter and negative zeta potential with powerful antibacterial activity and low toxicity compared to currently available colloidal silver, suitable for cosmetic preservatives and pharmaceutical preparations administrable to humans and/or animals as needed.

  20. Cooperative binding of dominant-negative prion protein to kringle domains.

    PubMed

    Ryou, Chongsuk; Prusiner, Stanley B; Legname, Giuseppe

    2003-05-30

    Conversion of the cellular prion protein (PrP(C)) to the pathogenic isoform (PrP(Sc)) is a major biochemical alteration in the progression of prion disease. This conversion process is thought to require interaction between PrP(C) and an as yet unidentified auxiliary factor, provisionally designated protein X. In searching for protein X, we screened a phage display cDNA expression library constructed from prion-infected neuroblastoma (ScN2a) cells and identified a kringle protein domain using full-length recombinant mouse PrP (recMoPrP(23-231), hereafter recMoPrP) expressing a dominant-negative mutation at codon 218 (recMoPrP(Q218K)). In vitro binding analysis using ELISA verified specific interaction of recMoPrP to kringle domains (K(1+2+3)) with higher binding by recMoPrP(Q218K) than by full-length recMoPrP without the mutation. This interaction was confirmed by competitive binding analysis, in which the addition of either a specific anti-kringle antibody or L-lysine abolished the interaction. Biochemical studies of the interactions between K(1+2+3) and various concentrations of both recMoPrP molecules demonstrated binding in a dose-dependent manner. A Hill plot analysis of the data indicates positive cooperative binding of both recMoPrP(Q218K) and recMoPrP to K(1+2+3) with stronger binding by recMoPrP(Q218K). Using full-length and an N-terminally truncated MoPrP(89-231), we demonstrate that N-terminal sequences enable PrP to bind strongly to K(1+2+3). Further characterization with truncated MoPrP(89-231) refolded in different conformations revealed that both alpha-helical and beta-sheet conformations bind to K(1+2+3). Our data demonstrate specific, high-affinity binding of a dominant-negative PrP as well as binding of other PrPs to K(1+2+3). The relevance of such interactions during prion pathogenesis remains to be established.

  1. Location-specific nanoplasmonic sensing of biomolecular binding to lipid membranes with negative curvature

    NASA Astrophysics Data System (ADS)

    Junesch, Juliane; Emilsson, Gustav; Xiong, Kunli; Kumar, Shailabh; Sannomiya, Takumi; Pace, Hudson; Vörös, Janos; Oh, Sang-Hyun; Bally, Marta; Dahlin, Andreas B.

    2015-09-01

    The biochemical processes of cell membranes are sensitive to the geometry of the lipid bilayer. We show how plasmonic ``nanowells'' provide label-free real-time analysis of molecules on membranes with detection of preferential binding at negative curvature. It is demonstrated that norovirus accumulate in invaginations due to multivalent interactions with glycosphingolipids.The biochemical processes of cell membranes are sensitive to the geometry of the lipid bilayer. We show how plasmonic ``nanowells'' provide label-free real-time analysis of molecules on membranes with detection of preferential binding at negative curvature. It is demonstrated that norovirus accumulate in invaginations due to multivalent interactions with glycosphingolipids. Electronic supplementary information (ESI) available: Additional plasmonic sensing results, numerical electromagnetic simulations, quartz crystal microbalance data, fluorescence recovery after photobleaching, additional electron microscopy images, experimental methodology and materials used. See DOI: 10.1039/c5nr04208a

  2. Transient negative photoconductance in a charge transfer double quantum well under optical intersubband excitation

    NASA Astrophysics Data System (ADS)

    Rüfenacht, M.; Tsujino, S.; Sakaki, H.

    1998-06-01

    Recently, it was shown that an electron-hole radiative recombination is induced by a mid-infrared light exciting an intersubband transition in a charge transfer double quantum well (CTDQW). This recombination was attributed to an upstream transfer of electrons from an electron-rich well to a hole-rich well. In this study, we investigated the electrical response of a CTDQW under intersubband optical excitation, and found that a positive photocurrent, opposite in sign and proportional to the applied electric field, accompanies the intersubband-transition-induced luminescence (ITIL) signal. A negative photocurrent component was also observed and attributed to heating processes. This work brings a further evidence of the ITIL process and shows that an important proportion of the carriers are consumed by the transfer of electrons.

  3. Polymerization on the rocks: negatively-charged alpha-amino acids

    NASA Technical Reports Server (NTRS)

    Hill, A. R. Jr; Bohler, C.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1998-01-01

    Oligomers of the negatively-charged amino acids, glutamic acid, aspartic acid, and O-phospho-L-serine are adsorbed by hydroxylapatite and illite with affinities that increase with oligomer length. In the case of oligo-glutamic acids adsorbed on hydroxylapatite, addition of an extra residue results in an approximately four-fold increase in the strength of adsorption. Oligomers much longer than the 7-mer are retained tenaciously by the mineral. Repeated incubation of short oligo-glutamic acids adsorbed on hydroxylapatite or illite with activated monomer leads to the accumulation of oligomers at least 45 units long. The corresponding reactions of aspartic acid and O-phospho-L-serine on hydroxylapatite are less effective in generating long oligomers, while illite fails to accumulate substantial amounts of long oligomers of aspartic acid or of O-phospho-L-serine.

  4. Polymerization on the rocks: negatively-charged alpha-amino acids.

    PubMed

    Hill, A R; Böhler, C; Orgel, L E

    1998-06-01

    Oligomers of the negatively-charged amino acids, glutamic acid, aspartic acid, and O-phospho-L-serine are adsorbed by hydroxylapatite and illite with affinities that increase with oligomer length. In the case of oligo-glutamic acids adsorbed on hydroxylapatite, addition of an extra residue results in an approximately four-fold increase in the strength of adsorption. Oligomers much longer than the 7-mer are retained tenaciously by the mineral. Repeated incubation of short oligo-glutamic acids adsorbed on hydroxylapatite or illite with activated monomer leads to the accumulation of oligomers at least 45 units long. The corresponding reactions of aspartic acid and O-phospho-L-serine on hydroxylapatite are less effective in generating long oligomers, while illite fails to accumulate substantial amounts of long oligomers of aspartic acid or of O-phospho-L-serine.

  5. Polymerization on the rocks: negatively-charged alpha-amino acids

    NASA Technical Reports Server (NTRS)

    Hill, A. R. Jr; Bohler, C.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1998-01-01

    Oligomers of the negatively-charged amino acids, glutamic acid, aspartic acid, and O-phospho-L-serine are adsorbed by hydroxylapatite and illite with affinities that increase with oligomer length. In the case of oligo-glutamic acids adsorbed on hydroxylapatite, addition of an extra residue results in an approximately four-fold increase in the strength of adsorption. Oligomers much longer than the 7-mer are retained tenaciously by the mineral. Repeated incubation of short oligo-glutamic acids adsorbed on hydroxylapatite or illite with activated monomer leads to the accumulation of oligomers at least 45 units long. The corresponding reactions of aspartic acid and O-phospho-L-serine on hydroxylapatite are less effective in generating long oligomers, while illite fails to accumulate substantial amounts of long oligomers of aspartic acid or of O-phospho-L-serine.

  6. Stroke multiplicity and horizontal scale of negative charge regions in thunderclouds

    NASA Astrophysics Data System (ADS)

    Williams, Earle R.; Mattos, Enrique V.; Machado, Luiz A. T.

    2016-05-01

    An X-band polarimetric radar and multiple lightning detection systems are used to document the initial cloud-to-ground lightning flash in a large number (46 cases) of incipient thunderstorms, as part of the CHUVA-Vale field campaign during the 2011/2012 spring-summer in southeast Brazil. The results show an exceptionally low stroke multiplicity (87% of flashes with single stroke) in the initial ground flashes, a finding consistent with the limited space available for the positive leader extension into new regions of negative space charge in compact cells. The results here are contrasted with the behavior of ground flashes in mesoscale thunderstorms in previous studies. Additionally, we found evidence for a minimum scale (radar echo >20 dBZ) for lightning initiation (>3 km in radius) and that the peak currents of initial cloud-to-ground flashes in these compact thunderstorms are only half as large as return stroke peak currents in general.

  7. Negatively charged hyperbranched polyglycerol grafted membranes for osmotic power generation from municipal wastewater.

    PubMed

    Li, Xue; Cai, Tao; Chen, Chunyan; Chung, Tai-Shung

    2016-02-01

    Osmotic power holds great promise as a clean, sustainable and largely unexploited energy resource. Recent membrane development for pressure-retarded osmosis (PRO) is making the osmotic power generation more and more realistic. However, severe performance declines have been observed because the porous layer of PRO membranes is fouled by the feed stream. To overcome it, a negatively charged antifouling PRO hollow fiber membrane has been designed and studied in this work. An antifouling polymer, derived from hyperbranched polyglycerol and functionalized by α-lipoic acid and succinic anhydride, was synthesized and grafted onto the polydopamine (PDA) modified poly(ether sulfone) (PES) hollow fiber membranes. In comparison to unmodified membranes, the charged hyperbranched polyglycerol (CHPG) grafted membrane is much less affected by organic deposition, such as bovine serum albumin (BSA) adsorption, and highly resistant to microbial growths, demonstrated by Escherichia coli adhesion and Staphylococcus aureus attachment. CHPG-g-TFC was also examined in PRO tests using a concentrated wastewater as the feed. Comparing to the plain PES-TFC and non-charged HPG-g-TFC, the newly developed membrane exhibits not only the smallest decline in water flux but also the highest recovery rate. When using 0.81 M NaCl and wastewater as the feed pair in PRO tests at 15 bar, the average power density remains at 5.6 W/m(2) in comparison to an average value of 3.6 W/m(2) for unmodified membranes after four PRO runs. In summary, osmotic power generation may be sustained by properly designing and anchoring the functional polymers to PRO membranes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Effects of Membrane Charge and Order on Membrane Binding of the Retroviral Structural Protein Gag

    PubMed Central

    Wen, Yi; Dick, Robert A.

    2016-01-01

    ABSTRACT The retroviral structural protein Gag binds to the inner leaflet of the plasma membrane (PM), and many cellular proteins do so as well. We used Rous sarcoma virus (RSV) Gag together with membrane sensors to study the principles governing peripheral protein membrane binding, including electrostatics, specific recognition of phospholipid headgroups, sensitivity to phospholipid acyl chain compositions, preference for membrane order, and protein multimerization. We used an in vitro liposome-pelleting assay to test protein membrane binding properties of Gag, the well-characterized MARCKS peptide, a series of fluorescent electrostatic sensor proteins (mNG-KRn), and the specific phosphatidylserine (PS) binding protein Evectin2. RSV Gag and mNG-KRn bound well to membranes with saturated and unsaturated acyl chains, whereas the MARCKS peptide and Evectin2 preferentially bound to membranes with unsaturated acyl chains. To further discriminate whether the primary driving force for Gag membrane binding is electrostatic interactions or preference for membrane order, we measured protein binding to giant unilamellar vesicles (GUVs) containing the same PS concentration in both disordered (Ld) and ordered (Lo) phases. RSV Gag and mNG-KRn membrane association followed membrane charge, independent of membrane order. Consistent with pelleting data, the MARCKS peptide showed preference for the Ld domain. Surprisingly, the PS sensor Evectin2 bound to the PS-rich Ld domain with 10-fold greater affinity than to the PS-rich Lo domain. In summary, we found that RSV Gag shows no preference for membrane order, while proteins with reported membrane-penetrating domains show preference for disordered membranes. IMPORTANCE Retroviral particles assemble on the PM and bud from infected cells. Our understanding of how Gag interacts with the PM and how different membrane properties contribute to overall Gag assembly is incomplete. This study examined how membrane charge and membrane order

  9. A zinc-binding site by negative selection induces metallodrug susceptibility in an essential chaperonin

    PubMed Central

    Cun, Shujian; Sun, Hongzhe

    2010-01-01

    GroES is an indispensable chaperonin virtually found throughout all life forms. Consequently, mutations of this protein must be critically scrutinized by natural selection. Nevertheless, the homolog from a potentially virulent gastric pathogen, Helicobacter pylori, strikingly features a histidine/cysteine-rich C terminus that shares no significant homology with other family members. Additionally, three more (H45, C51, and C53) are uniquely present in its apical domain. The statistical analyses show that these residues may have originated from negative selection, presumably driven by either dependent or independent amino acid mutations. In the absence of the C-terminal metal-binding domain, the mutant protein still exhibits a substantial capacity for zinc binding in vivo. The biochemical properties of site-directed mutants indicate that H45, C51, and C53 make up an oxidation-sensitive zinc-binding site that may donate the bound metal to a zinc acceptor. Of interest, bismuth antiulcer drugs strongly bind at this site (Kd of approximately 7 × 10-26 M), replacing the bound zinc and consequently inducing the disruption of the quaternary structure. Because biological features by negative selection are usually inert to change during evolution, this study sheds light on a promising field whereby medicines can be designed or improved to specifically target the residues that uniquely evolved in pathogenic proteins so as to retard the emergence of drug resistance. PMID:20194796

  10. Negative-charge-functionalized carbon nanodot: a low-cost smart cold emitter

    NASA Astrophysics Data System (ADS)

    Santra, Saswati; Sankar Das, Nirmalya; Senapati, Subrata; Sen, Dipayan; Chattopadhyay, Kalyan Kumar; Nanda, Karuna Kar

    2017-09-01

    Cold emission properties of carbon nanodots (CNDs) evaluated using ANSYS Maxwell software are predicted to be size-dependent and then verified experimentally. In order to correlate the electron emission properties with the size of CNDs, the work function values were determined using ultraviolet photoelectron spectroscopy. This is the first report on theoretical calculations based on density functional theory and experimental results that confirm the work function dependency on the charge state of the functional group attached on the particle surface. The smallest CND (2.5 nm) has the highest percentage of negatively charged groups as well as the lowest work function (5.18 eV). The smallest dimension with the lowest work function assures that this sample is the best suited for field emission. It shows excellent field emission properties with a high current density of ∼1.45 mA cm‑2 at 2 V μm‑1 electric field, turn-on field as low as 0.04 V μm‑1, very high field enhancement factor of 2.7 × 105 and high stability. Overall, the zero-dimensional CNDs showed superior field emission activity as compared to the higher dimensional carbon nanomaterials.

  11. Negatively-charged NV-center in SiC: Electronic structure properties

    NASA Astrophysics Data System (ADS)

    Dev, Pratibha; Economou, Sophia

    Deep defects with high-spin states in semiconductors are promising candidates as solid-state systems for quantum computing applications. The charged NV-center in diamond is the best-known and most-studied defect center, and has proven to be a good proof-of-principle structure for demonstrating the use of such defects in quantum technologies. Increasingly, however, there is an interest in exploring deep defects in alternative semiconductors such as SiC. This is due to the challenges posed by diamond as host material for defects, as well as the attractive properties of SiC. In this density functional theory work, we study the spin-1 structure of the negatively charged NV-center in two polytypes: 3C-SiC and 4H-SiC. The calculated zero phonon line for the excited state of the defect is in telecom range (0.90eV), making it a very good candidate for quantum technologies. This work provides basic ingredients required to understand the physics of this color center at a quantitative and qualitative level. We also design quantum information applications, such as a spin-photon interface and multi-photon entanglement.

  12. Charge Kondo effect in negative-U quantum dots with superconducting electrodes

    NASA Astrophysics Data System (ADS)

    Fang, Tie-Feng; Guo, Ai-Min; Lu, Han-Tao; Luo, Hong-Gang; Sun, Qing-Feng

    2017-08-01

    Recent experimental realization of superconducting quantum dot devices with intradot attraction U [Nature (London) 521, 196 (2015), 10.1038/nature14398; Phys. Rev. X 6, 041042 (2016), 10.1103/PhysRevX.6.041042] offers unique opportunities to study the charge Kondo effect in a superconducting environment. In such devices pseudospin flips are caused by two tunneling processes. One is the cotunneling of normal electrons which generates near-gap Kondo resonances in the single-electron spectral density. This negative-U charge Kondo effect is more robust than the conventional spin Kondo effect against the suppression by the superconductivity. The other tunneling is the mean-field Cooper-pair tunneling which produces a zero-energy bound state in the pair spectral density. Interesting crossover physics from the strongly-correlated Kondo screening to the mean-field polarization of local pseudospin is demonstrated. Due to the interplay of these two tunnelings, the supercurrent is suppressed for intermediate couplings, but it can increase to the unitary limits both in the strong and weak coupling regimes. We obtain the magnetic field-dependent supercurrent which is consistent with the key experimental findings.

  13. Negative-charge-functionalized carbon nanodot: a low-cost smart cold emitter.

    PubMed

    Santra, Saswati; Das, Nirmalya Sankar; Senapati, Subrata; Sen, Dipayan; Chattopadhyay, Kalyan Kumar; Nanda, Karuna Kar

    2017-09-27

    Cold emission properties of carbon nanodots (CNDs) evaluated using ANSYS Maxwell software are predicted to be size-dependent and then verified experimentally. In order to correlate the electron emission properties with the size of CNDs, the work function values were determined using ultraviolet photoelectron spectroscopy. This is the first report on theoretical calculations based on density functional theory and experimental results that confirm the work function dependency on the charge state of the functional group attached on the particle surface. The smallest CND (2.5 nm) has the highest percentage of negatively charged groups as well as the lowest work function (5.18 eV). The smallest dimension with the lowest work function assures that this sample is the best suited for field emission. It shows excellent field emission properties with a high current density of ∼1.45 mA cm(-2) at 2 V μm(-1) electric field, turn-on field as low as 0.04 V μm(-1), very high field enhancement factor of 2.7 × 10(5) and high stability. Overall, the zero-dimensional CNDs showed superior field emission activity as compared to the higher dimensional carbon nanomaterials.

  14. HBV maintains electrostatic homeostasis by modulating negative charges from phosphoserine and encapsidated nucleic acids

    PubMed Central

    Su, Pei-Yi; Yang, Ching-Jen; Chu, Tien-Hua; Chang, Chih-Hsu; Chiang, Chiayn; Tang, Fan-Mei; Lee, Chih-Yin; Shih, Chiaho

    2016-01-01

    Capsid assembly and stability of hepatitis B virus (HBV) core protein (HBc) particles depend on balanced electrostatic interactions between encapsidated nucleic acids and an arginine-rich domain (ARD) of HBc in the capsid interior. Arginine-deficient ARD mutants preferentially encapsidated spliced viral RNA and shorter DNA, which can be fully or partially rescued by reducing the negative charges from acidic residues or serine phosphorylation of HBc, dose-dependently. Similarly, empty capsids without RNA encapsidation can be generated by ARD hyper-phosphorylation in insect, bacteria, and human hepatocytes. De-phosphorylation of empty capsids by phosphatase induced capsid disassembly. Empty capsids can convert into RNA-containing capsids by increasing HBc serine de-phosphorylation. In an HBV replicon system, we observed a reciprocal relationship between viral and non-viral RNA encapsidation, suggesting both non-viral RNA and serine-phosphorylation could serve as a charge balance buffer in maintaining electrostatic homeostasis. In addition, by comparing the biochemistry assay results between a replicon and a non-replicon system, we observed a correlation between HBc de-phosphorylation and viral replication. Balanced electrostatic interactions may be important to other icosahedral particles in nature. PMID:27958343

  15. Anion exchangers with negatively charged functionalities in hyperbranched ion-exchange layers for ion chromatography.

    PubMed

    Uzhel, Anna S; Zatirakha, Alexandra V; Smirnov, Konstantin N; Smolenkov, Alexandr D; Shpigun, Oleg A

    2017-01-27

    Novel pellicular poly(styrene-divinylbenzene)-based (PS-DVB) anion exchangers with covalently-bonded hyperbranched functional ion-exchange layers containing negatively charged functionalities are obtained and examined. The hyperbranched coating is created on the surface of aminated PS-DVB substrate by repeating the modification cycles including alkylation with 1,4-butanediol diglycidyl ether (1,4-BDDGE), and amination of the terminal epoxide rings with methylamine (MA) or glycine (Gly). The influence of the position and the number of the layers with glycine, as well as of the total number of the layers of amine in the coating on the chromatographic properties of the obtained stationary phases is investigated. Chromatographic performance of the obtained stationary phases is evaluated using the model mixtures of inorganic and organic anions with hydroxide eluent. It is shown that the best selectivity toward weakly retained organic acids and oxyhalides is possessed by the anion exchanger obtained after 5 modification cycles, with glycine being used in the first one. Such anion exchanger packed in 25-cm long column is capable of separating 22 anions in 58min including 7 standard anions, mono-, di- and trivalent organic acids, oxyhalides, and some other double- and triple-charged anions.

  16. Negatively charged phospholipids suppress IFN-{gamma} production in T cells

    SciTech Connect

    Yotsumoto, Satoshi; Kakiuchi, Terutaka; Aramaki, Yukihiko . E-mail: aramaki@ps.toyaku.ac.jp

    2005-12-30

    The effect of phospholipids on IFN-{gamma} production in mouse T cells was investigated. Phosphatidylserine (PS), which has a negatively charged head group, completely inhibited IFN-{gamma} production in splenic naive T cells and antigen-dependent IFN-{gamma} production in Th1 clone 42-6A cells, whereas other phospholipids, which have neutrally charged head group, had no effect. The structural requirements for IFN-{gamma} inhibitory effects by PS were investigated, and dimyristoyl-PS (C14: 0) and dipalmitoyl-PS (C16: 0) had no effect on IFN-{gamma} production, and interestingly, distearoyl-PS (18: 0) increased IFN-{gamma} production. Dioleoyl-PS (C18: 1), dilinoleoyl-PS (C18: 2), and oleoyl-lyso-PS (C18: 1) completely inhibited IFN-{gamma} production. To clarify this mechanism, we focused on the stability of IFN-{gamma} mRNA, and the treatment of splenic naive T cells with PS brought about 40% reductions in IFN-{gamma} mRNA expression in the presence of actinomycin D. Collectively, IFN-{gamma} inhibitory effects by PS are highly dependent on the molecular structure of PS and involve the decreasing of the stability of IFN-{gamma} mRNA.

  17. Synthesis of positively and negatively charged silver nanoparticles and their deposition on the surface of titanium

    NASA Astrophysics Data System (ADS)

    Sharonova, A.; Loza, K.; Surmeneva, M.; Surmenev, R.; Prymak, O.; Epple, M.

    2016-02-01

    Bacterial infections related to dental implants are currently a significant complication. A good way to overcome this challenge is functionalization of implant surface with Ag nanoparticles (NPs) as antibacterial agent. This article aims at review the synthesis routes, size and electrical properties of AgNPs. Polyvinyl pyrrolidone (PVP) and polyethyleneimine (PEI) were used as stabilizers. Dynamic Light Scattering, Nanoparticle Tracking Analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDX) have been used to characterize the prepared AgNPs. Two types of NPs were synthesized in aqueous solutions: PVP-stabilized NPs with a diameter of the metallic core of 70 ± 20 nm, and negative charge of -20 mV, PEI-stabilized NPs with the size of the metallic core of 50 ± 20 nm and positive charge of +55 mV. According to SEM results, all the NPs have a spherical shape. Functionalization of the titanium substrate surface with PVP and PEI-stabilized AgNPs was carried out by dropping method. XRD patterns revealed that the AgNPs are crystalline with the crystallite size of 14 nm.

  18. Gap state charge induced spin-dependent negative differential resistance in tunnel junctions

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Zhang, X.-G.; Han, X. F.

    2016-04-01

    We propose and demonstrate through first-principles calculation a new spin-dependent negative differential resistance (NDR) mechanism in magnetic tunnel junctions (MTJ) with cubic cation disordered crystals (CCDC) AlO x or Mg1-x Al x O as barrier materials. The CCDC is a class of insulators whose band gap can be changed by cation doping. The gap becomes arched in an ultrathin layer due to the space charge formed from metal-induced gap states. With an appropriate combination of an arched gap and a bias voltage, NDR can be produced in either spin channel. This mechanism is applicable to 2D and 3D ultrathin junctions with a sufficiently small band gap that forms a large space charge. It provides a new way of controlling the spin-dependent transport in spintronic devices by an electric field. A generalized Simmons formula for tunneling current through junction with an arched gap is derived to show the general conditions under which ultrathin junctions may exhibit NDR.

  19. Redesign of negatively charged (111)In-DTPA-octreotide derivative to reduce renal radioactivity.

    PubMed

    Oshima, Nobuhiro; Akizawa, Hiromichi; Kawashima, Hidekazu; Zhao, Songji; Zhao, Yan; Nishijima, Ken-Ichi; Kitamura, Yoji; Arano, Yasushi; Kuge, Yuji; Ohkura, Kazue

    2017-05-01

    Radiolabeled octreotide derivatives have been studied as diagnostic and therapeutic agents for somatostatin receptor-positive tumors. To prevent unnecessary radiation exposure during their clinical application, the present study aimed to develop radiolabeled peptides which could reduce radioactivity levels in the kidney at both early and late post-injection time points by introducing a negative charge with an acidic amino acid such as L-aspartic acid (Asp) at a suitable position in (111)In-DTPA-conjugated octreotide derivatives. Biodistribution of the radioactivity was evaluated in normal mice after administration of a novel radiolabeled peptide by a counting method. The radiolabeled species remaining in the kidney were identified by comparing their HPLC data with those obtained by alternative synthesis. The designed and synthesized radiolabeled peptide (111)In-DTPA-d-Phe(-1)-Asp(0)-d-Phe(1)-octreotide exhibited significantly lower renal radioactivity levels than those of the known (111)In-DTPA-d-Phe(1)-octreotide at 3 and 24h post-injection. The radiolabeled species in the kidney at 24h after the injection of new octreotide derivative represented (111)In-DTPA-d-Phe-OH and (111)In-DTPA-d-Phe-Asp-OH as the metabolites. Their radiometabolites and intact (111)In-DTPA-conjugated octreotide derivative were observed in urine within 24h post-injection. The present study provided a new example of an (111)In-DTPA-conjugated octreotide derivative having the characteristics of both reduced renal uptake and shortened residence time of radioactivity in the kidney. It is considered that this kinetic control was achieved by introducing a negative charge on the octreotide derivative thereby suppressing the reabsorption in the renal tubules and affording the radiometabolites with appropriate lipophilicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Lysine-21 of Leuconostoc mesenteroides glucose 6-phosphate dehydrogenase participates in substrate binding through charge-charge interaction.

    PubMed Central

    Lee, W. T.; Levy, H. R.

    1992-01-01

    Leuconostoc mesenteroides glucose 6-phosphate dehydrogenase (G6PD) was isolated in high yield and purified to homogeneity from a newly constructed strain of Escherichia coli which lacks its own glucose 6-phosphate dehydrogenase gene. Lys-21 is one of two lysyl residues in the enzyme previously modified by the affinity labels pyridoxal 5'-phosphate and pyridoxal 5'-diphosphate-5'-adenosine, which are competitive inhibitors of the enzyme with respect to glucose 6-phosphate (LaDine, J.R., Carlow, D., Lee, W.T., Cross, R.L., Flynn, T.G., & Levy, H.R., 1991, J. Biol. Chem. 266, 5558-5562). K21R and K21Q mutants of the enzyme were purified to homogeneity and characterized kinetically to determine the function of Lys-21. Both mutant enzymes showed increased Km-values for glucose 6-phosphate compared to wild-type enzyme: 1.4-fold (NAD-linked reaction) and 2.1-fold (NADP-linked reaction) for the K21R enzyme, and 36-fold (NAD-linked reaction) and 53-fold (NADP-linked reaction) for the K21Q enzyme. The Km for NADP+ was unchanged in both mutant enzymes. The Km for NAD+ was increased 1.5- and 3.2-fold, compared to the wild-type enzyme, in the K21R and K21Q enzymes, respectively. For the K21R enzyme the kcat for the NAD- and NADP-linked reactions was unchanged. The kcat for the K21Q enzyme was increased in the NAD-linked reaction by 26% and decreased by 30% in the NADP-linked reaction from the values for the wild-type enzyme. The data are consistent with Lys-21 participating in the binding of the phosphate group of the substrate to the enzyme via charge-charge interaction. PMID:1304341

  1. Interaction of cationic hydrophobic surfactants at negatively charged surfaces investigated by atomic force microscopy.

    PubMed

    McNamee, Cathy E; Butt, Hans-Jürgen; Higashitani, Ko; Vakarelski, Ivan U; Kappl, Michael

    2009-10-06

    Atomic force microscopy was used to study the adsorption of the surfactant octadecyl trimethyl ammonium chloride (C18TAC) at a low concentration (0.03 mM) to negatively charged surfaces in water. Atomic force microscopy tips were functionalized with dimethyloctadecyl(3-tripropyl)ammonium chloride (C18TAC-si) or N-trimethoxysilylpropyl-N,N,N-trimethylammomium chloride (hydrophilpos-si) to facilitate imaging of the adsorbed surfactant without artifacts. Tapping mode images and force measurements revealed C18TAC patches, identified as partial surfactant bilayers or hemimicelles. The forces controlling the adsorption process of the C18TAC to a negatively charged surface were investigated by measuring the forces between a C18TAC-si or a hydrophilpos-si tip and a silica surface in the presence of varying concentrations of either NaCl or NaNO3. Screening of forces with an increasing NaCl concentration was observed for the C18TAC-si and hydrophilpos-si tips, proving an electrostatic contribution. Screening was also observed for the hydrophilpos-si tip in NaNO3, whereas a long-range attraction was observed for the C18TAC-si tip for all NaNO3 concentrations. These results indicate that screening of the forces for the C18TAC-si tip depended on the type and/or size of the anion, possibly due to a different probability of the anions to enter the silane layers. The interaction of C18TAC patches with C18TAC-si tips in the presence of NaCl and the interaction of the patches with hydrophilpos-si tips in either NaCl or NaNO3 were repulsive and independent of the number of force curves measured, indicating a stable, positively charged C18TAC patch. However, the forces measured between the patches and a C18TAC-si tip in NaNO3 depended on the number of force curves measured, indicating a change in patch structure induced by the first interaction.

  2. Simultaneous Separation of Negatively and Positively Charged Species in Dynamic Field Gradient Focusing Using a Dual Polarity Electric Field

    PubMed Central

    Burke, Jeffrey M.; Huang, Zheng; Ivory, Cornelius F.

    2011-01-01

    Dynamic field gradient focusing (DFGF) utilizes an electric field gradient established by a computer-controlled electrode array to separate and concentrate charged analytes at unique axial positions. Traditionally, DFGF has been restricted to the analysis of negatively charged species due to limitations in the software of our voltage controller. This paper introduces a new voltage controller capable of operating under normal polarity (positive potentials applied to the electrode array) and reversed polarity (negative potentials applied to the electrode array) for the separation of negatively and positively charged analytes, respectively. The experiments conducted under normal polarity and reversed polarity illustrate the utility of the new controller to perform reproducible DFGF separations (elution times showing less than 1% run-to-run variation) over a wide pH range (3.08 to 8.5) regardless of the protein charge. A dual polarity experiment is then shown in which the separation channel has been divided into normal polarity and reversed polarity regions. This simultaneous separation of negatively charged R-phycoerythrin (R-PE) and positively charged cytochrome c (CYTC) within the same DFGF apparatus is shown. PMID:19722517

  3. Simultaneous separation of negatively and positively charged species in dynamic field gradient focusing using a dual polarity electric field.

    PubMed

    Burke, Jeffrey M; Huang, Zheng; Ivory, Cornelius F

    2009-10-01

    Dynamic field gradient focusing (DFGF) utilizes an electric field gradient established by a computer-controlled electrode array to separate and concentrate charged analytes at unique axial positions. Traditionally, DFGF has been restricted to the analysis of negatively charged species due to limitations in the software of our voltage controller. This paper introduces a new voltage controller capable of operating under normal polarity (positive potentials applied to the electrode array) and reversed polarity (negative potentials applied to the electrode array) for the separation of negatively and positively charged analytes, respectively. The experiments conducted under normal polarity and reversed polarity illustrate the utility of the new controller to perform reproducible DFGF separations (elution times showing less than 1% run-to-run variation) over a wide pH range (3.08 to 8.5) regardless of the protein charge. A dual polarity experiment is then shown in which the separation channel has been divided into normal polarity and reversed polarity regions. This simultaneous separation of negatively charged R-phycoerythrin (R-PE) and positively charged cytochrome c (CYTC) within the same DFGF apparatus is shown.

  4. Negatively charged silver nanoparticles with potent antibacterial activity and reduced toxicity for pharmaceutical preparations

    PubMed Central

    Salvioni, Lucia; Galbiati, Elisabetta; Collico, Veronica; Alessio, Giulia; Avvakumova, Svetlana; Corsi, Fabio; Tortora, Paolo; Prosperi, Davide; Colombo, Miriam

    2017-01-01

    Background The discovery of new solutions with antibacterial activity as efficient and safe alternatives to common preservatives (such as parabens) and to combat emerging infections and drug-resistant bacterial pathogens is highly expected in cosmetics and pharmaceutics. Colloidal silver nanoparticles (NPs) are attracting interest as novel effective antimicrobial agents for the prevention of several infectious diseases. Methods Water-soluble, negatively charged silver nanoparticles (AgNPs) were synthesized by reduction with citric and tannic acid and characterized by transmission electron microscopy, dynamic light scattering, zeta potential, differential centrifuge sedimentation, and ultraviolet–visible spectroscopy. AgNPs were tested with model Gram-negative and Gram-positive bacteria in comparison to two different kinds of commercially available AgNPs. Results In this work, AgNPs with higher antibacterial activity compared to the commercially available colloidal silver solutions were prepared and investigated. Bacteria were plated and the antibacterial activity was tested at the same concentration of silver ions in all samples. The AgNPs did not show any significant reduction in the antibacterial activity for an acceptable time period. In addition, AgNPs were transferred to organic phase and retained their antibacterial efficacy in both aqueous and nonaqueous media and exhibited no toxicity in eukaryotic cells. Conclusion We developed AgNPs with a 20 nm diameter and negative zeta potential with powerful antibacterial activity and low toxicity compared to currently available colloidal silver, suitable for cosmetic preservatives and pharmaceutical preparations administrable to humans and/or animals as needed. PMID:28408822

  5. Contributions of molecular size, charge distribution, and specific amino acids to the iron-binding capacity of sea cucumber (Stichopus japonicus) ovum hydrolysates.

    PubMed

    Sun, Na; Cui, Pengbo; Jin, Ziqi; Wu, Haitao; Wang, Yixing; Lin, Songyi

    2017-09-01

    This study investigated the contributions of molecular size, charge distribution and specific amino acids to the iron-binding capacity of sea cucumber (Stichopus japonicus) ovum hydrolysates (SCOHs), and further explored their iron-binding sites. It was demonstrated that enzyme type and degree of hydrolysis (DH) significantly influenced the iron-binding capacity of the SCOHs. The SCOHs produced by alcalase at a DH of 25.9% possessed the highest iron-binding capacity at 92.1%. As the hydrolysis time increased, the molecular size of the SCOHs decreased, the negative charges increased, and the hydrophilic amino acids were exposed to the surface, facilitating iron binding. Furthermore, the Fourier transform infrared spectra, combined with amino acid composition analysis, revealed that iron bound to the SCOHs primarily through interactions with carboxyl oxygen of Asp, guanidine nitrogen of Arg or nitrogen atoms in imidazole group of His. The formed SCOHs-iron complexes exhibited a fold and crystal structure with spherical particles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Drosophila Mi-2 negatively regulates dDREF by inhibiting its DNA-binding activity.

    PubMed

    Hirose, Fumiko; Ohshima, Nobuko; Kwon, Eun-Jeong; Yoshida, Hideki; Yamaguchi, Masamitsu

    2002-07-01

    Drosophila melanogaster DNA replication-related element (DRE) factor (dDREF) is a transcriptional regulatory factor required for the expression of genes carrying the 5'-TATCGATA DRE. dDREF has been reported to bind to a sequence in the chromatin boundary element, and thus, dDREF may play a part in regulating insulator activity. To generate further insights into dDREF function, we carried out a Saccharomyces cerevisiae two-hybrid screening with DREF polypeptide as bait and identified Mi-2 as a DREF-interacting protein. Biochemical analyses revealed that the C-terminal region of Drosophila Mi-2 (dMi-2) specifically binds to the DNA-binding domain of dDREF. Electrophoretic mobility shift assays showed that dMi-2 thereby inhibits the DNA-binding activity of dDREF. Ectopic expression of dDREF and dMi-2 in eye imaginal discs resulted in severe and mild rough-eye phenotypes, respectively, whereas flies simultaneously expressing both proteins exhibited almost-normal eye phenotypes. Half-dose reduction of the dMi-2 gene enhanced the DREF-induced rough-eye phenotype. Immunostaining of polytene chromosomes of salivary glands showed that dDREF and dMi-2 bind in mutually exclusive ways. These lines of evidence define a novel function of dMi-2 in the negative regulation of dDREF by its DNA-binding activity. Finally, we postulated that dDREF and dMi-2 may demonstrate reciprocal regulation of their functions.

  7. Highly efficient bioinspired molecular Ru water oxidation catalysts with negatively charged backbone ligands.

    PubMed

    Duan, Lele; Wang, Lei; Li, Fusheng; Li, Fei; Sun, Licheng

    2015-07-21

    The oxygen evolving complex (OEC) of the natural photosynthesis system II (PSII) oxidizes water to produce oxygen and reducing equivalents (protons and electrons). The oxygen released from PSII provides the oxygen source of our atmosphere; the reducing equivalents are used to reduce carbon dioxide to organic products, which support almost all organisms on the Earth planet. The first photosynthetic organisms able to split water were proposed to be cyanobacteria-like ones appearing ca. 2.5 billion years ago. Since then, nature has chosen a sustainable way by using solar energy to develop itself. Inspired by nature, human beings started to mimic the functions of the natural photosynthesis system and proposed the concept of artificial photosynthesis (AP) with the view to creating energy-sustainable societies and reducing the impact on the Earth environments. Water oxidation is a highly energy demanding reaction and essential to produce reducing equivalents for fuel production, and thereby effective water oxidation catalysts (WOCs) are required to catalyze water oxidation and reduce the energy loss. X-ray crystallographic studies on PSII have revealed that the OEC consists of a Mn4CaO5 cluster surrounded by oxygen rich ligands, such as oxyl, oxo, and carboxylate ligands. These negatively charged, oxygen rich ligands strongly stabilize the high valent states of the Mn cluster and play vital roles in effective water oxidation catalysis with low overpotential. This Account describes our endeavors to design effective Ru WOCs with low overpotential, large turnover number, and high turnover frequency by introducing negatively charged ligands, such as carboxylate. Negatively charged ligands stabilized the high valent states of Ru catalysts, as evidenced by the low oxidation potentials. Meanwhile, the oxygen production rates of our Ru catalysts were improved dramatically as well. Thanks to the strong electron donation ability of carboxylate containing ligands, a seven

  8. APUM5, encoding a Pumilio RNA binding protein, negatively regulates abiotic stress responsive gene expression

    PubMed Central

    2014-01-01

    Background A mutant screening was carried out previously to look for new genes related to the Cucumber mosaic virus infection response in Arabidopsis. A Pumilio RNA binding protein-coding gene, Arabidopsis Pumilio RNA binding protein 5 (APUM5), was obtained from this screening. Results APUM5 transcriptional profiling was carried out using a bioinformatics tool. We found that APUM5 was associated with both biotic and abiotic stress responses. However, bacterial and fungal pathogen infection susceptibility was not changed in APUM5 transgenic plants compared to that in wild type plants although APUM5 expression was induced upon pathogen infection. In contrast, APUM5 was involved in the abiotic stress response. 35S-APUM5 transgenic plants showed hypersensitive phenotypes under salt and drought stresses during germination, primary root elongation at the seedling stage, and at the vegetative stage in soil. We also showed that some abiotic stress-responsive genes were negatively regulated in 35S-APUM5 transgenic plants. The APUM5-Pumilio homology domain (PHD) protein bound to the 3′ untranslated region (UTR) of the abiotic stress-responsive genes which contained putative Pumilio RNA binding motifs at the 3′ UTR. Conclusions These results suggest that APUM5 may be a new post-transcriptional regulator of the abiotic stress response by direct binding of target genes 3′ UTRs. PMID:24666827

  9. Chondroitin sulfate addition to CD44H negatively regulates hyaluronan binding

    SciTech Connect

    Ruffell, Brian; Johnson, Pauline . E-mail: pauline@interchange.ubc.ca

    2005-08-26

    CD44 is a widely expressed cell adhesion molecule that binds hyaluronan, an extracellular matrix glycosaminoglycan, in a tightly regulated manner. This regulated interaction has been implicated in inflammation and tumor metastasis. CD44 exists in the standard form, CD44H, or as higher molecular mass isoforms due to alternative splicing. Here, we identify serine 180 in human CD44H as the site of chondroitin sulfate addition and show that lack of chondroitin sulfate addition at this site enhances hyaluronan binding by CD44. A CD44H-immunoglobulin fusion protein expressed in HEK293 cells, and CD44H expressed in murine L fibroblast cells were modified by chondroitin sulfate, as determined by reduced sulfate incorporation after chondroitinase ABC treatment. Mutation of serine 180 or glycine 181 in CD44H reduced chondroitin sulfate addition and increased hyaluronan binding, indicating that serine 180 is the site for chondroitin sulfate addition in CD44H and that this negatively regulates hyaluronan binding.

  10. CCAAT/enhancer binding protein β negatively regulates progesterone receptor expression in human glioblastoma cells.

    PubMed

    Hansberg-Pastor, Valeria; González-Arenas, Aliesha; Camacho-Arroyo, Ignacio

    2017-01-05

    Many progesterone (P4) actions are mediated by its intracellular receptor (PR), which has two isoforms (PR-A and PR-B) differentially transcribed from separate promoters of a single gene. In glioblastomas, the most frequent and aggressive brain tumors, PR-B is the predominant isoform. In an in silico analysis we showed putative CCAAT/Enhancer Binding Protein (C/EBP) binding sites at PR-B promoter. We evaluated the role of C/EBPβ in PR-B expression regulation in glioblastoma cell lines, which expressed different ratios of PR and C/EBPβ isoforms (LAP1, LAP2, and LIP). ChIP assays showed a significant basal binding of C/EBPβ, specific protein 1 (Sp1) and estrogen receptor alpha (ERα) to PR-B promoter. C/EBPβ knockdown increased PR-B expression and treatment with estradiol (E2) reduced C/EBPβ binding to the promoter and up-regulated PR-B expression. P4 induced genes were differently regulated when CEBP/β was silenced. These data show that C/EBPβ negatively regulates PR-B expression in glioblastoma cells.

  11. Positive and negative feedback learning and associated dopamine and serotonin transporter binding after methamphetamine

    PubMed Central

    Stolyarova, Alexandra; O’Dell, Steve J.; Marshall, John F.; Izquierdo, Alicia

    2014-01-01

    Learning from mistakes and prospectively adjusting behavior in response to reward feedback is an important facet of performance monitoring. Dopamine (DA) pathways play an important role in feedback learning and a growing literature has also emerged on the importance of serotonin (5HT) in reward learning, particularly during punishment or reward omission (negative feedback). Cognitive impairments resulting from psychostimulant exposure may arise from altered patterns in feedback learning, which in turn may be modulated by DA and 5HT transmission. We analyzed long-term, off-drug changes in learning from positive and negative feedback and associated striatal DA transporter (DAT) and frontocortical 5HT transporter (SERT) binding in rats pretreated with methamphetamine (mAMPH). Specifically, we assessed the reversal phase of pairwise visual discrimination learning in rats receiving single dose- (mAMPHsingle) vs. escalating-dose exposure (mAMPHescal). Using fine-grained trial-by-trial analyses, we found increased sensitivity to and reliance on positive feedback in mAMPH-pretreated animals, with the mAMPHsingle group showing more pronounced use of this type of feedback. In contrast, overall negative feedback sensitivity was not altered following any mAMPH treatment. In addition to validating the enduring effects of mAMPH on early reversal learning, we found more consecutive error commissions before the first correct response in mAMPH-pretreated rats. This behavioral rigidity was negatively correlated with subregional frontocortical SERT whereas positive feedback sensitivity negatively correlated with striatal DAT binding. These results provide new evidence for the overlapping, yet dissociable roles of DA and 5HT systems in overcoming perseveration and in learning new reward rules. PMID:24959862

  12. Positive and negative feedback learning and associated dopamine and serotonin transporter binding after methamphetamine.

    PubMed

    Stolyarova, Alexandra; O'Dell, Steve J; Marshall, John F; Izquierdo, Alicia

    2014-09-01

    Learning from mistakes and prospectively adjusting behavior in response to reward feedback is an important facet of performance monitoring. Dopamine (DA) pathways play an important role in feedback learning and a growing literature has also emerged on the importance of serotonin (5HT) in reward learning, particularly during punishment or reward omission (negative feedback). Cognitive impairments resulting from psychostimulant exposure may arise from altered patterns in feedback learning, which in turn may be modulated by DA and 5HT transmission. We analyzed long-term, off-drug changes in learning from positive and negative feedback and associated striatal DA transporter (DAT) and frontocortical 5HT transporter (SERT) binding in rats pretreated with methamphetamine (mAMPH). Specifically, we assessed the reversal phase of pairwise visual discrimination learning in rats receiving single dose- (mAMPHsingle) vs. escalating-dose exposure (mAMPHescal). Using fine-grained trial-by-trial analyses, we found increased sensitivity to and reliance on positive feedback in mAMPH-pretreated animals, with the mAMPHsingle group showing more pronounced use of this type of feedback. In contrast, overall negative feedback sensitivity was not altered following any mAMPH treatment. In addition to validating the enduring effects of mAMPH on early reversal learning, we found more consecutive error commissions before the first correct response in mAMPH-pretreated rats. This behavioral rigidity was negatively correlated with subregional frontocortical SERT whereas positive feedback sensitivity negatively correlated with striatal DAT binding. These results provide new evidence for the overlapping, yet dissociable roles of DA and 5HT systems in overcoming perseveration and in learning new reward rules.

  13. Self-consistent field tight-binding model for neutral and (multi-) charged carbon clusters

    NASA Astrophysics Data System (ADS)

    Montagnon, Laurent; Spiegelman, Fernand

    2007-08-01

    A semiempirical model for carbon clusters modeling is presented, along with structural and dynamical applications. The model is a tight-binding scheme with additional one- and two-center distance-dependent electrostatic interactions treated self-consistently. This approach, which explicitly accounts for charge relaxation, allows us to treat neutral and (multi-) charged clusters not only at equilibrium but also in dissociative regions. The equilibrium properties, geometries, harmonic spectra, and relative stabilities of the stable isomers of neutral and singly charged clusters in the range n =1-14, for C20 and C60, are found to reproduce the results of ab initio calculations. The model is also shown to be successful in describing the stability and fragmentation energies of dictations in the range n =2-10 and allows the determination of their Coulomb barriers, as examplified for the smallest sizes (C22+,C32+,C42+). We also present time-dependent mean-field and linear response optical spectra for the C8 and C60 clusters and discuss their relevance with respect to existing calculations.

  14. Charging of ionic liquid surfaces under X-ray irradiation: the measurement of absolute binding energies by XPS.

    PubMed

    Villar-Garcia, Ignacio J; Smith, Emily F; Taylor, Alasdair W; Qiu, Fulian; Lovelock, Kevin R J; Jones, Robert G; Licence, Peter

    2011-02-21

    Ionic liquid surfaces can become electrically charged during X-ray photoelectron spectroscopy experiments, due to the flux of photoelectrons leaving the surface. This causes a shift in the measured binding energies of X-ray photoelectron peaks that depends on the magnitude of the surface charging. Consequently, a charge correction method is required for ionic liquids. Here we demonstrate the nature and extent of surface charging in ionic liquids and model it using chronopotentiometry. We report the X-ray photoelectron spectra for a range of imidazolium based ionic liquids and investigate the use of long alkyl chains (C(n)H(2n+1), n ≥ 8) and the imidazolium nitrogen, both of which are part of the ionic liquid chemical structure, as internal references for charge correction. Accurate and reproducible binding energies are obtained which allow comparisons to be made across ionic liquid-based systems.

