Structural analysis of poly-SUMO chain recognition by the RNF4-SIMs domain.
Kung, Camy C-H; Naik, Mandar T; Wang, Szu-Huan; Shih, Hsiu-Ming; Chang, Che-Chang; Lin, Li-Ying; Chen, Chia-Lin; Ma, Che; Chang, Chi-Fon; Huang, Tai-Huang
2014-08-15
The E3 ubiquitin ligase RNF4 (RING finger protein 4) contains four tandem SIM [SUMO (small ubiquitin-like modifier)-interaction motif] repeats for selective interaction with poly-SUMO-modified proteins, which it targets for degradation. We employed a multi-faceted approach to characterize the structure of the RNF4-SIMs domain and the tetra-SUMO2 chain to elucidate the interaction between them. In solution, the SIM domain was intrinsically disordered and the linkers of the tetra-SUMO2 were highly flexible. Individual SIMs of the RNF4-SIMs domains bind to SUMO2 in the groove between the β2-strand and the α1-helix parallel to the β2-strand. SIM2 and SIM3 bound to SUMO with a high affinity and together constituted the recognition module necessary for SUMO binding. SIM4 alone bound to SUMO with low affinity; however, its contribution to tetra-SUMO2 binding avidity is comparable with that of SIM3 when in the RNF4-SIMs domain. The SAXS data of the tetra-SUMO2-RNF4-SIMs domain complex indicate that it exists as an ordered structure. The HADDOCK model showed that the tandem RNF4-SIMs domain bound antiparallel to the tetra-SUMO2 chain orientation and wrapped around the SUMO protamers in a superhelical turn without imposing steric hindrance on either molecule.
Small ubiquitin-related modifier is secreted and shows cytokine-like activity.
Hosono, Hidetaka; Yokosawa, Hideyoshi
2008-05-01
Small ubiquitin-related modifier (SUMO) is a type I ubiquitin-like protein family member and is covalently attached to various target proteins. Through this post-translational modification, SUMO plays important roles in various cellular events. Here, we show that SUMO is secreted from cultured cells in an endoplasmic reticulum (ER)/Golgi-independent manner and that this secretion occurs without covalent binding to target proteins or chain formation. Overexpression experiments using C-terminally truncated mutants of SUMO revealed that the secretion requires the C-terminal sequence. Recombinant SUMO-3 protein was capable of binding to and promoting the proliferation of cultured cells. Thus, we propose that SUMO functions as a cytokine-like molecule extracellularly.
Evolution of SUMO Function and Chain Formation in Insects.
Ureña, Enric; Pirone, Lucia; Chafino, Silvia; Pérez, Coralia; Sutherland, James D; Lang, Valérie; Rodriguez, Manuel S; Lopitz-Otsoa, Fernando; Blanco, Francisco J; Barrio, Rosa; Martín, David
2016-02-01
SUMOylation, the covalent binding of Small Ubiquitin-like Modifier (SUMO) to target proteins, is a posttranslational modification that regulates critical cellular processes in eukaryotes. In insects, SUMOylation has been studied in holometabolous species, particularly in the dipteran Drosophila melanogaster, which contains a single SUMO gene (smt3). This has led to the assumption that insects contain a single SUMO gene. However, the analysis of insect genomes shows that basal insects contain two SUMO genes, orthologous to vertebrate SUMO1 and SUMO2/3. Our phylogenetical analysis reveals that the SUMO gene has been duplicated giving rise to SUMO1 and SUMO2/3 families early in Metazoan evolution, and that later in insect evolution the SUMO1 gene has been lost after the Hymenoptera divergence. To explore the consequences of this loss, we have examined the characteristics and different biological functions of the two SUMO genes (SUMO1 and SUMO3) in the hemimetabolous cockroach Blattella germanica and compared them with those of Drosophila Smt3. Here, we show that the metamorphic role of the SUMO genes is evolutionary conserved in insects, although there has been a regulatory switch from SUMO1 in basal insects to SUMO3 in more derived ones. We also show that, unlike vertebrates, insect SUMO3 proteins cannot form polySUMO chains due to the loss of critical lysine residues within the N-terminal part of the protein. Furthermore, the formation of polySUMO chains by expression of ectopic human SUMO3 has a deleterious effect in Drosophila. These findings contribute to the understanding of the functional consequences of the evolution of SUMO genes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Molecular Basis for Phosphorylation-dependent SUMO Recognition by the DNA Repair Protein RAP80.
Anamika; Spyracopoulos, Leo
2016-02-26
Recognition and repair of double-stranded DNA breaks (DSB) involves the targeted recruitment of BRCA tumor suppressors to damage foci through binding of both ubiquitin (Ub) and the Ub-like modifier SUMO. RAP80 is a component of the BRCA1 A complex, and plays a key role in the recruitment process through the binding of Lys(63)-linked poly-Ub chains by tandem Ub interacting motifs (UIM). RAP80 also contains a SUMO interacting motif (SIM) just upstream of the tandem UIMs that has been shown to specifically bind the SUMO-2 isoform. The RAP80 tandem UIMs and SIM function collectively for optimal recruitment of BRCA1 to DSBs, although the molecular basis of this process is not well understood. Using NMR spectroscopy, we demonstrate that the RAP80 SIM binds SUMO-2, and that both specificity and affinity are enhanced through phosphorylation of the canonical CK2 site within the SIM. The affinity increase results from an enhancement of electrostatic interactions between the phosphoserines of RAP80 and the SIM recognition module within SUMO-2. The NMR structure of the SUMO-2·phospho-RAP80 complex reveals that the molecular basis for SUMO-2 specificity is due to isoform-specific sequence differences in electrostatic SIM recognition modules. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Hendriks, Ivo A.; Schimmel, Joost; Eifler, Karolin; Olsen, Jesper V.; Vertegaal, Alfred C. O.
2015-01-01
Ring finger protein 4 (RNF4) is a SUMO-targeted ubiquitin E3 ligase with a pivotal function in the DNA damage response (DDR). SUMO interaction motifs (SIMs) in the N-terminal part of RNF4 tightly bind to SUMO polymers, and RNF4 can ubiquitinate these polymers in vitro. Using a proteomic approach, we identified the deubiquitinating enzyme ubiquitin-specific protease 11 (USP11), a known DDR-component, as a functional interactor of RNF4. USP11 can deubiquitinate hybrid SUMO-ubiquitin chains to counteract RNF4. SUMO-enriched nuclear bodies are stabilized by USP11, which functions downstream of RNF4 as a counterbalancing factor. In response to DNA damage induced by methyl methanesulfonate, USP11 could counteract RNF4 to inhibit the dissolution of nuclear bodies. Thus, we provide novel insight into cross-talk between ubiquitin and SUMO and uncover USP11 and RNF4 as a balanced SUMO-targeted ubiquitin ligase/protease pair with a role in the DDR. PMID:25969536
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakrabarti, Rajarshi; Bhowmick, Debajit; Bhargava, Varsha
2013-09-20
Highlights: •Nuclear pool of PIP5K is SUMOylated. •Enhancement of SUMOylated nuclear PIP5K during apoptosis. •Nuclear PIP5K is modified by polySUMO-1 during apoptosis. •Nuclear PIP5K is modified by polySUMO-2 chain during apoptosis. -- Abstract: Phosphatidylinositol 4 phosphate 5 kinase 1α (PIP5K) is mainly localized in the cytosol and plasma membrane. Studies have also indicated its prominent association with nuclear speckles. The exact nature of this nuclear pool of PIP5K is not clear. Using biochemical and microscopic techniques, we have demonstrated that the nuclear pool of PIP5K is modified by SUMO-1 in HEK-293 cells stably expressing PIP5K. Moreover, this SUMOylated pool ofmore » PIP5K increased during apoptosis. PolySUMO-2 chain conjugated PIP5K was detected by pull-down experiment using affinity-tagged RNF4, a polySUMO-2 binding protein, during late apoptosis.« less
Proteomics Analysis of Nucleolar SUMO-1 Target Proteins upon Proteasome Inhibition*
Matafora, Vittoria; D'Amato, Alfonsina; Mori, Silvia; Blasi, Francesco; Bachi, Angela
2009-01-01
Many cellular processes are regulated by the coordination of several post-translational modifications that allow a very fine modulation of substrates. Recently it has been reported that there is a relationship between sumoylation and ubiquitination. Here we propose that the nucleolus is the key organelle in which SUMO-1 conjugates accumulate in response to proteasome inhibition. We demonstrated that, upon proteasome inhibition, the SUMO-1 nuclear dot localization is redirected to nucleolar structures. To better understand this process we investigated, by quantitative proteomics, the effect of proteasome activity on endogenous nucleolar SUMO-1 targets. 193 potential SUMO-1 substrates were identified, and interestingly in several purified SUMO-1 conjugates ubiquitin chains were found to be present, confirming the coordination of these two modifications. 23 SUMO-1 targets were confirmed by an in vitro sumoylation reaction performed on nuclear substrates. They belong to protein families such as small nuclear ribonucleoproteins, heterogeneous nuclear ribonucleoproteins, ribosomal proteins, histones, RNA-binding proteins, and transcription factor regulators. Among these, histone H1, histone H3, and p160 Myb-binding protein 1A were further characterized as novel SUMO-1 substrates. The analysis of the nature of the SUMO-1 targets identified in this study strongly indicates that sumoylation, acting in coordination with the ubiquitin-proteasome system, regulates the maintenance of nucleolar integrity. PMID:19596686
Tomanov, Konstantin; Nehlin, Lilian; Ziba, Ionida
2018-01-01
The small ubiquitin-related modifier (SUMO) conjugation apparatus usually attaches single SUMO moieties to its substrates, but SUMO chains have also been identified. To better define the biochemical requirements and characteristics of SUMO chain formation, mutations in surface-exposed Lys residues of Arabidopsis SUMO-conjugating enzyme (SCE) were tested for in vitro activity. Lys-to-Arg changes in the amino-terminal region of SCE allowed SUMO acceptance from SUMO-activating enzyme and supported substrate mono-sumoylation, but these mutations had significant effects on SUMO chain assembly. We found no indication that SUMO modification of SCE promotes chain formation. A substrate was identified that is modified by SUMO chain addition, showing that SCE can distinguish substrates for either mono-sumoylation or SUMO chain attachment. It is also shown that SCE with active site Cys mutated to Ser can accept SUMO to form an oxyester, but cannot transfer this SUMO moiety onto substrates, explaining a previously known dominant negative effect of this mutation. PMID:29133528
Activation of the Slx5–Slx8 Ubiquitin Ligase by Poly-small Ubiquitin-like Modifier Conjugates*S⃞
Mullen, Janet R.; Brill, Steven J.
2008-01-01
Protein sumoylation is a regulated process that is important for the health of human and yeast cells. In budding yeast, a subset of sumoylated proteins is targeted for ubiquitination by a conserved heterodimeric ubiquitin (Ub) ligase, Slx5–Slx8, which is needed to suppress the accumulation of high molecular weight small ubiquitin-like modifier (SUMO) conjugates. Structure-function analysis indicates that the Slx5–Slx8 complex contains multiple SUMO-binding domains that are collectively required for in vivo function. To determine the specificity of Slx5–Slx8, we assayed its Ub ligase activity using sumoylated Siz2 as an in vitro substrate. In contrast to unsumoylated or multisumoylated Siz2, substrates containing poly-SUMO conjugates were efficiently ubiquitinated by Slx5–Slx8. Although Siz2 itself was ubiquitinated, the bulk of the Ub was conjugated to SUMO residues. Slx5–Slx8 primarily mono-ubiquitinated the N-terminal SUMO moiety of the chain. These data indicate that the Slx5–Slx8 Ub ligase is stimulated by poly-SUMO conjugates and that it can ubiquitinate a poly-SUMO chain. PMID:18499666
Ouyang, Jian; Garner, Elizabeth; Hallet, Alexander; Nguyen, Hai Dang; Rickman, Kimberly A.; Gill, Grace; Smogorzewska, Agata; Zou, Lee
2014-01-01
SLX4, a coordinator of multiple DNA structure-specific endonucleases, is important for several DNA repair pathways. Non-covalent interactions of SLX4 with ubiquitin are required for localizing SLX4 to DNA-interstrand crosslinks (ICLs), yet how SLX4 is targeted to other functional contexts remains unclear. Here, we show that SLX4 binds SUMO-2/3 chains via SUMO-interacting motifs (SIMs). The SIMs of SLX4 are dispensable for ICL repair, but important for processing CPT-induced replication intermediates, suppressing fragile site instability, and localizing SLX4 to ALT telomeres. The localization of SLX4 to laser-induced DNA damage also requires the SIMs, as well as DNA-end resection, UBC9 and MDC1. Furthermore, the SUMO binding of SLX4 enhances its interaction with specific DNA-damage sensors or telomere-binding proteins, including RPA, MRE11-RAD50-NBS1 and TRF2. Thus, the interactions of SLX4 with SUMO and ubiquitin increase its affinity for factors recognizing different DNA lesions or telomeres, helping to direct the SLX4 complex in distinct functional contexts. PMID:25533185
Sohn, Sook-Young; Hearing, Patrick
2016-06-14
The adenovirus (Ad) early region 4 (E4)-ORF3 protein regulates diverse cellular processes to optimize the host environment for the establishment of Ad replication. E4-ORF3 self-assembles into multimers to form a nuclear scaffold in infected cells and creates distinct binding interfaces for different cellular target proteins. Previous studies have shown that the Ad5 E4-ORF3 protein induces sumoylation of multiple cellular proteins and subsequent proteasomal degradation of some of them, but the detailed mechanism of E4-ORF3 function remained unknown. Here, we investigate the role of E4-ORF3 in the sumoylation process by using transcription intermediary factor (TIF)-1γ as a substrate. Remarkably, we discovered that purified E4-ORF3 protein stimulates TIF-1γ sumoylation in vitro, demonstrating that E4-ORF3 acts as a small ubiquitin-like modifier (SUMO) E3 ligase. Furthermore, E4-ORF3 significantly increases poly-SUMO3 chain formation in vitro in the absence of substrate, showing that E4-ORF3 has SUMO E4 elongase activity. An E4-ORF3 mutant, which is defective in protein multimerization, exhibited severely decreased activity, demonstrating that E4-ORF3 self-assembly is required for these activities. Using a SUMO3 mutant, K11R, we found that E4-ORF3 facilitates the initial acceptor SUMO3 conjugation to TIF-1γ as well as poly-SUMO chain elongation. The E4-ORF3 protein displays no SUMO-targeted ubiquitin ligase activity in our assay system. These studies reveal the mechanism by which E4-ORF3 targets specific cellular proteins for sumoylation and proteasomal degradation and provide significant insight into how a small viral protein can play a role as a SUMO E3 ligase and E4-like SUMO elongase to impact a variety of cellular responses.
Chakrabarti, Rajarshi; Bhowmick, Debajit; Bhargava, Varsha; Bhar, Kaushik; Siddhanta, Anirban
2013-09-20
Phosphatidylinositol 4 phosphate 5 kinase 1α (PIP5K) is mainly localized in the cytosol and plasma membrane. Studies have also indicated its prominent association with nuclear speckles. The exact nature of this nuclear pool of PIP5K is not clear. Using biochemical and microscopic techniques, we have demonstrated that the nuclear pool of PIP5K is modified by SUMO-1 in HEK-293 cells stably expressing PIP5K. Moreover, this SUMOylated pool of PIP5K increased during apoptosis. PolySUMO-2 chain conjugated PIP5K was detected by pull-down experiment using affinity-tagged RNF4, a polySUMO-2 binding protein, during late apoptosis. Copyright © 2013 Elsevier Inc. All rights reserved.
Wu, Ching-Shyi; Ouyang, Jian; Mori, Eiichiro; Nguyen, Hai Dang; Maréchal, Alexandre; Hallet, Alexander; Chen, David J.; Zou, Lee
2014-01-01
The ATR (ATM [ataxia telangiectasia-mutated]- and Rad3-related) checkpoint is a crucial DNA damage signaling pathway. While the ATR pathway is known to transmit DNA damage signals through the ATR–Chk1 kinase cascade, whether post-translational modifications other than phosphorylation are important for this pathway remains largely unknown. Here, we show that protein SUMOylation plays a key role in the ATR pathway. ATRIP, the regulatory partner of ATR, is modified by SUMO2/3 at K234 and K289. An ATRIP mutant lacking the SUMOylation sites fails to localize to DNA damage and support ATR activation efficiently. Surprisingly, the ATRIP SUMOylation mutant is compromised in the interaction with a protein group, rather than a single protein, in the ATR pathway. Multiple ATRIP-interacting proteins, including ATR, RPA70, TopBP1, and the MRE11–RAD50–NBS1 complex, exhibit reduced binding to the ATRIP SUMOylation mutant in cells and display affinity for SUMO2 chains in vitro, suggesting that they bind not only ATRIP but also SUMO. Fusion of a SUMO2 chain to the ATRIP SUMOylation mutant enhances its interaction with the protein group and partially suppresses its localization and functional defects, revealing that ATRIP SUMOylation promotes ATR activation by providing a unique type of protein glue that boosts multiple protein interactions along the ATR pathway. PMID:24990965
Structural insight into SUMO chain recognition and manipulation by the ubiquitin ligase RNF4
Xu, Yingqi; Plechanovová, Anna; Simpson, Peter; Marchant, Jan; Leidecker, Orsolya; Kraatz, Sebastian; Hay, Ronald T.; Matthews, Steve J.
2014-01-01
The small ubiquitin-like modifier (SUMO) can form polymeric chains that are important signals in cellular processes such as meiosis, genome maintenance and stress response. The SUMO-targeted ubiquitin ligase RNF4 engages with SUMO chains on linked substrates and catalyses their ubiquitination, which targets substrates for proteasomal degradation. Here we use a segmental labelling approach combined with solution nuclear magnetic resonance (NMR) spectroscopy and biochemical characterization to reveal how RNF4 manipulates the conformation of the SUMO chain, thereby facilitating optimal delivery of the distal SUMO domain for ubiquitin transfer. PMID:24969970
An Acetylation Switch Regulates SUMO-Dependent Protein Interaction Networks
Ullmann, Rebecca; Chien, Christopher D.; Avantaggiati, Maria Laura; Muller, Stefan
2013-01-01
SUMMARY The attachment of the SUMO modifier to proteins controls cellular signaling pathways through noncovalent binding to SUMO-interaction motifs (SIMs). Canonical SIMs contain a core of hydrophobic residues that bind to a hydrophobic pocket on SUMO. Negatively charged residues of SIMs frequently contribute to binding by interacting with a basic surface on SUMO. Here we define acetylation within this basic interface as a central mechanism for the control of SUMO-mediated interactions. The acetyl-mediated neutralization of basic charges on SUMO prevents binding to SIMs in PML, Daxx, and PIAS family members but does not affect the interaction between RanBP2 and SUMO. Acetylation is controlled by HDACs and attenuates SUMO- and PIAS-mediated gene silencing. Moreover, it affects the assembly of PML nuclear bodies and restrains the recruitment of the corepressor Daxx to these structures. This acetyl-dependent switch thus expands the regulatory repertoire of SUMO signaling and determines the selectivity and dynamics of SUMO-SIM interactions. PMID:22578841
Mechanical Unfolding Studies on Single-Domain SUMO and Multi-Domain Periplasmic Binding Proteins
NASA Astrophysics Data System (ADS)
Kotamarthi, Hema Chandra; Ainavarapu, Sri Rama Koti
Protein mechanics is a key component of many cellular and sub-cellular processes. The current review focuses on recent studies from our laboratory that probe the effect of sequence on the mechanical stability of structurally similar proteins and the unfolding mechanisms of multi-domain periplasmic binding proteins. Ubiquitin and small ubiquitin-related modifiers (SUMOs) are structurally similar and possess different mechanical stabilities, ubiquitin being stronger than SUMOs as revealed from their unfolding forces. These differences are plausibly due to the variation in number of inter-residue contacts. The unfolding potential widths determined from the pulling speed-dependent studies revealed that SUMOs are mechanically more flexible than ubiquitin. This flexibility of SUMOs plays a role in ligand binding and our single-molecule studies on SUMO interaction with SUMO binding motifs (SBMs) have shown that ligand binding decreases the SUMO flexibility and increases its mechanical stability. Studies on multi-domain periplasmic binding proteins have revealed that the unfolding energy landscape of these proteins is complex and they follow kinetic partitioning between two-state and multiple three-state pathways.
In Vitro Characterization of Chain Depolymerization Activities of SUMO-Specific Proteases.
Eckhoff, Julia; Dohmen, R Jürgen
2016-01-01
SUMO-specific proteases, known as Ulps in baker's yeast and SENPs in humans, have important roles in controlling the dynamics of SUMO-modified proteins. They display distinct modes of action and specificity, in that they may act on the SUMO precursor, mono-sumoylated, and/or polysumoylated proteins, and they might be specific for substrates with certain SUMO paralogs. SUMO chains may be dismantled either by endo or exo mechanisms. Biochemical characterization of a protease usually requires purification of the protein of interest. Developing a purification protocol, however, can be very difficult, and in some cases, isolation of a protease in its pure form may go along with a substantial loss of activity. To characterize the reaction mechanism of Ulps, we have developed an in vitro assay, which makes use of substrates endowed with artificial poly-SUMO chains of defined lengths, and S. cerevisiae Ulp enzymes in crude extract from E. coli. This fast and economic approach should be applicable to SUMO-specific proteases from other species as well.
Distinct Functional Domains of Ubc9 Dictate Cell Survival and Resistance to Genotoxic Stress
van Waardenburg, Robert C. A. M.; Duda, David M.; Lancaster, Cynthia S.; Schulman, Brenda A.; Bjornsti, Mary-Ann
2006-01-01
Covalent modification with SUMO alters protein function, intracellular localization, or protein-protein interactions. Target recognition is determined, in part, by the SUMO E2 enzyme, Ubc9, while Siz/Pias E3 ligases may facilitate select interactions by acting as substrate adaptors. A yeast conditional Ubc9P123L mutant was viable at 36°C yet exhibited enhanced sensitivity to DNA damage. To define functional domains in Ubc9 that dictate cellular responses to genotoxic stress versus those necessary for cell viability, a 1.75-Å structure of yeast Ubc9 that demonstrated considerable conservation of backbone architecture with human Ubc9 was solved. Nevertheless, differences in side chain geometry/charge guided the design of human/yeast chimeras, where swapping domains implicated in (i) binding residues within substrates that flank canonical SUMOylation sites, (ii) interactions with the RanBP2 E3 ligase, and (iii) binding of the heterodimeric E1 and SUMO had distinct effects on cell growth and resistance to DNA-damaging agents. Our findings establish a functional interaction between N-terminal and substrate-binding domains of Ubc9 and distinguish the activities of E3 ligases Siz1 and Siz2 in regulating cellular responses to genotoxic stress. PMID:16782883
Li, Yi-Jia; Perkins, Angela L; Su, Yang; Ma, Yuelong; Colson, Loren; Horne, David A; Chen, Yuan
2012-03-13
Protein-protein interactions mediated by ubiquitin-like (Ubl) modifications occur as mono-Ubl or poly-Ubl chains. Proteins that regulate poly-SUMO (small ubiquitin-like modifier) chain conjugates play important roles in cellular response to DNA damage, such as those caused by cancer radiation therapy. Additionally, high atomic number metals, such as gold, preferentially absorb much more X-ray energy than soft tissues, and thus augment the effect of ionizing radiation when delivered to cells. In this study, we demonstrate that conjugation of a weak SUMO-2/3 ligand to gold nanoparticles facilitated selective multivalent interactions with poly-SUMO-2/3 chains leading to efficient inhibition of poly-SUMO-chain-mediated protein-protein interactions. The ligand-gold particle conjugate significantly sensitized cancer cells to radiation but was not toxic to normal cells. This study demonstrates a viable approach for selective targeting of poly-Ubl chains through multivalent interactions created by nanoparticles that can be chosen based on their properties, such as abilities to augment radiation effects.
Li, Yi-Jia; Perkins, Angela L.; Su, Yang; Ma, Yuelong; Colson, Loren; Horne, David A.; Chen, Yuan
2012-01-01
Protein-protein interactions mediated by ubiquitin-like (Ubl) modifications occur as mono-Ubl or poly-Ubl chains. Proteins that regulate poly-SUMO (small ubiquitin-like modifier) chain conjugates play important roles in cellular response to DNA damage, such as those caused by cancer radiation therapy. Additionally, high atomic number metals, such as gold, preferentially absorb much more X-ray energy than soft tissues, and thus augment the effect of ionizing radiation when delivered to cells. In this study, we demonstrate that conjugation of a weak SUMO-2/3 ligand to gold nanoparticles facilitated selective multivalent interactions with poly-SUMO-2/3 chains leading to efficient inhibition of poly-SUMO-chain-mediated protein-protein interactions. The ligand-gold particle conjugate significantly sensitized cancer cells to radiation but was not toxic to normal cells. This study demonstrates a viable approach for selective targeting of poly-Ubl chains through multivalent interactions created by nanoparticles that can be chosen based on their properties, such as abilities to augment radiation effects. PMID:22388745
Lescasse, Rachel; Pobiega, Sabrina; Callebaut, Isabelle; Marcand, Stéphane
2013-03-20
In eukaryotes, permanent inhibition of the non-homologous end joining (NHEJ) repair pathway at telomeres ensures that chromosome ends do not fuse. In budding yeast, binding of Rap1 to telomere repeats establishes NHEJ inhibition. Here, we show that the Uls1 protein is required for the maintenance of NHEJ inhibition at telomeres. Uls1 protein is a non-essential Swi2/Snf2-related translocase and a Small Ubiquitin-related Modifier (SUMO)-Targeted Ubiquitin Ligase (STUbL) with unknown targets. Loss of Uls1 results in telomere-telomere fusions. Uls1 requirement is alleviated by the absence of poly-SUMO chains and by rap1 alleles lacking SUMOylation sites. Furthermore, Uls1 limits the accumulation of Rap1 poly-SUMO conjugates. We propose that one of Uls1 functions is to clear non-functional poly-SUMOylated Rap1 molecules from telomeres to ensure the continuous efficiency of NHEJ inhibition. Since Uls1 is the only known STUbL with a translocase activity, it can be the general molecular sweeper for the clearance of poly-SUMOylated proteins on DNA in eukaryotes.
Ritterhoff, Tobias; Das, Hrishikesh; Hofhaus, Götz; Schröder, Rasmus R.; Flotho, Annette; Melchior, Frauke
2016-01-01
Continuous cycles of nucleocytoplasmic transport require disassembly of transport receptor/Ran-GTP complexes in the cytoplasm. A basic disassembly mechanism in all eukaryotes depends on soluble RanGAP and RanBP1. In vertebrates, a significant fraction of RanGAP1 stably interacts with the nucleoporin RanBP2 at a binding site that is flanked by FG-repeats and Ran-binding domains, and overlaps with RanBP2's SUMO E3 ligase region. Here, we show that the RanBP2/RanGAP1*SUMO1/Ubc9 complex functions as an autonomous disassembly machine with a preference for the export receptor Crm1. We describe three in vitro reconstituted disassembly intermediates, which show binding of a Crm1 export complex via two FG-repeat patches, cargo-release by RanBP2's Ran-binding domains and retention of free Crm1 at RanBP2 after Ran-GTP hydrolysis. Intriguingly, all intermediates are compatible with SUMO E3 ligase activity, suggesting that the RanBP2/RanGAP1*SUMO1/Ubc9 complex may link Crm1- and SUMO-dependent functions. PMID:27160050
Ahner, Annette; Gong, Xiaoyan; Schmidt, Bela Z.; Peters, Kathryn W.; Rabeh, Wael M.; Thibodeau, Patrick H.; Lukacs, Gergely L.; Frizzell, Raymond A.
2013-01-01
Small heat shock proteins (sHsps) bind destabilized proteins during cell stress and disease, but their physiological functions are less clear. We evaluated the impact of Hsp27, an sHsp expressed in airway epithelial cells, on the common protein misfolding mutant that is responsible for most cystic fibrosis. F508del cystic fibrosis transmembrane conductance regulator (CFTR), a well-studied protein that is subject to cytosolic quality control, selectively associated with Hsp27, whose overexpression preferentially targeted mutant CFTR to proteasomal degradation. Hsp27 interacted physically with Ubc9, the small ubiquitin-like modifier (SUMO) E2 conjugating enzyme, implying that F508del SUMOylation leads to its sHsp-mediated degradation. Enhancing or disabling the SUMO pathway increased or blocked Hsp27’s ability to degrade mutant CFTR. Hsp27 promoted selective SUMOylation of F508del NBD1 in vitro and of full-length F508del CFTR in vivo, which preferred endogenous SUMO-2/3 paralogues that form poly-chains. The SUMO-targeted ubiquitin ligase (STUbL) RNF4 recognizes poly-SUMO chains to facilitate nuclear protein degradation. RNF4 overexpression elicited F508del degradation, whereas Hsp27 knockdown blocked RNF4’s impact on mutant CFTR. Similarly, the ability of Hsp27 to degrade F508del CFTR was lost during overexpression of dominant-negative RNF4. These findings link sHsp-mediated F508del CFTR degradation to its SUMOylation and to STUbL-mediated targeting to the ubiquitin–proteasome system and thereby implicate this pathway in the disposal of an integral membrane protein. PMID:23155000
Inhibition of DNA binding of Sox2 by the SUMO conjugation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuruzoe, Shu; Ishihara, Ko; Uchimura, Yasuhiro
2006-12-29
Sox2 is a member of the high mobility group (HMG) domain DNA-binding proteins for transcriptional control and chromatin architecture. The HMG domain of Sox2 binds the DNA to facilitate transactivation by the cooperative transcription factors such as Oct3/4. We report that mouse Sox2 is modified by SUMO at lysine 247. Substitution of the target lysine to arginine lost the sumoylation but little affected transcriptional potential or nuclear localization of Sox2. By contrast with the unmodified form, Sox2 fused to SUMO-1 did not augment transcription via the Fgf4 enhancer in the presence of Oct3/4. Further, SUMO-1-conjugated Sox2 at the lysine 247more » or at the carboxyl terminus reduced the binding to the Fgf4 enhancer. These indicate that Sox2 sumoylation negatively regulates its transcriptional role through impairing the DNA binding.« less
Stiffening of flexible SUMO1 protein upon peptide-binding: Analysis with anisotropic network model.
Sarkar, Ranja
2018-01-01
SUMO (small ubiquitin-like modifier) proteins interact with a large number of target proteins via a key regulatory event called sumoylation that encompasses activation, conjugation and ligation of SUMO proteins through specific E1, E2, and E3-type enzymes respectively. Single-molecule atomic force microscopic (AFM) experiments performed to unravel bound SUMO1 along its NC termini direction reveal that E3-ligases (in the form of small peptides) increase mechanical stability (along the axis) of the flexible protein upon binding. The experimental results are expected to correlate with the intrinsic flexibility of bound SUMO1 protein in the native state i.e., the bound conformation of SUMO1 without the binding peptide. The native protein flexibility/stiffness can be measured as a spring constant by normal mode analysis. In the present study, protein normal modes are computed from the protein structural data (as input from protein databank) via a simple anisotropic network model (ANM). ANM is computationally inexpensive and hence, can be explored to investigate and compare the native conformational dynamics of unbound and bound (without the binding partner) structures, if the corresponding structural data (NMR/X-ray) are available. The paper illustrates that SUMO1 stiffens (native flexibility decreases) along the NC termini (end-to-end) direction of the protein upon binding to small peptides; however, the degree of stiffening is peptide sequence-specific. The theoretical results are demonstrated for NMR structures of unbound SUMO1 and that bound to two peptides having short amino acid motifs and of similar size, one being an M-IR2 peptide derived from RanBP2 protein and the other one derived from PIASX protein. The peptide derived from PIASX stiffens SUMO1 remarkably which is evident from an atomic-level normal mode analysis. Copyright © 2017 Elsevier Inc. All rights reserved.
Duda, David M.; van Waardenburg, Robert C. A. M.; Borg, Laura A.; McGarity, Sierra; Nourse, Amanda; Waddell, M. Brett; Bjornsti, Mary-Ann; Schulman, Brenda A.
2007-01-01
Summary The SUMO ubiquitin-like proteins play regulatory roles in cell division, transcription, DNA repair, and protein subcellular localization. Paralleling other ubiquitin-like proteins, SUMO proteins are proteolytically processed to maturity, conjugated to targets by E1-E2-E3 cascades, and subsequently recognized by specific downstream effectors containing a SUMO-binding motif (SBM). SUMO and its E2 from the budding yeast S. cerevisiae, Smt3p and Ubc9p, are encoded by essential genes. Here we describe the 1.9 Å resolution crystal structure of a noncovalent Smt3p–Ubc9p complex. Unexpectedly, a heterologous portion of the crystallized complex derived from the expression construct mimics an SBM, and binds Smt3p in a manner resembling SBM binding to human SUMO family members. In the complex, Smt3p binds a surface distal from Ubc9's catalytic cysteine. The structure implies that a single molecule of Smt3p cannot bind concurrently to both the noncovalent binding site and the catalytic cysteine of a single Ubc9p molecule. However, formation of higher-order complexes can occur, where a single Smt3p covalently linked to one Ubc9p's catalytic cysteine also binds noncovalently to another molecule of Ubc9p. Comparison with other structures from the SUMO pathway suggests that formation of the noncovalent Smt3p–Ubc9p complex occurs mutually exclusively with many other Smt3p and Ubc9p interactions in the conjugation cascade. By contrast, high-resolution insights into how Smt3p–Ubc9p can also interact with downstream recognition machineries come from contacts with the SBM mimic. Interestingly, the overall architecture of the Smt3p–Ubc9p complex is strikingly similar to recent structures from the ubiquitin pathway. The results imply that noncovalent ubiquitin-like protein–E2 complexes are conserved platforms, which function as parts of larger assemblies involved many protein post-translational regulatory pathways. PMID:17475278
Poly-Small Ubiquitin-like Modifier (PolySUMO)-binding Proteins Identified through a String Search*
Sun, Huaiyu; Hunter, Tony
2012-01-01
Polysumoylation is a crucial cellular response to stresses against genomic integrity or proteostasis. Like the small ubiquitin-like modifier (SUMO)-targeted ubiquitin ligase RNF4, proteins with clustered SUMO-interacting motifs (SIMs) can be important signal transducers downstream of polysumoylation. To identify novel polySUMO-binding proteins, we conducted a computational string search with a custom Python script. We found clustered SIMs in another RING domain protein Arkadia/RNF111. Detailed biochemical analysis of the Arkadia SIMs revealed that dominant SIMs in a SIM cluster often contain a pentameric VIDLT ((V/I/L/F/Y)(V/I)DLT) core sequence that is also found in the SIMs in PIAS family E3s and is likely the best-fitted structure for SUMO recognition. This idea led to the identification of additional novel SIM clusters in FLASH/CASP8AP2, C5orf25, and SOBP/JXC1. We suggest that the clustered SIMs in these proteins form distinct SUMO binding domains to recognize diverse forms of protein sumoylation. PMID:23086935
Binding properties of SUMO-interacting motifs (SIMs) in yeast.
Jardin, Christophe; Horn, Anselm H C; Sticht, Heinrich
2015-03-01
Small ubiquitin-like modifier (SUMO) conjugation and interaction play an essential role in many cellular processes. A large number of yeast proteins is known to interact non-covalently with SUMO via short SUMO-interacting motifs (SIMs), but the structural details of this interaction are yet poorly characterized. In the present work, sequence analysis of a large dataset of 148 yeast SIMs revealed the existence of a hydrophobic core binding motif and a preference for acidic residues either within or adjacent to the core motif. Thus the sequence properties of yeast SIMs are highly similar to those described for human. Molecular dynamics simulations were performed to investigate the binding preferences for four representative SIM peptides differing in the number and distribution of acidic residues. Furthermore, the relative stability of two previously observed alternative binding orientations (parallel, antiparallel) was assessed. For all SIMs investigated, the antiparallel binding mode remained stable in the simulations and the SIMs were tightly bound via their hydrophobic core residues supplemented by polar interactions of the acidic residues. In contrary, the stability of the parallel binding mode is more dependent on the sequence features of the SIM motif like the number and position of acidic residues or the presence of additional adjacent interaction motifs. This information should be helpful to enhance the prediction of SIMs and their binding properties in different organisms to facilitate the reconstruction of the SUMO interactome.
Structural and Functional Investigations of the N-Terminal Ubiquitin Binding Region of Usp25.
Yang, Yuanyuan; Shi, Li; Ding, Yiluan; Shi, Yanhong; Hu, Hong-Yu; Wen, Yi; Zhang, Naixia
2017-05-23
Ubiquitin-specific protease 25 (Usp25) is a deubiquitinase that is involved in multiple biological processes. The N-terminal ubiquitin-binding region (UBR) of Usp25 contains one ubiquitin-associated domain, one small ubiquitin-like modifier (SUMO)-interacting motif and two ubiquitin-interacting motifs. Previous studies suggest that the covalent sumoylation in the UBR of Usp25 impairs its enzymatic activity. Here, we raise the hypothesis that non-covalent binding of SUMO, a prerequisite for efficient sumoylation, will impair Usp25's catalytic activity as well. To test our hypothesis and elucidate the underlying molecular mechanism, we investigated the structure and function of the Usp25 N-terminal UBR. The solution structure of Usp25 1-146 is obtained, and the key residues responsible for recognition of ubiquitin and SUMO2 are identified. Our data suggest inhibition of Usp25's catalytic activity upon the non-covalent binding of SUMO2 to the Usp25 SUMO-interacting motif. We also find that SUMO2 can competitively block the interaction between the Usp25 UBR and its ubiquitin substrates. Based on our findings, we have proposed a working model to depict the regulatory role of the Usp25 UBR in the functional display of the enzyme. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Lamoliatte, Frederic; Bonneil, Eric; Durette, Chantal; Caron-Lizotte, Olivier; Wildemann, Dirk; Zerweck, Johannes; Wenshuk, Holger; Thibault, Pierre
2013-01-01
Protein modification by small ubiquitin-like modifier (SUMO) modulates the activities of numerous proteins involved in different cellular functions such as gene transcription, cell cycle, and DNA repair. Comprehensive identification of SUMOylated sites is a prerequisite to determine how SUMOylation regulates protein function. However, mapping SUMOylated Lys residues by mass spectrometry (MS) is challenging because of the dynamic nature of this modification, the existence of three functionally distinct human SUMO paralogs, and the large SUMO chain remnant that remains attached to tryptic peptides. To overcome these problems, we created HEK293 cell lines that stably express functional SUMO paralogs with an N-terminal His6-tag and an Arg residue near the C terminus that leave a short five amino acid SUMO remnant upon tryptic digestion. We determined the fragmentation patterns of our short SUMO remnant peptides by collisional activation and electron transfer dissociation using synthetic peptide libraries. Activation using higher energy collisional dissociation on the LTQ-Orbitrap Elite identified SUMO paralog-specific fragment ions and neutral losses of the SUMO remnant with high mass accuracy (< 5 ppm). We exploited these features to detect SUMO modified tryptic peptides in complex cell extracts by correlating mass measurements of precursor and fragment ions using a data independent acquisition method. We also generated bioinformatics tools to retrieve MS/MS spectra containing characteristic fragment ions to the identification of SUMOylated peptide by conventional Mascot database searches. In HEK293 cell extracts, this MS approach uncovered low abundance SUMOylated peptides and 37 SUMO3-modified Lys residues in target proteins, most of which were previously unknown. Interestingly, we identified mixed SUMO-ubiquitin chains with ubiquitylated SUMO proteins (K20 and K32) and SUMOylated ubiquitin (K63), suggesting a complex crosstalk between these two modifications. PMID:23750026
A Fluorescent In Vitro Assay to Investigate Paralog-Specific SUMO Conjugation.
Eisenhardt, Nathalie; Chaugule, Viduth K; Pichler, Andrea
2016-01-01
Protein modification with the small ubiquitin-related modifier SUMO is a potent regulatory mechanism implicated in a variety of biological pathways. In vitro sumoylation reactions have emerged as a versatile tool to identify and characterize novel SUMO enzymes as well as their substrates. Here, we present detailed protocols for the purification and fluorescent labeling of mammalian SUMO paralogs for their application in sumoylation assays. These assays provide a fast readout for in vitro SUMO chain formation activity of E3 ligases in a paralog-specific manner. Finally, we critically analyze the application of fluorescent SUMO proteins to study substrate modification in vitro revealing also the drawbacks of the system.
Engineering pre-SUMO4 as efficient substrate of SENP2.
Liu, Yan; Kieslich, Chris A; Morikis, Dimitrios; Liao, Jiayu
2014-04-01
SUMOylation, one of the most important protein post-translational modifications, plays critical roles in a variety of physiological and pathological processes. SENP (Sentrin/SUMO-specific protease), a family of SUMO-specific proteases, is responsible for the processing of pre-SUMO and removal of SUMO from conjugated substrates. SUMO4, the latest discovered member in the SUMO family, has been found as a type 1 diabetes susceptibility gene and its maturation is not understood so far. Despite the 14 amino acid differences between pre-SUMO4 and SUMO2, pre-SUMO4 is not processed by SENP2 but pre-SUMO2 does. A novel interdisciplinary approach involving computational modeling and a FRET-based protease assay was taken to engineer pre-SUMO4 as a substrate of SENP2. Given the difference in net charge between pre-SUMO4 and pre-SUMO2, the computational framework analysis of electrostatic similarities of proteins was applied to determine the contribution of each ionizable amino acid in a model of SENP2-(pre-SUMO4) binding, and to propose pre-SUMO4 mutations. The specificities of the SENP2 toward different pre-SUMO4 mutants were determined using a quantitative FRET assay by characterizing the catalytic efficiencies (kcat/KM). A single amino acid mutation made pre-SUMO4 amenable to SENP2 processing and a combination of two amino acid mutations made it highly accessible as SENP2 substrate. The combination of the two approaches provides a powerful protein engineering tool for future SUMOylation studies.
Interplay between Ubiquitin, SUMO, and Poly(ADP-Ribose) in the Cellular Response to Genotoxic Stress
Pellegrino, Stefania; Altmeyer, Matthias
2016-01-01
Cells employ a complex network of molecular pathways to cope with endogenous and exogenous genotoxic stress. This multilayered response ensures that genomic lesions are efficiently detected and faithfully repaired in order to safeguard genome integrity. The molecular choreography at sites of DNA damage relies heavily on post-translational modifications (PTMs). Protein modifications with ubiquitin and the small ubiquitin-like modifier SUMO have recently emerged as important regulatory means to coordinate DNA damage signaling and repair. Both ubiquitylation and SUMOylation can lead to extensive chain-like protein modifications, a feature that is shared with yet another DNA damage-induced PTM, the modification of proteins with poly(ADP-ribose) (PAR). Chains of ubiquitin, SUMO, and PAR all contribute to the multi-protein assemblies found at sites of DNA damage and regulate their spatio-temporal dynamics. Here, we review recent advancements in our understanding of how ubiquitin, SUMO, and PAR coordinate the DNA damage response and highlight emerging examples of an intricate interplay between these chain-like modifications during the cellular response to genotoxic stress. PMID:27148359
Lu, Wuguang; Cao, Peng; Lei, Huangzong; Zhang, Shuangquan
2010-03-01
Heparin-binding epidermal growth factor (HB-EGF) can stimulate the division of various cell types and has potential clinical applications that stimulate growth and differentiation. HB-EGF has an EGF-like domain typical of all members of the EGF family. The high expression of active HB-EGF in Escherichia coli has not been successful as the protein contains three intra-molecular disulfide bonds, the same as other members of the EGF super family that are difficult to form correctly in the bacterial intracellular environment. This work fused the non-glycosylated HB-EGF gene with a small ubiquitin-related modifier gene (SUMO) by over-lap PCR. The resulting fusion gene SUMO-HBEGF was highly expressed in BL21(DE3) that the soluble SUMO-HBEGF was up to 30% of the total cellular protein. The fusion protein was purified by Ni-NTA affinity chromatography and cleaved by a SUMO-specific protease Ulp1 to obtain the native HB-EGF, which was further purified by Ni-NTA affinity chromatography. MTT assays indicated the purified HB-EGF, as well as SUMO-HBEGF, had mitogenic activity in a dose-dependent manner.
Yuan, Hao; Zhang, Tao; Liu, Xiaohui; Deng, Min; Zhang, Wenqing; Wen, Zilong; Chen, Saijuan; Chen, Zhu; de The, Hugues; Zhou, Jun; Zhu, Jun
2015-03-11
The small ubiquitin-related modifier (SUMO) participates in various cellular processes, including maintenance of genome integrity, nuclear transport, transcription and signal transduction. However, the biological function of sumoylation in hematopoiesis has not been fully explored. We show here that definitive hematopoietic stem/progenitor cells (HSPCs) are depleted in SUMO-deficient zebrafish embryos. Impairment of sumoylation attenuates HSPC generation and proliferation. The hyposumoylation triggered HSPC defects are CCAAT/enhancer-binding protein α (C/ebpα) dependent. Critically, a SUMO-C/ebpα fusion rescues the defective hematopoiesis in SUMO-deficient embryos, at least in part through restored runx1 expression. While C/ebpα-dependent transcription is involved in myeloid differentiation, our studies here reveal that C/ebpα sumoylation is essential for HSPC development during definitive hematopoiesis.
Yuan, Hao; Zhang, Tao; Liu, Xiaohui; Deng, Min; Zhang, Wenqing; Wen, Zilong; Chen, Saijuan; Chen, Zhu; de The, Hugues; Zhou, Jun; Zhu, Jun
2015-01-01
The small ubiquitin-related modifier (SUMO) participates in various cellular processes, including maintenance of genome integrity, nuclear transport, transcription and signal transduction. However, the biological function of sumoylation in hematopoiesis has not been fully explored. We show here that definitive hematopoietic stem/progenitor cells (HSPCs) are depleted in SUMO-deficient zebrafish embryos. Impairment of sumoylation attenuates HSPC generation and proliferation. The hyposumoylation triggered HSPC defects are CCAAT/enhancer-binding protein α (C/ebpα) dependent. Critically, a SUMO-C/ebpα fusion rescues the defective hematopoiesis in SUMO-deficient embryos, at least in part through restored runx1 expression. While C/ebpα-dependent transcription is involved in myeloid differentiation, our studies here reveal that C/ebpα sumoylation is essential for HSPC development during definitive hematopoiesis. PMID:25757417
Gong, Xiaoyan; Ahner, Annette; Roldan, Ariel; Lukacs, Gergely L; Thibodeau, Patrick H; Frizzell, Raymond A
2016-01-22
A newly identified pathway for selective degradation of the common mutant of the cystic fibrosis transmembrane conductance regulator (CFTR), F508del, is initiated by binding of the small heat shock protein, Hsp27. Hsp27 collaborates with Ubc9, the E2 enzyme for protein SUMOylation, to selectively degrade F508del CFTR via the SUMO-targeted ubiquitin E3 ligase, RNF4 (RING finger protein 4) (1). Here, we ask what properties of CFTR are sensed by the Hsp27-Ubc9 pathway by examining the ability of NBD1 (locus of the F508del mutation) to mimic the disposal of full-length (FL) CFTR. Similar to FL CFTR, F508del NBD1 expression was reduced 50-60% by Hsp27; it interacted preferentially with the mutant and was modified primarily by SUMO-2. Mutation of the consensus SUMOylation site, Lys(447), obviated Hsp27-mediated F508del NBD1 SUMOylation and degradation. As for FL CFTR and NBD1 in vivo, SUMO modification using purified components in vitro was greater for F508del NBD1 versus WT and for the SUMO-2 paralog. Several findings indicated that Hsp27-Ubc9 targets the SUMOylation of a transitional, non-native conformation of F508del NBD1: (a) its modification decreased as [ATP] increased, reflecting stabilization of the nucleotide-binding domain by ligand binding; (b) a temperature-induced increase in intrinsic fluorescence, which reflects formation of a transitional NBD1 conformation, was followed by its SUMO modification; and (c) introduction of solubilizing or revertant mutations to stabilize F508del NBD1 reduced its SUMO modification. These findings indicate that the Hsp27-Ubc9 pathway recognizes a non-native conformation of mutant NBD1, which leads to its SUMO-2 conjugation and degradation by the ubiquitin-proteasome system. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Structural basis for catalytic activation by the human ZNF451 SUMO E3 ligase
Cappadocia, Laurent; Pichler, Andrea; Lima, Christopher D.
2015-11-02
E3 protein ligases enhance transfer of ubiquitin-like (Ubl) proteins from E2 conjugating enzymes to substrates by stabilizing the thioester-charged E2~Ubl in a closed configuration optimally aligned for nucleophilic attack. In this paper, we report biochemical and structural data that define the N-terminal domain of the Homo sapiens ZNF451 as the catalytic module for SUMO E3 ligase activity. The ZNF451 catalytic module contains tandem SUMO-interaction motifs (SIMs) bridged by a Pro-Leu-Arg-Pro (PLRP) motif. The first SIM and PLRP motif engage thioester-charged E2~SUMO while the next SIM binds a second molecule of SUMO bound to the back side of E2. We showmore » that ZNF451 is SUMO2 specific and that SUMO modification of ZNF451 may contribute to activity by providing a second molecule of SUMO that interacts with E2. Finally, our results are consistent with ZNF451 functioning as a bona fide SUMO E3 ligase.« less
Structural basis for catalytic activation by the human ZNF451 SUMO E3 ligase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cappadocia, Laurent; Pichler, Andrea; Lima, Christopher D.
E3 protein ligases enhance transfer of ubiquitin-like (Ubl) proteins from E2 conjugating enzymes to substrates by stabilizing the thioester-charged E2~Ubl in a closed configuration optimally aligned for nucleophilic attack. In this paper, we report biochemical and structural data that define the N-terminal domain of the Homo sapiens ZNF451 as the catalytic module for SUMO E3 ligase activity. The ZNF451 catalytic module contains tandem SUMO-interaction motifs (SIMs) bridged by a Pro-Leu-Arg-Pro (PLRP) motif. The first SIM and PLRP motif engage thioester-charged E2~SUMO while the next SIM binds a second molecule of SUMO bound to the back side of E2. We showmore » that ZNF451 is SUMO2 specific and that SUMO modification of ZNF451 may contribute to activity by providing a second molecule of SUMO that interacts with E2. Finally, our results are consistent with ZNF451 functioning as a bona fide SUMO E3 ligase.« less
A high throughput mutagenic analysis of yeast sumo structure and function
Newman, Heather A.; Lu, Jian; Carson, Caryn; Boeke, Jef D.
2017-01-01
Sumoylation regulates a wide range of essential cellular functions through diverse mechanisms that remain to be fully understood. Using S. cerevisiae, a model organism with a single essential SUMO gene (SMT3), we developed a library of >250 mutant strains with single or multiple amino acid substitutions of surface or core residues in the Smt3 protein. By screening this library using plate-based assays, we have generated a comprehensive structure-function based map of Smt3, revealing essential amino acid residues and residues critical for function under a variety of genotoxic and proteotoxic stress conditions. Functionally important residues mapped to surfaces affecting Smt3 precursor processing and deconjugation from protein substrates, covalent conjugation to protein substrates, and non-covalent interactions with E3 ligases and downstream effector proteins containing SUMO-interacting motifs. Lysine residues potentially involved in formation of polymeric chains were also investigated, revealing critical roles for polymeric chains, but redundancy in specific chain linkages. Collectively, our findings provide important insights into the molecular basis of signaling through sumoylation. Moreover, the library of Smt3 mutants represents a valuable resource for further exploring the functions of sumoylation in cellular stress response and other SUMO-dependent pathways. PMID:28166236
Tsutakawa, Susan E; Yan, Chunli; Xu, Xiaojun; Weinacht, Christopher P; Freudenthal, Bret D; Yang, Kun; Zhuang, Zhihao; Washington, M Todd; Tainer, John A; Ivanov, Ivaylo
2015-04-07
Proliferating cell nuclear antigen (PCNA) is a pivotal replication protein, which also controls cellular responses to DNA damage. Posttranslational modification of PCNA by SUMO and ubiquitin modulate these responses. How the modifiers alter PCNA-dependent DNA repair and damage tolerance pathways is largely unknown. We used hybrid methods to identify atomic models of PCNAK107-Ub and PCNAK164-SUMO consistent with small-angle X-ray scattering data of these complexes in solution. We show that SUMO and ubiquitin have distinct modes of association to PCNA. Ubiquitin adopts discrete docked binding positions. By contrast, SUMO associates by simple tethering and adopts extended flexible conformations. These structural differences are the result of the opposite electrostatic potentials of SUMO and Ub. The unexpected contrast in conformational behavior of Ub-PCNA and SUMO-PCNA has implications for interactions with partner proteins, interacting surfaces accessibility, and access points for pathway regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tsutakawa, Susan E.; Yan, Chunli; Xu, Xiaojun; ...
2015-03-12
Proliferating cell nuclear antigen (PCNA) is a pivotal replication protein, which also controls cellular responses to DNA damage. Posttranslational modification of PCNA by SUMO and ubiquitin modulate these responses. How the modifiers alter PCNA-dependent DNA repair and damage tolerance pathways is largely unknown. Here, we used hybrid methods to identify atomic models of PCNA K107-Ub and PCNA K164-SUMO consistent with small-angle X-ray scattering data of these complexes in solution. We show that SUMO and ubiquitin have distinct modes of association to PCNA. Ubiquitin adopts discrete docked binding positions. By contrast, SUMO associates by simple tethering and adopts extended flexible conformations.more » These structural differences are the result of the opposite electrostatic potentials of SUMO and Ub. In conclusion, the unexpected contrast in conformational behavior of Ub-PCNA and SUMO-PCNA has implications for interactions with partner proteins, interacting surfaces accessibility, and access points for pathway regulation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu Shanshan; Zhang Hong; Matunis, Michael J.
SUMOs (small ubiquitin-related modifiers) are eukaryotic proteins that are covalently conjugated to other proteins and thereby regulate a wide range of important cellular processes. The molecular mechanisms by which SUMO modification influences the functions of most target proteins and cellular processes, however, remain poorly defined. A major obstacle to investigating the effects of SUMO modification is the availability of a system for selectively inducing the modification or demodification of an individual protein. To address this problem, we have developed a procedure using the rapamycin heterodimerizer system. This procedure involves co-expression of rapamycin-binding domain fusion proteins of SUMO and candidate SUMOmore » substrates in living cells. Treating cells with rapamycin induces a tight association between SUMO and a single SUMO substrate, thereby allowing specific downstream effects to be analyzed. Using RanGAP1 as a model SUMO substrate, the heterodimerizer system was used to investigate the molecular mechanism by which SUMO modification targets RanGAP1 from the cytoplasm to nuclear pore complexes (NPCs). Our results revealed a dual role for Ubc9 in targeting RanGAP1 to NPCs: In addition to conjugating SUMO-1 to RanGAP1, Ubc9 is also required to form a stable ternary complex with SUMO-1 modified RanGAP1 and Nup358. As illustrated by our studies, the rapamycin heterodimerizer system represents a novel tool for studying the molecular effects of SUMO modification.« less
NASA Astrophysics Data System (ADS)
Pfammatter, Sibylle; Bonneil, Eric; McManus, Francis P.; Thibault, Pierre
2018-04-01
The small ubiquitin-like modifier (SUMO) is a member of the family of ubiquitin-like modifiers (UBLs) and is involved in important cellular processes, including DNA damage response, meiosis and cellular trafficking. The large-scale identification of SUMO peptides in a site-specific manner is challenging not only because of the low abundance and dynamic nature of this modification, but also due to the branched structure of the corresponding peptides that further complicate their identification using conventional search engines. Here, we exploited the unusual structure of SUMO peptides to facilitate their separation by high-field asymmetric waveform ion mobility spectrometry (FAIMS) and increase the coverage of SUMO proteome analysis. Upon trypsin digestion, branched peptides contain a SUMO remnant side chain and predominantly form triply protonated ions that facilitate their gas-phase separation using FAIMS. We evaluated the mobility characteristics of synthetic SUMO peptides and further demonstrated the application of FAIMS to profile the changes in protein SUMOylation of HEK293 cells following heat shock, a condition known to affect this modification. FAIMS typically provided a 10-fold improvement of detection limit of SUMO peptides, and enabled a 36% increase in SUMO proteome coverage compared to the same LC-MS/MS analyses performed without FAIMS. [Figure not available: see fulltext.
Chymkowitch, Pierre; Nguéa P, Aurélie; Aanes, Håvard; Koehler, Christian J.; Thiede, Bernd; Lorenz, Susanne; Meza-Zepeda, Leonardo A.; Klungland, Arne; Enserink, Jorrit M.
2015-01-01
Transcription factors are abundant Sumo targets, yet the global distribution of Sumo along the chromatin and its physiological relevance in transcription are poorly understood. Using Saccharomyces cerevisiae, we determined the genome-wide localization of Sumo along the chromatin. We discovered that Sumo-enriched genes are almost exclusively involved in translation, such as tRNA genes and ribosomal protein genes (RPGs). Genome-wide expression analysis showed that Sumo positively regulates their transcription. We also discovered that the Sumo consensus motif at RPG promoters is identical to the DNA binding motif of the transcription factor Rap1. We demonstrate that Rap1 is a molecular target of Sumo and that sumoylation of Rap1 is important for cell viability. Furthermore, Rap1 sumoylation promotes recruitment of the basal transcription machinery, and sumoylation of Rap1 cooperates with the target of rapamycin kinase complex 1 (TORC1) pathway to promote RPG transcription. Strikingly, our data reveal that sumoylation of Rap1 functions in a homeostatic feedback loop that sustains RPG transcription during translational stress. Taken together, Sumo regulates the cellular translational capacity by promoting transcription of tRNA genes and RPGs. PMID:25800674
SUMOylation Regulates the Homologous to E6-AP Carboxyl Terminus (HECT) Ubiquitin Ligase Rsp5p*
Novoselova, Tatiana Vladislavovna; Rose, Ruth-Sarah; Marks, Helen Margaret; Sullivan, James Andrew
2013-01-01
The post-translational modifiers ubiquitin and small ubiquitin-related modifier (SUMO) regulate numerous critical signaling pathways and are key to controlling the cellular fate of proteins in eukaryotes. The attachment of ubiquitin and SUMO involves distinct, but related, machinery. However, it is now apparent that many substrates can be modified by both ubiquitin and SUMO and that some regulatory interaction takes place between the respective attachment machinery. Here, we demonstrate that the Saccharomyces cerevisiae ubiquitin ligase Rsp5p, a member of the highly conserved Nedd4 family of ubiquitin ligases, is SUMOylated in vivo. We further show that Rsp5p SUMOylation is mediated by the SUMO ligases Siz1p and Siz2p, members of the conserved family of PIAS SUMO ligases that are, in turn, substrates for Rsp5p-mediated ubiquitylation. Our experiments show that SUMOylated Rsp5p has reduced ubiquitin ligase activity, and similarly, ubiquitylated Siz1p demonstrates reduced SUMO ligase activity leading to respective changes in both ubiquitin-mediated sorting of the manganese transporter Smf1p and polySUMO chain formation. This reciprocal regulation of these highly conserved ligases represents an exciting and previously unidentified system of cross talk between the ubiquitin and SUMO systems. PMID:23443663
Yang, Wan-Shan; Hsu, Hung-Wei; Campbell, Mel; Cheng, Chia-Yang; Chang, Pei-Ching
2015-01-01
SUMOylation is associated with epigenetic regulation of chromatin structure and transcription. Epigenetic modifications of herpesviral genomes accompany the transcriptional switch of latent and lytic genes during the virus life cycle. Here, we report a genome-wide comparison of SUMO paralog modification on the KSHV genome. Using chromatin immunoprecipitation in conjunction with high-throughput sequencing, our study revealed highly distinct landscape changes of SUMO paralog genomic modifications associated with KSHV reactivation. A rapid and widespread deposition of SUMO-2/3, compared with SUMO-1, modification across the KSHV genome upon reactivation was observed. Interestingly, SUMO-2/3 enrichment was inversely correlated with H3K9me3 mark after reactivation, indicating that SUMO-2/3 may be responsible for regulating the expression of viral genes located in low heterochromatin regions during viral reactivation. RNA-sequencing analysis showed that the SUMO-2/3 enrichment pattern positively correlated with KSHV gene expression profiles. Activation of KSHV lytic genes located in regions with high SUMO-2/3 enrichment was enhanced by SUMO-2/3 knockdown. These findings suggest that SUMO-2/3 viral chromatin modification contributes to the diminution of viral gene expression during reactivation. Our previous study identified a SUMO-2/3-specific viral E3 ligase, K-bZIP, suggesting a potential role of this enzyme in regulating SUMO-2/3 enrichment and viral gene repression. Consistent with this prediction, higher K-bZIP binding on SUMO-2/3 enrichment region during reactivation was observed. Moreover, a K-bZIP SUMO E3 ligase dead mutant, K-bZIP-L75A, in the viral context, showed no SUMO-2/3 enrichment on viral chromatin and higher expression of viral genes located in SUMO-2/3 enriched regions during reactivation. Importantly, virus production significantly increased in both SUMO-2/3 knockdown and KSHV K-bZIP-L75A mutant cells. These results indicate that SUMO-2/3 modification of viral chromatin may function to counteract KSHV reactivation. As induction of herpesvirus reactivation may activate cellular antiviral regimes, our results suggest that development of viral SUMO E3 ligase specific inhibitors may be an avenue for anti-virus therapy. PMID:26197391
Yan, Qin; Gong, Lili; Deng, Mi; Zhang, Lan; Sun, Shuming; Liu, Jiao; Ma, Haili; Yuan, Dan; Chen, Pei-Chao; Hu, Xiaohui; Liu, Jinping; Qin, Jichao; Xiao, Ling; Huang, Xiao-Qin; Zhang, Jian; Wan-Cheng Li, David
2010-01-01
Pax-6 is an evolutionarily conserved transcription factor regulating brain and eye development. Four Pax-6 isoforms have been reported previously. Although the longer Pax-6 isoforms (p46 and p48) bear two DNA-binding domains, the paired domain (PD) and the homeodomain (HD), the shorter Pax-6 isoform p32 contains only the HD for DNA binding. Although a third domain, the proline-, serine- and threonine-enriched activation (PST) domain, in the C termini of all Pax-6 isoforms mediates their transcriptional modulation via phosphorylation, how p32 Pax-6 could regulate target genes remains to be elucidated. In the present study, we show that sumoylation at K91 is required for p32 Pax-6 to bind to a HD-specific site and regulate expression of target genes. First, in vitro-synthesized p32 Pax-6 alone cannot bind the P3 sequence, which contains the HD recognition site, unless it is preincubated with nuclear extracts precleared by anti–Pax-6 but not by anti-small ubiquitin-related modifier 1 (anti-SUMO1) antibody. Second, in vitro-synthesized p32 Pax-6 can be sumoylated by SUMO1, and the sumoylated p32 Pax-6 then can bind to the P3 sequence. Third, Pax-6 and SUMO1 are colocalized in the embryonic optic and lens vesicles and can be coimmunoprecipitated. Finally, SUMO1-conjugated p32 Pax-6 exists in both the nucleus and cytoplasm, and sumoylation significantly enhances the DNA-binding ability of p32 Pax-6 and positively regulates gene expression. Together, our results demonstrate that sumoylation activates p32 Pax-6 in both DNA-binding and transcriptional activities. In addition, our studies demonstrate that p32 and p46 Pax-6 possess differential DNA-binding and regulatory activities. PMID:21084637
Chymkowitch, Pierre; Nguéa, Aurélie P; Aanes, Håvard; Koehler, Christian J; Thiede, Bernd; Lorenz, Susanne; Meza-Zepeda, Leonardo A; Klungland, Arne; Enserink, Jorrit M
2015-06-01
Transcription factors are abundant Sumo targets, yet the global distribution of Sumo along the chromatin and its physiological relevance in transcription are poorly understood. Using Saccharomyces cerevisiae, we determined the genome-wide localization of Sumo along the chromatin. We discovered that Sumo-enriched genes are almost exclusively involved in translation, such as tRNA genes and ribosomal protein genes (RPGs). Genome-wide expression analysis showed that Sumo positively regulates their transcription. We also discovered that the Sumo consensus motif at RPG promoters is identical to the DNA binding motif of the transcription factor Rap1. We demonstrate that Rap1 is a molecular target of Sumo and that sumoylation of Rap1 is important for cell viability. Furthermore, Rap1 sumoylation promotes recruitment of the basal transcription machinery, and sumoylation of Rap1 cooperates with the target of rapamycin kinase complex 1 (TORC1) pathway to promote RPG transcription. Strikingly, our data reveal that sumoylation of Rap1 functions in a homeostatic feedback loop that sustains RPG transcription during translational stress. Taken together, Sumo regulates the cellular translational capacity by promoting transcription of tRNA genes and RPGs. © 2015 Chymkowitch et al.; Published by Cold Spring Harbor Laboratory Press.
SUMO-Modification of the La Protein Facilitates Binding to mRNA In Vitro and in Cells.
Kota, Venkatesh; Sommer, Gunhild; Durette, Chantal; Thibault, Pierre; van Niekerk, Erna A; Twiss, Jeffery L; Heise, Tilman
2016-01-01
The RNA-binding protein La is involved in several aspects of RNA metabolism including the translational regulation of mRNAs and processing of pre-tRNAs. Besides its well-described phosphorylation by Casein kinase 2, the La protein is also posttranslationally modified by the Small Ubiquitin-like MOdifier (SUMO), but the functional outcome of this modification has not been defined. The objective of this study was to test whether sumoylation changes the RNA-binding activity of La. Therefore, we established an in vitro sumoylation assay for recombinant human La and analyzed its RNA-binding activity by electrophoretic mobility shift assays. We identified two novel SUMO-acceptor sites within the La protein located between the RNA recognition motif 1 and 2 and we demonstrate for the first time that sumoylation facilitates the RNA-binding of La to small RNA oligonucleotides representing the oligopyrimidine tract (TOP) elements from the 5' untranslated regions (UTR) of mRNAs encoding ribosomal protein L22 and L37 and to a longer RNA element from the 5' UTR of cyclin D1 (CCND1) mRNA in vitro. Furthermore, we show by RNA immunoprecipitation experiments that a La mutant deficient in sumoylation has impaired RNA-binding activity in cells. These data suggest that modulating the RNA-binding activity of La by sumoylation has important consequences on its functionality.
SUMO-Modification of the La Protein Facilitates Binding to mRNA In Vitro and in Cells
Kota, Venkatesh; Sommer, Gunhild; Durette, Chantal; Thibault, Pierre; van Niekerk, Erna A.; Twiss, Jeffery L.
2016-01-01
The RNA-binding protein La is involved in several aspects of RNA metabolism including the translational regulation of mRNAs and processing of pre-tRNAs. Besides its well-described phosphorylation by Casein kinase 2, the La protein is also posttranslationally modified by the Small Ubiquitin-like MOdifier (SUMO), but the functional outcome of this modification has not been defined. The objective of this study was to test whether sumoylation changes the RNA-binding activity of La. Therefore, we established an in vitro sumoylation assay for recombinant human La and analyzed its RNA-binding activity by electrophoretic mobility shift assays. We identified two novel SUMO-acceptor sites within the La protein located between the RNA recognition motif 1 and 2 and we demonstrate for the first time that sumoylation facilitates the RNA-binding of La to small RNA oligonucleotides representing the oligopyrimidine tract (TOP) elements from the 5’ untranslated regions (UTR) of mRNAs encoding ribosomal protein L22 and L37 and to a longer RNA element from the 5’ UTR of cyclin D1 (CCND1) mRNA in vitro. Furthermore, we show by RNA immunoprecipitation experiments that a La mutant deficient in sumoylation has impaired RNA-binding activity in cells. These data suggest that modulating the RNA-binding activity of La by sumoylation has important consequences on its functionality. PMID:27224031
Brohi, Rahim Dad; Wang, Li; Hassine, Najla Ben; Cao, Jing; Talpur, Hira Sajjad; Wu, Di; Huang, Chun-Jie; Rehman, Zia-Ur; Bhattarai, Dinesh; Huo, Li-Jun
2017-01-01
Mature spermatozoa have highly condensed DNA that is essentially silent both transcriptionally and translationally. Therefore, post translational modifications are very important for regulating sperm motility, morphology, and for male fertility in general. Protein sumoylation was recently demonstrated in human and rodent spermatozoa, with potential consequences for sperm motility and DNA integrity. We examined the expression and localization of small ubiquitin-related modifier-1 (SUMO-1) in the sperm of water buffalo (Bubalus bubalis) using immunofluorescence analysis. We confirmed the expression of SUMO-1 in the acrosome. We further found that SUMO-1 was lost if the acrosome reaction was induced by calcium ionophore A23187. Proteins modified or conjugated by SUMO-1 in water buffalo sperm were pulled down and analyzed by mass spectrometry. Sixty proteins were identified, including proteins important for sperm morphology and motility, such as relaxin receptors and cytoskeletal proteins, including tubulin chains, actins, and dyneins. Forty-six proteins were predicted as potential sumoylation targets. The expression of SUMO-1 in the acrosome region of water buffalo sperm and the identification of potentially SUMOylated proteins important for sperm function implicates sumoylation as a crucial PTM related to sperm function. PMID:28659810
SUMOylation of DRIL1 Directs Its Transcriptional Activity Towards Leukocyte Lineage-Specific Genes
van Lohuizen, Maarten; Peeper, Daniel S.
2009-01-01
DRIL1 is an ARID family transcription factor that can immortalize primary mouse fibroblasts, bypass RASV12-induced cellular senescence and collaborate with RASV12 or MYC in mediating oncogenic transformation. It also activates immunoglobulin heavy chain transcription and engages in heterodimer formation with E2F to stimulate E2F-dependent transcription. Little, however, is known about the regulation of DRIL1 activity. Recently, DRIL1 was found to interact with the SUMO-conjugating enzyme Ubc9, but the functional relevance of this association has not been assessed. Here, we show that DRIL1 is sumoylated both in vitro and in vivo at lysine 398. Moreover, we provide evidence that PIASy functions as a specific SUMO E3-ligase for DRIL1 and promotes its sumoylation both in vitro and in vivo. Furthermore, consistent with the subnuclear localization of PIASy in the Matrix-Associated Region (MAR), SUMO-modified DRIL1 species are found exclusively in the MAR fraction. This post-translational modification interferes neither with the subcellular localization nor the DNA-binding activity of the protein. In contrast, DRIL1 sumoylation impairs its interaction with E2F1 in vitro and modifies its transcriptional activity in vivo, driving transcription of subset of genes regulating leukocyte fate. Taken together, these results identify sumoylation as a novel post-translational modification of DRIL1 that represents an important mechanism for targeting and modulating DRIL1 transcriptional activity. PMID:19436740
Expression and characterization of an enhanced recombinant heparinase I with chitin binding domain.
Xu, Shuqin; Qiu, Meiling; Zhang, Xuanyue; Chen, Jinghua
2017-12-01
Heparinase I (Hep I) can efficiently depolymerize heparin and heparin sulfate to oligosaccharides or unsaturated disaccharides, which resulted in loss of physiological function such as blood coagulation. In order to realize the immobilization of Hep I on chitin carriers, we cloned Hep I with the chitin binding domain (ChBD) as a chitin-affinity tag, and the Small Ubiquitin-like MOdifier (SUMO) linker as a solvation enhancer in different fusion sequence. DNA and protein gels suggested that 4 kinds of recombinants were successfully constructed and expressed in Escherichia coli (E. coli). And the triple functional heparinases isolated from cell lysate could be efficiently purified by chitin beads. After optimizing fermentation conditions, it gave the specific enzyme activities of 1.88±0.11, 3.69±0.45, 3.44±0.38, and 2.73±0.29IU/mg total proteins for ChBD-Hep I, ChBD-SUMO-Hep I, SUMO-ChBD-Hep I, and ChBD-Hep I-SUMO, respectively, with unfractionated heparin as substrate. The optimal reaction temperature and pH were determined to be 30°C and 7.0 for all the fusion enzymes. ChBD-SUMO-Hep I exhibited the maximum half-life (48min) at 30°C and best thermo-stability under 15-50°C. All the fusion enzymes showed broad pH-stability in the range of 5.4-9.0. Copyright © 2017 Elsevier B.V. All rights reserved.
Identification of sumoylation activating enzyme 1 inhibitors by structure-based virtual screening.
Kumar, Ashutosh; Ito, Akihiro; Hirohama, Mikako; Yoshida, Minoru; Zhang, Kam Y J
2013-04-22
SUMO activating enzyme 1 (SUMO E1) is responsible for the activation of SUMO in the first step of the sumoylation cascade. SUMO E1 is linked to many human diseases including cancer, thus making it a potential therapeutic target. There are few reported SUMO E1 inhibitors including several natural products. To identify small molecule inhibitors of SUMO E1 with better drug-like properties for potential therapeutic studies, we have used structure-based virtual screening to identify hits from the Maybridge small molecule library for biological assay. Our virtual screening protocol involves fast docking of the entire small molecule library with rigid protein and ligands followed by redocking of top hits using a method that incorporates both ligand and protein flexibility. Subsequently, the top-ranking compounds were prioritized using the molecular dynamics simulation-based binding free energy calculation. Out of 24 compounds that were acquired and tested using in vitro sumoylation assay, four of them showed more than 85% inhibition of sumoylation with the most active compound showing an IC50 of 14.4 μM. A similarity search with the most active compound in the ZINC database has identified three more compounds with improved potency. These compounds share a common phenyl urea scaffold and have been confirmed to inhibit SUMO E1 by in vitro SUMO-1 thioester bond formation assay. Our study suggests that these phenyl urea compounds could be used as a starting point for the development of novel therapeutic agents.
PML IV/ARF interaction enhances p53 SUMO-1 conjugation, activation, and senescence
Ivanschitz, Lisa; Takahashi, Yuki; Jollivet, Florence; Ayrault, Olivier; Le Bras, Morgane; de Thé, Hugues
2015-01-01
Promyelocytic leukemia protein (PML) nuclear bodies (NBs) recruit multiple partners, including p53 and many of its regulators. NBs are believed to facilitate several posttranslational modifications and are key regulators of senescence. PML, the organizer of NBs, is expressed as a number of splice variants that all efficiently recruit p53 partners. However, overexpression of only one of them, PML IV, triggers p53-driven senescence. Here, we show that PML IV specifically binds ARF, a key p53 regulator. Similar to ARF, PML IV enhances global SUMO-1 conjugation, particularly that of p53, resulting in p53 stabilization and activation. ARF interacts with and stabilizes the NB-associated UBC9 SUMO-conjugating enzyme, possibly explaining PML IV-enhanced SUMOylation. These results unexpectedly link two key tumor suppressors, highlighting their convergence for global control of SUMO conjugation, p53 activation, and senescence induction. PMID:26578773
RAP80, ubiquitin and SUMO in the DNA damage response.
Lombardi, Patrick M; Matunis, Michael J; Wolberger, Cynthia
2017-08-01
A decade has passed since the first reported connection between RAP80 and BRCA1 in DNA double-strand break repair. Despite the initial identification of RAP80 as a factor localizing BRCA1 to DNA double-strand breaks and potentially promoting homologous recombination, there is increasing evidence that RAP80 instead suppresses homologous recombination to fine-tune the balance of competing DNA repair processes during the S/G 2 phase of the cell cycle. RAP80 opposes homologous recombination by inhibiting DNA end-resection and sequestering BRCA1 into the BRCA1-A complex. Ubiquitin and SUMO modifications of chromatin at DNA double-strand breaks recruit RAP80, which contains distinct sequence motifs that recognize ubiquitin and SUMO. Here, we review RAP80's role in repressing homologous recombination at DNA double-strand breaks and how this role is facilitated by its ability to bind ubiquitin and SUMO modifications.
PML IV/ARF interaction enhances p53 SUMO-1 conjugation, activation, and senescence.
Ivanschitz, Lisa; Takahashi, Yuki; Jollivet, Florence; Ayrault, Olivier; Le Bras, Morgane; de Thé, Hugues
2015-11-17
Promyelocytic leukemia protein (PML) nuclear bodies (NBs) recruit multiple partners, including p53 and many of its regulators. NBs are believed to facilitate several posttranslational modifications and are key regulators of senescence. PML, the organizer of NBs, is expressed as a number of splice variants that all efficiently recruit p53 partners. However, overexpression of only one of them, PML IV, triggers p53-driven senescence. Here, we show that PML IV specifically binds ARF, a key p53 regulator. Similar to ARF, PML IV enhances global SUMO-1 conjugation, particularly that of p53, resulting in p53 stabilization and activation. ARF interacts with and stabilizes the NB-associated UBC9 SUMO-conjugating enzyme, possibly explaining PML IV-enhanced SUMOylation. These results unexpectedly link two key tumor suppressors, highlighting their convergence for global control of SUMO conjugation, p53 activation, and senescence induction.
Yousef, A F; Fonseca, G J; Pelka, P; Ablack, J N G; Walsh, C; Dick, F A; Bazett-Jones, D P; Shaw, G S; Mymryk, J S
2010-08-19
Hub proteins have central roles in regulating cellular processes. By targeting a single cellular hub, a viral oncogene may gain control over an entire module in the cellular interaction network that is potentially comprised of hundreds of proteins. The adenovirus E1A oncoprotein is a viral hub that interacts with many cellular hub proteins by short linear motifs/molecular recognition features (MoRFs). These interactions transform the architecture of the cellular protein interaction network and virtually reprogram the cell. To identify additional MoRFs within E1A, we screened portions of E1A for their ability to activate yeast pseudohyphal growth or differentiation. This identified a novel functional region within E1A conserved region 2 comprised of the sequence EVIDLT. This MoRF is necessary and sufficient to bind the N-terminal region of the SUMO conjugase UBC9, which also interacts with SUMO noncovalently and is involved in polySUMOylation. Our results suggest that E1A interferes with polySUMOylation, but not with monoSUMOylation. These data provide the first insight into the consequences of the interaction of E1A with UBC9, which was initially described in 1996. We further demonstrate that polySUMOylation regulates pseudohyphal growth and promyelocytic leukemia body reorganization by E1A. In conclusion, the interaction of the E1A oncogene with UBC9 mimics the normal binding between SUMO and UBC9 and represents a novel mechanism to modulate polySUMOylation.
Winton, Alexander J; Baptiste, Janae L; Allen, Mark A
2018-09-01
Proteins and polypeptides represent nature's most complex and versatile polymer. They provide complicated shapes, diverse chemical functionalities, and tightly regulated and controlled sizes. Several disease states are related to the misfolding or overproduction of polypeptides and yet polypeptides are present in several therapeutic molecules. In addition to biological roles; short chain polypeptides have been shown to interact with and drive the bio-inspired synthesis or modification of inorganic materials. This paper outlines the development of a versatile cloning vector which allows for the expression of a short polypeptide by controlling the incorporation of a desired DNA coding insert. As a demonstration of the efficacy of the expression system, a solid binding polypeptide identified from M13 phage display was expressed and purified. The solid binding polypeptide was expressed as a soluble 6xHis-SUMO tagged construct. Expression was performed in E. coli using auto-induction followed by Ni-NTA affinity chromatography and ULP1 protease cleavage. Methodology demonstrates the production of greater than 8 mg of purified polypeptide per liter of E. coli culture. Isotopic labeling of the peptide is also demonstrated. The versatility of the designed cloning vector, use of the 6xHis-SUMO solubility partner, bacterial expression in auto-inducing media and the purification methodology make this expressionun vector a readily scalable and user-friendly system for the creation of desired peptide domains. Copyright © 2018. Published by Elsevier Inc.
Protein SUMOylation is Involved in Cell-cycle Progression and Cell Morphology in Giardia lamblia.
Di Genova, Bruno M; da Silva, Richard C; da Cunha, Júlia P C; Gargantini, Pablo R; Mortara, Renato A; Tonelli, Renata R
2017-07-01
The unicellular protozoa Giardia lamblia is a food- and waterborne parasite that causes giardiasis. This illness is manifested as acute and self-limited diarrhea and can evolve to long-term complications. Successful establishment of infection by Giardia trophozoites requires adhesion to host cells and colonization of the small intestine, where parasites multiply by mitotic division. The tight binding of trophozoites to host cells occurs by means of the ventral adhesive disc, a spiral array of microtubules and associated proteins such as giardins. In this work we show that knock down of the Small Ubiquitin-like MOdifier (SUMO) results in less adhesive trophzoites, decreased cell proliferation and deep morphological alterations, including at the ventral disc. Consistent with the reduced proliferation, SUMO knocked-down trophozoites were arrested in G1 and in S phases of the cell cycle. Mass spectrometry analysis of anti-SUMO immunoprecipitates was performed to identify SUMO substrates possibly involved in these events. Among the identified SUMOylation targets, α-tubulin was further validated by Western blot and confirmed to be a SUMO target in Giardia trophozoites. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.
Zhang, Dongyun; Liang, Yuguang; Xie, Qipeng; Gao, Guangxun; Wei, Jinlong; Huang, Haishan; Li, Jingxia; Gao, Jimin; Huang, Chuanshu
2015-01-01
Nucleolin is a ubiquitously expressed protein and participates in many important biological processes, such as cell cycle regulation and ribosomal biogenesis. The activity of nucleolin is regulated by intracellular localization and post-translational modifications, including phosphorylation, methylation, and ADP-ribosylation. Small ubiquitin-like modifier (SUMO) is a category of recently verified forms of post-translational modifications and exerts various effects on the target proteins. In the studies reported here, we discovered SUMOylational modification of human nucleolin protein at Lys-294, which facilitated the mRNA binding property of nucleolin by maintaining its nuclear localization. In response to arsenic exposure, nucleolin-SUMO was induced and promoted its binding with gadd45α mRNA, which increased gadd45α mRNA stability and protein expression, subsequently causing GADD45α-mediated cell death. On the other hand, ectopic expression of Mn-SOD attenuated the arsenite-generated superoxide radical level, abrogated nucleolin-SUMO, and in turn inhibited arsenite-induced apoptosis by reducing GADD45α expression. Collectively, our results for the first time demonstrate that nucleolin-SUMO at K294R plays a critical role in its nucleus sequestration and gadd45α mRNA binding activity. This novel biological function of nucleolin is distinct from its conventional role as a proto-oncogene. Therefore, our findings here not only reveal a new modification of nucleolin protein and its novel functional paradigm in mRNA metabolism but also expand our understanding of the dichotomous roles of nucleolin in terms of cancer development, which are dependent on multiple intracellular conditions and consequently the appropriate regulations of its modifications, including SUMOylation. PMID:25561743
Tandem SUMO fusion vectors for improving soluble protein expression and purification.
Guerrero, Fernando; Ciragan, Annika; Iwaï, Hideo
2015-12-01
Availability of highly purified proteins in quantity is crucial for detailed biochemical and structural investigations. Fusion tags are versatile tools to facilitate efficient protein purification and to improve soluble overexpression of proteins. Various purification and fusion tags have been widely used for overexpression in Escherichia coli. However, these tags might interfere with biological functions and/or structural investigations of the protein of interest. Therefore, an additional purification step to remove fusion tags by proteolytic digestion might be required. Here, we describe a set of new vectors in which yeast SUMO (SMT3) was used as the highly specific recognition sequence of ubiquitin-like protease 1, together with other commonly used solubility enhancing proteins, such as glutathione S-transferase, maltose binding protein, thioredoxin and trigger factor for optimizing soluble expression of protein of interest. This tandem SUMO (T-SUMO) fusion system was tested for soluble expression of the C-terminal domain of TonB from different organisms and for the antiviral protein scytovirin. Copyright © 2015 Elsevier Inc. All rights reserved.
Viral Mimicry to Usurp Ubiquitin and SUMO Host Pathways
Wimmer, Peter; Schreiner, Sabrina
2015-01-01
Posttranslational modifications (PTMs) of proteins include enzymatic changes by covalent addition of cellular regulatory determinants such as ubiquitin (Ub) and small ubiquitin-like modifier (SUMO) moieties. These modifications are widely used by eukaryotic cells to control the functional repertoire of proteins. Over the last decade, it became apparent that the repertoire of ubiquitiylation and SUMOylation regulating various biological functions is not restricted to eukaryotic cells, but is also a feature of human virus families, used to extensively exploit complex host-cell networks and homeostasis. Intriguingly, besides binding to host SUMO/Ub control proteins and interfering with the respective enzymatic cascade, many viral proteins mimic key regulatory factors to usurp this host machinery and promote efficient viral outcomes. Advanced detection methods and functional studies of ubiquitiylation and SUMOylation during virus-host interplay have revealed that human viruses have evolved a large arsenal of strategies to exploit these specific PTM processes. In this review, we highlight the known viral analogs orchestrating ubiquitin and SUMO conjugation events to subvert and utilize basic enzymatic pathways. PMID:26343706
Li, Junhua; Zhang, Yang; Shen, Fei; Yang, Yanjun
2012-10-15
A fusion tag that can be purified by the cheap ion-exchanger based on the ionic binding force may provide a cost-effective scheme over other affinity fusion tags. Small ubiquitin-like modifier (SUMO) protease derived from Saccharomyces cerevisiae was fused with a poly lysine tag containing 10 lysine residues at its C-terminus and then expressed in Escherichia coli. The ionic binding force provided by the ploy lysine tag allowed the selective recovery of the small ubiquitin-like modifier protease from recombinant E. coli cell extracts. A preliminary comparative study of the adsorption and elution of poly lysine tagged SUMO protease on Amberlite Cobalamion and magnetite carboxymethyl chitosan nanoparticles was performed. Amberlite Cobalamion and magnetite nanoparticles had the similar elution profile due to the common functional groups - carboxyl groups. The maximum dynamic adsorption capacity of Amberlite Cobalamion and magnetite nanoparticles reached 36.8 and 211.4 mg/g, respectively. The lysine-tagged protease can be simply purified by magnetite nanoparticles from cell extracts with higher purity than that by Amberlite Cobalamion. The superparamagnetic nanoparticles possess the advantages of highly specific, fast and excellent binding of a larger amount of lysine tagged SUMO modifier protease, and it is also easier to separate from the crude biological process liquors compared with the conventional separation techniques of polycationic amino acids fusion proteins. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Wei; Department of Endocrinology, The People’s Hospital of Xindu, Xindu, Sichuang, 610500; Xu, Ling
Highlights: •The expression of SUMO1, SUMO2/3 under high glucose was obviously enhanced. •High glucose induced degradation of IκBα and activation of NF-κB pathway. •Sumoylation of IκBα in high glucose were significantly decreased. •The proteasome inhibitor MG132 could partially revert the degradation of IκBα. -- Abstract: The posttranslational modification of proteins by small ubiquitin-like modifiers (SUMOs) has emerged as an important regulatory mechanism for the alteration of protein activity, stability, and cellular localization. The latest research demonstrates that sumoylation is extensively involved in the regulation of the nuclear factor κB (NF-κB) pathway, which plays a critical role in the regulation ofmore » inflammation and contributes to fibrosis in diabetic nephropathy (DN). However, the role of sumoylation in the regulation of NF-κB signaling in DN is still unclear. In the present study, we cultured rat glomerular mesangial cells (GMCs) stimulated by high glucose and divided GMCs into six groups: normal glucose group (5.6 mmol/L), high glucose groups (10, 20, and 30 mmol/L), mannitol group (i.e., osmotic control group), and MG132 intervention group (30 mmol/L glucose with MG132, a proteasome inhibitor). The expression of SUMO1, SUMO2/3, IκBα, NF-κBp65, and monocyte chemotactic protein 1 (MCP-1) was measured by Western blot, reverse-transcription polymerase chain reaction, and indirect immunofluorescence laser scanning confocal microscopy. The interaction between SUMO1, SUMO2/3, and IκBα was observed by co-immunoprecipitation. The results showed that the expression of SUMO1 and SUMO2/3 was dose- and time-dependently enhanced by high glucose (p < 0.05). However, the expression of IκBα sumoylation in high glucose was significantly decreased compared with the normal glucose group (p < 0.05). The expression of IκBα was dose- and time-dependently decreased, and NF-κBp65 and MCP-1 were increased under high glucose conditions, which could be mostly reversed by adding MG132 (p < 0.05). The present results support the hypothesis that high glucose may activate NF-κB inflammatory signaling through IκBα sumoylation and ubiquitination.« less
Liu, Hebin; Schneider, Helga; Recino, Asha; Richardson, Christine; Goldberg, Martin W.; Rudd, Christopher E.
