Meta-analysis of studies with bivariate binary outcomes: a marginal beta-binomial model approach
Chen, Yong; Hong, Chuan; Ning, Yang; Su, Xiao
2018-01-01
When conducting a meta-analysis of studies with bivariate binary outcomes, challenges arise when the within-study correlation and between-study heterogeneity should be taken into account. In this paper, we propose a marginal beta-binomial model for the meta-analysis of studies with binary outcomes. This model is based on the composite likelihood approach, and has several attractive features compared to the existing models such as bivariate generalized linear mixed model (Chu and Cole, 2006) and Sarmanov beta-binomial model (Chen et al., 2012). The advantages of the proposed marginal model include modeling the probabilities in the original scale, not requiring any transformation of probabilities or any link function, having closed-form expression of likelihood function, and no constraints on the correlation parameter. More importantly, since the marginal beta-binomial model is only based on the marginal distributions, it does not suffer from potential misspecification of the joint distribution of bivariate study-specific probabilities. Such misspecification is difficult to detect and can lead to biased inference using currents methods. We compare the performance of the marginal beta-binomial model with the bivariate generalized linear mixed model and the Sarmanov beta-binomial model by simulation studies. Interestingly, the results show that the marginal beta-binomial model performs better than the Sarmanov beta-binomial model, whether or not the true model is Sarmanov beta-binomial, and the marginal beta-binomial model is more robust than the bivariate generalized linear mixed model under model misspecifications. Two meta-analyses of diagnostic accuracy studies and a meta-analysis of case-control studies are conducted for illustration. PMID:26303591
Meta-analysis of studies with bivariate binary outcomes: a marginal beta-binomial model approach.
Chen, Yong; Hong, Chuan; Ning, Yang; Su, Xiao
2016-01-15
When conducting a meta-analysis of studies with bivariate binary outcomes, challenges arise when the within-study correlation and between-study heterogeneity should be taken into account. In this paper, we propose a marginal beta-binomial model for the meta-analysis of studies with binary outcomes. This model is based on the composite likelihood approach and has several attractive features compared with the existing models such as bivariate generalized linear mixed model (Chu and Cole, 2006) and Sarmanov beta-binomial model (Chen et al., 2012). The advantages of the proposed marginal model include modeling the probabilities in the original scale, not requiring any transformation of probabilities or any link function, having closed-form expression of likelihood function, and no constraints on the correlation parameter. More importantly, because the marginal beta-binomial model is only based on the marginal distributions, it does not suffer from potential misspecification of the joint distribution of bivariate study-specific probabilities. Such misspecification is difficult to detect and can lead to biased inference using currents methods. We compare the performance of the marginal beta-binomial model with the bivariate generalized linear mixed model and the Sarmanov beta-binomial model by simulation studies. Interestingly, the results show that the marginal beta-binomial model performs better than the Sarmanov beta-binomial model, whether or not the true model is Sarmanov beta-binomial, and the marginal beta-binomial model is more robust than the bivariate generalized linear mixed model under model misspecifications. Two meta-analyses of diagnostic accuracy studies and a meta-analysis of case-control studies are conducted for illustration. Copyright © 2015 John Wiley & Sons, Ltd.
Justin S. Crotteau; Martin W. Ritchie; J. Morgan Varner
2014-01-01
Many western USA fire regimes are typified by mixed-severity fire, which compounds the variability inherent to natural regeneration densities in associated forests. Tree regeneration data are often discrete and nonnegative; accordingly, we fit a series of Poisson and negative binomial variation models to conifer seedling counts across four distinct burn severities and...
Aly, Sharif S; Zhao, Jianyang; Li, Ben; Jiang, Jiming
2014-01-01
The Intraclass Correlation Coefficient (ICC) is commonly used to estimate the similarity between quantitative measures obtained from different sources. Overdispersed data is traditionally transformed so that linear mixed model (LMM) based ICC can be estimated. A common transformation used is the natural logarithm. The reliability of environmental sampling of fecal slurry on freestall pens has been estimated for Mycobacterium avium subsp. paratuberculosis using the natural logarithm transformed culture results. Recently, the negative binomial ICC was defined based on a generalized linear mixed model for negative binomial distributed data. The current study reports on the negative binomial ICC estimate which includes fixed effects using culture results of environmental samples. Simulations using a wide variety of inputs and negative binomial distribution parameters (r; p) showed better performance of the new negative binomial ICC compared to the ICC based on LMM even when negative binomial data was logarithm, and square root transformed. A second comparison that targeted a wider range of ICC values showed that the mean of estimated ICC closely approximated the true ICC.
Multilevel Models for Binary Data
ERIC Educational Resources Information Center
Powers, Daniel A.
2012-01-01
The methods and models for categorical data analysis cover considerable ground, ranging from regression-type models for binary and binomial data, count data, to ordered and unordered polytomous variables, as well as regression models that mix qualitative and continuous data. This article focuses on methods for binary or binomial data, which are…
A big data approach to the development of mixed-effects models for seizure count data.