  15. Statistical mechanics of dust charging in a multi-ion plasma with negative and positive ionic species

    SciTech Connect

    Mishra, S. K.; Misra, Shikha

    2015-02-15

    On the basis of statistical mechanics and charging kinetics, the charge distribution over uniform size spherical dust particles in a multi-ion plasma comprising of multiple charged negative and positive ions is investigated. Two specific situations where the complex plasma is viz., (i) dark (no emission from dust) and (ii) irradiated by laser light (causing photoemission from dust) have been taken into account. The analytical formulation includes the population balance equation for the charged dust particles along with number and energy balance of the complex plasma constituents. The departure of the results for multi-ion plasma from that in case of usual singly charged positive ion plasma is graphically illustrated and discussed. In contrast to electron-ion plasma, significant number of particles is seen to acquire opposite charge in case of pure positive-negative ion plasma, even in the absence of electron emission from the dust grains. The effects of various plasma parameters viz., number density, particle size, and work function of dust on charge distribution have also been examined.

  16. Excitation of dust acoustic waves by an ion beam in a plasma cylinder with negatively charged dust grains

    SciTech Connect

    Sharma, Suresh C.; Kaur, Daljeet; Gahlot, Ajay; Sharma, Jyotsna

    2014-10-15

    An ion beam propagating through a plasma cylinder having negatively charged dust grains drives a low frequency electrostatic dust acoustic wave (DAW) to instability via Cerenkov interaction. The unstable wave frequencies and the growth rate increase with the relative density of negatively charged dust grains. The growth rate of the unstable mode scales to the one-third power of the beam density. The real part of the frequency of the unstable mode increases with the beam energy and scales to almost one-half power of the beam energy. The phase velocity, frequency, and wavelength results of the unstable mode are in compliance with the experimental observations.

  17. Laser excited and multiply charged semiconductor quantum dots modeled by empirical tight binding

    NASA Astrophysics Data System (ADS)

    Lee, Seungwon

    The effects of quantum confinement and many-body interactions on the optical and transport properties of semiconductor quantum dots are investigated within the framework of the empirical tight-binding model. The exciton levels of optically excited dots and the electron and hole addition energies of multiply charged dots are described by incorporating many-body interactions, electron-hole dipole moments, and polarization of the dot environment into the tight-binding model. We choose Si quantum dots as an example of an indirect gap semiconductor, and InAs and CdSe dots as examples of typical III-V and II-VI direct-gap semiconductors. To mimic chemically synthesized quantum dots, the dot structure is modeled as a spherical and unstrained crystallite with the surface dangling bonds truncated. Electron and hole single-particle energies are significantly improved by optimizing tight-binding parameters and by extending tight-binding basis orbitals to give the best description of the lowest conduction and the highest valence bands. For Si dots, the exciton gaps calculated with the parameters, optimized to give the good effective mass of the lowest conduction band near its minimum, agree well with experimental gaps. For InAs dots, the inclusion of spin-orbit coupling and d orbitals in a single-particle Hamiltonian increases a single-particle gap as much as 0.2 eV, yielding better agreement with experiments in terms of several low-lying bright-exciton energies and addition energies. Quantitatively, tight-binding treatments of Coulomb interactions are reliable for dots with radii larger than 15--20 A. In direct-gap semiconductor InAs and CdSe quantum dots, the exchange interaction can be long-ranged, extending over the whole dot when there is no local orthogonality between the electron and hole wave functions. In contrast, for Si quantum dots the extra phase factor due to the indirect gap effectively limits the range to about 15 A, independent of the dot size. For optically

  18. Energy losses of positive and negative charged particles in electron gas

    NASA Astrophysics Data System (ADS)

    Diachenko, M. M.; Kholodov, R. I.

    2017-02-01

    A heavy charged particle propagation through electron gas has been studied using combination of non-relativistic quantum mechanics and the Green’s functions method. The energy loss of a charged particle has been found in the case of large transferred momentum taking into account the interference term in the expression for the rate. The dependence of the energy loss of a charged particles in electron gas with nonzero temperature on the sign of the charge has been obtained.

  19. Polypyrimidine Tract Binding Protein Functions as a Negative Regulator of Feline Calicivirus Translation

    PubMed Central

    Karakasiliotis, Ioannis; Vashist, Surender; Bailey, Dalan; Abente, Eugenio J.; Green, Kim Y.; Roberts, Lisa O.; Sosnovtsev, Stanislav V.; Goodfellow, Ian G.

    2010-01-01

    Background Positive strand RNA viruses rely heavily on host cell RNA binding proteins for various aspects of their life cycle. Such proteins interact with sequences usually present at the 5′ or 3′ extremities of the viral RNA genome, to regulate viral translation and/or replication. We have previously reported that the well characterized host RNA binding protein polypyrimidine tract binding protein (PTB) interacts with the 5′end of the feline calicivirus (FCV) genomic and subgenomic RNAs, playing a role in the FCV life cycle. Principal Findings We have demonstrated that PTB interacts with at least two binding sites within the 5′end of the FCV genome. In vitro translation indicated that PTB may function as a negative regulator of FCV translation and this was subsequently confirmed as the translation of the viral subgenomic RNA in PTB siRNA treated cells was stimulated under conditions in which RNA replication could not occur. We also observed that PTB redistributes from the nucleus to the cytoplasm during FCV infection, partially localizing to viral replication complexes, suggesting that PTB binding may be involved in the switch from translation to replication. Reverse genetics studies demonstrated that synonymous mutations in the PTB binding sites result in a cell-type specific defect in FCV replication. Conclusions Our data indicates that PTB may function to negatively regulate FCV translation initiation. To reconcile this with efficient virus replication in cells, we propose a putative model for the function of PTB in the FCV life cycle. It is possible that during the early stages of infection, viral RNA is translated in the absence of PTB, however, as the levels of viral proteins increase, the nuclear-cytoplasmic shuttling of PTB is altered, increasing the cytoplasmic levels of PTB, inhibiting viral translation. Whether PTB acts directly to repress translation initiation or via the recruitment of other factors remains to be determined but this may

  20. Is the negative charge on RNHSO3-M+ an essential requirement for sulfamate sweetness?

    PubMed

    Spillane, William J; Hanniffy, Gary G

    2003-05-07

    Although many structure-taste studies have been carried out on sulfamate (cyclamate) sweeteners, there are still some unanswered questions-notably whether the sulfamate anion, -NHSO(3)(-), is essential for sweetness in this class of compounds. The literature is contradictory on this point; therefore, 14 sulfamate esters RNHSO(3)R', which contain the sulfamate moiety but without the negative charge, i.e., -NHSO(3)(-), have been synthesized and tasted under standard conditions. Almost all of the esters were found to possess strong sweetness accompanied by bitterness. Because the esters had to be heated in water to 60 degrees C to dissolve them, it was necessary to check for partial hydrolysis to the free sulfamic acids, RNHSO(3)H, since they would be sweet and would invalidate the tasting results if formed. This was done by monitoring (gas-liquid chromatography) the formation of alcohol after heating. Negligible or very low hydrolysis to acid was found for all 14 esters. This work, in addition to answering an important structure-taste question, points the way to the potential use of suitable sulfamate esters as additives in situations where the more usual sodium sulfamate salts are unsuitable, for example, in hydrophobic media.

  1. Charged rotating black holes in Einstein-Maxwell-Chern-Simons theory with a negative cosmological constant

    NASA Astrophysics Data System (ADS)

    Blázquez-Salcedo, Jose Luis; Kunz, Jutta; Navarro-Lérida, Francisco; Radu, Eugen

    2017-03-01

    We consider rotating black hole solutions in five-dimensional Einstein-Maxwell-Chern-Simons theory with a negative cosmological constant and a generic value of the Chern-Simons coupling constant λ . Using both analytical and numerical techniques, we focus on cohomogeneity-1 configurations, with two equal-magnitude angular momenta, which approach at infinity a globally anti-de Sitter background. We find that the generic solutions share a number of basic properties with the known Cvetič, Lü, and Pope black holes which have λ =1 . New features occur as well; for example, when the Chern-Simons coupling constant exceeds a critical value, the solutions are no longer uniquely determined by their global charges. Moreover, the black holes possess radial excitations which can be labelled by the node number of the magnetic gauge potential function. Solutions with small values of λ possess other distinct features. For instance, the extremal black holes there form two disconnected branches, while not all near-horizon solutions are associated with global solutions.

  2. Review on effects of long-lived negatively charged massive particles on Big Bang Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Kusakabe, Motohiko; Mathews, Grant J.; Kajino, Toshitaka; Cheoun, Myung-Ki

    We review important reactions in the Big Bang Nucleosynthesis (BBN) model involving a long-lived negatively charged massive particle, X‑, which is much heavier than nucleons. This model can explain the observed 7Li abundances of metal-poor stars, and predicts a primordial 9Be abundance that is larger than the standard BBN prediction. In the BBN epoch, nuclei recombine with the X‑ particle. Because of the heavy X‑ mass, the atomic size of bound states AX is as small as the nuclear size. The nonresonant recombination rates are then dominated by the D-wave → 2P transition for 7Li and 7,9Be. The 7Be destruction occurs via a recombination with the X‑ followed by a proton capture, and the primordial 7Li abundance is reduced. Also, the 9Be production occurs via the recombination of 7Li and X‑ followed by deuteron capture. The initial abundance and the lifetime of the X‑ particles are constrained from a BBN reaction network calculation. We derived parameter region for the 7Li reduction allowed in supersymmetric or Kaluza-Klein (KK) models. We find that either the selectron, smuon, KK electron or KK muon could be candidates for the X‑ with mX ˜𝒪(1) TeV, while the stau and KK tau cannot.

  3. Solute Transport of Negatively Charged Contrast Agents Across Articular Surface of Injured Cartilage.

    PubMed

    Kokkonen, H T; Chin, H C; Töyräs, J; Jurvelin, J S; Quinn, T M

    2017-04-01

    Solute transport through the extracellular matrix (ECM) is crucial to chondrocyte metabolism. Cartilage injury affects solute transport in cartilage due to alterations in ECM structure and solute-matrix interactions. Therefore, cartilage injury may be detected by using contrast agent-based clinical imaging. In the present study, effects of mechanical injury on transport of negatively charged contrast agents in cartilage were characterized. Using cartilage plugs injured by mechanical compression protocol, effective partition coefficients and diffusion fluxes of iodine- and gadolinium-based contrast agents were measured using high resolution microCT imaging. For all contrast agents studied, effective diffusion fluxes increased significantly, particularly at early times during the diffusion process (38 and 33% increase after 4 min, P < 0.05 for iodine and Gd-DTPA; and 76% increase after 10 min for diatrizoate, P < 0.05). Effective partition coefficients were unaffected in mechanically injured cartilage. Mechanical injury reduced PG content and collagen integrity in cartilage superficial zone. This study suggests that alterations in contrast agent diffusion flux, a non-equilibrium transport parameter, provides a more sensitive indicator for assessment of cartilage matrix integrity than partition coefficient and the equilibrium distribution of solute. These findings may help in developing clinical methods of contrast agent-based imaging to detect cartilage injury.

  4. EPR proof of the negatively charged acceptor state Zn - in silicon

    NASA Astrophysics Data System (ADS)

    Gehlhoff, W.; Näser, A.; Bracht, H.

    1999-12-01

    The electronic properties of Zn in monocrystalline silicon were studied by means of electron paramagnetic resonance (EPR). In high-ohmic p- and n-type Si doped with Zn two new line sets were observed. One of them show the characteristic behavior of the {1}/{2}↔-{1}/{2} and {3}/{2}↔-{3}/{2} transitions of a Γ8 state in tetrahedral symmetry and can be detected for all sample orientations. The line positions of this set can be well described with a spin Hamiltonian for S={3}/{2} including the linear and cubic Zeeman-interaction and the fitted parameters |g|=1.1749±0.0005 and | f |=0.0402±0.0005 (g.f>0). For magnetic field directions around B||<1 0 0>, a second line set consisting of seven additional lines were detected which can be described by the spin transitions within a coupled (Γ7-Γ8)-ground state manifold. Based on the analysis of the experimental data this spectrum has been identified as arising from the negative charge state of the isolated substitutional Zns- in silicon.

  5. In vitro and in vivo performance of biocompatible negatively-charged salbutamol-loaded nanoparticles.

    PubMed

    Rytting, Erik; Bur, Michael; Cartier, Regis; Bouyssou, Thierry; Wang, Xiaoying; Krüger, Michael; Lehr, Claus-Michael; Kissel, Thomas

    2010-01-04

    The development and performance of a novel nanoparticle-based formulation for pulmonary delivery has been characterized chronologically through the particle preparation process, in vitro testing of drug release, biocompatibility, degradation, drug transport in cell culture, and in vivo bronchoprotection studies in anaesthetised guinea pigs. This study demonstrates excellent agreement of the in vitro and in vivo experiments undertaken to prove the feasibility of the design, thereby serving as an example highlighting the importance of in vitro test methods that predict in vivo performance. Nanoparticles were prepared from the newly designed negatively-charged polymer poly(vinyl sulfonate-co-vinyl alcohol)-g-poly(d,l-lactic-co-glycolic acid) loaded with salbutamol free base. Average particle sizes of blank and drug-loaded nanoparticles prepared at the various stages of the investigations were between 91 and 204nm; average zeta potential values were between -50.1 and -25.6mV. Blank nanoparticles showed no significant toxicity, and no inflammatory activity was detected in Calu-3 cells. Sustained release of salbutamol from the nanoparticles was observed for 2.5h in vitro, and a prolonged effect was observed for 120min in vivo. These results demonstrate good agreement between in vitro and in vivo tests and also present a promising foundation for future advancement in nanomedicine strategies for pulmonary drug delivery.

  6. Improving the Lethal Effect of Cpl-7, a Pneumococcal Phage Lysozyme with Broad Bactericidal Activity, by Inverting the Net Charge of Its Cell Wall-Binding Module

    PubMed Central

    Díez-Martínez, Roberto; de Paz, Héctor; Bustamante, Noemí; García, Ernesto; Menéndez, Margarita

    2013-01-01

    Phage endolysins are murein hydrolases that break the bacterial cell wall to provoke lysis and release of phage progeny. Recently, these enzymes have also been recognized as powerful and specific antibacterial agents when added exogenously. In the pneumococcal system, most cell wall associated murein hydrolases reported so far depend on choline for activity, and Cpl-7 lysozyme constitutes a remarkable exception. Here, we report the improvement of the killing activity of the Cpl-7 endolysin by inversion of the sign of the charge of the cell wall-binding module (from −14.93 to +3.0 at neutral pH). The engineered variant, Cpl-7S, has 15 amino acid substitutions and an improved lytic activity against Streptococcus pneumoniae (including multiresistant strains), Streptococcus pyogenes, and other pathogens. Moreover, we have demonstrated that a single 25-μg dose of Cpl-7S significantly increased the survival rate of zebrafish embryos infected with S. pneumoniae or S. pyogenes, confirming the killing effect of Cpl-7S in vivo. Interestingly, Cpl-7S, in combination with 0.01% carvacrol (an essential oil), was also found to efficiently kill Gram-negative bacteria such as Escherichia coli and Pseudomonas putida, an effect not described previously. Our findings provide a strategy to improve the lytic activity of phage endolysins based on facilitating their pass through the negatively charged bacterial envelope, and thereby their interaction with the cell wall target, by modulating the net charge of the cell wall-binding modules. PMID:23959317

  7. Net charge changes in the calculation of relative ligand-binding free energies via classical atomistic molecular dynamics simulation

    PubMed Central

    Reif, Maria M; Oostenbrink, Chris

    2014-01-01

    The calculation of binding free energies of charged species to a target molecule is a frequently encountered problem in molecular dynamics studies of (bio-)chemical thermodynamics. Many important endogenous receptor-binding molecules, enzyme substrates, or drug molecules have a nonzero net charge. Absolute binding free energies, as well as binding free energies relative to another molecule with a different net charge will be affected by artifacts due to the used effective electrostatic interaction function and associated parameters (e.g., size of the computational box). In the present study, charging contributions to binding free energies of small oligoatomic ions to a series of model host cavities functionalized with different chemical groups are calculated with classical atomistic molecular dynamics simulation. Electrostatic interactions are treated using a lattice-summation scheme or a cutoff-truncation scheme with Barker–Watts reaction-field correction, and the simulations are conducted in boxes of different edge lengths. It is illustrated that the charging free energies of the guest molecules in water and in the host strongly depend on the applied methodology and that neglect of correction terms for the artifacts introduced by the finite size of the simulated system and the use of an effective electrostatic interaction function considerably impairs the thermodynamic interpretation of guest-host interactions. Application of correction terms for the various artifacts yields consistent results for the charging contribution to binding free energies and is thus a prerequisite for the valid interpretation or prediction of experimental data via molecular dynamics simulation. Analysis and correction of electrostatic artifacts according to the scheme proposed in the present study should therefore be considered an integral part of careful free-energy calculation studies if changes in the net charge are involved. © 2013 The Authors Journal of Computational Chemistry

  8. Net charge changes in the calculation of relative ligand-binding free energies via classical atomistic molecular dynamics simulation.

    PubMed

    Reif, Maria M; Oostenbrink, Chris

    2014-01-30

    The calculation of binding free energies of charged species to a target molecule is a frequently encountered problem in molecular dynamics studies of (bio-)chemical thermodynamics. Many important endogenous receptor-binding molecules, enzyme substrates, or drug molecules have a nonzero net charge. Absolute binding free energies, as well as binding free energies relative to another molecule with a different net charge will be affected by artifacts due to the used effective electrostatic interaction function and associated parameters (e.g., size of the computational box). In the present study, charging contributions to binding free energies of small oligoatomic ions to a series of model host cavities functionalized with different chemical groups are calculated with classical atomistic molecular dynamics simulation. Electrostatic interactions are treated using a lattice-summation scheme or a cutoff-truncation scheme with Barker-Watts reaction-field correction, and the simulations are conducted in boxes of different edge lengths. It is illustrated that the charging free energies of the guest molecules in water and in the host strongly depend on the applied methodology and that neglect of correction terms for the artifacts introduced by the finite size of the simulated system and the use of an effective electrostatic interaction function considerably impairs the thermodynamic interpretation of guest-host interactions. Application of correction terms for the various artifacts yields consistent results for the charging contribution to binding free energies and is thus a prerequisite for the valid interpretation or prediction of experimental data via molecular dynamics simulation. Analysis and correction of electrostatic artifacts according to the scheme proposed in the present study should therefore be considered an integral part of careful free-energy calculation studies if changes in the net charge are involved. © The Authors Journal of Computational Chemistry

  9. Electrically induced charge-density waves in a two-dimensional electron liquid: Effects of negative electronic compressibility

    NASA Astrophysics Data System (ADS)

    Hroblak, Erica E.; Principi, Alessandro; Zhao, Hui; Vignale, Giovanni

    2017-08-01

    We show that the negative electronic compressibility of two-dimensional electronic systems at sufficiently low density enables the generation of charge-density waves through the application of a uniform force field, provided no current is allowed to flow. The wavelength of the density oscillations is controlled by the magnitude of the (negative) screening length, and their amplitude is proportional to the applied force. Both are electrically tunable.

  10. Interfacial charge transfer between CdTe quantum dots and Gram negative vs. Gram positive bacteria.

    SciTech Connect

    Dumas, E.; Gao, C.; Suffern, D.; Bradforth, S. E.; Dimitrejevic, N. M.; Nadeau, J. L.; McGill Univ.; Univ. of Southern California

    2010-01-01

    Oxidative toxicity of semiconductor and metal nanomaterials to cells has been well established. However, it may result from many different mechanisms, some requiring direct cell contact and others resulting from the diffusion of reactive species in solution. Published results are contradictory due to differences in particle preparation, bacterial strain, and experimental conditions. It has been recently found that C{sub 60} nanoparticles can cause direct oxidative damage to bacterial proteins and membranes, including causing a loss of cell membrane potential (depolarization). However, this did not correlate with toxicity. In this study we perform a similar analysis using fluorescent CdTe quantum dots, adapting our tools to make use of the particles fluorescence. We find that two Gram positive strains show direct electron transfer to CdTe, resulting in changes in CdTe fluorescence lifetimes. These two strains also show changes in membrane potential upon nanoparticle binding. Two Gram negative strains do not show these effects - nevertheless, they are over 10-fold more sensitive to CdTe than the Gram positives. We find subtoxic levels of Cd{sup 2+} release from the particles upon irradiation of the particles, but significant production of hydroxyl radicals, suggesting that the latter is a major source of toxicity. These results help establish mechanisms of toxicity and also provide caveats for use of certain reporter dyes with fluorescent nanoparticles which will be of use to anyone performing these assays. The findings also suggest future avenues of inquiry into electron transfer processes between nanomaterials and bacteria.

  11. Drosophila distal-less negatively regulates dDREF by inhibiting its DNA binding activity.

    PubMed

    Hayashi, Yuko; Kato, Masaki; Seto, Hirokazu; Yamaguchi, Masamitsu

    2006-07-01

    The Drosophila DNA replication-related element binding factor (dDREF) is required for expression of many proliferation-related genes carrying the DRE sequence, 5'-TATCGATA. Over-expression of dDREF in the eye imaginal disc induces ectopic DNA synthesis, apoptosis and inhibition of photoreceptor cell specification, and results in rough eye phenotype in adults. In the present study, half dose reduction of the Distal-less (Dll) gene enhanced the dDREF-induced rough eye phenotype, suggesting that Dll negatively regulates dDREF activity in eye imaginal disc cells. Biochemical analyses revealed the N-terminal (30aa to 124aa) and C-terminal (190aa to 327aa) regions of Dll to interact with the DNA binding domain (16aa to 125aa) of dDREF, although it is not clear yet whether the interaction is direct or indirect. Electrophoretic mobility shift assays showed that Dll thereby inhibits DNA binding. The repression of this dDREF-function by a homeodomain protein like Dll may contribute to the differentiation-coupled repression of cell proliferation during development.

  12. Radiation transport codes for potential applications related to radiobiology and radiotherapy using protons, neutrons, and negatively charged pions

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.

    1972-01-01

    Several Monte Carlo radiation transport computer codes are used to predict quantities of interest in the fields of radiotherapy and radiobiology. The calculational methods are described and comparisions of calculated and experimental results are presented for dose distributions produced by protons, neutrons, and negatively charged pions. Comparisons of calculated and experimental cell survival probabilities are also presented.

  13. O(2) adsorption and dissociation on neutral, positively and negatively charged Au(n) (n = 5-79) clusters.

    PubMed

    Roldán, Alberto; Ricart, Josep Manel; Illas, Francesc; Pacchioni, Gianfranco

    2010-09-28

    The adsorption and dissociation of an O(2) molecule on gas-phase gold clusters of size varying from 5 to 79 atoms have been investigated by means of first principles density functional theory calculations. The adsorption energies and dissociation barriers have been determined for neutral, positively and negatively charged gold clusters in order to analyze in a systematic way the role of the charge on the cluster reactivity. While there is beneficial effect on O(2) activation of an extra electron on the small gold clusters (Au(5) and Au(13)), the effect is absent for positively charged clusters. The effect of the charge vanishes rapidly by increasing the cluster size and is not visible for clusters containing about 40 atoms or more. Au(38) appears to be the most reactive among the clusters considered and strong oscillations in adsorption energies and dissociation barriers are found even for clusters containing several tens of atoms like Au(38), Au(55), and Au(79).

  14. Theoretical study of negatively charged Fe(-)-(H2O)(n ≤ 6) clusters.

    PubMed

    Castro, Miguel

    2012-06-14

    Interactions of a singly negatively charged iron atom with water molecules, Fe(-)-(H(2)O)(n≤6), in the gas phase were studied by means of density functional theory. All-electron calculations were performed using the B3LYP functional and the 6-311++G(2d,2p) basis set for the Fe, O, and H atoms. In the lowest total energy states of Fe(-)-(H(2)O)(n), the metal-hydrogen bonding is stronger than the metal-oxygen one, producing low-symmetry structures because the water molecules are directly attached to the metal by basically one of their hydrogen atoms, whereas the other ones are involved in a network of hydrogen bonds, which together with the Fe(δ-)-H(δ+) bonding accounts for the nascent hydration of the Fe(-) anion. For Fe(-)-(H(2)O)(3≤n), three-, four-, five-, and six-membered rings of water molecules are bonded to the metal, which is located at the surface of the cluster in such a way as to reduce the repulsion with the oxygen atoms. Nevertheless, internal isomers appear also, lying less than 3 or 5 kcal/mol for n = 2-3 or n = 4-6. These results are in contrast with those of classical TM(+)-(H(2)O)(n) complexes, where the direct TM(+)-O bonding usually produces high symmetry structures with the metal defining the center of the complex. They show also that the Fe(-) anions, as the TM(+) ions, have great capability for the adsorption of water molecules, forming Fe(-)-(H(2)O)(n) structures stabilized by Fe(δ-)-H(δ+) and H-bond interactions.

  15. Design, synthesis and biological evaluation of negatively charged ¹¹¹In-DTPA-octreotide derivatives.

    PubMed

    Oshima, Nobuhiro; Akizawa, Hiromichi; Zhao, Songji; Zhao, Yan; Nishijima, Ken-ichi; Kitamura, Yoji; Arano, Yasushi; Kuge, Yuji; Ohkura, Kazue

    2014-02-15

    Our previous studies indicated that (111)In-diethylenetriaminepentaacetic acid ((111)In-DTPA)-octreotide derivatives with an additional negative charge by replacing N-terminal d-phenylalanine (d-Phe) with an acidic amino acid such as l-aspartic acid (Asp) or its derivative exhibited low renal radioactivity levels when compared with (111)In-DTPA-D-Phe(1)-octreotide. On the basis of the findings, we designed, synthesized and evaluated two Asp-modified (111)In-DTPA-conjugated octreotide derivatives, (111)In-DTPA-Asp(1)-octreotide and (111)In-DTPA-Asp(0)-D-Phe(1)-octreotide. While (111)In-DTPA-Asp(1)-octreotide showed negligible AR42J cell uptake, (111)In-DTPA-Asp(0)-D-Phe(1)-octreotide exhibited AR42J cell uptake similar to that of (111)In-DTPA-D-Phe(1)-octreotide. When administered to AR42J tumor-bearing mice, (111)In-DTPA-Asp(0)-D-Phe(1)-octreotide exhibited renal radioactivity levels significantly lower than did (111)In-DTPA-D-Phe(1)-octreotide at 1 and 3 h post-injection. No significant differences were observed in tumor accumulation between (111)In-DTPA-Asp(0)-D-Phe(1)-octreotide and (111)In-DTPA-D-Phe(1)-octreotide after 1 and 3h injection. The findings in this study suggested that an interposition of an Asp at an appropriate position in (111)In-DTPA-D-Phe(1)-octreotide would constitute a useful strategy to develop (111)In-DTPA-D-Phe(1)-octreotide derivatives of low renal radioactivity levels while preserving tumor accumulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Wound 'dechronification' with negatively-charged polystyrene microspheres: a double-blind RCT.

    PubMed

    Shoham, Y; Kogan, L; Weiss, J; Tamir, E; Krieger, Y; Barnea, Y; Regev, E; Vigoda, D; Haikin, N; Inbal, A; Arnon, O; Bogdanov-Berezovsky, A; Silberstein, E

    2013-03-01

    To compare the efficacy and safety of negatively-charged polystyrene microspheres (NCM)with controls (saline soaks) in the treatment of hard-to-heal wounds of various aetiologies. Patients with one or more hard-to-heal wounds, defined as refractory to healing for at least 4 weeks, or those with exposed bone, tendon or ligament, were eligible for inclusion and were randomised to either NCM (PolyHeal; MediWound Ltd.) or controls, both applied twice daily for 4 weeks. Patients were monitored bi-weekly for an additional 8 weeks, while treated by standard wound care, at the investigators' discretion, and were re-evaluated 2 years after inclusion. The primary endpoint was defined as coverage of> 75% of the wound area by light-red granulation tissue after 4 weeks of treatment. Fifty-eight patients completed the study, 32 in the NCM group and 26 in the control group. The two most common wound types were those with primary etiologies of venous insufficiency and postoperative/post trauma. In the NCM group 47% of patients achieved > 75% light red granulation tissue after 4 weeks compared with 15% of patients in the control group (p=O.O I). The mean wound surface area in the NCM group was reduced by 39.0% after 4 weeks compared with 14.9% in the control group (p=0.02).The achievement of> 75% light red granulation tissue and reduction of mean wound surface area was also observed in the two main sub-groups (venous insufficiency and postoperative/post trauma), although it was not statistically significant, possibly due to the small sample size in each sub-group. This study demonstrates that compared to control treatment, NCM treatment of hard to-heal and chronic wounds improves formation of healthy granulation tissue and reduces wound size thus in fact 'kick-starting' the healing process and 'dechronifying' chronic wounds.

  17. Tantalum oxide/silicon nitride: A negatively charged surface passivation stack for silicon solar cells

    SciTech Connect

    Wan, Yimao Bullock, James; Cuevas, Andres

    2015-05-18

    This letter reports effective passivation of crystalline silicon (c-Si) surfaces by thermal atomic layer deposited tantalum oxide (Ta{sub 2}O{sub 5}) underneath plasma enhanced chemical vapour deposited silicon nitride (SiN{sub x}). Cross-sectional transmission electron microscopy imaging shows an approximately 2 nm thick interfacial layer between Ta{sub 2}O{sub 5} and c-Si. Surface recombination velocities as low as 5.0 cm/s and 3.2 cm/s are attained on p-type 0.8 Ω·cm and n-type 1.0 Ω·cm c-Si wafers, respectively. Recombination current densities of 25 fA/cm{sup 2} and 68 fA/cm{sup 2} are measured on 150 Ω/sq boron-diffused p{sup +} and 120 Ω/sq phosphorus-diffused n{sup +} c-Si, respectively. Capacitance–voltage measurements reveal a negative fixed insulator charge density of −1.8 × 10{sup 12 }cm{sup −2} for the Ta{sub 2}O{sub 5} film and −1.0 × 10{sup 12 }cm{sup −2} for the Ta{sub 2}O{sub 5}/SiN{sub x} stack. The Ta{sub 2}O{sub 5}/SiN{sub x} stack is demonstrated to be an excellent candidate for surface passivation of high efficiency silicon solar cells.

  18. Charge enhancement of single-stranded DNA in negative electrospray ionization using the supercharging reagent meta-nitrobenzyl alcohol.

    PubMed

    Brahim, Bessem; Alves, Sandra; Cole, Richard B; Tabet, Jean-Claude

    2013-12-01

    Charge enhancement of single-stranded oligonucleotide ions in negative ESI mode is investigated. The employed reagent, meta-nitrobenzyl alcohol (m-NBA), was found to improve total signal intensity (Itot), increase the highest observed charge states (zhigh), and raise the average charge states (zavg) of all tested oligonucleotides analyzed in negative ESI. To quantify these increases, signal enhancement ratios (SER1%) and charge enhancement coefficients (CEC1%) were introduced. The SER1%, (defined as the quotient of total oligonucleotide ion abundances with 1% m-NBA divided by total oligonucleotide abundance without m-NBA) was found to be greater than unity for every oligonucleotide tested. The CEC1% values (defined as the average charge state in the presence of 1% m-NBA minus the average charge state in the absence of m-NBA) were found to be uniformly positive. Upon close inspection, the degree of charge enhancement for longer oligonucleotides was found to be dependent upon thymine density (i.e., the number and the location of phospho-thymidine units). A correlation between the charge enhancement induced by the presence of m-NBA and the apparent gas-phase acidity (largely determined by the sequence of thymine units but also by the presence of protons on other nucleobases) of multiply deprotonated oligonucleotide species, was thus established. Ammonium cations appeared to be directly involved in the m-NBA supercharging mechanism, and their role seems to be consistent with previously postulated ESI mechanisms describing desorption/ionization of single-stranded DNA into the gas phase.

  19. Charge Enhancement of Single-Stranded DNA in Negative Electrospray Ionization Using the Supercharging Reagent Meta-nitrobenzyl Alcohol

    NASA Astrophysics Data System (ADS)

    Brahim, Bessem; Alves, Sandra; Cole, Richard B.; Tabet, Jean-Claude

    2013-12-01

    Charge enhancement of single-stranded oligonucleotide ions in negative ESI mode is investigated. The employed reagent, meta-nitrobenzyl alcohol (m-NBA), was found to improve total signal intensity (Itot), increase the highest observed charge states (zhigh), and raise the average charge states (zavg) of all tested oligonucleotides analyzed in negative ESI. To quantify these increases, signal enhancement ratios (SER1%) and charge enhancement coefficients (CEC1%) were introduced. The SER1%, (defined as the quotient of total oligonucleotide ion abundances with 1 % m-NBA divided by total oligonucleotide abundance without m-NBA) was found to be greater than unity for every oligonucleotide tested. The CEC1% values (defined as the average charge state in the presence of 1 % m-NBA minus the average charge state in the absence of m-NBA) were found to be uniformly positive. Upon close inspection, the degree of charge enhancement for longer oligonucleotides was found to be dependent upon thymine density (i.e., the number and the location of phospho-thymidine units). A correlation between the charge enhancement induced by the presence of m-NBA and the apparent gas-phase acidity (largely determined by the sequence of thymine units but also by the presence of protons on other nucleobases) of multiply deprotonated oligonucleotide species, was thus established. Ammonium cations appeared to be directly involved in the m-NBA supercharging mechanism, and their role seems to be consistent with previously postulated ESI mechanisms describing desorption/ionization of single-stranded DNA into the gas phase.

  20. Spectroscopic evidence for charge-transfer complexation in monoclonal antibodies that bind opiates.

    PubMed

    Droupadi, P R; Meyers, E A; Linthicum, D S

    1994-04-01

    Molecular complexes of four monoclonal anti-morphine antibodies (mAb) with the opiate ligands morphine, oxymorphone, and naloxone were studied using UV-VIS absorption spectroscopy. Although strong overlaps in the absorption spectra of the antibodies, ligands, and complexes were observed, a curve-fitting method was developed to correlate the absorbance with the concentration of the ligand-antibody complex. Using this technique, we determined the intrinsic association constants for the mAb with morphine to be in the nanomolar range, while association constants for oxymorphone and naloxone were in the micromolar range. These values were found to be in agreement with previous radioimmunoassay determinations. We also observed different changes in the absorbancy of the mAb upon complexation with different ligands and such changes were found to be different for all four mAb examined. Upon complexation with the ligand morphine, two of the mAb (clone numbers MOR368-21 and MOR10.5) displayed distinct charge-transfer spectral bands in the 320-nm region. These observations suggest that mAb binding site tryptophans may participate in the formation of the antibody-ligand complex and such complexation involves a charge-transfer interaction.

  1. Strong Enrichment of Aromatic Residues in Binding Sites from a Charge-neutralized Hyperthermostable Sso7d Scaffold Library*

    PubMed Central

    Kiefer, Jonathan D.; Srinivas, Raja R.; Lobner, Elisabeth; Tisdale, Alison W.; Mehta, Naveen K.; Yang, Nicole J.; Tidor, Bruce; Wittrup, K. Dane

    2016-01-01

    The Sso7d protein from the hyperthermophilic archaeon Sulfolobus solfataricus is an attractive binding scaffold because of its small size (7 kDa), high thermal stability (Tm of 98 °C), and absence of cysteines and glycosylation sites. However, as a DNA-binding protein, Sso7d is highly positively charged, introducing a strong specificity constraint for binding epitopes and leading to nonspecific interaction with mammalian cell membranes. In the present study, we report charge-neutralized variants of Sso7d that maintain high thermal stability. Yeast-displayed libraries that were based on this reduced charge Sso7d (rcSso7d) scaffold yielded binders with low nanomolar affinities against mouse serum albumin and several epitopes on human epidermal growth factor receptor. Importantly, starting from a charge-neutralized scaffold facilitated evolutionary adaptation of binders to differentially charged epitopes on mouse serum albumin and human epidermal growth factor receptor, respectively. Interestingly, the distribution of amino acids in the small and rigid binding surface of enriched rcSso7d-based binders is very different from that generally found in more flexible antibody complementarity-determining region loops but resembles the composition of antibody-binding energetic hot spots. Particularly striking was a strong enrichment of the aromatic residues Trp, Tyr, and Phe in rcSso7d-based binders. This suggests that the rigidity and small size of this scaffold determines the unusual amino acid composition of its binding sites, mimicking the energetic core of antibody paratopes. Despite the high frequency of aromatic residues, these rcSso7d-based binders are highly expressed, thermostable, and monomeric, suggesting that the hyperstability of the starting scaffold and the rigidness of the binding surface confer a high tolerance to mutation. PMID:27582495

  2. Positive and negative design for nonconsensus protein-DNA binding affinity in the vicinity of functional binding sites.

    PubMed

    Afek, Ariel; Lukatsky, David B

    2013-10-01

    Recent experiments provide an unprecedented view of protein-DNA binding in yeast and human genomes at single-nucleotide resolution. These measurements, performed over large cell populations, show quite generally that sequence-specific transcription regulators with well-defined protein-DNA consensus motifs bind only a fraction among all consensus motifs present in the genome. Alternatively, proteins in vivo often bind DNA regions lacking known consensus sequences. The rules determining whether a consensus motif is functional remain incompletely understood. Here we predict that genomic background surrounding specific protein-DNA binding motifs statistically modulates the binding of sequence-specific transcription regulators to these motifs. In particular, we show that nonconsensus protein-DNA binding in yeast is statistically enhanced, on average, around functional Reb1 motifs that are bound as compared to nonfunctional Reb1 motifs that are unbound. The landscape of nonconsensus protein-DNA binding around functional CTCF motifs in human demonstrates a more complex behavior. In particular, human genomic regions characterized by the highest CTCF occupancy, show statistically reduced level of nonconsensus protein-DNA binding. Our findings suggest that nonconsensus protein-DNA binding is fine-tuned around functional binding sites using a variety of design strategies. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Role of negatively charged ions in plasma on the growth and field emission properties of spherical carbon nanotube tip

    SciTech Connect

    Tewari, Aarti; Walia, Ritu; Sharma, Suresh C.

    2012-01-15

    The role of negatively charged ions in plasma on growth (without catalyst) and field emission properties of spherical carbon nanotube (CNT) tip has been theoretically investigated. A theoretical model of charge neutrality, including the kinetics of electrons, negatively and positively charged ions, neutral atoms, and the energy balance of various species has been developed. Numerical calculations of the spherical CNT tip radius for different relative density of negatively charged ions {epsilon}{sub r}(=n{sub SF{sub 6{sup -}}}/n{sub C{sup +}}, where n{sub SF{sub 6{sup -}}} and n{sub C}{sup +} are the equilibrium densities of sulphur hexafluoride and carbon ions, respectively) have been carried out for the typical glow discharge plasma parameters. It is found that the spherical CNT tip radius decreases with {epsilon}{sub r} and hence the field emission of electrons from the spherical CNT tip increases. Some of our theoretical results are in accordance with the existing experimental observations.

  4. Negligible "negative space-charge layer effects" at oxide-electrolyte/electrode interfaces of thin-film batteries.

    PubMed

    Haruta, Masakazu; Shiraki, Susumu; Suzuki, Tohru; Kumatani, Akichika; Ohsawa, Takeo; Takagi, Yoshitaka; Shimizu, Ryota; Hitosugi, Taro

    2015-03-11

    In this paper, we report the surprisingly low electrolyte/electrode interface resistance of 8.6 Ω cm(2) observed in thin-film batteries. This value is an order of magnitude smaller than that presented in previous reports on all-solid-state lithium batteries. The value is also smaller than that found in a liquid electrolyte-based batteries. The low interface resistance indicates that the negative space-charge layer effects at the Li3PO(4-x)N(x)/LiCoO2 interface are negligible and demonstrates that it is possible to fabricate all-solid state batteries with faster charging/discharging properties.

  5. Validity of Saha's equation of thermal ionization for negatively charged spherical particles in complex plasmas in thermal equilibrium

    SciTech Connect

    Sodha, M. S.; Mishra, S. K.

    2011-04-15

    The authors have discussed the validity of Saha's equation for the charging of negatively charged spherical particles in a complex plasma in thermal equilibrium, even when the tunneling of the electrons, through the potential energy barrier surrounding the particle is considered. It is seen that the validity requires the probability of tunneling of an electron through the potential energy barrier surrounding the particle to be independent of the direction (inside to outside and vice versa) or in other words the Born's approximation should be valid.

  6. Electrical discharge occurring between a negatively charged particle cloud and a grounded sphere electrode

    NASA Astrophysics Data System (ADS)

    Higashiyama, Y.; Migita, S.; Toki, K.; Sugimoto, T.

    2008-12-01

    Electrostatic discharge occurring between a space-charge cloud and a grounded object was investigated using a large-scale charged particle cloud formed by using three set of cloud generators consisting of a blower and corona charger. The ejecting velocity of the particles affects the formation of the charged cloud. At the lower velocity, the charged cloud spread due to electrostatic repulsion force, while at the higher velocity cloud forms an elongated conical shape. To cause electrostatic discharge between the cloud and a grounded object, a grounded sphere electrode with 100 mm in diameter was set at the inside or outside of the cloud. The brush-like discharge channels reached the maximum length of 0.55 m. The discharge current has a waveform with single or multi-peak, a current peak of several amperes, the maximum charge quantity of 2 μC, and the duration of several microseconds. The relationship between the charge quantity and the current peak or the duration in each discharge was examined. The discharge between the cloud and the electrode placed at the outside of the cloud has relatively longer channels and multi-peak current with the longer duration, while that at the inside of the cloud has the lower charge quantity with single peak.

  7. PLK1 is a binding partner and a negative regulator of FOXO3 tumor suppressor

    PubMed Central

    Bucur, Octavian; Stancu, Andreea Lucia; Muraru, Maria Sinziana; Melet, Armelle; Petrescu, Stefana Maria; Khosravi-Far, Roya

    2015-01-01

    FOXO family members (FOXOs: FOXO1, FOXO3, FOXO4 and FOXO6) are important transcription factors and tumor suppressors controlling cell homeostasis and cell fate. They are characterized by an extraordinary functional diversity, being involved in regulation of cell cycle, proliferation, apoptosis, DNA damage response, oxidative detoxification, cell differentiation and stem cell maintenance, cell metabolism, angiogenesis, cardiac and other organ’s development, aging, and other critical cellular processes. FOXOs are tightly regulated by reversible phosphorylation, ubiquitination, acetylation and methylation. Interestingly, the known kinases phosphorylate only a small percentage of the known or predicted FOXOs phosphorylation sites, suggesting that additional kinases that phosphorylate and control FOXOs activity exist. In order to identify novel regulators of FOXO3, we have employed a proteomics screening strategy. Using HeLa cancer cell line and a Tandem Affinity Purification followed by Mass Spectrometry analysis, we identified several proteins as binding partners of FOXO3. Noteworthy, Polo Like Kinase 1 (PLK1) proto-oncogene was one of the identified FOXO3 binding partners. PLK1 plays a critical role during cell cycle (G2-M transition and all phases of mitosis) and in maintenance of genomic stability. Our experimental results presented in this manuscript demonstrate that FOXO3 and PLK1 exist in a molecular complex through most of the phases of the cell cycle, with a higher occurrence in the G2-M cell cycle phases. PLK1 induces translocation of FOXO3 from the nucleus to the cytoplasm and suppresses FOXO3 activity, measured by the decrease in the pro-apoptotic Bim protein levels and in the cell cycle inhibitor protein p27. Furthermore, PLK1 can directly phosphorylate FOXO3 in an in vitro kinase assay. These results present the discovery of PLK1 proto-oncogene as a binding partner and a negative regulator of FOXO3 tumor suppressor. PMID:26280018

  8. PLK1 is a binding partner and a negative regulator of FOXO3 tumor suppressor.

    PubMed

    Bucur, Octavian; Stancu, Andreea Lucia; Muraru, Maria Sinziana; Melet, Armelle; Petrescu, Stefana Maria; Khosravi-Far, Roya

    2014-01-01

    FOXO family members (FOXOs: FOXO1, FOXO3, FOXO4 and FOXO6) are important transcription factors and tumor suppressors controlling cell homeostasis and cell fate. They are characterized by an extraordinary functional diversity, being involved in regulation of cell cycle, proliferation, apoptosis, DNA damage response, oxidative detoxification, cell differentiation and stem cell maintenance, cell metabolism, angiogenesis, cardiac and other organ's development, aging, and other critical cellular processes. FOXOs are tightly regulated by reversible phosphorylation, ubiquitination, acetylation and methylation. Interestingly, the known kinases phosphorylate only a small percentage of the known or predicted FOXOs phosphorylation sites, suggesting that additional kinases that phosphorylate and control FOXOs activity exist. In order to identify novel regulators of FOXO3, we have employed a proteomics screening strategy. Using HeLa cancer cell line and a Tandem Affinity Purification followed by Mass Spectrometry analysis, we identified several proteins as binding partners of FOXO3. Noteworthy, Polo Like Kinase 1 (PLK1) proto-oncogene was one of the identified FOXO3 binding partners. PLK1 plays a critical role during cell cycle (G2-M transition and all phases of mitosis) and in maintenance of genomic stability. Our experimental results presented in this manuscript demonstrate that FOXO3 and PLK1 exist in a molecular complex through most of the phases of the cell cycle, with a higher occurrence in the G2-M cell cycle phases. PLK1 induces translocation of FOXO3 from the nucleus to the cytoplasm and suppresses FOXO3 activity, measured by the decrease in the pro-apoptotic Bim protein levels and in the cell cycle inhibitor protein p27. Furthermore, PLK1 can directly phosphorylate FOXO3 in an in vitro kinase assay. These results present the discovery of PLK1 proto-oncogene as a binding partner and a negative regulator of FOXO3 tumor suppressor.

  9. Diffusivity of the double negatively charged mono-vacancy in silicon

    NASA Astrophysics Data System (ADS)

    Bhoodoo, Chidanand; Vines, Lasse; Monakhov, Edouard; Svensson, Bengt Gunnar

    2017-05-01

    Lightly-doped silicon (Si) samples of n-type conductivity have been irradiated with 2.0 MeV {{\\text{H}}+} ions at a temperature of 30 K and characterized in situ by deep level transient spectroscopy (DLTS) measurements using an on-line setup. Migration of the Si mono-vacancy in its double negative charge state (V 2-) starts to occur at temperatures above  ˜70 K and is monitored via trapping of V 2- by interstitial oxygen impurity atoms ({{\\text{O}}i} ), leading to the growth of the prominent vacancy-oxygen (V\\text{O} ) center. The V\\text{O} center gives rise to an acceptor level located at  ˜0.17 eV below the conduction band edge (E c ) and is readily detected by DLTS measurements. Post-irradiation isothermal anneals at temperatures in the range of 70 to 90 K reveal first-order kinetics for the reaction {{V}2-}+{{\\text{O}}i}\\to V\\text{O} ≤ft(+ 2{{e}-}\\right) in both Czochralski-grown and Float-zone samples subjected to low fluences of {{\\text{H}}+} ions, i.e. the irradiation-induced V concentration is dilute (≤slant 1013 cm-3). On the basis of these kinetics data and the content of {{\\text{O}}i} , the diffusivity of V 2- can be determined quantitatively and is found to exhibit an activation energy for migration of  ˜0.18 eV with a pre-exponential factor of  ˜4× {{10}-3} cm2 s-1. The latter value evidences a simple jump process without any entropy effects for the motion of V 2-. No deep level in the bandgap to be associated with V 2- is observed but the results suggest that the level is situated deeper than  ˜0.19 eV below E c , corroborating results reported previously in the literature.

  10. Diffusivity of the double negatively charged mono-vacancy in silicon.

    PubMed

    Bhoodoo, Chidanand; Vines, Lasse; Monakhov, Edouard; Gunnar Svensson, Bengt

    2017-03-27

    Lightly-doped silicon (Si) samples of n-type conductivity have been irradiated with 2.0 MeV [Formula: see text] ions at a temperature of 30 K and characterized in situ by deep level transient spectroscopy (DLTS) measurements using an on-line setup. Migration of the Si mono-vacancy in its double negative charge state (V (2-)) starts to occur at temperatures above  ∼70 K and is monitored via trapping of V (2-) by interstitial oxygen impurity atoms ([Formula: see text]), leading to the growth of the prominent vacancy-oxygen ([Formula: see text]) center. The [Formula: see text] center gives rise to an acceptor level located at  ∼0.17 eV below the conduction band edge (E c ) and is readily detected by DLTS measurements. Post-irradiation isothermal anneals at temperatures in the range of 70 to 90 K reveal first-order kinetics for the reaction [Formula: see text] in both Czochralski-grown and Float-zone samples subjected to low fluences of [Formula: see text] ions, i.e. the irradiation-induced V concentration is dilute ([Formula: see text]10(13) cm(-3)). On the basis of these kinetics data and the content of [Formula: see text], the diffusivity of V (2-) can be determined quantitatively and is found to exhibit an activation energy for migration of  ∼0.18 eV with a pre-exponential factor of  ∼[Formula: see text] cm(2) s(-1). The latter value evidences a simple jump process without any entropy effects for the motion of V (2-). No deep level in the bandgap to be associated with V (2-) is observed but the results suggest that the level is situated deeper than  ∼0.19 eV below E c , corroborating results reported previously in the literature.