2015-01-01
Summary While immune cell adaptors regulate proximal T cell signaling, direct regulation of the nuclear pore complex (NPC) has not been reported. NPC has cytoplasmic filaments composed of RanGAP1 and RanBP2 with the potential to interact with cytoplasmic mediators. Here, we show that the immune cell adaptor SLP-76 binds directly to SUMO-RanGAP1 of cytoplasmic fibrils of the NPC, and that this interaction is needed for optimal NFATc1 and NF-κB p65 nuclear entry in T cells. Transmission electron microscopy showed anti-SLP-76 cytoplasmic labeling of the majority of NPCs in anti-CD3 activated T cells. Further, SUMO-RanGAP1 bound to the N-terminal lysine 56 of SLP-76 where the interaction was needed for optimal RanGAP1-NPC localization and GAP exchange activity. While the SLP-76-RanGAP1 (K56E) mutant had no effect on proximal signaling, it impaired NF-ATc1 and p65/RelA nuclear entry and in vivo responses to OVA peptide. Overall, we have identified SLP-76 as a direct regulator of nuclear pore function in T cells. PMID:26321253
Liu, Hebin; Schneider, Helga; Recino, Asha; Richardson, Christine; Goldberg, Martin W; Rudd, Christopher E
2015-09-03
While immune cell adaptors regulate proximal T cell signaling, direct regulation of the nuclear pore complex (NPC) has not been reported. NPC has cytoplasmic filaments composed of RanGAP1 and RanBP2 with the potential to interact with cytoplasmic mediators. Here, we show that the immune cell adaptor SLP-76 binds directly to SUMO-RanGAP1 of cytoplasmic fibrils of the NPC, and that this interaction is needed for optimal NFATc1 and NF-κB p65 nuclear entry in T cells. Transmission electron microscopy showed anti-SLP-76 cytoplasmic labeling of the majority of NPCs in anti-CD3 activated T cells. Further, SUMO-RanGAP1 bound to the N-terminal lysine 56 of SLP-76 where the interaction was needed for optimal RanGAP1-NPC localization and GAP exchange activity. While the SLP-76-RanGAP1 (K56E) mutant had no effect on proximal signaling, it impaired NF-ATc1 and p65/RelA nuclear entry and in vivo responses to OVA peptide. Overall, we have identified SLP-76 as a direct regulator of nuclear pore function in T cells. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Fryrear, Kimberly A.; Guo, Xin
2012-01-01
The Really Interesting New Gene (RING) Finger Protein 4 (RNF4) represents a class of ubiquitin ligases that target Small Ubiquitin-like Modifier (SUMO)–modified proteins for ubiquitin modification. To date, the regulatory function of RNF4 appears to be ubiquitin-mediated degradation of sumoylated cellular proteins. In the present study, we show that the Human T-cell Leukemia Virus Type 1 (HTLV-1) oncoprotein Tax is a substrate for RNF4 both in vivo and in vitro. We mapped the RNF4-binding site to a region adjacent to the Tax ubiquitin/SUMO modification sites K280/K284. Interestingly, RNF4 modification of Tax protein results in relocalization of the oncoprotein from the nucleus to the cytoplasm. Overexpression of RNF4, but not the RNF4 RING mutant, resulted in cytoplasmic enrichment of Tax. The RNF4-induced nucleus-to-cytoplasm relocalization was associated with increased NF-κB–mediated and decreased cAMP Response Element-Binding (CREB)–mediated Tax activity. Finally, depletion of RNF4 by RNAi prevented the DNA damage–induced nuclear/cytoplasmic translocation of Tax. These results provide important new insight into STUbL-mediated pathways that regulate the subcellular localization and functional dynamics of viral oncogenes. PMID:22106342
Xiao, Zhenyu; Chang, Jer-Gung; Hendriks, Ivo A.; Sigurðsson, Jón Otti; Olsen, Jesper V.; Vertegaal, Alfred C.O.
2015-01-01
Genotoxic agents can cause replication fork stalling in dividing cells because of DNA lesions, eventually leading to replication fork collapse when the damage is not repaired. Small Ubiquitin-like Modifiers (SUMOs) are known to counteract replication stress, nevertheless, only a small number of relevant SUMO target proteins are known. To address this, we have purified and identified SUMO-2 target proteins regulated by replication stress in human cells. The developed methodology enabled single step purification of His10-SUMO-2 conjugates under denaturing conditions with high yield and high purity. Following statistical analysis on five biological replicates, a total of 566 SUMO-2 targets were identified. After 2 h of hydroxyurea treatment, 10 proteins were up-regulated for SUMOylation and two proteins were down-regulated for SUMOylation, whereas after 24 h, 35 proteins were up-regulated for SUMOylation, and 13 proteins were down-regulated for SUMOylation. A site-specific approach was used to map over 1000 SUMO-2 acceptor lysines in target proteins. The methodology is generic and is widely applicable in the ubiquitin field. A large subset of these identified proteins function in one network that consists of interacting replication factors, transcriptional regulators, DNA damage response factors including MDC1, ATR-interacting protein ATRIP, the Bloom syndrome protein and the BLM-binding partner RMI1, the crossover junction endonuclease EME1, BRCA1, and CHAF1A. Furthermore, centromeric proteins and signal transducers were dynamically regulated by SUMOylation upon replication stress. Our results uncover a comprehensive network of SUMO target proteins dealing with replication damage and provide a framework for detailed understanding of the role of SUMOylation to counteract replication stress. Ultimately, our study reveals how a post-translational modification is able to orchestrate a large variety of different proteins to integrate different nuclear processes with the aim of dealing with the induced DNA damage. PMID:25755297
Figueroa-Romero, Claudia; Iñiguez-Lluhí, Jorge A.; Stadler, Julia; Chang, Chuang-Rung; Arnoult, Damien; Keller, Peter J.; Hong, Yu; Blackstone, Craig; Feldman, Eva L.
2009-01-01
Dynamin-related protein (Drp) 1 is a key regulator of mitochondrial fission and is composed of GTP-binding, Middle, insert B, and C-terminal GTPase effector (GED) domains. Drp1 associates with mitochondrial fission sites and promotes membrane constriction through its intrinsic GTPase activity. The mechanisms that regulate Drp1 activity remain poorly understood but are likely to involve reversible post-translational modifications, such as conjugation of small ubiquitin-like modifier (SUMO) proteins. Through a detailed analysis, we find that Drp1 interacts with the SUMO-conjugating enzyme Ubc9 via multiple regions and demonstrate that Drp1 is a direct target of SUMO modification by all three SUMO isoforms. While Drp1 does not harbor consensus SUMOylation sequences, our analysis identified2 clusters of lysine residues within the B domain that serve as noncanonical conjugation sites. Although initial analysis indicates that mitochondrial recruitment of ectopically expressed Drp1 in response to staurosporine is unaffected by loss of SUMOylation, we find that Drp1 SUMOylation is enhanced in the context of the K38A mutation. This dominant-negative mutant, which is deficient in GTP binding and hydrolysis, does not associate with mitochondria and prevents normal mitochondrial fission. This finding suggests that SUMOylation of Drp1 is linked to its activity cycle and is influenced by Drp1 localization.—Figueroa-Romero, C., Iñiguez-Lluhí, J. A., Stadler, J., Chang, C.-R., Arnoult, D., Keller, P. J., Hong, Y., Blackstone, C., Feldman, E. L. SUMOylation of the mitochondrial fission protein Drp1 occurs at multiple nonconsensus sites within the B domain and is linked to its activity cycle. PMID:19638400
Mas, Abraham; Amenós, Montse; Lois, L Maria
2016-01-01
Different studies point to an enrichment in SUMO conjugation in the cell nucleus, although non-nuclear SUMO targets also exist. In general, the study of subcellular localization of proteins is essential for understanding their function within a cell. Fluorescence microscopy is a powerful tool for studying subcellular protein partitioning in living cells, since fluorescent proteins can be fused to proteins of interest to determine their localization. Subcellular distribution of proteins can be influenced by binding to other biomolecules and by posttranslational modifications. Sometimes these changes affect only a portion of the protein pool or have a partial effect, and a quantitative evaluation of fluorescence images is required to identify protein redistribution among subcellular compartments. In order to obtain accurate data about the relative subcellular distribution of SUMO conjugation machinery members, and to identify the molecular determinants involved in their localization, we have applied quantitative confocal microscopy imaging. In this chapter, we will describe the fluorescent protein fusions used in these experiments, and how to measure, evaluate, and compare average fluorescence intensities in cellular compartments by image-based analysis. We show the distribution of some components of the Arabidopsis SUMOylation machinery in epidermal onion cells and how they change their distribution in the presence of interacting partners or even when its activity is affected.
Xiao, Xue; Zhang, Changbin; Liu, Dajun; Bai, Weibin; Zhang, Qihao; Xiang, Qi; Huang, Yadong; Su, Zhijian
2016-04-05
Low-level lead poisoning is an insidious disease that affects millions of children worldwide, leading to biochemical and neurological dysfunctions. Blocking lead uptake via the gastrointestinal tract is an important prevention strategy. With this in mind, we constructed the recombinant Lactococcus lactis strain pGSMT/MG1363, which constitutively expressed the fusion protein glutathione S-transferase (GST)-small molecule ubiquitin-like modifier protein (SUMO)-metallothionein-I (GST-SUMO-MT). The thermodynamic data indicated that the average number of lead bound to a GST-SUMO-MT molecule was 3.655 and this binding reaction was a spontaneous, exothermic and entropy-increasing process. The total lead-binding capacity of pGSMT/MG1363 was 4.11 ± 0.15 mg/g dry mass. Oral administration of pGSMT/MG1363 (1 × 10(10) Colony-Forming Units) to pubertal male rats that were also treated with 5 mg/kg of lead acetate daily significantly inhibited the increase of blood lead levels, the impairment of hepatic function and the decrease of testosterone concentration in the serum, which were all impaired in rats treated by lead acetate alone. Moreover, the administration of pGSMT/MG1363 for 6 weeks did not affect the serum concentration of calcium, magnesium, potassium or sodium ions. This study provides a convenient and economical biomaterial for preventing lead poisoning via the digestive tract.
Cheng, Chia-Yang; Chu, Chia-Han; Hsu, Hung-Wei; Hsu, Fang-Rong; Tang, Chung Yi; Wang, Wen-Ching; Kung, Hsing-Jien; Chang, Pei-Ching
2014-01-01
Post-translational modification (PTM) of transcriptional factors and chromatin remodelling proteins is recognized as a major mechanism by which transcriptional regulation occurs. Chromatin immunoprecipitation (ChIP) in combination with high-throughput sequencing (ChIP-seq) is being applied as a gold standard when studying the genome-wide binding sites of transcription factor (TFs). This has greatly improved our understanding of protein-DNA interactions on a genomic-wide scale. However, current ChIP-seq peak calling tools are not sufficiently sensitive and are unable to simultaneously identify post-translational modified TFs based on ChIP-seq analysis; this is largely due to the wide-spread presence of multiple modified TFs. Using SUMO-1 modification as an example; we describe here an improved approach that allows the simultaneous identification of the particular genomic binding regions of all TFs with SUMO-1 modification. Traditional peak calling methods are inadequate when identifying multiple TF binding sites that involve long genomic regions and therefore we designed a ChIP-seq processing pipeline for the detection of peaks via a combinatorial fusion method. Then, we annotate the peaks with known transcription factor binding sites (TFBS) using the Transfac Matrix Database (v7.0), which predicts potential SUMOylated TFs. Next, the peak calling result was further analyzed based on the promoter proximity, TFBS annotation, a literature review, and was validated by ChIP-real-time quantitative PCR (qPCR) and ChIP-reChIP real-time qPCR. The results show clearly that SUMOylated TFs are able to be pinpointed using our pipeline. A methodology is presented that analyzes SUMO-1 ChIP-seq patterns and predicts related TFs. Our analysis uses three peak calling tools. The fusion of these different tools increases the precision of the peak calling results. TFBS annotation method is able to predict potential SUMOylated TFs. Here, we offer a new approach that enhances ChIP-seq data analysis and allows the identification of multiple SUMOylated TF binding sites simultaneously, which can then be utilized for other functional PTM binding site prediction in future.
The Hydra small ubiquitin-like modifier.
Khan, Umair; Mehere, Prajwalini; Deivasigamani, Senthilkumar; Ratnaparkhi, Girish S
2013-09-01
SUMO is a protein posttranslational modifier. SUMO cycle components are believed to be conserved in all eukaryotes. Proteomic analyses have lead to the identification a wealth of SUMO targets that are involved in almost every cellular function in eukaryotes. In this article, we describe the characterization of SUMO Cycle components in Hydra, a Cnidarian with an ability to regenerate body parts. In cells, the translated SUMO polypeptide cannot conjugate to a substrate protein unless the C-terminal tail is cleaved, exposing the di-Glycine motif. This critical task is done by SUMO proteases that in addition to SUMO maturation are also involved in deconjugating SUMO from its substrate. We describe the identification, bioinformatics analysis, cloning, and biochemical characterization of Hydra SUMO cycle components, with a focus on SUMO and SUMO proteases. We demonstrate that the ability of SUMO proteases to process immature SUMO is conserved from Hydra to flies. A transgenic Hydra, expressing a SUMO-GFP fusion protein under a constitutive actin promoter, is generated in an attempt to monitor the SUMO Cycle in vivo as also to purify and identify SUMO targets in Hydra. Copyright © 2013 Wiley Periodicals, Inc.
Ivanov, Alexey V; Peng, Hongzhuang; Yurchenko, Vyacheslav; Yap, Kyoko L; Negorev, Dmitri G; Schultz, David C; Psulkowski, Elyse; Fredericks, William J; White, David E; Maul, Gerd G; Sadofsky, Moshe J; Zhou, Ming-Ming; Rauscher, Frank J
2007-12-14
Tandem PHD and bromodomains are often found in chromatin-associated proteins and have been shown to cooperate in gene silencing. Each domain can bind specifically modified histones: the mechanisms of cooperation between these domains are unknown. We show that the PHD domain of the KAP1 corepressor functions as an intramolecular E3 ligase for sumoylation of the adjacent bromodomain. The RING finger-like structure of the PHD domain is required for both Ubc9 binding and sumoylation and directs modification to specific lysine residues in the bromodomain. Sumoylation is required for KAP1-mediated gene silencing and functions by directly recruiting the SETDB1 histone methyltransferase and the CHD3/Mi2 component of the NuRD complex via SUMO-interacting motifs. Sumoylated KAP1 stimulates the histone methyltransferase activity of SETDB1. These data provide a mechanistic explanation for the cooperation of PHD and bromodomains in gene regulation and describe a function of the PHD domain as an intramolecular E3 SUMO ligase.
Binding Affinity Effects on Physical Characteristics of a Model Phase-Separated Protein Droplet
NASA Astrophysics Data System (ADS)
Chuang, Sara; Banani, Salman; Rosen, Michael; Brangwynne, Clifford
2015-03-01
Non-membrane bound organelles are associated with a range of biological functions. Several of these structures exhibit liquid-like properties, and may represent droplets of phase-separated RNA and/or proteins. These structures are often enriched in multi-valent molecules, however little is known about the interactions driving the assembly, properties, and function. Here, we address this question using a model multi-valent protein system consisting of repeats of Small Ubiquitin-like Modifier (SUMO) protein and a SUMO-interacting motif (SIM). These proteins undergo phase separation into liquid-like droplets. We combine microrheology and quantitative microscopy to determine affect of binding affinity on the viscosity, density and surface tension of these droplets. We also use fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS) and partitioning experiments to probe the structure and dynamics within these droplets. Our results shed light on how inter-molecular interactions manifests in droplet properties, and lay the groundwork for a comprehensive biophysical picture of intracellular RNA/protein organelles.
Rezaie, F; Davami, F; Mansouri, K; Agha Amiri, S; Fazel, R; Mahdian, R; Davoudi, N; Enayati, S; Azizi, M; Khalaj, V
2017-05-08
The Escherichia coli expression system is highly effective in producing recombinant proteins. However, there are some limitations in this system, especially in obtaining correctly folded forms of some complex proteins such as Fab fragments. To improve the solubility and folding quality of Fab fragments, we have examined the effect of simultaneous application of a SUMO fusion tag, EnBase ® cultivation mode and a redox mutant strain in the E. coli expression system. A bicistronic gene construct was designed to express an antivascular endothelial growth factor (VEGF) Fab fragment as a model system. The construct contained a dual SUMO fusion gene fragment to encode SUMO-tagged heavy and light chains. While the expression of the construct in batch cultures of BL21 or SHuffle ® transformants produced insoluble and unfolded products, the induction of the transformants in EnBase ® medium resulted in soluble and correctly folded Fab fragment, reaching as high as 19% of the total protein in shuffle strain. The functional assays indicated that the biological activity of the target Fab is similar to the commercial anti-VEGF, Lucentis ® . This study demonstrated that the combination of SUMO fusion technology, EnBase ® cultivation system and recruiting a redox mutant of E. coli can efficiently enhance the solubility and productivity of recombinant Fab fragments. The presented strategy provides not only a novel method to produce soluble and active form of an anti-VEGF Fab but also may use in the efficient production of other antibody fragments. © 2017 The Society for Applied Microbiology.
Xiao, Xue; Zhang, Changbin; Liu, Dajun; Bai, Weibin; Zhang, Qihao; Xiang, Qi; Huang, Yadong; Su, Zhijian
2016-01-01
Low-level lead poisoning is an insidious disease that affects millions of children worldwide, leading to biochemical and neurological dysfunctions. Blocking lead uptake via the gastrointestinal tract is an important prevention strategy. With this in mind, we constructed the recombinant Lactococcus lactis strain pGSMT/MG1363, which constitutively expressed the fusion protein glutathione S-transferase (GST)–small molecule ubiquitin-like modifier protein (SUMO)–metallothionein-I (GST-SUMO-MT). The thermodynamic data indicated that the average number of lead bound to a GST-SUMO-MT molecule was 3.655 and this binding reaction was a spontaneous, exothermic and entropy-increasing process. The total lead-binding capacity of pGSMT/MG1363 was 4.11 ± 0.15 mg/g dry mass. Oral administration of pGSMT/MG1363 (1 × 1010 Colony-Forming Units) to pubertal male rats that were also treated with 5 mg/kg of lead acetate daily significantly inhibited the increase of blood lead levels, the impairment of hepatic function and the decrease of testosterone concentration in the serum, which were all impaired in rats treated by lead acetate alone. Moreover, the administration of pGSMT/MG1363 for 6 weeks did not affect the serum concentration of calcium, magnesium, potassium or sodium ions. This study provides a convenient and economical biomaterial for preventing lead poisoning via the digestive tract. PMID:27045906
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imoto, Seiyu; Ohbayashi, Norihiko; Ikeda, Osamu
2008-05-30
Sma- and MAD-related protein 3 (Smad3) plays crucial roles in the transforming growth factor-{beta} (TGF-{beta})-mediated signaling pathway, which produce a variety of cellular responses, including cell proliferation and differentiation. In our previous study, we demonstrated that protein inhibitor of activated STATy (PIASy) suppresses TGF-{beta} signaling by interacting with and sumoylating Smad3. In the present study, we examined the molecular mechanisms of Smad3 sumoylation during PIASy-mediated suppression of TGF-{beta} signaling. We found that small-interfering RNA-mediated reduction of endogenous PIASy expression enhanced TGF-{beta}-induced gene expression. Importantly, coexpression of Smad3 with PIASy and SUMO1 affected the DNA-binding activity of Smad3. Furthermore, coexpression ofmore » Smad3 with PIASy and SUMO1 stimulated the nuclear export of Smad3. Finally, fluorescence resonance energy transfer analyses revealed that Smad3 interacted with SUMO1 in the cytoplasm. These results suggest that PIASy regulates TGF-{beta}/Smad3-mediated signaling by stimulating sumoylation and nuclear export of Smad3.« less
Inducible SUMO modification of TANK alleviates its repression of TLR7 signalling.
Renner, Florian; Saul, Vera V; Pagenstecher, Axel; Wittwer, Tobias; Schmitz, Michael Lienhard
2011-02-01
Adaptor proteins allow temporal and spatial coordination of signalling. In this study, we show SUMOylation of the adaptor protein TANK and its interacting kinase TANK-binding kinase 1 (TBK1). Modification of TANK by the small ubiquitin-related modifier (SUMO) at the evolutionarily conserved Lys 282 is triggered by the kinase activities of IκB kinase ɛ (IKKɛ) and TBK1. Stimulation of TLR7 leads to inducible SUMOylation of TANK, which in turn weakens the interaction with IKKɛ and thus relieves the negative function of TANK on signal propagation. Reconstitution experiments show that an absence of TANK SUMOylation impairs inducible expression of distinct TLR7-dependent target genes, providing a molecular mechanism that allows the control of TANK function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirano, Seishiro, E-mail: seishiro@nies.go.jp; Graduate School of Pharmaceutical Sciences, Chiba University; Tadano, Mihoko
2015-09-15
Promyelocytic leukemia (PML), which is a tumor suppressor protein that nevertheless plays an important role in the maintenance of leukemia initiating cells, is known to be biochemically modified by As{sup 3+}. We recently developed a simple method to evaluate the modification of PML by As{sup 3+} resulting in a change in solubility and the covalent binding of small ubiquitin-like modifier (SUMO). Here we semi-quantitatively investigated the SUMOylation of PML using HEK293 cells which were stably transfected with PML-VI (HEK-PML). Western blot analyses indicated that PML became insoluble in cold RadioImmunoPrecipitation Assay (RIPA) lysis buffer and was SUMOylated by both SUMO2/3more » and SUMO1 by As{sup 3+}. Surprisingly SUMO1 monomers were completely utilized for the SUMOylation of PML. Antimony (Sb{sup 3+}) but not bismuth (Bi{sup 3+}), Cu{sup 2+}, or Cd{sup 2+} biochemically modified PML similarly. SUMOylated PML decreased after removal of As{sup 3+} from the culture medium. However, unSUMOylated PML was still recovered in the RIPA-insoluble fraction, suggesting that SUMOylation is not requisite for changing the RIPA-soluble PML into the RIPA-insoluble form. Immunofluorescence staining of As{sup 3+}-exposed cells indicated that SUMO2/3 was co-localized with PML in the nuclear bodies. However, some PML protein was present in peri-nuclear regions without SUMO2/3. Functional Really Interesting New Gene (RING)-deleted mutant PML neither formed PML nuclear bodies nor was biochemically modified by As{sup 3+}. Conjugation with intracellular glutathione may explain the accessibility of As{sup 3+} and Sb{sup 3+} to PML in the nuclear region evading chelation and entrapping by cytoplasmic proteins such as metallothioneins. - Highlights: • As{sup 3+} is a carcinogen and also a therapeutic agent for leukemia. • PML becomes insoluble in RIPA and SUMOylated by As{sup 3+}. • Sb{sup 3+} modifies PML similar to As{sup 3+}. • Functional RING motif is necessary for As{sup 3+}-induced PML modification.« less
Chu, Bing; Yao, Feng; Cheng, Cheng; Wu, Yang; Mei, Yanli; Li, Xuejie; Liu, Yan; Wang, Peisheng; Hou, Lin; Zou, Xiangyang
2014-01-01
During embryonic development of Artemia sinica, environmental stresses induce the embryo diapause phenomenon, required to resist apoptosis and regulate cell cycle activity. The small ubiquitin-related modifier-1 (SUMO), a reversible post-translational protein modifier, plays an important role in embryo development. SUMO regulates multiple cellular processes, including development and other biological processes. The molecular mechanism of diapause, diapause termination and the role of As-sumo-1 in this processes and in early embryo development of Artemia sinica still remains unknown. In this study, the complete cDNA sequences of the sumo-1 homolog, sumo ligase homolog, caspase-1 homolog and cyclin B homolog from Artemia sinica were cloned. The mRNA expression patterns of As-sumo-1, sumo ligase, caspase-1, cyclin B and the location of As-sumo-1 were investigated. SUMO-1, p53, Mdm2, Caspase-1, Cyclin B and Cyclin E proteins were analyzed during different developmental stages of the embryo of A. sinica. Small interfering RNA (siRNA) was used to verify the function of sumo-1 in A. sinica. The full-length cDNA of As-sumo-1 was 476 bp, encoding a 92 amino acid protein. The As-caspases-1 cDNA was 966 bp, encoding a 245 amino-acid protein. The As-sumo ligase cDNA was 1556 bp encoding, a 343 amino acid protein, and the cyclin B cDNA was 739 bp, encoding a 133 amino acid protein. The expressions of As-sumo-1, As-caspase-1 and As-cyclin B were highest at the 10 h stage of embryonic development, and As-sumo ligase showed its highest expression at 0 h. The expression of As-SUMO-1 showed no tissue or organ specificity. Western blotting showed high expression of As-SUMO-1, p53, Mdm2, Caspase-1, Cyclin B and Cyclin E at the 10 h stage. The siRNA caused abnormal development of the embryo, with increased malformation and mortality. As-SUMO-1 is a crucial regulation and modification protein resumption of embryonic diapause and early embryo development of A. sinica. PMID:24404204
Ivanov, Alexey V.; Peng, Hongzhuang; Yurchenko, Vyacheslav; Yap, Kyoko L.; Negorev, Dmitri G.; Schultz, David C.; Psulkowski, Elyse; Fredericks, William J.; White, David E.; Maul, Gerd G.; Sadofsky, Moshe J.; Zhou, Ming-Ming; Rauscher, Frank J.
2015-01-01
SUMMARY Tandem PHD and bromodomains are often found in chromatin-associated proteins and have been shown to cooperate in gene silencing. Each domain can bind specifically modified histones: the mechanisms of cooperation between these domains are unknown. We show that the PHD domain of the KAP1 corepressor functions as an intramolecular E3 ligase for sumoylation of the adjacent bromodomain. The RING finger-like structure of the PHD domain is required for both Ubc9 binding and sumoylation and directs modification to specific lysine residues in the bromodomain. Sumoylation is required for KAP1-mediated gene silencing and functions by directly recruiting the SETDB1 histone methyltransferase and the CHD3/Mi2 component of the NuRD complex via SUMO interacting motifs. Sumoylated KAP1 stimulates the histone methyltransferase activity of SETDB1. These data provide a mechanistic explanation for the cooperation of PHD and bromodomains in gene regulation and describe a new function of the PHD domain as an intramolecular E3 SUMO ligase. PMID:18082607
Sumoylation promotes optimal APC/C Activation and Timely Anaphase.
Lee, Christine C; Li, Bing; Yu, Hongtao; Matunis, Michael J
2018-03-08
The Anaphase Promoting Complex/Cyclosome (APC/C) is a ubiquitin E3 ligase that functions as the gatekeeper to mitotic exit. APC/C activity is controlled by an interplay of multiple pathways during mitosis, including the spindle assembly checkpoint (SAC), that are not yet fully understood. Here, we show that sumoylation of the APC4 subunit of the APC/C peaks during mitosis and is critical for timely APC/C activation and anaphase onset. We have also identified a functionally important SUMO interacting motif in the cullin-homology domain of APC2 located near the APC4 sumoylation sites and APC/C catalytic core. Our findings provide evidence of an important regulatory role for SUMO modification and binding in affecting APC/C activation and mitotic exit. © 2018, Lee et al.
SUMO5, a Novel Poly-SUMO Isoform, Regulates PML Nuclear Bodies
Liang, Ya-Chen; Lee, Chia-Chin; Yao, Ya-Li; Lai, Chien-Chen; Schmitz, M. Lienhard; Yang, Wen-Ming
2016-01-01
Promyelocytic leukemia nuclear bodies (PML-NBs) are PML-based nuclear structures that regulate various cellular processes. SUMOylation, the process of covalently conjugating small ubiquitin-like modifiers (SUMOs), is required for both the formation and the disruption of PML-NBs. However, detailed mechanisms of how SUMOylation regulates these processes remain unknown. Here we report that SUMO5, a novel SUMO variant, mediates the growth and disruption of PML-NBs. PolySUMO5 conjugation of PML at lysine 160 facilitates recruitment of PML-NB components, which enlarges PML-NBs. SUMO5 also increases polySUMO2/3 conjugation of PML, resulting in RNF4-mediated disruption of PML-NBs. The acute promyelocytic leukemia oncoprotein PML-RARα blocks SUMO5 conjugation of PML, causing cytoplasmic displacement of PML and disruption of PML-NBs. Our work not only identifies a new member of the SUMO family but also reveals the mechanistic basis of the PML-NB life cycle in human cells. PMID:27211601
Laoong-u-thai, Yanisa; Zhao, Baoping; Phongdara, Amornrat; Ako, Harry; Yang, Jinzeng
2009-01-01
Small ubiquitin-like modifiers (SUMO) work in a similar way as ubiquitin to alter the biological properties of a target protein by conjugation. A shrimp SUMO cDNA named LvSUMO-1 was identified in Litopenaeus vannamei. LvSUMO-1 cDNA contains a coding sequence of 282 nucleotides with untranslated regions of 37 bp at 5'-end and 347 bp at 3'-end, respectively. The deduced 93 amino acids exhibit 83% identity with the Western Honeybee SUMO-1, and more than 65% homologies with human and mouse SUMO-1. LvSUMO-1 mRNA is expressed in most L. vannamei tissues with the highest level in hepatopancrease. The mRNA expression of LvSUMO-1 over development stages in L. Vammamei is distinguished by a low level in nauplius stage and relatively high level in postlarva stage with continuous expression until juvenile stage. The LvSUMO-1 protein and its conjugated proteins are detected in both cytoplasm and nucleus in several tissues. Interestingly, LvSUMO-1 mRNA levels are high in abdominal muscle during the premolt stage, wherein it has significant activities of protein degradation, suggesting its possible role in the regulation of shrimp muscle protein degradation. PMID:19240809
USDA-ARS?s Scientific Manuscript database
Sumo is one of the fusion tags commonly used to enhance the solubility and yield of recombinant proteins. One advantage of using sumo is that the removal of the sumo tag is highly specific because its recognition by the ULP sumo protease is determined by its structural characteristics, instead of th...
Fang, Xian; Wang, Xueting; Li, Guiling; Zeng, Jun; Li, Jian; Liu, Jingwen
2018-05-01
PEGylation is one of the most promising and extensively studied strategies for improving the properties of proteins as well as enzymic physical and thermal stability. Phospholipase C, hydrolyzing the phospholipids offers tremendous applications in diverse fields. However, the poor thermal stability and higher cost of production have restricted its industrial application. This study focused on improving the stabilization of recombinant PLC by chemical modification with methoxypolyethylene glycol-Succinimidyl Succinate (SS-mPEG, MW 5000). PLC gene from isolate Bacillus cereus HSL3 was fused with SUMO, a novel small ubiquitin-related modifier expression vector and over expressed in Escherichia coli. The soluble fraction of SUMO-PLC reached 80% of the total recombinant protein. The enzyme exhibited maximum catalytic activity at 80 °C and was relatively thermostable at 40-70 °C. It showed extensive substrate specificity pattern and marked activity toward phosphatidylcholine, which made it a typical non-specific PLC for industrial purpose. SS-mPEG-PLC complex exhibited an enhanced thermal stability at 70-80 °C and the catalytic efficiency (K cat /K m ) had increased by 3.03 folds compared with free PLC. CD spectrum of SS-mPEG-PLC indicated a possible enzyme aggregation after chemical modification, which contributed to the higher thermostability of SS-mPEG-PLC. The increase of antiparallel β sheets in secondary structure also made it more stable than parallel β sheets. The presence of SS-mPEG chains on the enzyme molecule surface somewhat changed the binding rate of the substrates, leading to a significant improvement in catalytic efficiency. This study provided an insight into the addition of SS-mPEG for enhancing the industrial applications of phospholipase C at higher temperature. Copyright © 2018 Elsevier B.V. All rights reserved.
Functional identification of MdSIZ1 as a SUMO E3 ligase in apple.
Zhang, Rui-Fen; Guo, Ying; Li, Yuan-Yuan; Zhou, Li-Jie; Hao, Yu-Jin; You, Chun-Xiang
2016-07-01
SUMOylation, the conjugation of target proteins with SUMO (small ubiquitin-related modifier), is a type of post-translational modification in eukaryotes and involves the sequential action of activation (E1), conjugation (E2) and ligation (E3) enzymes. In Arabidopsis, the AtSIZ1 protein is a SUMO E3 ligase that promotes the conjugation of SUMO proteins to target substrates. Here, we isolated and identified a SUMO E3 ligase, MdSIZ1, in apple, which was similar to AtSIZ1. SUMOylation analysis showed that MdSIZ1 had SUMO E3 ligase activity in vitro and in vivo. SUMO conjugation was increased by high temperatures, low temperatures, and abscisic acid (ABA). The ectopic expression of MdSIZ1 in Arabidopsis siz1-2 mutant plants partially complemented the morphological mutant phenotype and enhanced the levels of SUMO conjugation. Taken together, these results suggest that MdSIZ1-mediated SUMO conjugation of target proteins is an important process that regulates the adaptation of apple plants to various environmental stresses. Copyright © 2016 Elsevier GmbH. All rights reserved.
Maeda, Daisuke; Seki, Masayuki; Onoda, Fumitoshi; Branzei, Dana; Kawabe, Yoh-Ichi; Enomoto, Takemi
2004-03-04
Ubc9 is an enzyme involved in the conjugation of small ubiquitin related modifier (SUMO) to target proteins. A Saccharomyces cerevisiae ubc9 temperature sensitive (ts) mutant showed higher sensitivity to various DNA damaging agents such as methylmethanesulfonate (MMS) and UV at a semi-permissive temperature than wild-type cells. The sensitivity of ubc9ts cells was not suppressed by the introduction of a mutated UBC9 gene, UBC9-C93S, whose product is unable to covalently bind to SUMO and consequently fails to conjugate SUMO to target proteins. Diploid ubc9ts cells were more sensitive to various DNA damaging agents than haploid ubc9ts cells suggesting the involvement of homologous recombination in the sensitivity of ubc9ts cells. The frequency of interchromosomal recombination between heteroalleles, his1-1/his1-7 loci, in wild-type cells was remarkably increased upon exposure to MMS or UV. Although the frequency of spontaneous interchromosomal recombination between the heteroalleles in ubc9ts cells was almost the same as that of wild-type cells, no induction of interchromosomal recombination was observed in ubc9ts cells upon exposure to MMS or UV. Copyright 2003 Elsevier B.V.
SUMOylation regulates TGF-β1/Smad4 signalling in-resistant glioma cells.
Wang, Zhengfeng; Wang, Kai; Wang, Ruihua; Liu, Xianzhi
2017-12-18
The aim of this study was to explore the role of TGF-β1/Smad4 signalling in the DNA damage-induced ionization radiation (IR) resistance of glioma cells. T98G cells were assigned to the IR group (treated with IR) or the Blank group (with no treatment). The IR-treated cells were also treated/transfected with the TGF-β receptor inhibitor SB431542, SUMO1-overexpressing plasmids (SUMO1 group), SUMO1-interfering plasmids (si-SUMO1 group) or negative control plasmids group. The wound-healing capacity, cell proliferation and cell apoptosis were evaluated by the scratch assay, flow cytometry and the CCK-8 assay, respectively, and protein interactions were investigated by coimmunoprecipitation and colocalization assays. IR-treated T98G cells had DNA damage, but the wound-healing capacity and cell apoptosis were not significantly suppressed. DNA damage also induced TGF-β1, Smad4, SUMO1, SUMO2/3 and Ubc9 expression. In IR-treated cells cultured with SB431542, the wound-healing capacity and proliferation were promoted. SUMO1 and Smad4 colocalized in the nucleus of T98G cells, and the IR-treated cells had a significantly higher expression of the SUMO1-Smad4 protein complex. Smad4 expression in the nucleus was significantly reduced in the si-SUMO1 group, but was markedly increased in the SUMO1 group; the SUMO1 group had significantly elevated apoptotic activity, whereas the si-SUMO1 group showed significantly suppressed apoptotic activity and the si-SUMO1+SB41542 group had the lowest levels of cell apoptosis. DNA damage may activate Smad4 SUMOylation and the SUMOylation of Smad4 participates in the activation of TGF-β/Smad4 signalling; therefore, enhanced Smad4 SUMOylation is critical for the damage-induced activation of IR resistance.
Arabidopsis TCP Transcription Factors Interact with the SUMO Conjugating Machinery in Nuclear Foci
Mazur, Magdalena J.; Spears, Benjamin J.; Djajasaputra, André; van der Gragt, Michelle; Vlachakis, Georgios; Beerens, Bas; Gassmann, Walter; van den Burg, Harrold A.
2017-01-01
In Arabidopsis more than 400 proteins have been identified as SUMO targets, both in vivo and in vitro. Among others, transcription factors (TFs) are common targets for SUMO conjugation. Here we aimed to exhaustively screen for TFs that interact with the SUMO machinery using an arrayed yeast two-hybrid library containing more than 1,100 TFs. We identified 76 interactors that foremost interact with the SUMO conjugation enzyme SCE1 and/or the SUMO E3 ligase SIZ1. These interactors belong to various TF families, which control a wide range of processes in plant development and stress signaling. Amongst these interactors, the TCP family was overrepresented with several TCPs interacting with different proteins of the SUMO conjugation cycle. For a subset of these TCPs we confirmed that the catalytic site of SCE1 is essential for this interaction. In agreement, TCP1, TCP3, TCP8, TCP14, and TCP15 were readily SUMO modified in an E. coli sumoylation assay. Strikingly, these TCP-SCE1 interactions were found to redistribute these TCPs into nuclear foci/speckles, suggesting that these TCP foci represent sites for SUMO (conjugation) activity. PMID:29250092
SUMO-1 is associated with a subset of lysosomes in glial protein aggregate diseases.
Wong, Mathew B; Goodwin, Jacob; Norazit, Anwar; Meedeniya, Adrian C B; Richter-Landsberg, Christiane; Gai, Wei Ping; Pountney, Dean L
2013-01-01
Oligodendroglial inclusion bodies characterize a subset of neurodegenerative diseases. Multiple system atrophy (MSA) is characterized by α-synuclein glial cytoplasmic inclusions and progressive supranuclear palsy (PSP) is associated with glial tau inclusions. The ubiquitin homologue, SUMO-1, has been identified in inclusion bodies in MSA, located in discrete sub-domains in α-synuclein-positive inclusions. We investigated SUMO-1 associated with oligodendroglial inclusion bodies in brain tissue from MSA and PSP and in glial cell models. We examined MSA and PSP cases and compared to age-matched normal controls. Fluorescence immunohistochemistry revealed frequent SUMO-1 sub-domains within and surrounding inclusions bodies in both diseases and showed punctate co-localization of SUMO-1 and the lysosomal marker, cathepsin D, in affected brain regions. Cell counting data revealed that 70-75 % of lysosomes in inclusion body-positive oligodendrocytes were SUMO-1-positive consistently across MSA and PSP cases, compared to 20 % in neighbouring inclusion body negative oligodendrocytes and 10 % in normal brain tissue. Hsp90 co-localized with some SUMO-1 puncta. We examined the SUMO-1 status of lysosomes in 1321N1 human glioma cells over-expressing α-synuclein and in immortalized rat oligodendrocyte cells over-expressing the four repeat form of tau following treatment with the proteasome inhibitor, MG132. We also transfected 1321N1 cells with the inherently aggregation-prone huntingtin exon 1 mutant, HttQ74-GFP. Each cell model showed the association of SUMO-1-positive lysosomes around focal cytoplasmic accumulations of α-synuclein, tau or HttQ74-GFP, respectively. Association of SUMO-1 with lysosomes was also detected in glial cells bearing α-synuclein aggregates in a rotenone-lesioned rat model. SUMO-1 labelling of lysosomes showed a major increase between 24 and 48 h post-incubation of 1321N1 cells with MG132 resulting in an increase in a 90 kDa SUMO-1-positive band that was immunopositive for Hsp90 and immunoprecipitated with an anti-SUMO-1 antibody. That SUMO-1 co-localizes with a subset of lysosomes in neurodegenerative diseases with glial protein aggregates and in glial cell culture models of protein aggregation suggests a role for SUMO-1 in lysosome function.
A SUMO-acetyl switch in PXR biology.
Cui, Wenqi; Sun, Mengxi; Zhang, Shupei; Shen, Xunan; Galeva, Nadezhda; Williams, Todd D; Staudinger, Jeff L
2016-09-01
Post-translational modification (PTM) of nuclear receptor superfamily members regulates various aspects of their biology to include sub-cellular localization, the repertoire of protein-binding partners, as well as their stability and mode of degradation. The nuclear receptor pregnane X receptor (PXR, NR1I2) is a master-regulator of the drug-inducible gene expression in liver and intestine. The PXR-mediated gene activation program is primarily recognized to increase drug metabolism, drug transport, and drug efflux pathways in these tissues. The activation of PXR also has important implications in significant human diseases including inflammatory bowel disease and cancer. Our recent investigations reveal that PXR is modified by multiple PTMs to include phosphorylation, SUMOylation, and ubiquitination. Using both primary cultures of hepatocytes and cell-based assays, we show here that PXR is modified through acetylation on lysine residues. Further, we show that increased acetylation of PXR stimulates its increased SUMO-modification to support active transcriptional suppression. Pharmacologic inhibition of lysine de-acetylation using trichostatin A (TSA) alters the sub-cellular localization of PXR in cultured hepatocytes, and also has a profound impact upon PXR transactivation capacity. Both the acetylation and SUMOylation status of the PXR protein is affected by its ability to associate with the lysine de-acetylating enzyme histone de-acetylase (HDAC)3 in a complex with silencing mediator of retinoic acid and thyroid hormone receptor (SMRT). Taken together, our data support a model in which a SUMO-acetyl 'switch' occurs such that acetylation of PXR likely stimulates SUMO-modification of PXR to promote the active repression of PXR-target gene expression. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie. Copyright © 2016 Elsevier B.V. All rights reserved.
Knutson, Todd P; Daniel, Andrea R; Fan, Danhua; Silverstein, Kevin At; Covington, Kyle R; Fuqua, Suzanne Aw; Lange, Carol A
2012-06-14
Progesterone receptors (PR) are emerging as important breast cancer drivers. Phosphorylation events common to breast cancer cells impact PR transcriptional activity, in part by direct phosphorylation. PR-B but not PR-A isoforms are phosphorylated on Ser294 by mitogen activated protein kinase (MAPK) and cyclin dependent kinase 2 (CDK2). Phospho-Ser294 PRs are resistant to ligand-dependent Lys388 SUMOylation (that is, a repressive modification). Antagonism of PR small ubiquitin-like modifier (SUMO)ylation by mitogenic protein kinases suggests a mechanism for derepression (that is, transcriptional activation) of target genes. As a broad range of PR protein expression is observed clinically, a PR gene signature would provide a valuable marker of PR contribution to early breast cancer progression. Global gene expression patterns were measured in T47D and MCF-7 breast cancer cells expressing either wild-type (SUMOylation-capable) or K388R (SUMOylation-deficient) PRs and subjected to pathway analysis. Gene sets were validated by RT-qPCR. Recruitment of coregulators and histone methylation levels were determined by chromatin immunoprecipitation. Changes in cell proliferation and survival were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays and western blotting. Finally, human breast tumor cohort datasets were probed to identify PR-associated gene signatures; metagene analysis was employed to define survival rates in patients whose tumors express a PR gene signature. 'SUMO-sensitive' PR target genes primarily include genes required for proliferative and pro-survival signaling. DeSUMOylated K388R receptors are preferentially recruited to enhancer regions of derepressed genes (that is, MSX2, RGS2, MAP1A, and PDK4) with the steroid receptor coactivator, CREB-(cAMP-response element-binding protein)-binding protein (CBP), and mixed lineage leukemia 2 (MLL2), a histone methyltransferase mediator of nucleosome remodeling. PR SUMOylation blocks these events, suggesting that SUMO modification of PR prevents interactions with mediators of early chromatin remodeling at 'closed' enhancer regions. SUMO-deficient (phospho-Ser294) PR gene signatures are significantly associated with human epidermal growth factor 2 (ERBB2)-positive luminal breast tumors and predictive of early metastasis and shortened survival. Treatment with antiprogestin or MEK inhibitor abrogated expression of SUMO-sensitive PR target-genes and inhibited proliferation in BT-474 (estrogen receptor (ER)+/PR+/ERBB2+) breast cancer cells. We conclude that reversible PR SUMOylation/deSUMOylation profoundly alters target gene selection in breast cancer cells. Phosphorylation-induced PR deSUMOylation favors a permissive chromatin environment via recruitment of CBP and MLL2. Patients whose ER+/PR+ tumors are driven by hyperactive (that is, derepressed) phospho-PRs may benefit from endocrine (antiestrogen) therapies that contain an antiprogestin.
Purification of SUMO conjugating enzymes and kinetic analysis of substrate conjugation
Yunus, Ali A.; Lima, Christopher D.
2009-01-01
SUMO conjugation to protein substrates requires the concerted action of a dedicated E2 ubiquitin conjugation enzyme (Ubc9) and associated E3 ligases. Although Ubc9 can directly recognize and modify substrate lysine residues that occur within a consensus site for SUMO modification, E3 ligases can redirect specificity and enhance conjugation rates during SUMO conjugation in vitro and in vivo. In this chapter, we will describe methods utilized to purify SUMO conjugating enzymes and model substrates which can be used for analysis of SUMO conjugation in vitro. We will also describe methods to extract kinetic parameters during E3-dependent or E3-independent substrate conjugation. PMID:19107417
Puromycin induces SUMO and ubiquitin redistribution upon proteasome inhibition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumoto, Hotaru; Saitoh, Hisato, E-mail: hisa@kumamoto-u.ac.jp; Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto
2016-07-29
We have previously reported the co-localization of O-propargyl-puromycin (OP-Puro) with SUMO-2/3 and ubiquitin at promyelocytic leukemia-nuclear bodies (PML-NBs) in the presence of the proteasome inhibitor MG132, implying a role for the ubiquitin family in sequestering OP-puromycylated immature polypeptides to the nucleus during impaired proteasome activity. Here, we found that as expected puromycin induced SUMO-1/2/3 accumulation with ubiquitin at multiple nuclear foci in HeLa cells when co-exposed to MG132. Co-administration of puromycin and MG132 also facilitated redistribution of PML and the SUMO-targeted ubiquitin ligase RNF4 concurrently with SUMO-2/3. As removal of the drugs from the medium led to disappearance of themore » SUMO-2/3-ubiquitin nuclear foci, our findings indicated that nuclear assembly/disassembly of SUMO-2/3 and ubiquitin was pharmacologically manipulable, supporting our previous observation on OP-Puro, which predicted the ubiquitin family function in sequestrating aberrant proteins to the nucleus. -- Highlights: •Puromycin exhibits the O-propargyl-puromycin effect. •Puromycin induces SUMO redistribution upon proteasome inhibition. •Ubiquitin and RNF4 accumulate at PML-nuclear bodies with SUMO-2/3. •The ubiquitin family may function in nuclear sequestration of immature proteins.« less
SUMO-Enriched Proteome for Drosophila Innate Immune Response
Handu, Mithila; Kaduskar, Bhagyashree; Ravindranathan, Ramya; Soory, Amarendranath; Giri, Ritika; Elango, Vijay Barathi; Gowda, Harsha; Ratnaparkhi, Girish S.
2015-01-01
Small ubiquitin-like modifier (SUMO) modification modulates the expression of defense genes in Drosophila, activated by the Toll/nuclear factor-κB and immune-deficient/nuclear factor-κB signaling networks. We have, however, limited understanding of the SUMO-modulated regulation of the immune response and lack information on SUMO targets in the immune system. In this study, we measured the changes to the SUMO proteome in S2 cells in response to a lipopolysaccharide challenge and identified 1619 unique proteins in SUMO-enriched lysates. A confident set of 710 proteins represents the immune-induced SUMO proteome and analysis suggests that specific protein domains, cellular pathways, and protein complexes respond to immune stress. A small subset of the confident set was validated by in-bacto SUMOylation and shown to be bona-fide SUMO targets. These include components of immune signaling pathways such as Caspar, Jra, Kay, cdc42, p38b, 14-3-3ε, as well as cellular proteins with diverse functions, many being components of protein complexes, such as prosß4, Rps10b, SmD3, Tango7, and Aats-arg. Caspar, a human FAF1 ortholog that negatively regulates immune-deficient signaling, is SUMOylated at K551 and responds to treatment with lipopolysaccharide in cultured cells. Our study is one of the first to describe SUMO proteome for the Drosophila immune response. Our data and analysis provide a global framework for the understanding of SUMO modification in the host response to pathogens. PMID:26290570
SUMO-Enriched Proteome for Drosophila Innate Immune Response.
Handu, Mithila; Kaduskar, Bhagyashree; Ravindranathan, Ramya; Soory, Amarendranath; Giri, Ritika; Elango, Vijay Barathi; Gowda, Harsha; Ratnaparkhi, Girish S
2015-08-18
Small ubiquitin-like modifier (SUMO) modification modulates the expression of defense genes in Drosophila, activated by the Toll/nuclear factor-κB and immune-deficient/nuclear factor-κB signaling networks. We have, however, limited understanding of the SUMO-modulated regulation of the immune response and lack information on SUMO targets in the immune system. In this study, we measured the changes to the SUMO proteome in S2 cells in response to a lipopolysaccharide challenge and identified 1619 unique proteins in SUMO-enriched lysates. A confident set of 710 proteins represents the immune-induced SUMO proteome and analysis suggests that specific protein domains, cellular pathways, and protein complexes respond to immune stress. A small subset of the confident set was validated by in-bacto SUMOylation and shown to be bona-fide SUMO targets. These include components of immune signaling pathways such as Caspar, Jra, Kay, cdc42, p38b, 14-3-3ε, as well as cellular proteins with diverse functions, many being components of protein complexes, such as prosß4, Rps10b, SmD3, Tango7, and Aats-arg. Caspar, a human FAF1 ortholog that negatively regulates immune-deficient signaling, is SUMOylated at K551 and responds to treatment with lipopolysaccharide in cultured cells. Our study is one of the first to describe SUMO proteome for the Drosophila immune response. Our data and analysis provide a global framework for the understanding of SUMO modification in the host response to pathogens. Copyright © 2015 Handu et al.
Brun, Sonia; Abella, Neus; Berciano, Maria T; Tapia, Olga; Jaumot, Montserrat; Freire, Raimundo; Lafarga, Miguel; Agell, Neus
2017-01-01
We previously showed that p21Cip1 transits through the nucleolus on its way from the nucleus to the cytoplasm and that DNA damage inhibits this transit and induces the formation of p21Cip1-containing intranucleolar bodies (INoBs). Here, we demonstrate that these INoBs also contain SUMO-1 and UBC9, the E2 SUMO-conjugating enzyme. Furthermore, whereas wild type SUMO-1 localized in INoBs, a SUMO-1 mutant, which is unable to conjugate with proteins, does not, suggesting the presence of SUMOylated proteins at INoBs. Moreover, depletion of the SUMO-conjugating enzyme UBC9 or the sumo hydrolase SENP2 changed p21Cip1 intracellular distribution. In addition to SUMO-1 and p21Cip1, cell cycle regulators and DNA damage checkpoint proteins, including Cdk2, Cyclin E, PCNA, p53 and Mdm2, and PML were also detected in INoBs. Importantly, depletion of UBC9 or p21Cip1 impacted INoB biogenesis and the nucleolar accumulation of the cell cycle regulators and DNA damage checkpoint proteins following DNA damage. The impact of p21Cip1 and SUMO-1 on the accumulation of proteins in INoBs extends also to CRM1, a nuclear exportin that is also important for protein translocation from the cytoplasm to the nucleolus. Thus, SUMO and p21Cip1 regulate the transit of proteins through the nucleolus, and that disruption of nucleolar export by DNA damage induces SUMO and p21Cip1 to act as hub proteins to form a multiprotein complex in the nucleolus.
Brun, Sonia; Abella, Neus; Berciano, Maria T.; Tapia, Olga; Jaumot, Montserrat; Freire, Raimundo; Lafarga, Miguel
2017-01-01
We previously showed that p21Cip1 transits through the nucleolus on its way from the nucleus to the cytoplasm and that DNA damage inhibits this transit and induces the formation of p21Cip1-containing intranucleolar bodies (INoBs). Here, we demonstrate that these INoBs also contain SUMO-1 and UBC9, the E2 SUMO-conjugating enzyme. Furthermore, whereas wild type SUMO-1 localized in INoBs, a SUMO-1 mutant, which is unable to conjugate with proteins, does not, suggesting the presence of SUMOylated proteins at INoBs. Moreover, depletion of the SUMO-conjugating enzyme UBC9 or the sumo hydrolase SENP2 changed p21Cip1 intracellular distribution. In addition to SUMO-1 and p21Cip1, cell cycle regulators and DNA damage checkpoint proteins, including Cdk2, Cyclin E, PCNA, p53 and Mdm2, and PML were also detected in INoBs. Importantly, depletion of UBC9 or p21Cip1 impacted INoB biogenesis and the nucleolar accumulation of the cell cycle regulators and DNA damage checkpoint proteins following DNA damage. The impact of p21Cip1 and SUMO-1 on the accumulation of proteins in INoBs extends also to CRM1, a nuclear exportin that is also important for protein translocation from the cytoplasm to the nucleolus. Thus, SUMO and p21Cip1 regulate the transit of proteins through the nucleolus, and that disruption of nucleolar export by DNA damage induces SUMO and p21Cip1 to act as hub proteins to form a multiprotein complex in the nucleolus. PMID:28582471
SUMO Modification Stabilizes Enterovirus 71 Polymerase 3D To Facilitate Viral Replication
Liu, Yan; Shu, Bo; Meng, Jin; Zhang, Yuan; Zheng, Caishang; Ke, Xianliang; Gong, Peng; Hu, Qinxue; Wang, Hanzhong
2016-01-01
ABSTRACT Accumulating evidence suggests that viruses hijack cellular proteins to circumvent the host immune system. Ubiquitination and SUMOylation are extensively studied posttranslational modifications (PTMs) that play critical roles in diverse biological processes. Cross talk between ubiquitination and SUMOylation of both host and viral proteins has been reported to result in distinct functional consequences. Enterovirus 71 (EV71), an RNA virus belonging to the family Picornaviridae, is a common cause of hand, foot, and mouth disease. Little is known concerning how host PTM systems interact with enteroviruses. Here, we demonstrate that the 3D protein, an RNA-dependent RNA polymerase (RdRp) of EV71, is modified by small ubiquitin-like modifier 1 (SUMO-1) both during infection and in vitro. Residues K159 and L150/D151/L152 were responsible for 3D SUMOylation as determined by bioinformatics prediction combined with site-directed mutagenesis. Also, primer-dependent polymerase assays indicated that mutation of SUMOylation sites impaired 3D polymerase activity and virus replication. Moreover, 3D is ubiquitinated in a SUMO-dependent manner, and SUMOylation is crucial for 3D stability, which may be due to the interplay between the two PTMs. Importantly, increasing the level of SUMO-1 in EV71-infected cells augmented the SUMOylation and ubiquitination levels of 3D, leading to enhanced replication of EV71. These results together suggested that SUMO and ubiquitin cooperatively regulated EV71 infection, either by SUMO-ubiquitin hybrid chains or by ubiquitin conjugating to the exposed lysine residue through SUMOylation. Our study provides new insight into how a virus utilizes cellular pathways to facilitate its replication. IMPORTANCE Infection with enterovirus 71 (EV71) often causes neurological diseases in children, and EV71 is responsible for the majority of fatalities. Based on a better understanding of interplay between virus and host cell, antiviral drugs against enteroviruses may be developed. As a dynamic cellular process of posttranslational modification, SUMOylation regulates global cellular protein localization, interaction, stability, and enzymatic activity. However, little is known concerning how SUMOylation directly influences virus replication by targeting viral polymerase. Here, we found that EV71 polymerase 3D was SUMOylated during EV71 infection and in vitro. Moreover, the SUMOylation sites were determined, and in vitro polymerase assays indicated that mutations at SUMOylation sites could impair polymerase synthesis. Importantly, 3D is ubiquitinated in a SUMOylation-dependent manner that enhances the stability of the viral polymerase. Our findings indicate that the two modifications likely cooperatively enhance virus replication. Our study may offer a new therapeutic strategy against virus replication. PMID:27630238
Ubiquitin-dependent and independent roles of SUMO in proteostasis.
Liebelt, Frauke; Vertegaal, Alfred C O
2016-08-01
Cellular proteomes are continuously undergoing alterations as a result of new production of proteins, protein folding, and degradation of proteins. The proper equilibrium of these processes is known as proteostasis, implying that proteomes are in homeostasis. Stress conditions can affect proteostasis due to the accumulation of misfolded proteins as a result of overloading the degradation machinery. Proteostasis is affected in neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, and multiple polyglutamine disorders including Huntington's disease. Owing to a lack of proteostasis, neuronal cells build up toxic protein aggregates in these diseases. Here, we review the role of the ubiquitin-like posttranslational modification SUMO in proteostasis. SUMO alone contributes to protein homeostasis by influencing protein signaling or solubility. However, the main contribution of SUMO to proteostasis is the ability to cooperate with, complement, and balance the ubiquitin-proteasome system at multiple levels. We discuss the identification of enzymes involved in the interplay between SUMO and ubiquitin, exploring the complexity of this crosstalk which regulates proteostasis. These enzymes include SUMO-targeted ubiquitin ligases and ubiquitin proteases counteracting these ligases. Additionally, we review the role of SUMO in brain-related diseases, where SUMO is primarily investigated because of its role during formation of aggregates, either independently or in cooperation with ubiquitin. Detailed understanding of the role of SUMO in these diseases could lead to novel treatment options. Copyright © 2016 the American Physiological Society.
Meinecke, Ingmar; Cinski, Antje; Baier, Anja; Peters, Marvin A.; Dankbar, Berno; Wille, Aline; Drynda, Andreas; Mendoza, Heidi; Gay, Renate E.; Hay, Ronald T.; Ink, Barbara; Gay, Steffen; Pap, Thomas
2007-01-01
The small ubiquitin-like modifier (SUMO)-1 is an important posttranslational regulator of different signaling pathways and involved in the formation of promyelocytic leukemia (PML) protein nuclear bodies (NBs). Overexpression of SUMO-1 has been associated with alterations in apoptosis, but the underlying mechanisms and their relevance for human diseases are not clear. Here, we show that the increased expression of SUMO-1 in rheumatoid arthritis (RA) synovial fibroblasts (SFs) contributes to the resistance of these cells against Fas-induced apoptosis through increased SUMOylation of nuclear PML protein and increased recruitment of the transcriptional repressor DAXX to PML NBs. We also show that the nuclear SUMO-protease SENP1, which is found at lower levels in RA SFs, can revert the apoptosis-inhibiting effects of SUMO-1 by releasing DAXX from PML NBs. Our findings indicate that in RA SFs overexpression of SENP1 can alter the SUMO-1-mediated recruitment of DAXX to PML NBs, thus influencing the proapoptotic effects of DAXX. Accumulation of DAXX in PML NBs by SUMO-1 may, therefore, contribute to the pathogenesis of inflammatory disorders. PMID:17360386
Regulation of Plant Cellular and Organismal Development by SUMO.
Elrouby, Nabil
2017-01-01
This chapter clearly demonstrates the breadth and spectrum of the processes that SUMO regulates during plant development. The gross phenotypes observed in mutants of the SUMO conjugation and deconjugation enzymes reflect these essential roles, and detailed analyses of these mutants under different growth conditions revealed roles in biotic and abiotic stress responses, phosphate starvation, nitrate and sulphur metabolism, freezing and drought tolerance and response to excess copper. SUMO functions also intersect with those regulated by several hormones such as salicylic acid , abscisic acid , gibberellins and auxin, and detailed studies provide mechanistic clues of how sumoylation may regulate these processes. The regulation of COP1 and PhyB functions by sumoylation provides very strong evidence that SUMO is heavily involved in the regulation of light signaling in plants. At the cellular and subcellular levels, SUMO regulates meristem architecture, the switch from the mitotic cycle into the endocycle, meiosis, centromere decondensation and exit from mitosis, transcriptional control, and release from transcriptional silencing. Most of these advances in our understanding of SUMO functions during plant development emerged over the past 6-7 years, and they may only predict a prominent rise of SUMO as a major regulator of eukaryotic cellular and organismal growth and development.
Yunus, Ali A.; Lima, Christopher D.
2009-01-01
Summary Siz1 is a founding member of the Siz/PIAS RING family of SUMO E3 ligases. The x-ray structure of an active Siz1 ligase revealed an elongated tripartite architecture comprised of an N-terminal PINIT domain, a central zinc-containing RING-like SP-RING domain, and a C-terminal domain we term the SP-CTD. Structure-based mutational analysis and biochemical studies show that the SP-RING and SP-CTD are required for activation of the E2~SUMO thioester while the PINIT domain is essential for redirecting SUMO conjugation to the proliferating cell nuclear antigen (PCNA) at lysine 164, a non-consensus lysine residue that is not modified by the SUMO E2 in the absence of Siz1. Mutational analysis of Siz1 and PCNA revealed surfaces on both proteins that are required for efficient SUMO modification of PCNA in vitro and in vivo. PMID:19748360
System-wide identification of wild-type SUMO-2 conjugation sites
Hendriks, Ivo A.; D'Souza, Rochelle C.; Chang, Jer-Gung; Mann, Matthias; Vertegaal, Alfred C. O.
2015-01-01
SUMOylation is a reversible post-translational modification (PTM) regulating all nuclear processes. Identification of SUMOylation sites by mass spectrometry (MS) has been hampered by bulky tryptic fragments, which thus far necessitated the use of mutated SUMO. Here we present a SUMO-specific protease-based methodology which circumvents this problem, dubbed Protease-Reliant Identification of SUMO Modification (PRISM). PRISM allows for detection of SUMOylated proteins as well as identification of specific sites of SUMOylation while using wild-type SUMO. The method is generic and could be widely applied to study lysine PTMs. We employ PRISM in combination with high-resolution MS to identify SUMOylation sites from HeLa cells under standard growth conditions and in response to heat shock. We identified 751 wild-type SUMOylation sites on endogenous proteins, including 200 dynamic SUMO sites in response to heat shock. Thus, we have developed a method capable of quantitatively studying wild-type mammalian SUMO at the site-specific and system-wide level. PMID:26073453
SUMO regulates proteasome-dependent degradation of FLASH/Casp8AP2
Vennemann, Astrid; Hofmann, Thomas G.
2013-01-01
FLASH/Casp8AP2 is a huge multifunctional protein involved in multiple cellular processes, reaching from death receptor signaling to regulation of histone gene transcription and histone mRNA processing. Previous work has shown that FLASH localizes to Cajal bodies and promyelocytic leukemia (PML) bodies. However, the function of its nuclear body association remains unclear. Here we demonstrate that murine FLASH is covalently modified by SUMO at Lys residue 1792. Interestingly, ectopic expression of SUMO results in proteasome-dependent degradation of FLASH. A point mutant of FLASH with a mutated SUMO acceptor lysine residue, FLASHK1792R, is resistant to SUMO-induced degradation. Finally, we show that arsenic trioxide, a drug known to potentiate SUMO modification and degradation of PML, triggers recruitment of FLASH to PML bodies and concomitant loss of FLASH protein. Our data suggest that SUMO targets FLASH for proteasome-dependent degradation, which is associated with recruitment of FLASH to PML bodies. PMID:23673342
Puromycin induces SUMO and ubiquitin redistribution upon proteasome inhibition.
Matsumoto, Hotaru; Saitoh, Hisato
2016-07-29
We have previously reported the co-localization of O-propargyl-puromycin (OP-Puro) with SUMO-2/3 and ubiquitin at promyelocytic leukemia-nuclear bodies (PML-NBs) in the presence of the proteasome inhibitor MG132, implying a role for the ubiquitin family in sequestering OP-puromycylated immature polypeptides to the nucleus during impaired proteasome activity. Here, we found that as expected puromycin induced SUMO-1/2/3 accumulation with ubiquitin at multiple nuclear foci in HeLa cells when co-exposed to MG132. Co-administration of puromycin and MG132 also facilitated redistribution of PML and the SUMO-targeted ubiquitin ligase RNF4 concurrently with SUMO-2/3. As removal of the drugs from the medium led to disappearance of the SUMO-2/3-ubiquitin nuclear foci, our findings indicated that nuclear assembly/disassembly of SUMO-2/3 and ubiquitin was pharmacologically manipulable, supporting our previous observation on OP-Puro, which predicted the ubiquitin family function in sequestrating aberrant proteins to the nucleus. Copyright © 2016 Elsevier Inc. All rights reserved.
Bursomanno, Sara; Beli, Petra; Khan, Asif M; Minocherhomji, Sheroy; Wagner, Sebastian A; Bekker-Jensen, Simon; Mailand, Niels; Choudhary, Chunaram; Hickson, Ian D; Liu, Ying
2015-01-01
SUMOylation is a form of post-translational modification involving covalent attachment of SUMO (Small Ubiquitin-like Modifier) polypeptides to specific lysine residues in the target protein. In human cells, there are four SUMO proteins, SUMO1-4, with SUMO2 and SUMO3 forming a closely related subfamily. SUMO2/3, in contrast to SUMO1, are predominantly involved in the cellular response to certain stresses, including heat shock. Substantial evidence from studies in yeast has shown that SUMOylation plays an important role in the regulation of DNA replication and repair. Here, we report a proteomic analysis of proteins modified by SUMO2 in response to DNA replication stress in S phase in human cells. We have identified a panel of 22 SUMO2 targets with increased SUMOylation during DNA replication stress, many of which play key functions within the DNA replication machinery and/or in the cellular response to DNA damage. Interestingly, POLD3 was found modified most significantly in response to a low dose aphidicolin treatment protocol that promotes common fragile site (CFS) breakage. POLD3 is the human ortholog of POL32 in budding yeast, and has been shown to act during break-induced recombinational repair. We have also shown that deficiency of POLD3 leads to an increase in RPA-bound ssDNA when cells are under replication stress, suggesting that POLD3 plays a role in the cellular response to DNA replication stress. Considering that DNA replication stress is a source of genome instability, and that excessive replication stress is a hallmark of pre-neoplastic and tumor cells, our characterization of SUMO2 targets during a perturbed S-phase should provide a valuable resource for future functional studies in the fields of DNA metabolism and cancer biology. Copyright © 2014 Elsevier B.V. All rights reserved.
Olson, Linda J.; Jensen, Davin R.; Volkman, Brian F.; Kim, Jung-Ja P.; Peterson, Francis C.; Gundry, Rebekah L.; Dahms, Nancy M.
2015-01-01
The cation-independent mannose 6-phosphate receptor (CI-MPR) is a multifunctional protein that interacts with diverse ligands and plays central roles in autophagy, development, and tumor suppression. By delivering newly synthesized phosphomannosyl-containing acid hydrolases from the Golgi to endosomal compartments, CI-MPR is an essential component in the generation of lysosomes that are critical for the maintenance of cellular homeostasis. The ability of CI-MPR to interact with ~60 different acid hydrolases is facilitated by its large extracellular region, with four out of its 15 domains binding phosphomannosyl residues. Although the glycan specificity of CI-MPR has been elucidated, the molecular basis of carbohydrate binding has not been determined for two out of these four carbohydrate recognition domains (CRD). Here we report expression of CI-MPR’s CRD located in domain 5 that preferentially binds phosphodiester-containing glycans. Domain 5 of CI-MPR was expressed in Escherichia coli BL21 (DE3) cells as a fusion protein containing an N-terminal histidine tag and the small ubiquitin-like modifier (SUMO) protein. The His6-SUMO-CRD construct was recovered from inclusion bodies, refolded in buffer to facilitate disulfide bond formation, and subjected to Ni-NTA affinity chromatography and size exclusion chromatography. Surface plasmon resonance analyses demonstrated that the purified protein was active and bound phosphorylated glycans. Characterization by NMR spectroscopy revealed high quality 1H–15N HSQC spectra. Additionally, crystallization conditions were identified and a crystallographic data set of the CRD was collected to 1.8 Å resolution. Together, these studies demonstrate the feasibility of producing CI-MPR’s CRD suitable for three-dimensional structure determination by NMR spectroscopic and X-ray crystallographic approaches. PMID:25863146
SUMO proteases as potential targets for cancer therapy.
Bialik, Piotr; Woźniak, Katarzyna
2017-12-08
Sumoylation is one of the post-translational modifications of proteins, responsible for the regulation of many cellular processes, such as DNA replication and repair, transcription, signal transduction and nuclear transport. During sumoylation, SUMO proteins are covalently attached to the ε-amino group of lysine in target proteins via an enzymatic cascade that requires the sequential action of E1, E2 and E3 enzymes. An important aspect of sumoylation is its reversibility, which involves SUMO-specific proteases called SENPs. SENPs (sentrin/SUMO-specific proteases) catalyze the deconjugation of SUMO proteins using their isopeptidase activity. These enzymes participate through hydrolase activity in the reaction of SUMO protein maturation, which involves the removal of a short fragment on the C-terminus of SUMO inactive form and exposure two glycine residues. SENPs are important for maintaining the balance between sumoylated and desumoylated proteins required for normal cellular physiology. Six SENP isoforms (SENP1, SENP2, SENP3, SENP5, SENP6 and SENP7) have been identified in mammals. These SENPs can be divided into three subfamilies based on their sequence homology, substrate specificity and subcellular localization. Results of studies indicate the role of SUMO proteases in the development of human diseases including cancer, suggesting that these proteins may be attractive targets for new drugs.
Tidwell, Josephine A.; Schmidt, Christian; Heaton, Phillip; Wilson, Van; Tucker, Philip W.
2011-01-01
Two members, Bright/ARID3A and Bdp/ARID3B, of the ARID (AT-Rich Interaction Domain) transcription family are distinguished by their ability to specifically bind to DNA and to self-associate via a second domain, REKLES. Bright and Bdp positively regulate immunoglobulin heavy chain gene (IgH) transcription by binding to AT-rich motifs within Matrix Associating Regions (MARs) residing within a subset of VH promoters and the Eµ intronic enhancer. In addition, REKLES provides Bright nuclear export function, and a small pool of Bright is directed to plasma membrane sub-domains/lipid rafts where it associates with and modulates signaling of the B cell antigen receptor (BCR). Here, we characterize a third, highly conserved, physically condensed ARID3 locus, Brightlike/ARID3C. Brightlike encodes two alternatively spliced, SUMO-I-modified isoforms that include or exclude (Δ6) the REKLES-encoding exon 6. Brightlike transcripts and proteins are expressed preferentially within B lineage lymphocytes and coordinate with highest Bright expression--in activated follicular B cells. Brightlike, but not BrightlikeΔ6, undergoes nuclear-cytoplasmic shuttling with a fraction localizing within lipid rafts following BCR stimulation. Brightlike, but not BrightlikeΔ6, associates with Bright in solution, at common DNA binding sites in vitro, and is enriched at Bright binding sites in chromatin. Although possessing little transactivation capacity of its own, Brightlike significantly co-activates Bright-dependent IgH transcription with maximal activity mediated by the unsumoylated form. In sum, this report introduces Brightlike as an additional functional member of the family of ARID proteins, which should be considered in regulatory circuits, previously ascribed to be mediated by Bright. PMID:21955986
Tirard, Marilyn; Brose, Nils
2016-01-01
Protein SUMOylation is a posttranslational protein modification that is emerging as a key regulatory process in neurobiology. To date, however, SUMOylation in vivo has only been studied cursorily. Knock-in mice expressing His6-HA-SUMO1 from the Sumo1 locus allow for the highly specific localization and identification of endogenous SUMO1 substrates under physiological and pathophysiological conditions. By making use of the HA-tag and using wild-type mice for highly stringent negative control samples, SUMO1 targets can be specifically localized in and purified from cultured mouse nerve cells and mouse tissues.
USP7 is a SUMO deubiquitinase essential for DNA replication.
Lecona, Emilio; Rodriguez-Acebes, Sara; Specks, Julia; Lopez-Contreras, Andres J; Ruppen, Isabel; Murga, Matilde; Muñoz, Javier; Mendez, Juan; Fernandez-Capetillo, Oscar
2016-04-01
Post-translational modification of proteins by ubiquitin (Ub) and Ub-like modifiers regulates DNA replication. We have previously shown that chromatin around replisomes is rich in SUMO and poor in Ub, whereas mature chromatin exhibits an opposite pattern. How this SUMO-rich, Ub-poor environment is maintained at sites of DNA replication in mammalian cells remains unexplored. Here we identify USP7 as a replisome-enriched SUMO deubiquitinase that is essential for DNA replication. By acting on SUMO and SUMOylated proteins, USP7 counteracts their ubiquitination. Inhibition or genetic deletion of USP7 leads to the accumulation of Ub on SUMOylated proteins, which are displaced away from replisomes. Our findings provide a model explaining the differential accumulation of SUMO and Ub at replication forks and identify an essential role of USP7 in DNA replication that should be considered in the development of USP7 inhibitors as anticancer agents.
Genetic Polymorphism of SUMO-Specific Cysteine Proteases - SENP1 and SENP2 in Breast Cancer.
Mirecka, Alicja; Morawiec, Zbigniew; Wozniak, Katarzyna
2016-10-01
SENP proteases take part in post-translational modification of proteins known as sumoylation. They catalyze three distinct processes during sumoylation: processing of SUMO protein, deconjugation of SUMO from the target protein, and chain editing which mentions to the dismantling of SUMO chain. Many proteins that are involved in the basic processes of cells, such as regulation of transcription, DNA repair or cell cycle control, are sumoylated. The aim of these studies was to investigate an association between polymorphic variants (SNPs) of the SENP1 gene (c.1691 + 36C > T, rs12297820) and SENP2 gene (c.902C > A, p.Thr301Lys, rs6762208) and a risk of breast cancer occurrence. We performed a case-control study in 324 breast cancer cases and 335 controls using PCR-RLFP. In the case of the SENP1 gene polymorphism we did not find any association between this polymorphism and breast cancer risk. In the case of SENP2 gene polymorphism we observed higher risk of breast cancer for carriers of the A allele (OR =1.33; 95 % CI 1.04-1.69). Our analysis also showed the genotype C/C (OR =0.67, 95 % CI 0.48-0.93) and the allele C (OR =0.75, 95 % CI 0.59-0.69) of this polymorphism decrease a risk of breast cancer. We also checked the distribution of genotypes and frequency of alleles of the SENP1 and SENP2 genes polymorphisms in groups of patients with different hormone receptor status, patients with positive and negative lymph node status and patients with different tumor grade. Odds ratio analysis showed a higher risk of metastases in women with the genotype C/C (OR =2.07, 95 % CI 1.06-4.05) and allele C (OR =2.10 95 % CI 1.10-4.01) of the c.1691 + 36C > T SENP1 gene polymorphism. Moreover, we observed reduced risk in women with the allele T (OR =0.48, 95 % CI 0.25-0.91) in this polymorphic site. In the case of SENP2 gene polymorphism we observed that the A/A genotype correlated with the lack of estrogen receptor (OR =1.94, 95 % CI 1.04-3.62). Our results suggest that the variability of the SENP1 and SENP2 genes may play a role in breast cancer occurrence. Further studies are needed to clarify their biological functions in breast cancer.
UbSRD: The Ubiquitin Structural Relational Database.
Harrison, Joseph S; Jacobs, Tim M; Houlihan, Kevin; Van Doorslaer, Koenraad; Kuhlman, Brian
2016-02-22
The structurally defined ubiquitin-like homology fold (UBL) can engage in several unique protein-protein interactions and many of these complexes have been characterized with high-resolution techniques. Using Rosetta's structural classification tools, we have created the Ubiquitin Structural Relational Database (UbSRD), an SQL database of features for all 509 UBL-containing structures in the PDB, allowing users to browse these structures by protein-protein interaction and providing a platform for quantitative analysis of structural features. We used UbSRD to define the recognition features of ubiquitin (UBQ) and SUMO observed in the PDB and the orientation of the UBQ tail while interacting with certain types of proteins. While some of the interaction surfaces on UBQ and SUMO overlap, each molecule has distinct features that aid in molecular discrimination. Additionally, we find that the UBQ tail is malleable and can adopt a variety of conformations upon binding. UbSRD is accessible as an online resource at rosettadesign.med.unc.edu/ubsrd. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liu, Yan; Song, Yang; Madahar, Vipul; Liao, Jiayu
2012-03-01
Förster resonance energy transfer (FRET) technology has been widely used in biological and biomedical research, and it is a very powerful tool for elucidating protein interactions in either dynamic or steady state. SUMOylation (the process of SUMO [small ubiquitin-like modifier] conjugation to substrates) is an important posttranslational protein modification with critical roles in multiple biological processes. Conjugating SUMO to substrates requires an enzymatic cascade. Sentrin/SUMO-specific proteases (SENPs) act as an endopeptidase to process the pre-SUMO or as an isopeptidase to deconjugate SUMO from its substrate. To fully understand the roles of SENPs in the SUMOylation cycle, it is critical to understand their kinetics. Here, we report a novel development of a quantitative FRET-based protease assay for SENP1 kinetic parameter determination. The assay is based on the quantitative analysis of the FRET signal from the total fluorescent signal at acceptor emission wavelength, which consists of three components: donor (CyPet-SUMO1) emission, acceptor (YPet) emission, and FRET signal during the digestion process. Subsequently, we developed novel theoretical and experimental procedures to determine the kinetic parameters, k(cat), K(M), and catalytic efficiency (k(cat)/K(M)) of catalytic domain SENP1 toward pre-SUMO1. Importantly, the general principles of this quantitative FRET-based protease kinetic determination can be applied to other proteases. Copyright © 2011 Elsevier Inc. All rights reserved.
Augustine, Robert C.; Rytz, Thérèse C.
2016-01-01
In response to abiotic and biotic challenges, plants rapidly attach small ubiquitin-related modifier (SUMO) to a large collection of nuclear proteins, with studies in Arabidopsis (Arabidopsis thaliana) linking SUMOylation to stress tolerance via its modification of factors involved in chromatin and RNA dynamics. Despite this importance, little is known about SUMOylation in crop species. Here, we describe the plant SUMO system at the phylogenetic, biochemical, and transcriptional levels with a focus on maize (Zea mays). In addition to canonical SUMOs, land plants encode a loosely constrained noncanonical isoform and a variant containing a long extension upstream of the signature β-grasp fold, with cereals also expressing a novel diSUMO polypeptide bearing two SUMO β-grasp domains in tandem. Maize and other cereals also synthesize a unique SUMO-conjugating enzyme variant with more restricted expression patterns that is enzymatically active despite a distinct electrostatic surface. Maize SUMOylation primarily impacts nuclear substrates, is strongly induced by high temperatures, and displays a memory that suppresses subsequent conjugation. Both in-depth transcript and conjugate profiles in various maize organs point to tissue/cell-specific functions for SUMOylation, with potentially significant roles during embryo and endosperm maturation. Collectively, these studies define the organization of the maize SUMO system and imply important functions during seed development and stress defense. PMID:27208252
Lin, Yingbo; Liu, Hongyu; Waraky, Ahmed; Haglund, Felix; Agarwal, Prasoon; Jernberg-Wiklund, Helena; Warsito, Dudi; Larsson, Olle
2017-10-01
Increasing number of studies have shown nuclear localization of the insulin-like growth factor 1 receptor (nIGF-1R) in tumor cells and its links to adverse clinical outcome in various cancers. Any obvious cell physiological roles of nIGF-1R have, however, still not been disclosed. Previously, we reported that IGF-1R translocates to cell nucleus and modulates gene expression by binding to enhancers, provided that the receptor is SUMOylated. In this study, we constructed stable transfectants of wild type IGF1R (WT) and triple-SUMO-site-mutated IGF1R (TSM) using igf1r knockout mouse fibroblasts (R-). Cell clones (R-WT and R-TSM) expressing equal amounts of IGF-1R were selected for experiments. Phosphorylation of IGF-1R, Akt, and Erk upon IGF-1 stimulation was equal in R-WT and R-TSM. WT was confirmed to enter nuclei. TSM did also undergo nuclear translocation, although to a lesser extent. This may be explained by that TSM heterodimerizes with insulin receptor, which is known to translocate to cell nuclei. R-WT proliferated substantially faster than R-TSM, which did not differ significantly from the empty vector control. Upon IGF-1 stimulation G1-S-phase progression of R-WT increased from 12 to 38%, compared to 13 to 20% of R-TSM. The G1-S progression of R-WT correlated with increased expression of cyclin D1, A, and CDK2, as well as downregulation of p27. This suggests that SUMO-IGF-1R affects upstream mechanisms that control and coordinate expression of cell cycle regulators. Further studies to identify such SUMO-IGF-1R dependent mechanisms seem important. © 2017 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals Inc.
USP7 is a SUMO deubiquitinase essential for DNA replication
Lecona, Emilio; Rodriguez-Acebes, Sara; Specks, Julia; Lopez-Contreras, Andres J; Ruppen, Isabel; Murga, Matilde; Muñoz, Javier; Mendez, Juan; Fernandez-Capetillo, Oscar
2016-01-01
Post-translational modification of proteins by ubiquitin (Ub) and Ub-like modifiers regulates various aspects of DNA replication. We previously showed that the chromatin around replisomes is rich in SUMO and depleted in Ub, whereas an opposite pattern is observed in mature chromatin. How this SUMO-rich/Ub-low environment is maintained at sites of DNA replication is not known. Here we identify USP7 as a replisome-enriched SUMO deubiquitinase that is essential for DNA replication. By acting on SUMO and SUMOylated proteins, USP7 counteracts their ubiquitination. Chemical inhibition or genetic deletion of USP7 leads to the accumulation of Ub on SUMOylated proteins, which are displaced to chromatin away from replisomes. Our findings provide a model to explain the differential accumulation of SUMO and Ub at replication forks, and identify an essential role of USP7 in DNA replication that should be taken into account for the use of USP7 inhibitors as anticancer agents. PMID:26950370
Reconstitution of the Recombinant RanBP2 SUMO E3 Ligase Complex.
Ritterhoff, Tobias; Das, Hrishikesh; Hao, Yuqing; Sakin, Volkan; Flotho, Annette; Werner, Andreas; Melchior, Frauke
2016-01-01
One of the few proteins that have SUMO E3 ligase activity is the 358 kDa nucleoporin RanBP2 (Nup358). While small fragments of RanBP2 can stimulate SUMOylation in vitro, the physiologically relevant E3 ligase is a stable multi-subunit complex comprised of RanBP2, SUMOylated RanGAP1, and Ubc9. Here, we provide a detailed protocol to in vitro reconstitute the RanBP2 SUMO E3 ligase complex. With the exception of RanBP2, reconstitution involves untagged full-length proteins. We describe the bacterial expression and purification of all complex components, namely an 86 kDa His-tagged RanBP2 fragment, the SUMO E2-conjugating enzyme Ubc9, RanGAP1, and SUMO1, and we provide a protocol for quantitative SUMOylation of RanGAP1. Finally, we present details for the assembly and final purification of the catalytically active RanBP2/RanGAP1*SUMO1/Ubc9 complex.
Functional assessment of ubiquitin-depended processes under microgravity conditions
NASA Astrophysics Data System (ADS)
Zhabereva, Anastasia; Shenkman, Boris S.; Gainullin, Murat; Gurev, Eugeny; Kondratieva, Ekaterina; Kopylov, Arthur
Ubiquitylation, a widespread and important posttranslational modification of eukaryotic proteins, controls a multitude of critical cellular processes, both in normal and pathological conditions. The present work aims to study involvement of ubiquitin-dependent regulation in adaptive response to the external stimuli. Experiments were carried out on C57BL/6 mice. The microgravity state under conditions of real spaceflight on the biosatellite “BION-M1” was used as a model of stress impact. Additionally, number of control series including the vivarium control and experiments in Ground-based analog were also studied. The aggregate of endogenously ubiquitylated proteins was selected as specific feature of ubiquitin-dependent processes. Dynamic changes of modification pattern were characterized in liver tissue by combination of some methods, particularly by specific isolation of explicit protein pool, followed by immunodetection and/or mass spectrometry-based identification. The main approach includes specific extraction of proteins, modified by multiubiquitin chains of different length and topology. For this purpose two techniques were applied: 1) immunoprecipitation with antibodies against ubiquitin and/or multiubiquitin chains; 2) pull-down using synthetic protein construct termed Tandem Ubiquitin Binding Entities (TUBE, LifeSensors). TUBE represents fusion protein, composed of well characterized ubiquitin-binding domains, and thereby allows specific high-affinity binding and extraction of ubiquitylated proteins. Resulting protein fractions were analyzed by immunoblotting with antibodies against different types of multiubiquitin chains. Using this method we mapped endogenously modified proteins involved in two different types of ubiquitin-dependent processes, namely catabolic and non-catabolic ubiquitylation, in liver tissues, obtained from both control as well as experimental groups of animals, mentioned above. Then, isolated fractions of ubiquitylated proteins, were separated by SDS-PAGE and subjected for mass spectrometry-based analysis.With the described workflow, we identified more than 200 proteins including of 26S proteasome subunits, members of SUMO (Small Ubiquitin-like Modifier) family and ubiquitylated substrates. On the whole, our results provide an unbiased view of ubiquitylation state under microgravity conditions and thereby demonstrate the utility of proposed combination of analytical methods for functional assessment of ubiquitin-depended processes. Acknowledgment - We thank teams of Institute of Biomedical Problems of Russian Academy of Sciences and TsSKB “Progress” Samara for organization and preparation for spaceflight. This work is partially supported by the Russian Foundation for Basic Research (grant12-04-01836).