Tharayil, Joseph J; Chiang, Sharon; Moss, Robert; Stern, John M; Theodore, William H; Goldenholz, Daniel M
2017-05-01
Our objective was to develop a generalized linear mixed model for predicting seizure count that is useful in the design and analysis of clinical trials. This model also may benefit the design and interpretation of seizure-recording paradigms. Most existing seizure count models do not include children, and there is currently no consensus regarding the most suitable model that can be applied to children and adults. Therefore, an additional objective was to develop a model that accounts for both adult and pediatric epilepsy. Using data from SeizureTracker.com, a patient-reported seizure diary tool with >1.2 million recorded seizures across 8 years, we evaluated the appropriateness of Poisson, negative binomial, zero-inflated negative binomial, and modified negative binomial models for seizure count data based on minimization of the Bayesian information criterion. Generalized linear mixed-effects models were used to account for demographic and etiologic covariates and for autocorrelation structure. Holdout cross-validation was used to evaluate predictive accuracy in simulating seizure frequencies. For both adults and children, we found that a negative binomial model with autocorrelation over 1 day was optimal. Using holdout cross-validation, the proposed model was found to provide accurate simulation of seizure counts for patients with up to four seizures per day. The optimal model can be used to generate more realistic simulated patient data with very few input parameters. The availability of a parsimonious, realistic virtual patient model can be of great utility in simulations of phase II/III clinical trials, epilepsy monitoring units, outpatient biosensors, and mobile Health (mHealth) applications. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
Harrison, Xavier A
2015-01-01
Overdispersion is a common feature of models of biological data, but researchers often fail to model the excess variation driving the overdispersion, resulting in biased parameter estimates and standard errors. Quantifying and modeling overdispersion when it is present is therefore critical for robust biological inference. One means to account for overdispersion is to add an observation-level random effect (OLRE) to a model, where each data point receives a unique level of a random effect that can absorb the extra-parametric variation in the data. Although some studies have investigated the utility of OLRE to model overdispersion in Poisson count data, studies doing so for Binomial proportion data are scarce. Here I use a simulation approach to investigate the ability of both OLRE models and Beta-Binomial models to recover unbiased parameter estimates in mixed effects models of Binomial data under various degrees of overdispersion. In addition, as ecologists often fit random intercept terms to models when the random effect sample size is low (<5 levels), I investigate the performance of both model types under a range of random effect sample sizes when overdispersion is present. Simulation results revealed that the efficacy of OLRE depends on the process that generated the overdispersion; OLRE failed to cope with overdispersion generated from a Beta-Binomial mixture model, leading to biased slope and intercept estimates, but performed well for overdispersion generated by adding random noise to the linear predictor. Comparison of parameter estimates from an OLRE model with those from its corresponding Beta-Binomial model readily identified when OLRE were performing poorly due to disagreement between effect sizes, and this strategy should be employed whenever OLRE are used for Binomial data to assess their reliability. Beta-Binomial models performed well across all contexts, but showed a tendency to underestimate effect sizes when modelling non-Beta-Binomial data. Finally, both OLRE and Beta-Binomial models performed poorly when models contained <5 levels of the random intercept term, especially for estimating variance components, and this effect appeared independent of total sample size. These results suggest that OLRE are a useful tool for modelling overdispersion in Binomial data, but that they do not perform well in all circumstances and researchers should take care to verify the robustness of parameter estimates of OLRE models.
Nakagawa, Shinichi; Johnson, Paul C D; Schielzeth, Holger
2017-09-01
The coefficient of determination R 2 quantifies the proportion of variance explained by a statistical model and is an important summary statistic of biological interest. However, estimating R 2 for generalized linear mixed models (GLMMs) remains challenging. We have previously introduced a version of R 2 that we called [Formula: see text] for Poisson and binomial GLMMs, but not for other distributional families. Similarly, we earlier discussed how to estimate intra-class correlation coefficients (ICCs) using Poisson and binomial GLMMs. In this paper, we generalize our methods to all other non-Gaussian distributions, in particular to negative binomial and gamma distributions that are commonly used for modelling biological data. While expanding our approach, we highlight two useful concepts for biologists, Jensen's inequality and the delta method, both of which help us in understanding the properties of GLMMs. Jensen's inequality has important implications for biologically meaningful interpretation of GLMMs, whereas the delta method allows a general derivation of variance associated with non-Gaussian distributions. We also discuss some special considerations for binomial GLMMs with binary or proportion data. We illustrate the implementation of our extension by worked examples from the field of ecology and evolution in the R environment. However, our method can be used across disciplines and regardless of statistical environments. © 2017 The Author(s).
Irwin, Brian J.; Wagner, Tyler; Bence, James R.; Kepler, Megan V.; Liu, Weihai; Hayes, Daniel B.
2013-01-01
Partitioning total variability into its component temporal and spatial sources is a powerful way to better understand time series and elucidate trends. The data available for such analyses of fish and other populations are usually nonnegative integer counts of the number of organisms, often dominated by many low values with few observations of relatively high abundance. These characteristics are not well approximated by the Gaussian distribution. We present a detailed description of a negative binomial mixed-model framework that can be used to model count data and quantify temporal and spatial variability. We applied these models to data from four fishery-independent surveys of Walleyes Sander vitreus across the Great Lakes basin. Specifically, we fitted models to gill-net catches from Wisconsin waters of Lake Superior; Oneida Lake, New York; Saginaw Bay in Lake Huron, Michigan; and Ohio waters of Lake Erie. These long-term monitoring surveys varied in overall sampling intensity, the total catch of Walleyes, and the proportion of zero catches. Parameter estimation included the negative binomial scaling parameter, and we quantified the random effects as the variations among gill-net sampling sites, the variations among sampled years, and site × year interactions. This framework (i.e., the application of a mixed model appropriate for count data in a variance-partitioning context) represents a flexible approach that has implications for monitoring programs (e.g., trend detection) and for examining the potential of individual variance components to serve as response metrics to large-scale anthropogenic perturbations or ecological changes.
Pedroza, Claudia; Truong, Van Thi Thanh
2017-11-02
Analyses of multicenter studies often need to account for center clustering to ensure valid inference. For binary outcomes, it is particularly challenging to properly adjust for center when the number of centers or total sample size is small, or when there are few events per center. Our objective was to evaluate the performance of generalized estimating equation (GEE) log-binomial and Poisson models, generalized linear mixed models (GLMMs) assuming binomial and Poisson distributions, and a Bayesian binomial GLMM to account for center effect in these scenarios. We conducted a simulation study with few centers (≤30) and 50 or fewer subjects per center, using both a randomized controlled trial and an observational study design to estimate relative risk. We compared the GEE and GLMM models with a log-binomial model without adjustment for clustering in terms of bias, root mean square error (RMSE), and coverage. For the Bayesian GLMM, we used informative neutral priors that are skeptical of large treatment effects that are almost never observed in studies of medical interventions. All frequentist methods exhibited little bias, and the RMSE was very similar across the models. The binomial GLMM had poor convergence rates, ranging from 27% to 85%, but performed well otherwise. The results show that both GEE models need to use small sample corrections for robust SEs to achieve proper coverage of 95% CIs. The Bayesian GLMM had similar convergence rates but resulted in slightly more biased estimates for the smallest sample sizes. However, it had the smallest RMSE and good coverage across all scenarios. These results were very similar for both study designs. For the analyses of multicenter studies with a binary outcome and few centers, we recommend adjustment for center with either a GEE log-binomial or Poisson model with appropriate small sample corrections or a Bayesian binomial GLMM with informative priors.