  11. One-Dimensional Brownian Motion of Charged Nanoparticles along Microtubules: A Model System for Weak Binding Interactions

    PubMed Central

    Minoura, Itsushi; Katayama, Eisaku; Sekimoto, Ken; Muto, Etsuko

    2010-01-01

    Abstract Various proteins are known to exhibit one-dimensional Brownian motion along charged rodlike polymers, such as microtubules (MTs), actin, and DNA. The electrostatic interaction between the proteins and the rodlike polymers appears to be crucial for one-dimensional Brownian motion, although the underlying mechanism has not been fully clarified. We examined the interactions of positively-charged nanoparticles composed of polyacrylamide gels with MTs. These hydrophilic nanoparticles bound to MTs and displayed one-dimensional Brownian motion in a charge-dependent manner, which indicates that nonspecific electrostatic interaction is sufficient for one-dimensional Brownian motion. The diffusion coefficient decreased exponentially with an increasing particle charge (with the exponent being 0.10 kBT per charge), whereas the duration of the interaction increased exponentially (exponent of 0.22 kBT per charge). These results can be explained semiquantitatively if one assumes that a particle repeats a cycle of binding to and movement along an MT until it finally dissociates from the MT. During the movement, a particle is still electrostatically constrained in the potential valley surrounding the MT. This entire process can be described by a three-state model analogous to the Michaelis-Menten scheme, in which the two parameters of the equilibrium constant between binding and movement, and the rate of dissociation from the MT, are derived as a function of the particle charge density. This study highlights the possibility that the weak binding interactions between proteins and rodlike polymers, e.g., MTs, are mediated by a similar, nonspecific charge-dependent mechanism. PMID:20409479

  12. Probing the existence of G protein-coupled receptor dimers by positive and negative ligand-dependent cooperative binding.

    PubMed

    Albizu, Laura; Balestre, Marie-Noëlle; Breton, Christophe; Pin, Jean-Philippe; Manning, Maurice; Mouillac, Bernard; Barberis, Claude; Durroux, Thierry

    2006-11-01

    An increasing amount of ligand binding data on G protein-coupled receptors (GPCRs) is not compatible with the prediction of the simple mass action law. This may be related to the propensity of most GPCRs, if not all, to oligomerize. Indeed, one of the consequences of receptor oligomerization could be a possible cross-talk between the protomers, which in turn could lead to negative or positive cooperative ligand binding. We prove here that this can be demonstrated experimentally. Saturation, dissociation, and competition binding experiments were performed on vasopressin and oxytocin receptors expressed in Chinese hamster ovary or COS-7 cells. Linear, concave, and convex Scatchard plots were then obtained, depending on the ligand used. Moreover, some competition curves exhibited an increase of the radiotracer binding for low concentrations of competitors, suggesting a cooperative binding process. These data demonstrate that various vasopressin analogs display either positive or negative cooperative binding. Because positive cooperative binding cannot be explained without considering receptor as multivalent, these binding data support the concept of GPCR dimerization process. The results, which are in good accordance with the predictions of previous mathematical models, suggest that binding experiments can be used to probe the existence of receptor dimers.

  13. Daylight-driven photocatalytic degradation of ionic dyes with negatively surface-charged In2S3 nanoflowers: dye charge-dependent roles of reactive species

    NASA Astrophysics Data System (ADS)

    Ge, Suxiang; Cai, Lejuan; Li, Dapeng; Fa, Wenjun; Zhang, Yange; Zheng, Zhi

    2015-12-01

    Even though dye degradation is a successful application of semiconductor photocatalysis, the roles of reactive species in dye degradation have not received adequate attention. In this study, we systematically investigated the degradation of two cationic dyes (rhodamine B and methylene blue) and two anionic dyes (methyl orange and orange G) over negatively surface-charged In2S3 nanoflowers synthesized at 80 °C under indoor daylight lamp irradiation. It is notable to find In2S3 nanoflowers were more stable in anionic dyes degradation compared to that in cationic dyes removal. The active species trapping experiments indicated photogenerated electrons were mainly responsible for cationic dyes degradation, but holes were more important in anionic dyes degradation. A surface-charge-dependent role of reactive species in ionic dye degradation was proposed for revealing such interesting phenomenon. This study would provide a new insight for preparing highly efficient daylight-driven photocatalyst for ionic dyes degradation.

  14. The Dishevelled-binding protein CXXC5 negatively regulates cutaneous wound healing.

    PubMed

    Lee, Soung-Hoon; Kim, Mi-Yeon; Kim, Hyun-Yi; Lee, Young-Mi; Kim, Heesu; Nam, Kyoung Ae; Roh, Mi Ryung; Min, Do Sik; Chung, Kee Yang; Choi, Kang-Yell

    2015-06-29

    Wnt/β-catenin signaling plays important roles in cutaneous wound healing and dermal fibrosis. However, its regulatory mechanism has not been fully elucidated, and a commercially available wound-healing agent targeting this pathway is desirable but currently unavailable. We found that CXXC-type zinc finger protein 5 (CXXC5) serves as a negative feedback regulator of the Wnt/β-catenin pathway by interacting with the Dishevelled (Dvl) protein. In humans, CXXC5 protein levels were reduced in epidermal keratinocytes and dermal fibroblasts of acute wounds. A differential regulation of β-catenin, α-smooth muscle actin (α-SMA), and collagen I by overexpression and silencing of CXXC5 in vitro indicated a critical role for this factor in myofibroblast differentiation and collagen production. In addition, CXXC5(-/-) mice exhibited accelerated cutaneous wound healing, as well as enhanced keratin 14 and collagen synthesis. Protein transduction domain (PTD)-Dvl-binding motif (DBM), a competitor peptide blocking CXXC5-Dvl interactions, disrupted this negative feedback loop and activated β-catenin and collagen production in vitro. Co-treatment of skin wounds with PTD-DBM and valproic acid (VPA), a glycogen synthase kinase 3β (GSK3β) inhibitor which activates the Wnt/β-catenin pathway, synergistically accelerated cutaneous wound healing in mice. Together, these data suggest that CXXC5 would represent a potential target for future therapies aimed at improving wound healing. © 2015 Lee et al.

  15. The Dishevelled-binding protein CXXC5 negatively regulates cutaneous wound healing

    PubMed Central

    Lee, Soung-Hoon; Kim, Mi-Yeon; Kim, Hyun-Yi; Lee, Young-Mi; Kim, Heesu; Nam, Kyoung Ae; Roh, Mi Ryung; Min, Do Sik; Chung, Kee Yang

    2015-01-01

    Wnt/β-catenin signaling plays important roles in cutaneous wound healing and dermal fibrosis. However, its regulatory mechanism has not been fully elucidated, and a commercially available wound-healing agent targeting this pathway is desirable but currently unavailable. We found that CXXC-type zinc finger protein 5 (CXXC5) serves as a negative feedback regulator of the Wnt/β-catenin pathway by interacting with the Dishevelled (Dvl) protein. In humans, CXXC5 protein levels were reduced in epidermal keratinocytes and dermal fibroblasts of acute wounds. A differential regulation of β-catenin, α-smooth muscle actin (α-SMA), and collagen I by overexpression and silencing of CXXC5 in vitro indicated a critical role for this factor in myofibroblast differentiation and collagen production. In addition, CXXC5−/− mice exhibited accelerated cutaneous wound healing, as well as enhanced keratin 14 and collagen synthesis. Protein transduction domain (PTD)–Dvl-binding motif (DBM), a competitor peptide blocking CXXC5-Dvl interactions, disrupted this negative feedback loop and activated β-catenin and collagen production in vitro. Co-treatment of skin wounds with PTD-DBM and valproic acid (VPA), a glycogen synthase kinase 3β (GSK3β) inhibitor which activates the Wnt/β-catenin pathway, synergistically accelerated cutaneous wound healing in mice. Together, these data suggest that CXXC5 would represent a potential target for future therapies aimed at improving wound healing. PMID:26056233

  16. Interaction of poly(L-arginine) with negatively charged DPPG membranes: calorimetric and monolayer studies.

    PubMed

    Schwieger, Christian; Blume, Alfred

    2009-08-10

    The interaction of poly(L-arginine) (PLA) with dipalmitoyl-phosphatidylglycerol (DPPG) bilayer membranes and monolayers was studied by differential scanning calorimetry (DSC), isothermal titration calorimetry (ITC), and monolayer experiments. The binding of PLA affected the main transition temperature of lipid bilayers (T(m)) only marginally. Depending on the PLA chain length, T(m) was slightly increased or decreased. This finding was attributed to the superposition of two counteracting effects on the transition after PLA binding. The main transition enthalpy (DeltaH(m)) was decreased upon PLA binding and the formation of a ripple phase (P(beta)') was suppressed. ITC experiments showed that two distinct processes are involved in binding of PLA to gel phase (L(beta)') membranes. At low peptide content the binding reaction is endothermic, and at high peptide concentration the binding becomes exothermic. However, the enthalpy of binding to fluid (L(alpha)) membranes was exothermic for all peptide-to-lipid ratios. The temperature dependence of PLA binding to fluid palmitoyl-oleoyl-phosphatidylglycerol (POPG) membranes showed a decrease in binding enthalpy with increasing temperature (Delta(R)C(p) < 0), indicating hydrophobic contributions to the free energy of binding. For longer PLA chains, the binding enthalpy for L(alpha) membranes was more exothermic than for shorter chains. Monolayer adsorption experiments showed two consecutive binding processes. At low initial surface pressures (pi(0)) a condensation of the lipid film (Deltapi < 0) is first observed after PLA injection into the subphase, followed by an increase in film pressure (Deltapi > 0) due to insertion of peptide side chains into the monolayer. At higher pi(0) only an increase in film pressure can be observed due to the insertion of the side chains. Deltapi increases with increasing pi(0). The insertion of the peptide into the monolayer is corroborated by the observed shift of pi-A isotherms to higher

  17. A modified QM/MM Hamiltonian with the Self-Consistent-Charge Density-Functional-Tight-Binding Theory for highly charged QM regions.

    PubMed

    Hou, Guanhua; Zhu, Xiao; Elstner, Marcus; Cui, Qiang

    2012-11-13

    To improve the description of electrostatic interaction between QM and MM atoms when the QM is SCC-DFTB, we adopt a Klopman-Ohno (KO) functional form which considers the finite size of the QM and MM charge distributions. Compared to the original implementation that used a simple Coulombic interaction between QM Mulliken and MM point charges, the KO based QM/MM scheme takes charge penetration effect into consideration and therefore significantly improves the description of QM/MM interaction at short range, especially when the QM region is highly charged. To be consistent with the third-order formulation of SCC-DFTB, the Hubbard parameter in the KO functional is dependent on the QM charge. As a result, the effective size of the QM charge distribution naturally adjusts as the QM region undergoes chemical transformations, making the KO based QM/MM scheme particularly attractive for describing chemical reactions in the condensed phase. Together with the van der Waals parameters for the QM atom, the KO based QM/MM model introduces four parameters for each element type. They are fitted here based on microsolvation models of small solutes, focusing on negatively charged molecular ions, for elements O, C, H and P with a specific version of SCC-DFTB (SCC-DFTBPR). Test calculations confirm that the KO based QM/MM scheme significantly improves the interactions between QM and MM atoms over the original point charge based model and it is transferable due to the small number of parameters. The new form of QM/MM Hamiltonian will greatly improve the applicability of SCC-DFTB based QM/MM methods to problems that involve highly charged QM regions, such as enzyme catalyzed phosphoryl transfers.

  18. Mass spectrometry study of multiply negatively charged, gas-phase NaAOT micelles: how does charge state affect micellar structure and encapsulation?

    PubMed

    Fang, Yigang; Liu, Fangwei; Liu, Jianbo

    2013-01-01

    We report the formation and characterization of multiply negatively charged sodium bis(2-ethylhexyl) sulfosuccinate (NaAOT) aggregates in the gas phase, by electrospray ionization of methanol/water solution of NaAOT followed by detection using a guided-ion-beam tandem mass spectrometer. Singly and doubly charged aggregates dominate the mass spectra with the compositions of [Na(n-z)AOT(n)](z-) (n = 1-18 and z = 1-2). Solvation by water was detected only for small aggregates [Na(n-1)AOT(n)H(2)O](-) of n = 3-9. Incorporation of glycine and tryptophan into [Na(n-z)AOT(n)](z-) aggregates was achieved, aimed at identifying effects of guest molecule hydrophobicity on micellar solubilization. Only one glycine molecule could be incorporated into each [Na(n-z)AOT(n)](z-) of n ≥ 7, and at most two glycine molecules could be hosted in that of n ≥ 13. In contrast to glycine, up to four tryptophan molecules could be accommodated within single aggregates of n ≥ 6. However, deprotonation of tryptophan significantly decrease its affinity towards aggregates. Collision-induced dissociation (CID) was carried out for mass-selected aggregate ions, including measurements of product ion mass spectra for both empty and amino acid-containing aggregates. CID results provide a probe for aggregate structures, surfactant-solute interactions, and incorporation sites of amino acids. The present data was compared with mass spectrometry results of positively charged [Na(n+z)AOT(n)](z+) aggregates. Contrary to their positive analogues, which form reverse micelles, negatively charged aggregates may adopt a direct micelle-like structure with AOT polar heads exposed and amino acids being adsorbed near the micellar outer surface.

  19. Bright and dark triplet states of the negatively charged magnetoexcitons revealed in photoluminescence and time-resolved measurements

    NASA Astrophysics Data System (ADS)

    Munteanu, F. M.; Rickel, D. G.; Perry, C. H.; Kim, Yongmin; Simmons, J. A.; Reno, J. L.

    2000-12-01

    Continuous and time-resolved magnetophotoluminescence measurements of three GaAs/AlxGa1-xAs heterostructures have been made in high magnetic fields. The spectra revealed the presence of a singlet and two triplet states (the so-called ``bright'' and ``dark'' states) of the negatively charged magnetoexciton, in addition to the neutral exciton. For an asymmetrically doped single quantum well sample, the singlet and the dark triplet states converge (and possibly cross) at a field of about 40 T. The two single heterojunction samples on the other hand show no such convergence, and the singlet remains the fundamental state at least in fields to 60 T. The lifetimes of the charged magnetoexcitons increased linearly with field, whereas the neutral exciton was essentially field independent. The results clarify earlier experimental studies, and provide a confirmation of a recent theory of the behavior of charged magnetoexcitons in magnetic fields by Wojs et al. [Phys Rev. B 62, 4630 (2000)].

  20. Critical role of charged residues in helix 7 of the ligand binding domain in Hepatocyte Nuclear Factor 4α dimerisation and transcriptional activity

    PubMed Central

    Eeckhoute, Jérôme; Oxombre, Bénédicte; Formstecher, Pierre; Lefebvre, Philippe; Laine, Bernard

    2003-01-01

    Hepatocyte Nuclear Factor 4α (HNF4α, NR2A1) is central to hepatocyte and pancreatic β-cell functions. Along with retinoid X receptor α (RXRα), HNF4α belongs to the nuclear receptor subfamily 2 (NR2), characterised by a conserved arginyl residue and a glutamate residue insert in helix 7 (H7) of the ligand binding domain (LBD). Crystallographic studies indicate that R348 and E352 residues in RXRα H7 are involved in charge-driven interactions that improve dimerisation. Consistent with these findings, we showed that removing the charge of the corresponding residues in HNF4α H7, R258 and E262, impaired dimerisation in solution. Moreover, our results provide a new concept according to which helices of the HNF4α LBD dimerisation interface contribute differently to dimerisation required for DNA binding; unlike H9 and H10, H7 is not involved in DNA binding. Substitutions of E262 decreased the repression of HNF4α transcriptional activity by a dominant-negative HNF4α mutant, highlighting the importance of this residue for dimerisation in the cell context. The E262 insert is crucial for HNF4α function since its deletion abolished HNF4α transcriptional activity and coactivator recruitment. The glutamate residue insert and the conserved arginyl residue in H7 most probably represent a signature of the NR2 subfamily of nuclear receptors. PMID:14602925

  1. Critical role of charged residues in helix 7 of the ligand binding domain in Hepatocyte Nuclear Factor 4alpha dimerisation and transcriptional activity.

    PubMed

    Eeckhoute, Jérôme; Oxombre, Bénédicte; Formstecher, Pierre; Lefebvre, Philippe; Laine, Bernard

    2003-11-15

    Hepatocyte Nuclear Factor 4alpha (HNF4alpha, NR2A1) is central to hepatocyte and pancreatic beta-cell functions. Along with retinoid X receptor alpha (RXRalpha), HNF4alpha belongs to the nuclear receptor subfamily 2 (NR2), characterised by a conserved arginyl residue and a glutamate residue insert in helix 7 (H7) of the ligand binding domain (LBD). Crystallographic studies indicate that R348 and E352 residues in RXRalpha H7 are involved in charge-driven interactions that improve dimerisation. Consistent with these findings, we showed that removing the charge of the corresponding residues in HNF4alpha H7, R258 and E262, impaired dimerisation in solution. Moreover, our results provide a new concept according to which helices of the HNF4alpha LBD dimerisation interface contribute differently to dimerisation required for DNA binding; unlike H9 and H10, H7 is not involved in DNA binding. Substitutions of E262 decreased the repression of HNF4alpha transcriptional activity by a dominant-negative HNF4alpha mutant, highlighting the importance of this residue for dimerisation in the cell context. The E262 insert is crucial for HNF4alpha function since its deletion abolished HNF4alpha transcriptional activity and coactivator recruitment. The glutamate residue insert and the conserved arginyl residue in H7 most probably represent a signature of the NR2 subfamily of nuclear receptors.

  2. Electrical Detection of Negatively Charged Proteins Using n-Type Carbon Nanotube Field-Effect Transistor Biosensors

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yasuki; Maehashi, Kenzo; Ohno, Yasuhide; Matsumoto, Kazuhiko

    2010-02-01

    We fabricated n-type carbon nanotube field-effect transistor (CNTFET) biosensors. To prevent the single-wall carbon nanotube (SWNT)/metal contacts from adsorption of ambient molecules, SiNx passivation films were deposited on CNTFETs by catalytic chemical vapor deposition. CNTFETs with SiNx passivation films on SWNT/metal contacts, but SWNT channels are exposed to environment for sensing, exhibit n-type behavior both in air and solution. Negatively charged bovine serum albumin is successfully detected using the fabricated n-type CNTFET biosensors with SiNx passivation films. Electrical detections of both negatively and positively charged proteins are achieved using n- and p-type CNTFET biosensors, respectively.

  3. Propagation of charge-neutral beams in space - Modifications when negative ions are present

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Pritchett, P. L.

    1987-01-01

    Two-dimensional (three velocity component) electrostatic simulations are used to investigate the properties of a charge-neutral beam consisting of H(+), H(-), and electrons which will be used in the Beams on Rockets (BEAR) experiment to be launched in late 1987 or early 1988. For cross-field injection and beam densities much greater than the ambient plasma density, the beam splits into two approximately charge-neutral beams: a H(+)-e(-) beam that propagates down the field lines and a H(+)-H(-) beam that propagates at nearly the initial beam velocity on time scales less than the ion gyroperiod. Because of this splitting, space-charge oscillations are induced in the H(+)-H(-) component, which lead to its breakup. At lower beam densities, particularly when the beam electron density is less than about the density of the ambient plasma, the ambient plasma response reduces the space-charge fields as the beam splits and the space-charge oscillations are suppressed.

  4. Shotgun Metabolomics Approach for the Analysis of Negatively Charged Water-Soluble Cellular Metabolites from Mouse Heart Tissue

    PubMed Central

    Sun, Gang; Yang, Kui; Zhao, Zhongdan; Guan, Shaoping; Han, Xianlin; Gross, Richard W.

    2010-01-01

    A shotgun metabolomics approach using MALDI-TOF/TOF mass spectrometry was developed for the rapid analysis of negatively charged water-soluble cellular metabolites. Through the use of neutral organic solvents to inactivate endogenous enzyme activities (i.e., methanol/chloroform/H2O extraction), in conjunction with a matrix having minimal background noise (9-amnioacridine), a set of multiplexed conditions was developed that allowed identification of 285 peaks corresponding to negatively charged metabolites from mouse heart extracts. Identification of metabolite peaks was based on mass accuracy and was confirmed by tandem mass spectrometry for 90 of the identified metabolite peaks. Through multiplexing ionization conditions, new suites of metabolites could be ionized and “spectrometric isolation” of closely neighboring peaks for subsequent tandem mass spectrometric interrogation could be achieved. Moreover, assignments of ions from isomeric metabolites and quantitation of their relative abundance was achieved in many cases through tandem mass spectrometry by identification of diagnostic fragmentation ions (e.g., discrimination of ATP from dGTP). The high sensitivity of this approach facilitated the detection of extremely low abundance metabolites including important signaling metabolites such as IP3, cAMP, and cGMP. Collectively, these results identify a multiplexed MALDI-TOF/TOF MS approach for analysis of negatively charged metabolites in mammalian tissues. PMID:17665876

  5. The mouse albumin enhancer contains a negative regulatory element that interacts with a novel DNA-binding protein.

    PubMed Central

    Herbst, R S; Boczko, E M; Darnell, J E; Babiss, L E

    1990-01-01

    The far-upstream mouse albumin enhancer (-10.5 to -8.43 kilobases) has both positive and negative regulatory domains which contribute to the rate and tissue specificity of albumin gene transcription. (R. S. Herbst, N. Friedman, J. E. Darnell, Jr., and L. E. Babiss, Proc. Natl. Acad. Sci. USA 86:1553-1557). In this work, the negative regulatory region has been functionally localized to sequences -8.7 to -8.43 kilobases upstream of the albumin gene cap site. In the absence of the albumin-modulating region (in which there are binding sites for the transcription factor C/EBP), the negative region can suppress a neighboring positive-acting element, thereby interfering with albumin enhancer function. The negative region is also capable of negating the positive action of the heterologous transthyretin enhancer in an orientation-independent fashion. Within this negative-acting region we can detect two DNA-binding sites, both of which are recognized by a protein present in all cell types tested. This DNA-binding activity is not competed for by any of a series of known DNA-binding sites, and hence this new protein is a candidate for a role in suppressing the albumin gene in nonhepatic cells. Images PMID:2370857

  6. On the binding energy and the charge symmetry breaking in A ≤ 16 Λ-hypernuclei

    NASA Astrophysics Data System (ADS)

    Botta, E.; Bressani, T.; Feliciello, A.

    2017-04-01

    In recent years, several experiments using magnetic spectrometers provided high precision results in the field of Hypernuclear Physics. In particular, the accurate determination of the Λ-binding energy, BΛ, contributed to stimulate considerably the discussion about the Charge Symmetry Breaking effect in Λ-hypernuclei isomultiplets. We have reorganized the results from the FINUDA experiment and we have obtained a series of BΛ values for Λ-hypernuclei with A≤ 16 by taking into account data only from magnetic spectrometers implementing an absolute calibration of the energy scale (FINUDA at DAΦNE and electroproduction experiments at JLab and at MaMi). We have then critically revisited the results obtained at KEK by the SKS Collaboration in order to make possible a direct comparison between data from experiments with and without such an absolute energy scale. A synopsis of recent spectrometric measurements of BΛ is presented, including also emulsion experiment results. Several interesting conclusions are drawn, among which the equality within the errors of BΛ for the A = 7 , 12 , 16 isomultiplets, based only on recent spectrometric data. This observation is in nice agreement with a recent theoretical prediction. Ideas for possible new measurements which should improve the present experimental knowledge are finally put forward.

  7. Addition of negatively charged residues can reverse the decrease in the solubility of an acidic protein caused by an artificially introduced non-polar surface patch.

    PubMed

    Yagi, Sota; Akanuma, Satoshi; Yamagishi, Akihiko

    2014-03-01

    A non-polar patch on the surface of a protein can cause a reduction in the solubility and stability of the protein, and thereby induce aggregation. However, a non-polar patch may be required so that the protein can bind to another molecule. The mutant 6L-derived from the acidic, dimeric α-helical protein sulerythrin and containing six additional leucines arranged to form a non-polar patch on its surface when properly folded-has a substantially reduced solubility in comparison with that of wild-type sulerythrin. This reduced solubility appears to cause 6L to aggregate. To reverse this aggregation, we mutated 6L so that it contained three to six additional glutamates or aspartates that we predicted would surround the non-polar leucine patch on natively folded 6L. Although the introduction of three glutamates or aspartates increased solubility, the mutants still aggregate and have a reduced α-helical content. Conversely, mutants with six additional glutamates or aspartates appear to exist mostly as dimers and to have the same α-helical content as that of wild-type sulerythrin. Notably, the introduction of five lysines or five arginines at the positions held by the glutamates or aspartates did not recover solubility as effectively as did the negatively charged residues. These results demonstrate that negatively charged residues, but not positively charged ones, surrounding a non-polar patch on an acidic protein can completely reverse the decrease in its solubility caused by the patch of non-polar surface residues. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Negative-U carbon vacancy in 4H-SiC: Assessment of charge correction schemes and identification of the negative carbon vacancy at the quasicubic site

    NASA Astrophysics Data System (ADS)

    Trinh, X. T.; Szász, K.; Hornos, T.; Kawahara, K.; Suda, J.; Kimoto, T.; Gali, A.; Janzén, E.; Son, N. T.

    2013-12-01

    The carbon vacancy (VC) has been suggested by different studies to be involved in the Z1/Z2 defect-a carrier lifetime killer in SiC. However, the correlation between the Z1/Z2 deep level with VC is not possible since only the negative carbon vacancy (VC-) at the hexagonal site, VC-(h), with unclear negative-U behaviors was identified by electron paramagnetic resonance (EPR). Using freestanding n-type 4H-SiC epilayers irradiated with low energy (250 keV) electrons at room temperature to introduce mainly VC and defects in the C sublattice, we observed the strong EPR signals of VC-(h) and another S = 1/2 center. Electron paramagnetic resonance experiments show a negative-U behavior of the two centers and their similar symmetry lowering from C3v to C1h at low temperatures. Comparing the 29Si and 13C ligand hyperfine constants observed by EPR and first principles calculations, the new center is identified as VC-(k). The negative-U behavior is further confirmed by large scale density functional theory supercell calculations using different charge correction schemes. The results support the identification of the lifetime limiting Z1/Z2 defect to be related to acceptor states of the carbon vacancy.

  9. Computation of standard binding free energies of polar and charged ligands to the glutamate receptor GluA2.

    PubMed

    Heinzelmann, Germano; Chen, Po-Chia; Kuyucak, Serdar

    2014-02-20

    Accurate calculation of the binding affinity of small molecules to proteins has the potential to become an important tool in rational drug design. In this study, we use the free energy perturbation (FEP) method with restraints to calculate the standard binding free energy of five ligands (ACPA, AMPA, CNQX, DNQX, and glutamate) to the glutamate receptor GluA2, which plays an essential role in synaptic transmission. To deal with the convergence problem in FEP calculations with charged ligands, we use a protocol where the ligand is coupled in the binding site while it is decoupled in bulk solution simultaneously. The contributions from the conformational, rotational, and translational entropies to the standard binding free energy are determined by applying/releasing respective restraints to the ligand in bulk/binding site. We also employ the confine-and-release approach, which helps to resolve convergence problems in FEP calculations. Our results are in good agreement with the experimental values for all five ligands, including the charged ones which are often problematic in FEP calculations. We also analyze the different contributions to the binding free energy of each ligand to GluA2 and discuss the nature of these interactions.

  10. REVISED BIG BANG NUCLEOSYNTHESIS WITH LONG-LIVED, NEGATIVELY CHARGED MASSIVE PARTICLES: UPDATED RECOMBINATION RATES, PRIMORDIAL {sup 9}Be NUCLEOSYNTHESIS, AND IMPACT OF NEW {sup 6}Li LIMITS

    SciTech Connect

    Kusakabe, Motohiko; Kim, K. S.; Cheoun, Myung-Ki; Kajino, Toshitaka; Kino, Yasushi; Mathews, Grant J. E-mail: kyungsik@kau.ac.kr E-mail: kajino@nao.ac.jp E-mail: gmathews@nd.edu

    2014-09-01

    We extensively reanalyze the effects of a long-lived, negatively charged massive particle, X {sup –}, on big bang nucleosynthesis (BBN). The BBN model with an X {sup –} particle was originally motivated by the discrepancy between the {sup 6,} {sup 7}Li abundances predicted in the standard BBN model and those inferred from observations of metal-poor stars. In this model, {sup 7}Be is destroyed via the recombination with an X {sup –} particle followed by radiative proton capture. We calculate precise rates for the radiative recombinations of {sup 7}Be, {sup 7}Li, {sup 9}Be, and {sup 4}He with X {sup –}. In nonresonant rates, we take into account respective partial waves of scattering states and respective bound states. The finite sizes of nuclear charge distributions cause deviations in wave functions from those of point-charge nuclei. For a heavy X {sup –} mass, m{sub X} ≳ 100 GeV, the d-wave → 2P transition is most important for {sup 7}Li and {sup 7,} {sup 9}Be, unlike recombination with electrons. Our new nonresonant rate of the {sup 7}Be recombination for m{sub X} = 1000 GeV is more than six times larger than the existing rate. Moreover, we suggest a new important reaction for {sup 9}Be production: the recombination of {sup 7}Li and X {sup –} followed by deuteron capture. We derive binding energies of X nuclei along with reaction rates and Q values. We then calculate BBN and find that the amount of {sup 7}Be destruction depends significantly on the charge distribution of {sup 7}Be. Finally, updated constraints on the initial abundance and the lifetime of the X {sup –} are derived in the context of revised upper limits to the primordial {sup 6}Li abundance. Parameter regions for the solution to the {sup 7}Li problem and the primordial {sup 9}Be abundances are revised.

  11. Revised Big Bang Nucleosynthesis with Long-lived, Negatively Charged Massive Particles: Updated Recombination Rates, Primordial 9Be Nucleosynthesis, and Impact of New 6Li Limits

    NASA Astrophysics Data System (ADS)

    Kusakabe, Motohiko; Kim, K. S.; Cheoun, Myung-Ki; Kajino, Toshitaka; Kino, Yasushi; Mathews, Grant. J.

    2014-09-01

    We extensively reanalyze the effects of a long-lived, negatively charged massive particle, X -, on big bang nucleosynthesis (BBN). The BBN model with an X - particle was originally motivated by the discrepancy between the 6, 7Li abundances predicted in the standard BBN model and those inferred from observations of metal-poor stars. In this model, 7Be is destroyed via the recombination with an X - particle followed by radiative proton capture. We calculate precise rates for the radiative recombinations of 7Be, 7Li, 9Be, and 4He with X -. In nonresonant rates, we take into account respective partial waves of scattering states and respective bound states. The finite sizes of nuclear charge distributions cause deviations in wave functions from those of point-charge nuclei. For a heavy X - mass, mX >~ 100 GeV, the d-wave → 2P transition is most important for 7Li and 7, 9Be, unlike recombination with electrons. Our new nonresonant rate of the 7Be recombination for mX = 1000 GeV is more than six times larger than the existing rate. Moreover, we suggest a new important reaction for 9Be production: the recombination of 7Li and X - followed by deuteron capture. We derive binding energies of X nuclei along with reaction rates and Q values. We then calculate BBN and find that the amount of 7Be destruction depends significantly on the charge distribution of 7Be. Finally, updated constraints on the initial abundance and the lifetime of the X - are derived in the context of revised upper limits to the primordial 6Li abundance. Parameter regions for the solution to the 7Li problem and the primordial 9Be abundances are revised.

  12. Binding energy of (Lambda)He-7 and test of charge symmetry breaking in the Lambda N interaction potential

    SciTech Connect

    Hashimoto, O; Honda, D; Kaneta, M; Kato, F; Kawama, D; Maruyama, N; Matsumura, A; Nakamura, S N; Nomura, H; Nonaka, K; Ohtani, A; Okayasu, Y; Osaka, M; Oyamada, M; Sumihama, M; Tamura, H; Baker, O K; Cole, L; Christy, M; Gueye, P; Keppel, C; Tang, L; Yuan, L; Acha, A; Baturin, P; Boeglin, W; Kramer, L; Markowitz, P; Pamela, P; Perez, N; Raue, B; Reinhold, J; Rivera, R; Kato, S; Sato, Y; Takahashi, T; Daniel, A; Hungerford, Ed V; Ispiryan, M; Kalantarians, N; Lan, K J; Li, Y; Miyoshi, T; Randeniya, S; Rodriguez, V M; Bosted, P; Carlini, R; Ent, R; Fenker, H; Gaskell, D; Jones, M; Mack, D; Roche, J; Smith, G; Tvaskis, V; Vulcan, W; Wood, S; Yan, C; Asaturyan, A; Asaturyan, R; Egiyan, K; Mkrtchyan, H; Margaryan, A; Navasardyan, T; Tadevosyan, V; Zamkochian, S; Hu, B; Song, Y; Luo, W; Androic, D; Furic, M; Petkovic, T; Seva, T; Ahmidouch, A; Danagoulian, S; Gasparian, A; Halkyard, R; Johnson, K; Simicevic, N; Wells, S; Niculescu, G; Niculescu, M I; Gan, L; Benmokhtar, F; Horn, T; Elassar, M; Gibson, E F

    2011-09-01

    The binding energy of 7LambdaHe has been obtained for the first time with reaction spectroscopy using the (e, e'K+) reaction at Jefferson Lab's Hall C. A comparison among the binding energies of the A = 7 T = l iso-triplet hypernuclei, 7LambdaHe, 7LambdaLi*and 7LambdaBe, is made and possible charge symmetry breaking (CSB) in the LambdaN potential is discussed. For 7LambdaHe and 7LambdaBe, the shifts in binding energies are opposite to those predicted by a recent cluster model calculation, which assumes that the unexplained part of the binding energy difference between 4LambdaH and 4LambdaHe, is due to the CSB of the LambdaN potential. Further examination of CSB in light hypernuclear systems is required both experimentally and theoretically.

  13. The tight binding model study of the role of anisotropic AFM spin ordering in the charge ordered CMR manganites

    NASA Astrophysics Data System (ADS)

    Kar, J. K.; Panda, Saswati; Rout, G. C.

    2017-05-01

    We propose here a tight binding model study of the interplay between charge and spin orderings in the CMR manganites taking anisotropic effect due to electron hoppings and spin exchanges. The Hamiltonian consists of the kinetic energies of eg and t2g electrons of manganese ion. It further includes double exchange and Heisenberg interactions. The charge density wave interaction (CDW) describes an extra mechanism for the insulating character of the system. The CDW gap and spin parameters are calculated using Zubarev's Green's function technique and computed self-consistently. The results are reported in this communication.

  14. Comparison of humic acid rejection and flux decline during filtration with negatively charged and uncharged ultrafiltration membranes.

    PubMed

    Shao, Jiahui; Hou, Juan; Song, Hongchen

    2011-01-01

    Increasingly stringent regulations for drinking water quality have stimulated the ultrafiltration (UF) to become one of the best alternatives replacing conventional drinking water treatment technologies. However, UF is not very effectively to remove humic acid due to the comparatively larger pore size compared to the size of humic acid. Fouling issue is another factor that restricts its widespread application. In this study, rejection of humic acid and flux decline were compared with essentially neutral, negatively charged version of a regenerated cellulose membrane, in which electrostatic interaction was explored for a better humic acid removal and less fouling. Solution environment, including ionic strength, pH and calcium ion concentration, affecting humic acid removal and flux decline on negatively charged and neutral membranes was also compared. Results indicated that the appropriate charge modification on the neutral UF membrane could be an effective way for better removal of NOM and reduction of the membrane fouling due to the electrostatic interactions with the combination effect of membrane pore size. Electrostatic interactions are significant important to achieve high humic acid removal and less fouling, and to improve the water quality and protect people's health. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Binding.

    ERIC Educational Resources Information Center

    Rebsamen, Werner

    1981-01-01

    Categorizes contemporary methods of binding printed materials in terms of physical preservation--hand binding (archival restoration), edition binding (paperback, hardcover), publication binding (magazines), textbook binding (sidesewn), single-sheet binding (loose-leaf, mechanical), and library binding (oversewn, sidesewn). Seven references are…

  16. Measurements of charge-state fractions following gas cells in beams of light negative ions

    SciTech Connect

    Grisham, L.R.; Post, D.E.; Johnson, B.M.; Jones, K.W.; Barrette, J.; Kruse, T.H.; Tserruya, I.; Da-Hai, W.

    1981-01-01

    We have measured neutral and charged particle fractions formed by passing beams of Li/sup -/, C/sup -/, O/sup -/, and Si/sup -/ at energies up to 7 MeV through gas cells of N/sub 2/, Ar, or CO/sub 2/. We discuss the implications of these results for the design of neutralizers to yield light atom beams for tokamak heating or current drive.

  17. Electrostatic interactions play an essential role in the binding of oleic acid with α-lactalbumin in the HAMLET-like complex: a study using charge-specific chemical modifications.

    PubMed

    Xie, Yongjing; Min, Soyoung; Harte, Níal P; Kirk, Hannah; O'Brien, John E; Voorheis, H Paul; Svanborg, Catharina; Hun Mok, K

    2013-01-01

    Human α-lactalbumin made lethal to tumor cells (HAMLET) and its analogs are partially unfolded protein-oleic acid (OA) complexes that exhibit selective tumoricidal activity normally absent in the native protein itself. To understand the nature of the interaction between protein and OA moieties, charge-specific chemical modifications of lysine side chains involving citraconylation, acetylation, and guanidination were employed and the biophysical and biological properties were probed. Upon converting the original positively-charged lysine residues to negatively-charged citraconyl or neutral acetyl groups, the binding of OA to protein was eliminated, as were any cytotoxic activities towards osteosarcoma cells. Retention of the positive charges by converting lysine residues to homoarginine groups (guanidination); however, yielded unchanged binding of OA to protein and identical tumoricidal activity to that displayed by the wild-type α-lactalbumin-oleic acid complex. With the addition of OA, the wild-type and guanidinated α-lactalbumin proteins underwent substantial conformational changes, such as partial unfolding, loss of tertiary structure, but retention of secondary structure. In contrast, no significant conformational changes were observed in the citraconylated and acetylated α-lactalbumins, most likely because of the absence of OA binding. These results suggest that electrostatic interactions between the positively-charged basic groups on α-lactalbumin and the negatively-charged carboxylate groups on OA molecules play an essential role in the binding of OA to α-lactalbumin and that these interactions appear to be as important as hydrophobic interactions. Copyright © 2012 Wiley Periodicals, Inc.

  18. β-Lactoglobulin (BLG) binding to highly charged cationic polymer-grafted magnetic nanoparticles: effect of ionic strength.

    PubMed

    Qin, Li; Xu, Yisheng; Han, Haoya; Liu, Miaomiao; Chen, Kaimin; Wang, Siyi; Wang, Jie; Xu, Jun; Li, Li; Guo, Xuhong

    2015-12-15

    Poly(2-(methacryloyloxy)ethyltrimethyl ammonium chloride) (PMATAC) modified magnetic nanoparticles (NPs) with a high zeta potential of ca. 50mV were synthesized by atom transfer radical polymerization (ATRP). The prepared NPs consist of a magnetic core around 13nm and a PMATAC shell around 20nm attached on the surface of magnetic nanoparticles. Thermodynamic binding parameters between β-lactoglobulin and these polycationic NPs were investigated at different ionic strengths by high-resolution turbidimetry, dynamic light scattering (DLS), and isothermal titration calorimetry (ITC). Both turbidity and ITC show that binding affinities for BLG display a non-monotonic ionic strength dependence trend and a maximum appears at ionic strength of 50mM. Such observation should arise from the coeffects of protein charge anisotropy visualized by DelPhi electrostatic modeling and the strong electrostatic repulsion among highly charged NPs at a variety of ionic strengths.

  19. Steroidal Surfactants: Detection of Premicellar Aggregation, Secondary Aggregation Changes in Micelles, and Hosting of a Highly Charged Negative Substance.

    PubMed

    Barnadas-Rodríguez, Ramon; Cladera, Josep

    2015-08-25

    CHAPSO and CHAPS are zwitterionic surfactants derived from bile salts which are usually employed in protein purification and for the preparation of liposomes and bicelles. Despite their spread use, there are significant discrepancies on the critical concentrations that determine their aggregation behavior. In this work, we study the interaction between these surfactants with the negative fluorescent dye pyranine (HPTS) by absorbance, fluorescence, and infrared spectrometry to establish their concentration-dependent aggregation. For the studied surfactants, we detect three critical concentrations showing their concentration-dependent presence as a monomeric form, premicellar aggregates, micelles, and a second type of micelle in aqueous medium. The nature of the interaction of HPTS with the surfactants was studied using analogues of their tails and the negative bile salt taurocholate (TC) as reference for the sterol ring. The results indicate that the chemical groups involved are the hydroxyl groups of the polar face of the sterol ring and the sulfonate groups of the dye. This interaction causes not only the incorporation of the negative dye in CHAPSO and CHAPS micelles but also its association with their premicellar aggregates. Surprisingly, this hosting behavior for a negative charged molecule was also detected for the negative bile salt TC, bypassing, in this way, the electrostatic repulsion between the guest and the host.

  20. Specific Binding of Cholesterol to C99 Domain of Amyloid Precursor Protein Depends Critically on Charge State of Protein.

    PubMed

    Panahi, Afra; Bandara, Asanga; Pantelopulos, George A; Dominguez, Laura; Straub, John E

    2016-09-15

    Recent NMR chemical shift measurements of the 99 residue C-terminal fragment of amyloid precursor protein (APP-C99) in the presence of cholesterol provide evidence of binary complex formation between C99 and cholesterol in membrane mimetic environments. It has also been observed that the production of Aβ protein is enhanced under conditions of high cholesterol concentration. In this study, we investigated the impact of the charge state of C99 on the structure and stability of the C99-cholesterol complex. We observed that the binding of C99 to cholesterol depends critically on the charge state of Glu 693 (E22) and Asp 694 (D23). Evaluation of the pKa values of the Asp and Glu side chains suggests that these residues may be predominantly neutral in existing experimental observations of a stable C99-cholesterol complex at lower pH (characteristic of the endosomal environment), while binding is destabilized near neutral pH (characteristic of the cytoplasm). These observations suggest that specific binding of cholesterol to C99 is a sensitive function of the pH encountered in vivo, with key E22 and D23 residues serving as a "pH switch" controlling C99-cholesterol binding.

  1. Calix[4]arene-linked bisporphyrin hosts for fullerenes: binding strength, solvation effects, and porphyrin-fullerene charge transfer bands.

    PubMed

    Hosseini, Ali; Taylor, Steven; Accorsi, Gianluca; Armaroli, Nicola; Reed, Christopher A; Boyd, Peter D W

    2006-12-13

    A calix[4]arene scaffolding has been used to construct bisporphyrin ("jaws" porphyrin) hosts for supramolecular binding of fullerene guests. Fullerene affinities were optimized by varying the nature of the covalent linkage of the porphyrins to the calixarenes. Binding constants for C60 and C70 in toluene were explored as a function of substituents at the periphery of the porphyrin, and 3,5-di-tert-butylphenyl groups gave rise to the highest fullerene affinities (26,000 M(-1) for C60). The origin of this high fullerene affinity has been traced to differential solvation effects rather than to electronic effects. Studies of binding constants as a function of solvent (toluene < benzonitrile < dichloromethane < cyclohexane) correlate inversely with fullerene solubility, indicating that desolvation of the fullerene is a major factor determining the magnitude of binding constants. The energetics of fullerene binding have been determined in terms of DelatH and DeltaS and are consistent with an enthalpy-driven, solvation-dependent process. A direct relationship between supramolecular binding of a fullerene guest to a bisporphyrin host and the appearance of a broad NIR absorption band have been established. The energy of this band moves in a predictable manner as a function of the electronic structure of the porphyrin, thereby establishing its origin in porphyrin-to-fullerene charge transfer.

  2. Evaluation of HA negatively charged membranes in the recovery of human adenoviruses and hepatitis A virus in different water matrices.

    PubMed

    Rigotto, C; Kolesnikovas, C K; Moresco, V; Simões, C M O; Barardi, C R M

    2009-11-01

    Human adenoviruses (HAdV) and hepatitis A virus (HAV) are shed in the faeces and consequently may be present in environmental waters, resulting in an increase in pathogen concentration that can affect water quality and human health. The aim of this study was to evaluate an adsorption-elution method which utilizes negatively charged membrane HA to determine the efficient recovery of HAdV and HAV from different water matrices and to combine this procedure with a qualitative molecular method (nested RT-PCR and nested PCR). The best efficiency recovery was achieved in distilled water and treated wastewater effluent (100%) for both viruses and in recreational lagoon water for HAV (100%). The efficiency recovery was 10% for HAdV and HAV in seawater and 10% for HAdV in lagoon water. The viral detection limit by nested PCR for HAV in water samples ranged between 20-0.2 FFU/mL and 250 and 25 TCID50/mL for HAdV. In conclusion, these results suggest that the HA negatively charged membranes vary their efficiency for recovery of viral concentration depending upon the types of both enteric viruses and water matrices.

  3. Comparison of chiral separation of basic drugs in capillary electrophoresis and liquid chromatography using neutral and negatively charged cyclodextrins.

    PubMed

    Kwaterczak, Arkadiusz; Duszczyk, Kazimiera; Bielejewska, Anna

    2009-07-10

    Liquid chromatography (LC) and capillary electrophoresis (CE) are very widely used as chiral separation methods. In this publication we try to find if the results obtained in CE and LC with the chiral selector added to the electrolyte and the mobile phase, respectively, can be used as tools for studying weak stereoselective interactions, and how this information can be useful for optimizing chiral separation processes. The manuscript presents a systematic comparison of chiral discrimination of model compounds in HPLC and CE using neutral and negatively charged cyclodextrins. The enantiomeric separation of basic chiral pharmaceuticals such as pheniramine, brompheniramine, metoxyphenamine, cyclopentolate, doxylamine and ketamine was investigated in capillary electrophoresis (CE) and liquid chromatography (HPLC) using negatively charged sulfated-beta-cyclodextrin (S-beta-CD) and neutral cyclodextrins (CDs). The apparent stability constants between the model compounds and cyclodextrins were estimated in both techniques. We discuss the influence of the stability constant and K1/K2 ratio of the investigated complexes on chiral separation obtained in both techniques.

  4. Optimization of tetravalent manganese feroxyhyte's negative charge density: A high-performing mercury adsorbent from drinking water.

    PubMed

    Kokkinos, E; Simeonidis, K; Pinakidou, F; Katsikini, M; Mitrakas, M

    2017-01-01

    This study demonstrates an optimization procedure for the development of an Hg-specified adsorbent able to comply with the regulation limit for drinking water of 1μg/L. On this purpose, the synthesis of Mn(IV)-feroxyhyte was modified to achieve high negative charge density by combining alkaline and extreme oxidizing conditions. In particular, precipitation of FeSO4 at pH9 and excess of KMnO4 follows a very fast nucleation step providing a product with very small nanocrystal size (1-2nm), high specific surface area (300m(2)/g) and maximum negative charge density (1.8mmol H(+)/g). The adsorbent was validated for Hg removal in batch experiments and column tests using natural-like water indicating an adsorption capacity as high as 2.5μg/mg at equilibrium concentration 1μg/L under reliable conditions of application. Importantly, the adsorption is an exothermic spontaneous process, resulting in the formation of inner sphere complexes by sharing both A-type and B-type oxygen atoms with the metal surface octahedral as revealed by the X-ray absorption fine structure results.

  5. Negative Ion MALDI Mass Spectrometry of Polyoxometalates (POMs): Mechanism of Singly Charged Anion Formation and Chemical Properties Evaluation

    NASA Astrophysics Data System (ADS)

    Boulicault, Jean E.; Alves, Sandra; Cole, Richard B.