Kumar, Dinesh; Kumar, Ashutosh; Misra, Jyoti Ranjan; Chugh, Jeetender; Sharma, Shilpy; Hosur, Ramakrishna V
2008-06-01
SUMO, an important post-translational modifier of variety of substrate proteins, regulates different cellular functions. Here, we report the NMR resonance assignment of the folded and 8 M urea-denatured state of SUMO from Drosophila melanogaster (dsmt3).
A SUMO and ubiquitin code coordinates protein traffic at replication factories.
Lecona, Emilio; Fernandez-Capetillo, Oscar
2016-12-01
Post-translational modifications regulate each step of DNA replication to ensure the faithful transmission of genetic information. In this context, we recently showed that deubiquitination of SUMO2/3 and SUMOylated proteins by USP7 helps to create a SUMO-rich and ubiquitin-low environment around replisomes that is necessary to maintain the activity of replication forks and for new origin firing. We propose that a two-flag system mediates the collective concentration of factors at sites of DNA replication, whereby SUMO and Ubiquitinated-SUMO would constitute "stay" or "go" signals respectively for replisome and accessory factors. We here discuss the findings that led to this model, which have implications for the potential use of USP7 inhibitors as anticancer agents. © 2016 WILEY Periodicals, Inc.
Mahajan, Rohit; Gerace, Larry; Melchior, Frauke
1998-01-01
The mammalian guanosine triphosphate (GTP)ase-activating protein RanGAP1 is the first example of a protein covalently linked to the ubiquitin-related protein SUMO-1. Here we used peptide mapping, mass spectroscopy analysis, and mutagenesis to identify the nature of the link between RanGAP1 and SUMO-1. SUMO-1 is linked to RanGAP1 via glycine 97, indicating that the last 4 amino acids of this 101– amino acid protein are proteolytically removed before its attachment to RanGAP1. Recombinant SUMO-1 lacking the last four amino acids is efficiently used for modification of RanGAP1 in vitro and of multiple unknown proteins in vivo. In contrast to most ubiquitinated proteins, only a single lysine residue (K526) in RanGAP1 can serve as the acceptor site for modification by SUMO-1. Modification of RanGAP1 with SUMO-1 leads to association of RanGAP1 with the nuclear envelope (NE), where it was previously shown to be required for nuclear protein import. Sufficient information for modification and targeting resides in a 25-kD domain of RanGAP1. RanGAP1–SUMO-1 remains stably associated with the NE during many cycles of in vitro import. This indicates that removal of RanGAP1 from the NE is not a required element of nuclear protein import and suggests that the reversible modification of RanGAP1 may have a regulatory role. PMID:9442102
SUMOylation Promotes PML Degradation during Encephalomyocarditis Virus Infection▿
El Mchichi, Bouchra; Regad, Tarik; Maroui, Mohamed-Ali; Rodriguez, Manuel S.; Aminev, Aleksey; Gerbaud, Sylvie; Escriou, Nicolas; Dianoux, Laurent; Chelbi-Alix, Mounira K.
2010-01-01
The promyelocytic leukemia (PML) protein is expressed in the diffuse nuclear fraction of the nucleoplasm and in matrix-associated structures, known as nuclear bodies (NBs). PML NB formation requires the covalent modification of PML to SUMO. The noncovalent interactions of SUMO with PML based on the identification of a SUMO-interacting motif within PML seem to be required for further recruitment within PML NBs of SUMOylated proteins. RNA viruses whose replication takes place in the cytoplasm and is inhibited by PML have developed various strategies to counteract the antiviral defense mediated by PML NBs. We show here that primary fibroblasts derived from PML knockout mice are more sensitive to infection with encephalomyocarditis virus (EMCV), suggesting that the absence of PML results in an increase in EMCV replication. Also, we found that EMCV induces a decrease in PML protein levels both in interferon-treated cells and in PMLIII-expressing cells. Reduction of PML was carried out by the EMCV 3C protease. Indeed, at early times postinfection, EMCV induced PML transfer from the nucleoplasm to the nuclear matrix and PML conjugation to SUMO-1, SUMO-2, and SUMO-3, leading to an increase in PML body size where the viral protease 3C and the proteasome component were found colocalizing with PML within the NBs. This process was followed by PML degradation occurring in a proteasome- and SUMO-dependent manner and did not involve the SUMO-interacting motif of PML. Together, these findings reveal a new mechanism evolved by EMCV to antagonize the PML pathway in the interferon-induced antiviral defense. PMID:20826694
Feitosa, Weber Beringui; Hwang, KeumSil; Morris, Patricia L
2018-02-15
During mammalian meiosis, Polo-like kinase 1 (PLK1) is essential during cell cycle progression. In oocyte maturation, PLK1 expression is well characterized but timing of posttranslational modifications regulating its activity and subcellular localization are less clear. Small ubiquitin-related modifier (SUMO) posttranslational modifier proteins have been detected in mammalian gametes but their precise function during gametogenesis is largely unknown. In the present paper we report for mouse oocytes that both PLK1 and phosphorylated PLK1 undergo SUMOylation in meiosis II (MII) oocytes using immunocytochemistry, immunoprecipitation and in vitro SUMOylation assays. At MII, PLK1 is phosphorylated at threonine-210 and serine-137. MII oocyte PLK1 and phosphorylated PLK1 undergo SUMOylation by SUMO-1, -2 and -3 as shown by individual in vitro assays. Using these assays, forms of phosphorylated PLK1 normalized to PLK1 increased significantly and correlated with SUMOylated PLK1 levels. During meiotic progression and maturation, SUMO-1-SUMOylation of PLK1 is involved in spindle formation whereas SUMO-2/3-SUMOylation may regulate PLK1 activity at kinetochore-spindle attachment sites. Microtubule integrity is required for PLK1 localization with SUMO-1 but not with SUMO-2/3. Inhibition of SUMOylation disrupts proper meiotic bipolar spindle organization and spindle-kinetochore attachment. The data show that both temporal and SUMO-specific-SUMOylation play important roles in orchestrating functional dynamics of PLK1 during mouse oocyte meiosis, including subcellular compartmentalization. Copyright © 2018 Elsevier Inc. All rights reserved.
Mps1 is SUMO-modified during the cell cycle
Chen, Changyan; Lu, Lou; Dai, Wei
2016-01-01
Mps1 is a dual specificity protein kinase that regulates the spindle assembly checkpoint and mediates proper microtubule attachment to chromosomes during mitosis. However, the molecular mechanism that controls Mps1 protein level and its activity during the cell cycle remains unclear. Given that sumoylation plays an important role in mitotic progression, we investigated whether Mps1 was SUMO-modified and whether sumoylation affects its activity in mitosis. Our results showed that Mps1 was sumoylated in both asynchronized and mitotic cell populations. Mps1 was modified by both SUMO-1 and SUMO-2. Our further studies revealed that lysine residues including K71, K287, K367 and K471 were essential for Mps1 sumoylation. Sumoylation appeared to play a role in mediating kinetochore localization of Mps1, thus affecting normal mitotic progression. Furthermore, SUMO-resistant mutants of Mps1 interacted with BubR1 more efficiently than it did with the wild-type control. Combined, our results indicate that Mps1 is SUMO-modified that plays an essential role in regulating Mps1 functions during mitosis. PMID:26675261
Mps1 is SUMO-modified during the cell cycle.
Restuccia, Agnese; Yang, Feikun; Chen, Changyan; Lu, Lou; Dai, Wei
2016-01-19
Mps1 is a dual specificity protein kinase that regulates the spindle assembly checkpoint and mediates proper microtubule attachment to chromosomes during mitosis. However, the molecular mechanism that controls Mps1 protein level and its activity during the cell cycle remains unclear. Given that sumoylation plays an important role in mitotic progression, we investigated whether Mps1 was SUMO-modified and whether sumoylation affects its activity in mitosis. Our results showed that Mps1 was sumoylated in both asynchronized and mitotic cell populations. Mps1 was modified by both SUMO-1 and SUMO-2. Our further studies revealed that lysine residues including K71, K287, K367 and K471 were essential for Mps1 sumoylation. Sumoylation appeared to play a role in mediating kinetochore localization of Mps1, thus affecting normal mitotic progression. Furthermore, SUMO-resistant mutants of Mps1 interacted with BubR1 more efficiently than it did with the wild-type control. Combined, our results indicate that Mps1 is SUMO-modified that plays an essential role in regulating Mps1 functions during mitosis.
SUMO: operation and maintenance management web tool for astronomical observatories
NASA Astrophysics Data System (ADS)
Mujica-Alvarez, Emma; Pérez-Calpena, Ana; García-Vargas, María. Luisa
2014-08-01
SUMO is an Operation and Maintenance Management web tool, which allows managing the operation and maintenance activities and resources required for the exploitation of a complex facility. SUMO main capabilities are: information repository, assets and stock control, tasks scheduler, executed tasks archive, configuration and anomalies control and notification and users management. The information needed to operate and maintain the system must be initially stored at the tool database. SUMO shall automatically schedule the periodical tasks and facilitates the searching and programming of the non-periodical tasks. Tasks planning can be visualized in different formats and dynamically edited to be adjusted to the available resources, anomalies, dates and other constrains that can arise during daily operation. SUMO shall provide warnings to the users notifying potential conflicts related to the required personal availability or the spare stock for the scheduled tasks. To conclude, SUMO has been designed as a tool to help during the operation management of a scientific facility, and in particular an astronomical observatory. This is done by controlling all operating parameters: personal, assets, spare and supply stocks, tasks and time constrains.
Lamin A reassembly at the end of mitosis is regulated by its SUMO-interacting motif
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moriuchi, Takanobu; Kuroda, Masaki; Kusumoto, Fumiya
Modification of proteins with small ubiquitin-related modifier (SUMO; SUMOylation) is involved in the regulation of various biological processes. Recent studies have demonstrated that noncovalent associations between SUMOylated proteins and co-operative proteins containing SUMO-interacting motifs (SIMs) are important for the spatiotemporal organization of many protein complexes. In this study, we demonstrate that interactions between lamin A, a major component of the nuclear lamina, and SUMO isoforms are dependent on one of the four SIMs (SIM3) resided in lamin A polypeptide in vitro. Live cell imaging and immunofluorescence staining showed that SIM3 is required for accumulation of lamin A on the chromosomesmore » during telophase, and subsequent evaluation of a panel of deletion mutants determined that a 156-amino acid region spanning the carboxyl-terminal Ig-fold domain of lamin A is sufficient for this accumulation. Notably, mutation of SIM3 abrogated the dephosphorylation of mitosis-specific phosphorylation at Ser-22 of lamin A, which normally occurs during telophase, and the subsequent nuclear lamina reorganization. Furthermore, expression of a conjugation-defective SUMO2 mutant, which was previously shown to inhibit endogenous SUMOylation in a dominant-negative manner, also impaired the accumulation of wild type lamin A on telophase chromosomes. These findings suggest that interactions between SIM3 of lamin A and a putative SUMO2-modified protein plays an important role in the reorganization of the nuclear lamina at the end of mitosis. - Highlights: • Lamin A interacts with SUMO2 via a SUMO-interacting motif (SIM) in the Ig domain. • SIM3 of lamin A is responsible for chromosomal accumulation during telophase. • A 156-aa region spanning the Ig domain is sufficient for chromosomal accumulation. • Accumulation of lamin A is required for timely dephosphorylation on chromosomes. • A putative SUMO2-modified protein may mediate chromosomal accumulation of lamin A.« less
Li, Jinlin; Callegari, Simone; Masucci, Maria G
2017-04-01
Post-translational modification by the Small Ubiquitin-like Modifier (SUMO) regulates a variety of cellular functions, and is hijacked by viruses to remodel the host cell during latent and productive infection. Here we have monitored the activity of the SUMO conjugation machinery in cells productively infected with Epstein-Barr virus (EBV). We found that SUMO2/3 conjugates accumulate during the late phase of the productive virus cycle, and identified several viral proteins as bone fide SUMOylation substrates. Analysis of the mechanism involved in the accumulation of SUMOylated proteins revealed upregulation of several components of the SUMO-conjugation machinery and post-transcriptional downregulation of the SUMO-targeted ubiquitin ligase RNF4. The latter effect was mediated by selective inhibition of RNF4 protein expression by the viral miR-BHRF1-1. Reconstitution of RNF4 in cells expressing an inducible miR-BHRF1-1 sponge or a miR-BHRF1-1 resistant RNF4 was associated with reduced levels of early and late viral proteins and impaired virus release. These findings illustrate a novel strategy for viral interference with the SUMO pathway, and identify the EBV miR-BHRF1-1 and the cellular RNF4 as regulators of the productive virus cycle.
Li, Jinlin; Callegari, Simone
2017-01-01
Post-translational modification by the Small Ubiquitin-like Modifier (SUMO) regulates a variety of cellular functions, and is hijacked by viruses to remodel the host cell during latent and productive infection. Here we have monitored the activity of the SUMO conjugation machinery in cells productively infected with Epstein-Barr virus (EBV). We found that SUMO2/3 conjugates accumulate during the late phase of the productive virus cycle, and identified several viral proteins as bone fide SUMOylation substrates. Analysis of the mechanism involved in the accumulation of SUMOylated proteins revealed upregulation of several components of the SUMO-conjugation machinery and post-transcriptional downregulation of the SUMO-targeted ubiquitin ligase RNF4. The latter effect was mediated by selective inhibition of RNF4 protein expression by the viral miR-BHRF1-1. Reconstitution of RNF4 in cells expressing an inducible miR-BHRF1-1 sponge or a miR-BHRF1-1 resistant RNF4 was associated with reduced levels of early and late viral proteins and impaired virus release. These findings illustrate a novel strategy for viral interference with the SUMO pathway, and identify the EBV miR-BHRF1-1 and the cellular RNF4 as regulators of the productive virus cycle. PMID:28414785
SUMO1 depletion prevents lipid droplet accumulation and HCV replication.
Akil, Abdellah; Wedeh, Ghaith; Zahid Mustafa, Mohammad; Gassama-Diagne, Ama
2016-01-01
Infection by hepatitis C virus (HCV) is a major public-health problem. Chronic infection often leads to cirrhosis, steatosis, and hepatocellular carcinoma. The life cycle of HCV depends on the host cell machinery and involves intimate interaction between viral and host proteins. However, the role of host proteins in the life cycle of HCV remains poorly understood. Here, we identify the small ubiquitin-related modifier (SUMO1) as a key host factor required for HCV replication. We performed a series of cell biology and biochemistry experiments using the HCV JFH-1 (Japanese fulminate hepatitis 1) genotype 2a strain, which produces infectious particles and recapitulates all the steps of the HCV life cycle. We observed that SUMO1 is upregulated in Huh7.5 infected cells. Reciprocally, SUMO1 was found to regulate the expression of viral core protein. Moreover, knockdown of SUMO1 using specific siRNA influenced the accumulation of lipid droplets and reduced HCV replication as measured by qRT-PCR. Thus, we identify SUMO1 as a key host factor required for HCV replication. To our knowledge, this is the first report showing that SUMO1 regulates lipid droplets in the context of viral infection. Our report provides a meaningful insight into how HCV replicates and interacts with host proteins and is of significant importance for the field of HCV and RNA viruses.
Functional characterization of DnSIZ1, a SIZ/PIAS-type SUMO E3 ligase from Dendrobium.
Liu, Feng; Wang, Xiao; Su, Mengying; Yu, Mengyuan; Zhang, Shengchun; Lai, Jianbin; Yang, Chengwei; Wang, Yaqin
2015-09-17
SUMOylation is an important post-translational modification of eukaryotic proteins that involves the reversible conjugation of a small ubiquitin-related modifier (SUMO) polypeptide to its specific protein substrates, thereby regulating numerous complex cellular processes. The PIAS (protein inhibitor of activated signal transducers and activators of transcription [STAT]) and SIZ (scaffold attachment factor A/B/acinus/PIAS [SAP] and MIZ) proteins are SUMO E3 ligases that modulate SUMO conjugation. The characteristic features and SUMOylation mechanisms of SIZ1 protein in monocotyledon are poorly understood. Here, we examined the functions of a homolog of Arabidopsis SIZ1, a functional SIZ/PIAS-type SUMO E3 ligase from Dendrobium. In Dendrobium, the predicted DnSIZ1 protein has domains that are highly conserved among SIZ/PIAS-type proteins. DnSIZ1 is widely expressed in Dendrobium organs and has a up-regulated trend by treatment with cold, high temperature and wounding. The DnSIZ1 protein localizes to the nucleus and shows SUMO E3 ligase activity when expressed in an Escherichia coli reconstitution system. Moreover, ectopic expression of DnSIZ1 in the Arabidopsis siz1-2 mutant partially complements several phenotypes and results in enhanced levels of SUMO conjugates in plants exposed to heat shock conditions. We observed that DnSIZ1 acts as a negative regulator of flowering transition which may be via a vernalization-induced pathway. In addition, ABA-hypersensitivity of siz1-2 seed germination can be partially suppressed by DnSIZ1. Our results suggest that DnSIZ1 is a functional homolog of the Arabidopsis SIZ1 with SUMO E3 ligase activity and may play an important role in the regulation of Dendrobium stress responses, flowering and development.
McManus, Francis P; Bourdeau, Véronique; Acevedo, Mariana; Lopes-Paciencia, Stéphane; Mignacca, Lian; Lamoliatte, Frédéric; Rojas Pino, John W; Ferbeyre, Gerardo; Thibault, Pierre
2018-05-17
Several regulators of SUMOylation have been previously linked to senescence but most targets of this modification in senescent cells remain unidentified. Using a two-step purification of a modified SUMO3, we profiled the SUMO proteome of senescent cells in a site-specific manner. We identified 25 SUMO sites on 23 proteins that were significantly regulated during senescence. Of note, most of these proteins were PML nuclear body (PML-NB) associated, which correlates with the increased number and size of PML-NBs observed in senescent cells. Interestingly, the sole SUMO E2 enzyme, UBC9, was more SUMOylated during senescence on its Lys-49. Functional studies of a UBC9 mutant at Lys-49 showed a decreased association to PML-NBs and the loss of UBC9's ability to delay senescence. We thus propose both pro- and anti-senescence functions of protein SUMOylation.
Manipulation of ubiquitin/SUMO pathways in human herpesviruses infection.
Gan, Jin; Qiao, Niu; Strahan, Roxanne; Zhu, Caixia; Liu, Lei; Verma, Subhash C; Wei, Fang; Cai, Qiliang
2016-11-01
Post-translational modification of proteins with ubiquitin/small ubiquitin-like modifier (SUMO) molecules triggers multiple signaling pathways that are critical for many aspects of cellular physiology. Given that viruses hijack the biosynthetic and degradative systems of their host, it is not surprising that viruses encode proteins to manipulate the host's cellular machinery for ubiquitin/SUMO modification at multiple levels. Infection with a herpesvirus, among the most ubiquitous human DNA viruses, has been linked to many human diseases, including cancers. The interplay between human herpesviruses and the ubiquitylation/SUMOylation modification system has been extensively investigated in the past decade. In this review, we present an overview of recent advances to address how the ubiquitin/SUMO-modified system alters the latency and lytic replication of herpesvirus and how herpesviruses usurp the ubiquitin/SUMO pathways against the host's intrinsic and innate immune response to favor their pathogenesis. Copyright © 2016 John Wiley & Sons, Ltd.
Rao, Shengqi; Zang, Xiangyu; Yang, Zhenquan; Gao, Lu; Yin, Yongqi; Fang, Weiming
2016-02-01
A bioactive peptide precursor (BPP-1, 14.3 kDa/115AA), a newly designed polypeptide that may exert a potential antihypertensive effect in vivo, is composed of many different ACE inhibitory peptides and antioxidant peptides tandemly linked according to the restriction sites of gastrointestinal proteases. In this report, we present a novel method to obtain soluble BPP-1 in Escherichia coli using cationic elastin-like polypeptide and SUMO (cELP-SUMO) tags. The cELP-SUMO-tagged fusion protein was expressed in soluble form at 20 °C for 20 h. After purification based on the inverse transition cycling (ITC) method, the purified cELP-SUMO-CFPP fusion protein was subsequently cleaved by a SUMO protease to release the mature BPP-1. After a subsequent simple salt precipitation process, approximately 167.2 mg of recombinant BPP-1 was obtained from 1 l of bacterial culture with at least 92% purity. The molecular mass (Mr) of the recombinant BPP-1 was confirmed by MALDI-TOF MS to equal 14,347. The purified BPP-1 was subjected to simulated gastrointestinal digestion, and the resulting hydrolysates exhibited notable ACE inhibitory and antioxidant activities in vitro. This report provides the first description of the soluble production of a bioactive peptide multimer with potential ACE inhibitory and antioxidant activities in E. coli using a cELP-SUMO tag. Copyright © 2015 Elsevier Inc. All rights reserved.
Global Reprogramming of Host SUMOylation during Influenza Virus Infection
Domingues, Patricia; Golebiowski, Filip; Tatham, Michael H.; Lopes, Antonio M.; Taggart, Aislynn; Hay, Ronald T.; Hale, Benjamin G.
2015-01-01
Summary Dynamic nuclear SUMO modifications play essential roles in orchestrating cellular responses to proteotoxic stress, DNA damage, and DNA virus infection. Here, we describe a non-canonical host SUMOylation response to the nuclear-replicating RNA pathogen, influenza virus, and identify viral RNA polymerase activity as a major contributor to SUMO proteome remodeling. Using quantitative proteomics to compare stress-induced SUMOylation responses, we reveal that influenza virus infection triggers unique re-targeting of SUMO to 63 host proteins involved in transcription, mRNA processing, RNA quality control, and DNA damage repair. This is paralleled by widespread host deSUMOylation. Depletion screening identified ten virus-induced SUMO targets as potential antiviral factors, including C18orf25 and the SMC5/6 and PAF1 complexes. Mechanistic studies further uncovered a role for SUMOylation of the PAF1 complex component, parafibromin (CDC73), in potentiating antiviral gene expression. Our global characterization of influenza virus-triggered SUMO redistribution provides a proteomic resource to understand host nuclear SUMOylation responses to infection. PMID:26549460
Pozzi, Berta; Mammi, Pablo; Bragado, Laureano; Giono, Luciana E; Srebrow, Anabella
2018-05-09
Spliceosomal proteins have been revealed as SUMO conjugation targets. Moreover, we have reported that many of these are in a SUMO-conjugated form when bound to a pre-mRNA substrate during a splicing reaction. We demonstrated that SUMOylation of Prp3 (PRPF3), a component of the U4/U6 di-snRNP, is required for U4/U6•U5 tri-snRNP formation and/or recruitment to active spliceosomes. Expanding upon our previous results, we have shown that the splicing factor SRSF1 stimulates SUMO conjugation to several spliceosomal proteins. Given the relevance of the splicing process, as well as the complex and dynamic nature of its governing machinery, the spliceosome, the molecular mechanisms that modulate its function represent an attractive topic of research. We posit that SUMO conjugation could represent a way of modulating spliceosome assembly and thus, splicing efficiency. How cycles of SUMOylation/de-SUMOylation of spliceosomal proteins become integrated throughout the highly choreographed spliceosomal cycle awaits further investigation.
The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice.
Nacerddine, Karim; Lehembre, François; Bhaumik, Mantu; Artus, Jérôme; Cohen-Tannoudji, Michel; Babinet, Charles; Pandolfi, Pier Paolo; Dejean, Anne
2005-12-01
Covalent modification by SUMO regulates a wide range of cellular processes, including transcription, cell cycle, and chromatin dynamics. To address the biological function of the SUMO pathway in mammals, we generated mice deficient for the SUMO E2-conjugating enzyme Ubc9. Ubc9-deficient embryos die at the early postimplantation stage. In culture, Ubc9 mutant blastocysts are viable, but fail to expand after 2 days and show apoptosis of the inner cell mass. Loss of Ubc9 leads to major chromosome condensation and segregation defects. Ubc9-deficient cells also show severe defects in nuclear organization, including nuclear envelope dysmorphy and disruption of nucleoli and PML nuclear bodies. Moreover, RanGAP1 fails to accumulate at the nuclear pore complex in mutant cells that show a collapse in Ran distribution. Together, these findings reveal a major role for Ubc9, and, by implication, for the SUMO pathway, in nuclear architecture and function, chromosome segregation, and embryonic viability in mammals.
Matsuda, Atsushi; Forney, James D.
2006-01-01
Extensive genome-wide remodeling occurs during the formation of the somatic macronuclei from the germ line micronuclei in ciliated protozoa. This process is limited to sexual reproduction and includes DNA amplification, chromosome fragmentation, and the elimination of internal segments of DNA. Our efforts to define the pathways regulating these events revealed a gene encoding a homologue of ubiquitin activating enzyme 2 (UBA2) that is upregulated at the onset of macronuclear development in Paramecium tetraurelia. Uba2 enzymes are known to activate the protein called small ubiquitin-related modifier (SUMO) that is covalently attached to target proteins. Consistent with this relationship, Northern analysis showed increased abundance of SUMO transcripts during sexual reproduction in Paramecium. RNA interference (RNAi) against UBA2 or SUMO during vegetative growth had little effect on cell survival or fission rates. In contrast, RNAi of mating cells resulted in failure to form a functional macronucleus. Despite normal amplification of the genome, excision of internal eliminated sequences was completely blocked. Additional experiments showed that the homologous UBA2 and SUMO genes in Tetrahymena thermophila are also upregulated during conjugation. These results provide evidence for the developmental regulation of the SUMO pathway in ciliates and suggest a key role for the pathway in controlling genome remodeling. PMID:16682458
SUMO1 Affects Synaptic Function, Spine Density and Memory
Matsuzaki, Shinsuke; Lee, Linda; Knock, Erin; Srikumar, Tharan; Sakurai, Mikako; Hazrati, Lili-Naz; Katayama, Taiichi; Staniszewski, Agnieszka; Raught, Brian; Arancio, Ottavio; Fraser, Paul E.
2015-01-01
Small ubiquitin-like modifier-1 (SUMO1) plays a number of roles in cellular events and recent evidence has given momentum for its contributions to neuronal development and function. Here, we have generated a SUMO1 transgenic mouse model with exclusive overexpression in neurons in an effort to identify in vivo conjugation targets and the functional consequences of their SUMOylation. A high-expressing line was examined which displayed elevated levels of mono-SUMO1 and increased high molecular weight conjugates in all brain regions. Immunoprecipitation of SUMOylated proteins from total brain extract and proteomic analysis revealed ~95 candidate proteins from a variety of functional classes, including a number of synaptic and cytoskeletal proteins. SUMO1 modification of synaptotagmin-1 was found to be elevated as compared to non-transgenic mice. This observation was associated with an age-dependent reduction in basal synaptic transmission and impaired presynaptic function as shown by altered paired pulse facilitation, as well as a decrease in spine density. The changes in neuronal function and morphology were also associated with a specific impairment in learning and memory while other behavioral features remained unchanged. These findings point to a significant contribution of SUMO1 modification on neuronal function which may have implications for mechanisms involved in mental retardation and neurodegeneration. PMID:26022678
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, Jae Sung; Kim, Ha Na; Kim, Sun-Jick
Highlights: •NuMA is modified by SUMO-1 in a cell cycle-dependent manner. •NuMA lysine 1766 is the primary target site for SUMOylation. •SUMOylation-deficient NuMA induces multiple spindle poles during mitosis. •SUMOylated NuMA induces microtubule bundling. -- Abstract: Covalent conjugation of proteins with small ubiquitin-like modifier 1 (SUMO-1) plays a critical role in a variety of cellular functions including cell cycle control, replication, and transcriptional regulation. Nuclear mitotic apparatus protein (NuMA) localizes to spindle poles during mitosis, and is an essential component in the formation and maintenance of mitotic spindle poles. Here we show that NuMA is a target for covalent conjugationmore » to SUMO-1. We find that the lysine 1766 residue is the primary NuMA acceptor site for SUMO-1 conjugation. Interestingly, SUMO modification of endogenous NuMA occurs at the entry into mitosis and this modification is reversed after exiting from mitosis. Knockdown of Ubc9 or forced expression of SENP1 results in impairment of the localization of NuMA to mitotic spindle poles during mitosis. The SUMOylation-deficient NuMA mutant is defective in microtubule bundling, and multiple spindles are induced during mitosis. The mitosis-dependent dynamic SUMO-1 modification of NuMA might contribute to NuMA-mediated formation and maintenance of mitotic spindle poles during mitosis.« less
Beekley, Matthew D; Abe, Takashi; Kondo, Masakatsu; Midorikawa, Taishi; Yamauchi, Taro
2006-01-01
Sumo wrestling is unique in combat sport, and in all of sport. We examined the maximum aerobic capacity and body composition of sumo wrestlers and compared them to untrained controls. We also compared "aerobic muscle quality", meaning VO2max normalized to predicted skeletal muscle mass (SMM) (VO2max /SMM), between sumo wrestlers and controls and among previously published data for male athletes from combat, aerobic, and power sports. Sumo wrestlers, compared to untrained controls, had greater (p < 0.05) body mass (mean ± SD; 117.0 ± 4.9 vs. 56.1 ± 9.8 kg), percent fat (24.0 ± 1.4 vs. 13.3 ± 4.5), fat-free mass (88.9 ± 4.2 vs. 48.4 ± 6.8 kg), predicted SMM (48.2 ± 2.9 vs. 20.6 ± 4.7 kg) and absolute VO2max (3.6 ± 1.3 vs. 2.5 ± 0.7 L·min(-1)). Mean VO2max /SMM (ml·kg SMM(-1)·min(-1)) was significantly different (p < 0.05) among aerobic athletes (164.8 ± 18.3), combat athletes (which was not different from untrained controls; 131.4 ± 9.3 and 128.6 ± 13.6, respectively), power athletes (96.5 ± 5.3), and sumo wrestlers (71.4 ± 5.3). There was a strong negative correlation (r = - 0.75) between percent body fat and VO2max /SMM (p < 0.05). We conclude that sumo wrestlers have some of the largest percent body fat and fat-free mass and the lowest "aerobic muscle quality "(VO2max /SMM), both in combat sport and compared to aerobic and power sport athletes. Additionally, it appears from analysis of the relationship between SMM and absolute VO2max for all sports that there is a "ceiling "at which increases in SMM do not result in additional increases in absolute VO2max. Key PointsSumo wrestlers have a high absolute VO2max compared to untrained controls.However, sumo wrestlers have a low VO2max /kg of skeletal muscle mass compared to other combat sports, other strength/power sports, and untrained controls.The reason for this is unknown, but is probably related to alterations in sumo skeletal muscle compared to other sports.Based on the present and previous data, there appears to be a "ceiling "at which increases in skeletal muscle mass do not result in additional increases in absolute VO2max.
Characterization of a SUMO Ligase that is Essential for DNA Damage-Induced NF-Kappa B Activation
2008-03-01
DNA damage. Oncogene 18, 2261 – 2271. 80 Jung , M., Zhang, Y., Lee, S. and Dritschilo, A. (1995) Correction of radiation sensitivity in ataxia...telangiectasia cells by a truncated I kappaB-alpha. Science 268, 1619 – 1621. 81 Lee, S. J., Dimtchev, A., Lavin,M. F., Dritschilo, A. and Jung , M. (1998) A...CREB-binding protein/p300 are transcriptional coactivators of p65. Proc. Natl. Acad. Sci. USA 94, 2927 – 2932. 98 Kuo , H. Y., Chang, C. C., Jeng, J. C
Sevanto, Sanna [Los Alamos National Laboratory; Dickman, Turin L. [Los Alamos National Laboratory; Collins, Adam [Los Alamos National Laboratory; Grossiord, Charlotte [Swiss Federal Institute for Forest Snow and Landscape Research; Adams, Henry [Oklahoma State University; Borrego, Isaac [USGS Southwest Biological Science Center; McDowell, Nate [Pacific Northwest National Laboratory (PNNL); Powers, Heath [Los Alamos National Laboratory; Stockton, Elizabeth [University of New Mexico; Ryan, Max [Los Alamos National Laboratory; Slentz, Matthew [Mohle Adams; Briggs, Sam [Fossil Creek Nursery; McBranch, Natalie [Los Alamos National Laboratory; Morgan, Bryn [Los Alamos National Laboratory
2018-01-01
The Los Alamos Survival–Mortality experiment (SUMO) is located on Frijoles Mesa near Los Alamos, New Mexico, USA, at an elevation of 2150 m. This was a tree manipulation study that investigated the relative impacts of drought and warming on plant function and reveals how trees adapt to drought and heat in semi-arid regions. The study factored the role of tree hydraulic acclimation to both precipitation and temperature and separated their effects.The experiment is located in a pinon-juniper woodland near the ponderosa pine (Pinus ponderosa) forest ecotone. Daily average ambient micrometeorological conditions at the SUMO site. See SUMO Target Tree Information data package (doi:10.15485/1440544) for additional information. Data released by Los Alamos National Lab for public use under LA-UR-18-23656.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uozumi, Naoki; Matsumoto, Hotaru; Saitoh, Hisato, E-mail: hisa@kumamoto-u.ac.jp
The amino-nucleoside antibiotic, puromycin, acts by covalently linking to elongating polypeptide chains on ribosomes to generate prematurely terminated immature polypeptides. The trafficking of puromycin-conjugated (puromycylated) immature polypeptides within cell has, however, remained elusive. In this study, using O-propargyl-puromycin (OP-Puro), the distribution of puromycylated polypeptides was assessed in HeLa cells by click chemistry. Under standard culture conditions, OP-Puro signals were detected in the cytoplasm and nucleus with the highest concentrations in the nucleolus. Intriguingly, when proteasome activities were aborted using MG132, OP-Puro signals began to accumulate at promyelocytic leukemia nuclear bodies (PML-NBs) in addition to the nucleolus. We also found promiscuousmore » association of OP-Puro signals with SUMO-2/3 and ubiquitin at PML-NBs, but not at the nucleolus, during abortive proteasome activities. This study reveals a previously unknown distribution of OP-Puro that argues for a nuclear function in regulating immature protein homeostasis. -- Highlights: •Click chemistry detects O-propargyl-puromycin (OP-Puro) signals in the nucleus. •OP-Puro accumulates at PML-NBs during abortive proteasome activities. •SUMO and ubiquitin are promiscuously associated with OP-Puro at PML-NBs. •The nucleus may function in immature protein homeostasis.« less
Comparative analysis of the XopD T3S effector family in plant pathogenic bacteria
Kim, Jung-Gun; Taylor, Kyle W.; Mudgett, Mary Beth
2011-01-01
SUMMARY XopD is a type III effector protein that is required for Xanthomonas campestris pathovar vesicatoria (Xcv) growth in tomato. It is a modular protein consisting of an N-terminal DNA-binding domain, two EAR transcriptional repressor motifs, and a C-terminal SUMO protease. In tomato, XopD functions as a transcriptional repressor, resulting in the suppression of defense responses at late stages of infection. A survey of available genome sequences for phytopathogenic bacteria revealed that XopD homologs are limited to species within three Genera of Proteobacteria – Xanthomonas, Acidovorax, and Pseudomonas. While the EAR motif(s) and SUMO protease domain are conserved in all the XopD-like proteins, variation exists in the length and sequence identity of the N-terminal domains. Comparative analysis of the DNA sequences surrounding xopD and xopD-like genes led to revised annotation of the xopD gene. Edman degradation sequence analysis and functional complementation studies confirmed that the xopD gene from Xcv encodes a 760 amino acid protein with a longer N-terminal domain than previously predicted. None of the XopD-like proteins studied complemented Xcv ΔxopD mutant phenotypes in tomato leaves suggesting that the N-terminus of XopD defines functional specificity. Xcv ΔxopD strains expressing chimeric fusion proteins containing the N-terminus of XopD fused to the EAR motif(s) and SUMO protease domain of the XopD-like protein from Xanthomonas campestris pathovar campestris strain B100 were fully virulent in tomato demonstrating that the N-terminus of XopD controls specificity in tomato. PMID:21726373
Li, Junhua; Zhang, Yang; Yang, Yanjun
2013-03-01
The ribosomal protein L2, a constituent protein of the 50S large ribosomal subunit, can be used as Si-tag using silica particles for the immobilization and purification of recombinant proteins (Ikeda et al. (Protein Expr Purif 71:91-95, 2010); Taniguchi et al. (Biotechnol Bioeng 96:1023-1029, 2007)). We applied a diatomite powder, a sedimentary rock mainly composed with diatoms silica, as an affinity solid phase and small ubiquitin-like modifier (SUMO) technology to release a target protein from the solid phase. The L2 (203-273) was the sufficient region for the adsorption of ribosomal protein L2 on diatomite. We comparatively analyzed the different adsorption properties of the two deleted proteins of L2 (L2 (1-60, 203-273) and L2 (203-273)) on diatomite. The time required to reach adsorption equilibrium of L2 (203-273) fusion protein on diatomite was shorter than that of L2 (1-60, 203-273) fusion protein. The maximum adsorption capacity of L2 (203-273) fusion protein was larger than that of L2 (1-60, 203-273) fusion protein. In order to study whether the L2 (203-273) can function as an affinity purification tag, SUMO was introduced as one specific protease cleavage site between the target protein and the purification tags. The L2 (203-273) and SUMO fusion protein purification method was tested using enhanced green fluorescent protein as a model protein; the result shows that the purification performance of this affinity purification method was good. The strong adsorption characteristic of L2 (203-273) on diatomite also provides a potential protein fusion tag for the immobilization of enzyme.
Castro, Pedro Humberto; Verde, Nuno; Lourenço, Tiago; Magalhães, Alexandre Papadopoulos; Tavares, Rui Manuel; Bejarano, Eduardo Rodríguez; Azevedo, Herlânder
2015-12-01
Post-translational modification mechanisms function as switches that mediate the balance between optimum growth and the response to environmental stimuli, by regulating the activity of key proteins. SUMO (small ubiquitin-like modifier) attachment, or sumoylation, is a post-translational modification that is essential for the plant stress response, also modulating hormonal circuits to co-ordinate developmental processes. The Arabidopsis SUMO E3 ligase SAP and Miz 1 (SIZ1) is the major SUMO conjugation enhancer in response to stress, and is implicated in several aspects of plant development. Here we report that known SUMO targets are over-represented in multiple carbohydrate-related proteins, suggesting a functional link between sumoylation and sugar metabolism and signaling in plants. We subsequently observed that SUMO-conjugated proteins accumulate in response to high doses of sugar in a SIZ1-dependent manner, and that the null siz1 mutant displays increased expression of sucrose and starch catabolic genes and shows reduced starch levels. We demonstrated that SIZ1 controls germination time and post-germination growth via osmotic and sugar-dependent signaling, respectively. Glucose was specifically linked to SUMO-sugar interplay, with high levels inducing root growth inhibition and aberrant root hair morphology in siz1. The use of sugar analogs and sugar marker gene expression analysis allowed us to implicate SIZ1 in a signaling pathway dependent on glucose metabolism, probably involving modulation of SNF1-related kinase 1 (SnRK1) activity. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
The gap junction channel protein connexin 43 is covalently modified and regulated by SUMOylation.
Kjenseth, Ane; Fykerud, Tone A; Sirnes, Solveig; Bruun, Jarle; Yohannes, Zeremariam; Kolberg, Matthias; Omori, Yasufumi; Rivedal, Edgar; Leithe, Edward
2012-05-04
SUMOylation is a posttranslational modification in which a member of the small ubiquitin-like modifier (SUMO) family of proteins is conjugated to lysine residues in specific target proteins. Most known SUMOylation target proteins are located in the nucleus, but there is increasing evidence that SUMO may also be a key determinant of many extranuclear processes. Gap junctions consist of arrays of intercellular channels that provide direct transfer of ions and small molecules between adjacent cells. Gap junction channels are formed by integral membrane proteins called connexins, of which the best-studied isoform is connexin 43 (Cx43). Here we show that Cx43 is posttranslationally modified by SUMOylation. The data suggest that the SUMO system regulates the Cx43 protein level and the level of functional Cx43 gap junctions at the plasma membrane. Cx43 was found to be modified by SUMO-1, -2, and -3. Evidence is provided that the membrane-proximal lysines at positions 144 and 237, located in the Cx43 intracellular loop and C-terminal tail, respectively, act as SUMO conjugation sites. Mutations of lysine 144 or lysine 237 resulted in reduced Cx43 SUMOylation and reduced Cx43 protein and gap junction levels. Altogether, these data identify Cx43 as a SUMOylation target protein and represent the first evidence that gap junctions are regulated by the SUMO system.
Radjacommare, Ramalingam; Usharani, Raju; Kuo, Chih-Horng; Fu, Hongyong
2014-01-01
The reverse reaction of ubiquitylation is catalyzed by different classes of deubiquitylation enzymes (DUBs), including ovarian tumor domain (OTU)-containing DUBs; experiments using Homo sapiens proteins have demonstrated that OTU DUBs modulate various cellular processes. With the exception of OTLD1, plant OTU DUBs have not been characterized. We identified 12 Arabidopsis thaliana OTU loci and analyzed 11 of the encoded proteins in vitro to determine their preferences for the ubiquitin (UB) chains of M1, K48, and K63 linkages as well as the UB-/RUB-/SUMO-GST fusions. The A. thaliana OTU DUBs were shown to be cysteine proteases and classified into four groups with distinct linkage preferences: OTU1 (M1 = K48 > K63), OTU3/4/7/10 (K63 > K48 > M1), OTU2/9 (K48 = K63), and OTU5/11/12/OTLD1 (inactive). Five active OTU DUBs (OTU3/4/7/9/10) also cleaved RUB fusion. OTU1/3/4 cleaved M1 UB chains, suggesting a possible role for M1 chains in plant cellular signaling. The different substrate specificities of the various A. thaliana OTU DUBs indicate the involvement of distinct structural elements; for example, the OTU1 oxyanion residue D89 is essential for cleaving isopeptide bond-linked chains but dispensable for M1 chains. UB-binding activities were detected only for OTU2 and OTLD1, with distinct linkage preferences. These differences in biochemical properties support the involvement of A. thaliana OTU DUBs in different functions. Moreover, based on the established phylogenetic tree, plant- and H. sapiens-specific clades exist, which suggests that the proteins within these clades have taxa-specific functions. We also detected five OTU clades that are conserved across species, which suggests that the orthologs in different species within each clade are involved in conserved cellular processes, such as ERAD and DNA damage responses. However, different linkage preferences have been detected among potential cross-species OTU orthologs, indicating functional and mechanistic differentiation. PMID:24659992
The Unmanned Aerial System SUMO: an alternative measurement tool for polar boundary layer studies
NASA Astrophysics Data System (ADS)
Mayer, S.; Jonassen, M. O.; Reuder, J.
2012-04-01
Numerical weather prediction and climate models face special challenges in particular in the commonly stable conditions in the high-latitude environment. For process studies as well as for model validation purposes in-situ observations in the atmospheric boundary layer are highly required, but difficult to retrieve. We introduce a new measurement system for corresponding observations. The Small Unmanned Meteorological Observer SUMO consists of a small and light-weight auto-piloted model aircraft, equipped with a meteorological sensor package. SUMO has been operated in polar environments, among others during IPY on Spitsbergen in the year 2009 and has proven its capabilities for atmospheric measurements with high spatial and temporal resolution even at temperatures of -30 deg C. A comparison of the SUMO data with radiosondes and tethered balloons shows that SUMO can provide atmospheric profiles with comparable quality to those well-established systems. Its high data quality allowed its utilization for evaluation purposes of high-resolution model runs performed with the Weather Research and Forecasting model WRF and for the detailed investigation of an orographically modified flow during a case study.
Liu, Yan; Shen, Yali; Zheng, Shasha; Liao, Jiayu
2015-12-01
SUMOylation (the process of adding the SUMO [small ubiquitin-like modifier] to substrates) is an important post-translational modification of critical proteins in multiple processes. Sentrin/SUMO-specific proteases (SENPs) act as endopeptidases to process the pre-SUMO or as isopeptidases to deconjugate the SUMO from its substrate. Determining the kinetics of SENPs is important for understanding their activities. Förster resonance energy transfer (FRET) technology has been widely used in biomedical research and is a powerful tool for elucidating protein interactions. In this paper we report a novel quantitative FRET-based protease assay for SENP2 endopeptidase activity that accounts for the self-fluorescent emissions of the donor (CyPet) and the acceptor (YPet). The kinetic parameters, k(cat), K(M), and catalytic efficiency (k(cat)/K(M)) of catalytic domain SENP2 toward pre-SUMO1/2/3, were obtained by this novel design. Although we use SENP2 to demonstrate our method, the general principles of this quantitative FRET-based protease kinetic determination can be readily applied to other proteases.
Conn, Kristen L; Wasson, Peter; McFarlane, Steven; Tong, Lily; Brown, James R; Grant, Kyle G; Domingues, Patricia; Boutell, Chris
2016-05-01
Small ubiquitin-like modifier (SUMO) is used by the intrinsic antiviral immune response to restrict viral pathogens, such as herpes simplex virus 1 (HSV-1). Despite characterization of the host factors that rely on SUMOylation to exert their antiviral effects, the enzymes that mediate these SUMOylation events remain to be defined. We show that unconjugated SUMO levels are largely maintained throughout infection regardless of the presence of ICP0, the HSV-1 SUMO-targeted ubiquitin ligase. Moreover, in the absence of ICP0, high-molecular-weight SUMO-conjugated proteins do not accumulate if HSV-1 DNA does not replicate. These data highlight the continued importance for SUMO signaling throughout infection. We show that the SUMO ligase protein inhibitor of activated STAT 4 (PIAS4) is upregulated during HSV-1 infection and localizes to nuclear domains that contain viral DNA. PIAS4 is recruited to sites associated with HSV-1 genome entry through SUMO interaction motif (SIM)-dependent mechanisms that are destabilized by ICP0. In contrast, PIAS4 accumulates in replication compartments through SIM-independent mechanisms irrespective of ICP0 expression. Depletion of PIAS4 enhances the replication of ICP0-null mutant HSV-1, which is susceptible to restriction by the intrinsic antiviral immune response. The mechanisms of PIAS4-mediated restriction are synergistic with the restriction mechanisms of a characterized intrinsic antiviral factor, promyelocytic leukemia protein, and are antagonized by ICP0. We provide the first evidence that PIAS4 is an intrinsic antiviral factor. This novel role for PIAS4 in intrinsic antiviral immunity contrasts with the known roles of PIAS proteins as suppressors of innate immunity. Posttranslational modifications with small ubiquitin-like modifier (SUMO) proteins regulate multiple aspects of host immunity and viral replication. The protein inhibitor of activated STAT (PIAS) family of SUMO ligases is predominantly associated with the suppression of innate immune signaling. We now identify a unique and contrasting role for PIAS proteins as positive regulators of the intrinsic antiviral immune response to herpes simplex virus 1 (HSV-1) infection. We show that PIAS4 relocalizes to nuclear domains that contain viral DNA throughout infection. Depletion of PIAS4, either alone or in combination with the intrinsic antiviral factor promyelocytic leukemia protein, significantly impairs the intrinsic antiviral immune response to HSV-1 infection. Our data reveal a novel and dynamic role for PIAS4 in the cellular-mediated restriction of herpesviruses and establish a new functional role for the PIAS family of SUMO ligases in the intrinsic antiviral immune response to DNA virus infection. Copyright © 2016 Conn et al.
Conn, Kristen L.; Wasson, Peter; McFarlane, Steven; Tong, Lily; Brown, James R.; Grant, Kyle G.; Domingues, Patricia
2016-01-01
ABSTRACT Small ubiquitin-like modifier (SUMO) is used by the intrinsic antiviral immune response to restrict viral pathogens, such as herpes simplex virus 1 (HSV-1). Despite characterization of the host factors that rely on SUMOylation to exert their antiviral effects, the enzymes that mediate these SUMOylation events remain to be defined. We show that unconjugated SUMO levels are largely maintained throughout infection regardless of the presence of ICP0, the HSV-1 SUMO-targeted ubiquitin ligase. Moreover, in the absence of ICP0, high-molecular-weight SUMO-conjugated proteins do not accumulate if HSV-1 DNA does not replicate. These data highlight the continued importance for SUMO signaling throughout infection. We show that the SUMO ligase protein inhibitor of activated STAT 4 (PIAS4) is upregulated during HSV-1 infection and localizes to nuclear domains that contain viral DNA. PIAS4 is recruited to sites associated with HSV-1 genome entry through SUMO interaction motif (SIM)-dependent mechanisms that are destabilized by ICP0. In contrast, PIAS4 accumulates in replication compartments through SIM-independent mechanisms irrespective of ICP0 expression. Depletion of PIAS4 enhances the replication of ICP0-null mutant HSV-1, which is susceptible to restriction by the intrinsic antiviral immune response. The mechanisms of PIAS4-mediated restriction are synergistic with the restriction mechanisms of a characterized intrinsic antiviral factor, promyelocytic leukemia protein, and are antagonized by ICP0. We provide the first evidence that PIAS4 is an intrinsic antiviral factor. This novel role for PIAS4 in intrinsic antiviral immunity contrasts with the known roles of PIAS proteins as suppressors of innate immunity. IMPORTANCE Posttranslational modifications with small ubiquitin-like modifier (SUMO) proteins regulate multiple aspects of host immunity and viral replication. The protein inhibitor of activated STAT (PIAS) family of SUMO ligases is predominantly associated with the suppression of innate immune signaling. We now identify a unique and contrasting role for PIAS proteins as positive regulators of the intrinsic antiviral immune response to herpes simplex virus 1 (HSV-1) infection. We show that PIAS4 relocalizes to nuclear domains that contain viral DNA throughout infection. Depletion of PIAS4, either alone or in combination with the intrinsic antiviral factor promyelocytic leukemia protein, significantly impairs the intrinsic antiviral immune response to HSV-1 infection. Our data reveal a novel and dynamic role for PIAS4 in the cellular-mediated restriction of herpesviruses and establish a new functional role for the PIAS family of SUMO ligases in the intrinsic antiviral immune response to DNA virus infection. PMID:26937035
E1B-55K mediated regulation of RNF4 STUbL promotes HAdV gene expression.
Müncheberg, Sarah; Hay, Ron T; Ip, Wing H; Meyer, Tina; Weiß, Christina; Brenke, Jara; Masser, Sawinee; Hadian, Kamyar; Dobner, Thomas; Schreiner, Sabrina
2018-04-25
HAdV E1B-55K is a multifunctional regulator of productive viral replication and oncogenic transformation in non-permissive mammalian cells. These functions depend on E1B-55K's posttranslational modification with the SUMO protein and its binding to HAdV E4orf6. Both early viral proteins recruit specific host factors to form an E3 Ubiquitin ligase complex that targets antiviral host substrates for proteasomal degradation. Recently, we reported that the PML-NB-associated factor Daxx represses efficient HAdV productive infection and is proteasomally degraded via a SUMO-E1B-55K-dependent, E4orf6-independent pathway, the details of which remained to be established.RNF4, a cellular SUMO-targeted Ubiquitin ligase (STUbL), induces ubiquitinylation of specific SUMOylated proteins and plays an essential role during DNA repair. Here, we show that E1B-55K recruits RNF4 to the insoluble nuclear matrix fraction of the infected cell to support RNF4/Daxx association, promoting Daxx PTM, and thus inhibiting this antiviral factor. Removing RNF4 from infected cells using RNAi resulted in blocking the proper establishment of viral replication centers and significantly diminished viral gene expression. These results provide a model for how HAdV antagonize the antiviral host responses by exploiting the functional capacity of cellular STUbLs. Thus, RNF4 and its STUbL function represent a positive factor during lytic infection and a novel candidate for future therapeutic antiviral intervention strategies. IMPORTANCE Daxx is a PML-NB-associated transcription factor, which was recently shown to repress efficient HAdV productive infection. To counteract this antiviral measurement during infection, Daxx is degraded via a novel pathway including viral E1B-55K and host proteasomes. This virus-mediated degradation is independent of the classical HAdV E3 Ubiquitin ligase complex, which is essential during viral infection to target other host antiviral substrates. To maintain productive viral life cycle, HAdV E1B-55K early viral protein inhibits the chromatin-remodeling factor Daxx in a SUMO-dependent manner. In addition viral E1B-55K protein recruits the STUbL RNF4 and sequesters it into the insoluble fraction of the infected cell. E1B-55K promotes complex formation between RNF4 and E1B-55K targeted Daxx protein, supporting Daxx posttranslational modification prior to functional inhibition. Hence, RNF4 represents a novel host factor, which is beneficial for HAdV gene expression by supporting Daxx counteraction. In this regard, RNF4 and other STUbL proteins might represent novel targets for therapeutic intervention. Copyright © 2018 American Society for Microbiology.
Sevanto, Sanna [Los Alamos National Laboratory; Powers, Heath [Los Alamos National Laboratory; Dickman, Turin L. [Los Alamos National Laboratory; Collins, Adam [Los Alamos National Laboratory; Grossiord, Charlotte [Swiss Federal Institute for Forest Snow and Landscape Research; Adams, Henry [Oklahoma State University; Borrego, Isaac [USGS Southwest Biological Science Center; McDowell, Nate [Pacific Northwest National Laboratory (PNNL); Stockton, Elizabeth [University of New Mexico; Ryan, Max [Los Alamos National Laboratory; Slentz, Matthew [Mohle Adams; Briggs, Sam [Fossil Creek Nursery; McBranch, Natalie [Los Alamos National Laboratory; Morgan, Bryn [Los Alamos National Laboratory
2018-01-01
The Los Alamos Survival–Mortality experiment (SUMO) is located on Frijoles Mesa near Los Alamos, New Mexico, USA, at an elevation of 2150 m. This was a tree manipulation study that investigated the relative impacts of drought and warming on plant function and reveals how trees adapt to drought and heat in semi-arid regions. The study factored the role of tree hydraulic acclimation to both precipitation and temperature and separated their effects.The experiment is located in a pinon-juniper woodland near the ponderosa pine (Pinus ponderosa) forest ecotone. Chamber conditions (temperature, relative humidity, vapor pressure deficit) for SUMO Open Top Chambers (OTCs) used to control air temperatures surrounding heated and control chamber trees. See SUMO Target Tree Information data package (doi:10.15485/1440544) for additional information. Data released by Los Alamos National Lab for public use under LA-UR-18-23656.
Baldwin, Melissa L; Julius, Jeffrey A; Tang, Xianying; Wang, Yanchang; Bachant, Jeff
2009-10-15
Post-translation modification through the SUMO pathway is cell cycle regulated, with specific SUMO conjugates accumulating in mitotic cells. The basis for this regulation, however, and its functional significance remain poorly understood. We present evidence that in budding yeast sumoylation during mitosis may be controlled through the SUMO deconjugating enzyme Smt4/Ulp2. We isolated the polo kinase Cdc5 as an Ulp2-interacting protein, and find a C-terminal region of Ulp2 is phosphorylated during mitosis in a Cdc5-dependent manner. cdc5 mutants display reduced levels of mitotic SUMO conjugates, suggesting Cdc5 may negatively regulate Ulp2 to promote sumoylation. Previously, we found one phenotype associated with ulp2 mutants is an inability to maintain chromatid cohesion at centromere-proximal chromosomal regions. We now show this defect is rescued by inactivating Cdc5, indicating Ulp2 maintains cohesion by counter-acting Cdc5 activity. The cohesinregulator Pds5 is a likely target of this pathway, as Cdc5 overproduction forces Pds5 dissociation from chromosomes and Pds5 overproduction restores cohesion in ulp2 mutants. Overall, these observations reveal Cdc5 is a novel regulator of the SUMO pathway and suggest the outlines of a broader circuitry in which Ulp2 and Cdc5 act in a mutually antagonistic fashion to modulate maintenance and dissolution of cohesion at centromeres.
Bodles-Brakhop, Angela M.; Yao-Borengasser, Aiwei; Zhu, Beibei; Starnes, Catherine P.; McGehee, Robert E.; Peterson, Charlotte A.; Kern, Philip A.
2012-01-01
Abstract Background This study investigated the regulation of peroxisome proliferator-activated receptor-γ (PPARγ), the histone deacetylase 3 (HDAC3)–nuclear receptor coreceptor (NCoR) complex (a corepressor of transcription used by PPARγ), and small ubiquitin-like modifier-1 (SUMO-1) (a posttranslational modifier of PPARγ) in human adipose tissue and both adipocyte and macrophage cell lines. The objective was to determine whether there were alterations in the human adipose tissue gene expression levels of PPARγ, HDAC3, NCoR, and SUMO-1 associated either with obesity or with treatment of impaired glucose tolerance (IGT) subjects with insulin-sensitizing medications. Methods We obtained subcutaneous adipose tissue biopsies from 86 subjects with a wide range of body mass index (BMI) and insulin sensitivity (SI). Additionally, adipose tissue biopsies were obtained from a randomized subgroup of IGT subjects before and after 10 weeks of treatment with either pioglitazone or metformin. Results The adipose mRNA levels of PPARγ, NCoR, HDAC3, and SUMO-1 correlated strongly with each other (P<0.0001); however, SUMO-1, NCoR, and HDAC3 gene expression were not significantly associated with BMI or SI. Pioglitazone increased SUMO-1 expression by 23% (P<0.002) in adipose tissue and an adipocyte cell line (P<0.05), but not in macrophages. Small interfering RNA (siRNA)-mediated knockdown of SUMO-1 decreased PPARγ, HDAC3, and NCoR in THP-1 cells and increased tumor necrosis factor-α (TNF-α) induction in response to lipopolysaccharide (LPS). Conclusions These results suggest that the coordinate regulation of SUMO-1, PPARγ1/2, HDAC3, and NCoR may be more tightly controlled in macrophages than in adipocytes in human adipose and that these modulators of PPARγ activity may be particularly important in the negative regulation of macrophage-mediated adipose inflammation by pioglitazone. PMID:22651256
PDSM, a motif for phosphorylation-dependent SUMO modification
Hietakangas, Ville; Anckar, Julius; Blomster, Henri A.; Fujimoto, Mitsuaki; Palvimo, Jorma J.; Nakai, Akira; Sistonen, Lea
2006-01-01
SUMO (small ubiquitin-like modifier) modification regulates many cellular processes, including transcription. Although sumoylation often occurs on specific lysines within the consensus tetrapeptide ΨKxE, other modifications, such as phosphorylation, may regulate the sumoylation of a substrate. We have discovered PDSM (phosphorylation-dependent sumoylation motif), composed of a SUMO consensus site and an adjacent proline-directed phosphorylation site (ΨKxExxSP). The highly conserved motif regulates phosphorylation-dependent sumoylation of multiple substrates, such as heat-shock factors (HSFs), GATA-1, and myocyte enhancer factor 2. In fact, the majority of the PDSM-containing proteins are transcriptional regulators. Within the HSF family, PDSM is conserved between two functionally distinct members, HSF1 and HSF4b, whose transactivation capacities are repressed through the phosphorylation-dependent sumoylation. As the first recurrent sumoylation determinant beyond the consensus tetrapeptide, the PDSM provides a valuable tool in predicting new SUMO substrates. PMID:16371476
Production and Purification of Recombinant SUMOylated Proteins Using Engineered Bacteria.
Brockly, Frédérique; Piechaczyk, Marc; Bossis, Guillaume
2016-01-01
SUMO is a ubiquitin-like protein that is covalently conjugated to numerous cellular proteins to modify their function and fate. Although large progresses have been made in the identification of SUMOylated proteins, the molecular consequences of their SUMOylation are generally unknown. This is, most often, due to the low abundance of SUMOylated proteins in the cell, usually less than 1 % of a given protein being modified at steady state. To gain insights into the role of specific SUMOylation targets, SUMO conjugation can be reconstituted in vitro using purified proteins. However, for most substrates, the efficiency of in vitro SUMOylation is too low to obtain sufficient amounts of their SUMOylated forms for biochemical studies. Here, we describe a detailed protocol to purify large amounts of recombinant SUMOylated proteins using bacteria modified to express His-tagged SUMO as well as the SUMO-activating and -conjugating enzymes.
Li, Yifeng
2013-02-01
LL-37 is a human antimicrobial peptide that has been shown to possess multiple functions in host defense. In this report, the peptide was expressed as a fusion with a thioredoxin-SUMO dual-tag. Upon SUMO protease mediated cleavage at the SUMO/peptide junction, LL-37 with its native N-terminus was generated. The released peptide was separated from the dual-tag and cleavage enzyme by size-exclusion chromatography. Mass spectrometry analysis proves that the recombinant peptide has a molecular weight as theoretically expected for its native form. The produced peptide displayed antimicrobial activity against Escherichia coli K-12. On average, 2.4 mg peptide was obtained from one liter of bacterial culture. Thus, the described approach provides an effective alternative for producing active recombinant LL-37 with its natural amino acid sequence in E. coli. Copyright © 2012 Elsevier Inc. All rights reserved.
Ma, Qingshan; Yu, Zhanqiao; Han, Bing; Wang, Qing; Zhang, Rijun
2012-04-01
Lacticin Q is a broad-spectrum class II bacteriocin with potential as an alternative to conventional antibiotics. The objective of this study was to produce recombinant lacticin Q using a small ubiquitin-related modifier (SUMO) fusion protein expression system. The 168-bp lacticin Q gene was cloned into the expression vector pET SUMO and transformed into Escherichia coli BL21(DE3). The soluble fusion protein was recovered with a Ni-NTA Sepharose column (95% purity); 130 mg protein was obtained per liter of fermentation culture. The SUMO tag was then proteolytically cleaved from the protein, which was re-applied to the column. Finally, about 32 mg lacticin Q (≥96% purity) was obtained. The recombinant protein exhibited antimicrobial properties similar to that of the native protein, demonstrating that lacticin Q had been successfully expressed by the SUMO fusion system.
NASA Astrophysics Data System (ADS)
Solano, Ilaria; Parisse, Pietro; Gramazio, Federico; Ianeselli, Luca; Medagli, Barbara; Cavalleri, Ornella; Casalis, Loredana; Canepa, Maurizio
2017-11-01
The comprehension of mechanisms of interaction between functional layers and proteins is relevant for the development of sensitive and precise biosensors. Here we report our study which combines Atomic Force Microscopy and Spectroscopic Ellipsometry to investigate the His-Ni-NTA mediated interaction between 6His-tagged Small Ubiquitin-like Modifier (SUMO) protein with self assembled monolayers of NTA terminated alkanethiols. The use of AFM-based nanolithograhic tools and the analysis of ellipsometric spectra in situ and ex situ provided us a solid method to disentangle the effects of Ni(II)-mediated interaction between the NTA layer and the 6His-tagged SUMO and to accurately determine in physiological condition the thickness value of the SUMO layer. This investigation is a first step towards the study of layered systems of greater complexity of which the NTA/6His-tagged SUMO is a prototypical example.
In situ SUMOylation analysis reveals a modulatory role of RanBP2 in the nuclear rim and PML bodies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saitoh, Noriko; Uchimura, Yasuhiro; The 21st Century Center of Excellence, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811
2006-05-01
SUMO modification plays a critical role in a number of cellular functions including nucleocytoplasmic transport, gene expression, cell cycle and formation of subnuclear structures such as promyelocytic leukemia (PML) bodies. In order to identify the sites where SUMOylation takes place in the cell, we developed an in situ SUMOylation assay using a semi-intact cell system and subsequently combined it with siRNA-based knockdown of nucleoporin RanBP2, also known as Nup358, which is one of the known SUMO E3 proteins. With the in situ SUMOylation assay, we found that both nuclear rim and PML bodies, besides mitotic apparatuses, are major targets formore » active SUMOylation. The ability to analyze possible SUMO conjugation sites would be a valuable tool to investigate where SUMO E3-like activities and/or SUMO substrates exist in the cell. Specific knockdown of RanBP2 completely abolished SUMOylation along the nuclear rim and dislocated RanGAP1 from the nuclear pore complexes. Interestingly, the loss of RanBP2 markedly reduced the number of PML bodies, in contrast to other, normal-appearing nuclear compartments including the nuclear lamina, nucleolus and chromatin, suggesting a novel link between RanBP2 and PML bodies. SUMOylation facilitated by RanBP2 at the nuclear rim may be a key step for the formation of a particular subnuclear organization. Our data imply that SUMO E3 proteins like RanBP2 facilitate spatio-temporal SUMOylation for certain nuclear structure and function.« less
Zhang, Tao; Liu, Yuan; Hu, Yibo; Zhang, Xiaoqing; Zhong, Lin; Fan, Junwei; Peng, Zhihai
2017-09-05
New-onset diabetes mellitus (NODM) is a common complication after liver transplantation (LT). The small ubiquitin-like modifier 4 (SUMO4) rs237025 polymorphism has been reported to be associated with type 2 diabetes mellitus (T2DM). In this study, we aimed to evaluate the association of donor and recipient SUMO4 rs237025 polymorphisms with NODM and the long-term consequences of NODM after LT. A total of 126 liver transplant patients were enrolled in the study. One single nucleotide polymorphism, SUMO4 rs237025, was genotyped in both donors and recipients. Both donor and recipient SUMO4 rs237025 polymorphisms were found to be significantly associated with NODM after LT. In multivariate analysis, recipient age>50 years, tacrolimus trough concentrations>10ng/mL at 1month after LT, donor and recipient rs237025 genetic variant, and the combined donor and recipient rs237025 genetic variant were independent predictive factors of NODM. Area under the receiver operating characteristic curve (AUROC) analysis indicated the higher predictive ability of the model containing combined donor and recipient rs237025 polymorphisms than the clinical model (p=0.046). Furthermore, Kaplan-Meier survival analysis demonstrated that NODM was related to significantly poorer patient survival in comparison with non-NODM patients (p=0.041). Both donor and recipient SUMO4 rs237025 polymorphisms contribute to the development of NODM after LT and NODM is a frequent complication that negatively affects patient survival. Copyright © 2017. Published by Elsevier B.V.
Penzkofer, Alfons; Stierl, Manuela; Mathes, Tilo; Hegemann, Peter
2014-11-01
The photoactivated cyclase bPAC of the microbial mats bacterium Beggiatoa sp. consists of a BLUF domain and an adenylyl cyclase domain. It has strong activity of photo-induced cyclic adenylyl monophosphate (cAMP) formation and is therefore an important optogenetic tool in neuroscience applications. The SUMO-bPAC-Y7F mutant where Tyr-7 is replaced by Phe-7 in the BLUF domain has lost the typical BLUF domain photo-cycle dynamics. Instead, the investigated SUMO-bPAC-Y7F mutant consisted of three protein conformations with different triplet based photo-dynamics: (i) reversible flavin quinone (Fl) cofactor reduction to flavin semiquinone (FlH), (ii) reversible violet/near ultraviolet absorbing flavin photoproduct (FlA) formation, and (iii) irreversible red absorbing flavin photoproduct (FlC) formation. Absorption and emission spectroscopic measurements on SUMO-bPAC-Y7F were carried out before, during and after light exposure. Flavin photo-dynamics schemes are developed for the SUMO-bPAC-Y7F fractions performing photo-induced FlH, FlA, and FlC formation. Quantitative parameters of the flavin cofactor excitation, relaxation and recovery dynamics in SUMO-bPAC-Y7F are determined. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Griffiths, John R.; Chicooree, Navin; Connolly, Yvonne; Neffling, Milla; Lane, Catherine S.; Knapman, Thomas; Smith, Duncan L.
2014-05-01
Protein modification by ubiquitination and SUMOylation occur throughout the cell and are responsible for numerous cellular functions such as apoptosis, DNA replication and repair, and gene transcription. Current methods for the identification of such modifications using mass spectrometry predominantly rely upon tryptic isopeptide tag generation followed by database searching with in vitro genetic mutation of SUMO routinely required. We have recently described a novel approach to ubiquitin and SUMO modification detection based upon the diagnostic a' and b' ions released from the isopeptide tags upon collision-induced dissociation of reductively methylated Ubl isopeptides (RUbI) using formaldehyde. Here, we significantly extend those studies by combining data-independent acquisition (DIA) with alternative labeling reagents to improve diagnostic ion coverage and enable relative quantification of modified peptides from both MS and MS/MS signals. Model synthetic ubiquitin and SUMO-derived isopeptides were labeled with mTRAQ reagents (Δ0, Δ4, and Δ8) and subjected to LC-MS/MS with SWATH acquisition. Novel diagnostic ions were generated upon CID, which facilitated the selective detection of these modified peptides. Simultaneous MS-based and MS/MS-based relative quantification was demonstrated for both Ub and SUMO-derived isopeptides across three channels in a background of mTRAQ-labeled Escherichia coli digest.
Organization and Regulation of Soybean SUMOylation System under Abiotic Stress Conditions
Li, Yanjun; Wang, Guixin; Xu, Zeqian; Li, Jing; Sun, Mengwei; Guo, Jingsong; Ji, Wei
2017-01-01
Covalent attachment of the small ubiquitin-related modifier, SUMO, to substrate proteins plays a significant role in plants under stress conditions, which can alter target proteins' function, location, and protein-protein interactions. Despite this importance, information about SUMOylation in the major legume crop, soybean, remains obscure. In this study, we performed a bioinformatics analysis of the entire soybean genome and identified 40 genes belonged to six families involved in a cascade of enzymatic reactions in soybean SUMOylation system. The cis-acting elements analysis revealed that promoters of SUMO pathway genes contained different combinations of stress and development-related cis-regulatory elements. RNA-seq data analysis showed that SUMO pathway components exhibited versatile tissue-specific expression patterns, indicating coordinated functioning during plant growth and development. qRT-PCR analysis of 13 SUMO pathway members indicated that majority of the SUMO pathway members were transcriptionally up-regulated by NaCl, heat and ABA stimuli during the 24 h period of treatment. Furthermore, SUMOylation dynamics in soybean roots under abiotic stress treatment were analyzed by western blot, which were characterized by regulation of SUMOylated proteins. Collectively, this study defined the organization of the soybean SUMOylation system and implied an essential function for SUMOylation in soybean abiotic stress responses. PMID:28878795
Brown, James R.; Conn, Kristen L.; Wasson, Peter; Charman, Matthew; Tong, Lily; Grant, Kyle; McFarlane, Steven
2016-01-01
ABSTRACT Aspects of intrinsic antiviral immunity are mediated by promyelocytic leukemia nuclear body (PML-NB) constituent proteins. During herpesvirus infection, these antiviral proteins are independently recruited to nuclear domains that contain infecting viral genomes to cooperatively promote viral genome silencing. Central to the execution of this particular antiviral response is the small ubiquitin-like modifier (SUMO) signaling pathway. However, the participating SUMOylation enzymes are not fully characterized. We identify the SUMO ligase protein inhibitor of activated STAT1 (PIAS1) as a constituent PML-NB protein. We show that PIAS1 localizes at PML-NBs in a SUMO interaction motif (SIM)-dependent manner that requires SUMOylated or SUMOylation-competent PML. Following infection with herpes simplex virus 1 (HSV-1), PIAS1 is recruited to nuclear sites associated with viral genome entry in a SIM-dependent manner, consistent with the SIM-dependent recruitment mechanisms of other well-characterized PML-NB proteins. In contrast to that of Daxx and Sp100, however, the recruitment of PIAS1 is enhanced by PML. PIAS1 promotes the stable accumulation of SUMO1 at nuclear sites associated with HSV-1 genome entry, whereas the accumulation of other evaluated PML-NB proteins occurs independently of PIAS1. We show that PIAS1 cooperatively contributes to HSV-1 restriction through mechanisms that are additive to those of PML and cooperative with those of PIAS4. The antiviral mechanisms of PIAS1 are counteracted by ICP0, the HSV-1 SUMO-targeted ubiquitin ligase, which disrupts the recruitment of PIAS1 to nuclear domains that contain infecting HSV-1 genomes through mechanisms that do not directly result in PIAS1 degradation. IMPORTANCE Adaptive, innate, and intrinsic immunity cooperatively and efficiently restrict the propagation of viral pathogens. Intrinsic immunity mediated by constitutively expressed cellular proteins represents the first line of intracellular defense against infection. PML-NB constituent proteins mediate aspects of intrinsic immunity to restrict herpes simplex virus 1 (HSV-1) as well as other viruses. These proteins repress viral replication through mechanisms that rely on SUMO signaling. However, the participating SUMOylation enzymes are not known. We identify the SUMO ligase PIAS1 as a constituent PML-NB antiviral protein. This finding distinguishes a SUMO ligase that may mediate signaling events important in PML-NB-mediated intrinsic immunity. Moreover, this research complements the recent identification of PIAS4 as an intrinsic antiviral factor, supporting a role for PIAS proteins as both positive and negative regulators of host immunity to virus infection. PMID:27099310
Brown, James R; Conn, Kristen L; Wasson, Peter; Charman, Matthew; Tong, Lily; Grant, Kyle; McFarlane, Steven; Boutell, Chris
2016-07-01
Aspects of intrinsic antiviral immunity are mediated by promyelocytic leukemia nuclear body (PML-NB) constituent proteins. During herpesvirus infection, these antiviral proteins are independently recruited to nuclear domains that contain infecting viral genomes to cooperatively promote viral genome silencing. Central to the execution of this particular antiviral response is the small ubiquitin-like modifier (SUMO) signaling pathway. However, the participating SUMOylation enzymes are not fully characterized. We identify the SUMO ligase protein inhibitor of activated STAT1 (PIAS1) as a constituent PML-NB protein. We show that PIAS1 localizes at PML-NBs in a SUMO interaction motif (SIM)-dependent manner that requires SUMOylated or SUMOylation-competent PML. Following infection with herpes simplex virus 1 (HSV-1), PIAS1 is recruited to nuclear sites associated with viral genome entry in a SIM-dependent manner, consistent with the SIM-dependent recruitment mechanisms of other well-characterized PML-NB proteins. In contrast to that of Daxx and Sp100, however, the recruitment of PIAS1 is enhanced by PML. PIAS1 promotes the stable accumulation of SUMO1 at nuclear sites associated with HSV-1 genome entry, whereas the accumulation of other evaluated PML-NB proteins occurs independently of PIAS1. We show that PIAS1 cooperatively contributes to HSV-1 restriction through mechanisms that are additive to those of PML and cooperative with those of PIAS4. The antiviral mechanisms of PIAS1 are counteracted by ICP0, the HSV-1 SUMO-targeted ubiquitin ligase, which disrupts the recruitment of PIAS1 to nuclear domains that contain infecting HSV-1 genomes through mechanisms that do not directly result in PIAS1 degradation. Adaptive, innate, and intrinsic immunity cooperatively and efficiently restrict the propagation of viral pathogens. Intrinsic immunity mediated by constitutively expressed cellular proteins represents the first line of intracellular defense against infection. PML-NB constituent proteins mediate aspects of intrinsic immunity to restrict herpes simplex virus 1 (HSV-1) as well as other viruses. These proteins repress viral replication through mechanisms that rely on SUMO signaling. However, the participating SUMOylation enzymes are not known. We identify the SUMO ligase PIAS1 as a constituent PML-NB antiviral protein. This finding distinguishes a SUMO ligase that may mediate signaling events important in PML-NB-mediated intrinsic immunity. Moreover, this research complements the recent identification of PIAS4 as an intrinsic antiviral factor, supporting a role for PIAS proteins as both positive and negative regulators of host immunity to virus infection. Copyright © 2016 Brown et al.
Tai, Derek J. C.; Liu, Yen C.; Hsu, Wei L.; Ma, Yun L.; Cheng, Sin J.; Liu, Shau Y.; Lee, Eminy H. Y.
2016-01-01
The methyl-CpG-binding protein 2 (MeCP2) gene, MECP2, is an X-linked gene encoding the MeCP2 protein, and mutations of MECP2 cause Rett syndrome (RTT). However, the molecular mechanism of MECP2-mutation-caused RTT is less known. Here we find that MeCP2 could be SUMO-modified by the E3 ligase PIAS1 at Lys-412. MeCP2 phosphorylation (at Ser-421 and Thr-308) facilitates MeCP2 SUMOylation, and MeCP2 SUMOylation is induced by NMDA, IGF-1 and CRF in the rat brain. MeCP2 SUMOylation releases CREB from the repressor complex and enhances Bdnf mRNA expression. Several MECP2 mutations identified in RTT patients show decreased MeCP2 SUMOylation. Re-expression of wild-type MeCP2 or SUMO-modified MeCP2 in Mecp2-null neurons rescues the deficits of social interaction, fear memory and LTP observed in Mecp2 conditional knockout (cKO) mice. These results together reveal an important role of MeCP2 SUMOylation in social interaction, memory and synaptic plasticity, and that abnormal MeCP2 SUMOylation is implicated in RTT. PMID:26842955
Study of the role of functional variants of SLC22A4, RUNX1 and SUMO4 in systemic lupus erythematosus
Orozco, G; Sánchez, E; Gómez, L M; González‐Gay, M A; López‐Nevot, M A; Torres, B; Ortego‐Centeno, N; Jiménez‐Alonso, J; de Ramón, E; Román, J Sánchez; Anaya, J M; Sturfelt, G; Gunnarsson, I; Svennungsson, E; Alarcón‐Riquelme, M; González‐Escribano, M F; Martín, J
2006-01-01
Background Functional polymorphisms of the solute carrier family 22, member 4 (SLC22A4), runt related transcription factor 1 (RUNX1) and small ubiquitin‐like modifier 4 (SUMO4) genes have been shown to be associated with several autoimmune diseases. Objective To test the possible role of these variants in susceptibility to or severity of systemic lupus erythematosus (SLE), on the basis that common genetic bases are shared by autoimmune disorders. Methods 597 SLE patients and 987 healthy controls of white Spanish origin were studied. Two additional cohorts of 228 SLE patients from Sweden and 122 SLE patients from Colombia were included. A case–control association study was carried out with six single nucleotide polymorphisms (SNP) spanning the SLC22A4 gene, one SNP in RUNX1 gene, and one additional SNP in SUM04 gene. Results No significant differences were observed between SLE patients and healthy controls when comparing the distribution of the genotypes or alleles of any of the SLC22A4, RUNX1, or SUMO4 polymorphisms tested. Significant differences were found in the distribution of the SUMO4 genotypes and alleles among SLE patients with and without nephritis, but after multiple testing correction, the significance of the association was lost. The association of SUMO4 with nephritis could not be verified in two independent SLE cohorts from Sweden and Colombia. Conclusions These results suggest that the SLC22A4, RUNX1, and SUMO4 polymorphisms analysed do not play a role in the susceptibility to or severity of SLE. PMID:16249223
Ge, Haize; Du, Juan; Xu, Jingman; Meng, Xiangliang; Tian, Jinchuan; Yang, Jie; Liang, Huimin
2017-08-03
Primary hepatocellular carcinoma (PHC) is a major health problem worldwide and is one of the 10 most commonly diagnosed cancers in China. Heat shock protein 27 (HSP27) were found to be overexpressed in a wide range of malignancies including PHC, however, post-translational modification of HSP27 still needs exploration in PHC. Recently, SUMOylation, an important post-translational modification associating with the development of many kinds of cancers has been intensively studied. In the current study, mRNA and protein level of HSP27 in archived tumor samples representing various pathological characteristics of PHC were examined, and modification of HSP27 by SUMO2/3 was investigated. HSP27 were expressed abundantly in patients' tumor tissues, and found to be associated with pathological progression. Besides, HSP27 was also elevated significantly in liver cancer cell lines Huh7 and HepG2 compared with human hepatocyte cells L02. Furthermore, knockdown of HSP27 was found to be associated with the decreased proliferation and invasion ability in Huh7 and HepG2 cells. Immunofluorescence assay showed that HSP27 and SUMO2/3 were co-localized in the subcellular, and co-immunoprecipitation verified the interaction between HSP27 and SUMO2/3. Overexpression of SUMO2/3 upregulated the HSP27 protein level and promotes Huh7 and HepG2 cell proliferation and invasion, and vice versa when the SUMO2/3 was knockdown. Taken together, increased protein level of HSP27 through SUMO2/3-mediated SUMOylation plays crucial roles in the progression of PHC, and this finding may shed light on developing potential therapeutic targets for PHC.
SUMOylated IRF-1 shows oncogenic potential by mimicking IRF-2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sun-Mi; School of Biological Sciences and Biotechnology, Chonnam National University, Gwangju 500-757; Chae, Myounghee
2010-01-01
Interferon regulatory factor-1 (IRF-1) is an interferon-induced transcriptional activator that suppresses tumors by impeding cell proliferation. Recently, we demonstrated that the level of SUMOylated IRF-1 is elevated in tumor cells, and that SUMOylation of IRF-1 attenuates its tumor-suppressive function. Here we report that SUMOylated IRF-1 mimics IRF-2, an antagonistic repressor, and shows oncogenic potential. To demonstrate the role of SUMOylated IRF-1 in tumorigenesis, we used SUMO-IRF-1 recombinant protein. Stable expression of SUMO-IRF-1 in NIH3T3 cells resulted in focus formation and anchorage-independent growth in soft agar. Inoculation of SUMO-IRF-1-transfected cells into athymic nude mice resulted in tumor formation and infiltration ofmore » adipose tissues. Finally, we demonstrated that SUMO-IRF-1 transforms NIH3T3 cells in a dose-dependent manner suggesting that SUMOylated IRF-1 may act as an oncogenic protein in tumor cells.« less
NASA Astrophysics Data System (ADS)
Reuder, Joachim; Jonassen, Marius; Ólafsson, Haraldur
2012-10-01
During the last 5 years, the Small Unmanned Meteorological Observer SUMO has been developed as a flexible tool for atmospheric boundary layer (ABL) research to be operated as sounding system for the lowest 4 km of the atmosphere. Recently two main technical improvements have been accomplished. The integration of an inertial measurement unit (IMU) into the Paparazzi autopilot system has expanded the environmental conditions for SUMO operation. The implementation of a 5-hole probe for determining the 3D flow vector with 100 Hz resolution and a faster temperature sensor has enhanced the measurement capabilities. Results from two recent field campaigns are presented. During the first one, in Denmark, the potential of the system to study the effects of wind turbines on ABL turbulence was shown. During the second one, the BLLAST field campaign at the foothills of the Pyrenees, SUMO data proved to be highly valuable for studying the processes of the afternoon transition of the convective boundary layer.
Varma, Gopal; Clough, Rachel E; Acher, Peter; Sénégas, Julien; Dahnke, Hannes; Keevil, Stephen F; Schaeffter, Tobias
2011-05-01
In magnetic resonance imaging, implantable devices are usually visualized with a negative contrast. Recently, positive contrast techniques have been proposed, such as susceptibility gradient mapping (SGM). However, SGM reduces the spatial resolution making positive visualization of small structures difficult. Here, a development of SGM using the original resolution (SUMO) is presented. For this, a filter is applied in k-space and the signal amplitude is analyzed in the image domain to determine quantitatively the susceptibility gradient for each pixel. It is shown in simulations and experiments that SUMO results in a better visualization of small structures in comparison to SGM. SUMO is applied to patient datasets for visualization of stent and prostate brachytherapy seeds. In addition, SUMO also provides quantitative information about the number of prostate brachytherapy seeds. The method might be extended to application for visualization of other interventional devices, and, like SGM, it might also be used to visualize magnetically labelled cells. Copyright © 2010 Wiley-Liss, Inc.
Di Costanzo, Antonella; Del Gaudio, Nunzio; Conte, Lidio; Dell'Aversana, Carmela; Vermeulen, Michiel; de Thé, Hugues; Migliaccio, Antimo; Nebbioso, Angela; Altucci, Lucia
2018-05-01
Polycomb group (PcG) proteins regulate transcription, playing a key role in stemness and differentiation. Deregulation of PcG members is known to be involved in cancer pathogenesis. Emerging evidence suggests that CBX2, a member of the PcG protein family, is overexpressed in several human tumors, correlating with lower overall survival. Unraveling the mechanisms regulating CBX2 expression may thus provide a promising new target for anticancer strategies. Here we show that the HDAC inhibitor SAHA regulates CBX2 stability via a SUMO-triggered ubiquitin-mediated pathway in leukemia. We identify CBX4 and RNF4 as the E3 SUMO and E3 ubiquitin ligase, respectively, and describe the specific molecular mechanism regulating CBX2 protein stability. Finally, we show that CBX2-depleted leukemic cells display impaired proliferation, underscoring its critical role in regulating leukemia cell tumorogenicity. Our results show that SAHA affects CBX2 stability, revealing a potential SAHA-mediated anti-leukemic activity though SUMO2/3 pathway.
Implication of SUMO E3 ligases in nucleotide excision repair.
Tsuge, Maasa; Kaneoka, Hidenori; Masuda, Yusuke; Ito, Hiroki; Miyake, Katsuhide; Iijima, Shinji
2015-08-01
Post-translational modifications alter protein function to mediate complex hierarchical regulatory processes that are crucial to eukaryotic cellular function. The small ubiquitin-like modifier (SUMO) is an important post-translational modification that affects transcriptional regulation, nuclear localization, and the maintenance of genome stability. Nucleotide excision repair (NER) is a very versatile DNA repair system that is essential for protection against ultraviolet (UV) irradiation. The deficiencies in NER function remarkably increase the risk of skin cancer. Recent studies have shown that several NER factors are SUMOylated, which influences repair efficiency. However, how SUMOylation modulates NER has not yet been elucidated. In the present study, we performed RNAi knockdown of SUMO E3 ligases and found that, in addition to PIASy, the polycomb protein Pc2 affected the repair of cyclobutane pyrimidine dimers. PIAS1 affected both the removal of 6-4 pyrimidine pyrimidone photoproducts and cyclobutane pyrimidine dimers, whereas other SUMO E3 ligases did not affect the removal of either UV lesion.