A comparison of methods for the analysis of binomial clustered outcomes in behavioral research.
Ferrari, Alberto; Comelli, Mario
2016-12-01
In behavioral research, data consisting of a per-subject proportion of "successes" and "failures" over a finite number of trials often arise. This clustered binary data are usually non-normally distributed, which can distort inference if the usual general linear model is applied and sample size is small. A number of more advanced methods is available, but they are often technically challenging and a comparative assessment of their performances in behavioral setups has not been performed. We studied the performances of some methods applicable to the analysis of proportions; namely linear regression, Poisson regression, beta-binomial regression and Generalized Linear Mixed Models (GLMMs). We report on a simulation study evaluating power and Type I error rate of these models in hypothetical scenarios met by behavioral researchers; plus, we describe results from the application of these methods on data from real experiments. Our results show that, while GLMMs are powerful instruments for the analysis of clustered binary outcomes, beta-binomial regression can outperform them in a range of scenarios. Linear regression gave results consistent with the nominal level of significance, but was overall less powerful. Poisson regression, instead, mostly led to anticonservative inference. GLMMs and beta-binomial regression are generally more powerful than linear regression; yet linear regression is robust to model misspecification in some conditions, whereas Poisson regression suffers heavily from violations of the assumptions when used to model proportion data. We conclude providing directions to behavioral scientists dealing with clustered binary data and small sample sizes. Copyright © 2016 Elsevier B.V. All rights reserved.
The Binomial Model in Fluctuation Analysis of Quantal Neurotransmitter Release
Quastel, D. M. J.
1997-01-01
The mathematics of the binomial model for quantal neurotransmitter release is considered in general terms, to explore what information might be extractable from statistical aspects of data. For an array of N statistically independent release sites, each with a release probability p, the compound binomial always pertains, with , p′ ≡ 1 - var(m)/ (1 + cvp2) and n′ ≡ 2. Unless n′ is invariant with ambient conditions or stimulation paradigms, the simple binomial (cvp = 0) is untenable and n′ is neither N nor the number of “active” sites or sites with a quantum available. At each site p = popA, where po is the output probability if a site is “eligible” or “filled” despite previous quantal discharge, and pA (eligibility probability) depends at least on the replenishment rate, po, and interstimulus time. Assuming stochastic replenishment, a simple algorithm allows calculation of the full statistical composition of outputs for any hypothetical combinations of po's and refill rates, for any stimulation paradigm and spontaneous release. A rise in n′ (reduced cvp) tends to occur whenever po varies widely between sites, with a raised stimulation frequency or factors tending to increase po's. Unlike
Sauzet, Odile; Peacock, Janet L
2017-07-20
The analysis of perinatal outcomes often involves datasets with some multiple births. These are datasets mostly formed of independent observations and a limited number of clusters of size two (twins) and maybe of size three or more. This non-independence needs to be accounted for in the statistical analysis. Using simulated data based on a dataset of preterm infants we have previously investigated the performance of several approaches to the analysis of continuous outcomes in the presence of some clusters of size two. Mixed models have been developed for binomial outcomes but very little is known about their reliability when only a limited number of small clusters are present. Using simulated data based on a dataset of preterm infants we investigated the performance of several approaches to the analysis of binomial outcomes in the presence of some clusters of size two. Logistic models, several methods of estimation for the logistic random intercept models and generalised estimating equations were compared. The presence of even a small percentage of twins means that a logistic regression model will underestimate all parameters but a logistic random intercept model fails to estimate the correlation between siblings if the percentage of twins is too small and will provide similar estimates to logistic regression. The method which seems to provide the best balance between estimation of the standard error and the parameter for any percentage of twins is the generalised estimating equations. This study has shown that the number of covariates or the level two variance do not necessarily affect the performance of the various methods used to analyse datasets containing twins but when the percentage of small clusters is too small, mixed models cannot capture the dependence between siblings.
Martin, Julien; Royle, J. Andrew; MacKenzie, Darryl I.; Edwards, Holly H.; Kery, Marc; Gardner, Beth
2011-01-01
Summary 1. Binomial mixture models use repeated count data to estimate abundance. They are becoming increasingly popular because they provide a simple and cost-effective way to account for imperfect detection. However, these models assume that individuals are detected independently of each other. This assumption may often be violated in the field. For instance, manatees (Trichechus manatus latirostris) may surface in turbid water (i.e. become available for detection during aerial surveys) in a correlated manner (i.e. in groups). However, correlated behaviour, affecting the non-independence of individual detections, may also be relevant in other systems (e.g. correlated patterns of singing in birds and amphibians). 2. We extend binomial mixture models to account for correlated behaviour and therefore to account for non-independent detection of individuals. We simulated correlated behaviour using beta-binomial random variables. Our approach can be used to simultaneously estimate abundance, detection probability and a correlation parameter. 3. Fitting binomial mixture models to data that followed a beta-binomial distribution resulted in an overestimation of abundance even for moderate levels of correlation. In contrast, the beta-binomial mixture model performed considerably better in our simulation scenarios. We also present a goodness-of-fit procedure to evaluate the fit of beta-binomial mixture models. 4. We illustrate our approach by fitting both binomial and beta-binomial mixture models to aerial survey data of manatees in Florida. We found that the binomial mixture model did not fit the data, whereas there was no evidence of lack of fit for the beta-binomial mixture model. This example helps illustrate the importance of using simulations and assessing goodness-of-fit when analysing ecological data with N-mixture models. Indeed, both the simulations and the goodness-of-fit procedure highlighted the limitations of the standard binomial mixture model for aerial manatee surveys. 5. Overestimation of abundance by binomial mixture models owing to non-independent detections is problematic for ecological studies, but also for conservation. For example, in the case of endangered species, it could lead to inappropriate management decisions, such as downlisting. These issues will be increasingly relevant as more ecologists apply flexible N-mixture models to ecological data.
