Sample records for binocular visual experience

  1. Binocular visual training to promote recovery from monocular deprivation.

    PubMed

    Murphy, Kathryn M; Roumeliotis, Grayson; Williams, Kate; Beston, Brett R; Jones, David G

    2015-01-08

    Abnormal early visual experience often leads to poor vision, a condition called amblyopia. Two recent approaches to treating amblyopia include binocular therapies and intensive visual training. These reflect the emerging view that amblyopia is a binocular deficit caused by increased neural noise and poor signal-in-noise integration. Most perceptual learning studies have used monocular training; however, a recent study has shown that binocular training is effective for improving acuity in adult human amblyopes. We used an animal model of amblyopia, based on monocular deprivation, to compare the effect of binocular training either during or after the critical period for ocular dominance plasticity (early binocular training vs. late binocular training). We used a high-contrast, orientation-in-noise stimulus to drive the visual cortex because neurophysiological findings suggest that binocular training may allow the nondeprived eye to teach the deprived eye's circuits to function. We found that both early and late binocular training promoted good visual recovery. Surprisingly, we found that monocular deprivation caused a permanent deficit in the vision of both eyes, which became evident only as a sleeper effect following many weeks of visual training. © 2015 ARVO.

  2. Sensory Eye Dominance in Treated Anisometropic Amblyopia

    PubMed Central

    Chen, Yao

    2017-01-01

    Amblyopia results from inadequate visual experience during the critical period of visual development. Abnormal binocular interactions are believed to play a critical role in amblyopia. These binocular deficits can often be resolved, owing to the residual visual plasticity in amblyopes. In this study, we quantitatively measured the sensory eye dominance in treated anisometropic amblyopes to determine whether they had fully recovered. Fourteen treated anisometropic amblyopes with normal or corrected to normal visual acuity participated, and their sensory eye dominance was assessed by using a binocular phase combination paradigm. We found that the two eyes were unequal in binocular combination in most (11 out of 14) of our treated anisometropic amblyopes, but none of the controls. We concluded that the treated anisometropic amblyopes, even those with a normal range of visual acuity, exhibited abnormal binocular processing. Our results thus suggest that there is potential for improvement in treated anisometropic amblyopes that may further enhance their binocular visual functioning. PMID:28573051

  3. Binocular iPad treatment for amblyopia in preschool children

    PubMed Central

    Birch, Eileen E.; Li, Simone L.; Jost, Reed M.; Morale, Sarah E.; De La Cruz, Angie; Stager, David; Dao, Lori; Stager, David R.

    2014-01-01

    Background Recent experimental evidence supports a role for binocular visual experience in the treatment of amblyopia. The purpose of this study was to determine whether repeated binocular visual experience with dichoptic iPad games could effectively treat amblyopia in preschool children. Methods A total of 50 consecutive amblyopic preschool children 3–6.9 years of age were assigned to play sham iPad games (first 5 children) or binocular iPad games (n = 45) for at least 4 hours per week for 4 weeks. Thirty (67%) children in the binocular iPad group and 4 (80%) in the sham iPad group were also treated with patching at a different time of day. Visual acuity and stereoacuity were assessed at baseline, at 4 weeks, and at 3 months after the cessation of game play. Results The sham iPad group had no significant improvement in visual acuity (t4 = 0.34, P = 0.75). In the binocular iPad group, mean visual acuity (plus or minus standard error) improved from 0.43 ± 0.03 at baseline to 0.34 ± 0.03 logMAR at 4 weeks (n = 45; paired t44 = 4.93; P < 0.0001). Stereoacuity did not significantly improve (t44 = 1.35, P = 0.18). Children who played the binocular iPad games for ≥8 hours (≥50% compliance) had significantly more visual acuity improvement than children who played 0–4 hours (t43 = 4.21, P = 0.0001). Conclusions Repeated binocular experience, provided by dichoptic iPad game play, was more effective than sham iPad game play as a treatment for amblyopia in preschool children. PMID:25727578

  4. The case from animal studies for balanced binocular treatment strategies for human amblyopia.

    PubMed

    Mitchell, Donald E; Duffy, Kevin R

    2014-03-01

    Although amblyopia typically manifests itself as a monocular condition, its origin has long been linked to unbalanced neural signals from the two eyes during early postnatal development, a view confirmed by studies conducted on animal models in the last 50 years. Despite recognition of its binocular origin, treatment of amblyopia continues to be dominated by a period of patching of the non-amblyopic eye that necessarily hinders binocular co-operation. This review summarizes evidence from three lines of investigation conducted on an animal model of deprivation amblyopia to support the thesis that treatment of amblyopia should instead focus upon procedures that promote and enhance binocular co-operation. First, experiments with mixed daily visual experience in which episodes of abnormal visual input were pitted against normal binocular exposure revealed that short exposures of the latter offset much longer periods of abnormal input to allow normal development of visual acuity in both eyes. Second, experiments on the use of part-time patching revealed that purposeful introduction of episodes of binocular vision each day could be very beneficial. Periods of binocular exposure that represented 30-50% of the daily visual exposure included with daily occlusion of the non-amblyopic could allow recovery of normal vision in the amblyopic eye. Third, very recent experiments demonstrate that a short 10 day period of total darkness can promote very fast and complete recovery of visual acuity in the amblyopic eye of kittens and may represent an example of a class of artificial environments that have similar beneficial effects. Finally, an approach is described to allow timing of events in kitten and human visual system development to be scaled to optimize the ages for therapeutic interventions. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.

  5. Neuroimaging of amblyopia and binocular vision: a review

    PubMed Central

    Joly, Olivier; Frankó, Edit

    2014-01-01

    Amblyopia is a cerebral visual impairment considered to derive from abnormal visual experience (e.g., strabismus, anisometropia). Amblyopia, first considered as a monocular disorder, is now often seen as a primarily binocular disorder resulting in more and more studies examining the binocular deficits in the patients. The neural mechanisms of amblyopia are not completely understood even though they have been investigated with electrophysiological recordings in animal models and more recently with neuroimaging techniques in humans. In this review, we summarize the current knowledge about the brain regions that underlie the visual deficits associated with amblyopia with a focus on binocular vision using functional magnetic resonance imaging. The first studies focused on abnormal responses in the primary and secondary visual areas whereas recent evidence shows that there are also deficits at higher levels of the visual pathways within the parieto-occipital and temporal cortices. These higher level areas are part of the cortical network involved in 3D vision from binocular cues. Therefore, reduced responses in these areas could be related to the impaired binocular vision in amblyopic patients. Promising new binocular treatments might at least partially correct the activation in these areas. Future neuroimaging experiments could help to characterize the brain response changes associated with these treatments and help devise them. PMID:25147511

  6. Neuroimaging of amblyopia and binocular vision: a review.

    PubMed

    Joly, Olivier; Frankó, Edit

    2014-01-01

    Amblyopia is a cerebral visual impairment considered to derive from abnormal visual experience (e.g., strabismus, anisometropia). Amblyopia, first considered as a monocular disorder, is now often seen as a primarily binocular disorder resulting in more and more studies examining the binocular deficits in the patients. The neural mechanisms of amblyopia are not completely understood even though they have been investigated with electrophysiological recordings in animal models and more recently with neuroimaging techniques in humans. In this review, we summarize the current knowledge about the brain regions that underlie the visual deficits associated with amblyopia with a focus on binocular vision using functional magnetic resonance imaging. The first studies focused on abnormal responses in the primary and secondary visual areas whereas recent evidence shows that there are also deficits at higher levels of the visual pathways within the parieto-occipital and temporal cortices. These higher level areas are part of the cortical network involved in 3D vision from binocular cues. Therefore, reduced responses in these areas could be related to the impaired binocular vision in amblyopic patients. Promising new binocular treatments might at least partially correct the activation in these areas. Future neuroimaging experiments could help to characterize the brain response changes associated with these treatments and help devise them.

  7. Experience-dependent central vision deficits: Neurobiology and visual acuity.

    PubMed

    Williams, Kate; Balsor, Justin L; Beshara, Simon; Beston, Brett R; Jones, David G; Murphy, Kathryn M

    2015-09-01

    Abnormal visual experience during childhood often leads to amblyopia, with strong links to binocular dysfunction that can include poor acuity in both eyes, especially in central vision. In animal models of amblyopia, the non-deprived eye is often considered normal and what limits binocular acuity. This leaves open the question whether monocular deprivation (MD) induces binocular dysfunction similar to what is found in amblyopia. In previous studies of MD cats, we found a loss of excitatory receptors restricted to the central visual field representation in visual cortex (V1), including both eyes' columns. This led us to ask two questions about the effects of MD: how quickly are receptors lost in V1? and is there an impact on binocular acuity? We found that just a few hours of MD caused a rapid loss of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor proteins across all of V1. But after a few days of MD, there was recovery in the visual periphery, leaving a loss of AMPA receptors only in the central region of V1. We reared animals with early MD followed by a long period of binocular vision and found binocular acuity deficits that were greatest in the central visual field. Our results suggest that the greater binocular acuity deficits in the central visual field are driven in part by the long-term loss of AMPA receptors in the central region of V1. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A binocular iPad treatment for amblyopic children.

    PubMed

    Li, S L; Jost, R M; Morale, S E; Stager, D R; Dao, L; Stager, D; Birch, E E

    2014-10-01

    Monocular amblyopia treatment (patching or penalization) does not always result in 6/6 vision and amblyopia often recurs. As amblyopia arises from abnormal binocular visual experience, we evaluated the effectiveness of a novel home-based binocular amblyopia treatment. Children (4-12 y) wore anaglyphic glasses to play binocular games on an iPad platform for 4 h/w for 4 weeks. The first 25 children were assigned to sham games and then 50 children to binocular games. Children in the binocular group had the option of participating for an additional 4 weeks. Compliance was monitored with calendars and tracking fellow eye contrast settings. About half of the children in each group were also treated with patching at a different time of day. Best-corrected visual acuity, suppression, and stereoacuity were measured at baseline, at the 4- and 8-week outcome visits, and 3 months after cessation of treatment. Mean (±SE) visual acuity improved in the binocular group from 0.47±0.03 logMAR at baseline to 0.39±0.03 logMAR at 4 weeks (P<0.001); there was no significant change for the sham group. The effect of binocular games on visual acuity did not differ for children who were patched vs those who were not. The median stereoacuity remained unchanged in both groups. An additional 4 weeks of treatment did not yield additional visual acuity improvement. Visual acuity improvements were maintained for 3 months after the cessation of treatment. Binocular iPad treatment rapidly improved visual acuity, and visual acuity was stable for at least 3 months following the cessation of treatment.

  9. A novel apparatus for testing binocular function using the 'CyberDome' three-dimensional hemispherical visual display system.

    PubMed

    Handa, T; Ishikawa, H; Shimizu, K; Kawamura, R; Nakayama, H; Sawada, K

    2009-11-01

    Virtual reality has recently been highlighted as a promising medium for visual presentation and entertainment. A novel apparatus for testing binocular visual function using a hemispherical visual display system, 'CyberDome', has been developed and tested. Subjects comprised 40 volunteers (mean age, 21.63 years) with corrected visual acuity of -0.08 (LogMAR) or better, and stereoacuity better than 100 s of arc on the Titmus stereo test. Subjects were able to experience visual perception like being surrounded by visual images, a feature of the 'CyberDome' hemispherical visual display system. Visual images to the right and left eyes were projected and superimposed on the dome screen, allowing test images to be seen independently by each eye using polarizing glasses. The hemispherical visual display was 1.4 m in diameter. Three test parameters were evaluated: simultaneous perception (subjective angle of strabismus), motor fusion amplitude (convergence and divergence), and stereopsis (binocular disparity at 1260, 840, and 420 s of arc). Testing was performed in volunteer subjects with normal binocular vision, and results were compared with those using a major amblyoscope. Subjective angle of strabismus and motor fusion amplitude showed a significant correlation between our test and the major amblyoscope. All subjects could perceive the stereoscopic target with a binocular disparity of 480 s of arc. Our novel apparatus using the CyberDome, a hemispherical visual display system, was able to quantitatively evaluate binocular function. This apparatus offers clinical promise in the evaluation of binocular function.

  10. A binocular iPad treatment for amblyopic children

    PubMed Central

    Li, S L; Jost, R M; Morale, S E; Stager, D R; Dao, L; Stager, D; Birch, E E

    2014-01-01

    Purpose Monocular amblyopia treatment (patching or penalization) does not always result in 6/6 vision and amblyopia often recurs. As amblyopia arises from abnormal binocular visual experience, we evaluated the effectiveness of a novel home-based binocular amblyopia treatment. Methods Children (4–12 y) wore anaglyphic glasses to play binocular games on an iPad platform for 4 h/w for 4 weeks. The first 25 children were assigned to sham games and then 50 children to binocular games. Children in the binocular group had the option of participating for an additional 4 weeks. Compliance was monitored with calendars and tracking fellow eye contrast settings. About half of the children in each group were also treated with patching at a different time of day. Best-corrected visual acuity, suppression, and stereoacuity were measured at baseline, at the 4- and 8-week outcome visits, and 3 months after cessation of treatment. Results Mean (±SE) visual acuity improved in the binocular group from 0.47±0.03 logMAR at baseline to 0.39±0.03 logMAR at 4 weeks (P<0.001); there was no significant change for the sham group. The effect of binocular games on visual acuity did not differ for children who were patched vs those who were not. The median stereoacuity remained unchanged in both groups. An additional 4 weeks of treatment did not yield additional visual acuity improvement. Visual acuity improvements were maintained for 3 months after the cessation of treatment. Conclusions Binocular iPad treatment rapidly improved visual acuity, and visual acuity was stable for at least 3 months following the cessation of treatment. PMID:25060850

  11. Improved Binocular Outcomes Following Binocular Treatment for Childhood Amblyopia.

    PubMed

    Kelly, Krista R; Jost, Reed M; Wang, Yi-Zhong; Dao, Lori; Beauchamp, Cynthia L; Leffler, Joel N; Birch, Eileen E

    2018-03-01

    Childhood amblyopia can be treated with binocular games or movies that rebalance contrast between the eyes, which is thought to reduce depth of interocular suppression so the child can experience binocular vision. While visual acuity gains have been reported following binocular treatment, studies rarely report gains in binocular outcomes (i.e., stereoacuity, suppression) in amblyopic children. Here, we evaluated binocular outcomes in children who had received binocular treatment for childhood amblyopia. Data for amblyopic children enrolled in two ongoing studies were pooled. The sample included 41 amblyopic children (6 strabismic, 21 anisometropic, 14 combined; age 4-10 years; ≤4 prism diopters [PD]) who received binocular treatment (20 game, 21 movies; prescribed 9-10 hours treatment). Amblyopic eye visual acuity and binocular outcomes (Randot Preschool Stereoacuity, extent of suppression, and depth of suppression) were assessed at baseline and at 2 weeks. Mean amblyopic eye visual acuity (P < 0.001) and mean stereoacuity improved (P = 0.045), and mean extent (P = 0.005) and depth of suppression (P = 0.003) were reduced from baseline at the 2-week visit (87% game adherence, 100% movie adherence). Depth of suppression was reduced more in children aged <8 years than in those aged ≥8 years (P = 0.004). Worse baseline depth of suppression was correlated with a larger depth of suppression reduction at 2 weeks (P = 0.001). After 2 weeks, binocular treatment in amblyopic children improved visual acuity and binocular outcomes, reducing the extent and depth of suppression and improving stereoacuity. Binocular treatments that rebalance contrast to overcome suppression are a promising additional option for treating amblyopia.

  12. Improved Binocular Outcomes Following Binocular Treatment for Childhood Amblyopia

    PubMed Central

    Kelly, Krista R.; Jost, Reed M.; Wang, Yi-Zhong; Dao, Lori; Beauchamp, Cynthia L.; Leffler, Joel N.; Birch, Eileen E.

    2018-01-01

    Purpose Childhood amblyopia can be treated with binocular games or movies that rebalance contrast between the eyes, which is thought to reduce depth of interocular suppression so the child can experience binocular vision. While visual acuity gains have been reported following binocular treatment, studies rarely report gains in binocular outcomes (i.e., stereoacuity, suppression) in amblyopic children. Here, we evaluated binocular outcomes in children who had received binocular treatment for childhood amblyopia. Methods Data for amblyopic children enrolled in two ongoing studies were pooled. The sample included 41 amblyopic children (6 strabismic, 21 anisometropic, 14 combined; age 4–10 years; ≤4 prism diopters [PD]) who received binocular treatment (20 game, 21 movies; prescribed 9–10 hours treatment). Amblyopic eye visual acuity and binocular outcomes (Randot Preschool Stereoacuity, extent of suppression, and depth of suppression) were assessed at baseline and at 2 weeks. Results Mean amblyopic eye visual acuity (P < 0.001) and mean stereoacuity improved (P = 0.045), and mean extent (P = 0.005) and depth of suppression (P = 0.003) were reduced from baseline at the 2-week visit (87% game adherence, 100% movie adherence). Depth of suppression was reduced more in children aged <8 years than in those aged ≥8 years (P = 0.004). Worse baseline depth of suppression was correlated with a larger depth of suppression reduction at 2 weeks (P = 0.001). Conclusions After 2 weeks, binocular treatment in amblyopic children improved visual acuity and binocular outcomes, reducing the extent and depth of suppression and improving stereoacuity. Binocular treatments that rebalance contrast to overcome suppression are a promising additional option for treating amblyopia. PMID:29625442

  13. Rapid recovery from the effects of early monocular deprivation is enabled by temporary inactivation of the retinas.

    PubMed

    Fong, Ming-Fai; Mitchell, Donald E; Duffy, Kevin R; Bear, Mark F

    2016-12-06

    A half-century of research on the consequences of monocular deprivation (MD) in animals has revealed a great deal about the pathophysiology of amblyopia. MD initiates synaptic changes in the visual cortex that reduce acuity and binocular vision by causing neurons to lose responsiveness to the deprived eye. However, much less is known about how deprivation-induced synaptic modifications can be reversed to restore normal visual function. One theoretically motivated hypothesis is that a period of inactivity can reduce the threshold for synaptic potentiation such that subsequent visual experience promotes synaptic strengthening and increased responsiveness in the visual cortex. Here we have reduced this idea to practice in two species. In young mice, we show that the otherwise stable loss of cortical responsiveness caused by MD is reversed when binocular visual experience follows temporary anesthetic inactivation of the retinas. In 3-mo-old kittens, we show that a severe impairment of visual acuity is also fully reversed by binocular experience following treatment and, further, that prolonged retinal inactivation alone can erase anatomical consequences of MD. We conclude that temporary retinal inactivation represents a highly efficacious means to promote recovery of function.

  14. Audiovisual plasticity following early abnormal visual experience: Reduced McGurk effect in people with one eye.

    PubMed

    Moro, Stefania S; Steeves, Jennifer K E

    2018-04-13

    Previously, we have shown that people who have had one eye surgically removed early in life during visual development have enhanced sound localization [1] and lack visual dominance, commonly observed in binocular and monocular (eye-patched) viewing controls [2]. Despite these changes, people with one eye integrate auditory and visual components of multisensory events optimally [3]. The current study investigates how people with one eye perceive the McGurk effect, an audiovisual illusion where a new syllable is perceived when visual lip movements do not match the corresponding sound [4]. We compared individuals with one eye to binocular and monocular viewing controls and found that they have a significantly smaller McGurk effect compared to binocular controls. Additionally, monocular controls tended to perceive the McGurk effect less often than binocular controls suggesting a small transient modulation of the McGurk effect. These results suggest altered weighting of the auditory and visual modalities with both short and long-term monocular viewing. These results indicate the presence of permanent adaptive perceptual accommodations in people who have lost one eye early in life that may serve to mitigate the loss of binocularity during early brain development. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  15. SOURCES OF BINOCULAR SUPRATHRESHOLD VISUAL FIELD LOSS IN A COHORT OF OLDER WOMEN BEING FOLLOWED FOR RISK OF FALLS (AN AMERICAN OPHTHALMOLOGICAL SOCIETY THESIS)

    PubMed Central

    Coleman, Anne Louise

    2007-01-01

    Purpose To determine the sources of binocular visual field loss most strongly associated with falls in a cohort of older women. Methods In the Study of Osteoporotic Fractures, women with severe binocular visual field loss had an increased risk of two or more falls during the 12 months following the eye examination. The lens and fundus photographs of the 422 women with severe binocular visual field loss, plus a random sample of 141 white women with no, mild, or moderate binocular visual field loss—47 white women with no binocular visual field loss, 46 white women with mild binocular visual field loss, and 48 white women with moderate binocular visual field loss —were evaluated for lens opacities, glaucomatous optic nerve damage, age-related macular degeneration, and diabetic retinopathy. Results Eighty-four percent of the women with severe binocular visual field loss had ocular disease in one or both eyes. Bilateral cataracts and glaucomatous optic nerve damage were the most common sources of this severe binocular visual field loss. Approximately 15.2% of women had no evidence of lens opacities, glaucomatous optic nerve damage, age-related macular degeneration, or diabetic retinopathy. Conclusion Severe binocular visual field loss due primarily to cataracts, glaucoma, and age-related macular degeneration explains 33.3% of the falls among women who fell frequently. Because binocular visual field loss may be treatable and/or preventable, screening programs for binocular visual field loss and subsequent referral for intervention and treatment are recommended as a strategy for preventing falls among the elderly. PMID:18427619

  16. Experience-driven plasticity in binocular vision

    PubMed Central

    Klink, P. Christiaan; Brascamp, Jan W.; Blake, Randolph; van Wezel, Richard J.A.

    2010-01-01

    Summary Experience-driven neuronal plasticity allows the brain to adapt its functional connectivity to recent sensory input. Here we use binocular rivalry [1], an experimental paradigm where conflicting images are presented to the individual eyes, to demonstrate plasticity in the neuronal mechanisms that convert visual information from two separated retinas into single perceptual experiences. Perception during binocular rivalry tended to initially consist of alternations between exclusive representations of monocularly defined images, but upon prolonged exposure, mixture percepts became more prevalent. The completeness of suppression, reflected in the incidence of mixture percepts, plausibly reflects the strength of inhibition that likely plays a role in binocular rivalry [2]. Recovery of exclusivity was possible, but required highly specific binocular stimulation. Documenting the prerequisites for these observed changes in perceptual exclusivity, our experiments suggest experience-driven plasticity at interocular inhibitory synapses, driven by the (lack of) correlated activity of neurons representing the conflicting stimuli. This form of plasticity is consistent with a previously proposed, but largely untested, anti-Hebbian learning mechanism for inhibitory synapses in vision [3, 4]. Our results implicate experience-driven plasticity as one governing principle in the neuronal organization of binocular vision. PMID:20674360

  17. Binocular coordination in response to stereoscopic stimuli

    NASA Astrophysics Data System (ADS)

    Liversedge, Simon P.; Holliman, Nicolas S.; Blythe, Hazel I.

    2009-02-01

    Humans actively explore their visual environment by moving their eyes. Precise coordination of the eyes during visual scanning underlies the experience of a unified perceptual representation and is important for the perception of depth. We report data from three psychological experiments investigating human binocular coordination during visual processing of stereoscopic stimuli.In the first experiment participants were required to read sentences that contained a stereoscopically presented target word. Half of the word was presented exclusively to one eye and half exclusively to the other eye. Eye movements were recorded and showed that saccadic targeting was uninfluenced by the stereoscopic presentation, strongly suggesting that complementary retinal stimuli are perceived as a single, unified input prior to saccade initiation. In a second eye movement experiment we presented words stereoscopically to measure Panum's Fusional Area for linguistic stimuli. In the final experiment we compared binocular coordination during saccades between simple dot stimuli under 2D, stereoscopic 3D and real 3D viewing conditions. Results showed that depth appropriate vergence movements were made during saccades and fixations to real 3D stimuli, but only during fixations on stereoscopic 3D stimuli. 2D stimuli did not induce depth vergence movements. Together, these experiments indicate that stereoscopic visual stimuli are fused when they fall within Panum's Fusional Area, and that saccade metrics are computed on the basis of a unified percept. Also, there is sensitivity to non-foveal retinal disparity in real 3D stimuli, but not in stereoscopic 3D stimuli, and the system responsible for binocular coordination responds to this during saccades as well as fixations.

  18. Differential effects of visual attention and working memory on binocular rivalry.

    PubMed

    Scocchia, Lisa; Valsecchi, Matteo; Gegenfurtner, Karl R; Triesch, Jochen

    2014-05-30

    The investigation of cognitive influence on binocular rivalry has a long history. However, the effects of visual WM on rivalry have never been studied so far. We examined top-down modulation of rivalry perception in four experiments to compare the effects of visual WM and sustained selective attention: In the first three experiments we failed to observe any sustained effect of the WM content; only the color of the memory probe was found to prime the initially dominant percept. In Experiment 4 we found a clear effect of sustained attention on rivalry both in terms of the first dominant percept and of the overall dominance when participants were involved in a tracking task. Our results provide an example of dissociation between visual WM and selective attention, two phenomena which otherwise functionally overlap to a large extent. Furthermore, our study highlights the importance of the task employed to engage cognitive resources: The observed perceptual epiphenomena of binocular rivalry are indicative of visual competition at an early stage, which is not affected by WM but is still susceptible to attention influence as long as the observer’s attention is constrained to one of the two rival images via a specific concomitant task. © 2014 ARVO.

  19. A comparison of visuomotor cue integration strategies for object placement and prehension.

    PubMed

    Greenwald, Hal S; Knill, David C

    2009-01-01

    Visual cue integration strategies are known to depend on cue reliability and how rapidly the visual system processes incoming information. We investigated whether these strategies also depend on differences in the information demands for different natural tasks. Using two common goal-oriented tasks, prehension and object placement, we determined whether monocular and binocular information influence estimates of three-dimensional (3D) orientation differently depending on task demands. Both tasks rely on accurate 3D orientation estimates, but 3D position is potentially more important for grasping. Subjects placed an object on or picked up a disc in a virtual environment. On some trials, the monocular cues (aspect ratio and texture compression) and binocular cues (e.g., binocular disparity) suggested slightly different 3D orientations for the disc; these conflicts either were present upon initial stimulus presentation or were introduced after movement initiation, which allowed us to quantify how information from the cues accumulated over time. We analyzed the time-varying orientations of subjects' fingers in the grasping task and those of the object in the object placement task to quantify how different visual cues influenced motor control. In the first experiment, different subjects performed each task, and those performing the grasping task relied on binocular information more when orienting their hands than those performing the object placement task. When subjects in the second experiment performed both tasks in interleaved sessions, binocular cues were still more influential during grasping than object placement, and the different cue integration strategies observed for each task in isolation were maintained. In both experiments, the temporal analyses showed that subjects processed binocular information faster than monocular information, but task demands did not affect the time course of cue processing. How one uses visual cues for motor control depends on the task being performed, although how quickly the information is processed appears to be task invariant.

  20. Modification of visual function by early visual experience.

    PubMed

    Blakemore, C

    1976-07-01

    Physiological experiments, involving recording from the visual cortex in young kittens and monkeys, have given new insight into human developmental disorders. In the visual cortex of normal cats and monkeys most neurones are selectively sensitive to the orientation of moving edges and they receive very similar signals from both eyes. Even in very young kittens without visual experience, most neurones are binocularly driven and a small proportion of them are genuinely orientation selective. There is no passive maturation of the system in the absence of visual experience, but even very brief exposure to patterned images produces rapid emergence of the adult organization. These results are compared to observations on humans who have "recovered" from early blindness. Covering one eye in a kitten or a monkey, during a sensitive period early in life, produces a virtually complete loss of input from that eye in the cortex. These results can be correlated with the production of "stimulus deprivation amblyopia" in infants who have had one eye patched. Induction of a strabismus causes a loss of binocularity in the visual cortex, and in humans it leads to a loss of stereoscopic vision and binocular fusion. Exposing kittens to lines of one orientation modifies the preferred orientations of cortical cells and there is an analogous "meridional amblyopia" in astigmatic humans. The existence of a sensitive period in human vision is discussed, as well as the possibility of designing remedial and preventive treatments for human developmental disorders.

  1. Effects of complete monocular deprivation in visuo-spatial memory.

    PubMed

    Cattaneo, Zaira; Merabet, Lotfi B; Bhatt, Ela; Vecchi, Tomaso

    2008-09-30

    Monocular deprivation has been associated with both specific deficits and enhancements in visual perception and processing. In this study, performance on a visuo-spatial memory task was compared in congenitally monocular individuals and sighted control individuals viewing monocularly (i.e., patched) and binocularly. The task required the individuals to view and memorize a series of target locations on two-dimensional matrices. Overall, congenitally monocular individuals performed worse than sighted individuals (with a specific deficit in simultaneously maintaining distinct spatial representations in memory), indicating that the lack of binocular visual experience affects the way visual information is represented in visuo-spatial memory. No difference was observed between the monocular and binocular viewing control groups, suggesting that early monocular deprivation affects the development of cortical mechanisms mediating visuo-spatial cognition.

  2. Contralateral Bias of High Spatial Frequency Tuning and Cardinal Direction Selectivity in Mouse Visual Cortex

    PubMed Central

    Zeitoun, Jack H.; Kim, Hyungtae

    2017-01-01

    Binocular mechanisms for visual processing are thought to enhance spatial acuity by combining matched input from the two eyes. Studies in the primary visual cortex of carnivores and primates have confirmed that eye-specific neuronal response properties are largely matched. In recent years, the mouse has emerged as a prominent model for binocular visual processing, yet little is known about the spatial frequency tuning of binocular responses in mouse visual cortex. Using calcium imaging in awake mice of both sexes, we show that the spatial frequency preference of cortical responses to the contralateral eye is ∼35% higher than responses to the ipsilateral eye. Furthermore, we find that neurons in binocular visual cortex that respond only to the contralateral eye are tuned to higher spatial frequencies. Binocular neurons that are well matched in spatial frequency preference are also matched in orientation preference. In contrast, we observe that binocularly mismatched cells are more mismatched in orientation tuning. Furthermore, we find that contralateral responses are more direction-selective than ipsilateral responses and are strongly biased to the cardinal directions. The contralateral bias of high spatial frequency tuning was found in both awake and anesthetized recordings. The distinct properties of contralateral cortical responses may reflect the functional segregation of direction-selective, high spatial frequency-preferring neurons in earlier stages of the central visual pathway. Moreover, these results suggest that the development of binocularity and visual acuity may engage distinct circuits in the mouse visual system. SIGNIFICANCE STATEMENT Seeing through two eyes is thought to improve visual acuity by enhancing sensitivity to fine edges. Using calcium imaging of cellular responses in awake mice, we find surprising asymmetries in the spatial processing of eye-specific visual input in binocular primary visual cortex. The contralateral visual pathway is tuned to higher spatial frequencies than the ipsilateral pathway. At the highest spatial frequencies, the contralateral pathway strongly prefers to respond to visual stimuli along the cardinal (horizontal and vertical) axes. These results suggest that monocular, and not binocular, mechanisms set the limit of spatial acuity in mice. Furthermore, they suggest that the development of visual acuity and binocularity in mice involves different circuits. PMID:28924011

  3. Contextual Cueing Effect in Spatial Layout Defined by Binocular Disparity

    PubMed Central

    Zhao, Guang; Zhuang, Qian; Ma, Jie; Tu, Shen; Liu, Qiang; Sun, Hong-jin

    2017-01-01

    Repeated visual context induces higher search efficiency, revealing a contextual cueing effect, which depends on the association between the target and its visual context. In this study, participants performed a visual search task where search items were presented with depth information defined by binocular disparity. When the 3-dimensional (3D) configurations were repeated over blocks, the contextual cueing effect was obtained (Experiment 1). When depth information was in chaos over repeated configurations, visual search was not facilitated and the contextual cueing effect largely crippled (Experiment 2). However, when we made the search items within a tiny random displacement in the 2-dimentional (2D) plane but maintained the depth information constant, the contextual cueing was preserved (Experiment 3). We concluded that the contextual cueing effect was robust in the context provided by 3D space with stereoscopic information, and more importantly, the visual system prioritized stereoscopic information in learning of spatial information when depth information was available. PMID:28912739

  4. Contextual Cueing Effect in Spatial Layout Defined by Binocular Disparity.

    PubMed

    Zhao, Guang; Zhuang, Qian; Ma, Jie; Tu, Shen; Liu, Qiang; Sun, Hong-Jin

    2017-01-01

    Repeated visual context induces higher search efficiency, revealing a contextual cueing effect, which depends on the association between the target and its visual context. In this study, participants performed a visual search task where search items were presented with depth information defined by binocular disparity. When the 3-dimensional (3D) configurations were repeated over blocks, the contextual cueing effect was obtained (Experiment 1). When depth information was in chaos over repeated configurations, visual search was not facilitated and the contextual cueing effect largely crippled (Experiment 2). However, when we made the search items within a tiny random displacement in the 2-dimentional (2D) plane but maintained the depth information constant, the contextual cueing was preserved (Experiment 3). We concluded that the contextual cueing effect was robust in the context provided by 3D space with stereoscopic information, and more importantly, the visual system prioritized stereoscopic information in learning of spatial information when depth information was available.

  5. Augmented Reality in a Simulated Tower Environment: Effect of Field of View on Aircraft Detection

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.; Adelstein, Bernard D.; Reisman, Ronald J.; Schmidt-Ott, Joelle R.; Gips, Jonathan; Krozel, Jimmy; Cohen, Malcolm (Technical Monitor)

    2002-01-01

    An optical see-through, augmented reality display was used to study subjects' ability to detect aircraft maneuvering and landing at the Dallas Ft. Worth International airport in an ATC Tower simulation. Subjects monitored the traffic patterns as if from the airport's western control tower. Three binocular fields of view (14 deg, 28 deg and 47 deg) were studied in an independent groups' design to measure the degradation in detection performance associated with the visual field restrictions. In a second experiment the 14 deg and 28 deg fields were presented either with 46% binocular overlap or 100% overlap for separate groups. The near asymptotic results of the first experiment suggest that binocular fields of view much greater than 47% are unlikely to dramatically improve performance; and those of the second experiment suggest that partial binocular overlap is feasible for augmented reality displays such as may be used for ATC tower applications.

  6. Binocular Summation and Other Forms of Non-Dominant Eye Contribution in Individuals with Strabismic Amblyopia during Habitual Viewing

    PubMed Central

    Barrett, Brendan T.; Panesar, Gurvinder K.; Scally, Andrew J.; Pacey, Ian E.

    2013-01-01

    Background Adults with amblyopia (‘lazy eye’), long-standing strabismus (ocular misalignment) or both typically do not experience visual symptoms because the signal from weaker eye is given less weight than the signal from its fellow. Here we examine the contribution of the weaker eye of individuals with strabismus and amblyopia with both eyes open and with the deviating eye in its anomalous motor position. Methodology/Results The task consisted of a blue-on-yellow detection task along a horizontal line across the central 50 degrees of the visual field. We compare the results obtained in ten individuals with strabismic amblyopia with ten visual normals. At each field location in each participant, we examined how the sensitivity exhibited under binocular conditions compared with sensitivity from four predictions, (i) a model of binocular summation, (ii) the average of the monocular sensitivities, (iii) dominant-eye sensitivity or (iv) non-dominant-eye sensitivity. The proportion of field locations for which the binocular summation model provided the best description of binocular sensitivity was similar in normals (50.6%) and amblyopes (48.2%). Average monocular sensitivity matched binocular sensitivity in 14.1% of amblyopes’ field locations compared to 8.8% of normals’. Dominant-eye sensitivity explained sensitivity at 27.1% of field locations in amblyopes but 21.2% in normals. Non-dominant-eye sensitivity explained sensitivity at 10.6% of field locations in amblyopes but 19.4% in normals. Binocular summation provided the best description of the sensitivity profile in 6/10 amblyopes compared to 7/10 of normals. In three amblyopes, dominant-eye sensitivity most closely reflected binocular sensitivity (compared to two normals) and in the remaining amblyope, binocular sensitivity approximated to an average of the monocular sensitivities. Conclusions Our results suggest a strong positive contribution in habitual viewing from the non-dominant eye in strabismic amblyopes. This is consistent with evidence from other sources that binocular mechanisms are frequently intact in strabismic and amblyopic individuals. PMID:24205005

  7. Monocular perceptual learning of contrast detection facilitates binocular combination in adults with anisometropic amblyopia.

    PubMed

    Chen, Zidong; Li, Jinrong; Liu, Jing; Cai, Xiaoxiao; Yuan, Junpeng; Deng, Daming; Yu, Minbin

    2016-02-01

    Perceptual learning in contrast detection improves monocular visual function in adults with anisometropic amblyopia; however, its effect on binocular combination remains unknown. Given that the amblyopic visual system suffers from pronounced binocular functional loss, it is important to address how the amblyopic visual system responds to such training strategies under binocular viewing conditions. Anisometropic amblyopes (n = 13) were asked to complete two psychophysical supra-threshold binocular summation tasks: (1) binocular phase combination and (2) dichoptic global motion coherence before and after monocular training to investigate this question. We showed that these participants benefited from monocular training in terms of binocular combination. More importantly, the improvements observed with the area under log CSF (AULCSF) were found to be correlated with the improvements in binocular phase combination.

  8. Monocular perceptual learning of contrast detection facilitates binocular combination in adults with anisometropic amblyopia

    PubMed Central

    Chen, Zidong; Li, Jinrong; Liu, Jing; Cai, Xiaoxiao; Yuan, Junpeng; Deng, Daming; Yu, Minbin

    2016-01-01

    Perceptual learning in contrast detection improves monocular visual function in adults with anisometropic amblyopia; however, its effect on binocular combination remains unknown. Given that the amblyopic visual system suffers from pronounced binocular functional loss, it is important to address how the amblyopic visual system responds to such training strategies under binocular viewing conditions. Anisometropic amblyopes (n = 13) were asked to complete two psychophysical supra-threshold binocular summation tasks: (1) binocular phase combination and (2) dichoptic global motion coherence before and after monocular training to investigate this question. We showed that these participants benefited from monocular training in terms of binocular combination. More importantly, the improvements observed with the area under log CSF (AULCSF) were found to be correlated with the improvements in binocular phase combination. PMID:26829898

  9. Altered Balance of Receptive Field Excitation and Suppression in Visual Cortex of Amblyopic Macaque Monkeys

    PubMed Central

    Shooner, Christopher; Kelly, Jenna G.; García-Marín, Virginia; Movshon, J. Anthony; Kiorpes, Lynne

    2017-01-01

    In amblyopia, a visual disorder caused by abnormal visual experience during development, the amblyopic eye (AE) loses visual sensitivity whereas the fellow eye (FE) is largely unaffected. Binocular vision in amblyopes is often disrupted by interocular suppression. We used 96-electrode arrays to record neurons and neuronal groups in areas V1 and V2 of six female macaque monkeys (Macaca nemestrina) made amblyopic by artificial strabismus or anisometropia in early life, as well as two visually normal female controls. To measure suppressive binocular interactions directly, we recorded neuronal responses to dichoptic stimulation. We stimulated both eyes simultaneously with large sinusoidal gratings, controlling their contrast independently with raised-cosine modulators of different orientations and spatial frequencies. We modeled each eye's receptive field at each cortical site using a difference of Gaussian envelopes and derived estimates of the strength of central excitation and surround suppression. We used these estimates to calculate ocular dominance separately for excitation and suppression. Excitatory drive from the FE dominated amblyopic visual cortex, especially in more severe amblyopes, but suppression from both the FE and AEs was prevalent in all animals. This imbalance created strong interocular suppression in deep amblyopes: increasing contrast in the AE decreased responses at binocular cortical sites. These response patterns reveal mechanisms that likely contribute to the interocular suppression that disrupts vision in amblyopes. SIGNIFICANCE STATEMENT Amblyopia is a developmental visual disorder that alters both monocular vision and binocular interaction. Using microelectrode arrays, we examined binocular interaction in primary visual cortex and V2 of six amblyopic macaque monkeys (Macaca nemestrina) and two visually normal controls. By stimulating the eyes dichoptically, we showed that, in amblyopic cortex, the binocular combination of signals is altered. The excitatory influence of the two eyes is imbalanced to a degree that can be predicted from the severity of amblyopia, whereas suppression from both eyes is prevalent in all animals. This altered balance of excitation and suppression reflects mechanisms that may contribute to the interocular perceptual suppression that disrupts vision in amblyopes. PMID:28743725

  10. Altered Balance of Receptive Field Excitation and Suppression in Visual Cortex of Amblyopic Macaque Monkeys.

    PubMed

    Hallum, Luke E; Shooner, Christopher; Kumbhani, Romesh D; Kelly, Jenna G; García-Marín, Virginia; Majaj, Najib J; Movshon, J Anthony; Kiorpes, Lynne

    2017-08-23

    In amblyopia, a visual disorder caused by abnormal visual experience during development, the amblyopic eye (AE) loses visual sensitivity whereas the fellow eye (FE) is largely unaffected. Binocular vision in amblyopes is often disrupted by interocular suppression. We used 96-electrode arrays to record neurons and neuronal groups in areas V1 and V2 of six female macaque monkeys ( Macaca nemestrina ) made amblyopic by artificial strabismus or anisometropia in early life, as well as two visually normal female controls. To measure suppressive binocular interactions directly, we recorded neuronal responses to dichoptic stimulation. We stimulated both eyes simultaneously with large sinusoidal gratings, controlling their contrast independently with raised-cosine modulators of different orientations and spatial frequencies. We modeled each eye's receptive field at each cortical site using a difference of Gaussian envelopes and derived estimates of the strength of central excitation and surround suppression. We used these estimates to calculate ocular dominance separately for excitation and suppression. Excitatory drive from the FE dominated amblyopic visual cortex, especially in more severe amblyopes, but suppression from both the FE and AEs was prevalent in all animals. This imbalance created strong interocular suppression in deep amblyopes: increasing contrast in the AE decreased responses at binocular cortical sites. These response patterns reveal mechanisms that likely contribute to the interocular suppression that disrupts vision in amblyopes. SIGNIFICANCE STATEMENT Amblyopia is a developmental visual disorder that alters both monocular vision and binocular interaction. Using microelectrode arrays, we examined binocular interaction in primary visual cortex and V2 of six amblyopic macaque monkeys ( Macaca nemestrina ) and two visually normal controls. By stimulating the eyes dichoptically, we showed that, in amblyopic cortex, the binocular combination of signals is altered. The excitatory influence of the two eyes is imbalanced to a degree that can be predicted from the severity of amblyopia, whereas suppression from both eyes is prevalent in all animals. This altered balance of excitation and suppression reflects mechanisms that may contribute to the interocular perceptual suppression that disrupts vision in amblyopes. Copyright © 2017 the authors 0270-6474/17/378216-11$15.00/0.

  11. Stereopsis and aging.

    PubMed

    Norman, J Farley; Norman, Hideko F; Craft, Amy E; Walton, Crystal L; Bartholomew, Ashley N; Burton, Cory L; Wiesemann, Elizabeth Y; Crabtree, Charles E

    2008-10-01

    Three experiments investigated whether and to what extent increases in age affect the functionality of stereopsis. The observers' ages ranged from 18 to 83 years. The overall goal was to challenge the older stereoscopic visual system by utilizing high magnitudes of binocular disparity, ambiguous binocular disparity [cf., Julesz, B., & Chang, J. (1976). Interaction between pools of binocular disparity detectors tuned to different disparities. Biological Cybernetics, 22, 107-119], and by making binocular matching more difficult. In particular, Experiment 1 evaluated observers' abilities to discriminate ordinal depth differences away from the horopter using standing disparities of 6.5-46 min arc. Experiment 2 assessed observers' abilities to discriminate stereoscopic shape using line-element stereograms. The direction (crossed vs. uncrossed) and magnitude of the binocular disparity (13.7 and 51.5 min arc) were manipulated. Binocular matching was made more difficult by varying the orientations of corresponding line elements across the two eyes' views. The purpose of Experiment 3 was to determine whether the aging stereoscopic system can resolve ambiguous binocular disparities in a manner similar to that of younger observers. The results of all experiments demonstrated that older observers' stereoscopic vision is functionally comparable to that of younger observers in many respects. For example, both age groups exhibited a similar ability to discriminate depth and surface shape. The results also showed, however, that age-related differences in stereopsis do exist, and they become most noticeable when the older stereoscopic system is challenged by multiple simultaneous factors.

  12. Visual cues and perceived reachability.

    PubMed

    Gabbard, Carl; Ammar, Diala

    2005-12-01

    A rather consistent finding in studies of perceived (imagined) compared to actual movement in a reaching paradigm is the tendency to overestimate at midline. Explanations of such behavior have focused primarily on perceptions of postural constraints and the notion that individuals calibrate reachability in reference to multiple degrees of freedom, also known as the whole-body explanation. The present study examined the role of visual information in the form of binocular and monocular cues in perceived reachability. Right-handed participants judged the reachability of visual targets at midline with both eyes open, dominant eye occluded, and the non-dominant eye covered. Results indicated that participants were relatively accurate with condition responses not being significantly different in regard to total error. Analysis of the direction of error (mean bias) revealed effective accuracy across conditions with only a marginal distinction between monocular and binocular conditions. Therefore, within the task conditions of this experiment, it appears that binocular and monocular cues provide sufficient visual information for effective judgments of perceived reach at midline.

  13. Adult Visual Experience Promotes Recovery of Primary Visual Cortex from Long-Term Monocular Deprivation

    ERIC Educational Resources Information Center

    Fischer, Quentin S.; Aleem, Salman; Zhou, Hongyi; Pham, Tony A.

    2007-01-01

    Prolonged visual deprivation from early childhood to maturity is believed to cause permanent visual impairment. However, there have been case reports of substantial improvement of binocular vision in human adults following lifelong visual impairment or deprivation. These observations, together with recent findings of adult ocular dominance…

  14. Aging and the discrimination of 3-D shape from motion and binocular disparity.

    PubMed

    Norman, J Farley; Holmin, Jessica S; Beers, Amanda M; Cheeseman, Jacob R; Ronning, Cecilia; Stethen, Angela G; Frost, Adam L

    2012-10-01

    Two experiments evaluated the ability of younger and older adults to visually discriminate 3-D shape as a function of surface coherence. The coherence was manipulated by embedding the 3-D surfaces in volumetric noise (e.g., for a 55 % coherent surface, 55 % of the stimulus points fell on a 3-D surface, while 45 % of the points occupied random locations within the same volume of space). The 3-D surfaces were defined by static binocular disparity, dynamic binocular disparity, and motion. The results of both experiments demonstrated significant effects of age: Older adults required more coherence (tolerated volumetric noise less) for reliable shape discrimination than did younger adults. Motion-defined and static-binocular-disparity-defined surfaces resulted in similar coherence thresholds. However, performance for dynamic-binocular-disparity-defined surfaces was superior (i.e., the observers' surface coherence thresholds were lowest for these stimuli). The results of both experiments showed that younger and older adults possess considerable tolerance to the disrupting effects of volumetric noise; the observers could reliably discriminate 3-D surface shape even when 45 % of the stimulus points (or more) constituted noise.

  15. The effect of lens-induced anisometropia on accommodation and vergence during human visual development.

    PubMed

    Bharadwaj, Shrikant R; Candy, T Rowan

    2011-06-01

    Clear and single binocular vision, a prerequisite for normal human visual development, is achieved through accommodation and vergence. Anisometropia is associated with abnormal visual development, but its impact on accommodation and vergence, and therefore on the individual's visual experience, is not known. This study determined the impact of transiently induced anisometropia on accommodative and vergence performance of the typically developing human visual system. One hundred eighteen subjects (age range, 2.9 months to 41.1 years) watched a cartoon movie that moved between 80 and 33 cm under six different viewing conditions: binocular and monocular, and with ±2 diopters (D) and ±4 D of lens-induced anisometropia. Twenty-one subjects (age range, 3.1 months to 12.1 years) also watched the movie with 11% induced aniseikonia. Accommodation and vergence were recorded in both eyes using a videoretinoscope (25 Hz). The main effect of viewing condition was statistically significant for both accommodation and vergence (both P < 0.001), with monocular accommodative and vergence gains statistically significantly smaller than the binocular and four induced anisometropia conditions (P < 0.001 for both accommodation and vergence). The main effect of age approached significance for accommodation (P = 0.06) and was not significant for vergence (P = 0.32). Accommodative and vergence gains with induced aniseikonia were not statistically significantly different from the binocular condition (both P > 0.5). Accommodative and vergence gains of the typically developing visual system deteriorated marginally (accommodation more than vergence) with transiently induced anisometropia (up to ±4 D) and did not deteriorate significantly with induced aniseikonia of 11%. Some binocular cues remained with ±4 D of induced anisometropia and 11% induced aniseikonia, as indicated by the accommodative and vergence gains being higher than in monocular viewing.

  16. The Effect of Lens-Induced Anisometropia on Accommodation and Vergence during Human Visual Development

    PubMed Central

    Candy, T. Rowan

    2011-01-01

    Purpose. Clear and single binocular vision, a prerequisite for normal human visual development, is achieved through accommodation and vergence. Anisometropia is associated with abnormal visual development, but its impact on accommodation and vergence, and therefore on the individual's visual experience, is not known. This study determined the impact of transiently induced anisometropia on accommodative and vergence performance of the typically developing human visual system. Methods. One hundred eighteen subjects (age range, 2.9 months to 41.1 years) watched a cartoon movie that moved between 80 and 33 cm under six different viewing conditions: binocular and monocular, and with ±2 diopters (D) and ±4 D of lens-induced anisometropia. Twenty-one subjects (age range, 3.1 months to 12.1 years) also watched the movie with 11% induced aniseikonia. Accommodation and vergence were recorded in both eyes using a videoretinoscope (25 Hz). Results. The main effect of viewing condition was statistically significant for both accommodation and vergence (both P < 0.001), with monocular accommodative and vergence gains statistically significantly smaller than the binocular and four induced anisometropia conditions (P < 0.001 for both accommodation and vergence). The main effect of age approached significance for accommodation (P = 0.06) and was not significant for vergence (P = 0.32). Accommodative and vergence gains with induced aniseikonia were not statistically significantly different from the binocular condition (both P > 0.5). Conclusions. Accommodative and vergence gains of the typically developing visual system deteriorated marginally (accommodation more than vergence) with transiently induced anisometropia (up to ±4 D) and did not deteriorate significantly with induced aniseikonia of 11%. Some binocular cues remained with ±4 D of induced anisometropia and 11% induced aniseikonia, as indicated by the accommodative and vergence gains being higher than in monocular viewing. PMID:21296822

  17. Reduced Perceptual Exclusivity during Object and Grating Rivalry in Autism

    PubMed Central

    Freyberg, J.; Robertson, C.E.; Baron-Cohen, S.

    2015-01-01

    Background The dynamics of binocular rivalry may be a behavioural footprint of excitatory and inhibitory neural transmission in visual cortex. Given the presence of atypical visual features in Autism Spectrum Conditions (ASC), and evidence in support of the idea of an imbalance in excitatory/inhibitory neural transmission in ASC, we hypothesized that binocular rivalry might prove a simple behavioural marker of such a transmission imbalance in the autistic brain. In support of this hypothesis, we previously reported a slower rate of rivalry in ASC, driven by reduced perceptual exclusivity. Methods We tested whether atypical dynamics of binocular rivalry in ASC are specific to certain stimulus features. 53 participants (26 with ASC, matched for age, sex and IQ) participated in binocular rivalry experiments in which the dynamics of rivalry were measured at two levels of stimulus complexity, low (grayscale gratings) and high (coloured objects). Results Individuals with ASC experienced a slower rate of rivalry, driven by longer transitional states between dominant percepts. These exaggerated transitional states were present at both low and high levels of stimulus complexity, suggesting that atypical rivalry dynamics in autism are robust with respect to stimulus choice. Interactions between stimulus properties and rivalry dynamics in autism indicate that achromatic grating stimuli produce stronger group differences. Conclusion These results confirm the finding of atypical dynamics of binocular rivalry in ASC. These dynamics were present for stimuli of both low and high levels of visual complexity, suggesting an imbalance in competitive interactions throughout the visual system of individuals with ASC. PMID:26382002

  18. Visual response time to colored stimuli in peripheral retina - Evidence for binocular summation

    NASA Technical Reports Server (NTRS)

    Haines, R. F.

    1977-01-01

    Simple onset response time (RT) experiments, previously shown to exhibit binocular summation effects for white stimuli along the horizontal meridian, were performed for red and green stimuli along 5 oblique meridians. Binocular RT was significantly shorter than monocular RT for a 45-min-diameter spot of red, green, or white light within eccentricities of about 50 deg from the fovea. Relatively large meridian differences were noted that appear to be due to the degree to which the images fall on corresponding retinal areas.

  19. Underwater binocular imaging of aerial objects versus the position of eyes relative to the flat water surface.

    PubMed

    Barta, András; Horváth, Gábor

    2003-12-01

    The apparent position, size, and shape of aerial objects viewed binocularly from water change as a result of the refraction of light at the water surface. Earlier studies of the refraction-distorted structure of the aerial binocular visual field of underwater observers were restricted to either vertically or horizontally oriented eyes. Here we calculate the position of the binocular image point of an aerial object point viewed by two arbitrarily positioned underwater eyes when the water surface is flat. Assuming that binocular image fusion is performed by appropriate vergent eye movements to bring the object's image onto the foveae, the structure of the aerial binocular visual field is computed and visualized as a function of the relative positions of the eyes. We also analyze two erroneous representations of the underwater imaging of aerial objects that have occurred in the literature. It is demonstrated that the structure of the aerial binocular visual field of underwater observers distorted by refraction is more complex than has been thought previously.

  20. Callosal Influence on Visual Receptive Fields Has an Ocular, an Orientation-and Direction Bias.

    PubMed

    Conde-Ocazionez, Sergio A; Jungen, Christiane; Wunderle, Thomas; Eriksson, David; Neuenschwander, Sergio; Schmidt, Kerstin E

    2018-01-01

    One leading hypothesis on the nature of visual callosal connections (CC) is that they replicate features of intrahemispheric lateral connections. However, CC act also in the central part of the binocular visual field. In agreement, early experiments in cats indicated that they provide the ipsilateral eye part of binocular receptive fields (RFs) at the vertical midline (Berlucchi and Rizzolatti, 1968), and play a key role in stereoscopic function. But until today callosal inputs to receptive fields activated by one or both eyes were never compared simultaneously, because callosal function has been often studied by cutting or lesioning either corpus callosum or optic chiasm not allowing such a comparison. To investigate the functional contribution of CC in the intact cat visual system we recorded both monocular and binocular neuronal spiking responses and receptive fields in the 17/18 transition zone during reversible deactivation of the contralateral hemisphere. Unexpectedly from many of the previous reports, we observe no change in ocular dominance during CC deactivation. Throughout the transition zone, a majority of RFs shrink, but several also increase in size. RFs are significantly more affected for ipsi- as opposed to contralateral stimulation, but changes are also observed with binocular stimulation. Noteworthy, RF shrinkages are tiny and not correlated to the profound decreases of monocular and binocular firing rates. They depend more on orientation and direction preference than on eccentricity or ocular dominance of the receiving neuron's RF. Our findings confirm that in binocularly viewing mammals, binocular RFs near the midline are constructed via the direct geniculo-cortical pathway. They also support the idea that input from the two eyes complement each other through CC: Rather than linking parts of RFs separated by the vertical meridian, CC convey a modulatory influence, reflecting the feature selectivity of lateral circuits, with a strong cardinal bias.

  1. Differential processing of binocular and monocular gloss cues in human visual cortex

    PubMed Central

    Di Luca, Massimiliano; Ban, Hiroshi; Muryy, Alexander; Fleming, Roland W.

    2016-01-01

    The visual impression of an object's surface reflectance (“gloss”) relies on a range of visual cues, both monocular and binocular. Whereas previous imaging work has identified processing within ventral visual areas as important for monocular cues, little is known about cortical areas involved in processing binocular cues. Here, we used human functional MRI (fMRI) to test for brain areas selectively involved in the processing of binocular cues. We manipulated stereoscopic information to create four conditions that differed in their disparity structure and in the impression of surface gloss that they evoked. We performed multivoxel pattern analysis to find areas whose fMRI responses allow classes of stimuli to be distinguished based on their depth structure vs. material appearance. We show that higher dorsal areas play a role in processing binocular gloss information, in addition to known ventral areas involved in material processing, with ventral area lateral occipital responding to both object shape and surface material properties. Moreover, we tested for similarities between the representation of gloss from binocular cues and monocular cues. Specifically, we tested for transfer in the decoding performance of an algorithm trained on glossy vs. matte objects defined by either binocular or by monocular cues. We found transfer effects from monocular to binocular cues in dorsal visual area V3B/kinetic occipital (KO), suggesting a shared representation of the two cues in this area. These results indicate the involvement of mid- to high-level visual circuitry in the estimation of surface material properties, with V3B/KO potentially playing a role in integrating monocular and binocular cues. PMID:26912596

  2. Binocular combination in abnormal binocular vision

    PubMed Central

    Ding, Jian; Klein, Stanley A.; Levi, Dennis M.

    2013-01-01

    We investigated suprathreshold binocular combination in humans with abnormal binocular visual experience early in life. In the first experiment we presented the two eyes with equal but opposite phase shifted sine waves and measured the perceived phase of the cyclopean sine wave. Normal observers have balanced vision between the two eyes when the two eyes' images have equal contrast (i.e., both eyes contribute equally to the perceived image and perceived phase = 0°). However, in observers with strabismus and/or amblyopia, balanced vision requires a higher contrast image in the nondominant eye (NDE) than the dominant eye (DE). This asymmetry between the two eyes is larger than predicted from the contrast sensitivities or monocular perceived contrast of the two eyes and is dependent on contrast and spatial frequency: more asymmetric with higher contrast and/or spatial frequency. Our results also revealed a surprising NDE-to-DE enhancement in some of our abnormal observers. This enhancement is not evident in normal vision because it is normally masked by interocular suppression. However, in these abnormal observers the NDE-to-DE suppression was weak or absent. In the second experiment, we used the identical stimuli to measure the perceived contrast of a cyclopean grating by matching the binocular combined contrast to a standard contrast presented to the DE. These measures provide strong constraints for model fitting. We found asymmetric interocular interactions in binocular contrast perception, which was dependent on both contrast and spatial frequency in the same way as in phase perception. By introducing asymmetric parameters to the modified Ding-Sperling model including interocular contrast gain enhancement, we succeeded in accounting for both binocular combined phase and contrast simultaneously. Adding binocular contrast gain control to the modified Ding-Sperling model enabled us to predict the results of dichoptic and binocular contrast discrimination experiments and provides new insights into the mechanisms of abnormal binocular vision. PMID:23397039

  3. Binocular combination in abnormal binocular vision.

    PubMed

    Ding, Jian; Klein, Stanley A; Levi, Dennis M

    2013-02-08

    We investigated suprathreshold binocular combination in humans with abnormal binocular visual experience early in life. In the first experiment we presented the two eyes with equal but opposite phase shifted sine waves and measured the perceived phase of the cyclopean sine wave. Normal observers have balanced vision between the two eyes when the two eyes' images have equal contrast (i.e., both eyes contribute equally to the perceived image and perceived phase = 0°). However, in observers with strabismus and/or amblyopia, balanced vision requires a higher contrast image in the nondominant eye (NDE) than the dominant eye (DE). This asymmetry between the two eyes is larger than predicted from the contrast sensitivities or monocular perceived contrast of the two eyes and is dependent on contrast and spatial frequency: more asymmetric with higher contrast and/or spatial frequency. Our results also revealed a surprising NDE-to-DE enhancement in some of our abnormal observers. This enhancement is not evident in normal vision because it is normally masked by interocular suppression. However, in these abnormal observers the NDE-to-DE suppression was weak or absent. In the second experiment, we used the identical stimuli to measure the perceived contrast of a cyclopean grating by matching the binocular combined contrast to a standard contrast presented to the DE. These measures provide strong constraints for model fitting. We found asymmetric interocular interactions in binocular contrast perception, which was dependent on both contrast and spatial frequency in the same way as in phase perception. By introducing asymmetric parameters to the modified Ding-Sperling model including interocular contrast gain enhancement, we succeeded in accounting for both binocular combined phase and contrast simultaneously. Adding binocular contrast gain control to the modified Ding-Sperling model enabled us to predict the results of dichoptic and binocular contrast discrimination experiments and provides new insights into the mechanisms of abnormal binocular vision.

  4. Visual experience sculpts whole-cortex spontaneous infraslow activity patterns through an Arc-dependent mechanism

    PubMed Central

    Kraft, Andrew W.; Mitra, Anish; Bauer, Adam Q.; Raichle, Marcus E.; Culver, Joseph P.; Lee, Jin-Moo

    2017-01-01

    Decades of work in experimental animals has established the importance of visual experience during critical periods for the development of normal sensory-evoked responses in the visual cortex. However, much less is known concerning the impact of early visual experience on the systems-level organization of spontaneous activity. Human resting-state fMRI has revealed that infraslow fluctuations in spontaneous activity are organized into stereotyped spatiotemporal patterns across the entire brain. Furthermore, the organization of spontaneous infraslow activity (ISA) is plastic in that it can be modulated by learning and experience, suggesting heightened sensitivity to change during critical periods. Here we used wide-field optical intrinsic signal imaging in mice to examine whole-cortex spontaneous ISA patterns. Using monocular or binocular visual deprivation, we examined the effects of critical period visual experience on the development of ISA correlation and latency patterns within and across cortical resting-state networks. Visual modification with monocular lid suturing reduced correlation between left and right cortices (homotopic correlation) within the visual network, but had little effect on internetwork correlation. In contrast, visual deprivation with binocular lid suturing resulted in increased visual homotopic correlation and increased anti-correlation between the visual network and several extravisual networks, suggesting cross-modal plasticity. These network-level changes were markedly attenuated in mice with genetic deletion of Arc, a gene known to be critical for activity-dependent synaptic plasticity. Taken together, our results suggest that critical period visual experience induces global changes in spontaneous ISA relationships, both within the visual network and across networks, through an Arc-dependent mechanism. PMID:29087327

  5. Microsurgical Clipping of an Anterior Communicating Artery Aneurysm Using a Novel Robotic Visualization Tool in Lieu of the Binocular Operating Microscope: Operative Video.

    PubMed

    Klinger, Daniel R; Reinard, Kevin A; Ajayi, Olaide O; Delashaw, Johnny B

    2018-01-01

    The binocular operating microscope has been the visualization instrument of choice for microsurgical clipping of intracranial aneurysms for many decades. To discuss recent technological advances that have provided novel visualization tools, which may prove to be superior to the binocular operating microscope in many regards. We present an operative video and our operative experience with the BrightMatterTM Servo System (Synaptive Medical, Toronto, Ontario, Canada) during the microsurgical clipping of an anterior communicating artery aneurysm. To the best of our knowledge, the use of this device for the microsurgical clipping of an intracranial aneurysm has never been described in the literature. The BrightMatterTM Servo System (Synaptive Medical) is a surgical exoscope which avoids many of the ergonomic constraints of the binocular operating microscope, but is associated with a steep learning curve. The BrightMatterTM Servo System (Synaptive Medical) is a maneuverable surgical exoscope that is positioned with a directional aiming device and a surgeon-controlled foot pedal. While utilizing this device comes with a steep learning curve typical of any new technology, the BrightMatterTM Servo System (Synaptive Medical) has several advantages over the conventional surgical microscope, which include a relatively unobstructed surgical field, provision of high-definition images, and visualization of difficult angles/trajectories. This device can easily be utilized as a visualization tool for a variety of cranial and spinal procedures in lieu of the binocular operating microscope. We anticipate that this technology will soon become an integral part of the neurosurgeon's armamentarium. Copyright © 2017 by the Congress of Neurological Surgeons

  6. A special role for binocular visual input during development and as a component of occlusion therapy for treatment of amblyopia.

    PubMed

    Mitchell, Donald E

    2008-01-01

    To review work on animal models of deprivation amblyopia that points to a special role for binocular visual input in the development of spatial vision and as a component of occlusion (patching) therapy for amblyopia. The studies reviewed employ behavioural methods to measure the effects of various early experiential manipulations on the development of the visual acuity of the two eyes. Short periods of concordant binocular input, if continuous, can offset much longer daily periods of monocular deprivation to allow the development of normal visual acuity in both eyes. It appears that the visual system does not weigh all visual input equally in terms of its ability to impact on the development of vision but instead places greater weight on concordant binocular exposure. Experimental models of patching therapy for amblyopia imposed on animals in which amblyopia had been induced by a prior period of early monocular deprivation, indicate that the benefits of patching therapy may be only temporary and decline rapidly after patching is discontinued. However, when combined with critical amounts of binocular visual input each day, the benefits of patching can be both heightened and made permanent. Taken together with demonstrations of retained binocular connections in the visual cortex of monocularly deprived animals, a strong argument is made for inclusion of specific training of stereoscopic vision for part of the daily periods of binocular exposure that should be incorporated as part of any patching protocol for amblyopia.

  7. Correcting intermittent central suppression improves binocular marksmanship.

    PubMed

    Hussey, Eric S

    2007-04-01

    Intermittent central suppression (ICS) is a defect in normal binocular (two-eyed) vision that causes confusion in visual detail. ICS is a repetitive intermittent loss of visual sensation in the central area of vision. As the central vision of either eye "turns on and off", aiming errors in sight can occur that must be corrected when both eyes are seeing again. Any aiming errors in sight might be expected to interfere with marksmanship during two-eyed seeing. We compared monocular (one-eyed, patched) and binocular (two-eyed) marksmanship with pistol shooting with an Army ROTC cadet before and after successful therapy for diagnosed ICS. Pretreatment, monocular marksmanship was significantly better than binocular marksmanship, suggesting defective binocularity reduced accuracy. After treatment for ICS, binocular and monocular marksmanship were essentially the same. Results confirmed predictions that with increased visual stability from correcting the suppression, binocular and monocular marksmanship accuracies should merge.

  8. Binocular adaptive optics visual simulator.

    PubMed

    Fernández, Enrique J; Prieto, Pedro M; Artal, Pablo

    2009-09-01

    A binocular adaptive optics visual simulator is presented. The instrument allows for measuring and manipulating ocular aberrations of the two eyes simultaneously, while the subject performs visual testing under binocular vision. An important feature of the apparatus consists on the use of a single correcting device and wavefront sensor. Aberrations are controlled by means of a liquid-crystal-on-silicon spatial light modulator, where the two pupils of the subject are projected. Aberrations from the two eyes are measured with a single Hartmann-Shack sensor. As an example of the potential of the apparatus for the study of the impact of the eye's aberrations on binocular vision, results of contrast sensitivity after addition of spherical aberration are presented for one subject. Different binocular combinations of spherical aberration were explored. Results suggest complex binocular interactions in the presence of monochromatic aberrations. The technique and the instrument might contribute to the better understanding of binocular vision and to the search for optimized ophthalmic corrections.

  9. Asymmetric Dichoptic Masking in Visual Cortex of Amblyopic Macaque Monkeys

    PubMed Central

    Shooner, Christopher; Hallum, Luke E.; García-Marín, Virginia; Kiorpes, Lynne

    2017-01-01

    In amblyopia, abnormal visual experience leads to an extreme form of eye dominance, in which vision through the nondominant eye is degraded. A key aspect of this disorder is perceptual suppression: the image seen by the stronger eye often dominates during binocular viewing, blocking the image of the weaker eye from reaching awareness. Interocular suppression is the focus of ongoing work aimed at understanding and treating amblyopia, yet its physiological basis remains unknown. We measured binocular interactions in visual cortex of anesthetized amblyopic monkeys (female Macaca nemestrina), using 96-channel “Utah” arrays to record from populations of neurons in V1 and V2. In an experiment reported recently (Hallum et al., 2017), we found that reduced excitatory input from the amblyopic eye (AE) revealed a form of balanced binocular suppression that is unaltered in amblyopia. Here, we report on the modulation of the gain of excitatory signals from the AE by signals from its dominant fellow eye (FE). Using a dichoptic masking technique, we found that AE responses to grating stimuli were attenuated by the presentation of a noise mask to the FE, as in a normal control animal. Responses to FE stimuli, by contrast, could not be masked from the AE. We conclude that a weakened ability of the amblyopic eye to modulate cortical response gain creates an imbalance of suppression that favors the dominant eye. SIGNIFICANCE STATEMENT In amblyopia, vision in one eye is impaired as a result of abnormal early visual experience. Behavioral observations in humans with amblyopia suggest that much of their visual loss is due to active suppression of their amblyopic eye. Here we describe experiments in which we studied binocular interactions in macaques with experimentally induced amblyopia. In normal monkeys, the gain of neuronal response to stimulation of one eye is modulated by contrast in the other eye, but in monkeys with amblyopia the balance of gain modulation is altered so that the weaker, amblyopic eye has little effect while the stronger fellow eye has a strong effect. This asymmetric suppression may be a key component of the perceptual losses in amblyopia. PMID:28760867

  10. Asymmetric Dichoptic Masking in Visual Cortex of Amblyopic Macaque Monkeys.

    PubMed

    Shooner, Christopher; Hallum, Luke E; Kumbhani, Romesh D; García-Marín, Virginia; Kelly, Jenna G; Majaj, Najib J; Movshon, J Anthony; Kiorpes, Lynne

    2017-09-06

    In amblyopia, abnormal visual experience leads to an extreme form of eye dominance, in which vision through the nondominant eye is degraded. A key aspect of this disorder is perceptual suppression: the image seen by the stronger eye often dominates during binocular viewing, blocking the image of the weaker eye from reaching awareness. Interocular suppression is the focus of ongoing work aimed at understanding and treating amblyopia, yet its physiological basis remains unknown. We measured binocular interactions in visual cortex of anesthetized amblyopic monkeys (female Macaca nemestrina ), using 96-channel "Utah" arrays to record from populations of neurons in V1 and V2. In an experiment reported recently (Hallum et al., 2017), we found that reduced excitatory input from the amblyopic eye (AE) revealed a form of balanced binocular suppression that is unaltered in amblyopia. Here, we report on the modulation of the gain of excitatory signals from the AE by signals from its dominant fellow eye (FE). Using a dichoptic masking technique, we found that AE responses to grating stimuli were attenuated by the presentation of a noise mask to the FE, as in a normal control animal. Responses to FE stimuli, by contrast, could not be masked from the AE. We conclude that a weakened ability of the amblyopic eye to modulate cortical response gain creates an imbalance of suppression that favors the dominant eye. SIGNIFICANCE STATEMENT In amblyopia, vision in one eye is impaired as a result of abnormal early visual experience. Behavioral observations in humans with amblyopia suggest that much of their visual loss is due to active suppression of their amblyopic eye. Here we describe experiments in which we studied binocular interactions in macaques with experimentally induced amblyopia. In normal monkeys, the gain of neuronal response to stimulation of one eye is modulated by contrast in the other eye, but in monkeys with amblyopia the balance of gain modulation is altered so that the weaker, amblyopic eye has little effect while the stronger fellow eye has a strong effect. This asymmetric suppression may be a key component of the perceptual losses in amblyopia. Copyright © 2017 the authors 0270-6474/17/378734-08$15.00/0.

  11. Stereo-motion cooperation and the use of motion disparity in the visual perception of 3-D structure.

    PubMed

    Cornilleau-Pérès, V; Droulez, J

    1993-08-01

    When an observer views a moving scene binocularly, both motion parallax and binocular disparity provide depth information. In Experiments 1A-1C, we measured sensitivity to surface curvature when these depth cues were available either individually or simultaneously. When the depth cues yielded comparable sensitivity to surface curvature, we found that curvature detection was easier with the cues present simultaneously, rather than individually. For 2 of the 6 subjects, this effect was stronger when the component of frontal translation of the surface was vertical, rather than horizontal. No such anisotropy was found for the 4 other subjects. If a moving object is observed binocularly, the patterns of optic flow are different on the left and right retinae. We have suggested elsewhere (Cornilleau-Pérès & Droulez, in press) that this motion disparity might be used as a visual cue for the perception of a 3-D structure. Our model consisted in deriving binocular disparity from the left and right distributions of vertical velocities, rather than from luminous intensities, as has been done in classical studies on stereoscopic vision. The model led to some predictions concerning the detection of surface curvature from motion disparity in the presence or absence of intensity-based disparity (classically termed binocular disparity). In a second set of experiments, we attempted to test these predictions, and we failed to validate our theoretical scheme from a physiological point of view.

  12. Differential processing of binocular and monocular gloss cues in human visual cortex.

    PubMed

    Sun, Hua-Chun; Di Luca, Massimiliano; Ban, Hiroshi; Muryy, Alexander; Fleming, Roland W; Welchman, Andrew E

    2016-06-01

    The visual impression of an object's surface reflectance ("gloss") relies on a range of visual cues, both monocular and binocular. Whereas previous imaging work has identified processing within ventral visual areas as important for monocular cues, little is known about cortical areas involved in processing binocular cues. Here, we used human functional MRI (fMRI) to test for brain areas selectively involved in the processing of binocular cues. We manipulated stereoscopic information to create four conditions that differed in their disparity structure and in the impression of surface gloss that they evoked. We performed multivoxel pattern analysis to find areas whose fMRI responses allow classes of stimuli to be distinguished based on their depth structure vs. material appearance. We show that higher dorsal areas play a role in processing binocular gloss information, in addition to known ventral areas involved in material processing, with ventral area lateral occipital responding to both object shape and surface material properties. Moreover, we tested for similarities between the representation of gloss from binocular cues and monocular cues. Specifically, we tested for transfer in the decoding performance of an algorithm trained on glossy vs. matte objects defined by either binocular or by monocular cues. We found transfer effects from monocular to binocular cues in dorsal visual area V3B/kinetic occipital (KO), suggesting a shared representation of the two cues in this area. These results indicate the involvement of mid- to high-level visual circuitry in the estimation of surface material properties, with V3B/KO potentially playing a role in integrating monocular and binocular cues. Copyright © 2016 the American Physiological Society.

  13. Association between visual impairment and patient-reported visual disability at different stages of cataract surgery.

    PubMed

    Acosta-Rojas, E Ruthy; Comas, Mercè; Sala, Maria; Castells, Xavier

    2006-10-01

    To evaluate the association between visual impairment (visual acuity, contrast sensitivity, stereopsis) and patient-reported visual disability at different stages of cataract surgery. A cohort of 104 patients aged 60 years and over with bilateral cataract was assessed preoperatively, after first-eye surgery (monocular pseudophakia) and after second-eye surgery (binocular pseudophakia). Partial correlation coefficients (PCC) and linear regression models were calculated. In patients with bilateral cataracts, visual disability was associated with visual acuity (PCC = -0.30) and, to a lesser extent, with contrast sensitivity (PCC = 0.16) and stereopsis (PCC = -0.09). In monocular and binocular pseudophakia, visual disability was more strongly associated with stereopsis (PCC = -0.26 monocular and -0.51 binocular) and contrast sensitivity (PCC = 0.18 monocular and 0.34 binocular) than with visual acuity (PCC = -0.18 monocular and -0.18 binocular). Visual acuity, contrast sensitivity and stereopsis accounted for between 17% and 42% of variance in visual disability. The association of visual impairment with patient-reported visual disability differed at each stage of cataract surgery. Measuring other forms of visual impairment independently from visual acuity, such as contrast sensitivity or stereopsis, could be important in evaluating both needs and outcomes in cataract surgery. More comprehensive assessment of the impact of cataract on patients should include measurement of both visual impairment and visual disability.

  14. Melodic sound enhances visual awareness of congruent musical notes, but only if you can read music.

    PubMed

    Lee, Minyoung; Blake, Randolph; Kim, Sujin; Kim, Chai-Youn

    2015-07-07

    Predictive influences of auditory information on resolution of visual competition were investigated using music, whose visual symbolic notation is familiar only to those with musical training. Results from two experiments using different experimental paradigms revealed that melodic congruence between what is seen and what is heard impacts perceptual dynamics during binocular rivalry. This bisensory interaction was observed only when the musical score was perceptually dominant, not when it was suppressed from awareness, and it was observed only in people who could read music. Results from two ancillary experiments showed that this effect of congruence cannot be explained by differential patterns of eye movements or by differential response sluggishness associated with congruent score/melody combinations. Taken together, these results demonstrate robust audiovisual interaction based on high-level, symbolic representations and its predictive influence on perceptual dynamics during binocular rivalry.

  15. Binocular vision in amblyopia: structure, suppression and plasticity.

    PubMed

    Hess, Robert F; Thompson, Benjamin; Baker, Daniel H

    2014-03-01

    The amblyopic visual system was once considered to be structurally monocular. However, it now evident that the capacity for binocular vision is present in many observers with amblyopia. This has led to new techniques for quantifying suppression that have provided insights into the relationship between suppression and the monocular and binocular visual deficits experienced by amblyopes. Furthermore, new treatments are emerging that directly target suppressive interactions within the visual cortex and, on the basis of initial data, appear to improve both binocular and monocular visual function, even in adults with amblyopia. The aim of this review is to provide an overview of recent studies that have investigated the structure, measurement and treatment of binocular vision in observers with strabismic, anisometropic and mixed amblyopia. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.

  16. A complete investigation of monocular and binocular functions in clinically treated amblyopia.

    PubMed

    Zhao, Wuxiao; Jia, Wu-Li; Chen, Ge; Luo, Yan; Lin, Borong; He, Qing; Lu, Zhong-Lin; Li, Min; Huang, Chang-Bing

    2017-09-06

    The gold standard of a successful amblyopia treatment is full recovery of visual acuity (VA) in the amblyopic eye, but there has been no systematic study on both monocular and binocular visual functions. In this research, we aimed to quantify visual qualities with a variety of perceptual tasks in subjects with treated amblyopia. We found near stereoacuity and pAE dominance in binocular rivalry in "treated" amblyopia were largely comparable to those of normal subjects. CSF of the pAE remained deficient in high spatial frequencies. The binocular contrast summation ratio is significantly lower than normal standard. The interocular balance point is 34%, indicating that contrast in pAE is much less effective as the same contrast in pFE in binocular phase combination. Although VA, stereoacuity and binocular rivalry at low spatial frequency in treated amblyopes were normal or nearly normal, the pAE remained "lazy" in high frequency domain, binocular contrast summation, and interocular phase combination. Our results suggest that structured monocular and binocular training are necessary to fully recover deficient functions in amblyopia.

  17. Colour helps to solve the binocular matching problem

    PubMed Central

    den Ouden, HEM; van Ee, R; de Haan, EHF

    2005-01-01

    The spatial differences between the two retinal images, called binocular disparities, can be used to recover the three-dimensional (3D) aspects of a scene. The computation of disparity depends upon the correct identification of corresponding features in the two images. Understanding what image features are used by the brain to solve this binocular matching problem is an important issue in research on stereoscopic vision. The role of colour in binocular vision is controversial and it has been argued that colour is ineffective in achieving binocular vision. In the current experiment subjects were required to indicate the amount of perceived depth. The stimulus consisted of an array of fronto-parallel bars uniformly distributed in a constant sized volume. We studied the perceived depth in those 3D stimuli by manipulating both colour (monochrome, trichrome) and luminance (congruent, incongruent). Our results demonstrate that the amount of perceived depth was influenced by colour, indicating that the visual system uses colour to achieve binocular matching. Physiological data have revealed cortical cells in macaque V2 that are tuned both to binocular disparity and to colour. We suggest that one of the functional roles of these cells may be to help solve the binocular matching problem. PMID:15975983

  18. Colour helps to solve the binocular matching problem.

    PubMed

    den Ouden, H E M; van Ee, R; de Haan, E H F

    2005-09-01

    The spatial differences between the two retinal images, called binocular disparities, can be used to recover the three-dimensional (3D) aspects of a scene. The computation of disparity depends upon the correct identification of corresponding features in the two images. Understanding what image features are used by the brain to solve this binocular matching problem is an important issue in research on stereoscopic vision. The role of colour in binocular vision is controversial and it has been argued that colour is ineffective in achieving binocular vision. In the current experiment subjects were required to indicate the amount of perceived depth. The stimulus consisted of an array of fronto-parallel bars uniformly distributed in a constant sized volume. We studied the perceived depth in those 3D stimuli by manipulating both colour (monochrome, trichrome) and luminance (congruent, incongruent). Our results demonstrate that the amount of perceived depth was influenced by colour, indicating that the visual system uses colour to achieve binocular matching. Physiological data have revealed cortical cells in macaque V2 that are tuned both to binocular disparity and to colour. We suggest that one of the functional roles of these cells may be to help solve the binocular matching problem.

  19. Partially converted stereoscopic images and the effects on visual attention and memory

    NASA Astrophysics Data System (ADS)

    Kim, Sanghyun; Morikawa, Hiroyuki; Mitsuya, Reiko; Kawai, Takashi; Watanabe, Katsumi

    2015-03-01

    This study contained two experimental examinations of the cognitive activities such as visual attention and memory in viewing stereoscopic (3D) images. For this study, partially converted 3D images were used with binocular parallax added to a specific region of the image. In Experiment 1, change blindness was used as a presented stimulus. The visual attention and impact on memory were investigated by measuring the response time to accomplish the given task. In the change blindness task, an 80 ms blank was intersected between the original and altered images, and the two images were presented alternatingly for 240 ms each. Subjects were asked to temporarily memorize the two switching images and to compare them, visually recognizing the difference between the two. The stimuli for four conditions (2D, 3D, Partially converted 3D, distracted partially converted 3D) were randomly displayed for 20 subjects. The results of Experiment 1 showed that partially converted 3D images tend to attract visual attention and are prone to remain in viewer's memory in the area where moderate negative parallax has been added. In order to examine the impact of a dynamic binocular disparity on partially converted 3D images, an evaluation experiment was conducted that applied learning, distraction, and recognition tasks for 33 subjects. The learning task involved memorizing the location of cells in a 5 × 5 matrix pattern using two different colors. Two cells were positioned with alternating colors, and one of the gray cells was moved up, down, left, or right by one cell width. Experimental conditions was set as a partially converted 3D condition in which a gray cell moved diagonally for a certain period of time with a dynamic binocular disparity added, a 3D condition in which binocular disparity was added to all gray cells, and a 2D condition. The correct response rates for recognition of each task after the distraction task were compared. The results of Experiment 2 showed that the correct response rate in the partial 3D condition was significantly higher with the recognition task than in the other conditions. These results showed that partially converted 3D images tended to have a visual attraction and affect viewer's memory.

  20. Binoculars: A Long-Ignored Aid for the Partially Sighted.

    ERIC Educational Resources Information Center

    Genesky, S. M.

    Defined in the booklet is the visually handicapped population that could benefit from use of binoculars, and described with photographs are uses of binoculars and additional equipment. Categories of the visually handicapped and concomitant population sizes are examined to stress the point that approximately 1.64 million Americans are partially…

  1. The effect of Bangerter filters on binocular function in observers with amblyopia.

    PubMed

    Chen, Zidong; Li, Jinrong; Thompson, Benjamin; Deng, Daming; Yuan, Junpeng; Chan, Lily; Hess, Robert F; Yu, Minbin

    2014-10-28

    We assessed whether partial occlusion of the nonamblyopic eye with Bangerter filters can immediately reduce suppression and promote binocular summation of contrast in observers with amblyopia. In Experiment 1, suppression was measured for 22 observers (mean age, 20 years; range, 14-32 years; 10 females) with strabismic or anisometropic amblyopia and 10 controls using our previously established "balance point" protocol. Measurements were made at baseline and with 0.6-, 0.4-, and 0.2-strength Bangerter filters placed over the nonamblyopic/dominant eye. In Experiment 2, psychophysical measurements of contrast sensitivity were made under binocular and monocular viewing conditions for 25 observers with anisometropic amblyopia (mean age, 17 years; range, 11-28 years; 14 females) and 22 controls (mean age, 24 years; range, 22-27; 12 female). Measurements were made at baseline, and with 0.4- and 0.2-strength Bangerter filters placed over the nonamblyopic/dominant eye. Binocular summation ratios (BSRs) were calculated at baseline and with Bangerter filters in place. Experiment 1: Bangerter filters reduced suppression in observers with amblyopia and induced suppression in controls (P = 0.025). The 0.2-strength filter eliminated suppression in observers with amblyopia and this was not a visual acuity effect. Experiment 2: Bangerter filters were able to induce normal levels of binocular contrast summation in the group of observers with anisometropic amblyopia for a stimulus with a spatial frequency of 3 cycles per degree (cpd, P = 0.006). The filters reduced binocular summation in controls. Bangerter filters can immediately reduce suppression and promote binocular summation for mid/low spatial frequencies in observers with amblyopia. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  2. Environmental Enrichment Rescues Binocular Matching of Orientation Preference in Mice that Have a Precocious Critical Period

    PubMed Central

    Wang, Bor-Shuen; Feng, Liang; Liu, Mingna; Liu, Xiaorong; Cang, Jianhua

    2013-01-01

    SUMMARY Experience shapes neural circuits during critical periods in early life. The timing of critical periods is regulated by both genetics and the environment. Here we study the functional significance of such temporal regulations in the mouse primary visual cortex, where critical period plasticity drives binocular matching of orientation preference. We find that the binocular matching is permanently disrupted in mice that have a precocious critical period due to genetically enhanced inhibition. The disruption is specific to one type of neurons, the complex cells, which, as we reveal, normally match after the simple cells. Early environmental enrichment completely rescues the deficit by inducing histone acetylation and consequently advancing the matching process to coincide with the precocious plasticity. Our experiments thus demonstrate that the proper timing of the critical period is essential for establishing normal binocularity and the detrimental impact of its genetic misregulation can be ameliorated by environmental manipulations via epigenetic mechanisms. PMID:24012279

  3. The perception of depth from binocular disparity.

    DOT National Transportation Integrated Search

    1963-05-01

    This study was concerned with the factors involved in the perception of depth from a binocular disparity. A binocularly observed configuration of constant convergences, constant visual size, and having constant binocular disparities was made to appea...