Mérai, Zsuzsanna; Chumak, Nina; García-Aguilar, Marcelina; Hsieh, Tzung-Fu; Nishimura, Toshiro; Schoft, Vera K; Bindics, János; Slusarz, Lucyna; Arnoux, Stéphanie; Opravil, Susanne; Mechtler, Karl; Zilberman, Daniel; Fischer, Robert L; Tamaru, Hisashi
2014-11-11
Centromeres mediate chromosome segregation and are defined by the centromere-specific histone H3 variant (CenH3)/centromere protein A (CENP-A). Removal of CenH3 from centromeres is a general property of terminally differentiated cells, and the persistence of CenH3 increases the risk of diseases such as cancer. However, active mechanisms of centromere disassembly are unknown. Nondividing Arabidopsis pollen vegetative cells, which transport engulfed sperm by extended tip growth, undergo loss of CenH3; centromeric heterochromatin decondensation; and bulk activation of silent rRNA genes, accompanied by their translocation into the nucleolus. Here, we show that these processes are blocked by mutations in the evolutionarily conserved AAA-ATPase molecular chaperone, CDC48A, homologous to yeast Cdc48 and human p97 proteins, both of which are implicated in ubiquitin/small ubiquitin-like modifier (SUMO)-targeted protein degradation. We demonstrate that CDC48A physically associates with its heterodimeric cofactor UFD1-NPL4, known to bind ubiquitin and SUMO, as well as with SUMO1-modified CenH3 and mutations in NPL4 phenocopy cdc48a mutations. In WT vegetative cell nuclei, genetically unlinked ribosomal DNA (rDNA) loci are uniquely clustered together within the nucleolus and all major rRNA gene variants, including those rDNA variants silenced in leaves, are transcribed. In cdc48a mutant vegetative cell nuclei, however, these rDNA loci frequently colocalized with condensed centromeric heterochromatin at the external periphery of the nucleolus. Our results indicate that the CDC48A(NPL4) complex actively removes sumoylated CenH3 from centromeres and disrupts centromeric heterochromatin to release bulk rRNA genes into the nucleolus for ribosome production, which fuels single nucleus-driven pollen tube growth and is essential for plant reproduction.
Mérai, Zsuzsanna; Chumak, Nina; García-Aguilar, Marcelina; Hsieh, Tzung-Fu; Nishimura, Toshiro; Schoft, Vera K.; Bindics, János; Ślusarz, Lucyna; Arnoux, Stéphanie; Opravil, Susanne; Mechtler, Karl; Zilberman, Daniel; Fischer, Robert L.; Tamaru, Hisashi
2014-01-01
Centromeres mediate chromosome segregation and are defined by the centromere-specific histone H3 variant (CenH3)/centromere protein A (CENP-A). Removal of CenH3 from centromeres is a general property of terminally differentiated cells, and the persistence of CenH3 increases the risk of diseases such as cancer. However, active mechanisms of centromere disassembly are unknown. Nondividing Arabidopsis pollen vegetative cells, which transport engulfed sperm by extended tip growth, undergo loss of CenH3; centromeric heterochromatin decondensation; and bulk activation of silent rRNA genes, accompanied by their translocation into the nucleolus. Here, we show that these processes are blocked by mutations in the evolutionarily conserved AAA-ATPase molecular chaperone, CDC48A, homologous to yeast Cdc48 and human p97 proteins, both of which are implicated in ubiquitin/small ubiquitin-like modifier (SUMO)-targeted protein degradation. We demonstrate that CDC48A physically associates with its heterodimeric cofactor UFD1-NPL4, known to bind ubiquitin and SUMO, as well as with SUMO1-modified CenH3 and mutations in NPL4 phenocopy cdc48a mutations. In WT vegetative cell nuclei, genetically unlinked ribosomal DNA (rDNA) loci are uniquely clustered together within the nucleolus and all major rRNA gene variants, including those rDNA variants silenced in leaves, are transcribed. In cdc48a mutant vegetative cell nuclei, however, these rDNA loci frequently colocalized with condensed centromeric heterochromatin at the external periphery of the nucleolus. Our results indicate that the CDC48ANPL4 complex actively removes sumoylated CenH3 from centromeres and disrupts centromeric heterochromatin to release bulk rRNA genes into the nucleolus for ribosome production, which fuels single nucleus-driven pollen tube growth and is essential for plant reproduction. PMID:25344531
Development of a space universal modular architecture (SUMO)
NASA Astrophysics Data System (ADS)
Collins, Bernie F.
This concept paper proposes that the space community should develop and implement a universal standard for spacecraft modularity - to improve interoperability of spacecraft components. Pursuing a global industry consensus standard for open and modular spacecraft architecture will encourage trade, remove standards-related market barriers, and in the long run increase both value provided to customers and profitability of the space industrial sector. This concept paper sets out: (1) the goals for a SUMO standard and how it will benefit the space community; (2) background on spacecraft modularity and existing related standards; (3) the proposed technical scope of the current standardization effort; and (4) an approach for creating a SUMO standard.
Control of peroxisome proliferator-activated receptor gamma2 stability and activity by SUMOylation.
Floyd, Z Elizabeth; Stephens, Jacqueline M
2004-06-01
To determine whether small ubiquitin-related modifier (SUMO)ylation of lysine 107 plays a role in regulating the activity of peroxisome proliferator-activated receptor gamma (PPARgamma). Transient expression of wild-type and K107R-PPARgamma2 in the NIH 3T3 fibroblast cell line was carried out in conjunction with half-life studies, luciferase activity assays, and indirect immunofluorescence localization studies. Additional in vitro analysis was carried out using recombinant SUMOylation pathway proteins along with in vitro transcribed and translated wild-type or K107R-PPARgamma2 to examine the SUMO-1 modification state of wild-type and SUMO-deficient K107R-PPARgamma2. While examining PPARgamma2 for potential ubiquitylation sites, we identified a strong consensus site for SUMO modification that contains lysine 107. In vitro, SUMOylation studies showed that lysine 107 of PPARgamma2 is a major SUMOylation site and that at least one other SUMOylation site is present in PPARgamma. In addition, our results demonstrated that SUMO-1 affects PPARgamma stability and transcriptional activity but not the nuclear localization of PPARgamma. These results indicated that SUMOylation plays a role in regulating PPARgamma, both indirectly and directly by modification of lysine 107. Because PPARgamma is regulated in numerous animal models of obesity, understanding the covalent modifications of PPARgamma may enhance our understanding of the metabolic syndrome.
Study of MDM2 and SUMO-1 expression in actinic cheilitis and lip cancer.
Oliveira Alves, Mônica Ghislaine; da Mota Delgado, Adriana; Balducci, Ivan; Carvalho, Yasmin Rodarte; Cavalcante, Ana Sueli Rodrigues; Almeida, Janete Dias
2014-11-01
Actinic cheilitis exhibits a potential of malignant transformation in 10-20 % of cases. The objective of this study was to compare the expression of MDM2 and SUMO-1 proteins between actinic cheilitis (AC) and squamous cell carcinoma (SCC) of the lip. The sample consisted of lower lip mucosa specimens obtained from cases with a clinical and histopathological diagnosis of AC (n = 26) and SCC (n = 25) and specimens of labial semi-mucosa (n = 15) without clinical alterations or inflammation. The tissue samples were stained with hematoxylin-eosin and anti-MDM2 and anti-SUMO-1 antibodies. Data were analyzed by the Kruskal-Wallis and Dunn's tests (5 %). The median expression of MDM2 (kW = 36.8565; df = 3-1 = 2; p = 0.0001) and SUMO-1 (kW = 32.7080; df = 3-1 = 2; p = 0.0001) was similar in cases of AC and SCC of the lip, but differed significantly from that observed for normal labial semi-mucosa. Despite the limitations of the present study, immunohistochemistry demonstrated the overexpression of important proteins (MDM2 and SUMO-1) related to regulatory mechanisms of apoptosis in AC and SCC of the lip, but further studies are needed.
Galisson, Frederic; Mahrouche, Louiza; Courcelles, Mathieu; Bonneil, Eric; Meloche, Sylvain; Chelbi-Alix, Mounira K.; Thibault, Pierre
2011-01-01
The small ubiquitin-related modifier (SUMO) is a small group of proteins that are reversibly attached to protein substrates to modify their functions. The large scale identification of protein SUMOylation and their modification sites in mammalian cells represents a significant challenge because of the relatively small number of in vivo substrates and the dynamic nature of this modification. We report here a novel proteomics approach to selectively enrich and identify SUMO conjugates from human cells. We stably expressed different SUMO paralogs in HEK293 cells, each containing a His6 tag and a strategically located tryptic cleavage site at the C terminus to facilitate the recovery and identification of SUMOylated peptides by affinity enrichment and mass spectrometry. Tryptic peptides with short SUMO remnants offer significant advantages in large scale SUMOylome experiments including the generation of paralog-specific fragment ions following CID and ETD activation, and the identification of modified peptides using conventional database search engines such as Mascot. We identified 205 unique protein substrates together with 17 precise SUMOylation sites present in 12 SUMO protein conjugates including three new sites (Lys-380, Lys-400, and Lys-497) on the protein promyelocytic leukemia. Label-free quantitative proteomics analyses on purified nuclear extracts from untreated and arsenic trioxide-treated cells revealed that all identified SUMOylated sites of promyelocytic leukemia were differentially SUMOylated upon stimulation. PMID:21098080
PML nuclear bodies: from architecture to function.
Lallemand-Breitenbach, Valérie; de Thé, Hugues
2018-06-01
PML nuclear bodies are nucleated by the PML protein, which polymerizes into spherical shells where it concentrates many unrelated partner proteins. Emerging data has connected PML bodies to post-translational control, notably conjugation by SUMOs. High concentrations of SUMO-bound proteins were proposed to condense into liquid-like droplets and such phase transition may occur within NBs. Many stress pathways modulate NB formation and recent findings have directly implicated PML in oxidative stress response in vivo. PML may also undergo SUMO-dependent ubiquitination/degradation. We highlight recent advances linking PML to partner degradation and other adaptative post-translational modifications in the context of chromatin remodeling, telomere biology, senescence or viral infections. Copyright © 2018. Published by Elsevier Ltd.
Mukhopadhyay, Debaditya; Dasso, Mary
2017-01-01
Mitosis is the stage of the cell cycle during which replicated chromosomes must be precisely divided to allow the formation of two daughter cells possessing equal genetic material. Much of the careful spatial and temporal organization of mitosis is maintained through post-translational modifications, such as phosphorylation and ubiquitination, of key cellular proteins. Here, we will review evidence that sumoylation, conjugation to the SUMO family of small ubiquitin-like modifiers, also serves essential regulatory roles during mitosis. We will discuss the basic biology of sumoylation, how the SUMO pathway has been implicated in particular mitotic functions, including chromosome condensation, centromere/kinetochore organization and cytokinesis, and what cellular proteins may be the targets underlying these phenomena.
USDA-ARS?s Scientific Manuscript database
SUMOylation is the post-translational modification of proteins by the addition of the small ubiquitin-like modifier (SUMO), which plays an important role in various cellular processes. It has been reported that SUMO and its related proteins are important in diverse reproductive functions such as ovu...
USDA-ARS?s Scientific Manuscript database
A three-plasmid yeast expression system utilizing the portable small ubiquitin-like modifier (SUMO) vector set combined with the efficient endogenous yeast protease Ulp1 was developed for production of large amounts of soluble functional protein in Saccharomyces cerevisiae. Each vector has a differ...
Sumoylation Dynamics During Keratinocyte Differentiation
Deyrieux, Adeline F.; Rosas-Acosta, Germán; Ozbun, Michelle A.; Wilson, Van G.
2012-01-01
Summary SUMO modification regulates the activity of numerous transcription factors that have a direct role in cell cycle progression, apoptosis, cellular proliferation, and development, but its role in differentiation processes is less clear. Keratinocyte differentiation requires the coordinated activation of a series of transcription factors, and as several critical keratinocyte transcription factors are known to be SUMO substrates, we investigated the role of sumoylation in keratinocyte differentiation. In a human keratinocyte cell line model (HaCaT cells), calcium-induced differentiation led to the transient and coordinated transcriptional activation of the genes encoding critical sumoylation system components, including SAE1, SAE2, Ubc9, SENP1, Miz-1 (PIASxβ), SUMO2, and SUMO3. The increased gene expression resulted in higher levels of the respective proteins and changes in the pattern of sumoylated substrate proteins during the differentiation process. Similar to the HaCaT results, stratified human foreskin keratinocytes showed an upregulation of Ubc9 in the suprabasal layers. Lastly, abrogation of sumoylation by Gam1 expression severely disrupted normal HaCaT differentiation, consistent with an important role for sumoylation in the proper progression of this biological process. PMID:17164289
Dantuma, Nico P; Pfeiffer, Annika
2016-01-01
Ubiquitin and the ubiquitin-like modifier SUMO are intimately connected with the cellular response to various types of DNA damage. A striking feature is the local accumulation of these proteinaceous post-translational modifications in the direct vicinity to DNA double-strand breaks, which plays a critical role in the formation of ionizing radiation-induced foci. The functional significance of these modifications is the coordinated recruitment and removal of proteins involved in DNA damage signaling and repair in a timely manner. The central orchestrators of these processes are the ubiquitin and SUMO ligases that are responsible for accurately tagging a broad array of chromatin and chromatin-associated proteins thereby changing their behavior or destination. Despite many differences in the mode of action of these enzymes, they share some striking features that are of direct relevance for their function in the DNA damage response. In this review, we outline the molecular mechanisms that are responsible for the recruitment of ubiquitin and SUMO ligases and discuss the importance of chromatin proximity in this process.
NUA Activities at the Plant Nuclear Pore
Xu, Xianfeng Morgan; Rose, Annkatrin
2007-01-01
NUA (Nuclear Pore Anchor), the Arabidopsis homolog of Tpr (Translocated Promoter Region), is one of the few nuclear pore proteins conserved between animals, yeast and plants. In the May issue of Plant Cell, we report that null mutants of NUA show a pleiotropic, early flowering phenotype accompanied by changes in SUMo and RNA homeostasis. We have shown that the early flowering phenotype is caused by changed abundances of flowering time regulators involved in several pathways. Arabidopsis nua mutants phenocopy mutants lacking the ESD4 (EARlY IN ShoRT DAYS 4) SUMo protease, similar to mutants of their respective yeast homologs. however, in contrast to the comparable yeast mutants, ESD4 does not appear to be delocalized from the nuclear pore in nua mutants. Taken together, our experimental data suggests a role for NUA in controlling mRNA export from the nucleus as well as SUMo protease activity at the nuclear pore, comparable but not identical to its homologs in other eukaryotes. Furthermore, characterization of NUA illustrates a potential link at the nuclear pore between SUMo modification, RNA homeostasis and plant developmental control. PMID:19704557
Ying, Shibo; Dünnebier, Thomas; Si, Jing; Hamann, Ute
2013-01-01
UBC9 encodes a protein that conjugates small ubiquitin-related modifier (SUMO) to target proteins thereby changing their functions. Recently, it was noted that UBC9 expression and activity play a role in breast tumorigenesis and response to anticancer drugs. However, the underlying mechanism is poorly understood. To investigate the transcriptional regulation of the UBC9 gene, we identified and characterized its promoter and cis-elements. Promoter activity was tested using luciferase reporter assays. The binding of transcription factors to the promoter was detected by chromatin immunoprecipitation (ChIP), and their functional role was confirmed by siRNA knockdown. UBC9 mRNA and protein levels were measured by quantitative reverse transcription PCR and Western blot analysis, respectively. An increased expression of UBC9 mRNA and protein was found in MCF-7 breast cancer cells treated with 17β-estradiol (E2). Analysis of various deletion mutants revealed a 137 bp fragment upstream of the transcription initiation site to be sufficient for reporter gene transcription. Mutations of putative estrogen receptor α (ER-α) (one imperfect estrogen response element, ERE) and/or nuclear factor Y (NF-Y) binding sites (two CCAAT boxes) markedly reduced promoter activity. Similar results were obtained in ER-negative MDA-MB-231 cells except that the ERE mutation did not affect promoter activity. Additionally, promoter activity was stimulated upon E2 treatment and overexpression of ER-α or NF-YA in MCF-7 cells. ChIP confirmed direct binding of both transcription factors to the UBC9 promoter in vivo. Furthermore, UBC9 expression was diminished by ER-α and NF-Y siRNAs on the mRNA and protein levels. In conclusion, we identified the proximal UBC9 promoter and provided evidence that ER-α and NF-Y regulate UBC9 expression on the transcriptional level in response to E2 in MCF-7 cells. These findings may contribute to a better understanding of the regulation of UBC9 in ER-positive breast cancer and be useful for the development of cancer therapies targeting UBC9.
Supermodeling With A Global Atmospheric Model
NASA Astrophysics Data System (ADS)
Wiegerinck, Wim; Burgers, Willem; Selten, Frank
2013-04-01
In weather and climate prediction studies it often turns out to be the case that the multi-model ensemble mean prediction has the best prediction skill scores. One possible explanation is that the major part of the model error is random and is averaged out in the ensemble mean. In the standard multi-model ensemble approach, the models are integrated in time independently and the predicted states are combined a posteriori. Recently an alternative ensemble prediction approach has been proposed in which the models exchange information during the simulation and synchronize on a common solution that is closer to the truth than any of the individual model solutions in the standard multi-model ensemble approach or a weighted average of these. This approach is called the super modeling approach (SUMO). The potential of the SUMO approach has been demonstrated in the context of simple, low-order, chaotic dynamical systems. The information exchange takes the form of linear nudging terms in the dynamical equations that nudge the solution of each model to the solution of all other models in the ensemble. With a suitable choice of the connection strengths the models synchronize on a common solution that is indeed closer to the true system than any of the individual model solutions without nudging. This approach is called connected SUMO. An alternative approach is to integrate a weighted averaged model, weighted SUMO. At each time step all models in the ensemble calculate the tendency, these tendencies are weighted averaged and the state is integrated one time step into the future with this weighted averaged tendency. It was shown that in case the connected SUMO synchronizes perfectly, the connected SUMO follows the weighted averaged trajectory and both approaches yield the same solution. In this study we pioneer both approaches in the context of a global, quasi-geostrophic, three-level atmosphere model that is capable of simulating quite realistically the extra-tropical circulation in the Northern Hemisphere winter.
SUMO: Solar Ultraviolet Monitor and Ozone Nanosatellite
NASA Astrophysics Data System (ADS)
Damé, L.; Meftah, M.; Irbah, A.; Hauchecorne, A.; Keckhut, P.; Sarkissian, A.; Godin-Beekman, S.; Rogers, D. J.; Bove, P.; Lagage, P. O.; DeWitte, S.
2014-12-01
SUMO is an innovative proof-of-concept nanosatellite aiming to measure on the same platform the different components of the Earth radiation budget (ERB), the solar energy input and the energy reemitted at the top of the Earth atmosphere, with a particular focus on the far UV (FUV) part of the spectrum and on the ozone layer. The FUV is the only wavelength band with energy absorbed in the high atmosphere (stratosphere), in the ozone (Herzberg continuum, 200-220 nm) and oxygen bands, and its high variability is most probably at the origin of a climate influence (UV affects stratospheric dynamics and temperatures, altering interplanetary waves and weather patterns both poleward and downward to the lower stratosphere and tropopause). A simultaneous observation of incoming FUV and ozone production would bring an invaluable information on this process of solar-climate forcing. Space instruments have already measured the different components of the ERB but this is the first time that all instruments will operate on the same platform. This characteristic by itself guarantees original scientific results. SUMO is a 3.6 kg, 3W, 10x10x30 cm3 nanosatellite ("3U"), with a "1U" payload of <1 kg and 1 W. 5 instruments: an ozone meter, a FUV measure at 215 nm, 2 radiometers (0.2 - 3 & 0.2 - 40 µm) and a bolometer. Orbit is polar, Sun-synchronous, ~600 km, since a further challenge are relations between solar UV variability and stratospheric ozone on Arctic and Antarctic regions. Mission is expected to last 1 to 2 years. SUMO definition has been completed (platform and payload AIT are possible in 24 months). SUMO is proposed for the nanosatellite program of Polytechnic School and CNES (following QB50) for a flight in 2018. Follow-up is 2 fold: on one part more complete measurements using SUMO miniaturized instruments on a larger satellite; on the other part, increase of the coverage in local time and latitude using a constellation of SUMO nanosatellites around the Earth to further geolocalize the Sun influence on our planet. Nanosatellites, with cost and risk limited, are also excellent platforms to evaluate technologies for future missions, e.g. nanotechnology ZnO protection barriers to limit contamination from solar panels in the UV and reduce reflection losses in the visible, or MgZnO solar blind detectors (R&D initiatives proposed to CNES).
2014-01-01
Background Hairy and Enhancer of split 1 (Hes-1) is a transcriptional repressor that plays an important role in neuronal differentiation and development, but post-translational modifications of Hes-1 are much less known. In the present study, we aimed to investigate whether Hes-1 could be SUMO-modified and identify the candidate SUMO acceptors on Hes-1. We also wished to examine the role of the SUMO E3 ligase protein inhibitor of activated STAT1 (PIAS1) in SUMOylation of Hes-1 and the molecular mechanism of Hes-1 SUMOylation. Further, we aimed to identify the molecular target of Hes-1 and examine how Hes-1 SUMOylation affects its molecular target to affect cell survival. Results In this study, by using HEK293T cells, we have found that Hes-1 could be SUMO-modified and Hes-1 SUMOylation was greatly enhanced by the SUMO E3 ligase PIAS1 at Lys8, Lys27 and Lys39. Furthermore, Hes-1 SUMOylation stabilized the Hes-1 protein and increased the transcriptional suppressing activity of Hes-1 on growth arrest and DNA damage-inducible protein alpha (GADD45α) expression. Overexpression of GADD45α increased, whereas knockdown of GADD45αα expression decreased cell apoptosis. In addition, H2O2 treatment increased the association between PIAS1 and Hes-1 and enhanced the SUMOylation of Hes-1 for endogenous protection. Overexpression of Hes-1 decreased H2O2-induced cell death, but this effect was blocked by transfection of the Hes-1 triple sumo-mutant (Hes-1 3KR). Overexpression of PIAS1 further facilitated the anti-apoptotic effect of Hes-1. Moreover, Hes-1 SUMOylation was independent of Hes-1 phosphorylation and vice versa. Conclusions The present results revealed, for the first time, that Hes-1 could be SUMO-modified by PIAS1 and GADD45α is a novel target of Hes-1. Further, Hes-1 SUMOylation mediates cell survival through enhanced suppression of GADD45α expression. These results revealed a novel role of Hes-1 in addition to its involvement in Notch signaling. They also implicate that SUMOylation could be an important posttranslational modification that regulates cell survival. PMID:24894488
Cho, Kyoung-in; Haney, Victoria; Yoon, Dosuk; Hao, Yin; Ferreira, Paulo A
2015-12-21
Morphological disintegration of neurons is coupled invariably to neural death. In particular, disruption of outer segments of photoreceptor neurons triggers photoreceptor death regardless of the pathological stressors. We show that Ranbp2(-/-)::Tg-Ranbp2(CLDm-HA) mice with mutations in SUMO-binding motif (SBM) of cyclophilin-like domain (CLD) of Ran-binding protein 2 (Ranbp2) expressed in a null Ranbp2 background lack untoward effects in photoreceptors in the absence of light-stress. However, compared to wild type photoreceptors, light-stress elicits profound disintegration of outer segments of Ranbp2(-/-)::Tg-Ranbp2(CLDm-HA) with paradoxical age-dependent resistance of photoreceptors to death and genotype-independent activation of caspases. Ranbp2(-/-)::Tg-Ranbp2(CLDm-HA) exhibit photoreceptor death-independent changes in ubiquitin-proteasome system (UPS), but death-dependent increase of ubiquitin carrier protein 9(ubc9) levels. Hence, insidious functional impairment of SBM of Ranbp2's CLD promotes neuroprotection and uncoupling of photoreceptor degeneration and death against phototoxicity. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML.
Zhang, Xiao-Wei; Yan, Xiao-Jing; Zhou, Zi-Ren; Yang, Fei-Fei; Wu, Zi-Yu; Sun, Hong-Bin; Liang, Wen-Xue; Song, Ai-Xin; Lallemand-Breitenbach, Valérie; Jeanne, Marion; Zhang, Qun-Ye; Yang, Huai-Yu; Huang, Qiu-Hua; Zhou, Guang-Biao; Tong, Jian-Hua; Zhang, Yan; Wu, Ji-Hui; Hu, Hong-Yu; de Thé, Hugues; Chen, Sai-Juan; Chen, Zhu
2010-04-09
Arsenic, an ancient drug used in traditional Chinese medicine, has attracted worldwide interest because it shows substantial anticancer activity in patients with acute promyelocytic leukemia (APL). Arsenic trioxide (As2O3) exerts its therapeutic effect by promoting degradation of an oncogenic protein that drives the growth of APL cells, PML-RARalpha (a fusion protein containing sequences from the PML zinc finger protein and retinoic acid receptor alpha). PML and PML-RARalpha degradation is triggered by their SUMOylation, but the mechanism by which As2O3 induces this posttranslational modification is unclear. Here we show that arsenic binds directly to cysteine residues in zinc fingers located within the RBCC domain of PML-RARalpha and PML. Arsenic binding induces PML oligomerization, which increases its interaction with the small ubiquitin-like protein modifier (SUMO)-conjugating enzyme UBC9, resulting in enhanced SUMOylation and degradation. The identification of PML as a direct target of As2O3 provides new insights into the drug's mechanism of action and its specificity for APL.
Identification of Sumoylated Proteins in the Silkworm Bombyx mori
Tang, Xudong; Fu, Xuliang; Hao, Bifang; Zhu, Feng; Xiao, Shengyan; Xu, Li; Shen, Zhongyuan
2014-01-01
Small ubiquitin-like modifier (SUMO) modification (SUMOylation) is an important and widely used reversible modification system in eukaryotic cells. It regulates various cell processes, including protein targeting, transcriptional regulation, signal transduction, and cell division. To understand its role in the model lepidoptera insect Bombyx mori, a recombinant baculovirus was constructed to express an enhanced green fluorescent protein (eGFP)-SUMO fusion protein along with ubiquitin carrier protein 9 of Bombyx mori (BmUBC9). SUMOylation substrates from Bombyx mori cells infected with this baculovirus were isolated by immunoprecipitation and identified by LC–ESI-MS/MS. A total of 68 candidate SUMOylated proteins were identified, of which 59 proteins were functionally categorized to gene ontology (GO) terms. Analysis of kyoto encyclopedia of genes and genomes (KEGG) pathways showed that 46 of the identified proteins were involved in 76 pathways that mainly play a role in metabolism, spliceosome and ribosome functions, and in RNA transport. Furthermore, SUMOylation of four candidates (polyubiquitin-C-like isoform X1, 3-hydroxyacyl-CoA dehydrogenase, cyclin-related protein FAM58A-like and GTP-binding nuclear protein Ran) were verified by co-immunoprecipitation in Drosophila schneide 2 cells. In addition, 74% of the identified proteins were predicted to have at least one SUMOylation site. The data presented here shed light on the crucial process of protein sumoylation in Bombyx mori. PMID:25470021
Sevanto, Sanna [Los Alamos National Laboratory; Dickman, Turin L. [Los Alamos National Laboratory; Collins, Adam [Los Alamos National Laboratory; Grossiord, Charlotte [Swiss Federal Institute for Forest Snow and Landscape Research; Adams, Henry [Oklahoma State University; Borrego, Isaac [USGS Southwest Biological Science Center; McDowell, Nate [Pacific Northwest National Laboratory (PNNL)
2018-01-01
The Los Alamos Survival–Mortality experiment (SUMO) is located on Frijoles Mesa near Los Alamos, New Mexico, USA, at an elevation of 2150 m. This was a tree manipulation study that investigated the relative impacts of drought and warming on plant function and reveals how trees adapt to drought and heat in semi-arid regions. The study factored the role of tree hydraulic acclimation to both precipitation and temperature and separated their effects.The experiment is located in a pinon-juniper woodland near the ponderosa pine (Pinus ponderosa) forest ecotone. Monthly pre-dawn and midday shoot water potentials for each target tree. See SUMO Target Tree Information data package (doi:10.15485/1440544) for additional information. Data released by Los Alamos National Lab for public use under LA-UR-18-23656.
Sevanto, Sanna [Los Alamos National Laboratory; Dickman, Turin L. [Los Alamos National Laboratory; Collins, Adam [Los Alamos National Laboratory; Grossiord, Charlotte [Swiss Federal Institute for Forest Snow and Landscape Research; Adams, Henry [Oklahoma State University; Borrego, Isaac [USGS Southwest Biological Science Center; McDowell, Nate [Pacific Northwest National Laboratory (PNNL); Powers, Heath [Los Alamos National Laboratory; Stockton, Elizabeth [University of New Mexico; Ryan, Max [Los Alamos National Laboratory; Slentz, Matthew [Mohle Adams; Briggs, Sam [Fossil Creek Nursery; McBranch, Natalie [Los Alamos National Laboratory; Morgan, Bryn [Los Alamos National Laboratory
2018-01-01
The Los Alamos Survival–Mortality experiment (SUMO) is located on Frijoles Mesa near Los Alamos, New Mexico, USA, at an elevation of 2150 m. This was a tree manipulation study that investigated the relative impacts of drought and warming on plant function and reveals how trees adapt to drought and heat in semi-arid regions. The study factored the role of tree hydraulic acclimation to both precipitation and temperature and separated their effects.The experiment is located in a pinon-juniper woodland near the ponderosa pine (Pinus ponderosa) forest ecotone. Maximum assimilation rate measured monthly for each target tree. See SUMO Target Tree Information data package (doi:10.15485/1440544) for additional information. Data released by Los Alamos National Lab for public use under LA-UR-18-23656.
Jia, Jianhua; Zhang, Liuxia; Liu, Zi; Xiao, Xuan; Chou, Kuo-Chen
2016-10-15
Sumoylation is a post-translational modification (PTM) process, in which small ubiquitin-related modifier (SUMO) is attaching by covalent bonds to substrate protein. It is critical to many different biological processes such as replicating genome, expressing gene, localizing and stabilizing proteins; unfortunately, it is also involved with many major disorders including Alzheimer's and Parkinson's diseases. Therefore, for both basic research and drug development, it is important to identify the sumoylation sites in proteins. To address such a problem, we developed a predictor called pSumo-CD by incorporating the sequence-coupled information into the general pseudo-amino acid composition (PseAAC) and introducing the covariance discriminant (CD) algorithm, in which a bias-adjustment term, which has the function to automatically adjust the errors caused by the bias due to the imbalance of training data, had been incorporated. Rigorous cross-validations indicated that the new predictor remarkably outperformed the existing state-of-the-art prediction method for the same purpose. For the convenience of most experimental scientists, a user-friendly web-server for pSumo-CD has been established at http://www.jci-bioinfo.cn/pSumo-CD, by which users can easily obtain their desired results without the need to go through the complicated mathematical equations involved. jjia@gordonlifescience.org, xxiao@gordonlifescience.org or kcchou@gordonlifescience.orgSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Li, Chuang; Peng, Qiongfang; Wan, Xiao; Sun, Haili; Tang, Jun
2017-10-15
Promyelocytic leukemia protein (PML) nuclear bodies (NBs), which are sub-nuclear protein structures, are involved in a variety of important cellular functions. PML-NBs are assembled by PML isoforms, and contact between small ubiquitin-like modifiers (SUMOs) with the SUMO interaction motif (SIM) are critically involved in this process. PML isoforms contain a common N-terminal region and a variable C-terminus. However, the contribution of the C-terminal regions to PML-NB formation remains poorly defined. Here, using high-resolution microscopy, we show that mutation of the SIM distinctively influences the structure of NBs formed by each individual PML isoform, with that of PML-III and PML-V minimally changed, and PML-I and PML-IV dramatically impaired. We further identify several C-terminal elements that are important in regulating NB structure and provide strong evidence to suggest that the 8b element in PML-IV possesses a strong ability to interact with SUMO-1 and SUMO-2, and critically participates in NB formation. Our findings highlight the importance of PML C-termini in NB assembly and function, and provide molecular insight into the PML-NB assembly of each distinctive isoform. © 2017. Published by The Company of Biologists Ltd.
Role of Desumoylation in the Development of Prostate Cancer1
Cheng, Jinke; Bawa, Tasneem; Lee, Peng; Gong, Limin; Yeh, Edward T. H
2006-01-01
Abstract SUMO is a novel ubiquitin-like protein that can covalently modify a large number of nuclear proteins. SUMO modification has emerged as an important regulatory mechanism for protein function and localization. Sumoylation is a dynamic process that is mediated by activating (E1), conjugating (E2), and ligating (E3) enzymes and is readily reversed by a family of SUMO-specific proteases (SENPs). Since SUMO was discovered 10 years ago, the biologic contribution of this posttranslational modification has remained unclear. In this review, we report that SENP1, a member of the SENP family, is overexpressed in human prostate cancer specimens. The induction of SENP1 is observed with the chronic exposure of prostate cancer cells to androgen and/or interleukin (IL) 6. SENP1 upregulation modulates the transcriptional activity of androgen receptors (ARs) and c-Jun, as well as cyclin D1 expression. Initial in vivo data from transgenic mice indicate that overexpression of SENP1 in the prostate leads to the development of prostatic intraepithelial neoplasia at an early age. Collectively, these studies indicate that overexpression of SENP1 is associated with prostate cancer development. PMID:16925949
Rao, Ashit; Seto, Jong; Berg, John K; Kreft, Stefan G; Scheffner, Martin; Cölfen, Helmut
2013-08-01
The larval spicule matrix protein SM50 is the most abundant occluded matrix protein present in the mineralized larval sea urchin spicule. Recent evidence implicates SM50 in the stabilization of amorphous calcium carbonate (ACC). Here, we investigate the molecular interactions of SM50 and CaCO3 by investigating the function of three major domains of SM50 as small ubiquitin-like modifier (SUMO) fusion proteins - a C-type lectin domain (CTL), a glycine rich region (GRR) and a proline rich region (PRR). Under various mineralization conditions, we find that SUMO-CTL is monomeric and influences CaCO3 mineralization, SUMO-GRR aggregates into large protein superstructures and SUMO-PRR modifies the early CaCO3 mineralization stages as well as growth. The combination of these mineralization and self-assembly properties of the major domains synergistically enable the full-length SM50 to fulfill functions of constructing the organic spicule matrix as well as performing necessary mineralization activities such as Ca(2+) ion recruitment and organization to allow for proper growth and development of the mineralized larval sea urchin spicule. Copyright © 2013 Elsevier Inc. All rights reserved.
The role of SUMOylation in ageing and senescent decline.
Princz, Andrea; Tavernarakis, Nektarios
2017-03-01
Posttranslational protein modifications are playing crucial roles in essential cellular mechanisms. SUMOylation is a reversible posttranslational modification of specific target proteins by the attachment of a small ubiquitin-like protein. Although the mechanism of conjugation of SUMO to proteins is analogous to ubiquitination, it requires its own, specific set of enzymes. The consequences of SUMOylation are widely variable, depending on the physiological state of the cell and the attached SUMO isoform. Accumulating recent findings have revealed a prominent role of SUMOylation in molecular pathways that govern senescence and ageing. Here, we review the link between SUMO attachment events and cellular processes that influence senescence and ageing, including promyelocytic leukaemia (PML) nuclear body and telomere function, autophagy, reactive oxygen species (ROS) homeostasis and growth factor signalling. Copyright © 2017 Elsevier B.V. All rights reserved.
Sevanto, Sanna [Los Alamos National Laboratory; Dickman, Turin L. [Los Alamos National Laboratory; Collins, Adam [Los Alamos National Laboratory; Grossiord, Charlotte [Swiss Federal Institute for Forest Snow and Landscape Research; Adams, Henry [Oklahoma State University; Borrego, Isaac [USGS Southwest Biological Science Center; McDowell, Nate [Pacific Northwest National Laboratory (PNNL)
2018-01-01
Information regarding species, plot, treatment, and chamber associated with each Tree_ID for use with all other raw data files. The Los Alamos Survival-Mortality experiment (SUMO) is located on Frijoles Mesa near Los Alamos, New Mexico, USA, at an elevation of 2150 m. The experiment is located in a pinon-juniper woodland near the ponderosa pine (Pinus ponderosa) forest ecotone. The tree community at SUMO is dominated by pinon pine (Pinus edulis Engelm.) and one-seed juniper (Juniperus monosperma (Engelm.) Sarg.) with Gambel oak (Quercus gambelli Nutt.), and the occasional ponderosa pine (Pinus ponderosa Douglas ex C.Lawson). Soils are Hackroy clay loam and range in depth from 40 to 80 cm above a parent material of volcanic tuff. Data released by Los Alamos National Lab for public use under LA-UR-18-23656.
Schreiner, Sabrina; Wimmer, Peter; Groitl, Peter; Chen, Shuen-Yuan; Blanchette, Paola; Branton, Philip E.; Dobner, Thomas
2011-01-01
Early region 1B 55K (E1B-55K) from adenovirus type 5 (Ad5) is a multifunctional regulator of lytic infection and contributes in vitro to complete cell transformation of primary rodent cells in combination with Ad5 E1A. Inhibition of p53 activated transcription plays a key role in processes by which E1B-55K executes its oncogenic potential. Nevertheless, additional functions of E1B-55K or further protein interactions with cellular factors of DNA repair, transcription, and apoptosis, including Mre11, PML, and Daxx, may also contribute to the transformation process. In line with previous results, we performed mutational analysis to define a Daxx interaction motif within the E1B-55K polypeptide. The results from these studies showed that E1B-55K/Daxx binding is not required for inhibition of p53-mediated transactivation or binding and degradation of cellular factors (p53/Mre11). Surprisingly, these mutants lost the ability to degrade Daxx and showed reduced transforming potential in primary rodent cells. In addition, we observed that E1B-55K lacking the SUMO-1 conjugation site (SCS/K104R) was sufficient for Daxx interaction but no longer capable of E1B-55K-dependent proteasomal degradation of the cellular factor Daxx. These results, together with the observation that E1B-55K SUMOylation is required for efficient transformation, provides evidence for the idea that SUMO-1-conjugated E1B-55K-mediated degradation of Daxx plays a key role in adenoviral oncogenic transformation. We assume that the viral protein contributes to cell transformation through the modulation of Daxx-dependent pathways. This further substantiates the assumption that further mechanisms for efficient transformation of primary cells can be separated from functions required for the inhibition of p53-stimulated transcription. PMID:21697482
ERβ targets ZAK and attenuates cellular hypertrophy via SUMO-1 modification in H9c2 cells.
Pai, Peiying; Shibu, Marthandam Asokan; Chang, Ruey-Lin; Yang, Jaw-Ji; Su, Chia-Chi; Lai, Chao-Hung; Liao, Hung-En; Viswanadha, Vijaya Padma; Kuo, Wei-Wen; Huang, Chih-Yang
2018-06-22
Aberrant expression of leucine zipper- and sterile ɑ motif-containing kinase (ZAK) observed in pathological human myocardial tissue is associated with the progression and elevation of hypertrophy. Our previous reports have correlated high levels of estrogen (E2) and abundant estrogen receptor (ER) α with a low incidence of pathological cardiac-hypertrophy and heart failure in the premenopause female population. However, the effect of elevated ERβ expression is not well known yet. Therefore, in this study, we have analyzed the cardioprotective effects and mechanisms of E2 and/or ERβ against ZAK overexpression-induced cellular hypertrophy. We have used transient transfection to overexpress ERβ into the ZAK tet-on H9c2 cells that harbor the doxycycline-inducible ZAK plasmid. The results show that ZAK overexpression in H9c2 cells resulted in hypertrophic effects, which was correlated with the upregulation of p-JNK and p-p38 MAPKs and their downstream transcription factors c-Jun and GATA-4. However, ERβ and E2 with ERβ overexpressions totally suppressed the effects of ZAK overexpression and inhibited the levels of p-JNK, p-p38, c-Jun, and GATA-4 effectively. Our results further reveal that ERβ directly binds with ZAK under normal conditions; however, ZAK overexpression reduced the association of ZAK-ERβ. Interestingly, increase in ERβ and E2 along with ERβ overexpression both enhanced the binding strengths of ERβ and ZAK and reduced the ZAK protein level. ERβ overexpression also suppressed the E3 ligase-casitas B-lineage lymphoma (CBL) and attenuated CBL-phosphoinositide 3-kinase (PI3K) protein association to prevent PI3K protein degradation. Moreover, ERβ and/or E2 blocked ZAK nuclear translocation via the inhibition of small ubiquitin-like modifier (SUMO)-1 modification. Taken together, our results further suggest that ERβ overexpression strongly suppresses ZAK-induced cellular hypertrophy and myocardial damage. © 2018 Wiley Periodicals, Inc.
Wright, J F; Pernollet, M; Reboul, A; Aude, C; Colomb, M G
1992-05-05
Tetanus toxin was shown to contain a metal-binding site for zinc and copper. Equilibrium dialysis binding experiments using 65Zn indicated an association constant of 9-15 microM, with one zinc-binding site/toxin molecule. The zinc-binding site was localized to the toxin light chain as determined by binding of 65Zn to the light chain but not to the heavy chain after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transfer to Immobilon membranes. Copper was an efficient inhibitor of 65Zn binding to tetanus toxin and caused two peptide bond cleavages in the toxin light chain in the presence of ascorbate. These metal-catalyzed oxidative cleavages were inhibited by the presence of zinc. Partial characterization of metal-catalyzed oxidative modifications of a peptide based on a putative metal-binding site (HELIH) in the toxin light chain was used to map the metal-binding site in the protein.
Kuo, Ching-Ying; Li, Xu; Kong, Xiang-Qian; Luo, Cheng; Chang, Che-Chang; Chung, Yiyin; Shih, Hsiu-Ming; Li, Keqin Kathy; Ann, David K
2014-07-25
Krüppel-associated box domain-associated protein 1 (KAP1) is a universal transcriptional corepressor that undergoes multiple posttranslational modifications (PTMs), including SUMOylation and Ser-824 phosphorylation. However, the functional interplay of KAP1 PTMs in regulating KAP1 turnover during DNA damage response remains unclear. To decipher the role and cross-talk of multiple KAP1 PTMs, we show here that DNA double strand break-induced KAP1 Ser-824 phosphorylation promoted the recruitment of small ubiquitin-like modifier (SUMO)-targeted ubiquitin E3 ligase, ring finger protein 4 (RNF4), and subsequent RNF4-mediated, SUMO-dependent degradation. Besides the SUMO interacting motif (SIM), a previously unrecognized, but evolutionarily conserved, arginine-rich motif (ARM) in RNF4 acts as a novel recognition motif for selective target recruitment. Results from combined mutagenesis and computational modeling studies suggest that RNF4 utilizes concerted bimodular recognition, namely SIM for Lys-676 SUMOylation and ARM for Ser(P)-824 of simultaneously phosphorylated and SUMOylated KAP1 (Ser(P)-824-SUMO-KAP1). Furthermore, we proved that arginines 73 and 74 within the ARM of RNF4 are required for efficient recruitment to KAP1 or accelerated degradation of promyelocytic leukemia protein (PML) under stress. In parallel, results of bimolecular fluorescence complementation assays validated the role of the ARM in recognizing Ser(P)-824 in living cells. Taken together, we establish that the ARM is required for RNF4 to efficiently target Ser(P)-824-SUMO-KAP1, conferring ubiquitin Lys-48-mediated proteasomal degradation in the context of double strand breaks. The conservation of such a motif may possibly explain the requirement for timely substrate selectivity determination among a myriad of SUMOylated proteins under stress conditions. Thus, the ARM dynamically regulates the SIM-dependent recruitment of targets to RNF4, which could be critical to dynamically fine-tune the abundance of Ser(P)-824-SUMO-KAP1 and, potentially, other SUMOylated proteins during DNA damage response. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Kuo, Ching-Ying; Li, Xu; Kong, Xiang-Qian; Luo, Cheng; Chang, Che-Chang; Chung, Yiyin; Shih, Hsiu-Ming; Li, Keqin Kathy; Ann, David K.
2014-01-01
Krüppel-associated box domain-associated protein 1 (KAP1) is a universal transcriptional corepressor that undergoes multiple posttranslational modifications (PTMs), including SUMOylation and Ser-824 phosphorylation. However, the functional interplay of KAP1 PTMs in regulating KAP1 turnover during DNA damage response remains unclear. To decipher the role and cross-talk of multiple KAP1 PTMs, we show here that DNA double strand break-induced KAP1 Ser-824 phosphorylation promoted the recruitment of small ubiquitin-like modifier (SUMO)-targeted ubiquitin E3 ligase, ring finger protein 4 (RNF4), and subsequent RNF4-mediated, SUMO-dependent degradation. Besides the SUMO interacting motif (SIM), a previously unrecognized, but evolutionarily conserved, arginine-rich motif (ARM) in RNF4 acts as a novel recognition motif for selective target recruitment. Results from combined mutagenesis and computational modeling studies suggest that RNF4 utilizes concerted bimodular recognition, namely SIM for Lys-676 SUMOylation and ARM for Ser(P)-824 of simultaneously phosphorylated and SUMOylated KAP1 (Ser(P)-824-SUMO-KAP1). Furthermore, we proved that arginines 73 and 74 within the ARM of RNF4 are required for efficient recruitment to KAP1 or accelerated degradation of promyelocytic leukemia protein (PML) under stress. In parallel, results of bimolecular fluorescence complementation assays validated the role of the ARM in recognizing Ser(P)-824 in living cells. Taken together, we establish that the ARM is required for RNF4 to efficiently target Ser(P)-824-SUMO-KAP1, conferring ubiquitin Lys-48-mediated proteasomal degradation in the context of double strand breaks. The conservation of such a motif may possibly explain the requirement for timely substrate selectivity determination among a myriad of SUMOylated proteins under stress conditions. Thus, the ARM dynamically regulates the SIM-dependent recruitment of targets to RNF4, which could be critical to dynamically fine-tune the abundance of Ser(P)-824-SUMO-KAP1 and, potentially, other SUMOylated proteins during DNA damage response. PMID:24907272
Nasir, Amjad M; Yang, Qianyi; Chalker, Douglas L; Forney, James D
2015-02-01
The covalent attachment of small ubiquitin-like modifier (SUMO) to target proteins regulates numerous nuclear events in eukaryotes, including transcription, mitosis and meiosis, and DNA repair. Despite extensive interest in nuclear pathways within the field of ciliate molecular biology, there have been no investigations of the SUMO pathway in Tetrahymena. The developmental program of sexual reproduction of this organism includes cell pairing, micronuclear meiosis, and the formation of a new somatic macronucleus. We identified the Tetrahymena thermophila SMT3 (SUMO) and UBA2 (SUMO-activating enzyme) genes and demonstrated that the corresponding green fluorescent protein (GFP) tagged gene products are found predominantly in the somatic macronucleus during vegetative growth. Use of an anti-Smt3p antibody to perform immunoblot assays with whole-cell lysates during conjugation revealed a large increase in SUMOylation that peaked during formation of the new macronucleus. Immunofluorescence using the same antibody showed that the increase was localized primarily within the new macronucleus. To initiate functional analysis of the SUMO pathway, we created germ line knockout cell lines for both the SMT3 and UBA2 genes and found both are essential for cell viability. Conditional Smt3p and Uba2p cell lines were constructed by incorporation of the cadmium-inducible metallothionein promoter. Withdrawal of cadmium resulted in reduced cell growth and increased sensitivity to DNA-damaging agents. Interestingly, Smt3p and Uba2p conditional cell lines were unable to pair during sexual reproduction in the absence of cadmium, consistent with a function early in conjugation. Our studies are consistent with multiple roles for SUMOylation in Tetrahymena, including a dynamic regulation associated with the sexual life cycle. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Observations of the Summertime Boundary Layer over the Ross Ice Shelf, Antarctica Using SUMO UAVs
NASA Astrophysics Data System (ADS)
Nigro, M. A.; Cassano, J. J.; Jolly, B.; McDonald, A.
2014-12-01
During January 2014 Small Unmanned Meteorological Observer (SUMO) unmanned aerial vehicles (UAVs) were used to observe the boundary layer over the Ross Ice Shelf, Antarctica. A total of 41 SUMO flights were completed during a 9-day period with a maximum of 11 flights during a single day. Flights occurred as frequently as every 1.5 hours so that the time evolution of the boundary layer could be documented. On almost all of the flights the boundary layer was well mixed from the surface to a depth of less than 50 m to over 350 m. The depth of the well-mixed layer was observed to both increase and decrease over the course of an individual day suggesting that processes other than entrainment were altering the boundary layer depth. The well-mixed layer was observed to both warm and cool during the field campaign indicating that advective processes as well as surface fluxes were acting to control the temporal evolution of the boundary layer temperature. Only a small number of weakly stably stratified boundary layers were observed. Strong, shallow inversions, of up to 6 K, were observed above the top of the boundary layer. Observations from a 30 m automatic weather station and two temporary automatic weather stations 10 km south and west of the main field campaign location provide additional data for understanding the boundary layer evolution observed by the SUMO UAVs during this 9-day period. This presentation will discuss the observed evolution of the summertime boundary layer as well as comment on lessons learned operating the SUMO UAVs at a remote Antarctic field camp.
Alonso, Annabel; D'Silva, Sonia; Rahman, Maliha; Meluh, Pam B.; Keeling, Jacob; Meednu, Nida; Hoops, Harold J.; Miller, Rita K.
2012-01-01
Microtubules and microtubule-associated proteins are fundamental for multiple cellular processes, including mitosis and intracellular motility, but the factors that control microtubule-associated proteins (MAPs) are poorly understood. Here we show that two MAPs—the CLIP-170 homologue Bik1p and the Lis1 homologue Pac1p—interact with several proteins in the sumoylation pathway. Bik1p and Pac1p interact with Smt3p, the yeast SUMO; Ubc9p, an E2; and Nfi1p, an E3. Bik1p interacts directly with SUMO in vitro, and overexpression of Smt3p and Bik1p results in its in vivo sumoylation. Modified Pac1p is observed when the SUMO protease Ulp1p is inactivated. Both ubiquitin and Smt3p copurify with Pac1p. In contrast to ubiquitination, sumoylation does not directly tag the substrate for degradation. However, SUMO-targeted ubiquitin ligases (STUbLs) can recognize a sumoylated substrate and promote its degradation via ubiquitination and the proteasome. Both Pac1p and Bik1p interact with the STUbL Nis1p-Ris1p and the protease Wss1p. Strains deleted for RIS1 or WSS1 accumulate Pac1p conjugates. This suggests a novel model in which the abundance of these MAPs may be regulated via STUbLs. Pac1p modification is also altered by Kar9p and the dynein regulator She1p. This work has implications for the regulation of dynein's interaction with various cargoes, including its off-loading to the cortex. PMID:23034179
Du, Yinping; Liu, Ping; Xu, Tongda; Pan, Defeng; Zhu, Hong; Zhai, Nana; Zhang, Yanbin; Li, Dongye
2018-01-01
The myocardial sarcoplasmic reticulum calcium ATPase (SERCA2a) is a pivotal pump responsible for calcium cycling in cardiomyocytes. The present study investigated the effect of luteolin (Lut) on restoring SERCA2a protein level and stability reduced by myocardial ischemia/reperfusion (I/R) injury. We verified a hypothesis that Lut protected against myocardial I/R injury by regulating SERCA2a SUMOylation. The hemodynamic data, myocardial infarct size of intact hearts, apoptotic analysis, mitochondrial membrane potential (ΔΨm), the level of SERCA2a SUMOylation, and the activity and expression of SERCA2a were examined in vivo and in vitro to clarify the cardioprotective effects of Lut after SUMO1 was knocked down or over-expressed. The putative SUMO conjugation sites in mouse SERCA2a were investigated as the possible regulatory mechanism of Lut. Initially, we found that Lut reversed the SUMOylation and stability of SERCA2a as well as the expression of SUMO1, which were reduced by I/R injury in vitro. Furthermore, Lut increased the expression and activity of SERCA2a partly through SUMO1, thus improving ΔΨm and reducing apoptotic cells in vitro and promoting the recovery of heart function and reducing infarct size in vivo. We also demonstrated that SUMO acceptor sites in mouse SERCA2a involving lysine 585, 480 and 571. Among the three acceptor sites, Lut enhanced SERCA2a stability via lysine 585. Our results suggest that Lut regulates SERCA2a through SUMOylation at lysine 585 to attenuate myocardial I/R injury. © 2018 The Author(s). Published by S. Karger AG, Basel.
Malloy, Melanie Theodore; McIntosh, Deneshia J; Walters, Treniqka S; Flores, Andrea; Goodwin, J Shawn; Arinze, Ifeanyi J
2013-05-17
Ubiquitylation of Nrf2 by the Keap1-Cullin3/RING box1 (Cul3-Rbx1) E3 ubiquitin ligase complex targets Nrf2 for proteasomal degradation in the cytoplasm and is an extensively studied mechanism for regulating the cellular level of Nrf2. Although mechanistic details are lacking, reports abound that Nrf2 can also be degraded in the nucleus. Here, we demonstrate that Nrf2 is a target for sumoylation by both SUMO-1 and SUMO-2. HepG2 cells treated with As2O3, which enhances attachment of SUMO-2/3 to target proteins, increased SUMO-2/3-modification (polysumoylation) of Nrf2. We show that Nrf2 traffics, in part, to promyelocytic leukemia-nuclear bodies (PML-NBs). Cell fractions harboring key components of PML-NBs did not contain biologically active Keap1 but contained modified Nrf2 as well as RING finger protein 4 (RNF4), a poly-SUMO-specific E3 ubiquitin ligase. Overexpression of wild-type RNF4, but not the catalytically inactive mutant, decreased the steady-state levels of Nrf2, measured in the PML-NB-enriched cell fraction. The proteasome inhibitor MG-132 interfered with this decrease, resulting in elevated levels of polysumoylated Nrf2 that was also ubiquitylated. Wild-type RNF4 accelerated the half-life (t½) of Nrf2, measured in PML-NB-enriched cell fractions. These results suggest that RNF4 mediates polyubiquitylation of polysumoylated Nrf2, leading to its subsequent degradation in PML-NBs. Overall, this work identifies Nrf2 as a target for sumoylation and provides a novel mechanism for its degradation in the nucleus, independent of Keap1.
Zhang, Jiaxin; Movahedi, Ali; Wei, Zhiheng; Sang, Ming; Wu, Xiaolong; Wang, Mengyang; Wei, Hui; Pan, Huixin; Yin, Tongming; Zhuge, Qiang
2016-09-15
The antimicrobial peptide ABP-dHC-cecropin A is a small cationic peptide with potent activity against a wide range of bacterial species. Evidence of antifungal activity has also been suggested; however, evaluation of this peptide has been limited due to the low expression of cecropin proteins in Escherichia coli. To improve the expression level of ABP-dHC-cecropin A in E. coli, tandem repeats of the ABP-dHC-cecropin A gene were constructed and expressed as fusion proteins (SUMO-nABP-dHC-cecropin, n = 1, 2, 3, 4) via pSUMO-nABP-dHC-cecropin A vectors (n = 1, 2, 3, 4). Comparison of the expression levels of soluble SUMO-nABP-dHC-cecropin A fusion proteins (n = 1, 2, 3, 4) suggested that BL21 (DE3)/pSUMO-3ABP-dHC-cecropin A is an ideal recombinant strain for ABP-dHC-cecropin A production. Under the selected conditions of cultivation and isopropylthiogalactoside (IPTG) induction, the expression level of ABP-dHC-cecropin A was as high as 65 mg/L, with ∼21.3% of the fusion protein in soluble form. By large-scale fermentation, protein production reached nearly 300 mg/L, which is the highest yield of ABP-dHC-cecropin A reported to date. In antibacterial experiments, the efficacy was approximately the same as that of synthetic ABP-dHC-cecropin A. This method provides a novel and effective means of producing large amounts of ABP-dHC-cecropin A. Copyright © 2016 Elsevier Inc. All rights reserved.
Synthetic heparin-binding factor analogs
Pena, Louis A [Poquott, NY; Zamora, Paul O [Gaithersburg, MD; Lin, Xinhua [Plainview, NY; Glass, John D [Shoreham, NY
2010-04-20
The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain, and preferably two peptide chains branched from a dipeptide branch moiety composed of two trifunctional amino acid residues, which peptide chain or chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a linker, which may be a hydrophobic linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.
SUMO and Nucleocytoplasmic Transport.
Ptak, Christopher; Wozniak, Richard W
2017-01-01
The transport of proteins between the nucleus and cytoplasm occurs through nuclear pore complexes and is facilitated by numerous transport factors. These transport processes are often regulated by post-translational modification or, reciprocally, transport can function to control post-translational modifications through regulated transport of key modifying enzymes. This interplay extends to relationships between nucleocytoplasmic transport and SUMO-dependent pathways. Examples of protein sumoylation inhibiting or stimulating nucleocytoplasmic transport have been documented, both through its effects on the physical properties of cargo molecules and by directly regulating the functions of components of the nuclear transport machinery. Conversely, the nuclear transport machinery regulates the localization of target proteins and enzymes controlling dynamics of sumoylation and desumoylation thereby affecting the sumoylation state of target proteins. These inter-relationships between SUMO and the nucleocytoplasmic transport machinery, and the varied ways in which they occur, are discussed.
SUMO-Modified FADD Recruits Cytosolic Drp1 and Caspase-10 to Mitochondria for Regulated Necrosis.
Choi, Seon-Guk; Kim, Hyunjoo; Jeong, Eun Il; Lee, Ho-June; Park, Sungwoo; Lee, Song-Yi; Lee, Hyeon-Jeong; Lee, Seong Won; Chung, Chin Ha; Jung, Yong-Keun
2017-01-15
Fas-associated protein with death domain (FADD) plays a key role in extrinsic apoptosis. Here, we show that FADD is SUMOylated as an essential step during intrinsic necrosis. FADD was modified at multiple lysine residues (K120/125/149) by small ubiquitin-related modifier 2 (SUMO2) during necrosis caused by calcium ionophore A23187 and by ischemic damage. SUMOylated FADD bound to dynamin-related protein 1 (Drp1) in cells both in vitro and in ischemic tissue damage cores, thus promoting Drp1 recruitment by mitochondrial fission factor (Mff) to accomplish mitochondrial fragmentation. Mitochondrial-fragmentation-associated necrosis was blocked by FADD or Drp1 deficiency and SUMO-defective FADD expression. Interestingly, caspase-10, but not caspase-8, formed a ternary protein complex with SUMO-FADD/Drp1 on the mitochondria upon exposure to A23187 and potentiated Drp1 oligomerization for necrosis. Moreover, the caspase-10 L285F and A414V mutants, found in autoimmune lymphoproliferative syndrome and non-Hodgkin lymphoma, respectively, regulated this necrosis. Our study reveals an essential role of SUMOylated FADD in Drp1- and caspase-10-dependent necrosis, providing insights into the mechanism of regulated necrosis by calcium overload and ischemic injury. Copyright © 2017 American Society for Microbiology.
SUMO-Modified FADD Recruits Cytosolic Drp1 and Caspase-10 to Mitochondria for Regulated Necrosis
Choi, Seon-Guk; Kim, Hyunjoo; Jeong, Eun Il; Lee, Ho-June; Park, Sungwoo; Lee, Song-Yi; Lee, Hyeon-Jeong; Lee, Seong Won; Chung, Chin Ha
2016-01-01
ABSTRACT Fas-associated protein with death domain (FADD) plays a key role in extrinsic apoptosis. Here, we show that FADD is SUMOylated as an essential step during intrinsic necrosis. FADD was modified at multiple lysine residues (K120/125/149) by small ubiquitin-related modifier 2 (SUMO2) during necrosis caused by calcium ionophore A23187 and by ischemic damage. SUMOylated FADD bound to dynamin-related protein 1 (Drp1) in cells both in vitro and in ischemic tissue damage cores, thus promoting Drp1 recruitment by mitochondrial fission factor (Mff) to accomplish mitochondrial fragmentation. Mitochondrial-fragmentation-associated necrosis was blocked by FADD or Drp1 deficiency and SUMO-defective FADD expression. Interestingly, caspase-10, but not caspase-8, formed a ternary protein complex with SUMO-FADD/Drp1 on the mitochondria upon exposure to A23187 and potentiated Drp1 oligomerization for necrosis. Moreover, the caspase-10 L285F and A414V mutants, found in autoimmune lymphoproliferative syndrome and non-Hodgkin lymphoma, respectively, regulated this necrosis. Our study reveals an essential role of SUMOylated FADD in Drp1- and caspase-10-dependent necrosis, providing insights into the mechanism of regulated necrosis by calcium overload and ischemic injury. PMID:27799292
JASSA: a comprehensive tool for prediction of SUMOylation sites and SIMs.
Beauclair, Guillaume; Bridier-Nahmias, Antoine; Zagury, Jean-François; Saïb, Ali; Zamborlini, Alessia
2015-11-01
Post-translational modification by the Small Ubiquitin-like Modifier (SUMO) proteins, a process termed SUMOylation, is involved in many fundamental cellular processes. SUMO proteins are conjugated to a protein substrate, creating an interface for the recruitment of cofactors harboring SUMO-interacting motifs (SIMs). Mapping both SUMO-conjugation sites and SIMs is required to study the functional consequence of SUMOylation. To define the best candidate sites for experimental validation we designed JASSA, a Joint Analyzer of SUMOylation site and SIMs. JASSA is a predictor that uses a scoring system based on a Position Frequency Matrix derived from the alignment of experimental SUMOylation sites or SIMs. Compared with existing web-tools, JASSA displays on par or better performances. Novel features were implemented towards a better evaluation of the prediction, including identification of database hits matching the query sequence and representation of candidate sites within the secondary structural elements and/or the 3D fold of the protein of interest, retrievable from deposited PDB files. JASSA is freely accessible at http://www.jassa.fr/. Website is implemented in PHP and MySQL, with all major browsers supported. guillaume.beauclair@inserm.fr Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Dai, Qun; Aleksandrov, Andrei A.; Bajrami, Bekim; Diego, Pamela Ann; Wu, Xing; Ray, Marjorie; Naren, Anjaparavanda P.; Riordan, John R.; Yao, Xudong; DeLucas, Lawrence J.; Urbatsch, Ina L.; Kappes, John C.
2015-01-01
Recent human clinical trials results demonstrated successful treatment for certain genetic forms of cystic fibrosis (CF). To extend treatment opportunities to those afflicted with other genetic forms of CF disease, structural and biophysical characterization of CF transmembrane conductance regulator (CFTR) is urgently needed. In this study, CFTR was modified with various tags, including a His10 purification tag, the SUMOstar (SUMO*) domain, an extracellular FLAG epitope, or an enhanced green fluorescent protein (EGFP), each alone or in various combinations. Expressed in HEK293 cells, recombinant CFTR proteins underwent complex glycosylation, compartmentalized with the plasma membrane, and exhibited regulated chloride-channel activity with only modest alterations in channel conductance and gating kinetics. Surface CFTR expression level was enhanced by the presence of SUMO* on the N-terminus. Quantitative mass-spectrometric analysis indicated approximately 10% of the total recombinant CFTR (SUMO*-CFTRFLAG-EGFP) localized to the plasma membrane. Trial purification using dodecylmaltoside for membrane protein extraction reproducibly recovered 178 ± 56 μg SUMO*-CFTRFLAG-EGFP per billion cells at 80% purity. Fluorescence size-exclusion chromatography indicated purified CFTR was monodisperse. These findings demonstrate a stable mammalian cell expression system capable of producing human CFTR of sufficient quality and quantity to augment futrure CF drug discovery efforts, including biophysical and structural studies. PMID:25577540
NASA Astrophysics Data System (ADS)
Xu, Hao-Dong; Shi, Shao-Ping; Chen, Xiang; Qiu, Jian-Ding
2015-07-01
Protein function has been observed to rely on select essential sites instead of requiring all sites to be indispensable. Small ubiquitin-related modifier (SUMO) conjugation or sumoylation, which is a highly dynamic reversible process and its outcomes are extremely diverse, ranging from changes in localization to altered activity and, in some cases, stability of the modified, has shown to be especially valuable in cellular biology. Motivated by the significance of SUMO conjugation in biological processes, we report here on the first exploratory assessment whether sumoylation related genetic variability impacts protein functions as well as the occurrence of diseases related to SUMO. Here, we defined the SUMOAMVR as sumoylation related amino acid variations that affect sumoylation sites or enzymes involved in the process of connectivity, and categorized four types of potential SUMOAMVRs. We detected that 17.13% of amino acid variations are potential SUMOAMVRs and 4.83% of disease mutations could lead to SUMOAMVR with our system. More interestingly, the statistical analysis demonstrates that the amino acid variations that directly create new potential lysine sumoylation sites are more likely to cause diseases. It can be anticipated that our method can provide more instructive guidance to identify the mechanisms of genetic diseases.
SUMOylation of phytochrome-B negatively regulates light-induced signaling in Arabidopsis thaliana
Sadanandom, Ari; Ádám, Éva; Orosa, Beatriz; Viczián, András; Klose, Cornelia; Zhang, Cunjin; Josse, Eve-Marie; Kozma-Bognár, László; Nagy, Ferenc
2015-01-01
The red/far red light absorbing photoreceptor phytochrome-B (phyB) cycles between the biologically inactive (Pr, λmax, 660 nm) and active (Pfr; λmax, 730 nm) forms and functions as a light quality and quantity controlled switch to regulate photomorphogenesis in Arabidopsis. At the molecular level, phyB interacts in a conformation-dependent fashion with a battery of downstream regulatory proteins, including PHYTOCHROME INTERACTING FACTOR transcription factors, and by modulating their activity/abundance, it alters expression patterns of genes underlying photomorphogenesis. Here we report that the small ubiquitin-like modifier (SUMO) is conjugated (SUMOylation) to the C terminus of phyB; the accumulation of SUMOylated phyB is enhanced by red light and displays a diurnal pattern in plants grown under light/dark cycles. Our data demonstrate that (i) transgenic plants expressing the mutant phyBLys996Arg-YFP photoreceptor are hypersensitive to red light, (ii) light-induced SUMOylation of the mutant phyB is drastically decreased compared with phyB-YFP, and (iii) SUMOylation of phyB inhibits binding of PHYTOCHROME INTERACTING FACTOR 5 to phyB Pfr. In addition, we show that OVERLY TOLERANT TO SALT 1 (OTS1) de-SUMOylates phyB in vitro, it interacts with phyB in vivo, and the ots1/ots2 mutant is hyposensitive to red light. Taken together, we conclude that SUMOylation of phyB negatively regulates light signaling and it is mediated, at least partly, by the action of OTS SUMO proteases. PMID:26283376
Kensche, Tobias; Tokunaga, Fuminori; Ikeda, Fumiyo; Goto, Eiji; Iwai, Kazuhiro; Dikic, Ivan
2012-01-01
Nuclear factor-κB (NF-κB) essential modulator (NEMO), a component of the inhibitor of κB kinase (IKK) complex, controls NF-κB signaling by binding to ubiquitin chains. Structural studies of NEMO provided a rationale for the specific binding between the UBAN (ubiquitin binding in ABIN and NEMO) domain of NEMO and linear (Met-1-linked) di-ubiquitin chains. Full-length NEMO can also interact with Lys-11-, Lys-48-, and Lys-63-linked ubiquitin chains of varying length in cells. Here, we show that purified full-length NEMO binds preferentially to linear ubiquitin chains in competition with lysine-linked ubiquitin chains of defined length, including long Lys-63-linked deca-ubiquitins. Linear di-ubiquitins were sufficient to activate both the IKK complex in vitro and to trigger maximal NF-κB activation in cells. In TNFα-stimulated cells, NEMO chimeras engineered to bind exclusively to Lys-63-linked ubiquitin chains mediated partial NF-κB activation compared with cells expressing NEMO that binds to linear ubiquitin chains. We propose that NEMO functions as a high affinity receptor for linear ubiquitin chains and a low affinity receptor for long lysine-linked ubiquitin chains. This phenomenon could explain quantitatively distinct NF-κB activation patterns in response to numerous cell stimuli. PMID:22605335
Preparation of sumoylated substrates for biochemical analysis.
Knipscheer, Puck; Klug, Helene; Sixma, Titia K; Pichler, Andrea
2009-01-01
Covalent modification of proteins with SUMO (small ubiquitin related modifier) affects many cellular processes like transcription, nuclear transport, DNA repair and cell cycle progression. Although hundreds of SUMO targets have been identified, for several of them the function remains obscure. In the majority of cases sumoylation is investigated via "loss of modification" analysis by mutating the relevant target lysine. However, in other cases this approach is not successful since mapping of the modification site is problematic or mutation does not cause an obvious phenotype. These latter cases ask for different approaches to investigate the target modification. One possibility is to choose the opposite approach, a "gain in modification" analysis by producing both SUMO modified and unmodified protein in vitro and comparing them in functional assays. Here, we describe the purification of the ubiquitin conjugating enzyme E2-25K, its in vitro sumoylation with recombinant enzymes and the subsequent separation and purification of the modified and the unmodified forms.
Chen, Angela; Huang, Yan Chang; Wang, Pin Yao; Kemp, Sadie E.
2012-01-01
During development, proneural transcription factors of the basic helix-loop-helix (bHLH) family are required to commit cells to a neural fate. In Drosophila neurogenesis, a key mechanism promoting sense organ precursor (SOP) fate is the synergy between proneural factors and their coactivator Senseless in transcriptional activation of target genes. Here we present evidence that posttranslational modification by SUMO enhances this synergy via an effect on Senseless protein. We show that Senseless is a direct target for SUMO modification and that mutagenesis of a predicted SUMOylation motif in Senseless reduces Senseless/proneural synergy both in vivo and in cell culture. We propose that SUMOylation of Senseless via lysine 509 promotes its synergy with proneural proteins during transcriptional activation and hence regulates an important step in neurogenesis leading to the formation and maturation of the SOPs. PMID:22586269
An in vitro FRET-based assay for the analysis of SUMO conjugation and isopeptidase cleavage.
Stankovic-Valentin, Nicolas; Kozaczkiewicz, Lukasz; Curth, Katja; Melchior, Frauke
2009-01-01
To measure rates of sumoylation and isopeptidase cleavage in vitro, we developed an enzyme assay that is based on fluorescence resonance energy transfer (FRET). FRET is a process by which the excited state energy of a fluorescent donor molecule is transferred to an acceptor molecule. Efficient energy transfer requires very close proximity, and can therefore be used as a read-out for covalent and non-covalent protein interactions. The assay described here uses bacterially expressed and purified YFP-SUMO-1 and CFP-RanGAP1 as model substrates that are covalently coupled in the presence of recombinant SUMO E1 and E2 enzymes and ATP. Reactions of 25 microl volume, set up in 384-wells plates, give sufficient signal for analysis. Consequently, this assay requires very low amounts of recombinant proteins and allows measurement of time courses in high-throughput format.
The Key Regulator for Language and Speech Development, FOXP2, is a Novel Substrate for SUMOylation.
Meredith, Leslie J; Wang, Chiung-Min; Nascimento, Leticia; Liu, Runhua; Wang, Lizhong; Yang, Wei-Hsiung
2016-02-01
Transcription factor forkhead box protein P2 (FOXP2) plays an essential role in the development of language and speech. However, the transcriptional activity of FOXP2 regulated by the post-translational modifications remains unknown. Here, we demonstrated that FOXP2 is clearly defined as a SUMO target protein at the cellular levels as FOXP2 is covalently modified by both SUMO1 and SUMO3. Furthermore, SUMOylation of FOXP2 was significantly decreased by SENP2 (a specific SUMOylation protease). We further showed that FOXP2 is selectively SUMOylated in vivo on a phylogenetically conserved lysine 674 but the SUMOylation does not alter subcellular localization and stability of FOXP2. Interestingly, we observed that human etiological FOXP2 R553H mutation robustly reduces its SUMOylation potential as compared to wild-type FOXP2. In addition, the acidic residues downstream the core SUMO motif on FOXP2 are required for its full SUMOylation capacity. Finally, our functional analysis using reporter gene assays showed that SUMOylation may modulate transcriptional activity of FOXP2 in regulating downstream target genes (DISC1, SRPX2, and MiR200c). Altogether, we provide the first evidence that FOXP2 is a substrate for SUMOylation and SUMOylation of FOXP2 plays a functional role in regulating its transcriptional activity. © 2015 Wiley Periodicals, Inc.
The Key Regulator for Language and Speech Development, FOXP2, is a Novel Substrate for SUMOylation
Meredith, Leslie J.; Wang, Chiung-Min; Nascimento, Leticia; Liu, Runhua; Wang, Lizhong; Yang, Wei-Hsiung
2017-01-01
Transcription factor forkhead box protein P2 (FOXP2) plays an essential role in the development of language and speech. However, the transcriptional activity of FOXP2 regulated by the post-translational modifications remains unknown. Here we demonstrated that FOXP2 is clearly defined as a SUMO target protein at the cellular levels as FOXP2 is covalently modified by both SUMO1 and SUMO3. Furthermore, SUMOylation of FOXP2 was significantly decreased by SENP2 (a specific SUMOylation protease). We further showed that FOXP2 is selectively SUMOylated in vivo on a phylogenetically conserved lysine 674 but the SUMOylation does not alter subcellular localization and stability of FOXP2. Interestingly, we observed that human etiological FOXP2 R553H mutation robustly reduces its SUMOylation potential as compared to wild-type FOXP2. In addition, the acidic residues downstream the core SUMO motif on FOXP2 are required for its full SUMOylation capacity. Finally, our functional analysis using reporter gene assays showed that SUMOylation may modulate transcriptional activity of FOXP2 in regulating downstream target genes (DISC1, SRPX2 and MiR200c). Altogether, we provide the first evidence that FOXP2 is a substrate for SUMOylation and SUMOylation of FOXP2 plays a functional role in regulating its transcriptional activity. PMID:26212494
Akt SUMOylation regulates cell proliferation and tumorigenesis.
Li, Rong; Wei, Jie; Jiang, Cong; Liu, Dongmei; Deng, Lu; Zhang, Kai; Wang, Ping
2013-09-15
Proto-oncogene Akt plays essential roles in cell proliferation and tumorigenesis. Full activation of Akt is regulated by phosphorylation, ubiquitination, and acetylation. Here we report that SUMOylation of Akt is a novel mechanism for its activation. Systematically analyzing the role of lysine residues in Akt activation revealed that K276, which is located in a SUMOylation consensus motif, is essential for Akt activation. Ectopic or endogenous Akt1 could be modified by SUMOylation. RNA interference-mediated silencing of UBC9 reduced Akt SUMOylation, which was promoted by SUMO E3 ligase PIAS1 and reversed by the SUMO-specific protease SENP1. Although multiple sites on Akt could be SUMOylated, K276 was identified as a major SUMO acceptor site. K276R or E278A mutation reduced SUMOylation of Akt but had little effect on its ubiquitination. Strikingly, these mutations also completely abolished Akt kinase activity. In support of these results, we found that expression of PIAS1 and SUMO1 increased Akt activity, whereas expression of SENP1 reduced Akt1 activity. Interestingly, the cancer-derived mutant E17K in Akt1 that occurs in various cancers was more efficiently SUMOylated than wild-type Akt. Moreover, SUMOylation loss dramatically reduced Akt1 E17K-mediated cell proliferation, cell migration, and tumorigenesis. Collectively, our findings establish that Akt SUMOylation provides a novel regulatory mechanism for activating Akt function. ©2013 AACR.
Human stanniocalcin-1 interacts with nuclear and cytoplasmic proteins and acts as a SUMO E3 ligase.
dos Santos, Marcos Tadeu; Trindade, Daniel Maragno; Gonçalves, Kaliandra de Almeida; Bressan, Gustavo Costa; Anastassopoulos, Filipe; Yunes, José Andres; Kobarg, Jörg
2011-01-01
Human stanniocalcin-1 (STC1) is a glycoprotein that has been implicated in different physiological process, including angiogenesis, apoptosis and carcinogenesis. Here we identified STC1 as a putative molecular marker for the leukemic bone marrow microenvironment and identified new interacting protein partners for STC1. Seven selected interactions retrieved from yeast two-hybrid screens were confirmed by GST-pull down assays in vitro. The N-terminal region was mapped to be the region that mediates the interaction with cytoplasmic, mitochondrial and nuclear proteins. STC1 interacts with SUMO-1 and several proteins that have been shown to be SUMOylated and localized to SUMOylation related nuclear bodies. Although STC1 interacts with SUMO-1 and has a high theoretical prediction score for a SUMOylation site, endogenous co-immunoprecipitation and in vitro SUMOylation assays with the purified recombinant protein could not detect STC1 SUMOylation. However, when we tested STC1 for SUMO E3 ligase activity, we found in an in vitro assay, that it significantly increases the SUMOylation of two other proteins. Confocal microscopic subcellular localization studies using both transfected cells and specific antibodies for endogenous STC1 revealed a cytoplasmic and nuclear deposition, the latter in the form of some specific dot-like substructure resembling SUMOylation related nuclear bodies. Together, these findings suggest a new role for STC1 in SUMOylation pathways, in nuclear bodies.
PIASy Mediates SUMO-2/3 Conjugation of Poly(ADP-ribose) Polymerase 1 (PARP1) on Mitotic Chromosomes*
Ryu, Hyunju; Al-Ani, Gada; Deckert, Katelyn; Kirkpatrick, Donald; Gygi, Steven P.; Dasso, Mary; Azuma, Yoshiaki
2010-01-01
PIASy is a small ubiquitin-related modifier (SUMO) ligase that modifies chromosomal proteins in mitotic Xenopus egg extracts and plays an essential role in mitotic chromosome segregation. We have isolated a novel SUMO-2/3-modified mitotic chromosomal protein and identified it as poly(ADP-ribose) polymerase 1 (PARP1). PARP1 was robustly conjugated to SUMO-2/3 on mitotic chromosomes but not on interphase chromatin. PIASy promotes SUMOylation of PARP1 both in egg extracts and in vitro reconstituted SUMOylation assays. Through tandem mass spectrometry analysis of mitotically SUMOylated PARP1, we identified a residue within the BRCA1 C-terminal domain of PARP1 (lysine 482) as its primary SUMOylation site. Mutation of this residue significantly reduced PARP1 SUMOylation in egg extracts and enhanced the accumulation of species derived from modification of secondary lysine residues in assays using purified components. SUMOylation of PARP1 did not alter in vitro PARP1 enzyme activity, poly-ADP-ribosylation (PARylation), nor did inhibition of SUMOylation of PARP1 alter the accumulation of PARP1 on mitotic chromosomes, suggesting that SUMOylation regulates neither the intrinsic activity of PARP1 nor its localization. However, loss of SUMOylation increased PARP1-dependent PARylation on isolated chromosomes, indicating SUMOylation controls the capacity of PARP1 to modify other chromatin-associated proteins. PMID:20228053
NASA Astrophysics Data System (ADS)
Reinach, Fernando C.; Nagai, Kiyoshi; Kendrick-Jones, John
1986-07-01
The regulatory light chains, small polypeptides located on the myosin head, regulate the interaction of myosin with actin in response to either Ca2+ or phosphorylation. The demonstration that the regulatory light chains on scallop myosin can be replaced by light chains from other myosins has allowed us to compare the functional capabilities of different light chains1, but has not enabled us to probe the role of features, such as the Ca2+/Mg2+ binding site, that are common to all of them. Here, we describe the use of site-directed mutagenesis to study the function of that site. We synthesized the chicken skeletal myosin light chain in Escherichia coli and constructed mutants with substitutions within the Ca2+/Mg2+ binding site. When the aspartate residues at the first and sixth Ca2+ coordination positions are replaced by uncharged alanines, the light chains have a reduced Ca2+ binding capacity but still bind to scallop myosin with high affinity. Unlike the wild-type skeletal light chain which inhibits myosin interaction with actin, the mutants activate it. Thus, an intact Ca2+/Mg2+ binding site in the N-terminal region of the light chain is essential for regulating the interaction of myosin with actin.
Iodine binding to explore the conformational state of internal chains of amylopectin.
Shen, Xinyu; Bertoft, Eric; Zhang, Genyi; Hamaker, Bruce R
2013-10-15
Previous studies have found that the proportion of long chains of amylopectin correlates to its functional and nutritional properties. As a possible explanation of this correlation, the iodine binding property of amylopectin internal chains was investigated as an indirect evidence of their ability to form helices for intra- or inter-molecular interactions. Waxy and amylose-extender waxy corn starches were hydrolyzed by β-amylase for varying periods of time to incrementally remove the external chains, and the absorbance and the wavelength of maximum absorbance of iodine binding were examined. Experimental results suggest that iodine can bind with both external and internal chains; a significant amount of absorption comes from the latter, as stepwise removal of external chains only somewhat reduced absorption. Internal amylopectin chains, thus, were concluded to likely pre-exist in helical form, as opposed to a conformational change into helices facilitating iodine binding in the absence of external chains. Such internal chain helical structures possibly drive intermolecular interactions that would explain why amylopectin with high proportion of internal chains form harder gels, create pastes less prone to shear breakdown, and are more slowly digesting. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhang, Qun; Liu, Di; Zhao, Zhong Yao; Sun, Qi; Ding, Li Xiang; Wang, You Xin
2017-04-01
The aim of this study is to determine whether the SUMO4 M55V polymorphism is associated with susceptibility to type 2 diabetes mellitus (T2DM). A meta-analysis was performed to detect the potential association of the SUMO4 M55V polymorphism and susceptibility to T2DM under dominant, recessive, co-dominant (homogeneous and heterogeneous), and additive models. A total of eight articles including 10 case-control studies, with a total of 2932 cases and 2679 controls, were included in this meta-analysis. The significant association between the SUMO4 M55V polymorphism and susceptibility to T2DM was observed in the dominant model (GG + GA versus AA: OR = 1.21, 95% CI = 1.05-1.40, P = 0.009), recessive model (GG versus GA + AA: OR = 1.29, 95% CI = 1.07-1.356, P = 0.010), homozygous model (GG versus AA: OR = 1.41, 95% CI = 1.06-1.56, P = 0.001), and additive model (G versus A: OR = 1.18, 95% CI = 1.08-1.29, P = 0.001), and marginally significant in the heterozygous model (GA versus AA: OR = 1.16, 95% CI = 0.98-1.36, P = 0.080). In subgroup analyses, significant associations were observed in the Chinese population under four genetic models excluding the heterozygous model, whereas no statistically significant associations were observed in the Japanese population under each of the five genetic models. The meta-analysis demonstrated that the G allele of the SUMO4 M55V polymorphism could be a susceptible risk locus to T2DM, mainly in the Chinese population, while the association in other ethnic population needs to be further validated in studies with relatively large samples. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
2007-07-01
interacts with nuclear receptors and can inhibit betaFTZ-F1-dependent transcription. Mol. Cell, 7, 753–765. 29. Dupont , S., Zacchigna, L., Cordenonsi, M...Washington University/ Pfizer Biomedical Research Program to GDL. GDL was an Established Investigator of the American Heart Association. 26...Cell 11, 1043-1054. Hecker, C. M., Rabiller, M., Haglund, K., Bayer , P., and Dikic, I. (2006). Specification of SUMO1- and SUMO2-interacting motifs. J
Takahashi, Daisuke; Orihara, Yuki; Kitagawa, Saho; Kusakabe, Masayuki; Shintani, Takahiro; Oma, Yukako; Harata, Masahiko
2017-08-01
Quantitative control of histones and histone variants during cell cycle is relevant to their epigenetic functions. We found that the level of yeast histone variant H2A.Z in the G2/M-phase is actively kept low by the ubiquitin proteasome system and SUMO-targeted ubiquitin ligases. Overexpression of H2A.Z induced defects in mitotic progression, suggesting functional importance of this quantitative control.
Lao, Yimin; Yang, Kai; Wang, Zhaojun; Sun, Xueqing; Zou, Qiang; Yu, Xiaoyan; Cheng, Jinke; Tong, Xuemei; Yeh, Edward T. H.; Yang, Jie; Yi, Jing
2018-01-01
Protein SUMOylation has been reported to play a role in innate immune response, but the enzymes, substrates, and consequences of the specific inflammatory signaling events are largely unknown. Reactive oxygen species (ROS) are abundantly produced during macrophage activation and required for Toll-like receptor 4 (TLR4)–mediated inflammatory signaling. Previously, we demonstrated that SENP3 is a redox-sensitive SUMO2/3 protease. To explore any links between reversible SUMOylation and ROS-related inflammatory signaling in macrophage activation, we generated mice with Senp3 conditional knock-out in myeloid cells. In bacterial lipopolysaccharide (LPS)-induced in vitro and in vivo inflammation models, we found that SENP3 deficiency markedly compromises the activation of TLR4 inflammatory signaling and the production of proinflammatory cytokines in macrophages exposed to LPS. Moreover, Senp3 conditional knock-out mice were significantly less susceptible to septic shock. Of note, SENP3 deficiency was associated with impairment in JNK phosphorylation. We found that MKK7, which selectively phosphorylates JNK, is a SENP3 substrate and that SENP3-mediated deSUMOylation of MKK7 may favor its binding to JNK. Importantly, ROS-dependent SENP3 accumulation and MKK7 deSUMOylation rapidly occurred after LPS stimulation. In conclusion, our findings indicate that SENP3 potentiates LPS-induced TLR4 signaling via deSUMOylation of MKK7 leading to enhancement in JNK phosphorylation and the downstream events. Therefore this work provides novel mechanistic insights into redox regulation of innate immune responses. PMID:29352108
SUMO Nitrogen Labeling Experiment and Soil Biogeochemistry
Grossiord, Charlotte [Swiss Federal Research Institute WSL; Gessler, Arthur [Swiss Federal Research Institute WSL; Reed, Sasha [USGS; Borrego, Isaac [USGS; Collins, Adam [Los Alamos National Laboratory; Dickman, Turin L. [Los Alamos National Laboratory; Ryan, Max [Los Alamos National Laboratory; Schönbeck, Leonie [Swiss Federal Research Institute WSL; Sevanto, Sanna [Los Alamos National Laboratory; Villagrosa, Alberto [University of Alicante; McDowell, Nate [Pacific Northwest National Laboratory (PNNL)
2018-01-01
The Los Alamos Survival–Mortality experiment (SUMO) is located on Frijoles Mesa near Los Alamos, New Mexico, USA, at an elevation of 2150 m. This was a tree manipulation study that investigated the relative impacts of drought and warming on plant function and reveals how trees adapt to drought and heat in semi-arid regions. The study factored the role of tree hydraulic acclimation to both precipitation and temperature and separated their effects.The experiment is located in a pinon-juniper woodland near the ponderosa pine (Pinus ponderosa) forest ecotone. In a semi-arid woodland, adult trees (piñon and juniper) were exposed to chronic warming (+4 °C) and precipitation reduction (-45 %). After five years of continuous treatment exposure, soil and plant nitrogen isotopic composition were measured to assess plant nitrogen allocation. See SUMO Target Tree Information data package (doi:10.15485/1440544) for additional information. Data released by Los Alamos National Lab for public use under LA-UR-18-23656.
USP7/HAUSP: A SUMO deubiquitinase at the heart of DNA replication.