    2016-08-01

    MALDI-MS has been developed for the negative ion mode analysis of polyoxometalates (POMs). Matrix optimization was performed using a variety of matrix compounds. A first group of matrixes offers MALDI mass spectra containing abundant intact singly charged anionic adduct ions, as well as abundant in-source fragmentations at elevated laser powers. A relative ranking of the ability to induce POM fragmentation is found to be: DAN > CHCA > CNA > DIT> HABA > DCTB > IAA. Matrixes of a second group provide poorer quality MALDI mass spectra without observable fragments. Sample preparation, including the testing of salt additives, was performed to optimize signals for a model POM, POMc12, the core structure of which bears four negative charges. The matrix 9-cyanoanthracene (CNA) provided the best signals corresponding to singly charged intact POMc12 anions. Decompositions of these intact anionic species were examined in detail, and it was concluded that hydrogen radical-induced mechanisms were not prevalent, but rather that the observed prompt fragments originate from transferred energy derived from initial electronic excitation of the CNA matrix. Moreover, in obtained MALDI mass spectra, clear evidence of electron transfer to analyte POM species was found: a manifestation of the POMs ability to readily capture electrons. The affinity of polyanionic POMc12 toward a variety of cations was evaluated and the following affinity ranking was established: Fe3+ > Al3+ > Li+ > Ga3+ > Co2+ > Cr3+ > Cu2+ > [Mn2+, Mg2+] > [Na+, K+]. Thus, from the available cationic species, specific adducts are preferentially formed, and evidence is given that these higher affinity POM complexes are formed in the gas phase during the early stages of plume expansion.

  6. Negative Ion MALDI Mass Spectrometry of Polyoxometalates (POMs): Mechanism of Singly Charged Anion Formation and Chemical Properties Evaluation.

    PubMed

    Boulicault, Jean E; Alves, Sandra; Cole, Richard B

    2016-08-01

    MALDI-MS has been developed for the negative ion mode analysis of polyoxometalates (POMs). Matrix optimization was performed using a variety of matrix compounds. A first group of matrixes offers MALDI mass spectra containing abundant intact singly charged anionic adduct ions, as well as abundant in-source fragmentations at elevated laser powers. A relative ranking of the ability to induce POM fragmentation is found to be: DAN > CHCA > CNA > DIT> HABA > DCTB > IAA. Matrixes of a second group provide poorer quality MALDI mass spectra without observable fragments. Sample preparation, including the testing of salt additives, was performed to optimize signals for a model POM, POMc12, the core structure of which bears four negative charges. The matrix 9-cyanoanthracene (CNA) provided the best signals corresponding to singly charged intact POMc12 anions. Decompositions of these intact anionic species were examined in detail, and it was concluded that hydrogen radical-induced mechanisms were not prevalent, but rather that the observed prompt fragments originate from transferred energy derived from initial electronic excitation of the CNA matrix. Moreover, in obtained MALDI mass spectra, clear evidence of electron transfer to analyte POM species was found: a manifestation of the POMs ability to readily capture electrons. The affinity of polyanionic POMc12 toward a variety of cations was evaluated and the following affinity ranking was established: Fe(3+) > Al(3+) > Li(+) > Ga(3+) > Co(2+) > Cr(3+) > Cu(2+) > [Mn(2+), Mg(2+)] > [Na(+), K(+)]. Thus, from the available cationic species, specific adducts are preferentially formed, and evidence is given that these higher affinity POM complexes are formed in the gas phase during the early stages of plume expansion. Graphical Abstract ᅟ.

  7. Lipopolysaccharide-binding protein is a negative regulator of adipose tissue browning in mice and humans.

    PubMed

    Gavaldà-Navarro, Aleix; Moreno-Navarrete, José M; Quesada-López, Tania; Cairó, Montserrat; Giralt, Marta; Fernández-Real, José M; Villarroya, Francesc

    2016-10-01

    Adipocyte lipopolysaccharide-binding protein (LBP) biosynthesis is associated with obesity-induced adipose tissue dysfunction. Our purpose was to study the role of LBP in regulating the browning of adipose tissue. Adult mice were maintained at 4°C for 3 weeks or treated with the β3-adrenergic agonist, CL316,243, for 1 week to induce the browning of white fat. Precursor cells from brown and white adipose tissues were cultured under differentiation-inducing conditions to yield brown and beige/brite adipocytes, respectively. In vitro, Lbp was knocked down in 3T3-L1 adipocytes, and cells were treated with recombinant LBP or co-cultured in transwells with control 3T3-L1 adipocytes. Wild-type and Lbp-null mice, fed a standard or high fat diet (HFD) for 15 weeks, were also used in investigations. In humans, subcutaneous and visceral adipose tissue samples were obtained from a cohort of morbidly obese participants. The induction of white fat browning by exposure of mice to cold or CL316,243 treatment was strongly associated with decreased Lbp mRNA expression in white adipose tissue. The acquisition of the beige/brite phenotype in cultured cells was associated with downregulation of Lbp. Moreover, silencing of Lbp induced the expression of brown fat-related genes in adipocytes, whereas LBP treatment reversed this effect. Lbp-null mice exhibited the spontaneous induction of subcutaneous adipose tissue browning, as evidenced by a remarkable increase in Ucp1 and Dio2 gene expression and the appearance of multivacuolar adipocyte clusters. The amount of brown adipose tissue, and brown adipose tissue activity were also increased in Lbp-null mice. These changes were associated with decreased weight gain in Lbp-null mice and protection against HFD-induced inflammatory responses, as shown by reduced IL-6 levels. However, rather than improving glucose homeostasis, these effects led to glucose intolerance and insulin resistance. LBP is identified as a negative regulator of the

  8. Hybrid simulations of positively and negatively charged pickup ions and cyclotron wave generation at Europa

    DOE PAGES

    Desai, Ravindra T.; Cowee, Misa; Wei, Hanying; ...

    2017-09-19

    In the vicinity of Europa, Galileo observed bursty Alfvén-cyclotron wave power at the gyrofrequencies of a number of species including K+, math formula, Na+, and Cl+, indicating the localised pickup of these species. Additional evidence for the presence of Chlorine was the occurrence of both left-hand (LH) and right-hand (RH) polarised transverse wave power near the Cl+ gyrofrequency, thought to be due to the pickup of both Cl+ and the easily formed Chlorine anion, Cl–. To test this hypothesis we use one-dimensional hybrid (kinetic ion, massless fluid electron) simulations for both positive and negative pickup ions and self-consistently reproduce themore » growth of both LH and RH Alfvén-cyclotron waves in agreement with linear theory. We show how the simultaneous generation of LH and RH waves can result in non-gyrotropic ion distributions and increased wave amplitudes, and how even trace quantities of negative pickup ions are able to generate an observable RH signal. Here, through comparing simulated and observed wave amplitudes, we are able to place the first constraints on the densities of Chlorine pickup ions in localised regions at Europa.« less

  9. Charge recombination mechanism to explain the negative capacitance in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lie-Feng, Feng; Kun, Zhao; Hai-Tao, Dai; Shu-Guo, Wang; Xiao-Wei, Sun

    2016-03-01

    Negative capacitance (NC) in dye-sensitized solar cells (DSCs) has been confirmed experimentally. In this work, the recombination behavior of carriers in DSC with semiconductor interface as a carrier’s transport layer is explored theoretically in detail. Analytical results indicate that the recombination behavior of carriers could contribute to the NC of DSCs under small signal perturbation. Using this recombination capacitance we propose a novel equivalent circuit to completely explain the negative terminal capacitance. Further analysis based on the recombination complex impedance show that the NC is inversely proportional to frequency. In addition, analytical recombination resistance is composed by the alternating current (AC) recombination resistance (Rrac) and the direct current (DC) recombination resistance (Rrdc), which are caused by small-signal perturbation and the DC bias voltage, respectively. Both of two parts will decrease with increasing bias voltage. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204209 and 60876035) and the Natural Science Foundation of Tianjin City, China (Grant No. 13JCZDJC32800).

  10. Collagen binding, elastase production, and slime production associated with coagulase-negative staphylococci isolated from bovine intramammary infections.

    PubMed Central

    Watts, J L; Naidu, A S; Wadström, T

    1990-01-01

    Collagen binding, elastase production, slime production, and associated somatic cell counts were determined with 160 strains of coagulase-negative staphylococci isolated from bovine intramammary infections. Mean binding values for type I and II collagen with Staphylococcus epidermidis, S. chromogenes, and S. hyicus strains were 5.8, 6.6, and 7.4 and 4.3, 4.2, and 4.9%, respectively. Eleven of 28 (39.3%) S. epidermidis, 1 of 38 (2.6%) S. chromogenes, and 1 of 94 (1.1%) S. hyicus strains were elastase positive. Slime production was noted with 12 (42.9%) S. epidermidis, 1 (2.6%) S. chromogenes, and 11 (11.7%) S. hyicus strains. No differences in somatic cell counts were observed with type I or type II collagen binding, elastase production, or slime production with S. epidermidis or S. chromogenes. However, somatic cell counts associated with S. hyicus strains with collagen type I binding affinities of greater than 5 and type II binding affinities of greater than 3 were 320.7 x 10(3) compared with 163.9 x 10(3) for strains with lower binding affinities. PMID:2324278

  11. Negative Cooperativity and High Affinity in Chitooligosaccharide Binding by a Mycobacterium smegmatis Protein Containing LysM and Lectin Domains.

    PubMed

    Patra, Dhabaleswar; Mishra, Padmanabh; Vijayan, Mamannamana; Surolia, Avadhesha

    2016-01-12

    LysM domains have been recognized in bacteria and eukaryotes as carbohydrate-binding protein modules, but the mechanism of their binding to chitooligosaccharides has been underexplored. Binding of a Mycobacterium smegmatis protein containing a lectin (MSL) and one LysM domain to chitooligosaccharides has been studied using isothermal titration calorimetry and fluorescence titration that demonstrate the presence of two binding sites of nonidentical affinities per dimeric MSL-LysM molecule. The affinity of the molecule for chitooligosaccharides correlates with the length of the carbohydrate chain. Its binding to chitooligosaccharides is characterized by negative cooperativity in the interactions of the two domains. Apparently, the flexibility of the long linker that connects the LysM and MSL domains plays a facilitating role in this recognition. The LysM domain in the MSL-LysM molecule, like other bacterial domains but unlike plant LysM domains, recognizes equally well peptidoglycan fragments as well as chitin polymers. Interestingly, in the case presented here, two LysM domains are enough for binding to peptidoglycan in contrast to the three reportedly required by the LysM domains of Bacillus subtilis and Lactococcus lactis. Also, the affinity of the MSL-LysM molecule for chitooligosaccharides is higher than that of LysM-chitooligosaccharide interactions reported so far.

  12. On the gas-phase dimerization of negatively charged closo-dodecaborates: a theoretical study.

    PubMed

    Zeonjuk, Lei Liu; Vankova, Nina; Knapp, Carsten; Gabel, Detlef; Heine, Thomas

    2013-07-07

    We have studied the intriguing gas-phase dimerization of the B12In(-) (n = 9, 8) anions to B24I2n(2-) dianions by means of density functional theory calculations. The dimerization of B12I9(-) to B24I18(2-) has been detected experimentally in a previous study (Phys. Chem. Chem. Phys., 2011, 13, 5712) utilizing electrospray ionization ion trap mass spectrometry (ESI-IT-MS), whereas the formation of B24I16(2-) from B12I8(-) is modeled here prior to experiment. Calculations are carried out to determine the molecular and electronic structures, the bonding situation and the stability of the dimers relative to the respective monomers. The dimerization process is found to be thermodynamically favorable, and the stability of the lowest-energy structures is substantiated by molecular dynamics simulations. The calculations imply that the experimentally observed B24I18(2-) and the hypothetical B24I16(2-) species are formed through dimerization of the respective B12In(-) (n = 9, 8) monomers, rather than through loss of two I radicals from B24I2n+2(2-) dimers. Electronic properties such as natural charges, vertical detachment energies (VDEs), frontier molecular orbitals (FMOs), and HOMO-LUMO gaps are computed and analyzed in detail for all monomers and dimers. The analysis shows that the most stable B24I2n(2-) dimers are formed through two 2c-2e B-B and two 3c-2e B-I-B bridges between the parent B12In(-) (n = 9, 8) monomers. These new bridging bonds engage the deiodinated (bare) faces of the two B12 icosahedra, as well as one (per monomer) of the nearest boron neighbors and its iodine substituent.

  13. Interplay of electrostatics and lipid packing determines the binding of charged polymer coated nanoparticles to model membranes.

    PubMed

    Biswas, Nupur; Bhattacharya, Rupak; Saha, Arindam; Jana, Nikhil R; Basu, Jaydeep K

    2015-10-07

    Understanding of nanoparticle-membrane interactions is useful for various applications of nanoparticles like drug delivery and imaging. Here we report on the studies of interaction between hydrophilic charged polymer coated semiconductor quantum dot nanoparticles with model lipid membranes. Atomic force microscopy and X-ray reflectivity measurements suggest that cationic nanoparticles bind and penetrate bilayers of zwitterionic lipids. Penetration and binding depend on the extent of lipid packing and result in the disruption of the lipid bilayer accompanied by enhanced lipid diffusion. On the other hand, anionic nanoparticles show minimal membrane binding although, curiously, their interaction leads to reduction in lipid diffusivity. It is suggested that the enhanced binding of cationic QDs at higher lipid packing can be understood in terms of the effective surface potential of the bilayers which is tunable through membrane lipid packing. Our results bring forth the subtle interplay of membrane lipid packing and electrostatics which determine nanoparticle binding and penetration of model membranes with further implications for real cell membranes.

  14. The matrix attachment region-binding protein SATB1 participates in negative regulation of tissue-specific gene expression.

    PubMed Central

    Liu, J; Bramblett, D; Zhu, Q; Lozano, M; Kobayashi, R; Ross, S R; Dudley, J P

    1997-01-01

    The nuclear matrix has been implicated in several cellular processes, including DNA replication, transcription, and RNA processing. In particular, transcriptional regulation is believed to be accomplished by binding of chromatin loops to the nuclear matrix and by the concentration of specific transcription factors near these matrix attachment regions (MARs). A number of MAR-binding proteins have been identified, but few have been directly linked to tissue-specific transcription. Recently, we have identified two cellular protein complexes (NBP and UBP) that bind to a region of the mouse mammary tumor virus (MMTV) long terminal repeat (LTR) previously shown to contain at least two negative regulatory elements (NREs) termed the promoter-proximal and promoter-distal NREs. These NREs are absent from MMTV strains that cause T-cell lymphomas instead of mammary carcinomas. We show here that NBP binds to a 22-bp sequence containing an imperfect inverted repeat in the promoter-proximal NRE. Previous data showed that a mutation (p924) within the inverted repeat elevated basal transcription from the MMTV promoter and destabilized the binding of NBP, but not UBP, to the proximal NRE. By using conventional and affinity methods to purify NBP from rat thymic nuclear extracts, we obtained a single major protein of 115 kDa that was identified by protease digestion and partial sequencing analysis as the nuclear matrix-binding protein special AT-rich sequence-binding protein 1 (SATB1). Antibody ablation, distamycin inhibition of binding, renaturation and competition experiments, and tissue distribution data all confirmed that the NBP complex contained SATB1. Similar types of experiments were used to show that the UBP complex contained the homeodomain protein Cux/CDP that binds the MAR of the intronic heavy-chain immunoglobulin enhancer. By using the p924 mutation within the MMTV LTR upstream of the chloramphenicol acetyltransferase gene, we generated two strains of transgenic mice

  15. Negatively charged metal oxide nanoparticles interact with the 20S proteasome and differentially modulate its biologic functional effects.

    PubMed

    Falaschetti, Christine A; Paunesku, Tatjana; Kurepa, Jasmina; Nanavati, Dhaval; Chou, Stanley S; De, Mrinmoy; Song, MinHa; Jang, Jung-tak; Wu, Aiguo; Dravid, Vinayak P; Cheon, Jinwoo; Smalle, Jan; Woloschak, Gayle E

    2013-09-24

    The multicatalytic ubiquitin-proteasome system (UPS) carries out proteolysis in a highly orchestrated way and regulates a large number of cellular processes. Deregulation of the UPS in many disorders has been documented. In some cases, such as carcinogenesis, elevated proteasome activity has been implicated in disease development, while the etiology of other diseases, such as neurodegeneration, includes decreased UPS activity. Therefore, agents that alter proteasome activity could suppress as well as enhance a multitude of diseases. Metal oxide nanoparticles, often developed as diagnostic tools, have not previously been tested as modulators of proteasome activity. Here, several types of metal oxide nanoparticles were found to adsorb to the proteasome and show variable preferential binding for particular proteasome subunits with several peptide binding "hotspots" possible. These interactions depend on the size, charge, and concentration of the nanoparticles and affect proteasome activity in a time-dependent manner. Should metal oxide nanoparticles increase proteasome activity in cells, as they do in vitro, unintended effects related to changes in proteasome function can be expected.

  16. Negatively Charged Metal Oxide Nanoparticles Interact with the 20S Proteasome and Differentially Modulate Its Biologic Functional Effects

    PubMed Central

    Falaschetti, Christine A.; Paunesku, Tatjana; Kurepa, Jasmina; Nanavati, Dhaval; Chou, Stanley S.; De, Mrinmoy; Song, MinHa; Jang, Jung-tak; Wu, Aiguo; Dravid, Vinayak P.; Cheon, Jinwoo; Smalle, Jan; Woloschak, Gayle E.

    2013-01-01

    The multicatalytic ubiquitin-proteasome system (UPS) carries out proteolysis in a highly orchestrated way and regulates a large number of cellular processes. Deregulation of the UPS in many disorders has been documented. In some cases, e.g. carcinogenesis, elevated proteasome activity has been implicated in disease development, while the etiology of other diseases, e.g. neurodegeneration, includes decreased UPS activity. Therefore, agents that alter proteasome activity could suppress as well as enhance a multitude of diseases. Metal oxide nanoparticles, often developed as diagnostic tools, have not previously been tested as modulators of proteasome activity. Here, several types of metal oxide nanoparticles were found to adsorb to the proteasome and show variable preferential binding for particular proteasome subunits with several peptide binding “hotspots” possible. These interactions depend on the size, charge, and concentration of the nanoparticles and affect proteasome activity in a time-dependent manner. Should metal oxide nanoparticles increase proteasome activity in cells, as they do in vitro, unintended effects related to changes in proteasome function can be expected. PMID:23930940

  17. Scavengers for bacteria: Rainbow trout have two functional variants of MARCO that bind to gram-negative and -positive bacteria.

    PubMed

    Poynter, Sarah J; Monjo, Andrea L; Micheli, Gabriella; DeWitte-Orr, Stephanie J

    2017-07-22

    Class A scavenger receptors (SR-As) are a family of surface-expressed receptors who bind a wide range of polyanionic ligands including bacterial components and nucleic acids and play a role in innate immunity. Macrophage receptor with collagenous structure (MARCO) is a SR-A family member that has been studied in mammals largely for its role in binding bacteria. To date there is little information about SR-As in general and MARCO specifically in fish, particularly what ligands individual SR-A family members bind remains largely unknown. In the present study two novel rainbow trout MARCO transcript variants have been identified and their sequence and putative protein domains have been analyzed. When overexpressed in CHSE-214, a cell line that appears to lack functional scavenger receptors, GFP-tagged rtMARCO-1 and rtMARCO-2 were able to bind gram-positive, and gram-negative bacteria of both mammalian and aquatic sources. rtMARCO appears to bind bacteria via its scavenger receptor cysteine-rich (SRCR) domain, because SRCR deleted rtMARCO-1 and -2 were unable to bind bacteria. rtMARCO did not show any binding to the yeast cell wall component zymosan or to double-stranded (ds)RNA. This is the first time rainbow trout MARCO sequences have been identified and the first in-depth study exploring their ligand binding profile. This study provides novel insight into the role of rainbow trout MARCO in bacterial innate immunity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Mass and energy distribution of negatively and positively charged small cluster ions sputtered from GaAs(100) by 150 keV Ar+ bombardment

    NASA Astrophysics Data System (ADS)

    Angelin, E. J.; Hippler, R.

    2017-09-01

    Mass and energy distribution of positively and negatively charged small GaxAsy cluster ions consisting of up to six atoms sputtered from a GaAs(100) surface after 150 keV Ar+ ion bombardment are reported. Positively charged ions contain a larger fraction of Ga atoms while negatively charged ions are rich in As. Measured energy distributions display a maximum at low kinetic energies of a few eV followed by a steep decrease with increasing energy which is more pronounced for larger ions.

  19. Modulation of Toxin Stability by 4-Phenylbutyric Acid and Negatively Charged Phospholipids

    PubMed Central

    Ray, Supriyo; Taylor, Michael; Burlingame, Mansfield; Tatulian, Suren A.; Teter, Ken

    2011-01-01

    AB toxins such as ricin and cholera toxin (CT) consist of an enzymatic A domain and a receptor-binding B domain. After endocytosis of the surface-bound toxin, both ricin and CT are transported by vesicle carriers to the endoplasmic reticulum (ER). The A subunit then dissociates from its holotoxin, unfolds, and crosses the ER membrane to reach its cytosolic target. Since protein unfolding at physiological temperature and neutral pH allows the dissociated A chain to attain a translocation-competent state for export to the cytosol, the underlying regulatory mechanisms of toxin unfolding are of paramount biological interest. Here we report a biophysical analysis of the effects of anionic phospholipid membranes and two chemical chaperones, 4-phenylbutyric acid (PBA) and glycerol, on the thermal stabilities and the toxic potencies of ricin toxin A chain (RTA) and CT A1 chain (CTA1). Phospholipid vesicles that mimic the ER membrane dramatically decreased the thermal stability of RTA but not CTA1. PBA and glycerol both inhibited the thermal disordering of RTA, but only glycerol could reverse the destabilizing effect of anionic phospholipids. In contrast, PBA was able to increase the thermal stability of CTA1 in the presence of anionic phospholipids. PBA inhibits cellular intoxication by CT but not ricin, which is explained by its ability to stabilize CTA1 and its inability to reverse the destabilizing effect of membranes on RTA. Our data highlight the toxin-specific intracellular events underlying ER-to-cytosol translocation of the toxin A chain and identify a potential means to supplement the long-term stabilization of toxin vaccines. PMID:21887297

  20. Staphylococcal acid phosphatase binds to endothelial cells via charge interaction; a pathogenic role in Wegener’s granulomatosis?

    PubMed Central

    Brons, R H; Bakker, H I; Van Wijk, R T; Van Dijk, N W; Muller Kobold, A C; Limburg, P C; Manson, W L; Kallenberg, C G M; Cohen Tervaert, J W

    2000-01-01

    The majority of patients with Wegener’s granulomatosis (WG) are chronic nasal carriers of Staphylococcus aureus. Chronic nasal carriage of S. aureus is associated with an increased risk of developing a relapse of the disease. The mechanism by which this occurs is still unknown. We hypothesized that a cationic protein of S. aureus, staphylococcal acid phosphatase (SAcP), acts as a planted antigen and initiates glomerulonephritis and vasculitis in patients with WG. In order to test the hypothesis that SAcP can act as a planted antigen in WG, we studied the ability of SAcP to bind to human umbilical vein endothelial cells (HUVEC) and human glomerular endothelial cells. We also studied whether this binding can be prevented by preincubation with an anionic protein, and whether binding of SAcP activates endothelial cells. We also evaluated whether antibodies in sera of patients with WG are able to bind to endothelial cell-bound SAcP. The results show that SAcP can act as a planted antigen by binding to both types of endothelial cells in a concentration-dependent manner. Binding of concentrations as low as 4 μ g/ml can be detected on HUVEC within 5 min of incubation. Binding of SAcP to endothelial cells was charge-dependent but did not activate endothelial cells. Finally, endothelial cell-bound SAcP was recognized by sera of patients with WG. The data suggest a possible pathogenic role for SAcP by acting as a planted antigen thereby initiating glomerulonephritis and vasculitis in patients with WG. PMID:10691932

  1. A scale of metal ion binding strengths correlating with ionic charge, Pauling electronegativity, toxicity, and other physiological effects.

    PubMed

    Kinraide, Thomas B; Yermiyahu, Uri

    2007-09-01

    Equilibrium constants for binding to plant plasma membranes have been reported for several metal ions, based upon adsorption studies and zeta-potential measurements. LogK values for the ions are these: Al(3+), 4.30; La(3+), 3.34; Cu(2+), 2.60; Ca(2+) and Mg(2+), 1.48; Na(+) and K(+), 0 M(-1). These values correlate well with logK values for ion binding to many organic and inorganic ligands. LogK values for metal ion binding to 12 ligands were normalized and averaged to produce a scale for the binding of 49 ions. The scale correlates well with the values presented above (R(2)=0.998) and with ion binding to cell walls and other biomass. The scale is closely related to the charge (Z) and Pauling electronegativity (PE) of 48 ions (all but Hg(2+)); R(2)=0.969 for the equation (Scale values)=-1.68+Z(1.22+0.444PE). Minimum rhizotoxicity of metal ions appears to be determined by binding strengths: log a(PM,M)=1.60-2.41exp[0.238(Scale values)] determines the value of ion activities at the plasma membrane surface (a(PM,M)) that will ensure inhibition of root elongation. Additional toxicity appears to be related to softness, accounting for the great toxicity of Ag(+), for example. These binding-strength values correlate with additional physiological effects and are suitable for the computation of cell-surface electrical potentials.

  2. Effect of secondary electron emission on nonlinear dust acoustic wave propagation in a complex plasma with negative equilibrium dust charge

    NASA Astrophysics Data System (ADS)

    Bhakta, Subrata; Ghosh, Uttam; Sarkar, Susmita

    2017-02-01

    In this paper, we have investigated the effect of secondary electron emission on nonlinear propagation of dust acoustic waves in a complex plasma where equilibrium dust charge is negative. The primary electrons, secondary electrons, and ions are Boltzmann distributed, and only dust grains are inertial. Electron-neutral and ion-neutral collisions have been neglected with the assumption that electron and ion mean free paths are very large compared to the plasma Debye length. Both adiabatic and nonadiabatic dust charge variations have been separately taken into account. In the case of adiabatic dust charge variation, nonlinear propagation of dust acoustic waves is governed by the KdV (Korteweg-de Vries) equation, whereas for nonadiabatic dust charge variation, it is governed by the KdV-Burger equation. The solution of the KdV equation gives a dust acoustic soliton, whose amplitude and width depend on the secondary electron yield. Similarly, the KdV-Burger equation provides a dust acoustic shock wave. This dust acoustic shock wave may be monotonic or oscillatory in nature depending on the fact that whether it is dissipation dominated or dispersion dominated. Our analysis shows that secondary electron emission increases nonadiabaticity induced dissipation and consequently increases the monotonicity of the dust acoustic shock wave. Such a dust acoustic shock wave may accelerate charge particles and cause bremsstrahlung radiation in space plasmas whose physical process may be affected by secondary electron emission from dust grains. The effect of the secondary electron emission on the stability of the equilibrium points of the KdV-Burger equation has also been investigated. This equation has two equilibrium points. The trivial equilibrium point with zero potential is a saddle and hence unstable in nature. The nontrivial equilibrium point with constant nonzero potential is a stable node up to a critical value of the wave velocity and a stable focus above it. This critical

  3. Nuclear DNA fragmentation negatively affects zona binding competence of Y bearing mouse spermatozoa.

    PubMed

    Kumar, Dayanidhi; Upadhya, Dinesh; Uppangala, Shubhashree; Salian, Sujit Raj; Kalthur, Guruprasad; Adiga, Satish Kumar

    2013-12-01

    To investigate the influence of sperm DNA integrity on the zona binding ability of mouse spermatozoa in relation to their sex chromosomal constitution. In this prospective experimental study, the sperm DNA fragmentation was induced by exposing testicular area of Swiss Albino mice (Mus musculus) to different doses of γ-radiation (0, 2.5, 5.0 and 10.0 Gy). Sperm DNA fragmentation was quantified by single cell gel electrophoresis (comet assay). In vitro sperm zona binding assay was performed and the numbers of zona bound X and Y bearing spermatozoa were determined using fluorescence in situ hybridization (FISH). The assessment of zona pellucida bound X and Y-bearing spermatozoa using fluorescence in situ hybridization has revealed a unique binding pattern. The number of zona bound Y-spermatozoa declined significantly (P < 0.01 to 0.0001) with increase in the DNA damage. The skewed binding pattern of X and Y-bearing sperm was strongly correlated with the extent of sperm DNA damage. The zona pellucida may have a role in preventing DNA damaged mouse sperm binding especially towards Y-bearing sperm. However, the exact mechanism behind this observation needs to be elucidated further.

  4. Bulk, surface and point defect properties in UO2 from a tight-binding variable-charge model

    NASA Astrophysics Data System (ADS)

    Sattonnay, G.; Tétot, R.

    2013-03-01

    A tight-binding variable-charge model (SMTB-Q) has been used to calculate bulk, surface and point defect properties in uranium dioxide. It provides us with a better description of the iono-covalent oxides than classical, purely ionic models. A good agreement is found in the structural properties and cohesive energy between the model and experimental data; the charges calculated on the uranium and oxygen ions are QU = 2.804 and QO =- 1.402 respectively. The stability and relaxation of low index surfaces were evaluated: the (111) surface consistently has the lowest surface energy and the smallest surface relaxation, followed by the (110) surface and the (100) surface, in agreement with previous predictions from semi-empirical potentials and from ab initio calculations. The energy ranking of intrinsic defects is oxygen Frenkel pair < Schottky trio < uranium Frenkel pair, which is consistent with literature. The clustering energy of small vacancy clusters has been also calculated. Additionally, the atomic relaxations and the charge transfer at surfaces and around defects have been investigated. All the results obtained in the present work prove the ability of the SMTB-Q model to describe the bulk properties as well as the surface and defect properties in uranium dioxide. Finally, this model provides us with a new fundamental insight into the role played by the charge transfer in UO2 properties.

  5. Exchange-Induced Negative-U Charge Order in N-Doped WO3: A Spin-Peierls-Like System

    SciTech Connect

    Huda, M. N.; Yan, Y.; Wei, S.-H.; Al-Jassim, M. M.

    2009-01-01

    An unconventional spin-Peierls-type distortion was found in a nonmagnetic atom N doped pseudo-one-dimensional WO{sub 3} system. The periodicity of the initial ferromagnetic WO{sub 3}:N is doubled in one direction, and the band gap opens up due to this distortion. The magnetic moment at the N site is asymmetric in the distorted system, and the interaction between the localized spin is very weak. We show that the large exchange interaction of the nitrogen 2p atomic orbital and the pseudo-one-dimensional W-O-W chain in monoclinic WO{sub 3} structure is the origin of this spin-Peierls-like transition that leads to the stabilization of an unusual negative-U charge-ordered system.

  6. Biodistribution of negatively charged iron oxide nanoparticles (IONPs) in mice and enhanced brain delivery using lysophosphatidic acid (LPA).

    PubMed

    Sun, Zhizhi; Worden, Matthew; Thliveris, James A; Hombach-Klonisch, Sabine; Klonisch, Thomas; van Lierop, Johan; Hegmann, Torsten; Miller, Donald W

    2016-10-01

    Effective treatment of brain disorders requires a focus on improving drug permeability across the blood-brain barrier (BBB). Herein, we examined the pharmacokinetic properties of negatively charged iron oxide nanoparticles (IONPs) and the capability of using lysophosphatidic acid (LPA) to transiently disrupt the tight junctions and allow IONPs to enter the brain. Under normal conditions, IONPs had a plasma half-life of six minutes, with the liver and spleen being the major organs of deposition. Treatment with LPA enhanced accumulation of IONPs in the brain and spleen (approximately 4-fold vs. control). LPA and IONP treated mice revealed no sign of peripheral immune cell infiltration in the brain and no significant activation of microglia or astrocytes. These studies show improved delivery efficiency of IONPs following LPA administration. Our findings suggest transient disruption of the BBB may be a safe and effective method for increasing IONP delivery to the brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Activation energy of negative fixed charges in thermal ALD Al{sub 2}O{sub 3}

    SciTech Connect

    Kühnhold-Pospischil, S.; Saint-Cast, P.; Richter, A.; Hofmann, M.

    2016-08-08

    A study of the thermally activated negative fixed charges Q{sub tot} and the interface trap densities D{sub it} at the interface between Si and thermal atomic-layer-deposited amorphous Al{sub 2}O{sub 3} layers is presented. The thermal activation of Q{sub tot} and D{sub it} was conducted at annealing temperatures between 220 °C and 500 °C for durations between 3 s and 38 h. The temperature-induced differences in Q{sub tot} and D{sub it} were measured using the characterization method called corona oxide characterization of semiconductors. Their time dependency were fitted using stretched exponential functions, yielding activation energies of E{sub A} = (2.2 ± 0.2) eV and E{sub A} = (2.3 ± 0.7) eV for Q{sub tot} and D{sub it}, respectively. For annealing temperatures from 350 °C to 500 °C, the changes in Q{sub tot} and D{sub it} were similar for both p- and n-type doped Si samples. In contrast, at 220 °C the charging process was enhanced for p-type samples. Based on the observations described in this contribution, a charging model leading to Q{sub tot} based on an electron hopping process between the silicon and Al{sub 2}O{sub 3} through defects is proposed.

  8. Comparison of positively and negatively charged achiral co-monomers added to cyclodextrin monolith: improved chiral separations in capillary electrochromatography.

    PubMed

    Lu, Yang; Shamsi, Shahab A

    2014-10-01

    Cyclodextrins (CDs) and their derivatives have been one of the most popular and successful chiral additives used in electrokinetic chromatography because of the presence of multiple chiral centers, which leads to multiple chiral interactions. However, there has been relatively less published work on the use of CDs as monolithic media for capillary electrochromatography (CEC). The goal of this study was to show how the addition of achiral co-monomer to a polymerizable CD such as glycidyl methacrylate β-cyclodextrin (GMA/β-CD) can affect the enantioselective separations in monolithic CEC. To achieve this goal, polymeric monoliths columns were prepared by co-polymerizing GMA/β-CD with cationic or anionic achiral co-monomers [(2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and vinyl benzyltrimethyl-ammonium (VBTA)] in the presence of conventional crosslinker (ethylene dimethacrylate) and ternary porogen system including butanediol, propanol and water. A total of 34 negatively charged compounds, 30 positively charged compounds and 33 neutral compounds were screened to compare the enantioresolution capability on the GMA/β-CD, GMA/β-CD-VBTA and GMA/β-CD-AMPS monolithic columns.

  9. Nanowires formed by the co-assembly of a negatively charged low-molecular weight gelator and a zwitterionic polythiophene.

    PubMed

    Li, Feng; Palaniswamy, Ganesan; de Jong, Menno R; Aslund, Andreas; Konradsson, Peter; Marcelis, Antonius T M; Sudhölter, Ernst J R; Stuart, Martien A Cohen; Leermakers, Frans A M

    2010-06-21

    Conjugated organic nanowires have been prepared by co-assembling a carboxylate containing low-molecular weight gelator (LMWG) and an amino acid substituted polythiophene derivative (PTT). Upon introducing the zwitterionic polyelectrolyte PTT to a basic molecular solution of the organogelator, the negative charges on the LMWG are compensated by the positive charges of the PTT. As a result, nanowires form through co-assembly. These nanowires are visualized by both transmission electron microscopy (TEM) and atomic force microscopy (AFM). Depending on the concentration and ratio of the components these nanowires can be micrometers long. These measurements further suggest that the aggregates adopt a helical conformation. The morphology of these nanowires are studied with fluorescent confocal laser scanning microscopy (CLSM). The interactions between LMWG and PTT are characterized by steady-state and time-resolved fluorescence spectroscopy studies. The steady-state spectra indicate that the backbone of the PTT adopts a more planar and more aggregated conformation when interacting with LMWG. The time- resolved fluorescence decay studies confirm this interpretation.

  10. Isomer-selected photoelectron spectroscopy of isolated DNA oligonucleotides: phosphate and nucleobase deprotonation at high negative charge states.

    PubMed

    Vonderach, Matthias; Ehrler, Oli T; Matheis, Katerina; Weis, Patrick; Kappes, Manfred M

    2012-05-09

    Fractionation according to ion mobility and mass-to-charge ratio has been used to select individual isomers of deprotonated DNA oligonucleotide multianions for subsequent isomer-resolved photoelectron spectroscopy (PES) in the gas phase. Isomer-resolved PE spectra have been recorded for tetranucleotides, pentanucleotides, and hexanucleotides. These were studied primarily in their highest accessible negative charge states (3-, 4-, and 5-, respectively), as provided by electrospraying from room temperature solutions. In particular, the PE spectra obtained for pentanucleotide tetraanions show evidence for two coexisting classes of gas-phase isomeric structures. We suggest that these two classes comprise: (i) species with excess electrons localized exclusively at deprotonated phosphate backbone sites and (ii) species with at least one deprotonated base (in addition to several deprotonated phosphates). By permuting the sequence of bases in various [A(5-x)T(x)](4-) and [GT(4)](4-) pentanucleotides, we have established that the second type of isomer is most likely to occur if the deprotonated base is located at the first or last position in the sequence. We have used a combination of molecular mechanics and semiempirical calculations together with a simple electrostatic model to explore the photodetachment mechanism underlying our photoelectron spectra. Comparison of predicted to measured photoelectron spectra suggests that a significant fraction of the detected electrons originates from the DNA bases (both deprotonated and neutral).

  11. Negatively charged silver nanoparticles cause retinal vascular permeability by activating plasma contact system and disrupting adherens junction.

    PubMed

    Long, Yan-Min; Zhao, Xing-Chen; Clermont, Allen C; Zhou, Qun-Fang; Liu, Qian; Feener, Edward P; Yan, Bing; Jiang, Gui-Bin

    2016-01-01

    Silver nanoparticles (AgNPs) have been extensively used as antibacterial component in numerous healthcare, biomedical and consumer products. Therefore, their adverse effects to biological systems have become a major concern. AgNPs have been shown to be absorbed into circulation and redistributed into various organs. It is thus of great importance to understand how these nanoparticles affect vascular permeability and uncover the underlying molecular mechanisms. A negatively charged mecaptoundeonic acid-capped silver nanoparticle (MUA@AgNP) was investigated in this work. Ex vivo experiments in mouse plasma revealed that MUA@AgNPs caused plasma prekallikrein cleavage, while positively charged or neutral AgNPs, as well as Ag ions had no effect. In vitro tests revealed that MUA@AgNPs activated the plasma kallikrein-kinin system (KKS) by triggering Hageman factor autoactivation. By using specific inhibitors aprotinin and HOE 140, we demonstrated that KKS activation caused the release of bradykinin, which activated B2 receptors and induced the shedding of adherens junction protein, VE-cadherin. These biological perturbations eventually resulted in endothelial paracellular permeability in mouse retina after intravitreal injection of MUA@AgNPs. The findings from this work provided key insights for toxicity modulation and biomedical applications of AgNPs.

  12. Negatively Charged Silver Nanoparticles Cause Retinal Vascular Permeability by Activating Plasma Contact System and Disrupting Adherens Junction

    PubMed Central

    Long, Yan-Min; Zhao, Xing-Chen; Clermont, Allen C.; Zhou, Qun-Fang; Liu, Qian; Feener, Edward P.; Yan, Bing; Jiang, Gui-Bin

    2016-01-01

    Silver nanoparticles (AgNPs) have been extensively used as antibacterial component in numerous healthcare, biomedical, and consumer products. Therefore, their adverse effects to biological systems have become a major concern. AgNPs have been shown to be absorbed into circulation and redistributed into various organs. It is thus of great importance to understand how these nanoparticles affect vascular permeability and uncover the underlying molecular mechanisms. A negatively charged mecaptoundeonic acid capped silver nanoparticle (MUA@AgNP) was investigated in this work. Ex-vivo experiments in mouse plasma revealed that MUA@AgNPs caused plasma prekallikrein cleavage, while positively charged or neutral AgNPs, as well as Ag ions had no effect. In-vitro tests revealed that MUA@AgNPs activated the plasma kallikrein-kinin system (KKS) by triggering Hageman factor autoactivation. By using specific inhibitors aprotinin and HOE 140, we demonstrated that KKS activation caused the release of bradykinin, which activated B2 receptors and induced the shedding of adherens junction protein, VE-cadherin. These biological perturbations eventually resulted in endothelial paracellular permeability in mouse retina after intravitreal injection of MUA@AgNPs. The findings from this work provided key insights for toxicity modulation and biomedical applications of AgNPs. PMID:26399585

  13. Comparison of Positively and Negatively Charged Achiral Co-Monomers Added to Cyclodextrin Monolith: Improved Chiral Separations in Capillary Electrochromatography

    PubMed Central

    Lu, Yang; Shamsi, Shahab A.

    2014-01-01

    Cyclodextrins (CDs) and their derivatives have been one of the most popular and successful chiral additives used in electrokinetic chromatography because of the presence of multiple chiral centers, which leads to multiple chiral interactions. However, there has been relatively less published work on the use of CDs as monolithic media for capillary electrochromatography (CEC). The goal of this study was to show how the addition of achiral co-monomer to a polymerizable CD such as glycidyl methacrylate β-cyclodextrin (GMA/β-CD) can affect the enantioselective separations in monolithic CEC. To achieve this goal, polymeric monoliths columns were prepared by co-polymerizing GMA/β-CD with cationic or anionic achiral co-monomers [(2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and vinyl benzyltrimethyl-ammonium (VBTA)] in the presence of conventional crosslinker (ethylene dimethacrylate) and ternary porogen system including butanediol, propanol and water. A total of 34 negatively charged compounds, 30 positively charged compounds and 33 neutral compounds were screened to compare the enantioresolution capability on the GMA/β-CD, GMA/β-CD-VBTA and GMA/β-CD-AMPS monolithic columns. PMID:24108813

  14. Quantum effects in electron emission from and accretion on negatively charged spherical particles in a complex plasma

    SciTech Connect

    Mishra, S. K.; Sodha, M. S.; Misra, Shikha

    2012-07-15

    The authors have investigated the electron emissions (thermionic, electric field, photoelectric, and light induced field) from and electron accretion on a charged particle in a complex plasma, on the basis of a three region electrical potential model in and around a charged spherical particle in a complex plasma, characterized by Debye shielding. A continuous variation of the transmission coefficient across the surface of a particle (corresponding to emission and accretion) with the radial electron energy {epsilon}{sub r} has been obtained. It is seen that the numerical values of the emission and accretion transmission coefficients [D({epsilon}{sub r})] are almost the same. This is the necessary and sufficient condition for the validity of Saha's equation for thermal equilibrium of a system of dust and electrons. This is in contrast to the earlier condition, which limited the range of validity of Saha's equation to the range of the applicability of Born approximation. It is seen that D({epsilon}{sub r}) increases with increasing {epsilon}{sub r}, increasing negative electric potential on the surface, decreasing radius, and deceasing Debye length. The electron currents, corresponding to thermionic, electric field, photoelectric and light induced field emission increase with increasing surface potential; this fact may have significant repercussions in complex plasma kinetics. Since numerically D({epsilon}{sub r}) is significantly different from unity in the range of {epsilon}{sub r} of interest, it is necessary to take into account the D({epsilon}{sub r})-{epsilon}{sub r} dependence in complex plasma theory.

  15. Positive/negative surface charge of chitosan based nanogels and its potential influence on oral insulin delivery.

    PubMed

    Wang, Juan; Xu, Mengxue; Cheng, Xiaojie; Kong, Ming; Liu, Ya; Feng, Chao; Chen, Xiguang

    2016-01-20

    To develop insulin delivery system for the treatment of diabetes, two insulin-loaded nanogels with opposite zeta potential (-15.94 ± 0.449 mV for insulin:CMCS/CS-NGs(-) and +17.15 ± 0.492 mV for insulin:CMCS/CS-NGs(+)) were obtained. Ex vivo results showed that the nanogels with opposite surface charge exhibited different adhesion and permeation in specific intestinal segments. There was no significant differences in adhesion and permeation in rat duodenum, but in rat jejunum, insulin:CMCS/CS-NGs(-) exhibited enhanced adhesion and permeation, which were about 3 folds (adhesion) and 1.7 folds (permeation) higher than insulin:CMCS/CS-NGs(+). These results demonstrated that the surface charge property of nanogels determined the absorption sites of CMCS/CS-NGs in small intestine. In vivo study, the blood glucose level in insulin:CMCS/CS-NGs(-) group had 3 mmol/L lower than insulin:CMCS/CS-NGs(+) group during 1h to 11h after the oral administration, which demonstrated that negative insulin:CMCS/CS-NGs had a better management of blood glucose than positive ones.

  16. Integrating high electrical conductivity and photocatalytic activity in cotton fabric by cationizing for enriched coating of negatively charged graphene oxide.

    PubMed

    Sahito, Iftikhar Ali; Sun, Kyung Chul; Arbab, Alvira Ayoub; Qadir, Muhammad Bilal; Jeong, Sung Hoon

    2015-10-05

    Electroconductive textiles have attended tremendous focus recently and researchers are making efforts to increase conductivity of e-textiles, in order to increase the use of such flexible and low cost textile materials. In this study, surface conductivity and photo catalytic activity of standard cotton fabric (SCF) was enhanced by modifying its surface charge, from negative to positive, using Bovine Serum Albumin (BSA) as a cationic agent, to convert it into cationised cotton fabric (CCF). Then, both types of fabrics were dip coated with a simple dip and dry technique for the adsorption of negatively charged graphene oxide (GO) sheets onto its surface. This resulted in 67.74% higher loading amount of GO on the CCF making self-assembly. Finally, this coating was chemically converted by vapor reduction using hydrazine hydrate to reduced graphene oxide (rGO) for restoration of a high electrical conductivity at the fabric surface. Our results revealed that with such high loading of GO, the surface resistance of CCF was only 40Ω/sq as compared to 510Ω/sq of the SCF and a 66% higher photo catalytic activity was also achieved through cationization for improved GO coating. Graphene coated SCF and CCF were characterized using FE-SEM, FTIR, Raman, UV-vis, WAXD, EDX and XPS spectroscopy to ascertain successful reduction of GO to rGO. The effect of BSA treatment on adsorption of cotton fabric was studied using drop shape analyzer to measure contact angle and for thermal and mechanical resistance, the fabric was tested for TGA and tensile strength, respectively. rGO coated fabric also showed slightly improved thermal stability yet a minor loss of strength was observed. The high flexibility, photocatalytic activity and excellent conductivity of this fabric suggests that it can be used as an electrode material for various applications.

  17. Targeted delivery of chemically modified anti-miR-221 to hepatocellular carcinoma with negatively charged liposomes.

    PubMed

    Zhang, Wendian; Peng, Fangqi; Zhou, Taotao; Huang, Yifei; Zhang, Li; Ye, Peng; Lu, Miao; Yang, Guang; Gai, Yongkang; Yang, Tan; Ma, Xiang; Xiang, Guangya

    2015-01-01

    Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death. Gene therapy was established as a new strategy for treating HCC. To explore the potential delivery system to support the gene therapy of HCC, negatively charged liposomal delivery system was used to deliver miR-221 antisense oligonucleotide (anti-miR-221) to the transferrin (Tf) receptor over expressed HepG2 cells. The liposome exhibited a mean particle size of 122.5 nm, zeta potential of -15.74 mV, anti-miR-221 encapsulation efficiency of 70%, and excellent colloidal stability at 4°C. Anti-miR-221-encapsulated Tf-targeted liposome demonstrated a 15-fold higher delivery efficiency compared to nontargeted liposome in HepG2 cells in vitro. Anti-miR-221 Tf-targeted liposome effectively delivered anti-miR-221 to HepG2 cells, upregulated miR-221 target genes PTEN, P27(kip1), and TIMP3, and exhibited greater silencing efficiency over nontargeted anti-miR-221 liposome. After intravenous injection into HepG2 tumor-bearing xenografted mice with Cy3-labeled anti-miR-221 Tf-targeted liposome, Cy3-anti-miR-221 was successfully delivered to the tumor site and increased the expressions of PTEN, P27(kip1), and TIMP3. Our results demonstrate that the Tf-targeted negatively charged liposome could be a potential therapeutic modality in the gene therapy of human HCC.