  4. The Role of Eye Movement Driven Attention in Functional Strabismic Amblyopia

    PubMed Central

    2015-01-01

    Strabismic amblyopia “blunt vision” is a developmental anomaly that affects binocular vision and results in lowered visual acuity. Strabismus is a term for a misalignment of the visual axes and is usually characterized by impaired ability of the strabismic eye to take up fixation. Such impaired fixation is usually a function of the temporally and spatially impaired binocular eye movements that normally underlie binocular shifts in visual attention. In this review, we discuss how abnormal eye movement function in children with misaligned eyes influences the development of normal binocular visual attention and results in deficits in visual function such as depth perception. We also discuss how eye movement function deficits in adult amblyopia patients can also lead to other abnormalities in visual perception. Finally, we examine how the nonamblyopic eye of an amblyope is also affected in strabismic amblyopia. PMID:25838941

  5. Towards Determination of Visual Requirements for Augmented Reality Displays and Virtual Environments for the Airport Tower

    DTIC Science & Technology

    2006-06-01

    allowing substantial see-around capability. Regions of visual suppression due to binocular rivalry ( luning ) are shown along the shaded flanks of...that the visual suppression of binocular rivalry, luning , (Velger, 1998, p.56-58) associated with the partial overlap conditions did not materially...tags were displayed. Thus, the frequency of conflicting binocular contours was reduced. In any case, luning does not seem to introduce major

  6. Perceptual full-reference quality assessment of stereoscopic images by considering binocular visual characteristics.

    PubMed

    Shao, Feng; Lin, Weisi; Gu, Shanbo; Jiang, Gangyi; Srikanthan, Thambipillai

    2013-05-01

    Perceptual quality assessment is a challenging issue in 3D signal processing research. It is important to study 3D signal directly instead of studying simple extension of the 2D metrics directly to the 3D case as in some previous studies. In this paper, we propose a new perceptual full-reference quality assessment metric of stereoscopic images by considering the binocular visual characteristics. The major technical contribution of this paper is that the binocular perception and combination properties are considered in quality assessment. To be more specific, we first perform left-right consistency checks and compare matching error between the corresponding pixels in binocular disparity calculation, and classify the stereoscopic images into non-corresponding, binocular fusion, and binocular suppression regions. Also, local phase and local amplitude maps are extracted from the original and distorted stereoscopic images as features in quality assessment. Then, each region is evaluated independently by considering its binocular perception property, and all evaluation results are integrated into an overall score. Besides, a binocular just noticeable difference model is used to reflect the visual sensitivity for the binocular fusion and suppression regions. Experimental results show that compared with the relevant existing metrics, the proposed metric can achieve higher consistency with subjective assessment of stereoscopic images.

  7. Objective Evaluation of Visual Fatigue Using Binocular Fusion Maintenance.

    PubMed

    Hirota, Masakazu; Morimoto, Takeshi; Kanda, Hiroyuki; Endo, Takao; Miyoshi, Tomomitsu; Miyagawa, Suguru; Hirohara, Yoko; Yamaguchi, Tatsuo; Saika, Makoto; Fujikado, Takashi

    2018-03-01

    In this study, we investigated whether an individual's visual fatigue can be evaluated objectively and quantitatively from their ability to maintain binocular fusion. Binocular fusion maintenance (BFM) was measured using a custom-made binocular open-view Shack-Hartmann wavefront aberrometer equipped with liquid crystal shutters, wherein eye movements and wavefront aberrations were measured simultaneously. Transmittance in the liquid crystal shutter in front of the subject's nondominant eye was reduced linearly, and BFM was determined from the transmittance at the point when binocular fusion was broken and vergence eye movement was induced. In total, 40 healthy subjects underwent the BFM test and completed a questionnaire regarding subjective symptoms before and after a visual task lasting 30 minutes. BFM was significantly reduced after the visual task ( P < 0.001) and was negatively correlated with the total subjective eye symptom score (adjusted R 2 = 0.752, P < 0.001). Furthermore, the diagnostic accuracy for visual fatigue was significantly higher in BFM than in the conventional test results (aggregated fusional vergence range, near point of convergence, and the high-frequency component of accommodative microfluctuations; P = 0.007). These results suggest that BFM can be used as an indicator for evaluating visual fatigue. BFM can be used to evaluate the visual fatigue caused by the new visual devices, such as head-mount display, objectively.

  8. An Active System for Visually-Guided Reaching in 3D across Binocular Fixations

    PubMed Central

    2014-01-01

    Based on the importance of relative disparity between objects for accurate hand-eye coordination, this paper presents a biological approach inspired by the cortical neural architecture. So, the motor information is coded in egocentric coordinates obtained from the allocentric representation of the space (in terms of disparity) generated from the egocentric representation of the visual information (image coordinates). In that way, the different aspects of the visuomotor coordination are integrated: an active vision system, composed of two vergent cameras; a module for the 2D binocular disparity estimation based on a local estimation of phase differences performed through a bank of Gabor filters; and a robotic actuator to perform the corresponding tasks (visually-guided reaching). The approach's performance is evaluated through experiments on both simulated and real data. PMID:24672295

  9. Latent binocular function in amblyopia.

    PubMed

    Chadnova, Eva; Reynaud, Alexandre; Clavagnier, Simon; Hess, Robert F

    2017-11-01

    Recently, psychophysical studies have shown that humans with amblyopia do have binocular function that is not normally revealed due to dominant suppressive interactions under normal viewing conditions. Here we use magnetoencephalography (MEG) combined with dichoptic visual stimulation to investigate the underlying binocular function in humans with amblyopia for stimuli that, because of their temporal properties, would be expected to bypass suppressive effects and to reveal any underlying binocular function. We recorded contrast response functions in visual cortical area V1 of amblyopes and normal observers using a steady state visually evoked responses (SSVER) protocol. We used stimuli that were frequency-tagged at 4Hz and 6Hz that allowed identification of the responses from each eye and were of a sufficiently high temporal frequency (>3Hz) to bypass suppression. To characterize binocular function, we compared dichoptic masking between the two eyes in normal and amblyopic participants as well as interocular phase differences in the two groups. We observed that the primary visual cortex responds less to the stimulation of the amblyopic eye compared to the fellow eye. The pattern of interaction in the amblyopic visual system however was not significantly different between the amblyopic and fellow eyes. However, the amblyopic suppressive interactions were lower than those observed in the binocular system of our normal observers. Furthermore, we identified an interocular processing delay of approximately 20ms in our amblyopic group. To conclude, when suppression is greatly reduced, such as the case with our stimulation above 3Hz, the amblyopic visual system exhibits a lack of binocular interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Visual field shape and foraging ecology in diurnal raptors.

    PubMed

    Potier, Simon; Duriez, Olivier; Cunningham, Gregory B; Bonhomme, Vincent; O'Rourke, Colleen; Fernández-Juricic, Esteban; Bonadonna, Francesco

    2018-05-18

    Birds, particularly raptors, are believed to forage primarily using visual cues. However, raptor foraging tactics are highly diverse - from chasing mobile prey to scavenging - which may reflect adaptations of their visual systems. To investigate this, we studied the visual field configuration of 15 species of diurnal Accipitriformes that differ in such tactics, first focusing on the binocular field and blind area by using a single traits approach, and then exploring the shape of the binocular field with morphometric approaches. While the maximum binocular field width did not differ in species of different foraging tactics, the overall shape of their binocular fields did. In particular, raptors chasing terrestrial prey (ground predators) had a more protruding binocular field and a wider blind area above the head than did raptors chasing aerial or aquatic prey and obligate scavengers. Ground predators that forage on mammals from above have a wide but short bill - which increases ingestion rate - and large suborbital ridge to avoid sun glare. This may explain the protruding binocular field and the wide blind area above the head. By contrast, species from the two other groups have long but narrow bills used to pluck, flake or tear food and may need large visual coverage (and reduced suborbital ridges) to increase their foraging efficiency ( e.g. using large visual coverage to follow the escaping prey in three dimensions or detect conspecifics). We propose that binocular field shape is associated with bill and suborbital ridge shape and, ultimately, foraging strategies. © 2018. Published by The Company of Biologists Ltd.

  11. An assembly system based on industrial robot with binocular stereo vision

    NASA Astrophysics Data System (ADS)

    Tang, Hong; Xiao, Nanfeng

    2017-01-01

    This paper proposes an electronic part and component assembly system based on an industrial robot with binocular stereo vision. Firstly, binocular stereo vision with a visual attention mechanism model is used to get quickly the image regions which contain the electronic parts and components. Secondly, a deep neural network is adopted to recognize the features of the electronic parts and components. Thirdly, in order to control the end-effector of the industrial robot to grasp the electronic parts and components, a genetic algorithm (GA) is proposed to compute the transition matrix and the inverse kinematics of the industrial robot (end-effector), which plays a key role in bridging the binocular stereo vision and the industrial robot. Finally, the proposed assembly system is tested in LED component assembly experiments, and the results denote that it has high efficiency and good applicability.

  12. Binocular function to increase visual outcome in patients implanted with a diffractive trifocal intraocular lens.

    PubMed

    Kretz, Florian T A; Müller, Matthias; Gerl, Matthias; Gerl, Ralf H; Auffarth, Gerd U

    2015-08-21

    To evaluate binocular visual outcome for near, intermediate and distance compared to monocular visual outcome at the same distances in patients implanted with a diffractive trifocal intraocular lens (IOL). The study comprised of 100 eyes of 50 patients that underwent bilateral refractive lens exchange or cataract surgery with implantation of a multifocal diffractive IOL (AT LISA tri 839MP, Carl Zeiss Meditech, Germany). A complete ophthalmological examination was performed preoperatively and 3 month postoperatively. The main outcome measures were monocular and binocular uncorrected distance (UDVA), corrected distance (CDVA), uncorrected intermediate (UIVA), and uncorrected near visual acuities (UNVA), keratometry, and manifest refraction. The mean age was 59.28 years ± 9.6 [SD] (range 44-79 years), repectively. There was significant improvement in UDVA, UIVA, UNVA and CDVA. Comparing the monocular results to the binocular results there was a statistical significant better binocular outcome in all distances (UDVA p = 0.036; UIVA p < 0.0001; UNVA p = 0.001). The postoperative manifest refraction was in 86 % of patients within ± 0.50 [D]. The trifocal IOL improved near, intermediate, and distance vision compared to preoperatively. In addition a statistical significant increase for binocular visual function in all distances could be found. German Clinical Trials Register (DRKS) DRKS00007837.

  13. Psilocybin links binocular rivalry switch rate to attention and subjective arousal levels in humans.

    PubMed

    Carter, Olivia L; Hasler, Felix; Pettigrew, John D; Wallis, Guy M; Liu, Guang B; Vollenweider, Franz X

    2007-12-01

    Binocular rivalry occurs when different images are simultaneously presented to each eye. During continual viewing of this stimulus, the observer will experience repeated switches between visual awareness of the two images. Previous studies have suggested that a slow rate of perceptual switching may be associated with clinical and drug-induced psychosis. The objective of the study was to explore the proposed relationship between binocular rivalry switch rate and subjective changes in psychological state associated with 5-HT2A receptor activation. This study used psilocybin, the hallucinogen found naturally in Psilocybe mushrooms that had previously been found to induce psychosis-like symptoms via the 5-HT2A receptor. The effects of psilocybin (215 microg/kg) were considered alone and after pretreatment with the selective 5-HT2A antagonist ketanserin (50 mg) in ten healthy human subjects. Psilocybin significantly reduced the rate of binocular rivalry switching and increased the proportion of transitional/mixed percept experience. Pretreatment with ketanserin blocked the majority of psilocybin's "positive" psychosis-like hallucinogenic symptoms. However, ketanserin had no influence on either the psilocybin-induced slowing of binocular rivalry or the drug's "negative-type symptoms" associated with reduced arousal and vigilance. Together, these findings link changes in binocular rivalry switching rate to subjective levels of arousal and attention. In addition, it suggests that psilocybin's effect on binocular rivalry is unlikely to be mediated by the 5-HT2A receptor.

  14. Evaluation of visual acuity with Gen 3 night vision goggles

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur; Kaiser, Mary K.

    1994-01-01

    Using laboratory simulations, visual performance was measured at luminance and night vision imaging system (NVIS) radiance levels typically encountered in the natural nocturnal environment. Comparisons were made between visual performance with unaided vision and that observed with subjects using image intensification. An Amplified Night Vision Imaging System (ANVIS6) binocular image intensifier was used. Light levels available in the experiments (using video display technology and filters) were matched to those of reflecting objects illuminated by representative night-sky conditions (e.g., full moon, starlight). Results show that as expected, the precipitous decline in foveal acuity experienced with decreasing mesopic luminance levels is effectively shifted to much lower light levels by use of an image intensification system. The benefits of intensification are most pronounced foveally, but still observable at 20 deg eccentricity. Binocularity provides a small improvement in visual acuity under both intensified and unintensified conditions.

  15. 'I didn't see that coming': simulated visual fields and driving hazard perception test performance.

    PubMed

    Glen, Fiona C; Smith, Nicholas D; Jones, Lee; Crabb, David P

    2016-09-01

    Evidence is limited regarding specific types of visual field loss associated with unsafe driving. We use novel gaze-contingent software to examine the effect of simulated visual field loss on computer-based driving hazard detection with the specific aim of testing the impact of scotomata located to the right and left of fixation. The 'hazard perception test' is a component of the UK driving licence examination, which measures speed of detecting 15 different hazards in a series of real-life driving films. We have developed a novel eye-tracking and computer set up capable of generating a realistic gaze-contingent scotoma simulation (GazeSS) overlaid on film content. Thirty drivers with healthy vision completed three versions of the hazard perception test in a repeated measures experiment. In two versions, GazeSS simulated a scotoma in the binocular field of view to the left or right of fixation. A third version was unmodified to establish baseline performance. Participants' mean baseline hazard perception test score was 51 ± 7 (out of 75). This reduced to 46 ± 9 and 46 ± 11 when completing the task with a binocular visual field defect located to the left and right of fixation, respectively. While the main effect of simulated visual field loss on performance was statistically significant (p = 0.007), there were no average differences in the experimental conditions where a scotoma was located in the binocular visual field to the right or left of fixation. Simulated visual field loss impairs driving hazard detection on a computer-based test. There was no statistically significant difference in average performance when the simulated scotoma was located to the right or left of fixation of the binocular visual field, but certain types of hazard caused more difficulties than others. © 2016 Optometry Australia.

  16. Avian binocular vision: It's not just about what birds can see, it's also about what they can't.

    PubMed

    Tyrrell, Luke P; Fernández-Juricic, Esteban

    2017-01-01

    With the exception of primates, most vertebrates have laterally placed eyes. Binocular vision in vertebrates has been implicated in several functions, including depth perception, contrast discrimination, etc. However, the blind area in front of the head that is proximal to the binocular visual field is often neglected. This anterior blind area is important when discussing the evolution of binocular vision because its relative length is inversely correlated with the width of the binocular field. Therefore, species with wider binocular fields also have shorter anterior blind areas and objects along the mid-sagittal plane can be imaged at closer distances. Additionally, the anterior blind area is of functional significance for birds because the beak falls within this blind area. We tested for the first time some specific predictions about the functional role of the anterior blind area in birds controlling for phylogenetic effects. We used published data on visual field configuration in 40 species of birds and measured beak and skull parameters from museum specimens. We found that birds with proportionally longer beaks have longer anterior blind areas and thus narrower binocular fields. This result suggests that the anterior blind area and beak visibility do play a role in shaping binocular fields, and that binocular field width is not solely determined by the need for stereoscopic vision. In visually guided foragers, the ability to see the beak-and how much of the beak can be seen-varies predictably with foraging habits. For example, fish- and insect-eating specialists can see more of their own beak than birds eating immobile food can. But in non-visually guided foragers, there is no consistent relationship between the beak and anterior blind area. We discuss different strategies-wide binocular fields, large eye movements, and long beaks-that minimize the potential negative effects of the anterior blind area. Overall, we argue that there is more to avian binocularity than meets the eye.

  17. A Novel Visual Psychometric Test for Light-Induced Discomfort Using Red and Blue Light Stimuli Under Binocular and Monocular Viewing Conditions.

    PubMed

    Zivcevska, Marija; Lei, Shaobo; Blakeman, Alan; Goltz, Herbert C; Wong, Agnes M F

    2018-03-01

    To develop an objective psychophysical method to quantify light-induced visual discomfort, and to measure the effects of viewing condition and stimulus wavelength. Eleven visually normal subjects participated in the study. Their pupils were dilated (2.5% phenylephrine) before the experiment. A Ganzfeld system presented either red (1.5, 19.1, 38.2, 57.3, 76.3, 152.7, 305.3 cd/m2) or blue (1.4, 7.1, 14.3, 28.6, 42.9, 57.1, 71.4 cd/m2) randomized light intensities (1 s each) in four blocks. Constant white-light stimuli (3 cd/m2, 4 s duration) were interleaved with the chromatic trials. Participants reported each stimulus as either "uncomfortably bright" or "not uncomfortably bright." The experiment was done binocularly and monocularly in separate sessions, and the order of color/viewing condition sequence was randomized across participants. The proportion of "uncomfortable" responses was used to generate individual psychometric functions, from which 50% discomfort thresholds were calculated. Light-induced discomfort was higher under blue compared with red light stimulation, both during binocular (t(10) = 3.58, P < 0.01) and monocular viewing (t(10) = 3.15, P = 0.01). There was also a significant difference in discomfort between viewing conditions, with binocular viewing inducing more discomfort than monocular viewing for blue (P < 0.001), but not for red light stimulation. The light-induced discomfort characteristics reported here are consistent with features of the melanopsin-containing intrinsically photosensitive retinal ganglion cell light irradiance pathway, which may mediate photophobia, a prominent feature in many clinical disorders. This is the first psychometric assessment designed around melanopsin spectral properties that can be customized further to assess photophobia in different clinical populations.

  18. Objective Evaluation of Visual Fatigue Using Binocular Fusion Maintenance

    PubMed Central

    Hirota, Masakazu; Morimoto, Takeshi; Kanda, Hiroyuki; Endo, Takao; Miyoshi, Tomomitsu; Miyagawa, Suguru; Hirohara, Yoko; Yamaguchi, Tatsuo; Saika, Makoto

    2018-01-01

    Purpose In this study, we investigated whether an individual's visual fatigue can be evaluated objectively and quantitatively from their ability to maintain binocular fusion. Methods Binocular fusion maintenance (BFM) was measured using a custom-made binocular open-view Shack–Hartmann wavefront aberrometer equipped with liquid crystal shutters, wherein eye movements and wavefront aberrations were measured simultaneously. Transmittance in the liquid crystal shutter in front of the subject's nondominant eye was reduced linearly, and BFM was determined from the transmittance at the point when binocular fusion was broken and vergence eye movement was induced. In total, 40 healthy subjects underwent the BFM test and completed a questionnaire regarding subjective symptoms before and after a visual task lasting 30 minutes. Results BFM was significantly reduced after the visual task (P < 0.001) and was negatively correlated with the total subjective eye symptom score (adjusted R2 = 0.752, P < 0.001). Furthermore, the diagnostic accuracy for visual fatigue was significantly higher in BFM than in the conventional test results (aggregated fusional vergence range, near point of convergence, and the high-frequency component of accommodative microfluctuations; P = 0.007). Conclusions These results suggest that BFM can be used as an indicator for evaluating visual fatigue. Translational Relevance BFM can be used to evaluate the visual fatigue caused by the new visual devices, such as head-mount display, objectively. PMID:29600117

  19. Looking into the water with oblique head tilting: revision of the aerial binocular imaging of underwater objects.

    PubMed

    Horváth, Gábor; Buchta, Krisztián; Varjú, Dezsö

    2003-06-01

    It is a well-known phenomenon that when we look into the water with two aerial eyes, both the apparent position and the apparent shape of underwater objects are different from the real ones because of refraction at the water surface. Earlier studies of the refraction-distorted structure of the underwater binocular visual field of aerial observers were restricted to either vertically or horizontally oriented eyes. We investigate a generalized version of this problem: We calculate the position of the binocular image point of an underwater object point viewed by two arbitrarily positioned aerial eyes, including oblique orientations of the eyes relative to the flat water surface. Assuming that binocular image fusion is performed by appropriate vergent eye movements to bring the object's image onto the foveas, the structure of the underwater binocular visual field is computed and visualized in different ways as a function of the relative positions of the eyes. We show that a revision of certain earlier treatments of the aerial imaging of underwater objects is necessary. We analyze and correct some widespread erroneous or incomplete representations of this classical geometric optical problem that occur in different textbooks. Improving the theory of aerial binocular imaging of underwater objects, we demonstrate that the structure of the underwater binocular visual field of aerial observers distorted by refraction is more complex than has been thought previously.

  20. Binocular summation and peripheral visual response time

    NASA Technical Reports Server (NTRS)

    Gilliland, K.; Haines, R. F.

    1975-01-01

    Six males were administered a peripheral visual response time test to the onset of brief small stimuli imaged in 10-deg arc separation intervals across the dark adapted horizontal retinal meridian under both binocular and monocular viewing conditions. This was done in an attempt to verify the existence of peripheral binocular summation using a response time measure. The results indicated that from 50-deg arc right to 50-deg arc left of the line of sight binocular summation is a reasonable explanation for the significantly faster binocular data. The stimulus position by viewing eye interaction was also significant. A discussion of these and other analyses is presented along with a review of related literature.

  1. On the functional order of binocular rivalry and blind spot filling-in.

    PubMed

    Qian, Cheng S; Brascamp, Jan W; Liu, Taosheng

    2017-07-01

    Binocular rivalry is an important phenomenon for understanding the mechanisms of visual awareness. Here we assessed the functional locus of binocular rivalry relative to blind spot filling-in, which is thought to transpire in V1, thus providing a reference point for assessing the locus of rivalry. We conducted two experiments to explore the functional order of binocular rivalry and blind spot filling-in. Experiment 1 examined if the information filled-in at the blind spot can engage in rivalry with a physical stimulus at the corresponding location in the fellow eye. Participants' perceptual reports showed no difference between this condition and a condition where filling-in was precluded by presenting the same stimuli away from the blind spot, suggesting that the rivalry process is not influenced by any filling-in that might occur. In Experiment 2, we presented the fellow eye's stimulus directly in rivalry with the 'inducer' stimulus that surrounds the blind spot, and compared it with two control conditions away from the blind spot: one involving a ring physically identical to the inducer, and one involving a disc that resembled the filled-in percept. Perceptual reports in the blind spot condition resembled those in the 'ring' condition, more than those in the latter, 'disc' condition, indicating that a perceptually suppressed inducer does not engender filling-in. Thus, our behavioral data suggest binocular rivalry functionally precedes blind spot filling-in. We conjecture that the neural substrate of binocular rivalry suppression includes processing stages at or before V1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Retinotopic maps and foveal suppression in the visual cortex of amblyopic adults.

    PubMed

    Conner, Ian P; Odom, J Vernon; Schwartz, Terry L; Mendola, Janine D

    2007-08-15

    Amblyopia is a developmental visual disorder associated with loss of monocular acuity and sensitivity as well as profound alterations in binocular integration. Abnormal connections in visual cortex are known to underlie this loss, but the extent to which these abnormalities are regionally or retinotopically specific has not been fully determined. This functional magnetic resonance imaging (fMRI) study compared the retinotopic maps in visual cortex produced by each individual eye in 19 adults (7 esotropic strabismics, 6 anisometropes and 6 controls). In our standard viewing condition, the non-tested eye viewed a dichoptic homogeneous mid-level grey stimulus, thereby permitting some degree of binocular interaction. Regions-of-interest analysis was performed for extrafoveal V1, extrafoveal V2 and the foveal representation at the occipital pole. In general, the blood oxygenation level-dependent (BOLD) signal was reduced for the amblyopic eye. At the occipital pole, population receptive fields were shifted to represent more parafoveal locations for the amblyopic eye, compared with the fellow eye, in some subjects. Interestingly, occluding the fellow eye caused an expanded foveal representation for the amblyopic eye in one early-onset strabismic subject with binocular suppression, indicating real-time cortical remapping. In addition, a few subjects actually showed increased activity in parietal and temporal cortex when viewing with the amblyopic eye. We conclude that, even in a heterogeneous population, abnormal early visual experience commonly leads to regionally specific cortical adaptations.

  3. Slower Rate of Binocular Rivalry in Autism

    PubMed Central

    Kravitz, Dwight J.; Freyberg, Jan; Baron-Cohen, Simon; Baker, Chris I.

    2013-01-01

    An imbalance between cortical excitation and inhibition is a central component of many models of autistic neurobiology. We tested a potential behavioral footprint of this proposed imbalance using binocular rivalry, a visual phenomenon in which perceptual experience is thought to mirror the push and pull of excitatory and inhibitory cortical dynamics. In binocular rivalry, two monocularly presented images compete, leading to a percept that alternates between them. In a series of trials, we presented separate images of objects (e.g., a baseball and a broccoli) to each eye using a mirror stereoscope and asked human participants with autism and matched control subjects to continuously report which object they perceived, or whether they perceived a mixed percept. Individuals with autism demonstrated a slower rate of binocular rivalry alternations than matched control subjects, with longer durations of mixed percepts and an increased likelihood to revert to the previously perceived object when exiting a mixed percept. Critically, each of these findings was highly predictive of clinical measures of autistic symptomatology. Control “playback” experiments demonstrated that differences in neither response latencies nor response criteria could account for the atypical dynamics of binocular rivalry we observed in autistic spectrum conditions. Overall, these results may provide an index of atypical cortical dynamics that may underlie both the social and nonsocial symptoms of autism. PMID:24155303

  4. Perceived Visual Distortions in Juvenile Amblyopes During/Following Routine Amblyopia Treatment.

    PubMed

    Piano, Marianne E F; Bex, Peter J; Simmers, Anita J

    2016-08-01

    To establish the point prevalence of perceived visual distortions (PVDs) in amblyopic children; the association between severity of PVDs and clinical parameters of amblyopia; and the relationship between PVDs and amblyopia treatment outcomes. Perceived visual distortions were measured using a 16-point dichoptic alignment paradigm in 148 visually normal children (aged, 9.18 ± 2.51 years), and 82 amblyopic children (aged, 6.33 ± 1.48 years) receiving or following amblyopia treatment. Global distortion (GD; vector sum of mean-centered individual alignment error between physical and perceived target location) and Global uncertainty (GU; SD of GD over two experiment runs) were compared to age-matched control data, and correlated against clinical parameters of amblyopia (type, monocular visual acuity, pretreatment interocular acuity difference, refractive error, age at diagnosis, motor fusion, stereopsis, near angle of deviation) and amblyopia treatment outcomes (refractive adaption duration, treatment duration, occlusion dosage, posttreatment interocular acuity difference, number of lines improvement). Point prevalence of PVDs in amblyopes was 56.1%. Strabismic amblyopes experienced more severe distortions than anisometropic or microtropic amblyopes (GD Kruskal Wallis H = 16.89, P < 0.001; GU Kruskal Wallis H = 15.31, P < 0.001). Perceived visual distortions severity moderately correlated with the strength of binocular function, (e.g., log stereoacuity [GD rho = 0.419, P < 0.001; GU rho = 0.384, P < 0.001)], and strongly with near angle of deviation (GD rho = 0.578, P < 0.001; GU rho = 0.384, P < 0.001). There was no relationship between severity of PVDs and amblyopia treatment outcomes, or the amblyopic visual acuity deficit. Perceived visual distortions persisted in more than one-half of treated amblyopic cases whose treatment was deemed successful. Perceived visual distortions are common symptoms of amblyopia and are correlated with binocular (stereoacuity, angle of deviation), but not monocular (visual acuity) clinical outcomes. This adds to evidence demonstrating the role of decorrelated binocular single vision in many aspects of amblyopia, and emphasizes the importance of restoring and improving binocular single vision in amblyopic individuals.

  5. Early Binocular Input Is Critical for Development of Audiovisual but Not Visuotactile Simultaneity Perception.

    PubMed

    Chen, Yi-Chuan; Lewis, Terri L; Shore, David I; Maurer, Daphne

    2017-02-20

    Temporal simultaneity provides an essential cue for integrating multisensory signals into a unified perception. Early visual deprivation, in both animals and humans, leads to abnormal neural responses to audiovisual signals in subcortical and cortical areas [1-5]. Behavioral deficits in integrating complex audiovisual stimuli in humans are also observed [6, 7]. It remains unclear whether early visual deprivation affects visuotactile perception similarly to audiovisual perception and whether the consequences for either pairing differ after monocular versus binocular deprivation [8-11]. Here, we evaluated the impact of early visual deprivation on the perception of simultaneity for audiovisual and visuotactile stimuli in humans. We tested patients born with dense cataracts in one or both eyes that blocked all patterned visual input until the cataractous lenses were removed and the affected eyes fitted with compensatory contact lenses (mean duration of deprivation = 4.4 months; range = 0.3-28.8 months). Both monocularly and binocularly deprived patients demonstrated lower precision in judging audiovisual simultaneity. However, qualitatively different outcomes were observed for the two patient groups: the performance of monocularly deprived patients matched that of young children at immature stages, whereas that of binocularly deprived patients did not match any stage in typical development. Surprisingly, patients performed normally in judging visuotactile simultaneity after either monocular or binocular deprivation. Therefore, early binocular input is necessary to develop normal neural substrates for simultaneity perception of visual and auditory events but not visual and tactile events. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Measurement of suprathreshold binocular interactions in amblyopia.

    PubMed

    Mansouri, B; Thompson, B; Hess, R F

    2008-12-01

    It has been established that in amblyopia, information from the amblyopic eye (AME) is not combined with that from the fellow fixing eye (FFE) under conditions of binocular viewing. However, recent evidence suggests that mechanisms that combine information between the eyes are intact in amblyopia. The lack of binocular function is most likely due to the imbalanced inputs from the two eyes under binocular conditions [Baker, D. H., Meese, T. S., Mansouri, B., & Hess, R. F. (2007b). Binocular summation of contrast remains intact in strabismic amblyopia. Investigative Ophthalmology & Visual Science, 48(11), 5332-5338]. We have measured the extent to which the information presented to each eye needs to differ for binocular combination to occur and in doing so we quantify the influence of interocular suppression. We quantify these suppressive effects for suprathreshold processing of global stimuli for both motion and spatial tasks. The results confirm the general importance of these suppressive effects in rendering the structurally binocular visual system of a strabismic amblyope, functionally monocular.

  7. Visual acuity measured with luminance-modulated and contrast-modulated noise letter stimuli in young adults and adults above 50 years old

    PubMed Central

    Woi, Pui Juan; Kaur, Sharanjeet; Waugh, Sarah J.; Hairol, Mohd Izzuddin

    2016-01-01

    The human visual system is sensitive in detecting objects that have different luminance level from their background, known as first-order or luminance-modulated (LM) stimuli. We are also able to detect objects that have the same mean luminance as their background, only differing in contrast (or other attributes). Such objects are known as second-order or contrast-modulated (CM), stimuli. CM stimuli are thought to be processed in higher visual areas compared to LM stimuli, and may be more susceptible to ageing. We compared visual acuities (VA) of five healthy older adults (54.0±1.83 years old) and five healthy younger adults (25.4±1.29 years old) with LM and CM letters under monocular and binocular viewing. For monocular viewing, age had no effect on VA [F(1, 8)= 2.50, p> 0.05]. However, there was a significant main effect of age on VA under binocular viewing [F(1, 8)= 5.67, p< 0.05].  Binocular VA with CM letters in younger adults was approximately two lines better than that in older adults. For LM, binocular summation ratios were similar for older (1.16±0.21) and younger (1.15±0.06) adults. For CM, younger adults had higher binocular summation ratio (1.39±0.08) compared to older adults (1.12±0.09). Binocular viewing improved VA with LM letters for both groups similarly. However, in older adults, binocular viewing did not improve VA with CM letters as much as in younger adults. This could reflect a decline of higher visual areas due to ageing process, most likely higher than V1, which may be missed if measured with luminance-based stimuli alone. PMID:28184281

  8. Bilateral symmetry in vision and influence of ocular surgical procedures on binocular vision: A topical review.

    PubMed

    Arba Mosquera, Samuel; Verma, Shwetabh

    2016-01-01

    We analyze the role of bilateral symmetry in enhancing binocular visual ability in human eyes, and further explore how efficiently bilateral symmetry is preserved in different ocular surgical procedures. The inclusion criterion for this review was strict relevance to the clinical questions under research. Enantiomorphism has been reported in lower order aberrations, higher order aberrations and cone directionality. When contrast differs in the two eyes, binocular acuity is better than monocular acuity of the eye that receives higher contrast. Anisometropia has an uncommon occurrence in large populations. Anisometropia seen in infancy and childhood is transitory and of little consequence for the visual acuity. Binocular summation of contrast signals declines with age, independent of inter-ocular differences. The symmetric associations between the right and left eye could be explained by the symmetry in pupil offset and visual axis which is always nasal in both eyes. Binocular summation mitigates poor visual performance under low luminance conditions and strong inter-ocular disparity detrimentally affects binocular summation. Considerable symmetry of response exists in fellow eyes of patients undergoing myopic PRK and LASIK, however the method to determine whether or not symmetry is maintained consist of comparing individual terms in a variety of ad hoc ways both before and after the refractive surgery, ignoring the fact that retinal image quality for any individual is based on the sum of all terms. The analysis of bilateral symmetry should be related to the patients' binocular vision status. The role of aberrations in monocular and binocular vision needs further investigation. Copyright © 2016 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  9. Fluctuations of visual awareness: Combining motion-induced blindness with binocular rivalry

    PubMed Central

    Jaworska, Katarzyna; Lages, Martin

    2014-01-01

    Binocular rivalry (BR) and motion-induced blindness (MIB) are two phenomena of visual awareness where perception alternates between multiple states despite constant retinal input. Both phenomena have been extensively studied, but the underlying processing remains unclear. It has been suggested that BR and MIB involve the same neural mechanism, but how the two phenomena compete for visual awareness in the same stimulus has not been systematically investigated. Here we introduce BR in a dichoptic stimulus display that can also elicit MIB and examine fluctuations of visual awareness over the course of each trial. Exploiting this paradigm we manipulated stimulus characteristics that are known to influence MIB and BR. In two experiments we found that effects on multistable percepts were incompatible with the idea of a common oscillator. The results suggest instead that local and global stimulus attributes can affect the dynamics of each percept differently. We conclude that the two phenomena of visual awareness share basic temporal characteristics but are most likely influenced by processing at different stages within the visual system. PMID:25240063

  10. Maturation of Binocular, Monocular Grating Acuity and of the Visual Interocular Difference in the First 2 Years of Life.

    PubMed

    Costa, Marcelo Fernandes; de Cássia Rodrigues Matos França, Valtenice; Barboni, Mirella Teles Salgueiro; Ventura, Dora Fix

    2018-05-01

    The sweep visual evoked potential method (sVEP) is a powerful tool for measurement of visual acuity in infants. Despite the applicability and reliability of the technique in measuring visual functions the understanding of sVEP acuity maturation and how interocular difference of acuity develops in early infancy, as well as the availability of normality ranges, are rare in the literature. We measured binocular and monocular sVEPS acuities in 481 healthy infants aged from birth to 24 months without ophthalmological diseases. Binocular sVEP acuity was significantly higher than monocular visual acuities for almost all ages. Maturation of monocular sVEP acuity showed 2 longer critical periods while binocular acuity showed three maturation periods in the same age range. We found a systematic variation of the mean interocular acuity difference (IAD) range according to age from 1.45 cpd at birth to 0.31 cpd at 24 months. An additional contribution was the determination of sVEP acuity norms for the entire age range. We conclude that binocular and monocular sVEP acuities have distinct growth curves reflecting different maturation profiles for each function. Differences in IAD range shorten according to age and they should be considered in using the sVEP acuity measurements for clinical diagnosis as amblyopia.

  11. Selective binocular vision loss in two subterranean caviomorph rodents: Spalacopus cyanus and Ctenomys talarum

    PubMed Central

    Vega-Zuniga, T.; Medina, F. S.; Marín, G.; Letelier, J. C.; Palacios, A. G.; Němec, P.; Schleich, C. E.; Mpodozis, J.

    2017-01-01

    To what extent can the mammalian visual system be shaped by visual behavior? Here we analyze the shape of the visual fields, the densities and distribution of cells in the retinal ganglion-cell layer and the organization of the visual projections in two species of facultative non-strictly subterranean rodents, Spalacopus cyanus and Ctenomys talarum, aiming to compare these traits with those of phylogenetically closely related species possessing contrasting diurnal/nocturnal visual habits. S. cyanus shows a definite zone of frontal binocular overlap and a corresponding area centralis, but a highly reduced amount of ipsilateral retinal projections. The situation in C. talarum is more extreme as it lacks of a fronto-ventral area of binocular superposition, has no recognizable area centralis and shows no ipsilateral retinal projections except to the suprachiasmatic nucleus. In both species, the extension of the monocular visual field and of the dorsal region of binocular overlap as well as the whole set of contralateral visual projections, appear well-developed. We conclude that these subterranean rodents exhibit, paradoxically, diurnal instead of nocturnal visual specializations, but at the same time suffer a specific regression of the anatomical substrate for stereopsis. We discuss these findings in light of the visual ecology of subterranean lifestyles. PMID:28150809

  12. Clinical Outcomes after Binocular Implantation of a New Trifocal Diffractive Intraocular Lens

    PubMed Central

    Kretz, Florian T. A.; Breyer, Detlev; Diakonis, Vasilios F.; Klabe, Karsten; Henke, Franziska; Auffarth, Gerd U.; Kaymak, Hakan

    2015-01-01

    Purpose. To evaluate visual, refractive, and contrast sensitivity outcomes, as well as the incidence of pseudophakic photic phenomena and patient satisfaction after bilateral diffractive trifocal intraocular lens (IOL) implantation. Methods. This prospective nonrandomized study included consecutive patients undergoing cataract surgery with bilateral implantation of a diffractive trifocal IOL (AT LISA tri 839MP, Carl Zeiss Meditec). Distance, intermediate, and near visual outcomes were evaluated as well as the defocus curve and the refractive outcomes 3 months after surgery. Photopic and mesopic contrast sensitivity, patient satisfaction, and halo perception were also evaluated. Results. Seventy-six eyes of 38 patients were included; 90% of eyes showed a spherical equivalent within ±0.50 diopters 3 months after surgery. All patients had a binocular uncorrected distance visual acuity of 0.00 LogMAR or better and a binocular uncorrected intermediate visual acuity of 0.10 LogMAR or better, 3 months after surgery. Furthermore, 85% of patients achieved a binocular uncorrected near visual acuity of 0.10 LogMAR or better. Conclusions. Trifocal diffractive IOL implantation seems to provide an effective restoration of visual function for far, intermediate, and near distances, providing high levels of visual quality and patient satisfaction. PMID:26301104

  13. Enhancement of vision by monocular deprivation in adult mice.

    PubMed

    Prusky, Glen T; Alam, Nazia M; Douglas, Robert M

    2006-11-08

    Plasticity of vision mediated through binocular interactions has been reported in mammals only during a "critical" period in juvenile life, wherein monocular deprivation (MD) causes an enduring loss of visual acuity (amblyopia) selectively through the deprived eye. Here, we report a different form of interocular plasticity of vision in adult mice in which MD leads to an enhancement of the optokinetic response (OKR) selectively through the nondeprived eye. Over 5 d of MD, the spatial frequency sensitivity of the OKR increased gradually, reaching a plateau of approximately 36% above pre-deprivation baseline. Eye opening initiated a gradual decline, but sensitivity was maintained above pre-deprivation baseline for 5-6 d. Enhanced function was restricted to the monocular visual field, notwithstanding the dependence of the plasticity on binocular interactions. Activity in visual cortex ipsilateral to the deprived eye was necessary for the characteristic induction of the enhancement, and activity in visual cortex contralateral to the deprived eye was necessary for its maintenance after MD. The plasticity also displayed distinct learning-like properties: Active testing experience was required to attain maximal enhancement and for enhancement to persist after MD, and the duration of enhanced sensitivity after MD was extended by increasing the length of MD, and by repeating MD. These data show that the adult mouse visual system maintains a form of experience-dependent plasticity in which the visual cortex can modulate the normal function of subcortical visual pathways.

  14. [Clinical observation on the relation between laser in situ keratomileusis treating myopic anisometropia and binocular vision].

    PubMed

    Huang, Jing; Lu, Wei

    2009-09-29

    To analyze the effect of LASIK on visual quality of anisometropia, and evaluate its clinical value in the view of visual quality. Prospective observational case series. Assayed the naked vision, glasses-corrected vision and binocular vision of 45 cases with anisometropia >or= 2.25D before and after the operation of LASIK. 91.57% of the eyes after the operation reached the vision >or= 0.8, which says a significant improvement for binocular vision after the operation (P < 0.05). There was a significant difference on diopter between the pre-operation and post-operation (P < 0.05). As for anisometropia, there was no significant difference between simultaneous binocular visions (P = 0.431), but there was of great significance among combined, short and long distance stereopsis visions (P = 0.000). Binocular vision deteriorated as anisometropia increased (P < 0.05). The short distance stereopsis visions of LASIK-treated myopic anisometropia were better than that of glasses-corrected patients (P < 0.05). The operation of LASIK can improve the visual quality and resume the binocular vision. LASIK can correct anisometropia and its therapeutic efficacy deserves to confirm.

  15. Retinotopic maps and foveal suppression in the visual cortex of amblyopic adults

    PubMed Central

    Conner, Ian P; Odom, J Vernon; Schwartz, Terry L; Mendola, Janine D

    2007-01-01

    Amblyopia is a developmental visual disorder associated with loss of monocular acuity and sensitivity as well as profound alterations in binocular integration. Abnormal connections in visual cortex are known to underlie this loss, but the extent to which these abnormalities are regionally or retinotopically specific has not been fully determined. This functional magnetic resonance imaging (fMRI) study compared the retinotopic maps in visual cortex produced by each individual eye in 19 adults (7 esotropic strabismics, 6 anisometropes and 6 controls). In our standard viewing condition, the non-tested eye viewed a dichoptic homogeneous mid-level grey stimulus, thereby permitting some degree of binocular interaction. Regions-of-interest analysis was performed for extrafoveal V1, extrafoveal V2 and the foveal representation at the occipital pole. In general, the blood oxygenation level-dependent (BOLD) signal was reduced for the amblyopic eye. At the occipital pole, population receptive fields were shifted to represent more parafoveal locations for the amblyopic eye, compared with the fellow eye, in some subjects. Interestingly, occluding the fellow eye caused an expanded foveal representation for the amblyopic eye in one early–onset strabismic subject with binocular suppression, indicating real-time cortical remapping. In addition, a few subjects actually showed increased activity in parietal and temporal cortex when viewing with the amblyopic eye. We conclude that, even in a heterogeneous population, abnormal early visual experience commonly leads to regionally specific cortical adaptations. PMID:17627994

  16. Amblyopia and Binocular Vision

    PubMed Central

    Birch, Eileen E.

    2012-01-01

    Amblyopia is the most common cause of monocular visual loss in children, affecting 1.3% to 3.6% of children. Current treatments are effective in reducing the visual acuity deficit but many amblyopic individuals are left with residual visual acuity deficits, ocular motor abnormalities, deficient fine motor skills, and risk for recurrent amblyopia. Using a combination of psychophysical, electrophysiological, imaging, risk factor analysis, and fine motor skill assessment, the primary role of binocular dysfunction in the genesis of amblyopia and the constellation of visual and motor deficits that accompany the visual acuity deficit has been identified. These findings motivated us to evaluate a new, binocular approach to amblyopia treatment with the goals of reducing or eliminating residual and recurrent amblyopia and of improving the deficient ocular motor function and fine motor skills that accompany amblyopia. PMID:23201436

  17. Using virtual reality to test the regularity priors used by the human visual system

    NASA Astrophysics Data System (ADS)

    Palmer, Eric; Kwon, TaeKyu; Pizlo, Zygmunt

    2017-09-01

    Virtual reality applications provide an opportunity to test human vision in well-controlled scenarios that would be difficult to generate in real physical spaces. This paper presents a study intended to evaluate the importance of the regularity priors used by the human visual system. Using a CAVE simulation, subjects viewed virtual objects in a variety of experimental manipulations. In the first experiment, the subject was asked to count the objects in a scene that was viewed either right-side-up or upside-down for 4 seconds. The subject counted more accurately in the right-side-up condition regardless of the presence of binocular disparity or color. In the second experiment, the subject was asked to reconstruct the scene from a different viewpoint. Reconstructions were accurate, but the position and orientation error was twice as high when the scene was rotated by 45°, compared to 22.5°. Similarly to the first experiment, there was little difference between monocular and binocular viewing. In the third experiment, the subject was asked to adjust the position of one object to match the depth extent to the frontal extent among three objects. Performance was best with symmetrical objects and became poorer with asymmetrical objects and poorest with only small circular markers on the floor. Finally, in the fourth experiment, we demonstrated reliable performance in monocular and binocular recovery of 3D shapes of objects standing naturally on the simulated horizontal floor. Based on these results, we conclude that gravity, horizontal ground, and symmetry priors play an important role in veridical perception of scenes.

  18. Orientation tuning of binocular summation: a comparison of colour to achromatic contrast

    PubMed Central

    Gheiratmand, Mina; Cherniawsky, Avital S.; Mullen, Kathy T.

    2016-01-01

    A key function of the primary visual cortex is to combine the input from the two eyes into a unified binocular percept. At low, near threshold, contrasts a process of summation occurs if the visual inputs from the two eyes are similar. Here we measure the orientation tuning of binocular summation for chromatic and equivalent achromatic contrast. We derive estimates of orientation tuning by measuring binocular summation as a function of the orientation difference between two sinusoidal gratings presented dichoptically to different eyes. We then use a model to estimate the orientation bandwidth of the neural detectors underlying the binocular combination. We find that orientation bandwidths are similar for chromatic and achromatic stimuli at both low (0.375 c/deg) and mid (1.5 c/deg) spatial frequencies, with an overall average of 29 ± 3 degs (HWHH, s.e.m). This effect occurs despite the overall greater binocular summation found for the low spatial frequency chromatic stimuli. These results suggest that similar, oriented processes underlie both chromatic and achromatic binocular contrast combination. The non-oriented detection process found in colour vision at low spatial frequencies under monocular viewing is not evident at the binocular combination stage. PMID:27168119

  19. Binocular eye movement control and motion perception: what is being tracked?

    PubMed

    van der Steen, Johannes; Dits, Joyce

    2012-10-19

    We investigated under what conditions humans can make independent slow phase eye movements. The ability to make independent movements of the two eyes generally is attributed to few specialized lateral eyed animal species, for example chameleons. In our study, we showed that humans also can move the eyes in different directions. To maintain binocular retinal correspondence independent slow phase movements of each eye are produced. We used the scleral search coil method to measure binocular eye movements in response to dichoptically viewed visual stimuli oscillating in orthogonal direction. Correlated stimuli led to orthogonal slow eye movements, while the binocularly perceived motion was the vector sum of the motion presented to each eye. The importance of binocular fusion on independency of the movements of the two eyes was investigated with anti-correlated stimuli. The perceived global motion pattern of anti-correlated dichoptic stimuli was perceived as an oblique oscillatory motion, as well as resulted in a conjugate oblique motion of the eyes. We propose that the ability to make independent slow phase eye movements in humans is used to maintain binocular retinal correspondence. Eye-of-origin and binocular information are used during the processing of binocular visual information, and it is decided at an early stage whether binocular or monocular motion information and independent slow phase eye movements of each eye are produced during binocular tracking.

  20. Binocular Eye Movement Control and Motion Perception: What Is Being Tracked?

    PubMed Central

    van der Steen, Johannes; Dits, Joyce

    2012-01-01

    Purpose. We investigated under what conditions humans can make independent slow phase eye movements. The ability to make independent movements of the two eyes generally is attributed to few specialized lateral eyed animal species, for example chameleons. In our study, we showed that humans also can move the eyes in different directions. To maintain binocular retinal correspondence independent slow phase movements of each eye are produced. Methods. We used the scleral search coil method to measure binocular eye movements in response to dichoptically viewed visual stimuli oscillating in orthogonal direction. Results. Correlated stimuli led to orthogonal slow eye movements, while the binocularly perceived motion was the vector sum of the motion presented to each eye. The importance of binocular fusion on independency of the movements of the two eyes was investigated with anti-correlated stimuli. The perceived global motion pattern of anti-correlated dichoptic stimuli was perceived as an oblique oscillatory motion, as well as resulted in a conjugate oblique motion of the eyes. Conclusions. We propose that the ability to make independent slow phase eye movements in humans is used to maintain binocular retinal correspondence. Eye-of-origin and binocular information are used during the processing of binocular visual information, and it is decided at an early stage whether binocular or monocular motion information and independent slow phase eye movements of each eye are produced during binocular tracking. PMID:22997286

  1. From optics to attention: visual perception in barn owls.

    PubMed

    Harmening, Wolf M; Wagner, Hermann

    2011-11-01

    Barn owls are nocturnal predators which have evolved specific sensory and morphological adaptations to a life in dim light. Here, some of the most fundamental properties of spatial vision in barn owls are reviewed. The eye with its tubular shape is rigidly integrated in the skull so that eye movements are very much restricted. The eyes are oriented frontally, allowing for a large binocular overlap. Accommodation, but not pupil dilation, is coupled between the two eyes. The retina is rod dominated and lacks a visible fovea. Retinal ganglion cells form a marked region of highest density that extends to a horizontally oriented visual streak. Behavioural visual acuity and contrast sensitivity are poor, although the optical quality of the ocular media is excellent. A low f-number allows high image quality at low light levels. Vernier acuity was found to be a hyperacute percept. Owls have global stereopsis with hyperacute stereo acuity thresholds. Neurons of the visual Wulst are sensitive to binocular disparities. Orientation based saliency was demonstrated in a visual-search experiment, and higher cognitive abilities were shown when the owl's were able to use illusory contours for object discrimination.

  2. Thalamocortical dynamics of the McCollough effect: boundary-surface alignment through perceptual learning.

    PubMed

    Grossberg, Stephen; Hwang, Seungwoo; Mingolla, Ennio

    2002-05-01

    This article further develops the FACADE neural model of 3-D vision and figure-ground perception to quantitatively explain properties of the McCollough effect (ME). The model proposes that many ME data result from visual system mechanisms whose primary function is to adaptively align, through learning, boundary and surface representations that are positionally shifted due to the process of binocular fusion. For example, binocular boundary representations are shifted by binocular fusion relative to monocular surface representations, yet the boundaries must become positionally aligned with the surfaces to control binocular surface capture and filling-in. The model also includes perceptual reset mechanisms that use habituative transmitters in opponent processing circuits. Thus the model shows how ME data may arise from a combination of mechanisms that have a clear functional role in biological vision. Simulation results with a single set of parameters quantitatively fit data from 13 experiments that probe the nature of achromatic/chromatic and monocular/binocular interactions during induction of the ME. The model proposes how perceptual learning, opponent processing, and habituation at both monocular and binocular surface representations are involved, including early thalamocortical sites. In particular, it explains the anomalous ME utilizing these multiple processing sites. Alternative models of the ME are also summarized and compared with the present model.

  3. The subtlety of simple eyes: the tuning of visual fields to perceptual challenges in birds

    PubMed Central

    Martin, Graham R.

    2014-01-01

    Birds show interspecific variation both in the size of the fields of individual eyes and in the ways that these fields are brought together to produce the total visual field. Variation is found in the dimensions of all main parameters: binocular region, cyclopean field and blind areas. There is a phylogenetic signal with respect to maximum width of the binocular field in that passerine species have significantly broader field widths than non-passerines; broadest fields are found among crows (Corvidae). Among non-passerines, visual fields show considerable variation within families and even within some genera. It is argued that (i) the main drivers of differences in visual fields are associated with perceptual challenges that arise through different modes of foraging, and (ii) the primary function of binocularity in birds lies in the control of bill position rather than in the control of locomotion. The informational function of binocular vision does not lie in binocularity per se (two eyes receiving slightly different information simultaneously about the same objects from which higher-order depth information is extracted), but in the contralateral projection of the visual field of each eye. Contralateral projection ensures that each eye receives information from a symmetrically expanding optic flow-field from which direction of travel and time to contact targets can be extracted, particularly with respect to the control of bill position. PMID:24395967

  4. [Binocular fusion method for prevention of myopia].

    PubMed

    Xu, G D

    1989-03-01

    When looking at a far object with two eyes, relaxation of convergence and accommodation occurred and accompanied by binocular fusion. Using this phenomenon a method of binocular fusion of targets was designed, that is the distance between two targets are just the same as the distance between two visual lines, while looking at a far object. During the images of the targets are fused, the accommodation and convergence are relaxed concomitantly; thus a result of correction of pseudomyopia and prevention of myopia is achieved. By means of binocular fusion, the eye muscle exercises were conducted and resulted in not only the far point further but also the near point closer. The skiascopic examination carried out at the same time of binocular fusion showed that the degrees of relaxed accommodation was 97.9% that of looking at an object in far distance. The above results indicated that the binocular fusion method had excellent effect on the prevention of myopia. This method is simple and feasible, conforms to the visual physiology, and thus can be widely adopted.

  5. The Active Side of Stereopsis: Fixation Strategy and Adaptation to Natural Environments.

    PubMed

    Gibaldi, Agostino; Canessa, Andrea; Sabatini, Silvio P

    2017-03-20

    Depth perception in near viewing strongly relies on the interpretation of binocular retinal disparity to obtain stereopsis. Statistical regularities of retinal disparities have been claimed to greatly impact on the neural mechanisms that underlie binocular vision, both to facilitate perceptual decisions and to reduce computational load. In this paper, we designed a novel and unconventional approach in order to assess the role of fixation strategy in conditioning the statistics of retinal disparity. We integrated accurate realistic three-dimensional models of natural scenes with binocular eye movement recording, to obtain accurate ground-truth statistics of retinal disparity experienced by a subject in near viewing. Our results evidence how the organization of human binocular visual system is finely adapted to the disparity statistics characterizing actual fixations, thus revealing a novel role of the active fixation strategy over the binocular visual functionality. This suggests an ecological explanation for the intrinsic preference of stereopsis for a close central object surrounded by a far background, as an early binocular aspect of the figure-ground segregation process.

  6. The dependence of binocular contrast sensitivities on binocular single vision in normal and amblyopic human subjects

    PubMed Central

    Hood, A S; Morrison, J D

    2002-01-01

    We have measured monocular and binocular contrast sensitivities in response to medium to high spatial frequencies of vertical sinusoidal grating patterns in normal subjects, anisometropic amblyopes, strabismic amblyopes and non-amblyopic esotropes. On binocular viewing, contrast sensitivities were slightly but significantly increased in normal subjects, markedly increased in anisometropes and esotropes with anomalous binocular single vision (BSV) and significantly reduced in esotropes and exotropes without BSV. Application of a prismatic correction to the strabismic eye in order to achieve bifoveal stimulation resulted in a significant reduction in contrast sensitivity in esotropes with and without anomalous BSV, in exotropes and in non-amblyopic esotropes. Control experiments in normal subjects with monocular viewing showed that degradative effects of the prism occurred only with high prism powers and at high spatial frequencies, thus establishing that the reduced contrast sensitivities were the consequence of bifoveal stimulation rather than optical degradation. Displacement of the image of the grating pattern by 2 deg in normal subjects and anisometropes by a dichoptic method to simulate a small angle esotropia had no effect on the contrast sensitivities recorded through the companion eye. By contrast, esotropes showed similar reductions in contrast sensitivity to those obtained with the prism experiments, confirming a fundamental difference between subjects with normal and abnormal ocular alignments. The results have thus established a suppressive action of the fovea of the amblyopic eye acting on the companion, non-amblyopic eye and indicate that correction of ocular misalignments in adult esotropes may be disadvantageous to binocular visual performance. PMID:11956347

  7. Binocular and Monocular Depth Cues in Online Feedback Control of 3-D Pointing Movement

    PubMed Central

    Hu, Bo; Knill, David C.

    2012-01-01

    Previous work has shown that humans continuously use visual feedback of the hand to control goal-directed movements online. In most studies, visual error signals were predominantly in the image plane and thus were available in an observer’s retinal image. We investigate how humans use visual feedback about finger depth provided by binocular and monocular depth cues to control pointing movements. When binocularly viewing a scene in which the hand movement was made in free space, subjects were about 60 ms slower in responding to perturbations in depth than in the image plane. When monocularly viewing a scene designed to maximize the available monocular cues to finger depth (motion, changing size and cast shadows), subjects showed no response to perturbations in depth. Thus, binocular cues from the finger are critical to effective online control of hand movements in depth. An optimal feedback controller that takes into account of the low peripheral stereoacuity and inherent ambiguity in cast shadows can explain the difference in response time in the binocular conditions and lack of response in monocular conditions. PMID:21724567

  8. The effect of monocular and binocular viewing on the accommodation response to real targets in emmetropia and myopia.

    PubMed

    Seidel, Dirk; Gray, Lyle S; Heron, Gordon

    2005-04-01

    Decreased blur-sensitivity found in myopia has been linked with reduced accommodation responses and myopigenesis. Although the mechanism for myopia progression remains unclear, it is commonly known that myopic patients rarely report near visual symptoms and are generally very sensitive to small changes in their distance prescription. This experiment investigated the effect of monocular and binocular viewing on static and dynamic accommodation in emmetropes and myopes for real targets to monitor whether inaccuracies in the myopic accommodation response are maintained when a full set of visual cues, including size and disparity, is available. Monocular and binocular steady-state accommodation responses were measured with a Canon R1 autorefractor for target vergences ranging from 0-5 D in emmetropes (EMM), late-onset myopes (LOM), and early-onset myopes (EOM). Dynamic closed-loop accommodation responses for a stationary target at 0.25 m and step stimuli of two different magnitudes were recorded for both monocular and binocular viewing. All refractive groups showed similar accommodation stimulus response curves consistent with previously published data. Viewing a stationary near target monocularly, LOMs demonstrated slightly larger accommodation microfluctuations compared with EMMs and EOMs; however, this difference was absent under binocular viewing conditions. Dynamic accommodation step responses revealed significantly (p < 0.05) longer response times for the myopic subject groups for a number of step stimuli. No significant difference in either reaction time or the number of correct responses for a given number of step-vergence changes was found between the myopic groups and EMMs. When viewing real targets with size and disparity cues available, no significant differences in the accuracy of static and dynamic accommodation responses were found among EMM, EOM, and LOM. The results suggest that corrected myopes do not experience dioptric blur levels that are substantially different from emmetropes when they view free space targets.

  9. Amblyopia and binocular vision.

    PubMed

    Birch, Eileen E

    2013-03-01

    Amblyopia is the most common cause of monocular visual loss in children, affecting 1.3%-3.6% of children. Current treatments are effective in reducing the visual acuity deficit but many amblyopic individuals are left with residual visual acuity deficits, ocular motor abnormalities, deficient fine motor skills, and risk for recurrent amblyopia. Using a combination of psychophysical, electrophysiological, imaging, risk factor analysis, and fine motor skill assessment, the primary role of binocular dysfunction in the genesis of amblyopia and the constellation of visual and motor deficits that accompany the visual acuity deficit has been identified. These findings motivated us to evaluate a new, binocular approach to amblyopia treatment with the goals of reducing or eliminating residual and recurrent amblyopia and of improving the deficient ocular motor function and fine motor skills that accompany amblyopia. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Overcoming Presbyopia by Manipulating the Eyes' Optics

    NASA Astrophysics Data System (ADS)

    Zheleznyak, Leonard A.

    Presbyopia, the age-related loss of accommodation, is a visual condition affecting all adults over the age of 45 years. In presbyopia, individuals lose the ability to focus on nearby objects, due to a lifelong growth and stiffening of the eye's crystalline lens. This leads to poor near visual performance and affects patients' quality of life. The objective of this thesis is aimed towards the correction of presbyopia and can be divided into four aims. First, we examined the characteristics and limitations of currently available strategies for the correction of presbyopia. A natural-view wavefront sensor was used to objectively measure the accommodative ability of patients implanted with an accommodative intraocular lens (IOL). Although these patients had little accommodative ability based on changes in power, pupil miosis and higher order aberrations led to an improvement in through-focus retinal image quality in some cases. To quantify the through-focus retinal image quality of accommodative and multifocal IOLs directly, an adaptive optics (AO) IOL metrology system was developed. Using this system, the impact of corneal aberrations in regard to presbyopia-correcting IOLs was assessed, providing an objective measure of through-focus retinal image quality and practical guidelines for patient selection. To improve upon existing multifocal designs, we investigated retinal image quality metrics for the prediction of through-focus visual performance. The preferred metric was based on the fidelity of an image convolved with an aberrated point spread function. Using this metric, we investigated the potential of higher order aberrations and pupil amplitude apodization to increase the depth of focus of the presbyopic eye. Thirdly, we investigated modified monovision, a novel binocular approach to presbyopia correction using a binocular AO vision simulator. In modified monovision, different magnitudes of defocus and spherical aberration are introduced to each eye, thereby taking advantage of the binocular visual system. Several experiments using the binocular AO vision simulator found modified monovision led to significant improvements in through-focus visual performance, binocular summation and stereoacuity, as compared to traditional monovision. Finally, we addressed neural factors, affecting visual performance in modified monovision, such as ocular dominance and neural plasticity. We found that pairing modified monovision with a vision training regimen may further improve visual performance beyond the limits set by optics via neural plasticity. This opens the door to an exciting new avenue of vision correction to accompany optical interventions. The research presented in this thesis offers important guidelines for the clinical and scientific communities. Furthermore, the techniques described herein may be applied to other fields of ophthalmology, such as childhood myopia progression.

  11. Sparse coding can predict primary visual cortex receptive field changes induced by abnormal visual input.

    PubMed

    Hunt, Jonathan J; Dayan, Peter; Goodhill, Geoffrey J

    2013-01-01

    Receptive fields acquired through unsupervised learning of sparse representations of natural scenes have similar properties to primary visual cortex (V1) simple cell receptive fields. However, what drives in vivo development of receptive fields remains controversial. The strongest evidence for the importance of sensory experience in visual development comes from receptive field changes in animals reared with abnormal visual input. However, most sparse coding accounts have considered only normal visual input and the development of monocular receptive fields. Here, we applied three sparse coding models to binocular receptive field development across six abnormal rearing conditions. In every condition, the changes in receptive field properties previously observed experimentally were matched to a similar and highly faithful degree by all the models, suggesting that early sensory development can indeed be understood in terms of an impetus towards sparsity. As previously predicted in the literature, we found that asymmetries in inter-ocular correlation across orientations lead to orientation-specific binocular receptive fields. Finally we used our models to design a novel stimulus that, if present during rearing, is predicted by the sparsity principle to lead robustly to radically abnormal receptive fields.

  12. Sparse Coding Can Predict Primary Visual Cortex Receptive Field Changes Induced by Abnormal Visual Input

    PubMed Central

    Hunt, Jonathan J.; Dayan, Peter; Goodhill, Geoffrey J.

    2013-01-01

    Receptive fields acquired through unsupervised learning of sparse representations of natural scenes have similar properties to primary visual cortex (V1) simple cell receptive fields. However, what drives in vivo development of receptive fields remains controversial. The strongest evidence for the importance of sensory experience in visual development comes from receptive field changes in animals reared with abnormal visual input. However, most sparse coding accounts have considered only normal visual input and the development of monocular receptive fields. Here, we applied three sparse coding models to binocular receptive field development across six abnormal rearing conditions. In every condition, the changes in receptive field properties previously observed experimentally were matched to a similar and highly faithful degree by all the models, suggesting that early sensory development can indeed be understood in terms of an impetus towards sparsity. As previously predicted in the literature, we found that asymmetries in inter-ocular correlation across orientations lead to orientation-specific binocular receptive fields. Finally we used our models to design a novel stimulus that, if present during rearing, is predicted by the sparsity principle to lead robustly to radically abnormal receptive fields. PMID:23675290

  13. Amblyopia and the binocular approach to its therapy.

    PubMed

    Hess, Robert F; Thompson, Benjamin

    2015-09-01

    There is growing evidence that abnormal binocular interactions play a key role in amblyopia. In particular, stronger suppression of the amblyopic eye has been associated with poorer amblyopic eye visual acuity and a new therapy has been described that directly targets binocular function and has been found to improve both monocular and binocular vision in adults and children with amblyopia. Furthermore, non-invasive brain stimulation techniques that alter excitation and inhibition within the visual cortex have been shown to improve vision in the amblyopic eye. The aim of this review is to summarize this previous work and interpret the therapeutic effects of binocular therapy and non-invasive brain stimulation in the context of three potential neural mechanisms; active inhibition of signals from the amblyopic eye, attenuation of information from the amblyopic eye and metaplasticity of synaptic long term potentiation and long term depression. Copyright © 2015. Published by Elsevier Ltd.

  14. A new binocular approach to the treatment of amblyopia in adults well beyond the critical period of visual development.

    PubMed

    Hess, R F; Mansouri, B; Thompson, B

    2010-01-01

    The present treatments for amblyopia are predominantly monocular aiming to improve the vision in the amblyopic eye through either patching of the fellow fixing eye or visual training of the amblyopic eye. This approach is problematic, not least of which because it rarely results in establishment of binocular function. Recently it has shown that amblyopes possess binocular cortical mechanisms for both threshold and suprathreshold stimuli. We outline a novel procedure for measuring the extent to which the fixing eye suppresses the fellow amblyopic eye, rendering what is a structurally binocular system, functionally monocular. Here we show that prolonged periods of viewing (under the artificial conditions of stimuli of different contrast in each eye) during which information from the two eyes is combined leads to a strengthening of binocular vision in strabismic amblyopes and eventual combination of binocular information under natural viewing conditions (stimuli of the same contrast in each eye). Concomitant improvement in monocular acuity of the amblyopic eye occurs with this reduction in suppression and strengthening of binocular fusion. Furthermore, in a majority of patients tested, stereoscopic function is established. This provides the basis for a new treatment of amblyopia, one that is purely binocular and aimed at reducing suppression as a first step.

  15. Monocular and binocular visual impairment in the UK Biobank study: prevalence, associations and diagnoses.

    PubMed

    McKibbin, Martin; Farragher, Tracey M; Shickle, Darren

    2018-01-01

    To determine the prevalence of, associations with and diagnoses leading to mild visual impairment or worse (logMAR >0.3) in middle-aged adults in the UK Biobank study. Prevalence estimates for monocular and binocular visual impairment were determined for the UK Biobank participants with fundus photographs and spectral domain optical coherence tomography images. Associations with socioeconomic, biometric, lifestyle and medical variables were investigated for cases with visual impairment and matched controls, using multinomial logistic regression models. Self-reported eye history and image grading results were used to identify the primary diagnoses leading to visual impairment for a sample of 25% of cases. For the 65 033 UK Biobank participants, aged 40-69 years and with fundus images, 6682 (10.3%) and 1677 (2.6%) had mild visual impairment or worse in one or both eyes, respectively. Increasing deprivation, age and ethnicity were independently associated with both monocular and binocular visual impairment. No primary diagnosis for the recorded level of visual impairment could be identified for 49.8% of eyes. The most common identifiable diagnoses leading to visual impairment were cataract, amblyopia, uncorrected refractive error and vitreoretinal interface abnormalities. The prevalence of visual impairment in the UK Biobank study cohort is lower than for population-based studies from other industrialised countries. Monocular and binocular visual impairment are associated with increasing deprivation, age and ethnicity. The UK Biobank dataset does not allow confident identification of the causes of visual impairment, and the results may not be applicable to the wider UK population.

  16. Monocular and binocular visual impairment in the UK Biobank study: prevalence, associations and diagnoses

    PubMed Central

    Farragher, Tracey M; Shickle, Darren

    2018-01-01

    Objective To determine the prevalence of, associations with and diagnoses leading to mild visual impairment or worse (logMAR >0.3) in middle-aged adults in the UK Biobank study. Methods and analysis Prevalence estimates for monocular and binocular visual impairment were determined for the UK Biobank participants with fundus photographs and spectral domain optical coherence tomography images. Associations with socioeconomic, biometric, lifestyle and medical variables were investigated for cases with visual impairment and matched controls, using multinomial logistic regression models. Self-reported eye history and image grading results were used to identify the primary diagnoses leading to visual impairment for a sample of 25% of cases. Results For the 65 033 UK Biobank participants, aged 40–69 years and with fundus images, 6682 (10.3%) and 1677 (2.6%) had mild visual impairment or worse in one or both eyes, respectively. Increasing deprivation, age and ethnicity were independently associated with both monocular and binocular visual impairment. No primary diagnosis for the recorded level of visual impairment could be identified for 49.8% of eyes. The most common identifiable diagnoses leading to visual impairment were cataract, amblyopia, uncorrected refractive error and vitreoretinal interface abnormalities. Conclusions The prevalence of visual impairment in the UK Biobank study cohort is lower than for population-based studies from other industrialised countries. Monocular and binocular visual impairment are associated with increasing deprivation, age and ethnicity. The UK Biobank dataset does not allow confident identification of the causes of visual impairment, and the results may not be applicable to the wider UK population. PMID:29657974

  17. Evaluation of peripheral binocular visual field in patients with glaucoma: a pilot study

    PubMed Central

    Ana, Banc; Cristina, Stan; Dorin, Chiselita

    2016-01-01

    Objective: The objective of this study was to evaluate the peripheral binocular visual field (PBVF) in patients with glaucoma using the threshold strategy of Humphrey Field Analyzer. Methods: We conducted a case-control pilot study in which we enrolled 59 patients with glaucoma and 20 controls. All participants were evaluated using a custom PBVF test and central 24° monocular visual field tests for each eye using the threshold strategy. The central binocular visual field (CBVF) was predicted from the monocular tests using the most sensitive point at each field location. The glaucoma patients were grouped according to Hodapp classification and age. The PBVF was compared to controls and the relationship between the PBVF and CBVF was tested. Results: The areas of frame-induced artefacts were determined (over 50° in each temporal field, 24° superiorly and 45° inferiorly) and excluded from interpretation. The patients presented a statistically significant generalized decrease of the peripheral retinal sensitivity compared to controls for Hodapp initial stage - groups aged 50-59 (t = 11.93 > 2.06; p < 0.05) and 60-69 (t = 7.55 > 2.06; p < 0.05). For the initial Hodapp stage there was no significant relationship between PBVF and CBVF (r = 0.39). For the moderate and advanced Hodapp stages, the interpretation of data was done separately for each patient. Conclusions: This pilot study suggests that glaucoma patients present a decrease of PBVF compared to controls and CBVF cannot predict the PBVF in glaucoma. Abbreviations: CBVF = central binocular visual field, PBVF = peripheral binocular visual field, MD = mean deviation PMID:27220228

  18. Effect of Developmental Binocular Vision Abnormalities on Visual Vertigo Symptoms and Treatment Outcome.

    PubMed

    Pavlou, Marousa; Acheson, James; Nicolaou, Despina; Fraser, Clare L; Bronstein, Adolfo M; Davies, Rosalyn A

    2015-10-01

    Customized vestibular rehabilitation incorporating optokinetic (OK) stimulation improves visual vertigo (VV) symptoms; however, the degree of improvement varies among individuals. Binocular vision abnormalities (misalignment of ocular axis, ie, strabismus) may be a potential risk factor. This study aimed to investigate the influence of binocular vision abnormalities on VV symptoms and treatment outcome. Sixty subjects with refractory peripheral vestibular symptoms underwent an orthoptic assessment after being recruited for participation in an 8-week customized program incorporating OK training via a full-field visual environment rotator or video display, supervised or unsupervised. Treatment response was assessed at baseline and at 8 weeks with dynamic posturography, Functional Gait Assessment (FGA), and questionnaires for symptoms, symptom triggers, and psychological state. As no significant effect of OK training type was noted for any variables, data were combined and new groups identified on the basis of the absence or presence of a binocular vision abnormality. A total of 34 among 60 subjects consented to the orthoptic assessment, of whom 8 of the 34 had binocular vision abnormalities and 30 of the 34 subjects completed both the binocular function assessment and vestibular rehabilitation program. No significant between-group differences were noted at baseline. The only significant between-group difference was observed for pre-/post-VV symptom change (P = 0.01), with significant improvements noted only for the group without binocular vision abnormalities (P < 0.0005). Common vestibular symptoms, posturography, and the FGA improved significantly for both groups (P < 0.05). Binocular vision abnormalities may affect VV symptom improvement. These findings may have important implications for the management of subjects with refractory vestibular symptoms.Video Abstract available for insights from the authors regarding clinical implication of the study findings (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A115).

  19. Contextual cueing impairment in patients with age-related macular degeneration.

    PubMed

    Geringswald, Franziska; Herbik, Anne; Hoffmann, Michael B; Pollmann, Stefan

    2013-09-12

    Visual attention can be guided by past experience of regularities in our visual environment. In the contextual cueing paradigm, incidental learning of repeated distractor configurations speeds up search times compared to random search arrays. Concomitantly, fewer fixations and more direct scan paths indicate more efficient visual exploration in repeated search arrays. In previous work, we found that simulating a central scotoma in healthy observers eliminated this search facilitation. Here, we investigated contextual cueing in patients with age-related macular degeneration (AMD) who suffer from impaired foveal vision. AMD patients performed visual search using only their more severely impaired eye (n = 13) as well as under binocular viewing (n = 16). Normal-sighted controls developed a significant contextual cueing effect. In comparison, patients showed only a small nonsignificant advantage for repeated displays when searching with their worse eye. When searching binocularly, they profited from contextual cues, but still less than controls. Number of fixations and scan pattern ratios showed a comparable pattern as search times. Moreover, contextual cueing was significantly correlated with acuity in monocular search. Thus, foveal vision loss may lead to impaired guidance of attention by contextual memory cues.

  20. Fine Motor Skills of Children With Amblyopia Improve Following Binocular Treatment.

    PubMed

    Webber, Ann L; Wood, Joanne M; Thompson, Benjamin

    2016-09-01

    The purpose of this study was to determine whether reduced fine motor skills in children with amblyopia improve after binocular treatment and whether improvements are sustained once treatment has ceased. Fine motor skills (FMS [Bruininks-Oseretsky Test of Motor Proficiency]), visual acuity (VA [Early Treatment of Diabetic Retinopathy Study chart]) and level of binocular function (BF [Randot preschool stereoacuity and Worth 4 Dot]) were measured in children with amblyopia (n = 20; age: 8.5 ± 1.3 years; 11 anisometropic; 5 strabismic; 4 mixed) and in a group of visually normal children (n = 10; age: 9.63 ± 1.6 years). Eighteen children with amblyopia subsequently completed 5 weeks of binocular treatment provided by home-based dichoptic iPod game play. FMS, VA, and BF were retested at the end of treatment and 12 weeks after treatment cessation. All visually normal children also completed FMS measurements at baseline and 5 weeks later to assess test-retest variability of the FMS scores. Prior to treatment, FMS scores in children with amblyopia were poorer than those in children with normal vision (P < 0.05). In the children with amblyopia, binocular treatment significantly improved FMS scores (P < 0.05). Better baseline amblyopic eye VA and BF were associated with greater improvements in FMS score. Improvements were still evident at 12 weeks post treatment. In the visually normal children, FMS scores remained stable across the two test sessions. Binocular treatment provided by dichoptic iPod game play improved FMS performance in children with amblyopia, particularly in those with less severe amblyopia. Improvements were maintained at 3 months following cessation of treatment.

  1. Methods for Dichoptic Stimulus Presentation in Functional Magnetic Resonance Imaging - A Review

    PubMed Central

    Choubey, Bhaskar; Jurcoane, Alina; Muckli, Lars; Sireteanu, Ruxandra

    2009-01-01

    Dichoptic stimuli (different stimuli displayed to each eye) are increasingly being used in functional brain imaging experiments using visual stimulation. These studies include investigation into binocular rivalry, interocular information transfer, three-dimensional depth perception as well as impairments of the visual system like amblyopia and stereodeficiency. In this paper, we review various approaches of displaying dichoptic stimulus used in functional magnetic resonance imaging experiments. These include traditional approaches of using filters (red-green, red-blue, polarizing) with optical assemblies as well as newer approaches of using bi-screen goggles. PMID:19526076

  2. Pupil responses to near visual demand during human visual development

    PubMed Central

    Bharadwaj, Shrikant R.; Wang, Jingyun; Candy, T. Rowan

    2014-01-01

    Pupil responses of adults to near visual demands are well characterized but those of typically developing infants and children are not. This study determined the following pupil characteristics of infants, children and adults using a PowerRefractor (25 Hz): i) binocular and monocular responses to a cartoon movie that ramped between 80 and 33 cm (20 infants, 20 2–4-yr-olds and 20 adults participated) ii) binocular and monocular response threshold for 0.1 Hz sinusoidal stimuli of 0.25 D, 0.5 D or 0.75 D amplitude (33 infants and 8 adults participated) iii) steady-state stability of pupil responses at 80 cms (8 infants and 8 adults participated). The change in pupil diameter with viewing distance (Δpd) was significantly smaller in infants and 2–4-yr-olds than in adults (p < 0.001) and significantly smaller under monocular than binocular conditions (p < 0.001). The 0.75 D sinusoidal stimulus elicited a significant binocular pupillary response in infants and a significant binocular and monocular pupillary response in adults. Steady-state pupillary fluctuations were similar in infants and adults (p = 0.25). The results suggest that the contribution of pupil size to changes in retinal image quality when tracking slow moving objects may be smaller during development than in adulthood. Smaller monocular Δpd reflects the importance of binocular cues in driving near-pupillary responses. PMID:21482712

  3. Hawk Eyes I: Diurnal Raptors Differ in Visual Fields and Degree of Eye Movement

    PubMed Central

    O'Rourke, Colleen T.; Hall, Margaret I.; Pitlik, Todd; Fernández-Juricic, Esteban

    2010-01-01

    Background Different strategies to search and detect prey may place specific demands on sensory modalities. We studied visual field configuration, degree of eye movement, and orbit orientation in three diurnal raptors belonging to the Accipitridae and Falconidae families. Methodology/Principal Findings We used an ophthalmoscopic reflex technique and an integrated 3D digitizer system. We found inter-specific variation in visual field configuration and degree of eye movement, but not in orbit orientation. Red-tailed Hawks have relatively small binocular areas (∼33°) and wide blind areas (∼82°), but intermediate degree of eye movement (∼5°), which underscores the importance of lateral vision rather than binocular vision to scan for distant prey in open areas. Cooper's Hawks' have relatively wide binocular fields (∼36°), small blind areas (∼60°), and high degree of eye movement (∼8°), which may increase visual coverage and enhance prey detection in closed habitats. Additionally, we found that Cooper's Hawks can visually inspect the items held in the tip of the bill, which may facilitate food handling. American Kestrels have intermediate-sized binocular and lateral areas that may be used in prey detection at different distances through stereopsis and motion parallax; whereas the low degree eye movement (∼1°) may help stabilize the image when hovering above prey before an attack. Conclusions We conclude that: (a) there are between-species differences in visual field configuration in these diurnal raptors; (b) these differences are consistent with prey searching strategies and degree of visual obstruction in the environment (e.g., open and closed habitats); (c) variations in the degree of eye movement between species appear associated with foraging strategies; and (d) the size of the binocular and blind areas in hawks can vary substantially due to eye movements. Inter-specific variation in visual fields and eye movements can influence behavioral strategies to visually search for and track prey while perching. PMID:20877645

  4. Hawk eyes I: diurnal raptors differ in visual fields and degree of eye movement.

    PubMed

    O'Rourke, Colleen T; Hall, Margaret I; Pitlik, Todd; Fernández-Juricic, Esteban

    2010-09-22

    Different strategies to search and detect prey may place specific demands on sensory modalities. We studied visual field configuration, degree of eye movement, and orbit orientation in three diurnal raptors belonging to the Accipitridae and Falconidae families. We used an ophthalmoscopic reflex technique and an integrated 3D digitizer system. We found inter-specific variation in visual field configuration and degree of eye movement, but not in orbit orientation. Red-tailed Hawks have relatively small binocular areas (∼33°) and wide blind areas (∼82°), but intermediate degree of eye movement (∼5°), which underscores the importance of lateral vision rather than binocular vision to scan for distant prey in open areas. Cooper's Hawks' have relatively wide binocular fields (∼36°), small blind areas (∼60°), and high degree of eye movement (∼8°), which may increase visual coverage and enhance prey detection in closed habitats. Additionally, we found that Cooper's Hawks can visually inspect the items held in the tip of the bill, which may facilitate food handling. American Kestrels have intermediate-sized binocular and lateral areas that may be used in prey detection at different distances through stereopsis and motion parallax; whereas the low degree eye movement (∼1°) may help stabilize the image when hovering above prey before an attack. We conclude that: (a) there are between-species differences in visual field configuration in these diurnal raptors; (b) these differences are consistent with prey searching strategies and degree of visual obstruction in the environment (e.g., open and closed habitats); (c) variations in the degree of eye movement between species appear associated with foraging strategies; and (d) the size of the binocular and blind areas in hawks can vary substantially due to eye movements. Inter-specific variation in visual fields and eye movements can influence behavioral strategies to visually search for and track prey while perching.