Smits, Veronique A J; Freire, Raimundo
2016-09-01
DNA replication is both highly conserved and controlled. Problematic DNA replication can lead to genomic instability and therefore carcinogenesis. Numerous mechanisms work together to achieve this tight control and increasing evidence suggests that post-translational modifications (phosphorylation, ubiquitination, SUMOylation) of DNA replication proteins play a pivotal role in this process. Here we discuss such modifications in the light of a recent article that describes a novel role for the deubiquitinase (DUB) USP7/HAUSP in the control of DNA replication. USP7 achieves this function by an unusual and novel mechanism, namely deubiquitination of SUMOylated proteins at the replication fork, making USP7 also a SUMO DUB (SDUB). This work extends previous observations of increased levels of SUMO and low levels of ubiquitin at the on-going replication fork. Here, we discuss this novel study, its contribution to the DNA replication and genomic stability field and what questions arise from this work. © 2016 WILEY Periodicals, Inc.
Shigella entry unveils a calcium/calpain-dependent mechanism for inhibiting sumoylation
Lhocine, Nouara; Andrieux, Alexandra; Nigro, Giulia; Mounier, Joëlle
2017-01-01
Disruption of the sumoylation/desumoylation equilibrium is associated with several disease states such as cancer and infections, however the mechanisms regulating the global SUMO balance remain poorly defined. Here, we show that infection by Shigella flexneri, the causative agent of human bacillary dysentery, switches off host sumoylation during epithelial cell infection in vitro and in vivo and that this effect is mainly mediated by a calcium/calpain-induced cleavage of the SUMO E1 enzyme SAE2, thus leading to sumoylation inhibition. Furthermore, we describe a mechanism by which Shigella promotes its own invasion by altering the sumoylation state of RhoGDIα, a master negative regulator of RhoGTPase activity and actin polymerization. Together, our data suggest that SUMO modification is essential to restrain pathogenic bacterial entry by limiting cytoskeletal rearrangement induced by bacterial effectors. Moreover, these findings identify calcium-activated calpains as powerful modulators of cellular sumoylation levels with potentially broad implications in several physiological and pathological situations. PMID:29231810
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Hua; Lin, Yingbo; Badin, Margherita
2011-01-14
Research highlights: {yields} SUMOylation mediates nuclear translocation of IGF-1R which activates transcription. {yields} Here we show that nuclear IGF-1R over-accumulates in tumor cells. {yields} This requires overexpression of the receptor that is a common feature in tumor cells. {yields} An increased expression of the SUMO ligase Ubc9 seems to be an involved mechanism too. -- Abstract: The insulin-like growth factor 1 receptor (IGF-1R) plays crucial roles in tumor cell growth and is overexpressed in many cancers. IGF-1R's trans-membrane kinase signaling pathways have been well characterized. Very recently, we showed that SUMOylation mediates nuclear translocation of the IGF-1R, and that nuclearmore » IGF-1R (nIGF-1R) binds to enhancer regions and activates transcription. We identified three lysine residues in the {beta}-subunit of the receptor and that mutation of these blocks nuclear translocation and gene activation. Furthermore, accumulation of nIGF-1R was proven strongly dependent on the specific SUMO-conjugating enzyme Ubc9. Here we show that nIGF-1R originates solely from the cell membrane and that phosphorylation of the core tyrosine residues of the receptor kinase is crucial for nuclear accumulation. We also compared the levels of nIGF-1R, measured as nuclear/membrane ratios, in tumor and normal cells. We found that the breast cancer cell line MCF-7 has 13-fold higher amounts of nIGF-1R than breast epithelial cells (IME) which showed only a small amount of nIGF-1R. In comparison, the total expression of IGF-1R was only 3.7- higher in MCF-7. Comparison of several other tumor and normal cell lines showed similar tumor cell over-accumulation of nIGF-1R, exceeding the total receptor expression substantially. Ectopic overexpression (>10-fold) of the receptor increased nIGF-1R in IME cells but not to that high level as in wild type MCF-7. The levels of Ubc9 were higher in all tumor cell lines, compared to the normal cells, and this probably contributes to over-accumulation of nIGF-1R. Over-accumulation of nIGF-1R may contribute to deregulated gene expression and therewith play a pathophysiological role in cancer cells.« less
Chen, Xin; Shi, Jiawei; Chen, Rui; Wen, Yaoan; Shi, Yu; Zhu, Zhe; Guo, Songwen; Li, Ling
2015-01-01
Plectasin (PS) is the first defensin to be isolated from a fungus, the saprophytic ascomycete Pseudoplectania nigrella, and active against Streptococcus pneumoniae and S. aureus, including antibiotic-resistant pathogens. To establish a bacterium-based production system, we compared the efficiency of four molecular chaperones and corresponding cleavage to the expression and purification of plectasin. The results showed that the yield of plectasin combined with thioredoxin A (TrxA) and small ubiquitin-related modifier (SUMO) was at a higher level (0.0356 and 0.0358 g L(-1), respectively) than that with intein (0.0238 g L(-1)) and glutathione-S-transferase (GST) (0.0243 g L(-1)). TrxA-plectasin, SUMO-plectasin, and 2-plectasin were cleaved at the correct site and purified, but their considerable amount was not cleaved and remained as a fusion peptide. The antimicrobial activity of plectasin cleaved from SUMO--plectasin against methicillin-resistant Staphylococcus aureus (MRSA), penicillin-resistant S. pneumoniae (PRSP), and vancomycin-resistant enterococci (VRE)--was stronger than ampicillin (Amp) for the same amount of substance (P ≤ 0.05). This is the first study to complete and compare the effect of different molecular chaperones and corresponding cleavage with the expression and purification of plectasin in the Escherichia coli expression system, which laid the foundation for future research and may develop the application and production of plectasin. © 2014 International Union of Biochemistry and Molecular Biology, Inc.
Gu, Yaping; Zhou, Huayun; Cao, Jun; Gao, Qi
2014-01-01
Scorpine, a small cationic peptide from the venom of Pandinus imperator, which has been shown to have anti-bacterial and anti-plasmodial activities, has potential important applications in the pharmaceutical industries. However, the isolation of scorpine from natural sources is inefficient and time-consuming. Here, we first report the expression and purification of recombinant scorpine in Escherichia coli, using small ubiquitin-related modifier (SUMO) fusion partner. The fusion protein was expressed in soluble form in E. coli, and expression was verified by SDS-PAGE and western blotting analysis. The fusion protein was purified to 90% purity by nickel–nitrilotriacetic acid (Ni2+–NTA) resin chromatography. After the SUMO-scorpine fusion protein was cleaved by the SUMO protease, the cleaved sample was reapplied to a Ni2+–NTA column. Tricine/SDS-PAGE gel results indicated that Scorpine had been purified successfully to more than 95% purity. The recombinantly expressed Scorpine showed anti-bacterial activity against two standard bacteria including Staphylococcus aureus ATCC 29213 and Acinetobacter baumannii ATCC 19606, and clinically isolated bacteria including S. aureus S, S. aureus R, A. baumannii S, and A. baumannii R. It also produced 100% reduction in Plasmodium falciparum parasitemia in vitro. Thus, the expression strategy presented in this study allowed convenient high yield and easy purification of recombinant Scorpine for pharmaceutical applications in the future. PMID:25068263
2013-01-01
Foot-and-mouth disease virus (FMDV) causes a highly contagious infection in cloven-hoofed animals. The format of FMD virus-like particles (VLP) as a non-replicating particulate vaccine candidate is a promising alternative to conventional inactivated FMDV vaccines. In this study, we explored a prokaryotic system to express and assemble the FMD VLP and validated the potential of VLP as an FMDV vaccine candidate. VLP composed entirely of FMDV (Asia1/Jiangsu/China/2005) capsid proteins (VP0, VP1 and VP3) were simultaneously produced as SUMO fusion proteins by an improved SUMO fusion protein system in E. coli. Proteolytic removal of the SUMO moiety from the fusion proteins resulted in the assembly of VLP with size and shape resembling the authentic FMDV. Immunization of guinea pigs, swine and cattle with FMD VLP by intramuscular inoculation stimulated the FMDV-specific antibody response, neutralizing antibody response, T-cell proliferation response and secretion of cytokine IFN-γ. In addition, immunization with one dose of the VLP resulted in complete protection of these animals from homologous FMDV challenge. The 50% protection dose (PD50) of FMD VLP in cattle is up to 6.34. These results suggest that FMD VLP expressed in E. coli are an effective vaccine in guinea pigs, swine and cattle and support further development of these VLP as a vaccine candidate for protection against FMDV. PMID:23826638
In vitro production and antifungal activity of peptide ABP-dHC-cecropin A.
Zhang, Jiaxin; Movahedi, Ali; Xu, Junjie; Wang, Mengyang; Wu, Xiaolong; Xu, Chen; Yin, Tongming; Zhuge, Qiang
2015-04-10
The antimicrobial peptide ABP-dHC-cecropin A is a small cationic peptide with potent activity against a wide range of bacterial species. Evidence of antifungal activity has also been suggested; however, testing of this peptide has been limited due to the low expression of cecropin proteins in Escherichia coli. To improve expression of this peptide in E. coli, ABP-dHC-cecropin A was cloned into a pSUMO vector and transformed into E. coli, resulting in the production of a pSUMO-ABP-dHC-cecropin A fusion protein. The soluble form of this protein was then purified by Ni-IDA chromatography, yielding a total of 496-mg protein per liter of fermentation culture. The SUMO-ABP-dHC-cecropin A fusion protein was then cleaved using a SUMO protease and re-purified by Ni-IDA chromatography, yielding a total of 158-mg recombinant ABP-dHC-cecropin A per liter of fermentation culture at a purity of ≥94%, the highest yield reported to date. Antifungal activity assays performed using this purified recombinant peptide revealed strong antifungal activity against both Candida albicans and Neurospora crassa, as well as Rhizopus, Fusarium, Alternaria, and Mucor species. Combined with previous analyses demonstrating strong antibacterial activity against a number of important bacterial pathogens, these results confirm the use of ABP-dHC-cecropin A as a broad-spectrum antimicrobial peptide, with significant therapeutic potential. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sekhri, Palak; Tao, Tao; Kaplan, Feige
As the sole E2 enzyme for SUMOylation, Ubc9 is predominantly nuclear. However, the underlying mechanisms of Ubc9 nuclear localization are still not well understood. Here we show that RNAi-depletion of Imp13, an importin known to mediate Ubc9 nuclear import, reduces both Ubc9 nuclear accumulation and global SUMOylation. Furthermore, Ubc9-R13A or Ubc9-H20D mutation previously shown to interrupt the interaction of Ubc9 with nucleus-enriched SUMOs reduces the nuclear enrichment of Ubc9, suggesting that the interaction of Ubc9 with the nuclear SUMOs may enhance Ubc9 nuclear retention. Moreover, Ubc9-R17E mutation, which is known to disrupt the interaction of Ubc9 with both SUMOs andmore » Imp13, causes a greater decrease in Ubc9 nuclear accumulation than Ubc9-R13A or Ubc9-H20D mutation. Lastly, Ubc9-K74A/S89D mutations that perturb the interaction of Ubc9 with nucleus-enriched SUMOylation-consensus motifs has no effect on Ubc9 nuclear localization. Altogether, our results have elucidated that the amino acid residues within the N-terminal region of Ubc9 play a pivotal role in regulation of Ubc9 nuclear localization. - Highlights: • Imp13-mediated nuclear import of Ubc9 is critical for global SUMOylation. • Ubc9 mutations disrupting Ubc9-SUMO interaction decrease Ubc9 nuclear accumulation. • N-terminal amino acid residues of Ubc9 are critical for Ubc9 nuclear enrichment.« less
Dual chain synthetic heparin-binding growth factor analogs
Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY
2012-04-24
The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.
Dual chain synthetic heparin-binding growth factor analogs
Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY
2009-10-06
The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.
The Ubiquitin Code in the Ubiquitin-Proteasome System and Autophagy.
Kwon, Yong Tae; Ciechanover, Aaron
2017-11-01
The conjugation of the 76 amino acid protein ubiquitin to other proteins can alter the metabolic stability or non-proteolytic functions of the substrate. Once attached to a substrate (monoubiquitination), ubiquitin can itself be ubiquitinated on any of its seven lysine (Lys) residues or its N-terminal methionine (Met1). A single ubiquitin polymer may contain mixed linkages and/or two or more branches. In addition, ubiquitin can be conjugated with ubiquitin-like modifiers such as SUMO or small molecules such as phosphate. The diverse ways to assemble ubiquitin chains provide countless means to modulate biological processes. We overview here the complexity of the ubiquitin code, with an emphasis on the emerging role of linkage-specific degradation signals (degrons) in the ubiquitin-proteasome system (UPS) and the autophagy-lysosome system (hereafter autophagy). Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartwig, S.; Frister, T.; Alemdar, S.
2015-03-20
An uncharacterized plant cDNA coding for a polypeptide presumably having sesquiterpene synthase activity, was expressed in soluble and active form. Two expression strategies were evaluated in Escherichia coli. The enzyme was fused to a highly soluble SUMO domain, in addition to being produced in an unfused form by a cold-shock expression system. Yields up to ∼325 mg/L{sup −1} were achieved in batch cultivations. The 6x-His-tagged enzyme was purified employing an Ni{sup 2+}-IMAC-based procedure. Identity of the protein was established by Western Blot analysis as well as peptide mass fingerprinting. A molecular mass of 64 kDa and an isoelectric point of pImore » 4.95 were determined by 2D gel electrophoresis. Cleavage of the fusion domain was possible by digestion with specific SUMO protease. The synthase was active in Mg{sup 2+} containing buffer and catalyzed the production of (+)-zizaene (syn. khusimene), a precursor of khusimol, from farnesyl diphosphate. Product identity was confirmed by GC–MS and comparison of retention indices. Enzyme kinetics were determined by measuring initial reaction rates for the product, using varying substrate concentrations. By assuming a Michaelis–Menten model, kinetic parameters of K{sub M} = 1.111 μM (±0.113), v{sub max} = 0.3245 μM min{sup −1} (±0.0035), k{sub cat} = 2.95 min{sup −1}, as well as a catalytic efficiency k{sub cat}/K{sub M} = 4.43 × 10{sup 4} M{sup −1} s{sup −1} were calculated. Fusion to a SUMO moiety can substantially increase soluble expression levels of certain hard to express terpene synthases in E. coli. The kinetic data determined for the recombinant synthase are comparable to other described plant sesquiterpene synthases and in the typical range of enzymes belonging to the secondary metabolism. This leaves potential for optimizing catalytic parameters through methods like directed evolution. - Highlights: • Uncharacterized (+)-zizaene synthase from C. zizanoides was cloned and expressed. • Fusion to SUMO and cold-shock induction enhanced soluble yields in E. coli. • Ni{sup 2+}-IMAC purification of the SUMO-fused and unfused enzyme. • (+)-Zizaene identified as main cyclization product by GC–MS. • Enzyme kinetic parameters comparable to related sesquiterpene synthases.« less
NASA Astrophysics Data System (ADS)
Hermawan, I.; Lubis, A. M.; Sahputra, R.; Hill, E.; Sieh, K.; Feng, L.; Salman, R.; Hananto, N.
2015-12-01
The Sumatran Fault Zone (SFZ) accommodates a significant component of the strike-slip motion of oblique convergence along the Sumatra subduction zone. Previous studies have suggested that the slip rates of the SFZ increase from south to north. However, recent work shows that the slip rates may not vary along the SFZ [Bradley et al., 2015]. New data are needed to help confirm these results, and to assess slip-rate variability and fault segmentation in more detail. This information is vital for seismic hazard assessment for the region. We have therefore installed and operated the SuMo (Sumatran Fault Monitoring) network, a dense GPS campaign network focused around the SFZ. From 2013-2015 we selected and installed 32 GPS monuments over the southern part of the SFZ. The network comprises of three transects. The first transect is around the location of the great 1900 earthquake, at the Musi segment. Two transects cover the Manna segment, which saw its last great earthquake in 1893, and the Kumering segment, which saw two great earthquakes in 1933 (M 7.5) and 1994 (M 7.0). We have now conducted three GPS campaign surveys for these stations (3-4 days of measurement for each occupation site), and established 5 semi-permanent cGPS stations in the area. The processed data show that the campaigns sites are still too premature to be used for estimating slip rates, but from the preliminary results for the semi-permanent stations we may see our first signal of deformation. More data from future survey campaigns will help us to estimated revised slip rates. In addition to the science goals for our project, we are this year starting a project called "SuMo Goes to School," which will aim to disseminate information on our science to the schools that house the SuMo GPS stations. The SuMo project also achieves capacity building by training students from Bengkulu University in geodesy and campaign GPS survey techniques.
Liao, Xing-Hua; Wang, Nan; Zhao, Dong-Wei; Zheng, De-Liang; Zheng, Li; Xing, Wen-Jing; Zhou, Hao; Cao, Dong-Sun; Zhang, Tong-Cun
2014-12-01
Myocardin is well known to play a key role in the development of cardiomyocyte hypertrophy. But the exact molecular mechanism regulating myocardin stability and transactivity to affect cardiomyocyte hypertrophy has not been studied clearly. We now report that NF-κB (p65) can inhibit myocardin-induced cardiomyocyte hypertrophy. Then we explore the molecular mechanism of this response. First, we show that p65 can functionally repress myocardin transcriptional activity and also reduce the protein expression of myocardin. Second, the function of myocardin can be regulated by epigenetic modifications. Myocardin sumoylation is known to transactivate cardiac genes, but whether p65 can inhibit SUMO modification of myocardin is still not clear. Our data show that p65 weakens myocardin transcriptional activity through attenuating SUMO modification of myocardin by SUMO1/PIAS1, thereby impairing myocardin-mediated cardiomyocyte hypertrophy. Furthermore, the expression of myocardin can be regulated by several microRNAs, which play important roles in the development and function of the heart and muscle. We next investigated potential role of miR-1 in cardiac hypotrophy. Our results show that p65 can upregulate the level of miR-1 and miR-1 can decrease protein expression of myocardin in cardiac myocytes. Notably, miR-1 expression is also controlled by myocardin, leading to a feedback loop. These data thus provide important and novel insights into the function that p65 inhibits myocardin-mediated cardiomyocyte hypertrophy by downregulating the expression and SUMO modification of myocardin and enhancing the expression of miR-1. Copyright © 2014 Elsevier Inc. All rights reserved.
Dubuisson, Louise; Lormières, Florence; Fochi, Stefania; Turpin, Jocelyn; Pasquier, Amandine; Douceron, Estelle; Oliva, Anaïs; Bazarbachi, Ali; Lallemand-Breitenbach, Valérie; De Thé, Hugues; Journo, Chloé; Mahieux, Renaud
2018-05-01
Since the identification of the antisense protein of HTLV-2 (APH-2) and the demonstration that APH-2 mRNA is expressed in vivo in most HTLV-2 carriers, much effort has been dedicated to the elucidation of similarities and/or differences between APH-2 and HBZ, the antisense protein of HTLV-1. Similar to HBZ, APH-2 negatively regulates HTLV-2 transcription. However, it does not promote cell proliferation. In contrast to HBZ, APH-2 half-life is very short. Here, we show that APH-2 is addressed to PML nuclear bodies in T-cells, as well as in different cell types. Covalent SUMOylation of APH-2 is readily detected, indicating that APH-2 might be addressed to the PML nuclear bodies in a SUMO-dependent manner. We further show that silencing of PML increases expression of APH-2, while expression of HBZ is unaffected. On the other hand, SUMO-1 overexpression leads to a specific loss of APH-2 expression that is restored upon proteasome inhibition. Furthermore, the carboxy-terminal LAGLL motif of APH-2 is responsible for both the targeting of the protein to PML nuclear bodies and its short half-life. Taken together, these observations indicate that natural APH-2 targeting to PML nuclear bodies induces proteasomal degradation of the viral protein in a SUMO-dependent manner. Hence, this study deciphers the molecular and cellular bases of APH-2 short half-life in comparison to HBZ and highlights key differences in the post-translational mechanisms that control the expression of both proteins.
Hoernke, Maria; Schwieger, Christian; Kerth, Andreas; Blume, Alfred
2012-07-01
Basic amino acids play a key role in the binding of membrane associated proteins to negatively charged membranes. However, side chains of basic amino acids like lysine do not only provide a positive charge, but also a flexible hydrocarbon spacer that enables hydrophobic interactions. We studied the influence of hydrophobic contributions to the binding by varying the side chain length of pentapeptides with ammonium groups starting with lysine to lysine analogs with shorter side chains, namely omithine (Orn), alpha, gamma-diaminobutyric acid (Dab) and alpha, beta-diaminopropionic acid (Dap). The binding to negatively charged phosphatidylglycerol (PG) membranes was investigated by calorimetry, FT-infrared spectroscopy (FT-IR) and monolayer techniques. The binding was influenced by counteracting and sometimes compensating contributions. The influence of the bound peptides on the lipid phase behavior depends on the length of the peptide side chains. Isothermal titration calorimetry (ITC) experiments showed exothermic and endothermic effects compensating to a different extent as a function of side chain length. The increase in lipid phase transition temperature was more significant for peptides with shorter side chains. FTIR-spectroscopy revealed changes in hydration of the lipid bilayer interface after peptide binding. Using monolayer techniques, the contributions of electrostatic and hydrophobic effects could clearly be observed. Peptides with short side chains induced a pronounced decrease in surface pressure of PG monolayers whereas peptides with additional hydrophobic interactions decreased the surface pressure much less or even lead to an increase, indicating insertion of the hydrophobic part of the side chain into the lipid monolayer.
Wadosky, Kristine M.
2012-01-01
Many studies have implicated the peroxisome proliferator-activated receptor (PPAR) family of nuclear receptor transcription factors in regulating cardiac substrate metabolism and ATP generation. Recently, evidence from a variety of cell culture and organ systems has implicated ubiquitin and small ubiquitin-like modifier (SUMO) conjugation as post-translational modifications that regulate the activity of PPAR transcription factors and their coreceptors/coactivators. Here we introduce the ubiquitin and SUMO conjugation systems and extensively review how they have been shown to regulate all three PPAR isoforms (PPARα, PPARβ/δ, and PPARγ) in addition to the retinoid X receptor and PPARγ coactivator-1α subunits of the larger PPAR transcription factor complex. We then present how the specific ubiquitin (E3) ligases have been implicated and review emerging evidence that post-translational modifications of PPARs with ubiquitin and/or SUMO may play a role in cardiac disease. Because PPAR activity is perturbed in a variety of forms of heart disease and specific proteins regulate this process (E3 ligases), this may be a fruitful area of investigation with respect to finding new therapeutic targets. PMID:22037188
A binary plasmid system for shuffling combinatorial antibody libraries.
Collet, T A; Roben, P; O'Kennedy, R; Barbas, C F; Burton, D R; Lerner, R A
1992-11-01
We have used a binary system of replicon-compatible plasmids to test the potential for promiscuous recombination of heavy and light chains within sets of human Fab fragments isolated from combinatorial antibody libraries. Antibody molecules showed a surprising amount of promiscuity in that a particular heavy chain could recombine with multiple light chains with retention of binding to a protein antigen. The degree to which a given heavy chain productively paired with any light chain to bind antigen varied from 43% to 100% and depended strongly on the heavy-chain sequence. Such productive crosses resulted in a set of Fab fragments of similar apparent binding constants, which seemed to differ mainly in the amount of active Fab fragment produced in the bacterial cell. The dominance of the heavy chain in the antibody-antigen interaction was further explored in a set of directed crosses, in which heavy and light chains derived from antigen-specific clones were crossed with nonrelated heavy and light chains. In these crosses, an Fab fragment retained antigen binding only if it contained a heavy chain from an antigen-specific clone. In no case did the light chain confer detectable affinity when paired with indifferent heavy chains. The surprising promiscuity of heavy chains has ramifications for the evaluation of the diversity of combinatorial libraries made against protein antigens and should allow the combination of one such promiscuous heavy chain with an engineered light chain to form an Fab fragment carrying synthetic cofactors to assist in antibody catalysis.
A binary plasmid system for shuffling combinatorial antibody libraries.
Collet, T A; Roben, P; O'Kennedy, R; Barbas, C F; Burton, D R; Lerner, R A
1992-01-01
We have used a binary system of replicon-compatible plasmids to test the potential for promiscuous recombination of heavy and light chains within sets of human Fab fragments isolated from combinatorial antibody libraries. Antibody molecules showed a surprising amount of promiscuity in that a particular heavy chain could recombine with multiple light chains with retention of binding to a protein antigen. The degree to which a given heavy chain productively paired with any light chain to bind antigen varied from 43% to 100% and depended strongly on the heavy-chain sequence. Such productive crosses resulted in a set of Fab fragments of similar apparent binding constants, which seemed to differ mainly in the amount of active Fab fragment produced in the bacterial cell. The dominance of the heavy chain in the antibody-antigen interaction was further explored in a set of directed crosses, in which heavy and light chains derived from antigen-specific clones were crossed with nonrelated heavy and light chains. In these crosses, an Fab fragment retained antigen binding only if it contained a heavy chain from an antigen-specific clone. In no case did the light chain confer detectable affinity when paired with indifferent heavy chains. The surprising promiscuity of heavy chains has ramifications for the evaluation of the diversity of combinatorial libraries made against protein antigens and should allow the combination of one such promiscuous heavy chain with an engineered light chain to form an Fab fragment carrying synthetic cofactors to assist in antibody catalysis. Images PMID:1438192
Morgon, Adriano M; Belisario-Ferrari, Matheus R; Trevisan-Silva, Dilza; Meissner, Gabriel O; Vuitika, Larissa; Marin, Brenda; Tashima, Alexandre K; Gremski, Luiza H; Gremski, Waldemiro; Senff-Ribeiro, Andrea; Veiga, Silvio S; Chaim, Olga M
2016-01-01
Loxosceles spiders' venom comprises a complex mixture of biologically active toxins, mostly consisting of low molecular mass components (2-40 kDa). Amongst, isoforms of astacin-like metalloproteases were identified through transcriptome and proteome analyses. Only LALP1 (Loxosceles Astacin-Like protease 1) has been characterized. Herein, we characterized LALP3 as a novel recombinant astacin-like metalloprotease isoform from Loxosceles intermedia venom. LALP3 cDNA was cloned in pET-SUMO vector, and its soluble heterologous expression was performed using a SUMO tag added to LALP3 to achieve solubility in Escherichia coli SHuffle T7 Express LysY cells, which express the disulfide bond isomerase DsbC. Protein purification was conducted by Ni-NTA Agarose resin and assayed for purity by SDS-PAGE under reducing conditions. Immunoblotting analyses were performed with specific antibodies recognizing LALP1 and whole venom. Western blotting showed linear epitopes from recombinant LALP3 that cross-reacted with LALP1, and dot blotting revealed conformational epitopes with native venom astacins. Mass spectrometry analysis revealed that the recombinant expressed protein is an astacin-like metalloprotease from L. intermedia venom. Furthermore, molecular modeling of LALP3 revealed that this isoform contains the zinc binding and Met-turn motifs, forming the active site, as has been observed in astacins. These data confirmed that LALP3, which was successfully obtained by heterologous expression using a prokaryote system, is a new astacin-like metalloprotease isoform present in L. intermedia venom. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
With the Development of Teaching Sumo Robot are Discussed
NASA Astrophysics Data System (ADS)
quan, Miao Zhi; Ke, Ma; Xin, Wei Jing
In recent years, with of robot technology progress and robot science activities, robot technology obtained fast development. The system USES the Atmega128 single-chip Atmel company as a core controller, was designed using a infrared to tube detection boundary, looking for each other, controller to tube receiving infrared data, and according to the data control motor state thus robot reached automatic control purposes. Against robot by single-chip microcomputer smallest system, By making the teaching purpose is to promote the robot sumo students' interests and let more students to participate in the robot research activities.
Point mutations abolishing the mannose-binding capability of boar spermadhesin AQN-1.
Ekhlasi-Hundrieser, Mahnaz; Calvete, Juan J; Von Rad, Bettina; Hettel, Christiane; Nimtz, Manfred; Töpfer-Petersen, Edda
2008-05-01
The mannose-binding capability of recombinant wild-type boar spermadhesin AQN-1 and of its site-directed mutants in the highly-conserved region around of the single glycosylation site (asparagine 50) of some spermadhesins, where the carbohydrate binding site has been proposed to be located, was checked using a solid-phase assay and a biotinylated mannose ligand. Substitution of glycine 54 by amino acids bearing an unipolar side chain did not cause significant decrease in the mannose-binding activity. However, amino acids with uncharged polar side chains or having a charged polar side chain abolished the binding of biotinylated mannose to the corresponding AQN-1 mutants. The results suggest that the higher surface accessibility of amino acids possessing polar side chains compared to those bearing nonpolar groups may sterically interfere with monosaccharide binding. The location of the mannose-binding site in AQN-1 appears to be topologically conserved in other heparin-binding boar spermadhesins, i.e., AQN-3 and AWN, but departs from the location of the mannose-6-phosphate-recognition site of PSP-II. This indicates that different spermadhesin molecules have evolved non-equivalent carbohydrate-binding capabilities, which may underlie their distinct patterns of biological activities.
Tandem UIMs confer Lys48 ubiquitin chain substrate preference to deubiquitinase USP25
Kawaguchi, Kohei; Uo, Kazune; Tanaka, Toshiaki; Komada, Masayuki
2017-01-01
Ubiquitin-specific protease (USP) 25, belonging to the USP family of deubiquitinases, harbors two tandem ubiquitin-interacting motifs (UIMs), a ~20-amino-acid α-helical stretch that binds to ubiquitin. However, the role of the UIMs in USP25 remains unclear. Here we show that the tandem UIM region binds to Lys48-, but not Lys63-, linked ubiquitin chains, where the two UIMs played a critical and cooperative role. Purified USP25 exhibited higher ubiquitin isopeptidase activity to Lys48-, than to Lys63-, linked ubiquitin chains. Mutations that disrupted the ubiquitin-binding ability of the tandem UIMs resulted in a reduced ubiquitin isopeptidase activity of USP25, suggesting a role for the UIMs in exerting the full catalytic activity of USP25. Moreover, when mutations that convert the binding preference from Lys48- to Lys63-linked ubiquitin chains were introduced into the tandem UIM region, the USP25 mutants acquired elevated and reduced isopeptidase activity toward Lys63- and Lys48-linked ubiquitin chains, respectively. These results suggested that the binding preference of the tandem UIMs toward Lys48-linked ubiquitin chains contributes not only to the full catalytic activity but also to the ubiquitin chain substrate preference of USP25, possibly by selectively holding the Lys48-linked ubiquitin chain substrates in the proximity of the catalytic core. PMID:28327663
Wilbur, Jeremy D; Chen, Chih-Ying; Manalo, Venus; Hwang, Peter K; Fletterick, Robert J; Brodsky, Frances M
2008-11-21
The huntingtin-interacting protein family members (Hip1 and Hip1R in mammals and Sla2p in yeast) link clathrin-mediated membrane traffic to actin cytoskeleton dynamics. Genetic data in yeast have implicated the light chain subunit of clathrin in regulating this link. To test this hypothesis, the biophysical properties of mammalian Hip1 and Hip1R and their interaction with clathrin light chain and actin were analyzed. The coiled-coil domains (clathrin light chain-binding) of Hip1 and Hip1R were found to be stable homodimers with no propensity to heterodimerize in vitro. Homodimers were also predominant in vivo, accounting for cellular segregation of Hip1 and Hip1R functions. Coiled-coil domains of Hip1 and Hip1R differed in their stability and flexibility, correlating with slightly different affinities for clathrin light chain and more markedly with effects of clathrin light chain binding on Hip protein-actin interactions. Clathrin light chain binding induced a compact conformation of both Hip1 and Hip1R and significantly reduced actin binding by their THATCH domains. Thus, clathrin is a negative regulator of Hip-actin interactions. These observations necessarily change models proposed for Hip protein function.
Wilbur, Jeremy D.; Chen, Chih-Ying; Manalo, Venus; Hwang, Peter K.; Fletterick, Robert J.; Brodsky, Frances M.
2008-01-01
The huntingtin-interacting protein family members (Hip1 and Hip1R in mammals and Sla2p in yeast) link clathrin-mediated membrane traffic to actin cytoskeleton dynamics. Genetic data in yeast have implicated the light chain subunit of clathrin in regulating this link. To test this hypothesis, the biophysical properties of mammalian Hip1 and Hip1R and their interaction with clathrin light chain and actin were analyzed. The coiled-coil domains (clathrin light chain-binding) of Hip1 and Hip1R were found to be stable homodimers with no propensity to heterodimerize in vitro. Homodimers were also predominant in vivo, accounting for cellular segregation of Hip1 and Hip1R functions. Coiled-coil domains of Hip1 and Hip1R differed in their stability and flexibility, correlating with slightly different affinities for clathrin light chain and more markedly with effects of clathrin light chain binding on Hip protein-actin interactions. Clathrin light chain binding induced a compact conformation of both Hip1 and Hip1R and significantly reduced actin binding by their THATCH domains. Thus, clathrin is a negative regulator of Hip-actin interactions. These observations necessarily change models proposed for Hip protein function. PMID:18790740
Bartoli, Sandra; De Nicola, Gina; Roelens, Stefano
2003-10-17
A set of macrocyclic and open-chain aromatic ligands endowed with polyether side chains has been prepared to assess the contribution of ether oxygen donors to the binding of tetramethylammonium (TMA), a cation believed incapable of interacting with oxygen donors. The open-chain hosts consisted of an aromatic binding site and side chains possessing a variable number of ether oxygen donors; the macrocyclic ligands were based on the structure of a previously investigated host, the dimeric cyclophane 1,4-xylylene-1,4-phenylene diacetate (DXPDA), implemented with polyether-type side chains in the backbone. Association to tetramethylammonium picrate (TMAP) was measured in CDCl(3) at T = 296 K by (1)H NMR titrations. Results confirm that the main contribution to the binding of TMA comes from the cation-pi interaction established with the aromatic binding sites, but they unequivocally show that polyether chains participate with cooperative contributions, although of markedly smaller entity. Water is also bound, but the two guests interact with aromatic rings and oxygen donors in an essentially noncompetitive way. An improved procedure for the preparation of cyclophanic tetraester derivatives has been developed that conveniently recycles the oligomeric ester byproducts formed in the one-pot cyclization reaction. An alternative entry to benzylic diketones has also been provided that makes use of a low-order cyanocuprate reagent to prepare in fair yields a class of compounds otherwise uneasily accessible.
[Expression and Preliminary Research on the Soluble Domain of EV-D68 3A Protein].
Li, Ting; Kong, Jia; Yu, Xiao-fang; Han, Xue
2015-11-01
To understand the structure of the soluble region of Enterovirus 68 3A protein, we construct a prokaryotic expression vector expressing the soluble region of EV-D68 3A protein, and identify the forms of expression product after purification. The EV-D68 3A(1-61) gene was amplified by PCR and then cloned into the expression vector pET-28a-His-SUMO. The recombinant plasmid was transformed into Escherichia coli BL21 induced by IPTG to express the fusion protein His-SUMO-3A(1-61). The recombinant protein was purified by Ni-NTA Agarose and cleaved by ULP Protease to remove His-SUMO tag. After that, the target protein 3A(1-61) was purified by a series of purification methods such as Ni-NTA, anion exchange chromatography and gel filtration chromato- graphy. Chemical cross-linking reaction assay was taken to determine the multiple polymerization state of the 3A soluble region. A prokaryotic expression vector pET28a-His-SUMO-3A(1-61) expressing the solution region of EV-D68 3A was successfully constructed and plenty of highly pure target proteins were obtained by multiple purification steps . The total protein amount was about 5 mg obtained from 1L Escherichia coli BL21 with purity > 95%. At the same time, those results determined the homomultimer form of soluble 3A construct. These data demonstrated that the expression and purification system of the soluble region of 3A were successfully set up and provide some basic konwledge for the research about 3A crystal structure and the development of antiviral drugs targeted at 3A to block viral replication.
Della Mea, Vincenzo; Simoncello, Andrea
2012-02-28
The International Classification of Functioning, Disability and Health (ICF) is a classification of health and health-related issues, aimed at describing and measuring health and disability at both individual and population levels. Here we discuss a preliminary qualitative and quantitative analysis of the relationships used in the Activities and Participation component of ICF, and a preliminary mapping to SUMO (Suggested Upper Merged Ontology) concepts. The aim of the analysis is to identify potential logical problems within this component of ICF, and to understand whether activities and participation might be defined more formally than in the current version of ICF. In the relationship analysis, we used four predicates among those available in SUMO for processes (Patient, Instrument, Agent, and subProcess). While at the top level subsumption was used in most cases (90%), at the lower levels the percentage of other relationships rose to 41%. Chapters were heterogeneous in the relationships used and some of the leaves of the tree seemed to represent properties or parts of the parent concept rather than subclasses. Mapping of ICF to SUMO proved partially feasible, with the activity concepts being mapped mostly (but not totally) under the IntentionalProcess concept in SUMO. On the other hand, the participation concept has not been mapped to any upper level concept. Our analysis of the relationships within ICF revealed issues related to confusion between classes and their properties, incorrect classifications, and overemphasis on subsumption, confirming what already observed by other researchers. However, it also suggested some properties for Activities that could be included in a more formal model: number of agents involved, the instrument used to carry out the activity, the object of the activity, complexity of the task, and an enumeration of relevant subtasks.
hnRNP K Coordinates Transcriptional Silencing by SETDB1 in Embryonic Stem Cells
Thompson, Peter J.; Dulberg, Vered; Moon, Kyung-Mee; Foster, Leonard J.; Chen, Carol; Karimi, Mohammad M.; Lorincz, Matthew C.
2015-01-01
Retrotransposition of endogenous retroviruses (ERVs) poses a substantial threat to genome stability. Transcriptional silencing of a subset of these parasitic elements in early mouse embryonic and germ cell development is dependent upon the lysine methyltransferase SETDB1, which deposits H3K9 trimethylation (H3K9me3) and the co-repressor KAP1, which binds SETDB1 when SUMOylated. Here we identified the transcription co-factor hnRNP K as a novel binding partner of the SETDB1/KAP1 complex in mouse embryonic stem cells (mESCs) and show that hnRNP K is required for ERV silencing. RNAi-mediated knockdown of hnRNP K led to depletion of H3K9me3 at ERVs, concomitant with de-repression of proviral reporter constructs and specific ERV subfamilies, as well as a cohort of germline-specific genes directly targeted by SETDB1. While hnRNP K recruitment to ERVs is dependent upon KAP1, SETDB1 binding at these elements requires hnRNP K. Furthermore, an intact SUMO conjugation pathway is necessary for SETDB1 recruitment to proviral chromatin and depletion of hnRNP K resulted in reduced SUMOylation at ERVs. Taken together, these findings reveal a novel regulatory hierarchy governing SETDB1 recruitment and in turn, transcriptional silencing in mESCs. PMID:25611934
DISTINCT ANTIBODY SPECIES: STRUCTURAL DIFFERENCES CREATING THERAPEUTIC OPPORTUNITIES
Muyldermans, Serge; Smider, Vaughn V.
2016-01-01
Antibodies have been a remarkably successful class of molecules for binding a large number of antigens in therapeutic, diagnostic, and research applications. Typical antibodies derived from mouse or human sources use the surface formed by complementarity determining regions (CDRs) on the variable regions of the heavy chain/light chain heterodimer, which typically forms a relatively flat binding surface. Alternative species, particularly camelids and bovines, provide a unique paradigm for antigen recognition through novel domains which form the antigen binding paratope. For camelids, heavy chain antibodies bind antigen with only a single heavy chain variable region, in the absence of light chains. In bovines, ultralong CDR-H3 regions form an independently folding minidomain, which protrudes from the surface of the antibody and is diverse in both its sequence and disulfide patterns. The atypical paratopes of camelids and bovines potentially provide the ability to interact with different epitopes, particularly recessed or concave surfaces, compared to traditional antibodies. PMID:26922135
Antrobus, Robin; Boutell, Chris
2008-10-01
The Herpes simplex virus type-1 (HSV-1) regulatory protein ICP0, a RING-finger E3 ubiquitin ligase, stimulates the onset of viral lytic replication and the reactivation of quiescent viral genomes from latency. Like many ubiquitin ligases ICP0 induces its own ubiquitination, a process that can lead to its proteasome-dependent degradation. ICP0 counteracts this activity by recruiting the cellular ubiquitin-specific protease USP7/HAUSP. Here we show that ICP0 can also interact with a previously unidentified isoform of USP7 (termed here USP7(beta)). This isoform is not a predominantly ubiquitinated, SUMO-modified, or phosphorylated species of USP7 but is constitutively expressed in a number of different cell types. Like USP7, USP7(beta) binds specifically to an electrophilic ubiquitin probe, indicating that it contains an accessible catalytic core with potential ubiquitin-protease activity. The interaction formed between ICP0 and USP7(beta) requires ICP0 to have an intact USP7-binding domain and results in its susceptibility to ICP0-mediated degradation during HSV-1 infection.
Castro, José M; Horn, Daniel A; Pu, Xinzhu; Lewis, Karen A
2017-06-01
The RNA-binding proteins that comprise the La-related protein (LARP) superfamily have been implicated in a wide range of cellular functions, from tRNA maturation to regulation of protein synthesis. To more expansively characterize the biological function of the LARP6 subfamily, we have recombinantly expressed the full-length LARP6 proteins from two teleost fish, platyfish (Xiphophorus maculatus) and zebrafish (Danio rerio). The yields of the recombinant proteins were enhanced to >2 mg/L using a tandem approach of an N-terminal His 6 -SUMO tag and an iterative solubility screening assay to identify structurally stabilizing buffer components. The domain topologies of the purified fish proteins were probed with limited proteolysis. The fish proteins contain an internal, protease-resistant 40 kDa domain, which is considerably more stable than the comparable domain from the human LARP6 protein. The fish proteins are therefore a lucrative model system in which to study both the evolutionary divergence of this family of La-related proteins and the structure and conformational dynamics of the domains that comprise the LARP6 protein. Copyright © 2017 Elsevier Inc. All rights reserved.
Chi, Jiaqi; You, Leiming; Li, Peipei; Teng, Man; Zhang, Gaiping; Luo, Jun; Wang, Aiping
2018-04-01
Infectious bursal disease virus (IBDV) is an important immunosuppressive virus in chickens. Surface immunoglobulin M (sIgM)-bearing B lymphocytes act as the major targets of IBDV in the bursa of Fabricius, and sIgM may function as one of the membrane binding sites responsible for IBDV infection. Recently, using the virus overlay protein binding assay, the chicken λ light chain of sIgM was identified to specifically interact with IBDV in a virulence-independent manner in vitro. To further investigate sIgM λ light chain-mediated IBDV binding and infection in pre-B cells, the cell line DT40, which is susceptible to both pathogenic and attenuated IBDV, was used. Based on the RNA interference strategy, the DT40 cell line whose λ light chain of sIgM was stably knocked down, herein termed DT40LKD, was generated by the genomic integration of a specific small hairpin RNA and a green fluorescence protein co-expression construct. Flow cytometry analysis indicated that the binding of IBDV to DT40LKD cells was significantly reduced due to the loss of sIgM λ light chain. In particular, reduced viral replication was observed in IBDV-incubated DT40LKD cells, and no viral release into cell culture medium was detected by the IBDV rapid diagnostic strips. In addition, the rescue of sIgM λ light chain expression restored viral binding and replication in DT40LKD cells. These results show that sIgM λ light chain appears to be beneficial for IBDV attachment and infection, suggesting that sIgM acts as a binding site involved in IBDV infection.
Patel, Rekha; Andrien, Bruce A
2010-01-01
Monoclonal antibodies (mAbs) and antibody fragments have become an emerging class of therapeutics since 1986. Their versatility enables them to be engineered for optimal efficiency and decreased immunogenicity, and the path to market has been set by recent regulatory approvals. One of the initial criteria for success of any protein or antibody therapeutic is to understand its binding characteristics to the target antigen. Surface plasmon resonance (SPR) has been widely used and is an important tool for ligand-antigen binding characterization. In this work, the binding kinetics of a recombinant mAb and its single-chain antibody homolog, single-chain variable fragment (scFv), was analyzed by SPR. These two proteins target the same antigen. The binding kinetics of the mAb (bivalent antibody) and scFv (monovalent scFv) for this antigen was analyzed along with an assessment of the thermodynamics of the binding interactions. Alternative binding configurations were investigated to evaluate potential experimental bias because theoretically experimental binding configuration should have no impact on binding kinetics. Self-association binding kinetics in the proteins' respective formulation solutions and antigen epitope mapping were also evaluated. Functional characterization of monoclonal and single-chain antibodies has become just as important as structural characterization in the biotechnology field.
Tree Death Study's Climate Change Connections
McDowell, Nate
2018-05-11
What are the exact physiological mechanisms that lead to tree death during prolonged drought and rising temperatures? These are the questions that scientists are trying to answer at a Los Alamos National Laboratory research project called SUMO. SUMO stands for SUrvival/MOrtality study; it's a plot of land on the Lab's southern border that features 18 climate controlled tree study chambers and a large drought structure that limits rain and snowfall. Scientists are taking a wide variety of measurements over a long period of time to determine what happens during drought and warming, and what the connections and feedback loops might be between tree death and climate change.
ATL response to arsenic/interferon therapy is triggered by SUMO/PML/RNF4-dependent Tax degradation.
Dassouki, Zeina; Sahin, Umut; El Hajj, Hiba; Jollivet, Florence; Kfoury, Youmna; Lallemand-Breitenbach, Valérie; Hermine, Olivier; de Thé, Hugues; Bazarbachi, Ali
2015-01-15
The human T-cell lymphotropic virus type I (HTLV-1) Tax transactivator initiates transformation in adult T-cell leukemia/lymphoma (ATL), a highly aggressive chemotherapy-resistant malignancy. The arsenic/interferon combination, which triggers degradation of the Tax oncoprotein, selectively induces apoptosis of ATL cell lines and has significant clinical activity in Tax-driven murine ATL or human patients. However, the role of Tax loss in ATL response is disputed, and the molecular mechanisms driving degradation remain elusive. Here we demonstrate that ATL-derived or HTLV-1-transformed cells are dependent on continuous Tax expression, suggesting that Tax degradation underlies clinical responses to the arsenic/interferon combination. The latter enforces promyelocytic leukemia protein (PML) nuclear body (NB) formation and partner protein recruitment. In arsenic/interferon-treated HTLV-1 transformed or ATL cells, Tax is recruited onto NBs and undergoes PML-dependent hyper-sumoylation by small ubiquitin-like modifier (SUMO)2/3 but not SUMO1, ubiquitination by RNF4, and proteasome-dependent degradation. Thus, the arsenic/interferon combination clears ATL through degradation of its Tax driver, and this regimen could have broader therapeutic value by promoting degradation of other pathogenic sumoylated proteins. © 2015 by The American Society of Hematology.
Liu, Caiyun; Li, Zhigang; Xing, Junjie; Yang, Jun; Wang, Zhao; Zhang, Hong; Chen, Deng; Peng, You-Liang; Chen, Xiao-Lin
2018-04-16
Protein post-translational modifications play critical roles in cellular processes, development and stress response. The small ubiquitin-like modifier (SUMO) to proteins is one of the essential modifications in eukaryotes, but its function remains largely unknown in plant pathogenic fungi. We present a comprehensive analysis combined with proteomic, molecular and cellular approaches to explore the roles of sumoylation in the model plant fungal pathogen, Magnaporthe oryzae. We found the SUMO pathway plays key roles in colony growth, conidia formation and virulence to the host, as well as cell-cycle-related phenotypes. Sumoylation is also involved in responding to different stresses. Affinity purification identified 940 putative SUMO substrates, many of which were reported to be involved in development, stress response and infection. Interestingly, four septins were also shown to be sumoylated. Mutation of consensus sumoylation sites in each septin all resulted in reduced virulence to the host and dislocation of septins in appressoria. Moreover, sumoylation is also involved in extracellular secretion of different effector proteins. Our study on the functions of sumoylation provides novel insight into development and infection of the rice blast fungus. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Sumoylation of Sir2 differentially regulates transcriptional silencing in yeast.
Hannan, Abdul; Abraham, Neethu Maria; Goyal, Siddharth; Jamir, Imlitoshi; Priyakumar, U Deva; Mishra, Krishnaveni
2015-12-02
Silent information regulator 2 (Sir2), the founding member of the conserved sirtuin family of NAD(+)-dependent histone deacetylase, regulates several physiological processes including genome stability, gene silencing, metabolism and life span in yeast. Within the nucleus, Sir2 is associated with telomere clusters in the nuclear periphery and rDNA in the nucleolus and regulates gene silencing at these genomic sites. How distribution of Sir2 between telomere and rDNA is regulated is not known. Here we show that Sir2 is sumoylated and this modification modulates the intra-nuclear distribution of Sir2. We identify Siz2 as the key SUMO ligase and show that multiple lysines in Sir2 are subject to this sumoylation activity. Mutating K215 alone counteracts the inhibitory effect of Siz2 on telomeric silencing. SUMO modification of Sir2 impairs interaction with Sir4 but not Net1 and, furthermore, SUMO modified Sir2 shows predominant nucleolar localization. Our findings demonstrate that sumoylation of Sir2 modulates distribution between telomeres and rDNA and this is likely to have implications for Sir2 function in other loci as well. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway.
Lallemand-Breitenbach, Valérie; Jeanne, Marion; Benhenda, Shirine; Nasr, Rihab; Lei, Ming; Peres, Laurent; Zhou, Jun; Zhu, Jun; Raught, Brian; de Thé, Hugues
2008-05-01
In acute promyelocytic leukaemia (APL), arsenic trioxide induces degradation of the fusion protein encoded by the PML-RARA oncogene, differentiation of leukaemic cells and produces clinical remissions. SUMOylation of its PML moiety was previously implicated, but the nature of the degradation pathway involved and the role of PML-RARalpha catabolism in the response to therapy have both remained elusive. Here, we demonstrate that arsenic-induced PML SUMOylation triggers its Lys 48-linked polyubiquitination and proteasome-dependent degradation. When exposed to arsenic, SUMOylated PML recruits RNF4, the human orthologue of the yeast SUMO-dependent E3 ubiquitin-ligase, as well as ubiquitin and proteasomes onto PML nuclear bodies. Arsenic-induced differentiation is impaired in cells transformed by a non-degradable PML-RARalpha SUMOylation mutant or in APL cells transduced with a dominant-negative RNF4, directly implicating PML-RARalpha catabolism in the therapeutic response. We thus identify PML as the first protein degraded by SUMO-dependent polyubiquitination. As PML SUMOylation recruits not only RNF4, ubiquitin and proteasomes, but also many SUMOylated proteins onto PML nuclear bodies, these domains could physically integrate the SUMOylation, ubiquitination and degradation pathways.
Uses of monoclonial antibody 8H9
Cheung, Nai-Kong V.
2015-06-23
This invention provides an antibody that binds the same antigen as that of monoclonal antibody 8H9, wherein the heavy chain CDR (Complementary Determining Region)1 comprises NYDIN, heavy chain CDR2 comprises WIFPGDGSTQY, heavy chain CDR3 comprises QTTATWFAY, and the light chain CDR1 comprises RASQSISDYLH, light chain CDR2 comprises YASQSIS, and light chain CDR3 comprises QNGHSFPLT. In another embodiment, there is provided a polypeptide that binds the same antigen as that of monoclonal antibody 8H9, wherein the polypeptide comprises NYDIN, WIFPGDGSTQY, QTTATWFAY, RASQSISDYLH, YASQSIS, and QNGHSFPLT.
Muchima, Kaname; Todaka, Taro; Shinchi, Hiroyuki; Sato, Ayaka; Tazoe, Arisa; Aramaki, Rikiya; Kakitsubata, Yuhei; Yokoyama, Risa; Arima, Naomichi; Baba, Masanori; Wakao, Masahiro; Ito, Yuji; Suda, Yasuo
2018-04-01
Adult T-cell leukemia (ATL) is an intractable blood cancer caused by the infection of human T-cell leukemia virus type-1, and effective medical treatment is required. It is known that the structure and expression levels of cell surface sugar chains vary depending on cell states such as inflammation and cancer. Thus, it is expected that the antibody specific for ATL cell surface sugar chain would be an effective diagnostic tool and a strong candidate for the development of an anti-ATL drug. Here, we developed a stable sugar chain-binding single-chain variable fragment antibody (scFv) that can bind to ATL cells using a fibre-type Sugar Chip and phage display method. The fiber-type Sugar Chips were prepared using O-glycans released from ATL cell lines. The scFv-displaying phages derived from human B cells (diversity: 1.04 × 108) were then screened using the fiber-type Sugar Chips, and an O-glycan-binding scFv was obtained. The flow cytometry analysis revealed that the scFv predominantly bound to ATL cell lines. The sugar chain-binding properties of the scFv was evaluated by array-type Sugar Chip immobilized with a library of synthetic glycosaminoglycan disaccharide structures. Highly sulphated disaccharide structures were found to have high affinity to scFv.
Myosin light chains: Teaching old dogs new tricks
Heissler, Sarah M; Sellers, James R
2014-01-01
The myosin holoenzyme is a multimeric protein complex consisting of heavy chains and light chains. Myosin light chains are calmodulin family members which are crucially involved in the mechanoenzymatic function of the myosin holoenzyme. This review examines the diversity of light chains within the myosin superfamily, discusses interactions between the light chain and the myosin heavy chain as well as regulatory and structural functions of the light chain as a subunit of the myosin holoenzyme. It covers aspects of the myosin light chain in the localization of the myosin holoenzyme, protein-protein interactions and light chain binding to non-myosin binding partners. Finally, this review challenges the dogma that myosin regulatory and essential light chain exclusively associate with conventional myosin heavy chains while unconventional myosin heavy chains usually associate with calmodulin. PMID:26155737
2003-03-14
streptococcal superantigen binding to MHCII on the surface of cells (7–9), suggesting an essential role in both MHCII molecular recognition and TCR-mediated...extent, mutations of side chains found in a second conserved MHCII alpha-chain-binding site consisting of a hydrophobic surface loop decreased T-cell...fraction of dimer is present at T-cell stimulatory concentrations of Spe-C following mutation of the unpaired side chain of cys- teine at residue 27 to
Wen, Wu; Xia, Xinghui; Hu, Diexuan; Zhou, Dong; Wang, Haotian; Zhai, Yawei; Lin, Hui
2017-11-07
Short- and long-chain perfluoroalkyl acids (PFAAs), ubiquitously coexisting in the environment, can be accumulated in organisms by binding with proteins and their binding affinities generally increase with their chain length. Therefore, we hypothesized that long-chain PFAAs will affect the bioconcentration of short-chain PFAAs in organisms. To testify this hypothesis, the bioconcentration and tissue distribution of five short-chain PFAAs (linear C-F = 3-6) were investigated in zebrafish in the absence and presence of six long-chain PFAAs (linear C-F = 7-11). The results showed that the concentrations of the short-chain PFAAs in zebrafish tissues increased with exposure time until steady states reached in the absence of long-chain PFAAs. However, in the presence of long-chain PFAAs, these short-chain PFAAs in tissues increased until peak values reached and then decreased until steady states, and the uptake and elimination rate constants of short-chain PFAAs declined in all tissues and their BCF ss decreased by 24-89%. The inhibitive effect of long-chain PFAAs may be attributed to their competition for transporters and binding sites of proteins in zebrafish with short-chain PFAAs. These results suggest that the effect of long-chain PFAAs on the bioconcentration of short-chain PFAAs should be taken into account in assessing the ecological and environmental effects of short-chain PFAAs.
Effects of Lectins on initial attachment of cariogenic Streptococcus mutans.
Ito, Takashi; Yoshida, Yasuhiro; Shiota, Yasuyoshi; Ito, Yuki; Yamamoto, Tadashi; Takashiba, Shogo
2018-02-01
Oral bacteria initiate biofilm formation by attaching to tooth surfaces via an interaction of a lectin-like bacterial protein with carbohydrate chains on the pellicle. This study aimed to find naturally derived lectins that inhibit the initial attachment of a cariogenic bacterial species, Streptococcus mutans (S. mutans), to carbohydrate chains in saliva in vitro. Seventy kinds of lectins were screened for candidate motifs that inhibit the attachment of S. mutans ATCC 25175 to a saliva-coated culture plate. The inhibitory effect of the lectins on attachment of the S. mutans to the plates was quantified by crystal violet staining, and the biofilm was observed under a scanning electron microscope (SEM). Surface plasmon resonance (SPR) analysis was performed to examine the binding of S. mutans to carbohydrate chains and the binding of candidate lectins to carbohydrate chains, respectively. Moreover, binding assay between the biotinylated-lectins and the saliva components was conducted to measure the lectin binding. Lectins recognizing a salivary carbohydrate chain, Galβ1-3GalNAc, inhibited the binding of S. mutans to the plate. In particular, Agaricus bisporus agglutinin (ABA) markedly inhibited the binding. This inhibition was confirmed by SEM observation. SPR analysis indicated that S. mutans strongly binds to Galβ1-3GalNAc, and ABA binds to Galβ1-3GalNAc. Finally, the biotinylated Galβ1-3GalNAc-binding lectins including ABA demonstrated marked binding to the saliva components. These results suggest that ABA lectin inhibited the attachment of S. mutans to Galβ1-3GalNAc in saliva and ABA can be useful as a potent inhibitor for initial attachment of oral bacteria and biofilm formation.
Li, Fuchuan; Nandini, Chilkunda D; Hattori, Tomohide; Bao, Xingfeng; Murayama, Daisuke; Nakamura, Toshikazu; Fukushima, Nobuhiro; Sugahara, Kazuyuki
2010-09-03
Endogenous pleiotrophin and hepatocyte growth factor (HGF) mediate the neurite outgrowth-promoting activity of chondroitin sulfate (CS)/dermatan sulfate (DS) hybrid chains isolated from embryonic pig brain. CS/DS hybrid chains isolated from shark skin have a different disaccharide composition, but also display these activities. In this study, pleiotrophin- and HGF-binding domains in shark skin CS/DS were investigated. A high affinity CS/DS fraction was isolated using a pleiotrophin-immobilized column. It showed marked neurite outgrowth-promoting activity and strong inhibitory activity against the binding of pleiotrophin to immobilized CS/DS chains from embryonic pig brain. The inhibitory activity was abolished by chondroitinase ABC or B, and partially reduced by chondroitinase AC-I. A pentasulfated hexasaccharide with a novel structure was isolated from the chondroitinase AC-I digest using pleiotrophin affinity and anion exchange chromatographies. It displayed a potent inhibitory effect on the binding of HGF to immobilized shark skin CS/DS chains, suggesting that the pleiotrophin- and HGF-binding domains at least partially overlap in the CS/DS chains involved in the neuritogenic activity. Computational chemistry using molecular modeling and calculations of the electrostatic potential of the hexasaccharide and two pleiotrophin-binding octasaccharides previously isolated from CS/DS hybrid chains of embryonic pig brain identified an electronegative zone potentially involved in the molecular recognition of the oligosaccharides by pleiotrophin. Homology modeling of pleiotrophin based on a related midkine protein structure predicted the binding pocket of pleiotrophin for the oligosaccharides and provided new insights into the molecular mechanism of the interactions between the oligosaccharides and pleiotrophin.
LMP1-Induced Sumoylation Influences the Maintenance of Epstein-Barr Virus Latency through KAP1
Moss, Charles Randall; Whitehurst, Christopher B.; Moody, Cary A.
2015-01-01
ABSTRACT As a herpesvirus, Epstein-Barr virus (EBV) establishes a latent infection that can periodically undergo reactivation, resulting in lytic replication and the production of new infectious virus. Latent membrane protein-1 (LMP1), the principal viral oncoprotein, is a latency-associated protein implicated in regulating viral reactivation and the maintenance of latency. We recently found that LMP1 hijacks the SUMO-conjugating enzyme Ubc9 via its C-terminal activating region-3 (CTAR3) and induces the sumoylation of cellular proteins. Because protein sumoylation can promote transcriptional repression, we hypothesized that LMP1-induced protein sumoylation induces the repression of EBV lytic promoters and helps maintain the viral genome in its latent state. We now show that with inhibition of LMP1-induced protein sumoylation, the latent state becomes less stable or leakier in EBV-transformed lymphoblastoid cell lines. The cells are also more sensitive to viral reactivation induced by irradiation, which results in the increased production and release of infectious virus, as well as increased susceptibility to ganciclovir treatment. We have identified a target of LMP1-mediated sumoylation that contributes to the maintenance of latency in this context: KRAB-associated protein-1 (KAP1). LMP1 CTAR3-mediated sumoylation regulates the function of KAP1. KAP1 also binds to EBV OriLyt and immediate early promoters in a CTAR3-dependent manner, and inhibition of sumoylation processes abrogates the binding of KAP1 to these promoters. These data provide an additional line of evidence that supports our findings that CTAR3 is a distinct functioning regulatory region of LMP1 and confirm that LMP1-induced sumoylation may help stabilize the maintenance of EBV latency. IMPORTANCE Epstein-Barr virus (EBV) latent membrane protein-1 (LMP1) plays an important role in the maintenance of viral latency. Previously, we documented that LMP1 targets cellular proteins to be modified by a ubiquitin-like protein (SUMO). We have now identified a function for this LMP1-induced modification of cellular proteins in the maintenance of EBV latency. Because latently infected cells have to undergo viral reactivation in order to be vulnerable to antiviral drugs, these findings identify a new way to increase the rate of EBV reactivation, which increases cell susceptibility to antiviral therapies. PMID:25948750
Direct binding of F actin to the cytoplasmic domain of the alpha 2 integrin chain in vitro
NASA Technical Reports Server (NTRS)
Kieffer, J. D.; Plopper, G.; Ingber, D. E.; Hartwig, J. H.; Kupper, T. S.
1995-01-01
The transmembrane integrins have been shown to interact with the cytoskeleton via noncovalent binding between cytoplasmic domains (CDs) of integrin beta chains and various actin binding proteins within the focal adhesion complex. Direct or indirect integrin alpha chain CD binding to the actin cytoskeleton has not been reported. We show here that actin, as an abundant constituent of focal adhesion complex proteins isolated from fibroblasts, binds strongly and specifically to alpha 2 CD, but not to alpha 1 CD peptide. Similar specific binding to alpha 2 CD peptide was seen for highly purified F actin, free of putative actin-binding proteins. The bound complex of actin and peptide was visualized directly by coprecipitation, and actin binding was abrogated by removal of a five amino acid sequence from the alpha 2 CD peptide. Our findings may explain the earlier observation that, while integrins alpha 2 beta 1 and alpha 1 beta 1 both bind to collagen, only alpha 2 beta 1 can mediate contraction of extracellular collagen matrices.
Swatek, Kirby N; Komander, David
2016-01-01
Protein ubiquitination is a dynamic multifaceted post-translational modification involved in nearly all aspects of eukaryotic biology. Once attached to a substrate, the 76-amino acid protein ubiquitin is subjected to further modifications, creating a multitude of distinct signals with distinct cellular outcomes, referred to as the 'ubiquitin code'. Ubiquitin can be ubiquitinated on seven lysine (Lys) residues or on the N-terminus, leading to polyubiquitin chains that can encompass complex topologies. Alternatively or in addition, ubiquitin Lys residues can be modified by ubiquitin-like molecules (such as SUMO or NEDD8). Finally, ubiquitin can also be acetylated on Lys, or phosphorylated on Ser, Thr or Tyr residues, and each modification has the potential to dramatically alter the signaling outcome. While the number of distinctly modified ubiquitin species in cells is mind-boggling, much progress has been made to characterize the roles of distinct ubiquitin modifications, and many enzymes and receptors have been identified that create, recognize or remove these ubiquitin modifications. We here provide an overview of the various ubiquitin modifications present in cells, and highlight recent progress on ubiquitin chain biology. We then discuss the recent findings in the field of ubiquitin acetylation and phosphorylation, with a focus on Ser65-phosphorylation and its role in mitophagy and Parkin activation. PMID:27012465
Mistletoe lectin I in complex with galactose and lactose reveals distinct sugar-binding properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikeska, Ruth; Wacker, Roland; Arni, Raghuvir
2005-01-01
The structures of mistletoe lectin I in complex with lactose and galactose reveal differences in binding by the two known sites in subdomains α1 and γ2 and suggest the presence of a third low-affinity site in subdomain β1. The structures of mistletoe lectin I (ML-I) from Viscum album complexed with lactose and galactose have been determined at 2.3 Å resolution and refined to R factors of 20.9% (R{sub free} = 23.6%) and 20.9 (R{sub free} = 24.6%), respectively. ML-I is a heterodimer and belongs to the class of ribosome-inactivating proteins of type II, which consist of two chains. The A-chainmore » has rRNA N-glycosidase activity and irreversibly inhibits eukaryotic ribosomes. The B-chain is a lectin and preferentially binds to galactose-terminated glycolipids and glycoproteins on cell membranes. Saccharide binding is performed by two binding sites in subdomains α1 and γ2 of the ML-I B-chain separated by ∼62 Å from each other. The favoured binding of galactose in subdomain α1 is achieved via hydrogen bonds connecting the 4-hydroxyl and 3-hydroxyl groups of the sugar moiety with the side chains of Asp23B, Gln36B and Lys41B and the main chain of 26B. The aromatic ring of Trp38B on top of the preferred binding pocket supports van der Waals packing of the apolar face of galactose and stabilizes the sugar–lectin complex. In the galactose-binding site II of subdomain γ2, Tyr249B provides the hydrophobic stacking and the side chains of Asp235B, Gln238B and Asn256B are hydrogen-bonding partners for galactose. In the case of the galactose-binding site I, the 2-hydroxyl group also stabilizes the sugar–protein complex, an interaction thus far rarely detected in galactose-specific lectins. Finally, a potential third low-affinity galactose-binding site in subunit β1 was identified in the present ML-I structures, in which a glycerol molecule from the cryoprotectant buffer has bound, mimicking the sugar compound.« less
Microwave emulations and tight-binding calculations of transport in polyacetylene
NASA Astrophysics Data System (ADS)
Stegmann, Thomas; Franco-Villafañe, John A.; Ortiz, Yenni P.; Kuhl, Ulrich; Mortessagne, Fabrice; Seligman, Thomas H.
2017-01-01
A novel approach to investigate the electron transport of cis- and trans-polyacetylene chains in the single-electron approximation is presented by using microwave emulation measurements and tight-binding calculations. In the emulation we take into account the different electronic couplings due to the double bonds leading to coupled dimer chains. The relative coupling constants are adjusted by DFT calculations. For sufficiently long chains a transport band gap is observed if the double bonds are present, whereas for identical couplings no band gap opens. The band gap can be observed also in relatively short chains, if additional edge atoms are absent, which cause strong resonance peaks within the band gap. The experimental results are in agreement with our tight-binding calculations using the nonequilibrium Green's function method. The tight-binding calculations show that it is crucial to include third nearest neighbor couplings to obtain the gap in the cis-polyacetylene.
Sajadi, Mohammad M.; Farshidpour, Maham; Brown, Eric P.; Ouyang, Xin; Seaman, Michael S.; Pazgier, Marzena; Ackerman, Margaret E.; Robinson, Harriet; Tomaras, Georgia; Parsons, Matthew S.; Charurat, Manhattan; DeVico, Anthony L.; Redfield, Robert R.; Lewis, George K.
2016-01-01
The humoral response to human immunodeficiency virus (HIV) remains incompletely understood. In this report, we describe biased λ light chain use during the HIV Env glycoprotein (Env) response in HIV infection and vaccination. We examined HIV Env binding (and neutralization) in the context of light chain use in subjects with acute HIV infection, chronic HIV infection, and among HIV vaccinees. In all populations tested, there was a λ chain bias for HIV Env binding antibodies, compared with other HIV antigens (such as p24) or tetanus toxoid. In subjects with chronic HIV infection, a λ bias was noted for neutralization, with λ antibodies accounting for up to 90% of all neutralization activity observed. This is the first report of antibody function in a human infection being tied to light chain use. In HIV infection, antibodies expressing λ light chains tended to have longer CDRL3s, increased light chain contact with HIV Env, and less hypermutation in the heavy chain, compared with antibodies using the κ light chain. These data also support an evolutionary model for the understanding the various κ to λ light chain ratios observed across species and suggest that the λ light chain bias against HIV provides the host an advantage in developing a more efficient humoral response. PMID:26347575
Yin, Yizhou; Kundu, Kunal; Pal, Lipika R; Moult, John
2017-09-01
CAGI (Critical Assessment of Genome Interpretation) conducts community experiments to determine the state of the art in relating genotype to phenotype. Here, we report results obtained using newly developed ensemble methods to address two CAGI4 challenges: enzyme activity for population missense variants found in NAGLU (Human N-acetyl-glucosaminidase) and random missense mutations in Human UBE2I (Human SUMO E2 ligase), assayed in a high-throughput competitive yeast complementation procedure. The ensemble methods are effective, ranked second for SUMO-ligase and third for NAGLU, according to the CAGI independent assessors. However, in common with other methods used in CAGI, there are large discrepancies between predicted and experimental activities for a subset of variants. Analysis of the structural context provides some insight into these. Post-challenge analysis shows that the ensemble methods are also effective at assigning pathogenicity for the NAGLU variants. In the clinic, providing an estimate of the reliability of pathogenic assignments is the key. We have also used the NAGLU dataset to show that ensemble methods have considerable potential for this task, and are already reliable enough for use with a subset of mutations. © 2017 Wiley Periodicals, Inc.
Hypomorphism in human NSMCE2 linked to primordial dwarfism and insulin resistance
Payne, Felicity; Colnaghi, Rita; Rocha, Nuno; Seth, Asha; Harris, Julie; Carpenter, Gillian; Bottomley, William E.; Wheeler, Eleanor; Wong, Stephen; Saudek, Vladimir; Savage, David; O’Rahilly, Stephen; Carel, Jean-Claude; Barroso, Inês; O’Driscoll, Mark; Semple, Robert
2014-01-01
Structural maintenance of chromosomes (SMC) complexes are essential for maintaining chromatin structure and regulating gene expression. Two the three known SMC complexes, cohesin and condensin, are important for sister chromatid cohesion and condensation, respectively; however, the function of the third complex, SMC5–6, which includes the E3 SUMO-ligase NSMCE2 (also widely known as MMS21) is less clear. Here, we characterized 2 patients with primordial dwarfism, extreme insulin resistance, and gonadal failure and identified compound heterozygous frameshift mutations in NSMCE2. Both mutations reduced NSMCE2 expression in patient cells. Primary cells from one patient showed increased micronucleus and nucleoplasmic bridge formation, delayed recovery of DNA synthesis, and reduced formation of foci containing Bloom syndrome helicase (BLM) after hydroxyurea-induced replication fork stalling. These nuclear abnormalities in patient dermal fibroblast were restored by expression of WT NSMCE2, but not a mutant form lacking SUMO-ligase activity. Furthermore, in zebrafish, knockdown of the NSMCE2 ortholog produced dwarfism, which was ameliorated by reexpression of WT, but not SUMO-ligase–deficient NSMCE. Collectively, these findings support a role for NSMCE2 in recovery from DNA damage and raise the possibility that loss of its function produces dwarfism through reduced tolerance of replicative stress. PMID:25105364
Hypomorphism in human NSMCE2 linked to primordial dwarfism and insulin resistance.
Payne, Felicity; Colnaghi, Rita; Rocha, Nuno; Seth, Asha; Harris, Julie; Carpenter, Gillian; Bottomley, William E; Wheeler, Eleanor; Wong, Stephen; Saudek, Vladimir; Savage, David; O'Rahilly, Stephen; Carel, Jean-Claude; Barroso, Inês; O'Driscoll, Mark; Semple, Robert
2014-09-01
Structural maintenance of chromosomes (SMC) complexes are essential for maintaining chromatin structure and regulating gene expression. Two the three known SMC complexes, cohesin and condensin, are important for sister chromatid cohesion and condensation, respectively; however, the function of the third complex, SMC5-6, which includes the E3 SUMO-ligase NSMCE2 (also widely known as MMS21) is less clear. Here, we characterized 2 patients with primordial dwarfism, extreme insulin resistance, and gonadal failure and identified compound heterozygous frameshift mutations in NSMCE2. Both mutations reduced NSMCE2 expression in patient cells. Primary cells from one patient showed increased micronucleus and nucleoplasmic bridge formation, delayed recovery of DNA synthesis, and reduced formation of foci containing Bloom syndrome helicase (BLM) after hydroxyurea-induced replication fork stalling. These nuclear abnormalities in patient dermal fibroblast were restored by expression of WT NSMCE2, but not a mutant form lacking SUMO-ligase activity. Furthermore, in zebrafish, knockdown of the NSMCE2 ortholog produced dwarfism, which was ameliorated by reexpression of WT, but not SUMO-ligase-deficient NSMCE. Collectively, these findings support a role for NSMCE2 in recovery from DNA damage and raise the possibility that loss of its function produces dwarfism through reduced tolerance of replicative stress.
Li, Y; Spellerberg, M B; Stevenson, F K; Capra, J D; Potter, K N
1996-03-01
Essentially all cold agglutinins (CA) with red blood cell I/i specificity isolated from patients with CA disease stemming from lymphoproliferative disorders utilize the VH 4-34 (VH 4-21) gene segment. This near universality of the restricted use of a single gene segment is substantially greater than that demonstrated for other autoantibodies. The monoclonal antibody 9G4 exclusively binds VH 4-34 encoded antibodies and serves as a marker for the VH 4-34 gene segment. Previous studies form our laboratory localized the 9G4 reactive area to framework region 1 (FR1). In the present study, the relative roles of VH FR1, heavy (H) chain complementarity determining region 3 (CDRH 3) and the light (L) chain in I antigen binding were investigated. Mutants containing FR1 sequences from the other VH families, CDRH 3 exchanges, and combinatorial antibodies involving L chain interchanges were produced in the baculovirus system and tested in an I binding assay. The data indicate that FR1 of the VH 4-34 gene segment and the CDRH 3 are essential for the interaction between CA and the I antigen, with the CDRH 3 being fundamental in determining the fine specificity of antigen binding (I versus i). Mutants with substantially altered CDRH 1 and CDRH 2 regions bind I as long as the FR1 is VH 4-34 encoded and the CDRH 3 has a permissive sequence. Light chain swaps indicate that even though antigen binding is predominantly mediated by the H chain, the association with antigen can be abrogated by an incompatible L chain. The necessity for VH 4-34 FR1 explains the almost exclusive use of the VH 4-34 gene segment in cold agglutinins. We hypothesize that, as a general phenomenon, the H chain FR1 of many antibodies may be important in providing the contact required for the close association of antibody with antigen, while the CDRH 3 dictates the fine specificity and strenght of binding.
Le, Nguyen-Quoc-Khanh; Ou, Yu-Yen
2016-07-30
Cellular respiration is a catabolic pathway for producing adenosine triphosphate (ATP) and is the most efficient process through which cells harvest energy from consumed food. When cells undergo cellular respiration, they require a pathway to keep and transfer electrons (i.e., the electron transport chain). Due to oxidation-reduction reactions, the electron transport chain produces a transmembrane proton electrochemical gradient. In case protons flow back through this membrane, this mechanical energy is converted into chemical energy by ATP synthase. The convert process is involved in producing ATP which provides energy in a lot of cellular processes. In the electron transport chain process, flavin adenine dinucleotide (FAD) is one of the most vital molecules for carrying and transferring electrons. Therefore, predicting FAD binding sites in the electron transport chain is vital for helping biologists understand the electron transport chain process and energy production in cells. We used an independent data set to evaluate the performance of the proposed method, which had an accuracy of 69.84 %. We compared the performance of the proposed method in analyzing two newly discovered electron transport protein sequences with that of the general FAD binding predictor presented by Mishra and Raghava and determined that the accuracy of the proposed method improved by 9-45 % and its Matthew's correlation coefficient was 0.14-0.5. Furthermore, the proposed method enabled reducing the number of false positives significantly and can provide useful information for biologists. We developed a method that is based on PSSM profiles and SAAPs for identifying FAD binding sites in newly discovered electron transport protein sequences. This approach achieved a significant improvement after we added SAAPs to PSSM features to analyze FAD binding proteins in the electron transport chain. The proposed method can serve as an effective tool for predicting FAD binding sites in electron transport proteins and can help biologists understand the functions of the electron transport chain, particularly those of FAD binding sites. We also developed a web server which identifies FAD binding sites in electron transporters available for academics.
NASA Astrophysics Data System (ADS)
Zhou, Peng; Chen, Xiang; Shang, Zhicai
2009-03-01
In this article, the concept of multi conformation-based quantitative structure-activity relationship (MCB-QSAR) is proposed, and based upon that, we describe a new approach called the side-chain conformational space analysis (SCSA) to model and predict protein-peptide binding affinities. In SCSA, multi-conformations (rather than traditional single-conformation) have received much attention, and the statistical average information on multi-conformations of side chains is determined using self-consistent mean field theory based upon side chain rotamer library. Thereby, enthalpy contributions (including electrostatic, steric, hydrophobic interaction and hydrogen bond) and conformational entropy effects to the binding are investigated in terms of occurrence probability of residue rotamers. Then, SCSA was applied into the dataset of 419 HLA-A*0201 binding peptides, and nonbonding contributions of each position in peptide ligands are well determined. For the peptides, the hydrogen bond and electrostatic interactions of the two ends are essential to the binding specificity, van der Waals and hydrophobic interactions of all the positions ensure strong binding affinity, and the loss of conformational entropy at anchor positions partially counteracts other favorable nonbonding effects.
Binding Preferences of Amino Acids for Gold Nanoparticles: A Molecular Simulation Study.
Shao, Qing; Hall, Carol K
2016-08-09
A better understanding of the binding preference of amino acids for gold nanoparticles of different diameters could aid in the design of peptides that bind specifically to nanoparticles of a given diameter. Here we identify the binding preference of 19 natural amino acids for three gold nanoparticles with diameters of 1.0, 2.0, and 4.0 nm, and investigate the mechanisms that govern these preferences. We calculate potentials of mean force between 36 entities (19 amino acids and 17 side chains) and the three gold nanoparticles in explicit water using well-tempered metadynamics simulations. Comparing these potentials of mean force determines the amino acids' nanoparticle binding preferences and if these preferences are controlled by the backbone, the side chain, or both. Twelve amino acids prefer to bind to the 4.0 nm gold nanoparticle, and seven prefer to bind to the 2.0 nm one. We also use atomistic molecular dynamics simulations to investigate how water molecules near the nanoparticle influence the binding of the amino acids. The solvation shells of the larger nanoparticles have higher water densities than those of the smaller nanoparticles while the orientation distributions of the water molecules in the shells of all three nanoparticles are similar. The nanoparticle preferences of the amino acids depend on whether their binding free energy is determined mainly by their ability to replace or to reorient water molecules in the nanoparticle solvation shell. The amino acids whose binding free energy depends mainly on the replacement of water molecules are likely to prefer to bind to the largest nanoparticle and tend to have relatively simple side chain structures. Those whose binding free energy depends mainly on their ability to reorient water molecules prefer a smaller nanoparticle and tend to have more complex side chain structures.
Pathophysiologic roles of the fibrinogen gamma chain.
Farrell, David H
2004-05-01
Fibrinogen binds through its gamma chains to cell surface receptors, growth factors, and coagulation factors to perform its key roles in fibrin clot formation, platelet aggregation, and wound healing. However, these binding interactions can also contribute to pathophysiologic processes, including inflammation and thrombosis. This review summarizes the latest findings on the role of the fibrinogen gamma chain in these processes, and illustrates the potential for therapeutic intervention. Novel gamma chain epitopes that bind platelet integrin alpha IIbbeta3 and leukocyte integrin alphaMbeta2 have been characterized, leading to the revision of former dogma regarding the processes of platelet aggregation, clot retraction, inflammation, and thrombosis. A series of studies has shown that the gamma chain serves as a depot for fibroblast growth factor-2 (FGF-2), which is likely to play an important role in wound healing. Inhibition of gamma chain function with the monoclonal antibody 7E9 has been shown to interfere with multiple fibrinogen activities, including factor XIIIa crosslinking, platelet adhesion, and platelet-mediated clot retraction. The role of the enigmatic variant fibrinogen gamma chain has also become clearer. Studies have shown that gamma chain binding to thrombin and factor XIII results in clots that are mechanically stiffer and resistant to fibrinolysis, which may explain the association between gammaA/gamma' fibrinogen levels and cardiovascular disease. The identification of new interactions with gamma chains has revealed novel targets for the treatment of inflammation and thrombosis. In addition, several exciting studies have shown new functions for the variant gamma chain that may contribute to cardiovascular disease.
Dudev, Todor; Doudeva, Lyudmila
2017-02-01
The effect of the extra methylene group on the ligation properties of glutamic (Glu) vs. aspartic (Asp) acid, and glutamine (Gln) vs. asparagine (Asn) amino acids-two pairs of protein building blocks differing by the length of their side chains-has been studied by employing DFT calculations combined with polarizable continuum model (PCM) computations. Complexes of the nominal species with partner ligands of various structures, charge states, and degree of solvent exposure have been examined. The results obtained reveal that the difference in the alkyl chain length of these amino acid residues does not affect the mode of their binding. This, however, influences the thermodynamics of the ligand-ligand and ligand-metal recognition thus bestowing unique ligation characteristics on the competing entities. The calculations reveal that the competition between the longer-chain and shorter-chain analogs is entropy driven and that the differential electronic effects are of minor importance for the process. Thus, the outcome of the rivalry between Asp and Glu, and Asn and Gln is almost unaffected by the nature of the partner ligand, its charge state and, in most cases, the dielectric properties of the binding site. The longer-chain Glu, as opposed to its shorter-chain Asp counterpart, is the preferred partner ligand in various protein binding sites. Contrariwise, the shorter-chain Asn binds more favorably to the respective binding sites than its longer-chain Gln analog. The results obtained shed additional light on the intimate mechanism of the ligand-ligand and ligand-metal recognition in proteins and could be employed as guidelines in protein engineering and design.
Proof of concept for turbulence measurements with the RPAS SUMO during the BLLAST campaign
NASA Astrophysics Data System (ADS)
Båserud, Line; Reuder, Joachim; Jonassen, Marius O.; Kral, Stephan T.; Paskyabi, Mostafa B.; Lothon, Marie
2016-10-01
The micro-RPAS (remotely piloted aircraft system) SUMO (Small Unmanned Meteorological Observer) equipped with a five-hole-probe (5HP) system for turbulent flow measurements was operated in 49 flight missions during the BLLAST (Boundary-Layer Late Afternoon and Sunset Turbulence) field campaign in 2011. Based on data sets from these flights, we investigate the potential and limitations of airborne velocity variance and TKE (turbulent kinetic energy) estimations by an RPAS with a take-off weight below 1 kg. The integration of the turbulence probe in the SUMO system was still in an early prototype stage during this campaign, and therefore extensive post-processing of the data was required. In order to be able to calculate the three-dimensional wind vector, flow probe measurements were first synchronized with the autopilot's attitude and velocity data. Clearly visible oscillations were detected in the resulting vertical velocity, w, even after correcting for the aircraft motion. The oscillations in w were identified as the result of an internal time shift between the inertial measurement unit (IMU) and the GPS sensors, leading to insufficient motion correction, especially for the vertical wind component, causing large values of σw. Shifting the IMU 1-1.5 s forward in time with respect to the GPS yields a minimum for σw and maximum covariance between the IMU pitch angle and the GPS climb angle. The SUMO data show a good agreement to sonic anemometer data from a 60 m tower for σu, but show slightly higher values for σv and σw. Vertical TKE profiles, obtained from consecutive flight legs at different altitudes, show reasonable results, both with respect to the overall TKE level and the temporal variation. A thorough discussion of the methods used and the identified uncertainties and limitations of the system for turbulence measurements is included and should help the developers and users of other systems with similar problems.
Simultaneous profiling of the Arctic Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Mayer, S.; Jonassen, M.; Reuder, J.
2009-09-01
The structure of the Arctic atmospheric boundary layer (AABL) and the heat and moisture fluxes between relatively warm water and cold air above non-sea-ice-covered water (such as fjords, leads and polynyas) are of great importance for the sensitive Arctic climate system (e.g. Andreas and Cash, 1999). So far, such processes are not sufficiently resolved in numerical weather prediction (NWP) and climate models (e.g. Tjernström et al., 2005). Especially for regions with complex topography as the Svalbard mountains and fjords the state and diurnal evolution of the AABL is not well known yet. Knowledge can be gained by novel and flexible measurement techniques such as the use of an unmanned aerial vehicle (UAV). An UAV can perform vertical profiles as well as horizontal surveys of the mean meteorological parameters: temperature, relative humidity, pressure and wind. A corresponding UAV, called Small Unmanned Meteorological Observer (SUMO), has been developed at the Geophysical Institute at the University of Bergen in cooperation with Müller Engineering (www.pfump.org) and the Paparazzi Project (http://paparazzi.enac.fr). SUMO has been used under Arctic conditions at Longyear airport, Spitsbergen in March/April 2009. Besides vertical profiles up to 1500 m and horizontal surveys at flight levels of 100 and 200 m, SUMO could measure vertical profiles for the first time simultaneously in a horizontal distance of 1 km; one over the ice and snow-covered land surface and the other one above the open water of Isfjorden. This has been the first step of future multiple UAV operations in so called "swarms” or "flocks”. With this, corresponding measurements of the diurnal evolution of the AABL can be achieved with minimum technical efforts and costs. In addition, the Advanced Research Weather Forecasting model (AR-WRF version 3.1) has been run in high resolution (grid size: 1 km). First results of a sensitivity study where ABL schemes have been tested and compared with respect to the measured SUMO profiles are presented.