  18. Impact of Multiple Negative Charges on Blood Clearance and Biodistribution Characteristics of 99mTc-Labeled Dimeric Cyclic RGD Peptides

    PubMed Central

    2015-01-01

    This study sought to evaluate the impact of multiple negative charges on blood clearance kinetics and biodistribution properties of 99mTc-labeled RGD peptide dimers. Bioconjugates HYNIC-P6G-RGD2 and HYNIC-P6D-RGD2 were prepared by reacting P6G-RGD2 and P6D-RGD2, respectively, with excess HYNIC-OSu in the presence of diisopropylethylamine. Their IC50 values were determined to be 31 ± 5 and 41 ± 6 nM, respectively, against 125I-echistatin bound to U87MG glioma cells in a whole-cell displacement assay. Complexes [99mTc(HYNIC-P6G-RGD2)(tricine)(TPPTS)] (99mTc-P6G-RGD2) and [99mTc(HYNIC-P6D-RGD2)(tricine)(TPPTS)] (99mTc-P6D-RGD2) were prepared in high radiochemical purity (RCP > 95%) and specific activity (37–110 GBq/μmol). They were evaluated in athymic nude mice bearing U87MG glioma xenografts for their biodistribution. The most significant difference between 99mTc-P6D-RGD2 and 99mTc-P6G-RGD2 was their blood radioactivity levels and tumor uptake. The initial blood radioactivity level for 99mTc-P6D-RGD2 (4.71 ± 1.00%ID/g) was ∼5× higher than that of 99mTc-P6G-RGD2 (0.88 ± 0.05%ID/g), but this difference disappeared at 60 min p.i. 99mTc-P6D-RGD2 had much lower tumor uptake (2.20–3.11%ID/g) than 99mTc-P6G-RGD2 (7.82–9.27%ID/g) over a 2 h period. Since HYNIC-P6D-RGD2 and HYNIC-P6G-RGD2 shared a similar integrin αvβ3 binding affinity (41 ± 6 nM versus 31 ± 5 nM), the difference in their blood activity and tumor uptake is most likely related to the nine negative charges and high protein binding of 99mTc-P6D-RGD2. Despite its low uptake in U87MG tumors, the tumor uptake of 99mTc-P6D-RGD2 was integrin αvβ3-specific. SPECT/CT studies were performed using 99mTc-P6G-RGD2 in athymic nude mice bearing U87MG glioma and MDA-MB-231 breast cancer xenografts. The SPECT/CT data demonstrated the tumor-targeting capability of 99mTc-P6G-RGD2, and its tumor uptake depends on the integrin αvβ3 expression levels on tumor cells and neovasculature. It was concluded that

  19. SAAMBE: Webserver to Predict the Charge of Binding Free Energy Caused by Amino Acids Mutations

    PubMed Central

    Petukh, Marharyta; Dai, Luogeng; Alexov, Emil

    2016-01-01

    Predicting the effect of amino acid substitutions on protein–protein affinity (typically evaluated via the change of protein binding free energy) is important for both understanding the disease-causing mechanism of missense mutations and guiding protein engineering. In addition, researchers are also interested in understanding which energy components are mostly affected by the mutation and how the mutation affects the overall structure of the corresponding protein. Here we report a webserver, the Single Amino Acid Mutation based change in Binding free Energy (SAAMBE) webserver, which addresses the demand for tools for predicting the change of protein binding free energy. SAAMBE is an easy to use webserver, which only requires that a coordinate file be inputted and the user is provided with various, but easy to navigate, options. The user specifies the mutation position, wild type residue and type of mutation to be made. The server predicts the binding free energy change, the changes of the corresponding energy components and provides the energy minimized 3D structure of the wild type and mutant proteins for download. The SAAMBE protocol performance was tested by benchmarking the predictions against over 1300 experimentally determined changes of binding free energy and a Pearson correlation coefficient of 0.62 was obtained. How the predictions can be used for discriminating disease-causing from harmless mutations is discussed. The webserver can be accessed via http://compbio.clemson.edu/saambe_webserver/. PMID:27077847

  20. SAAMBE: Webserver to Predict the Charge of Binding Free Energy Caused by Amino Acids Mutations.

    PubMed

    Petukh, Marharyta; Dai, Luogeng; Alexov, Emil

    2016-04-12

    Predicting the effect of amino acid substitutions on protein-protein affinity (typically evaluated via the change of protein binding free energy) is important for both understanding the disease-causing mechanism of missense mutations and guiding protein engineering. In addition, researchers are also interested in understanding which energy components are mostly affected by the mutation and how the mutation affects the overall structure of the corresponding protein. Here we report a webserver, the Single Amino Acid Mutation based change in Binding free Energy (SAAMBE) webserver, which addresses the demand for tools for predicting the change of protein binding free energy. SAAMBE is an easy to use webserver, which only requires that a coordinate file be inputted and the user is provided with various, but easy to navigate, options. The user specifies the mutation position, wild type residue and type of mutation to be made. The server predicts the binding free energy change, the changes of the corresponding energy components and provides the energy minimized 3D structure of the wild type and mutant proteins for download. The SAAMBE protocol performance was tested by benchmarking the predictions against over 1300 experimentally determined changes of binding free energy and a Pearson correlation coefficient of 0.62 was obtained. How the predictions can be used for discriminating disease-causing from harmless mutations is discussed. The webserver can be accessed via http://compbio.clemson.edu/saambe_webserver/.

  1. Agglutination of like-charged red blood cells induced by binding of beta2-glycoprotein I to outer cell surface.

    PubMed

    Lokar, Marusa; Urbanija, Jasna; Frank, Mojca; Hägerstrand, Henry; Rozman, Blaz; Bobrowska-Hägerstrand, Malgorzata; Iglic, Ales; Kralj-Iglic, Veronika

    2008-08-01

    Plasma protein-mediated attractive interaction between membranes of red blood cells (RBCs) and phospholipid vesicles was studied. It is shown that beta(2)-glycoprotein I (beta(2)-GPI) may induce RBC discocyte-echinocyte-spherocyte shape transformation and subsequent agglutination of RBCs. Based on the observed beta(2)-GPI-induced RBC cell shape transformation it is proposed that the hydrophobic portion of beta(2)-GPI molecule protrudes into the outer lipid layer of the RBC membrane and increases the area of this layer. It is also suggested that the observed agglutination of RBCs is at least partially driven by an attractive force which is of electrostatic origin and depends on the specific molecular shape and internal charge distribution of membrane-bound beta(2)-GPI molecules. The suggested beta(2)-GPI-induced attractive electrostatic interaction between like-charged RBC membrane surfaces is qualitatively explained by using a simple mathematical model within the functional density theory of the electric double layer, where the electrostatic attraction between the positively charged part of the first domains of bound beta(2)-GPI molecules and negatively charged glycocalyx of the adjacent RBC membrane is taken into account.

  2. Effects of naturally occurring charged mutations on the structure, stability, and binding of the Pin1 WW domain.

    PubMed

    Qiao, Xiaoya; Liu, Ying; Luo, Liting; Chen, Lei; Zhao, Caixian; Ai, Xuanjun

    2017-05-27

    Pin1 is a peptidyl-prolyl cis-trans isomerase, whose WW domain specifically recognizes the pSer/Thr-Pro motif. Pin1 is involved in multiple phosphorylation events that regulate the activities of various substrates, and Pin1 deregulation has been reported in various diseases, including cancer and Alzheimer's disease. The WW domain of Pin1 has been used as a small model protein to investigate the folding mechanisms of the β-sheet structure by studying the effect of mutations or its naturally occurring variants. However, only a few studies have investigated the structure and binding of Pin1 WW mutants. In the present work, two naturally occurring Pin1 WW variants, namely, G20D and S16R, derived from the cynomolgus monkey and African green monkey, respectively, were selected to investigate the influence of charge mutation on the structure, stability, and binding properties of the Pin1 WW domain. Analysis using a combination of nuclear magnetic resonance (NMR) and chemical shift-based calculations revealed that the G20D and S16R mutants had high structural similarity to the wild-type Pin1 WW domain. However, the presence of a charge mutation significantly decreased the stability of the Pin1 WW domain. Both the wild-type and G20D forms of the Pin1 WW domain utilized a three-site mode to bind to a phosphorylated Tau peptide, pT231, whereas the S16R mutant binds to the pT231 peptide either in a non-specific manner or through a totally different binding mechanism. Correspondingly, the wild-type and two mutant Pin1 WW domains showed different binding affinities to the Tau phosphopeptide. Considering that the WW domain participates in the catalytic activity of the Pin1 isomerase, our study represents a novel approach for studying Pin1 function through the analysis of its naturally occurring mutants. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Kinetic interaction analysis of human interleukin 5 receptor alpha mutants reveals a unique binding topology and charge distribution for cytokine recognition.

    PubMed

    Ishino, Tetsuya; Pasut, Gianfranco; Scibek, Jeffery; Chaiken, Irwin

    2004-03-05

    Human interleukin 5 receptor alpha (IL5Ralpha) comprises three fibronectin type III domains (D1, D2, and D3) in the extracellular region. Previous results have indicated that residues in the D1D2 domains are crucial for high affinity interaction with human interleukin 5 (IL5). Yet, it is the D2D3 domains that have sequence homology with the classic cytokine recognition motif that is generally assumed to be the minimum cytokine-recognizing unit. In the present study, we used kinetic interaction analysis of alanine-scanning mutational variants of IL5Ralpha to define the residues involved in IL5 recognition. Soluble forms of IL5Ralpha variants were expressed in S2 cells, selectively captured via their C-terminal V5 tag by anti-V5 tag antibody immobilized onto the sensor chip and examined for IL5 interaction by using a sandwich surface plasmon resonance biosensor method. Marked effects on the interaction kinetics were observed not only in D1 (Asp(55), Asp(56), and Glu(58)) and D2 (Lys(186) and Arg(188)) domains, but also in the D3 (Arg(297)) domain. Modeling of the tertiary structure of IL5Ralpha indicated that these binding residues fell into two clusters. The first cluster consists of D1 domain residues that form a negatively charged patch, whereas the second cluster consists of residues that form a positively charged patch at the interface of D2 and D3 domains. These results suggest that the IL5 x IL5Ralpha system adopts a unique binding topology, in which the cytokine is recognized by a D2D3 tandem domain combined with a D1 domain, to form an extended cytokine recognition interface.

  4. The BRCA-1 binding protein BRAP2 is a novel, negative regulator of nuclear import of viral proteins, dependent on phosphorylation flanking the nuclear localization signal.

    PubMed

    Fulcher, Alex J; Roth, Daniela M; Fatima, Shadma; Alvisi, Gualtiero; Jans, David A

    2010-05-01

    This study describes for the first time the ability of the novel BRCA1-binding protein 2 (BRAP2) to inhibit the nuclear import of specific viral proteins dependent on phosphorylation. Ectopic expression of BRAP2 in transfected African green monkey kidney COS-7 cells was found to significantly reduce nuclear localization signal (NLS)-dependent nuclear accumulation of either simian virus SV40 large-tumor antigen (T-ag) or human cytomegalovirus DNA polymerase processivity factor ppUL44; this was also observed in HL-60 human promyelocytic leukemia cells on induction of BRAP2 expression by vitamin D3 treatment. BRAP2 inhibition of nuclear accumulation was dependent on phosphorylation sites flanking the respective NLSs, where substitution of the cyclin-dependent kinase site T124 of T-ag with Ala or Asp prevented or enhanced BRAP2 inhibition of nuclear import, respectively. Substitution of T427 within the NLS of ppUL44 gave similar results, whereas no effect of BRAP2 was observed on nuclear targeting of other viral proteins, such as herpes simplex virus-1 pUL30, which lacks a phosphorylation site near its NLS, and the human immunodeficiency virus-1 Tat protein. Pulldowns/AlphaScreen assays indicated direct, high-affinity binding of BRAP2(442-592) to T-ag(111-135), strictly dependent on negative charge at T124 and the NLS. All results are consistent with BRAP2 being a novel, phosphorylation-regulated negative regulator of nuclear import, with potential as an antiviral agent.

  5. Binding to extracellular matrix proteins and formation of biogenic amines by food-associated coagulase-negative staphylococci.

    PubMed

    Seitter, Marion; Geng, Bettina; Hertel, Christian

    2011-02-28

    In connection with a study on the DNA microarray based detection of genes involved in safety and technologically relevant properties (Seitter (née Resch) et al., 2011), food-associated coagulase-negative staphylococci (CNS) were investigated phenotypically with regard to their ability to bind to the extracellular matrix proteins (ECM) and to produce biogenic amines. The properties have been shown to be involved in the colonization of injured tissue and invasion into host cells as well as in pharmacologic effects on humans, respectively. The CNS exhibited a low, but nevertheless clearly measurable ECM binding capacity, except for strains of Staphylococcus equorum and Staphylococcus succinus, which show a comparable or even higher binding to fibrinogen and fibronectin than that of the control strain Staphylococcus aureus Cowan. Formation of biogenic amines could be often detected in S. carnosus, S. condimenti and S. strains, but rarely in S. equorum and not in S. succinus and S. xylosus strains. Mostly, 2-phenylethylamine, tyramine and tryptamine were formed by resting cells in amounts < 25 mg/l, whereas growing cells formed high amounts (> 100 mg/l) of 2-phenylethylamine and putrescine. This study confirmed the need of consideration of ECM binding and biogenic amine formation in the safety assessment of CNS used in the production of fermented foods.

  6. The greater negative charge density of DNA in tris-borate buffers does not enhance DNA condensation by multivalent cations.

    PubMed

    Schwinefus, J J; Bloomfield, V A

    2000-12-01

    As indicated by recent measurements of the electrophoretic free solution mobility, DNA appears to have a greater helical charge density in Tris-borate-EDTA (TBE) buffers than in Tris-acetate-EDTA (TAE) buffers. Since electrostatic forces play a major role in DNA packaging processes, we have investigated the condensation of closed circular plasmid DNA using total intensity and dynamic light scattering in Tris-borate, Tris-acetate, and Tris-cacodylate buffers with cobaltic hexa-amine (III) [Co(NH(3))(3+)(6)]. We find that neither the critical concentration of Co(NH(3))(3+)(6) nor the hydrodynamic radii of the resulting condensates vary significantly in the buffer systems studied here despite the prediction that DNA condensation should occur at significantly lower Co(NH(3))(3+)(6) concentrations in Tris-borate buffers. Assuming a persistence length behavior similar to B-DNA in the presence of multivalent cations, a decrease in the attractive counterion correlation pressure decay length in Tris-borate buffers does not account for our observations. It is possible that the binding of multivalent cations to DNA may hinder borate association with the DNA double helix.

  7. Rubicon and PLEKHM1 negatively regulate the endocytic/autophagic pathway via a novel Rab7-binding domain.

    PubMed

    Tabata, Keisuke; Matsunaga, Kohichi; Sakane, Ayuko; Sasaki, Takuya; Noda, Takeshi; Yoshimori, Tamotsu

    2010-12-01

    The endocytic and autophagic pathways are involved in the membrane trafficking of exogenous and endogenous materials to lysosomes. However, the mechanisms that regulate these pathways are largely unknown. We previously reported that Rubicon, a Beclin 1-binding protein, negatively regulates both the autophagic and endocytic pathways by unidentified mechanisms. In this study, we performed database searches to identify potential Rubicon homologues that share the common C-terminal domain, termed the RH domain. One of them, PLEKHM1, the causative gene of osteopetrosis, also suppresses endocytic transport but not autophagosome maturation. Rubicon and PLEKHM1 specifically and directly interact with Rab7 via their RH domain, and this interaction is critical for their function. Furthermore, we show that Rubicon but not PLEKHM1 uniquely regulates membrane trafficking via simultaneously binding both Rab7 and PI3-kinase.

  8. Cyanidin-3-o-glucoside directly binds to ERα36 and inhibits EGFR-positive triple-negative breast cancer

    PubMed Central

    Yang, Shiping; Ma, Wenqiang; Liu, Mei; Guo, Shichao; Zhan, Jun; Zhang, Hongquan; Tsang, Suk Ying; Zhang, Ziding; Wang, Zhaoyi; Li, Xiru; Guo, Yang-Dong; Li, Xiangdong

    2016-01-01

    Anthocyanins have been shown to inhibit the growth and metastatic potential of breast cancer (BC) cells. However, the effects of individual anthocyanins on triple-negative breast cancer (TNBC) have not yet been studied. In this study, we found that cyanidin-3-o-glucoside (Cy-3-glu) preferentially promotes the apoptosis of TNBC cells, which co-express the estrogen receptor alpha 36 (ERα36) and the epidermal growth factor receptor (EGFR). We demonstrated that Cy-3-glu directly binds to the ligand-binding domain (LBD) of ERα36, inhibits EGFR/AKT signaling, and promotes EGFR degradation. We also confirmed the therapeutic efficacy of Cy-3-glu on TNBC in the xenograft mouse model. Our data indicates that Cy-3-glu could be a novel preventive/therapeutic agent against the TNBC co-expressed ERα36/EGFR. PMID:27655695

  9. Increasing the Net Negative Charge by Replacement of DOTA Chelator with DOTAGA Improves the Biodistribution of Radiolabeled Second-Generation Synthetic Affibody Molecules.

    PubMed

    Westerlund, Kristina; Honarvar, Hadis; Norrström, Emily; Strand, Joanna; Mitran, Bogdan; Orlova, Anna; Eriksson Karlström, Amelie; Tolmachev, Vladimir

    2016-05-02

    A promising strategy to enable patient stratification for targeted therapies is to monitor the target expression in a tumor by radionuclide molecular imaging. Affibody molecules (7 kDa) are nonimmunoglobulin scaffold proteins with a 25-fold smaller size than intact antibodies. They have shown an apparent potential as molecular imaging probes both in preclinical and clinical studies. Earlier, we found that hepatic uptake can be reduced by the incorporation of negatively charged purification tags at the N-terminus of Affibody molecules. We hypothesized that liver uptake might similarly be reduced by positioning the chelator at the N-terminus, where the chelator-radionuclide complex will provide negative charges. To test this hypothesis, a second generation synthetic anti-HER2 ZHER2:2891 Affibody molecule was synthesized and labeled with (111)In and (68)Ga using DOTAGA and DOTA chelators. The chelators were manually coupled to the N-terminus of ZHER2:2891 forming an amide bond. Labeling DOTAGA-ZHER2:2891 and DOTA-ZHER2:2891 with (68)Ga and (111)In resulted in stable radioconjugates. The tumor-targeting and biodistribution properties of the (111)In- and (68)Ga-labeled conjugates were compared in SKOV-3 tumor-bearing nude mice at 2 h postinjection. The HER2-specific binding of the radioconjugates was verified both in vitro and in vivo. Using the DOTAGA chelator gave significantly lower radioactivity in liver and blood for both radionuclides. The (111)In-labeled conjugates showed more rapid blood clearance than the (68)Ga-labeled conjugates. The most pronounced influence of the chelators was found when they were labeled with (68)Ga. The DOTAGA chelator gave significantly higher tumor-to-blood (61 ± 6 vs 23 ± 5, p < 0.05) and tumor-to-liver (10.4 ± 0.6 vs 4.5 ± 0.5, p < 0.05) ratios than the DOTA chelator. This study demonstrated that chelators may be used to alter the uptake of Affibody molecules, and most likely other scaffold-based imaging probes, for improvement

  10. Assessing Carbon-Based Anodes for Lithium-Ion Batteries: A Universal Description of Charge-Transfer Binding

    DOE PAGES

    Liu, Yuanyue; Wang, Y. Morris; Yakobson, Boris I.; ...

    2014-07-11

    Many key performance characteristics of carbon-based lithium-ion battery anodes are largely determined by the strength of binding between lithium (Li) and sp2 carbon (C), which can vary significantly with subtle changes in substrate structure, chemistry, and morphology. We use density functional theory calculations to investigate the interactions of Li with a wide variety of sp2 C substrates, including pristine, defective, and strained graphene, planar C clusters, nanotubes, C edges, and multilayer stacks. In almost all cases, we find a universal linear relation between the Li-C binding energy and the work required to fill previously unoccupied electronic states within the substrate.more » This suggests that Li capacity is predominantly determined by two key factors—namely, intrinsic quantum capacitance limitations and the absolute placement of the Fermi level. This simple descriptor allows for straightforward prediction of the Li-C binding energy and related battery characteristics in candidate C materials based solely on the substrate electronic structure. It further suggests specific guidelines for designing more effective C-based anodes. Furthermore, this method should be broadly applicable to charge-transfer adsorption on planar substrates, and provides a phenomenological connection to established principles in supercapacitor and catalyst design.« less

  11. Assessing Carbon-Based Anodes for Lithium-Ion Batteries: A Universal Description of Charge-Transfer Binding

    SciTech Connect

    Liu, Yuanyue; Wang, Y. Morris; Yakobson, Boris I.; Wood, Brandon C.

    2014-07-11

    Many key performance characteristics of carbon-based lithium-ion battery anodes are largely determined by the strength of binding between lithium (Li) and sp2 carbon (C), which can vary significantly with subtle changes in substrate structure, chemistry, and morphology. We use density functional theory calculations to investigate the interactions of Li with a wide variety of sp2 C substrates, including pristine, defective, and strained graphene, planar C clusters, nanotubes, C edges, and multilayer stacks. In almost all cases, we find a universal linear relation between the Li-C binding energy and the work required to fill previously unoccupied electronic states within the substrate. This suggests that Li capacity is predominantly determined by two key factors—namely, intrinsic quantum capacitance limitations and the absolute placement of the Fermi level. This simple descriptor allows for straightforward prediction of the Li-C binding energy and related battery characteristics in candidate C materials based solely on the substrate electronic structure. It further suggests specific guidelines for designing more effective C-based anodes. Furthermore, this method should be broadly applicable to charge-transfer adsorption on planar substrates, and provides a phenomenological connection to established principles in supercapacitor and catalyst design.

  12. Gas-Phase Stability of Negatively Charged Organophosphate Metabolites Produced by Electrospray Ionization and Matrix-Assisted Laser Desorption/Ionization

    NASA Astrophysics Data System (ADS)

    Asakawa, Daiki; Mizuno, Hajime; Toyo'oka, Toshimasa

    2017-09-01

    The formation mechanisms of singly and multiply charged organophosphate metabolites by electrospray ionization (ESI) and their gas phase stabilities were investigated. Metabolites containing multiple phosphate groups, such as adenosine 5'-diphosphate (ADP), adenosine 5'-triphosphate (ATP), and D-myo-inositol-1,4,5-triphosphate (IP3) were observed as doubly deprotonated ions by negative-ion ESI mass spectrometry. Organophosphates with multiple negative charges were found to be unstable and often underwent loss of PO3 -, although singly deprotonated analytes were stable. The presence of fragments due to the loss of PO3 - in the negative-ion ESI mass spectra could result in the misinterpretation of analytical results. In contrast to ESI, matrix-assisted laser desorption ionization (MALDI) produced singly charged organophosphate metabolites with no associated fragmentation, since the singly charged anions are stable. The stability of an organophosphate metabolite in the gas phase strongly depends on its charge state. The fragmentations of multiply charged organophosphates were also investigated in detail through density functional theory calculations. [Figure not available: see fulltext.

  13. A redundant nuclear protein binding site contributes to negative regulation of the mouse mammary tumor virus long terminal repeat.

    PubMed

    Bramblett, D; Hsu, C L; Lozano, M; Earnest, K; Fabritius, C; Dudley, J

    1995-12-01

    The tissue specificity of mouse mammary tumor virus (MMTV) expression is controlled by regulatory elements in the MMTV long terminal repeat (LTR). These regulatory elements include the hormone response element, located approximately between -200 and -75, as well as binding sites for NF-1, Oct-1 (OTF-1), and mammary gland enhancer factors. Naturally occurring MMTV deletion variants isolated from T-cell and kidney tumors, transgenic-mouse experiments with MMTV LTR deletions, and transient transfection assays with LTR constructs indicate that there are additional transcription regulatory elements, including a negative regulatory element (NRE), located upstream of the hormone response element. To further define this regulatory region, we have constructed a series of BAL 31 deletion mutants in the MMTV LTR for use in transient transfection assays. These assays indicated that deletion of two regions (referred to as promoter-distal and -proximal NREs) between -637 and -201 elevated basal MMTV promoter activity in the absence of glucocorticoids. The region between -637 and -264 was surveyed for the presence of nuclear protein binding sites by gel retardation assays. Only one type of protein complex (referred to as NRE-binding protein or NBP) bound exclusively to sites that mapped to the promoter-distal and -proximal NREs identified by BAL 31 mutations. The promoter-proximal binding site was mapped further by linker substitution mutations and transfection assays. Mutations that mapped to a region containing an inverted repeat beginning at -287 relative to the start of transcription elevated basal expression of a reporter gene driven by the MMTV LTR. A 59-bp DNA fragment from the distal NRE also bound the NBP complex. Gel retardation assays showed that mutations within both inverted repeats of the proximal NRE eliminated NBP binding and mutations within single repeats altered NBP binding. Intriguingly, the NBP complex was detected in extracts from T cells and lung cells but

  14. A redundant nuclear protein binding site contributes to negative regulation of the mouse mammary tumor virus long terminal repeat.

    PubMed Central

    Bramblett, D; Hsu, C L; Lozano, M; Earnest, K; Fabritius, C; Dudley, J

    1995-01-01

    The tissue specificity of mouse mammary tumor virus (MMTV) expression is controlled by regulatory elements in the MMTV long terminal repeat (LTR). These regulatory elements include the hormone response element, located approximately between -200 and -75, as well as binding sites for NF-1, Oct-1 (OTF-1), and mammary gland enhancer factors. Naturally occurring MMTV deletion variants isolated from T-cell and kidney tumors, transgenic-mouse experiments with MMTV LTR deletions, and transient transfection assays with LTR constructs indicate that there are additional transcription regulatory elements, including a negative regulatory element (NRE), located upstream of the hormone response element. To further define this regulatory region, we have constructed a series of BAL 31 deletion mutants in the MMTV LTR for use in transient transfection assays. These assays indicated that deletion of two regions (referred to as promoter-distal and -proximal NREs) between -637 and -201 elevated basal MMTV promoter activity in the absence of glucocorticoids. The region between -637 and -264 was surveyed for the presence of nuclear protein binding sites by gel retardation assays. Only one type of protein complex (referred to as NRE-binding protein or NBP) bound exclusively to sites that mapped to the promoter-distal and -proximal NREs identified by BAL 31 mutations. The promoter-proximal binding site was mapped further by linker substitution mutations and transfection assays. Mutations that mapped to a region containing an inverted repeat beginning at -287 relative to the start of transcription elevated basal expression of a reporter gene driven by the MMTV LTR. A 59-bp DNA fragment from the distal NRE also bound the NBP complex. Gel retardation assays showed that mutations within both inverted repeats of the proximal NRE eliminated NBP binding and mutations within single repeats altered NBP binding. Intriguingly, the NBP complex was detected in extracts from T cells and lung cells but

  15. A new method to study Li-ion cell safety: laser beam initiated reactions on both charged negative and positive electrodes

    NASA Astrophysics Data System (ADS)

    Pérès, J. P.; Perton, F.; Audry, C.; Biensan, Ph; de Guibert, A.; Blanc, G.; Broussely, M.

    The improvement of Li-ion batteries safety in abuse use is one of the key issues for their establishment in future hybrid or electrical vehicles. Such a challenge requires a perfect understanding of phenomena which could occur in abuse situation. A new technique for a better understanding of Li-ion cell safety has been so investigated. Reactions between electrolyte and charged electrodes (positive and negative just recovered from dismantled charged 4/5A cells) have been initiated by a laser beam, having a monitored intensity and time pulse. From such a device, a strong and controlled heating can be generated, in a very short time scale, on a defined electrode surface area. This localized heating, which is supposed to be similar to that could occur from a cell internal short-circuit, is able to initiate "self-propagation reactions" on charged negative and positive electrodes. This new technique has allowed a ranking of charged electrodes in terms of "self-propagation ability". This range of new data has been compared to results obtained from classical thermal characterization methods (DSC, DTA) and results obtained from normalized abuse tests. Global charged negative and positive electrodes degradation mechanisms have been proposed in good agreement with the whole results. The safety of a done Li-ion cell seems mainly related to active negative and positive active materials, but also to other components of the electrodes, and especially additive carbons and aluminum collector of the positive side.

  16. Calmodulin-binding protein CBP60g functions as a negative regulator in Arabidopsis anthocyanin accumulation

    PubMed Central

    Zou, Bo; Wan, Dongli; Li, Ruili; Han, Xiaomin; Li, Guojing; Wang, Ruigang

    2017-01-01

    Anthocyanins, a kind of flavonoid, normally accumulate in the flowers and fruits and make them colorful. Anthocyanin accumulation is regulated via the different temporal and spatial expression of anthocyanin regulatory and biosynthetic genes. CBP60g, a calmodulin binding protein, has previously been shown to have a role in pathogen resistance, drought tolerance and ABA sensitivity. In this study, we found that CBP60g repressed anthocyanin accumulation induced by drought, sucrose and kinetin. The expression pattern of CBP60g was in accordance with the anthocyanin accumulation tissues. Real-time qPCR analysis revealed that the anthocyanin biosynthetic genes CHS, CHI and DFR, as well as two members of MBW complex, PAP1, a MYB transcription factor, and TT8, a bHLH transcription factor, were down regulated by CBP60g. PMID:28253311

  17. [Air negative charge ion concentration and its relationships with meteorological factors in different ecological functional zones of Hefei City].

    PubMed

    Wei, Chaoling; Wang, Jingtao; Jiang, Yuelin; Zhang, Qingguo

    2006-11-01

    Air negative charge ion concentration (ANCIC) has a close relationship with air quality. The observations on the ANCIC, sunlight intensity, air temperature, and air relative humidity in different ecological functional zones of Hefei City from 2003 to 2004 showed that the diurnal change pattern of ANCIC was of single peak in sightseeing and habitation zones, dual peak in industrial zone, and complicated in commercial zone. Different ecological functional zones had different appearance time of their daily ANCIC extremum. The diurnal fluctuation of ANCIC was in the order of commercial zone > industrial zone > habitation zone and sightseeing zone. The annual change pattern of ANCIC in these zones was similar, being the highest in summer and lowest in winter, and the mean annual ANCIC was 819, 340, 149 and 126 ions x cm(-3), respectively. The most important meteorological factor affecting the ANCIC in Hefei City was air relative humidity, followed by sunlight intensity and air temperature. There was an exponential relationship between ANCIC and air relative humidity.

  18. New insight into the spin-conserving excitation of the negatively charged nitrogen-vacancy center in diamond

    PubMed Central

    Deng, Bei; Zhang, R. Q.; Shi, X. Q.

    2014-01-01

    The negatively charged nitrogen-vacancy (N-V−) color center in diamond is an important solid-state single photon source for applications to quantum communication and distributed quantum computation. Its full usefulness relies on sufficient radiative emission of the optical photons which requires realizable control to enhance emission into the zero-phonon line (ZPL) but until now is still a challenge. Detailed understanding of the associated excitation process would be of essential importance for such objective. Here we report a theoretical work that probes the spin-conserving optical excitation of the N-V− center. Using density-functional-theory (DFT) calculations, we find that the ZPL and the phonon-side band (PSB) depend sensitively on the axial strain of the system. Besides, we find a relatively small PSB appearing at about 100 GPa in the emission spectrum at low temperatures, which provides a means to enhance the coherent emission of the N-V− center in quantum optical networks. PMID:24888367

  19. Orally Administered Nano-curcumin to Attenuate Morphine Tolerance: Comparison between Negatively Charged PLGA and Partially and Fully PEGylated Nanoparticles

    PubMed Central

    Shen, Hao; Hu, Xiaoyu; Szymusiak, Magdalena; Wang, Zaijie Jim; Liu, Ying

    2014-01-01

    We have formulated hydrophobic curcurmin [1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione] into stable nanoparticle suspensions (nano-curcumin) to overcome its relatively low bioavailability, high rate of metabolism and rapid elimination and clearance from the body. Employing the curcumin nanoformulations as the platform, we discovered that curcumin has the potential to alleviate morphine tolerance. The two types of stable polymeric nanoparticles - poly(lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol)-b-poly(lactic acid) (PEG-b-PLA) - and the hybrid of the two were generated using flash nanoprecipitation integrated with spray drying. The optimized formulations have high drug loading (>45%), small particles size with narrow distribution, and controlled surface properties. Mice behavioral studies (tail-flick and hot-plate tests) were conducted to verify the effects of nano-curcumin on attenuating morphine tolerance. Significant analgesia was observed in mice during both tail-flick and hot-plate tests using orally administrated nano-curcumin following subcutaneous injections of morphine. However, unformulated curcumin at the same dose showed no effect. Compared with PEGylated nano-curcumin, negatively charged PLGA nanoparticles showed better functionality. PMID:24195658

  20. Orally administered nanocurcumin to attenuate morphine tolerance: comparison between negatively charged PLGA and partially and fully PEGylated nanoparticles.

    PubMed

    Shen, Hao; Hu, Xiaoyu; Szymusiak, Magdalena; Wang, Zaijie Jim; Liu, Ying

    2013-12-02

    We have formulated hydrophobic curcurmin [1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione] into stable nanoparticle suspensions (nanocurcumin) to overcome its relatively low bioavailability, high rate of metabolism, and rapid elimination and clearance from the body. Employing the curcumin nanoformulations as the platform, we discovered that curcumin has the potential to alleviate morphine tolerance. The two types of stable polymeric nanoparticles, poly(lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol)-b-poly(lactic acid) (PEG-b-PLA), and the hybrid of the two were generated using flash nanoprecipitation integrated with spray drying. The optimized formulations have high drug loading (>45%), small particles size with narrow distribution, and controlled surface properties. Mice behavioral studies (tail-flick and hot-plate tests) were conducted to verify the effects of nanocurcumin on attenuating morphine tolerance. Significant analgesia was observed in mice during both tail-flick and hot-plate tests using orally administered nanocurcumin following subcutaneous injections of morphine. However, unformulated curcumin at the same dose showed no effect. Compared with PEGylated nanocurcumin, negatively charged PLGA nanoparticles showed better functionality.

  1. Low cost electrostatic vibration energy harvesters based on negatively-charged polypropylene cellular films with a folded structure

    NASA Astrophysics Data System (ADS)

    Ma, Xingchen; Zhang, Xiaoqing

    2017-08-01

    Low cost electrostatic vibration energy harvesters based on negatively-charged polypropylene cellular films with a folded structure were designed in this study. Strips of such energy harvesters were excited by applying mechanical stress in length direction. A current in a terminating resistor was generated due to the capacitance variation of the samples. For a typical double-periodic folded-structure electrostatic vibration energy harvester sample whose effective length and width were 30 mm and 10 mm, respectively, the generated power across a matching resistor at a resonance frequency of 36 Hz amounts to 641 μW for a seismic mass of 4 g and an acceleration of 1 g (g is the gravity of the Earth). Similar structures which were designed and fabricated in this study were also tested for energy harvesting and high output power in the order of a few hundred microwatt was gained. Following the presentation of a theoretical model allowing for the calculation of the power generated in a load resistance at the resonance frequency of the harvesters, experimental results are shown and compared to theoretical prediction. It turns out that the experiment results accord well with the theoretical predictions.

  2. Negatively Charged Carbon Nanohorn Supported Cationic Liposome Nanoparticles: A Novel Delivery Vehicle for Anti-Nicotine Vaccine

    PubMed Central

    Zheng, Hong; Hu, Yun; Huang, Wei; de Villiers, Sabina; Pentel, Paul; Zhang, Jianfei; Dorn, Harry; Ehrich, Marion; Zhang, Chenming

    2017-01-01

    Tobacco addiction is the second-leading cause of death in the world. Due to the nature of nicotine (a small molecule), finding ways to combat nicotine’s deleterious effects has been a constant challenge to the society and the medical field. In the present work, a novel anti-nicotine vaccine based on nanohorn supported liposome nanoparticles (NsL NPs) was developed. The nano-vaccine was constructed by using negatively charged carbon nanohorns as a scaffold for the assembly of cationic liposomes, which allow the conjugation of hapten conjugated carrier proteins. The assembled bio-nanoparticles are stable. Mice were immunized subcutaneously with the nano-vaccine, which induced high titer and high affinity of nicotine specific antibodies in mice. Furthermore, no evidence of clinical signs or systemic toxicity followed multiple administrations of NsL-based anti-nicotine vaccine. These results suggest that NsL-based anti-nicotine vaccine is a promising candidate in treating nicotine dependence and could have potential to significantly contribute to smoking cessation. PMID:26510313

  3. Evaluation of negative fixed-charge density in tissue-engineered cartilage by quantitative MRI and relationship with biomechanical properties.

    PubMed

    Miyata, Shogo; Homma, Kazuhiro; Numano, Tomokazu; Tateishi, Tetsuya; Ushida, Takashi

    2010-07-01

    Applying tissue-engineered cartilage in a clinical setting requires noninvasive evaluation to detect the maturity of the cartilage. Magnetic resonance imaging (MRI) of articular cartilage has been widely accepted and applied clinically in recent years. In this study, we evaluated the negative fixed-charge density (nFCD) of tissue-engineered cartilage using gadolinium-enhanced MRI and determined the relationship between nFCD and biomechanical properties. To reconstruct cartilage tissue, articular chondrocytes from bovine humeral heads were embedded in agarose gel and cultured in vitro for up to 4 weeks. The nFCD of the cartilage was determined using the MRI gadolinium exclusion method. The equilibrium modulus was determined using a compressive stress relaxation test, and the dynamic modulus was determined by a dynamic compression test. The equilibrium compressive modulus and dynamic modulus of the tissue-engineered cartilage increased with an increase in culture time. The nFCD value--as determined with the [Gd-DTPA(2-)] measurement using the MRI technique--increased with culture time. In the regression analysis, nFCD showed significant correlations with equilibrium compressive modulus and dynamic modulus. From these results, gadolinium-enhanced MRI measurements can serve as a useful predictor of the biomechanical properties of tissue-engineered cartilage.

  4. Direct correlation of the crystal structure of proteins with the maximum positive and negative charge states of gaseous protein ions produced by electrospray ionization.

    PubMed

    Prakash, Halan; Mazumdar, Shyamalava

    2005-09-01

    Electrospray mass spectrometric studies in native folded forms of several proteins in aqueous solution have been performed in the positive and negative ion modes. The mass spectra of the proteins show peaks corresponding to multiple charge states of the gaseous protein ions. The results have been analyzed using the known crystal structures of these proteins. Crystal structure analysis shows that among the surface exposed residues some are involved in hydrogen-bonding or salt-bridge interactions while some are free. The maximum positive charge state of the gaseous protein ions was directly related to the number of free surface exposed basic groups whereas the maximum negative charge state was related to the number of free surface exposed acidic groups of the proteins. The surface exposed basic groups, which are involved in hydrogen bonding, have lower propensity to contribute to the positive charge of the protein. Similarly, the surface exposed acidic groups involved in salt bridges have lower propensity to contribute to the negative charge of the protein. Analysis of the crystal structure to determine the maximum charge state of protein in the electrospray mass spectrum was also used to interpret the reported mass spectra of several proteins. The results show that both the positive and the negative ion mass spectra of the proteins could be interpreted by simple consideration of the crystal structure of the folded proteins. Moreover, unfolding of the protein was shown to increase the positive charge-state because of the availability of larger number of free basic groups at the surface of the unfolded protein.

  5. Negative regulation of meiotic gene expression by the nuclear poly(a)-binding protein in fission yeast.

    PubMed

    St-André, Olivier; Lemieux, Caroline; Perreault, Audrey; Lackner, Daniel H; Bähler, Jürg; Bachand, François

    2010-09-03

    Meiosis is a cellular differentiation process in which hundreds of genes are temporally induced. Because the expression of meiotic genes during mitosis is detrimental to proliferation, meiotic genes must be negatively regulated in the mitotic cell cycle. Yet, little is known about mechanisms used by mitotic cells to repress meiosis-specific genes. Here we show that the poly(A)-binding protein Pab2, the fission yeast homolog of mammalian PABPN1, controls the expression of several meiotic transcripts during mitotic division. Our results from chromatin immunoprecipitation and promoter-swapping experiments indicate that Pab2 controls meiotic genes post-transcriptionally. Consistently, we show that the nuclear exosome complex cooperates with Pab2 in the negative regulation of meiotic genes. We also found that Pab2 plays a role in the RNA decay pathway orchestrated by Mmi1, a previously described factor that functions in the post-transcriptional elimination of meiotic transcripts. Our results support a model in which Mmi1 selectively targets meiotic transcripts for degradation via Pab2 and the exosome. Our findings have therefore uncovered a mode of gene regulation whereby a poly(A)-binding protein promotes RNA degradation in the nucleus to prevent untimely expression.

  6. Bruton's tyrosine kinase activity is negatively regulated by Sab, the Btk-SH3 domain-binding protein.

    PubMed

    Yamadori, T; Baba, Y; Matsushita, M; Hashimoto, S; Kurosaki, M; Kurosaki, T; Kishimoto, T; Tsukada, S

    1999-05-25

    Bruton's tyrosine kinase (Btk) is a cytoplasmic tyrosine kinase that is crucial for human and murine B cell development, and its deficiency causes human X-linked agammaglobulinemia and murine X-linked immunodeficiency. In this report, we describe the function of the Btk-binding protein Sab (SH3-domain binding protein that preferentially associates with Btk), which we reported previously as a newly identified Src homology 3 domain-binding protein. Sab was shown to inhibit the auto- and transphosphorylation activity of Btk, which prompted us to propose that Sab functions as a transregulator of Btk. Forced overexpression of Sab in B cells led to the reduction of B cell antigen receptor-induced tyrosine phosphorylation of Btk and significantly reduced both early and late B cell antigen receptor-mediated events, including calcium mobilization, inositol 1, 4,5-trisphosphate production, and apoptotic cell death, where the involvement of Btk activity has been demonstrated previously. Together, these results indicate the negative regulatory role of Sab in the B cell cytoplasmic tyrosine kinase pathway.

  7. Bruton’s tyrosine kinase activity is negatively regulated by Sab, the Btk-SH3 domain-binding protein

    PubMed Central

    Yamadori, Tomoki; Baba, Yoshihiro; Matsushita, Masato; Hashimoto, Shoji; Kurosaki, Mari; Kurosaki, Tomohiro; Kishimoto, Tadamitsu; Tsukada, Satoshi

    1999-01-01

    Bruton’s tyrosine kinase (Btk) is a cytoplasmic tyrosine kinase that is crucial for human and murine B cell development, and its deficiency causes human X-linked agammaglobulinemia and murine X-linked immunodeficiency. In this report, we describe the function of the Btk-binding protein Sab (SH3-domain binding protein that preferentially associates with Btk), which we reported previously as a newly identified Src homology 3 domain-binding protein. Sab was shown to inhibit the auto- and transphosphorylation activity of Btk, which prompted us to propose that Sab functions as a transregulator of Btk. Forced overexpression of Sab in B cells led to the reduction of B cell antigen receptor-induced tyrosine phosphorylation of Btk and significantly reduced both early and late B cell antigen receptor-mediated events, including calcium mobilization, inositol 1,4,5-trisphosphate production, and apoptotic cell death, where the involvement of Btk activity has been demonstrated previously. Together, these results indicate the negative regulatory role of Sab in the B cell cytoplasmic tyrosine kinase pathway. PMID:10339589

  8. Lysozyme Net Charge and Ion Binding in Concentrated Aqueous Electrolyte Solutions

    SciTech Connect

    Kuehner, Daniel E.; Engmann, Jan; Fergg, Florian; Wernick, Meredith; Blanch, Harvey W.; Prausnitz, John M.

    1999-02-01

    Hydrogen-ion titrations were conducted for hen-egg-white lysozyme in solutions of potassium chloride, over the range of pH 2.5 - 11.5 and for ionic strengths to 2. 0 M. The dependence of lysozyme's net proton charge, zP' on pH and ionic-strength in potassium-chloride solution is measured. From the ionic-strength dependence of zP' interactions of lysozynie with potassium and chloride ions are calculated using the molecular-thennodynamic theory of Fraaije and Lyklema 1. Lysozyme interacts preferentially with up to 12 chloride ions at pH 2.5. The observed dependence of ion-protein interactions on pH and ionic strength is explained in terms of electricdouble-layer theory. New experimental pKa data are reported for eleven ammo acids in potassium-chloride solutions of ionic strength to 3.0 M.

  9. Lysozyme net charge and ion binding in concentrated aqueous electrolyte solutions

    SciTech Connect

    Kuehner, Daniel E.; Engmann, Jan; Fergg, Florian; Wernick, Meredith; Blanch, Harvey W.; Prausnitz, John M.

    1999-02-01

    Hydrogen-ion titrations were conducted for hen-egg-white lysozyme in solutions of potassium chloride over the range pH 2.5--11.5 and for ionic strengths to 2.0 M. The dependence of lysozyme`s net proton charge, z{sub p}, on pH and ionic strength in potassium chloride solution is measured. From the ionic-strength dependence of z{sub p}, interactions of lysozyme with potassium and chloride ions are calculated using the molecular-thermodynamic theory of Fraaije and Lyklema. Lysozyme interacts preferentially with up to 12 chloride ions at pH 2.5. The observed dependence of ion-protein interactions on pH and ionic strength is explained in terms of electric-double-layer theory. New experimental pK{sub a} data are reported for 11 amino acids in potassium chloride solutions of ionic strength to 3.0 M.

  10. Membrane targeting of TIRAP is negatively regulated by phosphorylation in its phosphoinositide-binding motif

    PubMed Central

    Zhao, Xiaolin; Xiong, Wen; Xiao, Shuyan; Tang, Tuo-Xian; Ellena, Jeffrey F.; Armstrong, Geoffrey S.; Finkielstein, Carla V.; Capelluto, Daniel G. S.

    2017-01-01

    Pathogen-activated Toll-like receptors (TLRs), such as TLR2 and TLR4, dimerize and move laterally across the plasma membrane to phosphatidylinositol (4,5)-bisphosphate-enriched domains. At these sites, TLRs interact with the TIR domain-containing adaptor protein (TIRAP), triggering a signaling cascade that leads to innate immune responses. Membrane recruitment of TIRAP is mediated by its phosphoinositide (PI)-binding motif (PBM). We show that TIRAP PBM transitions from a disordered to a helical conformation in the presence of either zwitterionic micelles or monodispersed PIs. TIRAP PBM bound PIs through basic and nonpolar residues with high affinity, favoring a more ordered structure. TIRAP is phosphorylated at Thr28 within its PBM, which leads to its ubiquitination and degradation. We demonstrate that phosphorylation distorts the helical structure of TIRAP PBM, reducing PI interactions and cell membrane targeting. Our study provides the basis for TIRAP membrane insertion and the mechanism by which it is removed from membranes to avoid sustained innate immune responses. PMID:28225045

  11. Observation of charged excitons in V-groove quantum wires

    NASA Astrophysics Data System (ADS)

    Otterburg, T.; Oberli, D. Y.; Dupertuis, M.-A.; Dwir, B.; Pelucchi, E.; Kapon, E.

    2004-02-01

    We report on the observation of negatively and positively charged excitons in the photoluminescence spectra of V-groove quantum wires. The charged exciton binding energy increases with the strength of the quantum confinement. We demonstrate that the charged excitons are localized by the fluctuations of the confinement potential and estimate a minimal value of the localization length.