  5. Binocular rivalry from invisible patterns

    PubMed Central

    Zou, Jinyou; He, Sheng; Zhang, Peng

    2016-01-01

    Binocular rivalry arises when incompatible images are presented to the two eyes. If the two eyes’ conflicting features are invisible, leading to identical perceptual interpretations, does rivalry competition still occur? Here we investigated whether binocular rivalry can be induced from conflicting but invisible spatial patterns. A chromatic grating counterphase flickering at 30 Hz appeared uniform, but produced significant tilt aftereffect and orientation-selective adaptation. The invisible pattern also generated significant BOLD activities in the early visual cortex, with minimal response in the parietal and frontal cortical areas. Compared with perceptually matched uniform stimuli, a monocularly presented invisible chromatic grating enhanced the rivalry competition with a low-contrast visible grating presented to the other eye. Furthermore, switching from a uniform field to a perceptually matched invisible chromatic grating produced interocular suppression at approximately 200 ms after onset of the invisible grating. Experiments using briefly presented monocular probes revealed evidence for sustained rivalry competition between two invisible gratings during continuous dichoptic presentations. These findings indicate that even without visible interocular conflict, and with minimal engagement of frontoparietal cortex and consciousness related top-down feedback, perceptually identical patterns with invisible conflict features produce rivalry competition in the early visual cortex. PMID:27354535

  6. Peripheral prism glasses: effects of moving and stationary backgrounds.

    PubMed

    Shen, Jieming; Peli, Eli; Bowers, Alex R

    2015-04-01

    Unilateral peripheral prisms for homonymous hemianopia (HH) expand the visual field through peripheral binocular visual confusion, a stimulus for binocular rivalry that could lead to reduced predominance and partial suppression of the prism image, thereby limiting device functionality. Using natural-scene images and motion videos, we evaluated whether detection was reduced in binocular compared with monocular viewing. Detection rates of nine participants with HH or quadranopia and normal binocularity wearing peripheral prisms were determined for static checkerboard perimetry targets briefly presented in the prism expansion area and the seeing hemifield. Perimetry was conducted under monocular and binocular viewing with targets presented over videos of real-world driving scenes and still frame images derived from those videos. With unilateral prisms, detection rates in the prism expansion area were significantly lower in binocular than in monocular (prism eye) viewing on the motion background (medians, 13 and 58%, respectively, p = 0.008) but not the still frame background (medians, 63 and 68%, p = 0.123). When the stimulus for binocular rivalry was reduced by fitting prisms bilaterally in one HH and one normally sighted subject with simulated HH, prism-area detection rates on the motion background were not significantly different (p > 0.6) in binocular and monocular viewing. Conflicting binocular motion appears to be a stimulus for reduced predominance of the prism image in binocular viewing when using unilateral peripheral prisms. However, the effect was only found for relatively small targets. Further testing is needed to determine the extent to which this phenomenon might affect the functionality of unilateral peripheral prisms in more real-world situations.

  7. Peripheral Prism Glasses: Effects of Moving and Stationary Backgrounds

    PubMed Central

    Shen, Jieming; Peli, Eli; Bowers, Alex R.

    2015-01-01

    Purpose Unilateral peripheral prisms for homonymous hemianopia (HH) expand the visual field through peripheral binocular visual confusion, a stimulus for binocular rivalry that could lead to reduced predominance (partial local suppression) of the prism image and limit device functionality. Using natural-scene images and motion videos, we evaluated whether detection was reduced in binocular compared to monocular viewing. Methods Detection rates of nine participants with HH or quadranopia and normal binocularity wearing peripheral prisms were determined for static checkerboard perimetry targets briefly presented in the prism expansion area and the seeing hemifield. Perimetry was conducted under monocular and binocular viewing with targets presented over videos of real-world driving scenes and still frame images derived from those videos. Results With unilateral prisms, detection rates in the prism expansion area were significantly lower in binocular than monocular (prism eye) viewing on the motion background (medians 13% and 58%, respectively, p = 0.008), but not the still frame background (63% and 68%, p = 0.123). When the stimulus for binocular rivalry was reduced by fitting prisms bilaterally in 1 HH and 1 normally-sighted subject with simulated HH, prism-area detection rates on the motion background were not significantly different (p > 0.6) in binocular and monocular viewing. Conclusions Conflicting binocular motion appears to be a stimulus for reduced predominance of the prism image in binocular viewing when using unilateral peripheral prisms. However, the effect was only found for relatively small targets. Further testing is needed to determine the extent to which this phenomenon might affect the functionality of unilateral peripheral prisms in more real-world situations. PMID:25785533

  8. Viewing geometry determines the contribution of binocular vision to the online control of grasping.

    PubMed

    Keefe, Bruce D; Watt, Simon J

    2017-12-01

    Binocular vision is often assumed to make a specific, critical contribution to online visual control of grasping by providing precise information about the separation between digits and object. This account overlooks the 'viewing geometry' typically encountered in grasping, however. Separation of hand and object is rarely aligned precisely with the line of sight (the visual depth dimension), and analysis of the raw signals suggests that, for most other viewing angles, binocular feedback is less precise than monocular feedback. Thus, online grasp control relying selectively on binocular feedback would not be robust to natural changes in viewing geometry. Alternatively, sensory integration theory suggests that different signals contribute according to their relative precision, in which case the role of binocular feedback should depend on viewing geometry, rather than being 'hard-wired'. We manipulated viewing geometry, and assessed the role of binocular feedback by measuring the effects on grasping of occluding one eye at movement onset. Loss of binocular feedback resulted in a significantly less extended final slow-movement phase when hand and object were separated primarily in the frontoparallel plane (where binocular information is relatively imprecise), compared to when they were separated primarily along the line of sight (where binocular information is relatively precise). Consistent with sensory integration theory, this suggests the role of binocular (and monocular) vision in online grasp control is not a fixed, 'architectural' property of the visuo-motor system, but arises instead from the interaction of viewer and situation, allowing robust online control across natural variations in viewing geometry.

  9. Layer- and cell-type-specific subthreshold and suprathreshold effects of long-term monocular deprivation in rat visual cortex.

    PubMed

    Medini, Paolo

    2011-11-23

    Connectivity and dendritic properties are determinants of plasticity that are layer and cell-type specific in the neocortex. However, the impact of experience-dependent plasticity at the level of synaptic inputs and spike outputs remains unclear along vertical cortical microcircuits. Here I compared subthreshold and suprathreshold sensitivity to prolonged monocular deprivation (MD) in rat binocular visual cortex in layer 4 and layer 2/3 pyramids (4Ps and 2/3Ps) and in thick-tufted and nontufted layer 5 pyramids (5TPs and 5NPs), which innervate different extracortical targets. In normal rats, 5TPs and 2/3Ps are the most binocular in terms of synaptic inputs, and 5NPs are the least. Spike responses of all 5TPs were highly binocular, whereas those of 2/3Ps were dominated by either the contralateral or ipsilateral eye. MD dramatically shifted the ocular preference of 2/3Ps and 4Ps, mostly by depressing deprived-eye inputs. Plasticity was profoundly different in layer 5. The subthreshold ocular preference shift was sevenfold smaller in 5TPs because of smaller depression of deprived inputs combined with a generalized loss of responsiveness, and was undetectable in 5NPs. Despite their modest ocular dominance change, spike responses of 5TPs consistently lost their typically high binocularity during MD. The comparison of MD effects on 2/3Ps and 5TPs, the main affected output cells of vertical microcircuits, indicated that subthreshold plasticity is not uniquely determined by the initial degree of input binocularity. The data raise the question of whether 5TPs are driven solely by 2/3Ps during MD. The different suprathreshold plasticity of the two cell populations could underlie distinct functional deficits in amblyopia.

  10. The disparate histories of binocular vision and binaural hearing.

    PubMed

    Wade, Nicholas J

    2018-01-01

    Vision and hearing are dependent on disparities of spatial patterns received by two eyes and on time and intensity differences to two ears. However, the experiences of a single world have masked attention to these disparities. While eyes and ears are paired, there has not been parity in the attention directed to their functioning. Phenomena involving binocular vision were commented upon since antiquity whereas those about binaural hearing are much more recent. This history is compared with respect to the experimental manipulations of dichoptic and dichotic stimuli and the instruments used to stimulate the paired organs. Binocular color mixing led to studies of binaural hearing and direction and distance in visual localization were analyzed before those for auditory localization. Experimental investigations began in the nineteenth century with the invention of instruments like the stereoscope and pseudoscope, soon to be followed by their binaural equivalents, the stethophone and pseudophone.

  11. Google Glass Glare: disability glare produced by a head-mounted visual display.

    PubMed

    Longley, Chris; Whitaker, David

    2016-03-01

    Head mounted displays are a type of wearable technology - a market that is projected to expand rapidly over the coming years. Probably the most well known example is the device Google Glass (or 'Glass'). Here we investigate the extent to which the device display can interfere with normal visual function by producing monocular disability glare. Contrast sensitivity was measured in two normally sighted participants, 32 and 52 years of age. Data were recorded for the right eye, the left eye and then again in a binocular condition. Measurements were taken both with and without the Glass in place, across a range of stimulus luminance levels using a two-alternative forced-choice methodology. The device produced a significant reduction in contrast sensitivity in the right eye (>0.5 log units). The level of disability glare increased as stimulus luminance was reduced in a manner consistent with intraocular light scatter, resulting in a veiling retinal illuminance. Sensitivity in the left eye was unaffected. A significant reduction in binocular contrast sensitivity occurred at lower luminance levels due to a loss of binocular summation, although binocular sensitivity was not found to fall below the sensitivity of the better monocular level (binocular inhibition). Head mounted displays such as Google Glass have the potential to cause significant disability glare in the eye exposed to the visual display, particularly under conditions of low luminance. They can also cause a more modest binocular reduction in sensitivity by eliminating the benefits of binocular summation. © 2015 The Authors Ophthalmic & Physiological Optics © 2015 The College of Optometrists.

  12. Binocular interactions in random chromatic changes at isoluminance

    NASA Astrophysics Data System (ADS)

    Medina, José M.

    2006-02-01

    To examine the type of chromatic interactions at isoluminance in the phenomenon of binocular vision, I have determined simple visual reaction times (VRT) under three observational conditions (monocular left, monocular right, and binocular) for different chromatic stimuli along random color axes at isoluminance (simultaneous L-, M-, and S-cone variations). Upper and lower boundaries of probability summation as well as the binocular capacity coefficient were estimated with observed distributions of reaction times. The results were not consistent with the notion of independent chromatic channels between eyes, suggesting the existence of excitatory and inhibitory binocular interactions at suprathreshold isoluminance conditions.

  13. The Relationship Between Fusion, Suppression, and Diplopia in Normal and Amblyopic Vision.

    PubMed

    Spiegel, Daniel P; Baldwin, Alex S; Hess, Robert F

    2016-10-01

    Single vision occurs through a combination of fusion and suppression. When neither mechanism takes place, we experience diplopia. Under normal viewing conditions, the perceptual state depends on the spatial scale and interocular disparity. The purpose of this study was to examine the three perceptual states in human participants with normal and amblyopic vision. Participants viewed two dichoptically separated horizontal blurred edges with an opposite tilt (2.35°) and indicated their binocular percept: "one flat edge," "one tilted edge," or "two edges." The edges varied with scale (fine 4 min arc and coarse 32 min arc), disparity, and interocular contrast. We investigated how the binocular interactions vary in amblyopic (visual acuity [VA] > 0.2 logMAR, n = 4) and normal vision (VA ≤ 0 logMAR, n = 4) under interocular variations in stimulus contrast and luminance. In amblyopia, despite the established sensory dominance of the fellow eye, fusion prevails at the coarse scale and small disparities (75%). We also show that increasing the relative contrast to the amblyopic eye enhances the probability of fusion at the fine scale (from 18% to 38%), and leads to a reversal of the sensory dominance at coarse scale. In normal vision we found that interocular luminance imbalances disturbed binocular combination only at the fine scale in a way similar to that seen in amblyopia. Our results build upon the growing evidence that the amblyopic visual system is binocular and further show that the suppressive mechanisms rendering the amblyopic system functionally monocular are scale dependent.

  14. The visible ground surface as a reference frame for scaling binocular depth of a target in midair

    PubMed Central

    WU, JUN; ZHOU, LIU; SHI, PAN; HE, ZIJIANG J; OOI, TENG LENG

    2014-01-01

    The natural ground surface carries texture information that extends continuously from one’s feet to the horizon, providing a rich depth resource for accurately locating an object resting on it. Here, we showed that the ground surface’s role as a reference frame also aids in locating a target suspended in midair based on relative binocular disparity. Using real world setup in our experiments, we first found that a suspended target is more accurately localized when the ground surface is visible and the observer views the scene binocularly. In addition, the increased accuracy occurs only when the scene is viewed for 5 sec rather than 0.15 sec, suggesting that the binocular depth process takes time. Second, we found that manipulation of the configurations of the texture-gradient and/or linear-perspective cues on the visible ground surface affects the perceived distance of the suspended target in midair. Third, we found that a suspended target is more accurately localized against a ground texture surface than a ceiling texture surface. This suggests that our visual system usesthe ground surface as the preferred reference frame to scale the distance of a suspended target according to its relative binocular disparity. PMID:25384237

  15. Modified Monovision With Spherical Aberration to Improve Presbyopic Through-Focus Visual Performance

    PubMed Central

    Zheleznyak, Len; Sabesan, Ramkumar; Oh, Je-Sun; MacRae, Scott; Yoon, Geunyoung

    2013-01-01

    Purpose. To investigate the impact on visual performance of modifying monovision with monocularly induced spherical aberration (SA) to increase depth of focus (DoF), thereby enhancing binocular through-focus visual performance. Methods. A binocular adaptive optics (AO) vision simulator was used to correct both eyes' native aberrations and induce traditional (TMV) and modified (MMV) monovision corrections. TMV was simulated with 1.5 diopters (D) of anisometropia (dominant eye at distance, nondominant eye at near). Zernike primary SA was induced in the nondominant eye in MMV. A total of four MMV conditions were tested with various amounts of SA (±0.2 and ±0.4 μm) and fixed anisometropia (1.5 D). Monocular and binocular visual acuity (VA) and contrast sensitivity (CS) at 10 cyc/deg and binocular summation were measured through-focus in three cyclopledged subjects with 4-mm pupils. Results. MMV with positive SA had a larger benefit for intermediate distances (1.5 lines at 1.0 D) than with negative SA, compared with TMV. Negative SA had a stronger benefit in VA at near. DoF of all MMV conditions was 3.5 ± 0.5 D (mean) as compared with TMV (2.7 ± 0.3 D). Through-focus CS at 10 cyc/deg was significantly reduced with MMV as compared to TMV only at intermediate object distances, however was unaffected at distance. Binocular summation was absent at all object distances except 0.5 D, where it improved in MMV by 19% over TMV. Conclusions. Modified monovision with SA improves through-focus VA and DoF as compared with traditional monovision. Binocular summation also increased as interocular similarity of image quality increased due to extended monocular DoF. PMID:23557742

  16. The consequence of spatial visual processing dysfunction caused by traumatic brain injury (TBI).

    PubMed

    Padula, William V; Capo-Aponte, Jose E; Padula, William V; Singman, Eric L; Jenness, Jonathan

    2017-01-01

    A bi-modal visual processing model is supported by research to affect dysfunction following a traumatic brain injury (TBI). TBI causes dysfunction of visual processing affecting binocularity, spatial orientation, posture and balance. Research demonstrates that prescription of prisms influence the plasticity between spatial visual processing and motor-sensory systems improving visual processing and reducing symptoms following a TBI. The rationale demonstrates that visual processing underlies the functional aspects of binocularity, balance and posture. The bi-modal visual process maintains plasticity for efficiency. Compromise causes Post Trauma Vision Syndrome (PTVS) and Visual Midline Shift Syndrome (VMSS). Rehabilitation through use of lenses, prisms and sectoral occlusion has inter-professional implications in rehabilitation affecting the plasticity of the bi-modal visual process, thereby improving binocularity, spatial orientation, posture and balance Main outcomes: This review provides an opportunity to create a new perspective of the consequences of TBI on visual processing and the symptoms that are often caused by trauma. It also serves to provide a perspective of visual processing dysfunction that has potential for developing new approaches of rehabilitation. Understanding vision as a bi-modal process facilitates a new perspective of visual processing and the potentials for rehabilitation following a concussion, brain injury or other neurological events.

  17. Temporal Binding Window of the Sound-Induced Flash Illusion in Amblyopia.

    PubMed

    Narinesingh, Cindy; Goltz, Herbert C; Wong, Agnes M F

    2017-03-01

    Amblyopia is a neurodevelopmental visual disorder caused by abnormal visual experience in childhood. In addition to known visual deficits, there is evidence for changes in audiovisual integration in amblyopia using explicit tasks. We examined audiovisual integration in amblyopia using an implicit task that is more relevant in a real-world context. A total of 11 participants with amblyopia and 16 controls were tested binocularly and monocularly on the sound-induced flash illusion, in which flashes and beeps are presented concurrently and the perceived number of flashes is influenced by the number of beeps. The task used 1 to 2 rapid peripheral flashes presented with 0 to 2 beeps, at 5 stimulus onset asynchronies, that is, beep (-200 milliseconds, -100 milliseconds) or flash leading (100 milliseconds, 200 milliseconds) or simultaneous (0 milliseconds). Participants reported the number of perceived flashes. Susceptibility was indicated by a "2 flashes" response to "fission" (1 flash, 2 beeps) or "1 flash" to "fusion" (2 flashes, 1 beep). For fission with the beep leading during binocular viewing, controls showed an expected decrease in illusion strength as stimulus onset asynchronies increased, whereas the illusion strength remained constant in participants with amblyopia, indicating a wider temporal binding window in amblyopia (P = 0.007). For fusion, participants with amblyopia showed reduced illusion strength during amblyopic eye viewing (P = 0.044) with the flash leading. Amblyopia is associated with the widening of the temporal binding window, specifically for fission when viewing binocularly with the beep leading. This suggests a developmental adaptation to delayed amblyopic eye visual processing to optimize audiovisual integration.

  18. New insights into amblyopia: binocular therapy and noninvasive brain stimulation.

    PubMed

    Hess, Robert F; Thompson, Benjamin

    2013-02-01

    The current approach to the treatment of amblyopia is problematic for a number of reasons. First, it promotes recovery of monocular vision but because it is not designed to promote binocularity, its binocular outcomes often are disappointing. Second, compliance is poor and variable. Third, the effectiveness of the treatment is thought to decrease with increasing age. We discuss 2 new approaches aimed at recovering visual function in adults with amblyopia. The first is a binocular approach to amblyopia treatment that is showing promise in initial clinical studies. The second is still in development and involves the use of well-established noninvasive brain stimulation techniques to temporarily alter the balance of excitation and inhibition in the visual cortex. Copyright © 2013 American Association for Pediatric Ophthalmology and Strabismus. Published by Mosby, Inc. All rights reserved.

  19. Binocular treatment of amblyopia using videogames (BRAVO): study protocol for a randomised controlled trial.

    PubMed

    Guo, Cindy X; Babu, Raiju J; Black, Joanna M; Bobier, William R; Lam, Carly S Y; Dai, Shuan; Gao, Tina Y; Hess, Robert F; Jenkins, Michelle; Jiang, Yannan; Kowal, Lionel; Parag, Varsha; South, Jayshree; Staffieri, Sandra Elfride; Walker, Natalie; Wadham, Angela; Thompson, Benjamin

    2016-10-18

    Amblyopia is a common neurodevelopmental disorder of vision that is characterised by visual impairment in one eye and compromised binocular visual function. Existing evidence-based treatments for children include patching the nonamblyopic eye to encourage use of the amblyopic eye. Currently there are no widely accepted treatments available for adults with amblyopia. The aim of this trial is to assess the efficacy of a new binocular, videogame-based treatment for amblyopia in older children and adults. We hypothesise that binocular treatment will significantly improve amblyopic eye visual acuity relative to placebo treatment. The BRAVO study is a double-blind, randomised, placebo-controlled multicentre trial to assess the effectiveness of a novel videogame-based binocular treatment for amblyopia. One hundred and eight participants aged 7 years or older with anisometropic and/or strabismic amblyopia (defined as ≥0.2 LogMAR interocular visual acuity difference, ≥0.3 LogMAR amblyopic eye visual acuity and no ocular disease) will be recruited via ophthalmologists, optometrists, clinical record searches and public advertisements at five sites in New Zealand, Canada, Hong Kong and Australia. Eligible participants will be randomised by computer in a 1:1 ratio, with stratification by age group: 7-12, 13-17 and 18 years and older. Participants will be randomised to receive 6 weeks of active or placebo home-based binocular treatment. Treatment will be in the form of a modified interactive falling-blocks game, implemented on a 5th generation iPod touch device viewed through red/green anaglyphic glasses. Participants and those assessing outcomes will be blinded to group assignment. The primary outcome is the change in best-corrected distance visual acuity in the amblyopic eye from baseline to 6 weeks post randomisation. Secondary outcomes include distance and near visual acuity, stereopsis, interocular suppression, angle of strabismus (where applicable) measured at baseline, 3, 6, 12 and 24 weeks post randomisation. Treatment compliance and acceptability will also be assessed along with quality of life for adult participants. The BRAVO study is the first randomised controlled trial of a home-based videogame treatment for older children and adults with amblyopia. The results will indicate whether a binocular approach to amblyopia treatment conducted at home is effective for patients aged 7 years or older. This trial was registered in Australia and New Zealand Clinical Trials Registry ( ACTRN12613001004752 ) on 10 September 2013.

  20. Perceptual Visual Distortions in Adult Amblyopia and Their Relationship to Clinical Features

    PubMed Central

    Piano, Marianne E. F.; Bex, Peter J.; Simmers, Anita J.

    2015-01-01

    Purpose Develop a paradigm to map binocular perceptual visual distortions in adult amblyopes and visually normal controls, measure their stability over time, and determine the relationship between strength of binocular single vision and distortion magnitude. Methods Perceptual visual distortions were measured in 24 strabismic, anisometropic, or microtropic amblyopes (interocular acuity difference ≥ 0.200 logMAR or history of amblyopia treatment) and 10 controls (mean age 27.13 ± 10.20 years). The task was mouse-based target alignment on a stereoscopic liquid crystal display monitor, measured binocularly five times during viewing dichoptically through active shutter glasses, amblyopic eye viewing cross-hairs, fellow eye viewing single target dots (16 locations within central 5°), and five times nondichoptically, with all stimuli visible to either eye. Measurements were repeated over time (1 week, 1 month) in eight amblyopic subjects, evaluating test–retest reliability. Measurements were also correlated against logMAR visual acuity, horizontal prism motor fusion range, Frisby/Preschool Randot stereoacuity, and heterophoria/heterotropia prism cover test measurement. Results Sixty-seven percent (16/24) of amblyopes had significant perceptual visual distortions under dichoptic viewing conditions compared to nondichoptic viewing conditions and dichoptic control group performance. Distortions correlated with the strength of motor fusion (r = −0.417, P = 0.043) and log stereoacuity (r = 0.492, P = 0.015), as well as near angle of heterotropic/heterophoric deviation (r = 0.740, P < 0.001), and, marginally, amblyopia depth (r = 0.405, P = 0.049). Global distortion index (GDI, mean displacement) remained, overall, consistent over time (median change in GDI between baseline and 1 week = −0.03°, 1 month = −0.08°; x-axis Z = 4.4256, P < 0.001; y-axis Z = 5.0547, P < 0.001). Conclusions Perceptual visual distortions are stable over time and associated with poorer binocular function, greater amblyopia depth, and larger angles of ocular deviation. Assessment of distortions may be relevant for recent perceptual learning paradigms specifically targeting binocular vision. PMID:26284559

  1. The role of sensory ocular dominance on through-focus visual performance in monovision presbyopia corrections

    PubMed Central

    Zheleznyak, Len; Alarcon, Aixa; Dieter, Kevin C.; Tadin, Duje; Yoon, Geunyoung

    2015-01-01

    Monovision presbyopia interventions exploit the binocular nature of the visual system by independently manipulating the optical properties of the two eyes. It is unclear, however, how individual variations in ocular dominance affect visual function in monovision corrections. Here, we examined the impact of sensory ocular dominance on visual performance in both traditional and modified monovision presbyopic corrections. We recently developed a binocular adaptive optics vision simulator to correct subjects' native aberrations and induce either modified monovision (1.5 D anisometropia, spherical aberration of +0.1 and −0.4 μm in distance and near eyes, respectively, over 4 mm pupils) or traditional monovision (1.5 D anisometropia). To quantify both the sign and the degree of ocular dominance, we utilized binocular rivalry to estimate stimulus contrast ratios that yield balanced dominance durations for the two eyes. Through-focus visual acuity and contrast sensitivity were measured under two conditions: (a) assigning dominant and nondominant eye to distance and near, respectively, and (b) vice versa. The results revealed that through-focus visual acuity was unaffected by ocular dominance. Contrast sensitivity, however, was significantly improved when the dominant eye coincided with superior optical quality. We hypothesize that a potential mechanism behind this observation is an interaction between ocular dominance and binocular contrast summation, and thus, assignment of the dominant eye to distance or near may be an important factor to optimize contrast threshold performance at different object distances in both modified and traditional monovision. PMID:26024464

  2. Lateralized Cognition: Asymmetrical and Complementary Strategies of Pigeons during Discrimination of the "Human Concept"

    ERIC Educational Resources Information Center

    Yamazaki, Y.; Aust, U.; Huber, L.; Hausmann, M.; Gunturkun, O.

    2007-01-01

    This study was aimed at revealing which cognitive processes are lateralized in visual categorizations of "humans" by pigeons. To this end, pigeons were trained to categorize pictures of humans and then tested binocularly or monocularly (left or right eye) on the learned categorization and for transfer to novel exemplars (Experiment 1). Subsequent…

  3. Binocular stereo matching method based on structure tensor

    NASA Astrophysics Data System (ADS)

    Song, Xiaowei; Yang, Manyi; Fan, Yubo; Yang, Lei

    2016-10-01

    In a binocular visual system, to recover the three-dimensional information of the object, the most important step is to acquire matching points. Structure tensor is the vector representation of each point in its local neighborhood. Therefore, structure tensor performs well in region detection of local structure, and it is very suitable for detecting specific graphics such as pedestrians, cars and road signs in the image. In this paper, the structure tensor is combined with the luminance information to form the extended structure tensor. The directional derivatives of luminance in x and y directions are calculated, so that the local structure of the image is more prominent. Meanwhile, the Euclidean distance between the eigenvectors of key points is used as the similarity determination metric of key points in the two images. By matching, the coordinates of the matching points in the detected target are precisely acquired. In this paper, experiments were performed on the captured left and right images. After the binocular calibration, image matching was done to acquire the matching points, and then the target depth was calculated according to these matching points. By comparison, it is proved that the structure tensor can accurately acquire the matching points in binocular stereo matching.

  4. Focus information is used to interpret binocular images

    PubMed Central

    Hoffman, David M.; Banks, Martin S.

    2011-01-01

    Focus information—blur and accommodation—is highly correlated with depth in natural viewing. We examined the use of focus information in solving the binocular correspondence problem and in interpreting monocular occlusions. We presented transparent scenes consisting of two planes. Observers judged the slant of the farther plane, which was seen through the nearer plane. To do this, they had to solve the correspondence problem. In one condition, the two planes were presented with sharp rendering on one image plane, as is done in conventional stereo displays. In another condition, the planes were presented on two image planes at different focal distances, simulating focus information in natural viewing. Depth discrimination performance improved significantly when focus information was correct, which shows that the visual system utilizes the information contained in depth-of-field blur in solving binocular correspondence. In a second experiment, we presented images in which one eye could see texture behind an occluder that the other eye could not see. When the occluder's texture was sharp along with the occluded texture, binocular rivalry was prominent. When the occluded and occluding textures were presented with different blurs, rivalry was significantly reduced. This shows that blur aids the interpretation of scene layout near monocular occlusions. PMID:20616139

  5. Symptomatology associated with accommodative and binocular vision anomalies.

    PubMed

    García-Muñoz, Ángel; Carbonell-Bonete, Stela; Cacho-Martínez, Pilar

    2014-01-01

    To determine the symptoms associated with accommodative and non-strabismic binocular dysfunctions and to assess the methods used to obtain the subjects' symptoms. We conducted a scoping review of articles published between 1988 and 2012 that analysed any aspect of the symptomatology associated with accommodative and non-strabismic binocular dysfunctions. The literature search was performed in Medline (PubMed), CINAHL, PsycINFO and FRANCIS. A total of 657 articles were identified, and 56 met the inclusion criteria. We found 267 different ways of naming the symptoms related to these anomalies, which we grouped into 34 symptom categories. Of the 56 studies, 35 employed questionnaires and 21 obtained the symptoms from clinical histories. We found 11 questionnaires, of which only 3 had been validated: the convergence insufficiency symptom survey (CISS V-15) and CIRS parent version, both specific for convergence insufficiency, and the Conlon survey, developed for visual anomalies in general. The most widely used questionnaire (21 studies) was the CISS V-15. Of the 34 categories of symptoms, the most frequently mentioned were: headache, blurred vision, diplopia, visual fatigue, and movement or flicker of words at near vision, which were fundamentally related to near vision and binocular anomalies. There is a wide disparity of symptoms related to accommodative and binocular dysfunctions in the scientific literature, most of which are associated with near vision and binocular dysfunctions. The only psychometrically validated questionnaires that we found (n=3) were related to convergence insufficiency and to visual dysfunctions in general and there no specific questionnaires for other anomalies. Copyright © 2014. Published by Elsevier Espana.

  6. Impaired Velocity Processing Reveals an Agnosia for Motion in Depth.

    PubMed

    Barendregt, Martijn; Dumoulin, Serge O; Rokers, Bas

    2016-11-01

    Many individuals with normal visual acuity are unable to discriminate the direction of 3-D motion in a portion of their visual field, a deficit previously referred to as a stereomotion scotoma. The origin of this visual deficit has remained unclear. We hypothesized that the impairment is due to a failure in the processing of one of the two binocular cues to motion in depth: changes in binocular disparity over time or interocular velocity differences. We isolated the contributions of these two cues and found that sensitivity to interocular velocity differences, but not changes in binocular disparity, varied systematically with observers' ability to judge motion direction. We therefore conclude that the inability to interpret motion in depth is due to a failure in the neural mechanisms that combine velocity signals from the two eyes. Given these results, we argue that the deficit should be considered a prevalent but previously unrecognized agnosia specific to the perception of visual motion. © The Author(s) 2016.

  7. The processing of linear perspective and binocular information for action and perception.

    PubMed

    Bruggeman, Hugo; Yonas, Albert; Konczak, Jürgen

    2007-04-08

    To investigate the processing of linear perspective and binocular information for action and for the perceptual judgment of depth, we presented viewers with an actual Ames trapezoidal window. The display, when presented perpendicular to the line of sight, provided perspective information for a rectangular window slanted in depth, while binocular information specified a planar surface in the fronto-parallel plane. We compared pointing towards the display-edges with perceptual judgment of their positions in depth as the display orientation was varied under monocular and binocular view. On monocular trials, pointing and depth judgment were based on the perspective information and failed to respond accurately to changes in display orientation because pictorial information did not vary sufficiently to specify the small differences in orientation. For binocular trials, pointing was based on binocular information and precisely matched the changes in display orientation whereas depth judgment was short of such adjustment and based upon both binocular and perspective-specified slant information. The finding, that on binocular trials pointing was considerably less responsive to the illusion than perceptual judgment, supports an account of two separate processing streams in the human visual system, a ventral pathway involved in object recognition and a dorsal pathway that produces visual information for the control of actions. Previously, similar differences between perception and action were explained by an alternate explanation, that is, viewers selectively attend to different parts of a display in the two tasks. The finding that under monocular view participants responded to perspective information in both the action and the perception task rules out the attention-based argument.

  8. Origins of strabismus and loss of binocular vision

    PubMed Central

    Bui Quoc, Emmanuel; Milleret, Chantal

    2014-01-01

    Strabismus is a frequent ocular disorder that develops early in life in humans. As a general rule, it is characterized by a misalignment of the visual axes which most often appears during the critical period of visual development. However other characteristics of strabismus may vary greatly among subjects, for example, being convergent or divergent, horizontal or vertical, with variable angles of deviation. Binocular vision may also vary greatly. Our main goal here is to develop the idea that such “polymorphy” reflects a wide variety in the possible origins of strabismus. We propose that strabismus must be considered as possibly resulting from abnormal genetic and/or acquired factors, anatomical and/or functional abnormalities, in the sensory and/or the motor systems, both peripherally and/or in the brain itself. We shall particularly develop the possible “central” origins of strabismus. Indeed, we are convinced that it is time now to open this “black box” in order to move forward. All of this will be developed on the basis of both presently available data in literature (including most recent data) and our own experience. Both data in biology and medicine will be referred to. Our conclusions will hopefully help ophthalmologists to better understand strabismus and to develop new therapeutic strategies in the future. Presently, physicians eliminate or limit the negative effects of such pathology both on the development of the visual system and visual perception through the use of optical correction and, in some cases, extraocular muscle surgery. To better circumscribe the problem of the origins of strabismus, including at a cerebral level, may improve its management, in particular with respect to binocular vision, through innovating tools by treating the pathology at the source. PMID:25309358

  9. Amblyopia: neural basis and therapeutic approaches.

    PubMed

    Bretas, Caio César Peixoto; Soriano, Renato Nery

    2016-01-01

    Abnormalities in visual processing caused by visual deprivation or abnormal binocular interaction may induce amblyopia, which is characterized by reduced visual acuity. Occlusion therapy, the conventional treatment, requires special attention as occlusion of the fellow normal eye may reduce its visual acuity and impair binocular vision. Besides recovering visual acuity, some researchers have recommended restoration of stereoacuity and motor fusion and reverse suppression in order to prevent diplopia. Recent studies have documented that the amblyopic visual cortex has a normal complement of cells but reduced spatial resolution and a disordered topographical map. Changes occurring in the late sensitive period selectively impact the parvocellular pathway. Distinct morphophysiologic and psychophysical deficits may demand individualization of therapy, which might provide greater and longer-lasting residual plasticity in some children.

  10. Effect of field of view and monocular viewing on angular size judgements in an outdoor scene

    NASA Technical Reports Server (NTRS)

    Denz, E. A.; Palmer, E. A.; Ellis, S. R.

    1980-01-01

    Observers typically overestimate the angular size of distant objects. Significantly, overestimations are greater in outdoor settings than in aircraft visual-scene simulators. The effect of field of view and monocular and binocular viewing conditions on angular size estimation in an outdoor field was examined. Subjects adjusted the size of a variable triangle to match the angular size of a standard triangle set at three greater distances. Goggles were used to vary the field of view from 11.5 deg to 90 deg for both monocular and binocular viewing. In addition, an unrestricted monocular and binocular viewing condition was used. It is concluded that neither restricted fields of view similar to those present in visual simulators nor the restriction of monocular viewing causes a significant loss in depth perception in outdoor settings. Thus, neither factor should significantly affect the depth realism of visual simulators.

  11. A Neural Network Approach to fMRI Binocular Visual Rivalry Task Analysis

    PubMed Central

    Bertolino, Nicola; Ferraro, Stefania; Nigri, Anna; Bruzzone, Maria Grazia; Ghielmetti, Francesco; Leonardi, Matilde; Agostino Parati, Eugenio; Grazia Bruzzone, Maria; Franceschetti, Silvana; Caldiroli, Dario; Sattin, Davide; Giovannetti, Ambra; Pagani, Marco; Covelli, Venusia; Ciaraffa, Francesca; Vela Gomez, Jesus; Reggiori, Barbara; Ferraro, Stefania; Nigri, Anna; D'Incerti, Ludovico; Minati, Ludovico; Andronache, Adrian; Rosazza, Cristina; Fazio, Patrik; Rossi, Davide; Varotto, Giulia; Panzica, Ferruccio; Benti, Riccardo; Marotta, Giorgio; Molteni, Franco

    2014-01-01

    The purpose of this study was to investigate whether artificial neural networks (ANN) are able to decode participants’ conscious experience perception from brain activity alone, using complex and ecological stimuli. To reach the aim we conducted pattern recognition data analysis on fMRI data acquired during the execution of a binocular visual rivalry paradigm (BR). Twelve healthy participants were submitted to fMRI during the execution of a binocular non-rivalry (BNR) and a BR paradigm in which two classes of stimuli (faces and houses) were presented. During the binocular rivalry paradigm, behavioral responses related to the switching between consciously perceived stimuli were also collected. First, we used the BNR paradigm as a functional localizer to identify the brain areas involved the processing of the stimuli. Second, we trained the ANN on the BNR fMRI data restricted to these regions of interest. Third, we applied the trained ANN to the BR data as a ‘brain reading’ tool to discriminate the pattern of neural activity between the two stimuli. Fourth, we verified the consistency of the ANN outputs with the collected behavioral indicators of which stimulus was consciously perceived by the participants. Our main results showed that the trained ANN was able to generalize across the two different tasks (i.e. BNR and BR) and to identify with high accuracy the cognitive state of the participants (i.e. which stimulus was consciously perceived) during the BR condition. The behavioral response, employed as control parameter, was compared with the network output and a statistically significant percentage of correspondences (p-value <0.05) were obtained for all subjects. In conclusion the present study provides a method based on multivariate pattern analysis to investigate the neural basis of visual consciousness during the BR phenomenon when behavioral indicators lack or are inconsistent, like in disorders of consciousness or sedated patients. PMID:25121595

  12. A solution to the online guidance problem for targeted reaches: proportional rate control using relative disparity tau.

    PubMed

    Anderson, Joe; Bingham, Geoffrey P

    2010-09-01

    We provide a solution to a major problem in visually guided reaching. Research has shown that binocular vision plays an important role in the online visual guidance of reaching, but the visual information and strategy used to guide a reach remains unknown. We propose a new theory of visual guidance of reaching including a new information variable, tau(alpha) (relative disparity tau), and a novel control strategy that allows actors to guide their reach trajectories visually by maintaining a constant proportion between tau(alpha) and its rate of change. The dynamical model couples the information to the reaching movement to generate trajectories characteristic of human reaching. We tested the theory in two experiments in which participants reached under conditions of darkness to guide a visible point either on a sliding apparatus or on their finger to a point-light target in depth. Slider apparatus controlled for a simple mapping from visual to proprioceptive space. When reaching with their finger, participants were forced, by perturbation of visual information used for feedforward control, to use online control with only binocular disparity-based information for guidance. Statistical analyses of trajectories strongly supported the theory. Simulations of the model were compared statistically to actual reaching trajectories. The results supported the theory, showing that tau(alpha) provides a source of information for the control of visually guided reaching and that participants use this information in a proportional rate control strategy.

  13. Contrast masking in strabismic amblyopia: attenuation, noise, interocular suppression and binocular summation.

    PubMed

    Baker, Daniel H; Meese, Tim S; Hess, Robert F

    2008-07-01

    To investigate amblyopic contrast vision at threshold and above we performed pedestal-masking (contrast discrimination) experiments with a group of eight strabismic amblyopes using horizontal sinusoidal gratings (mainly 3c/deg) in monocular, binocular and dichoptic configurations balanced across eye (i.e. five conditions). With some exceptions in some observers, the four main results were as follows. (1) For the monocular and dichoptic conditions, sensitivity was less in the amblyopic eye than in the good eye at all mask contrasts. (2) Binocular and monocular dipper functions superimposed in the good eye. (3) Monocular masking functions had a normal dipper shape in the good eye, but facilitation was diminished in the amblyopic eye. (4) A less consistent result was normal facilitation in dichoptic masking when testing the good eye, but a loss of this when testing the amblyopic eye. This pattern of amblyopic results was replicated in a normal observer by placing a neutral density filter in front of one eye. The two-stage model of binocular contrast gain control [Meese, T.S., Georgeson, M.A. & Baker, D.H. (2006). Binocular contrast vision at and above threshold. Journal of Vision 6, 1224-1243.] was 'lesioned' in several ways to assess the form of the amblyopic deficit. The most successful model involves attenuation of signal and an increase in noise in the amblyopic eye, and intact stages of interocular suppression and binocular summation. This implies a behavioural influence from monocular noise in the amblyopic visual system as well as in normal observers with an ND filter over one eye.

  14. Binocular disparities, motion parallax, and geometric perspective in Patrick Hughes's 'reverspectives': theoretical analysis and empirical findings.

    PubMed

    Rogers, Brian; Gyani, Alex

    2010-01-01

    Abstract. Patrick Hughes's 'reverspective' artworks provide a novel way of investigating the effectiveness of different sources of 3-D information for the human visual system. Our empirical findings show that the converging lines of simple linear perspective can be as effective as the rich array of 3-D cues present in natural scenes in determining what we see, even when these cues are in conflict with binocular disparities. Theoretical considerations reveal that, once the information provided by motion parallax transformations is correctly understood, there is no need to invoke higher-level processes or an interpretation based on familiarity or past experience in order to explain either the 'reversed' depth or the apparent, concomitant rotation of a reverspective artwork as the observer moves from side to side. What we see in reverspectives is the most likely real-world scenario (distal stimulus) that could have created the perspective and parallax transformations (proximal stimulus) that stimulate our visual systems.

  15. Bayesian modeling of cue interaction: bistability in stereoscopic slant perception.

    PubMed

    van Ee, Raymond; Adams, Wendy J; Mamassian, Pascal

    2003-07-01

    Our two eyes receive different views of a visual scene, and the resulting binocular disparities enable us to reconstruct its three-dimensional layout. However, the visual environment is also rich in monocular depth cues. We examined the resulting percept when observers view a scene in which there are large conflicts between the surface slant signaled by binocular disparities and the slant signaled by monocular perspective. For a range of disparity-perspective cue conflicts, many observers experience bistability: They are able to perceive two distinct slants and to flip between the two percepts in a controlled way. We present a Bayesian model that describes the quantitative aspects of perceived slant on the basis of the likelihoods of both perspective and disparity slant information combined with prior assumptions about the shape and orientation of objects in the scene. Our Bayesian approach can be regarded as an overarching framework that allows researchers to study all cue integration aspects-including perceptual decisions--in a unified manner.

  16. Nonhuman Primate Studies to Advance Vision Science and Prevent Blindness.

    PubMed

    Mustari, Michael J

    2017-12-01

    Most primate behavior is dependent on high acuity vision. Optimal visual performance in primates depends heavily upon frontally placed eyes, retinal specializations, and binocular vision. To see an object clearly its image must be placed on or near the fovea of each eye. The oculomotor system is responsible for maintaining precise eye alignment during fixation and generating eye movements to track moving targets. The visual system of nonhuman primates has a similar anatomical organization and functional capability to that of humans. This allows results obtained in nonhuman primates to be applied to humans. The visual and oculomotor systems of primates are immature at birth and sensitive to the quality of binocular visual and eye movement experience during the first months of life. Disruption of postnatal experience can lead to problems in eye alignment (strabismus), amblyopia, unsteady gaze (nystagmus), and defective eye movements. Recent studies in nonhuman primates have begun to discover the neural mechanisms associated with these conditions. In addition, genetic defects that target the retina can lead to blindness. A variety of approaches including gene therapy, stem cell treatment, neuroprosthetics, and optogenetics are currently being used to restore function associated with retinal diseases. Nonhuman primates often provide the best animal model for advancing fundamental knowledge and developing new treatments and cures for blinding diseases. © The Author(s) 2017. Published by Oxford University Press on behalf of the National Academy of Sciences. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Comparison of visual outcomes after bilateral implantation of extended range of vision and trifocal intraocular lenses.

    PubMed

    Ruiz-Mesa, Ramón; Abengózar-Vela, Antonio; Aramburu, Ana; Ruiz-Santos, María

    2017-06-26

    To compare visual outcomes after cataract surgery with bilateral implantation of 2 intraocular lenses (IOLs): extended range of vision and trifocal. Each group of this prospective study comprised 40 eyes (20 patients). Phacoemulsification followed by bilateral implantation of a FineVision IOL (group 1) or a Symfony IOL (group 2) was performed. The following outcomes were assessed up to 1 year postoperatively: binocular uncorrected distance visual acuity (UDVA), binocular uncorrected intermediate visual acuity (UIVA) at 60 cm, binocular uncorrected near visual acuity (UNVA) at 40 cm, spherical equivalent (SE) refraction, defocus curves, mesopic and photopic contrast sensitivity, halometry, posterior capsule opacification (PCO), and responses to a patient questionnaire. The mean binocular values in group 1 and group 2, respectively, were SE -0.15 ± 0.25 D and -0.19 ± 0.18 D; UDVA 0.01 ± 0.03 logMAR and 0.01 ± 0.02 logMAR; UIVA 0.11 ± 0.08 logMAR and 0.09 ± 0.08 logMAR; UNVA 0.06 ± 0.07 logMAR and 0.17 ± 0.06 logMAR. Difference in UNVA between IOLs (p<0.05) was statistically significant. There were no significant differences in contrast sensitivity, halometry, or PCO between groups. Defocus curves were similar between groups from 0 D to -2 D, but showed significant differences from -2.50 D to -4.00 D (p<0.05). Both IOLs provided excellent distance and intermediate visual outcomes. The FineVision IOL showed better near visual acuity. Predictability of the refractive results and optical performance were excellent; all patients achieved spectacle independence. The 2 IOLs gave similar and good contrast sensitivity in photopic and mesopic conditions and low perception of halos by patients.

  18. Combining zonal refractive and diffractive aspheric multifocal intraocular lenses.

    PubMed

    Muñoz, Gonzalo; Albarrán-Diego, César; Javaloy, Jaime; Sakla, Hani F; Cerviño, Alejandro

    2012-03-01

    To assess visual performance with the combination of a zonal refractive aspheric multifocal intraocular lens (MIOL) (Lentis Mplus, Oculentis GmbH) and a diffractive aspheric MIOL (Acri.Lisa 366, Acri.Tech GmbH). This prospective interventional cohort study comprised 80 eyes from 40 cataract patients (mean age: 65.5±7.3 years) who underwent implantation of the Lentis Mplus MIOL in one eye and Acri.Lisa 366 MIOL in the fellow eye. The main outcome measures were refraction; monocular and binocular uncorrected and corrected distance, intermediate, and near visual acuities; monocular and binocular defocus curves; binocular photopic contrast sensitivity function compared to a monofocal intraocular lens (IOL) control group (40 age-matched pseudophakic patients implanted with the AR-40e [Abbott Medical Optics]); and quality of vision questionnaire. Binocular uncorrected visual acuities were 0.12 logMAR (0.76 decimal) or better at all distances measured between 6 m and 33 cm. The Lentis Mplus provided statistically significant better vision than the Acri.Lisa at distances between 2 m and 40 cm, and the Acri.Lisa provided statistically significant better vision than the Lentis Mplus at 33 cm. Binocular defocus curve showed little drop-off at intermediate distances. Photopic contrast sensitivity function for distance and near were similar to the monofocal IOL control group except for higher frequencies. Moderate glare (15%), night vision problems (12.5%), and halos (10%) were reported. Complete independence of spectacles was achieved by 92.5% of patients. The combination of zonal refractive aspheric and diffractive aspheric MIOLs resulted in excellent uncorrected binocular distance, intermediate, and near vision, with low incidence of significant photic phenomena and high patient satisfaction. Copyright 2012, SLACK Incorporated.

  19. Parts-based stereoscopic image assessment by learning binocular manifold color visual properties

    NASA Astrophysics Data System (ADS)

    Xu, Haiyong; Yu, Mei; Luo, Ting; Zhang, Yun; Jiang, Gangyi

    2016-11-01

    Existing stereoscopic image quality assessment (SIQA) methods are mostly based on the luminance information, in which color information is not sufficiently considered. Actually, color is part of the important factors that affect human visual perception, and nonnegative matrix factorization (NMF) and manifold learning are in line with human visual perception. We propose an SIQA method based on learning binocular manifold color visual properties. To be more specific, in the training phase, a feature detector is created based on NMF with manifold regularization by considering color information, which not only allows parts-based manifold representation of an image, but also manifests localized color visual properties. In the quality estimation phase, visually important regions are selected by considering different human visual attention, and feature vectors are extracted by using the feature detector. Then the feature similarity index is calculated and the parts-based manifold color feature energy (PMCFE) for each view is defined based on the color feature vectors. The final quality score is obtained by considering a binocular combination based on PMCFE. The experimental results on LIVE I and LIVE Π 3-D IQA databases demonstrate that the proposed method can achieve much higher consistency with subjective evaluations than the state-of-the-art SIQA methods.

  20. Reading and visual search: a developmental study in normal children.

    PubMed

    Seassau, Magali; Bucci, Maria-Pia

    2013-01-01

    Studies dealing with developmental aspects of binocular eye movement behaviour during reading are scarce. In this study we have explored binocular strategies during reading and during visual search tasks in a large population of normal young readers. Binocular eye movements were recorded using an infrared video-oculography system in sixty-nine children (aged 6 to 15) and in a group of 10 adults (aged 24 to 39). The main findings are (i) in both tasks the number of progressive saccades (to the right) and regressive saccades (to the left) decreases with age; (ii) the amplitude of progressive saccades increases with age in the reading task only; (iii) in both tasks, the duration of fixations as well as the total duration of the task decreases with age; (iv) in both tasks, the amplitude of disconjugacy recorded during and after the saccades decreases with age; (v) children are significantly more accurate in reading than in visual search after 10 years of age. Data reported here confirms and expands previous studies on children's reading. The new finding is that younger children show poorer coordination than adults, both while reading and while performing a visual search task. Both reading skills and binocular saccades coordination improve with age and children reach a similar level to adults after the age of 10. This finding is most likely related to the fact that learning mechanisms responsible for saccade yoking develop during childhood until adolescence.

  1. Functional visual fields: relationship of visual field areas to self-reported function.

    PubMed

    Subhi, Hikmat; Latham, Keziah; Myint, Joy; Crossland, Michael D

    2017-07-01

    The aim of this study is to relate areas of the visual field to functional difficulties to inform the development of a binocular visual field assessment that can reflect the functional consequences of visual field loss. Fifty-two participants with peripheral visual field loss undertook binocular assessment of visual fields using the 30-2 and 60-4 SITA Fast programs on the Humphrey Field Analyser, and mean thresholds were derived. Binocular visual acuity, contrast sensitivity and near reading performance were also determined. Self-reported overall and mobility function were assessed using the Dutch ICF Activity Inventory. Greater visual field loss (0-60°) was associated with worse self-reported function both overall (R 2 = 0.50; p < 0.0001), and for mobility (R 2 = 0.64; p < 0.0001). Central (0-30°) and peripheral (30-60°) visual field areas were similarly related to mobility function (R 2 = 0.61, p < 0.0001 and R 2 = 0.63, p < 0.0001 respectively), although the peripheral (30-60°) visual field was the best predictor of mobility self-reported function in multiple regression analyses. Superior and inferior visual field areas related similarly to mobility function (R 2 = 0.56, p < 0.0001 and R 2 = 0.67, p < 0.0001 respectively). The inferior field was found to be the best predictor of mobility function in multiple regression analysis. Mean threshold of the binocular visual field to 60° eccentricity is a good predictor of self-reported function overall, and particularly of mobility function. Both the central (0-30°) and peripheral (30-60°) mean threshold are good predictors of self-reported function, but the peripheral (30-0°) field is a slightly better predictor of mobility function, and should not be ignored when considering functional consequences of field loss. The inferior visual field is a slightly stronger predictor of perceived overall and mobility function than the superior field. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.

  2. Visuomotor sensitivity to visual information about surface orientation.

    PubMed

    Knill, David C; Kersten, Daniel

    2004-03-01

    We measured human visuomotor sensitivity to visual information about three-dimensional surface orientation by analyzing movements made to place an object on a slanted surface. We applied linear discriminant analysis to the kinematics of subjects' movements to surfaces with differing slants (angle away form the fronto-parallel) to derive visuomotor d's for discriminating surfaces differing in slant by 5 degrees. Subjects' visuomotor sensitivity to information about surface orientation was very high, with discrimination "thresholds" ranging from 2 to 3 degrees. In a first experiment, we found that subjects performed only slightly better using binocular cues alone than monocular texture cues and that they showed only weak evidence for combining the cues when both were available, suggesting that monocular cues can be just as effective in guiding motor behavior in depth as binocular cues. In a second experiment, we measured subjects' perceptual discrimination and visuomotor thresholds in equivalent stimulus conditions to decompose visuomotor sensitivity into perceptual and motor components. Subjects' visuomotor thresholds were found to be slightly greater than their perceptual thresholds for a range of memory delays, from 1 to 3 s. The data were consistent with a model in which perceptual noise increases with increasing delay between stimulus presentation and movement initiation, but motor noise remains constant. This result suggests that visuomotor and perceptual systems rely on the same visual estimates of surface slant for memory delays ranging from 1 to 3 s.

  3. Binocular Combination of Second-Order Stimuli

    PubMed Central

    Zhou, Jiawei; Liu, Rong; Zhou, Yifeng; Hess, Robert F.

    2014-01-01

    Phase information is a fundamental aspect of visual stimuli. However, the nature of the binocular combination of stimuli defined by modulations in contrast, so-called second-order stimuli, is presently not clear. To address this issue, we measured binocular combination for first- (luminance modulated) and second-order (contrast modulated) stimuli using a binocular phase combination paradigm in seven normal adults. We found that the binocular perceived phase of second-order gratings depends on the interocular signal ratio as has been previously shown for their first order counterparts; the interocular signal ratios when the two eyes were balanced was close to 1 in both first- and second-order phase combinations. However, second-order combination is more linear than previously found for first-order combination. Furthermore, binocular combination of second-order stimuli was similar regardless of whether the carriers in the two eyes were correlated, anti-correlated, or uncorrelated. This suggests that, in normal adults, the binocular phase combination of second-order stimuli occurs after the monocular extracting of the second-order modulations. The sensory balance associated with this second-order combination can be obtained from binocular phase combination measurements. PMID:24404180

  4. Relationship Between Binocular Summation and Stereoacuity After Strabismus Surgery

    PubMed Central

    KATTAN, Jaffer M.; VELEZ, Federico G.; DEMER, Joseph L.

    2016-01-01

    Purpose To describe the relationship between binocular summation and stereoacuity after strabismus surgery. Design Prospective Case Series Methods Setting Stein Eye institute, University of California Los Angeles Patient Population Pediatric strabismic patients who underwent strabismus surgery between 2010 and 2015. Observation Procedures Early Treatment Diabetic Retinopathy Study visual acuity, Sloan low-contrast acuity (LCA, 2.5% and 1.25%) and Randot stereoacuity 2 months following surgical correction of strabismus. Main Outcome Measures The relationship between binocular summation, calculated as the difference between the binocular visual acuity score and that of the better eye, and stereoacuity. Results A total of 130 post-operative strabismic patients were studied. The relationship between binocular summation and stereoacuity was studied by Spearman correlation. There were significant correlations between BiS for 2.5% LCA with near and distance stereoacuity (p=0.006 and 0.009). BiS for 1.25% LCA was also significantly correlated with near stereoacuity (p=0.04). Near stereoacuity and BiS for 2.5% and 1.25% LCA were significantly dependent (Pearson Chi Squared, p=0.006 and p=0.026). Patients with stereoacuity demonstrated significantly more BiS in 2.5% LCA of 2.7 (p=0.022) and 3.1 (p=0.014) letters than did those without near or distance stereoacuity, respectively. Conclusions These findings demonstrate that stereopsis and binocular summation are significantly correlated in patients who have undergone surgical correction of strabismus. PMID:26921805

  5. A new form of rapid binocular plasticity in adult with amblyopia

    PubMed Central

    Zhou, Jiawei; Thompson, Benjamin; Hess, Robert F.

    2013-01-01

    Amblyopia is a neurological disorder of binocular vision affecting up to 3% of the population resulting from a disrupted period of early visual development. Recently, it has been shown that vision can be partially restored by intensive monocular or dichoptic training (4–6 weeks). This can occur even in adults owing to a residual degree of brain plasticity initiated by repetitive and successive sensory stimulation. Here we show that the binocular imbalance that characterizes amblyopia can be reduced by occluding the amblyopic eye with a translucent patch for as little as 2.5 hours, suggesting a degree of rapid binocular plasticity in adults resulting from a lack of sensory stimulation. The integrated binocular benefit is larger in our amblyopic group than in our normal control group. We propose that this rapid improvement in function, as a result of reduced sensory stimulation, represents a new form of plasticity operating at a binocular site. PMID:24026421

  6. A new form of rapid binocular plasticity in adult with amblyopia.

    PubMed

    Zhou, Jiawei; Thompson, Benjamin; Hess, Robert F

    2013-01-01

    Amblyopia is a neurological disorder of binocular vision affecting up to 3% of the population resulting from a disrupted period of early visual development. Recently, it has been shown that vision can be partially restored by intensive monocular or dichoptic training (4-6 weeks). This can occur even in adults owing to a residual degree of brain plasticity initiated by repetitive and successive sensory stimulation. Here we show that the binocular imbalance that characterizes amblyopia can be reduced by occluding the amblyopic eye with a translucent patch for as little as 2.5 hours, suggesting a degree of rapid binocular plasticity in adults resulting from a lack of sensory stimulation. The integrated binocular benefit is larger in our amblyopic group than in our normal control group. We propose that this rapid improvement in function, as a result of reduced sensory stimulation, represents a new form of plasticity operating at a binocular site.

  7. Emergence of binocular functional properties in a monocular neural circuit

    PubMed Central

    Ramdya, Pavan; Engert, Florian

    2010-01-01

    Sensory circuits frequently integrate converging inputs while maintaining precise functional relationships between them. For example, in mammals with stereopsis, neurons at the first stages of binocular visual processing show a close alignment of receptive-field properties for each eye. Still, basic questions about the global wiring mechanisms that enable this functional alignment remain unanswered, including whether the addition of a second retinal input to an otherwise monocular neural circuit is sufficient for the emergence of these binocular properties. We addressed this question by inducing a de novo binocular retinal projection to the larval zebrafish optic tectum and examining recipient neuronal populations using in vivo two-photon calcium imaging. Notably, neurons in rewired tecta were predominantly binocular and showed matching direction selectivity for each eye. We found that a model based on local inhibitory circuitry that computes direction selectivity using the topographic structure of both retinal inputs can account for the emergence of this binocular feature. PMID:19160507

  8. Differential vergence movements in reading Chinese and English: Greater fixation-initial binocular disparity is advantageous in reading the denser orthography.

    PubMed

    Hsiao, Yi-Ting; Shillcock, Richard; Obregón, Mateo; Kreiner, Hamutal; Roberts, Matthew A J; McDonald, Scott

    2017-07-11

    We explore two aspects of exovergence: we test whether smaller binocular fixation disparities accompany the shorter saccades and longer fixations observed in reading Chinese; we test whether potentially advantageous psychophysical effects of exovergence (cf. Arnold & Schindel, 2010; Kersten & Murray, 2010) transfer to text reading. We report differential exovergence in reading Chinese and English: Chinese readers begin fixations with more binocular disparity, but end fixations with a disparity closely similar to that of the English readers. We conclude that greater fixation-initial binocular fixation disparity can be adaptive in the reading of visually and cognitively denser text.

  9. Binocular Glaucomatous Visual Field Loss and Its Impact on Visual Exploration - A Supermarket Study

    PubMed Central

    Aehling, Kathrin; Heister, Martin; Rosenstiel, Wolfgang; Schiefer, Ulrich; Papageorgiou, Elena

    2014-01-01

    Advanced glaucomatous visual field loss may critically interfere with quality of life. The purpose of this study was to (i) assess the impact of binocular glaucomatous visual field loss on a supermarket search task as an example of everyday living activities, (ii) to identify factors influencing the performance, and (iii) to investigate the related compensatory mechanisms. Ten patients with binocular glaucoma (GP), and ten healthy-sighted control subjects (GC) were asked to collect twenty different products chosen randomly in two supermarket racks as quickly as possible. The task performance was rated as “passed” or “failed” with regard to the time per correctly collected item. Based on the performance of control subjects, the threshold value for failing the task was defined as μ+3σ (in seconds per correctly collected item). Eye movements were recorded by means of a mobile eye tracker. Eight out of ten patients with glaucoma and all control subjects passed the task. Patients who failed the task needed significantly longer time (111.47 s ±12.12 s) to complete the task than patients who passed (64.45 s ±13.36 s, t-test, p<0.001). Furthermore, patients who passed the task showed a significantly higher number of glances towards the visual field defect (VFD) area than patients who failed (t-test, p<0.05). According to these results, glaucoma patients with defects in the binocular visual field display on average longer search times in a naturalistic supermarket task. However, a considerable number of patients, who compensate by frequent glancing towards the VFD, showed successful task performance. Therefore, systematic exploration of the VFD area seems to be a “time-effective” compensatory mechanism during the present supermarket task. PMID:25162522

  10. Binocular glaucomatous visual field loss and its impact on visual exploration--a supermarket study.

    PubMed

    Sippel, Katrin; Kasneci, Enkelejda; Aehling, Kathrin; Heister, Martin; Rosenstiel, Wolfgang; Schiefer, Ulrich; Papageorgiou, Elena

    2014-01-01

    Advanced glaucomatous visual field loss may critically interfere with quality of life. The purpose of this study was to (i) assess the impact of binocular glaucomatous visual field loss on a supermarket search task as an example of everyday living activities, (ii) to identify factors influencing the performance, and (iii) to investigate the related compensatory mechanisms. Ten patients with binocular glaucoma (GP), and ten healthy-sighted control subjects (GC) were asked to collect twenty different products chosen randomly in two supermarket racks as quickly as possible. The task performance was rated as "passed" or "failed" with regard to the time per correctly collected item. Based on the performance of control subjects, the threshold value for failing the task was defined as μ+3σ (in seconds per correctly collected item). Eye movements were recorded by means of a mobile eye tracker. Eight out of ten patients with glaucoma and all control subjects passed the task. Patients who failed the task needed significantly longer time (111.47 s ±12.12 s) to complete the task than patients who passed (64.45 s ±13.36 s, t-test, p < 0.001). Furthermore, patients who passed the task showed a significantly higher number of glances towards the visual field defect (VFD) area than patients who failed (t-test, p < 0.05). According to these results, glaucoma patients with defects in the binocular visual field display on average longer search times in a naturalistic supermarket task. However, a considerable number of patients, who compensate by frequent glancing towards the VFD, showed successful task performance. Therefore, systematic exploration of the VFD area seems to be a "time-effective" compensatory mechanism during the present supermarket task.

  11. Visually induced self-motion sensation adapts rapidly to left-right reversal of vision

    NASA Technical Reports Server (NTRS)

    Oman, C. M.; Bock, O. L.

    1981-01-01

    Three experiments were conducted using 15 adult volunteers with no overt oculomotor or vestibular disorders. In all experiments, left-right vision reversal was achieved using prism goggles, which permitted a binocular field of vision subtending approximately 45 deg horizontally and 28 deg vertically. In all experiments, circularvection (CV) was tested before and immediately after a period of exposure to reversed vision. After one to three hours of active movement while wearing vision-reversing goggles, 10 of 15 (stationary) human subjects viewing a moving stripe display experienced a self-rotation illusion in the same direction as seen stripe motion, rather than in the opposite (normal) direction, demonstrating that the central neural pathways that process visual self-rotation cues can undergo rapid adaptive modification.

  12. Amaurosis fugax

    MedlinePlus

    ... other symptoms with the vision loss, seek medical attention right away. Alternative Names Transient monocular blindness; Transient monocular visual loss; TMLV; Transient monocular visual loss; Transient binocular ...

  13. Comparison of a hydrogel corneal inlay and monovision laser in situ keratomileusis in presbyopic patients: focus on visual performance and optical quality.

    PubMed

    Verdoorn, Cornelis

    2017-01-01

    To compare the visual performance and optical quality after Raindrop Near Vision Inlay implantation or monovision LASIK for the correction of presbyopia. In this retrospective case-series study, patients previously treated in the nondominant eye with monovision LASIK were compared with patients previously implanted with Raindrop Near Vision Inlay. The study enrolled 16 inlay and 15 monovision LASIK patients. Uncorrected near visual acuity, uncorrected distance visual acuity, binocular stereopsis, patient satisfaction, and patient task performance were assessed. Postoperatively, the mean spherical equivalent was -0.66 D (0.78 SD) for the inlay group and -1.03 D (0.56 SD) for the monovision LASIK group. Monocularly, at uncorrected near distances, 60% of inlay patients and 47% of monovision LASIK patients achieved ≥20/20. Monocularly, at uncorrected far distances, 75% of inlay patients and 40% of monovision LASIK patients achieved ≥20/32 vision. Binocularly, at near distances, 79% of inlay patients and 53% of monovision LASIK patients obtained ≥20/20 vision. All patients achieved ≥20/20 binocularly for distance. On average, inlay patients obtained 98 seconds of arc and monovision LASIK patients obtained 286 seconds of arc for stereopsis. Most (79%) of the inlay patients and 66% of monovision LASIK patients were satisfied with their near vision, while 86% of inlay patients and 67% of monovision LASIK patients were satisfied with their distance vision. Patients receiving corneal inlays demonstrated better near and distance visual acuities, binocular stereopsis, task performance, and satisfaction, when compared to patients treated with monovision LASIK.

  14. Immaturity of the Oculomotor Saccade and Vergence Interaction in Dyslexic Children: Evidence from a Reading and Visual Search Study

    PubMed Central

    Bucci, Maria Pia; Nassibi, Naziha; Gerard, Christophe-Loic; Bui-Quoc, Emmanuel; Seassau, Magali

    2012-01-01

    Studies comparing binocular eye movements during reading and visual search in dyslexic children are, at our knowledge, inexistent. In the present study we examined ocular motor characteristics in dyslexic children versus two groups of non dyslexic children with chronological/reading age-matched. Binocular eye movements were recorded by an infrared system (mobileEBT®, e(ye)BRAIN) in twelve dyslexic children (mean age 11 years old) and a group of chronological age-matched (N = 9) and reading age-matched (N = 10) non dyslexic children. Two visual tasks were used: text reading and visual search. Independently of the task, the ocular motor behavior in dyslexic children is similar to those reported in reading age-matched non dyslexic children: many and longer fixations as well as poor quality of binocular coordination during and after the saccades. In contrast, chronological age-matched non dyslexic children showed a small number of fixations and short duration of fixations in reading task with respect to visual search task; furthermore their saccades were well yoked in both tasks. The atypical eye movement's patterns observed in dyslexic children suggest a deficiency in the visual attentional processing as well as an immaturity of the ocular motor saccade and vergence systems interaction. PMID:22438934

  15. Towards Determination of Visual Requirements for Augmented Reality Displays and Virtual Environments for the Airport Tower

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.

    2006-01-01

    The visual requirements for augmented reality or virtual environments displays that might be used in real or virtual towers are reviewed with respect to similar displays already used in aircraft. As an example of the type of human performance studies needed to determine the useful specifications of augmented reality displays, an optical see-through display was used in an ATC Tower simulation. Three different binocular fields of view (14deg, 28deg, and 47deg) were examined to determine their effect on subjects ability to detect aircraft maneuvering and landing. The results suggest that binocular fields of view much greater than 47deg are unlikely to dramatically improve search performance and that partial binocular overlap is a feasible display technique for augmented reality Tower applications.

  16. Ecomorphology of orbit orientation and the adaptive significance of binocular vision in primates and other mammals.

    PubMed

    Heesy, Christopher P

    2008-01-01

    Primates are characterized by forward-facing, or convergent, orbits and associated binocular field overlap. Hypotheses explaining the adaptive significance of these traits often relate to ecological factors, such as arboreality, nocturnal visual predation, or saltatory locomotion in a complex nocturnal, arboreal environment. This study re-examines the ecological factors that are associated with high orbit convergence in mammals. Orbit orientation data were collected for 321 extant taxa from sixteen orders of metatherian (marsupial) and eutherian mammals. These taxa were coded for activity pattern, degree of faunivory, and substrate preference. Results demonstrate that nocturnal and cathemeral mammals have significantly more convergent orbits than diurnal taxa, both within and across orders. Faunivorous eutherians (both nocturnal and diurnal) have higher mean orbit convergence than opportunistically foraging or non-faunivorous taxa. However, substrate preference is not associated with higher orbit convergence and, by extension, greater binocular visual field overlap. These results are consistent with the hypothesis that mammalian predators evolved higher orbit convergence, binocular vision, and stereopsis to counter camouflage in prey inhabiting a nocturnal environment. Strepsirhine primates have a range of orbit convergence values similar to nocturnal or cathemeral predatory non-primate mammals. These data are entirely consistent with the nocturnal visual predation hypothesis of primate origins. (c) 2007 S. Karger AG, Basel.

  17. An automated miniaturized Haploscope for testing binocular visual function

    NASA Technical Reports Server (NTRS)

    Decker, T. A.; Williams, R. E.; Kuether, C. L.; Wyman-Cornsweet, D.

    1976-01-01

    A computer-controlled binocular vision testing device has been developed as one part of a system designed for NASA to test the vision of astronauts during spaceflight. The device, called the Mark III Haploscope, utilizes semi-automated psychophysical test procedures to measure visual acuity, stereopsis, phorias, fixation disparity and accommodation/convergence relationships. All tests are self-administered, yield quantitative data and may be used repeatedly without subject memorization. Future applications of this programmable, compact device include its use as a clinical instrument to perform routine eye examinations or vision screening, and as a research tool to examine the effects of environment or work-cycle upon visual function.

  18. Autostereoscopic three-dimensional viewer evaluation through comparison with conventional interfaces in laparoscopic surgery.

    PubMed

    Silvestri, Michele; Simi, Massimiliano; Cavallotti, Carmela; Vatteroni, Monica; Ferrari, Vincenzo; Freschi, Cinzia; Valdastri, Pietro; Menciassi, Arianna; Dario, Paolo

    2011-09-01

    In the near future, it is likely that 3-dimensional (3D) surgical endoscopes will replace current 2D imaging systems given the rapid spreading of stereoscopy in the consumer market. In this evaluation study, an emerging technology, the autostereoscopic monitor, is compared with the visualization systems mainly used in laparoscopic surgery: a binocular visor, technically equivalent from the viewer's point of view to the da Vinci 3D console, and a standard 2D monitor. A total of 16 physicians with no experience in 3D interfaces performed 5 different tasks, and the execution time and accuracy of the tasks were evaluated. Moreover, subjective preferences were recorded to qualitatively evaluate the different technologies at the end of each trial. This study demonstrated that the autostereoscopic display is equally effective as the binocular visor for both low- and high-complexity tasks and that it guarantees better performance in terms of execution time than the standard 2D monitor. Moreover, an unconventional task, included to provide the same conditions to the surgeons regardless of their experience, was performed 22% faster when using the autostereoscopic monitor than the binocular visor. However, the final questionnaires demonstrated that 60% of participants preferred the user-friendliness of the binocular visor. These results are greatly heartening because autostereoscopic technology is still in its early stages and offers potential improvement. As a consequence, the authors expect that the increasing interest in autostereoscopy could improve its friendliness in the future and allow the technology to be widely accepted in surgery.

  19. A rapid quantification of binocular misalignment without recording eye movements: Vertical and torsional alignment nulling.

    PubMed

    Beaton, Kara H; Shelhamer, Mark J; Roberts, Dale C; Schubert, Michael C

    2017-05-01

    Small, innate asymmetries between the left and right otolith organs can cause ocular misalignment with symptoms that include double vision and motion sickness. Additionally, ocular misalignment affects nearly 5% of the US population. We have developed a portable, non-invasive technology that uses subjective perception of binocular visual signals to estimate relative binocular alignment. The Vertical Alignment Nulling (VAN) and Torsional Alignment Nulling (TAN) tests ask subjects to view one red and one blue line on a tablet computer while looking through color-matched red and blue filters so that each eye sees only one of the lines. Subjects align the red and blue lines, which are initially vertically offset from one another during VAN or rotated relative to one another during TAN, until they perceive a single continuous line. Ocular misalignments are inferred from actual offsets in the final line positions. During testing, all binocular visual cues are eliminated by employing active-matrix organic light-emitting diode (AMOLED) technology and testing in darkness. VAN and TAN can accurately account for visual offsets induced by prisms, and test-retest reliability is excellent, with resolution better than many current standard clinical tests. VAN and TAN tests are similar to the clinical Lancaster red-green test. However, VAN and TAN employ inexpensive, hand-held hardware that can be self-administered with results that are quickly quantifiable. VAN and TAN provide simple, sensitive, and quantitative measures of binocular positioning alignment that may be useful for detecting subtle abnormalities in ocular positioning. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Suppressed visual looming stimuli are not integrated with auditory looming signals: Evidence from continuous flash suppression.

    PubMed

    Moors, Pieter; Huygelier, Hanne; Wagemans, Johan; de-Wit, Lee; van Ee, Raymond

    2015-01-01

    Previous studies using binocular rivalry have shown that signals in a modality other than the visual can bias dominance durations depending on their congruency with the rivaling stimuli. More recently, studies using continuous flash suppression (CFS) have reported that multisensory integration influences how long visual stimuli remain suppressed. In this study, using CFS, we examined whether the contrast thresholds for detecting visual looming stimuli are influenced by a congruent auditory stimulus. In Experiment 1, we show that a looming visual stimulus can result in lower detection thresholds compared to a static concentric grating, but that auditory tone pips congruent with the looming stimulus did not lower suppression thresholds any further. In Experiments 2, 3, and 4, we again observed no advantage for congruent multisensory stimuli. These results add to our understanding of the conditions under which multisensory integration is possible, and suggest that certain forms of multisensory integration are not evident when the visual stimulus is suppressed from awareness using CFS.

  1. Three-dimensional ocular kinematics underlying binocular single vision

    PubMed Central

    Misslisch, H.

    2016-01-01

    We have analyzed the binocular coordination of the eyes during far-to-near refixation saccades based on the evaluation of distance ratios and angular directions of the projected target images relative to the eyes' rotation centers. By defining the geometric point of binocular single vision, called Helmholtz point, we found that disparities during fixations of targets at near distances were limited in the subject's three-dimensional visual field to the vertical and forward directions. These disparities collapsed to simple vertical disparities in the projective binocular image plane. Subjects were able to perfectly fuse the vertically disparate target images with respect to the projected Helmholtz point of single binocular vision, independent of the particular location relative to the horizontal plane of regard. Target image fusion was achieved by binocular torsion combined with corrective modulations of the differential half-vergence angles of the eyes in the horizontal plane. Our findings support the notion that oculomotor control combines vergence in the horizontal plane of regard with active torsion in the frontal plane to achieve fusion of the dichoptic binocular target images. PMID:27655969

  2. Luminance, Colour, Viewpoint and Border Enhanced Disparity Energy Model

    PubMed Central

    Martins, Jaime A.; Rodrigues, João M. F.; du Buf, Hans

    2015-01-01

    The visual cortex is able to extract disparity information through the use of binocular cells. This process is reflected by the Disparity Energy Model, which describes the role and functioning of simple and complex binocular neuron populations, and how they are able to extract disparity. This model uses explicit cell parameters to mathematically determine preferred cell disparities, like spatial frequencies, orientations, binocular phases and receptive field positions. However, the brain cannot access such explicit cell parameters; it must rely on cell responses. In this article, we implemented a trained binocular neuronal population, which encodes disparity information implicitly. This allows the population to learn how to decode disparities, in a similar way to how our visual system could have developed this ability during evolution. At the same time, responses of monocular simple and complex cells can also encode line and edge information, which is useful for refining disparities at object borders. The brain should then be able, starting from a low-level disparity draft, to integrate all information, including colour and viewpoint perspective, in order to propagate better estimates to higher cortical areas. PMID:26107954

  3. The measurement and treatment of suppression in amblyopia.

    PubMed

    Black, Joanna M; Hess, Robert F; Cooperstock, Jeremy R; To, Long; Thompson, Benjamin

    2012-12-14

    Amblyopia, a developmental disorder of the visual cortex, is one of the leading causes of visual dysfunction in the working age population. Current estimates put the prevalence of amblyopia at approximately 1-3%(1-3), the majority of cases being monocular(2). Amblyopia is most frequently caused by ocular misalignment (strabismus), blur induced by unequal refractive error (anisometropia), and in some cases by form deprivation. Although amblyopia is initially caused by abnormal visual input in infancy, once established, the visual deficit often remains when normal visual input has been restored using surgery and/or refractive correction. This is because amblyopia is the result of abnormal visual cortex development rather than a problem with the amblyopic eye itself(4,5) . Amblyopia is characterized by both monocular and binocular deficits(6,7) which include impaired visual acuity and poor or absent stereopsis respectively. The visual dysfunction in amblyopia is often associated with a strong suppression of the inputs from the amblyopic eye under binocular viewing conditions(8). Recent work has indicated that suppression may play a central role in both the monocular and binocular deficits associated with amblyopia(9,10) . Current clinical tests for suppression tend to verify the presence or absence of suppression rather than giving a quantitative measurement of the degree of suppression. Here we describe a technique for measuring amblyopic suppression with a compact, portable device(11,12) . The device consists of a laptop computer connected to a pair of virtual reality goggles. The novelty of the technique lies in the way we present visual stimuli to measure suppression. Stimuli are shown to the amblyopic eye at high contrast while the contrast of the stimuli shown to the non-amblyopic eye are varied. Patients perform a simple signal/noise task that allows for a precise measurement of the strength of excitatory binocular interactions. The contrast offset at which neither eye has a performance advantage is a measure of the "balance point" and is a direct measure of suppression. This technique has been validated psychophysically both in control(13,14) and patient(6,9,11) populations. In addition to measuring suppression this technique also forms the basis of a novel form of treatment to decrease suppression over time and improve binocular and often monocular function in adult patients with amblyopia(12,15,16) . This new treatment approach can be deployed either on the goggle system described above or on a specially modified iPod touch device(15).

  4. Towards Determination of Visual Requirements for Augmented Reality Displays and Virtual Environments for the Airport Tower

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.

    2006-01-01

    The visual requirements for augmented reality or virtual environments displays that might be used in real or virtual towers are reviewed wi th respect to similar displays already used in aircraft. As an example of the type of human performance studies needed to determine the use ful specifications of augmented reality displays, an optical see-thro ugh display was used in an ATC Tower simulation. Three different binocular fields of view (14 deg, 28 deg, and 47 deg) were examined to det ermine their effect on subjects# ability to detect aircraft maneuveri ng and landing. The results suggest that binocular fields of view much greater than 47 deg are unlikely to dramatically improve search perf ormance and that partial binocular overlap is a feasible display tech nique for augmented reality Tower applications.

  5. Visual performance after the implantation of a new trifocal intraocular lens

    PubMed Central

    Vryghem, Jérôme C; Heireman, Steven

    2013-01-01

    Purpose To evaluate the subjective and objective visual results after the implantation of a new trifocal diffractive intraocular lens. Methods A new trifocal diffractive intraocular lens was designed combining two superimposed diffractive profiles: one with +1.75 diopters (D) addition for intermediate vision and the other with +3.50 D addition for near vision. Fifty eyes of 25 patients that were operated on by one surgeon are included in this study. The uncorrected and best distance-corrected monocular and binocular, near, intermediate, and distance visual acuities, contrast sensitivity, and defocus curves were measured 6 months postoperatively. In addition to the standard clinical follow-up, a questionnaire evaluating individual satisfaction and quality of life was submitted to the patients. Results The mean age of patients at the time of surgery was 70 ± 10 years. The mean uncorrected and corrected monocular distance visual acuity (VA) were LogMAR 0.06 ± 0.10 and LogMAR 0.00 ± 0.08, respectively. The outcomes for the binocular uncorrected distance visual acuity were almost the same (LogMAR −0.04 ± 0.09). LogMAR −010 ± 0.15 and 0.02 ± 0.06 were measured for the binocular uncorrected intermediate and near VA, respectively. The distance-corrected visual acuity was maintained in mesopic conditions. The contrast sensitivity was similar to that obtained after implantation of a bifocal intraocular lens and did not decrease in mesopic conditions. The binocular defocus curve confirms good VA even in the intermediate distance range, with a moderate decrease of less than LogMAR 0.2 at −1.5 D, with respect to the best distance VA at 0 D defocus. Patient satisfaction was high. No discrepancy between the objective and subjective outcomes was evidenced. Conclusion The introduction of a third focus in diffractive multifocal intraocular lenses improves the intermediate vision with minimal visual discomfort for the patient. PMID:24124348

  6. The neural basis of suppression and amblyopia in strabismus.

    PubMed

    Sengpiel, F; Blakemore, C

    1996-01-01

    The neurophysiological consequences of artificial strabismus in cats and monkeys have been studied for 30 years. However, until very recently no clear picture has emerged of neural deficits that might account for the powerful interocular suppression that strabismic humans experience, nor for the severe amblyopia that is often associated with convergent strabismus. Here we review the effects of squint on the integrative capacities of the primary visual cortex and propose a hypothesis about the relationship between suppression and amblyopia. Most neurons in the visual cortex of normal cats and monkeys can be excited through either eye and show strong facilitation during binocular stimulation with contours of similar orientation in the two eyes. But in strabismic animals, cortical neurons tend to fall into two populations of monocularly excitable cells and exhibit suppressive binocular interactions that share key properties with perceptual suppression in strabismic humans. Such interocular suppression, if prolonged and asymmetric (with input from the squinting eye habitually suppressed by that from the fixating eye), might lead to neural defects in the representation of the deviating eye and hence to amblyopia.

  7. Visual system plasticity in mammals: the story of monocular enucleation-induced vision loss

    PubMed Central

    Nys, Julie; Scheyltjens, Isabelle; Arckens, Lutgarde

    2015-01-01

    The groundbreaking work of Hubel and Wiesel in the 1960’s on ocular dominance plasticity instigated many studies of the visual system of mammals, enriching our understanding of how the development of its structure and function depends on high quality visual input through both eyes. These studies have mainly employed lid suturing, dark rearing and eye patching applied to different species to reduce or impair visual input, and have created extensive knowledge on binocular vision. However, not all aspects and types of plasticity in the visual cortex have been covered in full detail. In that regard, a more drastic deprivation method like enucleation, leading to complete vision loss appears useful as it has more widespread effects on the afferent visual pathway and even on non-visual brain regions. One-eyed vision due to monocular enucleation (ME) profoundly affects the contralateral retinorecipient subcortical and cortical structures thereby creating a powerful means to investigate cortical plasticity phenomena in which binocular competition has no vote.In this review, we will present current knowledge about the specific application of ME as an experimental tool to study visual and cross-modal brain plasticity and compare early postnatal stages up into adulthood. The structural and physiological consequences of this type of extensive sensory loss as documented and studied in several animal species and human patients will be discussed. We will summarize how ME studies have been instrumental to our current understanding of the differentiation of sensory systems and how the structure and function of cortical circuits in mammals are shaped in response to such an extensive alteration in experience. In conclusion, we will highlight future perspectives and the clinical relevance of adding ME to the list of more longstanding deprivation models in visual system research. PMID:25972788

  8. When two eyes are better than one in prehension: monocular viewing and end-point variance.

    PubMed

    Loftus, Andrea; Servos, Philip; Goodale, Melvyn A; Mendarozqueta, Nicole; Mon-Williams, Mark

    2004-10-01

    Previous research has suggested that binocular vision plays an important role in prehension. It has been shown that removing binocular vision affects (negatively) both the planning and on-line control of prehension. It has been suggested that the adverse impact of removing binocular vision is because monocular viewing results in an underestimation of target distance in visuomotor tasks. This suggestion is based on the observation that the kinematics of prehension are altered when viewing monocularly. We argue that it is not possible to draw unambiguous conclusions regarding the accuracy of distance perception from these data. In experiment 1, we found data that contradict the idea that a consistent visuomotor underestimation of target distance is an inevitable consequence of monocular viewing. Our data did show, however, that positional variance increases under monocular viewing. We provide an alternative explanation for the kinematic changes found when binocular vision is removed. Our account is based on the changes in movement kinematics that occur when end-point variance is altered following the removal of binocular vision. We suggest that the removal of binocular vision leads to greater perceptual uncertainty (e.g. less precise stimulus cues), resulting in changes in the kinematics of the movement (longer duration movements). Our alternative account reconciles some differences within the research literature. We conducted a series of experiments to explore further the issue of when binocular information is advantageous in prehension. Three subsequent experiments were employed which varied binocular/monocular viewing in selectively lit conditions. Experiment 2 explored the differences in prehension measured between monocular and binocular viewing in a full cue environment with a continuous view of the target object. Experiment 3 required participants to reach, under a monocular or binocular view, for a continuously visible self-illuminated target object in an otherwise dark room. In Experiment 3, the participant could neither see the target object nor the reaching hand following initiation of the prehension movement. Our results suggest that binocular vision contributes to prehension by providing additional information (cues) to the nervous system. These cues appear to be weighted differentially according to the particular constellation of stimulus cues available to the participants when reaching to grasp. One constant advantage of a binocular view appears to be the provision of on-line information regarding the position of the hand relative to the target. In reduced cue conditions (i.e. where a view of the target object is lost following initiation of the movement), binocular information regarding target location appears to be particularly useful in the initial programming of reach distance. Our results are a step towards establishing the specific contributions that binocular vision makes to the control of prehension.

  9. Binocular Rivalry Measured 2 Hours After Occlusion Therapy Predicts the Recovery Rate of the Amblyopic Eye in Anisometropic Children.