[Evaluation of estimation of prevalence ratio using bayesian log-binomial regression model].
Gao, W L; Lin, H; Liu, X N; Ren, X W; Li, J S; Shen, X P; Zhu, S L
2017-03-10
To evaluate the estimation of prevalence ratio ( PR ) by using bayesian log-binomial regression model and its application, we estimated the PR of medical care-seeking prevalence to caregivers' recognition of risk signs of diarrhea in their infants by using bayesian log-binomial regression model in Openbugs software. The results showed that caregivers' recognition of infant' s risk signs of diarrhea was associated significantly with a 13% increase of medical care-seeking. Meanwhile, we compared the differences in PR 's point estimation and its interval estimation of medical care-seeking prevalence to caregivers' recognition of risk signs of diarrhea and convergence of three models (model 1: not adjusting for the covariates; model 2: adjusting for duration of caregivers' education, model 3: adjusting for distance between village and township and child month-age based on model 2) between bayesian log-binomial regression model and conventional log-binomial regression model. The results showed that all three bayesian log-binomial regression models were convergence and the estimated PRs were 1.130(95 %CI : 1.005-1.265), 1.128(95 %CI : 1.001-1.264) and 1.132(95 %CI : 1.004-1.267), respectively. Conventional log-binomial regression model 1 and model 2 were convergence and their PRs were 1.130(95 % CI : 1.055-1.206) and 1.126(95 % CI : 1.051-1.203), respectively, but the model 3 was misconvergence, so COPY method was used to estimate PR , which was 1.125 (95 %CI : 1.051-1.200). In addition, the point estimation and interval estimation of PRs from three bayesian log-binomial regression models differed slightly from those of PRs from conventional log-binomial regression model, but they had a good consistency in estimating PR . Therefore, bayesian log-binomial regression model can effectively estimate PR with less misconvergence and have more advantages in application compared with conventional log-binomial regression model.
Binomial tau-leap spatial stochastic simulation algorithm for applications in chemical kinetics.
Marquez-Lago, Tatiana T; Burrage, Kevin
2007-09-14
In cell biology, cell signaling pathway problems are often tackled with deterministic temporal models, well mixed stochastic simulators, and/or hybrid methods. But, in fact, three dimensional stochastic spatial modeling of reactions happening inside the cell is needed in order to fully understand these cell signaling pathways. This is because noise effects, low molecular concentrations, and spatial heterogeneity can all affect the cellular dynamics. However, there are ways in which important effects can be accounted without going to the extent of using highly resolved spatial simulators (such as single-particle software), hence reducing the overall computation time significantly. We present a new coarse grained modified version of the next subvolume method that allows the user to consider both diffusion and reaction events in relatively long simulation time spans as compared with the original method and other commonly used fully stochastic computational methods. Benchmarking of the simulation algorithm was performed through comparison with the next subvolume method and well mixed models (MATLAB), as well as stochastic particle reaction and transport simulations (CHEMCELL, Sandia National Laboratories). Additionally, we construct a model based on a set of chemical reactions in the epidermal growth factor receptor pathway. For this particular application and a bistable chemical system example, we analyze and outline the advantages of our presented binomial tau-leap spatial stochastic simulation algorithm, in terms of efficiency and accuracy, in scenarios of both molecular homogeneity and heterogeneity.
Estimation of the cure rate in Iranian breast cancer patients.
Rahimzadeh, Mitra; Baghestani, Ahmad Reza; Gohari, Mahmood Reza; Pourhoseingholi, Mohamad Amin
2014-01-01
Although the Cox's proportional hazard model is the popular approach for survival analysis to investigate significant risk factors of cancer patient survival, it is not appropriate in the case of log-term disease free survival. Recently, cure rate models have been introduced to distinguish between clinical determinants of cure and variables associated with the time to event of interest. The aim of this study was to use a cure rate model to determine the clinical associated factors for cure rates of patients with breast cancer (BC). This prospective cohort study covered 305 patients with BC, admitted at Shahid Faiazbakhsh Hospital, Tehran, during 2006 to 2008 and followed until April 2012. Cases of patient death were confirmed by telephone contact. For data analysis, a non-mixed cure rate model with Poisson distribution and negative binomial distribution were employed. All analyses were carried out using a developed Macro in WinBugs. Deviance information criteria (DIC) were employed to find the best model. The overall 1-year, 3-year and 5-year relative survival rates were 97%, 89% and 74%. Metastasis and stage of BC were the significant factors, but age was significant only in negative binomial model. The DIC also showed that the negative binomial model had a better fit. This study indicated that, metastasis and stage of BC were identified as the clinical criteria for cure rates. There are limited studies on BC survival which employed these cure rate models to identify the clinical factors associated with cure. These models are better than Cox, in the case of long-term survival.
Zheng, Han; Kimber, Alan; Goodwin, Victoria A; Pickering, Ruth M
2018-01-01
A common design for a falls prevention trial is to assess falling at baseline, randomize participants into an intervention or control group, and ask them to record the number of falls they experience during a follow-up period of time. This paper addresses how best to include the baseline count in the analysis of the follow-up count of falls in negative binomial (NB) regression. We examine the performance of various approaches in simulated datasets where both counts are generated from a mixed Poisson distribution with shared random subject effect. Including the baseline count after log-transformation as a regressor in NB regression (NB-logged) or as an offset (NB-offset) resulted in greater power than including the untransformed baseline count (NB-unlogged). Cook and Wei's conditional negative binomial (CNB) model replicates the underlying process generating the data. In our motivating dataset, a statistically significant intervention effect resulted from the NB-logged, NB-offset, and CNB models, but not from NB-unlogged, and large, outlying baseline counts were overly influential in NB-unlogged but not in NB-logged. We conclude that there is little to lose by including the log-transformed baseline count in standard NB regression compared to CNB for moderate to larger sized datasets. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Identifiability in N-mixture models: a large-scale screening test with bird data.