  12. Exploration of Porphyrin-based Semiconductors for Negative Charge Transport Applications Using Synthetic, Spectroscopic, Potentiometric, Magnetic Resonance, and Computational Methods

    NASA Astrophysics Data System (ADS)

    Rawson, Jeffrey Scott

    Organic pi-conjugated materials are emerging as commercially relevant components in electronic applications that include transistors, light-emitting diodes, and solar cells. One requirement common to all of these functions is an aptitude for accepting and transmitting charges. It is generally agreed that the development of organic semiconductors that favor electrons as the majority carriers (n-type) lags behind the advances in hole transporting (p-type) materials. This shortcoming suggests that the design space for n-type materials is not yet well explored, presenting researchers with the opportunity to develop unconventional architectures. In this regard, it is worth noting that discrete molecular materials are demonstrating the potential to usurp the preeminent positions that pi-conjugated polymers have held in these areas of organic electronics research. This dissertation describes how an extraordinary class of molecules, meso-to-meso ethyne-bridged porphyrin arrays, has been bent to these new uses. Chapter one describes vis-NIR spectroscopic and magnetic resonance measurements revealing that these porphyrin arrays possess a remarkable aptitude for the delocalization of negative charge. In fact, the miniscule electron-lattice interactions exhibited in these rigid molecules allow them to host the most vast electron-polarons ever observed in a pi-conjugated material. Chapter two describes the development of an ethyne-bridged porphyrin-isoindigo hybrid chromophore that can take the place of fullerene derivatives in the conventional thin film solar cell architecture. Particularly noteworthy is the key role played by the 5,15-bis(heptafluoropropyl)porphyrin building block in the engineering of a chromophore that, gram for gram, is twice as absorptive as poly(3-hexyl)thiophene, exhibits a lower energy absorption onset than this polymer, and yet possesses a photoexcited singlet state sufficiently energetic to transfer a hole to this polymer. Chapter three describes

  13. Binding mechanisms of DNA/RNA nucleobases adsorbed on graphene under charging: first-principles van der Waals study

    NASA Astrophysics Data System (ADS)

    Gürel, Hikmet Hakan; Salmankurt, Bahadır

    2017-06-01

    Graphene is a 2D material that has attracted much attention due to its outstanding properties. Because of its high surface area and unique chemical and physical properties, graphene is a good candidate for biological applications. For this reason, a deep understanding of the mechanism of interaction of graphene with biomolecules is required. In this study, theoretical investigation of van der Waals effects has been conducted using density functional theory. Here we show that the order of the binding energies of five nucleobases with graphene is G  >  A  >  T  >  C  >   U. This trend is in good agreement with most of the theoretical and experimental data. Also, the effects of charging on the electronic and structural properties of the graphene-nucleubase systems are studied for the first time. We show that the binding energy can be changed by adding or removing an electron from the system. The results presented in this work provide fundamental insights into the quantum interactions of DNA with carbon-based nanostructures and will be useful for developments in biotechnology and nanotechnology.

  14. Antimicrobial Peptide Potency is Facilitated by Greater Conformational Flexibility when Binding to Gram-negative Bacterial Inner Membranes

    PubMed Central

    Amos, Sarah-Beth T. A.; Vermeer, Louic S.; Ferguson, Philip M.; Kozlowska, Justyna; Davy, Matthew; Bui, Tam T.; Drake, Alex F.; Lorenz, Christian D.; Mason, A. James

    2016-01-01

    The interaction of antimicrobial peptides (AMPs) with the inner membrane of Gram-negative bacteria is a key determinant of their abilities to exert diverse bactericidal effects. Here we present a molecular level understanding of the initial target membrane interaction for two cationic α-helical AMPs that share structural similarities but have a ten-fold difference in antibacterial potency towards Gram-negative bacteria. The binding and insertion from solution of pleurocidin or magainin 2 to membranes representing the inner membrane of Gram-negative bacteria, comprising a mixture of 128 anionic and 384 zwitterionic lipids, is monitored over 100 ns in all atom molecular dynamics simulations. The effects of the membrane interaction on both the peptide and lipid constituents are considered and compared with new and published experimental data obtained in the steady state. While both magainin 2 and pleurocidin are capable of disrupting bacterial membranes, the greater potency of pleurocidin is linked to its ability to penetrate within the bacterial cell. We show that pleurocidin displays much greater conformational flexibility when compared with magainin 2, resists self-association at the membrane surface and penetrates further into the hydrophobic core of the lipid bilayer. Conformational flexibility is therefore revealed as a key feature required of apparently α-helical cationic AMPs for enhanced antibacterial potency. PMID:27874065

  15. Antimicrobial Peptide Potency is Facilitated by Greater Conformational Flexibility when Binding to Gram-negative Bacterial Inner Membranes

    NASA Astrophysics Data System (ADS)

    Amos, Sarah-Beth T. A.; Vermeer, Louic S.; Ferguson, Philip M.; Kozlowska, Justyna; Davy, Matthew; Bui, Tam T.; Drake, Alex F.; Lorenz, Christian D.; Mason, A. James

    2016-11-01

    The interaction of antimicrobial peptides (AMPs) with the inner membrane of Gram-negative bacteria is a key determinant of their abilities to exert diverse bactericidal effects. Here we present a molecular level understanding of the initial target membrane interaction for two cationic α-helical AMPs that share structural similarities but have a ten-fold difference in antibacterial potency towards Gram-negative bacteria. The binding and insertion from solution of pleurocidin or magainin 2 to membranes representing the inner membrane of Gram-negative bacteria, comprising a mixture of 128 anionic and 384 zwitterionic lipids, is monitored over 100 ns in all atom molecular dynamics simulations. The effects of the membrane interaction on both the peptide and lipid constituents are considered and compared with new and published experimental data obtained in the steady state. While both magainin 2 and pleurocidin are capable of disrupting bacterial membranes, the greater potency of pleurocidin is linked to its ability to penetrate within the bacterial cell. We show that pleurocidin displays much greater conformational flexibility when compared with magainin 2, resists self-association at the membrane surface and penetrates further into the hydrophobic core of the lipid bilayer. Conformational flexibility is therefore revealed as a key feature required of apparently α-helical cationic AMPs for enhanced antibacterial potency.

  16. Spatial clustering of binding motifs and charges reveals conserved functional features in disordered nucleoporin sequences

    NASA Astrophysics Data System (ADS)

    Ando, David; Colvin, Michael; Rexach, Michael; Gopinathan, Ajay

    2013-03-01

    The Nuclear Pore Complex (NPC) gates the only channel through which cells exchange material between the nucleus and cytoplasm. Traffic is regulated by transport receptors bound to cargo which interact with numerous of disordered phenylalanine glycine (FG) repeat containing proteins (FG nups) that line this channel. The precise physical mechanism of transport regulation has remained elusive primarily due to the difficulty in understanding the structure and dynamics of such a large assembly of interacting disordered proteins. Here we have performed a comprehensive bioinformatic analysis, specifically tailored towards disordered proteins, on thousands of nuclear pore proteins from a variety of species revealing a set of highly conserved features in the sequence structure among FG nups. Contrary to the general perception that these proteins are functionally equivalent to homogeneous polymers, we show that biophysically important features within individual nups like the separation, spatial localization and ordering along the chain of FG and charge domains are highly conserved. Our current understanding of NPC structure and function should therefore be revised to account for these common features that are functionally relevant for the underlying physical mechanism of NPC gating.

  17. A 90-day study of subchronic oral toxicity of 20 nm, negatively charged zinc oxide nanoparticles in Sprague Dawley rats

    PubMed Central

    Park, Hark-Soo; Shin, Sung-Sup; Meang, Eun Ho; Hong, Jeong-sup; Park, Jong-Il; Kim, Su-Hyon; Koh, Sang-Bum; Lee, Seung-Young; Jang, Dong-Hyouk; Lee, Jong-Yun; Sun, Yle-Shik; Kang, Jin Seok; Kim, Yu-Ri; Kim, Meyoung-Kon; Jeong, Jayoung; Lee, Jong-Kwon; Son, Woo-Chan; Park, Jae-Hak

    2014-01-01

    Purpose The widespread use of nanoparticles (NPs) in industrial and biomedical applications has prompted growing concern regarding their potential toxicity and impact on human health. This study therefore investigated the subchronic, systemic oral toxicity and no-observed-adverse-effect level (NOAEL) of 20 nm, negatively charged zinc oxide (ZnOSM20(−)) NPs in Sprague Dawley rats for 90 days. Methods The high-dose NP level was set at 500 mg/kg of bodyweight, and the mid- and low-dose levels were set at 250 and 125 mg/kg, respectively. The rats were observed during a 14-day recovery period after the last NP administration for the persistence or reduction of any adverse effects. Toxicokinetic and distribution studies were also conducted to determine the systemic distribution of the NPs. Results No rats died during the test period. However, ZnOSM20(−) NPs (500 mg/kg) induced changes in the levels of anemia-related factors, prompted acinar cell apoptosis and ductular hyperplasia, stimulated periductular lymphoid cell infiltration and excessive salivation, and increased the numbers of regenerative acinar cells in the pancreas. In addition, stomach lesions were seen at 125, 250, and 500 mg/kg, and retinal atrophy was observed at 250 and 500 mg/kg. The Zn concentration was dose-dependently increased in the liver, kidney, intestines, and plasma, but not in other organs investigated. Conclusion A ZnOSM20(−) NP NOAEL could not be established from the current results, but the lowest-observed-adverse-effect level was 125 mg/kg. Furthermore, the NPs were associated with a number of undesirable systemic actions. Thus, their use in humans must be approached with caution. PMID:25565828

  18. Absence of a guiding effect and charge transfer in the interaction of keV-energy negative ions with Al{sub 2}O{sub 3} nanocapillaries

    SciTech Connect

    Chen Lin; Guo Yanling; Jia Juanjuan; Zhang Hongqiang; Cui Ying; Shao Jianxiong; Yin Yongzhi; Qiu Xiyu; Lv Xueyang; Sun Guangzhi; Wang Jun; Chen Yifeng; Xi Fayuan; Chen Ximeng

    2011-09-15

    In this work, the efficient electron loss process was observed for the transmission of 10- to 18-keV Cu{sup -} and Cl{sup -} ions through Al{sub 2}O{sub 3} nanocapillaries. The fractions of the scattered particles were simultaneously measured using a position-sensitive microchannel plate detector. The neutrals were guided through the capillary via multiple grazing scattering. In particular, the scattered Cl{sup -} ions were observed in the transmission, whereas no Cu{sup -} ion was formed. In contrast to highly charged ions, these results support strongly the fact that the scattering events dominate the transport of negative ions through the nanocapillaries and that there is no direct evidence for the formation of negative charge patches inside the capillaries which are able to repulse and guide negative ions efficiently.

  19. Immobilization of bilirubin oxidase on graphene oxide flakes with different negative charge density for oxygen reduction. The effect of GO charge density on enzyme coverage, electron transfer rate and current density.

    PubMed

    Filip, Jaroslav; Andicsová-Eckstein, Anita; Vikartovská, Alica; Tkac, Jan

    2017-03-15

    Previously we showed that an effective bilirubin oxidase (BOD)-based biocathode using graphene oxide (GO) could be prepared in 2 steps: 1. electrostatic adsorption of BOD on GO; 2. electrochemical reduction of the BOD-GO composite to form a BOD-ErGO (electrochemically reduced GO) film on the electrode. In order to identify an optimal charge density of GO for BOD-ErGO composite preparation, several GO fractions differing in an average flake size and ζ-potential were prepared using centrifugation and consequently employed for BOD-ErGO biocathode preparation. A simple way to express surface charge density of these particular GO nanosheets was developed. The values obtained were then correlated with biocatalytic and electrochemical parameters of the prepared biocathodes, i.e. electrocatalytically active BOD surface coverage (Γ), heterogeneous electron transfer rate (kS) and a maximum biocatalytic current density. The highest bioelectrocatalytic current density of (597±25)μAcm(-2) and the highest Γ of (23.6±0.9)pmolcm(-2) were obtained on BOD-GO composite having the same moderate negative charge density, but the highest kS of (79.4±4.6)s(-1) was observed on BOD-GO composite having different negative charge density. This study is a solid foundation for others to consider the influence of a charge density of GO on direct bioelectrochemistry/bioelectrocatalysis of other redox enzymes applicable for construction of biosensors, bioanodes, biocathodes or biofuel cells.

  20. Ion-specific and charge effects in counterion binding to poly(styrenesulfonate) anions.

    PubMed

    Požar, Josip; Bohinc, Klemen; Vlachy, Vojko; Kovačević, Davor

    2011-09-14

    In order to obtain a deeper insight into effects occurring when an electrolyte solution is added to a solution of a strong polyelectrolyte, the microcalorimetric and potentiometric titrations of poly(sodium 4-styrenesulfonate) (Na(+)PSS(-)) solution with different alkali, earth-alkali and tetraalkylammonium nitrate, perchlorate and chloride solutions were performed. From the calorimetric titrations the differences in sign and magnitude of enthalpy change upon addition of various electrolytes were observed depending on the salt used. Potentiometric titrations using a sodium ion selective electrode have revealed that addition of an electrolyte is accompanied by the increase in sodium activity until a certain critical value is reached, which seems to be the consequence of counterion substitution on the polyelectrolyte chain. In the case of addition of lithium and sodium salts the experimental results for ΔH of mixing can be qualitatively correctly explained by the Poisson-Boltzmann and Monte Carlo calculations based on the continuum solvent models. This is not the case for the mixtures with KNO(3), RbNO(3) and CsNO(3) salts. The results suggest that the ion-specific effects, associated with the changes in the water structure, have to be taken into account when thermodynamic properties of polyelectrolytes in solution are concerned. The calorimetric results imply that the enthalpically observed cation specificity for binding to a poly(styrenesulfonate) group could be correlated with corresponding cation hydration enthalpies. The counterion substitution of sodium with divalent cations was found to be endothermic, which is in qualitative agreement with the electrostatic theory. This journal is © the Owner Societies 2011

  1. Basal electric and magnetic fields of celestial bodies come from positive-negative charge separation caused by gravitation of quasi-Casimir pressure in weak interaction

    NASA Astrophysics Data System (ADS)

    Chen, Shao-Guang

    According to f =d(mv)/dt=m(dv/dt)+ v(dm/dt), a same gravitational formula had been de-duced from the variance in physical mass of QFT and from the variance in mass of inductive energy-transfer of GR respectively: f QF T = f GR = -G (mM/r2 )((r/r)+(v/c)) when their interaction-constants are all taken the experimental values (H05-0029-08, E15-0039-08). f QF T is the quasi-Casimir pressure. f GR is equivalent to Einstein's equation, then more easy to solve it. The hypothesis of the equivalent principle is not used in f QF T , but required by f GR . The predictions of f QF T and f GR are identical except that f QF T has quantum effects but f GR has not and f GR has Lense-Thirring effect but f QF T has not. The quantum effects of gravitation had been verified by Nesvizhevsky et al with the ultracold neutrons falling in the earth's gravitational field in 2002. Yet Lense-Thirring effect had not been measured by GP-B. It shows that f QF T is essential but f GR is phenomenological. The macro-f QF T is the statistic average pressure collided by net virtual neutrinos ν 0 flux (after self-offset in opposite directions) and in direct proportion to the mass. But micro-f QF T is in direct proportion to the scattering section. The electric mass (in inverse proportion to de Broglie wavelength λ) far less than nucleonic mass and the electric scattering section (in direct proportion to λ2 ) far large than that of nucleon, then the net ν 0 flux pressure exerted to electron far large than that to nucleon and the electric displacement far large than that of nucleon, it causes the gravitational polarization of positive-negative charge center separation. Because the gravity far less than the electromagnetic binding force, in atoms the gravitational polarization only produces a little separation. But the net ν 0 flux can press a part freedom electrons in plasma of ionosphere into the earth's surface, the static electric force of redundant positive ions prevents electrons from further

  2. Computational analysis of negative and positive allosteric modulator binding and function in metabotropic glutamate receptor 5 (in)activation.

    PubMed

    Dalton, James A R; Gómez-Santacana, Xavier; Llebaria, Amadeu; Giraldo, Jesús

    2014-05-27

    Metabotropic glutamate receptors (mGluRs) are high-profile G-protein coupled receptors drug targets because of their involvement in several neurological disease states, and mGluR5 in particular is a subtype whose controlled allosteric modulation, both positive and negative, can potentially be useful for the treatment of schizophrenia and relief of chronic pain, respectively. Here we model mGluR5 with a collection of positive and negative allosteric modulators (PAMs and NAMs) in both active and inactive receptor states, in a manner that is consistent with experimental information, using a specialized protocol that includes homology to increase docking accuracy, and receptor relaxation to generate an individual induced fit with each allosteric modulator. Results implicate two residues in particular for NAM and PAM function: NAM interaction with W785 for receptor inactivation, and NAM/PAM H-bonding with S809 for receptor (in)activation. Models suggest the orientation of the H-bond between allosteric modulator and S809, controlled by PAM/NAM chemistry, influences the position of TM7, which in turn influences the shape of the allosteric site, and potentially the receptor state. NAM-bound and PAM-bound mGluR5 models also reveal that although PAMs and NAMs bind in the same pocket and share similar binding modes, they have distinct effects on the conformation of the receptor. Our models, together with the identification of a possible activation mechanism, may be useful in the rational design of new allosteric modulators for mGluR5.

  3. Negative Autoregulation of GTF2IRD1 in Williams-Beuren Syndrome via a Novel DNA Binding Mechanism*

    PubMed Central

    Palmer, Stephen J.; Santucci, Nicole; Widagdo, Jocelyn; Bontempo, Sara J.; Taylor, Kylie M.; Tay, Enoch S. E.; Hook, Jeff; Lemckert, Frances; Gunning, Peter W.; Hardeman, Edna C.

    2010-01-01

    The GTF2IRD1 gene is of principal interest to the study of Williams-Beuren syndrome (WBS). This neurodevelopmental disorder results from the hemizygous deletion of a region of chromosome 7q11.23 containing 28 genes including GTF2IRD1. WBS is thought to be caused by haploinsufficiency of certain dosage-sensitive genes within the deleted region, and the feature of supravalvular aortic stenosis (SVAS) has been attributed to reduced elastin caused by deletion of ELN. Human genetic mapping data have implicated two related genes GTF2IRD1 and GTF2I in the cause of some the key features of WBS, including craniofacial dysmorphology, hypersociability, and visuospatial deficits. Mice with mutations of the Gtf2ird1 allele show evidence of craniofacial abnormalities and behavioral changes. Here we show the existence of a negative autoregulatory mechanism that controls the level of GTF2IRD1 transcription via direct binding of the GTF2IRD1 protein to a highly conserved region of the GTF2IRD1 promoter containing an array of three binding sites. The affinity for this protein-DNA interaction is critically dependent upon multiple interactions between separate domains of the protein and at least two of the DNA binding sites. This autoregulatory mechanism leads to dosage compensation of GTF2IRD1 transcription in WBS patients. The GTF2IRD1 promoter represents the first established in vivo gene target of the GTF2IRD1 protein, and we use it to model its DNA interaction capabilities. PMID:20007321

  4. Lin28a uses distinct mechanisms of binding to RNA and affects miRNA levels positively and negatively.

    PubMed

    Nowak, Jakub Stanislaw; Hobor, Fruzsina; Downie Ruiz Velasco, Angela; Choudhury, Nila Roy; Heikel, Gregory; Kerr, Alastair; Ramos, Andres; Michlewski, Gracjan

    2017-03-01

    Lin28a inhibits the biogenesis of let-7 miRNAs by triggering the polyuridylation and degradation of their precursors by terminal uridylyltransferases TUT4/7 and 3'-5' exoribonuclease Dis3l2, respectively. Previously, we showed that Lin28a also controls the production of neuro-specific miRNA-9 via a polyuridylation-independent mechanism. Here we reveal that the sequences and structural characteristics of pre-let-7 and pre-miRNA-9 are eliciting two distinct modes of binding to Lin28a. We present evidence that Dis3l2 controls miRNA-9 production. Finally, we show that the constitutive expression of untagged Lin28a during neuronal differentiation in vitro positively and negatively affects numerous other miRNAs. Our findings shed light on the role of Lin28a in differentiating cells and on the ways in which one RNA-binding protein can perform multiple roles in the regulation of RNA processing. © 2017 Nowak et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  5. The RNA-binding protein Tristetraprolin (TTP) is a critical negative regulator of the NLRP3 inflammasome.

    PubMed

    Haneklaus, Moritz; O'Neil, John D; Clark, Andrew R; Masters, Seth L; O'Neill, Luke A J

    2017-03-16

    The NLRP3 inflammasome is a central regulator of inflammation in many common diseases, including atherosclerosis and Type 2 diabetes, driving the production of pro-inflammatory mediators such as IL-1β and IL-18. Due to its function as an inflammatory gatekeeper, expression and activation of NLRP3 need to be tightly regulated. In this study, we highlight novel post-transcriptional mechanisms that can modulate NLRP3 expression. We have identified the RNA-binding protein Tristetraprolin (TTP) as a negative regulator of NLRP3 in human macrophages. TTP targets AU-rich elements in the NLRP3 3' untranslated region (UTR) and represses NLRP3 expression. Knocking down TTP in primary macrophages leads to an increased induction of NLRP3 by LPS, which is also accompanied by increased Caspase-1 and IL-1β cleavage upon NLRP3, but not AIM2 or NLRC4 inflammasome activation. Furthermore, we found that human NLRP3 can be alternatively polyadenylated, producing a short 3'UTR isoform that excludes regulatory elements, including the TTP and miRNA-223 binding sites. Since TTP also represses IL-1β expression, it is a dual inhibitor of the IL-1β system, regulating expression of the cytokine and the upstream controller NLRP3.

  6. In vitro DNA binding of the archaeal protein Sso7d induces negative supercoiling at temperatures typical for thermophilic growth.

    PubMed Central

    López-García, P; Knapp, S; Ladenstein, R; Forterre, P

    1998-01-01

    The topological state of DNA in hyperthermophilic archaea appears to correspond to a linking excess in comparison with DNA in mesophilic organisms. Since DNA binding proteins often contribute to the control of DNA topology by affecting DNA geometry in the presence of DNA topoisomerases, we tested whether the histone-like protein Sso7d from the hyperthermophilic archaeon Sulfolobus solfataricus alters DNA conformation. In ligase-mediated supercoiling assays carried out at 37, 60, 70, 80 and 90 degrees C we found that DNA binding of increasing amounts of Sso7d led to a progressive decrease in plasmid linking number (Lk), producing negative supercoiling. Identical unwinding effects were observed when recombinant non-methylated Sso7d was used. For a given Sso7d concentration the DNA unwinding induced was augmented with increasing temperature. However, after correction for the overwinding effect of high temperature on DNA, plasmids ligated at 60-90 degrees C exhibited similar sigma values at the highest Sso7d concentrations assayed. These results suggest that Sso7d may play a compensatory role in vivo by counteracting the overwinding effect of high temperature on DNA. Additionally, Sso7d unwinding could be involved in the topological changes observed during thermal stress (heat and cold shock), playing an analogous role in crenarchaeal cells to that proposed for HU in bacteria. PMID:9580681

  7. A novel calmodulin-binding protein functions as a negative regulator of osmotic stress tolerance in Arabidopsis thaliana seedlings.

    PubMed

    Perruc, Elian; Charpenteau, Martine; Ramirez, Bertha Cecilia; Jauneau, Alain; Galaud, Jean-Philippe; Ranjeva, Raoul; Ranty, Benoît

    2004-05-01

    A clone for a novel Arabidopsisthaliana calmodulin (CaM)-binding protein of 25 kDa (AtCaMBP25) has been isolated by using a radiolabelled CaM probe to screen a cDNA expression library derived from A. thaliana cell suspension cultures challenged with osmotic stress. The deduced amino acid sequence of AtCaMBP25 contains putative nuclear localization sequences and shares significant degree of similarity with hypothetical plant proteins only. Fusion of the AtCaMBP25 coding sequence to reporter genes targets the hybrid protein to the nucleus. Bacterially expressed AtCaMBP25 binds, in a calcium-dependent manner, to a canonical CaM but not to a less conserved isoform of the calcium sensor. AtCaMBP25 is encoded by a single-copy gene, whose expression is induced in Arabidopsis seedlings exposed to dehydration, low temperature or high salinity. Transgenic plants overexpressing AtCaMBP25 exhibits an increased sensitivity to both ionic (NaCl) and non-ionic (mannitol) osmotic stress during seed germination and seedling growth. By contrast, transgenic lines expressing antisense AtCaMBP25 are significantly more tolerant to mannitol and NaCl stresses than the wild type. Thus, the AtCaMBP25 gene functions as a negative effector of osmotic stress tolerance and likely participates in stress signal transduction pathways.

  8. Memory for Positive, Negative, and Neutral Events in Younger and Older Adults: Does Emotion Influence Binding in Event Memory?

    PubMed Central

    Earles, Julie L.; Kersten, Alan W.; Vernon, Laura L.; Starkings, Rachel

    2014-01-01

    When remembering an event, it is important to remember both the features of the event (e.g., a person and an action), and the connections among features (e.g., who performed which action). Emotion often enhances memory for stimulus features, but the relationship between emotion and the binding of features in memory is unclear. Younger and older adults attempted to remember events in which a person performed a negative, positive, or neutral action. Memory for the action was enhanced by emotion, but emotion did not enhance the ability of participants to remember which person performed which action. Older adults were more likely than younger adults to make binding errors in which they incorrectly remembered a familiar actor performing a familiar action that had actually been performed by someone else, and this age-related associative deficit was found for both neutral and emotional actions. Emotion increased correct recognition of old events for older and younger adults but also increased false recognition of events in which a familiar actor performed a familiar action that had been performed by someone else. Thus, although emotion may enhance memory for the features of an event, it does not increase the accuracy of remembering who performed which action. PMID:25622100

  9. Lin28a uses distinct mechanisms of binding to RNA and affects miRNA levels positively and negatively

    PubMed Central

    Nowak, Jakub Stanislaw; Hobor, Fruzsina; Downie Ruiz Velasco, Angela; Choudhury, Nila Roy; Heikel, Gregory; Kerr, Alastair; Ramos, Andres; Michlewski, Gracjan

    2017-01-01

    Lin28a inhibits the biogenesis of let-7 miRNAs by triggering the polyuridylation and degradation of their precursors by terminal uridylyltransferases TUT4/7 and 3′-5′ exoribonuclease Dis3l2, respectively. Previously, we showed that Lin28a also controls the production of neuro-specific miRNA-9 via a polyuridylation-independent mechanism. Here we reveal that the sequences and structural characteristics of pre-let-7 and pre-miRNA-9 are eliciting two distinct modes of binding to Lin28a. We present evidence that Dis3l2 controls miRNA-9 production. Finally, we show that the constitutive expression of untagged Lin28a during neuronal differentiation in vitro positively and negatively affects numerous other miRNAs. Our findings shed light on the role of Lin28a in differentiating cells and on the ways in which one RNA-binding protein can perform multiple roles in the regulation of RNA processing. PMID:27881476

  10. Retinol Binding Protein 4 in children with Inflammatory Bowel Disease: a negative correlation with the disease activity.

    PubMed

    Roma, E; Krini, M; Hantzi, E; Sakka, S; Panayiotou, I; Margeli, A; Papassotiriou, I; Kanaka-Gantenbein, C

    2012-10-01

    Retinol Binding Protein-4 (RBP-4), the action of which was initially thought to be only the transport of vitamin A, is a major circulating adipocytokine involved in the inflammation. We evaluated the serum RBP-4 levels in children with inflammatory bowel disease (IBD) and correlated them with transthyretin (TTR), inflammation markers, disease activity, and body mass index (BMI). In 41 children of mean age 11.9 ± 3.6 years (range 5-17.7 y) with IBD (19 with Crohn's disease (CD) and 22 with Ulcerative colitis (UC) serum RBP-4, TTR, Amyloid A (SAA), C-Reactive Protein (CRP), Erythrocyte Sedimentation Rate (ESR), disease activity and BMI were prospectively determined and compared with those of 42 matched controls. No difference in the RBP-4 and TTR serum levels, between patients and controls as well as between active and remission state of the disease was noticed. A negative correlation of serum RBP-4 with the disease activity, SAA and ESR and a positive correlation with TTR was found, but no significant correlation with CRP or BMI was found. Inflammation markers were significantly increased in patients compared to controls and had a positive correlation with the disease activity. RBP-4 negatively correlated with disease activity of children with IBD probably indicating a protective anti-inflammatory mechanism of action in addition to transport of vitamin A.

  11. Charge-discharge characteristics of all-solid-state thin-filmed lithium-ion batteries using amorphous Nb 2O 5 negative electrodes

    NASA Astrophysics Data System (ADS)

    Nakazawa, Hiromi; Sano, Kimihiro; Abe, Takashi; Baba, Mamoru; Kumagai, Naoaki

    All-solid-state thin-filmed lithium-ion rechargeable batteries composed of amorphous Nb 2O 5 negative electrode with the thickness of 50-300 nm and amorphous Li 2Mn 2O 4 positive electrode with a constant thickness of 200 nm, and amorphous Li 3PO 4- xN x electrolyte (100 nm thickness), have been fabricated on glass substrates with a 50 mm × 50 mm size by a sputtering method, and their electrochemical characteristics were investigated. The charge-discharge capacity based on the volume of positive electrode increased with increasing thickness of negative electrode, reaching about 600 mAh cm -3 for the battery with the negative electrode thickness of 200 nm. But the capacity based on the volume of both the positive and negative electrodes was the maximum value of about 310 mAh cm -3 for the battery with the negative electrode thickness of 100 nm. The shape of charge-discharge curve consisted of a two-step for the batteries with the negative electrode thickness more than 200 nm, but that with the thickness of 100 nm was a smooth S-shape curve during 500 cycles.

  12. Lectin RCA-I specifically binds to metastasis-associated cell surface glycans in triple-negative breast cancer.

    PubMed

    Zhou, Shu-Min; Cheng, Li; Guo, Shu-Juan; Wang, Yang; Czajkowsky, Daniel M; Gao, Huafang; Hu, Xiao-Fang; Tao, Sheng-Ce

    2015-03-11

    Triple-negative breast cancer (TNBC) patients often face a high risk of early relapse characterized by extensive metastasis. Previous works have shown that aberrant cell surface glycosylation is associated with cancer metastasis, suggesting that altered glycosylations might serve as diagnostic signatures of metastatic potential. To address this question, we took TNBC as an example and analyzed six TNBC cell lines, derived from a common progenitor, that differ in metastatic potential. We used a microarray with 91 lectins to screen for altered lectin bindings to the six TNBC cell lines. Candidate lectins were then verified by lectin-based flow cytometry and immunofluorescent staining assays using both TNBC/non-TNBC cancer cells. Patient-derived tissue microarrays were then employed to analyze whether the staining of Ricinus communis agglutinin I (RCA-I), correlated with TNBC severity. We also carried out real-time cell motility assays in the presence of RCA-I. Finally, liquid chromatography-mass spectrometry/tandem spectrometry (LC-MS/MS) was employed to identify the membrane glycoproteins recognized by RCA-I. Using the lectin microarray, we found that the bindings of RCA-I to TNBC cells are proportional to their metastatic capacity. Tissue microarray experiments showed that the intensity of RCA-I staining is positively correlated with the TNM grades. The real-time cell motility assays clearly demonstrated RCA-I inhibition of adhesion, migration, and invasion of TNBC cells of high metastatic capacity. Additionally, a membrane glycoprotein, POTE ankyrin domain family member F (POTEF), with different galactosylation extents in high/low metastatic TNBC cells was identified by LC-MS/MS as a binder of RCA-I. We discovered RCA-I, which bound to TNBC cells to a degree that is proportional to their metastatic capacities, and found that this binding inhibits the cell invasion, migration, and adhesion, and identified a membrane protein, POTEF, which may play a key role in

  13. The glucocorticoid receptor binds to a sequence overlapping the TATA box of the human osteocalcin promoter: a potential mechanism for negative regulation.

    PubMed Central

    Strömstedt, P E; Poellinger, L; Gustafsson, J A; Carlstedt-Duke, J

    1991-01-01

    Expression of the human osteocalcin promoter is negatively regulated by glucocorticoids in vivo. In vitro DNase I and exonuclease III footprinting analysis showed binding of purified glucocorticoid receptor in close proximity to and overlapping with the TATA box of the osteocalcin gene. These results imply competition or interference with binding of the TATA box-binding transcription factor IID as a mechanism of repression of this gene by glucocorticoids. In support of this notion, point mutation analysis of the receptor binding site indicated that flanking nucleotides and not the TATA box motif per se were important for receptor interaction. Moreover, DNA binding competition assays showed specific binding of the receptor only to the TATA box region of the osteocalcin gene and not to the corresponding region of an immunoglobulin heavy-chain promoter. Images PMID:2038339

  14. Symmetry-related mutants in the quinone binding sites of the reaction center -- The effects of changes in charge distribution

    SciTech Connect

    Hanson, D.K.; Schiffer, M.

    1997-09-01

    To probe the structural elements that contribute to the functional asymmetries of the two ubiquinone{sub 10}binding pockets in the reaction center of Rhodobacter capsulatus, the authors targeted the L212Glu-L213Asp (near Q{sub B}) and the M246Ala-M247Ala (near Q{sub A}) pairs of symmetry-related residues for site-specific mutagenesis. They have constructed site-specific mutants that eliminate the sequence differences at these positions (L212Glu-L213Asp{yields}Ala-Ala or M246Ala-M247Ala{yields}Glu-Asp), and have reversed that asymmetry by constructing a quadruple-mutant strain, RQ (L212Glu-L213Asp-M246Ala-M247Ala{yields}Ala-Ala-Glu-Asp). The mutations were designed to change the charge distribution in the quinone-binding region of the reaction center; none of the strains is capable of photosynthetic growth. In photocomponent phenotypic revertants of the RQ strain, second-site mutations which affect Q{sub B} function are coupled to mutations in the Q{sub A} site which restore an Ala or substitute a Tyr at the M247 site; one strain carries an additional Met{yields}Glu substitution at M260 near Q{sub A}. All of the RQ revertants retain the engineered M246Ala{yields}Glu mutation in the Q{sub A} site as well as the L212Ala-L213Ala mutations in the Q{sub B} site. Kinetic characterization of the RQ revertants will give them an idea of what structural and functional elements are important for restoring efficiency to electron and proton transfer pathways in the RQRC, which is far from native. To date, these preliminary results underscore the importance of an asymmetric distribution of polar amino acids in the quinone binding pockets and its influence on the functional properties of the reaction center.

  15. Atomic scale simulations of pyrochlore oxides with a tight-binding variable-charge model: implications for radiation tolerance.

    PubMed

    Sattonnay, G; Tétot, R

    2014-02-05

    Atomistic simulations with new interatomic potentials derived from a tight-binding variable-charge model were performed in order to investigate the lattice properties and the defect formation energies in Gd2Ti2O7 and Gd2Zr2O7 pyrochlores. The main objective was to determine the role played by the defect stability on the radiation tolerance of these compounds. Calculations show that the titanate has a more covalent character than the zirconate. Moreover, the properties of oxygen Frenkel pairs, cation antisite defects and cation Frenkel pairs were studied. In Gd2Ti2O7 the cation antisite defect and the Ti-Frenkel pair are not stable: they evolve towards more stable defect configurations during the atomic relaxation process. This phenomenon is driven by a decrease of the Ti coordination number down to five which leads to a local atomic reorganization and strong structural distortions around the defects. These kinds of atomic rearrangements are not observed around defects in Gd2Zr2O7. Therefore, the defect stability in A2B2O7 depends on the ability of B atoms to accommodate high coordination number (higher than six seems impossible for Ti). The accumulation of structural distortions around Ti-defects due to this phenomenon could drive the Gd2Ti2O7 amorphization induced by irradiation.

  16. Floating gate memory with charge storage dots array formed by Dps protein modified with site-specific binding peptides

    NASA Astrophysics Data System (ADS)

    Kamitake, Hiroki; Uenuma, Mutsunori; Okamoto, Naofumi; Horita, Masahiro; Ishikawa, Yasuaki; Yamashita, Ichro; Uraoka, Yukiharu

    2015-05-01

    We report a nanodot (ND) floating gate memory (NFGM) with a high-density ND array formed by a biological nano process. We utilized two kinds of cage-shaped proteins displaying SiO2 binding peptide (minTBP-1) on their outer surfaces: ferritin and Dps, which accommodate cobalt oxide NDs in their cavities. The diameters of the cobalt NDs were regulated by the cavity sizes of the proteins. Because minTBP-1 is strongly adsorbed on the SiO2 surface, high-density cobalt oxide ND arrays were obtained by a simple spin coating process. The densities of cobalt oxide ND arrays based on ferritin and Dps were 6.8 × 1011 dots cm-2 and 1.2 × 1012 dots cm-2, respectively. After selective protein elimination and embedding in a metal-oxide-semiconductor (MOS) capacitor, the charge capacities of both ND arrays were evaluated by measuring their C-V characteristics. The MOS capacitor embedded with the Dps ND array showed a wider memory window than the device embedded with the ferritin ND array. Finally, we fabricated an NFGM with a high-density ND array based on Dps, and confirmed its competent writing/erasing characteristics and long retention time.

  17. Cooperative DnaA Binding to the Negatively Supercoiled datA Locus Stimulates DnaA-ATP Hydrolysis.

    PubMed

    Kasho, Kazutoshi; Tanaka, Hiroyuki; Sakai, Ryuji; Katayama, Tsutomu

    2017-01-27

    Timely initiation of replication in Escherichia coli requires functional regulation of the replication initiator, ATP-DnaA. The cellular level of ATP-DnaA increases just before initiation, after which its level decreases through hydrolysis of DnaA-bound ATP, yielding initiation-inactive ADP-DnaA. Previously, we reported a novel DnaA-ATP hydrolysis system involving the chromosomal locus datA and named it datA-dependent DnaA-ATP hydrolysis (DDAH). The datA locus contains a binding site for a nucleoid-associating factor integration host factor (IHF) and a cluster of three known DnaA-binding sites, which are important for DDAH. However, the mechanisms underlying the formation and regulation of the datA-IHF·DnaA complex remain unclear. We now demonstrate that a novel DnaA box within datA is essential for ATP-DnaA complex formation and DnaA-ATP hydrolysis. Specific DnaA residues, which are important for interaction with bound ATP and for head-to-tail inter-DnaA interaction, were also required for ATP-DnaA-specific oligomer formation on datA Furthermore, we show that negative DNA supercoiling of datA stabilizes ATP-DnaA oligomers, and stimulates datA-IHF interaction and DnaA-ATP hydrolysis. Relaxation of DNA supercoiling by the addition of novobiocin, a DNA gyrase inhibitor, inhibits datA function in cells. On the basis of these results, we propose a mechanistic model of datA-IHF·DnaA complex formation and DNA supercoiling-dependent regulation for DDAH.

  18. Plantaricin A, a cationic peptide produced by Lactobacillus plantarum, permeabilizes eukaryotic cell membranes by a mechanism dependent on negative surface charge linked to glycosylated membrane proteins.

    PubMed

    Sand, Sverre L; Nissen-Meyer, Jon; Sand, Olav; Haug, Trude M

    2013-02-01

    Lactobacillus plantarum C11 releases plantaricin A (PlnA), a cationic peptide pheromone that has a membrane-permeabilizing, antimicrobial effect. We have previously shown that PlnA may also permeabilize eukaryotic cells, with a potency that differs between cell types. It is generally assumed that cationic antimicrobial peptides exert their effects through electrostatic attraction to negatively charged phospholipids in the membrane. The aim of the present study was to investigate if removal of the negative charge linked to glycosylated proteins at the cell surface reduces the permeabilizing potency of PlnA. The effects of PlnA were tested on clonal rat anterior pituitary cells (GH(4) cells) using patch clamp and microfluorometric techniques. In physiological extracellular solution, GH(4) cells are highly sensitive to PlnA, but the sensitivity was dramatically reduced in solutions that partly neutralize the negative surface charge of the cells, in agreement with the notion that electrostatic interactions are probably important for the PlnA effects. Trypsination of cells prior to PlnA exposure also rendered the cells less sensitive to the peptide, suggesting that negative charges linked to membrane proteins are involved in the permeabilizing action. Finally, pre-exposure of cells to a mixture of enzymes that split carbohydrate residues from the backbone of glycosylated proteins also impeded the PlnA-induced membrane permeabilization. We conclude that electrostatic attraction between PlnA and glycosylated membrane proteins is probably an essential first step before PlnA can interact with membrane phospholipids. Deviating glycosylation patterns may contribute to the variation in PlnA sensitivity of different cell types, including cancerous cells and their normal counterparts.

  19. Negative Charge Neutralization in the Loops and Turns of Outer Membrane Phospholipase A Impacts Folding Hysteresis at Neutral pH.

    PubMed

    McDonald, Sarah K; Fleming, Karen G

    2016-11-08

    Hysteresis in equilibrium protein folding titrations is an experimental barrier that must be overcome to extract meaningful thermodynamic quantities. Traditional approaches to solving this problem involve testing a spectrum of solution conditions to find ones that achieve path independence. Through this procedure, a specific pH of 3.8 was required to achieve path independence for the water-to-bilayer equilibrium folding of outer membrane protein OmpLA. We hypothesized that the neutralization of negatively charged side chains (Asp and Glu) at pH 3.8 could be the physical basis for path-independent folding at this pH. To test this idea, we engineered variants of OmpLA with Asp → Asn and Glu → Gln mutations to neutralize the negative charges within various regions of the protein and tested for reversible folding at neutral pH. Although not fully resolved, our results show that these mutations in the periplasmic turns and extracellular loops are responsible for 60% of the hysteresis in wild-type folding. Overall, our study suggests that negative charges impact the folding hysteresis in outer membrane proteins and their neutralization may aid in protein engineering applications.

  20. Special AT-rich sequence-binding protein 2 acts as a negative regulator of stemness in colorectal cancer cells

    PubMed Central

    Li, Ying; Liu, Yu-Hong; Hu, Yu-Ying; Chen, Lin; Li, Jian-Ming

    2016-01-01

    AIM To find the mechanisms by which special AT-rich sequence-binding protein 2 (SATB2) influences colorectal cancer (CRC) metastasis. METHODS Cell growth assay, colony-forming assay, cell adhesion assay and cell migration assay were used to evaluate the biological characteristics of CRC cells with gain or loss of SATB2. Sphere formation assay was used to detect the self-renewal ability of CRC cells. The mRNA expression of stem cell markers in CRC cells with upregulated or downregulated SATB2 expression was detected by quantitative real-time polymerase chain reaction. Chromatin immunoprecipitation (ChIP) was used to verify the binding loci of SATB2 on genomic sequences of stem cell markers. The Cancer Genome Atlas (TCGA) database and our clinical samples were analyzed to find the correlation between SATB2 and some key stem cell markers. RESULTS Downregulation of SATB2 led to an aggressive phenotype in SW480 and DLD-1 cells, which was characterized by increased migration and invasion abilities. Overexpression of SATB2 suppressed the migration and invasion abilities in SW480 and SW620 cells. Using sequential sphere formation assay to detect the self-renewal abilities of CRC cells, we found more secondary sphere formation but not primary sphere formation in SW480 and DLD-1 cells after SATB2 expression was knocked down. Moreover, most markers for stem cells such as CD133, CD44, AXIN2, MEIS2 and NANOG were increased in cells with SATB2 knockdown and decreased in cells with SATB2 overexpression. ChIP assay showed that SATB2 bound to regulatory elements of CD133, CD44, MEIS2 and AXIN2 genes. Using TCGA database and our clinical samples, we found that SATB2 was correlated with some key stem cell markers including CD44 and CD24 in clinical tissues of CRC patients. CONCLUSION SATB2 can directly bind to the regulatory elements in the genetic loci of several stem cell markers and consequently inhibit the progression of CRC by negatively regulating stemness of CRC cells. PMID

  1. Understanding the physical basis of the salt dependence of the electrostatic binding free energy of mutated charged ligand-nucleic acid complexes.

    PubMed

    Harris, Robert C; Bredenberg, Johan H; Silalahi, Alexander R J; Boschitsch, Alexander H; Fenley, Marcia O

    2011-06-01

    The predictions of the derivative of the electrostatic binding free energy of a biomolecular complex, ΔG(el), with respect to the logarithm of the 1:1 salt concentration, d(ΔG(el))/d(ln[NaCl]), SK, by the Poisson-Boltzmann equation, PBE, are very similar to those of the simpler Debye-Hückel equation, DHE, because the terms in the PBE's predictions of SK that depend on the details of the dielectric interface are small compared to the contributions from long-range electrostatic interactions. These facts allow one to obtain predictions of SK using a simplified charge model along with the DHE that are highly correlated with both the PBE and experimental binding data. The DHE-based model developed here, which was derived from the generalized Born model, explains the lack of correlation between SK and ΔG(el) in the presence of a dielectric discontinuity, which conflicts with the popular use of this supposed correlation to parse experimental binding free energies into electrostatic and nonelectrostatic components. Moreover, the DHE model also provides a clear justification for the correlations between SK and various empirical quantities, like the number of ion pairs, the ligand charge on the interface, the Coulomb binding free energy, and the product of the charges on the complex's components, but these correlations are weak, questioning their usefulness. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Molecular Dynamics Simulation Study of Solvent and State of Charge Effects on Solid-Phase Structure and Counterion Binding in a Nitroxide Radical Containing Polymer Energy Storage Material

    SciTech Connect

    Kemper, Travis W.; Gennett, Thomas; Larsen, Ross E.

    2016-10-19

    Here we performed molecular dynamics simulations to understand the effects of solvent swelling and state of charge (SOC) on the redox active, organic radical cathode material poly(2,2,6,6-tetramethylpiperidinyloxy methacrylate) (PTMA). We show that the polar solvent acetonitrile primarily solvates the nitroxide radical without disrupting the packing of the (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) pendant groups of PTMA. We also simulated bulk PTMA in different SOC, 25%, 50%, 75%, and 100%, by converting the appropriate number of TEMPO groups to the cation charge state and adding BF4- counterions to the simulation. At each SOC the packing of PTMA, the solvent, and the counterions were examined. The binding of the anion to the nitroxide cation site was examined using the potential of mean force and found to be on the order of tens of meV, with a binding energy that decreased with increasing SOC. Additionally, we found that the cation state is stabilized by the presence of a nearby anion by more than 1 eV, and the implications of this stabilization on charge transport are discussed. Finally, we describe the implications of our results for how the SOC of an organic electrode affects electron and anion charge transport during the charging and discharging processes.

  3. Molecular Dynamics Simulation Study of Solvent and State of Charge Effects on Solid-Phase Structure and Counterion Binding in a Nitroxide Radical Containing Polymer Energy Storage Material

    DOE PAGES

    Kemper, Travis W.; Gennett, Thomas; Larsen, Ross E.

    2016-10-19

    Here we performed molecular dynamics simulations to understand the effects of solvent swelling and state of charge (SOC) on the redox active, organic radical cathode material poly(2,2,6,6-tetramethylpiperidinyloxy methacrylate) (PTMA). We show that the polar solvent acetonitrile primarily solvates the nitroxide radical without disrupting the packing of the (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) pendant groups of PTMA. We also simulated bulk PTMA in different SOC, 25%, 50%, 75%, and 100%, by converting the appropriate number of TEMPO groups to the cation charge state and adding BF4- counterions to the simulation. At each SOC the packing of PTMA, the solvent, and the counterions were examined.more » The binding of the anion to the nitroxide cation site was examined using the potential of mean force and found to be on the order of tens of meV, with a binding energy that decreased with increasing SOC. Additionally, we found that the cation state is stabilized by the presence of a nearby anion by more than 1 eV, and the implications of this stabilization on charge transport are discussed. Finally, we describe the implications of our results for how the SOC of an organic electrode affects electron and anion charge transport during the charging and discharging processes.« less

  4. A zebrafish intelectin ortholog agglutinates both Gram-negative and Gram-positive bacteria with binding capacity to bacterial polysaccharide.

    PubMed

    Chen, Lei; Yan, Jie; Sun, Weiping; Zhang, Yan; Sui, Chao; Qi, Jing; Du, Yijun; Feng, Lijun

    2016-08-01

    Intelectins are glycan-binding lectins found in various species including cephalochordates, urochordates, fish, amphibians and mammals. But their detailed functions are not well studied in zebrafish which is a good model to study native immunity. In this study, we cloned a zebrafish intelectin ortholog, zebrafish intelectin 2 (zITLN2), which contains a conserved fibrinogen-related domain (FReD) in the N-terminus and the unique intelectin domain in the C-terminus. We examined the tissue distribution of zITLN2 in adult zebrafish and found that zITLN2 was expressed in various organs with the highest level in intestine. Like amphioxus intelectins, zITLN2 expression was upregulated in adult zebrafish infected with Staphylococcus aureus with the highest expression level at 12 h after challenge. Recombinant zITLN2 protein expressed in E. coli was able to agglutinate both Gram-negative and Gram-positive bacteria to similar degrees in a calcium-dependent manner. Furthermore, recombinant zITLN2 bound lipopolysaccharide (LPS) and peptidoglycan (PGN) comparably. Our work on zITLN2 provided further information to understand functions of this new family of lectins and the innate immunity in vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Positively and Negatively Charged Ionic Modifications to Cellulose Assessed as Cotton-Based Protease-Lowering and Haemostatic Wound Agents

    USDA-ARS?s Scientific Manuscript database

    Recent developments in cellulose wound dressings targeted to different stages of wound healing have been based on structural and charge modifications that function to modulate events in the complex inflammatory and hemostatic phases of wound healing. Hemostasis and inflammation comprise two overlapp...