    PubMed

    Lunghi, Claudia; Morrone, Maria Concetta; Secci, Jacopo; Caputo, Roberto

    2016-04-01

    Recent studies on adults have shown that short-term monocular deprivation boosts the deprived eye signal in binocular rivalry, reflecting homeostatic plasticity. Here we investigate whether homeostatic plasticity is present also during occlusion therapy for moderate amblyopia. Binocular rivalry and visual acuity (using Snellen charts for children) were measured in 10 children (mean age 6.2 ± 1 years) with moderate anisometropic amblyopia before the beginning of treatment and at four intervals during occlusion therapy (2 hours, 1, 2, and 5 months). Visual stimuli were orthogonal gratings presented dichoptically through ferromagnetic goggles and children reported verbally visual rivalrous perception. Bangerter filters were applied on the spectacle lens over the best eye for occlusion therapy. Two hours of occlusion therapy increased the nonamblyopic eye predominance over the amblyopic eye compared with pretreatment measurements, consistent with the results in adults. The boost of the nonamblyopic eye was still present after 1 month of treatment, steadily decreasing afterward to reach pretreatment levels after 2 months of continuous occlusion. Across subjects, the increase in nonamblyopic eye predominance observed after 2 hours of occlusion correlated (rho = -0.65, P = 0.04) with the visual acuity improvement of the amblyopic eye measured after 2 months of treatment. Homeostatic plasticity operates during occlusion therapy for moderate amblyopia and the increase in nonamblyopic eye dominance observed at the beginning of treatment correlates with the amblyopic eye recovery rate. These results suggest that binocular rivalry might be used to monitor visual cortical plasticity during occlusion therapy, although further investigations on larger clinical populations are needed to validate the predictive power of the technique.

  10. Binocular Rivalry Measured 2 Hours After Occlusion Therapy Predicts the Recovery Rate of the Amblyopic Eye in Anisometropic Children

    PubMed Central

    Lunghi, Claudia; Morrone, Maria Concetta; Secci, Jacopo; Caputo, Roberto

    2016-01-01

    Purpose Recent studies on adults have shown that short-term monocular deprivation boosts the deprived eye signal in binocular rivalry, reflecting homeostatic plasticity. Here we investigate whether homeostatic plasticity is present also during occlusion therapy for moderate amblyopia. Methods Binocular rivalry and visual acuity (using Snellen charts for children) were measured in 10 children (mean age 6.2 ± 1 years) with moderate anisometropic amblyopia before the beginning of treatment and at four intervals during occlusion therapy (2 hours, 1, 2, and 5 months). Visual stimuli were orthogonal gratings presented dichoptically through ferromagnetic goggles and children reported verbally visual rivalrous perception. Bangerter filters were applied on the spectacle lens over the best eye for occlusion therapy. Results Two hours of occlusion therapy increased the nonamblyopic eye predominance over the amblyopic eye compared with pretreatment measurements, consistent with the results in adults. The boost of the nonamblyopic eye was still present after 1 month of treatment, steadily decreasing afterward to reach pretreatment levels after 2 months of continuous occlusion. Across subjects, the increase in nonamblyopic eye predominance observed after 2 hours of occlusion correlated (rho = −0.65, P = 0.04) with the visual acuity improvement of the amblyopic eye measured after 2 months of treatment. Conclusions Homeostatic plasticity operates during occlusion therapy for moderate amblyopia and the increase in nonamblyopic eye dominance observed at the beginning of treatment correlates with the amblyopic eye recovery rate. These results suggest that binocular rivalry might be used to monitor visual cortical plasticity during occlusion therapy, although further investigations on larger clinical populations are needed to validate the predictive power of the technique. PMID:27046118

  11. Monocular Perceptual Deprivation from Interocular Suppression Temporarily Imbalances Ocular Dominance.

    PubMed

    Kim, Hyun-Woong; Kim, Chai-Youn; Blake, Randolph

    2017-03-20

    Early visual experience sculpts neural mechanisms that regulate the balance of influence exerted by the two eyes on cortical mechanisms underlying binocular vision [1, 2], and experience's impact on this neural balancing act continues into adulthood [3-5]. One recently described, compelling example of adult neural plasticity is the effect of patching one eye for a relatively short period of time: contrary to intuition, monocular visual deprivation actually improves the deprived eye's competitive advantage during a subsequent period of binocular rivalry [6-8], the robust form of visual competition prompted by dissimilar stimulation of the two eyes [9, 10]. Neural concomitants of this improvement in monocular dominance are reflected in measurements of brain responsiveness following eye patching [11, 12]. Here we report that patching an eye is unnecessary for producing this paradoxical deprivation effect: interocular suppression of an ordinarily visible stimulus being viewed by one eye is sufficient to produce shifts in subsequent predominance of that eye to an extent comparable to that produced by patching the eye. Moreover, this imbalance in eye dominance can also be induced by prior, extended viewing of two monocular images differing only in contrast. Regardless of how shifts in eye dominance are induced, the effect decays once the two eyes view stimuli equal in strength. These novel findings implicate the operation of interocular neural gain control that dynamically adjusts the relative balance of activity between the two eyes [13, 14]. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Depth reversals in stereoscopic displays driven by apparent size

    NASA Astrophysics Data System (ADS)

    Sacher, Gunnar; Hayes, Amy; Thornton, Ian M.; Sereno, Margaret E.; Malony, Allen D.

    1998-04-01

    In visual scenes, depth information is derived from a variety of monocular and binocular cues. When in conflict, a monocular cue is sometimes able to override the binocular information. We examined the accuracy of relative depth judgments in orthographic, stereoscopic displays and found that perceived relative size can override binocular disparity as a depth cue in a situation where the relative size information is itself generated from disparity information, not from retinal size difference. A size discrimination task confirmed the assumption that disparity information was perceived and used to generate apparent size differences. The tendency for the apparent size cue to override disparity information can be modulated by varying the strength of the apparent size cue. In addition, an analysis of reaction times provides supporting evidence for this novel depth reversal effect. We believe that human perception must be regarded as an important component of stereoscopic applications. Hence, if applications are to be effective and accurate, it is necessary to take into account the richness and complexity of the human visual perceptual system that interacts with them. We discuss implications of this and similar research for human performance in virtual environments, the design of visual presentations for virtual worlds, and the design of visualization tools.

  13. Brightness masking is modulated by disparity structure.

    PubMed

    Pelekanos, Vassilis; Ban, Hiroshi; Welchman, Andrew E

    2015-05-01

    The luminance contrast at the borders of a surface strongly influences surface's apparent brightness, as demonstrated by a number of classic visual illusions. Such phenomena are compatible with a propagation mechanism believed to spread contrast information from borders to the interior. This process is disrupted by masking, where the perceived brightness of a target is reduced by the brief presentation of a mask (Paradiso & Nakayama, 1991), but the exact visual stage that this happens remains unclear. In the present study, we examined whether brightness masking occurs at a monocular-, or a binocular-level of the visual hierarchy. We used backward masking, whereby a briefly presented target stimulus is disrupted by a mask coming soon afterwards, to show that brightness masking is affected by binocular stages of the visual processing. We manipulated the 3-D configurations (slant direction) of the target and mask and measured the differential disruption that masking causes on brightness estimation. We found that the masking effect was weaker when stimuli had a different slant. We suggest that brightness masking is partly mediated by mid-level neuronal mechanisms, at a stage where binocular disparity edge structure has been extracted. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Psycho-physiological effects of head-mounted displays in ubiquitous use

    NASA Astrophysics Data System (ADS)

    Kawai, Takashi; Häkkinen, Jukka; Oshima, Keisuke; Saito, Hiroko; Yamazoe, Takashi; Morikawa, Hiroyuki; Nyman, Göte

    2011-02-01

    In this study, two experiments were conducted to evaluate the psycho-physiological effects by practical use of monocular head-mounted display (HMD) in a real-world environment, based on the assumption of consumer-level applications as viewing video content and receiving navigation information while walking. In the experiment 1, the workload was examined for different types of presenting stimuli using an HMD (monocular or binocular, see-through or non-see-through). The experiment 2 focused on the relationship between the real-world environment and the visual information presented using a monocular HMD. The workload was compared between a case where participants walked while viewing video content without relation to the real-world environment, and a case where participants walked while viewing visual information to augment the real-world environment as navigations.

  15. Strength and coherence of binocular rivalry depends on shared stimulus complexity.

    PubMed

    Alais, David; Melcher, David

    2007-01-01

    Presenting incompatible images to the eyes results in alternations of conscious perception, a phenomenon known as binocular rivalry. We examined rivalry using either simple stimuli (oriented gratings) or coherent visual objects (faces, houses etc). Two rivalry characteristics were measured: Depth of rivalry suppression and coherence of alternations. Rivalry between coherent visual objects exhibits deep suppression and coherent rivalry, whereas rivalry between gratings exhibits shallow suppression and piecemeal rivalry. Interestingly, rivalry between a simple and a complex stimulus displays the same characteristics (shallow and piecemeal) as rivalry between two simple stimuli. Thus, complex stimuli fail to rival globally unless the fellow stimulus is also global. We also conducted a face adaptation experiment. Adaptation to rivaling faces improved subsequent face discrimination (as expected), but adaptation to a rivaling face/grating pair did not. To explain this, we suggest rivalry must be an early and local process (at least initially), instigated by the failure of binocular fusion, which can then become globally organized by feedback from higher-level areas when both rivalry stimuli are global, so that rivalry tends to oscillate coherently. These globally assembled images then flow through object processing areas, with the dominant image gaining in relative strength in a form of 'biased competition', therefore accounting for the deeper suppression of global images. In contrast, when only one eye receives a global image, local piecemeal suppression from the fellow eye overrides the organizing effects of global feedback to prevent coherent image formation. This indicates the primacy of local over global processes in rivalry.

  16. Experience-enabled enhancement of adult visual cortex function.

    PubMed

    Tschetter, Wayne W; Alam, Nazia M; Yee, Christopher W; Gorz, Mario; Douglas, Robert M; Sagdullaev, Botir; Prusky, Glen T

    2013-03-20

    We previously reported in adult mice that visuomotor experience during monocular deprivation (MD) augmented enhancement of visual-cortex-dependent behavior through the non-deprived eye (NDE) during deprivation, and enabled enhanced function to persist after MD. We investigated the physiological substrates of this experience-enabled form of adult cortical plasticity by measuring visual behavior and visually evoked potentials (VEPs) in binocular visual cortex of the same mice before, during, and after MD. MD on its own potentiated VEPs contralateral to the NDE during MD and shifted ocular dominance (OD) in favor of the NDE in both hemispheres. Whereas we expected visuomotor experience during MD to augment these effects, instead enhanced responses contralateral to the NDE, and the OD shift ipsilateral to the NDE were attenuated. However, in the same animals, we measured NMDA receptor-dependent VEP potentiation ipsilateral to the NDE during MD, which persisted after MD. The results indicate that visuomotor experience during adult MD leads to enduring enhancement of behavioral function, not simply by amplifying MD-induced changes in cortical OD, but through an independent process of increasing NDE drive in ipsilateral visual cortex. Because the plasticity is resident in the mature visual cortex and selectively effects gain of visual behavior through experiential means, it may have the therapeutic potential to target and non-invasively treat eye- or visual-field-specific cortical impairment.

  17. Accommodation and vergence latencies in human infants

    PubMed Central

    Tondel, Grazyna M.; Candy, T. Rowan

    2008-01-01

    Purpose Achieving simultaneous single and clear visual experience during postnatal development depends on the temporal relationship between accommodation and vergence, in addition to their accuracies. This study was designed to examine one component of the dynamic relationship, the latencies of the responses. Methods Infants and adults were tested in three conditions i) Binocular viewing of a target moving in depth at 5cm/s (closed loop) ii) monocular viewing of the same target (vergence open loop) iii) binocular viewing of a low spatial frequency Difference of Gaussian target during a prism induced step change in retinal disparity (accommodation open loop). Results There was a significant correlation between accommodation and vergence latencies in binocular conditions for infants from 7 to 23 weeks of age. Some of the infants, as young as 7 or 8 weeks, generated adult-like latencies of less than 0.5 s. Latencies in the vergence open loop and accommodation open loop conditions tended to be shorter for the stimulated system than the open loop system in both cases, and all latencies were typically less than 2 seconds across the infant age range. Conclusions Many infants between 7 and 23 weeks of age were able to generate accommodation and vergence responses with latencies of less than a second in full binocular closed loop conditions. The correlation between the latencies in the two systems suggests that they are limited by related factors from the earliest ages tested. PMID:18199466

  18. Accommodation and vergence latencies in human infants.

    PubMed

    Tondel, Grazyna M; Candy, T Rowan

    2008-02-01

    Achieving simultaneous single and clear visual experience during postnatal development depends on the temporal relationship between accommodation and vergence, in addition to their accuracies. This study was designed to examine one component of the dynamic relationship, the latencies of the responses. Infants and adults were tested in three conditions (i) binocular viewing of a target moving in depth at 5 cm/s (closed loop) (ii) monocular viewing of the same target (vergence open loop) (iii) binocular viewing of a low spatial frequency Difference of Gaussian target during a prism induced step change in retinal disparity (accommodation open loop). There was a significant correlation between accommodation and vergence latencies in binocular conditions for infants from 7 to 23 weeks of age. Some of the infants, as young as 7 or 8 weeks, generated adult-like latencies of less than 0.5 s. Latencies in the vergence open loop and accommodation open loop conditions tended to be shorter for the stimulated system than the open loop system in both cases, and all latencies were typically less than 2 s across the infant age range. Many infants between 7 and 23 weeks of age were able to generate accommodation and vergence responses with latencies of less than a second in full binocular closed loop conditions. The correlation between the latencies in the two systems suggests that they are limited by related factors from the earliest ages tested.

  19. Collinear integration affects visual search at V1.

    PubMed

    Chow, Hiu Mei; Jingling, Li; Tseng, Chia-huei

    2013-08-29

    Perceptual grouping plays an indispensable role in figure-ground segregation and attention distribution. For example, a column pops out if it contains element bars orthogonal to uniformly oriented element bars. Jingling and Tseng (2013) have reported that contextual grouping in a column matters to visual search behavior: When a column is grouped into a collinear (snakelike) structure, a target positioned on it became harder to detect than on other noncollinear (ladderlike) columns. How and where perceptual grouping interferes with selective attention is still largely unknown. This article contributes to this little-studied area by asking whether collinear contour integration interacts with visual search before or after binocular fusion. We first identified that the previously mentioned search impairment occurs with a distractor of five or nine elements but not one element in a 9 × 9 search display. To pinpoint the site of this effect, we presented the search display with a short collinear bar (one element) to one eye and the extending collinear bars to the other eye, such that when properly fused, the combined binocular collinear length (nine elements) exceeded the critical length. No collinear search impairment was observed, implying that collinear information before binocular fusion shaped participants' search behavior, although contour extension from the other eye after binocular fusion enhanced the effect of collinearity on attention. Our results suggest that attention interacts with perceptual grouping as early as V1.

  20. Semantic Edge Based Disparity Estimation Using Adaptive Dynamic Programming for Binocular Sensors

    PubMed Central

    Zhu, Dongchen; Li, Jiamao; Wang, Xianshun; Peng, Jingquan; Shi, Wenjun; Zhang, Xiaolin

    2018-01-01

    Disparity calculation is crucial for binocular sensor ranging. The disparity estimation based on edges is an important branch in the research of sparse stereo matching and plays an important role in visual navigation. In this paper, we propose a robust sparse stereo matching method based on the semantic edges. Some simple matching costs are used first, and then a novel adaptive dynamic programming algorithm is proposed to obtain optimal solutions. This algorithm makes use of the disparity or semantic consistency constraint between the stereo images to adaptively search parameters, which can improve the robustness of our method. The proposed method is compared quantitatively and qualitatively with the traditional dynamic programming method, some dense stereo matching methods, and the advanced edge-based method respectively. Experiments show that our method can provide superior performance on the above comparison. PMID:29614028

  1. An Autonomous Gps-Denied Unmanned Vehicle Platform Based on Binocular Vision for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Qin, M.; Wan, X.; Shao, Y. Y.; Li, S. Y.

    2018-04-01

    Vision-based navigation has become an attractive solution for autonomous navigation for planetary exploration. This paper presents our work of designing and building an autonomous vision-based GPS-denied unmanned vehicle and developing an ARFM (Adaptive Robust Feature Matching) based VO (Visual Odometry) software for its autonomous navigation. The hardware system is mainly composed of binocular stereo camera, a pan-and tilt, a master machine, a tracked chassis. And the ARFM-based VO software system contains four modules: camera calibration, ARFM-based 3D reconstruction, position and attitude calculation, BA (Bundle Adjustment) modules. Two VO experiments were carried out using both outdoor images from open dataset and indoor images captured by our vehicle, the results demonstrate that our vision-based unmanned vehicle is able to achieve autonomous localization and has the potential for future planetary exploration.

  2. Semantic Edge Based Disparity Estimation Using Adaptive Dynamic Programming for Binocular Sensors.

    PubMed

    Zhu, Dongchen; Li, Jiamao; Wang, Xianshun; Peng, Jingquan; Shi, Wenjun; Zhang, Xiaolin

    2018-04-03

    Disparity calculation is crucial for binocular sensor ranging. The disparity estimation based on edges is an important branch in the research of sparse stereo matching and plays an important role in visual navigation. In this paper, we propose a robust sparse stereo matching method based on the semantic edges. Some simple matching costs are used first, and then a novel adaptive dynamic programming algorithm is proposed to obtain optimal solutions. This algorithm makes use of the disparity or semantic consistency constraint between the stereo images to adaptively search parameters, which can improve the robustness of our method. The proposed method is compared quantitatively and qualitatively with the traditional dynamic programming method, some dense stereo matching methods, and the advanced edge-based method respectively. Experiments show that our method can provide superior performance on the above comparison.

  3. Short-term saccadic adaptation in the macaque monkey: a binocular mechanism

    PubMed Central

    Schultz, K. P.

    2013-01-01

    Saccadic eye movements are rapid transfers of gaze between objects of interest. Their duration is too short for the visual system to be able to follow their progress in time. Adaptive mechanisms constantly recalibrate the saccadic responses by detecting how close the landings are to the selected targets. The double-step saccadic paradigm is a common method to simulate alterations in saccadic gain. While the subject is responding to a first target shift, a second shift is introduced in the middle of this movement, which masks it from visual detection. The error in landing introduced by the second shift is interpreted by the brain as an error in the programming of the initial response, with gradual gain changes aimed at compensating the apparent sensorimotor mismatch. A second shift applied dichoptically to only one eye introduces disconjugate landing errors between the two eyes. A monocular adaptive system would independently modify only the gain of the eye exposed to the second shift in order to reestablish binocular alignment. Our results support a binocular mechanism. A version-based saccadic adaptive process detects postsaccadic version errors and generates compensatory conjugate gain alterations. A vergence-based saccadic adaptive process detects postsaccadic disparity errors and generates corrective nonvisual disparity signals that are sent to the vergence system to regain binocularity. This results in striking dynamical similarities between visually driven combined saccade-vergence gaze transfers, where the disparity is given by the visual targets, and the double-step adaptive disconjugate responses, where an adaptive disparity signal is generated internally by the saccadic system. PMID:23076111

  4. Brief monocular deprivation as an assay of short-term visual sensory plasticity in schizophrenia - "the binocular effect".

    PubMed

    Foxe, John J; Yeap, Sherlyn; Leavitt, Victoria M

    2013-01-01

    Visual sensory processing deficits are consistently observed in schizophrenia, with clear amplitude reduction of the visual evoked potential (VEP) during the initial 50-150 ms of processing. Similar deficits are seen in unaffected first-degree relatives and drug-naïve first-episode patients, pointing to these deficits as potential endophenotypic markers. Schizophrenia is also associated with deficits in neural plasticity, implicating dysfunction of both glutamatergic and GABAergic systems. Here, we sought to understand the intersection of these two domains, asking whether short-term plasticity during early visual processing is specifically affected in schizophrenia. Brief periods of monocular deprivation (MD) induce relatively rapid changes in the amplitude of the early VEP - i.e., short-term plasticity. Twenty patients and 20 non-psychiatric controls participated. VEPs were recorded during binocular viewing, and were compared to the sum of VEP responses during brief monocular viewing periods (i.e., Left-eye + Right-eye viewing). Under monocular conditions, neurotypical controls exhibited an effect that patients failed to demonstrate. That is, the amplitude of the summed monocular VEPs was robustly greater than the amplitude elicited binocularly during the initial sensory processing period. In patients, this "binocular effect" was absent. Patients were all medicated. Ideally, this study would also include first-episode unmedicated patients. These results suggest that short-term compensatory mechanisms that allow healthy individuals to generate robust VEPs in the context of MD are not effectively activated in patients with schizophrenia. This simple assay may provide a useful biomarker of short-term plasticity in the psychotic disorders and a target endophenotype for therapeutic interventions.

  5. Binocular Therapy for Childhood Amblyopia Improves Vision Without Breaking Interocular Suppression.

    PubMed

    Bossi, Manuela; Tailor, Vijay K; Anderson, Elaine J; Bex, Peter J; Greenwood, John A; Dahlmann-Noor, Annegret; Dakin, Steven C

    2017-06-01

    Amblyopia is a common developmental visual impairment characterized by a substantial difference in acuity between the two eyes. Current monocular treatments, which promote use of the affected eye by occluding or blurring the fellow eye, improve acuity, but are hindered by poor compliance. Recently developed binocular treatments can produce rapid gains in visual function, thought to be as a result of reduced interocular suppression. We set out to develop an effective home-based binocular treatment system for amblyopia that would engage high levels of compliance but that would also allow us to assess the role of suppression in children's response to binocular treatment. Balanced binocular viewing therapy (BBV) involves daily viewing of dichoptic movies (with "visibility" matched across the two eyes) and gameplay (to monitor compliance and suppression). Twenty-two children (3-11 years) with anisometropic (n = 7; group 1) and strabismic or combined mechanism amblyopia (group 2; n = 6 and 9, respectively) completed the study. Groups 1 and 2 were treated for a maximum of 8 or 24 weeks, respectively. The treatment elicited high levels of compliance (on average, 89.4% ± 24.2% of daily dose in 68.23% ± 12.2% of days on treatment) and led to a mean improvement in acuity of 0.27 logMAR (SD 0.22) for the amblyopic eye. Importantly, acuity gains were not correlated with a reduction in suppression. BBV is a binocular treatment for amblyopia that can be self-administered at home (with remote monitoring), producing rapid and substantial benefits that cannot be solely mediated by a reduction in interocular suppression.

  6. Comparison of Subjective Refraction under Binocular and Monocular Conditions in Myopic Subjects.

    PubMed

    Kobashi, Hidenaga; Kamiya, Kazutaka; Handa, Tomoya; Ando, Wakako; Kawamorita, Takushi; Igarashi, Akihito; Shimizu, Kimiya

    2015-07-28

    To compare subjective refraction under binocular and monocular conditions, and to investigate the clinical factors affecting the difference in spherical refraction between the two conditions. We examined thirty eyes of 30 healthy subjects. Binocular and monocular refraction without cycloplegia was measured through circular polarizing lenses in both eyes, using the Landolt-C chart of the 3D visual function trainer-ORTe. Stepwise multiple regression analysis was used to assess the relations among several pairs of variables and the difference in spherical refraction in binocular and monocular conditions. Subjective spherical refraction in the monocular condition was significantly more myopic than that in the binocular condition (p < 0.001), whereas no significant differences were seen in subjective cylindrical refraction (p = 0.99). The explanatory variable relevant to the difference in spherical refraction between binocular and monocular conditions was the binocular spherical refraction (p = 0.032, partial regression coefficient B = 0.029) (adjusted R(2) = 0.230). No significant correlation was seen with other clinical factors. Subjective spherical refraction in the monocular condition was significantly more myopic than that in the binocular condition. Eyes with higher degrees of myopia are more predisposed to show the large difference in spherical refraction between these two conditions.

  7. Comparison of Subjective Refraction under Binocular and Monocular Conditions in Myopic Subjects

    PubMed Central

    Kobashi, Hidenaga; Kamiya, Kazutaka; Handa, Tomoya; Ando, Wakako; Kawamorita, Takushi; Igarashi, Akihito; Shimizu, Kimiya

    2015-01-01

    To compare subjective refraction under binocular and monocular conditions, and to investigate the clinical factors affecting the difference in spherical refraction between the two conditions. We examined thirty eyes of 30 healthy subjects. Binocular and monocular refraction without cycloplegia was measured through circular polarizing lenses in both eyes, using the Landolt-C chart of the 3D visual function trainer-ORTe. Stepwise multiple regression analysis was used to assess the relations among several pairs of variables and the difference in spherical refraction in binocular and monocular conditions. Subjective spherical refraction in the monocular condition was significantly more myopic than that in the binocular condition (p < 0.001), whereas no significant differences were seen in subjective cylindrical refraction (p = 0.99). The explanatory variable relevant to the difference in spherical refraction between binocular and monocular conditions was the binocular spherical refraction (p = 0.032, partial regression coefficient B = 0.029) (adjusted R2 = 0.230). No significant correlation was seen with other clinical factors. Subjective spherical refraction in the monocular condition was significantly more myopic than that in the binocular condition. Eyes with higher degrees of myopia are more predisposed to show the large difference in spherical refraction between these two conditions. PMID:26218972

  8. Six-month-old infants' perception of the hollow face illusion: evidence for a general convexity bias.

    PubMed

    Corrow, Sherryse L; Mathison, Jordan; Granrud, Carl E; Yonas, Albert

    2014-01-01

    Corrow, Granrud, Mathison, and Yonas (2011, Perception, 40, 1376-1383) found evidence that 6-month-old infants perceive the hollow face illusion. In the present study we asked whether 6-month-old infants perceive illusory depth reversal for a nonface object and whether infants' perception of the hollow face illusion is affected by mask orientation inversion. In experiment 1 infants viewed a concave bowl, and their reaches were recorded under monocular and binocular viewing conditions. Infants reached to the bowl as if it were convex significantly more often in the monocular than in the binocular viewing condition. These results suggest that infants perceive illusory depth reversal with a nonface stimulus and that the infant visual system has a bias to perceive objects as convex. Infants in experiment 2 viewed a concave face-like mask in upright and inverted orientations. Infants reached to the display as if it were convex more in the monocular than in the binocular condition; however, mask orientation had no effect on reaching. Previous findings that adults' perception of the hollow face illusion is affected by mask orientation inversion have been interpreted as evidence of stored-knowledge influences on perception. However, we found no evidence of such influences in infants, suggesting that their perception of this illusion may not be affected by stored knowledge, and that perceived depth reversal is not face-specific in infants.

  9. Looking above the prairie: localized and upward acute vision in a native grassland bird.

    PubMed

    Tyrrell, Luke P; Moore, Bret A; Loftis, Christopher; Fernández-Juricic, Esteban

    2013-12-02

    Visual systems of open habitat vertebrates are predicted to have a band of acute vision across the retina (visual streak) and wide visual coverage to gather information along the horizon. We tested whether the eastern meadowlark (Sturnella magna) had this visual configuration given that it inhabits open grasslands. Contrary to our expectations, the meadowlark retina has a localized spot of acute vision (fovea) and relatively narrow visual coverage. The fovea projects above rather than towards the horizon with the head at rest, and individuals modify their body posture in tall grass to maintain a similar foveal projection. Meadowlarks have relatively large binocular fields and can see their bill tips, which may help with their probe-foraging technique. Overall, meadowlark vision does not fit the profile of vertebrates living in open habitats. The binocular field may control foraging while the fovea may be used for detecting and tracking aerial stimuli (predators, conspecifics).

  10. Laser Optometric Assessment Of Visual Display Viewability

    NASA Astrophysics Data System (ADS)

    Murch, Gerald M.

    1983-08-01

    Through the technique of laser optometry, measurements of a display user's visual accommodation and binocular convergence were used to assess the visual impact of display color, technology, contrast, and work time. The studies reported here indicate the potential of visual-function measurements as an objective means of improving the design of visual displays.

  11. Driving with Binocular Visual Field Loss? A Study on a Supervised On-Road Parcours with Simultaneous Eye and Head Tracking

    PubMed Central

    Aehling, Kathrin; Heister, Martin; Rosenstiel, Wolfgang; Schiefer, Ulrich; Papageorgiou, Elena

    2014-01-01

    Post-chiasmal visual pathway lesions and glaucomatous optic neuropathy cause binocular visual field defects (VFDs) that may critically interfere with quality of life and driving licensure. The aims of this study were (i) to assess the on-road driving performance of patients suffering from binocular visual field loss using a dual-brake vehicle, and (ii) to investigate the related compensatory mechanisms. A driving instructor, blinded to the participants' diagnosis, rated the driving performance (passed/failed) of ten patients with homonymous visual field defects (HP), including four patients with right (HR) and six patients with left homonymous visual field defects (HL), ten glaucoma patients (GP), and twenty age and gender-related ophthalmologically healthy control subjects (C) during a 40-minute driving task on a pre-specified public on-road parcours. In order to investigate the subjects' visual exploration ability, eye movements were recorded by means of a mobile eye tracker. Two additional cameras were used to monitor the driving scene and record head and shoulder movements. Thus this study is novel as a quantitative assessment of eye movements and an additional evaluation of head and shoulder was performed. Six out of ten HP and four out of ten GP were rated as fit to drive by the driving instructor, despite their binocular visual field loss. Three out of 20 control subjects failed the on-road assessment. The extent of the visual field defect was of minor importance with regard to the driving performance. The site of the homonymous visual field defect (HVFD) critically interfered with the driving ability: all failed HP subjects suffered from left homonymous visual field loss (HL) due to right hemispheric lesions. Patients who failed the driving assessment had mainly difficulties with lane keeping and gap judgment ability. Patients who passed the test displayed different exploration patterns than those who failed. Patients who passed focused longer on the central area of the visual field than patients who failed the test. In addition, patients who passed the test performed more glances towards the area of their visual field defect. In conclusion, our findings support the hypothesis that the extent of visual field per se cannot predict driving fitness, because some patients with HVFDs and advanced glaucoma can compensate for their deficit by effective visual scanning. Head movements appeared to be superior to eye and shoulder movements in predicting the outcome of the driving test under the present study scenario. PMID:24523869

  12. Fresnel prisms and their effects on visual acuity and binocularity.

    PubMed Central

    Véronneau-Troutman, S

    1978-01-01

    1. The visual acuity with the Fresnel membrane prism is significantly less than that with the conventional prism of the same power for all prism powers from 12 delta through 30 delata at distance and from 15 delta through 30 delta at near. 2. The difference in the visual acuity between base up and base down, and between base in and base out, is not significantly different for either the Fresnel membrane prism or for the conventional prism. 3. For both Fresnel membrane prism and the conventional prism, the visual acuity when looking straight ahead. 4. Using Fresnel membrane prisms of the same power from different lots, the visual acuity varied significantly. The 30 delta prism caused the widest range in visual acuity. 5. When normal subjects are fitted with the higher powers of the Fresnel membrane prism, fusion and stereopsis are disrupted to such an extent that the use of this device to restore or to improve binocular vision in cases with large-angle deviations is seriously questioned. 6. Moreover, the disruption of fusion and stereopsis is abrupt and severe and does not parallel the decrease in visual acuity. The severely reduced ability to maintain fusion may be related to the optical aberrations, which, in turn, may be due to the molding process and the polyvinyl chloride molding material. 7. Through the flexibility of the membrane prism is a definite advantage, because of its proclivity to reduce visual acuity and increase aberrations its prescription for adults often must be limited to only one eye. 8. For the same reasons in the young child with binocular vision problems, the membrane prism presently available should be prescribed over both eyes only in powers less than 20 delta. When the membrane prism is to be used as a partial occluder (over one eye only), any power can be used. 9. The new Fresnel "hard" prism reduces visual acuity minimally and rarely disrupts binocularity, thus increasing the potential for prismotherapy to establish binocularity. This prism is currently available only for use as a trial set. Since the cosmetic appearance of the Fresnel "hard" prism is similar to that of the Fresnel membrane prism and it is easier to maintain, it would be the prism of choice (over all other types) for bilateral prescriptions in the young patient with emmetropia. The manufacturer is urged to make these prisms available to fit a special round adjustable frame, such as that developed in Europe for use with the wafer prism. Images FIGURE 14 A FIGURE 14 B FIGURE 2 A FIGURE 2 B FIGURE 12 PMID:754384

  13. Research and Development of Target Recognition and Location Crawling Platform based on Binocular Vision

    NASA Astrophysics Data System (ADS)

    Xu, Weidong; Lei, Zhu; Yuan, Zhang; Gao, Zhenqing

    2018-03-01

    The application of visual recognition technology in industrial robot crawling and placing operation is one of the key tasks in the field of robot research. In order to improve the efficiency and intelligence of the material sorting in the production line, especially to realize the sorting of the scattered items, the robot target recognition and positioning crawling platform based on binocular vision is researched and developed. The images were collected by binocular camera, and the images were pretreated. Harris operator was used to identify the corners of the images. The Canny operator was used to identify the images. Hough-chain code recognition was used to identify the images. The target image in the image, obtain the coordinates of each vertex of the image, calculate the spatial position and posture of the target item, and determine the information needed to capture the movement and transmit it to the robot control crawling operation. Finally, In this paper, we use this method to experiment the wrapping problem in the express sorting process The experimental results show that the platform can effectively solve the problem of sorting of loose parts, so as to achieve the purpose of efficient and intelligent sorting.

  14. Effectiveness of a Binocular Video Game vs Placebo Video Game for Improving Visual Functions in Older Children, Teenagers, and Adults With Amblyopia: A Randomized Clinical Trial.

    PubMed

    Gao, Tina Y; Guo, Cindy X; Babu, Raiju J; Black, Joanna M; Bobier, William R; Chakraborty, Arijit; Dai, Shuan; Hess, Robert F; Jenkins, Michelle; Jiang, Yannan; Kearns, Lisa S; Kowal, Lionel; Lam, Carly S Y; Pang, Peter C K; Parag, Varsha; Pieri, Roberto; Raveendren, Rajkumar Nallour; South, Jayshree; Staffieri, Sandra Elfride; Wadham, Angela; Walker, Natalie; Thompson, Benjamin

    2018-02-01

    Binocular amblyopia treatment using contrast-rebalanced stimuli showed promise in laboratory studies and requires clinical trial investigation in a home-based setting. To compare the effectiveness of a binocular video game with a placebo video game for improving visual functions in older children and adults. The Binocular Treatment of Amblyopia Using Videogames clinical trial was a multicenter, double-masked, randomized clinical trial. Between March 2014 and June 2016, 115 participants 7 years and older with unilateral amblyopia (amblyopic eye visual acuity, 0.30-1.00 logMAR; Snellen equivalent, 20/40-20/200) due to anisometropia, strabismus, or both were recruited. Eligible participants were allocated with equal chance to receive either the active or the placebo video game, with minimization stratified by age group (child, age 7 to 12 years; teenager, age 13 to 17 years; and adult, 18 years and older). Falling-blocks video games played at home on an iPod Touch for 1 hour per day for 6 weeks. The active video game had game elements split between eyes with a dichoptic contrast offset (mean [SD] initial fellow eye contrast, 0.23 [0.14]). The placebo video game presented identical images to both eyes. Change in amblyopic eye visual acuity at 6 weeks. Secondary outcomes included compliance, stereoacuity, and interocular suppression. Participants and clinicians who measured outcomes were masked to treatment allocation. Of the 115 included participants, 65 (56.5%) were male and 83 (72.2%) were white, and the mean (SD) age at randomization was 21.5 (13.6) years. There were 89 participants (77.4%) who had prior occlusion. The mean (SD) amblyopic eye visual acuity improved 0.06 (0.12) logMAR from baseline in the active group (n = 56) and 0.07 (0.10) logMAR in the placebo group (n = 59). The mean treatment difference between groups, adjusted for baseline visual acuity and age group, was -0.02 logMAR (95% CI, -0.06 to 0.02; P = .25). Compliance with more than 25% of prescribed game play was achieved by 36 participants (64%) in the active group and by 49 (83%) in the placebo group. At 6 weeks, 36 participants (64%) in the active group achieved fellow eye contrast greater than 0.9 in the binocular video game. No group differences were observed for any secondary outcomes. Adverse effects included 3 reports of transient asthenopia. The specific home-based binocular falling-blocks video game used in this clinical trial did not improve visual outcomes more than the placebo video game despite increases in fellow eye contrast during game play. More engaging video games with considerations for compliance may improve effectiveness. anzctr.org.au Identifier: ACTRN12613001004752.

  15. Reading strategies in mild to moderate strabismic amblyopia: an eye movement investigation.

    PubMed

    Kanonidou, Evgenia; Proudlock, Frank A; Gottlob, Irene

    2010-07-01

    PURPOSE. To investigate oculomotor strategies in strabismic amblyopia and evaluate abnormalities during monocular and binocular reading. METHODS. Eye movements were recorded with a head-mounted infrared video eye-tracker (250 Hz, <0.01 degrees resolution) in 20 strabismic amblyopes (mean age, 44.9 +/- 10.7 years) and 20 normal control subjects (mean age, 42.8 +/- 10.9 years) while they silently read paragraphs of text. Monocular reading comparisons were made between the amblyopic eye and the nondominant eye of control subjects and the nonamblyopic eye and the dominant eye of the control subjects. Binocular reading between the amblyopic and control subjects was also compared. RESULTS. Mean reading speed, number of progressive and regressive saccades per line, saccadic amplitude (of progressive saccades), and fixation duration were estimated. Inter- and intrasubject statistical comparisons were made. Reading speed was significantly slower in amblyopes than in control subjects during monocular reading with amblyopic (13.094 characters/s vs. 22.188 characters/s; P < 0.0001) and nonamblyopic eyes (16.241 characters/s vs. 22.349 characters/s, P < 0.0001), and binocularly (15.698 characters/s vs. 23.425 characters/s, P < 0.0001). In amblyopes, reading was significantly slower with the amblyopic eye than with the nonamblyopic eye in binocular viewing (P < 0.05). These differences were associated with significantly more regressive saccades and longer fixation durations, but not with changes in saccadic amplitudes. CONCLUSIONS. In strabismic amblyopia, reading is impaired, not only during monocular viewing with the amblyopic eye, but also with the nonamblyopic eye and binocularly, even though normal visual acuity pertains to the latter two conditions. The impaired reading performance is associated with differences in both the saccadic and fixational patterns, most likely as adaptation strategies to abnormal sensory experiences such as crowding and suppression.

  16. VISUAL DEFICIENCIES AND READING DISABILITY.

    ERIC Educational Resources Information Center

    ROSEN, CARL L.

    THE ROLE OF VISUAL SENSORY DEFICIENCIES IN THE CAUSATION READING DISABILITY IS DISCUSSED. PREVIOUS AND CURRENT RESEARCH STUDIES DEALING WITH SPECIFIC VISUAL PROBLEMS WHICH HAVE BEEN FOUND TO BE NEGATIVELY RELATED TO SUCCESSFUL READING ACHIEVEMENT ARE LISTED--(1) FARSIGHTEDNESS, (2) ASTIGMATISM, (3) BINOCULAR INCOORDINATIONS, AND (4) FUSIONAL…

  17. Effect of structured visual environments on apparent eye level.

    PubMed

    Stoper, A E; Cohen, M M

    1989-11-01

    Each of 12 subjects set a binocularly viewed target to apparent eye level; the target was projected on the rear wall of an open box, the floor of which was horizontal or pitched up and down at angles of 7.5 degrees and 15 degrees. Settings of the target were systematically biased by 60% of the pitch angle when the interior of the box was illuminated, but by only 5% when the interior of the box was darkened. Within-subjects variability of the settings was less under illuminated viewing conditions than in the dark, but was independent of box pitch angle. In a second experiment, 11 subjects were tested with an illuminated pitched box, yielding biases of 53% and 49% for binocular and monocular viewing conditions, respectively. The results are discussed in terms of individual and interactive effects of optical, gravitational, and extraretinal eye-position information in determining judgements of eye level.

  18. Does visual attention drive the dynamics of bistable perception?

    PubMed Central

    Dieter, Kevin C.; Brascamp, Jan; Tadin, Duje; Blake, Randolph

    2016-01-01

    How does attention interact with incoming sensory information to determine what we perceive? One domain in which this question has received serious consideration is that of bistable perception: a captivating class of phenomena that involves fluctuating visual experience in the face of physically unchanging sensory input. Here, some investigations have yielded support for the idea that attention alone determines what is seen, while others have implicated entirely attention-independent processes in driving alternations during bistable perception. We review the body of literature addressing this divide and conclude that in fact both sides are correct – depending on the form of bistable perception being considered. Converging evidence suggests that visual attention is required for alternations in the type of bistable perception called binocular rivalry, while alternations during other types of bistable perception appear to continue without requiring attention. We discuss some implications of this differential effect of attention for our understanding of the mechanisms underlying bistable perception, and examine how these mechanisms operate during our everyday visual experiences. PMID:27230785

  19. Does visual attention drive the dynamics of bistable perception?

    PubMed

    Dieter, Kevin C; Brascamp, Jan; Tadin, Duje; Blake, Randolph

    2016-10-01

    How does attention interact with incoming sensory information to determine what we perceive? One domain in which this question has received serious consideration is that of bistable perception: a captivating class of phenomena that involves fluctuating visual experience in the face of physically unchanging sensory input. Here, some investigations have yielded support for the idea that attention alone determines what is seen, while others have implicated entirely attention-independent processes in driving alternations during bistable perception. We review the body of literature addressing this divide and conclude that in fact both sides are correct-depending on the form of bistable perception being considered. Converging evidence suggests that visual attention is required for alternations in the type of bistable perception called binocular rivalry, while alternations during other types of bistable perception appear to continue without requiring attention. We discuss some implications of this differential effect of attention for our understanding of the mechanisms underlying bistable perception, and examine how these mechanisms operate during our everyday visual experiences.

  20. Straightening the Eyes Doesn't Rebalance the Brain

    PubMed Central

    Zhou, Jiawei; Wang, Yonghua; Feng, Lixia; Wang, Jiafeng; Hess, Robert F.

    2017-01-01

    Surgery to align the two eyes is commonly used in treating strabismus. However, the role of strabismic surgery on patients' binocular visual processing is not yet fully understood. In this study, we asked two questions: (1) Does realigning the eyes by strabismic surgery produce an immediate benefit to patients' sensory eye balance? (2) If not, is there a subsequent period of “alignment adaptation” akin to refractive adaptation where sensory benefits to binocular function accrue? Seventeen patients with strabismus (mean age: 17.06 ± 5.16 years old) participated in our experiment. All participants had normal or corrected to normal visual acuity (LogMAR < 0.10) in the two eyes. We quantitatively measured their sensory eye balance before and after surgery using a binocular phase combination paradigm. For the seven patients whose sensory eye balance was measured before surgery, we found no significant change [t(6) = −0.92; p = 0.39] in the sensory eye balance measured 0.5–1 months after the surgery, indicating that the surgical re-alignment didn't by itself produce any immediate benefit for sensory eye balance. To answer the second question, we measured 16 patients' sensory eye balance at around 5–12 months after their eyes had been surgically re-aligned and compared this with our measurements 0.5–1 months after surgery. We found no significant change [t(15) = −0.89; p = 0.39] in sensory eye balance 5–12 months after the surgery. These results suggest that strabismic surgery while being necessary is not itself sufficient for re-establishing balanced sensory eye dominance. PMID:28955214

  1. Effects of brief daily periods of unrestricted vision during early monocular form deprivation on development of visual area 2.

    PubMed

    Zhang, Bin; Tao, Xiaofeng; Wensveen, Janice M; Harwerth, Ronald S; Smith, Earl L; Chino, Yuzo M

    2011-09-14

    Providing brief daily periods of unrestricted vision during early monocular form deprivation reduces the depth of amblyopia. To gain insights into the neural basis of the beneficial effects of this treatment, the binocular and monocular response properties of neurons were quantitatively analyzed in visual area 2 (V2) of form-deprived macaque monkeys. Beginning at 3 weeks of age, infant monkeys were deprived of clear vision in one eye for 12 hours every day until 21 weeks of age. They received daily periods of unrestricted vision for 0, 1, 2, or 4 hours during the form-deprivation period. After behavioral testing to measure the depth of the resulting amblyopia, microelectrode-recording experiments were conducted in V2. The ocular dominance imbalance away from the affected eye was reduced in the experimental monkeys and was generally proportional to the reduction in the depth of amblyopia in individual monkeys. There were no interocular differences in the spatial properties of V2 neurons in any subject group. However, the binocular disparity sensitivity of V2 neurons was significantly higher and binocular suppression was lower in monkeys that had unrestricted vision. The decrease in ocular dominance imbalance in V2 was the neuronal change most closely associated with the observed reduction in the depth of amblyopia. The results suggest that the degree to which extrastriate neurons can maintain functional connections with the deprived eye (i.e., reducing undersampling for the affected eye) is the most significant factor associated with the beneficial effects of brief periods of unrestricted vision.

  2. Effects of Brief Daily Periods of Unrestricted Vision during Early Monocular Form Deprivation on Development of Visual Area 2

    PubMed Central

    Zhang, Bin; Tao, Xiaofeng; Wensveen, Janice M.; Harwerth, Ronald S.; Smith, Earl L.

    2011-01-01

    Purpose. Providing brief daily periods of unrestricted vision during early monocular form deprivation reduces the depth of amblyopia. To gain insights into the neural basis of the beneficial effects of this treatment, the binocular and monocular response properties of neurons were quantitatively analyzed in visual area 2 (V2) of form-deprived macaque monkeys. Methods. Beginning at 3 weeks of age, infant monkeys were deprived of clear vision in one eye for 12 hours every day until 21 weeks of age. They received daily periods of unrestricted vision for 0, 1, 2, or 4 hours during the form-deprivation period. After behavioral testing to measure the depth of the resulting amblyopia, microelectrode-recording experiments were conducted in V2. Results. The ocular dominance imbalance away from the affected eye was reduced in the experimental monkeys and was generally proportional to the reduction in the depth of amblyopia in individual monkeys. There were no interocular differences in the spatial properties of V2 neurons in any subject group. However, the binocular disparity sensitivity of V2 neurons was significantly higher and binocular suppression was lower in monkeys that had unrestricted vision. Conclusions. The decrease in ocular dominance imbalance in V2 was the neuronal change most closely associated with the observed reduction in the depth of amblyopia. The results suggest that the degree to which extrastriate neurons can maintain functional connections with the deprived eye (i.e., reducing undersampling for the affected eye) is the most significant factor associated with the beneficial effects of brief periods of unrestricted vision. PMID:21849427

  3. Binocular pattern deprivation interferes with the expression of proteins involved in primary visual cortex maturation in the cat.

    PubMed

    Laskowska-Macios, Karolina; Nys, Julie; Hu, Tjing-Tjing; Zapasnik, Monika; Van der Perren, Anke; Kossut, Malgorzata; Burnat, Kalina; Arckens, Lutgarde

    2015-08-14

    Binocular pattern deprivation from eye opening (early BD) delays the maturation of the primary visual cortex. This delay is more pronounced for the peripheral than the central visual field representation within area 17, particularly between the age of 2 and 4 months [Laskowska-Macios, Cereb Cortex, 2014]. In this study, we probed for related dynamic changes in the cortical proteome. We introduced age, cortical region and BD as principal variables in a 2-D DIGE screen of area 17. In this way we explored the potential of BD-related protein expression changes between central and peripheral area 17 of 2- and 4-month-old BD (2BD, 4BD) kittens as a valid parameter towards the identification of brain maturation-related molecular processes. Consistent with the maturation delay, distinct developmental protein expression changes observed for normal kittens were postponed by BD, especially in the peripheral region. These BD-induced proteomic changes suggest a negative regulation of neurite outgrowth, synaptic transmission and clathrin-mediated endocytosis, thereby implicating these processes in normal experience-induced visual cortex maturation. Verification of the expression of proteins from each of the biological processes via Western analysis disclosed that some of the transient proteomic changes correlate to the distinct behavioral outcome in adult life, depending on timing and duration of the BD period [Neuroscience 2013;255:99-109]. Taken together, the plasticity potential to recover from BD, in relation to ensuing restoration of normal visual input, appears to rely on specific protein expression changes and cellular processes induced by the loss of pattern vision in early life.

  4. The Initiation of Smooth Pursuit is Delayed in Anisometropic Amblyopia.

    PubMed

    Raashid, Rana Arham; Liu, Ivy Ziqian; Blakeman, Alan; Goltz, Herbert C; Wong, Agnes M F

    2016-04-01

    Several behavioral studies have shown that the reaction times of visually guided movements are slower in people with amblyopia, particularly during amblyopic eye viewing. Here, we tested the hypothesis that the initiation of smooth pursuit eye movements, which are responsible for accurately keeping moving objects on the fovea, is delayed in people with anisometropic amblyopia. Eleven participants with anisometropic amblyopia and 14 visually normal observers were asked to track a step-ramp target moving at ±15°/s horizontally as quickly and as accurately as possible. The experiment was conducted under three viewing conditions: amblyopic/nondominant eye, binocular, and fellow/dominant eye viewing. Outcome measures were smooth pursuit latency, open-loop gain, steady state gain, and catch-up saccade frequency. Participants with anisometropic amblyopia initiated smooth pursuit significantly slower during amblyopic eye viewing (206 ± 20 ms) than visually normal observers viewing with their nondominant eye (183 ± 17 ms, P = 0.002). However, mean pursuit latency in the anisometropic amblyopia group during binocular and monocular fellow eye viewing was comparable to the visually normal group. Mean open-loop gain, steady state gain, and catch-up saccade frequency were similar between the two groups, but participants with anisometropic amblyopia exhibited more variable steady state gain (P = 0.045). This study provides evidence of temporally delayed smooth pursuit initiation in anisometropic amblyopia. After initiation, the smooth pursuit velocity profile in anisometropic amblyopia participants is similar to visually normal controls. This finding differs from what has been observed previously in participants with strabismic amblyopia who exhibit reduced smooth pursuit velocity gains with more catch-up saccades.

  5. The neural mechanism for Latent (fusion maldevelopment) nystagmus.

    PubMed

    Tychsen, Lawrence; Richards, Michael; Wong, Agnes; Foeller, Paul; Bradley, Dolores; Burkhalter, Andreas

    2010-09-01

    Latent nystagmus (LN) is the by-product of fusion maldevelopment in infancy. Because fusion maldevelopment--in the form of strabismus and amblyopia--is common, LN is a prevalent form of pathologic nystagmus encountered in clinical practice. It originates as an afferent visual pathway disorder. To unravel the mechanism for LN, we studied patients and nonhuman primates with maldeveloped fusion. These experiments have revealed that loss of binocular connections within striate cortex (area V1) in the first months of life is the necessary and sufficient cause of LN. The severity of LN increases systematically with longer durations of binocular decorrelation and greater losses of V1 connections. Decorrelation durations that exceed the equivalent of 2-3 months in human development result in an LN prevalence of 100%. No manipulation of brain stem motor pathways is required. The binocular maldevelopment originating in area V1 is passed on to downstream extrastriate regions of cerebral cortex that drive conjugate gaze, notably MSTd. Conjugate gaze is stable when MSTd neurons of the right and left cerebral hemispheres have balanced binocular activity. Fusion maldevelopment in infancy causes unbalanced monocular activity. If input from one eye dominates and the other is suppressed, MSTd in one hemisphere becomes more active. Acting through downstream projections to the ipsilateral nucleus of the optic tract, the eyes are driven conjugately to that side. The unbalanced MSTd drive is evident as the nasalward gaze-holding bias of LN when viewing with either eye.

  6. Binocular depth processing in the ventral visual pathway

    PubMed Central

    Vogels, Rufin

    2016-01-01

    One of the most powerful forms of depth perception capitalizes on the small relative displacements, or binocular disparities, in the images projected onto each eye. The brain employs these disparities to facilitate various computations, including sensori-motor transformations (reaching, grasping), scene segmentation and object recognition. In accordance with these different functions, disparity activates a large number of regions in the brain of both humans and monkeys. Here, we review how disparity processing evolves along different regions of the ventral visual pathway of macaques, emphasizing research based on both correlational and causal techniques. We will discuss the progression in the ventral pathway from a basic absolute disparity representation to a more complex three-dimensional shape code. We will show that, in the course of this evolution, the underlying neuronal activity becomes progressively more bound to the global perceptual experience. We argue that these observations most probably extend beyond disparity processing per se, and pertain to object processing in the ventral pathway in general. We conclude by posing some important unresolved questions whose answers may significantly advance the field, and broaden its scope. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269602

  7. Binocular depth processing in the ventral visual pathway.

    PubMed

    Verhoef, Bram-Ernst; Vogels, Rufin; Janssen, Peter

    2016-06-19

    One of the most powerful forms of depth perception capitalizes on the small relative displacements, or binocular disparities, in the images projected onto each eye. The brain employs these disparities to facilitate various computations, including sensori-motor transformations (reaching, grasping), scene segmentation and object recognition. In accordance with these different functions, disparity activates a large number of regions in the brain of both humans and monkeys. Here, we review how disparity processing evolves along different regions of the ventral visual pathway of macaques, emphasizing research based on both correlational and causal techniques. We will discuss the progression in the ventral pathway from a basic absolute disparity representation to a more complex three-dimensional shape code. We will show that, in the course of this evolution, the underlying neuronal activity becomes progressively more bound to the global perceptual experience. We argue that these observations most probably extend beyond disparity processing per se, and pertain to object processing in the ventral pathway in general. We conclude by posing some important unresolved questions whose answers may significantly advance the field, and broaden its scope.This article is part of the themed issue 'Vision in our three-dimensional world'. © 2016 The Author(s).

  8. Strabismus and the Oculomotor System: Insights from Macaque Models

    PubMed Central

    Das, Vallabh E.

    2017-01-01

    Disrupting binocular vision in infancy leads to strabismus and oftentimes to a variety of associated visual sensory deficits and oculomotor abnormalities. Investigation of this disorder has been aided by the development of various animal models, each of which has advantages and disadvantages. In comparison to studies of binocular visual responses in cortical structures, investigations of neural oculomotor structures that mediate the misalignment and abnormalities of eye movements have been more recent, and these studies have shown that different brain areas are intimately involved in driving several aspects of the strabismic condition, including horizontal misalignment, dissociated deviations, A and V patterns of strabismus, disconjugate eye movements, nystagmus, and fixation switch. The responses of cells in visual and oculomotor areas that potentially drive the sensory deficits and also eye alignment and eye movement abnormalities follow a general theme of disrupted calibration, lower sensitivity, and poorer specificity compared with the normally developed visual oculomotor system. PMID:28532347

  9. [Use of liquid crystal eyeglasses for examination and recovery of binocular vision].

    PubMed

    Grigorian, A Iu; Avetisov, E S; Kashchenko, T P; Iachmeneva, E I

    1999-01-01

    A new method for diploptic treatment of strabismus is proposed, based on phase division of visual fields using liquid crystal eyeglasses --computer complex. The method is based on stereovision training (allowing stereothreshold measurements up to 150 ang. sec.). The method was tried in examinations of two groups of children: 10 controls and 74 patients with strabismus. Examinations of normal controls gave new criteria for measuring fusion reserves and stereovisual acuity by the proposed method. The therapeutic method was tried in 2 groups of patients. Time course of visual function improvement was followed up by several criteria: changes in binocular status by the color test and improvement of in-depth and stereoscopic visual acuity. The method is recommended for practice. The authors discuss the problem of small angle strabismus.

  10. Environmental Enrichment Promotes Plasticity and Visual Acuity Recovery in Adult Monocular Amblyopic Rats

    PubMed Central

    Bonaccorsi, Joyce; Cenni, Maria Cristina; Sale, Alessandro; Maffei, Lamberto

    2012-01-01

    Loss of visual acuity caused by abnormal visual experience during development (amblyopia) is an untreatable pathology in adults. In some occasions, amblyopic patients loose vision in their better eye owing to accidents or illnesses. While this condition is relevant both for its clinical importance and because it represents a case in which binocular interactions in the visual cortex are suppressed, it has scarcely been studied in animal models. We investigated whether exposure to environmental enrichment (EE) is effective in triggering recovery of vision in adult amblyopic rats rendered monocular by optic nerve dissection in their normal eye. By employing both electrophysiological and behavioral assessments, we found a full recovery of visual acuity in enriched rats compared to controls reared in standard conditions. Moreover, we report that EE modulates the expression of GAD67 and BDNF. The non invasive nature of EE renders this paradigm promising for amblyopia therapy in adult monocular people. PMID:22509358

  11. Early correlates of visual awareness following orientation and colour rivalry.

    PubMed

    Veser, Sandra; O'Shea, Robert P; Schröger, Erich; Trujillo-Barreto, Nelson J; Roeber, Urte

    2008-10-01

    Binocular rivalry occurs when dissimilar images are presented to corresponding retinal regions of the two eyes: visibility alternates irregularly between the two images, interspersed by brief transitions when parts of both may be visible. We measured event-related potentials (ERPs) following binocular rivalry by changing the stimulus viewed by one eye to be identical to that in the other eye, eliciting binocular fusion. Because of the rivalry, observers either saw the change, when it happened to the visible stimulus, or did not see the change, when it happened to the invisible stimulus. The earliest ERP differences between visible and invisible changes occurred after about 100 ms (P1) when the rivalry was between stimuli differing in orientation, and after about 200 ms (N1) when the rivalry was between stimuli differing in colour. These differences originated from ventro-lateral temporal and prefrontal areas. We conclude that the rivalling stimulus property influences the timing of modulation of correlates of visual awareness in a property-independent cortical network.

  12. Decoding conjunctions of direction-of-motion and binocular disparity from human visual cortex.

    PubMed

    Seymour, Kiley J; Clifford, Colin W G

    2012-05-01

    Motion and binocular disparity are two features in our environment that share a common correspondence problem. Decades of psychophysical research dedicated to understanding stereopsis suggest that these features interact early in human visual processing to disambiguate depth. Single-unit recordings in the monkey also provide evidence for the joint encoding of motion and disparity across much of the dorsal visual stream. Here, we used functional MRI and multivariate pattern analysis to examine where in the human brain conjunctions of motion and disparity are encoded. Subjects sequentially viewed two stimuli that could be distinguished only by their conjunctions of motion and disparity. Specifically, each stimulus contained the same feature information (leftward and rightward motion and crossed and uncrossed disparity) but differed exclusively in the way these features were paired. Our results revealed that a linear classifier could accurately decode which stimulus a subject was viewing based on voxel activation patterns throughout the dorsal visual areas and as early as V2. This decoding success was conditional on some voxels being individually sensitive to the unique conjunctions comprising each stimulus, thus a classifier could not rely on independent information about motion and binocular disparity to distinguish these conjunctions. This study expands on evidence that disparity and motion interact at many levels of human visual processing, particularly within the dorsal stream. It also lends support to the idea that stereopsis is subserved by early mechanisms also tuned to direction of motion.

  13. Aging and the perception of 3-D shape from dynamic patterns of binocular disparity.

    PubMed

    Norman, J Farley; Crabtree, Charles E; Herrmann, Molly; Thompson, Sarah R; Shular, Cassandra F; Clayton, Anna Marie

    2006-01-01

    In two experiments, we investigated the ability of younger and older observers to perceive and discriminate 3-D shape from static and dynamic patterns of binocular disparity. In both experiments, the younger observers' discrimination accuracies were 20% higher than those of the older observers. Despite this quantitative difference, in all other respects the older observers performed similarly to the younger observers. Both age groups were similarly affected by changes in the magnitude of binocular disparity, by reductions in binocular correspondence, and by increases in the speed of stereoscopic motion. In addition, observers in both age groups exhibited an advantage in performance for dynamic stereograms when the patterns of binocular disparity contained significant amounts of correspondence "noise." The process of aging does affect stereopsis, but the effects are quantitative rather than qualitative.

  14. Torsional ARC Effectively Expands the Visual Field in Hemianopia

    PubMed Central

    Satgunam, PremNandhini; Peli, Eli

    2012-01-01

    Purpose Exotropia in congenital homonymous hemianopia has been reported to provide field expansion that is more useful when accompanied with harmonios anomalous retinal correspondence (HARC). Torsional strabismus with HARC provides a similar functional advantage. In a subject with hemianopia demonstrating a field expansion consistent with torsion we documented torsional strabismus and torsional HARC. Methods Monocular visual fields under binocular fixation conditions were plotted using a custom dichoptic visual field perimeter (DVF). The DVF was also modified to measure perceived visual directions under dissociated and associated conditions across the central 50° diameter field. The field expansion and retinal correspondence of a subject with torsional strabismus (along with exotropia and right hypertropia) with congenital homonymous hemianopia was compared to that of another exotropic subject with acquired homonymous hemianopia without torsion and to a control subject with minimal phoria. Torsional rotations of the eyes were calculated from fundus photographs and perimetry. Results Torsional ARC documented in the subject with congenital homonymous hemianopia provided a functional binocular field expansion up to 18°. Normal retinal correspondence was mapped for the full 50° visual field in the control subject and for the seeing field of the acquired homonymous hemianopia subject, limiting the functional field expansion benefit. Conclusions Torsional strabismus with ARC, when occurring with homonymous hemianopia provides useful field expansion in the lower and upper fields. Dichoptic perimetry permits documentation of ocular alignment (lateral, vertical and torsional) and perceived visual direction under binocular and monocular viewing conditions. Evaluating patients with congenital or early strabismus for HARC is useful when considering surgical correction, particularly in the presence of congenital homonymous hemianopia. PMID:22885782

  15. Do early neural correlates of visual consciousness show the oblique effect? A binocular rivalry and event-related potential study.

    PubMed

    Jack, Bradley N; Roeber, Urte; O'Shea, Robert P

    2017-01-01

    When dissimilar images are presented one to each eye, we do not see both images; rather, we see one at a time, alternating unpredictably. This is called binocular rivalry, and it has recently been used to study brain processes that correlate with visual consciousness, because perception changes without any change in the sensory input. Such studies have used various types of images, but the most popular have been gratings: sets of bright and dark lines of orthogonal orientations presented one to each eye. We studied whether using cardinal rival gratings (vertical, 0°, and horizontal, 90°) versus oblique rival gratings (left-oblique, -45°, and right-oblique, 45°) influences early neural correlates of visual consciousness, because of the oblique effect: the tendency for visual performance to be greater for cardinal gratings than for oblique gratings. Participants viewed rival gratings and pressed keys indicating which of the two gratings they perceived, was dominant. Next, we changed one of the gratings to match the grating shown to the other eye, yielding binocular fusion. Participants perceived the rivalry-to-fusion change to the dominant grating and not to the other, suppressed grating. Using event-related potentials (ERPs), we found neural correlates of visual consciousness at the P1 for both sets of gratings, as well as at the P1-N1 for oblique gratings, and we found a neural correlate of the oblique effect at the N1, but only for perceived changes. These results show that the P1 is the earliest neural activity associated with visual consciousness and that visual consciousness might be necessary to elicit the oblique effect.

  16. Capture of visual direction in dynamic vergence is reduced with flashed monocular lines.

    PubMed

    Jaschinski, Wolfgang; Jainta, Stephanie; Schürer, Michael

    2006-08-01

    The visual direction of a continuously presented monocular object is captured by the visual direction of a closely adjacent binocular object, which questions the reliability of nonius lines for measuring vergence. This was shown by Erkelens, C. J., and van Ee, R. (1997a,b) [Capture of the visual direction: An unexpected phenomenon in binocular vision. Vision Research, 37, 1193-1196; Capture of the visual direction of monocular objects by adjacent binocular objects. Vision Research, 37, 1735-1745] stimulating dynamic vergence by a counter phase oscillation of two square random-dot patterns (one to each eye) that contained a smaller central dot-free gap (of variable width) with a vertical monocular line oscillating in phase with the random-dot pattern of the respective eye; subjects adjusted the motion-amplitude of the line until it was perceived as (nearly) stationary. With a continuously presented monocular line, we replicated capture of visual direction provided the dot-free gap was narrow: the adjusted motion-amplitude of the line was similar as the motion-amplitude of the random-dot pattern, although large vergence errors occurred. However, when we flashed the line for 67 ms at the moments of maximal and minimal disparity of the vergence stimulus, we found that the adjusted motion-amplitude of the line was smaller; thus, the capture effect appeared to be reduced with flashed nonius lines. Accordingly, we found that the objectively measured vergence gain was significantly correlated (r=0.8) with the motion-amplitude of the flashed monocular line when the separation between the line and the fusion contour was at least 32 min arc. In conclusion, if one wishes to estimate the dynamic vergence response with psychophysical methods, effects of capture of visual direction can be reduced by using flashed nonius lines.

  17. Deletion of Ten-m3 Induces the Formation of Eye Dominance Domains in Mouse Visual Cortex

    PubMed Central

    Merlin, Sam; Horng, Sam; Marotte, Lauren R.; Sur, Mriganka; Sawatari, Atomu

    2013-01-01

    The visual system is characterized by precise retinotopic mapping of each eye, together with exquisitely matched binocular projections. In many species, the inputs that represent the eyes are segregated into ocular dominance columns in primary visual cortex (V1), whereas in rodents, this does not occur. Ten-m3, a member of the Ten-m/Odz/Teneurin family, regulates axonal guidance in the retinogeniculate pathway. Significantly, ipsilateral projections are expanded in the dorsal lateral geniculate nucleus and are not aligned with contralateral projections in Ten-m3 knockout (KO) mice. Here, we demonstrate the impact of altered retinogeniculate mapping on the organization and function of V1. Transneuronal tracing and c-fos immunohistochemistry demonstrate that the subcortical expansion of ipsilateral input is conveyed to V1 in Ten-m3 KOs: Ipsilateral inputs are widely distributed across V1 and are interdigitated with contralateral inputs into eye dominance domains. Segregation is confirmed by optical imaging of intrinsic signals. Single-unit recording shows ipsilateral, and contralateral inputs are mismatched at the level of single V1 neurons, and binocular stimulation leads to functional suppression of these cells. These findings indicate that the medial expansion of the binocular zone together with an interocular mismatch is sufficient to induce novel structural features, such as eye dominance domains in rodent visual cortex. PMID:22499796

  18. Human Factor and Usability Testing of a Binocular Optical Coherence Tomography System

    PubMed Central

    Chopra, Reena; Mulholland, Pádraig J.; Dubis, Adam M.; Anderson, Roger S.; Keane, Pearse A.

    2017-01-01

    Purpose To perform usability testing of a binocular optical coherence tomography (OCT) prototype to predict its function in a clinical setting, and to identify any potential user errors, especially in an elderly and visually impaired population. Methods Forty-five participants with chronic eye disease (mean age 62.7 years) and 15 healthy controls (mean age 53 years) underwent automated eye examination using the prototype. Examination included ‘whole-eye' OCT, ocular motility, visual acuity measurement, perimetry, and pupillometry. Interviews were conducted to assess the subjective appeal and ease of use for this cohort of first-time users. Results All participants completed the full suite of tests. Eighty-one percent of the chronic eye disease group, and 79% of healthy controls, found the prototype easier to use than common technologies, such as smartphones. Overall, 86% described the device to be appealing for use in a clinical setting. There was no statistically significant difference in the total time taken to complete the examination between participants with chronic eye disease (median 702 seconds) and healthy volunteers (median 637 seconds) (P = 0.81). Conclusion On their first use, elderly and visually impaired users completed the automated examination without assistance. Binocular OCT has the potential to perform a comprehensive eye examination in an automated manner, and thus improve the efficiency and quality of eye care. Translational Relevance A usable binocular OCT system has been developed that can be administered in an automated manner. We have identified areas that would benefit from further development to guide the translation of this technology into clinical practice. PMID:28824827

  19. Development and matching of binocular orientation preference in mouse V1.

    PubMed

    Bhaumik, Basabi; Shah, Nishal P

    2014-01-01

    Eye-specific thalamic inputs converge in the primary visual cortex (V1) and form the basis of binocular vision. For normal binocular perceptions, such as depth and stereopsis, binocularly matched orientation preference between the two eyes is required. A critical period of binocular matching of orientation preference in mice during normal development is reported in literature. Using a reaction diffusion model we present the development of RF and orientation selectivity in mouse V1 and investigate the binocular orientation preference matching during the critical period. At the onset of the critical period the preferred orientations of the modeled cells are mostly mismatched in the two eyes and the mismatch decreases and reaches levels reported in juvenile mouse by the end of the critical period. At the end of critical period 39% of cells in binocular zone in our model cortex is orientation selective. In literature around 40% cortical cells are reported as orientation selective in mouse V1. The starting and the closing time for critical period determine the orientation preference alignment between the two eyes and orientation tuning in cortical cells. The absence of near neighbor interaction among cortical cells during the development of thalamo-cortical wiring causes a salt and pepper organization in the orientation preference map in mice. It also results in much lower % of orientation selective cells in mice as compared to ferrets and cats having organized orientation maps with pinwheels.

  20. Pilot vision considerations : the effect of age on binocular fusion time.

    DOT National Transportation Integrated Search

    1966-10-01

    The study provides data regarding the relationship between vision performance and age of the individual. It has direct application to pilot visual tasks with respect to instrument panel displays, and to controller visual tasks in association with rad...

  1. The visual impact of gossip.

    PubMed

    Anderson, Eric; Siegel, Erika H; Bliss-Moreau, Eliza; Barrett, Lisa Feldman

    2011-06-17

    Gossip is a form of affective information about who is friend and who is foe. We show that gossip does not influence only how a face is evaluated--it affects whether a face is seen in the first place. In two experiments, neutral faces were paired with negative, positive, or neutral gossip and were then presented alone in a binocular rivalry paradigm (faces were presented to one eye, houses to the other). In both studies, faces previously paired with negative (but not positive or neutral) gossip dominated longer in visual consciousness. These findings demonstrate that gossip, as a potent form of social affective learning, can influence vision in a completely top-down manner, independent of the basic structural features of a face.

  2. Pixels, people, perception, pet peeves, and possibilities: a look at displays

    NASA Astrophysics Data System (ADS)

    Task, H. Lee

    2007-04-01

    This year marks the 35 th anniversary of the Visually Coupled Systems symposium held at Brooks Air Force Base, San Antonio, Texas in November of 1972. This paper uses the proceedings of the 1972 VCS symposium as a guide to address several topics associated primarily with helmet-mounted displays, systems integration and the human-machine interface. Specific topics addressed include monocular and binocular helmet-mounted displays (HMDs), visor projection HMDs, color HMDs, system integration with aircraft windscreens, visual interface issues and others. In addition, this paper also addresses a few mysteries and irritations (pet peeves) collected over the past 35+ years of experience in the display and display related areas.

  3. Binocular Vision-Based Position and Pose of Hand Detection and Tracking in Space

    NASA Astrophysics Data System (ADS)

    Jun, Chen; Wenjun, Hou; Qing, Sheng

    After the study of image segmentation, CamShift target tracking algorithm and stereo vision model of space, an improved algorithm based of Frames Difference and a new space point positioning model were proposed, a binocular visual motion tracking system was constructed to verify the improved algorithm and the new model. The problem of the spatial location and pose of the hand detection and tracking have been solved.

  4. Infant Face Preferences after Binocular Visual Deprivation

    ERIC Educational Resources Information Center

    Mondloch, Catherine J.; Lewis, Terri L.; Levin, Alex V.; Maurer, Daphne

    2013-01-01

    Early visual deprivation impairs some, but not all, aspects of face perception. We investigated the possible developmental roots of later abnormalities by using a face detection task to test infants treated for bilateral congenital cataract within 1 hour of their first focused visual input. The seven patients were between 5 and 12 weeks old…

  5. Remote operation: a selective review of research into visual depth perception.

    PubMed

    Reinhardt-Rutland, A H

    1996-07-01

    Some perceptual motor operations are performed remotely; examples include the handling of life-threatening materials and surgical procedures. A camera conveys the site of operation to a TV monitor, so depth perception relies mainly on pictorial information, perhaps with enhancement of the occlusion cue by motion. However, motion information such as motion parallax is not likely to be important. The effectiveness of pictorial information is diminished by monocular and binocular information conveying flatness of the screen and by difficulties in scaling: Only a degree of relative depth can be conveyed. Furthermore, pictorial information can mislead. Depth perception is probably adequate in remote operation, if target objects are well separated, with well-defined edges and familiar shapes. Stereoscopic viewing systems are being developed to introduce binocular information to remote operation. However, stereoscopic viewing is problematic because binocular disparity conflicts with convergence and monocular information. An alternative strategy to improve precision in remote operation may be to rely on individuals who lack binocular function: There is redundancy in depth information, and such individuals seem to compensate for the lack of binocular function.

  6. Stochastic correlative firing for figure-ground segregation.

    PubMed

    Chen, Zhe

    2005-03-01

    Segregation of sensory inputs into separate objects is a central aspect of perception and arises in all sensory modalities. The figure-ground segregation problem requires identifying an object of interest in a complex scene, in many cases given binaural auditory or binocular visual observations. The computations required for visual and auditory figure-ground segregation share many common features and can be cast within a unified framework. Sensory perception can be viewed as a problem of optimizing information transmission. Here we suggest a stochastic correlative firing mechanism and an associative learning rule for figure-ground segregation in several classic sensory perception tasks, including the cocktail party problem in binaural hearing, binocular fusion of stereo images, and Gestalt grouping in motion perception.

  7. Dichoptic movie viewing treats childhood amblyopia.

    PubMed

    Li, Simone L; Reynaud, Alexandre; Hess, Robert F; Wang, Yi-Zhong; Jost, Reed M; Morale, Sarah E; De La Cruz, Angie; Dao, Lori; Stager, David; Birch, Eileen E

    2015-10-01

    Contrast-balanced dichoptic experience with perceptual-learning tasks or simple games has been shown to improve visual acuity significantly in amblyopia. However, these tasks are intensive and repetitive, and up to 40% of unsupervised patients are noncompliant. We investigated the efficacy of a potentially more engaging movie method to provide contrast-balanced binocular experience via complementary dichoptic stimulation. Eight amblyopic children 4-10 years of age were enrolled in a prospective cohort study to watch 3 dichoptic movies per week for 2 weeks on a passive 3D display. Dichoptic versions of 18 popular animated feature films were created. A patterned image mask of irregularly shaped blobs was multiplied with the movie images seen by the amblyopic eye and an inverse mask was multiplied with the images seen by the fellow eye. Fellow-eye contrast was initially set at a reduced level that allowed binocular vision and was then incremented by 10% at each visit. Best-corrected visual acuity, random dot stereoacuity, and interocular suppression were measured at baseline and 2 weeks. Mean amblyopic eye visual acuity (with standard error of the mean) improved from a logarithm of minimum angle of resolution of 0.72 ± 0.08 at baseline to 0.52 ± 0.09 (P = 0.003); that is, 2.0 lines of improvement at the 2-week outcome visit. No significant change in interocular suppression or stereoacuity was found. Passive viewing of dichoptic feature films is feasible and could be a promising new treatment for childhood amblyopia. The maximum improvement that may be achieved by watching dichoptic movies remains to be determined. No known side effects are associated with this new treatment. Copyright © 2015 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  8. Dichoptic movie viewing treats childhood amblyopia

    PubMed Central

    Li, Simone L.; Reynaud, Alexandre; Hess, Robert F.; Wang, Yi-Zhong; Jost, Reed M.; Morale, Sarah E.; De La Cruz, Angie; Dao, Lori; Stager, David; Birch, Eileen E.

    2015-01-01

    Background Contrast-balanced dichoptic experience with perceptual-learning tasks or simple games has been shown to improve visual acuity significantly in amblyopia. However, these tasks are intensive and repetitive, and up to 40% of unsupervised patients are noncompliant. We investigated the efficacy of a potentially more engaging movie method to provide contrast-balanced binocular experience via complementary dichoptic stimulation. Methods Eight amblyopic children 4–10 years of age were enrolled in a prospective cohort study to watch 3 dichoptic movies per week for 2 weeks on a passive 3D display. Dichoptic versions of 18 popular animated feature films were created. A patterned image mask of irregularly shaped blobs was multiplied with the movie images seen by the amblyopic eye and an inverse mask was multiplied with the images seen by the fellow eye. Fellow-eye contrast was initially set at a reduced level that allowed binocular vision and was then incremented by 10% at each visit. Best-corrected visual acuity, random dot stereoacuity, and interocular suppression were measured at baseline and 2 weeks. Results Mean amblyopic eye visual acuity (with standard error of the mean) improved from a logarithm of minimum angle of resolution of 0.72 ± 0.08 at baseline to 0.52 ± 0.09 (P = 0.003); that is, 2.0 lines of improvement at the 2-week outcome visit. No significant change in interocular suppression or stereoacuity was found. Conclusions Passive viewing of dichoptic feature films is feasible and could be a promising new treatment for childhood amblyopia. The maximum improvement that may be achieved by watching dichoptic movies remains to be determined. No known side effects are associated with this new treatment. PMID:26486019

  9. Evaluating the effect of three-dimensional visualization on force application and performance time during robotics-assisted mitral valve repair.

    PubMed

    Currie, Maria E; Trejos, Ana Luisa; Rayman, Reiza; Chu, Michael W A; Patel, Rajni; Peters, Terry; Kiaii, Bob B

    2013-01-01

    The purpose of this study was to determine the effect of three-dimensional (3D) binocular, stereoscopic, and two-dimensional (2D) monocular visualization on robotics-assisted mitral valve annuloplasty versus conventional techniques in an ex vivo animal model. In addition, we sought to determine whether these effects were consistent between novices and experts in robotics-assisted cardiac surgery. A cardiac surgery test-bed was constructed to measure forces applied during mitral valve annuloplasty. Sutures were passed through the porcine mitral valve annulus by the participants with different levels of experience in robotics-assisted surgery and tied in place using both robotics-assisted and conventional surgery techniques. The mean time for both the experts and the novices using 3D visualization was significantly less than that required using 2D vision (P < 0.001). However, there was no significant difference in the maximum force applied by the novices to the mitral valve during suturing (P = 0.7) and suture tying (P = 0.6) using either 2D or 3D visualization. The mean time required and forces applied by both the experts and the novices were significantly less using the conventional surgical technique than when using the robotic system with either 2D or 3D vision (P < 0.001). Despite high-quality binocular images, both the experts and the novices applied significantly more force to the cardiac tissue during 3D robotics-assisted mitral valve annuloplasty than during conventional open mitral valve annuloplasty. This finding suggests that 3D visualization does not fully compensate for the absence of haptic feedback in robotics-assisted cardiac surgery.

  10. The Initiation of Smooth Pursuit is Delayed in Anisometropic Amblyopia

    PubMed Central

    Raashid, Rana Arham; Liu, Ivy Ziqian; Blakeman, Alan; Goltz, Herbert C.; Wong, Agnes M. F.

    2016-01-01

    Purpose Several behavioral studies have shown that the reaction times of visually guided movements are slower in people with amblyopia, particularly during amblyopic eye viewing. Here, we tested the hypothesis that the initiation of smooth pursuit eye movements, which are responsible for accurately keeping moving objects on the fovea, is delayed in people with anisometropic amblyopia. Methods Eleven participants with anisometropic amblyopia and 14 visually normal observers were asked to track a step-ramp target moving at ±15°/s horizontally as quickly and as accurately as possible. The experiment was conducted under three viewing conditions: amblyopic/nondominant eye, binocular, and fellow/dominant eye viewing. Outcome measures were smooth pursuit latency, open-loop gain, steady state gain, and catch-up saccade frequency. Results Participants with anisometropic amblyopia initiated smooth pursuit significantly slower during amblyopic eye viewing (206 ± 20 ms) than visually normal observers viewing with their nondominant eye (183 ± 17 ms, P = 0.002). However, mean pursuit latency in the anisometropic amblyopia group during binocular and monocular fellow eye viewing was comparable to the visually normal group. Mean open-loop gain, steady state gain, and catch-up saccade frequency were similar between the two groups, but participants with anisometropic amblyopia exhibited more variable steady state gain (P = 0.045). Conclusions This study provides evidence of temporally delayed smooth pursuit initiation in anisometropic amblyopia. After initiation, the smooth pursuit velocity profile in anisometropic amblyopia participants is similar to visually normal controls. This finding differs from what has been observed previously in participants with strabismic amblyopia who exhibit reduced smooth pursuit velocity gains with more catch-up saccades. PMID:27070109

  11. Early visual responses predict conscious face perception within and between subjects during binocular rivalry

    PubMed Central

    Sandberg, Kristian; Bahrami, Bahador; Kanai, Ryota; Barnes, Gareth Robert; Overgaard, Morten; Rees, Geraint

    2014-01-01

    Previous studies indicate that conscious face perception may be related to neural activity in a large time window around 170-800ms after stimulus presentation, yet in the majority of these studies changes in conscious experience are confounded with changes in physical stimulation. Using multivariate classification on MEG data recorded when participants reported changes in conscious perception evoked by binocular rivalry between a face and a grating, we showed that only MEG signals in the 120-320ms time range, peaking at the M170 around 180ms and the P2m at around 260ms, reliably predicted conscious experience. Conscious perception could not only be decoded significantly better than chance from the sensors that showed the largest average difference, as previous studies suggest, but also from patterns of activity across groups of occipital sensors that individually were unable to predict perception better than chance. Additionally, source space analyses showed that sources in the early and late visual system predicted conscious perception more accurately than frontal and parietal sites, although conscious perception could also be decoded there. Finally, the patterns of neural activity associated with conscious face perception generalized from one participant to another around the times of maximum prediction accuracy. Our work thus demonstrates that the neural correlates of particular conscious contents (here, faces) are highly consistent in time and space within individuals and that these correlates are shared to some extent between individuals. PMID:23281780

  12. Body ownership promotes visual awareness.

    PubMed

    van der Hoort, Björn; Reingardt, Maria; Ehrsson, H Henrik

    2017-08-17

    The sense of ownership of one's body is important for survival, e.g., in defending the body against a threat. However, in addition to affecting behavior, it also affects perception of the world. In the case of visuospatial perception, it has been shown that the sense of ownership causes external space to be perceptually scaled according to the size of the body. Here, we investigated the effect of ownership on another fundamental aspect of visual perception: visual awareness. In two binocular rivalry experiments, we manipulated the sense of ownership of a stranger's hand through visuotactile stimulation while that hand was one of the rival stimuli. The results show that ownership, but not mere visuotactile stimulation, increases the dominance of the hand percept. This effect is due to a combination of longer perceptual dominance durations and shorter suppression durations. Together, these results suggest that the sense of body ownership promotes visual awareness.

  13. Body ownership promotes visual awareness

    PubMed Central

    Reingardt, Maria; Ehrsson, H Henrik

    2017-01-01

    The sense of ownership of one’s body is important for survival, e.g., in defending the body against a threat. However, in addition to affecting behavior, it also affects perception of the world. In the case of visuospatial perception, it has been shown that the sense of ownership causes external space to be perceptually scaled according to the size of the body. Here, we investigated the effect of ownership on another fundamental aspect of visual perception: visual awareness. In two binocular rivalry experiments, we manipulated the sense of ownership of a stranger’s hand through visuotactile stimulation while that hand was one of the rival stimuli. The results show that ownership, but not mere visuotactile stimulation, increases the dominance of the hand percept. This effect is due to a combination of longer perceptual dominance durations and shorter suppression durations. Together, these results suggest that the sense of body ownership promotes visual awareness. PMID:28826500

  14. Prevalence of non-strabismic anomalies of binocular vision in Tamil Nadu: report 2 of BAND study.

    PubMed

    Hussaindeen, Jameel Rizwana; Rakshit, Archayeeta; Singh, Neeraj Kumar; George, Ronnie; Swaminathan, Meenakshi; Kapur, Suman; Scheiman, Mitchell; Ramani, Krishna Kumar

    2017-11-01

    Population-based studies on the prevalence of non-strabismic anomalies of binocular vision in ethnic Indians are more than two decades old. Based on indigenous normative data, the BAND (Binocular Vision Anomalies and Normative Data) study aims to report the prevalence of non-strabismic anomalies of binocular vision among school children in rural and urban Tamil Nadu. This population-based, cross-sectional study was designed to estimate the prevalence of non-strabismic anomalies of binocular vision in the rural and urban population of Tamil Nadu. In four schools, two each in rural and urban arms, 920 children in the age range of seven to 17 years were included in the study. Comprehensive binocular vision assessment was done for all children including evaluation of vergence and accommodative systems. In the first phase of the study, normative data of parameters of binocular vision were assessed followed by prevalence estimates of non-strabismic anomalies of binocular vision. The mean and standard deviation of the age of the sample were 12.7 ± 2.7 years. The prevalence of non-strabismic anomalies of binocular vision in the urban and rural arms was found to be 31.5 and 29.6 per cent, respectively. Convergence insufficiency was the most prevalent (16.5 and 17.6 per cent in the urban and rural arms, respectively) among all the types of non-strabismic anomalies of binocular vision. There was no gender predilection and no statistically significant differences were observed between the rural and urban arms in the prevalence of non-strabismic anomalies of binocular vision (Z-test, p > 0.05). The prevalence of non-strabismic anomalies of binocular vision was found to be higher in the 13 to 17 years age group (36.2 per cent) compared to seven to 12 years (25.1 per cent) (Z-test, p < 0.05). Non-strabismic binocular vision anomalies are highly prevalent among school children and the prevalence increases with age. With increasing near visual demands in the higher grades, these anomalies could significantly impact the reading efficiency of children. Thus, it is recommended that screening for anomalies of binocular vision should be integrated into the conventional vision screening protocol. © 2016 Optometry Australia.