Inuzuka, Tatsutoshi; Suzuki, Hironori; Kawasaki, Masato; Shibata, Hideki; Wakatsuki, Soichi; Maki, Masatoshi
2010-08-06
ALG-2 (a gene product of PDCD6) belongs to the penta-EF-hand (PEF) protein family and Ca2+-dependently interacts with various intracellular proteins including mammalian Alix, an adaptor protein in the ESCRT system. Our previous X-ray crystal structural analyses revealed that binding of Ca2+ to EF3 enables the side chain of R125 to move enough to make a primary hydrophobic pocket (Pocket 1) accessible to a short fragment of Alix. The side chain of F122, facing a secondary hydrophobic pocket (Pocket 2), interacts with the Alix peptide. An alternatively spliced shorter isoform, designated ALG-2DeltaGF122, lacks Gly121Phe122 and does not bind Alix, but the structural basis of the incompetence has remained to be elucidated. We solved the X-ray crystal structure of the PEF domain of ALG-2DeltaGF122 in the Ca2+-bound form and compared it with that of ALG-2. Deletion of the two residues shortened alpha-helix 5 (alpha5) and changed the configuration of the R125 side chain so that it partially blocked Pocket 1. A wall created by the main chain of 121-GFG-123 and facing the two pockets was destroyed. Surprisingly, however, substitution of F122 with Ala or Gly, but not with Trp, increased the Alix-binding capacity in binding assays. The F122 substitutions exhibited different effects on binding of ALG-2 to other known interacting proteins, including TSG101 (Tumor susceptibility gene 101) and annexin A11. The X-ray crystal structure of the F122A mutant revealed that removal of the bulky F122 side chain not only created an additional open space in Pocket 2 but also abolished inter-helix interactions with W95 and V98 (present in alpha4) and that alpha5 inclined away from alpha4 to expand Pocket 2, suggesting acquirement of more appropriate positioning of the interacting residues to accept Alix. We found that the inability of the two-residue shorter ALG-2 isoform to bind Alix is not due to the absence of bulky side chain of F122 but due to deformation of a main-chain wall facing pockets 1 and 2. Moreover, a residue at the position of F122 contributes to target specificity and a smaller side chain is preferable for Alix binding but not favored to bind annexin A11.
The binding of analogs of porphyrins and chlorins with elongated side chains to albumin
Ben Dror, Shimshon; Bronshtein, Irena; Weitman, Hana; Smith, Kevin M.; O’Neal, William G.; Jacobi, Peter A.; Ehrenberg, Benjamin
2012-01-01
In previous studies, we demonstrated that elongation of side chains of several sensitizers endowed them with higher affinity for artificial and natural membranes and caused their deeper localization in membranes. In the present study, we employed eight hematoporphyrin and protoporphyrin analogs and four groups containing three chlorin analogs each, all synthesized with variable numbers of methylenes in their alkyl carboxylic chains. We show that these tetrapyrroles’ affinity for bovine serum albumin (BSA) and their localization in the binding site are also modulated by chain lengths. The binding constants of the hematoporphyrins and protoporphyrins to BSA increased as the number of methylenes was increased. The binding of the chlorins depended on the substitution at the meso position opposite to the chains. The quenching of the sensitizers’ florescence by external iodide ions decreased as the side chains became longer, indicating to deeper insertion of the molecules into the BSA binding pocket. To corroborate this conclusion, we studied the efficiency of photodamage caused to tryptophan in BSA upon illumination of the bound sensitizers. The efficiency was found to depend on the side-chain lengths of the photosensitizer. We conclude that the protein site that hosts these sensitizers accommodates different analogs at positions that differ slightly from each other. These differences are manifested in the ease of access of iodide from the external aqueous phase, and in the proximity of the photosensitizers to the tryptophan. In the course of this study, we developed the kinetic equations that have to be employed when the sensitizer itself is being destroyed. PMID:19330323
Wrestling with Chromosomes: The Roles of SUMO During Meiosis.
Nottke, Amanda C; Kim, Hyun-Min; Colaiácovo, Monica P
2017-01-01
Meiosis is a specialized form of cell division required for the formation of haploid gametes and therefore is essential for successful sexual reproduction. Various steps are exquisitely coordinated to ensure accurate chromosome segregation during meiosis, thereby promoting the formation of haploid gametes from diploid cells. Recent studies are demonstrating that an important form of regulation during meiosis is exerted by the post-translational protein modification known as sumoylation. Here, we review and discuss the various critical steps of meiosis in which SUMO-mediated regulation has been implicated thus far. These include the maintenance of meiotic centromeric heterochromatin , meiotic DNA double-strand break repair and homologous recombination, centromeric coupling, and the assembly of a proteinaceous scaffold between homologous chromosomes known as the synaptonemal complex.
NASA Astrophysics Data System (ADS)
Vignesh, G.; Sugumar, K.; Arunachalam, S.; Vignesh, S.; Arthur James, R.
2013-09-01
The comparative binding effect of single and double aliphatic chain containing surfactant-cobalt(III) complexes cis-[Co(bpy)2(DA)2](ClO4)3ṡ2H2O (1), cis-[Co(bpy)2(DA)Cl](ClO4)2ṡ2H2O (2), cis-[Co(phen)2(CA)2](ClO4)3ṡ2H2O (3), and cis-[Co(phen)2(CA)Cl](ClO4)2ṡ2H2O (4) with bovine serum albumin (BSA) under physiological condition was analyzed by steady state, time resolved fluorescence, synchronous, three-dimensional fluorescence, UV-Visible absorption and circular dichroism spectroscopic techniques. The results show that these complexes cause the fluorescence quenching of BSA through a static mechanism. The binding constants (Kb) and the number of binding sites were calculated and binding constant values are found in the range of 104-105 M-1. The results indicate that compared to single chain complex, double chain surfactant-cobalt(III) complex interacts strongly with BSA. Also the sign of thermodynamic parameters (ΔG°, ΔH°, and ΔS°) indicate that all the complexes interact with BSA through hydrophobic force. The binding distance (r) between complexes and BSA was calculated using Förster non-radiation energy transfer theory and found to be less than 7 nm. The results of synchronous, three dimensional fluorescence and circular dichroism spectroscopic methods indicate that the double chain surfactant-cobalt(III) complexes changed the conformation of the protein considerably than the respective single chain surfactant-cobalt(III) complexes. Antimicrobial studies of the complexes showed good activities against pathogenic microorganisms.
USP7 small-molecule inhibitors interfere with ubiquitin binding.
Kategaya, Lorna; Di Lello, Paola; Rougé, Lionel; Pastor, Richard; Clark, Kevin R; Drummond, Jason; Kleinheinz, Tracy; Lin, Eva; Upton, John-Paul; Prakash, Sumit; Heideker, Johanna; McCleland, Mark; Ritorto, Maria Stella; Alessi, Dario R; Trost, Matthias; Bainbridge, Travis W; Kwok, Michael C M; Ma, Taylur P; Stiffler, Zachary; Brasher, Bradley; Tang, Yinyan; Jaishankar, Priyadarshini; Hearn, Brian R; Renslo, Adam R; Arkin, Michelle R; Cohen, Frederick; Yu, Kebing; Peale, Frank; Gnad, Florian; Chang, Matthew T; Klijn, Christiaan; Blackwood, Elizabeth; Martin, Scott E; Forrest, William F; Ernst, James A; Ndubaku, Chudi; Wang, Xiaojing; Beresini, Maureen H; Tsui, Vickie; Schwerdtfeger, Carsten; Blake, Robert A; Murray, Jeremy; Maurer, Till; Wertz, Ingrid E
2017-10-26
The ubiquitin system regulates essential cellular processes in eukaryotes. Ubiquitin is ligated to substrate proteins as monomers or chains and the topology of ubiquitin modifications regulates substrate interactions with specific proteins. Thus ubiquitination directs a variety of substrate fates including proteasomal degradation. Deubiquitinase enzymes cleave ubiquitin from substrates and are implicated in disease; for example, ubiquitin-specific protease-7 (USP7) regulates stability of the p53 tumour suppressor and other proteins critical for tumour cell survival. However, developing selective deubiquitinase inhibitors has been challenging and no co-crystal structures have been solved with small-molecule inhibitors. Here, using nuclear magnetic resonance-based screening and structure-based design, we describe the development of selective USP7 inhibitors GNE-6640 and GNE-6776. These compounds induce tumour cell death and enhance cytotoxicity with chemotherapeutic agents and targeted compounds, including PIM kinase inhibitors. Structural studies reveal that GNE-6640 and GNE-6776 non-covalently target USP7 12 Å distant from the catalytic cysteine. The compounds attenuate ubiquitin binding and thus inhibit USP7 deubiquitinase activity. GNE-6640 and GNE-6776 interact with acidic residues that mediate hydrogen-bond interactions with the ubiquitin Lys48 side chain, suggesting that USP7 preferentially interacts with and cleaves ubiquitin moieties that have free Lys48 side chains. We investigated this idea by engineering di-ubiquitin chains containing differential proximal and distal isotopic labels and measuring USP7 binding by nuclear magnetic resonance. This preferential binding protracted the depolymerization kinetics of Lys48-linked ubiquitin chains relative to Lys63-linked chains. In summary, engineering compounds that inhibit USP7 activity by attenuating ubiquitin binding suggests opportunities for developing other deubiquitinase inhibitors and may be a strategy more broadly applicable to inhibiting proteins that require ubiquitin binding for full functional activity.
Usui, Daiki; Inaba, Satomi; Kamatari, Yuji O; Ishiguro, Naotaka; Oda, Masayuki
2017-09-02
The monoclonal antibody, G2, specifically binds to the immunogen peptide derived from the chicken prion protein, Pep18mer, and two chicken proteins derived peptides, Pep8 and Pep395; G2 binds with equal affinity to Pep18mer. The amino acid sequences of the three peptides are completely different, and so the recognition mechanism of G2 is unique and interesting. We generated a single-chain Fv (scFv) antibody of G2, and demonstrated its correct folding with an antigen binding function similar to intact G2 antibody. We also generated a Pro containing mutant of G2 scFv at residue 95 of the light chain, and analyzed its antigen binding using a surface plasmon biosensor. The mutant lost its binding ability to Pep18mer, but remained those to Pep8 and Pep395. The results clearly indicate residue 95 as being critical for multispecific antigen binding of G2 at the site generated from the junctional diversity introduced at the joints between the V and J gene segments. Copyright © 2017 Elsevier Inc. All rights reserved.
Beckford, Garfield; Owens, Eric; Henary, Maged; Patonay, Gabor
2012-04-15
The effects of solvatochromism on protein-ligand interactions have been studied by absorbance and near-infrared laser induced fluorescence (NIR-LIF) spectroscopy. The utility of three novel classes of cyanine dyes designed for this purpose illustrates that the affinity interactions of ligands at the hydrophobic binding pockets of Human Serum Albumin (HSA) are not only dependent on the overall hydrophobic characteristics of the molecules but are highly influenced by the size of the ligands as well. Whereas changes to the chromophore moiety exhibited slight to moderate changes to the hydrophobic nature of these molecules, substitution at the alkyl indolium side chain has enabled us to vary the binding affinity towards serum albumin. Substitution at the indolium side chain among an ethyl to butyl group results in improved binding characteristics and an almost three-fold increase in affinity constant. In addition, replacement of the ethyl side chain with a phenylpropyl group also yielded unique solvotachromic patterns such as increased hydrophobicity and subsequent biocompatibility with the HSA binding regions. Ligand interaction was however inhibited by steric hindrance associated with the bulky phenyl ring system thus affecting the increased binding that could be realized from the improved hydrophobic nature of the molecules. This characteristic change in binding affinity is of potential interest to developing a methodology which reveals information on the hydrophobic character and steric specificity of the binding cavities. Copyright © 2012 Elsevier B.V. All rights reserved.
Hua, Guoqiang; Ganti, Krishna Priya; Chambon, Pierre
2016-01-01
Upon binding of a glucocorticoid (GC), the GC receptor (GR) can exert one of three transcriptional regulatory functions. We recently reported that SUMOylation of the GR at position K293 in humans (K310 in mice) within the N-terminal domain is indispensable for GC-induced evolutionary conserved inverted repeated negative GC response element (IR nGRE)-mediated direct transrepression. We now demonstrate that the integrity of this GR SUMOylation site is mandatory for the formation of a GR-small ubiquitin-related modifiers (SUMOs)-SMRT/NCoR1-HDAC3 repressing complex, which is indispensable for NF-κB/AP1-mediated GC-induced tethered indirect transrepression in vitro. Using GR K310R mutant mice or mice containing the N-terminal truncated GR isoform GRα-D3 lacking the K310 SUMOylation site, revealed a more severe skin inflammation than in WT mice. Importantly, cotreatment with dexamethasone (Dex) could not efficiently suppress a 12-O-tetradecanoylphorbol-13-acetate (TPA)–induced skin inflammation in these mutant mice, whereas it was clearly decreased in WT mice. In addition, in mice selectively ablated in skin keratinocytes for either nuclear receptor corepressor 1 (NCoR1)/silencing mediator for retinoid or thyroid-hormone receptors (SMRT) corepressors or histone deacetylase 3 (HDAC3), Dex-induced tethered transrepression and the formation of a repressing complex on DNA-bound NF-κB/AP1 were impaired. We previously suggested that GR ligands that would lack both (+)GRE-mediated transactivation and IR nGRE-mediated direct transrepression activities of GCs may preferentially exert the therapeutically beneficial GC antiinflammatory properties. Interestingly, we now identified a nonsteroidal antiinflammatory selective GR agonist (SEGRA) that selectively lacks both Dex-induced (+)GRE-mediated transactivation and IR nGRE-mediated direct transrepression functions, while still exerting a tethered indirect transrepression activity and could therefore be clinically lesser debilitating on long-term GC therapy. PMID:26712006
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Emily B.; Williams, Angela; Heidel, Eric
Highlights: •Polybasic peptide p5 binds human light chain amyloid extracts. •The binding of p5 with amyloid involves both glycosaminoglycans and fibrils. •Heparinase treatment led to a correlation between p5 binding and fibril content. •p5 binding to AL amyloid requires electrostatic interactions. -- Abstract: In previously published work, we have described heparin-binding synthetic peptides that preferentially recognize amyloid deposits in a mouse model of reactive systemic (AA) amyloidosis and can be imaged by using positron and single photon emission tomographic imaging. We wanted to extend these findings to the most common form of visceral amyloidosis, namely light chain (AL); however, theremore » are no robust experimental animal models of AL amyloidosis. To further define the binding of the lead peptide, p5, to AL amyloid, we characterized the reactivity in vitro of p5 with in situ and patient-derived AL amyloid extracts which contain both hypersulfated heparan sulfate proteoglycans as well as amyloid fibrils. Histochemical staining demonstrated that the peptide specifically localized with tissue-associated AL amyloid deposits. Although we anticipated that p5 would undergo electrostatic interactions with the amyloid-associated glycosaminoglycans expressing heparin-like side chains, no significant correlation between peptide binding and glycosaminoglycan content within amyloid extracts was observed. In contrast, following heparinase I treatment, although overall binding was reduced, a positive correlation between peptide binding and amyloid fibril content became evident. This interaction was further confirmed using synthetic light chain fibrils that contain no carbohydrates. These data suggest that p5 can bind to both the sulfated glycosaminoglycans and protein fibril components of AL amyloid. Understanding these complex electrostatic interactions will aid in the optimization of synthetic peptides for use as amyloid imaging agents and potentially as therapeutics for the treatment of amyloid diseases.« less
Villoutreix, B O; Härdig, Y; Wallqvist, A; Covell, D G; García de Frutos, P; Dahlbäck, B
1998-06-01
C4b-binding protein (C4BP) contributes to the regulation of the classical pathway of the complement system and plays an important role in blood coagulation. The main human C4BP isoform is composed of one beta-chain and seven alpha-chains essentially built from three and eight complement control protein (CCP) modules, respectively, followed by a nonrepeat carboxy-terminal region involved in polymerization of the chains. C4BP is known to interact with heparin, C4b, complement factor I, serum amyloid P component, streptococcal Arp and Sir proteins, and factor VIII/VIIIa via its alpha-chains and with protein S through its beta-chain. The principal aim of the present study was to localize regions of C4BP involved in the interaction with C4b, Arp, and heparin. For this purpose, a computer model of the 8 CCP modules of C4BP alpha-chain was constructed, taking into account data from previous electron microscopy (EM) studies. This structure was investigated in the context of known and/or new experimental data. Analysis of the alpha-chain model, together with monoclonal antibody studies and heparin binding experiments, suggests that a patch of positively charged residues, at the interface between the first and second CCP modules, plays an important role in the interaction between C4BP and C4b/Arp/Sir/heparin. Putative binding sites, secondary-structure prediction for the central core, and an overall reevaluation of the size of the C4BP molecule are also presented. An understanding of these intermolecular interactions should contribute to the rational design of potential therapeutic agents aiming at interfering specifically some of these protein-protein interactions.
Mishra, Neelam; Sun, Li; Zhu, Xunlu; Smith, Jennifer; Prakash Srivastava, Anurag; Yang, Xiaojie; Pehlivan, Necla; Esmaeili, Nardana; Luo, Hong; Shen, Guoxin; Jones, Don; Auld, Dick; Burke, John
2017-01-01
The Arabidopsis SUMO E3 ligase gene AtSIZ1 plays important roles in plant response to abiotic stresses as loss of function in AtSIZ1 leads to increased sensitivity to drought, heat and salt stresses. Overexpression of the AtSIZ1 rice homolog, OsSIZ1, leads to increased heat and drought tolerance in bentgrass, suggesting that the function of the E3 ligase SIZ1 is highly conserved in plants and it plays a critical role in abiotic stress responses. To test the possibility that the SUMO E3 ligase could be used to engineer drought- and heat-tolerant crops, the rice gene OsSIZ1 was overexpressed in cotton. We report here that overexpression of OsSIZ1 in cotton results in higher net photosynthesis and better growth than wild-type cotton under drought and thermal stresses in growth chamber and greenhouse conditions. Additionally, this tolerance to abiotic stresses was correlated with higher fiber yield in both controlled-environment and field trials carried out under reduced irrigation and rainfed conditions. These results suggest that OsSIZ1 is a viable candidate gene to improve crop yields under water-limited and rainfed agricultural production systems. PMID:28340002
Bernstock, Joshua D; Lee, Yang-ja; Peruzzotti-Jametti, Luca; Southall, Noel; Johnson, Kory R; Maric, Dragan; Volpe, Giulio; Kouznetsova, Jennifer; Zheng, Wei; Pluchino, Stefano
2015-01-01
The conjugation/de-conjugation of Small Ubiquitin-like Modifier (SUMO) has been shown to be associated with a diverse set of physiologic/pathologic conditions. The clinical significance and ostensible therapeutic utility offered via the selective control of the global SUMOylation process has become readily apparent in ischemic pathophysiology. Herein, we describe the development of a novel quantitative high-throughput screening (qHTS) system designed to identify small molecules capable of increasing SUMOylation via the regulation/inhibition of members of the microRNA (miRNA)-182 family. This assay employs a SHSY5Y human neuroblastoma cell line stably transfected with a dual firefly-Renilla luciferase reporter system for identification of specific inhibitors of either miR-182 or miR-183. In this study, we have identified small molecules capable of inducing increased global conjugation of SUMO in both SHSY5Y cells and rat E18-derived primary cortical neurons. The protective effects of a number of the identified compounds were confirmed via an in vitro ischemic model (oxygen/glucose deprivation). Of note, this assay can be easily repurposed to allow high-throughput analyses of the potential drugability of other relevant miRNA(s) in ischemic pathobiology. PMID:26661196
Xu, Xianfeng Morgan; Rose, Annkatrin; Muthuswamy, Sivaramakrishnan; Jeong, Sun Yong; Venkatakrishnan, Sowmya; Zhao, Qiao; Meier, Iris
2007-01-01
Vertebrate Tpr and its yeast homologs Mlp1/Mlp2, long coiled-coil proteins of nuclear pore inner basket filaments, are involved in mRNA export, telomere organization, spindle pole assembly, and unspliced RNA retention. We identified Arabidopsis thaliana NUCLEAR PORE ANCHOR (NUA) encoding a 237-kD protein with similarity to Tpr. NUA is located at the inner surface of the nuclear envelope in interphase and in the vicinity of the spindle in prometaphase. Four T-DNA insertion lines were characterized, which comprise an allelic series of increasing severity for several correlating phenotypes, such as early flowering under short days and long days, increased abundance of SUMO conjugates, altered expression of several flowering regulators, and nuclear accumulation of poly(A)+ RNA. nua mutants phenocopy mutants of EARLY IN SHORT DAYS4 (ESD4), an Arabidopsis SUMO protease concentrated at the nuclear periphery. nua esd4 double mutants resemble nua and esd4 single mutants, suggesting that the two proteins act in the same pathway or complex, supported by yeast two-hybrid interaction. Our data indicate that NUA is a component of nuclear pore-associated steps of sumoylation and mRNA export in plants and that defects in these processes affect the signaling events of flowering time regulation and additional developmental processes. PMID:17513499
Wang, Yaju; Shankar, Shilpa Rani; Kher, Devaki; Ling, Belinda Mei Tze; Taneja, Reshma
2013-01-01
Sumoylation is an important post-translational modification that alters the activity of many transcription factors. However, the mechanisms that link sumoylation to alterations in chromatin structure, which culminate in tissue specific gene expression, are not fully understood. In this study, we demonstrate that SUMO modification of the transcription factor Sharp-1 is required for its full transcriptional repression activity and function as an inhibitor of skeletal muscle differentiation. Sharp-1 is modified by sumoylation at two conserved lysine residues 240 and 255. Mutation of these SUMO acceptor sites in Sharp-1 does not impact its subcellular localization but attenuates its ability to act as a transcriptional repressor and inhibit myogenic differentiation. Consistently, co-expression of the SUMO protease SENP1 with wild type Sharp-1 abrogates Sharp-1-dependent inhibition of myogenesis. Interestingly, sumoylation acts as a signal for recruitment of the co-repressor G9a. Thus, enrichment of G9a, and histone H3 lysine 9 dimethylation (H3K9me2), a signature of G9a activity, is dramatically reduced at muscle promoters in cells expressing sumoylation-defective Sharp-1. Our findings demonstrate how sumoylation of Sharp-1 exerts an impact on chromatin structure and transcriptional repression of muscle gene expression through recruitment of G9a. PMID:23637228
Lape, Michael; Paula, Stefan; Ball, William J
2010-06-01
Immunotherapy by cocaine-binding monoclonal antibodies (mAbs) has emerged as a promising strategy for the treatment of cocaine addiction. The human (gamma1 heavy chain)/murine (lambda light chain) chimeric mAb 2E2 has excellent affinity and specificity for cocaine and recent animal studies have demonstrated 2E2's ability in vivo to reduce cocaine levels in the brain as well as alter cocaine self-administration behavior in rats. In this study, we used mAb 2E2 amino acid sequence information to create a homology model for the 3-D structure of its Fv fragment. Subsequent computational docking studies revealed the intermolecular interactions potentially responsible for mAb 2E2's cocaine binding properties. The driving force of cocaine binding was identified as a combination of hydrophobic interactions and a single hydrogen bond between a light chain tyrosine residue and a carbonyl oxygen atom of cocaine. The model also allowed for an in silico evaluation of single/double residue mutations in the heavy and light chain variable regions that might further enhance mAb 2E2's cocaine binding properties. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.
Lape, Michael; Paula, Stefan; Ball, William J.
2010-01-01
Immunotherapy by cocaine-binding monoclonal antibodies (mAbs) has emerged as a promising strategy for the treatment of cocaine addiction. The human (γ1 heavy chain)/murine (λ light chain) chimeric mAb 2E2 has excellent affinity and specificity for cocaine and recent animal studies have demonstrated 2E2’s ability in vivo to reduce cocaine levels in the brain as well as alter cocaine self-administration behavior in rats. In this study, we used mAb 2E2 amino acid sequence information to create a homology model for the 3-D structure of its Fv fragment. Subsequent computational docking studies revealed the intermolecular interactions potentially responsible for mAb 2E2’s cocaine binding properties. The driving force of cocaine binding was identified as a combination of hydrophobic interactions and a single hydrogen bond between a light chain tyrosine residue and a carbonyl oxygen atom of cocaine. The model also allowed for an in silico evaluation of single/double residue mutations in the heavy and light chain variable regions that might further enhance mAb 2E2’s cocaine binding properties. PMID:20185210
Said, Ahmed M; Hangauer, David G
2015-01-01
One of the underappreciated non-covalent binding factors, which can significantly affect ligand-protein binding affinity, is the cooperativity between ligand functional groups. Using four different series of thrombin inhibitors, we reveal a strong positive cooperativity between an H-bond accepting carbonyl functionality and the adjacent P3 hydrophobic side chain. Adding an H-bond donating amine adjacent to the P3 hydrophobic side chain further increases this positive cooperativity thereby improving the Ki by as much as 546-fold. In contrast, adding an amidine multiple H-bond/salt bridge group in the distal S1 pocket does not affect this cooperativity. An analysis of the crystallographic B-factors of the ligand groups inside the binding site indicates that the strong cooperativity is mainly due to a significant mutual reduction in the residual mobility of the hydrophobic side chain and the H-bonding functionalities that is absent when the separation distance is large. This type of cooperativity is important to encode in binding affinity prediction software, and to consider in SAR studies. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Ayyar, B Vijayalakshmi; Aoki, K Roger; Atassi, M Zouhair
2015-04-01
Botulinum neurotoxins (BoNTs) possess unique specificity for nerve terminals. They bind to the presynaptic membrane and then translocate intracellularly, where the light-chain endopeptidase cleaves the SNARE complex proteins, subverting the synaptic exocytosis responsible for acetylcholine release to the synaptic cleft. This inhibits acetylcholine binding to its receptor, causing paralysis. Binding, an obligate event for cell intoxication, is believed to occur through the heavy-chain C-terminal (HC) domain. It is followed by toxin translocation and entry into the cell cytoplasm, which is thought to be mediated by the heavy-chain N-terminal (HN) domain. Submolecular mapping analysis by using synthetic peptides spanning BoNT serotype A (BoNT/A) and mouse brain synaptosomes (SNPs) and protective antibodies against toxin from mice and cervical dystonia patients undergoing BoNT/A treatment revealed that not only regions of the HC domain but also regions of the HN domain are involved in the toxin binding process. Based on these findings, we expressed a peptide corresponding to the BoNT/A region comprising HN domain residues 729 to 845 (HN729-845). HN729-845 bound directly to mouse brain SNPs and substantially inhibited BoNT/A binding to SNPs. The binding involved gangliosides GT1b and GD1a and a few membrane lipids. The peptide bound to human or mouse neuroblastoma cells within 1 min. Peptide HN729-845 protected mice completely against a lethal BoNT/A dose (1.05 times the 100% lethal dose). This protective activity was obtained at a dose comparable to that of the peptide from positions 967 to 1296 in the HC domain. These findings strongly indicate that HN729-845 and, by extension, the HN domain are fully programmed and equipped to bind to neuronal cells and in the free state can even inhibit the binding of the toxin. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Zamborlini, Alessia; Coiffic, Audrey; Beauclair, Guillaume; Delelis, Olivier; Paris, Joris; Koh, Yashuiro; Magne, Fabian; Giron, Marie-Lou; Tobaly-Tapiero, Joelle; Deprez, Eric; Emiliani, Stephane; Engelman, Alan; de Thé, Hugues; Saïb, Ali
2011-01-01
HIV-1 integrase (IN) orchestrates the integration of the reverse transcribed viral cDNA into the host cell genome and participates also in other steps of HIV-1 replication. Cellular and viral factors assist IN in performing its multiple functions, and post-translational modifications contribute to modulate its activities. Here, we show that HIV-1 IN is modified by SUMO proteins and that phylogenetically conserved SUMOylation consensus motifs represent major SUMO acceptor sites. Viruses harboring SUMOylation site IN mutants displayed a replication defect that was mapped during the early stages of infection, before integration but after reverse transcription. Because SUMOylation-defective IN mutants retained WT catalytic activity, we hypothesize that SUMOylation might regulate the affinity of IN for co-factors, contributing to efficient HIV-1 replication. PMID:21454548
Expression, purification, and characterization of almond (Prunus dulcis) allergen Pru du 4.
Zhang, Yuzhu; Du, Wen-Xian; Fregevu, Cécile; Kothary, Mahendra H; Harden, Leslie; McHugh, Tara H
2014-12-31
Biochemical characterizations of food allergens are required for understanding the allergenicity of food allergens. Such studies require a relatively large amount of highly purified allergens. The level of Pru du 4 in almond is low, and its expression in a soluble form in Escherichia coli required an expression tag. An MBP tag was used to enhance its expression and solubility. Sumo was used for the first time as a peptidase recognition site. The expression tag was removed with a sumo protease, and the resulting wild-type Pru du 4 was purified chromatographically. The stability of the allergen was investigated with chemical denaturation. The Gibbs free energy of Pru du 4 folding-unfolding transition was determined to be 5.4 ± 0.7 kcal/mol.
Chen, Chih-Ying; Brodsky, Frances M
2005-02-18
Clathrin heavy and light chains form triskelia, which assemble into polyhedral coats of membrane vesicles that mediate transport for endocytosis and organelle biogenesis. Light chain subunits regulate clathrin assembly in vitro by suppressing spontaneous self-assembly of the heavy chains. The residues that play this regulatory role are at the N terminus of a conserved 22-amino acid sequence that is shared by all vertebrate light chains. Here we show that these regulatory residues and others in the conserved sequence mediate light chain interaction with Hip1 and Hip1R. These related proteins were previously found to be enriched in clathrin-coated vesicles and to promote clathrin assembly in vitro. We demonstrate Hip1R binding preference for light chains associated with clathrin heavy chain and show that Hip1R stimulation of clathrin assembly in vitro is blocked by mutations in the conserved sequence of light chains that abolish interaction with Hip1 and Hip1R. In vivo overexpression of a fragment of clathrin light chain comprising the Hip1R-binding region affected cellular actin distribution. Together these results suggest that the roles of Hip1 and Hip1R in affecting clathrin assembly and actin distribution are mediated by their interaction with the conserved sequence of clathrin light chains.
Effect of chain length on binding of fatty acids to Pluronics in microemulsions.
James-Smith, Monica A; Shekhawat, Dushyant; Cheung, Sally; Moudgil, Brij M; Shah, Dinesh O
2008-03-15
We investigated the effect of fatty acid chain length on the binding capacity of drug and fatty acid to Pluronic F127-based microemulsions. This was accomplished by using turbidity experiments. Pluronic-based oil-in-water microemulsions of various compositions were synthesized and titrated to turbidity with concentrated Amitriptyline, an antidepressant drug. Sodium salts of C(8), C(10), or C(12) fatty acid were used in preparation of the microemulsion and the corresponding binding capacities were observed. It has been previously determined that, for microemulsions prepared with sodium caprylate (C(8) fatty acid soap), a maximum of 11 fatty acid molecules bind to the microemulsion per 1 molecule of Pluronic F127 and a maximum of 12 molecules of Amitriptyline bind per molecule of F127. We have found that with increasing the chain length of the fatty acid salt component of the microemulsion, the binding capacity of both the fatty acid and the Amitriptyline to the microemulsion decreases. For sodium salts of C(8), C(10) and C(12) fatty acids, respectively, a maximum of approximately 11, 8.4 and 8.3 molecules of fatty acid molecules bind to 1 Pluronic F127 molecule. We propose that this is due to the decreasing number of free monomers with increasing chain length. As chain length increases, the critical micelle concentration (cmc) decreases, thus leading to fewer monomers. Pluronics are symmetric tri-block copolymers consisting of propylene oxide (PO) and ethylene oxide (EO). The polypropylene oxide block, PPO is sandwiched between two polyethylene oxide (PEO) blocks. The PEO blocks are hydrophilic while PPO is hydrophobic portion in the Pluronic molecule. Due to this structure, we propose that the fatty acid molecules that are in monomeric form most effectively diffuse between the PEO "tails" and bind to the hydrophobic PPO groups.
Exploring the impact of the side-chain length on peptide/RNA binding events.
Sbicca, Lola; González, Alejandro López; Gresika, Alexandra; Di Giorgio, Audrey; Closa, Jordi Teixido; Tejedor, Roger Estrada; Andréola, Marie-Line; Azoulay, Stéphane; Patino, Nadia
2017-07-19
The impact of the amino-acid side-chain length on peptide-RNA binding events has been investigated using HIV-1 Tat derived peptides as ligands and the HIV-1 TAR RNA element as an RNA model. Our studies demonstrate that increasing the length of all peptide side-chains improves unexpectedly the binding affinity (K D ) but reduces the degree of compactness of the peptide-RNA complex. Overall, the side-chain length appears to modulate in an unpredictable way the ability of the peptide to compete with the cognate TAR RNA partner. Beyond the establishment of non-intuitive fundamental relationships, our results open up new perspectives in the design of effective RNA ligand competitors, since a large number of them have already been identified but few studies report on the modulation of the biological activity by modifying in the same way the length of all chains connecting RNA recognition motives to the central scaffold of a ligand.
Ford, Nicole R; Hecht, Karen A; Hu, DeHong; Orr, Galya; Xiong, Yijia; Squier, Thomas C; Rorrer, Gregory L; Roesijadi, Guritno
2016-03-18
The diatom Thalassiosira pseudonana was genetically modified to express biosilica-targeted fusion proteins comprising either enhanced green fluorescent protein (EGFP) or single chain antibodies engineered with a tetracysteine tagging sequence. Of interest were the site-specific binding of (1) the fluorescent biarsenical probe AsCy3 and AsCy3e to the tetracysteine tagged fusion proteins and (2) high and low molecular mass antigens, the Bacillus anthracis surface layer protein EA1 or small molecule explosive trinitrotoluene (TNT), to biosilica-immobilized single chain antibodies. Analysis of biarsenical probe binding using fluorescence and structured illumination microscopy indicated differential colocalization with EGFP in nascent and mature biosilica, supporting the use of either EGFP or bound AsCy3 and AsCy3e in studying biosilica maturation. Large increases in the lifetime of a fluorescent analogue of TNT upon binding single chain antibodies provided a robust signal capable of discriminating binding to immobilized antibodies in the transformed frustule from nonspecific binding to the biosilica matrix. In conclusion, our results demonstrate an ability to engineer diatoms to create antibody-functionalized mesoporous silica able to selectively bind chemical and biological agents for the development of sensing platforms.
Ou, Yu-Yen; Chen, Shu-An; Wu, Sheng-Cheng
2013-01-01
Cellular respiration is the process by which cells obtain energy from glucose and is a very important biological process in living cell. As cells do cellular respiration, they need a pathway to store and transport electrons, the electron transport chain. The function of the electron transport chain is to produce a trans-membrane proton electrochemical gradient as a result of oxidation-reduction reactions. In these oxidation-reduction reactions in electron transport chains, metal ions play very important role as electron donor and acceptor. For example, Fe ions are in complex I and complex II, and Cu ions are in complex IV. Therefore, to identify metal-binding sites in electron transporters is an important issue in helping biologists better understand the workings of the electron transport chain. We propose a method based on Position Specific Scoring Matrix (PSSM) profiles and significant amino acid pairs to identify metal-binding residues in electron transport proteins. We have selected a non-redundant set of 55 metal-binding electron transport proteins as our dataset. The proposed method can predict metal-binding sites in electron transport proteins with an average 10-fold cross-validation accuracy of 93.2% and 93.1% for metal-binding cysteine and histidine, respectively. Compared with the general metal-binding predictor from A. Passerini et al., the proposed method can improve over 9% of sensitivity, and 14% specificity on the independent dataset in identifying metal-binding cysteines. The proposed method can also improve almost 76% sensitivity with same specificity in metal-binding histidine, and MCC is also improved from 0.28 to 0.88. We have developed a novel approach based on PSSM profiles and significant amino acid pairs for identifying metal-binding sites from electron transport proteins. The proposed approach achieved a significant improvement with independent test set of metal-binding electron transport proteins.
Ou, Yu-Yen; Chen, Shu-An; Wu, Sheng-Cheng
2013-01-01
Background Cellular respiration is the process by which cells obtain energy from glucose and is a very important biological process in living cell. As cells do cellular respiration, they need a pathway to store and transport electrons, the electron transport chain. The function of the electron transport chain is to produce a trans-membrane proton electrochemical gradient as a result of oxidation–reduction reactions. In these oxidation–reduction reactions in electron transport chains, metal ions play very important role as electron donor and acceptor. For example, Fe ions are in complex I and complex II, and Cu ions are in complex IV. Therefore, to identify metal-binding sites in electron transporters is an important issue in helping biologists better understand the workings of the electron transport chain. Methods We propose a method based on Position Specific Scoring Matrix (PSSM) profiles and significant amino acid pairs to identify metal-binding residues in electron transport proteins. Results We have selected a non-redundant set of 55 metal-binding electron transport proteins as our dataset. The proposed method can predict metal-binding sites in electron transport proteins with an average 10-fold cross-validation accuracy of 93.2% and 93.1% for metal-binding cysteine and histidine, respectively. Compared with the general metal-binding predictor from A. Passerini et al., the proposed method can improve over 9% of sensitivity, and 14% specificity on the independent dataset in identifying metal-binding cysteines. The proposed method can also improve almost 76% sensitivity with same specificity in metal-binding histidine, and MCC is also improved from 0.28 to 0.88. Conclusions We have developed a novel approach based on PSSM profiles and significant amino acid pairs for identifying metal-binding sites from electron transport proteins. The proposed approach achieved a significant improvement with independent test set of metal-binding electron transport proteins. PMID:23405059
Helicobacter pylori and Complex Gangliosides
Roche, Niamh; Ångström, Jonas; Hurtig, Marina; Larsson, Thomas; Borén, Thomas; Teneberg, Susann
2004-01-01
Recognition of sialic acid-containing glycoconjugates by the human gastric pathogen Helicobacter pylori has been repeatedly demonstrated. To investigate the structural requirements for H. pylori binding to complex gangliosides, a large number of gangliosides were isolated and characterized by mass spectrometry and proton nuclear magnetic resonance. Ganglioside binding of sialic acid-recognizing H. pylori strains (strains J99 and CCUG 17874) and knockout mutant strains with the sialic acid binding adhesin SabA or the NeuAcα3Galβ4GlcNAcβ3Galβ4GlcNAcβ-binding neutrophil-activating protein HPNAP deleted was investigated using the thin-layer chromatogram binding assay. The wild-type bacteria bound to N-acetyllactosamine-based gangliosides with terminal α3-linked NeuAc, while gangliosides with terminal NeuGcα3, NeuAcα6, or NeuAcα8NeuAcα3 were not recognized. The factors affecting binding affinity were identified as (i) the length of the N-acetyllactosamine carbohydrate chain, (ii) the branches of the carbohydrate chain, and (iii) fucose substitution of the N-acetyllactosamine core chain. While the J99/NAP− mutant strain displayed a ganglioside binding pattern identical to that of the parent J99 wild-type strain, no ganglioside binding was obtained with the J99/SabA− mutant strain, demonstrating that the SabA adhesin is the sole factor responsible for the binding of H. pylori bacterial cells to gangliosides. PMID:14977958
Wu, Qing-Ping; Zhang, Lei; Shao, Xiao-Xia; Wang, Jia-Hui; Gao, Yu; Xu, Zeng-Guang; Liu, Ya-Li; Guo, Zhan-Yun
2016-04-01
Relaxin is a prototype of the relaxin family peptide hormones and plays important biological functions by binding and activating the G protein-coupled receptor RXFP1. To study their interactions, in the present work, we applied the newly developed bioluminescent ligand-receptor binding assay to the relaxin-RXFP1 system. First, a fully active easily labeled relaxin, in which three Lys residues of human relaxin-2 were replaced by Arg, was prepared through overexpression of a single-chain precursor in Pichia pastoris and in vitro enzymatic maturation. Thereafter, the B-chain N-terminus of the easily labeled relaxin was chemically cross-linked with a C-terminal cysteine residue of an engineered NanoLuc through a disulfide linkage. Receptor-binding assays demonstrated that the NanoLuc-conjugated relaxin retained high binding affinity with the receptor RXFP1 (K d = 1.11 ± 0.08 nM, n = 3) and was able to sensitively monitor binding of a variety of ligands with RXFP1. Using the novel bioluminescent binding assay, we demonstrated that three highly conserved B-chain Arg residues of relaxin-3 had distinct contributions to binding of the receptor RXFP1. In summary, our present work provides a novel bioluminescent ligand-receptor binding assay for the relaxin-RXFP1 system to facilitate their interaction studies, such as characterization of relaxin analogues or screening novel agonists or antagonists of RXFP1.
Du, Xuezhong; Wang, Yuchun
2007-03-08
Infrared reflection absorption spectroscopy (IRRAS) and surface plasmon resonance (SPR) techniques have been employed to investigate human serum albumin (HSA) binding to binary monolayers of zwitterionic dipalmitoylphosphatidylcholine (DPPC) and cationic dioctadecyldimethylammonium bromide (DOMA). At the air-water interface, the favorable electrostatic interaction between DPPC and DOMA leads to a dense chain packing. The tilt angle of the hydrocarbon chains decreases with increasing mole fraction of DOMA (X(DOMA)) in the monolayers at the surface pressure 30 mN/m: DPPC ( approximately 30 degrees ), X(DOMA) = 0.1 ( approximately 15 degrees ), and X(DOMA) = 0.3 ( approximately 0 degrees ). Negligible protein binding to the DPPC monolayer is observed in contrast to a significant binding to the binary monolayers. After HSA binding, the hydrocarbon chains at X(DOMA) = 0.1 undergo an increase in tilt angle from 15 degrees to 25 approximately 30 degrees , and the chains at X(DOMA) = 0.3 remain almost unchanged. The two components in the monolayers deliver through lateral reorganization, induced by the protein in the subphase, to form multiple interaction sites favorable for protein binding. The surfaces with a high protein affinity are created through the directed assembly of binary monolayers for use in biosensing.
NASA Astrophysics Data System (ADS)
Zhang, Mengyue; Wang, Ying; Zhang, Hongmei; Cao, Jian; Fei, Zhenghao; Wang, Yanqing
2018-05-01
The effects of six imidazolium-based ionic liquids (ILs) with different alkyl chain length ([CnMim]Cl, n = 2, 4, 6, 8, 10, 12) on the structure and functions of bovine serum albumin (BSA) were studied by multi-spectral methods and molecular docking. ILs with the longer alkyl chain length have the stronger binding interaction with BSA and the greater conformational damage to protein. The effects of ILs on the functional properties of BSA were further studied by the determination of non-enzyme esterase activity, β-fibrosis and other properties of BSA. The thermal stability of BSA was reduced, the rate of the formation of beta sheet structures of BSA was lowered, and the esterase-like activity of BSA were decreased with the increase of ILs concentration. Simultaneous molecular modeling technique revealed the favorable binding sites of ILs on protein. The hydrophobic force and polar interactions were the mainly binding forces of them. The calculated results are in a good agreement with the spectroscopic experiments. These studies on the impact of the alkyl chain length on binding of imidazolium-based ionic liquids to BSA are of great significance for understanding and developing the application of ionic liquid in life and physiological system.
Hatano, Hiroko; Shaw, Jacqueline; Marquardt, Kaitlin; Zhang, Zhiyong; Gauthier, Laurent; Chanteux, Stephanie; Rossi, Benjamin; Li, Demin; Mitchell, Julie; Kollnberger, Simon
2015-01-01
We have proposed that the killer cell immunoglobulin-like receptor KIR3DL2 binding more strongly to HLA-B27 (B27) β2m-free heavy chain (FHC) dimers regulates lymphocyte function in arthritis and infection. We compared the function of B27 FHC dimers with other class I heavy chains and identified contact residues in KIR3DL2. B27 FHC dimers interacted functionally with KIR3DL2 on NK and reporter cells more strongly than other class I FHC. Mutagenesis identified key residues in the D0 and other immunoglobulin-like domains which were shared and distinct from KIR3DL1, for KIR3DL2 binding to B27 and other class I FHC. We modeled B27 dimer binding to KIR3DL2 and compared experimental mutagenesis data with computational “hot spot” predictions. Modelling predicts the stronger binding of B27 dimers to KIR3DL2 is mediated by non-symmetrical complementary contacts of the D0 and D1 domains with the α1, α2 and α3 domains of both B27 heavy chains. By contrast, the D2 domain primarily contacts residues in the α2 domain of one B27 heavy chain. These findings both provide novel insights about the molecular basis of KIR3DL2 binding to HLA-B27 and other ligands and suggest an important role for KIR3DL2 HLA-B27 interactions in controlling the function of NK cells in HLA-B27+ individuals. PMID:25582852
Ren, Xiao-Min; Cao, Lin-Ying; Zhang, Jing; Qin, Wei-Ping; Yang, Yu; Wan, Bin; Guo, Liang-Hong
2016-04-05
Human G protein-coupled receptor 40 (hGPR40), with medium- and long-chain free fatty acids (FFAs) as its natural ligands, plays an important role in the enhancement of glucose-dependent insulin secretion. To date, information about the direct binding of FFAs to hGPR40 is very limited, and how carbon-chain length affects the activities of FFAs on hGPR40 is not yet understood. In this study, a fluorescein-fasiglifam analogue (F-TAK-875A) conjugate was designed and synthesized as a site-specific fluorescence probe to study the interaction of FFAs with hGPR40. hGPR40 was expressed in human embryonic kidney 293 cells and labeled with F-TAK-875A. By using flow cytometry, competitive binding of FFA and F-TAK-875A to hGPR40-expressed cells was measured. Binding affinities of 18 saturated FFAs, with carbon-chain lengths ranging from C6 to C23, were analyzed. The results showed that the binding potencies of FFAs to hGPR40 were dependent on carbon length. There was a positive correlation between length and binding potency for seven FFAs (C9-C15), with myristic acid (C15) showing the highest potency, 0.2% relative to TAK-875. For FFAs with a length of fewer than C9 or more than C15, they had very weak or no binding. Molecular docking results showed that the binding pocket of TAK-875 in hGPR40 could enclose FFAs with lengths of C15 or fewer. However, for FFAs with lengths longer than C15, part of the alkyl chain extended out of the binding pocket. This study provided insights into the structural dependence of FFAs binding to and activation of hGPR40.
Faitschuk, E; Nagy, V; Hombach, A A; Abken, H
2016-10-01
Adoptive cell therapy with chimeric antigen receptor (CAR)-modified T cells showed remarkable therapeutic efficacy in the treatment of leukaemia/lymphoma. However, the application to a variety of cancer entities is often constricted by the non-availability of a single chain antibody (scFv), which is usually the targeting domain in a CAR, while antibodies in the natural format are often available. To overcome the limitation, we designed a CAR that uses an antibody in its natural configuration for binding. Such CAR consists of two chains, the immunoglobulin light and heavy chain with their constant regions, whereby the heavy chain is anchored to the membrane and linked to an intracellular signalling domain for T-cell activation. The two chains form a stable heterodimer, a so-called dual chain CAR (dcCAR), and bind with high affinity and in a specific manner to their cognate antigen. By specific binding, the dcCAR activates engineered T cells for the release of pro-inflammatory cytokines and for target cell lysis. We provide evidence by three examples that the dcCAR format is universally applicable and thereby broadens the CAR cell therapy towards a larger variety of targets for which an scFv antibody is not available.
Zhou, Guang-Biao; Zhang, Xiao-Wei; Mao, Jian-Hua; de Thé, Hugues
2011-01-01
Arsenic had been used in treating malignancies from the 18th to mid-20th century. In the past 3 decades, arsenic was revived and shown to be able to induce complete remission and to achieve, when combined with all-trans retinoic acid and chemotherapy, a 5-year overall survival of 90% in patients with acute promyelocytic leukemia driven by the t(15;17) translocation-generated promyelocytic leukemia–retinoic acid receptor α (PML-RARα) fusion. Molecularly, arsenic binds thiol residues and induces the formation of reactive oxygen species, thus affecting numerous signaling pathways. Interestingly, arsenic directly binds the C3HC4 zinc finger motif in the RBCC domain of PML and PML-RARα, induces their homodimerization and multimerization, and enhances their interaction with the SUMO E2 conjugase Ubc9, facilitating subsequent sumoylation/ubiquitination and proteasomal degradation. Arsenic-caused intermolecular disulfide formation in PML also contributes to PML-multimerization. All-trans retinoic acid, which targets PML-RARα for degradation through its RARα moiety, synergizes with arsenic in eliminating leukemia-initiating cells. Arsenic perturbs a number of proteins involved in other hematologic malignancies, including chronic myeloid leukemia and adult T-cell leukemia/lymphoma, whereby it may bring new therapeutic benefits. The successful revival of arsenic in acute promyelocytic leukemia, together with modern mechanistic studies, has thus allowed a new paradigm to emerge in translational medicine. PMID:21422471
Sekelova, Zuzana; Polansky, Ondrej; Stepanova, Hana; Fedr, Radek; Faldynova, Marcela; Rychlik, Ivan; Vlasatikova, Lenka
2017-07-01
Lymphocytes represent the key antigen-specific leukocyte subpopulation. Despite their importance in mounting an immune response, an unbiased description of proteins expressed by chicken lymphocytes has not been presented. In this study, we therefore intravenously infected chickens with Salmonella Enteritidis, sorted CD4, CD8 and γδ T-lymphocytes from the spleen by flow cytometry and determined the proteome of each population by LC-MS/MS. CD4 T-lymphocyte characteristic proteins included ubiquitin SUMO-like domain and BAR domain containing proteins. CD8 T-lymphocyte specific proteins were characterized by purine ribonucleoside triphosphate binding and were involved in cell differentiation, cell activation and regulation of programmed cell death. γδ T-lymphocyte specific proteins exhibited enrichment of small GTPase of Rab type and GTP binding. Following infection, inducible proteins in CD4 lymphocytes included ribosomal proteins and downregulated proteins localized to the lysosome. CD8 T-lymphocytes induced MCM complex proteins, proteins required for DNA replication and machinery for protein processing in the endoplasmic reticulum. Proteins inducible in γδ T-lymphocytes belonged to immune system response, oxidative phosphorylation and the spliceosome. In this study, we predicted the likely events in lymphocyte response to systemic bacterial infection and identified proteins which can be used as markers specific for each lymphocyte subpopulation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
De Muyt, Arnaud; Zhang, Liangran; Piolot, Tristan; Kleckner, Nancy; Espagne, Eric; Zickler, Denise
2014-01-01
Human enhancer of invasion-10 (Hei10) mediates meiotic recombination and also plays roles in cell proliferation. Here we explore Hei10’s roles throughout the sexual cycle of the fungus Sordaria with respect to localization and effects of null, RING-binding, and putative cyclin-binding (RXL) domain mutations. Hei10 makes three successive types of foci. Early foci form along synaptonemal complex (SC) central regions. At some of these positions, depending on its RING and RXL domains, Hei10 mediates development and turnover of two sequential types of recombination complexes, each demarked by characteristic amplified Hei10 foci. Integration with ultrastructural data for recombination nodules further reveals that recombination complexes differentiate into three types, one of which corresponds to crossover recombination events during or prior to SC formation. Finally, Hei10 positively and negatively modulates SUMO localization along SCs by its RING and RXL domains, respectively. The presented findings suggest that Hei10 integrates signals from the SC, associated recombination complexes, and the cell cycle to mediate both the development and programmed turnover/evolution of recombination complexes via SUMOylation/ubiquitination. Analogous cell cycle-linked assembly/disassembly switching could underlie localization and roles for Hei10 in centrosome/spindle pole body dynamics and associated nuclear trafficking. We suggest that Hei10 is a unique type of structure-based signal transduction protein. PMID:24831702
SUMOylation in Neurological Diseases.
Liu, F-Y; Liu, Y-F; Yang, Y; Luo, Z-W; Xiang, J-W; Chen, Z-G; Qi, R-L; Yang, T-H; Xiao, Y; Qing, W-J; Li, D W-C
2017-01-01
Since the discovery of SUMOs (small ubiquitin-like modifiers) over 20 years ago, sumoylation has recently emerged as an important posttranslational modification involved in almost all aspects of cellular physiology. In neurons, sumoylation dynamically modulates protein function and consequently plays an important role in neuronal maturation, synapse formation and plasticity. Thus, the dysfunction of sumoylation pathway is associated with many different neurological disorders. Hundreds of different proteins implicated in the pathogenesis of neurological disorders are SUMO-modified, indicating the importance of sumoylation involved in the neurological diseases. In this review, we summarize the growing findings on protein sumoylation in neuronal function and dysfunction. It is essential to have a thorough understanding on the mechanism how sumoylation contributes to neurological diseases in developing efficient therapy for these diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
ALLOTYPE EXCLUSION IN UNIFORM RABBIT ANTIBODY TO STREPTOCOCCAL CARBOHYDRATE
Kindt, Thomas J.; Todd, Charles W.; Eichmann, Klaus; Krause, Richard M.
1970-01-01
Rabbit antibodies to streptococcal polysaccharide are described which show selectivity of expression of the allotypic specificities on both the heavy (H) and light (L) chains. One of these antibodies binds weakly to Sephadex. A purification method based on this binding has yielded antibody completely lacking any group a allotypic marker on its H chains. PMID:5419853
Smith, Corey L; Matheson, Timothy D; Trombly, Daniel J; Sun, Xiaoming; Campeau, Eric; Han, Xuemei; Yates, John R; Kaufman, Paul D
2014-09-15
Chromatin assembly factor-1 (CAF-1) is a three-subunit protein complex conserved throughout eukaryotes that deposits histones during DNA synthesis. Here we present a novel role for the human p150 subunit in regulating nucleolar macromolecular interactions. Acute depletion of p150 causes redistribution of multiple nucleolar proteins and reduces nucleolar association with several repetitive element-containing loci. Of note, a point mutation in a SUMO-interacting motif (SIM) within p150 abolishes nucleolar associations, whereas PCNA or HP1 interaction sites within p150 are not required for these interactions. In addition, acute depletion of SUMO-2 or the SUMO E2 ligase Ubc9 reduces α-satellite DNA association with nucleoli. The nucleolar functions of p150 are separable from its interactions with the other subunits of the CAF-1 complex because an N-terminal fragment of p150 (p150N) that cannot interact with other CAF-1 subunits is sufficient for maintaining nucleolar chromosome and protein associations. Therefore these data define novel functions for a separable domain of the p150 protein, regulating protein and DNA interactions at the nucleolus. © 2014 Smith et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Mustfa, Salman Ahmad; Singh, Mukesh; Suhail, Aamir; Mohapatra, Gayatree; Verma, Smriti; Chakravorty, Debangana; Rana, Sarika; Rampal, Ritika; Dhar, Atika; Saha, Sudipto; Ahuja, Vineet
2017-01-01
Post-translational modification pathways such as SUMOylation are integral to all cellular processes and tissue homeostasis. We investigated the possible involvement of SUMOylation in the epithelial signalling in Crohn's disease (CD) and ulcerative colitis (UC), the two major forms of inflammatory bowel disease (IBD). Initially in a murine model of IBD, induced by dextran–sulfate–sodium (DSS mice), we observed inflammation accompanied by a lowering of global SUMOylation of colonic epithelium. The observed SUMOylation alteration was due to a decrease in the sole SUMO E2 enzyme (Ubc9). Mass-spectrometric analysis revealed the existence of a distinct SUMOylome (SUMO-conjugated proteome) in DSS mice with alteration of key cellular regulators, including master kinase Akt1. Knocking-down of Ubc9 in epithelial cells resulted in dramatic activation of inflammatory gene expression, a phenomenon that acted via reduction in Akt1 and its SUMOylated form. Importantly, a strong decrease in Ubc9 and Akt1 was also seen in endoscopic biopsy samples (N = 66) of human CD and UC patients. Furthermore, patients with maximum disease indices were always accompanied by severely lowered Ubc9 or SUMOylated-Akt1. Mucosal tissues with severely compromised Ubc9 function displayed higher levels of pro-inflammatory cytokines and compromised wound-healing markers. Thus, our results reveal an important and previously undescribed role for the SUMOylation pathway involving Ubc9 and Akt1 in modulation of epithelial inflammatory signalling in IBD. PMID:28659381
Sauvé, K; Nachman, M; Spence, C; Bailon, P; Campbell, E; Tsien, W H; Kondas, J A; Hakimi, J; Ju, G
1991-01-01
Human interleukin 2 (IL-2) analogs with defined amino acid substitutions were used to identify specific residues that interact with the 55-kDa subunit (p55) or alpha chain of the human IL-2 receptor. Analog proteins containing specific substitutions for Lys-35, Arg-38, Phe-42, or Lys-43 were inactive in competitive binding assays for p55. All of these analogs retained substantial competitive binding to the intermediate-affinity p70 subunit (beta chain) of the receptor complex. The analogs varied in ability to interact with the high-affinity p55/p70 receptor. Despite the lack of binding to p55, all analogs exhibited significant biological activity, as assayed on the murine CTLL cell line. The dissociation constants of Arg-38 and Phe-42 analogs for p70 were consistent with intermediate-affinity binding; the Kd values were not significantly affected by the presence of p55 in binding to the high-affinity IL-2 receptor complex. These results confirm the importance of the B alpha-helix in IL-2 as the locus for p55-receptor binding and support a revised model of IL-2-IL-2 receptor interaction. PMID:2052547
Legendre-Guillemin, Valerie; Metzler, Martina; Charbonneau, Martine; Gan, Lu; Chopra, Vikramjit; Philie, Jacynthe; Hayden, Michael R; McPherson, Peter S
2002-05-31
Huntingtin-interacting protein 1 (HIP1) and HIP12 are orthologues of Sla2p, a yeast protein with essential functions in endocytosis and regulation of the actin cytoskeleton. We now report that HIP1 and HIP12 are major components of the clathrin coat that interact but differ in their ability to bind clathrin and the clathrin adaptor AP2. HIP1 contains a clathrin-box and AP2 consensus-binding sites that display high affinity binding to the terminal domain of the clathrin heavy chain and the ear domain of the AP2 alpha subunit, respectively. These consensus sites are poorly conserved in HIP12 and correspondingly, HIP12 does not bind to AP2 nor does it demonstrate high affinity clathrin binding. Moreover, HIP12 co-sediments with F-actin in contrast to HIP1, which exhibits no interaction with actin in vitro. Despite these differences, both proteins efficiently stimulate clathrin assembly through their central helical domain. Interestingly, in both HIP1 and HIP12, this domain binds directly to the clathrin light chain. Our data suggest that HIP1 and HIP12 play related yet distinct functional roles in clathrin-mediated endocytosis.
Tsuchiya, N; Endo, T; Matsuta, K; Yoshinoya, S; Takeuchi, F; Nagano, Y; Shiota, M; Furukawa, K; Kochibe, N; Ito, K
1993-07-15
Although the galactose deficiency in the Asn297-linked sugar chains of serum IgG from patients with rheumatoid arthritis (RA) has been established, structural analysis of sugar chains has not been readily available. Psathyrella velutina lectin (PVL) preferentially interacts with the N-acetylglucosamine beta 1-->2Man group, exposed at the termini of sugar chains in agalacto IgG. Biotinylated PVL reacted strongly in Western blotting with H chains of IgG derived from patients with RA. An ELISA-based assay for the detection of agalacto IgG was developed using recombinant protein G and biotinylated PVL in combination, and the screening of patients' sera was performed. PVL binding of serum IgG significantly correlated with percentage of galactose-deficient IgG determined by the structural analysis. Age-related slight increase in PVL binding was observed among normal controls. Patients with RA showed significantly higher PVL binding (37.90 +/- 42.25 U/ml, n = 93) as compared with normal controls (5.75 +/- 2.92 U/ml, n = 112) (p = 0.0001). Patients with SLE showed lower but still significant PVL binding (17.86 +/- 5.18 U/ml, n = 10, p = 0.0001). PVL binding correlated with C-reactive protein level in serial analysis of individual RA patients, and was significantly higher in the synovial fluid compared with paired serum samples. PVL binding assay may provide an ideal tool for the simple and sensitive detection of agalacto IgG.
Structure–activity relationships for the binding of polymyxins with human α-1-acid glycoprotein
Azad, Mohammad A.K.; Huang, Johnny X.; Cooper, Matthew A.; Roberts, Kade D.; Thompson, Philip E.; Nation, Roger L.; Li, Jian; Velkov, Tony
2012-01-01
Here, for the first time, we have characterized binding properties of the polymyxin class of antibiotics for human α-1-acid glycoprotein (AGP) using a combination of biophysical techniques. The binding affinity of colistin, polymyxin B, polymyxin B3, colistin methansulfonate, and colistin nona-peptide was determined by isothermal titration calorimetry (ITC), surface plasma resonance (SPR) and fluorometric assay methods. All assay techniques indicated colistin, polymyxin B and polymyxin B3 display a moderate binding affinity for AGP. ITC and SPR showed there was no detectable binding affinity for colistin methansulfonate and colistin nona-peptide, suggesting both the positive charges of the diaminobutyric acid (Dab) side chains and the N-terminal fatty acyl chain of the polymyxin molecule are required to drive binding to AGP. In addition, the ITC and fluorometric data suggested that endogenous lipidic substances bound to AGP provide part of the polymyxin binding surface. A molecular model of the polymyxin B3–AGP F1*S complex was presented that illustrates the pivotal role of the N-terminal fatty acyl chain and the D-Phe6-L-Leu7 hydrophobic motif of polymyxin B3 for binding to the cleft-like ligand binding cavity of AGP F1*S variant. The model conforms with the entropy driven binding interaction characterized by ITC which suggests hydrophobic interactions coupled to desolvation events and conformational changes are the primary driving force for polymyxins binding to AGP. Collectively, the data are consistent with a role of this acute-phase reactant protein in the transport of polymyxins in plasma. PMID:22587817
Inhibition of kinesin-driven microtubule motility by monoclonal antibodies to kinesin heavy chains
1988-01-01
We have prepared and characterized seven mouse monoclonal antibodies (SUK 1-7) to the 130-kD heavy chain of sea urchin egg kinesin. On immunoblots, SUK 3 and SUK 4 cross-reacted with Drosophila embryo 116- kD heavy chains, and SUK 4, SUK 5, SUK 6, and SUK 7 bound to the 120-kD heavy chains of bovine brain kinesin. Three out of seven monoclonal antikinesins (SUK 4, SUK 6, and SUK 7) caused a dose-dependent inhibition of sea urchin egg kinesin-induced microtubule translocation, whereas the other four monoclonal antibodies had no detectable effect on this motility. The inhibitory monoclonal antibodies (SUK 4, SUK 6, and SUK 7) appear to bind to spatially related sites on an ATP- sensitive microtubule binding 45-kD chymotryptic fragment of the 130-kD heavy chain, whereas SUK 2 binds to a spatially distinct site. None of the monoclonal antikinesins inhibited the microtubule activated MgATPase activity of kinesin, suggesting that SUK 4, SUK 6, and SUK 7 uncouple this MgATPase activity from motility. PMID:2974459
Evidence for in vitro binding of pectin side chains to cellulose.
Zykwinska, Agata W; Ralet, Marie-Christine J; Garnier, Catherine D; Thibault, Jean-François J
2005-09-01
Pectins of varying structures were tested for their ability to interact with cellulose in comparison to the well-known adsorption of xyloglucan. Our results reveal that sugar beet (Beta vulgaris) and potato (Solanum tuberosum) pectins, which are rich in neutral sugar side chains, can bind in vitro to cellulose. The extent of binding varies with respect to the nature and structure of the side chains. Additionally, branched arabinans (Br-Arabinans) or debranched arabinans (Deb-Arabinans; isolated from sugar beet) and galactans (isolated from potato) were shown bind to cellulose microfibrils. The adsorption of Br-Arabinan and galactan was lower than that of Deb-Arabinan. The maximum adsorption affinity of Deb-Arabinan to cellulose was comparable to that of xyloglucan. The study of sugar beet and potato alkali-treated cell walls supports the hypothesis of pectin-cellulose interaction. Natural composites enriched in arabinans or galactans and cellulose were recovered. The binding of pectins to cellulose microfibrils may be of considerable significance in the modeling of primary cell walls of plants as well as in the process of cell wall assembly.
Crystal Structure of the Heterotrimeric Integrin-Binding Region of Laminin-111.
Pulido, David; Hussain, Sadaf-Ahmahni; Hohenester, Erhard
2017-03-07
Laminins are cell-adhesive glycoproteins that are essential for basement membrane assembly and function. Integrins are important laminin receptors, but their binding site on the heterotrimeric laminins is poorly defined structurally. We report the crystal structure at 2.13 Å resolution of a minimal integrin-binding fragment of mouse laminin-111, consisting of ∼50 residues of α1β1γ1 coiled coil and the first three laminin G-like (LG) domains of the α1 chain. The LG domains adopt a triangular arrangement, with the C terminus of the coiled coil situated between LG1 and LG2. The critical integrin-binding glutamic acid residue in the γ1 chain tail is surface exposed and predicted to bind to the metal ion-dependent adhesion site in the integrin β1 subunit. Additional contacts to the integrin are likely to be made by the LG1 and LG2 surfaces adjacent to the γ1 chain tail, which are notably conserved and free of obstructing glycans. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Cao, Yiping; Fang, Yapeng; Nishinari, Katsuyoshi; Phillips, Glyn O.
2016-01-01
Coupling of electrostatic complexation with conformational transition is rather general in protein/polyelectrolyte interaction and has important implications in many biological processes and practical applications. This work studied the electrostatic complexation between κ-carrageenan (κ-car) and type B gelatin, and analyzed the effects of the conformational ordering of κ-car induced upon cooling in the presence of potassium chloride (KCl) or tetramethylammonium iodide (Me4NI). Experimental results showed that the effects of conformational ordering on protein/polyelectrolyte electrostatic complexation can be decomposed into ionic binding and chain stiffening. At the initial stage of conformational ordering, electrostatic complexation can be either suppressed or enhanced due to the ionic bindings of K+ and I− ions, which significantly alter the charge density of κ-car or occupy the binding sites of gelatin. Beyond a certain stage of conformational ordering, i.e., helix content θ > 0.30, the effect of chain stiffening, accompanied with a rapid increase in helix length ζ, becomes dominant and tends to dissociate the electrostatic complexation. The effect of chain stiffening can be theoretically interpreted in terms of double helix association. PMID:27030165
Ybe, Joel A; Mishra, Sanjay; Helms, Stephen; Nix, Jay
2007-03-16
Huntingtin interacting protein 1 (HIP1) is a member of a family of proteins whose interaction with Huntingtin is critical to prevent cells from initiating apoptosis. HIP1, and related protein HIP12/1R, can also bind to clathrin and membrane phospholipids, and HIP12/1R links the CCV to the actin cytoskeleton. HIP1 and HIP12/1R interact with the clathrin light chain EED regulatory site and stimulate clathrin lattice assembly. Here, we report the X-ray structure of the coiled-coil domain of HIP1 (residues 482-586) that includes residues crucial for binding clathrin light chain. The dimeric HIP1 crystal structure is partially splayed open. The comparison of the HIP1 model with coiled-coil predictions revealed the heptad repeat in the dimeric trunk (S2 path) is offset relative to the register of the heptad repeat from the N-terminal portion (S1 path) of the molecule. Furthermore, surface analysis showed there is a third hydrophobic path (S3) running parallel with S1 and S2. We present structural evidence supporting a role for the S3 path as an interaction surface for clathrin light chain. Finally, comparative analysis suggests the mode of binding between sla2p and clathrin light chain may be different in yeast.
A structural portrait of the PDZ domain family.
Ernst, Andreas; Appleton, Brent A; Ivarsson, Ylva; Zhang, Yingnan; Gfeller, David; Wiesmann, Christian; Sidhu, Sachdev S
2014-10-23
PDZ (PSD-95/Discs-large/ZO1) domains are interaction modules that typically bind to specific C-terminal sequences of partner proteins and assemble signaling complexes in multicellular organisms. We have analyzed the existing database of PDZ domain structures in the context of a specificity tree based on binding specificities defined by peptide-phage binding selections. We have identified 16 structures of PDZ domains in complex with high-affinity ligands and have elucidated four additional structures to assemble a structural database that covers most of the branches of the PDZ specificity tree. A detailed comparison of the structures reveals features that are responsible for the diverse specificities across the PDZ domain family. Specificity differences can be explained by differences in PDZ residues that are in contact with the peptide ligands, but these contacts involve both side-chain and main-chain interactions. Most PDZ domains bind peptides in a canonical conformation in which the ligand main chain adopts an extended β-strand conformation by interacting in an antiparallel fashion with a PDZ β-strand. However, a subset of PDZ domains bind peptides with a bent main-chain conformation and the specificities of these non-canonical domains could not be explained based on canonical structures. Our analysis provides a structural portrait of the PDZ domain family, which serves as a guide in understanding the structural basis for the diverse specificities across the family. Copyright © 2014 Elsevier Ltd. All rights reserved.
Synthetic heparin-binding growth factor analogs
Pena, Louis A.; Zamora, Paul; Lin, Xinhua; Glass, John D.
2007-01-23
The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain that binds a heparin-binding growth factor receptor, covalently bound to a hydrophobic linker, which is in turn covalently bound to a non-signaling peptide that includes a heparin-binding domain. The synthetic heparin-binding growth factor analogs are useful as soluble biologics or as surface coatings for medical devices.
Uncovering Global SUMOylation Signaling Networks in a Site-Specific Manner
Hendriks, Ivo A.; D’Souza, Rochelle C.J.; Yang, Bing; Verlaan-de Vries, Matty; Mann, Matthias; Vertegaal, Alfred C.O.
2014-01-01
SUMOylation is a reversible post-translational modification essential for genome stability. Using high-resolution mass spectrometry, we have studied global SUMOylation in human cells and in a site-specific manner, identifying a total of over 4,300 SUMOylation sites in over 1,600 proteins. Moreover, for the first time in excess of 1,000 SUMOylation sites were identified under standard growth conditions. SUMOylation dynamics were quantitatively studied in response to SUMO protease inhibition, proteasome inhibition and heat shock. A considerable amount of SUMOylated lysines have previously been reported to be ubiquitylated, acetylated or methylated, indicating crosstalk between SUMO and other post-translational modifications. We identified 70 phosphorylation and 4 acetylation events in close proximity to SUMOylation sites, and provide evidence for acetylation-dependent SUMOylation of endogenous histone H3. SUMOylation regulates target proteins involved in all nuclear processes including transcription, DNA repair, chromatin remodeling, pre-mRNA splicing and ribosome assembly. PMID:25218447
Characterization of Interactions between Heparin/Glycosaminoglycan and Adeno-associated Virus
Zhang, Fuming; Aguilera, Javier; Beaudet, Julie M.; Xie, Qing; Lerch, Thomas F.; Davulcu, Omar; Colón, Wilfredo; Chapman, Michael S.; Linhardt, Robert J.
2013-01-01
Adeno-associated virus (AAV) is a key candidate in the development of gene therapy. In this report, we used surface plasmon resonance spectroscopy to study the interaction between AAV and heparin and other glycosaminoglycans. Surface plasmon resonance results revealed that heparin binds to AAV with extremely high affinity. Solution competition studies shows that AAV binding to heparin is chain length dependent. AAV prefers to bind full chain heparin. All sulfo groups (especially N-sulfo and 6-O-sulfo groups) on heparin are important for the AAV- heparin interaction. Higher levels of sulfo group substitution in GAGs enhance their binding affinities. Atomic force microscopy was also performed to image AAV-2 complexed with heparin. PMID:23952613
Capillarity theory for the fly-casting mechanism
Trizac, Emmanuel; Levy, Yaakov; Wolynes, Peter G.
2010-01-01
Biomolecular folding and function are often coupled. During molecular recognition events, one of the binding partners may transiently or partially unfold, allowing more rapid access to a binding site. We describe a simple model for this fly-casting mechanism based on the capillarity approximation and polymer chain statistics. The model shows that fly casting is most effective when the protein unfolding barrier is small and the part of the chain which extends toward the target is relatively rigid. These features are often seen in known examples of fly casting in protein–DNA binding. Simulations of protein–DNA binding based on well-funneled native-topology models with electrostatic forces confirm the trends of the analytical theory. PMID:20133683
Understanding the length dependence of molecular junction thermopower.
Karlström, Olov; Strange, Mikkel; Solomon, Gemma C
2014-01-28
Thermopower of molecular junctions is sensitive to details in the junction and may increase, decrease, or saturate with increasing chain length, depending on the system. Using McConnell's theory for exponentially suppressed transport together with a simple and easily interpretable tight binding model, we show how these different behaviors depend on the molecular backbone and its binding to the contacts. We distinguish between resonances from binding groups or undercoordinated electrode atoms, and those from the periodic backbone. It is demonstrated that while the former gives a length-independent contribution to the thermopower, possibly changing its sign, the latter determines its length dependence. This means that the question of which orbitals from the periodic chain that dominate the transport should not be inferred from the sign of the thermopower but from its length dependence. We find that the same molecular backbone can, in principle, show four qualitatively different thermopower trends depending on the binding group: It can be positive or negative for short chains, and it can either increase or decrease with length.
Atassi, M Zouhair; Jankovic, Joseph; Steward, Lance E; Aoki, K Roger; Dolimbek, Behzod Z
2012-01-01
We recently mapped the regions on the heavy (H) chain of botulinum neurotoxin, type B (BoNT/B) recognized by blocking antibodies (Abs) from cervical dystonia (CD) patients who develop immunoresistance during toxin treatment. Since blocking could also be effected by Abs directed against regions on the light (L) chain, we have mapped here the L chain, using the same 30 CD antisera. We synthesized, purified and characterized 32 19-residue L chain peptides that overlapped successively by 5 residues (peptide L32 overlapped with peptide N1 of the H chain by 12 residues). In a given patient, Abs against the L chain seemed less intense than those against H chain. Most sera recognized a limited set of L chain peptides. The levels of Abs against a given region varied with the patient, consistent with immune responses to each epitope being under separate MHC control. The peptides most frequently recognized were: L13, by 30 of 30 antisera (100%); L22, by 23 of 30 (76.67%); L19, by 15 of 30 (50.00%); L26, by 11 of 30 (36.70%); and L14, by 12 of 30 (40.00%). The activity of L14 probably derives from its overlap with L13. The levels of Ab binding decreased in the following order: L13 (residues 169-187), L22 (295-313), L19 (253-271), and L26 (351-369). Peptides L12 (155-173), L18 (239-257), L15 (197-215), L1 (1-19) and L23 (309-327) exhibited very low Ab binding. The remaining peptides had little or no Ab-binding activity. The antigenic regions are analyzed in terms of their three-dimensional locations and the enzyme active site. With the previous localization of the antigenic regions on the BoNT/B H chain, the human Ab recognition of the entire BoNT/B molecule is presented and compared to the recognition of BoNT/A by human blocking Abs. Copyright © 2011. Published by Elsevier GmbH.
Patil, Nitin A; Bathgate, Ross A D; Kocan, Martina; Ang, Sheng Yu; Tailhades, Julien; Separovic, Frances; Summers, Roger; Grosse, Johannes; Hughes, Richard A; Wade, John D; Hossain, Mohammed Akhter
2016-04-01
Insulin-like peptide 5 (INSL5) is an orexigenic peptide hormone belonging to the relaxin family of peptides. It is expressed primarily in the L-cells of the colon and has a postulated key role in regulating food intake. Its G protein-coupled receptor, RXFP4, is a potential drug target for treating obesity and anorexia. We studied the effect of modification of the C-terminus of the A and B-chains of human INSL5 on RXFP4 binding and activation. Three variants of human INSL5 were prepared using solid phase peptide synthesis and subsequent sequential regioselective disulfide bond formation. The peptides were synthesized as C-terminal acids (both A- and B-chains with free C-termini, i.e., the native form), amides (both chains as the C-terminal amide) and one analog with the C-terminus of its A-chain as the amide and the C-terminus of the B-chain as the acid. The results showed that C-terminus of the B-chain is more important than that of the A-chain for RXFP4 binding and activity. Amidation of the A-chain C-terminus does not have any effect on the INSL5 activity. The difference in RXFP4 binding and activation between the three peptides is believed to be due to electrostatic interaction of the free carboxylate of INSL5 with a positively charged residue (s), either situated within the INSL5 molecule itself or in the receptor extracellular loops.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connelly, P.R.; Gill, S.J.; Miller, K.I.
1989-02-21
Employment of high-precision thin-layer methods has enabled detailed functional characterization of oxygen and carbon monoxide binding for (1) the fully assembled form with 70 binding sites and (2) the isolated chains with 7 binding sites of octopus dofleini hemocyanin. The striking difference in the cooperativities of the two ligands for the assembled decamer is revealed through an examination of the binding capacities and the partition coefficient, determined as functions of the activities of both ligands. A global analysis of the data sets supported by a two-state allosteric model assuming an allosteric unit of 7. Higher level allosteric interactions were notmore » indicated. This contrasts to results obtained for arthropod hemocyanins. Oxygen and carbon monoxide experiments performed on the isolated subunit chain confirmed the presence of functional heterogeneity reported previously. The analysis shows two types of binding sites in the ratio of 4:3.« less
Marcinkiewicz, Mariola M.; Sinha, Dipali; Walsh, Peter N.
2012-01-01
In the intrinsic pathway of blood coagulation factor XIa (FXIa) activates factor IX (FIX) by cleaving the zymogen at Arg145-Ala146 and Arg180-Val181 bonds releasing an 11-kDa activation peptide. FXIa and its isolated light chain (FXIa-LC) cleave S-2366 at comparable rates, but FXIa-LC is a very poor activator of FIX, possibly because FIX undergoes allosteric modification on binding to an exosite on the heavy chain of FXIa (FXIa-HC) required for optimal cleavage rates of the two scissile bonds of FIX. However preincubation of FIX with a saturating concentration of isolated FXIa-HC did not result in any potentiation in the rate of FIX cleavage by FXIa-LC. Furthermore, if FIX binding via the heavy chain exosite of FXIa determines the affinity of the enzyme-substrate interaction, then the isolated FXIa-HC should inhibit the rate of FIX activation by depleting the substrate. However, whereas FXIa/S557A inhibited FIX activation of by FXIa, FXIa-HC did not. Therefore, we examined FIX binding to FXIa/S557A, FXIa-HC, FXIa-LC, FXIa/C362S/C482S, and FXIa/S557A/C362S/C482S. The heavy and light chains are disulfide-linked in FXIa/S557A but not in FXIa/C362S/C482S and FXIa/S557A/C362S/C482S. In an ELISA assay only FXI/S557A ligated FIX with high affinity. Partial reduction of FXIa/S557A to produce heavy and light chains resulted in decreased FIX binding, and this function was regained upon reformation of the disulfide linkage between the heavy and the light chains. We therefore conclude that substrate recognition by the FXIa exosite(s) requires disulfide-linked heavy and light chains. PMID:22207756
Salian, Vishal D; Vaughan, Asa D; Byrne, Mark E
2012-06-01
In this work, living/controlled radical polymerization (LRP) is compared with conventional free radical polymerization in the creation of highly and weakly cross-linked imprinted poly(methacrylic acid-co-ethylene glycol dimethacrylate) networks. It elucidates, for the first time, the effect of LRP on the chain level and begins to explain why the efficiency of the imprinting process is improved using LRP. Imprinted polymers produced via LRP exhibited significantly higher template affinity and capacity compared with polymers prepared using conventional methods. The use of LRP in the creation of highly cross-linked imprinted polymers resulted in a fourfold increase in binding capacity without a decrease in affinity; whereas weakly cross-linked gels demonstrated a nearly threefold increase in binding capacity at equivalent affinity when LRP was used. In addition, by adjusting the double bond conversion, we can choose to increase either the capacity or the affinity in highly cross-linked imprinted polymers, thus allowing the creation of imprinted polymers with tailorable binding parameters. Using free radical polymerization in the creation of polymer chains, as the template-monomer ratio increased, the average molecular weight of the polymer chains decreased despite a slight increase in the double bond conversion. Thus, the polymer chains formed were shorter but greater in number. Using LRP neutralized the effect of the template. The addition of chain transfer agent resulted in slow, uniform, simultaneous chain growth, resulting in the formation of longer more monodisperse chains. Reaction analysis revealed that propagation time was extended threefold in the formation of highly cross-linked polymers when LRP techniques were used. This delayed the transition to the diffusion-controlled stage of the reaction, which in turn led to the observed enhanced binding properties, decreased polydispersity in the chains, and a more homogeneous macromolecular architecture. Copyright © 2012 John Wiley & Sons, Ltd.
Neuhof, Andrea; Rolls, Melissa M.; Jungnickel, Berit; Kalies, Kai-Uwe; Rapoport, Tom A.
1998-01-01
Most secretory and membrane proteins are sorted by signal sequences to the endoplasmic reticulum (ER) membrane early during their synthesis. Targeting of the ribosome-nascent chain complex (RNC) involves the binding of the signal sequence to the signal recognition particle (SRP), followed by an interaction of ribosome-bound SRP with the SRP receptor. However, ribosomes can also independently bind to the ER translocation channel formed by the Sec61p complex. To explain the specificity of membrane targeting, it has therefore been proposed that nascent polypeptide-associated complex functions as a cytosolic inhibitor of signal sequence- and SRP-independent ribosome binding to the ER membrane. We report here that SRP-independent binding of RNCs to the ER membrane can occur in the presence of all cytosolic factors, including nascent polypeptide-associated complex. Nontranslating ribosomes competitively inhibit SRP-independent membrane binding of RNCs but have no effect when SRP is bound to the RNCs. The protective effect of SRP against ribosome competition depends on a functional signal sequence in the nascent chain and is also observed with reconstituted proteoliposomes containing only the Sec61p complex and the SRP receptor. We conclude that cytosolic factors do not prevent the membrane binding of ribosomes. Instead, specific ribosome targeting to the Sec61p complex is provided by the binding of SRP to RNCs, followed by an interaction with the SRP receptor, which gives RNC–SRP complexes a selective advantage in membrane targeting over nontranslating ribosomes. PMID:9436994
Kotenko, S V; Izotova, L S; Mirochnitchenko, O V; Esterova, E; Dickensheets, H; Donnelly, R P; Pestka, S
2001-01-26
Interleukin-10 (IL-10)-related T cell-derived inducible factor (IL-TIF; provisionally designated IL-22) is a cytokine with limited homology to IL-10. We report here the identification of a functional IL-TIF receptor complex that consists of two receptor chains, the orphan CRF2-9 and IL-10R2, the second chain of the IL-10 receptor complex. Expression of the CRF2-9 chain in monkey COS cells renders them sensitive to IL-TIF. However, in hamster cells both chains, CRF2-9 and IL-10R2, must be expressed to assemble the functional IL-TIF receptor complex. The CRF2-9 chain (or the IL-TIF-R1 chain) is responsible for Stat recruitment. Substitution of the CRF2-9 intracellular domain with the IFN-gammaR1 intracellular domain changes the pattern of IL-TIF-induced Stat activation. The CRF2-9 gene is expressed in normal liver and kidney, suggesting a possible role for IL-TIF in regulating gene expression in these tissues. Each chain, CRF2-9 and IL-10R2, is capable of binding IL-TIF independently and can be cross-linked to the radiolabeled IL-TIF. However, binding of IL-TIF to the receptor complex is greater than binding to either receptor chain alone. Sharing of the common IL-10R2 chain between the IL-10 and IL-TIF receptor complexes is the first such case for receptor complexes with chains belonging to the class II cytokine receptor family, establishing a novel paradigm for IL-10-related ligands similar to the shared use of the gamma common chain (gamma(c)) by several cytokines, including IL-2, IL-4, IL-7, IL-9, and IL-15.
A climate robust integrated modelling framework for regional impact assessment of climate change
NASA Astrophysics Data System (ADS)
Janssen, Gijs; Bakker, Alexander; van Ek, Remco; Groot, Annemarie; Kroes, Joop; Kuiper, Marijn; Schipper, Peter; van Walsum, Paul; Wamelink, Wieger; Mol, Janet
2013-04-01
Decision making towards climate proofing the water management of regional catchments can benefit greatly from the availability of a climate robust integrated modelling framework, capable of a consistent assessment of climate change impacts on the various interests present in the catchments. In the Netherlands, much effort has been devoted to developing state-of-the-art regional dynamic groundwater models with a very high spatial resolution (25x25 m2). Still, these models are not completely satisfactory to decision makers because the modelling concepts do not take into account feedbacks between meteorology, vegetation/crop growth, and hydrology. This introduces uncertainties in forecasting the effects of climate change on groundwater, surface water, agricultural yields, and development of groundwater dependent terrestrial ecosystems. These uncertainties add to the uncertainties about the predictions on climate change itself. In order to create an integrated, climate robust modelling framework, we coupled existing model codes on hydrology, agriculture and nature that are currently in use at the different research institutes in the Netherlands. The modelling framework consists of the model codes MODFLOW (groundwater flow), MetaSWAP (vadose zone), WOFOST (crop growth), SMART2-SUMO2 (soil-vegetation) and NTM3 (nature valuation). MODFLOW, MetaSWAP and WOFOST are coupled online (i.e. exchange information on time step basis). Thus, changes in meteorology and CO2-concentrations affect crop growth and feedbacks between crop growth, vadose zone water movement and groundwater recharge are accounted for. The model chain WOFOST-MetaSWAP-MODFLOW generates hydrological input for the ecological prediction model combination SMART2-SUMO2-NTM3. The modelling framework was used to support the regional water management decision making process in the 267 km2 Baakse Beek-Veengoot catchment in the east of the Netherlands. Computations were performed for regionalized 30-year climate change scenarios developed by KNMI for precipitation and reference evapotranspiration according to Penman-Monteith. Special focus in the project was on the role of uncertainty. How valid is the information that is generated by this modelling framework? What are the most important uncertainties of the input data, how do they affect the results of the model chain and how can the uncertainties of the data, results, and model concepts be quantified and communicated? Besides these technical issues, an important part of the study was devoted to the perception of stakeholders. Stakeholder analysis and additional working sessions yielded insight into how the models, their results and the uncertainties are perceived, how the modelling framework and results connect to the stakeholders' information demands and what kind of additional information is needed for adequate support on decision making.
DNA repair factor XPC is modified by SUMO-1 and ubiquitin following UV irradiation
Wang, Qi-En; Zhu, Qianzheng; Wani, Gulzar; El-Mahdy, Mohamed A.; Li, Jinyou; Wani, Altaf A.
2005-01-01
Nucleotide excision repair (NER) is the major DNA repair process that removes diverse DNA lesions including UV-induced photoproducts. There are more than 20 proteins involved in NER. Among them, XPC is thought to be one of the first proteins to recognize DNA damage during global genomic repair (GGR), a sub-pathway of NER. In order to study the mechanism through which XPC participates in GGR, we investigated the possible modifications of XPC protein upon UV irradiation in mammalian cells. Western blot analysis of cell lysates from UV-irradiated normal human fibroblast, prepared by direct boiling in an SDS lysis buffer, showed several anti-XPC antibody-reactive bands with molecular weight higher than the original XPC protein. The reciprocal immunoprecipitation and siRNA transfection analysis demonstrated that XPC protein is modified by SUMO-1 and ubiquitin. By using several NER-deficient cell lines, we found that DDB2 and XPA are required for UV-induced XPC modifications. Interestingly, both the inactivation of ubiquitylation and the treatment of proteasome inhibitors quantitatively inhibited the UV-induced XPC modifications. Furthermore, XPC protein is degraded significantly following UV irradiation in XP-A cells in which sumoylation of XPC does not occur. Taken together, we conclude that XPC protein is modified by SUMO-1 and ubiquitin following UV irradiation and these modifications require the functions of DDB2 and XPA, as well as the ubiquitin–proteasome system. Our results also suggest that at least one function of UV-induced XPC sumoylation is related to the stabilization of XPC protein. PMID:16030353
Functions of Ubiquitin and SUMO in DNA Replication and Replication Stress
García-Rodríguez, Néstor; Wong, Ronald P.; Ulrich, Helle D.