Kéry, Marc
2018-02-01
Binomial N-mixture models have proven very useful in ecology, conservation, and monitoring: they allow estimation and modeling of abundance separately from detection probability using simple counts. Recently, doubts about parameter identifiability have been voiced. I conducted a large-scale screening test with 137 bird data sets from 2,037 sites. I found virtually no identifiability problems for Poisson and zero-inflated Poisson (ZIP) binomial N-mixture models, but negative-binomial (NB) models had problems in 25% of all data sets. The corresponding multinomial N-mixture models had no problems. Parameter estimates under Poisson and ZIP binomial and multinomial N-mixture models were extremely similar. Identifiability problems became a little more frequent with smaller sample sizes (267 and 50 sites), but were unaffected by whether the models did or did not include covariates. Hence, binomial N-mixture model parameters with Poisson and ZIP mixtures typically appeared identifiable. In contrast, NB mixtures were often unidentifiable, which is worrying since these were often selected by Akaike's information criterion. Identifiability of binomial N-mixture models should always be checked. If problems are found, simpler models, integrated models that combine different observation models or the use of external information via informative priors or penalized likelihoods, may help. © 2017 by the Ecological Society of America.
Tran, Phoebe; Waller, Lance
2015-01-01
Lyme disease has been the subject of many studies due to increasing incidence rates year after year and the severe complications that can arise in later stages of the disease. Negative binomial models have been used to model Lyme disease in the past with some success. However, there has been little focus on the reliability and consistency of these models when they are used to study Lyme disease at multiple spatial scales. This study seeks to explore how sensitive/consistent negative binomial models are when they are used to study Lyme disease at different spatial scales (at the regional and sub-regional levels). The study area includes the thirteen states in the Northeastern United States with the highest Lyme disease incidence during the 2002-2006 period. Lyme disease incidence at county level for the period of 2002-2006 was linked with several previously identified key landscape and climatic variables in a negative binomial regression model for the Northeastern region and two smaller sub-regions (the New England sub-region and the Mid-Atlantic sub-region). This study found that negative binomial models, indeed, were sensitive/inconsistent when used at different spatial scales. We discuss various plausible explanations for such behavior of negative binomial models. Further investigation of the inconsistency and sensitivity of negative binomial models when used at different spatial scales is important for not only future Lyme disease studies and Lyme disease risk assessment/management but any study that requires use of this model type in a spatial context. Copyright © 2014 Elsevier Inc. All rights reserved.
Chen, Wansu; Shi, Jiaxiao; Qian, Lei; Azen, Stanley P
2014-06-26
To estimate relative risks or risk ratios for common binary outcomes, the most popular model-based methods are the robust (also known as modified) Poisson and the log-binomial regression. Of the two methods, it is believed that the log-binomial regression yields more efficient estimators because it is maximum likelihood based, while the robust Poisson model may be less affected by outliers. Evidence to support the robustness of robust Poisson models in comparison with log-binomial models is very limited. In this study a simulation was conducted to evaluate the performance of the two methods in several scenarios where outliers existed. The findings indicate that for data coming from a population where the relationship between the outcome and the covariate was in a simple form (e.g. log-linear), the two models yielded comparable biases and mean square errors. However, if the true relationship contained a higher order term, the robust Poisson models consistently outperformed the log-binomial models even when the level of contamination is low. The robust Poisson models are more robust (or less sensitive) to outliers compared to the log-binomial models when estimating relative risks or risk ratios for common binary outcomes. Users should be aware of the limitations when choosing appropriate models to estimate relative risks or risk ratios.
A Three-Parameter Generalisation of the Beta-Binomial Distribution with Applications
1987-07-01
York. Rust, R.T. and Klompmaker, J.E. (1981). Improving the estimation procedure for the beta binomial t.v. exposure model. Journal of Marketing ... Research . 18, 442-448. Sabavala, D.J. and Morrison, D.G. (1977). Television show loyalty: a beta- binomial model using recall data. Journal of Advertiuing
Campaign Strategies and Voter Approval of School Referenda: A Mixed Methods Analysis
ERIC Educational Resources Information Center
Johnson, Paul A.; Ingle, William Kyle
2009-01-01
Drawing from state administrative data and surveys of superintendents in Ohio, this mixed methods study examined factors associated with voters' approval of local school levies. Utilizing binomial logistic regression, this study found that new levies and poverty rates were significantly associated with a decrease in the likelihood of passage.…
Censored Hurdle Negative Binomial Regression (Case Study: Neonatorum Tetanus Case in Indonesia)
NASA Astrophysics Data System (ADS)
Yuli Rusdiana, Riza; Zain, Ismaini; Wulan Purnami, Santi
2017-06-01
Hurdle negative binomial model regression is a method that can be used for discreate dependent variable, excess zero and under- and overdispersion. It uses two parts approach. The first part estimates zero elements from dependent variable is zero hurdle model and the second part estimates not zero elements (non-negative integer) from dependent variable is called truncated negative binomial models. The discrete dependent variable in such cases is censored for some values. The type of censor that will be studied in this research is right censored. This study aims to obtain the parameter estimator hurdle negative binomial regression for right censored dependent variable. In the assessment of parameter estimation methods used Maximum Likelihood Estimator (MLE). Hurdle negative binomial model regression for right censored dependent variable is applied on the number of neonatorum tetanus cases in Indonesia. The type data is count data which contains zero values in some observations and other variety value. This study also aims to obtain the parameter estimator and test statistic censored hurdle negative binomial model. Based on the regression results, the factors that influence neonatorum tetanus case in Indonesia is the percentage of baby health care coverage and neonatal visits.
Distribution-free Inference of Zero-inated Binomial Data for Longitudinal Studies.
He, H; Wang, W J; Hu, J; Gallop, R; Crits-Christoph, P; Xia, Y L
2015-10-01
Count reponses with structural zeros are very common in medical and psychosocial research, especially in alcohol and HIV research, and the zero-inflated poisson (ZIP) and zero-inflated negative binomial (ZINB) models are widely used for modeling such outcomes. However, as alcohol drinking outcomes such as days of drinkings are counts within a given period, their distributions are bounded above by an upper limit (total days in the period) and thus inherently follow a binomial or zero-inflated binomial (ZIB) distribution, rather than a Poisson or zero-inflated Poisson (ZIP) distribution, in the presence of structural zeros. In this paper, we develop a new semiparametric approach for modeling zero-inflated binomial (ZIB)-like count responses for cross-sectional as well as longitudinal data. We illustrate this approach with both simulated and real study data.