  15. Relationship Between Rates of Binocular Visual Field Loss and Vision-Related Quality of Life in Glaucoma

    PubMed Central

    Lisboa, Renato; Chun, Yeoun Sook; Zangwill, Linda M.; Weinreb, Robert N.; Rosen, Peter N.; Liebmann, Jeffrey M.; Girkin, Christopher A.; Medeiros, Felipe A.

    2013-01-01

    Objective To evaluate the relationship between binocular rates of visual field change and vision-related quality of life (VRQOL) in glaucoma. Methods The study included 796 eyes of 398 participants that had diagnosed or suspected glaucoma followed for an average of 7.3 ± 2.0 years. Subjects were recruited from the Diagnostic Innovations in Glaucoma Study (DIGS) and the African Descent and Glaucoma Evaluation Study (ADAGES). VRQOL was evaluated using the National Eye Institute Visual Function Questionnaire (NEI VFQ-25) at the last follow-up visit. Integrated binocular visual fields (BVF) were calculated from the monocular fields of each patient. Linear regression of mean deviation (MD) values was used to evaluate rates of visual field change during the follow-up period. Logistic regression models were used to investigate the relationship between abnormal VRQOL and rates of visual field change, while adjusting for potentially confounding socio-economic and demographic variables. Results Thirty-two patients (8.0%) had abnormal VRQOL as determined by the results of the NEI VFQ-25 questionnaire. Subjects with abnormal VRQOL had significantly faster rates of BVF change than those with normal VRQOL (−0.18 db/year vs. −0.06 dB/year, respectively; P < 0.001). Rates of BVF change were significantly associated with abnormality in VRQOL (OR = 1.31 per 0.1dB/year faster; P = 0.038), after adjustment for confounding variables. Conclusions Patients with faster rates of BVF change were at higher risk of reporting abnormal VRQOL. Assessment of rates of BVF change may provide useful information in determining risk of functional impairment in glaucoma. PMID:23450425

  16. Experience-induced interocular plasticity of vision in infancy.

    PubMed

    Tschetter, Wayne W; Douglas, Robert M; Prusky, Glen T

    2011-01-01

    Animal model studies of amblyopia have generally concluded that enduring effects of monocular deprivation (MD) on visual behavior (i.e., loss of visual acuity) are limited to the deprived eye, and are restricted to juvenile life. We have previously reported, however, that lasting effects of MD on visual function can be elicited in adulthood by stimulating visuomotor experience through the non-deprived eye. To test whether stimulating experience would also induce interocular plasticity of vision in infancy, we assessed in rats from eye-opening on postnatal day (P) 15, the effect of pairing MD with the daily experience of measuring thresholds for optokinetic tracking (OKT). MD with visuomotor experience from P15 to P25 led to a ~60% enhancement of the spatial frequency threshold for OKT through the non-deprived eye during the deprivation, which was followed by loss-of-function (~60% below normal) through both eyes when the deprived eye was opened. Reduced thresholds were maintained into adulthood with binocular OKT experience from P25 to P30. The ability to generate the plasticity and maintain lost function was dependent on visual cortex. Strictly limiting the period of deprivation to infancy by opening the deprived eye at P19 resulted in a comparable loss-of-function. Animals with reduced OKT responses also had significantly reduced visual acuity, measured independently in a discrimination task. Thus, experience-dependent cortical plasticity that can lead to amblyopia is present earlier in life than previously recognized.

  17. Contrast-balanced binocular treatment in children with deprivation amblyopia.

    PubMed

    Hamm, Lisa M; Chen, Zidong; Li, Jinrong; Dai, Shuan; Black, Joanna; Yuan, Junpeng; Yu, Minbin; Thompson, Benjamin

    2017-11-28

    Children with deprivation amblyopia due to childhood cataract have been excluded from much of the emerging research into amblyopia treatment. An investigation was conducted to determine whether contrast-balanced binocular treatment - a strategy currently being explored for children with anisometropic and strabismic amblyopia - may be effective in children with deprivation amblyopia. An unmasked, case-series design intended to assess proof of principle was employed. Eighteen children with deprivation amblyopia due to childhood cataracts (early bilateral n = 7, early unilateral n = 7, developmental n = 4), as well as 10 children with anisometropic (n = 8) or mixed anisometropic and strabismic amblyopia (n = 2) were prescribed one hour a day of treatment over a six-week period. Supervised treatment was available. Visual acuity, contrast sensitivity, global motion perception and interocular suppression were measured pre- and post-treatment. Visual acuity improvements occurred in the anisometropic/strabismic group (0.15 ± 0.05 logMAR, p = 0.014), but contrast sensitivity did not change. As a group, children with deprivation amblyopia had a smaller but statistically significant improvement in weaker eye visual acuity (0.09 ± 0.03 logMAR, p = 0.004), as well a significant improvement in weaker eye contrast sensitivity (p = 0.004). Subgroup analysis suggested that the children with early bilateral deprivation had the largest improvements, while children with early unilateral cataract did not improve. Interestingly, binocular contrast sensitivity also improved in children with early bilateral deprivation. Global motion perception improved for both subgroups with early visual deprivation, as well as children with anisometropic or mixed anisometropic/strabismic amblyopia. Interocular suppression improved for all subgroups except children with early unilateral deprivation. These data suggest that supervised contrast-balanced binocular treatment should be further investigated as a treatment option for children with deprivation amblyopia. However, for children with more severe deprivation amblyopia due to early unilateral cataracts, supplementary or alternative options should also be explored. © 2017 Optometry Australia.

  18. A Limited Role for Suppression in the Central Field of Individuals with Strabismic Amblyopia

    PubMed Central

    Barrett, Brendan T.; Panesar, Gurvinder K.; Scally, Andrew J.; Pacey, Ian E.

    2012-01-01

    Background Although their eyes are pointing in different directions, people with long-standing strabismic amblyopia typically do not experience double-vision or indeed any visual symptoms arising from their condition. It is generally believed that the phenomenon of suppression plays a major role in dealing with the consequences of amblyopia and strabismus, by preventing images from the weaker/deviating eye from reaching conscious awareness. Suppression is thus a highly sophisticated coping mechanism. Although suppression has been studied for over 100 years the literature is equivocal in relation to the extent of the retina that is suppressed, though the method used to investigate suppression is crucial to the outcome. There is growing evidence that some measurement methods lead to artefactual claims that suppression exists when it does not. Methodology/Results Here we present the results of an experiment conducted with a new method to examine the prevalence, depth and extent of suppression in ten individuals with strabismic amblyopia. Seven subjects (70%) showed no evidence whatsoever for suppression and in the three individuals who did (30%), the depth and extent of suppression was small. Conclusions Suppression may play a much smaller role in dealing with the negative consequences of strabismic amblyopia than previously thought. Whereas recent claims of this nature have been made only in those with micro-strabismus our results show extremely limited evidence for suppression across the central visual field in strabismic amblyopes more generally. Instead of suppressing the image from the weaker/deviating eye, we suggest the visual system of individuals with strabismic amblyopia may act to maximise the possibilities for binocular co-operation. This is consistent with recent evidence from strabismic and amblyopic individuals that their binocular mechanisms are intact, and that, just as in visual normals, performance with two eyes is better than with the better eye alone in these individuals. PMID:22649494

  19. A limited role for suppression in the central field of individuals with strabismic amblyopia.

    PubMed

    Barrett, Brendan T; Panesar, Gurvinder K; Scally, Andrew J; Pacey, Ian E

    2012-01-01

    Although their eyes are pointing in different directions, people with long-standing strabismic amblyopia typically do not experience double-vision or indeed any visual symptoms arising from their condition. It is generally believed that the phenomenon of suppression plays a major role in dealing with the consequences of amblyopia and strabismus, by preventing images from the weaker/deviating eye from reaching conscious awareness. Suppression is thus a highly sophisticated coping mechanism. Although suppression has been studied for over 100 years the literature is equivocal in relation to the extent of the retina that is suppressed, though the method used to investigate suppression is crucial to the outcome. There is growing evidence that some measurement methods lead to artefactual claims that suppression exists when it does not. Here we present the results of an experiment conducted with a new method to examine the prevalence, depth and extent of suppression in ten individuals with strabismic amblyopia. Seven subjects (70%) showed no evidence whatsoever for suppression and in the three individuals who did (30%), the depth and extent of suppression was small. Suppression may play a much smaller role in dealing with the negative consequences of strabismic amblyopia than previously thought. Whereas recent claims of this nature have been made only in those with micro-strabismus our results show extremely limited evidence for suppression across the central visual field in strabismic amblyopes more generally. Instead of suppressing the image from the weaker/deviating eye, we suggest the visual system of individuals with strabismic amblyopia may act to maximise the possibilities for binocular co-operation. This is consistent with recent evidence from strabismic and amblyopic individuals that their binocular mechanisms are intact, and that, just as in visual normals, performance with two eyes is better than with the better eye alone in these individuals.

  20. Rebalancing binocular vision in amblyopia.

    PubMed

    Ding, Jian; Levi, Dennis M

    2014-03-01

    Humans with amblyopia have an asymmetry in binocular vision: neural signals from the amblyopic eye are suppressed in the cortex by the fellow eye. The purpose of this study was to develop new models and methods for rebalancing this asymmetric binocular vision by manipulating the contrast and luminance in the two eyes. We measured the perceived phase of a cyclopean sinewave by asking normal and amblyopic observers to indicate the apparent location (phase) of the dark trough in the horizontal cyclopean sine wave relative to a black horizontal reference line, and used the same stimuli to measure perceived contrast by matching the binocular combined contrast to a standard contrast presented to one eye. We varied both the relative contrast and luminance of the two eyes' inputs, in order to rebalance the asymmetric binocular vision. Amblyopic binocular vision becomes more and more asymmetric the higher the stimulus contrast or spatial frequency. Reanalysing our previous data, we found that, at a given spatial frequency, the binocular asymmetry could be described by a log-linear formula with two parameters, one for the maximum asymmetry and one for the rate at which the binocular system becomes asymmetric as the contrast increases. Our new data demonstrates that reducing the dominant eye's mean luminance reduces its suppression of the non-dominant eye, and therefore rebalances the asymmetric binocular vision. While the binocular asymmetry in amblyopic vision can be rebalanced by manipulating the relative contrast or luminance of the two eyes at a given spatial frequency and contrast, it is very difficult or even impossible to rebalance the asymmetry for all visual conditions. Nonetheless, wearing a neutral density filter before the dominant eye (or increasing the mean luminance in the non-dominant eye) may be more beneficial than the traditional method of patching the dominant eye for treating amblyopia. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.

  1. Effect of Common Visual Dysfunctions on Reading.

    ERIC Educational Resources Information Center

    McPartland, Brian P.

    1985-01-01

    Six common visual dysfunctions are briefly explained and their relationships to reading noted: (1) ametropia, refractive error; (2) inaccurate saccades, the small jumping eye movements used in reading; (3) inefficient binocularity/fusion; (4) insufficient convergence/divergence; (5) heterophoria, imbalance in extra-ocular muscles; and (6)…

  2. Binocular Stereoscopy in Visual Areas V-2, V-3, and V-3A of the Macaque Monkey

    PubMed Central

    Hubel, David H.; Wiesel, Torsten N.; Yeagle, Erin M.; Lafer-Sousa, Rosa; Conway, Bevil R.

    2015-01-01

    Over 40 years ago, Hubel and Wiesel gave a preliminary report of the first account of cells in monkey cerebral cortex selective for binocular disparity. The cells were located outside of V-1 within a region referred to then as “area 18.” A full-length manuscript never followed, because the demarcation of the visual areas within this region had not been fully worked out. Here, we provide a full description of the physiological experiments and identify the locations of the recorded neurons using a contemporary atlas generated by functional magnetic resonance imaging; we also perform an independent analysis of the location of the neurons relative to an anatomical landmark (the base of the lunate sulcus) that is often coincident with the border between V-2 and V-3. Disparity-tuned cells resided not only in V-2, the area now synonymous with area 18, but also in V-3 and probably within V-3A. The recordings showed that the disparity-tuned cells were biased for near disparities, tended to prefer vertical orientations, clustered by disparity preference, and often required stimulation of both eyes to elicit responses, features strongly suggesting a role in stereoscopic depth perception. PMID:24122139

  3. Comparative Study of Refractive Errors, Strabismus, Microsaccades, and Visual Perception Between Preterm and Full-Term Children With Infantile Cerebral Palsy.

    PubMed

    Kozeis, Nikolaos; Panos, Georgios D; Zafeiriou, Dimitrios I; de Gottrau, Philippe; Gatzioufas, Zisis

    2015-07-01

    The purpose of this study was to examine the refractive status, orthoptic status and visual perception in a group of preterm and another of full-term children with cerebral palsy, in order to investigate whether prematurity has an effect on the development of refractive errors and binocular disorders. A hundred school-aged children, 70 preterm and 30 full-term, with congenital cerebral palsy were examined. Differences for hypermetropia, myopia, and emmetropia were not statistically significant between the 2 groups. Astigmatism was significantly increased in the preterm group. The orthoptic status was similar for both groups. Visual perception was markedly reduced in both groups, but the differences were not significant. In conclusion, children with cerebral palsy have impaired visual skills, leading to reading difficulties. The presence of prematurity does not appear to represent an additional risk factor for the development of refractive errors and binocular disorders. © The Author(s) 2014.

  4. Comparison of visual status of Iranian military and commercial drivers.

    PubMed

    Ghasemi, Mohammad; Hoseini Yazdi, Seyed Hosein; Heravian, Javad; Jafarzadehpur, Ebrahim; Rezaee, Maryam

    2015-04-01

    There is no legal requirement for Iranian military truck drivers to undergo regular visual checkups as compared to commercial truck drivers. This study aimed to evaluate the impact of drivers' visual checkups by comparing the visual function of Iranian military and commercial truck drivers. In this comparative cross-sectional study, two hundred military and 200 commercial truck drivers were recruited and their Visual Acuity (VA), Visual Field (VF), color vision and Contrast Sensitivity (CS) were assessed and compared using the Snellen chart, confrontation screening method, D15 test and Pelli-Robson letter chart, respectively. A questionnaire regarding driving exposure and history of motor-vehicle crashes (MVCs) was also filled by drivers. Results were analyzed using an independent samples t-test, one-way ANOVA (assessing difference in number of MVCs across different age groups), chi-square test and Pearson correlation at statistical significance level of P < 0.05. Mean age was 41.6 ± 9.2 for the military truck drivers and 43.4 ± 10.9 for commercial truck drivers (P > 0.05). No significant difference between military and commercial drivers was found in terms of driving experience, number of MVCs, binocular VA, frequency of color vision defects and CS scores. In contrast, the last ocular examination was significantly earlier in military drivers than commercial drivers (P < 0.001). In addition, 4% of military drivers did not meet the national standards to drive as opposed to 2% of commercial drivers. There was a significant but weak correlation between binocular VA and age (r = 0.175, P < 0.001). However, CS showed a significantly moderate correlation with age (r = -0.488, P < 0.001). The absence of legal requirement for regular eye examination in military drivers caused the incompetent drivers to be missed in contrast to commercial drivers. The need for scientific revision of VA standard for Iranian drivers is also discussed. The CS measurement in visual checkups of older drivers deserves to be investigated more thoroughly.

  5. Evaluation of peripheral binocular visual field in patients with glaucoma: a pilot study.

    PubMed

    Ana, Banc; Cristina, Stan; Dorin, Chiselita

    2016-01-01

    The objective of this study was to evaluate the peripheral binocular visual field (PBVF) in patients with glaucoma using the threshold strategy of Humphrey Field Analyzer. We conducted a case-control pilot study in which we enrolled 59 patients with glaucoma and 20 controls. All participants were evaluated using a custom PBVF test and central 24 degrees monocular visual field tests for each eye using the threshold strategy. The central binocular visual field (CBVF) was predicted from the monocular tests using the most sensitive point at each field location. The glaucoma patients were grouped according to Hodapp classification and age. The PBVF was compared to controls and the relationship between the PBVF and CBVF was tested. The areas of frame-induced artefacts were determined (over 50 degrees in each temporal field, 24 degrees superiorly and 45 degrees inferiorly) and excluded from interpretation. The patients presented a statistically significant generalized decrease of the peripheral retinal sensitivity compared to controls for Hodapp initial stage--groups aged 50-59 (t = 11.93 > 2.06; p < 0.05) and 60-69 (t = 7.55 > 2.06; p < 0.05). For the initial Hodapp stage there was no significant relationship between PBVF and CBVF (r = 0.39). For the moderate and advanced Hodapp stages, the interpretation of data was done separately for each patient. This pilot study suggests that glaucoma patients present a decrease of PBVF compared to controls and CBVF cannot predict the PBVF in glaucoma.

  6. Tunnel Vision Prismatic Field Expansion: Challenges and Requirements

    PubMed Central

    Apfelbaum, Henry; Peli, Eli

    2015-01-01

    Purpose No prismatic solution for peripheral field loss (PFL) has gained widespread acceptance. Field extended by prisms has a corresponding optical scotoma at the prism apices. True expansion can be achieved when each eye is given a different view (through visual confusion). We analyze the effects of apical scotomas and binocular visual confusion in different designs to identify constraints on any solution that is likely to meet acceptance. Methods Calculated perimetry diagrams were compared to perimetry with PFL patients wearing InWave channel prisms and Trifield spectacles. Percept diagrams illustrate the binocular visual confusion. Results Channel prisms provide no benefit at primary gaze. Inconsequential extension was provided by InWave prisms, although accessible with moderate gaze shifts. Higher-power prisms provide greater extension, with greater paracentral scotoma loss, but require uncomfortable gaze shifts. Head turns, not eye scans, are needed to see regions lost to the apical scotomas. Trifield prisms provide field expansion at all gaze positions, but acceptance was limited by disturbing effects of central binocular visual confusion. Conclusions Field expansion when at primary gaze (where most time is spent) is needed while still providing unobstructed central vision. Paracentral multiplexing prisms we are developing that superimpose shifted and see-through views may accomplish that. Translational Relevance Use of the analyses and diagramming techniques presented here will be of value when considering prismatic aids for PFL, and could have prevented many unsuccessful designs and the improbable reports we cited from the literature. New designs must likely address the challenges identified here. PMID:26740910

  7. Tunnel Vision Prismatic Field Expansion: Challenges and Requirements.

    PubMed

    Apfelbaum, Henry; Peli, Eli

    2015-12-01

    No prismatic solution for peripheral field loss (PFL) has gained widespread acceptance. Field extended by prisms has a corresponding optical scotoma at the prism apices. True expansion can be achieved when each eye is given a different view (through visual confusion). We analyze the effects of apical scotomas and binocular visual confusion in different designs to identify constraints on any solution that is likely to meet acceptance. Calculated perimetry diagrams were compared to perimetry with PFL patients wearing InWave channel prisms and Trifield spectacles. Percept diagrams illustrate the binocular visual confusion. Channel prisms provide no benefit at primary gaze. Inconsequential extension was provided by InWave prisms, although accessible with moderate gaze shifts. Higher-power prisms provide greater extension, with greater paracentral scotoma loss, but require uncomfortable gaze shifts. Head turns, not eye scans, are needed to see regions lost to the apical scotomas. Trifield prisms provide field expansion at all gaze positions, but acceptance was limited by disturbing effects of central binocular visual confusion. Field expansion when at primary gaze (where most time is spent) is needed while still providing unobstructed central vision. Paracentral multiplexing prisms we are developing that superimpose shifted and see-through views may accomplish that. Use of the analyses and diagramming techniques presented here will be of value when considering prismatic aids for PFL, and could have prevented many unsuccessful designs and the improbable reports we cited from the literature. New designs must likely address the challenges identified here.

  8. Dynamic lens and monovision 3D displays to improve viewer comfort.

    PubMed

    Johnson, Paul V; Parnell, Jared Aq; Kim, Joohwan; Saunter, Christopher D; Love, Gordon D; Banks, Martin S

    2016-05-30

    Stereoscopic 3D (S3D) displays provide an additional sense of depth compared to non-stereoscopic displays by sending slightly different images to the two eyes. But conventional S3D displays do not reproduce all natural depth cues. In particular, focus cues are incorrect causing mismatches between accommodation and vergence: The eyes must accommodate to the display screen to create sharp retinal images even when binocular disparity drives the eyes to converge to other distances. This mismatch causes visual discomfort and reduces visual performance. We propose and assess two new techniques that are designed to reduce the vergence-accommodation conflict and thereby decrease discomfort and increase visual performance. These techniques are much simpler to implement than previous conflict-reducing techniques. The first proposed technique uses variable-focus lenses between the display and the viewer's eyes. The power of the lenses is yoked to the expected vergence distance thereby reducing the mismatch between vergence and accommodation. The second proposed technique uses a fixed lens in front of one eye and relies on the binocularly fused percept being determined by one eye and then the other, depending on simulated distance. We conducted performance tests and discomfort assessments with both techniques and compared the results to those of a conventional S3D display. The first proposed technique, but not the second, yielded clear improvements in performance and reductions in discomfort. This dynamic-lens technique therefore offers an easily implemented technique for reducing the vergence-accommodation conflict and thereby improving viewer experience.

  9. Binocular combination of luminance profiles

    PubMed Central

    Ding, Jian; Levi, Dennis M.

    2017-01-01

    We develop and test a new two-dimensional model for binocular combination of the two eyes' luminance profiles. For first-order stimuli, the model assumes that one eye's luminance profile first goes through a luminance compressor, receives gain-control and gain-enhancement from the other eye, and then linearly combines the other eye's output profile. For second-order stimuli, rectification is added in the signal path of the model before the binocular combination site. Both the total contrast and luminance energies, weighted sums over both the space and spatial-frequency domains, were used in the interocular gain-control, while only the total contrast energy was used in the interocular gain-enhancement. To challenge the model, we performed a binocular brightness matching experiment over a large range of background and target luminances. The target stimulus was a dichoptic disc with a sharp edge that has an increment or decrement luminance from its background. The disk's interocular luminance ratio varied from trial to trial. To refine the model we tested three luminance compressors, five nested binocular combination models (including the Ding–Sperling and the DSKL models), and examined the presence or absence of total luminance energy in the model. We found that (1) installing a luminance compressor, either a logarithmic luminance function or luminance gain-control, (2) including both contrast and luminance energies, and (3) adding interocular gain-enhancement (the DSKL model) to a combined model significantly improved its performance. The combined model provides a systematic account of binocular luminance summation over a large range of luminance input levels. It gives a unified explanation of Fechner's paradox observed on a dark background, and a winner-take-all phenomenon observed on a light background. To further test the model, we conducted two additional experiments: luminance summation of discs with asymmetric contour information (Experiment 2), similar to Levelt (1965) and binocular combination of second-order contrast-modulated gratings (Experiment 3). We used the model obtained in Experiment 1 to predict the results of Experiments 2 and 3 and the results of our previous studies. Model simulations further refined the contrast space weight and contrast sensitivity functions that are installed in the model, and provide a reasonable account for rebalancing of imbalanced binocular vision by reducing the mean luminance in the dominant eye. PMID:29098293

  10. Development and matching of binocular orientation preference in mouse V1

    PubMed Central

    Bhaumik, Basabi; Shah, Nishal P.

    2014-01-01

    Eye-specific thalamic inputs converge in the primary visual cortex (V1) and form the basis of binocular vision. For normal binocular perceptions, such as depth and stereopsis, binocularly matched orientation preference between the two eyes is required. A critical period of binocular matching of orientation preference in mice during normal development is reported in literature. Using a reaction diffusion model we present the development of RF and orientation selectivity in mouse V1 and investigate the binocular orientation preference matching during the critical period. At the onset of the critical period the preferred orientations of the modeled cells are mostly mismatched in the two eyes and the mismatch decreases and reaches levels reported in juvenile mouse by the end of the critical period. At the end of critical period 39% of cells in binocular zone in our model cortex is orientation selective. In literature around 40% cortical cells are reported as orientation selective in mouse V1. The starting and the closing time for critical period determine the orientation preference alignment between the two eyes and orientation tuning in cortical cells. The absence of near neighbor interaction among cortical cells during the development of thalamo-cortical wiring causes a salt and pepper organization in the orientation preference map in mice. It also results in much lower % of orientation selective cells in mice as compared to ferrets and cats having organized orientation maps with pinwheels. PMID:25104927

  11. Association between fine motor skills and binocular visual function in children with reading difficulties.

    PubMed

    Niechwiej-Szwedo, Ewa; Alramis, Fatimah; Christian, Lisa W

    2017-12-01

    Performance of fine motor skills (FMS) assessed by a clinical test battery has been associated with reading achievement in school-age children. However, the nature of this association remains to be established. The aim of this study was to assess FMS in children with reading difficulties using two experimental tasks, and to determine if performance is associated with reduced binocular function. We hypothesized that in comparison to an age- and sex-matched control group, children identified with reading difficulties will perform worse only on a motor task that has been shown to rely on binocular input. To test this hypothesis, motor performance was assessed using two tasks: bead-threading and peg-board in 19 children who were reading below expected grade and age-level. Binocular vision assessment included tests for stereoacuity, fusional vergence, amplitude of accommodation, and accommodative facility. In comparison to the control group, children with reading difficulties performed significantly worse on the bead-threading task. In contrast, performance on the peg-board task was similar in both groups. Accommodative facility was the only measure of binocular function significantly associated with motor performance. Findings from our exploratory study suggest that normal binocular vision may provide an important sensory input for the optimal development of FMS and reading. Given the small sample size tested in the current study, further investigation to assess the contribution of binocular vision to the development and performance of FMS and reading is warranted. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Bionic Vision-Based Intelligent Power Line Inspection System

    PubMed Central

    Ma, Yunpeng; He, Feijia; Xu, Jinxin

    2017-01-01

    Detecting the threats of the external obstacles to the power lines can ensure the stability of the power system. Inspired by the attention mechanism and binocular vision of human visual system, an intelligent power line inspection system is presented in this paper. Human visual attention mechanism in this intelligent inspection system is used to detect and track power lines in image sequences according to the shape information of power lines, and the binocular visual model is used to calculate the 3D coordinate information of obstacles and power lines. In order to improve the real time and accuracy of the system, we propose a new matching strategy based on the traditional SURF algorithm. The experimental results show that the system is able to accurately locate the position of the obstacles around power lines automatically, and the designed power line inspection system is effective in complex backgrounds, and there are no missing detection instances under different conditions. PMID:28203269

  13. Binocular vision in a virtual world: visual deficits following the wearing of a head-mounted display.

    PubMed

    Mon-Williams, M; Wann, J P; Rushton, S

    1993-10-01

    The short-term effects on binocular stability of wearing a conventional head-mounted display (HMD) to explore a virtual reality environment were examined. Twenty adult subjects (aged 19-29 years) wore a commercially available HMD for 10 min while cycling around a computer generated 3-D world. The twin screen presentations were set to suit the average interpupillary distance of our subject population, to mimic the conditions of public access virtual reality systems. Subjects were examined before and after exposure to the HMD and there were clear signs of induced binocular stress for a number of the subjects. The implications of introducing such HMDs into the workplace and entertainment environments are discussed.

  14. Individual Objective and Subjective Fixation Disparity in Near Vision

    PubMed Central

    Jaschinski, Wolfgang

    2017-01-01

    Binocular vision refers to the integration of images in the two eyes for improved visual performance and depth perception. One aspect of binocular vision is the fixation disparity, which is a suboptimal condition in individuals with respect to binocular eye movement control and subsequent neural processing. The objective fixation disparity refers to the vergence angle between the visual axes, which is measured with eye trackers. Subjective fixation disparity is tested with two monocular nonius lines which indicate the physical nonius separation required for perceived alignment. Subjective and objective fixation disparity represent the different physiological mechanisms of motor and sensory fusion, but the precise relation between these two is still unclear. This study measures both types of fixation disparity at viewing distances of 40, 30, and 24 cm while observers fixated a central stationary fusion target. 20 young adult subjects with normal binocular vision were tested repeatedly to investigate individual differences. For heterophoria and subjective fixation disparity, this study replicated that the binocular system does not properly adjust to near targets: outward (exo) deviations typically increase as the viewing distance is shortened. This exo proximity effect—however—was not found for objective fixation disparity, which–on the average–was zero. But individuals can have reliable outward (exo) or inward (eso) vergence errors. Cases with eso objective fixation disparity tend to have less exo states of subjective fixation disparity and heterophoria. In summary, the two types of fixation disparity seem to respond in a different way when the viewing distance is shortened. Motor and sensory fusion–as reflected by objective and subjective fixation disparity–exhibit complex interactions that may differ between individuals (eso versus exo) and vary with viewing distance (far versus near vision). PMID:28135308

  15. The impact of visual impairment on self-reported visual functioning in Latinos: The Los Angeles Latino Eye Study.

    PubMed

    Globe, Denise R; Wu, Joanne; Azen, Stanley P; Varma, Rohit

    2004-06-01

    To assess the association between presenting binocular visual acuity (VA) and self-reported visual function as measured by the 25-item National Eye Institute Visual Function Questionnaire (NEI-VFQ-25). A population-based, prevalence study of eye disease in Latinos 40 years and older residing in La Puente, California (Los Angeles Latino Eye Study [LALES]). Six thousand three hundred fifty-seven Latinos 40 years and older from 6 census tracts in La Puente. All participants completed a standardized interview, including the NEI-VFQ-25 to measure visual functioning, and a detailed eye examination. Two definitions of visual impairment were used: (1) presenting binocular distance VA of 20/40 or worse and (2) presenting binocular distance VA worse than 20/40. Analysis of variance was used to determine any systematic differences in mean NEI-VFQ-25 scores by visual impairment. Regression analyses were completed (1) to determine the association of age, gender, number of systemic comorbidities, depression, and VA with self-reported visual function and (2) to estimate a visual impairment-related difference for each subscale based on differences in VA. The NEI-VFQ-25 scores in persons with visual impairment. Of the 5287 LALES participants with complete NEI-VFQ-25 data, 6.3% (including 20/40) and 4.2% (excluding 20/40) were visually impaired. In the visually impaired participants, the NEI-VFQ-25 subscale scores ranged from 46.2 (General Health) to 93.8 (Color Vision). In the regression model, only VA, depression, and number of comorbidities were significantly associated with all subscale scores (R(2) ranged from 0.09 for Ocular Pain to 0.33 for the composite score). For 9 of 11 subscales, a 5-point change was equivalent to a 1- or 2-line difference in VA. Relationships were similar regardless of the definition of visual impairment. In this population-based study of Latinos, the NEI-VFQ-25 was sensitive to differences in VA. A 5-point difference on the NEI-VFQ-25 seems to be a minimal criterion for a visual impairment-related difference. Self-reported visual function is essentially unchanged if the definition of visual impairment includes or excludes a VA of 20/40.

  16. Association Between Undetected 10-2 Visual Field Damage and Vision-Related Quality of Life in Patients With Glaucoma.

    PubMed

    Blumberg, Dana M; De Moraes, Carlos Gustavo; Prager, Alisa J; Yu, Qi; Al-Aswad, Lama; Cioffi, George A; Liebmann, Jeffrey M; Hood, Donald C

    2017-07-01

    Recent evidence supports the presence of macular damage (within 8° of the central field) to retinal ganglion cells and associated central visual field (VF) defects in glaucoma, even in early stages. Despite this, to our knowledge, the association of 10-2 VF damage with vision-related quality of life (QOL) has not been well studied. To determine the association between QOL and visual function as measured by 24-2 and 10-2 VFs in patients with primary open-angle glaucoma and to test the hypothesis that patients with vision-related QOL disproportionate to their 24-2 VF status may exhibit 10-2 damage overlooked by the 24-2 test. In this cross-sectional analysis of observational cohort study data taken from a tertiary care specialty practice, 113 patients with glaucoma with the entire range of 24-2 VF damage completed the National Eye Institute Visual Function Questionnaire (NEI VFQ-25). Data were collected from May 2014 to January 2015 and were analyzed from March 2016 to May 2016. Standardized binocular 24-2 and 10-2 VF sensitivities were calculated for each patient. Association of binocular 24-2 and 10-2 VF sensitivity with Rasch-calibrated NEI VFQ-25 scores. Detection of outliers was based on Cook distance of the regression of binocular 24-2 and NEI VFQ-25 score. Outlier association with QOL was then assessed using a linear regression model, with binocular 10-2 VF sensitivity as the independent variable. Of the 113 patients, the mean (SD) age was 70.1 (10.9) years, and 51 (45.1%) were male and 71 (62.8%) were white. The composite NEI VFQ-25 score was associated with both binocular 24-2 (β = 1.95; 95% CI, 0.47-3.43; P = .01) and 10-2 (β = 2.57; 95% CI, 1.12-4.01; P = .001) sensitivities, but the 10-2 VF univariable model showed an almost 2-fold better fit to the data (R2 = 9.2% vs 4.9%). However, the binocular 10-2 sensitivities of 24-2 outliers had the strongest association with the composite NEI VFQ-25 scores (β = 2.78; 95% CI, 0.84-4.72; P = .006.) and the best fit to the data (R2 = 18.2%.). The 10-2 VF model showed a stronger association with NEI VFQ-25 score than the 24-2 VF model. Patients with disproportionately low quality of vision relative to patients with 24-2 VF damage may have damage on the central field missed by the 24-2 grid. Future prospective testing, including additional dimensions of quality of life, is indicated.

  17. Owls see in stereo much like humans do.

    PubMed

    van der Willigen, Robert F

    2011-06-10

    While 3D experiences through binocular disparity sensitivity have acquired special status in the understanding of human stereo vision, much remains to be learned about how binocularity is put to use in animals. The owl provides an exceptional model to study stereo vision as it displays one of the highest degrees of binocular specialization throughout the animal kingdom. In a series of six behavioral experiments, equivalent to hallmark human psychophysical studies, I compiled an extensive body of stereo performance data from two trained owls. Computer-generated, binocular random-dot patterns were used to ensure pure stereo performance measurements. In all cases, I found that owls perform much like humans do, viz.: (1) disparity alone can evoke figure-ground segmentation; (2) selective use of "relative" rather than "absolute" disparity; (3) hyperacute sensitivity; (4) disparity processing allows for the avoidance of monocular feature detection prior to object recognition; (5) large binocular disparities are not tolerated; (6) disparity guides the perceptual organization of 2D shape. The robustness and very nature of these binocular disparity-based perceptual phenomena bear out that owls, like humans, exploit the third dimension to facilitate early figure-ground segmentation of tangible objects.

  18. Binocular contrast discrimination needs monocular multiplicative noise

    PubMed Central

    Ding, Jian; Levi, Dennis M.

    2016-01-01

    The effects of signal and noise on contrast discrimination are difficult to separate because of a singularity in the signal-detection-theory model of two-alternative forced-choice contrast discrimination (Katkov, Tsodyks, & Sagi, 2006). In this article, we show that it is possible to eliminate the singularity by combining that model with a binocular combination model to fit monocular, dichoptic, and binocular contrast discrimination. We performed three experiments using identical stimuli to measure the perceived phase, perceived contrast, and contrast discrimination of a cyclopean sine wave. In the absence of a fixation point, we found a binocular advantage in contrast discrimination both at low contrasts (<4%), consistent with previous studies, and at high contrasts (≥34%), which has not been previously reported. However, control experiments showed no binocular advantage at high contrasts in the presence of a fixation point or for observers without accommodation. We evaluated two putative contrast-discrimination mechanisms: a nonlinear contrast transducer and multiplicative noise (MN). A binocular combination model (the DSKL model; Ding, Klein, & Levi, 2013b) was first fitted to both the perceived-phase and the perceived-contrast data sets, then combined with either the nonlinear contrast transducer or the MN mechanism to fit the contrast-discrimination data. We found that the best model combined the DSKL model with early MN. Model simulations showed that, after going through interocular suppression, the uncorrelated noise in the two eyes became anticorrelated, resulting in less binocular noise and therefore a binocular advantage in the discrimination task. Combining a nonlinear contrast transducer or MN with a binocular combination model (DSKL) provides a powerful method for evaluating the two putative contrast-discrimination mechanisms. PMID:26982370

  19. Binocular contrast discrimination needs monocular multiplicative noise.

    PubMed

    Ding, Jian; Levi, Dennis M

    2016-01-01

    The effects of signal and noise on contrast discrimination are difficult to separate because of a singularity in the signal-detection-theory model of two-alternative forced-choice contrast discrimination (Katkov, Tsodyks, & Sagi, 2006). In this article, we show that it is possible to eliminate the singularity by combining that model with a binocular combination model to fit monocular, dichoptic, and binocular contrast discrimination. We performed three experiments using identical stimuli to measure the perceived phase, perceived contrast, and contrast discrimination of a cyclopean sine wave. In the absence of a fixation point, we found a binocular advantage in contrast discrimination both at low contrasts (<4%), consistent with previous studies, and at high contrasts (≥34%), which has not been previously reported. However, control experiments showed no binocular advantage at high contrasts in the presence of a fixation point or for observers without accommodation. We evaluated two putative contrast-discrimination mechanisms: a nonlinear contrast transducer and multiplicative noise (MN). A binocular combination model (the DSKL model; Ding, Klein, & Levi, 2013b) was first fitted to both the perceived-phase and the perceived-contrast data sets, then combined with either the nonlinear contrast transducer or the MN mechanism to fit the contrast-discrimination data. We found that the best model combined the DSKL model with early MN. Model simulations showed that, after going through interocular suppression, the uncorrelated noise in the two eyes became anticorrelated, resulting in less binocular noise and therefore a binocular advantage in the discrimination task. Combining a nonlinear contrast transducer or MN with a binocular combination model (DSKL) provides a powerful method for evaluating the two putative contrast-discrimination mechanisms.

  20. GABAergic Inhibition in Visual Cortical Plasticity

    PubMed Central

    Sale, Alessandro; Berardi, Nicoletta; Spolidoro, Maria; Baroncelli, Laura; Maffei, Lamberto

    2010-01-01

    Experience is required for the shaping and refinement of developing neural circuits during well defined periods of early postnatal development called critical periods. Many studies in the visual cortex have shown that intracortical GABAergic circuitry plays a crucial role in defining the time course of the critical period for ocular dominance plasticity. With the end of the critical period, neural plasticity wanes and recovery from the effects of visual defects on visual acuity (amblyopia) or binocularity is much reduced or absent. Recent results pointed out that intracortical inhibition is a fundamental limiting factor for adult cortical plasticity and that its reduction by means of different pharmacological and environmental strategies makes it possible to greatly enhance plasticity in the adult visual cortex, promoting ocular dominance plasticity and recovery from amblyopia. Here we focus on the role of intracortical GABAergic circuitry in controlling both developmental and adult cortical plasticity. We shall also discuss the potential clinical application of these findings to neurological disorders in which synaptic plasticity is compromised because of excessive intracortical inhibition. PMID:20407586

  1. A Randomized Trial of a Binocular iPad Game Versus Part-Time Patching in Children Aged 13 to 16 Years With Amblyopia.

    PubMed

    Manh, Vivian M; Holmes, Jonathan M; Lazar, Elizabeth L; Kraker, Raymond T; Wallace, David K; Kulp, Marjean T; Galvin, Jennifer A; Shah, Birva K; Davis, Patricia L

    2018-02-01

    To compare visual acuity (VA) improvement in teenagers with amblyopia treated with a binocular iPad game vs part-time patching. One hundred participants aged 13 to <17 years (mean 14.3 years) with amblyopia (20/40 to 20/200, mean ∼20/63) resulting from strabismus, anisometropia, or both were enrolled into a randomized clinical trial. Participants were randomly assigned to treatment for 16 weeks of either a binocular iPad game prescribed for 1 hour per day (n = 40) or patching of the fellow eye prescribed for 2 hours per day (n = 60). The main outcome measure was change in amblyopic eye VA from baseline to 16 weeks. Mean amblyopic eye VA improved from baseline by 3.5 letters (2-sided 95% confidence interval [CI]: 1.3-5.7 letters) in the binocular group and by 6.5 letters (2-sided 95% CI: 4.4-8.5 letters) in the patching group. After adjusting for baseline VA, the difference between the binocular and patching groups was -2.7 letters (95% CI: -5.7 to 0.3 letters, P = .082) or 0.5 lines, favoring patching. In the binocular group, treatment adherence data from the iPad device indicated that only 13% of participants completed >75% of prescribed treatment. In teenagers aged 13 to <17 years, improvement in amblyopic eye VA with the binocular iPad game used in this study was not found to be better than patching, and was possibly worse. Nevertheless, it remains unclear whether the minimal treatment response to binocular treatment was owing to poor treatment adherence or lack of treatment effect. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The Visual Impact of Gossip

    PubMed Central

    Anderson, Eric; Siegel, Erika H.; Bliss-Moreau, Eliza; Barrett, Lisa Feldman

    2011-01-01

    Gossip is a form of affective information about who is friend and who is foe. We show that gossip does not impact only how a face is evaluated—it affects whether a face is seen in the first place. In two experiments, neutral faces were paired with negative, positive, or neutral gossip and were then presented alone in a binocular rivalry paradigm (faces were presented to one eye, houses to the other). In both studies, faces previously paired with negative (but not positive or neutral) gossip dominated longer in visual consciousness. These findings demonstrate that gossip, as a potent form of social affective learning, can influence vision in a completely top-down manner, independent of the basic structural features of a face. PMID:21596956

  3. Noisy Spiking in Visual Area V2 of Amblyopic Monkeys.

    PubMed

    Wang, Ye; Zhang, Bin; Tao, Xiaofeng; Wensveen, Janice M; Smith, Earl L; Chino, Yuzo M

    2017-01-25

    Interocular decorrelation of input signals in developing visual cortex can cause impaired binocular vision and amblyopia. Although increased intrinsic noise is thought to be responsible for a range of perceptual deficits in amblyopic humans, the neural basis for the elevated perceptual noise in amblyopic primates is not known. Here, we tested the idea that perceptual noise is linked to the neuronal spiking noise (variability) resulting from developmental alterations in cortical circuitry. To assess spiking noise, we analyzed the contrast-dependent dynamics of spike counts and spiking irregularity by calculating the square of the coefficient of variation in interspike intervals (CV 2 ) and the trial-to-trial fluctuations in spiking, or mean matched Fano factor (m-FF) in visual area V2 of monkeys reared with chronic monocular defocus. In amblyopic neurons, the contrast versus response functions and the spike count dynamics exhibited significant deviations from comparable data for normal monkeys. The CV 2 was pronounced in amblyopic neurons for high-contrast stimuli and the m-FF was abnormally high in amblyopic neurons for low-contrast gratings. The spike count, CV 2 , and m-FF of spontaneous activity were also elevated in amblyopic neurons. These contrast-dependent spiking irregularities were correlated with the level of binocular suppression in these V2 neurons and with the severity of perceptual loss for individual monkeys. Our results suggest that the developmental alterations in normalization mechanisms resulting from early binocular suppression can explain much of these contrast-dependent spiking abnormalities in V2 neurons and the perceptual performance of our amblyopic monkeys. Amblyopia is a common developmental vision disorder in humans. Despite the extensive animal studies on how amblyopia emerges, we know surprisingly little about the neural basis of amblyopia in humans and nonhuman primates. Although the vision of amblyopic humans is often described as being noisy by perceptual and modeling studies, the exact nature or origin of this elevated perceptual noise is not known. We show that elevated and noisy spontaneous activity and contrast-dependent noisy spiking (spiking irregularity and trial-to-trial fluctuations in spiking) in neurons of visual area V2 could limit the visual performance of amblyopic primates. Moreover, we discovered that the noisy spiking is linked to a high level of binocular suppression in visual cortex during development. Copyright © 2017 the authors 0270-6474/17/370922-14$15.00/0.

  4. Predicting Vision-Related Disability in Glaucoma.

    PubMed

    Abe, Ricardo Y; Diniz-Filho, Alberto; Costa, Vital P; Wu, Zhichao; Medeiros, Felipe A

    2018-01-01

    To present a new methodology for investigating predictive factors associated with development of vision-related disability in glaucoma. Prospective, observational cohort study. Two hundred thirty-six patients with glaucoma followed up for an average of 4.3±1.5 years. Vision-related disability was assessed by the 25-item National Eye Institute Visual Function Questionnaire (NEI VFQ-25) at baseline and at the end of follow-up. A latent transition analysis model was used to categorize NEI VFQ-25 results and to estimate the probability of developing vision-related disability during follow-up. Patients were tested with standard automated perimetry (SAP) at 6-month intervals, and evaluation of rates of visual field change was performed using mean sensitivity (MS) of the integrated binocular visual field. Baseline disease severity, rate of visual field loss, and duration of follow-up were investigated as predictive factors for development of disability during follow-up. The relationship between baseline and rates of visual field deterioration and the probability of vision-related disability developing during follow-up. At baseline, 67 of 236 (28%) glaucoma patients were classified as disabled based on NEI VFQ-25 results, whereas 169 (72%) were classified as nondisabled. Patients classified as nondisabled at baseline had 14.2% probability of disability developing during follow-up. Rates of visual field loss as estimated by integrated binocular MS were almost 4 times faster for those in whom disability developed versus those in whom it did not (-0.78±1.00 dB/year vs. -0.20±0.47 dB/year, respectively; P < 0.001). In the multivariate model, each 1-dB lower baseline binocular MS was associated with 34% higher odds of disability developing over time (odds ratio [OR], 1.34; 95% confidence interval [CI], 1.06-1.70; P = 0.013). In addition, each 0.5-dB/year faster rate of loss of binocular MS during follow-up was associated with a more than 3.5 times increase in the risk of disability developing (OR, 3.58; 95% CI, 1.56-8.23; P = 0.003). A new methodology for classification and analysis of change in patient-reported quality-of-life outcomes allowed construction of models for predicting vision-related disability in glaucoma. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  5. Interactions between binocular rivalry and Gestalt formation.

    PubMed

    de Weert, Charles M M; Snoeren, Peter R; Koning, Arno

    2005-09-01

    A question raised a long time ago in binocular rivalry research is whether the phenomenon of binocular rivalry is purely determined by local stimulus properties or that global stimulus properties also play a role. More specifically: do coherent features in a stimulus influence rivalrous behavior? After decades of underexposure of the subject, recently this question seemed to be answered in the affirmative. This paper presents additional evidence for an influence of coherent features. In an experiment in which eye movements cannot bias conclusions it is demonstrated that Gestalt formation influences binocular rivalry positively, i.e., stronger Gestalts have longer total dominance times. Gestalt formation appears to intervene in the states of dominance ("what"), not directly in the dominance durations ("how long"). This generates questions about the nature of interactions between binocular rivalry and Gestalt formation. Gestalt formation seems to be fed by signals that are generated after binocular convergence and only leaves its mark on binocular rivalry by feedback to monocular channels, a conclusion which has been drawn before by Alais and Blake [Alais, D., & Blake, R. (1998). Interaction between global motion and local binocular rivalry. Vision research 38, 637-644].

  6. Animal Preparations to Assess Neurophysiological Effects of Bio-Dynamic Environments.

    DTIC Science & Technology

    1980-07-17

    deprivation in preventing the acquisition of visually-guided behaviors. The next study examined acquisition of visually-guided behaviors in six animals...Maffei, L. and Bisti, S. Binocular interaction in strabismic kittens deprived of vision. Science, 191, 579-580, 1976. Matin, L. A possible hybrid...function in cat visual cortex following prolonged deprivation . Exp. Brain Res., 25 (1976) 139-156. Hein, A. Visually controlled components of movement

  7. What is Grouping during Binocular Rivalry?

    PubMed Central

    Stuit, Sjoerd M.; Paffen, Chris L. E.; van der Smagt, Maarten J.; Verstraten, Frans A. J.

    2011-01-01

    During binocular rivalry, perception alternates between dissimilar images presented dichoptically. Although perception during rivalry is believed to originate from competition at a local level, different rivalry zones are not independent: rival targets that are spaced apart but have similar features tend to be dominant at the same time. We investigated grouping of spatially separated rival targets presented to the same or to different eyes and presented in the same or in different hemifields. We found eye-of-origin to be the strongest cue for grouping during binocular rivalry. Grouping was additionally affected by orientation: identical orientations were grouped longer than dissimilar orientations, even when presented to different eyes. Our results suggest that eye-based and orientation-based grouping is independent and additive in nature. Grouping effects were further modulated by the distribution of the targets across the visual field. That is, grouping within the same hemifield can be stronger or weaker than between hemifields, depending on the eye-of-origin of the grouped targets. We also quantified the contribution of the previous cues to grouping of two images during binocular rivalry. These quantifications can be successfully used to predict the dominance durations of different studies. Incorporating the relative contribution of different cues to grouping, and the dependency on hemifield, into future models of binocular rivalry will prove useful in our understanding of the functional and anatomical basis of the phenomenon of binocular rivalry. PMID:22022312

  8. Visual performance of four simultaneous-image multifocal contact lenses under dim and glare conditions.

    PubMed

    García-Lázaro, Santiago; Ferrer-Blasco, Teresa; Madrid-Costa, David; Albarrán-Diego, César; Montés-Micó, Robert

    2015-01-01

    To assess and compare the effects of four simultaneous-image multifocal contact lenses (SIMCLs), and those with distant-vision-only contact lenses on visual performance in early presbyopes, under dim conditions, including the effects of induced glare. In this double-masked crossover study design, 28 presbyopic subjects aged 40 to 46 years were included. All participants were fitted with the four different SIMCLs (Air Optix Aqua Multifocal [AOAM; Alcon], PureVision Multifocal [PM; Bausch & Lomb], Acuvue Oasys for Presbyopia [AOP; Johnson & Johnson Vision], and Biofinity Multifocal [BM; CooperVision]) and with monofocal contact lenses (Air Optix Aqua, Alcon). After 1 month of daily contact lens wearing, each subject's binocular distance visual acuity (BDVA) and binocular distance contrast sensitivity (BDCS) were measured using the Functional Visual Analyzer (Stereo Optical Co., Inc.) under mesopic conditions (3 candela [cd]/m) both with no glare and under the 2 levels of induced glare: 1.0 lux (glare 1) and 28 lux (glare 2). Among the SIMCLs, in terms of BDVA, AOAM and PM outperformed BM and AOP. All contact lenses performed better at level without glare, followed by Glare 1, and with the worst results obtained under glare 2. Binocular distance contrast sensitivity revealed statistically significant differences for 12 cycles per degree (cpd). Among the SIMCLs, post hoc multiple comparison testing revealed that AOAM and PM provided the best BDCS at the three luminance levels. In both cases, BDVA and BDCS at 12 cpd, monofocal contact lenses outperformed all SIMCL ones at all lighting conditions. Air Optix Aqua Multifocal and PM provided better visual performance than BM and AOP for distance vision with low addition and under dim conditions, but they all provide worse performance than monofocal contact lenses.

  9. Retinal Image Quality During Accommodation

    PubMed Central

    López-Gil, N.; Martin, J.; Liu, T.; Bradley, A.; Díaz-Muñoz, D.; Thibos, L.

    2013-01-01

    Purpose We asked if retinal image quality is maximum during accommodation, or sub-optimal due to accommodative error, when subjects perform an acuity task. Methods Subjects viewed a monochromatic (552nm), high-contrast letter target placed at various viewing distances. Wavefront aberrations of the accommodating eye were measured near the endpoint of an acuity staircase paradigm. Refractive state, defined as the optimum target vergence for maximising retinal image quality, was computed by through-focus wavefront analysis to find the power of the virtual correcting lens that maximizes visual Strehl ratio. Results Despite changes in ocular aberrations and pupil size during binocular viewing, retinal image quality and visual acuity typically remain high for all target vergences. When accommodative errors lead to sub-optimal retinal image quality, acuity and measured image quality both decline. However, the effect of accommodation errors of on visual acuity are mitigated by pupillary constriction associated with accommodation and binocular convergence and also to binocular summation of dissimilar retinal image blur. Under monocular viewing conditions some subjects displayed significant accommodative lag that reduced visual performance, an effect that was exacerbated by pharmacological dilation of the pupil. Conclusions Spurious measurement of accommodative error can be avoided when the image quality metric used to determine refractive state is compatible with the focusing criteria used by the visual system to control accommodation. Real focusing errors of the accommodating eye do not necessarily produce a reliably measurable loss of image quality or clinically significant loss of visual performance, probably because of increased depth-of-focus due to pupil constriction. When retinal image quality is close to maximum achievable (given the eye’s higher-order aberrations), acuity is also near maximum. A combination of accommodative lag, reduced image quality, and reduced visual function may be a useful sign for diagnosing functionally-significant accommodative errors indicating the need for therapeutic intervention. PMID:23786386

  10. Retinal image quality during accommodation.

    PubMed

    López-Gil, Norberto; Martin, Jesson; Liu, Tao; Bradley, Arthur; Díaz-Muñoz, David; Thibos, Larry N

    2013-07-01

    We asked if retinal image quality is maximum during accommodation, or sub-optimal due to accommodative error, when subjects perform an acuity task. Subjects viewed a monochromatic (552 nm), high-contrast letter target placed at various viewing distances. Wavefront aberrations of the accommodating eye were measured near the endpoint of an acuity staircase paradigm. Refractive state, defined as the optimum target vergence for maximising retinal image quality, was computed by through-focus wavefront analysis to find the power of the virtual correcting lens that maximizes visual Strehl ratio. Despite changes in ocular aberrations and pupil size during binocular viewing, retinal image quality and visual acuity typically remain high for all target vergences. When accommodative errors lead to sub-optimal retinal image quality, acuity and measured image quality both decline. However, the effect of accommodation errors of on visual acuity are mitigated by pupillary constriction associated with accommodation and binocular convergence and also to binocular summation of dissimilar retinal image blur. Under monocular viewing conditions some subjects displayed significant accommodative lag that reduced visual performance, an effect that was exacerbated by pharmacological dilation of the pupil. Spurious measurement of accommodative error can be avoided when the image quality metric used to determine refractive state is compatible with the focusing criteria used by the visual system to control accommodation. Real focusing errors of the accommodating eye do not necessarily produce a reliably measurable loss of image quality or clinically significant loss of visual performance, probably because of increased depth-of-focus due to pupil constriction. When retinal image quality is close to maximum achievable (given the eye's higher-order aberrations), acuity is also near maximum. A combination of accommodative lag, reduced image quality, and reduced visual function may be a useful sign for diagnosing functionally-significant accommodative errors indicating the need for therapeutic intervention. © 2013 The Authors Ophthalmic & Physiological Optics © 2013 The College of Optometrists.

  11. The risk of pedestrian collisions with peripheral visual field loss.

    PubMed

    Peli, Eli; Apfelbaum, Henry; Berson, Eliot L; Goldstein, Robert B

    2016-12-01

    Patients with peripheral field loss complain of colliding with other pedestrians in open-space environments such as shopping malls. Field expansion devices (e.g., prisms) can create artificial peripheral islands of vision. We investigated the visual angle at which these islands can be most effective for avoiding pedestrian collisions, by modeling the collision risk density as a function of bearing angle of pedestrians relative to the patient. Pedestrians at all possible locations were assumed to be moving in all directions with equal probability within a reasonable range of walking speeds. The risk density was found to be highly anisotropic. It peaked at ≈45° eccentricity. Increasing pedestrian speed range shifted the risk to higher eccentricities. The risk density is independent of time to collision. The model results were compared to the binocular residual peripheral island locations of 42 patients with forms of retinitis pigmentosa. The natural residual island prevalence also peaked nasally at about 45° but temporally at about 75°. This asymmetry resulted in a complementary coverage of the binocular field of view. Natural residual binocular island eccentricities seem well matched to the collision-risk density function, optimizing detection of other walking pedestrians (nasally) and of faster hazards (temporally). Field expansion prism devices will be most effective if they can create artificial peripheral islands at about 45° eccentricities. The collision risk and residual island findings raise interesting questions about normal visual development.

  12. Peripheral Prism Glasses: Effects of Dominance, Suppression and Background

    PubMed Central

    Ross, Nicole C.; Bowers, Alex R.; Optom, M.C.; Peli, Eli

    2012-01-01

    Purpose Unilateral peripheral prisms for homonymous hemianopia (HH) place different images on corresponding peripheral retinal points, a rivalrous situation in which local suppression of the prism image could occur and thus limit device functionality. Detection with peripheral prisms has primarily been evaluated using conventional perimetry where binocular rivalry is unlikely to occur. We quantified detection over more visually complex backgrounds and examined the effects of ocular dominance. Methods Detection rates of 8 participants with HH or quadranopia and normal binocularity wearing unilateral peripheral prism glasses were determined for static perimetry targets briefly presented in the prism expansion area (in the blind hemifield) and the seeing hemifield, under monocular and binocular viewing, over uniform gray and more complex patterned backgrounds. Results Participants with normal binocularity had mixed sensory ocular dominance, demonstrated no difference in detection rates when prisms were fitted on the side of the HH or the opposite side (p>0.2), and had detection rates in the expansion area that were not different for monocular and binocular viewing over both backgrounds (p>0.4). However, two participants with abnormal binocularity and strong ocular dominance demonstrated reduced detection in the expansion area when prisms were fitted in front of the non-dominant eye. Conclusions We found little evidence of local suppression of the peripheral prism image for HH patients with normal binocularity. However, in cases of strong ocular dominance, consideration should be given to fitting prisms before the dominant eye. Although these results are promising, further testing in more realistic conditions including image motion is needed. PMID:22885783

  13. Runway Texture and Grid Pattern Effects on Rate-of-Descent Perception

    NASA Technical Reports Server (NTRS)

    Schroeder, J. A.; Dearing, M. G.; Sweet, B. T.; Kaiser, M. K.; Rutkowski, Mike (Technical Monitor)

    2001-01-01

    To date, perceptual errors occur in determining descent rate from a computer-generated image in flight simulation. Pilots tend to touch down twice as hard in simulation than in flight, and more training time is needed in simulation before reaching steady-state performance. Barnes suggested that recognition of range may be the culprit, and he cited that problems such as collimated objects, binocular vision, and poor resolution lead to poor estimation of the velocity vector. Brown's study essentially ruled out that the lack of binocular vision is the problem. Dorfel added specificity to the problem by showing that pilots underestimated range in simulated scenes by 50% when 800 ft from the runway threshold. Palmer and Petitt showed that pilots are able to distinguish between a 1.7 ft/sec and 2.9 ft/sec sink rate when passively observing sink rates in a night scene. Platform motion also plays a role, as previous research has shown that the addition of substantial platform motion improves pilot estimates of vertical velocity and results in simulated touchdown rates more closely resembling flight. This experiment examined how some specific variations in the visual scene properties affect a pilot's perception of sink rate. It extended another experiment that focused on the visual and motion cues necessary for helicopter autorotations. In that experiment, pilots performed steep approaches to a runway. The visual content of the runway and its surroundings varied in two ways: texture and rectangular grid spacing. Four textures, included a no-texture case, were evaluated. Three grid spacings, including a no-grid case, were evaluated. The results showed that pilot better controlled their vertical descent rates when good texture cues were present. No significant differences were found for the grid manipulation. Using those visual scenes a simple psychophysics, experiment was performed. The purpose was to determine if the variations in the visual scenes allowed pilots to better perceive vertical velocity. To determine that answer, pilots passively viewed a particular visual scene in which the vehicle was descending at two different rates. Pilots had to select which of the two rates they thought was the fastest rate. The difference between the two rates changed using a staircase method, depending on whether or not the pilot was correct, until a minimum threshold between the two descent rates was reached. This process was repeated for all of the visual scenes to decide whether or not the visual scenes did allow pilots to perceive vertical velocity better among them. All of the data have yet to be analyzed; however, neither the effects of grid nor texture revealed any statistically significant trends. On further examination of the staircase method employed, a possibility exists that the lack of an evident trend may be due to the exit criterion used during the study. As such, the experiment will be repeated with an improved exit criterion in February. Results of this study will be presented in the submitted paper.

  14. Monocular tool control, eye dominance, and laterality in New Caledonian crows.

    PubMed

    Martinho, Antone; Burns, Zackory T; von Bayern, Auguste M P; Kacelnik, Alex

    2014-12-15

    Tool use, though rare, is taxonomically widespread, but morphological adaptations for tool use are virtually unknown. We focus on the New Caledonian crow (NCC, Corvus moneduloides), which displays some of the most innovative tool-related behavior among nonhumans. One of their major food sources is larvae extracted from burrows with sticks held diagonally in the bill, oriented with individual, but not species-wide, laterality. Among possible behavioral and anatomical adaptations for tool use, NCCs possess unusually wide binocular visual fields (up to 60°), suggesting that extreme binocular vision may facilitate tool use. Here, we establish that during natural extractions, tool tips can only be viewed by the contralateral eye. Thus, maintaining binocular view of tool tips is unlikely to have selected for wide binocular fields; the selective factor is more likely to have been to allow each eye to see far enough across the midsagittal line to view the tool's tip monocularly. Consequently, we tested the hypothesis that tool side preference follows eye preference and found that eye dominance does predict tool laterality across individuals. This contrasts with humans' species-wide motor laterality and uncorrelated motor-visual laterality, possibly because bill-held tools are viewed monocularly and move in concert with eyes, whereas hand-held tools are visible to both eyes and allow independent combinations of eye preference and handedness. This difference may affect other models of coordination between vision and mechanical control, not necessarily involving tools. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Perceptual Learning Improves Stereoacuity in Amblyopia

    PubMed Central

    Xi, Jie; Jia, Wu-Li; Feng, Li-Xia; Lu, Zhong-Lin; Huang, Chang-Bing

    2014-01-01

    Purpose. Amblyopia is a developmental disorder that results in both monocular and binocular deficits. Although traditional treatment in clinical practice (i.e., refractive correction, or occlusion by patching and penalization of the fellow eye) is effective in restoring monocular visual acuity, there is little information on how binocular function, especially stereopsis, responds to traditional amblyopia treatment. We aim to evaluate the effects of perceptual learning on stereopsis in observers with amblyopia in the current study. Methods. Eleven observers (21.1 ± 5.1 years, six females) with anisometropic or ametropic amblyopia were trained to judge depth in 10 to 13 sessions. Red–green glasses were used to present three different texture anaglyphs with different disparities but a fixed exposure duration. Stereoacuity was assessed with the Fly Stereo Acuity Test and visual acuity was assessed with the Chinese Tumbling E Chart before and after training. Results. Averaged across observers, training significantly reduced disparity threshold from 776.7″ to 490.4″ (P < 0.01) and improved stereoacuity from 200.3″ to 81.6″ (P < 0.01). Interestingly, visual acuity also significantly improved from 0.44 to 0.35 logMAR (approximately 0.9 lines, P < 0.05) in the amblyopic eye after training. Moreover, the learning effects in two of the three retested observers were largely retained over a 5-month period. Conclusions. Perceptual learning is effective in improving stereo vision in observers with amblyopia. These results, together with previous evidence, suggest that structured monocular and binocular training might be necessary to fully recover degraded visual functions in amblyopia. Chinese Abstract PMID:24508791

  16. Perceptual learning improves stereoacuity in amblyopia.

    PubMed

    Xi, Jie; Jia, Wu-Li; Feng, Li-Xia; Lu, Zhong-Lin; Huang, Chang-Bing

    2014-04-15

    Amblyopia is a developmental disorder that results in both monocular and binocular deficits. Although traditional treatment in clinical practice (i.e., refractive correction, or occlusion by patching and penalization of the fellow eye) is effective in restoring monocular visual acuity, there is little information on how binocular function, especially stereopsis, responds to traditional amblyopia treatment. We aim to evaluate the effects of perceptual learning on stereopsis in observers with amblyopia in the current study. Eleven observers (21.1 ± 5.1 years, six females) with anisometropic or ametropic amblyopia were trained to judge depth in 10 to 13 sessions. Red-green glasses were used to present three different texture anaglyphs with different disparities but a fixed exposure duration. Stereoacuity was assessed with the Fly Stereo Acuity Test and visual acuity was assessed with the Chinese Tumbling E Chart before and after training. Averaged across observers, training significantly reduced disparity threshold from 776.7″ to 490.4″ (P < 0.01) and improved stereoacuity from 200.3″ to 81.6″ (P < 0.01). Interestingly, visual acuity also significantly improved from 0.44 to 0.35 logMAR (approximately 0.9 lines, P < 0.05) in the amblyopic eye after training. Moreover, the learning effects in two of the three retested observers were largely retained over a 5-month period. Perceptual learning is effective in improving stereo vision in observers with amblyopia. These results, together with previous evidence, suggest that structured monocular and binocular training might be necessary to fully recover degraded visual functions in amblyopia. Chinese Abstract.

  17. Matching and correlation computations in stereoscopic depth perception.

    PubMed

    Doi, Takahiro; Tanabe, Seiji; Fujita, Ichiro

    2011-03-02

    A fundamental task of the visual system is to infer depth by using binocular disparity. To encode binocular disparity, the visual cortex performs two distinct computations: one detects matched patterns in paired images (matching computation); the other constructs the cross-correlation between the images (correlation computation). How the two computations are used in stereoscopic perception is unclear. We dissociated their contributions in near/far discrimination by varying the magnitude of the disparity across separate sessions. For small disparity (0.03°), subjects performed at chance level to a binocularly opposite-contrast (anti-correlated) random-dot stereogram (RDS) but improved their performance with the proportion of contrast-matched (correlated) dots. For large disparity (0.48°), the direction of perceived depth reversed with an anti-correlated RDS relative to that for a correlated one. Neither reversed nor normal depth was perceived when anti-correlation was applied to half of the dots. We explain the decision process as a weighted average of the two computations, with the relative weight of the correlation computation increasing with the disparity magnitude. We conclude that matching computation dominates fine depth perception, while both computations contribute to coarser depth perception. Thus, stereoscopic depth perception recruits different computations depending on the disparity magnitude.

  18. Visual and Ocular Control Anomalies in Relation to Reading Difficulty.

    ERIC Educational Resources Information Center

    Bedwell, C. H.; And Others

    1980-01-01

    The visual behavior under both static and dynamic viewing conditions was examined in a group of 13-year-old successful readers, compared with a group of the same age retarded in reading. Research supports the notion that problems of dynamic binocular vision and control while reading are important. (Author/KC)

  19. Are visual peripheries forever young?

    PubMed

    Burnat, Kalina

    2015-01-01

    The paper presents a concept of lifelong plasticity of peripheral vision. Central vision processing is accepted as critical and irreplaceable for normal perception in humans. While peripheral processing chiefly carries information about motion stimuli features and redirects foveal attention to new objects, it can also take over functions typical for central vision. Here I review the data showing the plasticity of peripheral vision found in functional, developmental, and comparative studies. Even though it is well established that afferent projections from central and peripheral retinal regions are not established simultaneously during early postnatal life, central vision is commonly used as a general model of development of the visual system. Based on clinical studies and visually deprived animal models, I describe how central and peripheral visual field representations separately rely on early visual experience. Peripheral visual processing (motion) is more affected by binocular visual deprivation than central visual processing (spatial resolution). In addition, our own experimental findings show the possible recruitment of coarse peripheral vision for fine spatial analysis. Accordingly, I hypothesize that the balance between central and peripheral visual processing, established in the course of development, is susceptible to plastic adaptations during the entire life span, with peripheral vision capable of taking over central processing.

  20. Evaluation of stereoscopic display with visual function and interview

    NASA Astrophysics Data System (ADS)

    Okuyama, Fumio

    1999-05-01

    The influence of binocular stereoscopic (3D) television display on the human eye were compared with one of a 2D display, using human visual function testing and interviews. A 40- inch double lenticular display was used for 2D/3D comparison experiments. Subjects observed the display for 30 minutes at a distance 1.0 m, with a combination of 2D material and one of 3D material. The participants were twelve young adults. Main optometric test with visual function measured were visual acuity, refraction, phoria, near vision point, accommodation etc. The interview consisted of 17 questions. Testing procedures were performed just before watching, just after watching, and forty-five minutes after watching. Changes in visual function are characterized as prolongation of near vision point, decrease of accommodation and increase in phoria. 3D viewing interview results show much more visual fatigue in comparison with 2D results. The conclusions are: 1) change in visual function is larger and visual fatigue is more intense when viewing 3D images. 2) The evaluation method with visual function and interview proved to be very satisfactory for analyzing the influence of stereoscopic display on human eye.

  1. Early Monocular Defocus Disrupts the Normal Development of Receptive-Field Structure in V2 Neurons of Macaque Monkeys

    PubMed Central

    Tao, Xiaofeng; Zhang, Bin; Shen, Guofu; Wensveen, Janice; Smith, Earl L.; Nishimoto, Shinji; Ohzawa, Izumi

    2014-01-01

    Experiencing different quality images in the two eyes soon after birth can cause amblyopia, a developmental vision disorder. Amblyopic humans show the reduced capacity for judging the relative position of a visual target in reference to nearby stimulus elements (position uncertainty) and often experience visual image distortion. Although abnormal pooling of local stimulus information by neurons beyond striate cortex (V1) is often suggested as a neural basis of these deficits, extrastriate neurons in the amblyopic brain have rarely been studied using microelectrode recording methods. The receptive field (RF) of neurons in visual area V2 in normal monkeys is made up of multiple subfields that are thought to reflect V1 inputs and are capable of encoding the spatial relationship between local stimulus features. We created primate models of anisometropic amblyopia and analyzed the RF subfield maps for multiple nearby V2 neurons of anesthetized monkeys by using dynamic two-dimensional noise stimuli and reverse correlation methods. Unlike in normal monkeys, the subfield maps of V2 neurons in amblyopic monkeys were severely disorganized: subfield maps showed higher heterogeneity within each neuron as well as across nearby neurons. Amblyopic V2 neurons exhibited robust binocular suppression and the strength of the suppression was positively correlated with the degree of hereogeneity and the severity of amblyopia in individual monkeys. Our results suggest that the disorganized subfield maps and robust binocular suppression of amblyopic V2 neurons are likely to adversely affect the higher stages of cortical processing resulting in position uncertainty and image distortion. PMID:25297110

  2. Microcontroller based fibre-optic visual presentation system for multisensory neuroimaging.

    PubMed

    Kurniawan, Veldri; Klemen, Jane; Chambers, Christopher D

    2011-10-30

    Presenting visual stimuli in physical 3D space during fMRI experiments carries significant technical challenges. Certain types of multisensory visuotactile experiments and visuomotor tasks require presentation of visual stimuli in peripersonal space, which cannot be accommodated by ordinary projection screens or binocular goggles. However, light points produced by a group of LEDs can be transmitted through fibre-optic cables and positioned anywhere inside the MRI scanner. Here we describe the design and implementation of a microcontroller-based programmable digital device for controlling fibre-optically transmitted LED lights from a PC. The main feature of this device is the ability to independently control the colour, brightness, and timing of each LED. Moreover, the device was designed in a modular and extensible way, which enables easy adaptation for various experimental paradigms. The device was tested and validated in three fMRI experiments involving basic visual perception, a simple colour discrimination task, and a blocked multisensory visuo-tactile task. The results revealed significant lateralized activation in occipital cortex of all participants, a reliable response in ventral occipital areas to colour stimuli elicited by the device, and strong activations in multisensory brain regions in the multisensory task. Overall, these findings confirm the suitability of this device for presenting complex fibre-optic visual and cross-modal stimuli inside the scanner. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Quantifying how the combination of blur and disparity affects the perceived depth

    NASA Astrophysics Data System (ADS)

    Wang, Junle; Barkowsky, Marcus; Ricordel, Vincent; Le Callet, Patrick

    2011-03-01

    The influence of a monocular depth cue, blur, on the apparent depth of stereoscopic scenes will be studied in this paper. When 3D images are shown on a planar stereoscopic display, binocular disparity becomes a pre-eminent depth cue. But it induces simultaneously the conflict between accommodation and vergence, which is often considered as a main reason for visual discomfort. If we limit this visual discomfort by decreasing the disparity, the apparent depth also decreases. We propose to decrease the (binocular) disparity of 3D presentations, and to reinforce (monocular) cues to compensate the loss of perceived depth and keep an unaltered apparent depth. We conducted a subjective experiment using a twoalternative forced choice task. Observers were required to identify the larger perceived depth in a pair of 3D images with/without blur. By fitting the result to a psychometric function, we obtained points of subjective equality in terms of disparity. We found that when blur is added to the background of the image, the viewer can perceive larger depth comparing to the images without any blur in the background. The increase of perceived depth can be considered as a function of the relative distance between the foreground and background, while it is insensitive to the distance between the viewer and the depth plane at which the blur is added.

  4. A methodology for coupling a visual enhancement device to human visual attention

    NASA Astrophysics Data System (ADS)

    Todorovic, Aleksandar; Black, John A., Jr.; Panchanathan, Sethuraman

    2009-02-01

    The Human Variation Model views disability as simply "an extension of the natural physical, social, and cultural variability of mankind." Given this human variation, it can be difficult to distinguish between a prosthetic device such as a pair of glasses (which extends limited visual abilities into the "normal" range) and a visual enhancement device such as a pair of binoculars (which extends visual abilities beyond the "normal" range). Indeed, there is no inherent reason why the design of visual prosthetic devices should be limited to just providing "normal" vision. One obvious enhancement to human vision would be the ability to visually "zoom" in on objects that are of particular interest to the viewer. Indeed, it could be argued that humans already have a limited zoom capability, which is provided by their highresolution foveal vision. However, humans still find additional zooming useful, as evidenced by their purchases of binoculars equipped with mechanized zoom features. The fact that these zoom features are manually controlled raises two questions: (1) Could a visual enhancement device be developed to monitor attention and control visual zoom automatically? (2) If such a device were developed, would its use be experienced by users as a simple extension of their natural vision? This paper details the results of work with two research platforms called the Remote Visual Explorer (ReVEx) and the Interactive Visual Explorer (InVEx) that were developed specifically to answer these two questions.

  5. Visual and binocular status in elementary school children with a reading problem.

    PubMed

    Christian, Lisa W; Nandakumar, Krithika; Hrynchak, Patricia K; Irving, Elizabeth L

    2017-11-21

    This descriptive study provides a summary of the binocular anomalies seen in elementary school children identified with reading problems. A retrospective chart review of all children identified with reading problems and seen by the University of Waterloo, Optometry Clinic, from September 2012 to June 2013. Files of 121 children (mean age 8.6 years, range 6-14 years) were reviewed. No significant refractive error was found in 81% of children. Five and 8 children were identified as strabismic at distance and near respectively. Phoria test revealed 90% and 65% of patients had normal distance and near phoria. Near point of convergencia (NPC) was <5cm in 68% of children, and 77% had stereoacuity of ≤40seconds of arc. More than 50% of the children had normal fusional vergence ranges except for near positive fusional vergencce (base out) break (46%). Tests for accommodation showed 91% of children were normal for binocular facility, and approximately 70% of children had an expected accuracy of accommodation. Findings indicate that some children with an identified reading problem also present with abnormal binocular test results compared to published normal values. Further investigation should be performed to investigate the relationship between binocular vision function and reading performance. Crown Copyright © 2017. Published by Elsevier España, S.L.U. All rights reserved.

  6. Vision rehabilitation for visual-vestibular dysfunction: the role of the neuro-optometrist.

    PubMed

    Cohen, Allen H

    2013-01-01

    This article discusses, in a clinically relevant format, the importance of including a neuro-optometrist as a member of the management team for patients with balance disorders. To review the importance of vision and visual processing for maintaining a sense of balance and equilibrium and the role of the neuro-optometrist in the overall rehabilitation of patients with balance disorders Dizziness, balance problems and the sensation that the space world is moving (vertigo) are one of the most commonly reported problems in general medical practice. Persons with a central nervous system injury or other idiopathic causes of visual processing problems or who have functional vision problems that are not adequately managed, often experience extreme difficulty with balance and movement, as well as with their perception of space. Consequently, the patient often experiences difficulty functioning in an environment with excessive visual stimulation such as a grocery store or shopping mall. Symptoms of disequilibrium, vestibular and balance problems are commonly a result of VOR disturbance secondary to an inner ear problem and an unstable binocularity. The combination of neuro-optomertic rehabilitative therapy and balance therapy will result in a is an effective treatment for reducing or resolving these symptoms.

  7. Clinical vision characteristics of the congenital achromatopsias. I. Visual acuity, refractive error, and binocular status.

    PubMed

    Haegerstrom-Portnoy, G; Schneck, M E; Verdon, W A; Hewlett, S E

    1996-07-01

    Visual acuity, refractive error, and binocular status were determined in 43 autosomal recessive (AR) and 15 X-linked (XL) congenital achromats. The achromats were classified by color matching and spectral sensitivity data. Large interindividual variation in refractive error and visual acuity was present within each achromat group (complete AR, incomplete AR, and XL). However, the number of individuals with significant interocular acuity differences is very small. Most XLs are myopic; ARs show a wide range of refractive error from high myopia to high hyperopia. Acuity of the AR and XL groups was very similar. With-the-rule astigmatism of large amount is very common in achromats, particularly ARs. There is a close association between strabismus and interocular acuity differences in the ARs, with the fixating eye having better than average acuity. The large overlap of acuity and refractive error of XL and AR achromats suggests that these measures are less useful for differential diagnosis than generally indicated by the clinical literature.

  8. Real-time simulation of large-scale neural architectures for visual features computation based on GPU.

    PubMed

    Chessa, Manuela; Bianchi, Valentina; Zampetti, Massimo; Sabatini, Silvio P; Solari, Fabio

    2012-01-01

    The intrinsic parallelism of visual neural architectures based on distributed hierarchical layers is well suited to be implemented on the multi-core architectures of modern graphics cards. The design strategies that allow us to optimally take advantage of such parallelism, in order to efficiently map on GPU the hierarchy of layers and the canonical neural computations, are proposed. Specifically, the advantages of a cortical map-like representation of the data are exploited. Moreover, a GPU implementation of a novel neural architecture for the computation of binocular disparity from stereo image pairs, based on populations of binocular energy neurons, is presented. The implemented neural model achieves good performances in terms of reliability of the disparity estimates and a near real-time execution speed, thus demonstrating the effectiveness of the devised design strategies. The proposed approach is valid in general, since the neural building blocks we implemented are a common basis for the modeling of visual neural functionalities.

  9. Viewpoint Dependent Imaging: An Interactive Stereoscopic Display

    NASA Astrophysics Data System (ADS)

    Fisher, Scott

    1983-04-01

    Design and implementation of a viewpoint Dependent imaging system is described. The resultant display is an interactive, lifesize, stereoscopic image. that becomes a window into a three dimensional visual environment. As the user physically changes his viewpoint of the represented data in relation to the display surface, the image is continuously updated. The changing viewpoints are retrieved from a comprehensive, stereoscopic image array stored on computer controlled, optical videodisc and fluidly presented. in coordination with the viewer's, movements as detected by a body-tracking device. This imaging system is an attempt to more closely represent an observers interactive perceptual experience of the visual world by presenting sensory information cues not offered by traditional media technologies: binocular parallax, motion parallax, and motion perspective. Unlike holographic imaging, this display requires, relatively low bandwidth.

  10. Rapid assessment of visual impairment (RAVI) in marine fishing communities in South India - study protocol and main findings

    PubMed Central

    2011-01-01

    Background Reliable data are a pre-requisite for planning eye care services. Though conventional cross sectional studies provide reliable information, they are resource intensive. A novel rapid assessment method was used to investigate the prevalence and causes of visual impairment and presbyopia in subjects aged 40 years and older. This paper describes the detailed methodology and study procedures of Rapid Assessment of Visual Impairment (RAVI) project. Methods A population-based cross-sectional study was conducted using cluster random sampling in the coastal region of Prakasam district of Andhra Pradesh in India, predominantly inhabited by fishing communities. Unaided, aided and pinhole visual acuity (VA) was assessed using a Snellen chart at a distance of 6 meters. The VA was re-assessed using a pinhole, if VA was < 6/12 in either eye. Near vision was assessed using N notation chart binocularly. Visual impairment was defined as presenting VA < 6/18 in the better eye. Presbyopia is defined as binocular near vision worse than N8 in subjects with binocular distance VA of 6/18 or better. Results The data collection was completed in <12 weeks using two teams each consisting of one paramedical ophthalmic personnel and two community eye health workers. The prevalence of visual impairment was 30% (95% CI, 27.6-32.2). This included 111 (7.1%; 95% CI, 5.8-8.4) individuals with blindness. Cataract was the leading cause of visual impairment followed by uncorrected refractive errors. The prevalence of blindness according to WHO definition (presenting VA < 3/60 in the better eye) was 2.7% (95% CI, 1.9-3.5). Conclusion There is a high prevalence of visual impairment in marine fishing communities in Prakasam district in India. The data from this rapid assessment survey can now be used as a baseline to start eye care services in this region. The rapid assessment methodology (RAVI) reported in this paper is robust, quick and has the potential to be replicated in other areas. PMID:21929802

  11. A fully convolutional networks (FCN) based image segmentation algorithm in binocular imaging system

    NASA Astrophysics Data System (ADS)

    Long, Zourong; Wei, Biao; Feng, Peng; Yu, Pengwei; Liu, Yuanyuan

    2018-01-01

    This paper proposes an image segmentation algorithm with fully convolutional networks (FCN) in binocular imaging system under various circumstance. Image segmentation is perfectly solved by semantic segmentation. FCN classifies the pixels, so as to achieve the level of image semantic segmentation. Different from the classical convolutional neural networks (CNN), FCN uses convolution layers instead of the fully connected layers. So it can accept image of arbitrary size. In this paper, we combine the convolutional neural network and scale invariant feature matching to solve the problem of visual positioning under different scenarios. All high-resolution images are captured with our calibrated binocular imaging system and several groups of test data are collected to verify this method. The experimental results show that the binocular images are effectively segmented without over-segmentation. With these segmented images, feature matching via SURF method is implemented to obtain regional information for further image processing. The final positioning procedure shows that the results are acceptable in the range of 1.4 1.6 m, the distance error is less than 10mm.

  12. Efficacy of vision therapy in children with learning disability and associated binocular vision anomalies.

    PubMed

    Hussaindeen, Jameel Rizwana; Shah, Prerana; Ramani, Krishna Kumar; Ramanujan, Lalitha

    To report the frequency of binocular vision (BV) anomalies in children with specific learning disorders (SLD) and to assess the efficacy of vision therapy (VT) in children with a non-strabismic binocular vision anomaly (NSBVA). The study was carried out at a centre for learning disability (LD). Comprehensive eye examination and binocular vision assessment was carried out for 94 children (mean (SD) age: 15 (2.2) years) diagnosed with specific learning disorder. BV assessment was done for children with best corrected visual acuity of ≥6/9 - N6, cooperative for examination and free from any ocular pathology. For children with a diagnosis of NSBVA (n=46), 24 children were randomized to VT and no intervention was provided to the other 22 children who served as experimental controls. At the end of 10 sessions of vision therapy, BV assessment was performed for both the intervention and non-intervention groups. Binocular vision anomalies were found in 59 children (62.8%) among which 22% (n=13) had strabismic binocular vision anomalies (SBVA) and 78% (n=46) had a NSBVA. Accommodative infacility (AIF) was the commonest of the NSBVA and found in 67%, followed by convergence insufficiency (CI) in 25%. Post-vision therapy, the intervention group showed significant improvement in all the BV parameters (Wilcoxon signed rank test, p<0.05) except negative fusional vergence. Children with specific learning disorders have a high frequency of binocular vision disorders and vision therapy plays a significant role in improving the BV parameters. Children with SLD should be screened for BV anomalies as it could potentially be an added hindrance to the reading difficulty in this special population. Copyright © 2017 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  13. Eye–Hand Coordination Skills in Children with and without Amblyopia

    PubMed Central

    Suttle, Catherine M.; Melmoth, Dean R.; Finlay, Alison L.; Sloper, John J.