  6. Role of GCR positive and negative particles in charging the LISA-PF test masses in 2015

    NASA Astrophysics Data System (ADS)

    Grimani, C.; Fabi, M.; Lobo, A. J.; Mateos, I.; Telloni, D.

    2015-05-01

    The LISA Pathfinder (LISA-PF) mission launch is scheduled during the second half of 2015. Galactic and solar ions with energies larger than 100 MeV/n and electrons above 10 MeV penetrate the spacecraft material and charge the gold-platinum test masses. This charging process generates spurious forces that, in some cases, may mimic the effects of genuine gravitational wave signals. A study of the test-mass charging due to galactic cosmic rays (GCRs) down to 1% in composition is reported here. The reliability of the results of this work is mainly limited by our capability to predict the energy spectra of GCRs in 2015. To this purpose, our model is applied to the expected PAMELA experiment proton data for the period January- March 2014 characterized by a positive polarity period and a level of solar modulation similar to those expected at the time of LISA-PF. The PAMELA observations will be available in the next few months. The comparison between our projections and measurements will provide valuable clues on the test-mass charging estimate uncertainty.

  7. Effect of charge transfer on the local order in liquid group IV isoelectronic compounds: neutron diffraction data versus numerical tight-binding simulations

    SciTech Connect

    Prigent, G.; Bellissent, R.; Gaspard, J.-P.; Bichara, C.

    1999-06-15

    In a simple tight-binding approach, we consider the role of charge transfer and entropy in the semiconductor-to-metal transition which may occur upon melting group IV elements and their isoelectronic III-V and II-VI compounds. In the liquid state, entropy is shown to destabilise the diamond structure in favor of a metallic simple cubic-like local order, while charge transfer tends to keep the semiconducting tetrahedral local order of the solid state. These results are consistent with neutron diffraction data.

  8. The tight binding model study of the role of band filling on the charge gap in graphene-on-substrate in paramagnetic state

    NASA Astrophysics Data System (ADS)

    Panda, Rudrashish; Sahu, Sivabrata; Rout, G. C.

    2017-05-01

    We communicate here a tight binding theoretical model study of the band filling effect on the charge gap in graphene-on-substrate. The Hamiltonian consists of nearest neighbor electron hopping and substrate induced gap. Besides this the Coulomb interaction is considered here within mean-field approximation in the paramagnetic limit. The electron occupancies at two sublattices are calculated by Green's function technique and are solved self consistently. Finally the charge gap i.e. Δ ¯=U [ < na > -< nb > ] is calculated and computed numerically. The results are reported.

  9. Negatively charged residues of the segment linking the enzyme and cytolysin moieties restrict the membrane-permeabilizing capacity of adenylate cyclase toxin

    PubMed Central

    Masin, Jiri; Osickova, Adriana; Sukova, Anna; Fiser, Radovan; Halada, Petr; Bumba, Ladislav; Linhartova, Irena; Osicka, Radim; Sebo, Peter

    2016-01-01

    The whooping cough agent, Bordetella pertussis, secretes an adenylate cyclase toxin-hemolysin (CyaA) that plays a crucial role in host respiratory tract colonization. CyaA targets CR3-expressing cells and disrupts their bactericidal functions by delivering into their cytosol an adenylate cyclase enzyme that converts intracellular ATP to cAMP. In parallel, the hydrophobic domain of CyaA forms cation-selective pores that permeabilize cell membrane. The invasive AC and pore-forming domains of CyaA are linked by a segment that is unique in the RTX cytolysin family. We used mass spectrometry and circular dichroism to show that the linker segment forms α-helical structures that penetrate into lipid bilayer. Replacement of the positively charged arginine residues, proposed to be involved in target membrane destabilization by the linker segment, reduced the capacity of the toxin to translocate the AC domain across cell membrane. Substitutions of negatively charged residues then revealed that two clusters of negative charges within the linker segment control the size and the propensity of CyaA pore formation, thereby restricting the cell-permeabilizing capacity of CyaA. The ‘AC to Hly-linking segment’ thus appears to account for the smaller size and modest cell-permeabilizing capacity of CyaA pores, as compared to typical RTX hemolysins. PMID:27581058

  10. Enhanced density of negative fixed charges in Al2O3 layers on Si through a subsequent deposition of TiO2

    NASA Astrophysics Data System (ADS)

    Schneider, Thomas; Ziegler, Johannes; Kaufmann, Kai; Ilse, Klemens; Sprafke, Alexander; Wehrspohn, Ralf B.

    2016-04-01

    The passivation of silicon surfaces play an important role for achieving high-efficiency crystalline silicon solar cells. In this work, a stack system comprising of 20nm Al2O3 with a 22nm TiO2 topping layer was deposited on p-type Si using thermal atomic layer deposition (ALD) and was investigated regarding its passivation quality. Quasi-steady-state photo conductance (QSSPC) measurements reveal that the minority carrier lifetime at an injection density of 1015cm-3 increased from 1.10ms to 1.96ms after the deposition of TiO2, which shows that the deposition of TiO2 onto Al2O3 is capable of enhancing its passivation quality. Capacity voltage (CV) measurements show that the amount of negative charges in the dielectric layer has increased from -2.4·1012cm-2 to -6.3·1012cm-2 due to the deposition of TiO2. The location of the additional charges was analyzed in this work by etching the dielectric layer stack in several steps. After each step CV measurements were performed. It is found that the additional negative charges are created within the Al2O3 layer. Additionally, ToF-SIMS measurements were performed to check for diffusion processes within the Al2O3 layer.

  11. Design of an electrolyte composition for stable and rapid charging-discharging of a graphite negative electrode in a bis(fluorosulfonyl)imide-based ionic liquid

    NASA Astrophysics Data System (ADS)

    Matsui, Yukiko; Yamagata, Masaki; Murakami, Satoshi; Saito, Yasuteru; Higashizaki, Tetsuya; Ishiko, Eriko; Kono, Michiyuki; Ishikawa, Masashi

    2015-04-01

    We evaluate the effects of lithium salt on the charge-discharge performance of a graphite negative electrode in 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMImFSI) ionic liquid-based electrolytes. Although the graphite negative electrode exhibits good cyclability and rate capability in both 0.43 mol dm-3 LiFSI/EMImFSI and LiTFSI/EMImFSI (TFSI- = bis(trifluoromethylsulfonyl)imide) at room temperature, only the LiFSI/EMImFSI system enables the graphite electrode to be operated with sufficient discharge capacity at the low temperature of 0 °C, even though there is no noticeable difference in ionic conductivity, compared with LiTFSI/EMImFSI. Furthermore, a clear difference in the low-temperature behaviors of the two cells composed of EMImFSI with a high-concentration of lithium salts is observed. Additionally, charge-discharge operation of the graphite electrode at C-rate of over 5.0 can be achieved using of the high-concentration LiFSI/EMImFSI electrolyte. Considering the low-temperature characteristics in both high-concentration electrolytes, the stable and rapid charge-discharge operation in the high-concentration LiFSI/EMImFSI is presumably attributed to a suitable electrode/electrolyte interface with low resistivity. These results suggest that optimization of the electrolyte composition can realize safe and high-performance lithium-ion batteries that utilize ionic liquid-based electrolytes.

  12. Effects of genetic replacements of charged and H-bonding residues in the retinal pocket on Ca2+ binding to deionized bacteriorhodopsin.

    PubMed

    Zhang, Y N; el-Sayed, M A; Bonet, M L; Lanyi, J K; Chang, M; Ni, B; Needleman, R

    1993-02-15

    Metal cations are known to be required for proton pumping by bacteriorhodopsin (bR). Previous studies found that bR has two high-affinity and four to six low-affinity Ca(2+)-binding sites. In our efforts to find the location of these Ca2+ sites, the effects of replacing charged (Asp-85, Asp-212, and Arg-82) and H-bonding (Tyr-185) residues in the retinal pocket on the color control and binding affinity of Ca2+ ions in Ca(2+)-regenerated bR were examined. The important results are as follows: (i) The removal of Ca2+ from recombinant bR in which charged residues were replaced by neutral ones shifted the retinal absorption to the blue, opposite to that observed in wild-type bR or in recombinant bR in which the H-bonding residue, Tyr-185, was replaced by a non-H-bonding amino acid (Phe). (ii) Similar to the observation in wild-type bR, the binding of Ca2+ to the second site gave the observed color change in the recombinant bR samples in which charged residues were replaced by neutral ones. (iii) The residue replacements had no effect on the affinity constants of the four to six weakly bound Ca2+. (iv) The two high-affinity sites exhibited reduced affinity with substitutions; while the extent of the reduction depended on the specific substitution, each site was reduced by the same factor for each of the charged residue substitutions but by different factors for the mutant where Tyr-185 was replaced with Phe(Y185F). The above results suggest that the two Ca2+ ions in the two high-affinity sites are within interaction distance with one another and with the charged residues in the retinal pocket. The results further suggest that, while the interaction between Tyr-185 and the high-affinity Ca2+ ions is relatively short range and specific (with more coupling to the Ca2+ ion in the second affinity site), between the charged residues and Ca2+ ions it seems to be of the electrostatic (e.g., ion-ion) long range, nonspecific type. Although neither Asp-85, Asp-212, nor Arg-82 is

  13. Glucocorticoid--receptor interactions. Studies of the negative co-operativity induced by steroid interactions with a secondary, hydrophobic, binding site.

    PubMed Central

    Jones, T R; Bell, P A

    1980-01-01

    The effects of steroids on the binding of [1,2-3H]dexamethasone and [1,2-3H]progesterone to the glucocorticoid receptor of rat thymus cytosol were studied. Although both glucocorticoid agonists and antagonists competed with [1,2-3H]dexamethasone for binding to the receptor under equilibrium conditions, only glucocorticoid antagonists of partial agonists, at micromolar concentrations, were capable of accelerating the rate of dissociation of previously bound [1,2-3H]dexamethasone from the receptor. Antagonists or partial agonists also enhanced the rate of dissociation of [1,2-3H]progesterone from the glucocorticoid receptor, with identical specificity and concentration--response characteristics. These effects are attributed to the presence on the receptor of a secondary, low-affinity, binding site for glucocorticoid antagonists, the occupancy of which produces negatively co-operative interactions with the primary glucocorticoid-binding site. In contrast with the interactions with the primary site, the interactions of steroids with the negatively co-operative site appear to be primarily hydrophobic in nature, and the site resembles the steroid-binding site of progestin-binding proteins in its specificity, though not its affinity. The results also suggest that the initial interactions of both glucocorticoid agonists and antagonists with the receptor under equilibrium conditions are with one primary site on a receptor existing in one conformation only. PMID:7406882

  14. Exploring the binding dynamics of BAR proteins.

    PubMed

    Kabaso, Doron; Gongadze, Ekaterina; Jorgačevski, Jernej; Kreft, Marko; Van Rienen, Ursula; Zorec, Robert; Iglič, Aleš

    2011-09-01

    We used a continuum model based on the Helfrich free energy to investigate the binding dynamics of a lipid bilayer to a BAR domain surface of a crescent-like shape of positive (e.g. I-BAR shape) or negative (e.g. F-BAR shape) intrinsic curvature. According to structural data, it has been suggested that negatively charged membrane lipids are bound to positively charged amino acids at the binding interface of BAR proteins, contributing a negative binding energy to the system free energy. In addition, the cone-like shape of negatively charged lipids on the inner side of a cell membrane might contribute a positive intrinsic curvature, facilitating the initial bending towards the crescent-like shape of the BAR domain. In the present study, we hypothesize that in the limit of a rigid BAR domain shape, the negative binding energy and the coupling between the intrinsic curvature of negatively charged lipids and the membrane curvature drive the bending of the membrane. To estimate the binding energy, the electric potential at the charged surface of a BAR domain was calculated using the Langevin-Bikerman equation. Results of numerical simulations reveal that the binding energy is important for the initial instability (i.e. bending of a membrane), while the coupling between the intrinsic shapes of lipids and membrane curvature could be crucial for the curvature-dependent aggregation of negatively charged lipids near the surface of the BAR domain. In the discussion, we suggest novel experiments using patch clamp techniques to analyze the binding dynamics of BAR proteins, as well as the possible role of BAR proteins in the fusion pore stability of exovesicles.

  15. Non-POU Domain-Containing Octamer-Binding Protein Negatively Regulates HIV-1 Infection in CD4(+) T Cells.

    PubMed

    St Gelais, Corine; Roger, Jonathan; Wu, Li

    2015-08-01

    HIV-1 interacts with numerous cellular proteins during viral replication. Identifying such host proteins and characterizing their roles in HIV-1 infection can deepen our understanding of the dynamic interplay between host and pathogen. We previously identified non-POU domain-containing octamer-binding protein (NonO or p54nrb) as one of host factors associated with catalytically active preintegration complexes (PIC) of HIV-1 in infected CD4(+) T cells. NonO is involved in nuclear processes including transcriptional regulation and RNA splicing. Although NonO has been identified as an HIV-1 interactant in several recent studies, its role in HIV-1 replication has not been characterized. We investigated the effect of NonO on the HIV-1 life cycle in CD4(+) T cell lines and primary CD4(+) T cells using single-cycle and replication-competent HIV-1 infection assays. We observed that short hairpin RNA (shRNA)-mediated stable NonO knockdown in a CD4(+) Jurkat T cell line and primary CD4(+) T cells did not affect cell viability or proliferation, but enhanced HIV-1 infection. The enhancement of HIV-1 infection in Jurkat T cells correlated with increased viral reverse transcription and gene expression. Knockdown of NonO expression in Jurkat T cells modestly enhanced HIV-1 gag mRNA expression and Gag protein synthesis, suggesting that viral gene expression and RNA regulation are the predominantly affected events causing enhanced HIV-1 replication in NonO knockdown (KD) cells. Furthermore, overexpression of NonO in Jurkat T cells reduced HIV-1 single-cycle infection by 41% compared to control cells. Our data suggest that NonO negatively regulates HIV-1 infection in CD4(+) T cells, albeit it has modest effects on early and late stages of the viral life cycle, highlighting the importance of host proteins associated with HIV-1 PIC in regulating viral replication.

  16. Kinetic and X-Ray Structural Evidence for Negative Cooperativity in Substrate Binding to Nicotinate Mononucleotide Adenylyltransferase (NMAT) from Bacillus anthracis

    SciTech Connect

    Sershon, Valerie C.; Santarsiero, Bernard D.; Mesecar, Andrew D.

    2009-08-07

    Biosynthesis of NAD(P) in bacteria occurs either de novo or through one of the salvage pathways that converge at the point where the reaction of nicotinate mononucleotide (NaMN) with ATP is coupled to the formation of nicotinate adenine dinucleotide (NaAD) and inorganic pyrophosphate. This reaction is catalyzed by nicotinate mononucleotide adenylyltransferase (NMAT), which is essential for bacterial growth, making it an attractive drug target for the development of new antibiotics. Steady-state kinetic and direct binding studies on NMAT from Bacillus anthracis suggest a random sequential Bi-Bi kinetic mechanism. Interestingly, the interactions of NaMN and ATP with NMAT were observed to exhibit negative cooperativity, i.e. Hill coefficients <1.0. Negative cooperativity in binding is supported by the results of X-ray crystallographic studies. X-ray structures of the B. anthracis NMAT apoenzyme, and the NaMN- and NaAD-bound complexes were determined to resolutions of 2.50 A, 2.60 A and 1.75 A, respectively. The X-ray structure of the NMAT-NaMN complex revealed only one NaMN molecule bound in the biological dimer, supporting negative cooperativity in substrate binding. The kinetic, direct-binding, and X-ray structural studies support a model in which the binding affinity of substrates to the first monomer of NMAT is stronger than that to the second, and analysis of the three X-ray structures reveals significant conformational changes of NMAT along the enzymatic reaction coordinate. The negative cooperativity observed in B. anthracis NMAT substrate binding is a unique property that has not been observed in other prokaryotic NMAT enzymes. We propose that regulation of the NAD(P) biosynthetic pathway may occur, in part, at the reaction catalyzed by NMAT.

  17. Local symmetry breaking for negatively charged impurity centers in SrTi{sub 1-x}Mn{sub x}O{sub 3}

    SciTech Connect

    Kvyatkovskii, O. E.

    2011-01-15

    First-principles calculations of the geometry and electronic structure of the impurity center in SrTi{sub 1-x}Mn{sub x}O{sub 3} have been performed. Neutral and negatively charged defects are considered. It is found that the doubly charged impurity center is polar; it has C{sub 4v} symmetry and electronic state {sup 4}B{sub 1} with electron polaron localized at one of the neighboring titanium atoms. It is shown that this state is due to the spontaneous breaking of the defect local symmetry: O{sub h}({sup 4}A{sub 1g}) {yields} D{sub 4h}({sup 4}B{sub 1g}) {yields} C{sub 4{nu}}({sup 4}B{sub 1}).

  18. Persistent Graves' hyperthyroidism despite rapid negative conversion of thyroid-stimulating hormone-binding inhibitory immunoglobulin assay results: a case report.

    PubMed

    Ohara, Nobumasa; Kaneko, Masanori; Kitazawa, Masaru; Uemura, Yasuyuki; Minagawa, Shinichi; Miyakoshi, Masashi; Kaneko, Kenzo; Kamoi, Kyuzi

    2017-02-06

    Graves' disease is an autoimmune thyroid disorder characterized by hyperthyroidism, and patients exhibit thyroid-stimulating hormone receptor antibody. The major methods of measuring circulating thyroid-stimulating hormone receptor antibody include the thyroid-stimulating hormone-binding inhibitory immunoglobulin assays. Although the diagnostic accuracy of these assays has been improved, a minority of patients with Graves' disease test negative even on second-generation and third-generation thyroid-stimulating hormone-binding inhibitory immunoglobulins. We report a rare case of a thyroid-stimulating hormone-binding inhibitory immunoglobulin-positive patient with Graves' disease who showed rapid lowering of thyroid-stimulating hormone-binding inhibitory immunoglobulin levels following administration of the anti-thyroid drug thiamazole, but still experienced Graves' hyperthyroidism. A 45-year-old Japanese man presented with severe hyperthyroidism (serum free triiodothyronine >25.0 pg/mL; reference range 1.7 to 3.7 pg/mL) and tested weakly positive for thyroid-stimulating hormone-binding inhibitory immunoglobulins on second-generation tests (2.1 IU/L; reference range <1.0 IU/L). Within 9 months of treatment with oral thiamazole (30 mg/day), his thyroid-stimulating hormone-binding inhibitory immunoglobulin titers had normalized, but he experienced sustained hyperthyroidism for more than 8 years, requiring 15 mg/day of thiamazole to correct. During that period, he tested negative on all first-generation, second-generation, and third-generation thyroid-stimulating hormone-binding inhibitory immunoglobulin assays, but thyroid scintigraphy revealed diffuse and increased uptake, and thyroid ultrasound and color flow Doppler imaging showed typical findings of Graves' hyperthyroidism. The possible explanations for serial changes in the thyroid-stimulating hormone-binding inhibitory immunoglobulin results in our patient include the presence of thyroid

  19. Learning from Synthetic Models of Extracellular Matrix; Differential Binding of Wild Type and Amyloidogenic Human Apolipoprotein A-I to Hydrogels Formed from Molecules Having Charges Similar to Those Found in Natural GAGs.

    PubMed

    Rosú, Silvana A; Toledo, Leandro; Urbano, Bruno F; Sanchez, Susana A; Calabrese, Graciela C; Tricerri, M Alejandra

    2017-08-01

    Among other components of the extracellular matrix (ECM), glycoproteins and glycosaminoglycans (GAGs) have been strongly associated to the retention or misfolding of different proteins inducing the formation of deposits in amyloid diseases. The composition of these molecules is highly diverse and a key issue seems to be the equilibrium between physiological and pathological events. In order to have a model in which the composition of the matrix could be finely controlled, we designed and synthesized crosslinked hydrophilic polymers, the so-called hydrogels varying the amounts of negative charges and hydroxyl groups that are prevalent in GAGs. We checked and compared by fluorescence techniques the binding of human apolipoprotein A-I and a natural mutant involved in amyloidosis to the hydrogel scaffolds. Our results indicate that both proteins are highly retained as long as the negative charge increases, and in addition it was shown that the mutant is more retained than the Wt, indicating that the retention of specific proteins in the ECM could be part of the pathogenicity. These results show the importance of the use of these polymers as a model to get deep insight into the studies of proteins within macromolecules.

  20. Operative Mechanism of Hole-Assisted Negative Charge Motion in Ground States of Radical-Anion Molecular Wires.

    PubMed

    Franco, Carlos; Burrezo, Paula Mayorga; Lloveras, Vega; Caballero, Rubén; Alcón, Isaac; Bromley, Stefan T; Mas-Torrent, Marta; Langa, Fernando; López Navarrete, Juan T; Rovira, Concepciò; Casado, Juan; Veciana, Jaume

    2017-01-18

    Charge transfer/transport in molecular wires over varying distances is a subject of great interest. The feasible transport mechanisms have been generally accounted for on the basis of tunneling or superexchange charge transfer operating over small distances which progressively gives way to hopping transport over larger distances. The underlying molecular sequential steps that likely take place during hopping and the operative mechanism occurring at intermediate distances have received much less attention given the difficulty in assessing detailed molecular-level information. We describe here the operating mechanisms for unimolecular electron transfer/transport in the ground state of radical-anion mixed-valence derivatives occurring between their terminal perchlorotriphenylmethyl/ide groups through thiophene-vinylene oligomers that act as conjugated wires of increasing length up to 53 Å. The unique finding here is that the net transport of the electron in the larger molecular wires is initiated by an electron-hole dissociation intermediated by hole delocalization (conformationally assisted and thermally dependent) forming transient mobile polaronic states in the bridge that terminate by an electron-hole recombination at the other wire extreme. On the contrary, for the shorter radical-anions our results suggest that a flickering resonance mechanism which is intermediate between hopping and superexchange is the operative one. We support these mechanistic interpretations by applying the pertinent biased kinetic models of the charge/spin exchange rates determined by electron paramagnetic resonance and by molecular structural level information obtained from UV-vis and Raman spectroscopies and by quantum chemical modeling.

  1. Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins

    PubMed Central

    2009-01-01

    Background In recent times photodynamic antimicrobial therapy has been used to efficiently destroy Gram (+) and Gram (-) bacteria using cationic porphyrins as photosensitizers. There is an increasing interest in this approach, namely in the search of photosensitizers with adequate structural features for an efficient photoinactivation process. In this study we propose to compare the efficiency of seven cationic porphyrins differing in meso-substituent groups, charge number and charge distribution, on the photodynamic inactivation of a Gram (+) bacterium (Enterococcus faecalis) and of a Gram (-) bacterium (Escherichia coli). The present study complements our previous work on the search for photosensitizers that might be considered good candidates for the photoinactivation of a large spectrum of environmental microorganisms. Results Bacterial suspension (107 CFU mL-1) treated with different photosensitizers concentrations (0.5, 1.0 and 5.0 μM) were exposed to white light (40 W m-2) for a total light dose of 64.8 J cm-2. The most effective photosensitizers against both bacterial strains were the Tri-Py+-Me-PF and Tri-Py+-Me-CO2Me at 5.0 μM with a light fluence of 64.8 J cm-2, leading to > 7.0 log (> 99,999%) of photoinactivation. The tetracationic porphyrin also proved to be a good photosensitizer against both bacterial strains. Both di-cationic and the monocationic porphyrins were the least effective ones. Conclusion The number of positive charges, the charge distribution in the porphyrins' structure and the meso-substituent groups seem to have different effects on the photoinactivation of both bacteria. As the Tri-Py+-Me-PF porphyrin provides the highest log reduction using lower light doses, this photosensitizer can efficiently photoinactivate a large spectrum of environmental bacteria. The complete inactivation of both bacterial strains with low light fluence (40 W m-2) means that the photodynamic approach can be applied to wastewater treatment under natural

  2. Charge/discharge characteristics of the coal-tar pitch carbon as negative electrode in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Sik

    The charge/discharge characteristics were studied for the coal-tar pitch-based carbon (CTPC), which was pyrolyzed under the condition to form anisotropic mesophase pitch and then heat treated at temperatures ranging from 500 to 1300°C in N 2 atmosphere. As the heat treatment temperature increased, the reversible capacity for the CTPC increased progressively up to 1000°C, while the irreversible capacity decreased continuously. Carbons synthesized through the extraction of anisotropic mesophases showed higher reversible and lower irreversible capacities than the directly pyrolyzed ones.

  3. Enhancement of NK Cell Cytotoxicity Induced by Long-Term Living in Negatively Charged-Particle Dominant Indoor Air-Conditions

    PubMed Central

    Nishimura, Yasumitsu; Takahashi, Kazuaki; Mase, Akinori; Kotani, Muneo; Ami, Kazuhisa; Maeda, Megumi; Shirahama, Takashi; Lee, Suni; Matsuzaki, Hidenori; Kumagai-Takei, Naoko; Yoshitome, Kei; Otsuki, Takemi

    2015-01-01

    Investigation of house conditions that promote health revealed that negatively charged-particle dominant indoor air-conditions (NCPDIAC) induced immune stimulation. Negatively charged air-conditions were established using a fine charcoal powder on walls and ceilings and utilizing forced negatively charged particles (approximate diameter: 20 nm) dominant in indoor air-conditions created by applying an electric voltage (72 V) between the backside of the walls and the ground. We reported previously that these conditions induced a slight and significant increase of interleukin-2 during a 2.5-h stay and an increase of NK cell cytotoxicity when examining human subjects after a two-week night stay under these conditions. In the present study, seven healthy volunteers had a device installed to create NCPDIAC in the living or sleeping rooms of their own homes. Every three months the volunteers then turned the NCPDIAC device on or off. A total of 16 ON and 13 OFF trials were conducted and their biological effects were analyzed. NK activity increased during ON trials and decreased during OFF trials, although no other adverse effects were found. In addition, there were slight increases of epidermal growth factor (EGF) during ON trials. Furthermore, a comparison of the cytokine status between ON and OFF trials showed that basic immune status was stimulated slightly during ON trials under NCPIADC. Our overall findings indicate that the NCPDIAC device caused activation of NK activity and stimulated immune status, particularly only on NK activity, and therefore could be set in the home or office buildings. PMID:26173062

  4. Activation Energies for Oxide- and Interface-Trap Charge Generation Due to Negative-Bias Temperature Stress of Si-Capped SiGe-pMOSFETs

    SciTech Connect

    Duan, Guo Xing; Hatchtel, Jordan; Shen, Xiao; Zhang, En Xia; Zhang, Cher Xuan; Tuttle, Blair R.; Fleetwood, Daniel M.; Schrimpf, Ronald D.; Reed, Robert A.; Franco, Jacopo; Linten, Dimitri; Mitard, Jerome; Witters, Liesbeth; Collaert, Nadine; Chisholm, Matthew F.; Pantelides, Sokrates T.

    2015-09-01

    Here, we investigate negative-bias temperature instabilities in SiGe pMOSFETs with SiO2/HfO2 gate dielectrics. The activation energies we measured for interface-trap charge buildup during negative-bias temperature stress were lower for SiGe channel pMOSFETs with SiO2/HfO2 gate dielectrics and Si capping layers than for conventional Si channel pMOSFETs with SiO2 gate dielectrics. Electron energy loss spectroscopy and scanning transmission electron microscopy images demonstrate that Ge atoms can diffuse from the SiGe layer into the Si capping layer, which is adjacent to the SiO2/HfO2 gate dielectric. Density functional calculations show that these Ge atoms reduce the strength of nearby Si-H bonds and that Ge-H bond energies are still lower, thereby reducing the activation energy for interface-trap generation for the SiGe devices. Moreover, activation energies for oxide-trap charge buildup during negative-bias temperature stress are similarly small for SiGe pMOSFETs with SiO2/HfO2 gate dielectrics and Si pMOSFETs with SiO2 gate dielectrics, suggesting that, in both cases, the oxide-trap charge buildup likely is rate-limited by hole tunneling into the near-interfacial SiO2.

  5. Non-charged amino acids from three different domains contribute to link agonist binding to channel gating in alpha7 nicotinic acetylcholine receptors.

    PubMed

    Aldea, Marcos; Mulet, José; Sala, Salvador; Sala, Francisco; Criado, Manuel

    2007-10-01

    Binding of agonists to nicotinic acetylcholine receptors results in channel opening. Previously, we have shown that several charged residues at three different domains of the alpha7 nicotinic receptor are involved in coupling binding and gating, probably through a network of electrostatic interactions. This network, however, could also be integrated by other residues. To test this hypothesis, non-charged amino acids were mutated and expression levels and electrophysiological responses of mutant receptors were determined. Mutants at positions Asn47 and Gln48 (loop 2), Ile130, Trp134, and Gln140 (loop 7), and Thr264 (M2-M3 linker) showed poor or null functional responses, despite significant membrane expression. By contrast, mutants F137A and S265A exhibited a gain of function effect. In all cases, changes in dose-response relationships were small, EC(50) values being between threefold smaller and fivefold larger, arguing against large modifications of agonist binding. Peak currents decayed at the same rate in all receptors except two, excluding large effects on desensitization. Thus, the observed changes could be mostly caused by alterations of the gating characteristics. Moreover, analysis of double mutants showed an interconnection between some residues in these domains, especially Gln48 with Ile130, suggesting a potential coupling between agonist binding and channel gating through these amino acids.

  6. Positive and Negative Transcriptional Regulation of the Foxp3 gene is Mediated by TGF-β Signal Transducer Smad3 Access and Binding to Enhancer I

    PubMed Central

    Xu, Lili; Kitani, Atsushi; Stuelten, Christina; McGrady, George; Fuss, Ivan; Strober, Warren

    2010-01-01

    The molecular mechanisms underlying retinoic acid (RA) augmentation of T cell receptor (TCR) and transforming growth factor-β (TGF-β)-induced Foxp3 transcription and inhibition of the latter by cytokines such as IL-27 were here shown to be related processes involving modifications of baseline (TGF-β-induced) phosphorylated Smad3 (pSmad3) binding to a conserved enhancer region (enhancer I). RA augmentation involved the binding of retinoic acid receptor (RAR) and retinoid X receptor (RXR) to a dominant site in enhancer I and a subordinate site in the promoter. This led to increased histone acetylation in the region of the Smad3 binding site and increased binding of pSmad3. Cytokine (IL-27) inhibition involved binding of pStat3 to a gene silencer in a second conserved enhancer region (enhancer II) downstream from enhancer I; this led to loss of pSmad3 binding to enhancer I. Thus, control of accessibility and binding of pSmad3 provides a common framework for positive and negative regulation of TGF-β-induced Foxp3 transcription. PMID:20870174

  7. Impact of negative affectively charged stimuli and response style on cognitive-control-related neural activation: an ERP study.

    PubMed

    Lamm, C; Pine, D S; Fox, N A

    2013-11-01

    The canonical AX-CPT task measures two forms of cognitive control: sustained goal-oriented control ("proactive" control) and transient changes in cognitive control following unexpected events ("reactive" control). We modified this task by adding negative and neutral International Affective Picture System (IAPS) pictures to assess the effects of negative emotion on these two forms of cognitive control. Proactive and reactive control styles were assessed based on measures of behavior and electrophysiology, including the N2 event-related potential component and source space activation (Low Resolution Tomography [LORETA]). We found slower reaction-times and greater DLPFC activation for negative relative to neutral stimuli. Additionally, we found that a proactive style of responding was related to less prefrontal activation (interpreted to reflect increased efficiency of processing) during actively maintained previously cued information and that a reactive style of responding was related to less prefrontal activation (interpreted to reflect increased efficiency of processing) during just-in-time environmentally triggered information. This pattern of results was evident in relatively neutral contexts, but in the face of negative emotion, these associations were not found, suggesting potential response style-by-emotion interaction effects on prefrontal neural activation.

  8. Carboxyl and negative charge-functionalized superparamagnetic nanochains with amorphous carbon shell and magnetic core: synthesis and their application in removal of heavy metal ions.

    PubMed

    Wang, Hui; Chen, Qian-Wang; Chen, Jian; Yu, Bin-Xing; Hu, Xian-Yi

    2011-11-01

    This communication describes carboxyl-functionalized nanochains with amorphous carbon shell (18 nm) and magnetic core using ferrocene as a single reactant under the induction of an external magnetic field (0.40 T), which shows a superparamagnetic behavior and magnetization saturation of 38.6 emu g(-1). Because of mesoporous structure (3.8 nm) and surface negative charge (-35.18 mV), the nanochains can be used as adsorbent for removing the heavy metal ions (90%) from aqueous solution.

  9. The temporal dynamics of ambivalence: changes in positive and negative affect in relation to consumption of an "emotionally charged" food.

    PubMed

    Hormes, Julia M; Rozin, Paul

    2011-08-01

    Ambivalence is thought to impact consumption of food, alcohol and drugs, possibly via influences on craving, with cravers often being simultaneously drawn toward and repelled from ingestion. So far, little is known about the temporal dynamics of ambivalence, especially as it varies in relationship to consumption. Participants (n=482, 56.8% female) completed the Positive and Negative Affect Schedule prior to, immediately and 30 min after the opportunity to eat a bar of chocolate. Affective ambivalence was calculated based on the relative strengths of and discrepancy between ratings of positive and negative affect. Ambivalence peaked prior to a decision about consumption and subsequently decreased, whether or not the decision was in favor of or against consuming. Decreasing ambivalence was driven by a drop in positive affect over time; positivity decreased more rapidly in those who consumed chocolate. Findings represent a first step in characterizing the dynamics of ambivalence in interactions with a target stimulus.

  10. Lactosylated PLGA nanoparticles containing ϵ-polylysine for the sustained release and liver-targeted delivery of the negatively charged proteins.

    PubMed

    Zhou, Ping; An, Tong; Zhao, Chuan; Li, Yuan; Li, Rongshan; Yang, Rui; Wang, Yinsong; Gao, Xiujun

    2015-01-30

    The acidic internal pH environment, initial burst release and lack of targeting property are main limitations of poly(lactide-co-glycolide) (PLGA) nanoparticles for carrying proteins. In this study, ϵ-polylysine (ϵ-PL) was used as an anti-acidic agent and a protein protectant to prepare PLGA nanoparticles for the protein delivery. To obtain the liver-targeting capability, lactosylated PLGA (Lac-PLGA) was synthesized by conjugation of lactose acid to PLGA at both ends, and then used to prepare nanoparticles containing ϵ-PL by the nanoprecipitation method. Bovine serumal bumin (BSA), a negatively charged protein, was efficiently loaded into Lac-PLGA/ϵ-PL nanoparticles and exhibited significant decreased burst release in vitro, sustained release in the blood and increased liver distribution in mice after intravenous injections. The enhanced stability of BSA was due to its electrical interaction with ϵ-PL and the neutralized internal environment of nanoparticles. In conclusion, Lac-PLGA/ϵ-PL nanoparticle system can be used as a promising carrier for the negatively charged proteins.

  11. The reduction rates of DEPC-modified mutant Thermus thermophilus Rieske proteins differ when there is a negative charge proximal to the cluster.

    PubMed

    Karagas, Nicholas E; Jones, Christie N; Osborn, Deborah J; Dzierlenga, Anika L; Oyala, Paul; Konkle, Mary E; Whitney, Emily M; David Britt, R; Hunsicker-Wang, Laura M

    2014-10-01

    Rieske and Rieske-type proteins are electron transport proteins involved in key biological processes such as respiration, photosynthesis, and detoxification. They have a [2Fe-2S] cluster ligated by two cysteines and two histidines. A series of mutations, L135E, L135R, L135A, and Y158F, of the Rieske protein from Thermus thermophilus has been produced which probe the effects of the neighboring residues, in the second sphere, on the dynamics of cluster reduction and the reactivity of the ligating histidines. These properties were probed using titrations and modifications with diethyl pyrocarbonate (DEPC) at various pH values monitored using UV-Visible and circular dichroism spectrophotometry. These results, along with results from EPR studies, provide information on ligating histidine modification and rate of reduction of each of the mutant proteins. L135R, L135A, and Y158F react with DEPC similarly to wild type, resulting in modified protein with a reduced [2Fe-2S] cluster in <90 min, whereas L135E requires >15 h under the same conditions. Thus, the negative charge slows down the rate of reduction and provides an explanation as to why negatively charged residues are rarely, if ever, found in the equivalent position of other Rieske and Rieske-type proteins.

  12. Cationic hydrous thorium dioxide colloids – a useful tool for staining negatively charged surface matrices of bacteria for use in energy-filtered transmission electron microscopy

    PubMed Central

    Lünsdorf, Heinrich; Kristen, Ingeborg; Barth, Elke

    2006-01-01

    Background Synthesis of cationic hydrous thorium dioxide colloids (ca. 1.0 to 1.7 nm) has been originally described by Müller [22] and Groot [11] and these have been used by Groot to stain acidic glucosaminoglycans for ultrastructure research of different tissues by conventional transmission electron microscopy. Results Synthesis of colloidal thorium dioxide has been modified and its use as a suitable stain of acidic mucopolysaccharides and other anionic biopolymers from bacteria, either as whole mount preparations or as preembedment labels, is described. The differences in stain behavior relative to commonly used rutheniumred-lysine and Alcian Blue™ electron dense acidic stains has been investigated and its use is exemplified for Pseudomonas aeruginosa adjacent cell wall biopolymers. For the first time thorificated biopolymers, i.e. bacterial outer cell wall layers, have been analysed at the ultrastructural level with electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI), leading to excellent contrast and signal strength for these extracellular biopolymers. Conclusion Application of cationic hydrous ThO2 colloids for tracing acidic groups of the bacterial surface and/or EPS has been shown to be rather effective by transmission electron microscopy. Because of its high electron density and its good diffusibility it stains and outlines electro-negative charges within these biopolymers. In combination with ESI, based on integrated energy-filtered electron microscopy (EFTEM) Th-densities and thus negative charge densities can be discriminated from other elemental densities, especially in environmental samples, such as biofilms. PMID:16803626

  13. Charged excitons in modulation-doped quantum wires

    NASA Astrophysics Data System (ADS)

    Otterburg, T.; Oberli, D. Y.; Dupertuis, M.-A.; Moret, N.; Malko, A.; Pelucchi, E.; Dwir, B.; Kapon, E.

    2005-06-01

    We report on the observation of negatively- and positively-charged excitons in the photoluminescence spectra of V-groove quantum wires. The charged exciton binding energy increases with the strength of the quantum confinement. We demonstrate that fluctuations of the confinement potential cause the localization of the exciton and of the charged exitons on the same location. We discover that a large fraction of the enhancement of the charged exciton "binding energies" has a kinetic origin associated with the recoil energy transferred to the remaining carrier during the emission process.

  14. Distributed feature binding in the auditory modality: experimental evidence toward reconciliation of opposing views on the basis of mismatch negativity and behavioral measures.

    PubMed

    Chernyshev, Boris V; Bryzgalov, Dmitri V; Lazarev, Ivan E; Chernysheva, Elena G

    2016-08-03

    Current understanding of feature binding remains controversial. Studies involving mismatch negativity (MMN) measurement show a low level of binding, whereas behavioral experiments suggest a higher level. We examined the possibility that the two levels of feature binding coexist and may be shown within one experiment. The electroencephalogram was recorded while participants were engaged in an auditory two-alternative choice task, which was a combination of the oddball and the condensation tasks. Two types of deviant target stimuli were used - complex stimuli, which required feature conjunction to be identified, and simple stimuli, which differed from standard stimuli in a single feature. Two behavioral outcomes - correct responses and errors - were analyzed separately. Responses to complex stimuli were slower and less accurate than responses to simple stimuli. MMN was prominent and its amplitude was similar for both simple and complex stimuli, whereas the respective stimuli differed from standards in a single feature or two features respectively. Errors in response only to complex stimuli were associated with decreased MMN amplitude. P300 amplitude was greater for complex stimuli than for simple stimuli. Our data are compatible with the explanation that feature binding in auditory modality depends on two concurrent levels of processing. We speculate that the earlier level related to MMN generation is an essential and critical stage. Yet, a later analysis is also carried out, affecting P300 amplitude and response time. The current findings provide resolution to conflicting views on the nature of feature binding and show that feature binding is a distributed multilevel process.

  15. Avoiding false positives and optimizing identification of true negatives in estrogen receptor binding and agonist/antagonist assays

    EPA Science Inventory

    The potential for chemicals to affect endocrine signaling is commonly evaluated via in vitro receptor binding and gene activation, but these assays, especially antagonism assays, have potential artifacts that must be addressed for accurate interpretation. Results are presented fr...

  16. Positively charged mini-protein Zbasic2 as a highly efficient silica binding module: opportunities for enzyme immobilization on unmodified silica supports.

    PubMed

    Bolivar, Juan M; Nidetzky, Bernd

    2012-07-03

    Silica is a highly attractive support material for protein immobilization in a wide range of biotechnological and biomedical-analytical applications. Without suitable derivatization, however, the silica surface is not generally usable for attachment of proteins. We show here that Z(basic2) (a three α-helix bundle mini-protein of 7 kDa size that exposes clustered positive charges from multiple arginine residues on one side) functions as highly efficient silica binding module (SBM), allowing chimeras of target protein with SBM to become very tightly attached to underivatized glass at physiological pH conditions. We used two enzymes, d-amino acid oxidase and sucrose phosphorylase, to demonstrate direct immobilization of Z(basic2) protein from complex biological samples with extremely high selectivity. Immobilized enzymes displayed full biological activity, suggesting that their binding to the glass surface had occurred in a preferred orientation via the SBM. We also show that charge complementarity was the main principle of affinity between SBM and glass surface, and Z(basic2) proteins were bound in a very strong, yet fully reversible manner, presumably through multipoint noncovalent interactions. Z(basic2) proteins were immobilized on porous glass in a loading of 30 mg protein/g support or higher, showing that attachment via the SBM combines excellent binding selectivity with a technically useful binding capacity. Therefore, Z(basic2) and silica constitute a fully orthogonal pair of binding module and insoluble support for oriented protein immobilization, and this opens up new opportunities for the application of silica-based materials in the development of supported heterogeneous biocatalysts.

  17. Self-Consistent Charge Density Functional Tight-Binding Study of Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) Ammonia Gas Sensor.

    PubMed

    Marutaphan, Ampaiwan; Seekaew, Yotsarayuth; Wongchoosuk, Chatchawal

    2017-12-01

    Geometric and electronic properties of 3,4-ethylenedioxythiophene (EDOT), styrene sulfonate (SS), and EDOT: SS oligomers up to 10 repeating units were studied by the self-consistent charge density functional tight-binding (SCC-DFTB) method. An application of PEDOT:PSS for ammonia (NH3) detection was highlighted and investigated both experimentally and theoretically. The results showed an important role of H-bonds in EDOT:SS oligomers complex conformation. Electrical conductivity of EDOT increased with increasing oligomers and doping SS due to enhancement of π conjugation. Printed PEDOT:PSS gas sensor exhibited relatively high response and selectivity to NH3. The SCC-DFTB calculation suggested domination of direct charge transfer process in changing of PEDOT:PSS conductivity upon NH3 exposure at room temperature. The NH3 molecules preferred to bind with PEDOT:PSS via physisorption. The most favorable adsorption site for PEDOT:PSS-NH3 interaction was found to be at the nitrogen atom of NH3 and hydrogen atoms of SS with an average optimal binding distance of 2.00 Å.

  18. Dominant role of local dipolar interactions in phosphate binding to a receptor cleft with an electronegative charge surface: equilibrium, kinetic, and crystallographic studies.

    PubMed Central

    Ledvina, P. S.; Tsai, A. L.; Wang, Z.; Koehl, E.; Quiocho, F. A.

    1998-01-01

    Stringent specificity and complementarity between the receptor, a periplasmic phosphate-binding protein (PBP) with a two-domain structure, and the completely buried and dehydrated phosphate are achieved by hydrogen bonding or dipolar interactions. We recently found that the surface charge potential of the cleft between the two domains that contains the anion binding site is intensely electronegative. This novel finding prompted the study reported here of the effect of ionic strength on the equilibrium and rapid kinetics of phosphate binding. To facilitate this study, Ala197, located on the edge of the cleft, was replaced by a Trp residue (A197W PBP) to generate a fluorescence reporter group. The A197W PBP-phosphate complex retains wild-type Kd and X-ray structure beyond the replacement residue. The Kd (0.18 microM) at no salt is increased by 20-fold at greater than 0.30 M NaCl. Stopped-flow fluorescence kinetic studies indicate a two-step binding process: (1) The phosphate (L) binds, at near diffusion-controlled rate, to the open cleft form (Po) of PBP to produce an intermediate, PoL. This rate decreases with increasing ionic strength. (2) The intermediate isomerizes to the closed-conformation form, PcL. The results indicate that the high specificity, affinity, and rate of phosphate binding are not influenced by the noncomplementary electronegative surface potential of the cleft. That binding depends almost entirely on local dipolar interactions with the receptor has important ramification in electrostatic interactions in protein structures and in ligand recognition. PMID:9865949

  19. Dominant role of local dipolar interactions in phosphate binding to a receptor cleft with an electronegative charge surface: equilibrium, kinetic, and crystallographic studies.

    PubMed

    Ledvina, P S; Tsai, A L; Wang, Z; Koehl, E; Quiocho, F A

    1998-12-01

    Stringent specificity and complementarity between the receptor, a periplasmic phosphate-binding protein (PBP) with a two-domain structure, and the completely buried and dehydrated phosphate are achieved by hydrogen bonding or dipolar interactions. We recently found that the surface charge potential of the cleft between the two domains that contains the anion binding site is intensely electronegative. This novel finding prompted the study reported here of the effect of ionic strength on the equilibrium and rapid kinetics of phosphate binding. To facilitate this study, Ala197, located on the edge of the cleft, was replaced by a Trp residue (A197W PBP) to generate a fluorescence reporter group. The A197W PBP-phosphate complex retains wild-type Kd and X-ray structure beyond the replacement residue. The Kd (0.18 microM) at no salt is increased by 20-fold at greater than 0.30 M NaCl. Stopped-flow fluorescence kinetic studies indicate a two-step binding process: (1) The phosphate (L) binds, at near diffusion-controlled rate, to the open cleft form (Po) of PBP to produce an intermediate, PoL. This rate decreases with increasing ionic strength. (2) The intermediate isomerizes to the closed-conformation form, PcL. The results indicate that the high specificity, affinity, and rate of phosphate binding are not influenced by the noncomplementary electronegative surface potential of the cleft. That binding depends almost entirely on local dipolar interactions with the receptor has important ramification in electrostatic interactions in protein structures and in ligand recognition.

  20. Effect of number and position of positive charges on the stacking of porphyrins along poly[d(A-T)(2)] at high binding densities.

    PubMed

    Jung, Jin-A; Lee, Sang Hwa; Jin, Biao; Sohn, Youngku; Kim, Seog K

    2010-06-10

    At high porphyrin densities, the effects of the number and position of the positive charges of the periphery ring on the stacking of the porphyrin on poly[d(A-T)(2)] was investigated using polarized spectroscopy, including circular and linear dichroism (CD and LD, respectively). The CD spectrum of meso-tetrakis(N-methylpyridinium-4-yl)porphyrin(TMPyP) consisted of two positive bands in the Soret absorption region at low [porphyrin]/[DNA base] ratios (R ratios) and changed to two distinguishable categories of the bisignate CD spectrum with increasing R ratio. These CD spectra were attributed to the monomeric groove binding, and the moderately and extensively stacked TMPyPs. In contrast, trans-bis(N-methylpyridinium-4-yl)porphyrin (trans-BMPyP) dominantly produced a CD spectrum that corresponded to the extensive stacking, except at the lowest R ratio that was used in this work (R = 0.04). However, for cis-bis(N-methylpyridinium-4-yl)porphyrin (cis-BMPyP), the intensity of the apparent bisignate CD signal was too small to assign it to the extensive stacking. Moreover, the shape of the CD spectrum in the DNA absorption region showed that the conformation of poly[d(A-T)(2)] was retained, in contrast to the extensively stacked TMPyP and trans-BMPyP. In the extensively stacked TMPyP- poly[d(A-T)(2)] assembly, the large negative LD signal in the Soret band was observed suggesting that the direction of the molecular planes of TMPyP was close to perpendicular with respect to the orientation axis (flow axis). In contrast, the LD spectrum of the trans-BMPyP-poly[d(A-T)(2)] complex produced positive LD signal in the same wavelength region, suggesting the orientation of the molecular plane was nearly parallel relative to the flow direction. Surprisingly, the LD signal in the DNA absorption region for both of the porphyrins was positive. Therefore, the helix axis of the DNA was near perpendicular relative to the flow direction in the porphyrin-polynucleotide assembly.