2016-01-01
Complete and faithful duplication of its entire genetic material is one of the essential prerequisites for a proliferating cell to maintain genome stability. Yet, during replication DNA is particularly vulnerable to insults. On the one hand, lesions in replicating DNA frequently cause a stalling of the replication machinery, as most DNA polymerases cannot cope with defective templates. This situation is aggravated by the fact that strand separation in preparation for DNA synthesis prevents common repair mechanisms relying on strand complementarity, such as base and nucleotide excision repair, from working properly. On the other hand, the replication process itself subjects the DNA to a series of hazardous transformations, ranging from the exposure of single-stranded DNA to topological contortions and the generation of nicks and fragments, which all bear the risk of inducing genomic instability. Dealing with these problems requires rapid and flexible responses, for which posttranslational protein modifications that act independently of protein synthesis are particularly well suited. Hence, it is not surprising that members of the ubiquitin family, particularly ubiquitin itself and SUMO, feature prominently in controlling many of the defensive and restorative measures involved in the protection of DNA during replication. In this review we will discuss the contributions of ubiquitin and SUMO to genome maintenance specifically as they relate to DNA replication. We will consider cases where the modifiers act during regular, i.e., unperturbed stages of replication, such as initiation, fork progression, and termination, but also give an account of their functions in dealing with lesions, replication stalling and fork collapse. PMID:27242895
Distinct Mechanisms of Pathogenic DJ-1 Mutations in Mitochondrial Quality Control
Strobbe, Daniela; Robinson, Alexis A.; Harvey, Kirsten; Rossi, Lara; Ferraina, Caterina; de Biase, Valerio; Rodolfo, Carlo; Harvey, Robert J.; Campanella, Michelangelo
2018-01-01
The deglycase and chaperone protein DJ-1 is pivotal for cellular oxidative stress responses and mitochondrial quality control. Mutations in PARK7, encoding DJ-1, are associated with early-onset familial Parkinson’s disease and lead to pathological oxidative stress and/or disrupted protein degradation by the proteasome. The aim of this study was to gain insights into the pathogenic mechanisms of selected DJ-1 missense mutations, by characterizing protein–protein interactions, core parameters of mitochondrial function, quality control regulation via autophagy, and cellular death following dopamine accumulation. We report that the DJ-1M26I mutant influences DJ-1 interactions with SUMO-1, in turn enhancing removal of mitochondria and conferring increased cellular susceptibility to dopamine toxicity. By contrast, the DJ-1D149A mutant does not influence mitophagy, but instead impairs Ca2+ dynamics and free radical homeostasis by disrupting DJ-1 interactions with a mitochondrial accessory protein known as DJ-1-binding protein (DJBP/EFCAB6). Thus, individual DJ-1 mutations have different effects on mitochondrial function and quality control, implying mutation-specific pathomechanisms converging on impaired mitochondrial homeostasis. PMID:29599708
Srs2 promotes synthesis-dependent strand annealing by disrupting DNA polymerase δ-extending D-loops
Liu, Jie; Ede, Christopher; Wright, William D; Gore, Steven K; Jenkins, Shirin S; Freudenthal, Bret D; Todd Washington, M; Veaute, Xavier; Heyer, Wolf-Dietrich
2017-01-01
Synthesis-dependent strand annealing (SDSA) is the preferred mode of homologous recombination in somatic cells leading to an obligatory non-crossover outcome, thus avoiding the potential for chromosomal rearrangements and loss of heterozygosity. Genetic analysis identified the Srs2 helicase as a prime candidate to promote SDSA. Here, we demonstrate that Srs2 disrupts D-loops in an ATP-dependent fashion and with a distinct polarity. Specifically, we partly reconstitute the SDSA pathway using Rad51, Rad54, RPA, RFC, DNA Polymerase δ with different forms of PCNA. Consistent with genetic data showing the requirement for SUMO and PCNA binding for the SDSA role of Srs2, Srs2 displays a slight but significant preference to disrupt extending D-loops over unextended D-loops when SUMOylated PCNA is present, compared to unmodified PCNA or monoubiquitinated PCNA. Our data establish a biochemical mechanism for the role of Srs2 in crossover suppression by promoting SDSA through disruption of extended D-loops. DOI: http://dx.doi.org/10.7554/eLife.22195.001 PMID:28535142
Delafontaine, P; Ku, L; Ververis, J J; Cohen, C; Runge, M S; Alexander, R W
1994-12-01
Insulin-like growth factor I (IGF I) is an important mitogen for vascular smooth muscle cells (VSMC). The IGF I receptor (IGF IR) is a heterotetramer composed of two cross-linked extracellular alpha-chains and two membrane-spanning beta-chains that contain a tyrosine-kinase domain. It has a high degree of sequence similarity to the insulin receptor (IR), and the putative ligand-specific binding site has been localized to a cysteine-rich region (CRR) of the alpha-chain. To obtain insights into antigenic determinants of the IGF IR, we raised a panel of site-specific polyclonal antibodies against short peptide sequences N-terminal to and within the CRR. Several antibodies raised against linear epitopes within the CRR bound to solubilized and native rat and human IGF IR by ELISA, did not cross-react with IR, but unexpectedly failed to inhibit 125I-IGF I binding. A polyclonal antibody directed against a 48-amino acid synthetic peptide, corresponding to a region of the CRR postulated to be essential for ligand binding, failed to react with either solubilized, reduced or intact IGF IR. Three antibodies specific for the N-terminus of the alpha-chain reacted with solubilized and native IGF IR. One of these, RAB 6, directed against amino acids 38-44 of the IGF IR, inhibited 125I-IGF I binding to rat aortic smooth muscle cells (RASM) and to IGF IR/3T3 cells (overexpressing human IGF IR) by up to 45%. Immunohistochemical analysis revealed strong IGF IR staining in the medial smooth muscle cell layer of rat aorta. These findings are consistent with a model wherein conformational epitopes within the CRR and linear epitopes within the N-terminus of the alpha-chain contribute to the IGF I binding pocket. These antibodies should provide a valuable tool to study structure-function relationships and in vivo regulation of the IGF IR.
Rangnoi, Kuntalee; Choowongkomon, Kiattawee; O'Kennedy, Richard; Rüker, Florian; Yamabhai, Montarop
2018-06-06
A human antiaflatoxin B1 (AFB1) scFv antibody (yAFB1-c3), selected from a naı̈ve human phage-displayed scFv library, was used as a template for improving and analysis of antibody-ligand interactions using the chain-shuffling technique. The variable-heavy and variable-light (VH/VL)-shuffled library was constructed from the VH of 25 preselected clones recombined with the VL of yAFB1-c3 and vice versa. Affinity selection from these libraries demonstrated that the VH domain played an important role in the binding of scFv to free AFB1. Therefore, in the next step, VH-shuffled scFv library was constructed from variable-heavy (VH) chain repertoires, amplified from the naı̈ve library, recombined with the variable-light (VL) chain of the clone yAFB1-c3. This library was then used to select a specific scFv antibody against soluble AFB1 by a standard biopanning method. Three clones that showed improved binding properties were isolated. Amino acid sequence analysis indicated that the improved clones have amino acid mutations in framework 1 (FR1) and the complementarity determining region (CDR1) of the VH chain. One clone, designated sAFH-3e3, showed 7.5-fold improvement in sensitivity over the original scFv clone and was selected for molecular binding studies with AFB1. Homology modeling and molecular docking were used to compare the binding of this and the original clones. The results confirmed that VH is more important than VL for AFB1 binding.
Boehm, M K; Corper, A L; Wan, T; Sohi, M K; Sutton, B J; Thornton, J D; Keep, P A; Chester, K A; Begent, R H; Perkins, S J
2000-03-01
MFE-23 is the first single-chain Fv antibody molecule to be used in patients and is used to target colorectal cancer through its high affinity for carcinoembryonic antigen (CEA), a cell-surface member of the immunoglobulin superfamily. MFE-23 contains an N-terminal variable heavy-chain domain joined by a (Gly(4)Ser)(3) linker to a variable light-chain (V(L)) domain (kappa chain) with an 11-residue C-terminal Myc-tag. Its crystal structure was determined at 2.4 A resolution by molecular replacement with an R(cryst) of 19.0%. Five of the six antigen-binding loops, L1, L2, L3, H1 and H2, conformed to known canonical structures. The sixth loop, H3, displayed a unique structure, with a beta-hairpin loop and a bifurcated apex characterized by a buried Thr residue. In the crystal lattice, two MFE-23 molecules were associated back-to-back in a manner not seen before. The antigen-binding site displayed a large acidic region located mainly within the H2 loop and a large hydrophobic region within the H3 loop. Even though this structure is unliganded within the crystal, there is an unusually large region of contact between the H1, H2 and H3 loops and the beta-sheet of the V(L) domain of an adjacent molecule (strands DEBA) as a result of intermolecular packing. These interactions exhibited remarkably high surface and electrostatic complementarity. Of seven MFE-23 residues predicted to make contact with antigen, five participated in these lattice contacts, and this model for antigen binding is consistent with previously reported site-specific mutagenesis of MFE-23 and its effect on CEA binding.
A model of high-affinity antibody binding to type III group B Streptococcus capsular polysaccharide.
Wessels, M R; Muñoz, A; Kasper, D L
1987-12-01
We recently reported that the single repeating-unit pentasaccharide of type III group B Streptococcus (GBS) capsular polysaccharide is only weakly reactive with type III GBS antiserum. To further elucidate the relationship between antigen-chain length and antigenicity, tritiated oligosaccharides derived from type III capsular polysaccharide were used to generate detailed saturation binding curves with a fixed concentration of rabbit antiserum in a radioactive antigen-binding assay. A graded increase in affinity of antigen-antibody binding was seen as oligosaccharide size increased from 2.6 repeating units to 92 repeating units. These differences in affinity of antibody binding to oligosaccharides of different molecular size were confirmed by immunoprecipitation and competitive ELISA, two independent assays of antigen-antibody binding. Analysis of the saturation binding experiment indicated a difference of 300-fold in antibody-binding affinity for the largest versus the smallest tested oligosaccharides. Unexpectedly, the saturation binding values approached by the individual curves were inversely related to oligosaccharide chain length on a molar basis but equivalent on a weight basis. This observation is compatible with a model in which binding of an immunoglobulin molecule to an antigenic site on the polysaccharide facilitates subsequent binding of antibody to that antigen.
Król, Marcin; Roterman, Irena; Piekarska, Barbara; Konieczny, Leszek; Rybarska, Janina; Stopa, Barbara; Spólnik, Paweł
2005-05-15
It was shown experimentally that binding of a micelle composed of Congo red molecules to immunological complexes leads to the enhanced stability of the latter, and simultaneously prevents binding of a complement molecule (C1q). The dye binds in a cavity created by the removal of N-terminal polypeptide chain, as observed experimentally in a model system-immunoglobulin G (IgG) light chain dimer. Molecular Dynamics (MD) simulations of three forms of IgG light chain dimer, with and without the dye, were performed to investigate the role of N-terminal fragment and self-assembled ligand in coupling between V and C domains. Root-mean-square distance (RMSD) time profiles show that removal of N-terminal fragment leads to destabilization of V domain. A micelle composed of four self-assembled dye molecules stabilizes and fixes the domain. Analysis of root-mean-square fluctuation (RMSF) values and dynamic cross-correlation matrices (DCCM) reveals that removal of N-terminal fragment results in complete decoupling between V and C domains. Binding of self-assembled Congo red molecules improves the coupling, albeit slightly. The disruption of a small beta-sheet composed of N- and C-terminal fragments of the domain (NC sheet) is the most likely reason for the decoupling. Self-assembled ligand, bound in the place originally occupied by N-terminal fragment, is not able to take over the function of the beta-sheet. Lack of correlation of motions between residues in V and C domains denotes that light chain-Congo red complexes have hampered ability to transmit conformational changes between domains. This is a likely explanation of the lack of complement binding by immunological complexes, which bind Congo red, and supports the idea that the NC sheet is the key structural fragment taking part in immunological signal transduction. Copyright 2005 Wiley-Liss, Inc.
A Non-SUMOylated Tax Protein Is Still Functional for NF-κB Pathway Activation
Pène, Sabrina; Waast, Laetitia; Bonnet, Amandine; Bénit, Laurence
2014-01-01
ABSTRACT Whether NF-κB promoter transactivation by the human T-cell leukemia virus type 1 (HTLV-1) Tax protein requires Tax SUMOylation is still a matter of debate. In this study, we revisited the role of Tax SUMOylation using a strategy based on the targeting of Ubc9, the unique E2 SUMO-conjugating enzyme. We show that either a catalytically inactive form of Ubc9 (Ubc9-C93S) or Ubc9 small interfering RNA (siRNA) dramatically reduces Tax conjugation to endogenous SUMO-1 or SUMO-2/3, demonstrating that as expected, Tax SUMOylation is under the control of the catalytic activity of Ubc9. We further report that a non-SUMOylated Tax protein produced in 293T cells is still able to activate either a transfected or an integrated NF-κB reporter promoter and to induce expression of an NF-κB-regulated endogenous gene. Importantly, blocking Ubc9 activity in T cells also results in the production of a non-SUMOylated Tax that is still fully functional for the activation of a NF-κB promoter. These results provide the definitive evidence that Tax SUMOylation is not required for NF-κB-driven gene induction. IMPORTANCE Human T-cell leukemia virus type 1 is able to transform CD4+ T lymphocytes. The viral oncoprotein Tax plays a key role in this process by promoting cell proliferation and survival, mainly through permanent activation of the NF-κB pathway. Elucidating the molecular mechanisms involved in NF-κB pathway activation by Tax is therefore a key issue to understand HTLV-1-mediated transformation. Tax SUMOylation was initially proposed to be critical for Tax-induced NF-κB promoter activation, which was challenged by our later observation that a low-level-SUMOylated Tax mutant was still functional for activation of NF-κB promoters. To clarify the role of Tax SUMOylation, we set up a new approach based on the inhibition of the SUMOylation machinery in Tax-expressing cells. We show that blocking the SUMO-conjugating enzyme Ubc9 abolishes Tax SUMOylation and that a non-SUMOylated Tax still activates NF-κB promoters in either adherent cells or T cells. PMID:24991007
A non-SUMOylated tax protein is still functional for NF-κB pathway activation.
Pène, Sabrina; Waast, Laetitia; Bonnet, Amandine; Bénit, Laurence; Pique, Claudine
2014-09-01
Whether NF-κB promoter transactivation by the human T-cell leukemia virus type 1 (HTLV-1) Tax protein requires Tax SUMOylation is still a matter of debate. In this study, we revisited the role of Tax SUMOylation using a strategy based on the targeting of Ubc9, the unique E2 SUMO-conjugating enzyme. We show that either a catalytically inactive form of Ubc9 (Ubc9-C93S) or Ubc9 small interfering RNA (siRNA) dramatically reduces Tax conjugation to endogenous SUMO-1 or SUMO-2/3, demonstrating that as expected, Tax SUMOylation is under the control of the catalytic activity of Ubc9. We further report that a non-SUMOylated Tax protein produced in 293T cells is still able to activate either a transfected or an integrated NF-κB reporter promoter and to induce expression of an NF-κB-regulated endogenous gene. Importantly, blocking Ubc9 activity in T cells also results in the production of a non-SUMOylated Tax that is still fully functional for the activation of a NF-κB promoter. These results provide the definitive evidence that Tax SUMOylation is not required for NF-κB-driven gene induction. Human T-cell leukemia virus type 1 is able to transform CD4(+) T lymphocytes. The viral oncoprotein Tax plays a key role in this process by promoting cell proliferation and survival, mainly through permanent activation of the NF-κB pathway. Elucidating the molecular mechanisms involved in NF-κB pathway activation by Tax is therefore a key issue to understand HTLV-1-mediated transformation. Tax SUMOylation was initially proposed to be critical for Tax-induced NF-κB promoter activation, which was challenged by our later observation that a low-level-SUMOylated Tax mutant was still functional for activation of NF-κB promoters. To clarify the role of Tax SUMOylation, we set up a new approach based on the inhibition of the SUMOylation machinery in Tax-expressing cells. We show that blocking the SUMO-conjugating enzyme Ubc9 abolishes Tax SUMOylation and that a non-SUMOylated Tax still activates NF-κB promoters in either adherent cells or T cells. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Tollefsen, K-E
2007-09-01
Alkylphenols are well-known endocrine disrupters, mediating effects through the estrogen receptor (ER). Although the estrogenic properties of the alkylphenols are well documented, alternative mechanisms of action are poorly described. In the present work, the interaction of a range of alkyl-substituted phenols and alkyl-substituted non-phenolics with the rainbow trout (Oncorhynchus mykiss) sex steroid-binding protein (rtSBP) were determined by competitive ligand-binding studies. The role of alkyl chain length and branching, substituent position, number of alkylated groups, and the requirement of a phenolic ring structure were assessed. The results showed that the rtSBP binds to most chemical structures tested, although the highest affinity was obtained for mono-substituted alkylphenols with a chain length of four to eight methyl groups. Interestingly, rtSBP binding was also observed for non-phenolic compounds such as 4-t-butylcyclohexanol and 4-t-butylnitrobenzene suggesting that the rtSBP has a broad binding specificity for alkylphenols and alkylated non-phenolics.
[Adenylate cyclase from rabbit heart: substrate binding site].
Perfil'eva, E A; Khropov, Iu V; Khachatrian, L; Bulargina, T V; Baranova, L A
1981-08-01
The effects of 17 ATP analogs on the solubilized rabbit heart adenylate cyclase were studied. The triphosphate chain, position 8 of the adenine base and the ribose residue of the ATP molecule were modified. Despite the presence of the alkylating groups in two former types of the analogs tested, no covalent blocking of the active site of the enzyme was observed. Most of the compounds appeared to be competitive reversible inhibitors. The kinetic data confirmed the importance of the triphosphate chain for substrate binding in the active site of adenylate cyclase. (Formula: See Text) The inhibitors with different substituents in position 8 of the adenine base had a low affinity for the enzyme. The possible orientation of the triphosphate chain and the advantages of anti-conformation of the ATP molecule for their binding in the active site of adenylate cyclase are discussed.
Besir, Hüseyin
2017-01-01
Recombinant expression of heterologous proteins in E. coli is well established for a wide range of proteins, although in many cases, purifying soluble and properly folded proteins remains challenging (Sorensen and Mortensen, J Biotechnol 115:113-128, 2005; Correa and Oppezzo, Methods Mol Biol 1258:27-44, 2015). Proteins that contain disulfide bonds (e.g., cytokines, growth factors) are often particularly difficult to purify in soluble form and still need optimizing of protocols in almost every step of the process (Berkmen, Protein Expr Purif 82:240-251, 2012; de Marco, Microb Cell Fact 11:129, 2012). Expression of disulfide bonded proteins in the periplasm of E. coli is one approach that can help to obtain soluble protein with the correct disulfide bridges forming in the periplasm. This offers the appropriate conditions for disulfide formation although periplasmic expression can also result in low expression levels and incorrect folding of the target protein (Schlapschy and Skerra, Methods Mol Biol 705:211-224, 2011). Generation of specific antibodies often requires a specific antigenic sequence of a protein in order to get an efficient immune response and minimize cross-reactivity of antibodies. Larger proteins like GST (Glutathione-S-transferase) or MBP (maltose binding protein) as solubilizing fusion partners are frequently used to keep antigens soluble and immunize animals. This approach has the disadvantage that the immune response against the fusion partner leads to additional antibodies that need to be separated from the antigen-specific antibodies. For both classes of proteins mentioned above, a protocol has been developed and optimized using the human version of small ubiquitin-like modifier 3 (SUMO3) protein and its corresponding protease SenP2. This chapter describes the experimental steps for expression, purification, refolding, and cleavage that are applicable to both disulfide-bonded proteins with a defined structure and random protein fragments for antibody generation or larger peptides with defined sequence that are difficult express on their own.
Markin, Craig J; Xiao, Wei; Spyracopoulos, Leo
2010-08-18
RAP80 plays a key role in signal transduction in the DNA damage response by recruiting proteins to DNA damage foci by binding K63-polyubiquitin chains with two tandem ubiquitin-interacting motifs (tUIM). It is generally recognized that the typically weak interaction between ubiquitin (Ub) and various recognition motifs is intensified by themes such as tandem recognition motifs and Ub polymerization to achieve biological relevance. However, it remains an intricate problem to develop a detailed molecular mechanism to describe the process that leads to amplification of the Ub signal. A battery of solution-state NMR methods and molecular dynamics simulations were used to demonstrate that RAP80-tUIM employs mono- and multivalent interactions with polyUb chains to achieve enhanced affinity in comparison to monoUb interactions for signal amplification. The enhanced affinity is balanced by unfavorable entropic effects that include partial quenching of rapid reorientation between individual UIM domains and individual Ub domains in the bound state. For the RAP80-tUIM-polyUb interaction, increases in affinity with increasing chain length are a result of increased numbers of mono- and multivalent binding sites in the longer polyUb chains. The mono- and multivalent interactions are characterized by intrinsically weak binding and fast off-rates; these weak interactions with fast kinetics may be an important factor underlying the transient nature of protein-protein interactions that comprise DNA damage foci.
Ybe, Joel A.; Mishra, Sanjay; Helms, Stephen; Nix, Jay
2007-01-01
Summary Huntingtin interacting protein 1 (HIP1) is a member of a family of proteins whose interaction with Huntingtin is critical to prevent cells from initiating apoptosis. HIP1, and related protein HIP12/1R, can also bind to clathrin and membrane phospholipids and HIP12/1R links the CCV to the actin cytoskeleton. HIP1 and HIP12/1R interact with the clathrin light chain EED regulatory site and stimulate clathrin lattice assembly. Here we report the X-ray structure of the coiled-coil domain of HIP1 from 482–586 that includes residues crucial for binding clathrin light chain. The dimeric HIP1 crystal structure is partially splayed open. The comparison of the HIP1 model with coiled-coil predictions revealed the heptad repeat in the dimeric trunk (S2 path) is offset relative to the register of the heptad repeat from the N-terminal portion (S1 path) of the molecule. Furthermore, surface analysis showed there is a third hydrophobic path (S3) running parallel to S1 and S2. We present structural evidence supporting a role for S3 path as an interaction surface for clathrin light chain. Finally, comparative analysis suggests the mode of binding between sla2p and clathrin light chain may be different in yeast. PMID:17257618
Dyes designed for high sensitivity detection of double-stranded DNA
Glazer, Alexander N.; Benson, Scott C.
2000-01-01
Novel fluorescent dyes are provided, characterized by having a fluorophore joined to a cationic chain. The dyes are found to provide for high enhancement upon binding to nucleic acid and have strong binding affinities to the nucleic acid, as compared to the fluorophore without the polycationic chain. The dyes find use in detection of dsDNA in gel electrophoresis and solution at substantially higher sensitivities using substantially less dye.
Dyes designed for high sensitivity detection of double-stranded DNA
Glazer, Alexander N.; Benson, Scott C.
1998-01-01
Novel fluorescent dyes are provided, characterized by having a fluorophore joined to a cationic chain. The dyes are found to provide for high enhancement upon binding to nucleic acid and have strong binding affinities to the nucleic acid, as compared to the fluorophore without the polycationic chain. The dyes find use in detection of dsDNA in gel electrophoresis and solution at substantially higher sensitivities using substantially less dye.
Catera, Rosa; Hatzi, Katerina; Yan, Xiao-Jie; Zhang, Lu; Wang, Xiao Bo; Fales, Henry M.; Allen, Steven L.; Kolitz, Jonathan E.; Rai, Kanti R.; Chiorazzi, Nicholas
2008-01-01
Leukemic B lymphocytes of a large group of unrelated chronic lymphocytic leukemia (CLL) patients express an unmutated heavy chain immunoglobulin variable (V) region encoded by IGHV1-69, IGHD3-16, and IGHJ3 with nearly identical heavy and light chain complementarity-determining region 3 sequences. The likelihood that these patients developed CLL clones with identical antibody V regions randomly is highly improbable and suggests selection by a common antigen. Monoclonal antibodies (mAbs) from this stereotypic subset strongly bind cytoplasmic structures in HEp-2 cells. Therefore, HEp-2 cell extracts were immunoprecipitated with recombinant stereotypic subset-specific CLL mAbs, revealing a major protein band at approximately 225 kDa that was identified by mass spectrometry as nonmuscle myosin heavy chain IIA (MYHIIA). Reactivity of the stereotypic mAbs with MYHIIA was confirmed by Western blot and immunofluorescence colocalization with anti-MYHIIA antibody. Treatments that alter MYHIIA amounts and cytoplasmic localization resulted in a corresponding change in binding to these mAbs. The appearance of MYHIIA on the surface of cells undergoing stress or apoptosis suggests that CLL mAb may generally bind molecules exposed as a consequence of these events. Binding of CLL mAb to MYHIIA could promote the development, survival, and expansion of these leukemic cells. PMID:18812466
Liu, Chun-Sheng; An, Hui; Guo, Ling-Ju; Zeng, Zhi; Ju, Xin
2011-01-14
The capacity of carbon atomic chains with different terminations for hydrogen storage is studied using first-principles density functional theory calculations. Unlike the physisorption of H(2) on the H-terminated chain, we show that two Li (Na) atoms each capping one end of the odd- or even-numbered carbon chain can hold ten H(2) molecules with optimal binding energies for room temperature storage. The hybridization of the Li 2p states with the H(2)σ orbitals contributes to the H(2) adsorption. However, the binding mechanism of the H(2) molecules on Na arises only from the polarization interaction between the charged Na atom and the H(2). Interestingly, additional H(2) molecules can be bound to the carbon atoms at the chain ends due to the charge transfer between Li 2s2p (Na 3s) and C 2p states. More importantly, dimerization of these isolated metal-capped chains does not affect the hydrogen binding energy significantly. In addition, a single chain can be stabilized effectively by the C(60) fullerenes termination. With a hydrogen uptake of ∼10 wt.% on Li-coated C(60)-C(n)-C(60) (n = 5, 8), the Li(12)C(60)-C(n)-Li(12)C(60) complex, keeping the number of adsorbed H(2) molecules per Li and stabilizing the dispersion of individual Li atoms, can serve as better building blocks of polymers than the (Li(12)C(60))(2) dimer. These findings suggest a new route to design cluster-assembled hydrogen storage materials based on terminated sp carbon chains.
Yu, Miao; Lau, Thomas Y.; Carr, Steven A.; Krieger, Monty
2013-01-01
The high density lipoprotein (HDL) receptor, scavenger receptor class B, type I (SR-BI), binds HDL and mediates selective cholesteryl ester uptake. SR-BI's structure and mechanism are poorly understood. We used mass spectrometry to assign the two disulfide bonds in SR-BI that connect cysteines within the conserved Cys321-Pro322-Cys323 (CPC) motif and connect Cys280 to Cys334. We used site-specific mutagenesis to evaluate the contributions of the CPC motif and the side chain of extracellular Cys384 to HDL binding and lipid uptake. The effects of CPC mutations on activity were context dependent. Full wild-type (WT) activity required Pro322 and Cys323 only when Cys321 was present. Reduced intrinsic activities were observed for CXC and CPX, but not XXC, XPX or XXX mutants (X≠WT residue). Apparently, a free thiol side chain at position 321 that cannot form an intra-CPC disulfide bond with Cys323 is deleterious, perhaps because of aberrant disulfide bond formation. Pro322 may stabilize an otherwise strained CPC disulfide bond, thus supporting WT activity, but this disulfide bond is not absolutely required for activity. C384X (X=S,T,L,Y,G,A) mutants exhibited altered activities that varied with the side chain's size: larger side chains phenocopied WT SR-BI treated with its thiosemicarbazone inhibitor BLT-1 (increased binding, decreased uptake); smaller side chains produced almost inverse effects (increased uptake:binding ratio). C384X mutants were BLT-1 resistant, supporting the proposal that Cys384's thiol interacts with BLT-1. We discuss the implications of our findings on the functions of the extracellular loop cysteines in SR-BI and compare our results to those presented by other laboratories. PMID:23205738
Changes in conformational dynamics of basic side chains upon protein–DNA association
Esadze, Alexandre; Chen, Chuanying; Zandarashvili, Levani; Roy, Sourav; Pettitt, B. Montgometry; Iwahara, Junji
2016-01-01
Basic side chains play major roles in recognition of nucleic acids by proteins. However, dynamic properties of these positively charged side chains are not well understood. In this work, we studied changes in conformational dynamics of basic side chains upon protein–DNA association for the zinc-finger protein Egr-1. By nuclear magnetic resonance (NMR) spectroscopy, we characterized the dynamics of all side-chain cationic groups in the free protein and in the complex with target DNA. Our NMR order parameters indicate that the arginine guanidino groups interacting with DNA bases are strongly immobilized, forming rigid interfaces. Despite the strong short-range electrostatic interactions, the majority of the basic side chains interacting with the DNA phosphates exhibited high mobility, forming dynamic interfaces. In particular, the lysine side-chain amino groups exhibited only small changes in the order parameters upon DNA-binding. We found a similar trend in the molecular dynamics (MD) simulations for the free Egr-1 and the Egr-1–DNA complex. Using the MD trajectories, we also analyzed side-chain conformational entropy. The interfacial arginine side chains exhibited substantial entropic loss upon binding to DNA, whereas the interfacial lysine side chains showed relatively small changes in conformational entropy. These data illustrate different dynamic characteristics of the interfacial arginine and lysine side chains. PMID:27288446
RNF4-mediated polyubiquitination regulates the Fanconi anemia/BRCA pathway.
Xie, Jenny; Kim, Hyungjin; Moreau, Lisa A; Puhalla, Shannon; Garber, Judy; Al Abo, Muthana; Takeda, Shunichi; D'Andrea, Alan D
2015-04-01
The Fanconi anemia/BRCA (FA/BRCA) pathway is a DNA repair pathway that is required for excision of DNA interstrand cross-links. The 17 known FA proteins, along with several FA-associated proteins (FAAPs), cooperate in this pathway to detect, unhook, and excise DNA cross-links and to subsequently repair the double-strand breaks generated in the process. In the current study, we identified a patient with FA with a point mutation in FANCA, which encodes a mutant FANCA protein (FANCAI939S). FANCAI939S failed to bind to the FAAP20 subunit of the FA core complex, leading to decreased stability. Loss of FAAP20 binding exposed a SUMOylation site on FANCA at amino acid residue K921, resulting in E2 SUMO-conjugating enzyme UBC9-mediated SUMOylation, RING finger protein 4-mediated (RNF4-mediated) polyubiquitination, and proteasome-mediated degradation of FANCA. Mutation of the SUMOylation site of FANCA rescued the expression of the mutant protein. Wild-type FANCA was also subject to SUMOylation, RNF4-mediated polyubiquitination, and degradation, suggesting that regulated release of FAAP20 from FANCA is a critical step in the normal FA pathway. Consistent with this model, cells lacking RNF4 exhibited interstrand cross-linker hypersensitivity, and the gene encoding RNF4 was epistatic with the other genes encoding members of the FA/BRCA pathway. Together, the results from our study underscore the importance of analyzing unique patient-derived mutations for dissecting complex DNA repair processes.
RNF4-mediated polyubiquitination regulates the Fanconi anemia/BRCA pathway
Xie, Jenny; Kim, Hyungjin; Moreau, Lisa A.; Puhalla, Shannon; Garber, Judy; Al Abo, Muthana; Takeda, Shunichi; D’Andrea, Alan D.
2015-01-01
The Fanconi anemia/BRCA (FA/BRCA) pathway is a DNA repair pathway that is required for excision of DNA interstrand cross-links. The 17 known FA proteins, along with several FA-associated proteins (FAAPs), cooperate in this pathway to detect, unhook, and excise DNA cross-links and to subsequently repair the double-strand breaks generated in the process. In the current study, we identified a patient with FA with a point mutation in FANCA, which encodes a mutant FANCA protein (FANCAI939S). FANCAI939S failed to bind to the FAAP20 subunit of the FA core complex, leading to decreased stability. Loss of FAAP20 binding exposed a SUMOylation site on FANCA at amino acid residue K921, resulting in E2 SUMO-conjugating enzyme UBC9-mediated SUMOylation, RING finger protein 4–mediated (RNF4-mediated) polyubiquitination, and proteasome-mediated degradation of FANCA. Mutation of the SUMOylation site of FANCA rescued the expression of the mutant protein. Wild-type FANCA was also subject to SUMOylation, RNF4-mediated polyubiquitination, and degradation, suggesting that regulated release of FAAP20 from FANCA is a critical step in the normal FA pathway. Consistent with this model, cells lacking RNF4 exhibited interstrand cross-linker hypersensitivity, and the gene encoding RNF4 was epistatic with the other genes encoding members of the FA/BRCA pathway. Together, the results from our study underscore the importance of analyzing unique patient-derived mutations for dissecting complex DNA repair processes. PMID:25751062
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Yohan; Chung, Kwang Chul, E-mail: kchung@yonsei.ac.kr
Highlights: Black-Right-Pointing-Pointer ZNF131 directly interacts with ER{alpha}. Black-Right-Pointing-Pointer The binding affinity of ZNF131 to ER{alpha} increases upon E2 stimulation. Black-Right-Pointing-Pointer ZNF131 inhibits ER{alpha}-mediated trans-activation by suppressing its homo-dimerization. Black-Right-Pointing-Pointer ZNF131 inhibits ER{alpha}-dimerization and E2-induced breast cancer cell proliferation. Black-Right-Pointing-Pointer ZNF131 inhibits estrogen signaling by acting as an ER{alpha}-co-repressor. -- Abstract: Steroid hormone estrogen elicits various physiological functions, many of which are mediated through two structurally and functionally distinct estrogen receptors, ER{alpha} and ER{beta}. The functional role of zinc finger protein 131 (ZNF131) is poorly understood, but it is assumed to possess transcriptional regulation activity due to the presence of amore » DNA binding motif. A few recent reports, including ours, revealed that ZNF131 acts as a negative regulator of ER{alpha} and that SUMO modification potentiates the negative effect of ZNF131 on estrogen signaling. However, its molecular mechanism for ER{alpha} inhibition has not been elucidated in detail. Here, we demonstrate that ZNF131 directly interacts with ER{alpha}, which consequently inhibits ER{alpha}-mediated trans-activation by suppressing its homo-dimerization. Moreover, we show that the C-terminal region of ZNF131 containing the SUMOylation site is necessary for its inhibition of estrogen signaling. Taken together, these data suggest that ZNF131 inhibits estrogen signaling by acting as an ER{alpha}-co-repressor.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fanning, Sean W.; Horn, James R.
2014-03-05
Conventional anti-hapten antibodies typically bind low-molecular weight compounds (haptens) in the crevice between the variable heavy and light chains. Conversely, heavy chain-only camelid antibodies, which lack a light chain, must rely entirely on a single variable domain to recognize haptens. While several anti-hapten VHHs have been generated, little is known regarding the underlying structural and thermodynamic basis for hapten recognition. Here, an anti-methotrexate VHH (anti-MTX VHH) was generated using grafting methods whereby the three complementarity determining regions (CDRs) were inserted onto an existing VHH framework. Thermodynamic analysis of the anti-MTX VHH CDR1-3 Graft revealed a micromolar binding affinity, while themore » crystal structure of the complex revealed a somewhat surprising noncanonical binding site which involved MTX tunneling under the CDR1 loop. Due to the close proximity of MTX to CDR4, a nonhypervariable loop, the CDR4 loop sequence was subsequently introduced into the CDR1-3 graft, which resulted in a dramatic 1000-fold increase in the binding affinity. Crystal structure analysis of both the free and complex anti-MTX CDR1-4 graft revealed CDR4 plays a significant role in both intermolecular contacts and binding site conformation that appear to contribute toward high affinity binding. Additionally, the anti-MTX VHH possessed relatively high specificity for MTX over closely related compounds aminopterin and folate, demonstrating that VHH domains are capable of binding low-molecular weight ligands with high affinity and specificity, despite their reduced interface.« less
Factors governing the substitution of La3+ for Ca2+ and Mg2+ in metalloproteins: a DFT/CDM study.
Dudev, Todor; Chang, Li-Ying; Lim, Carmay
2005-03-23
Trivalent lanthanide cations are extensively being used in biochemical experiments to probe various dication-binding sites in proteins; however, the factors governing the binding specificity of lanthanide cations for these binding sites remain unclear. Hence, we have performed systematic studies to evaluate the interactions between La3+ and model Ca2+ - and Mg2+ -binding sites using density functional theory combined with continuum dielectric methods. The calculations reveal the key factors and corresponding physical bases favoring the substitution of trivalent lanthanides for divalent Ca2+ and Mg2+ in holoproteins. Replacing Ca2+ or Mg2+ with La3+ is facilitated by (1) minimizing the solvent exposure and the flexibility of the metal-binding cavity, (2) freeing both carboxylate oxygen atoms of Asp/Glu side chains in the metal-binding site so that they could bind bidentately to La3+, (3) maximizing the number of metal-bound carboxylate groups in buried sites, but minimizing the number of metal-bound carboxylate groups in solvent-exposed sites, and (4) including an Asn/Gln side chain for sites lined with four Asp/Glu side chains. In proteins bound to both Mg2+ and Ca2+, La3+ would prefer to replace Ca2+, as compared to Mg2+. A second Mg2+-binding site with a net positive charge would hamper the Mg2+ --> La3+ exchange, as compared to the respective mononuclear site, although the La3+ substitution of the first native metal is more favorable than the second one. The findings of this work are in accord with available experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mullinax, R.L.; Gross, E.A.; Amberg, J.R.
1990-10-01
The authors have applied a molecular biology approach to the identification of human monoclonal antibodies. Human peripheral blood lymphocyte mRNA was converted to cDNA and a select subset was amplified by the polymerase chain reaction. These products, containing coding sequences for numerous immunoglobulin heavy- and {kappa} light-chain variable and constant region domains, were inserted into modified bacteriophase {lambda} expression vectors and introduced into Escherichia coli by infection to yield a combinatorial immunoexpression library. Clones with binding activity to tetanus toxoid were identified by filter hybridization with radiolabeled antigen and appeared at a frequency of 0.2{percent} in the library. These humanmore » antigen binding fragments, consisting of a heavy-chain fragment covalently linked to a light chain, displayed high affinity of binding to tetanus toxoid with equilibrium constants in the nanomolar range but did not cross-react with other proteins tested. They estimate that this human immunoexpression library contains 20,000 clones with high affinity and specificity to our chosen antigen.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Bhumika S., E-mail: bhumika.shah@mq.edu.au; Tetu, Sasha G.; Harrop, Stephen J.
2014-09-25
The structure of a short-chain dehydrogenase encoded within genomic islands of A. baumannii strains has been solved to 2.4 Å resolution. This classical SDR incorporates a flexible helical subdomain. The NADP-binding site and catalytic side chains are identified. Over 15% of the genome of an Australian clinical isolate of Acinetobacter baumannii occurs within genomic islands. An uncharacterized protein encoded within one island feature common to this and other International Clone II strains has been studied by X-ray crystallography. The 2.4 Å resolution structure of SDR-WM99c reveals it to be a new member of the classical short-chain dehydrogenase/reductase (SDR) superfamily. Themore » enzyme contains a nucleotide-binding domain and, like many other SDRs, is tetrameric in form. The active site contains a catalytic tetrad (Asn117, Ser146, Tyr159 and Lys163) and water molecules occupying the presumed NADP cofactor-binding pocket. An adjacent cleft is capped by a relatively mobile helical subdomain, which is well positioned to control substrate access.« less
Hanada, Kazuharu; Ohsawa, Noboru
2017-01-01
Really interesting new gene (RING)-finger protein 52 (RNF52), an E3 ubiquitin ligase, is found in eukaryotes from yeast to humans. Human RNF52 is known as breast cancer type 1 susceptibility protein (BRCA1)-associated protein 2 (BRAP or BRAP2). The central catalytic domain of BRAP comprises four subdomains: nucleotide-binding α/β plait (NBP), really interesting new gene (RING) zinc finger, ubiquitin-specific protease (UBP)-like zinc finger (ZfUBP), and coiled-coil (CC). This domain architecture is conserved in RNF52 orthologs; however, the domain's function in the ubiquitin system has not been delineated. In the present study, we discovered that the RNF52 domain, comprising NBP–RING–ZfUBP–CC, binds to ubiquitin chains (oligo-ubiquitin) but not to the ubiquitin monomers, and can utilize various ubiquitin chains for ubiquitylation and auto-ubiquitylation. The RNF52 domain preferentially bound to M1- and K63-linked di-ubiquitin chains, weakly to K27-linked chains, but not to K6-, K11-, or K48-linked chains. The binding preferences of the RNF52 domain for ubiquitin-linkage types corresponded to ubiquitin usage in the ubiquitylation reaction, except for K11-, K29-, and K33-linked chains. Additionally, the RNF52 domain directly ligated the intact M1-linked, tri-, and tetra-ubiquitin chains and recognized the structural alterations caused by the phosphomimetic mutation of these ubiquitin chains. Full-length BRAP had nearly the same specificity for the ubiquitin-chain types as the RNF52 domain alone. Mass spectrometry analysis of oligomeric ubiquitylation products, mediated by the RNF52 domain, revealed that the ubiquitin-linkage types and auto-ubiquitylation sites depend on the length of ubiquitin chains. Here, we propose a model for the oligomeric ubiquitylation process, controlled by the RNF52 domain, which is not a sequential assembly process involving monomers. PMID:28768733
Dyes designed for high sensitivity detection of double-stranded DNA
Glazer, A.N.; Benson, S.C.
1998-07-21
Novel fluorescent dyes are provided, characterized by having a fluorophore joined to a cationic chain. The dyes are found to provide for high enhancement upon binding to nucleic acid and have strong binding affinities to the nucleic acid, as compared to the fluorophore without the polycationic chain. The dyes find use in detection of dsDNA in gel electrophoresis and solution at substantially higher sensitivities using substantially less dye. 10 figs.
Hora, Manuel; Carballo-Pacheco, Martin; Weber, Benedikt; Morris, Vanessa K.; Wittkopf, Antje; Buchner, Johannes; Strodel, Birgit; Reif, Bernd
2017-01-01
Antibody light chain amyloidosis is a rare disease caused by fibril formation of secreted immunoglobulin light chains (LCs). The huge variety of antibody sequences puts a serious challenge to drug discovery. The green tea polyphenol epigallocatechin-3-gallate (EGCG) is known to interfere with fibril formation in general. Here we present solution- and solid-state NMR studies as well as MD simulations to characterise the interaction of EGCG with LC variable domains. We identified two distinct EGCG binding sites, both of which include a proline as an important recognition element. The binding sites were confirmed by site-directed mutagenesis and solid-state NMR analysis. The EGCG-induced protein complexes are unstructured. We propose a general mechanistic model for EGCG binding to a conserved site in LCs. We find that EGCG reacts selectively with amyloidogenic mutants. This makes this compound a promising lead structure, that can handle the immense sequence variability of antibody LCs. PMID:28128355
NASA Astrophysics Data System (ADS)
Thapa, Mahendra Bahadur
Calbindin D9k (CAB) is a single domain calcium-binding protein and is the smallest members of the calmodulin superfamily, possessing a pair of calcium-binding EF-hands, and structures for all four states have been determined and extensively characterized experimentally. Because of the tremendous advancement in hardware and software computer technologies in recent years, longer and more realistic molecular dynamics (MD) simulations of a protein are possible now in reasonable periods of time. These advances were exploited to generate multiple, all-atom MD simulations of CAB via the AMBER software package, and the resulting trajectories were employed to calculate backbone order parameters of the apo, the singly and the doubly loaded states of calcium in CAB. The results are in very good agreement with corresponding experimental NMR-based (Nuclear Magnetic Resonance spectroscopy) results, and are improved in comparison to those calculated over a decade ago; use of modified force fields played a key role in the observed improvements. The apo state is the most flexible, and the singly loaded and the doubly loaded states are similar, thus supporting positive cooperativity in line with the experimental results. Further, B-factor calculations of backbone atoms for these calcium-binding states of calbindin D9k also support such cooperativity. Although changes in side-chain motions are not necessarily correlated to changes in protein backbone mobility, past studies on the comparison of experimental and simulated methyl side-chain NMR relaxation parameters of CAB for the doubly-loaded state reported significant improvements in the quantitative representation of side-chain motion by MD simulation. In this project, the order parameters for various side chains in apo, singly loaded and doubly loaded states of CAB were calculated. The primary goal of this work was to determine whether or not the allosteric effect of calcium binding, as observed via the backbone order parameters, also extended to the amino acid side chains, and if so, to what extent. Such information could be useful in better understanding the physical basis of cooperative calcium binding in CAB. Most of the residues which provide ligands to bind calcium at the binding sites support positive cooperativity, as observed when Ca-Cß, Cß-C?, C-C bond and C-O bonds of COO groups of aspartic and glutamic acid residues, the C-N bond of the side-chain amide group in asparagine and glutamine residues, and the N-H bonds of amide (NH2) group order parameters were studied. There are only a few residues containing methyl groups that are involved in providing ligands to the calcium, and the studies of order parameters of C-C bond and C-H bond of these methyl groups did not exhibit the cooperativity effect upon calcium binding; the simulated C-C bond order parameter of the methyl group symmetry axis did correlate well with the experimental results for the fully loaded state of CAB (4ICB). Analysis of the MD trajectories using GSATools and MutInf, provided valuable insights into possible pathways for communicating allosteric effects between the two calcium-binding sites of CAB.
Application of GPCR Structures for Modelling of Free Fatty Acid Receptors.
Tikhonova, Irina G
2017-01-01
Five G protein-coupled receptors (GPCRs) have been identified to be activated by free fatty acids (FFA). Among them, FFA1 (GPR40) and FFA4 (GPR120) bind long-chain fatty acids, FFA2 (GPR43) and FFA3 (GPR41) bind short-chain fatty acids and GPR84 binds medium-chain fatty acids. Free fatty acid receptors have now emerged as potential targets for the treatment of diabetes, obesity and immune diseases. The recent progress in crystallography of GPCRs has now enabled the elucidation of the structure of FFA1 and provided reliable templates for homology modelling of other FFA receptors. Analysis of the crystal structure and improved homology models, along with mutagenesis data and structure activity, highlighted an unusual arginine charge-pairing interaction in FFA1-3 for receptor modulation, distinct structural features for ligand binding to FFA1 and FFA4 and an arginine of the second extracellular loop as a possible anchoring point for FFA at GPR84. Structural data will be helpful for searching novel small-molecule modulators at the FFA receptors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Hyock Joo; Abi-Mosleh, Lina; Wang, Michael L.
LDL delivers cholesterol to lysosomes by receptor-mediated endocytosis. Exit of cholesterol from lysosomes requires two proteins, membrane-bound Niemann-Pick C1 (NPC1) and soluble NPC2. NPC2 binds cholesterol with its isooctyl side chain buried and its 3{beta}-hydroxyl exposed. Here, we describe high-resolution structures of the N-terminal domain (NTD) of NPC1 and complexes with cholesterol and 25-hydroxycholesterol. NPC1(NTD) binds cholesterol in an orientation opposite to NPC2: 3{beta}-hydroxyl buried and isooctyl side chain exposed. Cholesterol transfer from NPC2 to NPC1(NTD) requires reorientation of a helical subdomain in NPC1(NTD), enlarging the opening for cholesterol entry. NPC1 with point mutations in this subdomain (distinct from themore » binding subdomain) cannot accept cholesterol from NPC2 and cannot restore cholesterol exit from lysosomes in NPC1-deficient cells. We propose a working model wherein after lysosomal hydrolysis of LDL-cholesteryl esters, cholesterol binds NPC2, which transfers it to NPC1(NTD), reversing its orientation and allowing insertion of its isooctyl side chain into the outer lysosomal membranes.« less
Multinuclear metal-binding ability of a carotene
Horiuchi, Shinnosuke; Tachibana, Yuki; Yamashita, Mitsuki; Yamamoto, Koji; Masai, Kohei; Takase, Kohei; Matsutani, Teruo; Kawamata, Shiori; Kurashige, Yuki; Yanai, Takeshi; Murahashi, Tetsuro
2015-01-01
Carotenes are naturally abundant unsaturated hydrocarbon pigments, and their fascinating physical and chemical properties have been studied intensively not only for better understanding of the roles in biological processes but also for the use in artificial chemical systems. However, their metal-binding ability has been virtually unexplored. Here we report that β-carotene has the ability to assemble and align ten metal atoms to afford decanuclear homo- and heterometal chain complexes. The metallo–carotenoid framework shows reversible metalation–demetalation reactivity with multiple metals, which allows us to control the size of metal chains as well as the heterobimetallic composition and arrangement of the carotene-supported metal chains. PMID:25857402
Ngo, Son Tung; Mai, Binh Khanh; Hiep, Dinh Minh; Li, Mai Suan
2015-10-01
The binding mechanism of AC1NX476 to HIV-1 protease wild type and mutations was studied by the docking and molecular dynamics simulations. The binding free energy was calculated using the double-annihilation binding free energy method. It is shown that the binding affinity of AC1NX476 to wild type is higher than not only ritonavir but also darunavir, making AC1NX476 become attractive candidate for HIV treatment. Our theoretical results are in excellent agreement with the experimental data as the correlation coefficient between calculated and experimentally measured binding free energies R = 0.993. Residues Asp25-A, Asp29-A, Asp30-A, Ile47-A, Gly48-A, and Val50-A from chain A, and Asp25-B from chain B play a crucial role in the ligand binding. The mutations were found to reduce the receptor-ligand interaction by widening the binding cavity, and the binding propensity is mainly driven by the van der Waals interaction. Our finding may be useful for designing potential drugs to combat with HIV. © 2015 John Wiley & Sons A/S.
Status of Fundamental Physics Program
NASA Technical Reports Server (NTRS)
Lee, Mark C.
2003-01-01
Update of the Fundamental Physics Program. JEM/EF Slip. 2 years delay. Reduced budget. Community support and advocacy led by Professor Nick Bigelow. Reprogramming led by Fred O Callaghan/JPL team. LTMPF M1 mission (DYNAMX and SUMO). PARCS. Carrier re baselined on JEM/EF.
J chain in the nurse shark: implications for function in a lower vertebrate.
Hohman, Valerie S; Stewart, Sue E; Rumfelt, Lynn L; Greenberg, Andrew S; Avila, David W; Flajnik, Martin F; Steiner, Lisa A
2003-06-15
J chain is a small polypeptide covalently attached to polymeric IgA and IgM. In humans and mice, it plays a role in binding Ig to the polymeric Ig receptor for transport into secretions. The putative orthologue of mammalian J chain has been identified in the nurse shark by sequence analysis of cDNA and the polypeptide isolated from IgM. Conservation with J chains from other species is relatively poor, especially in the carboxyl-terminal portion, and, unlike other J chains, the shark protein is not acidic. The only highly conserved segment in all known J chains is a block of residues surrounding an N-linked glycosylation site. Of the eight half-cystine residues that are conserved in mammalian J chains, three are lacking in the nurse shark, including two in the carboxyl-terminal segment that have been reported to be required for binding of human J chain-containing IgA to secretory component. Taken together with these data, the relative abundance of J chain transcripts in the spleen and their absence in the spiral valve (intestine) suggest that J chain in nurse sharks may not have a role in Ig secretion. Analysis of J chain sequences in diverse species is in agreement with accepted phylogenetic relationships, with the exception of the earthworm, suggesting that the reported presence of J chain in invertebrates should be reassessed.
Krol, Marcin; Roterman, Irena; Drozd, Anna; Konieczny, Leszek; Piekarska, Barbara; Rybarska, Janina; Spolnik, Paweł; Stopa, Barbara
2006-02-01
The dye Congo red and related self-assembling compounds were found to stabilize immune complexes by binding to antibodies currently engaged in complexation to antigen. In our simulations, it was shown that the site that becomes accessible for binding the supramolecular dye ligand is located in the V domain, and is normally occupied by the N-terminal polypeptide chain fragment. The binding of the ligand disrupts the beta-structure in the domain, increasing the plasticity of the antigen-binding site. The higher fluctuation of CDR-bearing loops enhances antigen binding, and allows even low-affinity antibodies to be engaged in immune complexes. Experimental observations of the enhancement effect were supported by theoretical studies using L lambda chain (4BJL-PDB identification) and the L chain from the complex of IgM-rheumatoid factor bound to the CH3 domain of the Fc fragment (1ADQ-PDB identification) as the initial structures for theoretical studies of dye-induced changes. Commercial IgM-type rheumatoid factor (human) and sheep red blood cells with coupled IgG (human) were used for experimental tests aimed to reveal the dye-enhancement effect in this system. The specificity of antigen-antibody interaction enhanced by dye binding was studied using rabbit anti-sheep red cell antibodies to agglutinate red cells of different species. Red blood cells of hoofed mammals (horse, goat) showed weak enhancement of agglutination in the presence of Congo red. Neither agglutination nor enhancement were observed in the case of human red cells. The dye-enhancement capability in the SRBC-antiSRBC system was lost after pepsin-digestion of antibodies producing (Fab)2 fragments still agglutinating red cells. Monoclonal (myeloma) IgG, L lambda chain and ovoalbumin failed to agglutinate red cells, as expected, and showed no enhancement effect. This indicates that the enhancement effect is specific.
Pader, Vera; James, Ellen H; Painter, Kimberley L; Wigneshweraraj, Sivaramesh; Edwards, Andrew M
2014-10-01
Staphylococcus aureus is responsible for numerous chronic and recurrent infections, which are frequently associated with the emergence of small-colony variants (SCVs) that lack a functional electron transport chain. SCVs exhibit enhanced expression of fibronectin-binding protein (FnBP) and greatly reduced hemolysin production, although the basis for this is unclear. One hypothesis is that these phenotypes are a consequence of the reduced Agr activity of SCVs, while an alternative is that the lack of a functional electron transport chain and the resulting reduction in ATP production are responsible. Disruption of the electron transport chain of S. aureus genetically (hemB and menD) or chemically, using 2-n-heptyl-4-hydroxyquinoline N-oxide (HQNO), inhibited both growth and Agr activity and conferred an SCV phenotype. Supplementation of the culture medium with synthetic autoinducing peptide (sAIP) significantly increased Agr expression in both hemB mutant strains and S. aureus grown with HQNO and significantly reduced staphylococcal adhesion to fibronectin. However, sAIP did not promote hemolysin expression in hemB mutant strains or S. aureus grown with HQNO. Therefore, while Agr regulates fibronectin binding in SCVs, it cannot promote hemolysin production in the absence of a functional electron transport chain. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Pader, Vera; James, Ellen H.; Painter, Kimberley L.; Wigneshweraraj, Sivaramesh
2014-01-01
Staphylococcus aureus is responsible for numerous chronic and recurrent infections, which are frequently associated with the emergence of small-colony variants (SCVs) that lack a functional electron transport chain. SCVs exhibit enhanced expression of fibronectin-binding protein (FnBP) and greatly reduced hemolysin production, although the basis for this is unclear. One hypothesis is that these phenotypes are a consequence of the reduced Agr activity of SCVs, while an alternative is that the lack of a functional electron transport chain and the resulting reduction in ATP production are responsible. Disruption of the electron transport chain of S. aureus genetically (hemB and menD) or chemically, using 2-n-heptyl-4-hydroxyquinoline N-oxide (HQNO), inhibited both growth and Agr activity and conferred an SCV phenotype. Supplementation of the culture medium with synthetic autoinducing peptide (sAIP) significantly increased Agr expression in both hemB mutant strains and S. aureus grown with HQNO and significantly reduced staphylococcal adhesion to fibronectin. However, sAIP did not promote hemolysin expression in hemB mutant strains or S. aureus grown with HQNO. Therefore, while Agr regulates fibronectin binding in SCVs, it cannot promote hemolysin production in the absence of a functional electron transport chain. PMID:25092909
Sumo Puff: Tidal debris or disturbed ultra-diffuse galaxy?
NASA Astrophysics Data System (ADS)
Greco, Johnny P.; Greene, Jenny E.; Price-Whelan, Adrian M.; Leauthaud, Alexie; Huang, Song; Goulding, Andy D.; Strauss, Michael A.; Komiyama, Yutaka; Lupton, Robert H.; Miyazaki, Satoshi; Takada, Masahiro; Tanaka, Masayuki; Usuda, Tomonori
2018-01-01
We report the discovery of a diffuse stellar cloud with an angular extent ≳30″, which we term "Sumo Puff", in data from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). While we do not have a redshift for this object, it is in close angular proximity to a post-merger galaxy at redshift z = 0.0431 and is projected within a few virial radii (assuming similar redshifts) of two other ˜L⋆ galaxies, which we use to bracket a potential redshift range of 0.0055 < z < 0.0431. The object's light distribution is flat, as characterized by a low Sérsic index (n ˜ 0.3). It has a low central g-band surface brightness of ˜26.4 mag arcsec-2, large effective radius of ˜13″ (˜11 kpc at z = 0.0431 and ˜1.5 kpc at z = 0.0055), and an elongated morphology (b/a ˜ 0.4). Its red color (g - i ˜ 1) is consistent with a passively evolving stellar population and similar to the nearby post-merger galaxy, and we may see tidal material connecting Sumo Puff with this galaxy. We offer two possible interpretations for the nature of this object: (1) it is an extreme, galaxy-sized tidal feature associated with a recent merger event, or (2) it is a foreground dwarf galaxy with properties consistent with a quenched, disturbed, ultra-diffuse galaxy. We present a qualitative comparison with simulations that demonstrates the feasibility of forming a structure similar to this object in a merger event. Follow-up spectroscopy and/or deeper imaging to confirm the presence of the bridge of tidal material will be necessary to reveal the true nature of this object.
Ho, Patrick; Ede, Christopher; Chen, Yvonne Y
2017-08-18
Targeted therapies promise to increase the safety and efficacy of treatments against diseases ranging from cancer to viral infections. However, the vast majority of targeted therapeutics relies on the recognition of extracellular biomarkers, which are rarely restricted to diseased cells and are thus prone to severe and sometimes-fatal off-target toxicities. In contrast, intracellular antigens present a diverse yet underutilized repertoire of disease markers. Here, we report a protein-based therapeutic platform-termed Cytoplasmic Oncoprotein VErifier and Response Trigger (COVERT)-which enables the interrogation of intracellular proteases to trigger targeted cytotoxicity. COVERT molecules consist of the cytotoxic protein granzyme B (GrB) fused to an inhibitory N-terminal peptide, which can be removed by researcher-specified proteases to activate GrB function. We demonstrate that fusion of a small ubiquitin-like modifier 1 (SUMO1) protein to GrB yields a SUMO-GrB molecule that is specifically activated by the cancer-associated sentrin-specific protease 1 (SENP1). SUMO-GrB selectively triggers apoptotic phenotypes in HEK293T cells that overexpress SENP1, and it is highly sensitive to different SENP1 levels across cell lines. We further demonstrate the rational design of additional COVERT molecules responsive to enterokinase (EK) and tobacco etch virus protease (TEVp), highlighting the COVERT platform's modularity and adaptability to diverse protease targets. As an initial step toward engineering COVERT-T cells for adoptive T-cell therapy, we verified that primary human T cells can express, package, traffic, and deliver engineered GrB molecules in response to antigen stimulation. Our findings set the foundation for future intracellular-antigen-responsive therapeutics that can complement surface-targeted therapies.
Domain alternation and active site remodeling are conserved structural features of ubiquitin E1.
Lv, Zongyang; Yuan, Lingmin; Atkison, James H; Aldana-Masangkay, Grace; Chen, Yuan; Olsen, Shaun K
2017-07-21
E1 enzymes for ubiquitin (Ub) and Ub-like modifiers (Ubls) harbor two catalytic activities that are required for Ub/Ubl activation: adenylation and thioester bond formation. Structural studies of the E1 for the Ubl s mall u biquitin-like mo difier (SUMO) revealed a single active site that is transformed by a conformational switch that toggles its competency for catalysis of these two distinct chemical reactions. Although the mechanisms of adenylation and thioester bond formation revealed by SUMO E1 structures are thought to be conserved in Ub E1, there is currently a lack of structural data supporting this hypothesis. Here, we present a structure of Schizosaccharomyces pombe Uba1 in which the second catalytic cysteine half-domain (SCCH domain) harboring the catalytic cysteine has undergone a 106° rotation that results in a completely different network of intramolecular interactions between the SCCH and adenylation domains and translocation of the catalytic cysteine 12 Å closer to the Ub C terminus compared with previous Uba1 structures. SCCH domain alternation is accompanied by conformational changes within the Uba1 adenylation domains that effectively disassemble the adenylation active site. Importantly, the structural and biochemical data suggest that domain alternation and remodeling of the adenylation active site are interconnected and are intrinsic structural features of Uba1 and that the overall structural basis for adenylation and thioester bond formation exhibited by SUMO E1 is indeed conserved in Ub E1. Finally, the mechanistic insights provided by the novel conformational snapshot of Uba1 presented in this study may guide efforts to develop small molecule inhibitors of this critically important enzyme that is an active target for anticancer therapeutics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Veltman, Imke M; Vreede, Lilian A; Cheng, Jinke; Looijenga, Leendert H J; Janssen, Bert; Schoenmakers, Eric F P M; Yeh, Edward T H; van Kessel, Ad Geurts
2005-07-15
Recently, we identified a patient with an infantile sacrococcygeal teratoma and a constitutional t(12;15)(q13;q25). Here, we show that, as a result of this chromosomal translocation, the SUMO/Sentrin-specific protease 1 gene (SENP1) on chromosome 12 and the embryonic polarity-related mesoderm development gene (MESDC2) on chromosome 15 are disrupted and fused. Both reciprocal SENP1-MESDC2 (SEME) and MESDC2-SENP1 (MESE) fusion genes are transcribed in tumor-derived cells and their open reading frames encode aberrant proteins. As a consequence of this, and in contrast to wild-type (WT) MESDC2, the translocation-associated SEME protein is no longer targeted to the endoplasmatic reticulum, leading to a presumed loss-of-function as a chaperone for the WNT co-receptors LRP5 and/or LRP6. Ultimately, this might lead to abnormal development and/or routing of germ cell tumor precursor cells. SUMO, a post-translational modifier, plays an important role in several cellular key processes and is cleaved from its substrates by WT SENP1. Using a PML desumoylation assay, we found that translocation-associated MESE proteins exhibit desumoylation capacities similar to those observed for WT SENP1. We speculate that spatio-temporal disturbances in desumoylating activities during critical stages of embryonic development might have predisposed the patient. Together, the constitutional t(12;15)(q13;q25) translocation revealed two novel candidate genes for neonatal/infantile GCT development: MESDC2 and SENP1.
Cho, Sunglim; Kim, Bo Young; Ahn, Kwangseog; Jun, Youngsoo
2013-01-01
Derlin-1 plays a critical role in endoplasmic reticulum-associated protein degradation (ERAD) of a particular subset of proteins. Although it is generally accepted that Derlin-1 mediates the export of ERAD substrates from the ER to the cytosol, little is known about how Derlin-1 interacts with these substrates. Human cytomegalovirus (HCMV) US11 exploits Derlin-1-dependent ERAD to degrade major histocompatibility complex class I (MHC-I) molecules and evade immune surveillance. US11 requires the cytosolic tail of the MHC-I heavy chain to divert MHC-I molecules into the ERAD pathway for degradation; however, the underlying mechanisms remain unknown. Here, we show that the cytosolic tail of the MHC-I heavy chain, although not required for interaction with US11, is required for tight binding to Derlin-1 and thus for US11-induced dislocation of the MHC-I heavy chain to the cytosol for proteasomal degradation. Surprisingly, deletion of a single C-terminal amino acid from the cytosolic tail disrupted the interaction between MHC-I molecules and Derlin-1, rendering mutant MHC-I molecules resistant to US11-induced degradation. Consistently, deleting the C-terminal cytosolic region of Derlin-1 prevented it from binding to MHC-I molecules. Taken together, these results suggest that the cytosolic region of Derlin-1 is involved in ERAD substrate binding and that this interaction is critical for the Derlin-1-mediated dislocation of the MHC-I heavy chain to the cytosol during US11-induced MHC-I degradation. PMID:23951315
Cho, Sunglim; Kim, Bo Young; Ahn, Kwangseog; Jun, Youngsoo
2013-01-01
Derlin-1 plays a critical role in endoplasmic reticulum-associated protein degradation (ERAD) of a particular subset of proteins. Although it is generally accepted that Derlin-1 mediates the export of ERAD substrates from the ER to the cytosol, little is known about how Derlin-1 interacts with these substrates. Human cytomegalovirus (HCMV) US11 exploits Derlin-1-dependent ERAD to degrade major histocompatibility complex class I (MHC-I) molecules and evade immune surveillance. US11 requires the cytosolic tail of the MHC-I heavy chain to divert MHC-I molecules into the ERAD pathway for degradation; however, the underlying mechanisms remain unknown. Here, we show that the cytosolic tail of the MHC-I heavy chain, although not required for interaction with US11, is required for tight binding to Derlin-1 and thus for US11-induced dislocation of the MHC-I heavy chain to the cytosol for proteasomal degradation. Surprisingly, deletion of a single C-terminal amino acid from the cytosolic tail disrupted the interaction between MHC-I molecules and Derlin-1, rendering mutant MHC-I molecules resistant to US11-induced degradation. Consistently, deleting the C-terminal cytosolic region of Derlin-1 prevented it from binding to MHC-I molecules. Taken together, these results suggest that the cytosolic region of Derlin-1 is involved in ERAD substrate binding and that this interaction is critical for the Derlin-1-mediated dislocation of the MHC-I heavy chain to the cytosol during US11-induced MHC-I degradation.
A study of planar anchor groups for graphene-based single-molecule electronics.
Bailey, Steven; Visontai, David; Lambert, Colin J; Bryce, Martin R; Frampton, Harry; Chappell, David
2014-02-07
To identify families of stable planar anchor groups for use in single molecule electronics, we report detailed results for the binding energies of two families of anthracene and pyrene derivatives adsorbed onto graphene. We find that all the selected derivatives functionalized with either electron donating or electron accepting substituents bind more strongly to graphene than the parent non-functionalized anthracene or pyrene. The binding energy is sensitive to the detailed atomic alignment of substituent groups over the graphene substrate leading to larger than expected binding energies for -OH and -CN derivatives. Furthermore, the ordering of the binding energies within the anthracene and pyrene series does not simply follow the electron affinities of the substituents. Energy barriers to rotation or displacement on the graphene surface are much lower than binding energies for adsorption and therefore at room temperature, although the molecules are bound to the graphene, they are almost free to move along the graphene surface. Binding energies can be increased by incorporating electrically inert side chains and are sensitive to the conformation of such chains.
A study of planar anchor groups for graphene-based single-molecule electronics
NASA Astrophysics Data System (ADS)
Bailey, Steven; Visontai, David; Lambert, Colin J.; Bryce, Martin R.; Frampton, Harry; Chappell, David
2014-02-01
To identify families of stable planar anchor groups for use in single molecule electronics, we report detailed results for the binding energies of two families of anthracene and pyrene derivatives adsorbed onto graphene. We find that all the selected derivatives functionalized with either electron donating or electron accepting substituents bind more strongly to graphene than the parent non-functionalized anthracene or pyrene. The binding energy is sensitive to the detailed atomic alignment of substituent groups over the graphene substrate leading to larger than expected binding energies for -OH and -CN derivatives. Furthermore, the ordering of the binding energies within the anthracene and pyrene series does not simply follow the electron affinities of the substituents. Energy barriers to rotation or displacement on the graphene surface are much lower than binding energies for adsorption and therefore at room temperature, although the molecules are bound to the graphene, they are almost free to move along the graphene surface. Binding energies can be increased by incorporating electrically inert side chains and are sensitive to the conformation of such chains.
Legendre-Guillemin, Valerie; Metzler, Martina; Lemaire, Jean-Francois; Philie, Jacynthe; Gan, Lu; Hayden, Michael R; McPherson, Peter S
2005-02-18
Huntingtin interacting protein 1 (HIP1) is a component of clathrin coats. We previously demonstrated that HIP1 promotes clathrin assembly through its central helical domain, which binds directly to clathrin light chains (CLCs). To better understand the relationship between CLC binding and clathrin assembly we sought to dissect this interaction. Using C-terminal deletion constructs of the HIP1 helical domain, we identified a region between residues 450 and 456 that is required for CLC binding. Within this region, point mutations showed the importance of residues Leu-451, Leu-452, and Arg-453. Mutants that fail to bind CLC are unable to promote clathrin assembly in vitro but still mediate HIP1 homodimerization and heterodimerization with the family member HIP12/HIP1R. Moreover, HIP1 binding to CLC is necessary for HIP1 targeting to clathrin-coated pits and clathrin-coated vesicles. Interestingly, HIP1 binds to a highly conserved region of CLC previously demonstrated to regulate clathrin assembly. These results suggest a role for HIP1/CLC interactions in the regulation of clathrin assembly.
Cocca, Brian A.; Seal, Samarendra N.; D'Agnillo, Paolo; Mueller, Yvonne M.; Katsikis, Peter D.; Rauch, Joyce; Weigert, Martin; Radic, Marko Z.
2001-01-01
Apoptotic cells contain nuclear autoantigens that may initiate a systemic autoimmune response. To explore the mechanism of antibody binding to apoptotic cells, 3H9, a murine autoantibody with dual specificity for phospholipids and DNA, was used. H chain mutants of 3H9 were constructed, expressed as single-chain Fv (scFv) in Escherichia coli, and assessed for binding to phosphatidylserine, an antigen expressed on apoptotic cells. Both 3H9 and its germline revertant bound to dioleoyl phosphatidylserine in ELISA, and binding was enhanced by β2 glycoprotein I (β2GPI), a plasma protein that selectively binds to apoptotic cells. Higher relative affinity for DOPS-β2GPI was achieved by the introduction of Arg residues into the 3H9 H chain variable region at positions previously shown to mediate DNA binding. Specificity of the two structurally most diverse scFv for apoptotic cells was shown by flow cytometry, and two populations of scFv-bound cells were identified by differences in propidium iodide staining. The results suggest that, in autoimmunity, B cells with Ig receptors for apoptotic cells and DNA are positively selected, and that the antibodies they produce have the potential to affect the clearance and processing of apoptotic cells. PMID:11717440
Tynan, S H; Purohit, A; Doxsey, S J; Vallee, R B
2000-10-20
The light intermediate chains (LICs) of cytoplasmic dynein consist of multiple isoforms, which undergo post-translational modification to produce a large number of species separable by two-dimensional electrophoresis and which we have proposed to represent at least two gene products. Recently, we demonstrated the first known function for the LICs: binding to the centrosomal protein, pericentrin, which represents a novel, non-dynactin-based cargo-binding mechanism. Here we report the cloning of rat LIC1, which is approximately 75% homologous to rat LIC2 and also contains a P-loop consensus sequence. We compared LIC1 and LIC2 for the ability to interact with pericentrin, and found that only LIC1 will bind. A functional P-loop sequence is not required for this interaction. We have mapped the interaction to the central region of both LIC1 and pericentrin. Using recombinant LICs, we found that they form homooligomers, but not heterooligomers, and exhibit mutually exclusive binding to the heavy chain. Additionally, overexpressed pericentrin is seen to interact with endogenous LIC1 exclusively. Together these results demonstrate the existence of two subclasses of cytoplasmic dynein: LIC1-containing dynein, and LIC2-containing dynein, only the former of which is involved in pericentrin association with dynein.
Piekarska, B; Konieczny, L; Rybarska, J; Stopa, B; Zemanek, G; Szneler, E; Król, M; Nowak, M; Roterman, I
2001-11-01
Moderate heating (40-50 degrees C) of immunoglobulins makes them accessible for binding with Congo Red and some related highly associated dyes. The binding is specific and involves supramolecular dye ligands presenting ribbon-like micellar bodies. The L chain lambda dimer, which upon heating disclosed the same binding requirement with respect to supramolecular dye ligands, was used in this work to identify the site of their attachment. Two clearly defined dye-protein (L lambda chain) complexes arise upon heating, here called complex I and complex II. The first is formed at low temperatures (up to 40-45 degrees C) and hence by a still native protein, while the formation of the second one is associated with domain melting above 55 degrees C. They contain 4 and 8 dye molecules bound per L chain monomer, respectively. Complex I also forms efficiently at high dye concentration even at ambient temperature. Complex I and its formation was the object of the present studies. Three structural events that could make the protein accessible to penetration by the large dye ligand were considered to occur in L chains upon heating: local polypeptide chain destabilization, VL-VL domain incoherence, and protein melting. Of these three possibilities, local low-energy structural alteration was found to correlate best with the formation of complex I. It was identified as decreased packing stability of the N-terminal polypeptide chain fragment, which as a result made the V domain accessible for dye penetration. The 19-amino acid N-terminal fragment becomes susceptible to proteolytic cleavage after being replaced by the dye at its packing locus. Its splitting from the dye-protein complex was proved by amino acid sequence analysis. The emptied packing locus, which becomes the site that holds the dye, is bordered by strands of amino acids numbered 74-80 and 105-110, as shown by model analysis. The character of the temperature-induced local polypeptide chain destabilization and its possible role in intramolecular antibody signaling is discussed. Copyright 2001 John Wiley & Sons, Inc.
Subsite binding energies of an exo-polygalacturonase using isothermal titration calorimetry
USDA-ARS?s Scientific Manuscript database
Thermodynamic parameters for binding of a series of galacturonic acid oligomers to an exo-polygalacturonase, RPG16 from Rhizopus oryzae, were determined by isothermal titration calorimetry. Binding of oligomers varying in chain length from two to five galacturonic acid residues is an exothermic proc...
Dyes designed for high sensitivity detection of double-stranded DNA
Glazer, Alexander N.; Benson, Scott C.
1994-01-01
Novel fluorescent dyes are provided, characterized by having a fluorophore joined to a polycationic chain of at least two positive charges. The dyes are found to provide for high enhancement upon binding to nucleic acid and have strong binding affinities to the nucleic acid, as compared to the fluorophore without the polycationic chain. The dyes find use in detection of dsDNA in gel electrophoresis and solution at substantially higher sensitivities using substantially less dye.
Changes in conformational dynamics of basic side chains upon protein-DNA association.
Esadze, Alexandre; Chen, Chuanying; Zandarashvili, Levani; Roy, Sourav; Pettitt, B Montgometry; Iwahara, Junji
2016-08-19
Basic side chains play major roles in recognition of nucleic acids by proteins. However, dynamic properties of these positively charged side chains are not well understood. In this work, we studied changes in conformational dynamics of basic side chains upon protein-DNA association for the zinc-finger protein Egr-1. By nuclear magnetic resonance (NMR) spectroscopy, we characterized the dynamics of all side-chain cationic groups in the free protein and in the complex with target DNA. Our NMR order parameters indicate that the arginine guanidino groups interacting with DNA bases are strongly immobilized, forming rigid interfaces. Despite the strong short-range electrostatic interactions, the majority of the basic side chains interacting with the DNA phosphates exhibited high mobility, forming dynamic interfaces. In particular, the lysine side-chain amino groups exhibited only small changes in the order parameters upon DNA-binding. We found a similar trend in the molecular dynamics (MD) simulations for the free Egr-1 and the Egr-1-DNA complex. Using the MD trajectories, we also analyzed side-chain conformational entropy. The interfacial arginine side chains exhibited substantial entropic loss upon binding to DNA, whereas the interfacial lysine side chains showed relatively small changes in conformational entropy. These data illustrate different dynamic characteristics of the interfacial arginine and lysine side chains. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Sequence Search and Comparative Genomic Analysis of SUMO-Activating Enzymes Using CoGe.
Carretero-Paulet, Lorenzo; Albert, Victor A
2016-01-01
The growing number of genome sequences completed during the last few years has made necessary the development of bioinformatics tools for the easy access and retrieval of sequence data, as well as for downstream comparative genomic analyses. Some of these are implemented as online platforms that integrate genomic data produced by different genome sequencing initiatives with data mining tools as well as various comparative genomic and evolutionary analysis possibilities.Here, we use the online comparative genomics platform CoGe ( http://www.genomevolution.org/coge/ ) (Lyons and Freeling. Plant J 53:661-673, 2008; Tang and Lyons. Front Plant Sci 3:172, 2012) (1) to retrieve the entire complement of orthologous and paralogous genes belonging to the SUMO-Activating Enzymes 1 (SAE1) gene family from a set of species representative of the Brassicaceae plant eudicot family with genomes fully sequenced, and (2) to investigate the history, timing, and molecular mechanisms of the gene duplications driving the evolutionary expansion and functional diversification of the SAE1 family in Brassicaceae.
Oxidative stress–induced assembly of PML nuclear bodies controls sumoylation of partner proteins
Sahin, Umut; Ferhi, Omar; Jeanne, Marion; Benhenda, Shirine; Berthier, Caroline; Jollivet, Florence; Niwa-Kawakita, Michiko; Faklaris, Orestis; Setterblad, Niclas; Lallemand-Breitenbach, Valérie
2014-01-01
The promyelocytic leukemia (PML) protein organizes PML nuclear bodies (NBs), which are stress-responsive domains where many partner proteins accumulate. Here, we clarify the basis for NB formation and identify stress-induced partner sumoylation as the primary NB function. NB nucleation does not rely primarily on intermolecular interactions between the PML SUMO-interacting motif (SIM) and SUMO, but instead results from oxidation-mediated PML multimerization. Oxidized PML spherical meshes recruit UBC9, which enhances PML sumoylation, allow partner recruitment through SIM interactions, and ultimately enhance partner sumoylation. Intermolecular SUMO–SIM interactions then enforce partner sequestration within the NB inner core. Accordingly, oxidative stress enhances NB formation and global sumoylation in vivo. Some NB-associated sumoylated partners also become polyubiquitinated by RNF4, precipitating their proteasomal degradation. As several partners are protein-modifying enzymes, NBs could act as sensors that facilitate and confer oxidative stress sensitivity not only to sumoylation but also to other post-translational modifications, thereby explaining alterations of stress response upon PML or NB loss. PMID:24637324
Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome
Shi, Yuan; Chen, Xiang; Elsasser, Suzanne; Stocks, Bradley B.; Tian, Geng; Lee, Byung-Hoon; Shi, Yanhong; Zhang, Naixia; de Poot, Stefanie A. H.; Tuebing, Fabian; Sun, Shuangwu; Vannoy, Jacob; Tarasov, Sergey G.; Engen, John R.; Finley, Daniel; Walters, Kylie J.
2016-01-01
Structured Abstract INTRODUCTION The ubiquitin-proteasome system comprises hundreds of distinct pathways of degradation, which converge at the step of ubiquitin recognition by the proteasome. Five proteasomal ubiquitin receptors have been identified, two that are intrinsic to the proteasome (Rpn10 and Rpn13) and three reversibly associated proteasomal ubiquitin receptors (Rad23, Dsk2, and Ddi1). RATIONALE We found that the five known proteasomal ubiquitin receptors of yeast are collectively nonessential for ubiquitin recognition by the proteasome. We therefore screened for additional ubiquitin receptors in the proteasome and identified subunit Rpn1 as a candidate. We used nuclear magnetic resonance (NMR) spectroscopy to characterize the structure of the binding site within Rpn1, which we term the T1 site. Mutational analysis of this site showed its functional importance within the context of intact proteasomes. T1 binds both ubiquitin and ubiquitin-like (UBL) proteins, in particular the substrate-delivering shuttle factor Rad23. A second site within the Rpn1 toroid, T2, recognizes the UBL domain of deubiquitinating enzyme Ubp6, as determined by hydrogen-deuterium exchange mass spectrometry analysis and validated by amino acid substitution and functional assays. The Rpn1 toroid thus serves a critical scaffolding role within the proteasome, helping to assemble multiple proteasome cofactors as well as substrates. RESULTS Our results indicate that proteasome subunit Rpn1 can recognize both ubiquitin and UBL domains of substrate shuttling factors that themselves bind ubiquitin and function as reversibly-associated proteasomal ubiquitin receptors. Recognition is mediated by the T1 site within the Rpn1 toroid, which supports proteasome function in vivo. We found that the capacity of T1 to recognize both ubiquitin and UBL proteins was shared with Rpn10 and Rpn13. The surprising multiplicity of ubiquitin-recognition domains within the proteasome may promote enhanced, multipoint binding of ubiquitin chains. The structures of the T1 site in its free state and complexed with monoubiquitin or K48-linked diubiquitin were solved, revealing that three neighboring outer helices from the T1 toroid engage two ubiquitins. This binding mode leads to a preference for certain ubiquitin chain types, especially K6- and K48-linked chains, in a distinct configuration that can position substrates close to the entry port of the proteasome. The fate of proteasome-docked ubiquitin conjugates is determined by a competition between deubiquitination and substrate degradation. We find that proximal to the T1 site within the Rpn1 toroid is a second UBL-binding site, T2, that does not assist in ubiquitin chain recognition, but rather in chain disassembly, by binding to the UBL domain of deubiquitinating enzyme Ubp6. Importantly, the UBL interactors at T1 and T2 are distinct, assigning substrate localization to T1 and substrate deubiquitination to T2. CONCLUSION A ligand-binding hotspot was identified in the Rpn1 toroid, consisting of two adjacent receptor sites, T1 and T2. The Rpn1 toroid represents a novel class of binding domains for ubiquitin and UBL proteins. This study thus defines a novel two-site recognition domain intrinsic to the proteasome that uses homologous ubiquitin/UBL-class ligands to assemble substrates, substrate shuttling factors, and a deubiquitinating enzyme in close proximity. A ligand-binding hotspot in the proteasome for assembling substrates and cofactors Schematic (top) and model structure (bottom, left) mapping the UBL-binding Rpn1 T1 (indigo) and T2 (orange) sites. (Bottom, right) Enlarged region of the proteasome to illustrate the Rpn1 T1 and T2 sites bound to a ubiquitin chain (yellow) and deubiquitinating enzyme Ubp6 (green), respectively. PDB 4CR2 and 2B9R were used for this figure. Hundreds of pathways for degradation converge at ubiquitin recognition by proteasome. Here we found that the five known proteasomal ubiquitin receptors are collectively nonessential for ubiquitin recognition, and identified a sixth receptor, Rpn1. A site (T1) in the Rpn1 toroid recognized ubiquitin and ubiquitin-like (UBL) domains of substrate shuttling factors. T1 structures with monoubiquitin or K48 diubiquitin show three neighboring outer helices engaging two ubiquitins. T1 contributes a distinct substrate-binding pathway with preference for K48-linked chains. Proximal to T1 within the Rpn1 toroid is a second UBL-binding site (T2) that assists in ubiquitin chain disassembly, by binding the UBL of deubiquitinating enzyme Ubp6. Thus a two-site recognition domain intrinsic to the proteasome uses homologous ubiquitin/UBL-class ligands to assemble substrates, shuttling factors, and a deubiquitinating enzyme. PMID:26912900
Weinberg, Justin; Zhang, Shaojie; Kirkby, Allison; Shachar, Enosh; Carta, Giorgio; Przybycien, Todd
2018-04-20
We have proposed chemical modification of Protein A (ProA) chromatography ligands with polyethylene glycol (PEGylation) as a strategy to increase the resin selectivity and robustness by providing the ligand with a steric repulsion barrier against non-specific binding. Here, we report on robustness and selectivity benefits for Repligen CaptivA PriMAB resin with ligands modified with 5.2 kDa and 21.5 kDa PEG chains, respectively. PEGylation of ProA ligands allowed the resin to retain a higher percentage of static binding capacity relative to the unmodified resin upon digestion with chymotrypsin, a representative serine protease. The level of protection against digestion was independent of the PEG molecular weight or modification extent for the PEGylation chemistry used. Additionally, PEGylation of the ligands was found to decrease the level of non-specific binding of fluorescently labeled bovine serum albumin (BSA) aggregates to the surface of the resin particles as visualized via confocal laser scanning microscopy (CLSM). The level of aggregate binding decreased as the PEG molecular weight increased, but increasing the extent of modification with 5.2 kDa PEG chains had no effect. Further examination of resin particles via CLSM confirmed that the PEG chains on the modified ligands were capable of blocking the "hitchhiking" association of BSA, a mock contaminant, to an adsorbed mAb that is prone to BSA binding. Ligands modified with 21.5 kDa PEG chains were effective at blocking the association, while ligands modified with 5.2 kDa PEG chains were not. Finally, ligands with 21.5 kDa PEG chains increased the selectivity of the resin against host cell proteins (HCPs) produced by Chinese Hamster Ovary (CHO) cells by up to 37% during purification of a monoclonal antibody (mAb) from harvested cell culture fluid (HCCF) using a standard ProA chromatography protocol. The combined work suggests that PEGylating ProA chromatography media is a viable pathway for increasing both resin lifetime and host cell impurity clearance in downstream bioprocessing. Copyright © 2018 Elsevier B.V. All rights reserved.
Dudev, Todor; Lin, Yen-lin; Dudev, Minko; Lim, Carmay
2003-03-12
The role of the second shell in the process of metal binding and selectivity in metalloproteins has been elucidated by combining Protein Data Bank (PDB) surveys of Mg, Mn, Ca, and Zn binding sites with density functional theory/continuum dielectric methods (DFT/CDM). Peptide backbone groups were found to be the most common second-shell ligand in Mg, Mn, Ca, and Zn binding sites, followed (in decreasing order) by Asp/Glu, Lys/Arg, Asn/Gln, and Ser/Thr side chains. Aromatic oxygen- or nitrogen-containing side chains (Tyr, His, and Trp) and sulfur-containing side chains (Cys and Met) are seldom found in the second coordination layer. The backbone and Asn/Gln side chain are ubiquitous in the metal second coordination layer as their carbonyl oxygen and amide hydrogen can act as a hydrogen-bond acceptor and donor, respectively, and can therefore partner practically every first-shell ligand. The second most common outer-shell ligand, Asp/Glu, predominantly hydrogen bonds to a metal-bound water or Zn-bound histidine and polarizes the H-O or H-N bond. In certain cases, a second-shell Asp/Glu could affect the protonation state of the metal ligand. It could also energetically stabilize a positively charged metal complex more than a neutral ligand such as the backbone and Asn/Gln side chain. As for the first shell, the second shell is predicted to contribute to the metal selectivity of the binding site by discriminating between metal cations of different ionic radii and coordination geometries. The first-shell-second-shell interaction energies decay rapidly with increasing solvent exposure of the metal binding site. They are less favorable but are of the same order of magnitude as compared to the respective metal-first-shell interaction energies. Altogether, the results indicate that the structure and properties of the second shell are dictated by those of the first layer. The outer shell is apparently designed to stabilize/protect the inner-shell and complement/enhance its properties.