    2011-01-01

    Purpose. To investigate whether binocular information provides benefits for programming and guidance of reach-to-grasp movements in normal children and whether these eye–hand coordination skills are impaired in children with amblyopia and abnormal binocularity. Methods. Reach-to-grasp performance of the preferred hand in binocular versus monocular (dominant or nondominant eye occluded) conditions to different objects (two sizes, three locations, and two to three repetitions) was quantified by using a 3D motion-capture system. The participants were 36 children (age, 5–11 years) and 11 adults who were normally sighted and 21 children (age, 4–8 years) who had strabismus and/or anisometropia. Movement kinematics and error rates were compared for each viewing condition within and between subject groups. Results. The youngest control subjects used a mainly programmed (ballistic) strategy and collided with the objects more often when viewing with only one eye, while older children progressively incorporated visual feedback to guide their reach and, eventually, their grasp, resulting in binocular advantages for both movement components resembling those of adult performance. Amblyopic children were the worst performers under all viewing conditions, even when using the dominant eye. They spent almost twice as long in the final approach to the objects and made many (1.5–3 times) more errors in reach direction and grip positioning than their normal counterparts, these impairments being most marked in those with the poorest binocularity, regardless of the severity or cause of their amblyopia. Conclusions. The importance of binocular vision for eye–hand coordination normally increases with age and use of online movement guidance. Restoring binocularity in children with amblyopia may improve their poor hand action control. PMID:21212188

  14. Trifocal intraocular lenses: a comparison of the visual performance and quality of vision provided by two different lens designs.

    PubMed

    Gundersen, Kjell G; Potvin, Rick

    2017-01-01

    To compare two different diffractive trifocal intraocular lens (IOL) designs, evaluating longer-term refractive outcomes, visual acuity (VA) at various distances, low contrast VA and quality of vision. Patients with binocularly implanted trifocal IOLs of two different designs (FineVision [FV] and Panoptix [PX]) were evaluated 6 months to 2 years after surgery. Best distance-corrected and uncorrected VA were tested at distance (4 m), intermediate (80 and 60 cm) and near (40 cm). A binocular defocus curve was collected with the subject's best distance correction in place. The preferred reading distance was determined along with the VA at that distance. Low contrast VA at distance was also measured. Quality of vision was measured with the National Eye Institute Visual Function Questionnaire near subset and the Quality of Vision questionnaire. Thirty subjects in each group were successfully recruited. The binocular defocus curves differed only at vergences of -1.0 D (FV better, P =0.02), -1.5 and -2.00 D (PX better, P <0.01 for both). Best distance-corrected and uncorrected binocular vision were significantly better for the PX lens at 60 cm ( P <0.01) with no significant differences at other distances. The preferred reading distance was between 42 and 43 cm for both lenses, with the VA at the preferred reading distance slightly better with the PX lens ( P =0.04). There were no statistically significant differences by lens for low contrast VA ( P =0.1) or for quality of vision measures ( P >0.3). Both trifocal lenses provided excellent distance, intermediate and near vision, but several measures indicated that the PX lens provided better intermediate vision at 60 cm. This may be important to users of tablets and other handheld devices. Quality of vision appeared similar between the two lens designs.

  15. The iPod binocular home-based treatment for amblyopia in adults: efficacy and compliance.

    PubMed

    Hess, Robert F; Babu, Raiju Jacob; Clavagnier, Simon; Black, Joanna; Bobier, William; Thompson, Benjamin

    2014-09-01

    Occlusion therapy for amblyopia is predicated on the idea that amblyopia is primarily a disorder of monocular vision; however, there is growing evidence that patients with amblyopia have a structurally intact binocular visual system that is rendered functionally monocular due to suppression. Furthermore, we have found that a dichoptic treatment intervention designed to directly target suppression can result in clinically significant improvement in both binocular and monocular visual function in adult patients with amblyopia. The fact that monocular improvement occurs in the absence of any fellow eye occlusion suggests that amblyopia is, in part, due to chronic suppression. Previously the treatment has been administered as a psychophysical task and more recently as a video game that can be played on video goggles or an iPod device equipped with a lenticular screen. The aim of this case-series study of 14 amblyopes (six strabismics, six anisometropes and two mixed) ages 13 to 50 years was to investigate: 1. whether the portable video game treatment is suitable for at-home use and 2. whether an anaglyphic version of the iPod-based video game, which is more convenient for at-home use, has comparable effects to the lenticular version. The dichoptic video game treatment was conducted at home and visual functions assessed before and after treatment. We found that at-home use for 10 to 30 hours restored simultaneous binocular perception in 13 of 14 cases along with significant improvements in acuity (0.11 ± 0.08 logMAR) and stereopsis (0.6 ± 0.5 log units). Furthermore, the anaglyph and lenticular platforms were equally effective. In addition, the iPod devices were able to record a complete and accurate picture of treatment compliance. The home-based dichoptic iPod approach represents a viable treatment for adults with amblyopia. © 2014 The Authors. Clinical and Experimental Optometry © 2014 Optometrists Association Australia.

  16. Spatial integration and cortical dynamics.

    PubMed

    Gilbert, C D; Das, A; Ito, M; Kapadia, M; Westheimer, G

    1996-01-23

    Cells in adult primary visual cortex are capable of integrating information over much larger portions of the visual field than was originally thought. Moreover, their receptive field properties can be altered by the context within which local features are presented and by changes in visual experience. The substrate for both spatial integration and cortical plasticity is likely to be found in a plexus of long-range horizontal connections, formed by cortical pyramidal cells, which link cells within each cortical area over distances of 6-8 mm. The relationship between horizontal connections and cortical functional architecture suggests a role in visual segmentation and spatial integration. The distribution of lateral interactions within striate cortex was visualized with optical recording, and their functional consequences were explored by using comparable stimuli in human psychophysical experiments and in recordings from alert monkeys. They may represent the substrate for perceptual phenomena such as illusory contours, surface fill-in, and contour saliency. The dynamic nature of receptive field properties and cortical architecture has been seen over time scales ranging from seconds to months. One can induce a remapping of the topography of visual cortex by making focal binocular retinal lesions. Shorter-term plasticity of cortical receptive fields was observed following brief periods of visual stimulation. The mechanisms involved entailed, for the short-term changes, altering the effectiveness of existing cortical connections, and for the long-term changes, sprouting of axon collaterals and synaptogenesis. The mutability of cortical function implies a continual process of calibration and normalization of the perception of visual attributes that is dependent on sensory experience throughout adulthood and might further represent the mechanism of perceptual learning.

  17. Comparing the Impact of Refractive and Nonrefractive Vision Loss on Functioning and Disability: The Salisbury Eye Evaluation.

    PubMed

    Zebardast, Nazlee; Swenor, Bonnielin K; van Landingham, Suzanne W; Massof, Robert W; Munoz, Beatriz; West, Sheila K; Ramulu, Pradeep Y

    2015-06-01

    To compare the effects of uncorrected refractive error (URE) and nonrefractive visual impairment (VI) on performance and disability measures. Cross-sectional, population-based study. A total of 2469 individuals with binocular presenting visual acuity (PVA) of ≥ 20/80 who participated in the first round of the Salisbury Eye Evaluation study. The URE was defined as binocular PVA of ≤ 20/30, improving to >20/30 with subjective refraction. The VI was defined as post-refraction binocular best-corrected visual acuity (BCVA) of ≤ 20/30. The visual acuity decrement due to VI was calculated as the difference between BCVA and 20/30, whereas visual acuity due to URE was taken as the difference between PVA and BCVA. Multivariable regression analyses were used to assess the disability impact of (1) vision status (VI, URE, or normal vision) using the group with normal vision as reference and (2) a 1-line decrement in acuity due to VI or URE. Objective measures of visual function were obtained from timed performance of mobility and near vision tasks, self-reported driving cessation, and self-reported visual difficulty measured by the Activities of Daily Vision (ADV) scale. The ADV responses were analyzed using Rasch analysis to determine visual ability. Compared with individuals with normal vision, subjects with VI (n = 191) had significantly poorer objective and subjective visual functioning in all metrics examined (P < 0.05), whereas subjects with URE (n = 132) demonstrated slower walking speeds, slower near task performance, more frequent driving cessation, and lower ADV scores (P < 0.05), but did not demonstrate slower stair climbing or descent speed. For all functional metrics evaluated, the impact of VI was greater than the impact of URE. The impact of a 1-line VA decrement due to VI was associated with greater deficits in mobility measures and driving cessation when compared with a 1-line VA decrement due to URE. Visual impairment is associated with greater disability than URE across a wide variety of functional measures, even in analyses adjusting for the severity of vision loss. Refractive and nonrefractive vision loss should be distinguished in studies evaluating visual disability and be understood to have differing consequences. Copyright © 2015 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  18. Performance under dichoptic versus binocular viewing conditions - Effects of attention and task requirements

    NASA Technical Reports Server (NTRS)

    Kimchi, Ruth; Gopher, Daniel; Rubin, Yifat; Raij, David

    1993-01-01

    Three experiments investigated subjects' ability to allocate attention and cope with task requirements under dichoptic versus binocular viewing conditions. Experiments 1 and 2 employed a target detection task in compound and noncompound stimuli, and Experiment 3 employed a relative-proximity judgment task. The tasks were performed in a focused attention condition in which subjects had to attend to the stimulus presented to one eye or field (under dichoptic and binocular viewing conditions, respectively) while ignoring the stimulus presented to the other eye or field, and in a divided attention condition in which subjects had to attend to the stimuli presented to both eyes or fields. Subjects' performance was affected by the interaction of attention conditions with task requirements, but it was generally the same under dichoptic and binocular viewing conditions. The more dependent the task was on finer discrimination, the more performance was impaired by divided attention. These results suggest that at least with discrete tasks and relatively short exposure durations, performance when each eye is presented with a separate stimulus is the same as when the entire field of stimulation is viewed by both eyes.

  19. The sensory strength of voluntary visual imagery predicts visual working memory capacity.

    PubMed

    Keogh, Rebecca; Pearson, Joel

    2014-10-09

    How much we can actively hold in mind is severely limited and differs greatly from one person to the next. Why some individuals have greater capacities than others is largely unknown. Here, we investigated why such large variations in visual working memory (VWM) capacity might occur, by examining the relationship between visual working memory and visual mental imagery. To assess visual working memory capacity participants were required to remember the orientation of a number of Gabor patches and make subsequent judgments about relative changes in orientation. The sensory strength of voluntary imagery was measured using a previously documented binocular rivalry paradigm. Participants with greater imagery strength also had greater visual working memory capacity. However, they were no better on a verbal number working memory task. Introducing a uniform luminous background during the retention interval of the visual working memory task reduced memory capacity, but only for those with strong imagery. Likewise, for the good imagers increasing background luminance during imagery generation reduced its effect on subsequent binocular rivalry. Luminance increases did not affect any of the subgroups on the verbal number working memory task. Together, these results suggest that luminance was disrupting sensory mechanisms common to both visual working memory and imagery, and not a general working memory system. The disruptive selectivity of background luminance suggests that good imagers, unlike moderate or poor imagers, may use imagery as a mnemonic strategy to perform the visual working memory task. © 2014 ARVO.

  20. Stereopsis and 3D surface perception by spiking neurons in laminar cortical circuits: a method for converting neural rate models into spiking models.

    PubMed

    Cao, Yongqiang; Grossberg, Stephen

    2012-02-01

    A laminar cortical model of stereopsis and 3D surface perception is developed and simulated. The model shows how spiking neurons that interact in hierarchically organized laminar circuits of the visual cortex can generate analog properties of 3D visual percepts. The model describes how monocular and binocular oriented filtering interact with later stages of 3D boundary formation and surface filling-in in the LGN and cortical areas V1, V2, and V4. It proposes how interactions between layers 4, 3B, and 2/3 in V1 and V2 contribute to stereopsis, and how binocular and monocular information combine to form 3D boundary and surface representations. The model suggests how surface-to-boundary feedback from V2 thin stripes to pale stripes helps to explain how computationally complementary boundary and surface formation properties lead to a single consistent percept, eliminate redundant 3D boundaries, and trigger figure-ground perception. The model also shows how false binocular boundary matches may be eliminated by Gestalt grouping properties. In particular, the disparity filter, which helps to solve the correspondence problem by eliminating false matches, is realized using inhibitory interneurons as part of the perceptual grouping process by horizontal connections in layer 2/3 of cortical area V2. The 3D sLAMINART model simulates 3D surface percepts that are consciously seen in 18 psychophysical experiments. These percepts include contrast variations of dichoptic masking and the correspondence problem, the effect of interocular contrast differences on stereoacuity, Panum's limiting case, the Venetian blind illusion, stereopsis with polarity-reversed stereograms, da Vinci stereopsis, and perceptual closure. The model hereby illustrates a general method of unlumping rate-based models that use the membrane equations of neurophysiology into models that use spiking neurons, and which may be embodied in VLSI chips that use spiking neurons to minimize heat production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Frequency Doubling Technology Perimetry and Changes in Quality of Life of Glaucoma Patients: A Longitudinal Study.

    PubMed

    Abe, Ricardo Y; Gracitelli, Carolina P B; Diniz-Filho, Alberto; Zangwill, Linda M; Weinreb, Robert N; Medeiros, Felipe A

    2015-07-01

    To evaluate the relationship between rates of change on frequency doubling technology (FDT) perimetry and longitudinal changes in quality of life (QoL) of glaucoma patients. Prospective observational cohort study. One hundred fifty-two subjects (127 glaucoma and 25 healthy) were followed for an average of 3.2 ± 1.1 years. All subjects were evaluated with National Eye Institute Visual Function Questionnaire (NEI VFQ-25), FDT, and standard automated perimetry (SAP). Glaucoma patients had a median of 3 NEI VFQ-25, 8 FDT, and 8 SAP tests during follow-up. Mean sensitivities of the integrated binocular visual fields were estimated for FDT and SAP and used to calculate rates of change. A joint longitudinal multivariable mixed model was used to investigate the association between change in binocular mean sensitivities and change in NEI VFQ-25 Rasch-calibrated scores. There was a statistically significant correlation between change in binocular mean sensitivity for FDT and change in NEI VFQ-25 scores during follow-up in the glaucoma group. In multivariable analysis with the confounding factors, each 1 dB/year change in binocular FDT mean sensitivity corresponded to a change of 0.8 units per year in the NEI VFQ-25 scores (P = .001). For binocular SAP mean sensitivity, each 1 dB/year change was associated with 2.4 units per year change in NEI VFQ-25 scores (P < .001). The multivariable model containing baseline and rate of change information from SAP had stronger ability to predict change in NEI VFQ-25 scores compared to the equivalent model for FDT (R(2) of 50% and 30%, respectively; P = .001). SAP performed significantly better than FDT in predicting change in NEI VFQ-25 scores in our population, suggesting that it may still be the preferable perimetric technique for predicting risk of disability from the disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Background and stimulus-induced patterns of high metabolic activity in the visual cortex (area 17) of the squirrel and macaque monkey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphrey, A.L.; Hendrickson, A.E.

    1983-02-01

    The authors have used 2-deoxy-D-(/sup 14/C)glucose (2-DG) autoradiography and cytochrome oxidase histochemistry to examine background and stimulus-induced patterns of metabolic activity in monkey striate cortex. In squirrel monkeys (Saimiri sciureus) that binocularly or monocularly viewed diffuse white light or binocularly viewed bars of many orientations and spatial frequencies, 2-DG consumption was not uniform across the cortex but consisted of regularly spaced radial zones of high uptake. The cytochrome oxidase stain in these animals also revealed patches of high metabolism which coincided with the 2-DG patches. Squirrel monkeys binocularly viewing vertical stripes showed parallel bands of increased 2-DG uptake in themore » cortex, while the cytochrome label in these animals remained patchy. In macaque (Macaca nemestrina) monkeys, binocular stimulation with many orientations and spatial frequencies produced radial zones of high 2-DG uptake. When viewed tangentially, these zones formed a dots-in-rows pattern with a spacing of 350 X 500 microns; cytochrome oxidase staining produced an identical pattern. Macaca differed from Saimiri in that monocular stimulation labeled alternate rows. These results indicate that there are radial zones of high background metabolism across squirrel and macaque monkey striate cortex. In Saimiri these zones do not appear to be related to an eye dominance system, while in Macaca they do. The presence of these zones of high metabolism may complicate the interpretation of 2-DG autoradiographs that result from specific visual stimuli.« less

  3. Age- and Stereovision-Dependent Eye–Hand Coordination Deficits in Children With Amblyopia and Abnormal Binocularity

    PubMed Central

    Grant, Simon; Suttle, Catherine; Melmoth, Dean R.; Conway, Miriam L.; Sloper, John J.

    2014-01-01

    Purpose. To examine factors contributing to eye–hand coordination deficits in children with amblyopia and impaired stereovision. Methods. Participants were 55 anisometropic or strabismic children aged 5.0 to 9.25 years with different degrees of amblyopia and abnormal binocularity, along with 28 age-matched visually-normal controls. Pilot data were obtained from four additional patients studied longitudinally at different treatment stages. Movements of the preferred hand were recorded using a 3D motion-capture system while subjects reached-to-precision grasp objects (two sizes, three locations) under binocular, dominant eye, and amblyopic/nonsighting eye conditions. Kinematic and “error” performance measures were quantified and compared by viewing condition and subject group using ANOVA, stepwise regression, and correlation analyses. Results. Movements of the younger amblyopes (age 5–6 years; n = 30) were much slower, particularly in the final approach to the objects, and contained more spatial errors in reaching (∼×1.25–1.75) and grasping (∼×1.75–2.25) under all three views (P < 0.05) than their age-matched controls (n = 13). Amblyopia severity was the main contributor to their slower movements with absent stereovision a secondary factor and the unique determinant of their increased error-rates. Older amblyopes (age 7–9 years; n = 25) spent longer contacting the objects before lifting them (P = 0.015) compared with their matched controls (n = 15), with absence of stereovision still solely related to increases in reach and grasp errors, although these occurred less frequently than in younger patients. Pilot prospective data supported these findings by showing positive treatment-related associations between improved stereovision and reach-to-grasp performance. Conclusions. Strategies that children with amblyopia and abnormal binocularity use for reach-to-precision grasping change with age, from emphasis on visual feedback during the “in-flight” approach at ages 5 to 6 years to more reliance on tactile/kinesthetic feedback from object contact at ages 7 to 9 years. However, recovery of binocularity confers increasing benefits for eye–hand coordination speed and accuracy with age, and is a better predictor of these fundamental performance measures than the degree of visual acuity loss. PMID:25097239

  4. Topical brinzolamide (Azopt) versus placebo in the treatment of infantile nystagmus syndrome (INS).

    PubMed

    Hertle, Richard W; Yang, Dongsheng; Adkinson, Tonia; Reed, Michael

    2015-04-01

    To test the hypothesis that the topical carbonic anhydrase inhibitor brinzolamide (Azopt) has beneficial effects versus placebo on measures of nystagmus and visual acuity in adult subjects with infantile nystagmus syndrome (INS). Prospective, cross-over, double masked clinical trial. Single centre. Five subjects ≥18 years old with typical INS and best-binocular visual acuity in their primary position null zone ETDRS 55 letters to 85 letters (20/200 to 20/50) and had no previous treatment for nystagmus. In a randomised order, each subject received one drop of Azopt or placebo in both eyes three times a day separated by a washout period of at least a week followed by Azopt or placebo in both eyes three times a day; thus each subject got the drug and placebo, each acting as his or her own control. The nystagmus acuity function and INS waveforms obtained from eye movement recordings, binocular optotype visual acuity, using the ETDRS protocol analysed individually and as a group before and after Azopt and placebo. Versus placebo and baseline measures, topical Azopt significantly improved; INS waveform characteristics in the primary position null zone, group mean values of the nystagmus acuity function across gaze (p<0.01) and group mean ETDRS binocular letter visual acuity (p<0.05). There was a predictable decrease in intraocular pressure (IOP) without any systemic or ocular adverse events. Although a prospective large-scale clinical trial is needed to prove effectiveness, an eye-drop-based therapy for INS may emerge as a viable addition to optical, surgical, behavioural and systemic drug therapies for INS. NCT01312402. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. Effects of strabismic amblyopia and strabismus without amblyopia on visuomotor behavior, I: saccadic eye movements.

    PubMed

    Niechwiej-Szwedo, Ewa; Chandrakumar, Manokaraananthan; Goltz, Herbert C; Wong, Agnes M F

    2012-11-01

    It has previously been shown that anisometropic amblyopia affects the programming and execution of saccades. The aim of the current study was to investigate the impact of strabismic amblyopia on saccade performance. Fourteen adults with strabismic amblyopia, 13 adults with strabismus without amblyopia, and 14 visually normal adults performed saccades and reach-to-touch movements to targets presented at ± 5° and ± 10° eccentricity during binocular and monocular viewing. Latency, amplitude, and peak velocity of primary and secondary saccades were measured. In contrast to visually normal participants who had shorter primary saccade latency during binocular viewing, no binocular advantage was found in patients with strabismus with or without amblyopia. Patients with amblyopia had longer saccade latency during amblyopic eye viewing (P < 0.0001); however, there were no significant differences in saccade amplitude precision among the three groups across viewing conditions. Further analysis showed that only patients with severe amblyopia and no stereopsis (n = 4) exhibited longer latency (which was more pronounced for more central targets; P < 0.0001), and they also had reduced amplitude precision during amblyopic eye viewing. In contrast, patients with mild amblyopia (n = 5) and no stereopsis had normal latency and reduced precision during amblyopic eye viewing (P < 0.001), whereas those with gross stereopsis (n = 5) had normal latency and precision. There were no differences in peak velocity among the groups. Distinct patterns of saccade performance according to different levels of visual acuity and stereoscopic losses in strabismic amblyopia were found. These findings were in contrast to those in anisometropic amblyopia in which the altered saccade performance was independent of the extent of visual acuity or stereoscopic deficits. These results were most likely due to different long-term sensory suppression mechanisms in strabismic versus anisometropic amblyopia.

  6. [Binocular status of dyslexics--are there differences to a healthy comparison group?].

    PubMed

    Riebeling, P; Brunner, E; Grossjohann, R; Clemens, S

    2009-10-01

    Despite numerous studies dealing with the question of a possible relation of visual problems and dyslexia, which is negated by most ophthalmologists, some opticians still favour the treatment of dyslexia by correction of the "Winkelfehlsichtigkeit" following MCH. Our aim was by also including the Pola test to check the usefulness of this treatment. In a 2-year prospective study we examined the 4th grade elementary school students in our city who had dyslexia as an assured diagnosis (n = 21). The results were compared to those of an age-matched group without pathological findings regarding their reading and spelling ability (n = 21). Examinations included visual acuity, eye position by cover test, Maddox cylinder and Pola test for near distance, binocular vision (Bagolini and Worth test, Lang test I and II, Titmus test, amplitude of fusion), amplitude of accommodation, refraction in cycloplegia and organic status. A significant difference was found between the two groups regarding the amplitude of divergence in near (p = 0.009) and far distance (p = 0.019) which were both smaller for the dyslexia group, as well as the binocular near visual acuity (p = 0.04). Using the SAS procedure STEPDISC we discriminated the normal and dyslexia group by amplitude of divergence, near visual acuity and alternating near prism cover test with a sensitivity of 81 % and a specifity of 75 %. The results of the Pola test did not show any significant difference between the groups. No differences were found between the groups regarding the eye position. Therefore a treatment of dyslexia using prisms does not appear reasonable. However because of the group sizes the significance of the results is limited. Georg Thieme Verlag KG Stuttgart.New York.

  7. Comparison of Visual Status of Iranian Military and Commercial Drivers

    PubMed Central

    Ghasemi, Mohammad; Hoseini Yazdi, Seyed Hosein; Heravian, Javad; Jafarzadehpur, Ebrahim; Rezaee, Maryam

    2015-01-01

    Background: There is no legal requirement for Iranian military truck drivers to undergo regular visual checkups as compared to commercial truck drivers. Objectives: This study aimed to evaluate the impact of drivers’ visual checkups by comparing the visual function of Iranian military and commercial truck drivers. Patients and Methods: In this comparative cross-sectional study, two hundred military and 200 commercial truck drivers were recruited and their Visual Acuity (VA), Visual Field (VF), color vision and Contrast Sensitivity (CS) were assessed and compared using the Snellen chart, confrontation screening method, D15 test and Pelli-Robson letter chart, respectively. A questionnaire regarding driving exposure and history of motor-vehicle crashes (MVCs) was also filled by drivers. Results were analyzed using an independent samples t-test, one-way ANOVA (assessing difference in number of MVCs across different age groups), chi-square test and Pearson correlation at statistical significance level of P < 0.05. Results: Mean age was 41.6 ± 9.2 for the military truck drivers and 43.4 ± 10.9 for commercial truck drivers (P > 0.05). No significant difference between military and commercial drivers was found in terms of driving experience, number of MVCs, binocular VA, frequency of color vision defects and CS scores. In contrast, the last ocular examination was significantly earlier in military drivers than commercial drivers (P < 0.001). In addition, 4% of military drivers did not meet the national standards to drive as opposed to 2% of commercial drivers. There was a significant but weak correlation between binocular VA and age (r = 0.175, P < 0.001). However, CS showed a significantly moderate correlation with age (r = -0.488, P < 0.001). Conclusions: The absence of legal requirement for regular eye examination in military drivers caused the incompetent drivers to be missed in contrast to commercial drivers. The need for scientific revision of VA standard for Iranian drivers is also discussed. The CS measurement in visual checkups of older drivers deserves to be investigated more thoroughly. PMID:26023333

  8. Distinct Contributions of the Magnocellular and Parvocellular Visual Streams to Perceptual Selection

    PubMed Central

    Denison, Rachel N.; Silver, Michael A.

    2014-01-01

    During binocular rivalry, conflicting images presented to the two eyes compete for perceptual dominance, but the neural basis of this competition is disputed. In interocular switch (IOS) rivalry, rival images periodically exchanged between the two eyes generate one of two types of perceptual alternation: 1) a fast, regular alternation between the images that is time-locked to the stimulus switches and has been proposed to arise from competition at lower levels of the visual processing hierarchy, or 2) a slow, irregular alternation spanning multiple stimulus switches that has been associated with higher levels of the visual system. The existence of these two types of perceptual alternation has been influential in establishing the view that rivalry may be resolved at multiple hierarchical levels of the visual system. We varied the spatial, temporal, and luminance properties of IOS rivalry gratings and found, instead, an association between fast, regular perceptual alternations and processing by the magnocellular stream and between slow, irregular alternations and processing by the parvocellular stream. The magnocellular and parvocellular streams are two early visual pathways that are specialized for the processing of motion and form, respectively. These results provide a new framework for understanding the neural substrates of binocular rivalry that emphasizes the importance of parallel visual processing streams, and not only hierarchical organization, in the perceptual resolution of ambiguities in the visual environment. PMID:21861685

  9. Adaptation to Laterally Displacing Prisms in Anisometropic Amblyopia.

    PubMed

    Sklar, Jaime C; Goltz, Herbert C; Gane, Luke; Wong, Agnes M F

    2015-06-01

    Using visual feedback to modify sensorimotor output in response to changes in the external environment is essential for daily function. Prism adaptation is a well-established experimental paradigm to quantify sensorimotor adaptation; that is, how the sensorimotor system adapts to an optically-altered visuospatial environment. Amblyopia is a neurodevelopmental disorder characterized by spatiotemporal deficits in vision that impacts manual and oculomotor function. This study explored the effects of anisometropic amblyopia on prism adaptation. Eight participants with anisometropic amblyopia and 11 visually-normal adults, all right-handed, were tested. Participants pointed to visual targets and were presented with feedback of hand position near the terminus of limb movement in three blocks: baseline, adaptation, and deadaptation. Adaptation was induced by viewing with binocular 11.4° (20 prism diopter [PD]) left-shifting prisms. All tasks were performed during binocular viewing. Participants with anisometropic amblyopia required significantly more trials (i.e., increased time constant) to adapt to prismatic optical displacement than visually-normal controls. During the rapid error correction phase of adaptation, people with anisometropic amblyopia also exhibited greater variance in motor output than visually-normal controls. Amblyopia impacts on the ability to adapt the sensorimotor system to an optically-displaced visual environment. The increased time constant and greater variance in motor output during the rapid error correction phase of adaptation may indicate deficits in processing of visual information as a result of degraded spatiotemporal vision in amblyopia.

  10. Neuroplasticity and amblyopia: vision at the balance point.

    PubMed

    Tailor, Vijay K; Schwarzkopf, D Samuel; Dahlmann-Noor, Annegret H

    2017-02-01

    New insights into triggers and brakes of plasticity in the visual system are being translated into new treatment approaches which may improve outcomes not only in children, but also in adults. Visual experience-driven plasticity is greatest in early childhood, triggered by maturation of inhibitory interneurons which facilitate strengthening of synchronous synaptic connections, and inactivation of others. Normal binocular development leads to progressive refinement of monocular visual acuity, stereoacuity and fusion of images from both eyes. At the end of the 'critical period', structural and functional brakes such as dampening of acetylcholine receptor signalling and formation of perineuronal nets limit further synaptic remodelling. Imbalanced visual input from the two eyes can lead to imbalanced neural processing and permanent visual deficits, the commonest of which is amblyopia. The efficacy of new behavioural, physical and pharmacological interventions aiming to balance visual input and visual processing have been described in humans, and some are currently under evaluation in randomised controlled trials. Outcomes may change amblyopia treatment for children and adults, but the safety of new approaches will need careful monitoring, as permanent adverse events may occur when plasticity is re-induced after the end of the critical period.Video abstracthttp://links.lww.com/CONR/A42.

  11. The Quantized Geometry of Visual Space: The Coherent Computation of Depth, Form, and Lightness. Revised Version.

    DTIC Science & Technology

    1982-08-01

    of sensitivity with background luminance, and the finitE capacity of visual short term memory are discussed in terms of a small set of ...binocular rivalry, reflectance rivalry, Fechner’s paradox, decrease of threshold contrast with increased number of cycles in a grating pattern, hysteresis...adaptation level tuning, Weber law modulation, shift of sensitivity with background luminance, and the finite capacity of visual

  12. From dichoptic to dichotic: historical contrasts between binocular vision and binaural hearing.

    PubMed

    Wade, Nicholas J; Ono, Hiroshi

    2005-01-01

    Phenomena involving vision with two eyes have been commented upon for several thousand years whereas those concerned with hearing with two ears have a much more recent history. Studies of binocular vision and binaural hearing are contrasted with respect to the singleness of the percept, experimental manipulations of dichoptic and dichotic stimuli, eye and ear dominance, spatial localisation, and the instruments used to stimulate the paired organs. One of the principal phenomena that led to studies of dichotic hearing was dichoptic colour mixing. There was similar disagreement regarding whether colours or sounds could be combined when presented to different paired organs. Direction and distance in visual localisation were analysed before those for auditory localisation, partly due to difficulties in controlling the stimuli. Instruments for investigating binocular vision, like the stereoscope and pseudoscope, were invented before those for binaural hearing, like the stethophone and pseudophone.

  13. A note on image degradation, disability glare, and binocular vision

    NASA Astrophysics Data System (ADS)

    Rajaram, Vandana; Lakshminarayanan, Vasudevan

    2013-08-01

    Disability glare due to scattering of light causes a reduction in visual performance due to a luminous veil over the scene. This causes problem such as contrast detection. In this note, we report a study of the effect of this veiling luminance on human stereoscopic vision. We measured the effect of glare on the horopter measured using the apparent fronto-parallel plane (AFPP) criterion. The empirical longitudinal horopter measured using the AFPP criterion was analyzed using the so-called analytic plot. The analytic plot parameters were used for quantitative measurement of binocular vision. Image degradation plays a major effect on binocular vision as measured by the horopter. Under the conditions tested, it appears that if vision is sufficiently degraded then the addition of disability glare does not seem to significantly cause any further compromise in depth perception as measured by the horopter.

  14. Validity of the Worth 4 Dot Test in Patients with Red-Green Color Vision Defect.

    PubMed

    Bak, Eunoo; Yang, Hee Kyung; Hwang, Jeong-Min

    2017-05-01

    The Worth four dot test uses red and green glasses for binocular dissociation, and although it has been believed that patients with red-green color vision defects cannot accurately perform the Worth four dot test, this has not been validated. Therefore, the purpose of this study was to demonstrate the validity of the Worth four dot test in patients with congenital red-green color vision defects who have normal or abnormal binocular vision. A retrospective review of medical records was performed on 30 consecutive congenital red-green color vision defect patients who underwent the Worth four dot test. The type of color vision anomaly was determined by the Hardy Rand and Rittler (HRR) pseudoisochromatic plate test, Ishihara color test, anomaloscope, and/or the 100 hue test. All patients underwent a complete ophthalmologic examination. Binocular sensory status was evaluated with the Worth four dot test and Randot stereotest. The results were interpreted according to the presence of strabismus or amblyopia. Among the 30 patients, 24 had normal visual acuity without strabismus nor amblyopia and 6 patients had strabismus and/or amblyopia. The 24 patients without strabismus nor amblyopia all showed binocular fusional responses by seeing four dots of the Worth four dot test. Meanwhile, the six patients with strabismus or amblyopia showed various results of fusion, suppression, and diplopia. Congenital red-green color vision defect patients of different types and variable degree of binocularity could successfully perform the Worth four dot test. They showed reliable results that were in accordance with their estimated binocular sensory status.

  15. Unilateral Amblyopia Affects Two Eyes: Fellow Eye Deficits in Amblyopia.

    PubMed

    Meier, Kimberly; Giaschi, Deborah

    2017-03-01

    Unilateral amblyopia is a visual disorder that arises after selective disruption of visual input to one eye during critical periods of development. In the clinic, amblyopia is understood as poor visual acuity in an eye that was deprived of pattern vision early in life. By its nature, however, amblyopia has an adverse effect on the development of a binocular visual system and the interactions between signals from two eyes. Visual functions aside from visual acuity are impacted, and many studies have indicated compromised sensitivity in the fellow eye even though it demonstrates normal visual acuity. While these fellow eye deficits have been noted, no overarching theory has been proposed to describe why and under what conditions the fellow eye is impacted by amblyopia. Here, we consider four explanations that may account for decreased fellow eye sensitivity: the fellow eye is adversely impacted by treatment for amblyopia; the maturation of the fellow eye is delayed by amblyopia; fellow eye sensitivity is impacted for visual functions that rely on binocular cortex; and fellow eye deficits reflect an adaptive mechanism that works to equalize the sensitivity of the two eyes. To evaluate these ideas, we describe five visual functions that are commonly reported to be deficient in the amblyopic eye (hyperacuity, contrast sensitivity, spatial integration, global motion, and motion-defined form), and unify the current evidence for fellow eye deficits. Further research targeted at exploring fellow eye deficits in amblyopia will provide us with a broader understanding of normal visual development and how amblyopia impacts the developing visual system.

  16. An evaluation of clinical treatment of convergence insufficiency for children with reading difficulties.

    PubMed

    Dusek, Wolfgang A; Pierscionek, Barbara K; McClelland, Julie F

    2011-08-11

    The present study investigates two different treatment options for convergence insufficiency CI for a group of children with reading difficulties referred by educational institutes to a specialist eye clinic in Vienna. One hundred and thirty four subjects (aged 7-14 years) with reading difficulties were referred from an educational institute in Vienna, Austria for visual assessment. Each child was given either 8Δ base-in reading spectacles (n=51) or computerised home vision therapy (HTS) (n=51). Thirty two participants refused all treatment offered (clinical control group). A full visual assessment including reading speed and accuracy were conducted pre- and post-treatment. Factorial analyses demonstrated statistically significant changes between results obtained for visits 1 and 2 for total reading time, reading error score, amplitude of accommodation and binocular accommodative facility (within subjects effects) (p<0.05). Significant differences were also demonstrated between treatment groups for total reading time, reading error score and binocular accommodative facility (between subjects effects) (p<0.05). Reading difficulties with no apparent intellectual or psychological foundation may be due to a binocular vision anomaly such as convergence insufficiency. Both the HTS and prismatic correction are highly effective treatment options for convergence insufficiency. Prismatic correction can be considered an effective alternative to HTS.

  17. An exploratory study: prolonged periods of binocular stimulation can provide an effective treatment for childhood amblyopia.

    PubMed

    Knox, Pamela J; Simmers, Anita J; Gray, Lyle S; Cleary, Marie

    2012-02-21

    The purpose of the present study was to explore the potential for treating childhood amblyopia with a binocular stimulus designed to correlate the visual input from both eyes. Eight strabismic, two anisometropic, and four strabismic and anisometropic amblyopes (mean age, 8.5 ± 2.6 years) undertook a dichoptic perceptual learning task for five sessions (each lasting 1 hour) over the course of a week. The training paradigm involved a simple computer game, which required the subject to use both eyes to perform the task. A statistically significant improvement (t(₁₃) = 5.46; P = 0.0001) in the mean visual acuity (VA) of the amblyopic eye (AE) was demonstrated, from 0.51 ± 0.27 logMAR before training to 0.42 ± 0.28 logMAR after training with six subjects gaining 0.1 logMAR or more of improvement. Measurable stereofunction was established for the first time in three subjects with an overall significant mean improvement in stereoacuity after training (t(₁₃) =2.64; P = 0.02). The dichoptic-based perceptual learning therapy employed in the present study improved both the monocular VA of the AE and stereofunction, verifying the feasibility of a binocular approach in the treatment of childhood amblyopia.

  18. Neural architectures for stereo vision.

    PubMed

    Parker, Andrew J; Smith, Jackson E T; Krug, Kristine

    2016-06-19

    Stereoscopic vision delivers a sense of depth based on binocular information but additionally acts as a mechanism for achieving correspondence between patterns arriving at the left and right eyes. We analyse quantitatively the cortical architecture for stereoscopic vision in two areas of macaque visual cortex. For primary visual cortex V1, the result is consistent with a module that is isotropic in cortical space with a diameter of at least 3 mm in surface extent. This implies that the module for stereo is larger than the repeat distance between ocular dominance columns in V1. By contrast, in the extrastriate cortical area V5/MT, which has a specialized architecture for stereo depth, the module for representation of stereo is about 1 mm in surface extent, so the representation of stereo in V5/MT is more compressed than V1 in terms of neural wiring of the neocortex. The surface extent estimated for stereo in V5/MT is consistent with measurements of its specialized domains for binocular disparity. Within V1, we suggest that long-range horizontal, anatomical connections form functional modules that serve both binocular and monocular pattern recognition: this common function may explain the distortion and disruption of monocular pattern vision observed in amblyopia.This article is part of the themed issue 'Vision in our three-dimensional world'. © 2016 The Authors.

  19. Binocular iPad Game vs Patching for Treatment of Amblyopia in Children: A Randomized Clinical Trial.

    PubMed

    Kelly, Krista R; Jost, Reed M; Dao, Lori; Beauchamp, Cynthia L; Leffler, Joel N; Birch, Eileen E

    2016-12-01

    Fellow eye patching has long been the standard treatment for amblyopia, but it does not always restore 20/20 vision or teach the eyes to work together. Amblyopia can be treated with binocular games that rebalance contrast between the eyes so that a child may overcome suppression. However, it is unclear whether binocular treatment is comparable to patching in treating amblyopia. To assess the effectiveness of a binocular iPad (Apple Inc) adventure game as amblyopia treatment and compare this binocular treatment with patching, the current standard of care. This investigation was a randomized clinical trial with a crossover design at a nonprofit eye research institute. Between February 20, 2015, and January 4, 2016, a total of 28 patients were enrolled in the study, with 14 randomized to binocular game treatment and 14 to patching treatment. Binocular game and patching as amblyopia treatments. The primary outcome was change in amblyopic eye best-corrected visual acuity (BCVA) at the 2-week visit. Secondary outcomes were change in stereoacuity and suppression at the 2-week visit and change in BCVA at the 4-week visit. Among 28 children, the mean (SD) age at baseline was 6.7 (1.4) years (age range, 4.6-9.5 years), and 7 (25%) were female. At baseline, the mean (SD) amblyopic eye BCVA was 0.48 (0.14) logMAR (approximately 20/63; range, 0.3-0.8 logMAR [20/40 to 20/125]), with 14 children randomized to the binocular game and 14 to patching for 2 weeks. At the 2-week visit, improvement in amblyopic eye BCVA was greater with the binocular game compared with patching, with a mean (SD) improvement of 0.15 (0.08) logMAR (mean [SD], 1.5 [0.8] lines) vs 0.07 (0.08) logMAR (mean [SD], 0.7 [0.8] line; P = .02) after 2 weeks of treatment. These improvements from baseline were significant for the binocular game (mean [SD] improvement, 1.5 [0.8] lines; P < .001) and for patching (mean [SD] improvement, 0.7 [0.8] line; P = .006). Depth of suppression improved from baseline at the 2-week visit for the binocular game (mean [SD], 4.82 [2.82] vs 3.24 [2.87]; P = .03) and for patching (mean [SD], 4.77 [3.10] vs 2.57 [1.67]; P = .004). Patching children crossed over to binocular game treatment, and all 28 children played the game for another 2 weeks. At the 4-week visit, no group difference was found in BCVA change, with children who crossed over to the binocular games catching up with children treated with binocular games, for a mean (SD) improvement of 0.17 (0.10) logMAR (mean [SD], 1.7 [1.0] lines) for the binocular game vs a mean (SD) improvement of 0.16 (0.12) logMAR (mean [SD], 1.6 [1.2] lines) for the patching crossover (P = .73). A binocular iPad game was effective in treating childhood amblyopia and was more efficacious than patching at the 2-week visit. Binocular games that rebalance contrast to overcome suppression are a promising additional option for treating amblyopia. clinicaltrials.gov Identifier: NCT02365090.

  20. Binocular summation for reflexive eye movements

    PubMed Central

    Quaia, Christian; Optican, Lance M.; Cumming, Bruce G.

    2018-01-01

    Psychophysical studies and our own subjective experience suggest that, in natural viewing conditions (i.e., at medium to high contrasts), monocularly and binocularly viewed scenes appear very similar, with the exception of the improved depth perception provided by stereopsis. This phenomenon is usually described as a lack of binocular summation. We show here that there is an exception to this rule: Ocular following eye movements induced by the sudden motion of a large stimulus, which we recorded from three human subjects, are much larger when both eyes see the moving stimulus, than when only one eye does. We further discovered that this binocular advantage is a function of the interocular correlation between the two monocular images: It is maximal when they are identical, and reduced when the two eyes are presented with different images. This is possible only if the neurons that underlie ocular following are sensitive to binocular disparity. PMID:29621384

  1. A method of camera calibration in the measurement process with reference mark for approaching observation space target

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Zeng, Luan

    2017-11-01

    Binocular stereoscopic vision can be used for space-based space targets near observation. In order to solve the problem that the traditional binocular vision system cannot work normally after interference, an online calibration method of binocular stereo measuring camera with self-reference is proposed. The method uses an auxiliary optical imaging device to insert the image of the standard reference object into the edge of the main optical path and image with the target on the same focal plane, which is equivalent to a standard reference in the binocular imaging optical system; When the position of the system and the imaging device parameters are disturbed, the image of the standard reference will change accordingly in the imaging plane, and the position of the standard reference object does not change. The camera's external parameters can be re-calibrated by the visual relationship of the standard reference object. The experimental results show that the maximum mean square error of the same object can be reduced from the original 72.88mm to 1.65mm when the right camera is deflected by 0.4 degrees and the left camera is high and low with 0.2° rotation. This method can realize the online calibration of binocular stereoscopic vision measurement system, which can effectively improve the anti - jamming ability of the system.

  2. Covert spatial attention is functionally intact in amblyopic human adults.

    PubMed

    Roberts, Mariel; Cymerman, Rachel; Smith, R Theodore; Kiorpes, Lynne; Carrasco, Marisa

    2016-12-01

    Certain abnormalities in behavioral performance and neural signaling have been attributed to a deficit of visual attention in amblyopia, a neurodevelopmental disorder characterized by a diverse array of visual deficits following abnormal binocular childhood experience. Critically, most have inferred attention's role in their task without explicitly manipulating and measuring its effects against a baseline condition. Here, we directly investigate whether human amblyopic adults benefit from covert spatial attention-the selective processing of visual information in the absence of eye movements-to the same degree as neurotypical observers. We manipulated both involuntary (Experiment 1) and voluntary (Experiment 2) attention during an orientation discrimination task for which the effects of covert spatial attention have been well established in neurotypical and special populations. In both experiments, attention significantly improved accuracy and decreased reaction times to a similar extent (a) between the eyes of the amblyopic adults and (b) between the amblyopes and their age- and gender-matched controls. Moreover, deployment of voluntary attention away from the target location significantly impaired task performance (Experiment 2). The magnitudes of the involuntary and voluntary attention benefits did not correlate with amblyopic depth or severity. Both groups of observers showed canonical performance fields (better performance along the horizontal than vertical meridian and at the lower than upper vertical meridian) and similar effects of attention across locations. Despite their characteristic low-level vision impairments, covert spatial attention remains functionally intact in human amblyopic adults.

  3. Eye structure and amphibious foraging in albatrosses

    PubMed Central

    Martin, G. R.

    1998-01-01

    Anterior eye structure and retinal visual fields were determined in grey-headed and black-browed albatrosses, Diomedea melanophris and D. chrysostoma (Procellariiformes, Diomedeidae), using keratometry and an ophthalmoscopic reflex technique. Results for the two species were very similar and indicate that the eyes are of an amphibious optical design suggesting that albatross vision is well suited to the visual pursuit of active prey both on and below the ocean surface. The corneas are relatively flat (radius ca. 14.5 mm) and hence of low absolute refractive power (ca. 23 dioptres). In air the binocular fields are relatively long (vertical extent ca. 70 degrees) and narrow (maximum width in the plane of the optic axes 26–32 degrees), a topography found in a range of bird species that employ visual guidance of bill position when foraging. The cyclopean fields measure approximately 270 degrees in the horizontal plane, but there is a 60 degrees blind sector above the head owing to the positioning of the eyes below the protruding supraorbital ridges. Upon immersion the monocular fields decrease in width such that the binocular fields are abolished. Anterior eye structure, and visual field topography in both air and water, show marked similarity with those of the Humboldt penguin.

  4. An ancient explanation of presbyopia based on binocular vision.

    PubMed

    Barbero, Sergio

    2014-06-01

    Presbyopia, understood as the age-related loss of ability to clearly see near objects, was known to ancient Greeks. However, few references to it can be found in ancient manuscripts. A relevant discussion on presbyopia appears in a book called Symposiacs written by Lucius Mestrius Plutarchus around 100 A.C. In this work, Plutarch provided four explanations of presbyopia, associated with different theories of vision. One of the explanations is particularly interesting as it is based on a binocular theory of vision. In this theory, vision is produced when visual rays, emanating from the eyes, form visual cones that impinge on the objects to be seen. Visual rays coming from old people's eyes, it was supposed, are weaker than those from younger people's eyes; so the theory, to be logically coherent, implies that this effect is compensated by the increase in light intensity due to the overlapping, at a certain distance, of the visual cones coming from both eyes. Thus, it benefits the reader to move the reading text further away from the eyes in order to increase the fusion area of both visual cones. The historical hypothesis taking into consideration that the astronomer Hipparchus of Nicaea was the source of Plutarch's explanation of the theory is discussed. © 2013 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  5. Acuity-independent effects of visual deprivation on human visual cortex

    PubMed Central

    Hou, Chuan; Pettet, Mark W.; Norcia, Anthony M.

    2014-01-01

    Visual development depends on sensory input during an early developmental critical period. Deviation of the pointing direction of the two eyes (strabismus) or chronic optical blur (anisometropia) separately and together can disrupt the formation of normal binocular interactions and the development of spatial processing, leading to a loss of stereopsis and visual acuity known as amblyopia. To shed new light on how these two different forms of visual deprivation affect the development of visual cortex, we used event-related potentials (ERPs) to study the temporal evolution of visual responses in patients who had experienced either strabismus or anisometropia early in life. To make a specific statement about the locus of deprivation effects, we took advantage of a stimulation paradigm in which we could measure deprivation effects that arise either before or after a configuration-specific response to illusory contours (ICs). Extraction of ICs is known to first occur in extrastriate visual areas. Our ERP measurements indicate that deprivation via strabismus affects both the early part of the evoked response that occurs before ICs are formed as well as the later IC-selective response. Importantly, these effects are found in the normal-acuity nonamblyopic eyes of strabismic amblyopes and in both eyes of strabismic patients without amblyopia. The nonamblyopic eyes of anisometropic amblyopes, by contrast, are normal. Our results indicate that beyond the well-known effects of strabismus on the development of normal binocularity, it also affects the early stages of monocular feature processing in an acuity-independent fashion. PMID:25024230

  6. Natural Tendency towards Beauty in Humans: Evidence from Binocular Rivalry.

    PubMed

    Mo, Ce; Xia, Tiansheng; Qin, Kaixin; Mo, Lei

    2016-01-01

    Although human preference for beauty is common and compelling in daily life, it remains unknown whether such preference is essentially subserved by social cognitive demands or natural tendency towards beauty encoded in the human mind intrinsically. Here we demonstrate experimentally that humans automatically exhibit preference for visual and moral beauty without explicit cognitive efforts. Using a binocular rivalry paradigm, we identified enhanced gender-independent perceptual dominance for physically attractive persons, and the results suggested universal preference for visual beauty based on perceivable forms. Moreover, we also identified perceptual dominance enhancement for characters associated with virtuous descriptions after controlling for facial attractiveness and vigilance-related attention effects, which suggested a similar implicit preference for moral beauty conveyed in prosocial behaviours. Our findings show that behavioural preference for beauty is driven by an inherent natural tendency towards beauty in humans rather than explicit social cognitive processes.

  7. Natural Tendency towards Beauty in Humans: Evidence from Binocular Rivalry

    PubMed Central

    Mo, Lei

    2016-01-01

    Although human preference for beauty is common and compelling in daily life, it remains unknown whether such preference is essentially subserved by social cognitive demands or natural tendency towards beauty encoded in the human mind intrinsically. Here we demonstrate experimentally that humans automatically exhibit preference for visual and moral beauty without explicit cognitive efforts. Using a binocular rivalry paradigm, we identified enhanced gender-independent perceptual dominance for physically attractive persons, and the results suggested universal preference for visual beauty based on perceivable forms. Moreover, we also identified perceptual dominance enhancement for characters associated with virtuous descriptions after controlling for facial attractiveness and vigilance-related attention effects, which suggested a similar implicit preference for moral beauty conveyed in prosocial behaviours. Our findings show that behavioural preference for beauty is driven by an inherent natural tendency towards beauty in humans rather than explicit social cognitive processes. PMID:26930202

  8. Effects of cortical damage on binocular depth perception.

    PubMed

    Bridge, Holly

    2016-06-19

    Stereoscopic depth perception requires considerable neural computation, including the initial correspondence of the two retinal images, comparison across the local regions of the visual field and integration with other cues to depth. The most common cause for loss of stereoscopic vision is amblyopia, in which one eye has failed to form an adequate input to the visual cortex, usually due to strabismus (deviating eye) or anisometropia. However, the significant cortical processing required to produce the percept of depth means that, even when the retinal input is intact from both eyes, brain damage or dysfunction can interfere with stereoscopic vision. In this review, I examine the evidence for impairment of binocular vision and depth perception that can result from insults to the brain, including both discrete damage, temporal lobectomy and more systemic diseases such as posterior cortical atrophy.This article is part of the themed issue 'Vision in our three-dimensional world'. © 2016 The Authors.

  9. Effects of cortical damage on binocular depth perception

    PubMed Central

    2016-01-01

    Stereoscopic depth perception requires considerable neural computation, including the initial correspondence of the two retinal images, comparison across the local regions of the visual field and integration with other cues to depth. The most common cause for loss of stereoscopic vision is amblyopia, in which one eye has failed to form an adequate input to the visual cortex, usually due to strabismus (deviating eye) or anisometropia. However, the significant cortical processing required to produce the percept of depth means that, even when the retinal input is intact from both eyes, brain damage or dysfunction can interfere with stereoscopic vision. In this review, I examine the evidence for impairment of binocular vision and depth perception that can result from insults to the brain, including both discrete damage, temporal lobectomy and more systemic diseases such as posterior cortical atrophy. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269597

  10. Comparing the Impact of Refractive and Non-Refractive Vision Loss on Functioning and Disability: The Salisbury Eye Evaluation

    PubMed Central

    Zebardast, Nazlee; Swenor, Bonnielin K.; van Landingham, Suzanne W.; Massof, Robert W.; Munoz, Beatriz; West, Sheila K.; Ramulu, Pradeep Y.

    2015-01-01

    Purpose To compare the effects of uncorrected refractive error (URE) and non-refractive visual impairment (VI) on performance and disability measures. Design Cross-sectional population-based study. Participants 2469 individuals with binocular presenting visual acuity (PVA) of 20/80 or better who participated in the first round of the Salisbury Eye Evaluation study. Methods URE was defined as binocular PVA of 20/30 or worse, improving to better than 20/30 with subjective refraction. VI was defined as post-refraction binocular best corrected visual acuity (BCVA) of 20/30 or worse. The visual acuity decrement attributable to VI was calculated as the difference between BCVA and 20/30 while that due to URE was taken as the difference between PVA and BCVA. Multivariable regression analyses were used to assess the disability impact of 1) vision status (VI, URE, or normal vision) using the group with normal vision as reference, and 2) a one-line decrement in acuity due to VI or URE. Main Outcome Measures Objective measures of visual function were obtained from timed performance of mobility and near vision tasks, self-reported driving cessation, and self-reported visual difficulty measured by the Activities of Daily Vision (ADV) scale. ADV responses were analyzed using Rasch analysis to determine visual ability. Results Compared to individuals with normal vision, subjects with VI (n=191) had significantly poorer objective and subjective visual functioning in all metrics examined (p<0.05) while subjects with URE (n=132) demonstrated slower walking speeds, slower near task performance, more frequent driving cessation and lower ADV scores (p<0.05), but did not demonstrate slower stair climbing or descent speed. For all functional metrics evaluated, the impact of VI was greater than the impact of URE. The impact of a one-line VA decrement due to VI was associated with greater deficits in mobility measures and driving cessation when compared to a one-line VA decrement due to URE. Conclusions VI is associated with greater disability than URE across a wide variety of functional measures, even in analyses adjusting for the severity of vision loss. Refractive and non-refractive vision loss should be distinguished in studies evaluating visual disability, and should be understood to have differing consequences. PMID:25813453

  11. Early monocular defocus disrupts the normal development of receptive-field structure in V2 neurons of macaque monkeys.

    PubMed

    Tao, Xiaofeng; Zhang, Bin; Shen, Guofu; Wensveen, Janice; Smith, Earl L; Nishimoto, Shinji; Ohzawa, Izumi; Chino, Yuzo M

    2014-10-08

    Experiencing different quality images in the two eyes soon after birth can cause amblyopia, a developmental vision disorder. Amblyopic humans show the reduced capacity for judging the relative position of a visual target in reference to nearby stimulus elements (position uncertainty) and often experience visual image distortion. Although abnormal pooling of local stimulus information by neurons beyond striate cortex (V1) is often suggested as a neural basis of these deficits, extrastriate neurons in the amblyopic brain have rarely been studied using microelectrode recording methods. The receptive field (RF) of neurons in visual area V2 in normal monkeys is made up of multiple subfields that are thought to reflect V1 inputs and are capable of encoding the spatial relationship between local stimulus features. We created primate models of anisometropic amblyopia and analyzed the RF subfield maps for multiple nearby V2 neurons of anesthetized monkeys by using dynamic two-dimensional noise stimuli and reverse correlation methods. Unlike in normal monkeys, the subfield maps of V2 neurons in amblyopic monkeys were severely disorganized: subfield maps showed higher heterogeneity within each neuron as well as across nearby neurons. Amblyopic V2 neurons exhibited robust binocular suppression and the strength of the suppression was positively correlated with the degree of hereogeneity and the severity of amblyopia in individual monkeys. Our results suggest that the disorganized subfield maps and robust binocular suppression of amblyopic V2 neurons are likely to adversely affect the higher stages of cortical processing resulting in position uncertainty and image distortion. Copyright © 2014 the authors 0270-6474/14/3413840-15$15.00/0.

  12. Transcranial direct current stimulation enhances recovery of stereopsis in adults with amblyopia.

    PubMed

    Spiegel, Daniel P; Li, Jinrong; Hess, Robert F; Byblow, Winston D; Deng, Daming; Yu, Minbin; Thompson, Benjamin

    2013-10-01

    Amblyopia is a neurodevelopmental disorder of vision caused by abnormal visual experience during early childhood that is often considered to be untreatable in adulthood. Recently, it has been shown that a novel dichoptic videogame-based treatment for amblyopia can improve visual function in adult patients, at least in part, by reducing inhibition of inputs from the amblyopic eye to the visual cortex. Non-invasive anodal transcranial direct current stimulation has been shown to reduce the activity of inhibitory cortical interneurons when applied to the primary motor or visual cortex. In this double-blind, sham-controlled cross-over study we tested the hypothesis that anodal transcranial direct current stimulation of the visual cortex would enhance the therapeutic effects of dichoptic videogame-based treatment. A homogeneous group of 16 young adults (mean age 22.1 ± 1.1 years) with amblyopia were studied to compare the effect of dichoptic treatment alone and dichoptic treatment combined with visual cortex direct current stimulation on measures of binocular (stereopsis) and monocular (visual acuity) visual function. The combined treatment led to greater improvements in stereoacuity than dichoptic treatment alone, indicating that direct current stimulation of the visual cortex boosts the efficacy of dichoptic videogame-based treatment. This intervention warrants further evaluation as a novel therapeutic approach for adults with amblyopia.

  13. Enduring critical period plasticity visualized by transcranial flavoprotein imaging in mouse primary visual cortex.

    PubMed

    Tohmi, Manavu; Kitaura, Hiroki; Komagata, Seiji; Kudoh, Masaharu; Shibuki, Katsuei

    2006-11-08

    Experience-dependent plasticity in the visual cortex was investigated using transcranial flavoprotein fluorescence imaging in mice anesthetized with urethane. On- and off-responses in the primary visual cortex were elicited by visual stimuli. Fluorescence responses and field potentials elicited by grating patterns decreased similarly as contrasts of visual stimuli were reduced. Fluorescence responses also decreased as spatial frequency of grating stimuli increased. Compared with intrinsic signal imaging in the same mice, fluorescence imaging showed faster responses with approximately 10 times larger signal changes. Retinotopic maps in the primary visual cortex and area LM were constructed using fluorescence imaging. After monocular deprivation (MD) of 4 d starting from postnatal day 28 (P28), deprived eye responses were suppressed compared with nondeprived eye responses in the binocular zone but not in the monocular zone. Imaging faithfully recapitulated a critical period for plasticity with maximal effects of MD observed around P28 and not in adulthood even under urethane anesthesia. Visual responses were compared before and after MD in the same mice, in which the skull was covered with clear acrylic dental resin. Deprived eye responses decreased after MD, whereas nondeprived eye responses increased. Effects of MD during a critical period were tested 2 weeks after reopening of the deprived eye. Significant ocular dominance plasticity was observed in responses elicited by moving grating patterns, but no long-lasting effect was found in visual responses elicited by light-emitting diode light stimuli. The present results indicate that transcranial flavoprotein fluorescence imaging is a powerful tool for investigating experience-dependent plasticity in the mouse visual cortex.

  14. Visual disturbances in advanced cancer patients: clinical observations.

    PubMed

    Saita, L; Polastri, D; De Conno, F

    1999-03-01

    Visual disturbances in advanced cancer patients are very rarely signaled, evaluated, or adequately treated. The main causes of sight disturbances are primary eye tumors, ocular metastases, and some paraneoplastic syndromes. Sight alteration can also be associated with asthenia, fatigue, anemia, and hypovitaminosis. These symptoms can be monocular or binocular, and their gravity and evolution can vary. Based on a survey of 156 patients, we estimate the prevalence of visual disturbances to be 12% in advanced cancer patients.

  15. Binocular Vision in Chronic Fatigue Syndrome.

    PubMed

    Godts, Daisy; Moorkens, Greta; Mathysen, Danny G P

    2016-01-01

    To compare binocular vision measurements between Chronic Fatigue Syndrome (CFS) patients and healthy controls. Forty-one CFS patients referred by the Reference Centre for Chronic Fatigue Syndrome of the Antwerp University Hospital and forty-one healthy volunteers, matched for age and gender, underwent a complete orthoptic examination. Data of visual acuity, eye position, fusion amplitude, stereopsis, ocular motility, convergence, and accommodation were compared between both groups. Patients with CFS showed highly significant smaller fusion amplitudes (P < 0.001), reduced convergence capacity (P < 0.001), and a smaller accommodation range (P < 0.001) compared to the control group. In patients with CFS binocular vision, convergence and accommodation should be routinely examined. CFS patients will benefit from reading glasses either with or without prism correction in an earlier stage compared to their healthy peers. Convergence exercises may be beneficial for CFS patients, despite the fact that they might be very tiring. Further research will be necessary to draw conclusions about the efficacy of treatment, especially regarding convergence exercises. To our knowledge, this is the first prospective study evaluating binocular vision in CFS patients. © 2016 Board of regents of the University of Wisconsin System, American Orthoptic Journal, Volume 66, 2016, ISSN 0065-955X, E-ISSN 1553-4448.

  16. Chronic intraventricular administration of lysergic acid diethylamide (LSD) affects the sensitivity of cortical cells to monocular deprivation.

    PubMed

    McCall, M A; Tieman, D G; Hirsch, H V

    1982-11-04

    In kittens, but not in adult cats, depriving one eye of pattern vision by suturing the lids shut (monocular deprivation or MD) for one week reduces the proportion of binocular units in the visual cortex. A sensitivity of cortical units in adult cats to MD can be produced by infusing exogenous monoamines into the visual cortex. Since LSD interacts with monoamines, we have examined the effects of chronic administration of LSD on the sensitivity to MD for cortical cells in adult cats. Cats were assigned randomly to one of four conditions: MD/LSD, MD/No-LSD, No-MD/LSD, No-MD/No-LSD. An osmotic minipump delivered either LSD or the vehicle solution alone during a one-week period of MD. The animals showed no obvious anomalies during the administration of the drug. After one week the response properties of single units in area 17 of the visual cortex were studied without knowledge of the contents of the individual minipumps. With the exception of ocular dominance, the response properties of units recorded in all animals did not differ from normal. In the control animals (MD/No-LSD, No-MD/LSD, No-MD/No-LSD) the average proportion of binocular cells was 78%; similar to that observed for normal adult cats. However, in the experimental animals, which received LSD during the period of MD, only 52% of the cells were binocular. Our results suggest that chronic intraventricular administration of LSD affects either directly or indirectly the sensitivity of cortical neurons to MD.

  17. Refractive errors and binocular dysfunctions in a population of university students.

    PubMed

    Risovic, D J; Misailovic, K R; Eric-Marinkovic, J M; Kosanovic-Jakovic, N G; Milenkovic, S M; Petrovic, L Z

    2008-01-01

    This clinical study was performed to determine the presence of refractive errors and binocular dysfunctions in a population of university students. Refraction and binocular function were evaluated in a young patient population (230 students and 234 nonstudent subjects, aged 18-27 years). Distance visual acuity (DVA) and near visual acuity (NVA), refraction, cover test (CT), ocular motility, near-point of convergence, horizontal phoria measurement by Maddox wing, negative and positive vergence amplitude in prism diopters, fusion amplitude in synoptophore, as well as stereoacuity (Titmus test) were tested. Emmetropia was the most frequent refractive status in our student and nonstudent groups (78.7%). Myopia was the most frequent refractive disorder in the whole population (13.1%). Myopia and hypermetropia were significantly more frequent in the students than in nonstudents (chi-square emp 47.55). Exophoria is significantly more frequent in myopic subjects. Vergence amplitude (t test 0.000) and fusion amplitude (t test 0.005) show significantly lower values in student population. Results of Titmus test in the student group is significantly worse than in the nonstudent group (t test 0.000). Maddox wing resulted in significantly higher degree of heterophoria in the student population (t test 0.000). Myopic subjects, in the student group (t test 0.002) as well as in the nonstudent group (t test 0.001), show significantly better results in Titmus test. High near visual demand could be the most important factor for higher incidence of myopia, worse convergence and fusion amplitude, higher degree of exophoria, and worse results in Titmus test in the student population.

  18. Natural images dominate in binocular rivalry

    PubMed Central

    Baker, Daniel H.; Graf, Erich W.

    2009-01-01

    Ecological approaches to perception have demonstrated that information encoding by the visual system is informed by the natural environment, both in terms of simple image attributes like luminance and contrast, and more complex relationships corresponding to Gestalt principles of perceptual organization. Here, we ask if this optimization biases perception of visual inputs that are perceptually bistable. Using the binocular rivalry paradigm, we designed stimuli that varied in either their spatiotemporal amplitude spectra or their phase spectra. We found that noise stimuli with “natural” amplitude spectra (i.e., amplitude content proportional to 1/f, where f is spatial or temporal frequency) dominate over those with any other systematic spectral slope, along both spatial and temporal dimensions. This could not be explained by perceived contrast measurements, and occurred even though all stimuli had equal energy. Calculating the effective contrast following attenuation by a model contrast sensitivity function suggested that the strong contrast dependency of rivalry provides the mechanism by which binocular vision is optimized for viewing natural images. We also compared rivalry between natural and phase-scrambled images and found a strong preference for natural phase spectra that could not be accounted for by observer biases in a control task. We propose that this phase specificity relates to contour information, and arises either from the activity of V1 complex cells, or from later visual areas, consistent with recent neuroimaging and single-cell work. Our findings demonstrate that human vision integrates information across space, time, and phase to select the input most likely to hold behavioral relevance. PMID:19289828

  19. Abnormal tuning of saccade-related cells in pontine reticular formation of strabismic monkeys.

    PubMed

    Walton, Mark M G; Mustari, Michael J

    2015-08-01

    Strabismus is a common disorder, characterized by a chronic misalignment of the eyes and numerous visual and oculomotor abnormalities. For example, saccades are often highly disconjugate. For humans with pattern strabismus, the horizontal and vertical disconjugacies vary with eye position. In monkeys, manipulations that disturb binocular vision during the first several weeks of life result in a chronic strabismus with characteristics that closely match those in human patients. Early onset strabismus is associated with altered binocular sensitivity of neurons in visual cortex. Here we test the hypothesis that brain stem circuits specific to saccadic eye movements are abnormal. We targeted the pontine paramedian reticular formation, a structure that directly projects to the ipsilateral abducens nucleus. In normal animals, neurons in this structure are characterized by a high-frequency burst of spikes associated with ipsiversive saccades. We recorded single-unit activity from 84 neurons from four monkeys (two normal, one exotrope, and one esotrope), while they made saccades to a visual target on a tangent screen. All 24 neurons recorded from the normal animals had preferred directions within 30° of pure horizontal. For the strabismic animals, the distribution of preferred directions was normal on one side of the brain, but highly variable on the other. In fact, 12/60 neurons recorded from the strabismic animals preferred vertical saccades. Many also had unusually weak or strong bursts. These data suggest that the loss of corresponding binocular vision during infancy impairs the development of normal tuning characteristics for saccade-related neurons in brain stem. Copyright © 2015 the American Physiological Society.

  20. Aging and the perception of slant from optical texture, motion parallax, and binocular disparity.

    PubMed

    Norman, J Farley; Crabtree, Charles E; Bartholomew, Ashley N; Ferrell, Elizabeth L

    2009-01-01

    The ability of younger and older observers to perceive surface slant was investigated in four experiments. The surfaces possessed slants of 20 degrees, 35 degrees, 50 degrees, and 65 degrees, relative to the frontoparallel plane. The observers judged the slants using either a palm board (Experiments 1, 3, and 4) or magnitude estimation (Experiment 2). In Experiments 1-3, physically slanted surfaces were used (the surfaces possessed marble, granite, pebble, and circle textures), whereas computer-generated 3-D surfaces (defined by motion parallax and binocular disparity) were utilized in Experiment 4. The results showed that the younger and older observers' performance was essentially identical with regard to accuracy. The younger and older age groups, however, differed in terms of precision in Experiments 1 and 2: The judgments of the older observers were more variable across repeated trials. When taken as a whole, the results demonstrate that older observers (at least through the age of 83 years) can effectively extract information about slant in depth from optical patterns containing texture, motion parallax, or binocular disparity.

  1. Are face representations depth cue invariant?

    PubMed

    Dehmoobadsharifabadi, Armita; Farivar, Reza

    2016-06-01

    The visual system can process three-dimensional depth cues defining surfaces of objects, but it is unclear whether such information contributes to complex object recognition, including face recognition. The processing of different depth cues involves both dorsal and ventral visual pathways. We investigated whether facial surfaces defined by individual depth cues resulted in meaningful face representations-representations that maintain the relationship between the population of faces as defined in a multidimensional face space. We measured face identity aftereffects for facial surfaces defined by individual depth cues (Experiments 1 and 2) and tested whether the aftereffect transfers across depth cues (Experiments 3 and 4). Facial surfaces and their morphs to the average face were defined purely by one of shading, texture, motion, or binocular disparity. We obtained identification thresholds for matched (matched identity between adapting and test stimuli), non-matched (non-matched identity between adapting and test stimuli), and no-adaptation (showing only the test stimuli) conditions for each cue and across different depth cues. We found robust face identity aftereffect in both experiments. Our results suggest that depth cues do contribute to forming meaningful face representations that are depth cue invariant. Depth cue invariance would require integration of information across different areas and different pathways for object recognition, and this in turn has important implications for cortical models of visual object recognition.

  2. Integrated light maintenance and inspection system for high-mast poles.

    DOT National Transportation Integrated Search

    2005-01-01

    Virginia highway high-mast light poles must be inspected periodically for structural defects to prevent failures. The visual inspection methods currently used include use of binoculars and telescopes and up-close inspection with bucket trucks. These ...

  3. Directional asymmetries in human smooth pursuit eye movements.

    PubMed

    Ke, Sally R; Lam, Jessica; Pai, Dinesh K; Spering, Miriam

    2013-06-27

    Humans make smooth pursuit eye movements to bring the image of a moving object onto the fovea. Although pursuit accuracy is critical to prevent motion blur, the eye often falls behind the target. Previous studies suggest that pursuit accuracy differs between motion directions. Here, we systematically assess asymmetries in smooth pursuit. In experiment 1, binocular eye movements were recorded while observers (n = 20) tracked a small spot of light moving along one of four cardinal or diagonal axes across a featureless background. We analyzed pursuit latency, acceleration, peak velocity, gain, and catch-up saccade latency, number, and amplitude. In experiment 2 (n = 22), we examined the effects of spatial location and constrained stimulus motion within the upper or lower visual field. Pursuit was significantly faster (higher acceleration, peak velocity, and gain) and smoother (fewer and later catch-up saccades) in response to downward versus upward motion in both the upper and the lower visual fields. Pursuit was also more accurate and smoother in response to horizontal versus vertical motion. CONCLUSIONS. Our study is the first to report a consistent up-down asymmetry in human adults, regardless of visual field. Our findings suggest that pursuit asymmetries are adaptive responses to the requirements of the visual context: preferred motion directions (horizontal and downward) are more critical to our survival than nonpreferred ones.

  4. The zone of comfort: Predicting visual discomfort with stereo displays

    PubMed Central

    Shibata, Takashi; Kim, Joohwan; Hoffman, David M.; Banks, Martin S.

    2012-01-01

    Recent increased usage of stereo displays has been accompanied by public concern about potential adverse effects associated with prolonged viewing of stereo imagery. There are numerous potential sources of adverse effects, but we focused on how vergence–accommodation conflicts in stereo displays affect visual discomfort and fatigue. In one experiment, we examined the effect of viewing distance on discomfort and fatigue. We found that conflicts of a given dioptric value were slightly less comfortable at far than at near distance. In a second experiment, we examined the effect of the sign of the vergence–accommodation conflict on discomfort and fatigue. We found that negative conflicts (stereo content behind the screen) are less comfortable at far distances and that positive conflicts (content in front of screen) are less comfortable at near distances. In a third experiment, we measured phoria and the zone of clear single binocular vision, which are clinical measurements commonly associated with correcting refractive error. Those measurements predicted susceptibility to discomfort in the first two experiments. We discuss the relevance of these findings for a wide variety of situations including the viewing of mobile devices, desktop displays, television, and cinema. PMID:21778252

  5. The zone of comfort: Predicting visual discomfort with stereo displays.

    PubMed

    Shibata, Takashi; Kim, Joohwan; Hoffman, David M; Banks, Martin S

    2011-07-21

    Recent increased usage of stereo displays has been accompanied by public concern about potential adverse effects associated with prolonged viewing of stereo imagery. There are numerous potential sources of adverse effects, but we focused on how vergence-accommodation conflicts in stereo displays affect visual discomfort and fatigue. In one experiment, we examined the effect of viewing distance on discomfort and fatigue. We found that conflicts of a given dioptric value were slightly less comfortable at far than at near distance. In a second experiment, we examined the effect of the sign of the vergence-accommodation conflict on discomfort and fatigue. We found that negative conflicts (stereo content behind the screen) are less comfortable at far distances and that positive conflicts (content in front of screen) are less comfortable at near distances. In a third experiment, we measured phoria and the zone of clear single binocular vision, which are clinical measurements commonly associated with correcting refractive error. Those measurements predicted susceptibility to discomfort in the first two experiments. We discuss the relevance of these findings for a wide variety of situations including the viewing of mobile devices, desktop displays, television, and cinema.

  6. Measuring visual discomfort associated with 3D displays

    NASA Astrophysics Data System (ADS)

    Lambooij, M.; Fortuin, M.; Ijsselsteijn, W. A.; Heynderickx, I.

    2009-02-01

    Some people report visual discomfort when watching 3D displays. For both the objective measurement of visual fatigue and the subjective measurement of visual discomfort, we would like to arrive at general indicators that are easy to apply in perception experiments. Previous research yielded contradictory results concerning such indicators. We hypothesize two potential causes for this: 1) not all clinical tests are equally appropriate to evaluate the effect of stereoscopic viewing on visual fatigue, and 2) there is a natural variation in susceptibility to visual fatigue amongst people with normal vision. To verify these hypotheses, we designed an experiment, consisting of two parts. Firstly, an optometric screening was used to differentiate participants in susceptibility to visual fatigue. Secondly, in a 2×2 within-subjects design (2D vs 3D and two-view vs nine-view display), a questionnaire and eight optometric tests (i.e. binocular acuity, fixation disparity with and without fusion lock, heterophoria, convergent and divergent fusion, vergence facility and accommodation response) were administered before and immediately after a reading task. Results revealed that participants found to be more susceptible to visual fatigue during screening showed a clinically meaningful increase in fusion amplitude after having viewed 3D stimuli. Two questionnaire items (i.e., pain and irritation) were significantly affected by the participants' susceptibility, while two other items (i.e., double vision and sharpness) were scored differently between 2D and 3D for all participants. Our results suggest that a combination of fusion range measurements and self-report is appropriate for evaluating visual fatigue related to 3D displays.

  7. Visual impairment evaluation in 119 children with congenital Zika syndrome.

    PubMed

    Ventura, Liana O; Ventura, Camila V; Dias, Natália de C; Vilar, Isabelle G; Gois, Adriana L; Arantes, Tiago E; Fernandes, Luciene C; Chiang, Michael F; Miller, Marilyn T; Lawrence, Linda

    2018-06-01

    To assess visual impairment in a large sample of infants with congenital Zika syndrome (CZS) and to compare with a control group using the same assessment protocol. The study group was composed of infants with confirmed diagnosis of CZS. Controls were healthy infants matched for age, sex, and socioeconomic status. All infants underwent comprehensive ophthalmologic evaluation including visual acuity, visual function assessment, and visual developmental milestones. The CZS group included 119 infants; the control group, 85 infants. At examination, the mean age of the CZS group was 8.5 ± 1.2 months (range, 6-13 months); of the controls, 8.4 ± 1.8 months (range, 5-12 months; P = 0.598). Binocular Teller Acuity Card (TAC) testing was abnormal in 107 CZS infants and in 4 controls (89.9% versus 5% [P < 0.001]). In the study group, abnormal monocular TAC results were more frequent in eyes with funduscopic alterations (P = 0.008); however, 104 of 123 structurally normal eyes (84.6%) also presented abnormal TAC results. Binocular contrast sensitivity was reduced in 87 of 107 CZS infants and in 8 of 80 controls (81.3% versus 10% [P < 0.001]). The visual development milestones were less achieved by infants with CZS compared to controls (P < 0.001). Infants with CZS present with severe visual impairment. A protocol for assessment of the ocular findings, visual acuity, and visual developmental milestones tested against age-matched controls is suggested. Copyright © 2018 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  8. The research of autonomous obstacle avoidance of mobile robot based on multi-sensor integration

    NASA Astrophysics Data System (ADS)

    Zhao, Ming; Han, Baoling

    2016-11-01

    The object of this study is the bionic quadruped mobile robot. The study has proposed a system design plan for mobile robot obstacle avoidance with the binocular stereo visual sensor and the self-control 3D Lidar integrated with modified ant colony optimization path planning to realize the reconstruction of the environmental map. Because the working condition of a mobile robot is complex, the result of the 3D reconstruction with a single binocular sensor is undesirable when feature points are few and the light condition is poor. Therefore, this system integrates the stereo vision sensor blumblebee2 and the Lidar sensor together to detect the cloud information of 3D points of environmental obstacles. This paper proposes the sensor information fusion technology to rebuild the environment map. Firstly, according to the Lidar data and visual data on obstacle detection respectively, and then consider two methods respectively to detect the distribution of obstacles. Finally fusing the data to get the more complete, more accurate distribution of obstacles in the scene. Then the thesis introduces ant colony algorithm. It has analyzed advantages and disadvantages of the ant colony optimization and its formation cause deeply, and then improved the system with the help of the ant colony optimization to increase the rate of convergence and precision of the algorithm in robot path planning. Such improvements and integrations overcome the shortcomings of the ant colony optimization like involving into the local optimal solution easily, slow search speed and poor search results. This experiment deals with images and programs the motor drive under the compiling environment of Matlab and Visual Studio and establishes the visual 2.5D grid map. Finally it plans a global path for the mobile robot according to the ant colony algorithm. The feasibility and effectiveness of the system are confirmed by ROS and simulation platform of Linux.

  9. Separate Perceptual and Neural Processing of Velocity- and Disparity-Based 3D Motion Signals

    PubMed Central

    Czuba, Thaddeus B.; Cormack, Lawrence K.; Huk, Alexander C.

    2016-01-01

    Although the visual system uses both velocity- and disparity-based binocular information for computing 3D motion, it is unknown whether (and how) these two signals interact. We found that these two binocular signals are processed distinctly at the levels of both cortical activity in human MT and perception. In human MT, adaptation to both velocity-based and disparity-based 3D motions demonstrated direction-selective neuroimaging responses. However, when adaptation to one cue was probed using the other cue, there was no evidence of interaction between them (i.e., there was no “cross-cue” adaptation). Analogous psychophysical measurements yielded correspondingly weak cross-cue motion aftereffects (MAEs) in the face of very strong within-cue adaptation. In a direct test of perceptual independence, adapting to opposite 3D directions generated by different binocular cues resulted in simultaneous, superimposed, opposite-direction MAEs. These findings suggest that velocity- and disparity-based 3D motion signals may both flow through area MT but constitute distinct signals and pathways. SIGNIFICANCE STATEMENT Recent human neuroimaging and monkey electrophysiology have revealed 3D motion selectivity in area MT, which is driven by both velocity-based and disparity-based 3D motion signals. However, to elucidate the neural mechanisms by which the brain extracts 3D motion given these binocular signals, it is essential to understand how—or indeed if—these two binocular cues interact. We show that velocity-based and disparity-based signals are mostly separate at the levels of both fMRI responses in area MT and perception. Our findings suggest that the two binocular cues for 3D motion might be processed by separate specialized mechanisms. PMID:27798134

  10. LogMAR and Stereoacuity in Keratoconus Corrected with Spectacles and Rigid Gas-permeable Contact Lenses.

    PubMed

    Nilagiri, Vinay Kumar; Metlapally, Sangeetha; Kalaiselvan, Parthasarathi; Schor, Clifton M; Bharadwaj, Shrikant R

    2018-04-01

    This study showed an improvement in three-dimensional depth perception of subjects with bilateral and unilateral keratoconus with rigid gas-permeable (RGP) contact lens wear, relative to spectacles. This novel information will aid clinicians to consider RGP contact lenses as a management modality in keratoconic patients complaining of depth-related difficulties with their spectacles. The aim of this study was to systematically compare changes in logMAR acuity and stereoacuity from best-corrected spherocylindrical spectacles to RGP contact lenses in bilateral and unilateral keratoconus vis-à-vis age-matched control subjects. Monocular and binocular logMAR acuity and random-dot stereoacuity were determined in subjects with bilateral (n = 30; 18 to 24 years) and unilateral (n = 10; 18 to 24 years) keratoconus and 20 control subjects using standard psychophysical protocols. Median (25th to 75th interquartile range) monocular (right eye) and binocular logMAR acuity and stereoacuity improved significantly from spectacles to RGP contact lenses in the bilateral keratoconus cohort (P < .001). Only monocular logMAR acuity of affected eye and stereoacuity improved from spectacles to RGP contact lenses in the unilateral keratoconus cohort (P < .001). There was no significant change in the binocular logMAR acuity from spectacles to RGP contact lenses in the unilateral keratoconus cohort. The magnitude of improvement in binocular logMAR acuity and stereoacuity was also greater for the bilateral compared with the unilateral keratoconus cohort. All outcome measures of cases with RGP contact lenses remained poorer than control subjects (P < .001). Binocular resolution and stereoacuity improve from spectacles to RGP contact lenses in bilateral keratoconus, whereas only stereoacuity improves from spectacles to RGP contact lenses in unilateral keratoconus. The magnitude of improvement in visual performance is greater for the binocular compared with the unilateral keratoconus cohort.

  11. Separate Perceptual and Neural Processing of Velocity- and Disparity-Based 3D Motion Signals.

    PubMed

    Joo, Sung Jun; Czuba, Thaddeus B; Cormack, Lawrence K; Huk, Alexander C

    2016-10-19

    Although the visual system uses both velocity- and disparity-based binocular information for computing 3D motion, it is unknown whether (and how) these two signals interact. We found that these two binocular signals are processed distinctly at the levels of both cortical activity in human MT and perception. In human MT, adaptation to both velocity-based and disparity-based 3D motions demonstrated direction-selective neuroimaging responses. However, when adaptation to one cue was probed using the other cue, there was no evidence of interaction between them (i.e., there was no "cross-cue" adaptation). Analogous psychophysical measurements yielded correspondingly weak cross-cue motion aftereffects (MAEs) in the face of very strong within-cue adaptation. In a direct test of perceptual independence, adapting to opposite 3D directions generated by different binocular cues resulted in simultaneous, superimposed, opposite-direction MAEs. These findings suggest that velocity- and disparity-based 3D motion signals may both flow through area MT but constitute distinct signals and pathways. Recent human neuroimaging and monkey electrophysiology have revealed 3D motion selectivity in area MT, which is driven by both velocity-based and disparity-based 3D motion signals. However, to elucidate the neural mechanisms by which the brain extracts 3D motion given these binocular signals, it is essential to understand how-or indeed if-these two binocular cues interact. We show that velocity-based and disparity-based signals are mostly separate at the levels of both fMRI responses in area MT and perception. Our findings suggest that the two binocular cues for 3D motion might be processed by separate specialized mechanisms. Copyright © 2016 the authors 0270-6474/16/3610791-12$15.00/0.