  1. A photoelectron spectroscopy and ab initio study of B21-: negatively charged boron clusters continue to be planar at 21.

    PubMed

    Piazza, Zachary A; Li, Wei-Li; Romanescu, Constantin; Sergeeva, Alina P; Wang, Lai-Sheng; Boldyrev, Alexander I

    2012-03-14

    The structures and chemical bonding of the B(21)(-) cluster have been investigated by a combined photoelectron spectroscopy and ab initio study. The photoelectron spectrum at 193 nm revealed a very high adiabatic electron binding energy of 4.38 eV for B(21)(-) and a congested spectral pattern. Extensive global minimum searches were conducted using two different methods, followed by high-level calculations of the low-lying isomers. The global minimum of B(21)(-) was found to be a quasiplanar structure with the next low-lying planar isomer only 1.9 kcal/mol higher in energy at the CCSD(T)/6-311-G* level of theory. The calculated vertical detachment energies for the two isomers were found to be in good agreement with the experimental spectrum, suggesting that they were both present experimentally and contributed to the observed spectrum. Chemical bonding analyses showed that both isomers consist of a 14-atom periphery, which is bonded by classical two-center two-electron bonds, and seven interior atoms in the planar structures. A localized two-center two-electron bond is found in the interior of the two planar isomers, in addition to delocalized multi-center σ and π bonds. The structures and the delocalized bonding of the two lowest lying isomers of B(21)(-) were found to be similar to those in the two lowest energy isomers in B(19)(-).

  2. A photoelectron spectroscopy and ab initio study of B21-: Negatively charged boron clusters continue to be planar at 21

    SciTech Connect

    Piazza, Zachary A.; Li, Wei-Li; Romanescu, Constantin; Sergeeva, Alina P.; Wang, Lai-Sheng; Boldyrev, Alexander I.

    2012-01-01

    The structures and chemical bonding of the B21- cluster have been investigated by a combined photoelectron spectroscopy and ab initio study. The photoelectron spectrum at 193 nm revealed a very high adiabatic electron binding energy of 4.38 eV for B21- and a congested spectral pattern. Extensive global minimum searches were conducted using two different methods, followed by high-level calculations of the low-lying isomers. The global minimum of B21- was found to be a quasiplanar structure with the next low-lying planar isomer only 1.9 kcal/mol higher in energy at the CCSD(T)/6-311-G* level of theory. The calculated vertical detachment energies for the two isomers were found to be in good agreement with the experimental spectrum, suggesting that they were both present experimentally and contributed to the observed spectrum. Chemical bonding analyses showed that both isomers consist of a 14-atom periphery, which is bonded by classical two-center two-electron bonds, and seven interior atoms in the planar structures. A localized two-center two-electron bond is found in the interior of the two planar isomers, in addition to delocalized multi-center σ and π bonds. The structures and the delocalized bonding of the two lowest lying isomers of B21- were found to be similar to those in the two lowest energy isomers in B19-.

  3. Bound states of a negative test charge due to many-body effects in the two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Ghazali, A.; Gold, A.

    1995-12-01

    Bound states of a negative test electron in the low-density regime of the two-dimensional electron gas are obtained when many-body effects (exchange and correlation) are incorporated in the screening function via the local-field correction. Using the Green's-function method and a variational method we determine the energies and the wave functions of the ground state and the excited states as functions of the electron density. For high electron density no bound state is found. Below a critical density the number and the energy of bound states increase with decreasing electron density. The ground state is described by the wave function ψ2s~r exp(-r/α).

  4. The nature and evolution of excess electron binding in cluster anions studied via negative ion photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Hendricks, Jay H.

    1997-07-01

    The technique of negative ion photoelectron spectroscopy (NIPES) has been used to study a variety of cluster anion systems with the aim of elucidating the nature and evolution of excess electron binding in clusters. The systems studied include molecular and cluster dipole- bound anions, conventional valence molecular anions, ion- molecule cluster anions, solvated electron cluster anions, metal cluster anions, metal oxide anions, and metal hydride anions. The generation and characterization of nanophase Lunsford catalyst, and the study of gas- phase anionic polymerization reactions were also conducted. The studies of dipole-bound anions, (Uracil)/sp-, (Uracil...Xe)/sp-, (Thymine)/sp-, (1- Methylcytosine)/sp-, (HF)2-, (H2O)2-, (EG)2-, where EG = Ethylene Glycol, (CH3CN[/cdots]H2O)/sp-,/ (HCl[/cdots] H2O)/sp-,/ (HCN[/cdots]H2O)/sp-, and (H2S)4- provide some of the best experimental evidence to date confirming the long standing predictions of theory that an excess electron can be bound to a dipole field if the dipole moment of the neutral molecule or cluster exceeds a critical minimum value. The photodetachment of the conventional valence anions /[(2,4,6-tricyanobenzene)/sp-, (CAN3-3HCl)/sp-, where CAN = 2- choloracrylonitrile, (CH3NO2)/sp-/], metal cluster anions /[Lin=1-7-/], metal oxide anions /[NaO/sp-,/ KO/sp-,/ RbO/sp-, and CsO/sp-/] and metal hydride anions /[LiH/sp-,/ LiD/sp-/] enabled the first time determinations of vertical detachment energies, and adiabatic election affinities. The studies of ion-molecule cluster anions /[O/sp- (Ar)n=1-26,34,/ NO/sp-(Ar)n=1-14,/ O/sp- (Kr)n=1-4,/ O/sp-(Xe)n=1-4,/ O/sp-(N2),/ NO/sp-(Kr),/ NO/sp-(Xe)n=1-3,/ NO/sp- (N2O)n=1-5, and NO/sp-(EG),/ (Uracil[/cdots]H2O)/sp-,/ (Uracil[/cdots]Xe)/sp-/] permitted the energetics and structure of microscopic ion solvation to be examined as a function of cluster size and cluster solvent. The photodetachment of solvated the electron clusters anions /[(H2O)n-,/ [(H2O)x[/cdots](NH3)y

  5. Porcine bocavirus NP1 negatively regulates interferon signaling pathway by targeting the DNA-binding domain of IRF9

    SciTech Connect

    Zhang, Ruoxi; Fang, Liurong; Wang, Dang; Cai, Kaimei; Zhang, Huan; Xie, Lilan; Li, Yi; Chen, Huanchun; Xiao, Shaobo

    2015-11-15

    To subvert host antiviral immune responses, many viruses have evolved countermeasures to inhibit IFN signaling pathway. Porcine bocavirus (PBoV), a newly identified porcine parvovirus, has received attention because it shows clinically high co-infection prevalence with other pathogens in post-weaning multisystemic wasting syndrome (PWMS) and diarrheic piglets. In this study, we screened the structural and non-structural proteins encoded by PBoV and found that the non-structural protein NP1 significantly suppressed IFN-stimulated response element (ISRE) activity and subsequent IFN-stimulated gene (ISG) expression. However, NP1 affected neither the activation and translocation of STAT1/STAT2, nor the formation of the heterotrimeric transcription factor complex ISGF3 (STAT1/STAT2/IRF9). Detailed analysis demonstrated that PBoV NP1 blocked the ISGF3 DNA-binding activity by combining with the DNA-binding domain (DBD) of IRF9. In summary, these results indicate that PBoV NP1 interferes with type I IFN signaling pathway by blocking DNA binding of ISGF3 to attenuate innate immune responses. - Highlights: • Porcine bocavirus (PBoV) NP1 interferes with the IFN α/β signaling pathway. • PBoV NP1 does not prevent STAT1/STAT2 phosphorylation and nuclear translocation. • PBoV NP1 inhibits the DNA-binding activity of ISGF3. • PBoV NP1 interacts with the DNA-binding domain of IRF9.

  6. Evaluating Force Field Performance in Thermodynamic Calculations of Cyclodextrin Host-Guest Binding: Water Models, Partial Charges, and Host Force Field Parameters.

    PubMed

    Henriksen, Niel M; Gilson, Michael K

    2017-08-04

    Computational prediction of noncovalent binding free energies with methods based on molecular mechanical force fields has become increasingly routine in drug discovery projects, where they promise to speed the discovery of small molecule ligands to bind targeted proteins with high affinity. Because the reliability of free energy methods still has significant room for improvement, new force fields, or modifications of existing ones, are regularly introduced with the aim of improving the accuracy of molecular simulations. However, comparatively little work has been done to systematically assess how well force fields perform, particularly in relation to the calculation of binding affinities. Hardware advances have made these calculations feasible, but comprehensive force field assessments for protein-ligand sized systems still remain costly. Here, we turn to cyclodextrin host-guest systems, which feature many hallmarks of protein-ligand binding interactions but are generally much more tractable due to their small size. We present absolute binding free energy and enthalpy calculations, using the attach-pull-release (APR) approach, on a set of 43 cyclodextrin-guest pairs for which experimental ITC data are available. The test set comprises both α- and β-cyclodextrin hosts binding a series of small organic guests, each with one of three functional groups: ammonium, alcohol, or carboxylate. Four water models are considered (TIP3P, TIP4Pew, SPC/E, and OPC), along with two partial charge assignment procedures (RESP and AM1-BCC) and two cyclodextrin host force fields. The results suggest a complex set of considerations when choosing a force field for biomolecular simulations. For example, some force field combinations clearly outperform others at the binding enthalpy calculations but not for the binding free energy. Additionally, a force field combination which we expected to be the worst performer gave the most accurate binding free energies - but the least accurate

  7. Theoretical Study on the Negative Thermal Expansion Perovskite LaCu3Fe4O12: Pressure-Triggered Transition of Magnetism, Charge, and Spin State.

    PubMed

    Meng, Junling; Zhang, Lifang; Yao, Fen; Zhang, Xiong; Zhang, Wenwen; Liu, Xiaojuan; Meng, Jian; Zhang, Hongjie

    2017-06-05

    The A-site ordered negative thermal expansion material LaCu3Fe4O12 (LaCFO) was comprehensively investigated by using first-principles calculations. A pressure-triggered crystal structural phase transition from space group Im3̅ (No. 204) to Pn3̅ (No. 201) and magnetic transformation from a G-type antiferromagnetic (G_AFM) ground state to ferrimagnetic (FerriM) coupling were observed in LaCFO via gradual compression of the equilibrium volume. Correspondingly, the Fe-Cu intersite charge transfer from Fe to Cu 3dxy orbital, expressed as 4Fe(3+) + 3Cu(3+) → 4Fe(3.75+) + 3Cu(2+), was simulated along with the magnetic phase transformation from the G_AFM configuration to the FerriM state. Intriguingly, the Fe charge disproportionation, formulated as 8Fe(3.75+) → 5Fe(3+) + 3Fe(5+), appeared and was attributed to the strong hybridization between Fe 3d and O 2p orbitals in the FerriM state when the volumes were substantially compressed up to less than or equal to 80%V. Meanwhile, the external hydrostatic pressure also leads to a spin flip from a high-spin Fe(3+) antiferromagnetically arranged LaCu(3+)3Fe(3+)4O12 Mott insulator at low pressure and goes through a FerriM LaCu(2+)3Fe(3.75+)4O12 half-metal to a low-spin FerriM coupled LaCu(2+)3Fe(3+)5/2Fe(5+)3/2O12 metal at high pressure. Therefore, the crossover from high spin to low spin is responsible for the charge disproportionation in LaCFO. Essentially, the charge transfer and spin flip originate from the discontinuous changes of metal-oxygen bond lengths and angles in the compressed atomic structure. Finally, the negative thermal expansion behavior and mechanism of LaCFO were theoretically examined and clearly revealed.

  8. Novel negatively charged hybrids. 3. Removal of Pb2+ from aqueous solution using zwitterionic hybrid polymers as adsorbent.

    PubMed

    Liu, Junsheng; Ma, Yue; Zhang, Yaping; Shao, Guoquan

    2010-01-15

    Using zwitterionic hybrid polymers as adsorbent, the adsorption kinetics and isotherm, thermodynamic parameters of Delta G, Delta H and DeltaS for the removal of Pb(2+) from aqueous solution were investigated. It is indicated that the adsorption of Pb(2+) ions on these zwitterionic hybrid polymers followed the Lagergren second-order kinetic model and Freundlich isotherm model, demonstrating that the adsorption process might be Langmuir monolayer adsorption. The negative values of Delta G and the positive values of Delta H evidence that Pb(2+) adsorption on these zwitterionic hybrid polymers is spontaneous and endothermic process in nature. Moreover, the zwitterionic hybrid polymers produced reveal relatively higher desorption efficiency in 2 mol dm(-3) aqueous HNO(3) solution, indicating that they can be recycled in industrial processes. These findings suggest that these zwitterionic hybrid polymers are the promising adsorbents for Pb(2+) removal and can be potentially applied in the separation and recovery of Pb(2+) ions from the waste chemicals and contaminated water of lead-acid rechargeable battery.

  9. DJBP: a novel DJ-1-binding protein, negatively regulates the androgen receptor by recruiting histone deacetylase complex, and DJ-1 antagonizes this inhibition by abrogation of this complex.

    PubMed

    Niki, Takeshi; Takahashi-Niki, Kazuko; Taira, Takahiro; Iguchi-Ariga, Sanae M M; Ariga, Hiroyoshi

    2003-02-01

    DJ-1 was identified by us as a novel oncogene that transforms mouse NIH3T3 cells in cooperation with ras. We later identified PIAS (protein inhibitor of activated STAT)xalpha as a DJ-1-binding protein, and found that DJ-1 restored androgen receptor (AR) transcription activity that was repressed by PIASxalpha. To further characterize the function of DJ-1, we cloned cDNA encoding a novel DJ-1-binding protein, DJBP, by a yeast two-hybrid system. DJBP mRNA was found to be specifically expressed in the testis. In addition to the binding of DJBP to the COOH-terminal region of DJ-1, DJBP was also found to bind in vitro and in vivo to the DNA-binding domain of the AR in a testosterone-dependent manner and to be colocalized with DJ-1 or AR in the nucleus. Furthermore, a co-immunoprecipitation assay showed that the formation of a ternary complex between DJ-1, DJBP, and AR occurred in cells in which DJ-1 bound to the AR via DJBP. It was found that DJBP repressed a testosterone-dependent AR transactivation activity in monkey Cos1 cells by recruiting histone deacetylase (HDAC) complex, including HDAC1 and mSin3, and that DJ-1 partially restored its repressed activity by abrogating DJBP-HDAC complex. These results suggest that AR is positively regulated by DJ-1, which antagonizes the function of negative regulators, including DJBP.

  10. Effects of genetic replacements of charged and H-bonding residues in the retinal pocket on Ca2+ binding to deionized bacteriorhodopsin.

    PubMed Central

    Zhang, Y N; el-Sayed, M A; Bonet, M L; Lanyi, J K; Chang, M; Ni, B; Needleman, R

    1993-01-01

    Metal cations are known to be required for proton pumping by bacteriorhodopsin (bR). Previous studies found that bR has two high-affinity and four to six low-affinity Ca(2+)-binding sites. In our efforts to find the location of these Ca2+ sites, the effects of replacing charged (Asp-85, Asp-212, and Arg-82) and H-bonding (Tyr-185) residues in the retinal pocket on the color control and binding affinity of Ca2+ ions in Ca(2+)-regenerated bR were examined. The important results are as follows: (i) The removal of Ca2+ from recombinant bR in which charged residues were replaced by neutral ones shifted the retinal absorption to the blue, opposite to that observed in wild-type bR or in recombinant bR in which the H-bonding residue, Tyr-185, was replaced by a non-H-bonding amino acid (Phe). (ii) Similar to the observation in wild-type bR, the binding of Ca2+ to the second site gave the observed color change in the recombinant bR samples in which charged residues were replaced by neutral ones. (iii) The residue replacements had no effect on the affinity constants of the four to six weakly bound Ca2+. (iv) The two high-affinity sites exhibited reduced affinity with substitutions; while the extent of the reduction depended on the specific substitution, each site was reduced by the same factor for each of the charged residue substitutions but by different factors for the mutant where Tyr-185 was replaced with Phe(Y185F). The above results suggest that the two Ca2+ ions in the two high-affinity sites are within interaction distance with one another and with the charged residues in the retinal pocket. The results further suggest that, while the interaction between Tyr-185 and the high-affinity Ca2+ ions is relatively short range and specific (with more coupling to the Ca2+ ion in the second affinity site), between the charged residues and Ca2+ ions it seems to be of the electrostatic (e.g., ion-ion) long range, nonspecific type. Although neither Asp-85, Asp-212, nor Arg-82 is

  11. Negative Regulation of Toll-like Receptor-4 Signaling through the Binding of Glycosylphosphatidylinositol-anchored Glycoprotein, CD14, with the Sialic Acid-binding Lectin, CD33*

    PubMed Central

    Ishida, Akiko; Akita, Kaoru; Mori, Yugo; Tanida, Shuhei; Toda, Munetoyo; Inoue, Mizue; Nakada, Hiroshi

    2014-01-01

    When monocyte-derived immature dendritic cells (imDCs) were stimulated with LPS in the presence of anti-CD33/Siglec-3 mAb, the production of IL-12 and phosphorylation of NF-κB decreased significantly. The cell surface proteins of imDCs were chemically cross-linked, and CD33-linked proteins were analyzed by SDS-PAGE and immunoblotting. It was CD14 that was found to be cross-linked with CD33. A proximity ligation assay also indicated that CD33 was colocalized with CD14 on the cell surface of imDCs. Sialic acid-dependent binding of CD33 to CD14 was confirmed by a plate assay using recombinant CD33 and CD14. Three types of cells (HEK293T cells expressing the LPS receptor complex (Toll-like receptor (TLR) cells), and the LPS receptor complex plus either wild-type CD33 (TLR/CD33WT cells) or mutated CD33 without sialic acid-binding activity (TLR/CD33RA cells)) were prepared, and then the binding and uptake of LPS were investigated. Although the level of LPS bound on the cell surface was similar among these cells, the uptake of LPS was reduced in TLR/CD33WT cells. A higher level of CD14-bound LPS and a lower level of TLR4-bound LPS were detected in TLR/CD33WT cells compared with the other two cell types, probably due to reduced presentation of LPS from CD14 to TLR4. Phosphorylation of NF-κB after stimulation with LPS was also compared. Wild-type CD33 but not mutated CD33 significantly reduced the phosphorylation of NF-κB. These results suggest that CD14 is an endogenous ligand for CD33 and that ligation of CD33 with CD14 modulates with the presentation of LPS from CD14 to TLR4, leading to down-regulation of TLR4-mediated signaling. PMID:25059667

  12. Negative regulation of Toll-like receptor-4 signaling through the binding of glycosylphosphatidylinositol-anchored glycoprotein, CD14, with the sialic acid-binding lectin, CD33.

    PubMed

    Ishida, Akiko; Akita, Kaoru; Mori, Yugo; Tanida, Shuhei; Toda, Munetoyo; Inoue, Mizue; Nakada, Hiroshi

    2014-09-05

    When monocyte-derived immature dendritic cells (imDCs) were stimulated with LPS in the presence of anti-CD33/Siglec-3 mAb, the production of IL-12 and phosphorylation of NF-κB decreased significantly. The cell surface proteins of imDCs were chemically cross-linked, and CD33-linked proteins were analyzed by SDS-PAGE and immunoblotting. It was CD14 that was found to be cross-linked with CD33. A proximity ligation assay also indicated that CD33 was colocalized with CD14 on the cell surface of imDCs. Sialic acid-dependent binding of CD33 to CD14 was confirmed by a plate assay using recombinant CD33 and CD14. Three types of cells (HEK293T cells expressing the LPS receptor complex (Toll-like receptor (TLR) cells), and the LPS receptor complex plus either wild-type CD33 (TLR/CD33WT cells) or mutated CD33 without sialic acid-binding activity (TLR/CD33RA cells)) were prepared, and then the binding and uptake of LPS were investigated. Although the level of LPS bound on the cell surface was similar among these cells, the uptake of LPS was reduced in TLR/CD33WT cells. A higher level of CD14-bound LPS and a lower level of TLR4-bound LPS were detected in TLR/CD33WT cells compared with the other two cell types, probably due to reduced presentation of LPS from CD14 to TLR4. Phosphorylation of NF-κB after stimulation with LPS was also compared. Wild-type CD33 but not mutated CD33 significantly reduced the phosphorylation of NF-κB. These results suggest that CD14 is an endogenous ligand for CD33 and that ligation of CD33 with CD14 modulates with the presentation of LPS from CD14 to TLR4, leading to down-regulation of TLR4-mediated signaling. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Bias tuning charge-releasing leading to negative differential resistance in amorphous gallium oxide/Nb:SrTiO3 heterostructure

    NASA Astrophysics Data System (ADS)

    Wang, P. C.; Li, P. G.; Zhi, Y. S.; Guo, D. Y.; Pan, A. Q.; Zhan, J. M.; Liu, H.; Shen, J. Q.; Tang, W. H.

    2015-12-01

    Negative differential resistance (NDR) and bipolar resistive switching (RS) phenomena were observed in Au/Ga2O3-x/Nb:SrTiO3/Au heterostructures fabricated by growing amorphous gallium oxide thin films on 0.7%Nb-doped SrTiO3 substrates using pulsed laser deposition technique. The RS behavior is reproducible and stable without the forming process. The NDR phenomenon happened during the course of RS from low resistance state to high resistance state and was dependent much on the applied forward bias. The bias dependent charge releasing from oxygen vacancies was considered to contribute to the NDR behavior. The results show that there is a very close relationship between NDR and RS.

  14. Negative charge trapping effects in Al{sub 2}O{sub 3} films grown by atomic layer deposition onto thermally oxidized 4H-SiC

    SciTech Connect

    Schilirò, Emanuela; Lo Nigro, Raffaella; Fiorenza, Patrick; Roccaforte, Fabrizio

    2016-07-15

    This letter reports on the negative charge trapping in Al{sub 2}O{sub 3} thin films grown by atomic layer deposition onto oxidized silicon carbide (4H-SiC). The films exhibited a permittivity of 8.4, a breakdown field of 9.2 MV/cm and small hysteresis under moderate bias cycles. However, severe electron trapping inside the Al{sub 2}O{sub 3} film (1 × 10{sup 12} cm{sup −2}) occurs upon high positive bias stress (>10 V). Capacitance-voltage measurements at different temperatures and stress conditions have been used to determine an activation energy of 0.1 eV. The results provide indications on the possible nature of the trapping defects and, hence, on the strategies to improve this technology for 4H-SiC devices.

  15. Reaction-space analysis of homogeneous charge compression ignition combustion with varying levels of fuel stratification under positive and negative valve overlap conditions

    SciTech Connect

    Kodavasal, Janardhan; Lavoie, George A.; Assanis, Dennis N.; Martz, Jason B.

    2015-10-26

    Full-cycle computational fluid dynamics simulations with gasoline chemical kinetics were performed to determine the impact of breathing and fuel injection strategies on thermal and compositional stratification, combustion and emissions during homogeneous charge compression ignition combustion. The simulations examined positive valve overlap and negative valve overlap strategies, along with fueling by port fuel injection and direct injection. The resulting charge mass distributions were analyzed prior to ignition using ignition delay as a reactivity metric. The reactivity stratification arising from differences in the distributions of fuel–oxygen equivalence ratio (ΦFO), oxygen molar fraction (χO2) and temperature (T) was determined for three parametric studies. In the first study, the reactivity stratification and burn duration for positive valve overlap valve events with port fuel injection and early direct injection were nearly identical and were dominated by wall-driven thermal stratification. nitrogen oxide (NO) and carbon monoxide (CO) emissions were negligible for both injection strategies. In the second study, which examined negative valve overlap valve events with direct injection and port fuel injection, reactivity stratification increased for direct injection as the ΦFO and T distributions associated with direct fuel injection into the hot residual gas were positively correlated; however, the latent heat absorbed from the hot residual gas by the evaporating direct injection fuel jet reduced the overall thermal and reactivity stratification. These stratification effects were offsetting, resulting in similar reactivity stratification and burn durations for the two injection strategies. The higher local burned gas temperatures with direct injection resulted in an order of magnitude increase in NO, while incomplete combustion of locally over-lean regions led to a sevenfold increase in CO emissions compared to port fuel

  16. Reaction-space analysis of homogeneous charge compression ignition combustion with varying levels of fuel stratification under positive and negative valve overlap conditions

    DOE PAGES

    Kodavasal, Janardhan; Lavoie, George A.; Assanis, Dennis N.; ...

    2015-10-26

    Full-cycle computational fluid dynamics simulations with gasoline chemical kinetics were performed to determine the impact of breathing and fuel injection strategies on thermal and compositional stratification, combustion and emissions during homogeneous charge compression ignition combustion. The simulations examined positive valve overlap and negative valve overlap strategies, along with fueling by port fuel injection and direct injection. The resulting charge mass distributions were analyzed prior to ignition using ignition delay as a reactivity metric. The reactivity stratification arising from differences in the distributions of fuel–oxygen equivalence ratio (ΦFO), oxygen molar fraction (χO2) and temperature (T) was determined for three parametric studies.more » In the first study, the reactivity stratification and burn duration for positive valve overlap valve events with port fuel injection and early direct injection were nearly identical and were dominated by wall-driven thermal stratification. nitrogen oxide (NO) and carbon monoxide (CO) emissions were negligible for both injection strategies. In the second study, which examined negative valve overlap valve events with direct injection and port fuel injection, reactivity stratification increased for direct injection as the ΦFO and T distributions associated with direct fuel injection into the hot residual gas were positively correlated; however, the latent heat absorbed from the hot residual gas by the evaporating direct injection fuel jet reduced the overall thermal and reactivity stratification. These stratification effects were offsetting, resulting in similar reactivity stratification and burn durations for the two injection strategies. The higher local burned gas temperatures with direct injection resulted in an order of magnitude increase in NO, while incomplete combustion of locally over-lean regions led to a sevenfold increase in CO emissions compared to port fuel injection. The final study

  17. Ground-state oxygen holes and the metal–insulator transition in the negative charge-transfer rare-earth nickelates

    SciTech Connect

    Bisogni, Valentina; Catalano, Sara; Green, Robert J.; Gibert, Marta; Scherwitzl, Raoul; Huang, Yaobo; Strocov, Vladimir N.; Zubko, Pavlo; Balandeh, Shadi; Triscone, Jean-Marc; Sawatzky, George; Schmitt, Thorsten

    2016-10-11

    The metal-insulator transitions and the intriguing physical properties of rare-earth perovskite nickelates have attracted considerable attention in recent years. However, a complete understanding of these materials remains elusive. Here, taking a NdNiO3 thin film as a representative example, we utilize a combination of x-ray absorption (XAS) and resonant inelastic x-ray scattering (RIXS) spectroscopies to resolve important aspects of the complex electronic structure of the rare-earth nickelates. The unusual coexistence of bound and continuum excitations observed in the RIXS spectra provides strong evidence for the abundance of oxygen 2p holes in the ground state of these materials. Using cluster calculations and Anderson impurity model interpretation, we show that these distinct spectral signatures arise from a Ni 3d8 configuration along with holes in the oxygen 2p valence band, confirming suggestions that these materials do not obey a “conventional” positive charge-transfer picture, but instead exhibit a negative charge-transfer energy, in line with recent models interpreting the metal to insulator transition in terms of bond disproportionation.

  18. Ground-state oxygen holes and the metal–insulator transition in the negative charge-transfer rare-earth nickelates

    PubMed Central

    Bisogni, Valentina; Catalano, Sara; Green, Robert J.; Gibert, Marta; Scherwitzl, Raoul; Huang, Yaobo; Strocov, Vladimir N.; Zubko, Pavlo; Balandeh, Shadi; Triscone, Jean-Marc; Sawatzky, George; Schmitt, Thorsten

    2016-01-01

    The metal–insulator transition and the intriguing physical properties of rare-earth perovskite nickelates have attracted considerable attention in recent years. Nonetheless, a complete understanding of these materials remains elusive. Here we combine X-ray absorption and resonant inelastic X-ray scattering (RIXS) spectroscopies to resolve important aspects of the complex electronic structure of rare-earth nickelates, taking NdNiO3 thin film as representative example. The unusual coexistence of bound and continuum excitations observed in the RIXS spectra provides strong evidence for abundant oxygen holes in the ground state of these materials. Using cluster calculations and Anderson impurity model interpretation, we show that distinct spectral signatures arise from a Ni 3d8 configuration along with holes in the oxygen 2p valence band, confirming suggestions that these materials do not obey a conventional positive charge-transfer picture, but instead exhibit a negative charge-transfer energy in line with recent models interpreting the metal–insulator transition in terms of bond disproportionation. PMID:27725665

  19. Ground-state oxygen holes and the metal-insulator transition in the negative charge-transfer rare-earth nickelates

    NASA Astrophysics Data System (ADS)

    Bisogni, Valentina; Catalano, Sara; Green, Robert J.; Gibert, Marta; Scherwitzl, Raoul; Huang, Yaobo; Strocov, Vladimir N.; Zubko, Pavlo; Balandeh, Shadi; Triscone, Jean-Marc; Sawatzky, George; Schmitt, Thorsten

    2016-10-01

    The metal-insulator transition and the intriguing physical properties of rare-earth perovskite nickelates have attracted considerable attention in recent years. Nonetheless, a complete understanding of these materials remains elusive. Here we combine X-ray absorption and resonant inelastic X-ray scattering (RIXS) spectroscopies to resolve important aspects of the complex electronic structure of rare-earth nickelates, taking NdNiO3 thin film as representative example. The unusual coexistence of bound and continuum excitations observed in the RIXS spectra provides strong evidence for abundant oxygen holes in the ground state of these materials. Using cluster calculations and Anderson impurity model interpretation, we show that distinct spectral signatures arise from a Ni 3d8 configuration along with holes in the oxygen 2p valence band, confirming suggestions that these materials do not obey a conventional positive charge-transfer picture, but instead exhibit a negative charge-transfer energy in line with recent models interpreting the metal-insulator transition in terms of bond disproportionation.

  20. Ground-state oxygen holes and the metal–insulator transition in the negative charge-transfer rare-earth nickelates

    DOE PAGES

    Bisogni, Valentina; Catalano, Sara; Green, Robert J.; ...

    2016-10-11

    The metal-insulator transitions and the intriguing physical properties of rare-earth perovskite nickelates have attracted considerable attention in recent years. However, a complete understanding of these materials remains elusive. Here, taking a NdNiO3 thin film as a representative example, we utilize a combination of x-ray absorption (XAS) and resonant inelastic x-ray scattering (RIXS) spectroscopies to resolve important aspects of the complex electronic structure of the rare-earth nickelates. The unusual coexistence of bound and continuum excitations observed in the RIXS spectra provides strong evidence for the abundance of oxygen 2p holes in the ground state of these materials. Using cluster calculations andmore » Anderson impurity model interpretation, we show that these distinct spectral signatures arise from a Ni 3d8 configuration along with holes in the oxygen 2p valence band, confirming suggestions that these materials do not obey a “conventional” positive charge-transfer picture, but instead exhibit a negative charge-transfer energy, in line with recent models interpreting the metal to insulator transition in terms of bond disproportionation.« less

  1. Ground-state oxygen holes and the metal-insulator transition in the negative charge-transfer rare-earth nickelates.

    PubMed

    Bisogni, Valentina; Catalano, Sara; Green, Robert J; Gibert, Marta; Scherwitzl, Raoul; Huang, Yaobo; Strocov, Vladimir N; Zubko, Pavlo; Balandeh, Shadi; Triscone, Jean-Marc; Sawatzky, George; Schmitt, Thorsten

    2016-10-11

    The metal-insulator transition and the intriguing physical properties of rare-earth perovskite nickelates have attracted considerable attention in recent years. Nonetheless, a complete understanding of these materials remains elusive. Here we combine X-ray absorption and resonant inelastic X-ray scattering (RIXS) spectroscopies to resolve important aspects of the complex electronic structure of rare-earth nickelates, taking NdNiO3 thin film as representative example. The unusual coexistence of bound and continuum excitations observed in the RIXS spectra provides strong evidence for abundant oxygen holes in the ground state of these materials. Using cluster calculations and Anderson impurity model interpretation, we show that distinct spectral signatures arise from a Ni 3d(8) configuration along with holes in the oxygen 2p valence band, confirming suggestions that these materials do not obey a conventional positive charge-transfer picture, but instead exhibit a negative charge-transfer energy in line with recent models interpreting the metal-insulator transition in terms of bond disproportionation.

  2. Functional domains of the floral regulator AGAMOUS: characterization of the DNA binding domain and analysis of dominant negative mutations.

    PubMed Central

    Mizukami, Y; Huang, H; Tudor, M; Hu, Y; Ma, H

    1996-01-01

    The Arabidopsis MADS box gene AGAMOUS (AG) controls reproductive organ identity and floral meristem determinacy. The AG protein binds in vitro to DNA sequences similar to the targets of known MADS domain transcription factors. Whereas most plant MADS domain proteins begin with the MADS domain, AG and its orthologs contain a region N-terminal to the MADS domain. All plant MADS domain proteins share another region with moderate sequence similarity called the K domain. Neither the region (I region) that lies between the MADS and K domains nor the C-terminal region is conserved. We show here that the AG MADS domain and the I region are necessary and sufficient for DNA binding in vitro and that AG binds to DNA as a dimer. To investigate the in vivo function of the regions of AG not required for in vitro DNA binding, we introduced several AG constructs into wild-type plants and characterized their floral phenotypes. We show that transgenic Arabidopsis plants with a 35S-AG construct encoding an AG protein lacking the N-terminal region produced apetala 2 (ap2)-like flowers similar to those ectopically expressing AG proteins retaining the N-terminal region. This result suggests that the N-terminal region is not required to produce the ap2-like phenotype. In addition, transformants with a 35S-AG construct encoding an AG protein lacking the C-terminal region produced ag-like flowers, indicating that this truncated AG protein inhibits normal AG function. Finally, transformants with a 35S-AG construct encoding an AG protein lacking both K and C regions produced flowers with more stamens and carpels. The phenotypes of the AG transformants demonstrate that both the K domain and the C-terminal region have important and distinct in vivo functions. We discuss possible mechanisms through which AG may regulate downstream genes. PMID:8672883

  3. Beneficial effects of activated carbon additives on the performance of negative lead-acid battery electrode for high-rate partial-state-of-charge operation

    NASA Astrophysics Data System (ADS)

    Xiang, Jiayuan; Ding, Ping; Zhang, Hao; Wu, Xianzhang; Chen, Jian; Yang, Yusheng

    2013-11-01

    Experiments are made with negative electrode of 2 V cell and 12 V lead-acid battery doped with typical activated carbon additives. It turns out that the negative electrode containing tens-of-micron-sized carbon particles in NAM exhibits markedly increased HRPSoC cycle life than the one containing carbon particles with much smaller size of several microns or the one containing no activated carbon. The improved performance is mainly attributed to the optimized NAM microstructure and the enhanced electrode reaction kinetics by introducing appropriate activated carbon. The beneficial effects can be briefly summarized from three aspects. First, activated carbon acts as new porous-skeleton builder to increase the porosity and active surface of NAM, and thus facilitates the electrolyte diffusion from surface to inner and provides more sites for crystallization/dissolution of lead sulfate; second, activated carbon plays the role of electrolyte supplier to provide sufficient H2SO4 in the inner of plate when the diffusion of H2SO4 from plate surface cannot keep pace of the electrode reaction; Third, activated carbon acts as capacitive buffer to absorb excess charge current which would otherwise lead to insufficient NAM conversion and hydrogen evolution.

  4. Negatively charged excitions (X -) and D - triplet transitions in GaAs/Al 0.3Ga 0.7As multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Ryu, S. R.; Yu, W.-Y.; Fu, L. P.; Jiang, Z. X.; Petrou, A.; McCombe, B. D.; Schaff, W.

    1996-07-01

    From a combination of low-temperature photoluminescence (PL) and far-infrared magnetospectroscopy on several GaAs/AlGaAs multiple quantum well samples with different donor doping (well only, barrier only, both well and barrier), we have identified a recombination line due to negatively charged excitons (X -). We have also studied the effects of excess free electrons in the wells on the X - line. Magneto-Pl for low-density barrier-only doped samples shows both free exciton and X - recombination lines at all values of field studied. However, for more heavily doped samples the behavior is very different. As magnetic field is increased, three distinct features evolve from the broad free carrier recombination lines. At low fields all three features are Landau level recombination lines. At a field corresponding to filling factor v = 2 the lowest energy line undergoes a discontinuous change in slope, and above this field it evolves into the X - line. In related far-infrared magnetospectroscopy studies we have made a clear identification of one of the predicted negative donor ion (D -) triplet transitions.

  5. Identification of the cis-element and bZIP DNA binding motifs for the autogenous negative control of mouse NOSTRIN.

    PubMed

    Bae, Seong-Ho; Choi, Young-Joon; Kim, Kyung-hyun; Park, Sung-Soo

    2014-01-17

    mNOSTRIN is the mouse ortholog of hNOSTRIN. Unlike hNOSTRIN, which is alternatively spliced to produce two isoforms (α and β), only a single isoform of mNOSTRIN has been detected in either the nucleus or cytoplasm/membrane. Because mNOSTRIN represses its own transcription through direct binding onto its own promoter, this protein is constantly expressed in a temporally regulated pattern during differentiation of F9 embryonic carcinoma cells. In this study, we identified the specific cis-element in the mNOSTRIN regulatory region that is responsible for negative autogenous control. This element exhibits inverted dyad symmetry. Furthermore, we identified a putative bZIP motif in the middle region of mNOSTRIN, which is responsible for DNA binding, and showed that disruption of the leucine zippers abolished the DNA-binding activity of mNOSTRIN. Here, we report that a single form of mNOSTRIN functions in both the nucleus and cytoplasm/membrane. In the nucleus, mNOSTRIN acts as a transcriptional repressor by binding to the cis-element through its bZIP motif. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Crk Adaptors Negatively Regulate Actin Polymerization in Pedestals Formed by Enteropathogenic Escherichia coli (EPEC) by Binding to Tir Effector

    PubMed Central

    Martín-Villa, José Manuel; Benito-León, María; Martinez-Quiles, Narcisa

    2014-01-01

    Infections by enteropathogenic Escherichia coli (EPEC) cause diarrhea linked to high infant mortality in developing countries. EPEC adheres to epithelial cells and induces the formation of actin pedestals. Actin polymerization is driven fundamentally through signaling mediated by Tir bacterial effector protein, which inserts in the plasma membrane of the infected cell. Tir binds Nck adaptor proteins, which in turn recruit and activate N-WASP, a ubiquitous member of the Wiskott-Aldrich syndrome family of proteins. N-WASP activates the Arp2/3 complex to promote actin polymerization. Other proteins aside from components of the Tir-Nck-N-WASP pathway are recruited to the pedestals but their functions are unknown. Here we investigate the function of two alternatively spliced isoforms of Crk adaptors (CrkI/II) and the paralog protein CrkL during pedestal formation by EPEC. We found that the Crk isoforms act as redundant inhibitors of pedestal formation. The SH2 domain of CrkII and CrkL binds to phosphorylated tyrosine 474 of Tir and competes with Nck to bind Tir, preventing its recruitment to pedestals and thereby inhibiting actin polymerization. EPEC infection induces phosphorylation of the major regulatory tyrosine in CrkII and CrkL, possibly preventing the SH2 domain of these proteins from interacting with Tir. Phosphorylated CrkII and CrkL proteins localize specifically to the plasma membrane in contact with EPEC. Our study uncovers a novel role for Crk adaptors at pedestals, opening a new perspective in how these oncoproteins regulate actin polymerization. PMID:24675776

  7. Crk adaptors negatively regulate actin polymerization in pedestals formed by enteropathogenic Escherichia coli (EPEC) by binding to Tir effector.

    PubMed

    Nieto-Pelegrin, Elvira; Meiler, Eugenia; Martín-Villa, José Manuel; Benito-León, María; Martinez-Quiles, Narcisa

    2014-03-01

    Infections by enteropathogenic Escherichia coli (EPEC) cause diarrhea linked to high infant mortality in developing countries. EPEC adheres to epithelial cells and induces the formation of actin pedestals. Actin polymerization is driven fundamentally through signaling mediated by Tir bacterial effector protein, which inserts in the plasma membrane of the infected cell. Tir binds Nck adaptor proteins, which in turn recruit and activate N-WASP, a ubiquitous member of the Wiskott-Aldrich syndrome family of proteins. N-WASP activates the Arp2/3 complex to promote actin polymerization. Other proteins aside from components of the Tir-Nck-N-WASP pathway are recruited to the pedestals but their functions are unknown. Here we investigate the function of two alternatively spliced isoforms of Crk adaptors (CrkI/II) and the paralog protein CrkL during pedestal formation by EPEC. We found that the Crk isoforms act as redundant inhibitors of pedestal formation. The SH2 domain of CrkII and CrkL binds to phosphorylated tyrosine 474 of Tir and competes with Nck to bind Tir, preventing its recruitment to pedestals and thereby inhibiting actin polymerization. EPEC infection induces phosphorylation of the major regulatory tyrosine in CrkII and CrkL, possibly preventing the SH2 domain of these proteins from interacting with Tir. Phosphorylated CrkII and CrkL proteins localize specifically to the plasma membrane in contact with EPEC. Our study uncovers a novel role for Crk adaptors at pedestals, opening a new perspective in how these oncoproteins regulate actin polymerization.

  8. A single charge in the actin binding domain of fascin can independently tune the linear and non-linear response of an actin bundle network.

    PubMed

    Maier, M; Müller, K W; Heussinger, C; Köhler, S; Wall, W A; Bausch, A R; Lieleg, O

    2015-05-01

    Actin binding proteins (ABPs) not only set the structure of actin filament assemblies but also mediate the frequency-dependent viscoelastic moduli of cross-linked and bundled actin networks. Point mutations in the actin binding domain of those ABPs can tune the association and dissociation dynamics of the actin/ABP bond and thus modulate the network mechanics both in the linear and non-linear response regime. We here demonstrate how the exchange of a single charged amino acid in the actin binding domain of the ABP fascin triggers such a modulation of the network rheology. Whereas the overall structure of the bundle networks is conserved, the transition point from strain-hardening to strain-weakening sensitively depends on the cross-linker off-rate and the applied shear rate. Our experimental results are consistent both with numerical simulations of a cross-linked bundle network and a theoretical description of the bundle network mechanics which is based on non-affine bending deformations and force-dependent cross-link dynamics.

  9. External and Internal Guest Binding of a Highly Charged Supramolecular Host in Water: Deconvoluting the Very Different Thermodynamics

    SciTech Connect

    Sgarlata, Carmelo; Mugridge, Jeffrey; Pluth, Michael; Tiedemann,, Bryan; Zito, Valeria; Arena, Giuseppe; Raymond, Kenneth N.

    2009-07-22

    NMR, UV-vis and isothermal titration calorimetry (ITC) measurements probe different aspects of competing host-guest equilibria as simple alkylammonium guest molecules interact with both the exterior (ion-association) and interior (encapsulation) of the [Ga{sub 4}L{sub 6}]{sup 12-} supramolecular assembly in water. Data obtained by each independent technique measure different components of the host-guest equilibria and only when analyzed together does a complete picture of the solution thermodynamics emerge. Striking differences between the internal and external guest binding are found. External binding is enthalpy driven and mainly due to attractive interactions between the guests and the exterior surface of the assembly while encapsulation is entropy driven as a result of desolvation and release of solvent molecules from the host cavity.

  10. Positive and negative allosteric modulators of the Ca2+-sensing receptor interact within overlapping but not identical binding sites in the transmembrane domain.

    PubMed

    Petrel, Christophe; Kessler, Albane; Dauban, Philippe; Dodd, Robert H; Rognan, Didier; Ruat, Martial

    2004-04-30

    A three-dimensional model of the human extracellular Ca(2+)-sensing receptor (CaSR) has been used to identify specific residues implicated in the recognition of two negative allosteric CaSR modulators of different chemical structure, NPS 2143 and Calhex 231. To demonstrate the involvement of these residues, we have analyzed dose-inhibition response curves for the effect of these calcilytics on Ca(2+)-induced [(3)H]inositol phosphate accumulation for the selected CaSR mutants transiently expressed in HEK293 cells. These mutants were further used for investigating the binding pocket of two chemically unrelated positive allosteric CaSR modulators, NPS R-568 and (R)-2-[1-(1-naphthyl)ethylaminomethyl]-1H-indole (Calindol), a novel potent calcimimetic that stimulates (EC(50) = 0.31 microM) increases in [(3)H]inositol phosphate levels elicited by activating the wild-type CaSR by 2 mM Ca(2+). Our data validate the involvement of Trp-818(6.48), Phe-821(6.51), Glu-837(7.39), and Ile-841(7.43) located in transmembranes (TM) 6 and TM7, in the binding pocket for both calcimimetics and calcilytics, despite important differences observed between each family of compounds. The TMs involved in the recognition of both calcilytics include residues located in TM3 (Arg-680(3.28), Phe-684(3.32), and Phe-688(3.36)). However, our study indicates subtle differences between the binding of these two compounds. Importantly, the observation that some mutations that have no effect on calcimimetics recognition but which affect the binding of calcilytics in TM3 and TM5, suggests that the binding pocket of positive and negative allosteric modulators is partially overlapping but not identical. Our CaSR model should facilitate the development of novel drugs of this important therapeutic target and the identification of the molecular determinants involved in the binding of allosteric modulators of class 3 G-protein-coupled receptors.

  11. Annexin A2 binds to endosomes and negatively regulates TLR4-triggered inflammatory responses via the TRAM-TRIF pathway

    PubMed Central

    Zhang, Shuang; Yu, Min; Guo, Qiang; Li, Rongpeng; Li, Guobo; Tan, Shirui; Li, Xuefeng; Wei, Yuquan; Wu, Min

    2015-01-01

    Lipopolysaccharide (LPS) derived from Gram-negative bacteria activates plasma membrane signaling via Toll-like receptor 4 (TLR4) on host cells and triggers innate inflammatory responses, but the underlying mechanisms remain to be fully elucidated. Here we reveal a role for annexin A2 (AnxA2) in host defense against infection as anxa2−/− mice were highly susceptible to Gram-negative bacteria-induced sepsis with enhanced inflammatory responses. Computing analysis and biochemical experiments identified that constitutive AnxA2 expression facilitated TLR4 internalization and its subsequent translocation into early endosomal membranes. It activated the TRAM-dependent endosomal signaling, leading to the release of anti-inflammatory cytokines. Importantly, AnxA2 deficiency prolonged TLR4-mediated signaling from the plasma membrane, which was attributable to pro-inflammatory cytokine production (IL-6, TNFα and IL-1β). Thus, AnxA2 directly exerted negative regulation of inflammatory responses through TLR4-initiated TRAM-TRIF pathway occurring on endosomes. This study reveals AnxA2 as a critical regulator in infection-initiated inflammation, which protects the host from excessive inflammatory damage. PMID:26527544

  12. A functional C-terminal TRAF3-binding site in MAVS participates in positive and negative regulation of the IFN antiviral response.

    PubMed

    Paz, Suzanne; Vilasco, Myriam; Werden, Steven J; Arguello, Meztli; Joseph-Pillai, Deshanthe; Zhao, Tiejun; Nguyen, Thi Lien-Anh; Sun, Qiang; Meurs, Eliane F; Lin, Rongtuan; Hiscott, John

    2011-06-01

    Recognition of viral RNA structures by the cytosolic sensor retinoic acid-inducible gene-I (RIG-I) results in the activation of signaling cascades that culminate with the generation of the type I interferon (IFN) antiviral response. Onset of antiviral and inflammatory responses to viral pathogens necessitates the regulated spatiotemporal recruitment of signaling adapters, kinases and transcriptional proteins to the mitochondrial antiviral signaling protein (MAVS). We previously demonstrated that the serine/threonine kinase IKKε is recruited to the C-terminal region of MAVS following Sendai or vesicular stomatitis virus (VSV) infection, mediated by Lys63-linked polyubiquitination of MAVS at Lys500, resulting in inhibition of downstream IFN signaling (Paz et al, Mol Cell Biol, 2009). In this study, we demonstrate that C-terminus of MAVS harbors a novel TRAF3-binding site i