Honey, Denise M.; Best, Annie; Qiu, Huawei
2018-01-01
ABSTRACT Metelimumab (CAT192) is a human IgG4 monoclonal antibody developed as a TGFβ1-specific antagonist. It was tested in clinical trials for the treatment of scleroderma but later terminated due to lack of efficacy. Subsequent characterization of CAT192 indicated that its TGFβ1 binding affinity was reduced by ∼50-fold upon conversion from the parental single-chain variable fragment (scFv) to IgG4. We hypothesized this result was due to decreased conformational flexibility of the IgG that could be altered via engineering. Therefore, we designed insertion mutants in the elbow region and screened for binding and potency. Our results indicated that increasing the elbow region linker length in each chain successfully restored the isoform-specific and high affinity binding of CAT192 to TGFβ1. The crystal structure of the high binding affinity mutant displays large conformational rearrangements of the variable domains compared to the wild-type antigen-binding fragment (Fab) and the low binding affinity mutants. Insertion of two glycines in both the heavy and light chain elbow regions provided sufficient flexibility for the variable domains to extend further apart than the wild-type Fab, and allow the CDR3s to make additional interactions not seen in the wild-type Fab structure. These interactions coupled with the dramatic conformational changes provide a possible explanation of how the scFv and elbow-engineered Fabs bind TGFβ1 with high affinity. This study demonstrates the benefits of re-examining both structure and function when converting scFv to IgG molecules, and highlights the potential of structure-based engineering to produce fully functional antibodies. PMID:29333938
Almog, Orna; González, Ana; Godin, Noa; de Leeuw, Marina; Mekel, Marlene J; Klein, Daniela; Braun, Sergei; Shoham, Gil; Walter, Richard L
2009-02-01
We determine and compare the crystal structure of two proteases belonging to the subtilisin superfamily: S41, a cold-adapted serine protease produced by Antarctic bacilli, at 1.4 A resolution and Sph, a mesophilic serine protease produced by Bacillus sphaericus, at 0.8 A resolution. The purpose of this comparison was to find out whether multiple calcium ion binding is a molecular factor responsible for the adaptation of S41 to extreme low temperatures. We find that these two subtilisins have the same subtilisin fold with a root mean square between the two structures of 0.54 A. The final models for S41 and Sph include a calcium-loaded state of five ions bound to each of these two subtilisin molecules. None of these calcium-binding sites correlate with the high affinity known binding site (site A) found for other subtilisins. Structural analysis of the five calcium-binding sites found in these two crystal structures indicate that three of the binding sites have two side chains of an acidic residue coordinating the calcium ion, whereas the other two binding sites have either a main-chain carbonyl, or only one acidic residue side chain coordinating the calcium ion. Thus, we conclude that three of the sites are of high affinity toward calcium ions, whereas the other two are of low affinity. Because Sph is a mesophilic subtilisin and S41 is a psychrophilic subtilisin, but both crystal structures were found to bind five calcium ions, we suggest that multiple calcium ion binding is not responsible for the adaptation of S41 to low temperatures. Copyright 2008 Wiley-Liss, Inc.
Martin, Emily B; Williams, Angela; Heidel, Eric; Macy, Sallie; Kennel, Stephen J; Wall, Jonathan S
2013-06-21
In previously published work, we have described heparin-binding synthetic peptides that preferentially recognize amyloid deposits in a mouse model of reactive systemic (AA) amyloidosis and can be imaged by using positron and single photon emission tomographic imaging. We wanted to extend these findings to the most common form of visceral amyloidosis, namely light chain (AL); however, there are no robust experimental animal models of AL amyloidosis. To further define the binding of the lead peptide, p5, to AL amyloid, we characterized the reactivity in vitro of p5 with in situ and patient-derived AL amyloid extracts which contain both hypersulfated heparan sulfate proteoglycans as well as amyloid fibrils. Histochemical staining demonstrated that the peptide specifically localized with tissue-associated AL amyloid deposits. Although we anticipated that p5 would undergo electrostatic interactions with the amyloid-associated glycosaminoglycans expressing heparin-like side chains, no significant correlation between peptide binding and glycosaminoglycan content within amyloid extracts was observed. In contrast, following heparinase I treatment, although overall binding was reduced, a positive correlation between peptide binding and amyloid fibril content became evident. This interaction was further confirmed using synthetic light chain fibrils that contain no carbohydrates. These data suggest that p5 can bind to both the sulfated glycosaminoglycans and protein fibril components of AL amyloid. Understanding these complex electrostatic interactions will aid in the optimization of synthetic peptides for use as amyloid imaging agents and potentially as therapeutics for the treatment of amyloid diseases. Copyright © 2013 Elsevier Inc. All rights reserved.
Villapakkam, Anuradha C; Handke, Luke D; Belitsky, Boris R; Levdikov, Vladimir M; Wilkinson, Anthony J; Sonenshein, Abraham L
2009-11-01
Bacillus subtilis CodY protein is a DNA-binding global transcriptional regulator that responds to branched-chain amino acids (isoleucine, leucine, and valine) and GTP. Crystal structure studies have shown that the N-terminal region of the protein includes a GAF domain that contains a hydrophobic pocket within which isoleucine and valine bind. This region is well conserved in CodY homologs. Site-directed mutagenesis was employed to understand the roles of some of the residues in the GAF domain and hydrophobic pocket in interaction with isoleucine and GTP. The F40A, F71E, and F98A forms of CodY were inactive in vivo. They were activatable by GTP but to a much lesser extent by branched-chain amino acids in vitro. The CodY mutant R61A retained partial repression of target promoters in vivo and was able to respond to GTP in vitro but also responded poorly to branched-chain amino acids in vitro unless GTP was simultaneously present. Thus, the GAF domain includes residues essential for full activation of CodY by branched-chain amino acids, but these residues are not critical for activation by GTP. Binding studies with branched-chain amino acids and their analogs revealed that an amino group at position 2 and a methyl group at position 3 of valine are critical components of the recognition of the amino acids by CodY.
NASA Astrophysics Data System (ADS)
Li, Kun; Gu, Boqin; Zhu, Wanfu
2017-03-01
A molecular dynamics (MD) simulations study is performed on multiwalled carbon nanotubes (MWNTs)/acrylonitrile-butadiene rubber (NBR) composites. The physisorption and interfacial characteristics between the various MWNTs and polymer macromolecular chains are identified. The effects of nanotube layers on the nanotubes/polymer interactions are examined. Each of the situation result and surface features is characterized by binding energy (Eb). It is shown that the binding energy (Eb) increase with the number of layers.
Thermodynamics of Alkanethiol Self-Assembled Monolayer Assembly on Pd Surfaces.
Kumar, Gaurav; Van Cleve, Timothy; Park, Jiyun; van Duin, Adri; Medlin, J Will; Janik, Michael J
2018-06-05
We investigate the structure and binding energy of alkanethiolate self-assembled monolayers (SAMs) on Pd (111), Pd (100), and Pd (110) facets at different coverages. Dispersion-corrected density functional theory calculations are used to correlate the binding energy of alkanethiolates with alkyl chain length and coverage. The equilibrium coverage of thiolate layers strongly prefers 1/3 monolayer (ML) on the Pd (111) surface. The coverage of thiolates varies with chemical potential on Pd (100) and Pd (110), increasing from 1/3 to 1/2 ML on (100) and from 1/4 to 1/2 ML on (110) as the thiol chemical potential is increased. Higher coverages are driven by attractive dispersion interactions between the extended alkyl chains, such that transitions to higher coverages occur at lower thiol chemical potentials for longer chain thiolates. Stronger adsorption to the Pd (100) surface causes the equilibrium Wulff construction of Pd particles to take on a cubic shape upon saturation with thiols. The binding of H, O, and CO adsorbates is weakened as the thiolate coverage is increased, with saturation coverages causing unfavorable binding of O and CO on Pd (100) and weakened binding on other facets. Temperature-dependent CO diffuse reflectance infrared Fourier transform spectroscopy experiments are used to corroborate the weakened binding of CO in the presence of thiolate SAMs of varying surface density. Preliminary results of multiscale modeling efforts on the Pd-thiol system using a reactive force field, ReaxFF, are also discussed.
Song, Wei; Guo, Jun-Tao
2015-01-01
Transcription factors regulate gene expression through binding to specific DNA sequences. How transcription factors achieve high binding specificity is still not well understood. In this paper, we investigated the role of protein flexibility in protein-DNA-binding specificity by comparative molecular dynamics (MD) simulations. Protein flexibility has been considered as a key factor in molecular recognition, which is intrinsically a dynamic process involving fine structural fitting between binding components. In this study, we performed comparative MD simulations on wild-type and F10V mutant P22 Arc repressor in both free and complex conformations. The F10V mutant has lower DNA-binding specificity though both the bound and unbound main-chain structures between the wild-type and F10V mutant Arc are highly similar. We found that the DNA-binding motif of wild-type Arc is structurally more flexible than the F10V mutant in the unbound state, especially for the six DNA base-contacting residues in each dimer. We demonstrated that the flexible side chains of wild-type Arc lead to a higher DNA-binding specificity through forming more hydrogen bonds with DNA bases upon binding. Our simulations also showed a possible conformational selection mechanism for Arc-DNA binding. These results indicate the important roles of protein flexibility and dynamic properties in protein-DNA-binding specificity.
A mutagenesis study of a catalytic antibody
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, D.Y.; Prudent, J.R.; Baldwin, E.P.
1991-01-01
The authors have generated seven site-specific mutations in the genes encoding the variable region of the heavy chain domain (V{sub H}) of the phosphocholine-binding antibody S107.S107 is a member of a family of well-characterized highly homologous antibodies that bind phosphorylcholine mono- and diesters. Two of these antibodies, MOPC-167 and T15, have previously been shown to catalyze the hydrolysis of 4-nitrophenyl N-trimethylammonioethyl carbonate. Two conserved heavy-chain residues, Tyr-33 and Arg-52, were postulated to be involved in binding and hydrolysis of 4-nitrophenylcholine carbonate esters. To more precisely define the catalytic roles of these residues, three Arg-52 mutants (R52K, R52Q, R52C) and fourmore » Tyr-33 mutants (Y33H, Y33F, Y33E, Y33D) of antibody S107 were generated. The genes encoding the V{sub H} binding domain of S107 were inserted into plasmid pUC-fl, and in vitro mutagenesis was performed. These results not only demonstrate the importance of electrostatic interactions in catalysis by antibody S107 but also show that catalytic side chains can be introduced into antibodies to enhance their catalytic efficiency.« less
Avnir, Yuval; Prachanronarong, Kristina L; Zhang, Zhen; Hou, Shurong; Peterson, Eric C; Sui, Jianhua; Zayed, Hatem; Kurella, Vinodh B; McGuire, Andrew T; Stamatatos, Leonidas; Hilbert, Brendan J; Bohn, Markus-Frederik; Kowalik, Timothy F; Jensen, Jeffrey D; Finberg, Robert W; Wang, Jennifer P; Goodall, Margaret; Jefferis, Roy; Zhu, Quan; Kurt Yilmaz, Nese; Schiffer, Celia A; Marasco, Wayne A
2017-12-12
The heavy chain IGHV1-69 germline gene exhibits a high level of polymorphism and shows biased use in protective antibody (Ab) responses to infections and vaccines. It is also highly expressed in several B cell malignancies and autoimmune diseases. G6 is an anti-idiotypic monoclonal Ab that selectively binds to IGHV1-69 heavy chain germline gene 51p1 alleles that have been implicated in these Ab responses and disease processes. Here, we determine the co-crystal structure of humanized G6 (hG6.3) in complex with anti-influenza hemagglutinin stem-directed broadly neutralizing Ab D80. The core of the hG6.3 idiotope is a continuous string of CDR-H2 residues starting with M53 and ending with N58. G6 binding studies demonstrate the remarkable breadth of binding to 51p1 IGHV1-69 Abs with diverse CDR-H3, light chain, and antigen binding specificities. These studies detail the broad expression of the G6 cross-reactive idiotype (CRI) that further define its potential role in precision medicine. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Grozema, F C; Best, A S; van Eijck, L; Stride, J; Kearley, G J; de Leeuw, S W; Picken, S J
2005-04-28
Polyelectrolyte materials are an interesting class of electrolytes for use in fuel cell and battery applications. Poly(para-phenylene terephthalamide) (PPTA, Kevlar) is a liquid crystalline polymer that, when sulfonated, is a polyelectrolyte that exhibits moderate ion conductivity at elevated temperatures. In this work, quasi-elastic neutron scattering (QENS) experiments were performed to gain insight into the effect of the presence of lithium counterions on the chain dynamics in the material. It was found that the addition of lithium ions decreases the dynamics of the chains. Additionally, the binding of lithium ions to the sulfonic acids groups was investigated by density functional theory (DFT) calculations. It was found that the local surroundings of the sulfonic acid group have very little effect on the lithium-ion binding energy. Binding energies for a variety of different systems were all calculated to be around 150 kcal/mol. The DFT calculations also show the existence of a structure in which a single lithium ion interacts with two sulfonic acid moieties on different chains. The formation of such "electrostatic cross-links" is believed to be the source of the increased tendency to aggregate and the reduced dynamics in the presence of lithium ions.
Ybe, Joel A; Clegg, Mary E; Illingworth, Melissa; Gonzalez, Claire; Niu, Qian
2009-01-01
The interaction between HIP family proteins (HIP1 and HIP12/1R) and clathrin is fundamental to endocytosis. We used circular dichroism (CD) to study the stability of an HIP1 subfragment (aa468-530) that is splayed open. CD thermal melts show HIP1 468-530 is only stable at low temperatures, but this HIP1 fragment contains a structural unit that does not melt out even at 83°C. We then created HIP1 mutants to probe our hypothesis that a short hydrophobic path in the opened region is the binding site for clathrin light chain. We found that the binding of hub/LCb was sensitive to mutating two distantly separated basic residues (K474 and K494). The basic patches marked by K474 and K494 are conserved in HIP12/1R. The lack of conservation in sla2p (S. cerevisiae), HIP1 from D. melanogaster, and HIP1 homolog ZK370.3 from C. elegans implies the binding of HIP1 and HIP1 homologs to clathrin light chain may be different in these organisms.
Ybe, Joel A.; Clegg, Mary E.; Illingworth, Melissa; Gonzalez, Claire; Niu, Qian
2009-01-01
The interaction between HIP family proteins (HIP1 and HIP12/1R) and clathrin is fundamental to endocytosis. We used circular dichroism (CD) to study the stability of an HIP1 subfragment (aa468-530) that is splayed open. CD thermal melts show HIP1 468-530 is only stable at low temperatures, but this HIP1 fragment contains a structural unit that does not melt out even at 83°C. We then created HIP1 mutants to probe our hypothesis that a short hydrophobic path in the opened region is the binding site for clathrin light chain. We found that the binding of hub/LCb was sensitive to mutating two distantly separated basic residues (K474 and K494). The basic patches marked by K474 and K494 are conserved in HIP12/1R. The lack of conservation in sla2p (S. cerevisiae), HIP1 from D. melanogaster, and HIP1 homolog ZK370.3 from C. elegans implies the binding of HIP1 and HIP1 homologs to clathrin light chain may be different in these organisms. PMID:22820750
Cheng, Hui; Yang, Zhijie; Estabrook, Michele M.; John, Constance M.; Jarvis, Gary A.; McLaughlin, Stephanie; Griffiss, J. McLeod
2011-01-01
Antibodies that initiate complement-mediated killing of Neisseria meningitidis as they enter the bloodstream from the oropharynx protect against disseminated disease. Human IgGs that bind the neisserial L7 lipooligosaccharide (LOS) are bactericidal for L3,7 and L2,4 meningococci in the presence of human complement. These strains share a lacto-N-neotetraose (nLc4) LOS α chain. We used a set of mutants that have successive saccharide deletions from the nLc4 α chain to characterize further the binding and bactericidal activity of nLc4 LOS IgG. We found that the nLc4 α chain conforms at least four different antigens. We separately purified IgG that required the nLc4 (non-reducing) terminal galactose (Gal) for binding and IgG that bound the truncated nLc3 α chain that lacks this Gal residue. IgG that bound the internal nLc3 α chain killed both L3,7 and L2,4 strains, whereas IgG that required the nLc4 terminal Gal residue for binding killed L2,4 stains but not L3,7 strains. These results show that the diversity of LOS antibodies in human serum is as much a function of the conformation of multiple antigens by a single glycoform as of the production of multiple glycoforms. Differences in sensitivity to killing by human nLc4 LOS IgG may account for the fact that fully two-thirds of endemic group B meningococcal disease in infants and children is caused by L3,7 strains, but only 20% is caused by L2,4 stains. PMID:22027827
Yu, Miao; Lau, Thomas Y; Carr, Steven A; Krieger, Monty
2012-12-18
The high-density lipoprotein (HDL) receptor scavenger receptor class B, type I (SR-BI), binds HDL and mediates selective cholesteryl ester uptake. SR-BI's structure and mechanism are poorly understood. We used mass spectrometry to assign the two disulfide bonds in SR-BI that connect cysteines within the conserved Cys(321)-Pro(322)-Cys(323) (CPC) motif and connect Cys(280) to Cys(334). We used site-specific mutagenesis to evaluate the contributions of the CPC motif and the side chain of extracellular Cys(384) to HDL binding and lipid uptake. The effects of CPC mutations on activity were context-dependent. Full wild-type (WT) activity required Pro(322) and Cys(323) only when Cys(321) was present. Reduced intrinsic activities were observed for CXC and CPX, but not XXC, XPX, or XXX mutants (X ≠ WT residue). Apparently, a free thiol side chain at position 321 that cannot form an intra-CPC disulfide bond with Cys(323) is deleterious, perhaps because of aberrant disulfide bond formation. Pro(322) may stabilize an otherwise strained CPC disulfide bond, thus supporting WT activity, but this disulfide bond is not absolutely required for normal activity. C(384)X (X = S, T, L, Y, G, or A) mutants exhibited altered activities that varied with the side chain's size: larger side chains phenocopied WT SR-BI treated with its thiosemicarbazone inhibitor BLT-1 (enhanced binding, weakened uptake); smaller side chains produced almost inverse effects (increased uptake:binding ratio). C(384)X mutants were BLT-1-resistant, supporting the proposal that Cys(384)'s thiol interacts with BLT-1. We discuss the implications of our findings on the functions of the extracellular loop cysteines in SR-BI and compare our results to those presented by other laboratories.
PolyUbiquitin Chain Linkage Topology Selects the Functions from the Underlying Binding Landscape
Wang, Yong; Tang, Chun; Wang, Erkang; Wang, Jin
2014-01-01
Ubiquitin (Ub) can generate versatile molecular signals and lead to different celluar fates. The functional poly-valence of Ub is believed to be resulted from its ability to form distinct polymerized chains with eight linkage types. To provide a full picture of ubiquitin code, we explore the binding landscape of two free Ub monomers and also the functional landscapes of of all eight linkage types by theoretical modeling. Remarkably, we found that most of the compact structures of covalently connected dimeric Ub chains (diUbs) pre-exist on the binding landscape. These compact functional states were subsequently validated by corresponding linkage models. This leads to the proposal that the folding architecture of Ub monomer has encoded all functional states into its binding landscape, which is further selected by different topologies of polymeric Ub chains. Moreover, our results revealed that covalent linkage leads to symmetry breaking of interfacial interactions. We further propose that topological constraint not only limits the conformational space for effective switching between functional states, but also selects the local interactions for realizing the corresponding biological function. Therefore, the topological constraint provides a way for breaking the binding symmetry and reaching the functional specificity. The simulation results also provide several predictions that qualitatively and quantitatively consistent with experiments. Importantly, the K48 linkage model successfully predicted intermediate states. The resulting multi-state energy landscape was further employed to reconcile the seemingly contradictory experimental data on the conformational equilibrium of K48-diUb. Our results further suggest that hydrophobic interactions are dominant in the functional landscapes of K6-, K11-, K33- and K48 diUbs, while electrostatic interactions play a more important role in the functional landscapes of K27, K29, K63 and linear linkages. PMID:24992446
PolyUbiquitin chain linkage topology selects the functions from the underlying binding landscape.
Wang, Yong; Tang, Chun; Wang, Erkang; Wang, Jin
2014-07-01
Ubiquitin (Ub) can generate versatile molecular signals and lead to different celluar fates. The functional poly-valence of Ub is believed to be resulted from its ability to form distinct polymerized chains with eight linkage types. To provide a full picture of ubiquitin code, we explore the binding landscape of two free Ub monomers and also the functional landscapes of of all eight linkage types by theoretical modeling. Remarkably, we found that most of the compact structures of covalently connected dimeric Ub chains (diUbs) pre-exist on the binding landscape. These compact functional states were subsequently validated by corresponding linkage models. This leads to the proposal that the folding architecture of Ub monomer has encoded all functional states into its binding landscape, which is further selected by different topologies of polymeric Ub chains. Moreover, our results revealed that covalent linkage leads to symmetry breaking of interfacial interactions. We further propose that topological constraint not only limits the conformational space for effective switching between functional states, but also selects the local interactions for realizing the corresponding biological function. Therefore, the topological constraint provides a way for breaking the binding symmetry and reaching the functional specificity. The simulation results also provide several predictions that qualitatively and quantitatively consistent with experiments. Importantly, the K48 linkage model successfully predicted intermediate states. The resulting multi-state energy landscape was further employed to reconcile the seemingly contradictory experimental data on the conformational equilibrium of K48-diUb. Our results further suggest that hydrophobic interactions are dominant in the functional landscapes of K6-, K11-, K33- and K48 diUbs, while electrostatic interactions play a more important role in the functional landscapes of K27, K29, K63 and linear linkages.
Goldman, Lawrence M; Amyes, Tina L; Goryanova, Bogdana; Gerlt, John A; Richard, John P
2014-07-16
The mechanism for activation of orotidine 5'-monophosphate decarboxylase (OMPDC) by interactions of side chains from Gln215 and Try217 at a gripper loop and R235, adjacent to this loop, with the phosphodianion of OMP was probed by determining the kinetic parameters k(cat) and K(m) for all combinations of single, double, and triple Q215A, Y217F, and R235A mutations. The 12 kcal/mol intrinsic binding energy of the phosphodianion is shown to be equal to the sum of the binding energies of the side chains of R235 (6 kcal/mol), Q215 (2 kcal/mol), Y217 (2 kcal/mol), and hydrogen bonds to the G234 and R235 backbone amides (2 kcal/mol). Analysis of a triple mutant cube shows small (ca. 1 kcal/mol) interactions between phosphodianion gripper side chains, which are consistent with steric crowding of the side chains around the phosphodianion at wild-type OMPDC. These mutations result in the same change in the activation barrier to the OMPDC-catalyzed reactions of the whole substrate OMP and the substrate pieces (1-β-D-erythrofuranosyl)orotic acid (EO) and phosphite dianion. This shows that the transition states for these reactions are stabilized by similar interactions with the protein catalyst. The 12 kcal/mol intrinsic phosphodianion binding energy of OMP is divided between the 8 kcal/mol of binding energy, which is utilized to drive a thermodynamically unfavorable conformational change of the free enzyme, resulting in an increase in (k(cat))(obs) for OMPDC-catalyzed decarboxylation of OMP, and the 4 kcal/mol of binding energy, which is utilized to stabilize the Michaelis complex, resulting in a decrease in (K(m))(obs).
Schilling, D; Reid IV, J D; Hujer, A; Morgan, D; Demoll, E; Bummer, P; Fenstermaker, R A; Kaetzel, D M
1998-01-01
Site-directed mutagenesis of the platelet-derived growth factor (PDGF) B-chain was conducted to determine the importance of cationic amino acid residues (Arg160-Lys161-Lys162; RKK) located within the loop III region in mediating the biological and cell-association properties of the molecule. Binding to both PDGF alpha-and beta-receptors was inhibited by the conversion of all three cationic residues into anionic glutamates (RKK-->EEE), whereas an RKK-->SSS mutant also exhibited a modest loss in affinity for beta-receptors. Replacements with serine at either Arg160 (RKK-->SKK) or at all three positions (RKK-->SSS) had little effect on binding to alpha-receptors. Replacements with either glutamic or serine residues at any of the three positions also resulted in significant inhibition of heparin-binding activity. Furthermore, the RKK-->EEE mutant exhibited decreased association with the cell surface and accumulated in the culture medium as 29-32 kDa forms. Stable transfection of U87 astrocytoma cells with RKK-->EEE mutants of either the A-chain or the B-chain inhibited malignant growth in athymic nude mice. Despite altered receptor-binding activities, each of the loop III mutants retained full mitogenic activity when applied to cultured Swiss 3T3 cells. CD spectrophotometric analysis of the RKK-->EEE mutant revealed a secondary structure indistinguishable from the wild type, with a high degree of beta-sheet structure and random coil content (50% and 43% respectively). These findings indicate an important role of the Arg160-Lys161-Lys162 sequence in mediating the biological and cell-associative activities of the PDGF-BB homodimer, and reveal that the mitogenic activity of PDGF-BB is insufficient to mediate its full oncogenic properties. PMID:9677323
NASA Astrophysics Data System (ADS)
Li, Huilin; Wongkongkathep, Piriya; Van Orden, Steve L.; Ogorzalek Loo, Rachel R.; Loo, Joseph A.
2014-12-01
"Native" mass spectrometry (MS) has been proven to be increasingly useful for structural biology studies of macromolecular assemblies. Using horse liver alcohol dehydrogenase (hADH) and yeast alcohol dehydrogenase (yADH) as examples, we demonstrate that rich information can be obtained in a single native top-down MS experiment using Fourier transform ion cyclotron mass spectrometry (FTICR MS). Beyond measuring the molecular weights of the protein complexes, isotopic mass resolution was achieved for yeast ADH tetramer (147 kDa) with an average resolving power of 412,700 at m/z 5466 in absorption mode, and the mass reflects that each subunit binds to two zinc atoms. The N-terminal 89 amino acid residues were sequenced in a top-down electron capture dissociation (ECD) experiment, along with the identifications of the zinc binding site at Cys46 and a point mutation (V58T). With the combination of various activation/dissociation techniques, including ECD, in-source dissociation (ISD), collisionally activated dissociation (CAD), and infrared multiphoton dissociation (IRMPD), 40% of the yADH sequence was derived directly from the native tetramer complex. For hADH, native top-down ECD-MS shows that both E and S subunits are present in the hADH sample, with a relative ratio of 4:1. Native top-down ISD of the hADH dimer shows that each subunit (E and S chains) binds not only to two zinc atoms, but also the NAD/NADH ligand, with a higher NAD/NADH binding preference for the S chain relative to the E chain. In total, 32% sequence coverage was achieved for both E and S chains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ford, Nicole R.; Hecht, Karen A.; Hu, Dehong
2016-01-08
The diatom Thalassiosira pseudonana was genetically modified to express biosilica-targeted fusion proteins incorporating a tetracysteine tag for site-directed labeling with biarsenical affinity probes and either EGFP or single chain antibody to test colocalization of probes with the EGFP-tagged recombinant protein or binding of biosilica-immobilized antibodies to large and small molecule antigens, respectively. Site-directed labeling with the biarsenical probes demonstrated colocalization with EGFP-encoded proteins in nascent and mature biosilica, supporting their use in studying biosilica maturation. Isolated biosilica transformed with a single chain antibody against either the Bacillus anthracis surface layer protein EA1 or small molecule explosive trinitrotoluene (TNT) effectively boundmore » the respective antigens. A marked increase in fluorescence lifetime of the TNT surrogate Alexa Fluor 555-trinitrobenzene reflected the high binding specificity of the transformed isolated biosilica. These results demonstrated the potential use of biosilica-immobilized single chain antibodies as binders for large and small molecule antigens in sensing and therapeutics.« less
Ghosh, D; Weeks, C M; Grochulski, P; Duax, W L; Erman, M; Rimsay, R L; Orr, J C
1991-01-01
The x-ray structure of a short-chain dehydrogenase, the bacterial holo 3 alpha,20 beta-hydroxysteroid dehydrogenase (EC 1.1.1.53), is described at 2.6 A resolution. This enzyme is active as a tetramer and crystallizes with four identical subunits in the asymmetric unit. It has the alpha/beta fold characteristic of the dinucleotide binding region. The fold of the rest of the subunit, the quaternary structure, and the nature of the cofactor-enzyme interactions are, however, significantly different from those observed in the long-chain dehydrogenases. The architecture of the postulated active site is consistent with the observed stereospecificity of the enzyme and the fact that the tetramer is the active form. There is only one cofactor and one substrate-binding site per subunit; the specificity for both 3 alpha- and 20 beta-ends of the steroid results from the binding of the steroid in two orientations near the same cofactor at the same catalytic site. Images PMID:1946424
Qi, Xiangbing; Gui, Wen-Jun; Morlock, Lorraine K.; Wallace, Amy L.; Ahmed, Kamran; Laxman, Sunil; Campeau, Philippe M.; Lee, Brendan H.; Hutson, Susan M.; Tu, Benjamin P.; Williams, Noelle S.; Tambar, Uttam K.; Wynn, R. Max; Chuang, David T.
2013-01-01
The branched-chain amino acids (BCAAs) leucine, isoleucine, and valine are elevated in maple syrup urine disease, heart failure, obesity, and type 2 diabetes. BCAA homeostasis is controlled by the mitochondrial branched-chain α-ketoacid dehydrogenase complex (BCKDC), which is negatively regulated by the specific BCKD kinase (BDK). Here, we used structure-based design to develop a BDK inhibitor, (S)-α-chloro-phenylpropionic acid [(S)-CPP]. Crystal structures of the BDK-(S)-CPP complex show that (S)-CPP binds to a unique allosteric site in the N-terminal domain, triggering helix movements in BDK. These conformational changes are communicated to the lipoyl-binding pocket, which nullifies BDK activity by blocking its binding to the BCKDC core. Administration of (S)-CPP to mice leads to the full activation and dephosphorylation of BCKDC with significant reduction in plasma BCAA concentrations. The results buttress the concept of targeting mitochondrial BDK as a pharmacological approach to mitigate BCAA accumulation in metabolic diseases and heart failure. PMID:23716694
Everse, S J; Spraggon, G; Veerapandian, L; Doolittle, R F
1999-03-09
The structure of fragment double-D from human fibrin has been solved in the presence and absence of the peptide ligands that simulate the two knobs exposed by the removal of fibrinopeptides A and B, respectively. All told, six crystal structures have been determined, three of which are reported here for the first time: namely, fragments D and double-D with the peptide GHRPam alone and double-D in the absence of any peptide ligand. Comparison of the structures has revealed a series of conformational changes that are brought about by the various knob-hole interactions. Of greatest interest is a moveable "flap" of two negatively charged amino acids (Glubeta397 and Aspbeta398) whose side chains are pinned back to the coiled coil with a calcium atom bridge until GHRPam occupies the beta-chain pocket. Additionally, in the absence of the peptide ligand GPRPam, GHRPam binds to the gamma-chain pocket, a new calcium-binding site being formed concomitantly.
Rational steering of insulin binding specificity by intra-chain chemical crosslinking
NASA Astrophysics Data System (ADS)
Viková, Jitka; Collinsová, Michaela; Kletvíková, Emília; Buděšínský, Miloš; Kaplan, Vojtěch; Žáková, Lenka; Veverka, Václav; Hexnerová, Rozálie; Aviñó, Roberto J. Tarazona; Straková, Jana; Selicharová, Irena; Vaněk, Václav; Wright, Daniel W.; Watson, Christopher J.; Turkenburg, Johan P.; Brzozowski, Andrzej M.; Jiráček, Jiří
2016-01-01
Insulin is a key hormone of human metabolism with major therapeutic importance for both types of diabetes. New insulin analogues with more physiological profiles and better glycemic control are needed, especially analogues that preferentially bind to the metabolic B-isoform of insulin receptor (IR-B). Here, we aimed to stabilize and modulate the receptor-compatible conformation of insulin by covalent intra-chain crosslinking within its B22-B30 segment, using the CuI-catalyzed Huisgen 1,3-dipolar cycloaddition reaction of azides and alkynes. This approach resulted in 14 new, systematically crosslinked insulin analogues whose structures and functions were extensively characterized and correlated. One of the analogues, containing a B26-B29 triazole bridge, was highly active in binding to both IR isoforms, with a significant preference for IR-B. Our results demonstrate the potential of chemistry-driven modulation of insulin function, also shedding new light on the functional importance of hormone’s B-chain C-terminus for its IR-B specificity.
Fab is the most efficient format to express functional antibodies by yeast surface display.
Sivelle, Coline; Sierocki, Raphaël; Ferreira-Pinto, Kelly; Simon, Stéphanie; Maillere, Bernard; Nozach, Hervé
2018-04-30
Multiple formats are available for engineering of monoclonal antibodies (mAbs) by yeast surface display, but they do not all lead to efficient expression of functional molecules. We therefore expressed four anti-tumor necrosis factor and two anti-IpaD mAbs as single-chain variable fragment (scFv), antigen-binding fragment (Fab) or single-chain Fabs and compared their expression levels and antigen-binding efficiency. Although the scFv and scFab formats are widely used in the literature, 2 of 6 antibodies were either not or weakly expressed. In contrast, all 6 antibodies expressed as Fab revealed strong binding and high affinity, comparable to that of the soluble form. We also demonstrated that the variations in expression did not affect Fab functionality and were due to variations in light chain display and not to misfolded dimers. Our results suggest that Fab is the most versatile format for the engineering of mAbs.
Shoji, Shisako; Hanada, Kazuharu; Ohsawa, Noboru; Shirouzu, Mikako
2017-09-07
Really interesting new gene (RING)-finger protein 52 (RNF52), an E3 ubiquitin ligase, is found in eukaryotes from yeast to humans. Human RNF52 is known as breast cancer type 1 susceptibility protein (BRCA1)-associated protein 2 (BRAP or BRAP2). The central catalytic domain of BRAP comprises four subdomains: nucleotide-binding α/β plait (NBP), really interesting new gene (RING) zinc finger, ubiquitin-specific protease (UBP)-like zinc finger (ZfUBP), and coiled-coil (CC). This domain architecture is conserved in RNF52 orthologs; however, the domain's function in the ubiquitin system has not been delineated. In the present study, we discovered that the RNF52 domain, comprising NBP-RING-ZfUBP-CC, binds to ubiquitin chains (oligo-ubiquitin) but not to the ubiquitin monomers, and can utilize various ubiquitin chains for ubiquitylation and auto-ubiquitylation. The RNF52 domain preferentially bound to M1- and K63-linked di-ubiquitin chains, weakly to K27-linked chains, but not to K6-, K11-, or K48-linked chains. The binding preferences of the RNF52 domain for ubiquitin-linkage types corresponded to ubiquitin usage in the ubiquitylation reaction, except for K11-, K29-, and K33-linked chains. Additionally, the RNF52 domain directly ligated the intact M1-linked, tri-, and tetra-ubiquitin chains and recognized the structural alterations caused by the phosphomimetic mutation of these ubiquitin chains. Full-length BRAP had nearly the same specificity for the ubiquitin-chain types as the RNF52 domain alone. Mass spectrometry analysis of oligomeric ubiquitylation products, mediated by the RNF52 domain, revealed that the ubiquitin-linkage types and auto-ubiquitylation sites depend on the length of ubiquitin chains. Here, we propose a model for the oligomeric ubiquitylation process, controlled by the RNF52 domain, which is not a sequential assembly process involving monomers. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Nuclear export receptor CRM1 recognizes diverse conformations in nuclear export signals.
Fung, Ho Yee Joyce; Fu, Szu-Chin; Chook, Yuh Min
2017-03-10
Nuclear export receptor CRM1 binds highly variable nuclear export signals (NESs) in hundreds of different cargoes. Previously we have shown that CRM1 binds NESs in both polypeptide orientations (Fung et al., 2015). Here, we show crystal structures of CRM1 bound to eight additional NESs which reveal diverse conformations that range from loop-like to all-helix, which occupy different extents of the invariant NES-binding groove. Analysis of all NES structures show 5-6 distinct backbone conformations where the only conserved secondary structural element is one turn of helix that binds the central portion of the CRM1 groove. All NESs also participate in main chain hydrogen bonding with human CRM1 Lys568 side chain, which acts as a specificity filter that prevents binding of non-NES peptides. The large conformational range of NES backbones explains the lack of a fixed pattern for its 3-5 hydrophobic anchor residues, which in turn explains the large array of peptide sequences that can function as NESs.
Kaneko, Mika K; Abe, Shinji; Ogasawara, Satoshi; Fujii, Yuki; Yamada, Shinji; Murata, Takeshi; Uchida, Hiroaki; Tahara, Hideaki; Nishioka, Yasuhiko; Kato, Yukinari
2017-02-01
Podoplanin (PDPN), a type I transmembrane 36-kDa glycoprotein, is expressed not only in normal cells, such as renal epithelial cells (podocytes), lymphatic endothelial cells, and pulmonary type I alveolar cells, but also in cancer cells, including brain tumors and lung squamous cell carcinomas. Podoplanin activates platelet aggregation by binding to C-type lectin-like receptor-2 (CLEC-2) on platelets, and the podoplanin/CLEC-2 interaction facilitates blood/lymphatic vessel separation. We previously produced neutralizing anti-human podoplanin monoclonal antibody (mAb), clone NZ-1 (rat IgG 2a , lambda), which neutralizes the podoplanin/CLEC-2 interaction and inhibits platelet aggregation and cancer metastasis. Human-rat chimeric antibody, NZ-8, was previously developed using variable regions of NZ-1 and human constant regions of heavy chain (IgG 1 ) and light chain (kappa chain). Although NZ-8 showed high antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) against human podoplanin-expressing cancer cells, the binding affinity of NZ-8 was lower than that of NZ-1. Herein, we produced a novel human-rat chimeric antibody, NZ-12, the constant regions of which consist of IgG 1 heavy chain and lambda light chain. Using flow cytometry, we demonstrated that the binding affinity of NZ-12 was much higher than that of NZ-8. Furthermore, ADCC and CDC activities of NZ-12 were significantly increased against glioblastoma cell lines (LN319 and D397) and lung cancer cell line (PC-10). These results suggested that NZ-12 could become a promising therapeutic antibody against podoplanin-expressing brain tumors and lung cancers.
Song, Kejing; Mize, R Ranney; Marrero, Luis; Corti, Miriam; Kirk, Jason M; Pincus, Seth H
2013-01-01
Mechanisms of antibody-mediated neutralization are of much interest. For plant and bacterial A-B toxins, A chain mediates toxicity and B chain binds target cells. It is generally accepted and taught that antibody (Ab) neutralizes by preventing toxin binding to cells. Yet for some toxins, ricin included, anti-A chain Abs afford greater protection than anti-B. The mechanism(s) whereby Abs to the A chain neutralize toxins are not understood. We use quantitative confocal imaging, neutralization assays, and other techniques to study how anti-A chain Abs function to protect cells. Without Ab, ricin enters cells and penetrates to the endoplasmic reticulum within 15 min. Within 45-60 min, ricin entering and being expelled from cells reaches equilibrium. These results are consistent with previous observations, and support the validity of our novel methodology. The addition of neutralizing Ab causes ricin accumulation at the cell surface, delays internalization, and postpones retrograde transport of ricin. Ab binds ricin for >6hr as they traffic together through the cell. Ab protects cells even when administered hours after exposure. CONCLUSIONS/KEY FINDINGS: We demonstrate the dynamic nature of the interaction between the host cell and toxin, and how Ab can alter the balance in favor of the cell. Ab blocks ricin's entry into cells, hinders its intracellular routing, and can protect even after ricin is present in the target organelle, providing evidence that the major site of neutralization is intracellular. These data add toxins to the list of pathogenic agents that can be neutralized intracellularly and explain the in vivo efficacy of delayed administration of anti-toxin Abs. The results encourage the use of post-exposure passive Ab therapy, and show the importance of the A chain as a target of Abs.
Bagheri, Salman; Yousefi, Mehdi; Safaie Qamsari, Elmira; Riazi-Rad, Farhad; Abolhassani, Mohsen; Younesi, Vahid; Dorostkar, Ruhollah; Movassaghpour, Ali Akbar; Sharifzadeh, Zahra
2017-03-01
The 4-1BB is a surface glycoprotein that pertains to the tumor necrosis factor-receptor family. There is compelling evidence suggesting important roles for 4-1BB in the immune response, including cell activation and proliferation and also cytokine induction. Because of encouraging results of different agonistic monoclonal antibodies against 4-1BB in the treatment of cancer, infectious, and autoimmune diseases, 4-1BB has been suggested as an attractive target for immunotherapy. In this study, single chain variable fragment phage display libraries, Tomlinson I+J, were screened against specific synthetic oligopeptides (peptides I and II) designed from 4-1BB extracellular domain. Five rounds of panning led to selection of four 4-1BB specific single chain variable fragments (PI.12, PI.42, PII.16, and PII.29) which showed specific reaction to relevant peptides in phage enzyme-linked immunosorbent assay. The selected clones were successfully expressed in Escherichia coli Rosetta-gami 2, and their expression was confirmed by western blot analysis. Enzyme-linked immunosorbent assay experiments indicated that these antibodies were able to specifically recognize 4-1BB without any cross-reactivity with other antigens. Flow cytometry analysis demonstrated an acceptable specific binding of the single chain variable fragments to 4-1BB expressed on CCRF-CEM cells, while no binding was observed with an irrelevant antibody. Anti-4-1BB single chain variable fragments enhanced surface CD69 expression and interleukin-2 production in stimulated CCRF-CEM cells which confirmed the agonistic effect of the selected single chain variable fragments. The data from this study have provided a rationale for further experiments involving the biological functions of anti-4-1BB single chain variable fragments in future studies.
Dul, J L; Argon, Y
1990-01-01
Although immunoglobulin light chains are usually secreted in association with heavy chains, free light chains can be secreted by lymphocytes. To identify the structural features of light chains that are essential for their secretion, we mutated a conserved sequence in the variable domain of a lambda I light chain. The effects of the mutations on secretion were assayed by transient expression in COS-1 cells. One mutant (AV60), which replaced Ala-60 with Val, was secreted as efficiently as wild-type lambda I by transfected COS-1 cells. This result was not surprising because secreted lambda II chains contain valine in this position. However, a second lambda I mutant (AV60FS62), which replaced Phe-62 with Ser as well as Ala-60 with Val, was not secreted. This mutant was arrested in the endoplasmic reticulum, as judged by immunofluorescence and by its association with a lumenal endoplasmic reticulum protein, immunoglobulin heavy chain binding protein (BiP). The defect in secretion was not due to gross misfolding of the lambda I chain, since cells cotransfected with AV60FS62 and an immunoglobulin heavy chain gene produced functional antigen-binding antibodies. These assembled IgM molecules were still not secreted. Hence, the replacement of Phe-62 with Ser specifically affects a determinant on the lambda I light chain that is necessary for the intracellular transport of this molecule. Images PMID:2122454
Covalent Binding Antibodies Suppress Advanced Glycation: On the Innate Tier of Adaptive Immunity
Shcheglova, T.; Makker, S. P.
2009-01-01
Non-enzymatic protein glycation is a source of metabolic stress that contributes to cytotoxicity and tissue damage. Hyperglycemia has been linked to elevation of advanced glycation endproducts, which mediate much of the vascular pathology leading to diabetic complications. Enhanced glycation of immunoglobulins and their accelerated vascular clearance is proposed as a natural mechanism to intercept alternative advanced glycation endproducts, thereby mitigating microvascular disease. We reported that antibodies against the glycoprotein KLH have elevated reactivity for glycopeptides from diabetic serum. These reactions are mediated by covalent binding between antibody light chains and carbonyl groups of glycated peptides. Diabetic animals that were immunized to induce reactive antibodies had attenuated diabetic nephropathy, which correlated with reduced levels of circulating and kidney-bound glycation products. Molecular analysis of antibody glycation revealed the preferential modification of light chains bearing germline-encoded lambda V regions. We previously noted that antibody fragments carrying V regions in the germline configuration are selected from a human Fv library by covalent binding to a reactive organophosphorus ester. These Fv fragments were specifically modified at light chain V region residues, which map to the combining site at the interface between light and heavy chains. These findings suggest that covalent binding is an innate property of antibodies, which may be encoded in the genome for specific physiological purposes. This hypothesis is discussed in context with current knowledge of the natural antibodies that recognize altered self molecules and the catalytic autoantibodies found in autoimmune disease. PMID:22649604
Modeling chain folding in protein-constrained circular DNA.
Martino, J A; Olson, W K
1998-01-01
An efficient method for sampling equilibrium configurations of DNA chains binding one or more DNA-bending proteins is presented. The technique is applied to obtain the tertiary structures of minimal bending energy for a selection of dinucleosomal minichromosomes that differ in degree of protein-DNA interaction, protein spacing along the DNA chain contour, and ring size. The protein-bound portions of the DNA chains are represented by tight, left-handed supercoils of fixed geometry. The protein-free regions are modeled individually as elastic rods. For each random spatial arrangement of the two nucleosomes assumed during a stochastic search for the global minimum, the paths of the flexible connecting DNA segments are determined through a numerical solution of the equations of equilibrium for torsionally relaxed elastic rods. The minimal energy forms reveal how protein binding and spacing and plasmid size differentially affect folding and offer new insights into experimental minichromosome systems. PMID:9591675
Multi-Mode Binding of Cellobiohydrolase Cel7A from Trichoderma reesei to Cellulose
Jalak, Jürgen; Väljamäe, Priit
2014-01-01
Enzymatic hydrolysis of recalcitrant polysaccharides like cellulose takes place on the solid-liquid interface. Therefore the adsorption of enzymes to the solid surface is a pre-requisite for catalysis. Here we used enzymatic activity measurements with fluorescent model-substrate 4-methyl-umbelliferyl-β-D-lactoside for sensitive monitoring of the binding of cellobiohydrolase TrCel7A from Trichoderma reesei to bacterial cellulose (BC). The binding at low nanomolar free TrCel7A concentrations was exclusively active site mediated and was consistent with Langmuir's one binding site model with K d and A max values of 2.9 nM and 126 nmol/g BC, respectively. This is the strongest binding observed with non-complexed cellulases and apparently represents the productive binding of TrCel7A to cellulose chain ends on the hydrophobic face of BC microfibril. With increasing free TrCel7A concentrations the isotherm gradually deviated from the Langmuir's one binding site model. This was caused by the increasing contribution of lower affinity binding modes that included both active site mediated binding and non-productive binding with active site free from cellulose chain. The binding of TrCel7A to BC was found to be only partially reversible. Furthermore, the isotherm was dependent on the concentration of BC with more efficient binding observed at lower BC concentrations. The phenomenon can be ascribed to the BC concentration dependent aggregation of BC microfibrils with concomitant reduction of specific surface area. PMID:25265511
Exploring 3D structural influences of aliphatic and aromatic chemicals on α-cyclodextrin binding.
Linden, Lukas; Goss, Kai-Uwe; Endo, Satoshi
2016-04-15
Binding of solutes to macromolecules is often influenced by steric effects caused by the 3D structures of both binding partners. In this study, the 1:1 α-cyclodextrin (αCD) binding constants (Ka1) for 70 organic chemicals were determined to explore the solute-structural effects on the αCD binding. Ka1 was measured using a three-part partitioning system with either a headspace or a passive sampler serving as the reference phase. The Ka1 values ranged from 1.08 to 4.97 log units. The results show that longer linear aliphatic chemicals form more stable complexes than shorter ones, and that the position of the functional group has a strong influence on Ka1, even stronger than the type of the functional group. Comparison of linear and variously branched aliphatic chemicals indicates that having a sterically unhindered alkyl chain is favorable for binding. These results suggest that only one alkyl chain can enter the binding cavity. Relatively small aromatic chemicals such as 1,3-dichlorobenzene bind to αCD well, while larger ones like tetrachlorobenzene and 3-ring aromatic chemicals show only a weak interaction with αCD, which can be explained by cavity exclusion. The findings of this study help interpret cyclodextrin binding data and facilitate the understanding of binding processes to macromolecules. Copyright © 2016 Elsevier Inc. All rights reserved.
Cai, Jun; Lücke, Christian; Chen, Zhongjing; Qiao, Ye; Klimtchuk, Elena; Hamilton, James A.
2012-01-01
Liver fatty acid binding protein (L-FABP), a cytosolic protein most abundant in liver, is associated with intracellular transport of fatty acids, nuclear signaling, and regulation of intracellular lipolysis. Among the members of the intracellular lipid binding protein family, L-FABP is of particular interest as it can i), bind two fatty acid molecules simultaneously and ii), accommodate a variety of bulkier physiological ligands such as bilirubin and fatty acyl CoA. To better understand the promiscuous binding and transport properties of L-FABP, we investigated structure and dynamics of human L-FABP with and without bound ligands by means of heteronuclear NMR. The overall conformation of human L-FABP shows the typical β-clam motif. Binding of two oleic acid (OA) molecules does not alter the protein conformation substantially, but perturbs the chemical shift of certain backbone and side-chain protons that are involved in OA binding according to the structure of the human L-FABP/OA complex. Comparison of the human apo and holo L-FABP structures revealed no evidence for an “open-cap” conformation or a “swivel-back” mechanism of the K90 side chain upon ligand binding, as proposed for rat L-FABP. Instead, we postulate that the lipid binding process in L-FABP is associated with backbone dynamics. PMID:22713574
Pomponi, Massimo; Bertonati, Claudia; Patamia, Maria; Marta, Maurizio; Derocher, Andrew E; Lydersen, Christian; Kovacs, Kit M; Wiig, Oystein; Bårdgard, Astrid J
2002-11-01
Polar bear (Ursus maritimus) hemoglobin (Hb) shows a low response to 2,3-diphosphoglycerate (2,3-DPG), compared to human Hb A0, even though these proteins have the same 2,3-DPG-binding site. In addition, polar bear Hb shows a high response to chloride and an alkaline Bohr effect (deltalog P50/deltapH) that is significantly greater than that of human Hb A0. The difference in sequence Pro (Hb A0)-->Gly (polar bear Hb) at position A2 in the A helix seems to be critical for reduced binding of 2,3-DPG. Our results also show that the A2 position may influence not only the flexibility of the A helix, but that differences in flexibility of the first turn of the A helix may affect the unloading of oxygen for the intrinsic ligand affinities of the alpha and beta chains. However, preferential binding to either chain can only take place if there is appreciable asymmetric binding of the phosphoric effector. Regarding this point, 31P NMR data suggest a loss of symmetry of the 2,3-DPG-binding site in the deoxyHb-2,3-DPG complex.
NASA Astrophysics Data System (ADS)
Tian, Zhen; Liu, Jiyuan; Zhang, Yalin
2016-03-01
Given the advantages of behavioral disruption application in pest control and the damage of Cydia pomonella, due progresses have not been made in searching active semiochemicals for codling moth. In this research, 31 candidate semiochemicals were ranked for their binding potential to Cydia pomonella pheromone binding protein 2 (CpomPBP2) by simulated docking, and this sorted result was confirmed by competitive binding assay. This high predicting accuracy of virtual screening led to the construction of a rapid and viable method for semiochemicals searching. By reference to binding mode analyses, hydrogen bond and hydrophobic interaction were suggested to be two key factors in determining ligand affinity, so is the length of molecule chain. So it is concluded that semiochemicals of appropriate chain length with hydroxyl group or carbonyl group at one head tended to be favored by CpomPBP2. Residues involved in binding with each ligand were pointed out as well, which were verified by computational alanine scanning mutagenesis. Progress made in the present study helps establish an efficient method for predicting potentially active compounds and prepares for the application of high-throughput virtual screening in searching semiochemicals by taking insights into binding mode analyses.
Tian, Zhen; Liu, Jiyuan; Zhang, Yalin
2016-01-01
Given the advantages of behavioral disruption application in pest control and the damage of Cydia pomonella, due progresses have not been made in searching active semiochemicals for codling moth. In this research, 31 candidate semiochemicals were ranked for their binding potential to Cydia pomonella pheromone binding protein 2 (CpomPBP2) by simulated docking, and this sorted result was confirmed by competitive binding assay. This high predicting accuracy of virtual screening led to the construction of a rapid and viable method for semiochemicals searching. By reference to binding mode analyses, hydrogen bond and hydrophobic interaction were suggested to be two key factors in determining ligand affinity, so is the length of molecule chain. So it is concluded that semiochemicals of appropriate chain length with hydroxyl group or carbonyl group at one head tended to be favored by CpomPBP2. Residues involved in binding with each ligand were pointed out as well, which were verified by computational alanine scanning mutagenesis. Progress made in the present study helps establish an efficient method for predicting potentially active compounds and prepares for the application of high-throughput virtual screening in searching semiochemicals by taking insights into binding mode analyses. PMID:26928635
Modulation of cardiac contractility by the phospholamban/SERCA2a regulatome.
Kranias, Evangelia G; Hajjar, Roger J
2012-06-08
Heart disease remains the leading cause of death and disability in the Western world. Current therapies aim at treating the symptoms rather than the subcellular mechanisms, underlying the etiology and pathological remodeling in heart failure. A universal characteristic, contributing to the decreased contractile performance in human and experimental failing hearts, is impaired calcium sequestration into the sarcoplasmic reticulum (SR). SR calcium uptake is mediated by a Ca(2+)-ATPase (SERCA2), whose activity is reversibly regulated by phospholamban (PLN). Dephosphorylated PLN is an inhibitor of SERCA and phosphorylation of PLN relieves this inhibition. However, the initial simple view of a PLN/SERCA regulatory complex has been modified by our recent identification of SUMO, S100 and the histidine-rich Ca-binding protein as regulators of SERCA activity. In addition, PLN activity is regulated by 2 phosphoproteins, the inhibitor-1 of protein phosphatase 1 and the small heat shock protein 20, which affect the overall SERCA-mediated Ca-transport. This review will highlight the regulatory mechanisms of cardiac contractility by the multimeric SERCA/PLN-ensemble and the potential for new therapeutic avenues targeting this complex by using small molecules and gene transfer methods.
Horigome, Chihiro; Bustard, Denise E.; Marcomini, Isabella; Delgoshaie, Neda; Tsai-Pflugfelder, Monika; Cobb, Jennifer A.; Gasser, Susan M.
2016-01-01
High-resolution imaging shows that persistent DNA damage in budding yeast localizes in distinct perinuclear foci for repair. The signals that trigger DNA double-strand break (DSB) relocation or determine their destination are unknown. We show here that DSB relocation to the nuclear envelope depends on SUMOylation mediated by the E3 ligases Siz2 and Mms21. In G1, a polySUMOylation signal deposited coordinately by Mms21 and Siz2 recruits the SUMO targeted ubiquitin ligase Slx5/Slx8 to persistent breaks. Both Slx5 and Slx8 are necessary for damage relocation to nuclear pores. When targeted to an undamaged locus, however, Slx5 alone can mediate relocation in G1-phase cells, bypassing the requirement for polySUMOylation. In contrast, in S-phase cells, monoSUMOylation mediated by the Rtt107-stabilized SMC5/6–Mms21 E3 complex drives DSBs to the SUN domain protein Mps3 in a manner independent of Slx5. Slx5/Slx8 and binding to pores favor repair by ectopic break-induced replication and imprecise end-joining. PMID:27056668
SUMOylated MAFB promotes colorectal cancer tumorigenesis
Xie, Yin-Yin; Sun, Xiao-Jian; Zhao, Ren; Huang, Qiu-Hua
2016-01-01
The transcription factor, v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog B (MAFB), promotes tumorigenesis in some cancers. In this study, we found that MAFB levels were increased in clinical colorectal cancer (CRC) samples, and higher expression correlated with more advanced TNM stage. We identified MAFB amplifications in a majority of tumor types in an assessment of The Cancer Genome Atlas database. Altered MAFB levels due to gene amplification, deletion, mutation, or transcription upregulation occurred in 9% of CRC cases within the database. shRNA knockdown experiments demonstrated that MAFB deficiency blocked CRC cell proliferation by arresting the cell cycle at G0/G1 phase in vitro. We found that MAFB could be SUMOylated by SUMO1 at lysine 32, and this modification was critical for cell cycle regulation by MAFB in CRC cells. SUMOylated MAFB directly regulated cyclin-dependent kinase 6 transcription by binding to its promoter. MAFB knockdown CRC cell xenograft tumors in mice grew more slowly than controls, and wild-type MAFB-overexpressing tumors grew more quickly than tumors overexpressing MAFB mutated at lysine 32. These data suggest that SUMOylated MAFB promotes CRC tumorigenesis through cell cycle regulation. MAFB and its SUMOylation process may serve as novel therapeutic targets for CRC treatment. PMID:27829226
Engineered Single-Chain, Antiparallel, Coiled Coil Mimics the MerR Metal Binding Site
Song, Lingyun; Caguiat, Jonathan; Li, Zhongrui; Shokes, Jacob; Scott, Robert A.; Olliff, Lynda; Summers, Anne O.
2004-01-01
The repressor-activator MerR that controls transcription of the mercury resistance (mer) operon is unusual for its high sensitivity and specificity for Hg(II) in in vivo and in vitro transcriptional assays. The metal-recognition domain of MerR resides at the homodimer interface in a novel antiparallel arrangement of α-helix 5 that forms a coiled-coil motif. To facilitate the study of this novel metal binding motif, we assembled this antiparallel coiled coil into a single chain by directly fusing two copies of the 48-residue α-helix 5 of MerR. The resulting 107-residue polypeptide, called the metal binding domain (MBD), and wild-type MerR were overproduced and purified, and their metal-binding properties were determined in vivo and in vitro. In vitro MBD bound ca. 1.0 equivalent of Hg(II) per pair of binding sites, just as MerR does, and it showed only a slightly lower affinity for Hg(II) than did MerR. Extended X-ray absorption fine structure data showed that MBD has essentially the same Hg(II) coordination environment as MerR. In vivo, cells overexpressing MBD accumulated 70 to 100% more 203Hg(II) than cells bearing the vector alone, without deleterious effects on cell growth. Both MerR and MBD variously bound other thiophilic metal ions, including Cd(II), Zn(II), Pb(II), and As(III), in vitro and in vivo. We conclude that (i) it is possible to simulate in a single polypeptide chain the in vitro and in vivo metal-binding ability of dimeric, full-length MerR and (ii) MerR's specificity in transcriptional activation does not reside solely in the metal-binding step. PMID:14996817
Kitamura, Keisuke; Takegami, Shigehiko; Tanaka, Rumi; Omran, Ahmed Ahmed; Kitade, Tatsuya
2014-01-01
Human serum albumin (HSA) in the blood binds long-chain fatty acids (LCFAs), and the number of bound LCFAs varies from 1 to 7 depending on the physical condition of the body. In this study, the influence of LCFA-HSA binding on drug-HSA binding was studied using triflupromazine (TFZ), a psychotropic phenothiazine drug, in a buffer (0.1 M NaCl, pH 7.40, 37°C) by a second-derivative spectrophotometric method which can suppress the residual background signal effects of HSA observed in the absorption spectra. The examined LCFAs were caprylic acid (CPA), lauric acid (LRA), oleic acid (OLA), and linoleic acid (LNA), respectively. Using the derivative intensity change of TFZ induced by the addition of HSA containing LCFA, the binding mode of TFZ was predicted to be a partition-like nonspecific binding. The binding constant (K M(-1)) showed an increase according to the LCFA content in HSA for LRA, OLA, and LNA up to an LCFA/HSA molar ratio of 3-4. However, at higher ratios the K value decreased, i.e. for OLA and LNA, at an LCFA/HSA ratio of 6-7, the K value decreased to 40% of the value for HSA alone. In contrast, CPA, having the shortest chain length (8 carbons) among the studied LCFAs, induced a 20% decrease in the K value regardless of its content in HSA. Since the pharmacological activity of a drug is closely related to the unbound drug concentration in the blood, the results of the present study are pharmaco-kinetically, pharmacologically, and clinically very important.
Cyanobacterial megamolecule sacran efficiently forms LC gels with very heavy metal ions.
Okajima, Maiko K; Miyazato, Shinji; Kaneko, Tatsuo
2009-08-04
We extracted the megamolecular polysaccharide sacran, which contains carboxylate and sulfate groups, from the jellylike extracellular matrix (ECM) of the cyanobacterium Aphanothece sacrum, which has mineral adsorption bioactivity. We investigated the gelation properties of sacran binding with various heavy metal ions. The sacran chain adsorbed heavier metal ions such as indium, rare earth metals, and lead ions more efficiently to form gel beads. In addition, trivalent metal ions adsorbed onto the sacran chains more efficiently than did divalent ions. The investigation of the metal ion binding ratio on sacran chains demonstrated that sacran adsorbed gadolinium trivalent ions more efficiently than indium trivalent ions. Gel bead formation may be closely correlated to the liquid-crystalline organization of sacran.
Discrete persistent-chain model for protein binding on DNA.
Lam, Pui-Man; Zhen, Yi
2011-04-01
We describe and solve a discrete persistent-chain model of protein binding on DNA, involving an extra σ(i) at a site i of the DNA. This variable takes the value 1 or 0, depending on whether or not the site is occupied by a protein. In addition, if the site is occupied by a protein, there is an extra energy cost ɛ. For a small force, we obtain analytic expressions for the force-extension curve and the fraction of bound protein on the DNA. For higher forces, the model can be solved numerically to obtain force-extension curves and the average fraction of bound proteins as a function of applied force. Our model can be used to analyze experimental force-extension curves of protein binding on DNA, and hence deduce the number of bound proteins in the case of nonspecific binding. ©2011 American Physical Society
Hao, Qing; Liu, Xiaoguang; Zhao, Guozhong; Jiang, Lu; Li, Ming; Zeng, Bin
2016-03-01
To characterize biochemically the lipid metabolism-regulating acyl-CoA binding protein (ACBP) from the industrially-important fungus Aspergillus oryzae. A full-length cDNA encoding a candidate ACBP from A. oryzae (AoACBP) was cloned and expressed in Escherichia coli as a maltose-binding protein (MBP) fusion protein. The MBP-AoACBP protein was purified by an amylose resin chromatography column. SDS-PAGE showed that MBP-AoACBP has an estimated molecular weight of 82 kDa. Microscale thermophoresis binding assay showed that the recombinant AoACBP displayed much greater affinity for palmitoyl-CoA (K d = 80 nM) than for myristoyl-CoA (K d = 510 nM), thus demonstrating the preference of AoACBP for long-chain acyl-CoA. The data support the identification of AoACBP as a long-chain ACBP in A. oryzae.
Meditope-Fab interaction: threading the hole.
Bzymek, Krzysztof P; Ma, Yuelong; Avery, Kendra N; Horne, David A; Williams, John C
2017-12-01
Meditope, a cyclic 12-residue peptide, binds to a unique binding side between the light and heavy chains of the cetuximab Fab. In an effort to improve the affinity of the interaction, it was sought to extend the side chain of Arg8 in the meditope, a residue that is accessible from the other side of the meditope binding site, in order to increase the number of interactions. These modifications included an n-butyl and n-octyl extension as well as hydroxyl, amine and carboxyl substitutions. The atomic structures of the complexes and the binding kinetics for each modified meditope indicated that each extension threaded through the Fab `hole' and that the carboxyethylarginine substitution makes a favorable interaction with the Fab, increasing the half-life of the complex by threefold compared with the unmodified meditope. Taken together, these studies provide a basis for the design of additional modifications to enhance the overall affinity of this unique interaction.
Proteasome subunit Rpn13 is a novel ubiquitin receptor
Husnjak, Koraljka; Elsasser, Suzanne; Zhang, Naixia; Chen, Xiang; Randles, Leah; Shi, Yuan; Hofmann, Kay; Walters, Kylie; Finley, Daniel; Dikic, Ivan
2010-01-01
Proteasomal receptors that recognize ubiquitin chains attached to substrates are key mediators of selective protein degradation in eukaryotes. Here we report the identification of a new ubiquitin receptor, Rpn13/ARM1, a known component of the proteasome. Rpn13 binds ubiquitin via a conserved N-terminal region termed the Pru domain (Pleckstrin-like receptor for ubiquitin), which binds K48-linked diubiquitin with an affinity of ∼90 nM. Like proteasomal ubiquitin receptor Rpn10/S5a, Rpn13 also binds ubiquitin-like domains of the UBL/UBA family of ubiquitin receptors. A synthetic phenotype results in yeast when specific mutations of the ubiquitin binding sites of Rpn10 and Rpn13 are combined, indicating functional linkage between these ubiquitin receptors. Since Rpn13 is also the proteasomal receptor for Uch37, a deubiquitinating enzyme, our findings suggest a coupling of chain recognition and disassembly at the proteasome. PMID:18497817
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calvo, Eric; Mans, Ben J.; Ribeiro, José M.C.
The mosquito D7 salivary proteins are encoded by a multigene family related to the arthropod odorant-binding protein (OBP) superfamily. Forms having either one or two OBP domains are found in mosquito saliva. Four single-domain and one two-domain D7 proteins from Anopheles gambiae and Aedes aegypti (AeD7), respectively, were shown to bind biogenic amines with high affinity and with a stoichiometry of one ligand per protein molecule. Sequence comparisons indicated that only the C-terminal domain of AeD7 is homologous to the single-domain proteins from A. gambiae, suggesting that the N-terminal domain may bind a different class of ligands. Here, we describemore » the 3D structure of AeD7 and examine the ligand-binding characteristics of the N- and C-terminal domains. Isothermal titration calorimetry and ligand complex crystal structures show that the N-terminal domain binds cysteinyl leukotrienes (cysLTs) with high affinities (50-60 nM) whereas the C-terminal domain binds biogenic amines. The lipid chain of the cysLT binds in a hydrophobic pocket of the N-terminal domain, whereas binding of norepinephrine leads to an ordering of the C-terminal portion of the C-terminal domain into an alpha-helix that, along with rotations of Arg-176 and Glu-268 side chains, acts to bury the bound ligand.« less
Tavagnacco, Letizia; Mason, Philip E; Schnupf, Udo; Pitici, Felicia; Zhong, Linghao; Himmel, Michael E; Crowley, Michael; Cesàro, Attilio; Brady, John W
2011-05-01
Molecular dynamics simulations were carried out for a system consisting of the carbohydrate-binding module (CBM) of the cellulase CBH I from Trichoderma reesei (Hypocrea jecorina) in a concentrated solution of β-D-glucopyranose, to determine whether there is any tendency for the sugar molecules to bind to the CBM. In spite of the general tendency of glucose to behave as an osmolyte, a marked tendency for the sugar molecules to bind to the protein was observed. However, the glucose molecules tended to bind only to specific sites on the protein. As expected, the hydrophobic face of the sugar molecules, comprising the axial H1, H3, and H5 aliphatic protons, tended to adhere to the flat faces of the three tyrosine side chains on the planar binding surface of the CBM. However, a significant tendency to bind to a groove-like feature on the upper surface of the CBM was also observed. These results would not be inconsistent with a model of the mechanism for this globular domain in which the cellodextrin chain being removed from the surface of crystalline cellulose passes over the upper surface of the CBM, presumably then available for hydrolysis in the active site tunnel of this processive cellulase. Copyright © 2011 Elsevier Ltd. All rights reserved.
Crystal structure of a shark single-domain antibody V region in complex with lysozyme.
Stanfield, Robyn L; Dooley, Helen; Flajnik, Martin F; Wilson, Ian A
2004-09-17
Cartilaginous fish are the phylogenetically oldest living organisms known to possess components of the vertebrate adaptive immune system. Key to their immune response are heavy-chain, homodimeric immunoglobulins called new antigen receptors (IgNARs), in which the variable (V) domains recognize antigens with only a single immunoglobulin domain, akin to camelid heavy-chain V domains. The 1.45 angstrom resolution crystal structure of the type I IgNAR V domain in complex with hen egg-white lysozyme (HEL) reveals a minimal antigen-binding domain that contains only two of the three conventional complementarity-determining regions but still binds HEL with nanomolar affinity by means of a binding interface comparable in size to conventional antibodies.
NASA Astrophysics Data System (ADS)
Hilyard, Katherine L.; Reyburn, Hugh; Chung, Shan; Bell, John I.; Strominger, Jack L.
1994-09-01
An Escherichia coli expression system has been developed to produce milligram quantities of the variable domains of a human T-cell receptor from a cytotoxic T cell that recognizes the HLA-A2-influenza matrix peptide complex as a single polypeptide chain. The recombinant protein was purified by metal-chelate chromatography and then refolded in a redox buffer system. The refolded protein was shown to directly bind both Staphylococcus aureus enterotoxin B and the major histocompatibility complex protein-peptide complex using a BIAcore biosensor. Thus this preparation of a single-chain, variable-domain, T-cell receptor fragment can bind both of its natural ligands and some of it is therefore a functional fragment of the receptor molecule.
Harris, Katherine E; Aldred, Shelley Force; Davison, Laura M; Ogana, Heather Anne N; Boudreau, Andrew; Brüggemann, Marianne; Osborn, Michael; Ma, Biao; Buelow, Benjamin; Clarke, Starlynn C; Dang, Kevin H; Iyer, Suhasini; Jorgensen, Brett; Pham, Duy T; Pratap, Payal P; Rangaswamy, Udaya S; Schellenberger, Ute; van Schooten, Wim C; Ugamraj, Harshad S; Vafa, Omid; Buelow, Roland; Trinklein, Nathan D
2018-01-01
We created a novel transgenic rat that expresses human antibodies comprising a diverse repertoire of heavy chains with a single common rearranged kappa light chain (IgKV3-15-JK1). This fixed light chain animal, called OmniFlic, presents a unique system for human therapeutic antibody discovery and a model to study heavy chain repertoire diversity in the context of a constant light chain. The purpose of this study was to analyze heavy chain variable gene usage, clonotype diversity, and to describe the sequence characteristics of antigen-specific monoclonal antibodies (mAbs) isolated from immunized OmniFlic animals. Using next-generation sequencing antibody repertoire analysis, we measured heavy chain variable gene usage and the diversity of clonotypes present in the lymph node germinal centers of 75 OmniFlic rats immunized with 9 different protein antigens. Furthermore, we expressed 2,560 unique heavy chain sequences sampled from a diverse set of clonotypes as fixed light chain antibody proteins and measured their binding to antigen by ELISA. Finally, we measured patterns and overall levels of somatic hypermutation in the full B-cell repertoire and in the 2,560 mAbs tested for binding. The results demonstrate that OmniFlic animals produce an abundance of antigen-specific antibodies with heavy chain clonotype diversity that is similar to what has been described with unrestricted light chain use in mammals. In addition, we show that sequence-based discovery is a highly effective and efficient way to identify a large number of diverse monoclonal antibodies to a protein target of interest.
Dunbar, Robert C; Berden, Giel; Martens, Jonathan K; Oomens, Jos
2015-09-24
Conformational preferences have been surveyed for divalent metal cation complexes with the dipeptide ligands AlaPhe, PheAla, GlyHis, and HisGly. Density functional theory results for a full set of complexes are presented, and previous experimental infrared spectra, supplemented by a number of newly recorded spectra obtained with infrared multiple photon dissociation spectroscopy, provide experimental verification of the preferred conformations in most cases. The overall structural features of these complexes are shown, and attention is given to comparisons involving peptide sequence, nature of the metal ion, and nature of the side-chain anchor. A regular progression is observed as a function of binding strength, whereby the weakly binding metal ions (Ba(2+) to Ca(2+)) transition from carboxylate zwitterion (ZW) binding to charge-solvated (CS) binding, while the stronger binding metal ions (Ca(2+) to Mg(2+) to Ni(2+)) transition from CS binding to metal-ion-backbone binding (Iminol) by direct metal-nitrogen bonds to the deprotonated amide nitrogens. Two new sequence-dependent reversals are found between ZW and CS binding modes, such that Ba(2+) and Ca(2+) prefer ZW binding in the GlyHis case but prefer CS binding in the HisGly case. The overall binding strength for a given metal ion is not strongly dependent on the sequence, but the histidine peptides are significantly more strongly bound (by 50-100 kJ mol(-1)) than the phenylalanine peptides.
Simultaneous prediction of binding free energy and specificity for PDZ domain-peptide interactions
NASA Astrophysics Data System (ADS)
Crivelli, Joseph J.; Lemmon, Gordon; Kaufmann, Kristian W.; Meiler, Jens
2013-12-01
Interactions between protein domains and linear peptides underlie many biological processes. Among these interactions, the recognition of C-terminal peptides by PDZ domains is one of the most ubiquitous. In this work, we present a mathematical model for PDZ domain-peptide interactions capable of predicting both affinity and specificity of binding based on X-ray crystal structures and comparative modeling with R osetta. We developed our mathematical model using a large phage display dataset describing binding specificity for a wild type PDZ domain and 91 single mutants, as well as binding affinity data for a wild type PDZ domain binding to 28 different peptides. Structural refinement was carried out through several R osetta protocols, the most accurate of which included flexible peptide docking and several iterations of side chain repacking and backbone minimization. Our findings emphasize the importance of backbone flexibility and the energetic contributions of side chain-side chain hydrogen bonds in accurately predicting interactions. We also determined that predicting PDZ domain-peptide interactions became increasingly challenging as the length of the peptide increased in the N-terminal direction. In the training dataset, predicted binding energies correlated with those derived through calorimetry and specificity switches introduced through single mutations at interface positions were recapitulated. In independent tests, our best performing protocol was capable of predicting dissociation constants well within one order of magnitude of the experimental values and specificity profiles at the level of accuracy of previous studies. To our knowledge, this approach represents the first integrated protocol for predicting both affinity and specificity for PDZ domain-peptide interactions.
Zhang, Xinxing; Jones, Rachel A.; Bruner, Steven D.; Butcher, Rebecca A.
2016-01-01
Caenorhabditis elegans secretes ascarosides as pheromones to communicate with other worms and to coordinate the development and behavior of the population. Peroxisomal β-oxidation cycles shorten the side chains of ascaroside precursors to produce the short-chain ascaroside pheromones. Acyl-CoA oxidases, which catalyze the first step in these β-oxidation cycles, have different side chain-length specificities and enable C. elegans to regulate the production of specific ascaroside pheromones. Here, we determine the crystal structure of the acyl-CoA oxidase 1 (ACOX-1) homodimer and the ACOX-2 homodimer bound to its substrate. Our results provide a molecular basis for the substrate specificities of the acyl-CoA oxidases and reveal why some of these enzymes have a very broad substrate range, whereas others are quite specific. Our results also enable predictions to be made for the roles of uncharacterized acyl-CoA oxidases in C. elegans and in other nematode species. Remarkably, we show that most of the C. elegans acyl-CoA oxidases that participate in ascaroside biosynthesis contain a conserved ATP-binding pocket that lies at the dimer interface, and we identify key residues in this binding pocket. ATP binding induces a structural change that is associated with tighter binding of the FAD cofactor. Mutations that disrupt ATP binding reduce FAD binding and reduce enzyme activity. Thus, ATP may serve as a regulator of acyl-CoA oxidase activity, thereby directly linking ascaroside biosynthesis to ATP concentration and metabolic state. PMID:27551084
Structure of a short-chain dehydrogenase/reductase from Bacillus anthracis
Hou, Jing; Wojciechowska, Kamila; Zheng, Heping; Chruszcz, Maksymilian; Cooper, David R.; Cymborowski, Marcin; Skarina, Tatiana; Gordon, Elena; Luo, Haibin; Savchenko, Alexei; Minor, Wladek
2012-01-01
The crystal structure of a short-chain dehydrogenase/reductase from Bacillus anthracis strain ‘Ames Ancestor’ complexed with NADP has been determined and refined to 1.87 Å resolution. The structure of the enzyme consists of a Rossmann fold composed of seven parallel β-strands sandwiched by three α-helices on each side. An NADP molecule from an endogenous source is bound in the conserved binding pocket in the syn conformation. The loop region responsible for binding another substrate forms two perpendicular short helices connected by a sharp turn. PMID:22684058
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lianying; College of Life Science, Dezhou University, Dezhou 253023; Ren, Xiao-Min
2014-09-15
Perfluorinated compounds (PFCs) have been shown to disrupt lipid metabolism and even induce cancer in rodents through activation of peroxisome proliferator-activated receptors (PPARs). Lines of evidence showed that PPARα was activated by PFCs. However, the information on the binding interactions between PPARγ and PFCs and subsequent alteration of PPARγ activity is still limited and sometimes inconsistent. In the present study, in vitro binding of 16 PFCs to human PPARγ ligand binding domain (hPPARγ-LBD) and their activity on the receptor in cells were investigated. The results showed that the binding affinity was strongly dependent on their carbon number and functional group.more » For the eleven perfluorinated carboxylic acids (PFCAs), the binding affinity increased with their carbon number from 4 to 11, and then decreased slightly. The binding affinity of the three perfluorinated sulfonic acids (PFSAs) was stronger than their PFCA counterparts. No binding was detected for the two fluorotelomer alcohols (FTOHs). Circular dichroim spectroscopy showed that PFC binding induced distinctive structural change of the receptor. In dual luciferase reporter assays using transiently transfected Hep G2 cells, PFCs acted as hPPARγ agonists, and their potency correlated with their binding affinity with hPPARγ-LBD. Molecular docking showed that PFCs with different chain length bind with the receptor in different geometry, which may contribute to their differences in binding affinity and transcriptional activity. - Highlights: • Binding affinity between PFCs and PPARγ was evaluated for the first time. • The binding strength was dependent on fluorinated carbon chain and functional group. • PFC binding induced distinctive structural change of the receptor. • PFCs could act as hPPARγ agonists in Hep G2 cells.« less
Xie, Ying; Zhong, Caigao; Zeng, Ming; Guan, Lan; Luo, Lei
2013-01-01
In the present study, we explored reactive axygen species (ROS) production in mitochondria, the mechanism of hexavalent chromium (Cr(VI)) hepatotoxicity, and the role of protection by GSH. Intact mitochondria were isolated from rat liver tissues and mitochondrial basal respiratory rates of NADH and FADH2 respiratory chains were determined. Mitochondria were treated with Cr(VI), GSH and several complex inhibitors. Mitochondria energized by glutamate/malate were separately or jointly treated with Rotenone (Rot), diphenyleneiodonium (DPI) and antimycinA (Ant), while mitochondria energized by succinate were separately or jointly treated with Rot, DPI ' thenoyltrifluoroacetone (TTFA) and Ant. Cr(VI) concentration-dependently induced ROS production in the NADH and FADH2 respiratory chain in liver mitochondria. Basal respiratory rate of the mitochondrial FADH2 respiratory chain was significantly higher than that of NADH respiratory chain. Hepatic mitochondrial electron leakage induced by Cr(VI) from NADH respiratory chain were mainly from ubiquinone binding sites of complex I and complex III. Treatment with 50µM Cr(VI) enhances forward movement of electrons through FADH2 respiratory chain and leaking through the ubiquinone binding site of complex III. Moreover, the protective effect of GSH on liver mitochondria electron leakage is through removing excess H2O2 and reducing total ROS. Copyright © 2013 S. Karger AG, Basel.
ERIC Educational Resources Information Center
Valiente Catter, Teresa
2011-01-01
For the past 35 years, various models of intercultural bilingual education (IBE) have been implemented in Latin American schools and adult education. While Spanish is the official language in Nicaragua, many indigenous languages, such as Miskito and Sumo-Mayangna, are also spoken--especially in the Atlantic coastal region. The Nicaraguan Ministry…
Bütepage, Mareike; Preisinger, Christian; von Kriegsheim, Alexander; Scheufen, Anja; Lausberg, Eva; Li, Jinyu; Kappes, Ferdinand; Feederle, Regina; Ernst, Sabrina; Eckei, Laura; Krieg, Sarah; Müller-Newen, Gerhard; Rossetti, Giulia; Feijs, Karla L H; Verheugd, Patricia; Lüscher, Bernhard
2018-04-30
Macrodomains are conserved protein folds associated with ADP-ribose binding and turnover. ADP-ribosylation is a posttranslational modification catalyzed primarily by ARTD (aka PARP) enzymes in cells. ARTDs transfer either single or multiple ADP-ribose units to substrates, resulting in mono- or poly-ADP-ribosylation. TARG1/C6orf130 is a macrodomain protein that hydrolyzes mono-ADP-ribosylation and interacts with poly-ADP-ribose chains. Interactome analyses revealed that TARG1 binds strongly to ribosomes and proteins associated with rRNA processing and ribosomal assembly factors. TARG1 localized to transcriptionally active nucleoli, which occurred independently of ADP-ribose binding. TARG1 shuttled continuously between nucleoli and nucleoplasm. In response to DNA damage, which activates ARTD1/2 (PARP1/2) and promotes synthesis of poly-ADP-ribose chains, TARG1 re-localized to the nucleoplasm. This was dependent on the ability of TARG1 to bind to poly-ADP-ribose. These findings are consistent with the observed ability of TARG1 to competitively interact with RNA and PAR chains. We propose a nucleolar role of TARG1 in ribosome assembly or quality control that is stalled when TARG1 is re-located to sites of DNA damage.
Haendeler, Judith; Dröse, Stefan; Büchner, Nicole; Jakob, Sascha; Altschmied, Joachim; Goy, Christine; Spyridopoulos, Ioakim; Zeiher, Andreas M; Brandt, Ulrich; Dimmeler, Stefanie
2009-06-01
The enzyme telomerase and its catalytic subunit the telomerase reverse transcriptase (TERT) are important for maintenance of telomere length in the nucleus. Recent studies provided evidence for a mitochondrial localization of TERT. Therefore, we investigated the exact localization of TERT within the mitochondria and its function. Here, we demonstrate that TERT is localized in the matrix of the mitochondria. TERT binds to mitochondrial DNA at the coding regions for ND1 and ND2. Binding of TERT to mitochondrial DNA protects against ethidium bromide-induced damage. TERT increases overall respiratory chain activity, which is most pronounced at complex I and dependent on the reverse transcriptase activity of the enzyme. Moreover, mitochondrial reactive oxygen species are increased after genetic ablation of TERT by shRNA. Mitochondrially targeted TERT and not wild-type TERT revealed the most prominent protective effect on H(2)O(2)-induced apoptosis. Lung fibroblasts from 6-month-old TERT(-/-) mice (F2 generation) showed increased sensitivity toward UVB radiation and heart mitochondria exhibited significantly reduced respiratory chain activity already under basal conditions, demonstrating the protective function of TERT in vivo. Mitochondrial TERT exerts a novel protective function by binding to mitochondrial DNA, increasing respiratory chain activity and protecting against oxidative stress-induced damage.
1983-01-01
Monoclonal antibodies specific for mouse T cell alloantigens, Tindd and Tsud, linked to the Igh-1 locus on chromosome 12, were used to directly define the antigen-binding molecule produced by a cloned hybridoma. The T cell hybridoma, FL10, was established from antigen-binding T cells of A/J mice. FL10 produces an antigen-specific augmenting T cell factor (TaF) that bears a unique I region-controlled determinant (I-A) and has antigen-binding capacity. The Tindd, but not the Tsud, determinant was detected on the surface of FL10. The presence of both Tindd and I-A subregion-controlled determinants on FL10-derived TaF was directly demonstrated by the adsorption of TaF with immunoadsorbents prepared with monoclonal antibodies. The Igh-1-linked T cell alloantigen, Tsud, was not found on TaF. Further experiments indicated that Tindd is present on the antigen-binding polypeptide chain and not on the second chain bearing the I-A determinant. Despite the presence of the Tindd determinant on hybridoma-derived TaF, augmentation induced by TaF was restricted by the H-2 type of the responding mice and not by the Igh-1 allotype. PMID:6189953
Peptide docking of HIV-1 p24 with single chain fragment variable (scFv) by CDOCKER algorithm
NASA Astrophysics Data System (ADS)
Karim, Hana Atiqah Abdul; Tayapiwatana, Chatchai; Nimmanpipug, Piyarat; Zain, Sharifuddin M.; Rahman, Noorsaadah Abdul; Lee, Vannajan Sanghiran
2014-10-01
In search for the important residues that might have involve in the binding interaction between the p24 caspid protein of HIV-1 fragment (MET68 - PRO90) with the single chain fragment variable (scFv) of FAB23.5, modern computational chemistry approach has been conducted and applied. The p24 fragment was initially taken out from the 1AFV protein molecule consisting of both light (VL) and heavy (VH) chains of FAB23.5 as well as the HIV-1 caspid protein. From there, the p24 (antigen) fragment was made to dock back into the protein pocket receptor (antibody) by using the CDOCKER algorithm to conduct the molecular docking process. The score calculated from the CDOCKER gave 15 possible docked poses with various docked ligand's positions, the interaction energy as well as the binding energy. The best docked pose that imitates the original antigen's position was determined and further processed to the In Situ minimization to obtain the residues interaction energy as well as to observe the hydrogen bonds interaction in the protein-peptide complex. Based on the results demonstrated, the specific residues in the complex that have shown immense lower interaction energies in the 5Å vicinity region from the peptide are from the heavy chain (VH:TYR105) and light chain (VL: ASN31, TYR32, and GLU97). Those residues play vital roles in the binding mechanism of Antibody-Antigen (Ab-Ag) complex of p24 with FAB23.5.
Chlamydomonas Outer Arm Dynein Alters Conformation in Response to Ca2+
Sakato, Miho; Sakakibara, Hitoshi
2007-01-01
We have previously shown that Ca2+ directly activates ATP-sensitive microtubule binding by a Chlamydomonas outer arm dynein subparticle containing the β and γ heavy chains (HCs). The γ HC–associated LC4 light chain is a member of the calmodulin family and binds 1-2 Ca2+ with KCa = 3 × 10−5 M in vitro, suggesting it may act as a Ca2+ sensor for outer arm dynein. Here we investigate interactions between the LC4 light chain and γ HC. Two IQ consensus motifs for binding calmodulin-like proteins are located within the stem domain of the γ heavy chain. In vitro experiments indicate that LC4 undergoes a Ca2+-dependent interaction with the IQ motif domain while remaining tethered to the HC. LC4 also moves into close proximity of the intermediate chain IC1 in the presence of Ca2+. The sedimentation profile of the γ HC subunit changed subtly upon Ca2+ addition, suggesting that the entire complex had become more compact, and electron microscopy of the isolated γ subunit revealed a distinct alteration in conformation of the N-terminal stem in response to Ca2+ addition. We propose that Ca2+-dependent conformational change of LC4 has a direct effect on the stem domain of the γ HC, which eventually leads to alterations in mechanochemical interactions between microtubules and the motor domain(s) of the outer dynein arm. PMID:17634291