  12. [Refractive Surgery in Children with Myopic Anisometropia and Amblyopia in Comparison with Conventional Treatment by Contact Lenses].

    PubMed

    Autrata, R; Krejčířová, I; Griščíková, L; Doležel, Z

    2016-01-01

    Our study evaluated the visual and refractive results of LASEK and anterior chamber phakic intraocular lens (pIOL) implantation performed for high myopic anisometropia with amblyopia and contact lens intolerance in children compared with conventional treatment by contact lenses.Fourty-three patients (Group A) aged 3 to 7 years (mean, 5,6 years) with high myopic anisometropia and amblyopia had performed multizonal LASEK (27 eyes) or pIOL Verisyse implantation (16 eyes) on the more myopic eye in general anesthesia. Surgery was followed by patching of the dominant eye. Postoperative visual and refractive outcomes were analyzed and all children had minimally two years follow-up after procedure. Refractive surgical data were reported in standard format to describe safety, efficacy, predictability and stability of the procedure. This Group A of 43 children was compared with control Group B of 37 children (mean age 5,4 years), in whom myopic anisometropia and amblyopia were treated conventionally by contact lenses (CL) and patching of the dominant eye. Visual acuity (VA) and binocular vision (BV) outcome were analyzed and compared in both groups.The mean preoperative spherical equivalent (SE) cycloplegic refraction in Group A was - 9,45 ± 2,47 diopters (D) (range -6.0 to -18.25 D) and the mean postoperative SE -1,48 ± 1,13 D (range + 0,75 to - 2,25 D). The mean preop. decimal uncorrected visual acuity (UCVA) 0,023 ± 0,017 increased to 0,46 ± 0,18. The mean preop.decimal best-corrected visual acuity (BCVA) in Group A was 0,28 ± 0.22 and changed to 0,78± 0,19 by 2 years after surgery. The mean BCVA in Group B was 0,23 ± 0,19, at start of CL correction and amblyopia therapy, and improved to 0,42 ± 0,15 after two years. The mean BCVA at final examination was significantly better in Group A (P < 0,05). Binocular vision improvement expressed by the proportions of subjects gained fusion and stereopsis, was overall better in Group A (81 %) than in Group B (33 %), (P < 0,05). There were no complications after surgery.Refractive surgery in children, multizonal LASEK and pIOL Verisyse implantation, are effective and safe methods for correction of high myopic anisometropia, and has an important role in the treatment of amblyopia in children when contact lens intolerance. Visual acuity and binocular vision outcomes were better in children who received permanent surgical correction of anisometropia, than in children conventionally treated by contact lenses. myopic anisometropia, amblyopia, children, laser subepithelial keratomileusis (LASEK), anterior chamber phakic intraocular lenses (AC pIOL), binocular vision.

  13. Audio–visual interactions for motion perception in depth modulate activity in visual area V3A

    PubMed Central

    Ogawa, Akitoshi; Macaluso, Emiliano

    2013-01-01

    Multisensory signals can enhance the spatial perception of objects and events in the environment. Changes of visual size and auditory intensity provide us with the main cues about motion direction in depth. However, frequency changes in audition and binocular disparity in vision also contribute to the perception of motion in depth. Here, we presented subjects with several combinations of auditory and visual depth-cues to investigate multisensory interactions during processing of motion in depth. The task was to discriminate the direction of auditory motion in depth according to increasing or decreasing intensity. Rising or falling auditory frequency provided an additional within-audition cue that matched or did not match the intensity change (i.e. intensity-frequency (IF) “matched vs. unmatched” conditions). In two-thirds of the trials, a task-irrelevant visual stimulus moved either in the same or opposite direction of the auditory target, leading to audio–visual “congruent vs. incongruent” between-modalities depth-cues. Furthermore, these conditions were presented either with or without binocular disparity. Behavioral data showed that the best performance was observed in the audio–visual congruent condition with IF matched. Brain imaging results revealed maximal response in visual area V3A when all cues provided congruent and reliable depth information (i.e. audio–visual congruent, IF-matched condition including disparity cues). Analyses of effective connectivity revealed increased coupling from auditory cortex to V3A specifically in audio–visual congruent trials. We conclude that within- and between-modalities cues jointly contribute to the processing of motion direction in depth, and that they do so via dynamic changes of connectivity between visual and auditory cortices. PMID:23333414

  14. [Dichoptic training for amblyopia].

    PubMed

    Bach, M

    2016-04-01

    Dichoptic training is a promising new therapeutic approach to amblyopia, which employs simultaneous and separate stimulation of both eyes (thus dichoptic). The contrast for the good eye is reduced thus aiming at a balance with the amblyopic eye. In contrast to monocular patching, binocular vision is trained by video game tasks that can only be solved binocularly. To date the average gain in visual acuity achieved in currently available studies is only 0.20 ± 0.07 logMAR and is not significantly better than competing treatment options. This article explains the basic approach of dichoptic training, summarizes pertinent studies, names unsolved problems and closes with a personal critical assessment.

  15. A novel vibration measurement and active control method for a hinged flexible two-connected piezoelectric plate

    NASA Astrophysics Data System (ADS)

    Qiu, Zhi-cheng; Wang, Xian-feng; Zhang, Xian-Min; Liu, Jin-guo

    2018-07-01

    A novel non-contact vibration measurement method using binocular vision sensors is proposed for piezoelectric flexible hinged plate. Decoupling methods of the bending and torsional low frequency vibration on measurement and driving control are investigated, using binocular vision sensors and piezoelectric actuators. A radial basis function neural network controller (RBFNNC) is designed to suppress both the larger and the smaller amplitude vibrations. To verify the non-contact measurement method and the designed controller, an experimental setup of the flexible hinged plate with binocular vision is constructed. Experiments on vibration measurement and control are conducted by using binocular vision sensors and the designed RBFNNC controllers, compared with the classical proportional and derivative (PD) control algorithm. The experimental measurement results demonstrate that the binocular vision sensors can detect the low-frequency bending and torsional vibration effectively. Furthermore, the designed RBF can suppress the bending vibration more quickly than the designed PD controller owing to the adjustment of the RBF control, especially for the small amplitude residual vibrations.

  16. Tilt aftereffect following adaptation to translational Glass patterns

    PubMed Central

    Pavan, Andrea; Hocketstaller, Johanna; Contillo, Adriano; Greenlee, Mark W.

    2016-01-01

    Glass patterns (GPs) consist of randomly distributed dot pairs (dipoles) whose orientations are determined by specific geometric transforms. We assessed whether adaptation to stationary oriented translational GPs suppresses the activity of orientation selective detectors producing a tilt aftereffect (TAE). The results showed that adaptation to GPs produces a TAE similar to that reported in previous studies, though reduced in amplitude. This suggests the involvement of orientation selective mechanisms. We also measured the interocular transfer (IOT) of the GP-induced TAE and found an almost complete IOT, indicating the involvement of orientation selective and binocularly driven units. In additional experiments, we assessed the role of attention in TAE from GPs. The results showed that distraction during adaptation similarly modulates the TAE after adapting to both GPs and gratings. Moreover, in the case of GPs, distraction is likely to interfere with the adaptation process rather than with the spatial summation of local dipoles. We conclude that TAE from GPs possibly relies on visual processing levels in which the global orientation of GPs has been encoded by neurons that are mostly binocularly driven, orientation selective and whose adaptation-related neural activity is strongly modulated by attention. PMID:27005949

  17. A survey of visual function in an Austrian population of school-age children with reading and writing difficulties.

    PubMed

    Dusek, Wolfgang; Pierscionek, Barbara K; McClelland, Julie F

    2010-05-25

    To describe and compare visual function measures of two groups of school age children (6-14 years of age) attending a specialist eyecare practice in Austria; one group referred to the practice from educational assessment centres diagnosed with reading and writing difficulties and the other, a clinical age-matched control group. Retrospective clinical data from one group of subjects with reading difficulties (n = 825) and a clinical control group of subjects (n = 328) were examined.Statistical analysis was performed to determine whether any differences existed between visual function measures from each group (refractive error, visual acuity, binocular status, accommodative function and reading speed and accuracy). Statistical analysis using one way ANOVA demonstrated no differences between the two groups in terms of refractive error and the size or direction of heterophoria at distance (p > 0.05). Using predominately one way ANOVA and chi-square analyses, those subjects in the referred group were statistically more likely to have poorer distance visual acuity, an exophoric deviation at near, a lower amplitude of accommodation, reduced accommodative facility, reduced vergence facility, a reduced near point of convergence, a lower AC/A ratio and a slower reading speed than those in the clinical control group (p < 0.05). This study highlights the high proportions of visual function anomalies in a group of children with reading difficulties in an Austrian population. It confirms the importance of a full assessment of binocular visual status in order to detect and remedy these deficits in order to prevent the visual problems continuing to impact upon educational development.

  18. Effect of a Binocular iPad Game vs Part-time Patching in Children Aged 5 to 12 Years With Amblyopia: A Randomized Clinical Trial.

    PubMed

    Holmes, Jonathan M; Manh, Vivian M; Lazar, Elizabeth L; Beck, Roy W; Birch, Eileen E; Kraker, Raymond T; Crouch, Eric R; Erzurum, S Ayse; Khuddus, Nausheen; Summers, Allison I; Wallace, David K

    2016-12-01

    A binocular approach to treating anisometropic and strabismic amblyopia has recently been advocated. Initial studies have yielded promising results, suggesting that a larger randomized clinical trial is warranted. To compare visual acuity (VA) improvement in children with amblyopia treated with a binocular iPad game vs part-time patching. A multicenter, noninferiority randomized clinical trial was conducted in community and institutional practices from September 16, 2014, to August 28, 2015. Participants included 385 children aged 5 years to younger than 13 years with amblyopia (20/40 to 20/200, mean 20/63) resulting from strabismus, anisometropia, or both. Participants were randomly assigned to either 16 weeks of a binocular iPad game prescribed for 1 hour a day (190 participants; binocular group) or patching of the fellow eye prescribed for 2 hours a day (195 participants; patching group). Study follow-up visits were scheduled at 4, 8, 12, and 16 weeks. A modified intent-to-treat analysis was performed on participants who completed the 16-week trial. Binocular iPad game or patching of the fellow eye. Change in amblyopic-eye VA from baseline to 16 weeks. Of the 385 participants, 187 were female (48.6%); mean (SD) age was 8.5 (1.9) years. At 16 weeks, mean amblyopic-eye VA improved 1.05 lines (2-sided 95% CI, 0.85-1.24 lines) in the binocular group and 1.35 lines (2-sided 95% CI, 1.17-1.54 lines) in the patching group, with an adjusted treatment group difference of 0.31 lines favoring patching (upper limit of the 1-sided 95% CI, 0.53 lines). This upper limit exceeded the prespecified noninferiority limit of 0.5 lines. Only 39 of the 176 participants (22.2%) randomized to the binocular game and with log file data available performed more than 75% of the prescribed treatment (median, 46%; interquartile range, 20%-72%). In younger participants (aged 5 to <7 years) without prior amblyopia treatment, amblyopic-eye VA improved by a mean (SD) of 2.5 (1.5) lines in the binocular group and 2.8 (0.8) lines in the patching group. Adverse effects (including diplopia) were uncommon and of similar frequency between groups. In children aged 5 to younger than 13 years, amblyopic-eye VA improved with binocular game play and with patching, particularly in younger children (age 5 to <7 years) without prior amblyopia treatment. Although the primary noninferiority analysis was indeterminate, a post hoc analysis suggested that VA improvement with this particular binocular iPad treatment was not as good as with 2 hours of prescribed daily patching. http://www.clinicaltrials.gov Identifier: NCT02200211.

  19. [Treatment of amblyopia].

    PubMed

    von Noorden, G K

    1990-01-01

    Animal experiments have explored the structural and functional alterations of the afferent visual pathways in amblyopia and have emphasized the extraordinary sensitivity of the immature visual system to abnormal visual stimulation. The practical consequences of these experiments are obvious: early diagnosis of amblyopia and energetic occlusion therapy as early in life as possible. At the same time, measures must be taken to prevent visual deprivation amblyopia in the occluded eye. After successful treatment, alternating penalization with two pairs of spectacles is recommended. Pleoptics involves an enormous commitment in terms of time, personnel and costs. In view of the fact that the superiority of this treatment over occlusion therapy has yet to be proven, the current value of pleoptics appears dubious. Moreover, overtreated patients may end up with intractable diplopia. Diverging opinions exist with regard to the use of penalization as a primary treatment of amblyopia. We employ it only in special cases as an alternative to occlusion therapy. Visual deprivation in infancy caused by opacities of the ocular media, especially when they occur unilaterally, must be eliminated, and deprivation amblyopia must be treated without delay to regain useful vision. Brief periods of bilateral occlusion are recommended to avoid the highly amblyopiogenic imbalance between binocular afferent visual input. Future developments will hopefully include new objective methods to diagnose amblyopia in preverbal children and infants. The application of positron emission tomography is perhaps the first step in the direction of searching for new approaches to this problem.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Comparison of visual and refractive outcomes after bilateral implantation of toric intraocular lenses with or without a multifocal component.

    PubMed

    Hayashi, Ken; Masumoto, Miki; Takimoto, Minehiro

    2015-01-01

    To compare visual outcomes between patients with a multifocal toric intraocular lens (IOL) and those with a monofocal toric IOL. Hayashi Eye Hospital, Fukuoka, Japan. Prospective case-control series. Eyes with preoperative corneal astigmatism between 0.75 diopter (D) and 2.82 D scheduled for implantation of a diffractive multifocal toric IOL (Restor SND1T) or monofocal toric IOL (Acrysof SN6AT) were recruited. Three months postoperatively, visual acuity at various distances, contrast visual acuity, and refractive outcomes were examined. Each group comprised 66 eyes (33 patients). Postoperatively, the mean refractive astigmatism decreased to 0.71 D in the multifocal group and 0.74 D in the monofocal group. The mean monocular and binocular uncorrected and corrected near visual acuity at 0.3 m and intermediate visual acuity at 0.5 m were significantly better in the multifocal group than in the monofocal group (P≤.0011). The uncorrected and corrected visual acuities at other distances were similar between groups except at 1.0 m. Binocular photopic and mesopic contrast visual acuities at high to moderate contrasts did not differ significantly between groups; however, acuities at low contrasts were worse in the multifocal group (P≤.0429). Diffractive multifocal toric IOL implantation decreased refractive astigmatism to an acceptable range in eyes with moderate corneal astigmatism and provided useful visual acuity (≥20/40) at any distance and significantly better near and intermediate visual acuity than a monofocal toric IOL. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  1. Slow Reading in Glaucoma: Is it due to the Shrinking Visual Span in Central Vision?

    PubMed Central

    Liu, Rong; Patel, Bhavika N.; Girkin, Christopher

    2017-01-01

    Purpose Glaucoma is a leading cause of blindness worldwide, characterized by progressive loss of retinal ganglion cells. Patients with bilateral glaucoma read slower than normal cohorts. Here we examined the factors that may underlie slow reading in glaucoma and determined the best predictor of reading speed in glaucoma. Methods A total of 38 subjects participated in this study: 17 patients with primary open-angle glaucoma (mean age = 64.71 years) and 21 age-similar normal controls (58.24 years). For each subject, we measured binocular visual acuity (BVA); binocular contrast sensitivity (BCS); stereoacuity; visual field mean deviation (MD); and the visual span (i.e., the number of letters recognizable at one glance) known to limit reading speed. The visual span was measured with a trigram letter-recognition task in which subjects identify trigrams flashed at varying letter positions left and right of the fixation. Oral reading speed was measured with short blocks of text. Results Even after controlling for age, glaucoma patients showed significantly slower reading speed (by 19%, P < 0.05) and smaller visual span (by 11 bits, P < 0.001) compared to normal controls. While their BVA was relatively normal (20/20 Snellen equivalent), their BCS (P < 0.001); stereoacuity (P < 0.001); and visual field MD (P < 0.001) showed pronounced deficits. Multiple regression analysis further revealed that reading speed in glaucoma was best predicted by the visual span. Conclusions Our results showed that slower reading speed in glaucoma was closely related to the shrinkage of the visual span. Our findings further support the view that the visual span plays a limiting role in reading speed. PMID:29131903

  2. Slow Reading in Glaucoma: Is it due to the Shrinking Visual Span in Central Vision?

    PubMed

    Kwon, MiYoung; Liu, Rong; Patel, Bhavika N; Girkin, Christopher

    2017-11-01

    Glaucoma is a leading cause of blindness worldwide, characterized by progressive loss of retinal ganglion cells. Patients with bilateral glaucoma read slower than normal cohorts. Here we examined the factors that may underlie slow reading in glaucoma and determined the best predictor of reading speed in glaucoma. A total of 38 subjects participated in this study: 17 patients with primary open-angle glaucoma (mean age = 64.71 years) and 21 age-similar normal controls (58.24 years). For each subject, we measured binocular visual acuity (BVA); binocular contrast sensitivity (BCS); stereoacuity; visual field mean deviation (MD); and the visual span (i.e., the number of letters recognizable at one glance) known to limit reading speed. The visual span was measured with a trigram letter-recognition task in which subjects identify trigrams flashed at varying letter positions left and right of the fixation. Oral reading speed was measured with short blocks of text. Even after controlling for age, glaucoma patients showed significantly slower reading speed (by 19%, P < 0.05) and smaller visual span (by 11 bits, P < 0.001) compared to normal controls. While their BVA was relatively normal (20/20 Snellen equivalent), their BCS (P < 0.001); stereoacuity (P < 0.001); and visual field MD (P < 0.001) showed pronounced deficits. Multiple regression analysis further revealed that reading speed in glaucoma was best predicted by the visual span. Our results showed that slower reading speed in glaucoma was closely related to the shrinkage of the visual span. Our findings further support the view that the visual span plays a limiting role in reading speed.

  3. Accuracy aspects of stereo side-looking radar. [analysis of its visual perception and binocular vision

    NASA Technical Reports Server (NTRS)

    Leberl, F. W.

    1979-01-01

    The geometry of the radar stereo model and factors affecting visual radar stereo perception are reviewed. Limits to the vertical exaggeration factor of stereo radar are defined. Radar stereo model accuracies are analyzed with respect to coordinate errors caused by errors of radar sensor position and of range, and with respect to errors of coordinate differences, i.e., cross-track distances and height differences.

  4. Slow and fast visual motion channels have independent binocular-rivalry stages.

    PubMed Central

    van de Grind, W. A.; van Hof, P.; van der Smagt, M. J.; Verstraten, F. A.

    2001-01-01

    We have previously reported a transparent motion after-effect indicating that the human visual system comprises separate slow and fast motion channels. Here, we report that the presentation of a fast motion in one eye and a slow motion in the other eye does not result in binocular rivalry but in a clear percept of transparent motion. We call this new visual phenomenon 'dichoptic motion transparency' (DMT). So far only the DMT phenomenon and the two motion after-effects (the 'classical' motion after-effect, seen after motion adaptation on a static test pattern, and the dynamic motion after-effect, seen on a dynamic-noise test pattern) appear to isolate the channels completely. The speed ranges of the slow and fast channels overlap strongly and are observer dependent. A model is presented that links after-effect durations of an observer to the probability of rivalry or DMT as a function of dichoptic velocity combinations. Model results support the assumption of two highly independent channels showing only within-channel rivalry, and no rivalry or after-effect interactions between the channels. The finding of two independent motion vision channels, each with a separate rivalry stage and a private line to conscious perception, might be helpful in visualizing or analysing pathways to consciousness. PMID:11270442

  5. Visual Survey of Apache Aviators (VISAA)

    DTIC Science & Technology

    1990-09-01

    ocular symptoms ..... . 28 D. Aviator spectacle wear .... ............ 29 E. General discussion and summary .. ........ 30 Part 2: Laboratory...cycloplegic refractive errors . . 36 Lateral phorias ........ ........ . 36 Ocular vergence facility. ..... ........ . 37 Dissociated cross cylinder test...40 Binocular rivalry .. ......... ..... 40 Manifest and cycloplegic refraction ..... . 41 Lateral phorias ........ ......... . 41 Ocular

  6. Full-reference quality assessment of stereoscopic images by learning binocular receptive field properties.

    PubMed

    Shao, Feng; Li, Kemeng; Lin, Weisi; Jiang, Gangyi; Yu, Mei; Dai, Qionghai

    2015-10-01

    Quality assessment of 3D images encounters more challenges than its 2D counterparts. Directly applying 2D image quality metrics is not the solution. In this paper, we propose a new full-reference quality assessment for stereoscopic images by learning binocular receptive field properties to be more in line with human visual perception. To be more specific, in the training phase, we learn a multiscale dictionary from the training database, so that the latent structure of images can be represented as a set of basis vectors. In the quality estimation phase, we compute sparse feature similarity index based on the estimated sparse coefficient vectors by considering their phase difference and amplitude difference, and compute global luminance similarity index by considering luminance changes. The final quality score is obtained by incorporating binocular combination based on sparse energy and sparse complexity. Experimental results on five public 3D image quality assessment databases demonstrate that in comparison with the most related existing methods, the devised algorithm achieves high consistency with subjective assessment.

  7. On Alternative Approaches to 3D Image Perception: Monoscopic 3D Techniques

    NASA Astrophysics Data System (ADS)

    Blundell, Barry G.

    2015-06-01

    In the eighteenth century, techniques that enabled a strong sense of 3D perception to be experienced without recourse to binocular disparities (arising from the spatial separation of the eyes) underpinned the first significant commercial sales of 3D viewing devices and associated content. However following the advent of stereoscopic techniques in the nineteenth century, 3D image depiction has become inextricably linked to binocular parallax and outside the vision science and arts communities relatively little attention has been directed towards earlier approaches. Here we introduce relevant concepts and terminology and consider a number of techniques and optical devices that enable 3D perception to be experienced on the basis of planar images rendered from a single vantage point. Subsequently we allude to possible mechanisms for non-binocular parallax based 3D perception. Particular attention is given to reviewing areas likely to be thought-provoking to those involved in 3D display development, spatial visualization, HCI, and other related areas of interdisciplinary research.

  8. Identification of Eye-Specific Domains and Their Relation to Callosal Connections in Primary Visual Cortex of Long Evans Rats

    PubMed Central

    Laing, R.J.; Turecek, J.; Takahata, T.; Olavarria, J.F.

    2015-01-01

    Ocular dominance columns (ODCs) exist in many primates and carnivores, but it is believed that they do not exist in rodents. Using a combination of transneuronal tracing, in situ hybridization for Zif268 and electrophysiological recordings, we show that inputs from both eyes are largely segregated in the binocular region of V1 in Long Evans rats. We also show that, interposed between this binocular region and the lateral border of V1, there lies a strip of cortex that is strongly dominated by the contralateral eye. Finally, we show that callosal connections colocalize primarily with ipsilateral eye domains in the binocular region and with contralateral eye input in the lateral cortical strip, mirroring the relationship between patchy callosal connections and specific sets of ODCs described previously in the cat. Our results suggest that development of cortical modular architecture is more conserved among rodents, carnivores, and primates than previously thought. PMID:24969475

  9. Binocular contrast-gain control for natural scenes: Image structure and phase alignment.

    PubMed

    Huang, Pi-Chun; Dai, Yu-Ming

    2018-05-01

    In the context of natural scenes, we applied the pattern-masking paradigm to investigate how image structure and phase alignment affect contrast-gain control in binocular vision. We measured the discrimination thresholds of bandpass-filtered natural-scene images (targets) under various types of pedestals. Our first experiment had four pedestal types: bandpass-filtered pedestals, unfiltered pedestals, notch-filtered pedestals (which enabled removal of the spatial frequency), and misaligned pedestals (which involved rotation of unfiltered pedestals). Our second experiment featured six types of pedestals: bandpass-filtered, unfiltered, and notch-filtered pedestals, and the corresponding phase-scrambled pedestals. The thresholds were compared for monocular, binocular, and dichoptic viewing configurations. The bandpass-filtered pedestal and unfiltered pedestals showed classic dipper shapes; the dipper shapes of the notch-filtered, misaligned, and phase-scrambled pedestals were weak. We adopted a two-stage binocular contrast-gain control model to describe our results. We deduced that the phase-alignment information influenced the contrast-gain control mechanism before the binocular summation stage and that the phase-alignment information and structural misalignment information caused relatively strong divisive inhibition in the monocular and interocular suppression stages. When the pedestals were phase-scrambled, the elimination of the interocular suppression processing was the most convincing explanation of the results. Thus, our results indicated that both phase-alignment information and similar image structures cause strong interocular suppression. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Covert spatial attention is functionally intact in amblyopic human adults

    PubMed Central

    Roberts, Mariel; Cymerman, Rachel; Smith, R. Theodore; Kiorpes, Lynne; Carrasco, Marisa

    2016-01-01

    Certain abnormalities in behavioral performance and neural signaling have been attributed to a deficit of visual attention in amblyopia, a neurodevelopmental disorder characterized by a diverse array of visual deficits following abnormal binocular childhood experience. Critically, most have inferred attention's role in their task without explicitly manipulating and measuring its effects against a baseline condition. Here, we directly investigate whether human amblyopic adults benefit from covert spatial attention—the selective processing of visual information in the absence of eye movements—to the same degree as neurotypical observers. We manipulated both involuntary (Experiment 1) and voluntary (Experiment 2) attention during an orientation discrimination task for which the effects of covert spatial attention have been well established in neurotypical and special populations. In both experiments, attention significantly improved accuracy and decreased reaction times to a similar extent (a) between the eyes of the amblyopic adults and (b) between the amblyopes and their age- and gender-matched controls. Moreover, deployment of voluntary attention away from the target location significantly impaired task performance (Experiment 2). The magnitudes of the involuntary and voluntary attention benefits did not correlate with amblyopic depth or severity. Both groups of observers showed canonical performance fields (better performance along the horizontal than vertical meridian and at the lower than upper vertical meridian) and similar effects of attention across locations. Despite their characteristic low-level vision impairments, covert spatial attention remains functionally intact in human amblyopic adults. PMID:28033433

  11. The effect of spectacle treatment in patients with mild traumatic brain injury: a pilot study.

    PubMed

    Johansson, Jan; Nygren de Boussard, Catharina; Öqvist Seimyr, Gustaf; Pansell, Tony

    2017-05-01

    Visual symptoms and dysfunctions may be a part of the long-term issues following mild traumatic brain injury. These issues may have an impact on near work and reading, and thus affect activities of daily life and the ability to return to work. The purpose of the study was to assess the effect of spectacle treatment on near work-related visual symptoms, visual function and reading performance in patients with persisting symptoms after mild traumatic brain injury. Eight patients with persisting symptoms after mild traumatic brain injury and anomalies of binocular function were included. Binocular function, visual symptoms and reading performance were assessed before and after spectacle treatment. Reading eye movements were recorded with eye tracking. Four patients showed a considerable symptom reduction along with minor improvement in clinical visual measures. Reading performance improved in four patients; however, the relationship to symptom reduction was inconsistent. The improvement was correlated to reduced average number of fixations per word (r = -0.89, p = 0.02), reduced proportion of regressive saccades (r = -0.93, p = 0.01) and a significant increase of mean progressive saccade length (p = 0.03). This pilot study found that spectacle treatment, specifically directed at optimising near task visual function, significantly reduced symptoms in 50 per cent of patients and improved reading performance in 50 per cent. While promising, lack of placebo control and lack of correlation between reading performance and symptom improvements means we cannot decipher mechanisms without further study. © 2016 Optometry Australia.

  12. Relating Lateralization of Eye Use to Body Motion in the Avoidance Behavior of the Chameleon (Chamaeleo chameleon)

    PubMed Central

    Lustig, Avichai; Ketter-Katz, Hadas; Katzir, Gadi

    2013-01-01

    Lateralization is mostly analyzed for single traits, but seldom for two or more traits while performing a given task (e.g. object manipulation). We examined lateralization in eye use and in body motion that co-occur during avoidance behaviour of the common chameleon, Chamaeleo chameleon. A chameleon facing a moving threat smoothly repositions its body on the side of its perch distal to the threat, to minimize its visual exposure. We previously demonstrated that during the response (i) eye use and body motion were, each, lateralized at the tested group level (N = 26), (ii) in body motion, we observed two similar-sized sub-groups, one exhibiting a greater reduction in body exposure to threat approaching from the left and one – to threat approaching from the right (left- and right-biased subgroups), (iii) the left-biased sub-group exhibited weak lateralization of body exposure under binocular threat viewing and none under monocular viewing while the right-biased sub-group exhibited strong lateralization under both monocular and binocular threat viewing. In avoidance, how is eye use related to body motion at the entire group and at the sub-group levels? We demonstrate that (i) in the left-biased sub-group, eye use is not lateralized, (ii) in the right-biased sub-group, eye use is lateralized under binocular, but not monocular viewing of the threat, (iii) the dominance of the right-biased sub-group determines the lateralization of the entire group tested. We conclude that in chameleons, patterns of lateralization of visual function and body motion are inter-related at a subtle level. Presently, the patterns cannot be compared with humans' or related to the unique visual system of chameleons, with highly independent eye movements, complete optic nerve decussation and relatively few inter-hemispheric commissures. We present a model to explain the possible inter-hemispheric differences in dominance in chameleons' visual control of body motion during avoidance. PMID:23967099

  13. Relating lateralization of eye use to body motion in the avoidance behavior of the chameleon (Chamaeleo chameleon).

    PubMed

    Lustig, Avichai; Ketter-Katz, Hadas; Katzir, Gadi

    2013-01-01

    Lateralization is mostly analyzed for single traits, but seldom for two or more traits while performing a given task (e.g. object manipulation). We examined lateralization in eye use and in body motion that co-occur during avoidance behaviour of the common chameleon, Chamaeleo chameleon. A chameleon facing a moving threat smoothly repositions its body on the side of its perch distal to the threat, to minimize its visual exposure. We previously demonstrated that during the response (i) eye use and body motion were, each, lateralized at the tested group level (N = 26), (ii) in body motion, we observed two similar-sized sub-groups, one exhibiting a greater reduction in body exposure to threat approaching from the left and one--to threat approaching from the right (left- and right-biased subgroups), (iii) the left-biased sub-group exhibited weak lateralization of body exposure under binocular threat viewing and none under monocular viewing while the right-biased sub-group exhibited strong lateralization under both monocular and binocular threat viewing. In avoidance, how is eye use related to body motion at the entire group and at the sub-group levels? We demonstrate that (i) in the left-biased sub-group, eye use is not lateralized, (ii) in the right-biased sub-group, eye use is lateralized under binocular, but not monocular viewing of the threat, (iii) the dominance of the right-biased sub-group determines the lateralization of the entire group tested. We conclude that in chameleons, patterns of lateralization of visual function and body motion are inter-related at a subtle level. Presently, the patterns cannot be compared with humans' or related to the unique visual system of chameleons, with highly independent eye movements, complete optic nerve decussation and relatively few inter-hemispheric commissures. We present a model to explain the possible inter-hemispheric differences in dominance in chameleons' visual control of body motion during avoidance.

  14. Evaluation of periosteal fixation of lateral rectus and partial VRT for cases of exotropic Duane retraction syndrome.

    PubMed

    Sharma, Pradeep; Tomer, Ruchi; Menon, Vimla; Saxena, Rohit; Sharma, Anudeepa

    2014-02-01

    The purpose of this study is to evaluate the lateral rectus periosteal fixation and partial vertical rectus transpositioning (VRT) as treatment modalities to correct exotropic Duane retraction syndrome (Exo-DRS). Prospective interventional case study of cases of Exo-DRS with limitation of adduction. A total of 13 patients were subdivided into two groups. Six patients underwent only lateral rectus periosteal fixation (group A) and seven patients also underwent partial VRT (group B). Assessment involved prism bar cover test, abduction and adduction range, extent of binocular single visual field and exophthalmometry. These tests were repeated at 1 week, 1 month and 3 months post-operatively and data analyzed. The pre-operative mean values and ranges were 26.2 Δ (22-35) exotropia for group A and -21.3 Δ (14-30) exotropia for group B. The post-operative mean and range was +0.6 Δ esotropia (+20 to -8) for group A and 8 Δ (-2 to -20) exotropia for group B. Mean grade of limitation of abduction changed from -3.8 to -3.6 versus -3.6 to -2.8 and mean grade of limitation of adduction changed from -1.9 to -0.7 versus -1.5 to -0.5 in the groups A and B respectively. Mean binocular single visual field changed from 14.7° to 23.3° in group A and 11.8° to 26.4° in the group B respectively. Lateral rectus periosteal fixation is an effective surgery to correct the exodeviation, anomalous head posture and improving adduction in Exo-DRS and partial VRT in addition is effective in improving abduction and binocular single visual fields.

  15. Evaluation of periosteal fixation of lateral rectus and partial VRT for cases of exotropic Duane retraction syndrome

    PubMed Central

    Sharma, Pradeep; Tomer, Ruchi; Menon, Vimla; Saxena, Rohit; Sharma, Anudeepa

    2014-01-01

    Purpose: The purpose of this study is to evaluate the lateral rectus periosteal fixation and partial vertical rectus transpositioning (VRT) as treatment modalities to correct exotropic Duane retraction syndrome (Exo-DRS). Materials and Methods: Prospective interventional case study of cases of Exo-DRS with limitation of adduction. A total of 13 patients were subdivided into two groups. Six patients underwent only lateral rectus periosteal fixation (group A) and seven patients also underwent partial VRT (group B). Assessment involved prism bar cover test, abduction and adduction range, extent of binocular single visual field and exophthalmometry. These tests were repeated at 1 week, 1 month and 3 months post-operatively and data analyzed. Results: The pre-operative mean values and ranges were 26.2Δ (22-35) exotropia for group A and −21.3Δ (14-30) exotropia for group B. The post-operative mean and range was +0.6Δ esotropia (+20 to −8) for group A and 8Δ (−2 to −20) exotropia for group B. Mean grade of limitation of abduction changed from −3.8 to −3.6 versus −3.6 to −2.8 and mean grade of limitation of adduction changed from −1.9 to −0.7 versus −1.5 to −0.5 in the groups A and B respectively. Mean binocular single visual field changed from 14.7° to 23.3° in group A and 11.8° to 26.4° in the group B respectively. Conclusion: Lateral rectus periosteal fixation is an effective surgery to correct the exodeviation, anomalous head posture and improving adduction in Exo-DRS and partial VRT in addition is effective in improving abduction and binocular single visual fields. PMID:24618490

  16. Effects of Pictorial Cues on Reaching Depend on the Distinctiveness of Target Objects

    PubMed Central

    Himmelbach, Marc

    2013-01-01

    There is an ongoing debate under what conditions learned object sizes influence visuomotor control under preserved stereovision. Using meaningful objects (matchboxes of locally well-known brands in the UK) a previous study has nicely shown that the recognition of these objects influences action programming by means of reach amplitude and grasp pre-shaping even under binocular vision. Using the same paradigm, we demonstrated that short-term learning of colour-size associations was not sufficient to induce any visuomotor effects under binocular viewing conditions. Now we used the same matchboxes, for which the familiarity effect was shown in the UK, with German participants who have never seen these objects before. We addressed the question whether simply a high degree of distinctness, or whether instead actual prior familiarity of these objects, are required to affect motor computations. We found that under monocular and binocular viewing conditions the learned size and location influenced the amplitude of the reaching component significantly. In contrast, the maximum grip aperture remained unaffected for binocular vision. We conclude that visual distinctness is sufficient to form reliable associations in short-term learning to influence reaching even for preserved stereovision. Grasp pre-shaping instead seems to be less susceptible to such perceptual effects. PMID:23382882

  17. [Binocular functions in amblyopia and strabismus].

    PubMed

    Awaya, S; Sato, M; Tsuzuki, K; Takara, T; Hiraiwa, S; Ota, K; Arai, M; Yoshida, M; Miyake, Y; Terasaki, H; Horiguchi, M; Hirano, K; Hirose, H; Uno, Y; Suzuki, Y; Iwata, M; Takai, Y; Maeda, M; Hisano, S; Kawakita, T; Omura, T; Ota, Y; Kondo, N; Takashi, A; Kawakami, O

    1997-12-01

    Regarding the changing trends in the concept, definition, etiological classification, and criteria for diagnosis of amblyopia, we reviewed a total of 4,693 cases of amblyopia seen during the past 37 years. The amblyopia was divided into four types: strabismic, anisometropic, ametropic, and form vision deprivative. There was a definite trend for the incidence to decrease and for the diagnosis to be made during earlier age in recent years. Although favorable recovery of visual acuity is obtained after treatment of amblyopia and strabismus, there are difficulties in obtaining good binocular functions in early-onset amblyopia and strabismus. This feature was evaluated in regard to motion perception asymmetry (MPA) and binocular depth from motion (DFM). Many cases of early-onset amblyopia and strabismus showed no disparity stereopsis, or position stereopsis, in spite of the presence of DFM. The MPA appeared to be closely related to early-onset esotropia regardless of age, while it disappeared and motion perception became symmetric 4 to 5 months after birth in normal infants. The DFM seemed to play an important role in maintaining good motor alignment for several years after surgery. I developed a checkerboard pattern stimulator in 1978. This method proved to be useful in developing binocular functions and motor alignment by applying simultaneous bifoveolar stimulation and anti-suppression. Extensive exposure to the stimulation was essential for therapeutic success.

  18. On the comparison of visual discomfort generated by S3D and 2D content based on eye-tracking features

    NASA Astrophysics Data System (ADS)

    Iatsun, Iana; Larabi, Mohamed-Chaker; Fernandez-Maloigne, Christine

    2014-03-01

    The changing of TV systems from 2D to 3D mode is the next expected step in the telecommunication world. Some works have already been done to perform this progress technically, but interaction of the third dimension with humans is not yet clear. Previously, it was found that any increased load of visual system can create visual fatigue, like prolonged TV watching, computer work or video gaming. But watching S3D can cause another nature of visual fatigue, since all S3D technologies creates illusion of the third dimension based on characteristics of binocular vision. In this work we propose to evaluate and compare the visual fatigue from watching 2D and S3D content. This work shows the difference in accumulation of visual fatigue and its assessment for two types of content. In order to perform this comparison eye-tracking experiments using six commercially available movies were conducted. Healthy naive participants took part into the test and gave their answers feeling the subjective evaluation. It was found that watching stereo 3D content induce stronger feeling of visual fatigue than conventional 2D, and the nature of video has an important effect on its increase. Visual characteristics obtained by using eye-tracking were investigated regarding their relation with visual fatigue.

  19. Distance and near visual acuity improvement after implantation of multifocal intraocular lenses in cataract patients with presbyopia: a systematic review.

    PubMed

    Agresta, Blaise; Knorz, Michael C; Kohnen, Thomas; Donatti, Christina; Jackson, Daniel

    2012-06-01

    To evaluate uncorrected distance visual acuity (UDVA) as well as uncorrected near visual acuity (UNVA) as outcomes in treating presbyopic cataract patients to assist clinicians and ophthalmologists in their decision-making process regarding available interventions. Medline, Embase, and Evidence Based Medicine Reviews were systematically reviewed to identify studies reporting changes in UDVA and UNVA after cataract surgery in presbyopic patients. Strict inclusion/exclusion criteria were used to exclude any studies not reporting uncorrected visual acuity in a presbyopic population with cataracts implanted with multifocal intraocular lenses (IOLs). Relevant outcomes (UDVA and UNVA) were identified from the studies retrieved through the systematic review process. Twenty-nine studies were identified that reported uncorrected visual acuities, including one study that reported uncorrected intermediate visual acuity. Nine brands of multifocal IOLs were identified in the search. All studies identified in the literature search reported improvements in UDVA and UNVA following multifocal IOL implantation. The largest improvements in visual acuity were reported using the Rayner M-Flex lens (Rayner Intraocular Lenses Ltd) (UDVA, binocular: 1.05 logMAR, monocular: 0.92 logMAR; UNVA, binocular and monocular: 0.83 logMAR) and the smallest improvements were reported using the Acri.LISA lens (Carl Zeiss Meditec) (UDVA, 0.21 decimal; UNVA, 0.51 decimal). The results of this systematic review show the aggregate of studies reporting a beneficial increase in UDVA and UNVA with the use of multifocal IOLs in cataract patients with presbyopia, hence providing evidence to support the hypothesis that multifocal IOLs increase UDVA and UNVA in cataract patients. Copyright 2012, SLACK Incorporated.

  20. Combined hydrogel inlay and laser in situ keratomileusis to compensate for presbyopia in hyperopic patients: one-year safety and efficacy.

    PubMed

    Chayet, Arturo; Barragan Garza, Enrique

    2013-11-01

    To perform a feasibility study of the safety and efficacy of a corneal-contouring inlay with concurrent laser in situ keratomileusis (LASIK) to treat hyperopic presbyopia. Private clinic, Tijuana, Mexico. Prospective interventional case series. Hyperopic patients received LASIK in both eyes and a corneal inlay under the femtosecond laser flap in the nondominant eye. The inlay is designed to reshape the anterior corneal curvature, creating a near-center multifocal refractive effect. Main safety outcomes were retention of preoperative corrected distance and near visual acuities and reports of adverse events. Efficacy was determined through measurements of near, intermediate, and distance visual acuities and patient questionnaires on visual task ability and satisfaction. The study enrolled 16 patients. All eyes with an inlay achieved an uncorrected near visual acuity (UNVA) of 20/32 or better by the 1-week postoperative examination and at every visit thereafter. The mean monocular and binocular UNVA was 20/27 or better at all visits. The mean binocular uncorrected distance visual acuity improved significantly from 20/53 preoperatively to 20/19 postoperatively (P<10(-5)). One inlay was explanted during the study. At 1 year, all 14 patients analyzed were satisfied or very satisfied with their near, distance, and overall vision. The hydrogel corneal inlay with concurrent LASIK improved uncorrected near, intermediate, and distance visual acuity in hyperopic presbyopic patients with high patient satisfaction and visual task ability. This represents a new indication for this recently developed technology. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  1. Visual stimulus presentation using fiber optics in the MRI scanner.

    PubMed

    Huang, Ruey-Song; Sereno, Martin I

    2008-03-30

    Imaging the neural basis of visuomotor actions using fMRI is a topic of increasing interest in the field of cognitive neuroscience. One challenge is to present realistic three-dimensional (3-D) stimuli in the subject's peripersonal space inside the MRI scanner. The stimulus generating apparatus must be compatible with strong magnetic fields and must not interfere with image acquisition. Virtual 3-D stimuli can be generated with a stereo image pair projected onto screens or via binocular goggles. Here, we describe designs and implementations for automatically presenting physical 3-D stimuli (point-light targets) in peripersonal and near-face space using fiber optics in the MRI scanner. The feasibility of fiber-optic based displays was demonstrated in two experiments. The first presented a point-light array along a slanted surface near the body, and the second presented multiple point-light targets around the face. Stimuli were presented using phase-encoded paradigms in both experiments. The results suggest that fiber-optic based displays can be a complementary approach for visual stimulus presentation in the MRI scanner.

  2. Neuronal responses in visual area V2 (V2) of macaque monkeys with strabismic amblyopia.

    PubMed

    Bi, H; Zhang, B; Tao, X; Harwerth, R S; Smith, E L; Chino, Y M

    2011-09-01

    Amblyopia, a developmental disorder of spatial vision, is thought to result from a cascade of cortical deficits over several processing stages beginning at the primary visual cortex (V1). However, beyond V1, little is known about how cortical development limits the visual performance of amblyopic primates. We quantitatively analyzed the monocular and binocular responses of V1 and V2 neurons in a group of strabismic monkeys exhibiting varying depths of amblyopia. Unlike in V1, the relative effectiveness of the affected eye to drive V2 neurons was drastically reduced in the amblyopic monkeys. The spatial resolution and the orientation bias of V2, but not V1, neurons were subnormal for the affected eyes. Binocular suppression was robust in both cortical areas, and the magnitude of suppression in individual monkeys was correlated with the depth of their amblyopia. These results suggest that the reduced functional connections beyond V1 and the subnormal spatial filter properties of V2 neurons might have substantially limited the sensitivity of the amblyopic eyes and that interocular suppression was likely to have played a key role in the observed alterations of V2 responses and the emergence of amblyopia.

  3. Neuronal Responses in Visual Area V2 (V2) of Macaque Monkeys with Strabismic Amblyopia

    PubMed Central

    Bi, H.; Zhang, B.; Tao, X.; Harwerth, R. S.; Smith, E. L.

    2011-01-01

    Amblyopia, a developmental disorder of spatial vision, is thought to result from a cascade of cortical deficits over several processing stages beginning at the primary visual cortex (V1). However, beyond V1, little is known about how cortical development limits the visual performance of amblyopic primates. We quantitatively analyzed the monocular and binocular responses of V1 and V2 neurons in a group of strabismic monkeys exhibiting varying depths of amblyopia. Unlike in V1, the relative effectiveness of the affected eye to drive V2 neurons was drastically reduced in the amblyopic monkeys. The spatial resolution and the orientation bias of V2, but not V1, neurons were subnormal for the affected eyes. Binocular suppression was robust in both cortical areas, and the magnitude of suppression in individual monkeys was correlated with the depth of their amblyopia. These results suggest that the reduced functional connections beyond V1 and the subnormal spatial filter properties of V2 neurons might have substantially limited the sensitivity of the amblyopic eyes and that interocular suppression was likely to have played a key role in the observed alterations of V2 responses and the emergence of amblyopia. PMID:21263036

  4. Altered white matter in early visual pathways of humans with amblyopia.

    PubMed

    Allen, Brian; Spiegel, Daniel P; Thompson, Benjamin; Pestilli, Franco; Rokers, Bas

    2015-09-01

    Amblyopia is a visual disorder caused by poorly coordinated binocular input during development. Little is known about the impact of amblyopia on the white matter within the visual system. We studied the properties of six major visual white-matter pathways in a group of adults with amblyopia (n=10) and matched controls (n=10) using diffusion weighted imaging (DWI) and fiber tractography. While we did not find significant differences in diffusion properties in cortico-cortical pathways, patients with amblyopia exhibited increased mean diffusivity in thalamo-cortical visual pathways. These findings suggest that amblyopia may systematically alter the white matter properties of early visual pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Interlopers 3D: experiences designing a stereoscopic game

    NASA Astrophysics Data System (ADS)

    Weaver, James; Holliman, Nicolas S.

    2014-03-01

    Background In recent years 3D-enabled televisions, VR headsets and computer displays have become more readily available in the home. This presents an opportunity for game designers to explore new stereoscopic game mechanics and techniques that have previously been unavailable in monocular gaming. Aims To investigate the visual cues that are present in binocular and monocular vision, identifying which are relevant when gaming using a stereoscopic display. To implement a game whose mechanics are so reliant on binocular cues that the game becomes impossible or at least very difficult to play in non-stereoscopic mode. Method A stereoscopic 3D game was developed whose objective was to shoot down advancing enemies (the Interlopers) before they reached their destination. Scoring highly required players to make accurate depth judgments and target the closest enemies first. A group of twenty participants played both a basic and advanced version of the game in both monoscopic 2D and stereoscopic 3D. Results The results show that in both the basic and advanced game participants achieved higher scores when playing in stereoscopic 3D. The advanced game showed that by disrupting the depth from motion cue the game became more difficult in monoscopic 2D. Results also show a certain amount of learning taking place over the course of the experiment, meaning that players were able to score higher and finish the game faster over the course of the experiment. Conclusions Although the game was not impossible to play in monoscopic 2D, participants results show that it put them at a significant disadvantage when compared to playing in stereoscopic 3D.

  6. [Visual development and amblyopia prophylaxis in pediatric glaucoma].

    PubMed

    Steffen, H

    2011-07-01

    In children with congenital glaucoma the functional long-term result is often disappointing even if the intraocular pressure is well controlled. The reason for this discrepancy is attributed to amblyogenic factors responsible for interfering with normal visual development. These amblyogenic factors are corneal edema, irregular astigmatism and non-corrected ametropia as monocular causes. Binocular causes are anisometropia-induced suppression and strabismus. Full ametropic correction and a very early prophylaxis and treatment of amblyopia with a close follow-up are mandatory to reduce amblyogenic visual impairment in children with congenital glaucoma.

  7. Image-Based Grouping during Binocular Rivalry Is Dictated by Eye-Of-Origin

    PubMed Central

    Stuit, Sjoerd M.; Paffen, Chris L. E.; van der Smagt, Maarten J.; Verstraten, Frans A. J.

    2014-01-01

    Prolonged viewing of dichoptically presented images with different content results in perceptual alternations known as binocular rivalry. This phenomenon is thought to be the result of competition at a local level, where local rivalry zones interact to give rise to a single, global dominant percept. Certain perceived combinations that result from this local competition are known to last longer than others, which is referred to as grouping during binocular rivalry. In recent years, the phenomenon has been suggested to be the result of competition at both eye- and image-based processing levels, although the exact contribution from each level remains elusive. Here we use a paradigm designed specifically to quantify the contribution of eye- and image-based processing to grouping during rivalry. In this paradigm we used sine-wave gratings as well as upright and inverted faces, with and without binocular disparity-based occlusion. These stimuli and conditions were used because they are known to result in processing at different stages throughout the visual processing hierarchy. Specifically, more complex images were included in order to maximize the potential contribution of image-based grouping. In spite of this, our results show that increasing image complexity did not lead to an increase in the contribution of image-based processing to grouping during rivalry. In fact, the results show that grouping was primarily affected by the eye-of-origin of the image parts, irrespective of stimulus type. We suggest that image content affects grouping during binocular rivalry at low-level processing stages, where it is intertwined with eye-of-origin information. PMID:24987847

  8. Is Suppression Just Normal Dichoptic Masking? Suprathreshold Considerations.

    PubMed

    Reynaud, Alexandre; Hess, Robert F

    2016-10-01

    Amblyopic patients have a deficit in visual acuity and contrast sensitivity in their amblyopic eye as well as suppression of the amblyopic eye input under binocular viewing conditions. In this study we wanted to assess the origin of the amblyopic suppression by studying the contrast perception of the amblyopic eye at suprathreshold levels under binocular and monocular viewing. Using a suprathreshold contrast matching task in which the reference and target stimuli were presented to different eyes either simultaneously or successively, we measured interocular contrast matching in 10 controls and 11 amblyopes (mean age 35 ± 15; 5 strabismics; 3 anisometropes; 3 mixed). This was then used as an index of the binocular balance across spatial frequency and compared against the contrast sensitivity ratio measured with the same stimuli. We observed that binocular matching becomes more imbalanced at high spatial frequency for amblyopes, compared with controls; that this imbalance did not depend in either group on whether the stimuli were presented simultaneously or successively; and that for both modes of presentation the matching balance correlates well with the interocular contrast sensitivity ratio (mean correlation coefficient of the slopes R = 0.7125). The results from our amblyopes show comparable losses of contrast perception at and above threshold under these binocular viewing conditions across a wide spatial frequency range, much stronger than that observed for our controls. This occurs under conditions in which there should be no dichoptic masking. Furthermore, the matching contrast could be well predicted by the monocular contrast sensitivity. Altogether, this suggests that amblyopic suppression cannot be explained by normal dichoptic masking but rather an attenuation of the input.

  9. International Practice in Care Provision for Post-stroke Visual Impairment.

    PubMed

    Rowe, Fiona J

    2017-09-01

    This study sought to explore the practice of orthoptists internationally in care provision for poststroke visual impairment. Survey questions were developed and piloted with clinicians, academics, and users. Questions addressed types of visual problems, how these were identified, treated, and followed up, care pathways in use, links with other professions, and referral options. The survey was approved by the institutional ethical committee. The survey was accessed via a web link that was circulated through the International Orthoptic Association member professional organisations to orthoptists. Completed electronic surveys were obtained from 299 individuals. About one-third (35.5%) of orthoptists saw patients within 2 weeks of stroke onset and over half (55.5%) by 1 month post stroke. Stroke survivors were routinely assessed by 87%; over three-quarters in eye clinics. Screening tools were used by 11%. Validated tests were used for assessment of visual acuity (76.5%), visual field (68.2%), eye movement (80.9%), binocular vision (77.9%), and visual function (55.8%). Visual problems suspected by family or professionals were high (86.6%). Typical overall follow-up period of vision care was less than 3 months. Designated care pathways for stroke survivors with visual problems were used by 56.9% of orthoptists. Information on visual impairment was provided by 85.9% of orthoptists. In international orthoptic practice, there is general agreement on assessment and management of visual impairment in stroke populations. More than half of orthoptists reported seeing stroke survivors within 1 month of the stroke onset, typically in eye clinics. There was a high use of validated tests of visual acuity, visual fields, ocular motility, and binocular vision. Similarly there was high use of established treatment options including prisms, occlusion, compensatory strategies, and oculomotor training, appropriately targeted at specific types of visual conditions/symptoms. This information can be used to inform choice of core outcome orthoptic measures in stroke practice.

  10. Visual functioning and quality of life among the older people in Hong Kong.

    PubMed

    Leung, Jason C S; Kwok, Timothy C Y; Chan, Dicken C C; Yuen, Kay W K; Kwok, Anthony W L; Choy, Dicky T K; Lau, Edith M C; Leung, P C

    2012-08-01

    This study aimed to examine the association of visual functioning and health-related quality of life (HRQOL) among the older community in Hong Kong. This study used the baseline examination of a cohort study MrOs and MsOs (a large study for osteoporosis in men and women). This study was set in the Hong Kong community. A total of 4000 ambulatory community-dwelling Chinese men and women aged 65 years or above participated in this study. Health-related quality of life was assessed by Medical Outcomes Study Short Form-12 (SF-12), with physical component summary (PCS) and mental component summary (MCS) scores. Demographics, medical history, mental status, and quality of life were obtained from face-to-face interviews, using standard structured questionnaire. Visual functions (i.e., binocular visual acuity, contrast sensitivity, and stereopsis) were assessed by different visual tests after refraction corrections. Different visual functions were tested simultaneously in multiple ordinal logistic regression models. Better binocular visual acuity, contrast sensitivity, and stereopsis were associated with higher PCS. Visual acuity and contrast sensitivity was associated with PCS after adjustment of different visual functions and sex, age, education level, cognitive status, and history of diabetes in multivariate analysis, (OR = 0.73, 95% CI = 0.54 0.98) for low vision (≤6/24) compared with ≥6/9 in visual acuity and (OR = 1.34, 95% CI = 1.09 1.64) for contrast sensitivity row b 5-8 (best) compared with 0-1 (worst). MCS was only associated with visual acuity and contrast sensitivity, but no association was found after adjustment. Apparent association was found between visual functions and HRQOL among older community in Hong Kong. In addition to visual acuity, contrast sensitivity is also important, so eye care should also cover. Copyright © 2011 John Wiley & Sons, Ltd.

  11. Medical Surveillance Programs for Aircraft Maintenance Personnel Performing Nondestructive Inspection and Testing

    DTIC Science & Technology

    2005-11-01

    visible and fl uorescent inspection techniques, while radiography relies on the individual’s ability to detect subtle differences in contrast either...binocular measurement of visual acuity may better predict a person’s functional capability in the workplace . However, measurement of monocular acuities

  12. Implicit Semantic Perception in Object Substitution Masking

    ERIC Educational Resources Information Center

    Goodhew, Stephanie C.; Visser, Troy A. W.; Lipp, Ottmar V.; Dux, Paul E.

    2011-01-01

    Decades of research on visual perception has uncovered many phenomena, such as binocular rivalry, backward masking, and the attentional blink, that reflect "failures of consciousness". Although stimuli do not reach awareness in these paradigms, there is evidence that they nevertheless undergo semantic processing. Object substitution masking (OSM),…

  13. Attention model of binocular rivalry

    PubMed Central

    Rankin, James; Rinzel, John; Carrasco, Marisa; Heeger, David J.

    2017-01-01

    When the corresponding retinal locations in the two eyes are presented with incompatible images, a stable percept gives way to perceptual alternations in which the two images compete for perceptual dominance. As perceptual experience evolves dynamically under constant external inputs, binocular rivalry has been used for studying intrinsic cortical computations and for understanding how the brain regulates competing inputs. Converging behavioral and EEG results have shown that binocular rivalry and attention are intertwined: binocular rivalry ceases when attention is diverted away from the rivalry stimuli. In addition, the competing image in one eye suppresses the target in the other eye through a pattern of gain changes similar to those induced by attention. These results require a revision of the current computational theories of binocular rivalry, in which the role of attention is ignored. Here, we provide a computational model of binocular rivalry. In the model, competition between two images in rivalry is driven by both attentional modulation and mutual inhibition, which have distinct selectivity (feature vs. eye of origin) and dynamics (relatively slow vs. relatively fast). The proposed model explains a wide range of phenomena reported in rivalry, including the three hallmarks: (i) binocular rivalry requires attention; (ii) various perceptual states emerge when the two images are swapped between the eyes multiple times per second; (iii) the dominance duration as a function of input strength follows Levelt’s propositions. With a bifurcation analysis, we identified the parameter space in which the model’s behavior was consistent with experimental results. PMID:28696323

  14. Anatomical Specializations for Nocturnality in a Critically Endangered Parrot, the Kakapo (Strigops habroptilus)

    PubMed Central

    Corfield, Jeremy R.; Gsell, Anna C.; Brunton, Dianne; Heesy, Christopher P.; Hall, Margaret I.; Acosta, Monica L.; Iwaniuk, Andrew N.

    2011-01-01

    The shift from a diurnal to nocturnal lifestyle in vertebrates is generally associated with either enhanced visual sensitivity or a decreased reliance on vision. Within birds, most studies have focused on differences in the visual system across all birds with respect to nocturnality-diurnality. The critically endangered Kakapo (Strigops habroptilus), a parrot endemic to New Zealand, is an example of a species that has evolved a nocturnal lifestyle in an otherwise diurnal lineage, but nothing is known about its' visual system. Here, we provide a detailed morphological analysis of the orbits, brain, eye, and retina of the Kakapo and comparisons with other birds. Morphometric analyses revealed that the Kakapo's orbits are significantly more convergent than other parrots, suggesting an increased binocular overlap in the visual field. The Kakapo exhibits an eye shape that is consistent with other nocturnal birds, including owls and nightjars, but is also within the range of the diurnal parrots. With respect to the brain, the Kakapo has a significantly smaller optic nerve and tectofugal visual pathway. Specifically, the optic tectum, nucleus rotundus and entopallium were significantly reduced in relative size compared to other parrots. There was no apparent reduction to the thalamofugal visual pathway. Finally, the retinal morphology of the Kakapo is similar to that of both diurnal and nocturnal birds, suggesting a retina that is specialised for a crepuscular niche. Overall, this suggests that the Kakapo has enhanced light sensitivity, poor visual acuity and a larger binocular field than other parrots. We conclude that the Kakapo possesses a visual system unlike that of either strictly nocturnal or diurnal birds and therefore does not adhere to the traditional view of the evolution of nocturnality in birds. PMID:21860663

  15. Visual impairment and road traffic accidents among drivers in Jimma Town, Southwest Ethiopia.

    PubMed

    Biza, Mohamed; Mossie, Andualem; Woldemichael, Kifle; Gelaw, Yeshigeta

    2013-04-01

    Vision play a vital role in driving where good and efficient visual functioning of the driver is essential. Any significant loss of visual function will diminish a driver's ability to operate a motor vehicle safely and will thus contribute to road traffic injury. However, there is little evidence indicating that defects of vision alone cause road traffic accidents. To determine the impact of visual impairment and other factors on road traffic accident among vehicle drivers. A cross-sectional descriptive study was conducted on 249 sampled drivers in Southwest Ethiopia. A pretested interviewer led questionnaire was used for interview and vision tests were done using Snellen's acuity chart and Ishihara pseudo-isochromatic plates. Statistical analyses were performed using SPSS version 16.0. The mean age of drivers was 33.6 years (SD +/- 10.3). The relative frequency of self reported road traffic accident was 15.3%. The prevalence of uncorrected binocular visual impairment was 1.6% and there was a significant association between visual impairment and road traffic accident (P < 0.05). Uncorrected refractive error was seen in 7.6% and 8.8% of drivers in the right and left eyes respectively, and 3.2% of them had vision less than what is required to obtain driving license (visual acuity of 6/12). None of the drivers with refractive errors were wearing appropriate corrections. Color vision impairment was seen in 1.6% of the drivers. A significant proportion (9.6%) of the drivers did not have eye exam for their driving license. Uncorrected binocular visual impairment was strongly associated with road traffic accident. There is need for consistent inspection and screening, strict rules and regulations of licensing and health education for drivers to minimize road traffic accident.

  16. The influence of chromatic context on binocular color rivalry: Perception and neural representation

    PubMed Central

    Hong, Sang Wook; Shevell, Steven K.

    2008-01-01

    The predominance of rivalrous targets is affected by surrounding context when stimuli rival in orientation, motion or color. This study investigated the influence of chromatic context on binocular color rivalry. The predominance of rivalrous chromatic targets was measured in various surrounding contexts. The first experiment showed that a chromatic surround's influence was stronger when the surround was uniform or a grating with luminance contrast (chromatic/black grating) compared to an equiluminant grating (chromatic/white). The second experiment revealed virtually no effect of the orientation of the surrounding chromatic context, using chromatically rivalrous vertical gratings. These results are consistent with a chromatic representation of the context by a non-oriented, chromatically selective and spatially antagonistic receptive field. Neither a double-opponent receptive field nor a receptive field without spatial antagonism accounts for the influence of context on binocular color rivalry. PMID:18331750

  17. Effect of ecological viewing conditions on the Ames' distorted room illusion.

    PubMed

    Gehringer, W L; Engel, E

    1986-05-01

    Ecological theory asserts that the Ames' distorted room illusion (DRI) occurs as a result of the artificial restriction of information pickup. According to Gibson (1966, 1979), the illusion is eliminated when binocular vision and/or head movement are allowed. In Experiment 1, to measure the DRI, we used a size-matching technique employing discs placed within an Ames' distorted room. One hundred forty-four subjects viewed the distorted room or a control apparatus under four different viewing conditions (i.e., restricted or unrestricted head movement), using monocular and binocular vision. In Experiment 2, subjects viewed binocularly and were instructed to move freely while making judgments. Overall, the main findings of this study were that the DRI decreased with increases in viewing access and that the DRI persisted under all viewing conditions. The persistence of the illusion was felt to contradict Gibson's position.

  18. Attention in dichoptic and binocular vision

    NASA Technical Reports Server (NTRS)

    Kimchi, Ruth; Rubin, Yifat; Gopher, Daniel; Raij, David

    1989-01-01

    The ability of human subjected to mobilize attention and cope with task requirements under dichoptic and binocular viewing was investigated in an experiment employing a target search task. Subjects were required to search for a target at either the global level, the local level, or at both levels of a compound stimulus. The tasks were performed in a focused attention condition in which subjects had to attend to the stimulus presented to one eye/field (under dichoptic and binocular viewings, respectively) and to ignore the stimulus presented to the irrelevant eye/field, and in a divided attention condition in which subjects had to attend to the stimuli presented to both eyes/fields. Subjects' performance was affected mainly by attention conditions which interacted with task requirements, rather than by viewing situation. An interesting effect of viewing was found for the local-directed search task in which the cost of dividing attention was higher under binocular than under dichoptic viewing.

  19. Background and stimulus-induced patterns of high metabolic activity in the visual cortex (area 17) of the squirrel and macaque monkey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphrey, A.L.; Hendrickson, A.E.

    1983-02-01

    We have used 2-deoxy-D-(/sup 14/C)glucose (2-DG) autoradiography and cytochrome oxidase histochemistry to examine background and stimulus-induced patterns of metabolic activity in monkey striate cortex. In squirrel monkeys (Saimiri sciureus) that binocularly or monocularly viewed diffuse white light or binocularly viewed bars of many orientations and spatial frequencies, 2-DG consumption was not uniform across the cortex but consisted of regularly spaced radial zones of high uptake. The zones extended through all laminae except IVc beta and, when viewed tangentially, formed separate patches 500 microns apart. The cytochrome oxidase stain in these animals also revealed patches of high metabolism which coincided withmore » the 2-DG patches. Squirrel monkeys binocularly viewing vertical stripes showed parallel bands of increased 2-DG uptake in the cortex, while the cytochrome label in these animals remained patchy. When monkeys were kept in the dark during 2-DG exposure, 2-DG-labeled patches were not seen but cytochrome oxidase-positive patches remained. In macaque (Macaca nemestrina) monkeys, binocular stimulation with many orientations and spatial frequencies produced radial zones of high 2-DG uptake in layers I to IVa and VI. When viewed tangentially, these zones formed a dots-in-rows pattern with a spacing of 350 X 500 microns; cytochrome oxidase staining produced an identical pattern. Macaca differed from Saimiri in that monocular stimulation labeled alternate rows. These results indicate that there are radial zones of high background metabolism across squirrel and macaque monkey striate cortex. In Saimiri these zones do not appear to be related to an eye dominance system, while in Macaca they do. The presence of these zones of high metabolism may complicate the interpretation of 2-DG autoradiographs that result from specific visual stimuli.« less

  20. A comparison of the sensitivity of EQ-5D, SF-6D and TTO utility values to changes in vision and perceived visual function in patients with primary open-angle glaucoma

    PubMed Central

    2012-01-01

    Background Economic viability of treatments for primary open-angle glaucoma (POAG) should be assessed objectively to prioritise health care interventions. This study aims to identify the methods for eliciting utility values (UVs) most sensitive to differences in visual field and visual functioning in patients with POAG. As a secondary objective, the dimensions of generic health-related and vision-related quality of life most affected by progressive vision loss will be identified. Methods A total of 132 POAG patients were recruited. Three sets of utility values (EuroQoL EQ-5D, Short Form SF-6D, Time Trade Off) and a measure of perceived visual functioning from the National Eye Institute Visual Function Questionnaire (VFQ-25) were elicited during face-to-face interviews. The sensitivity of UVs to differences in the binocular visual field, visual acuity and visual functioning measures was analysed using non-parametric statistical methods. Results Median utilities were similar across Integrated Visual Field score quartiles for EQ-5D (P = 0.08) whereas SF-6D and Time-Trade-Off UVs significantly decreased (p = 0.01 and p = 0.001, respectively). The VFQ-25 score varied across Integrated Visual Field and binocular visual acuity groups and was associated with all three UVs (P ≤ 0.001); most of its vision-specific sub-scales were associated with the vision markers. The most affected dimension was driving. A relationship with vision markers was found for the physical component of SF-36 and not for any dimension of EQ-5D. Conclusions The Time-Trade-Off was more sensitive than EQ-5D and SF-6D to changes in vision and visual functioning associated with glaucoma progression but could not measure quality of life changes in the mildest disease stages. PMID:22909264

  1. Sounds can boost the awareness of visual events through attention without cross-modal integration.

    PubMed

    Pápai, Márta Szabina; Soto-Faraco, Salvador

    2017-01-31

    Cross-modal interactions can lead to enhancement of visual perception, even for visual events below awareness. However, the underlying mechanism is still unclear. Can purely bottom-up cross-modal integration break through the threshold of awareness? We used a binocular rivalry paradigm to measure perceptual switches after brief flashes or sounds which, sometimes, co-occurred. When flashes at the suppressed eye coincided with sounds, perceptual switches occurred the earliest. Yet, contrary to the hypothesis of cross-modal integration, this facilitation never surpassed the assumption of probability summation of independent sensory signals. A follow-up experiment replicated the same pattern of results using silent gaps embedded in continuous noise, instead of sounds. This manipulation should weaken putative sound-flash integration, although keep them salient as bottom-up attention cues. Additional results showed that spatial congruency between flashes and sounds did not determine the effectiveness of cross-modal facilitation, which was again not better than probability summation. Thus, the present findings fail to fully support the hypothesis of bottom-up cross-modal integration, above and beyond the independent contribution of two transient signals, as an account for cross-modal enhancement of visual events below level of awareness.

  2. Relationship between Functional Visual Acuity and Useful Field of View in Elderly Drivers

    PubMed Central

    Negishi, Kazuno; Masui, Sachiko; Mimura, Masaru; Fujita, Yoshio; Tsubota, Kazuo

    2016-01-01

    Purpose To investigate the relationship between the functional visual acuity (FVA) and useful field of view (UFOV) in elderly drivers and assess the usefulness of the FVA test to screen driving aptitude in elderly drivers. Methods This study included 45 elderly drivers (31 men, 14 women; mean age, 68.1 years) and 30 younger drivers (26 men, 4 women; mean age, 34.2 years) who drive regularly. All participants underwent measurement of the binocular corrected distant visual acuity (CDVA), binocular corrected distant FVA (CDFVA), and Visual Field with Inhibitory Tasks Elderly Version (VFIT-EV) to measure UFOV. The tear function and cognitive status also were evaluated. Results The CDVA, the CDFVA, cognitive status, and the correct response rate (CAR) of the VFIT-EV were significantly worse in the elderly group than in the control group (P = 0.000 for all parameters). The cognitive status was correlated significantly with the CDVA (r = -0.301, P = 0.009), CDFVA (r = -0.402, P = 0.000), and the CAR of the VFIT-EV (r = 0.348, P = 0.002) in all subjects. The results of the tear function tests were not correlated with the CDVA, CDFVA, or VFIT-EV in any subjects. Stepwise regression analysis for all subjects in the elderly and control groups showed that the CDFVA predicted the CAR most significantly among the clinical factors evaluated. Conclusion The FVA test is a promising method to screen the driving aptitude, including both visual and cognitive functions, in a short time. PMID:26808364

  3. A systematic comparison between visual cues for boundary detection.

    PubMed

    Mély, David A; Kim, Junkyung; McGill, Mason; Guo, Yuliang; Serre, Thomas

    2016-03-01

    The detection of object boundaries is a critical first step for many visual processing tasks. Multiple cues (we consider luminance, color, motion and binocular disparity) available in the early visual system may signal object boundaries but little is known about their relative diagnosticity and how to optimally combine them for boundary detection. This study thus aims at understanding how early visual processes inform boundary detection in natural scenes. We collected color binocular video sequences of natural scenes to construct a video database. Each scene was annotated with two full sets of ground-truth contours (one set limited to object boundaries and another set which included all edges). We implemented an integrated computational model of early vision that spans all considered cues, and then assessed their diagnosticity by training machine learning classifiers on individual channels. Color and luminance were found to be most diagnostic while stereo and motion were least. Combining all cues yielded a significant improvement in accuracy beyond that of any cue in isolation. Furthermore, the accuracy of individual cues was found to be a poor predictor of their unique contribution for the combination. This result suggested a complex interaction between cues, which we further quantified using regularization techniques. Our systematic assessment of the accuracy of early vision models for boundary detection together with the resulting annotated video dataset should provide a useful benchmark towards the development of higher-level models of visual processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Spatial and Global Sensory Suppression Mapping Encompassing the Central 10° Field in Anisometropic Amblyopia.

    PubMed

    Li, Jingjing; Li, Jinrong; Chen, Zidong; Liu, Jing; Yuan, Junpeng; Cai, Xiaoxiao; Deng, Daming; Yu, Minbin

    2017-01-01

    We investigate the efficacy of a novel dichoptic mapping paradigm in evaluating visual function of anisometropic amblyopes. Using standard clinical measures of visual function (visual acuity, stereo acuity, Bagolini lenses, and neutral density filters) and a novel quantitative mapping technique, 26 patients with anisometropic amblyopia (mean age = 19.15 ± 4.42 years) were assessed. Two additional psychophysical interocular suppression measurements were tested with dichoptic global motion coherence and binocular phase combination tasks. Luminance reduction was achieved by placing neutral density filters in front of the normal eye. Our study revealed that suppression changes across the central 10° visual field by mean luminance modulation in amblyopes as well as normal controls. Using simulation and an elimination of interocular suppression, we identified a novel method to effectively reflect the distribution of suppression in anisometropic amblyopia. Additionally, the new quantitative mapping technique was in good agreement with conventional clinical measures, such as interocular acuity difference (P < 0.001) and stereo acuity (P = 0.005). There was a good consistency between the results of interocular suppression with dichoptic mapping paradigm and the results of the other two psychophysical methods (suppression mapping versus binocular phase combination, P < 0.001; suppression mapping versus global motion coherence, P = 0.005). The dichoptic suppression mapping technique is an effective method to represent impaired visual function in patients with anisometropic amblyopia. It offers a potential in "micro-"antisuppression mapping tests and therapies for amblyopia.

  5. Rhythms of Consciousness: Binocular Rivalry Reveals Large-Scale Oscillatory Network Dynamics Mediating Visual Perception

    PubMed Central

    Doesburg, Sam M.; Green, Jessica J.; McDonald, John J.; Ward, Lawrence M.

    2009-01-01

    Consciousness has been proposed to emerge from functionally integrated large-scale ensembles of gamma-synchronous neural populations that form and dissolve at a frequency in the theta band. We propose that discrete moments of perceptual experience are implemented by transient gamma-band synchronization of relevant cortical regions, and that disintegration and reintegration of these assemblies is time-locked to ongoing theta oscillations. In support of this hypothesis we provide evidence that (1) perceptual switching during binocular rivalry is time-locked to gamma-band synchronizations which recur at a theta rate, indicating that the onset of new conscious percepts coincides with the emergence of a new gamma-synchronous assembly that is locked to an ongoing theta rhythm; (2) localization of the generators of these gamma rhythms reveals recurrent prefrontal and parietal sources; (3) theta modulation of gamma-band synchronization is observed between and within the activated brain regions. These results suggest that ongoing theta-modulated-gamma mechanisms periodically reintegrate a large-scale prefrontal-parietal network critical for perceptual experience. Moreover, activation and network inclusion of inferior temporal cortex and motor cortex uniquely occurs on the cycle immediately preceding responses signaling perceptual switching. This suggests that the essential prefrontal-parietal oscillatory network is expanded to include additional cortical regions relevant to tasks and perceptions furnishing consciousness at that moment, in this case image processing and response initiation, and that these activations occur within a time frame consistent with the notion that conscious processes directly affect behaviour. PMID:19582165

  6. 50 CFR 218.4 - Mitigation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... visually searching at night, they shall look a little to one side and out of the corners of their eyes...; surfaced submarines shall have at least one lookout with binoculars. Lookouts already posted for safety of... least two watchstanders are posted, including at least one lookout who has completed required MSAT...

  7. 50 CFR 218.4 - Mitigation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... visually searching at night, they shall look a little to one side and out of the corners of their eyes...; surfaced submarines shall have at least one lookout with binoculars. Lookouts already posted for safety of... least two watchstanders are posted, including at least one lookout who has completed required MSAT...

  8. 50 CFR 218.13 - Mitigation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... visually searching at night, they shall look a little to one side and out of the corners of their eyes...; surfaced submarines shall have at least one lookout with binoculars. Lookouts already posted for safety of... least one lookout who has completed required MSAT training. (D) Navy vessels shall not knowingly...

  9. 50 CFR 218.13 - Mitigation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... visually searching at night, they shall look a little to one side and out of the corners of their eyes...; surfaced submarines shall have at least one lookout with binoculars. Lookouts already posted for safety of... least one lookout who has completed required MSAT training. (D) Navy vessels shall not knowingly...

  10. Activity in early visual areas predicts interindividual differences in binocular rivalry dynamics

    PubMed Central

    Yamashiro, Hiroyuki; Mano, Hiroaki; Umeda, Masahiro; Higuchi, Toshihiro; Saiki, Jun

    2013-01-01

    When dissimilar images are presented to the two eyes, binocular rivalry (BR) occurs, and perception alternates spontaneously between the images. Although neural correlates of the oscillating perception during BR have been found in multiple sites along the visual pathway, the source of BR dynamics is unclear. Psychophysical and modeling studies suggest that both low- and high-level cortical processes underlie BR dynamics. Previous neuroimaging studies have demonstrated the involvement of high-level regions by showing that frontal and parietal cortices responded time locked to spontaneous perceptual alternation in BR. However, a potential contribution of early visual areas to BR dynamics has been overlooked, because these areas also responded to the physical stimulus alternation mimicking BR. In the present study, instead of focusing on activity during perceptual switches, we highlighted brain activity during suppression periods to investigate a potential link between activity in human early visual areas and BR dynamics. We used a strong interocular suppression paradigm called continuous flash suppression to suppress and fluctuate the visibility of a probe stimulus and measured retinotopic responses to the onset of the invisible probe using functional MRI. There were ∼130-fold differences in the median suppression durations across 12 subjects. The individual differences in suppression durations could be predicted by the amplitudes of the retinotopic activity in extrastriate visual areas (V3 and V4v) evoked by the invisible probe. Weaker responses were associated with longer suppression durations. These results demonstrate that retinotopic representations in early visual areas play a role in the dynamics of perceptual alternations during BR. PMID:24353304

  11. The Role of Attention in Binocular Rivalry as Revealed through Optokinetic Nystagmus.

    DTIC Science & Technology

    1995-11-01

    break down selectively when parts of the stri- ate and prestriate cortex is damaged. Speci cally, a group of patients su ering fromApperceptive Agnosia ...1981). Visual performance in cases of visual agnosia . In M. van- Ho , & G. Hohn (Eds.), Functional recovery from brain damage (pp. 275{286...macaques. Nature, 373, 609{611. Breese, B. (1899). On inhibition. Psychol.Rev., 3, 1{65. Campion, J., & Latto, R. (1985). Apperceptive agnosia due to

  12. Evaluating the speed of visual recovery following thin-flap LASIK with a femtosecond laser.

    PubMed

    Durrie, Daniel S; Brinton, Jason P; Avila, Michele R; Stahl, Erin D

    2012-09-01

    To investigate the speed of visual recovery following myopic thin-flap LASIK with a femtosecond laser. This pilot study prospectively evaluated 20 eyes from 10 patients who underwent bilateral simultaneous LASIK with the Femto LDV Crystal Line femtosecond laser (Ziemer Ophthalmic Systems AG) used to create a circular flap of 9.0-mm diameter and 110-μm thickness followed by photoablation with the Allegretto Wave Eye-Q (WaveLight AG) excimer laser. Binocular and monocular uncorrected distance visual acuity (UDVA), monocular contrast sensitivity, and a patient questionnaire were evaluated during the first hours, 1 day, and 1 month postoperatively. For monocular UDVA, 100% of eyes were 20/40 at 1 hour and 100% were 20/25 at 4 hours. For binocular UDVA, all patients achieved 20/32 by 30 minutes and 20/20 by 4 hours. Low frequency contrast sensitivity returned to preoperative baseline by 1 hour (P=.73), and showed a statistically significant improvement over baseline by 4 hours (P=.01). High frequency monocular contrast sensitivity returned to preoperative baseline by 4 hours (P=.48), and showed a statistically significant improvement by 1 month (P=.04). At 2 and 4 hours, 50% and 100% of patients, respectively, indicated that they would feel comfortable driving. Visual recovery after thin-flap femtosecond LASIK is rapid, occurring within the first few hours after surgery. Copyright 2012, SLACK Incorporated.

  13. Trying to see, failing to focus: near visual impairment in Down syndrome

    PubMed Central

    Doyle, Lesley; Saunders, Kathryn J.; Little, Julie-Anne

    2016-01-01

    The majority of individuals with Down syndrome (DS) do not exhibit accurate accommodation, with the aetiology of this deficit unknown. This study examines the mechanism underlying hypoaccommodation in DS by simultaneously investigating the ‘near triad’ – accommodation, vergence and pupillary response. An objective photorefraction system measured accommodation, pupil size and gaze position (vergence) under binocular conditions while participants viewed an animated movie at 50, 33, 25 and 20 cm. Participants were aged 6–16 years (DS = 41, controls = 76). Measures were obtained from 59% of participants with DS and 99% of controls. Accommodative response was significantly less in DS (p < 0.001) and greater accommodative deficits were associated with worsening visual acuity (p = 0.02). Vergence responses were as accurate in DS as in controls (p = 0.90). Habitual pupil diameter did not differ between groups (p = 0.24) but reduced significantly with increasing accommodative demand in both participants with and without DS (p < 0.0001). This study is the first to report simultaneous binocular measurement of the near triad in DS demonstrating that hypoaccommodation is linked to poor visual acuity. Vergence responses were accurate indicating that hypoaccommodation cannot be dismissed as a failure to visually engage with near targets, but rather is a consequence of underlying neurological or physiological deficits. PMID:26847360

  14. Comparison between bilateral implantation of a trifocal intraocular lens and blended implantation of two bifocal intraocular lenses

    PubMed Central

    Vilar, César; Hida, Wilson Takashi; de Medeiros, André Lins; Magalhães, Klayny Rafaella Pereira; de Moraes Tzelikis, Patrick Frensel; Chaves, Mario Augusto Pereira Dias; Motta, Antônio Francisco Pimenta; Carricondo, Pedro Carlos; Alves, Milton Ruiz; Nosé, Walton

    2017-01-01

    Purpose To compare visual outcomes and performance between bilateral implantation of a diffractive trifocal intraocular lens (IOL) Acrysof®PanOptix® TFNT00 and blended implantation of two different near add power bifocal IOLs: Acrysof® Restor® SV25T0 in dominant eye and Acrysof® Restor® SN6AD1 in the nondominant eye. Methods This prospective, nonrandomized, consecutive and comparative study assessed 20 patients (40 eyes) who had bilateral cataract surgery performed using the IOLs described. Patients were divided into groups, bilateral trifocal implant and blended implant. Evaluation included measurement of binocular uncorrected and corrected distance visual acuity at 4 m (UDVA, CDVA) and uncorrected intermediate (60 cm) and near (at 40 cm) visual acuity; contrast sensitivity (CS) and visual defocus curve. Results Postoperative CDVA comparison showed no statistical significance between groups. UDVA was significantly better in the trifocal groups. Under photopic conditions, the trifocal group had better CS in higher frequencies with and without glare. The binocular defocus curve demonstrated a trifocal behavior in both groups, with the bilateral trifocal group exhibiting better performance for intermediate vision. Conclusion Both lens combinations were able to provide good near, intermediate and distance vision, with the trifocal group showing significantly better performance at intermediate distances and better CS under photopic conditions. PMID:28814826

  15. Clinically Normal Stereopsis Does Not Ensure a Performance Benefit from Stereoscopic 3D Depth Cues

    NASA Astrophysics Data System (ADS)

    McIntire, John P.; Havig, Paul R.; Harrington, Lawrence K.; Wright, Steve T.; Watamaniuk, Scott N. J.; Heft, Eric L.

    2014-09-01

    To investigate the effect of manipulating disparity on task performance and viewing comfort, twelve participants were tested on a virtual object precision placement task while viewing a stereoscopic 3D (S3D) display. All participants had normal or corrected-to-normal visual acuity, passed the Titmus stereovision clinical test, and demonstrated normal binocular function, including phorias and binocular fusion ranges. Each participant completed six experimental sessions with different maximum binocular disparity limits. The results for ten of the twelve participants were generally as expected, demonstrating a large performance advantage when S3D cues were provided. The sessions with the larger disparity limits typically resulted in the best performance, and the sessions with no S3D cues the poorest performance. However, one participant demonstrated poorer performance in sessions with smaller disparity limits but improved performance in sessions with the larger disparity limits. Another participant's performance declined whenever any S3D cues were provided. Follow-up testing suggested that the phenomenon of pseudo-stereoanomaly may account for one viewer's atypical performance, while the phenomenon of stereoanomaly might account for the other. Overall, the results demonstrate that a subset of viewers with clinically normal binocular and stereoscopic vision may have difficulty performing depth-related tasks on S3D displays. The possibility of the vergence-accommodation conflict contributing to individual performance differences is also discussed.