On the p, q-binomial distribution and the Ising model
NASA Astrophysics Data System (ADS)
Lundow, P. H.; Rosengren, A.
2010-08-01
We employ p, q-binomial coefficients, a generalisation of the binomial coefficients, to describe the magnetisation distributions of the Ising model. For the complete graph this distribution corresponds exactly to the limit case p = q. We apply our investigation to the simple d-dimensional lattices for d = 1, 2, 3, 4, 5 and fit p, q-binomial distributions to our data, some of which are exact but most are sampled. For d = 1 and d = 5, the magnetisation distributions are remarkably well-fitted by p,q-binomial distributions. For d = 4 we are only slightly less successful, while for d = 2, 3 we see some deviations (with exceptions!) between the p, q-binomial and the Ising distribution. However, at certain temperatures near T c the statistical moments of the fitted distribution agree with the moments of the sampled data within the precision of sampling. We begin the paper by giving results of the behaviour of the p, q-distribution and its moment growth exponents given a certain parameterisation of p, q. Since the moment exponents are known for the Ising model (or at least approximately for d = 3) we can predict how p, q should behave and compare this to our measured p, q. The results speak in favour of the p, q-binomial distribution's correctness regarding its general behaviour in comparison to the Ising model. The full extent to which they correctly model the Ising distribution, however, is not settled.
Choosing a Transformation in Analyses of Insect Counts from Contagious Distributions with Low Means
W.D. Pepper; S.J. Zarnoch; G.L. DeBarr; P. de Groot; C.D. Tangren
1997-01-01
Guidelines based on computer simulation are suggested for choosing a transformation of insect counts from negative binomial distributions with low mean counts and high levels of contagion. Typical values and ranges of negative binomial model parameters were determined by fitting the model to data from 19 entomological field studies. Random sampling of negative binomial...
Simulation on Poisson and negative binomial models of count road accident modeling
NASA Astrophysics Data System (ADS)
Sapuan, M. S.; Razali, A. M.; Zamzuri, Z. H.; Ibrahim, K.
2016-11-01
Accident count data have often been shown to have overdispersion. On the other hand, the data might contain zero count (excess zeros). The simulation study was conducted to create a scenarios which an accident happen in T-junction with the assumption the dependent variables of generated data follows certain distribution namely Poisson and negative binomial distribution with different sample size of n=30 to n=500. The study objective was accomplished by fitting Poisson regression, negative binomial regression and Hurdle negative binomial model to the simulated data. The model validation was compared and the simulation result shows for each different sample size, not all model fit the data nicely even though the data generated from its own distribution especially when the sample size is larger. Furthermore, the larger sample size indicates that more zeros accident count in the dataset.
Statistical methods for the beta-binomial model in teratology.
Yamamoto, E; Yanagimoto, T
1994-01-01
The beta-binomial model is widely used for analyzing teratological data involving littermates. Recent developments in statistical analyses of teratological data are briefly reviewed with emphasis on the model. For statistical inference of the parameters in the beta-binomial distribution, separation of the likelihood introduces an likelihood inference. This leads to reducing biases of estimators and also to improving accuracy of empirical significance levels of tests. Separate inference of the parameters can be conducted in a unified way. PMID:8187716
Cai, Qing; Lee, Jaeyoung; Eluru, Naveen; Abdel-Aty, Mohamed
2016-08-01
This study attempts to explore the viability of dual-state models (i.e., zero-inflated and hurdle models) for traffic analysis zones (TAZs) based pedestrian and bicycle crash frequency analysis. Additionally, spatial spillover effects are explored in the models by employing exogenous variables from neighboring zones. The dual-state models such as zero-inflated negative binomial and hurdle negative binomial models (with and without spatial effects) are compared with the conventional single-state model (i.e., negative binomial). The model comparison for pedestrian and bicycle crashes revealed that the models that considered observed spatial effects perform better than the models that did not consider the observed spatial effects. Across the models with spatial spillover effects, the dual-state models especially zero-inflated negative binomial model offered better performance compared to single-state models. Moreover, the model results clearly highlighted the importance of various traffic, roadway, and sociodemographic characteristics of the TAZ as well as neighboring TAZs on pedestrian and bicycle crash frequency. Copyright © 2016 Elsevier Ltd. All rights reserved.
The magnetisation distribution of the Ising model - a new approach
NASA Astrophysics Data System (ADS)
Hakan Lundow, Per; Rosengren, Anders
2010-03-01
A completely new approach to the Ising model in 1 to 5 dimensions is developed. We employ a generalisation of the binomial coefficients to describe the magnetisation distributions of the Ising model. For the complete graph this distribution is exact. For simple lattices of dimensions d=1 and d=5 the magnetisation distributions are remarkably well-fitted by the generalized binomial distributions. For d=4 we are only slightly less successful, while for d=2,3 we see some deviations (with exceptions!) between the generalized binomial and the Ising distribution. The results speak in favour of the generalized binomial distribution's correctness regarding their general behaviour in comparison to the Ising model. A theoretical analysis of the distribution's moments also lends support their being correct asymptotically, including the logarithmic corrections in d=4. The full extent to which they correctly model the Ising distribution, and for which graph families, is not settled though.
Marginalized zero-inflated negative binomial regression with application to dental caries
Preisser, John S.; Das, Kalyan; Long, D. Leann; Divaris, Kimon
2015-01-01
The zero-inflated negative binomial regression model (ZINB) is often employed in diverse fields such as dentistry, health care utilization, highway safety, and medicine to examine relationships between exposures of interest and overdispersed count outcomes exhibiting many zeros. The regression coefficients of ZINB have latent class interpretations for a susceptible subpopulation at risk for the disease/condition under study with counts generated from a negative binomial distribution and for a non-susceptible subpopulation that provides only zero counts. The ZINB parameters, however, are not well-suited for estimating overall exposure effects, specifically, in quantifying the effect of an explanatory variable in the overall mixture population. In this paper, a marginalized zero-inflated negative binomial regression (MZINB) model for independent responses is proposed to model the population marginal mean count directly, providing straightforward inference for overall exposure effects based on maximum likelihood estimation. Through simulation studies, the finite sample performance of MZINB is compared to marginalized zero-inflated Poisson, Poisson, and negative binomial regression. The MZINB model is applied in the evaluation of a school-based fluoride mouthrinse program on dental caries in 677 children. PMID:26568034
Speech-discrimination scores modeled as a binomial variable.
Thornton, A R; Raffin, M J
1978-09-01
Many studies have reported variability data for tests of speech discrimination, and the disparate results of these studies have not been given a simple explanation. Arguments over the relative merits of 25- vs 50-word tests have ignored the basic mathematical properties inherent in the use of percentage scores. The present study models performance on clinical tests of speech discrimination as a binomial variable. A binomial model was developed, and some of its characteristics were tested against data from 4120 scores obtained on the CID Auditory Test W-22. A table for determining significant deviations between scores was generated and compared to observed differences in half-list scores for the W-22 tests. Good agreement was found between predicted and observed values. Implications of the binomial characteristics of speech-discrimination scores are discussed.
Lara, Jesus R; Hoddle, Mark S
2015-08-01
Oligonychus perseae Tuttle, Baker, & Abatiello is a foliar pest of 'Hass' avocados [Persea americana Miller (Lauraceae)]. The recommended action threshold is 50-100 motile mites per leaf, but this count range and other ecological factors associated with O. perseae infestations limit the application of enumerative sampling plans in the field. Consequently, a comprehensive modeling approach was implemented to compare the practical application of various binomial sampling models for decision-making of O. perseae in California. An initial set of sequential binomial sampling models were developed using three mean-proportion modeling techniques (i.e., Taylor's power law, maximum likelihood, and an empirical model) in combination with two-leaf infestation tally thresholds of either one or two mites. Model performance was evaluated using a robust mite count database consisting of >20,000 Hass avocado leaves infested with varying densities of O. perseae and collected from multiple locations. Operating characteristic and average sample number results for sequential binomial models were used as the basis to develop and validate a standardized fixed-size binomial sampling model with guidelines on sample tree and leaf selection within blocks of avocado trees. This final validated model requires a leaf sampling cost of 30 leaves and takes into account the spatial dynamics of O. perseae to make reliable mite density classifications for a 50-mite action threshold. Recommendations for implementing this fixed-size binomial sampling plan to assess densities of O. perseae in commercial California avocado orchards are discussed. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Zero adjusted models with applications to analysing helminths count data.
Chipeta, Michael G; Ngwira, Bagrey M; Simoonga, Christopher; Kazembe, Lawrence N
2014-11-27
It is common in public health and epidemiology that the outcome of interest is counts of events occurrence. Analysing these data using classical linear models is mostly inappropriate, even after transformation of outcome variables due to overdispersion. Zero-adjusted mixture count models such as zero-inflated and hurdle count models are applied to count data when over-dispersion and excess zeros exist. Main objective of the current paper is to apply such models to analyse risk factors associated with human helminths (S. haematobium) particularly in a case where there's a high proportion of zero counts. The data were collected during a community-based randomised control trial assessing the impact of mass drug administration (MDA) with praziquantel in Malawi, and a school-based cross sectional epidemiology survey in Zambia. Count data models including traditional (Poisson and negative binomial) models, zero modified models (zero inflated Poisson and zero inflated negative binomial) and hurdle models (Poisson logit hurdle and negative binomial logit hurdle) were fitted and compared. Using Akaike information criteria (AIC), the negative binomial logit hurdle (NBLH) and zero inflated negative binomial (ZINB) showed best performance in both datasets. With regards to zero count capturing, these models performed better than other models. This paper showed that zero modified NBLH and ZINB models are more appropriate methods for the analysis of data with excess zeros. The choice between the hurdle and zero-inflated models should be based on the aim and endpoints of the study.
Four Bootstrap Confidence Intervals for the Binomial-Error Model.
ERIC Educational Resources Information Center
Lin, Miao-Hsiang; Hsiung, Chao A.
1992-01-01
Four bootstrap methods are identified for constructing confidence intervals for the binomial-error model. The extent to which similar results are obtained and the theoretical foundation of each method and its relevance and ranges of modeling the true score uncertainty are discussed. (SLD)
Phase transition and information cascade in a voting model
NASA Astrophysics Data System (ADS)
Hisakado, M.; Mori, S.
2010-08-01
In this paper, we introduce a voting model that is similar to a Keynesian beauty contest and analyse it from a mathematical point of view. There are two types of voters—copycat and independent—and two candidates. Our voting model is a binomial distribution (independent voters) doped in a beta binomial distribution (copycat voters). We find that the phase transition in this system is at the upper limit of t, where t is the time (or the number of the votes). Our model contains three phases. If copycats constitute a majority or even half of the total voters, the voting rate converges more slowly than it would in a binomial distribution. If independents constitute the majority of voters, the voting rate converges at the same rate as it would in a binomial distribution. We also study why it is difficult to estimate the conclusion of a Keynesian beauty contest when there is an information cascade.
Jiang, Honghua; Ni, Xiao; Huster, William; Heilmann, Cory
2015-01-01
Hypoglycemia has long been recognized as a major barrier to achieving normoglycemia with intensive diabetic therapies. It is a common safety concern for the diabetes patients. Therefore, it is important to apply appropriate statistical methods when analyzing hypoglycemia data. Here, we carried out bootstrap simulations to investigate the performance of the four commonly used statistical models (Poisson, negative binomial, analysis of covariance [ANCOVA], and rank ANCOVA) based on the data from a diabetes clinical trial. Zero-inflated Poisson (ZIP) model and zero-inflated negative binomial (ZINB) model were also evaluated. Simulation results showed that Poisson model inflated type I error, while negative binomial model was overly conservative. However, after adjusting for dispersion, both Poisson and negative binomial models yielded slightly inflated type I errors, which were close to the nominal level and reasonable power. Reasonable control of type I error was associated with ANCOVA model. Rank ANCOVA model was associated with the greatest power and with reasonable control of type I error. Inflated type I error was observed with ZIP and ZINB models.