  16. A verification and errors analysis of the model for object positioning based on binocular stereo vision for airport surface surveillance

    NASA Astrophysics Data System (ADS)

    Wang, Huan-huan; Wang, Jian; Liu, Feng; Cao, Hai-juan; Wang, Xiang-jun

    2014-12-01

    A test environment is established to obtain experimental data for verifying the positioning model which was derived previously based on the pinhole imaging model and the theory of binocular stereo vision measurement. The model requires that the optical axes of the two cameras meet at one point which is defined as the origin of the world coordinate system, thus simplifying and optimizing the positioning model. The experimental data are processed and tables and charts are given for comparing the positions of objects measured with DGPS with a measurement accuracy of 10 centimeters as the reference and those measured with the positioning model. Sources of visual measurement model are analyzed, and the effects of the errors of camera and system parameters on the accuracy of positioning model were probed, based on the error transfer and synthesis rules. A conclusion is made that measurement accuracy of surface surveillances based on binocular stereo vision measurement is better than surface movement radars, ADS-B (Automatic Dependent Surveillance-Broadcast) and MLAT (Multilateration).

  17. Identification of Eye-Specific Domains and Their Relation to Callosal Connections in Primary Visual Cortex of Long Evans Rats.

    PubMed

    Laing, R J; Turecek, J; Takahata, T; Olavarria, J F

    2015-10-01

    Ocular dominance columns (ODCs) exist in many primates and carnivores, but it is believed that they do not exist in rodents. Using a combination of transneuronal tracing, in situ hybridization for Zif268 and electrophysiological recordings, we show that inputs from both eyes are largely segregated in the binocular region of V1 in Long Evans rats. We also show that, interposed between this binocular region and the lateral border of V1, there lies a strip of cortex that is strongly dominated by the contralateral eye. Finally, we show that callosal connections colocalize primarily with ipsilateral eye domains in the binocular region and with contralateral eye input in the lateral cortical strip, mirroring the relationship between patchy callosal connections and specific sets of ODCs described previously in the cat. Our results suggest that development of cortical modular architecture is more conserved among rodents, carnivores, and primates than previously thought. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Cues for the control of ocular accommodation and vergence during postnatal human development.

    PubMed

    Bharadwaj, Shrikant R; Candy, T Rowan

    2008-12-22

    Accommodation and vergence help maintain single and focused visual experience while an object moves in depth. The relative importance of retinal blur and disparity, the primary sensory cues to accommodation and vergence, is largely unknown during development; a period when growth of the eye and head necessitate continual recalibration of egocentric space. Here we measured the developmental importance of retinal disparity in 192 typically developing subjects (1.9 months to 46 years). Subjects viewed high-contrast cartoon targets with naturalistic spatial frequency spectra while their accommodation and vergence responses were measured from both eyes using a PowerRefractor. Accommodative gain was reduced during monocular viewing relative to full binocular viewing, even though the fixating eye generated comparable tracking eye movements in the two conditions. This result was consistent across three forms of monocular occlusion. The accommodative gain was lowest in infants and only reached adult levels by 7 to 10 years of age. As expected, the gain of vergence was also reduced in monocular conditions. When 4- to 6-year-old children read 20/40-sized letters, their monocular accommodative gain reached adult-like levels. In summary, binocular viewing appears necessary under naturalistic viewing conditions to generate full accommodation and vergence responses in typically developing humans.

  19. Cues for the control of ocular accommodation and vergence during postnatal human development

    PubMed Central

    Bharadwaj, Shrikant R.; Candy, T. Rowan

    2009-01-01

    Accommodation and vergence help maintain single and focused visual experience while an object moves in depth. The relative importance of retinal blur and disparity, the primary sensory cues to accommodation and vergence, is largely unknown during development; a period when growth of the eye and head necessitate continual recalibration of egocentric space. Here we measured the developmental importance of retinal disparity in 192 typically developing subjects (1.9 months to 46 years). Subjects viewed high-contrast cartoon targets with naturalistic spatial frequency spectra while their accommodation and vergence responses were measured from both eyes using a PowerRefractor. Accommodative gain was reduced during monocular viewing relative to full binocular viewing, even though the fixating eye generated comparable tracking eye movements in the two conditions. This result was consistent across three forms of monocular occlusion. The accommodative gain was lowest in infants and only reached adult levels by 7 to 10 years of age. As expected, the gain of vergence was also reduced in monocular conditions. When 4- to 6-year-old children read 20/40-sized letters, their monocular accommodative gain reached adult-like levels. In summary, binocular viewing appears necessary under naturalistic viewing conditions to generate full accommodation and vergence responses in typically developing humans. PMID:19146280

  20. [The lazy eye - contemporary strategies of amblyopia treatment].

    PubMed

    Sturm, V

    2011-02-16

    Amblyopia is a condition of decreased monocular or binocular visual acuity caused by form deprivation or abnormal binocular interaction. Amblyopia is the most common cause of monocular vision loss in children with a prevalence of 2 to 5%. During the last decade, several prospective randomized studies have influenced our clinical management. Based on these studies, optimum refractive correction should be prescribed first. However, most patients will need additional occlusion therapy which is still considered the «gold standard» of amblyopia management. Now much lower doses have been shown to be effective. In moderate amblyopia, penalization with atropine is as effective as patching. New treatment modalities including perceptual learning, pharmacotherapy with levodopa and citicholine or transcranial magnetic stimulation have not yet been widely accepted.

  1. Method used to test the imaging consistency of binocular camera's left-right optical system

    NASA Astrophysics Data System (ADS)

    Liu, Meiying; Wang, Hu; Liu, Jie; Xue, Yaoke; Yang, Shaodong; Zhao, Hui

    2016-09-01

    To binocular camera, the consistency of optical parameters of the left and the right optical system is an important factor that will influence the overall imaging consistency. In conventional testing procedure of optical system, there lacks specifications suitable for evaluating imaging consistency. In this paper, considering the special requirements of binocular optical imaging system, a method used to measure the imaging consistency of binocular camera is presented. Based on this method, a measurement system which is composed of an integrating sphere, a rotary table and a CMOS camera has been established. First, let the left and the right optical system capture images in normal exposure time under the same condition. Second, a contour image is obtained based on the multiple threshold segmentation result and the boundary is determined using the slope of contour lines near the pseudo-contour line. Third, the constraint of gray level based on the corresponding coordinates of left-right images is established and the imaging consistency could be evaluated through standard deviation σ of the imaging grayscale difference D (x, y) between the left and right optical system. The experiments demonstrate that the method is suitable for carrying out the imaging consistency testing for binocular camera. When the standard deviation 3σ distribution of imaging gray difference D (x, y) between the left and right optical system of the binocular camera does not exceed 5%, it is believed that the design requirements have been achieved. This method could be used effectively and paves the way for the imaging consistency testing of the binocular camera.

  2. Binocular rivalry in children on the autism spectrum

    PubMed Central

    Lunghi, Claudia; Neil, Louise; Burr, David; Pellicano, Elizabeth

    2017-01-01

    When different images are presented to the eyes, the brain is faced with ambiguity, causing perceptual bistability: visual perception continuously alternates between the monocular images, a phenomenon called binocular rivalry. Many models of rivalry suggest that its temporal dynamics depend on mutual inhibition among neurons representing competing images. These models predict that rivalry should be different in autism, which has been proposed to present an atypical ratio of excitation and inhibition [the E/I imbalance hypothesis; Rubenstein & Merzenich, 2003]. In line with this prediction, some recent studies have provided evidence for atypical binocular rivalry dynamics in autistic adults. In this study, we examined if these findings generalize to autistic children. We developed a child‐friendly binocular rivalry paradigm, which included two types of stimuli, low‐ and high‐complexity, and compared rivalry dynamics in groups of autistic and age‐ and intellectual ability‐matched typical children. Unexpectedly, the two groups of children presented the same number of perceptual transitions and the same mean phase durations (times perceiving one of the two stimuli). Yet autistic children reported mixed percepts for a shorter proportion of time (a difference which was in the opposite direction to previous adult studies), while elevated autistic symptomatology was associated with shorter mixed perception periods. Rivalry in the two groups was affected similarly by stimulus type, and consistent with previous findings. Our results suggest that rivalry dynamics are differentially affected in adults and developing autistic children and could be accounted for by hierarchical models of binocular rivalry, including both inhibition and top‐down influences. Autism Res 2017. ©2017 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research Autism Res 2017, 10: 1096–1106. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. PMID:28301094

  3. Sweep visually evoked potentials and visual findings in children with West syndrome.

    PubMed

    de Freitas Dotto, Patrícia; Cavascan, Nívea Nunes; Berezovsky, Adriana; Sacai, Paula Yuri; Rocha, Daniel Martins; Pereira, Josenilson Martins; Salomão, Solange Rios

    2014-03-01

    West syndrome (WS) is a type of early childhood epilepsy characterized by progressive neurological development deterioration that includes vision. To demonstrate the clinical importance of grating visual acuity thresholds (GVA) measurement by sweep visually evoked potentials technique (sweep-VEP) as a reliable tool for evaluation of the visual cortex status in WS children. This is a retrospective study of the best-corrected binocular GVA and ophthalmological features of WS children referred for the Laboratory of Clinical Electrophysiology of Vision of UNIFESP from 1998 to 2012 (Committee on Ethics in Research of UNIFESP n° 0349/08). The GVA deficit was calculated by subtracting binocular GVA score (logMAR units) of each patient from the median values of age norms from our own lab and classified as mild (0.1-0.39 logMAR), moderate (0.40-0.80 logMAR) or severe (>0.81 logMAR). Associated ophthalmological features were also described. Data from 30 WS children (age from 6 to 108 months, median = 14.5 months, mean ± SD = 22.0 ± 22.1 months; 19 male) were analyzed. The majority presented severe GVA deficit (0.15-1.44 logMAR; mean ± SD = 0.82 ± 0.32 logMAR; median = 0.82 logMAR), poor visual behavior, high prevalence of strabismus and great variability in ocular positioning. The GVA deficit did not vary according to gender (P = .8022), WS type (P = .908), birth age (P = .2881), perinatal oxygenation (P = .7692), visual behavior (P = .8789), ocular motility (P = .1821), nystagmus (P = .2868), risk of drug-induced retinopathy (P = .4632) and participation in early visual stimulation therapy (P = .9010). The sweep-VEP technique is a reliable tool to classify visual system impairment in WS children, in agreement with the poor visual behavior exhibited by them. Copyright © 2013 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  4. Visual discrimination of local surface structure: slant, tilt, and curvedness.

    PubMed

    Norman, J Farley; Todd, James T; Norman, Hideko F; Clayton, Anna Marie; McBride, T Ryan

    2006-03-01

    In four experiments, observers were required to discriminate interval or ordinal differences in slant, tilt, or curvedness between designated probe points on randomly shaped curved surfaces defined by shading, texture, and binocular disparity. The results reveal that discrimination thresholds for judgments of slant or tilt typically range between 4 degrees and 10 degrees; that judgments of one component are unaffected by simultaneous variations in the other; and that the individual thresholds for either the slant or tilt components of orientation are approximately equal to those obtained for judgments of the total orientation difference between two probed regions. Performance was much worse, however, for judgments of curvedness, and these judgments were significantly impaired when there were simultaneous variations in the shape index parameter of curvature.

  5. VRPD Novel Combinatory Approaches to Repair Visual System After Optic Nerve Damage

    DTIC Science & Technology

    2015-05-01

    At 4 and 8 weeks after injury, retinas were immunostained with an antibody against beta III tubulin (TUJ1) to estimate RGC survival. The degree of...Optic chiasm presentation of Semaphorin6D in the context of Plexin-A1 and Nr- CAM promotes retinal axon midline crossing. Neuron 74, 676–690. Leaver...for Nr- CAM in the patterning of binocular visual pathways. Neuron 50, 535–547. Williams, S.E., Mann, F., Erskine, L., Sakurai, T., Wei, S., Rossi, D.J

  6. A Causal Role for V5/MT Neurons Coding Motion-Disparity Conjunctions in Resolving Perceptual Ambiguity

    PubMed Central

    Krug, Kristine; Cicmil, Nela; Parker, Andrew J.; Cumming, Bruce G.

    2013-01-01

    Summary Judgments about the perceptual appearance of visual objects require the combination of multiple parameters, like location, direction, color, speed, and depth. Our understanding of perceptual judgments has been greatly informed by studies of ambiguous figures, which take on different appearances depending upon the brain state of the observer. Here we probe the neural mechanisms hypothesized as responsible for judging the apparent direction of rotation of ambiguous structure from motion (SFM) stimuli. Resolving the rotation direction of SFM cylinders requires the conjoint decoding of direction of motion and binocular depth signals [1, 2]. Within cortical visual area V5/MT of two macaque monkeys, we applied electrical stimulation at sites with consistent multiunit tuning to combinations of binocular depth and direction of motion, while the monkey made perceptual decisions about the rotation of SFM stimuli. For both ambiguous and unambiguous SFM figures, rotation judgments shifted as if we had added a specific conjunction of disparity and motion signals to the stimulus elements. This is the first causal demonstration that the activity of neurons in V5/MT contributes directly to the perception of SFM stimuli and by implication to decoding the specific conjunction of disparity and motion, the two different visual cues whose combination drives the perceptual judgment. PMID:23871244

  7. Color-binding errors during rivalrous suppression of form.

    PubMed

    Hong, Sang Wook; Shevell, Steven K

    2009-09-01

    How does a physical stimulus determine a conscious percept? Binocular rivalry provides useful insights into this question because constant physical stimulation during rivalry causes different visual experiences. For example, presentation of vertical stripes to one eye and horizontal stripes to the other eye results in a percept that alternates between horizontal and vertical stripes. Presentation of a different color to each eye (color rivalry) produces alternating percepts of the two colors or, in some cases, a color mixture. The experiments reported here reveal a novel and instructive resolution of rivalry for stimuli that differ in both form and color: perceptual alternation between the rivalrous forms (e.g., horizontal or vertical stripes), with both eyes' colors seen simultaneously in separate parts of the currently perceived form. Thus, the colors presented to the two eyes (a) maintain their distinct neural representations despite resolution of form rivalry and (b) can bind separately to distinct parts of the perceived form.

  8. Visual Sensitivities and Discriminations and Their Roles in Aviation.

    DTIC Science & Technology

    1985-06-17

    University Halifax, Nova Scotia /Oa Canada R3H 4H6 -i. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Life Sciences Directorate 17 June 1985 Air...acuity of about 0.2 deg when viewing is binocular (Beverley & Regan, 1975). It has been Daihousie Uiversity 11 Departments of Ophthalmology and Medicine

  9. High-performance object tracking and fixation with an online neural estimator.

    PubMed

    Kumarawadu, Sisil; Watanabe, Keigo; Lee, Tsu-Tian

    2007-02-01

    Vision-based target tracking and fixation to keep objects that move in three dimensions in view is important for many tasks in several fields including intelligent transportation systems and robotics. Much of the visual control literature has focused on the kinematics of visual control and ignored a number of significant dynamic control issues that limit performance. In line with this, this paper presents a neural network (NN)-based binocular tracking scheme for high-performance target tracking and fixation with minimum sensory information. The procedure allows the designer to take into account the physical (Lagrangian dynamics) properties of the vision system in the control law. The design objective is to synthesize a binocular tracking controller that explicitly takes the systems dynamics into account, yet needs no knowledge of dynamic nonlinearities and joint velocity sensory information. The combined neurocontroller-observer scheme can guarantee the uniform ultimate bounds of the tracking, observer, and NN weight estimation errors under fairly general conditions on the controller-observer gains. The controller is tested and verified via simulation tests in the presence of severe target motion changes.

  10. Association between rates of binocular visual field loss and vision-related quality of life in patients with glaucoma.

    PubMed

    Lisboa, Renato; Chun, Yeoun Sook; Zangwill, Linda M; Weinreb, Robert N; Rosen, Peter N; Liebmann, Jeffrey M; Girkin, Christopher A; Medeiros, Felipe A

    2013-04-01

    It is reasonable to hypothesize that for 2 patients with similar degrees of integrated binocular visual field (BVF) loss, the patient with a history of faster disease progression will report worse vision-related quality of life (VRQOL) than the patient with slowly progressing damage. However, to our knowledge, this hypothesis has not been investigated in the literature. To evaluate the association between binocular rates of visual field change and VRQOL in patients with glaucoma. DESIGN Observational cohort study. Patients were recruited from the Diagnostic Innovations in Glaucoma Study and the African Descent and Glaucoma Evaluation Study. The study included 796 eyes of 398 patients with diagnosed or suspected glaucoma followed up from October 1, 1998, until January 31, 2012, for a mean (SD) of 7.3 (2.0) years. The VRQOL was evaluated using the 25-item National Eye Institute Visual Function Questionnaire (NEI VFQ-25) at the last follow-up visit. The NEI VFQ-25 was completed for all patients during the period extending from December 1, 2009, through January 31, 2012. Integrated BVFs were calculated from the monocular fields of each patient. Linear regression of mean deviation values was used to evaluate rates of BVF change during the follow-up period. Logistic regression models were used to investigate the association between abnormal VRQOL and rates of BVF change, while adjusting for potentially confounding socioeconomic and demographic variables. Thirty-two patients (8.0%) had abnormal VRQOL as determined by the results of the NEI VFQ-25. Patients with abnormal VRQOL had significantly faster rates of BVF change than those with normal VRQOL (-0.18 vs -0.06 dB/y; P < .001). Rates of BVF change were significantly associated with abnormality in VRQOL (odds ratio = 1.31 per 0.1 dB/y faster; P = .04), after adjustment for confounding variables. Patients with faster rates of BVF change were at higher risk of reporting abnormal VRQOL. Assessment of rates of BVF change may provide useful information in determining risk of functional impairment in glaucoma.

  11. Perspective Space as a Model for Distance and Size Perception.

    PubMed

    Erkelens, Casper J

    2017-01-01

    In the literature, perspective space has been introduced as a model of visual space. Perspective space is grounded on the perspective nature of visual space during both binocular and monocular vision. A single parameter, that is, the distance of the vanishing point, transforms the geometry of physical space into that of perspective space. The perspective-space model predicts perceived angles, distances, and sizes. The model is compared with other models for distance and size perception. Perspective space predicts that perceived distance and size as a function of physical distance are described by hyperbolic functions. Alternatively, power functions have been widely used to describe perceived distance and size. Comparison of power and hyperbolic functions shows that both functions are equivalent within the range of distances that have been judged in experiments. Two models describing perceived distance on the ground plane appear to be equivalent with the perspective-space model too. The conclusion is that perspective space unifies a number of models of distance and size perception.

  12. Perspective Space as a Model for Distance and Size Perception

    PubMed Central

    2017-01-01

    In the literature, perspective space has been introduced as a model of visual space. Perspective space is grounded on the perspective nature of visual space during both binocular and monocular vision. A single parameter, that is, the distance of the vanishing point, transforms the geometry of physical space into that of perspective space. The perspective-space model predicts perceived angles, distances, and sizes. The model is compared with other models for distance and size perception. Perspective space predicts that perceived distance and size as a function of physical distance are described by hyperbolic functions. Alternatively, power functions have been widely used to describe perceived distance and size. Comparison of power and hyperbolic functions shows that both functions are equivalent within the range of distances that have been judged in experiments. Two models describing perceived distance on the ground plane appear to be equivalent with the perspective-space model too. The conclusion is that perspective space unifies a number of models of distance and size perception. PMID:29225765

  13. Long-term visual outcomes of craniopharyngioma in children.

    PubMed

    Wan, Michael J; Zapotocky, Michal; Bouffet, Eric; Bartels, Ute; Kulkarni, Abhaya V; Drake, James M

    2018-05-01

    Visual function is a critical factor in the diagnosis, monitoring, and prognosis of craniopharyngiomas in children. The aim of this study was to report the long-term visual outcomes in a cohort of pediatric patients with craniopharyngioma. The study design is a retrospective chart review of craniopharyngioma patients from a single tertiary-care pediatric hospital. 59 patients were included in the study. Mean age at presentation was 9.4 years old (range 0.7-18.0 years old). The most common presenting features were headache (76%), nausea/vomiting (32%), and vision loss (31%). Median follow-up was 5.2 years (range 1.0-17.2 years). During follow-up, visual decline occurred in 17 patients (29%). On Kaplan Meier survival analysis, 47% of the cases of visual decline occurred within 4 months of diagnosis, with the remaining cases occurring sporadically during follow-up (up to 8 years after diagnosis). In terms of risk factors, younger age at diagnosis, optic nerve edema at presentation, and tumor recurrence were found to have statistically significant associations with visual decline. At final follow-up, 58% of the patients had visual impairment in at least one eye but only 10% were legally blind in both eyes (visual acuity 20/200 or worse or < 20° of visual field). Vision loss is a common presenting symptom of craniopharyngiomas in children. After diagnosis, monitoring vision is important as about 30% of patients will experience significant visual decline. Long-term vision loss occurs in the majority of patients, but severe binocular visual impairment is uncommon.

  14. Quantitative measurement of binocular color fusion limit for non-spectral colors.

    PubMed

    Jung, Yong Ju; Sohn, Hosik; Lee, Seong-il; Ro, Yong Man; Park, Hyun Wook

    2011-04-11

    Human perception becomes difficult in the event of binocular color fusion when the color difference presented for the left and right eyes exceeds a certain threshold value, known as the binocular color fusion limit. This paper discusses the binocular color fusion limit for non-spectral colors within the color gamut of a conventional LCD 3DTV. We performed experiments to measure the color fusion limit for eight chromaticity points sampled from the CIE 1976 chromaticity diagram. A total of 2480 trials were recorded for a single observer. By analyzing the results, the color fusion limit was quantified by ellipses in the chromaticity diagram. The semi-minor axis of the ellipses ranges from 0.0415 to 0.0923 in terms of the Euclidean distance in the u'v´ chromaticity diagram and the semi-major axis ranges from 0.0640 to 0.1560. These eight ellipses are drawn on the chromaticity diagram. © 2011 Optical Society of America

  15. Virtual Reality in Neurointervention.

    PubMed

    Ong, Chin Siang; Deib, Gerard; Yesantharao, Pooja; Qiao, Ye; Pakpoor, Jina; Hibino, Narutoshi; Hui, Ferdinand; Garcia, Juan R

    2018-06-01

    Virtual reality (VR) allows users to experience realistic, immersive 3D virtual environments with the depth perception and binocular field of view of real 3D settings. Newer VR technology has now allowed for interaction with 3D objects within these virtual environments through the use of VR controllers. This technical note describes our preliminary experience with VR as an adjunct tool to traditional angiographic imaging in the preprocedural workup of a patient with a complex pseudoaneurysm. Angiographic MRI data was imported and segmented to create 3D meshes of bilateral carotid vasculature. The 3D meshes were then projected into VR space, allowing the operator to inspect the carotid vasculature using a 3D VR headset as well as interact with the pseudoaneurysm (handling, rotation, magnification, and sectioning) using two VR controllers. 3D segmentation of a complex pseudoaneurysm in the distal cervical segment of the right internal carotid artery was successfully performed and projected into VR. Conventional and VR visualization modes were equally effective in identifying and classifying the pathology. VR visualization allowed the operators to manipulate the dataset to achieve a greater understanding of the anatomy of the parent vessel, the angioarchitecture of the pseudoaneurysm, and the surface contours of all visualized structures. This preliminary study demonstrates the feasibility of utilizing VR for preprocedural evaluation in patients with anatomically complex neurovascular disorders. This novel visualization approach may serve as a valuable adjunct tool in deciding patient-specific treatment plans and selection of devices prior to intervention.

  16. Predicting Visual Consciousness Electrophysiologically from Intermittent Binocular Rivalry

    PubMed Central

    O’Shea, Robert P.; Kornmeier, Jürgen; Roeber, Urte

    2013-01-01

    Purpose We sought brain activity that predicts visual consciousness. Methods We used electroencephalography (EEG) to measure brain activity to a 1000-ms display of sine-wave gratings, oriented vertically in one eye and horizontally in the other. This display yields binocular rivalry: irregular alternations in visual consciousness between the images viewed by the eyes. We replaced both gratings with 200 ms of darkness, the gap, before showing a second display of the same rival gratings for another 1000 ms. We followed this by a 1000-ms mask then a 2000-ms inter-trial interval (ITI). Eleven participants pressed keys after the second display in numerous trials to say whether the orientation of the visible grating changed from before to after the gap or not. Each participant also responded to numerous non-rivalry trials in which the gratings had identical orientations for the two eyes and for which the orientation of both either changed physically after the gap or did not. Results We found that greater activity from lateral occipital-parietal-temporal areas about 180 ms after initial onset of rival stimuli predicted a change in visual consciousness more than 1000 ms later, on re-presentation of the rival stimuli. We also found that less activity from parietal, central, and frontal electrodes about 400 ms after initial onset of rival stimuli predicted a change in visual consciousness about 800 ms later, on re-presentation of the rival stimuli. There was no such predictive activity when the change in visual consciousness occurred because the stimuli changed physically. Conclusion We found early EEG activity that predicted later visual consciousness. Predictive activity 180 ms after onset of the first display may reflect adaption of the neurons mediating visual consciousness in our displays. Predictive activity 400 ms after onset of the first display may reflect a less-reliable brain state mediating visual consciousness. PMID:24124536

  17. Vision in two cyprinid fish: implications for collective behavior

    PubMed Central

    Moore, Bret A.; Tyrrell, Luke P.; Fernández-Juricic, Esteban

    2015-01-01

    Many species of fish rely on their visual systems to interact with conspecifics and these interactions can lead to collective behavior. Individual-based models have been used to predict collective interactions; however, these models generally make simplistic assumptions about the sensory systems that are applied without proper empirical testing to different species. This could limit our ability to predict (and test empirically) collective behavior in species with very different sensory requirements. In this study, we characterized components of the visual system in two species of cyprinid fish known to engage in visually dependent collective interactions (zebrafish Danio rerio and golden shiner Notemigonus crysoleucas) and derived quantitative predictions about the positioning of individuals within schools. We found that both species had relatively narrow binocular and blind fields and wide visual coverage. However, golden shiners had more visual coverage in the vertical plane (binocular field extending behind the head) and higher visual acuity than zebrafish. The centers of acute vision (areae) of both species projected in the fronto-dorsal region of the visual field, but those of the zebrafish projected more dorsally than those of the golden shiner. Based on this visual sensory information, we predicted that: (a) predator detection time could be increased by >1,000% in zebrafish and >100% in golden shiners with an increase in nearest neighbor distance, (b) zebrafish schools would have a higher roughness value (surface area/volume ratio) than those of golden shiners, (c) and that nearest neighbor distance would vary from 8 to 20 cm to visually resolve conspecific striping patterns in both species. Overall, considering between-species differences in the sensory system of species exhibiting collective behavior could change the predictions about the positioning of individuals in the group as well as the shape of the school, which can have implications for group cohesion. We suggest that more effort should be invested in assessing the role of the sensory system in shaping local interactions driving collective behavior. PMID:26290783

  18. Use of subjective and objective criteria to categorise visual disability.

    PubMed

    Kajla, Garima; Rohatgi, Jolly; Dhaliwal, Upreet

    2014-04-01

    Visual disability is categorised using objective criteria. Subjective measures are not considered. To use subjective criteria along with objective ones to categorise visual disability. Ophthalmology out-patient department; teaching hospital; observational study. Consecutive persons aged >25 years, with vision <20/20 (in one or both eyes) due to chronic conditions, like cataract and refractive errors, were categorized into 11 groups of increasing disability; group-zero: normal range of vision, to group-X: no perception of light, bilaterally. Snellen's vision; binocular contrast sensitivity (Pelli-Robson chart); automated binocular visual field (Humphrey; Esterman test); and vision-related quality of life (Indian Visual Function Questionnaire-33; IND-VFQ33) were recorded. SPSS version-17; Kruskal-wallis test was used to compare contrast sensitivity and visual fields across groups, and Mann-Whitney U test for pair-wise comparison (Bonferroni adjustment; P < 0.01). One-way ANOVA compared quality of life data across groups; for pairwise significance, Dunnett T3 test was applied. In 226 patients, contrast sensitivity and visual fields were comparable for differing disability grades except when disability was severe (P < 0.001), or moderately severe (P < 0.01). Individual scales of IND-VFQ33 were also mostly comparable; however, global scores showed a distinct pattern, being different for some disability grades but comparable for groups III (78.51 ± 6.86) and IV (82.64 ± 5.80), and groups IV and V (77.23 ± 3.22); these were merged to generate group 345; similarly, global scores were comparable for adjacent groups V and VI (72.53 ± 6.77), VI and VII (74.46 ± 4.32), and VII and VIII (69.12 ± 5.97); these were merged to generate group 5678; thereafter, contrast sensitivity and global and individual IND-VFQ33 scores could differentiate between different grades of disability in the five new groups. Subjective criteria made it possible to objectively reclassify visual disability. Visual disability grades could be redefined to accommodate all from zero-100%.

  19. Effects of Ocular Optics on Perceived Visual Direction and Depth

    NASA Astrophysics Data System (ADS)

    Ye, Ming

    Most studies of human retinal image quality have specifically addressed the issues of image contrast, few have examined the problem of image location. However, one of the most impressive properties of human vision involves the location of objects. We are able to identify object location with great accuracy (less than 5 arcsec). The sensitivity we exhibit for image location indicates that any optical errors, such as refractive error, ocular aberrations, pupil decentration, etc., may have noticeable effects on perceived visual direction and distance of objects. The most easily observed effects of these optical factors is a binocular depth illusion called chromostereopsis in which equidistance colored objects appear to lie at the different distances. This dissertation covers a series of theoretical and experimental studies that examined the effects of ocular optics on perceived monocular visual direction and binocular chromostereopsis. Theoretical studies included development of an adequate eye model for predicting chromatic aberration, a major ocular aberration, using geometric optics. Also, a wave optical analysis is used to model the effects of defocus, optical aberrations, Stiles-Crawford effect (SCE) and pupil location on retinal image profiles. Experimental studies used psychophysical methods such as monocular vernier alignment tests, binocular stereoscopic tests, etc. This dissertation concludes: (1) With a decentered large pupil, the SCE reduces defocused image shifts compare to an eye without the SCE. (2) The blurred image location can be predicted by the centroid of the image profile. (3) Chromostereopsis with small pupils can be precisely accounted for by the interocular difference in monocular transverse chromatic aberration. (4) The SCE also plays an important role in the effect of pupil size on chromostereopsis. The reduction of chromostereopsis with large pupils can be accurately predicted by the interocular difference in monocular chromatic diplopia which is also reduced with large pupils. This supports the hypothesis that the effect of pupil size on chromostereopsis is due to monocular mechanisms.

  20. Wayfinding and Glaucoma: A Virtual Reality Experiment.

    PubMed

    Daga, Fábio B; Macagno, Eduardo; Stevenson, Cory; Elhosseiny, Ahmed; Diniz-Filho, Alberto; Boer, Erwin R; Schulze, Jürgen; Medeiros, Felipe A

    2017-07-01

    Wayfinding, the process of determining and following a route between an origin and a destination, is an integral part of everyday tasks. The purpose of this study was to investigate the impact of glaucomatous visual field loss on wayfinding behavior using an immersive virtual reality (VR) environment. This cross-sectional study included 31 glaucomatous patients and 20 healthy subjects without evidence of overall cognitive impairment. Wayfinding experiments were modeled after the Morris water maze navigation task and conducted in an immersive VR environment. Two rooms were built varying only in the complexity of the visual scene in order to promote allocentric-based (room A, with multiple visual cues) versus egocentric-based (room B, with single visual cue) spatial representations of the environment. Wayfinding tasks in each room consisted of revisiting previously visible targets that subsequently became invisible. For room A, glaucoma patients spent on average 35.0 seconds to perform the wayfinding task, whereas healthy subjects spent an average of 24.4 seconds (P = 0.001). For room B, no statistically significant difference was seen on average time to complete the task (26.2 seconds versus 23.4 seconds, respectively; P = 0.514). For room A, each 1-dB worse binocular mean sensitivity was associated with 3.4% (P = 0.001) increase in time to complete the task. Glaucoma patients performed significantly worse on allocentric-based wayfinding tasks conducted in a VR environment, suggesting visual field loss may affect the construction of spatial cognitive maps relevant to successful wayfinding. VR environments may represent a useful approach for assessing functional vision endpoints for clinical trials of emerging therapies in ophthalmology.

  1. What Drives Bird Vision? Bill Control and Predator Detection Overshadow Flight.

    PubMed

    Martin, Graham R

    2017-01-01

    Although flight is regarded as a key behavior of birds this review argues that the perceptual demands for its control are met within constraints set by the perceptual demands of two other key tasks: the control of bill (or feet) position, and the detection of food items/predators. Control of bill position, or of the feet when used in foraging, and timing of their arrival at a target, are based upon information derived from the optic flow-field in the binocular region that encompasses the bill. Flow-fields use information extracted from close to the bird using vision of relatively low spatial resolution. The detection of food items and predators is based upon information detected at a greater distance and depends upon regions in the retina with relatively high spatial resolution. The tasks of detecting predators and of placing the bill (or feet) accurately, make contradictory demands upon vision and these have resulted in trade-offs in the form of visual fields and in the topography of retinal regions in which spatial resolution is enhanced, indicated by foveas, areas, and high ganglion cell densities. The informational function of binocular vision in birds does not lie in binocularity per se (i.e., two eyes receiving slightly different information simultaneously about the same objects) but in the contralateral projection of the visual field of each eye. This ensures that each eye receives information from a symmetrically expanding optic flow-field centered close to the direction of the bill, and from this the crucial information of direction of travel and time-to-contact can be extracted, almost instantaneously. Interspecific comparisons of visual fields between closely related species have shown that small differences in foraging techniques can give rise to different perceptual challenges and these have resulted in differences in visual fields even within the same genus. This suggests that vision is subject to continuing and relatively rapid natural selection based upon individual differences in the structure of the optical system, retinal topography, and eye position in the skull. From a sensory ecology perspective a bird is best characterized as "a bill guided by an eye" and that control of flight is achieved within constraints on visual capacity dictated primarily by the demands of foraging and bill control.

  2. What Drives Bird Vision? Bill Control and Predator Detection Overshadow Flight

    PubMed Central

    Martin, Graham R.

    2017-01-01

    Although flight is regarded as a key behavior of birds this review argues that the perceptual demands for its control are met within constraints set by the perceptual demands of two other key tasks: the control of bill (or feet) position, and the detection of food items/predators. Control of bill position, or of the feet when used in foraging, and timing of their arrival at a target, are based upon information derived from the optic flow-field in the binocular region that encompasses the bill. Flow-fields use information extracted from close to the bird using vision of relatively low spatial resolution. The detection of food items and predators is based upon information detected at a greater distance and depends upon regions in the retina with relatively high spatial resolution. The tasks of detecting predators and of placing the bill (or feet) accurately, make contradictory demands upon vision and these have resulted in trade-offs in the form of visual fields and in the topography of retinal regions in which spatial resolution is enhanced, indicated by foveas, areas, and high ganglion cell densities. The informational function of binocular vision in birds does not lie in binocularity per se (i.e., two eyes receiving slightly different information simultaneously about the same objects) but in the contralateral projection of the visual field of each eye. This ensures that each eye receives information from a symmetrically expanding optic flow-field centered close to the direction of the bill, and from this the crucial information of direction of travel and time-to-contact can be extracted, almost instantaneously. Interspecific comparisons of visual fields between closely related species have shown that small differences in foraging techniques can give rise to different perceptual challenges and these have resulted in differences in visual fields even within the same genus. This suggests that vision is subject to continuing and relatively rapid natural selection based upon individual differences in the structure of the optical system, retinal topography, and eye position in the skull. From a sensory ecology perspective a bird is best characterized as “a bill guided by an eye” and that control of flight is achieved within constraints on visual capacity dictated primarily by the demands of foraging and bill control. PMID:29163020

  3. Visual Performance of a Quadrifocal (Trifocal) Intraocular Lens Following Removal of the Crystalline Lens.

    PubMed

    Kohnen, Thomas; Herzog, Michael; Hemkeppler, Eva; Schönbrunn, Sabrina; De Lorenzo, Nina; Petermann, Kerstin; Böhm, Myriam

    2017-12-01

    To evaluate visual performance after implantation of a quadrifocal intraocular lens (IOL). Setting: Department of Ophthalmology, Goethe University, Frankfurt, Germany. Twenty-seven patients (54 eyes) received bilateral implantation of the PanOptix IOL (AcrySof IQ PanOptixTM; Alcon Research, Fort Worth, Texas, USA) pre-enrollment. Exclusion criteria were previous ocular surgeries, corneal astigmatism of >1.5 diopter (D), ocular pathologies, or corneal abnormalities. Intervention or Observational Procedure(s): Postoperative examination at 3 months including manifest refraction; uncorrected visual acuity (UCVA) and distance-corrected visual acuity (DCVA) in 4 m, 80 cm, 60 cm, and 40 cm slit-lamp examination; defocus testing; contrast sensitivity (CS) under photopic and mesopic conditions; and a questionnaire on subjective quality of vision, optical phenomena, and spectacle independence was performed. At 3 months postoperatively, UCVA and DCVA in 4 m, 80 cm, 60 cm, and 40 cm (logMAR), defocus curves, CS, and quality-of-vision questionnaire results. Mean spherical equivalent was -0.04 ± 0.321 D 3 months postoperatively. Binocular UCVA at distance, intermediate (80 cm, 60 cm), and near was 0.00 ± 0.094 logMAR, 0.09 ± 0.107 logMAR, 0.00 ± 0.111 logMAR, and 0.01 ± 0.087 logMAR, respectively. Binocular defocus curve showed peaks with best visual acuity (VA) at 0.00 D (-0.07 logMAR) and -2.00 D (-0.02 logMAR). Visual performance of the PanOptix IOL showed good VA at all distances; particularly good intermediate VA (logMAR > 0.1), with best VA at 60 cm; and high patient satisfaction and spectacle independence 3 months postoperatively. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Longitudinal study of visual function in patients with relapsing-remitting multiple sclerosis with and without a history of optic neuritis.

    PubMed

    González Gómez, A; García-Ben, A; Soler García, A; García-Basterra, I; Padilla Parrado, F; García-Campos, J M

    2017-03-15

    The contrast sensitivity test determines the quality of visual function in patients with multiple sclerosis (MS). The purpose of this study is to analyse changes in visual function in patients with relapsing-remitting MS with and without a history of optic neuritis (ON). We conducted a longitudinal study including 61 patients classified into 3 groups as follows: a) disease-free patients (control group); b) patients with MS and no history of ON; and c) patients with MS and a history of unilateral ON. All patients underwent baseline and 6-year follow-up ophthalmologic examinations, which included visual acuity and monocular and binocular Pelli-Robson contrast sensitivity tests. Monocular contrast sensitivity was significantly lower in MS patients with and without a history of ON than in controls both at baseline (P=.00 and P=.01, respectively) and at 6 years (P=.01 and P=.02). Patients with MS and no history of ON remained stable throughout follow-up whereas those with a history of ON displayed a significant loss of contrast sensitivity (P=.01). Visual acuity and binocular contrast sensitivity at baseline and at 6 years was significantly lower in the group of patients with a history of ON than in the control group (P=.003 and P=.002 vs P=.006 and P=.005) and the group with no history of ON (P=.04 and P=.038 vs P=.008 and P=.01). However, no significant differences were found in follow-up results (P=.1 and P=.5). Monocular Pelli-Robson contrast sensitivity test may be used to detect changes in visual function in patients with ON. Copyright © 2017 The Author(s). Publicado por Elsevier España, S.L.U. All rights reserved.

  5. The effect of amblyopia on fine motor skills in children.

    PubMed

    Webber, Ann L; Wood, Joanne M; Gole, Glen A; Brown, Brian

    2008-02-01

    In an investigation of the functional impact of amblyopia in children, the fine motor skills of amblyopes and age-matched control subjects were compared. The influence of visual factors that might predict any decrement in fine motor skills was also explored. Vision and fine motor skills were tested in a group of children (n = 82; mean age, 8.2 +/- 1.7 [SD] years) with amblyopia of different causes (infantile esotropia, n = 17; acquired strabismus, n = 28; anisometropia, n = 15; mixed, n = 13; and deprivation n = 9), and age-matched control children (n = 37; age 8.3 +/- 1.3 years). Visual motor control (VMC) and upper limb speed and dexterity (ULSD) items of the Bruininks-Oseretsky Test of Motor Proficiency were assessed, and logMAR visual acuity (VA) and Randot stereopsis were measured. Multiple regression models were used to identify the visual determinants of fine motor skills performance. Amblyopes performed significantly poorer than control subjects on 9 of 16 fine motor skills subitems and for the overall age-standardized scores for both VMC and ULSD items (P < 0.05). The effects were most evident on timed tasks. The etiology of amblyopia and level of binocular function significantly affected fine motor skill performance on both items; however, when examined in a multiple regression model that took into account the intercorrelation between visual characteristics, poorer fine motor skills performance was associated with strabismus (F(1,75) = 5.428; P = 0.022), but not with the level of binocular function, refractive error, or visual acuity in either eye. Fine motor skills were reduced in children with amblyopia, particularly those with strabismus, compared with control subjects. The deficits in motor performance were greatest on manual dexterity tasks requiring speed and accuracy.

  6. Safety and efficacy of a hydrogel inlay with laser in situ keratomileusis to improve vision in myopic presbyopic patients: one-year results.

    PubMed

    Garza, Enrique Barragan; Chayet, Arturo

    2015-02-01

    To study the safety and efficacy of implanting a hydrogel corneal inlay (Raindrop Near Vision Inlay) concurrently with performing laser in situ keratomileusis (LASIK) to treat myopic presbyopia and to compare the results with results of the same treatment in emmetropic and hyperopic patients. Two private clinics, Tijuana and Monterrey, Mexico. Prospective nonrandomized clinical trial. Bilateral myopic LASIK was performed and a corneal inlay was concurrently implanted in the nondominant eye under a flap created using a femtosecond laser. Primary safety outcomes were the retention of corrected distance (CDVA) and near (CNVA) visual acuities. Efficacy was evaluated on the basis of uncorrected near (UNVA), intermediate (UIVA), and distance (UDVA) visual acuities. A patient questionnaire was used to assess the preoperative and postoperative incidence of visual symptoms, the ability to perform common tasks with no correction, and patient satisfaction with vision. Thirty eyes were enrolled. At each postoperative visit, the mean CDVA and CNVA were within one half line of preoperative measurements and no eye lost 2 or more lines of CDVA. The mean binocular UDVA, UIVA, and UNVA were better than 20/25 Snellen at all postoperative visits. By 6 months, 93% of patients had a binocular Snellen acuity of 20/25 or better across all visual ranges. According to patient questionnaires, 1 year after surgery, visual symptoms were at preoperative levels, 98% of all visual tasks could be easily performed without correction, and 90% of patients were satisfied or very satisfied with their overall vision. A hydrogel corneal inlay with concurrent LASIK was safe and effective for treating myopic presbyopia. Drs. Garza and Chayet are consultants to and investigators for Revision Optics, Inc. Copyright © 2015. Published by Elsevier Inc.

  7. The association between clinical parameters and glaucoma-specific quality of life in Chinese primary open-angle glaucoma patients.

    PubMed

    Lee, Jacky W Y; Chan, Catherine W S; Chan, Jonathan C H; Li, Q; Lai, Jimmy S M

    2014-08-01

    OBJECTIVE. To investigate the association between clinical measurements and glaucoma-specific quality of life in Chinese glaucoma patients. DESIGN. Cross-sectional study. SETTING. An academic hospital in Hong Kong. PATIENTS. A Chinese translation of the Glaucoma Quality of Life-15 questionnaire was completed by 51 consecutive patients with bilateral primary open-angle glaucoma. The binocular means of several clinical measurements were correlated with Glaucoma Quality of Life-15 findings using Pearson's correlation coefficient and linear regression. The measurements were the visual field index and pattern standard deviation from the Humphrey Field Analyzer, Snellen best-corrected visual acuity, presenting intra-ocular pressure, current intra-ocular pressure, average retinal nerve fibre layer thickness via optical coherence tomography, and the number of topical anti-glaucoma medications being used. RESULTS. In these patients, there was a significant correlation and linear relationship between a poorer Glaucoma Quality of Life-15 score and a lower visual field index (r=0.3, r(2)=0.1, P=0.01) and visual acuity (r=0.3, r(2)=0.1, P=0.03). A thinner retinal nerve fibre layer also correlated with a poorer Glaucoma Quality of Life-15 score, but did not attain statistical significance (r=0.3, P=0.07). There were no statistically significant correlations for the other clinical parameters with the Glaucoma Quality of Life-15 scores (all P values being >0.7). The three most problematic activities affecting quality of life were "adjusting to bright lights", "going from a light to a dark room or vice versa", and "seeing at night". CONCLUSION. For Chinese primary open-angle glaucoma patients, binocular visual field index and visual acuity correlated linearly with glaucoma-specific quality of life, and activities involving dark adaptation were the most problematic.

  8. Neural mechanisms of oculomotor abnormalities in the infantile strabismus syndrome.

    PubMed

    Walton, Mark M G; Pallus, Adam; Fleuriet, Jérome; Mustari, Michael J; Tarczy-Hornoch, Kristina

    2017-07-01

    Infantile strabismus is characterized by numerous visual and oculomotor abnormalities. Recently nonhuman primate models of infantile strabismus have been established, with characteristics that closely match those observed in human patients. This has made it possible to study the neural basis for visual and oculomotor symptoms in infantile strabismus. In this review, we consider the available evidence for neural abnormalities in structures related to oculomotor pathways ranging from visual cortex to oculomotor nuclei. These studies provide compelling evidence that a disturbance of binocular vision during a sensitive period early in life, whatever the cause, results in a cascade of abnormalities through numerous brain areas involved in visual functions and eye movements. Copyright © 2017 the American Physiological Society.

  9. Effects of Anisometropic Amblyopia on Visuomotor Behavior, Part 2: Visually Guided Reaching

    PubMed Central

    Niechwiej-Szwedo, Ewa; Goltz, Herbert C.; Chandrakumar, Manokaraananthan; Hirji, Zahra; Crawford, J. Douglas; Wong, Agnes M. F.

    2016-01-01

    Purpose The effects of impaired spatiotemporal vision in amblyopia on visuomotor skills have rarely been explored in detail. The goal of this study was to examine the influences of amblyopia on visually guided reaching. Methods Fourteen patients with anisometropic amblyopia and 14 control subjects were recruited. Participants executed reach-to-touch movements toward targets presented randomly 5° or 10° to the left or right of central fixation in three viewing conditions: binocular, monocular amblyopic eye, and monocular fellow eye viewing (left and right monocular viewing for control subjects). Visual feedback of the target was removed on 50% of the trials at the initiation of reaching. Results Reaching accuracy was comparable between patients and control subjects during all three viewing conditions. Patients’ reaching responses were slightly less precise during amblyopic eye viewing, but their precision was normal during binocular or fellow eye viewing. Reaching reaction time was not affected by amblyopia. The duration of the acceleration phase was longer in patients than in control subjects under all viewing conditions, whereas the duration of the deceleration phase was unaffected. Peak acceleration and peak velocity were also reduced in patients. Conclusions Amblyopia affects both the programming and the execution of visually guided reaching. The increased duration of the acceleration phase, as well as the reduced peak acceleration and peak velocity, might reflect a strategy or adaptation of feedforward/feedback control of the visuomotor system to compensate for degraded spatiotemporal vision in amblyopia, allowing patients to optimize their reaching performance. PMID:21051723

  10. Perceived distance depends on the orientation of both the body and the visual environment.

    PubMed

    Harris, Laurence R; Mander, Charles

    2014-10-15

    Models of depth perception typically omit the orientation and height of the observer despite the potential usefulness of the height above the ground plane and the need to know about head position to interpret retinal disparity information. To assess the contribution of orientation to perceived distance, we used the York University Tumbled and Tumbling Room facilities to modulate both perceived and actual body orientation. These facilities are realistically decorated rooms that can be systematically arranged to vary the relative orientation of visual, gravity, and body cues to upright. To assess perceived depth we exploited size/distance constancy. Observers judged the perceived length of a visual line (controlled by a QUEST adaptive procedure) projected on to the wall of the facilities, relative to the length of an unseen iron rod held in their hands. In the Tumbled Room (viewing distance 337 cm) the line was set about 10% longer when participants were supine compared to when they were upright. In the Tumbling Room (viewing distance 114 cm), the line was set about 11% longer when participants were either supine or made to feel that they were supine by the orientation of the room. Matching a longer visual line to the reference rod is compatible with the opposite wall being perceived as closer. The effect was modulated by whether viewing was monocular or binocular at a viewing distance of 114 cm but not at 337 cm suggesting that reliable binocular cues can override the effect. © 2014 ARVO.

  11. Monocular zones in stereoscopic scenes: A useful source of information for human binocular vision?

    NASA Astrophysics Data System (ADS)

    Harris, Julie M.

    2010-02-01

    When an object is closer to an observer than the background, the small differences between right and left eye views are interpreted by the human brain as depth. This basic ability of the human visual system, called stereopsis, lies at the core of all binocular three-dimensional (3-D) perception and related technological display development. To achieve stereopsis, it is traditionally assumed that corresponding locations in the right and left eye's views must first be matched, then the relative differences between right and left eye locations are used to calculate depth. But this is not the whole story. At every object-background boundary, there are regions of the background that only one eye can see because, in the other eye's view, the foreground object occludes that region of background. Such monocular zones do not have a corresponding match in the other eye's view and can thus cause problems for depth extraction algorithms. In this paper I will discuss evidence, from our knowledge of human visual perception, illustrating that monocular zones do not pose problems for our human visual systems, rather, our visual systems can extract depth from such zones. I review the relevant human perception literature in this area, and show some recent data aimed at quantifying the perception of depth from monocular zones. The paper finishes with a discussion of the potential importance of considering monocular zones, for stereo display technology and depth compression algorithms.

  12. Comparative study of RetCamRetCam II vs. binocular ophthalmoscopy in a screening program for retinopathy of prematurity.

    PubMed

    Tejada-Palacios, P; Zarratea, L; Moral, M; de la Cruz-Bértolo, J

    2015-08-01

    To determine the performance of RetCam vs. binocular ophthalmoscopy (BIO) in a screening program for retinopathy of prematurity (ROP). Observational comparative study with prospective data collection. Examinations with RetCam (n=169) were performed on 83 infants included in a screening program for ROP and stored for analysis at a later stage. An experienced ophthalmologist examined the ocular fundus with binocular indirect ophthalmoscopy (BIO). The RetCam images were assessed for the presence of ROP, zone, grade, and presence of plus disease. RetCam and BIO data were compared by visually to estimate sensitivity, specificity, positive (VPP) and negative (VPN) predictive values. ROP disease was detected in 108 eyes with BIO, and in 74 with RetCam. Out of 306 eyes examined with RetCam, false negative results were found in 34 eyes, with no false positives. Sensitivity of RetCam exam vs. BIO was 0.68, and specificity was 0.99. Positive predictive value was 0.93 and negative predictive value was 0.85. All 34 ROP cases not detected with RetCam were in zone III or outer zone II. They were all mild and regressed spontaneously. No threshold ROP was missed with RetCam. Binocular indirect ophthalmoscopy is the reference method for the diagnosis of ROP. RetCam may be used as an alternative for ROP screening. Copyright © 2010 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  13. Cues to viewing distance for stereoscopic depth constancy.

    PubMed

    Glennerster, A; Rogers, B J; Bradshaw, M F

    1998-01-01

    A veridical estimate of viewing distance is required in order to determine the metric structure of objects from binocular stereopsis. One example of a judgment of metric structure, which we used in our experiment, is the apparently circular cylinder task (E B Johnston, 1991 Vision Research 31 1351-1360). Most studies report underconstancy in this task when the stimulus is defined purely by binocular disparities. We examined the effect of two factors on performance: (i) the richness of the cues to viewing distance (using either a naturalistic setting with many cues to viewing distance or a condition in which the room and the monitors were obscured from view), and (ii) the range of stimulus disparities (cylinder depths) presented during an experimental run. We tested both experienced subjects (who had performed the task many times before under full-cue conditions) and naïve subjects. Depth constancy was reduced for the naïve subjects (from 62% to 46%) when the position of the monitors was obscured. Under similar conditions, the experienced subjects showed no reduction in constancy. In a second experiment, using a forced-choice method of constant stimuli, we found that depth constancy was reduced from 64% to 23% in naïve subjects and from 77% to 55% in experienced subjects when the same set of images was presented at all viewing distances rather than using a set of stimulus disparities proportional to the correct setting. One possible explanation of these results is that, under reduced-cue conditions, the range of disparities presented is used by the visual system as a cue to viewing distance.

  14. Vision in Children and Adolescents with Autistic Spectrum Disorder: Evidence for Reduced Convergence

    ERIC Educational Resources Information Center

    Milne, Elizabeth; Griffiths, Helen; Buckley, David; Scope, Alison

    2009-01-01

    Evidence of atypical perception in individuals with ASD is mainly based on self report, parental questionnaires or psychophysical/cognitive paradigms. There have been relatively few attempts to establish whether binocular vision is enhanced, intact or abnormal in those with ASD. To address this, we screened visual function in 51 individuals with…

  15. Image-Aided Navigation Using Cooperative Binocular Stereopsis

    DTIC Science & Technology

    2014-03-27

    Global Postioning System . . . . . . . . . . . . . . . . . . . . . . . . . 1 IMU Inertial Measurement Unit...an intertial measurement unit ( IMU ). This technique capitalizes on an IMU’s ability to capture quick motion and the ability of GPS to constrain long...the sensor-aided IMU framework. Visual sensors provide a number of benefits, such as low cost and weight. These sensors are also able to measure

  16. Depth perception from moving cast shadow in macaque monkey.

    PubMed

    Mizutani, Saneyuki; Usui, Nobuo; Yokota, Takanori; Mizusawa, Hidehiro; Taira, Masato; Katsuyama, Narumi

    2015-07-15

    In the present study, we investigate whether the macaque monkey can perceive motion in depth using a moving cast shadow. To accomplish this, we conducted two experiments. In the first experiment, an adult Japanese monkey was trained in a motion discrimination task in depth by binocular disparity. A square was presented on the display so that it appeared with a binocular disparity of 0.12 degrees (initial position), and moved toward (approaching) or away from (receding) the monkey for 1s. The monkey was trained to discriminate the approaching and receding motion of the square by GO/delayed GO-type responses. The monkey showed a significantly high accuracy rate in the task, and the performance was maintained when the position, color, and shape of the moving object were changed. In the next experiment, the change in the disparity was gradually decreased in the motion discrimination task. The results showed that the performance of the monkey declined as the distance of the approaching and receding motion of the square decreased from the initial position. However, when a moving cast shadow was added to the stimulus, the monkey responded to the motion in depth induced by the cast shadow in the same way as by binocular disparity; the reward was delivered randomly or given in all trials to prevent the learning of the 2D motion of the shadow in the frontal plane. These results suggest that the macaque monkey can perceive motion in depth using a moving cast shadow as well as using binocular disparity. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Visual fields and eye morphology support color vision in a color-changing crab-spider.

    PubMed

    Insausti, Teresita C; Defrize, Jérémy; Lazzari, Claudio R; Casas, Jérôme

    2012-03-01

    Vision plays a major role in many spiders, being involved in prey hunting, orientation or substrate choice, among others. In Misumena vatia, which experiences morphological color changes, vision has been reported to be involved in substrate color matching. Electrophysiological evidence reveals that at least two types of photoreceptors are present in this species, but these data are not backed up by morphological evidence. This work analyzes the functional structure of the eyes of this spider and relates it to its color-changing abilities. A broad superposition of the visual field of the different eyes was observed, even between binocular regions of principal and secondary eyes. The frontal space is simultaneously analyzed by four eyes. This superposition supports the integration of the visual information provided by the different eye types. The mobile retina of the principal eyes of this spider is organized in three layers of three different types of rhabdoms. The third and deepest layer is composed by just one large rhabdom surrounded by dark screening pigments that limit the light entry. The three pairs of secondary eyes have all a single layer of rhabdoms. Our findings provide strong support for an involvement of the visual system in color matching in this spider. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Apollo-11 lunar sample information catalogue

    NASA Technical Reports Server (NTRS)

    Kramer, F. E. (Compiler); Twedell, D. B. (Compiler); Walton, W. J. A., Jr. (Compiler)

    1977-01-01

    The Apollo 11 mission is reviewed with emphasis on the collection of lunar samples, their geologic setting, early processing, and preliminary examination. The experience gained during five subsequent missions was applied to obtain physical-chemical data for each sample using photographic and binocular microscope techniques. Topics discussed include: binocular examination procedure; breccia clast dexrriptuons, thin section examinations procedure typical breccia in thin section, typical basalt in thin section, sample histories, and chemical and age data. An index to photographs is included.

  19. Modulatory effects of binocular disparity and aging upon the perception of speed.

    PubMed

    Norman, J Farley; Burton, Cory L; Best, Leah A

    2010-01-01

    Two experiments investigated modulatory effects of a surround upon the perceived speed of a moving central region. Both the surround's depth and velocity (relative to the center) were manipulated. The abilities of younger observers (mean age was 23.1 years) were evaluated in Experiment 1, while Experiment 2 was devoted to older participants (mean age was 71.3 years). The results of Experiment 1 revealed that changes in the perceived depth of a surround (in this case caused by changes in binocular disparity) significantly influence the perceived speed of a central target. In particular, the center's motion was perceived as fastest when the surround possessed uncrossed binocular disparity relative to the central target. This effect, that targets that are closer than their background are perceived to be faster, only occurred when the center and surround moved in the same directions (and did not occur when center and surround moved in opposite directions). The results of Experiment 2 showed that the perceived speeds of older adults are different: older observers generally perceive nearer targets as faster both when center and surround move in the same direction and when they move in opposite directions. In addition, the older observers' judgments of speed were less precise. These age-related changes in the perception of speed are broadly consistent with the results of recent neurophysiological investigations that find age-related changes in the functionality of cortical area MT.

  20. Gestalt-like constraints produce veridical (Euclidean) percepts of 3D indoor scenes

    PubMed Central

    Kwon, TaeKyu; Li, Yunfeng; Sawada, Tadamasa; Pizlo, Zygmunt

    2015-01-01

    This study, which was influenced a lot by Gestalt ideas, extends our prior work on the role of a priori constraints in the veridical perception of 3D shapes to the perception of 3D scenes. Our experiments tested how human subjects perceive the layout of a naturally-illuminated indoor scene that contains common symmetrical 3D objects standing on a horizontal floor. In one task, the subject was asked to draw a top view of a scene that was viewed either monocularly or binocularly. The top views the subjects reconstructed were configured accurately except for their overall size. These size errors varied from trial to trial, and were shown most-likely to result from the presence of a response bias. There was little, if any, evidence of systematic distortions of the subjects’ perceived visual space, the kind of distortions that have been reported in numerous experiments run under very unnatural conditions. This shown, we proceeded to use Foley’s (Vision Research 12 (1972) 323–332) isosceles right triangle experiment to test the intrinsic geometry of visual space directly. This was done with natural viewing, with the impoverished viewing conditions Foley had used, as well as with a number of intermediate viewing conditions. Our subjects produced very accurate triangles when the viewing conditions were natural, but their performance deteriorated systematically as the viewing conditions were progressively impoverished. Their perception of visual space became more compressed as their natural visual environment was degraded. Once this was shown, we developed a computational model that emulated the most salient features of our psychophysical results. We concluded that human observers see 3D scenes veridically when they view natural 3D objects within natural 3D environments. PMID:26525845

  1. Cogito ergo video: Task-relevant information is involuntarily boosted into awareness.

    PubMed

    Gayet, Surya; Brascamp, Jan W; Van der Stigchel, Stefan; Paffen, Chris L E

    2015-01-01

    Only part of the visual information that impinges on our retinae reaches visual awareness. In a series of three experiments, we investigated how the task relevance of incoming visual information affects its access to visual awareness. On each trial, participants were instructed to memorize one of two presented hues, drawn from different color categories (e.g., red and green), for later recall. During the retention interval, participants were presented with a differently colored grating in each eye such as to elicit binocular rivalry. A grating matched either the task-relevant (memorized) color category or the task-irrelevant (nonmemorized) color category. We found that the rivalrous stimulus that matched the task-relevant color category tended to dominate awareness over the rivalrous stimulus that matched the task-irrelevant color category. This effect of task relevance persisted when participants reported the orientation of the rivalrous stimuli, even though in this case color information was completely irrelevant for the task of reporting perceptual dominance during rivalry. When participants memorized the shape of a colored stimulus, however, its color category did not affect predominance of rivalrous stimuli during retention. Taken together, these results indicate that the selection of task-relevant information is under volitional control but that visual input that matches this information is boosted into awareness irrespective of whether this is useful for the observer.

  2. Treatment of Amblyopia and Amblyopia Risk Factors Based on Current Evidence.

    PubMed

    Koo, Euna B; Gilbert, Aubrey L; VanderVeen, Deborah K

    2017-01-01

    Amblyopia is a leading cause of low vision and warrants timely management during childhood. We performed a literature review of the management of amblyopia and potential risk factors for amblyopia. Literature review of the management of amblyopia and risk factors for amblyopia. Common amblyopia risk factors include anisometropic or high refractive error, strabismus, cataract, and ptosis. Often a conservative approach with spectacles is enough to prevent amblyopia. However, surgery may be necessary to clear the visual axis or align the eyes. Amblyopia risk factors should be managed early. Though amblyopia treatment is more likely to be successful at a younger age, those who are older but treatment-naïve may still respond to treatment. Promoting binocular or dichoptic experiences may be the future direction of amblyopia management.

  3. Albinism: Particular Attention to the Ocular Motor System

    PubMed Central

    Hertle, Richard W.

    2013-01-01

    The purpose of this report is to summarize an understanding of the ocular motor system in patients with albinism. Other than the association of vertical eccentric gaze null positions and asymmetric, (a) periodic alternating nystagmus in a large percentage of patients, the ocular motor system in human albinism does not contain unique pathology, rather has “typical” types of infantile ocular oscillations and binocular disorders. Both the ocular motor and afferent visual system are affected to varying degrees in patients with albinism, thus, combined treatment of both systems will maximize visual function. PMID:24014991

  4. Binocular rivalry transitions predict inattention symptom severity in adult ADHD.

    PubMed

    Jusyte, Aiste; Zaretskaya, Natalia; Höhnle, Nina Maria; Bartels, Andreas; Schönenberg, Michael

    2018-06-01

    Attention deficit and hyperactivity disorder (ADHD) is a prevalent childhood disorder that is often maintained throughout the development and persists into adulthood. Established etiology models suggest that deficient inhibition underlies the core ADHD symptoms. While experimental evidence for impaired motor inhibition is overwhelming, little is known about the sensory inhibition processes, their changes throughout the development, and the relationship to ADHD symptoms. Here, we used the well-established binocular rivalry (BR) paradigm to investigate for the very first time the inhibitory processes related to visual perception in adults with ADHD. In BR, perception alternates between two dichoptically presented images throughout the viewing period, with shorter dominant percept durations and longer transition periods indicating poorer suppression/inhibition. Healthy controls (N = 28) and patients with ADHD (N = 32) were presented with two dissimilar images (orthogonal gratings) separately to each eye through a mirror stereoscope and asked to report their perceptual experiences. There were no differences between groups in any of the BR markers. However, an association between transition durations and symptom severity emerged in the ADHD group. Importantly, an exploratory multiple regression analysis revealed that inattention symptoms were the sole predictor for the duration of transition periods. The lack of impairments to sensory inhibition in adult, but not pediatric ADHD may reflect compensatory changes associated with development, while a correlation between inhibition and inattention symptoms may reveal an invariant core of the disorder.

  5. Evaluating visual function in cataract.

    PubMed

    Elliott, D B

    1993-11-01

    This paper reviews recent research on the evaluation of visual function in cataract. Visual impairment in cataract is principally caused by increased intraocular forward light scatter. It is assumed that visual acuity (VA) measurements assess the impact of narrow angle light scatter. This also makes the measurement of high spatial frequency contrast sensitivity (CS) unnecessary. However, VA measurements alone are an inadequate assessment of visual impairment in some patients with cataract. In addition, it is suggested that a measurement of wide-angle light scatter is required. This can be evaluated directly using the van den Berg Straylightmeter, or indirectly using low spatial frequency CS or disability glare (DG) tests. The following are discussed: (1) the relative usefulness of these tests; (2) how they can be incorporated into the decision as to when to extract a cataract; and (3) the importance of considering binocular visual function.

  6. Comparison between Amblyopia Treatment with Glasses Only and Combination of Glasses and Open-Type Binocular “Occlu-Pad” Device

    PubMed Central

    Handa, Tomoya; Ishikawa, Hitoshi; Goseki, Toshiaki

    2018-01-01

    We evaluated amblyopia treatment, comparing training with glasses only and training with glasses and the Occlu-pad, a binocular open-type amblyopia training device. Forty-six children (4.8 ± 1.1 years) diagnosed with anisometropic amblyopia, all wearing complete correction glasses, were treated either with glasses only, or with glasses in combination with the Occlu-pad (training time: 2 days a week, 30 minutes per day). We compared visual acuity scores at 3 and 6 months after treatment had started, and examined the compliance rate for the Occlu-pad training. Three months as well as 6 months after amblyopia treatment started, the “Occlu-pad treatment group” showed significantly improved visual acuity, compared to the “Glasses treatment group” (at both 3 and 6 months: p < 0.0001). The compliance rate for using the Occlu-pad was 88.4 ± 18.7% after 3 months and 69.6 ± 19.5%, after 6 months. There was no significant correlation between the training time using the Occlu-pad and improvement in visual acuity (3 months: p = 0.97; 6 months: p = 0.55). The compliance rate for months 4 to 6 was significantly lower than that for months 1 to 3 (p = 0.003). Amblyopia treatment using the Occlu-pad device in combination with glasses led to a better effect than treatment with glasses alone. PMID:29670895

  7. Motion processing with two eyes in three dimensions.

    PubMed

    Rokers, Bas; Czuba, Thaddeus B; Cormack, Lawrence K; Huk, Alexander C

    2011-02-11

    The movement of an object toward or away from the head is perhaps the most critical piece of information an organism can extract from its environment. Such 3D motion produces horizontally opposite motions on the two retinae. Little is known about how or where the visual system combines these two retinal motion signals, relative to the wealth of knowledge about the neural hierarchies involved in 2D motion processing and binocular vision. Canonical conceptions of primate visual processing assert that neurons early in the visual system combine monocular inputs into a single cyclopean stream (lacking eye-of-origin information) and extract 1D ("component") motions; later stages then extract 2D pattern motion from the cyclopean output of the earlier stage. Here, however, we show that 3D motion perception is in fact affected by the comparison of opposite 2D pattern motions between the two eyes. Three-dimensional motion sensitivity depends systematically on pattern motion direction when dichoptically viewing gratings and plaids-and a novel "dichoptic pseudoplaid" stimulus provides strong support for use of interocular pattern motion differences by precluding potential contributions from conventional disparity-based mechanisms. These results imply the existence of eye-of-origin information in later stages of motion processing and therefore motivate the incorporation of such eye-specific pattern-motion signals in models of motion processing and binocular integration.

  8. A causal role for V5/MT neurons coding motion-disparity conjunctions in resolving perceptual ambiguity.

    PubMed

    Krug, Kristine; Cicmil, Nela; Parker, Andrew J; Cumming, Bruce G

    2013-08-05

    Judgments about the perceptual appearance of visual objects require the combination of multiple parameters, like location, direction, color, speed, and depth. Our understanding of perceptual judgments has been greatly informed by studies of ambiguous figures, which take on different appearances depending upon the brain state of the observer. Here we probe the neural mechanisms hypothesized as responsible for judging the apparent direction of rotation of ambiguous structure from motion (SFM) stimuli. Resolving the rotation direction of SFM cylinders requires the conjoint decoding of direction of motion and binocular depth signals [1, 2]. Within cortical visual area V5/MT of two macaque monkeys, we applied electrical stimulation at sites with consistent multiunit tuning to combinations of binocular depth and direction of motion, while the monkey made perceptual decisions about the rotation of SFM stimuli. For both ambiguous and unambiguous SFM figures, rotation judgments shifted as if we had added a specific conjunction of disparity and motion signals to the stimulus elements. This is the first causal demonstration that the activity of neurons in V5/MT contributes directly to the perception of SFM stimuli and by implication to decoding the specific conjunction of disparity and motion, the two different visual cues whose combination drives the perceptual judgment. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  9. The application of diffraction grating in the design of virtual reality (VR) system

    NASA Astrophysics Data System (ADS)

    Chen, Jiekang; Huang, Qitai; Guan, Min

    2017-10-01

    Virtual Reality (VR) products serve for human eyes ultimately, and the optical properties of VR optical systems must be consistent with the characteristic of human eyes. The monocular coaxial VR optical system is simulated in ZEMAX. A diffraction grating is added to the optical surface next to the eye, and the lights emitted from the diffraction grating are deflected, which can forming an asymmetrical field of view(FOV). Then the lateral chromatic aberration caused by the diffraction grating was corrected by the chromatic dispersion of the prism. Finally, the aspheric surface was added to further optimum design. During the optical design of the system, how to balance the dispersion of the diffraction grating and the prism is the main problem. The balance was achieved by adjusting the parameters of the grating and the prism constantly, and then using aspheric surfaces finally. In order to make the asymmetric FOV of the system consistent with the angle of the visual axis, and to ensure the stereo vision area clear, the smaller half FOV of monocular system is required to reach 30°. Eventually, a system with asymmetrical FOV of 30°+40° was designed. In addition, the aberration curve of the system was analyzed by ZEMAX, and the binocular FOV was calculated according to the principle of binocular overlap. The results show that the asymmetry of FOV of VR monocular optical system can fit to human eyes and the imaging quality match for the human visual characteristics. At the same time, the diffraction grating increases binocular FOV, which decreases the requirement for the design FOV of monocular system.

  10. Comparing the fixational and functional preferred retinal location in a pointing task

    PubMed Central

    Sullivan, Brian; Walker, Laura

    2016-01-01

    Patients with central vision loss (CVL) typically adopt eccentric viewing strategies using a preferred retinal locus (PRL) in peripheral retina. Clinically, the PRL is defined monocularly as the area of peripheral retina used to fixate small stimuli. It is not clear if this fixational PRL describes the same portion of peripheral retina used during dynamic binocular eye-hand coordination tasks. We studied this question with four participants each with a unique CVL history. Using a scanning laser ophthalmoscope, we measured participants’ monocular visual fields and the location and stability of their fixational PRLs. Participants’ monocular and binocular visual fields were also evaluated using a computer monitor and eye tracker. Lastly, eye-hand coordination was tested over several trials where participants pointed to and touched a small target on a touchscreen monitor. Trials were blocked and carried out monocularly and binocularly, with a target appearing at 5° or 15° from screen center, in one of 8 locations. During pointing, our participants often exhibited long movement durations, an increased number of eye movements and impaired accuracy, especially in monocular conditions. However, these compensatory changes in behavior did not consistently worsen when loci beyond the fixational PRL were used. While fixational PRL size, location and fixation stability provide a necessary description of behavior, they are not sufficient to capture the pointing PRL used in this task. Generally, patients use a larger portion of peripheral retina than one might expect from measures of the fixational PRL alone, when pointing to a salient target without time constraints. While the fixational and pointing PRLs often overlap, the fixational PRL does not predict the large area of peripheral retina that can be used. PMID:26440864

  11. Relationship between binocular vision, visual acuity, and fine motor skills.

    PubMed

    O'Connor, Anna R; Birch, Eileen E; Anderson, Susan; Draper, Hayley

    2010-12-01

    The aims of this study were to analyze the relationship between the performance on fine motor skills tasks and peripheral and bifoveal sensory fusion, phasic and tonic motor fusion, the level of visual acuity (VA) in the poorer seeing eye, and the interocular VA difference. Subjects aged 12 to 28 years with a range of levels of binocular vision and VA performed three tasks: Purdue pegboard (number of pegs placed in 30 s), bead threading task (with two sizes of bead to increase the difficulty, time taken to thread a fixed number of beads), and a water pouring task (accuracy and time to pour a fixed quantity into five glass cylinders). Ophthalmic measures included peripheral (Worth 4 dot) and bifoveal (4 prism diopter) sensory fusion, phasic (prism bar) and tonic (Risley rotary prism) motor fusion ranges, and monocular VA. One hundred twenty-one subjects with a mean age of 18.8 years were tested; 18.2% had a manifest strabismus. Performance on fine motor skills tasks was significantly better in subjects with sensory and motor fusion compared with those without for most tasks, with significant differences between those with and without all measures of fusion on the pegboard and bead task. Both the acuity in the poorer seeing eye (highest r value of all motor tasks = 0.43) and the interocular acuity difference were statistically significantly related to performance on the motor skill tasks. Both sensory and motor fusion and good VA in both eyes are of benefit in the performance of fine motor skills tasks, with the presence of some binocular vision being beneficial compared with no fusion on certain sensorimotor tasks. This evidence supports the need to maximize fusion and VA outcomes.

  12. Binocular Neurons in Parastriate Cortex: Interocular ‘Matching’ of Receptive Field Properties, Eye Dominance and Strength of Silent Suppression

    PubMed Central

    Wang, Chun; Dreher, Bogdan

    2014-01-01

    Spike-responses of single binocular neurons were recorded from a distinct part of primary visual cortex, the parastriate cortex (cytoarchitectonic area 18) of anaesthetized and immobilized domestic cats. Functional identification of neurons was based on the ratios of phase-variant (F1) component to the mean firing rate (F0) of their spike-responses to optimized (orientation, direction, spatial and temporal frequencies and size) sine-wave-luminance-modulated drifting grating patches presented separately via each eye. In over 95% of neurons, the interocular differences in the phase-sensitivities (differences in F1/F0 spike-response ratios) were small (≤0.3) and in over 80% of neurons, the interocular differences in preferred orientations were ≤10°. The interocular correlations of the direction selectivity indices and optimal spatial frequencies, like those of the phase sensitivies and optimal orientations, were also strong (coefficients of correlation r ≥0.7005). By contrast, the interocular correlations of the optimal temporal frequencies, the diameters of summation areas of the excitatory responses and suppression indices were weak (coefficients of correlation r ≤0.4585). In cells with high eye dominance indices (HEDI cells), the mean magnitudes of suppressions evoked by stimulation of silent, extra-classical receptive fields via the non-dominant eyes, were significantly greater than those when the stimuli were presented via the dominant eyes. We argue that the well documented ‘eye-origin specific’ segregation of the lateral geniculate inputs underpinning distinct eye dominance columns in primary visual cortices of mammals with frontally positioned eyes (distinct eye dominance columns), combined with significant interocular differences in the strength of silent suppressive fields, putatively contribute to binocular stereoscopic vision. PMID:24927276

  13. Refractive lens exchange in younger and older presbyopes: comparison of complication rates, 3 months clinical and patient-reported outcomes

    PubMed Central

    Schallhorn, Steven C; Schallhorn, Julie M; Pelouskova, Martina; Venter, Jan A; Hettinger, Keith A; Hannan, Stephen J; Teenan, David

    2017-01-01

    Purpose To compare refractive and visual outcomes, patient satisfaction, and complication rates among different age categories of patients who underwent refractive lens exchange (RLE). Methods A stratified, simple random sample of patients matched on preoperative sphere and cylinder was selected for four age categories: 45–49 years (group A), 50–54 years (group B), 55–59 years (group C), and 60–65 years (group D). Each group contained 320 patients. All patients underwent RLE with a multifocal intraocular lens at least in one eye. Three months postoperative refractive/visual and patient-reported outcomes are presented. Results The percentage of patients that achieved binocular uncorrected distance visual acuity 20/20 or better was 91.6% (group A), 93.8% (group B), 91.6% (group C), 88.8% (group D), P=0.16. Binocularly, 80.0% of patients in group A, 84.7% in group B, 78.9% in group C, and 77.8% in group D achieved 20/30 or better uncorrected near visual acuity (P=0.13). The proportion of eyes within 0.50 D of emmetropia was 84.4% in group A, 86.8% in group B, 85.7% in group C, and 85.8% in group D (P=0.67). There was no statistically significant difference in postoperative satisfaction, visual phenomena, dry eye symptoms, distance or near vision activities. Apart from higher rate of iritis in the age group 50–55 years, there was no statistically significant difference in postoperative complication rates. Conclusion RLE can be safely performed in younger as well as older presbyopes. No significant difference was found in clinical or patient-reported outcomes. PMID:28894356

  14. Visual Outcomes, Quality of Vision, and Quality of Life of Diffractive Multifocal Intraocular Lens Implantation after Myopic Laser In Situ Keratomileusis: A Prospective, Observational Case Series

    PubMed Central

    2017-01-01

    Purpose. To report visual performance and quality of life after implantation of a bifocal diffractive multifocal intraocular lens (MIOL) in postmyopic laser in situ keratomileusis (LASIK) patients. Methods. Prospective, observational case series. Patients with prior myopic LASIK who had implantation of Tecnis ZMA00/ZMB00 MIOL (Abbott Medical Optics) at Hong Kong Sanatorium and Hospital were included. Postoperative examinations included monocular and binocular distance, intermediate and near visual acuity (VA), and contrast sensitivity; visual symptoms (0–5); satisfaction (1–5); spectacle independence rate; and quality of life. Results. Twenty-three patients (27 eyes) were included. No intraoperative complications developed. Mean monocular uncorrected VA at distance, intermediate, and near were 0.13 ± 0.15 (standard deviation), 0.22 ± 0.15, and 0.16 ± 0.15, respectively. Corresponding mean values for binocular uncorrected VA were 0.00 ± 0.10, 0.08 ± 0.13, and 0.13 ± 0.10, respectively. No eyes lost >1 line of corrected distance VA. Contrast sensitivity at different spatial frequencies between operated and unoperated eyes did not differ significantly (all P > 0.05). Mean score for halos, night glare, starbursts, and satisfaction were 1.46 ± 1.62, 1.85 ± 1.69, 0.78 ± 1.31, and 3.50 ± 1.02, respectively. Eighteen patients (78%) reported complete spectacle independence. Mean composite score of the quality-of-life questionnaire was 90.31 ± 8.50 out of 100. Conclusions. Implantation of the MIOL after myopic LASIK was safe and achieved good visual performance. PMID:28133543

  15. Visual Outcomes, Quality of Vision, and Quality of Life of Diffractive Multifocal Intraocular Lens Implantation after Myopic Laser In Situ Keratomileusis: A Prospective, Observational Case Series.

    PubMed

    Chang, John S M; Ng, Jack C M; Chan, Vincent K C; Law, Antony K P

    2017-01-01

    Purpose . To report visual performance and quality of life after implantation of a bifocal diffractive multifocal intraocular lens (MIOL) in postmyopic laser in situ keratomileusis (LASIK) patients. Methods . Prospective, observational case series. Patients with prior myopic LASIK who had implantation of Tecnis ZMA00/ZMB00 MIOL (Abbott Medical Optics) at Hong Kong Sanatorium and Hospital were included. Postoperative examinations included monocular and binocular distance, intermediate and near visual acuity (VA), and contrast sensitivity; visual symptoms (0-5); satisfaction (1-5); spectacle independence rate; and quality of life. Results . Twenty-three patients (27 eyes) were included. No intraoperative complications developed. Mean monocular uncorrected VA at distance, intermediate, and near were 0.13 ± 0.15 (standard deviation), 0.22 ± 0.15, and 0.16 ± 0.15, respectively. Corresponding mean values for binocular uncorrected VA were 0.00 ± 0.10, 0.08 ± 0.13, and 0.13 ± 0.10, respectively. No eyes lost >1 line of corrected distance VA. Contrast sensitivity at different spatial frequencies between operated and unoperated eyes did not differ significantly (all P > 0.05). Mean score for halos, night glare, starbursts, and satisfaction were 1.46 ± 1.62, 1.85 ± 1.69, 0.78 ± 1.31, and 3.50 ± 1.02, respectively. Eighteen patients (78%) reported complete spectacle independence. Mean composite score of the quality-of-life questionnaire was 90.31 ± 8.50 out of 100. Conclusions . Implantation of the MIOL after myopic LASIK was safe and achieved good visual performance.

  16. Dynamic registration of an optical see-through HMD into a wide field-of-view rotorcraft flight simulation environment

    NASA Astrophysics Data System (ADS)

    Viertler, Franz; Hajek, Manfred

    2015-05-01

    To overcome the challenge of helicopter flight in degraded visual environments, current research considers headmounted displays with 3D-conformal (scene-linked) visual cues as most promising display technology. For pilot-in-theloop simulations with HMDs, a highly accurate registration of the augmented visual system is required. In rotorcraft flight simulators the outside visual cues are usually provided by a dome projection system, since a wide field-of-view (e.g. horizontally > 200° and vertically > 80°) is required, which can hardly be achieved with collimated viewing systems. But optical see-through HMDs do mostly not have an equivalent focus compared to the distance of the pilot's eye-point position to the curved screen, which is also dependant on head motion. Hence, a dynamic vergence correction has been implemented to avoid binocular disparity. In addition, the parallax error induced by even small translational head motions is corrected with a head-tracking system to be adjusted onto the projected screen. For this purpose, two options are presented. The correction can be achieved by rendering the view with yaw and pitch offset angles dependent on the deviating head position from the design eye-point of the spherical projection system. Furthermore, it can be solved by implementing a dynamic eye-point in the multi-channel projection system for the outside visual cues. Both options have been investigated for the integration of a binocular HMD into the Rotorcraft Simulation Environment (ROSIE) at the Technische Universitaet Muenchen. Pros and cons of both possibilities with regard on integration issues and usability in flight simulations will be discussed.

  17. How to reinforce perception of depth in single two-dimensional pictures

    NASA Technical Reports Server (NTRS)

    Nagata, S.

    1989-01-01

    The physical conditions of the display of single 2-D pictures, which produce images realistically, were studied by using the characteristics of the intake of the information for visual depth perception. Depth sensitivity, which is defined as the ratio of viewing distance to depth discrimination threshold, was introduced in order to evaluate the availability of various cues for depth perception: binocular parallax, motion parallax, accommodation, convergence, size, texture, brightness, and air-perspective contrast. The effects of binocular parallax in different conditions, the depth sensitivity of which is greatest at a distance of up to about 10 m, were studied with the new versatile stereoscopic display. From these results, four conditions to reinforce the perception of depth in single pictures were proposed, and these conditions are met by the old viewing devices and the new high-definition and wide television displays.

  18. Linear and nonlinear transparencies in binocular vision.

    PubMed Central

    Langley, K; Fleet, D J; Hibbard, P B

    1998-01-01

    When the product of a vertical square-wave grating (contrast envelope) and a horizontal sinusoidal grating (carrier) are viewed binocularly with different disparity cues they can be perceived transparently at different depths. We found, however, that the transparency was asymmetric; it only occurred when the envelope was perceived to be the overlaying surface. When the same two signals were added, the percept of transparency was symmetrical; either signal could be seen in front of or behind the other at different depths. Differences between these multiplicative and additive signal combinations were examined in two experiments. In one, we measured disparity thresholds for transparency as a function of the spatial frequency of the envelope. In the other, we measured disparity discrimination thresholds. In both experiments the thresholds for the multiplicative condition, unlike the additive condition, showed distinct minima at low envelope frequencies. The different sensitivity curves found for multiplicative and additive signal combinations suggest that different processes mediated the disparity signal. The data are consistent with a two-channel model of binocular matching, with multiple depth cues represented at single retinal locations. PMID:9802240

  19. Action Control: Independent Effects of Memory and Monocular Viewing on Reaching Accuracy

    ERIC Educational Resources Information Center

    Westwood, D.A.; Robertson, C.; Heath, M.

    2005-01-01

    Evidence suggests that perceptual networks in the ventral visual pathway are necessary for action control when targets are viewed with only one eye, or when the target must be stored in memory. We tested whether memory-linked (i.e., open-loop versus memory-guided actions) and monocular-linked effects (i.e., binocular versus monocular actions) on…

  20. Accuracy, Repeatability and Instrument Myopia Induced by a Clinical Aberrometer - The Complete Ophthalmic Analysis System (COAS)

    DTIC Science & Technology

    2006-06-01

    measurement. The Lancet, 1, 307-3 10. Boxer Wachler, B.S. (2003). Effect of pupil size on visual function under monocular and binocular conditions in LASIK ...and non- LASIK patients. J Cataract Refract Surg, 29 (2), 275- 278. Boxer Wachler, B.S., Huynh, V.N., El-Shiaty, A.F., & Goldberg, D. (2002

Top