Verma, Sadhna; Sarkar, Saradwata; Young, Jason; Venkataraman, Rajesh; Yang, Xu; Bhavsar, Anil; Patil, Nilesh; Donovan, James; Gaitonde, Krishnanath
2016-05-01
The purpose of this study was to compare high b-value (b = 2000 s/mm(2)) acquired diffusion-weighted imaging (aDWI) with computed DWI (cDWI) obtained using four diffusion models-mono-exponential (ME), intra-voxel incoherent motion (IVIM), stretched exponential (SE), and diffusional kurtosis (DK)-with respect to lesion visibility, conspicuity, contrast, and ability to predict significant prostate cancer (PCa). Ninety four patients underwent 3 T MRI including acquisition of b = 2000 s/mm(2) aDWI and low b-value DWI. High b = 2000 s/mm(2) cDWI was obtained using ME, IVIM, SE, and DK models. All images were scored on quality independently by three radiologists. Lesions were identified on all images and graded for lesion conspicuity. For a subset of lesions for which pathological truth was established, lesion-to-background contrast ratios (LBCRs) were computed and binomial generalized linear mixed model analysis was conducted to compare clinically significant PCa predictive capabilities of all DWI. For all readers and all models, cDWI demonstrated higher ratings for image quality and lesion conspicuity than aDWI except DK (p < 0.001). The LBCRs of ME, IVIM, and SE were significantly higher than LBCR of aDWI (p < 0.001). Receiver Operating Characteristic curves obtained from binomial generalized linear mixed model analysis demonstrated higher Area Under the Curves for ME, SE, IVIM, and aDWI compared to DK or PSAD alone in predicting significant PCa. High b-value cDWI using ME, IVIM, and SE diffusion models provide better image quality, lesion conspicuity, and increased LBCR than high b-value aDWI. Using cDWI can potentially provide comparable sensitivity and specificity for detecting significant PCa as high b-value aDWI without increased scan times and image degradation artifacts.
Statistical inference for time course RNA-Seq data using a negative binomial mixed-effect model.
Sun, Xiaoxiao; Dalpiaz, David; Wu, Di; S Liu, Jun; Zhong, Wenxuan; Ma, Ping
2016-08-26
Accurate identification of differentially expressed (DE) genes in time course RNA-Seq data is crucial for understanding the dynamics of transcriptional regulatory network. However, most of the available methods treat gene expressions at different time points as replicates and test the significance of the mean expression difference between treatments or conditions irrespective of time. They thus fail to identify many DE genes with different profiles across time. In this article, we propose a negative binomial mixed-effect model (NBMM) to identify DE genes in time course RNA-Seq data. In the NBMM, mean gene expression is characterized by a fixed effect, and time dependency is described by random effects. The NBMM is very flexible and can be fitted to both unreplicated and replicated time course RNA-Seq data via a penalized likelihood method. By comparing gene expression profiles over time, we further classify the DE genes into two subtypes to enhance the understanding of expression dynamics. A significance test for detecting DE genes is derived using a Kullback-Leibler distance ratio. Additionally, a significance test for gene sets is developed using a gene set score. Simulation analysis shows that the NBMM outperforms currently available methods for detecting DE genes and gene sets. Moreover, our real data analysis of fruit fly developmental time course RNA-Seq data demonstrates the NBMM identifies biologically relevant genes which are well justified by gene ontology analysis. The proposed method is powerful and efficient to detect biologically relevant DE genes and gene sets in time course RNA-Seq data.
NASA Astrophysics Data System (ADS)
Amaliana, Luthfatul; Sa'adah, Umu; Wayan Surya Wardhani, Ni
2017-12-01
Tetanus Neonatorum is an infectious disease that can be prevented by immunization. The number of Tetanus Neonatorum cases in East Java Province is the highest in Indonesia until 2015. Tetanus Neonatorum data contain over dispersion and big enough proportion of zero-inflation. Negative Binomial (NB) regression is an alternative method when over dispersion happens in Poisson regression. However, the data containing over dispersion and zero-inflation are more appropriately analyzed by using Zero-Inflated Negative Binomial (ZINB) regression. The purpose of this study are: (1) to model Tetanus Neonatorum cases in East Java Province with 71.05 percent proportion of zero-inflation by using NB and ZINB regression, (2) to obtain the best model. The result of this study indicates that ZINB is better than NB regression with smaller AIC.
On Models for Binomial Data with Random Numbers of Trials
Comulada, W. Scott; Weiss, Robert E.
2010-01-01
Summary A binomial outcome is a count s of the number of successes out of the total number of independent trials n = s + f, where f is a count of the failures. The n are random variables not fixed by design in many studies. Joint modeling of (s, f) can provide additional insight into the science and into the probability π of success that cannot be directly incorporated by the logistic regression model. Observations where n = 0 are excluded from the binomial analysis yet may be important to understanding how π is influenced by covariates. Correlation between s and f may exist and be of direct interest. We propose Bayesian multivariate Poisson models for the bivariate response (s, f), correlated through random effects. We extend our models to the analysis of longitudinal and multivariate longitudinal binomial outcomes. Our methodology was motivated by two disparate examples, one from teratology and one from an HIV tertiary intervention study. PMID:17688514
On extinction time of a generalized endemic chain-binomial model.
Aydogmus, Ozgur
2016-09-01
We considered a chain-binomial epidemic model not conferring immunity after infection. Mean field dynamics of the model has been analyzed and conditions for the existence of a stable endemic equilibrium are determined. The behavior of the chain-binomial process is probabilistically linked to the mean field equation. As a result of this link, we were able to show that the mean extinction time of the epidemic increases at least exponentially as the population size grows. We also present simulation results for the process to validate our analytical findings. Copyright © 2016 Elsevier Inc. All rights reserved.
Mixing in High Schmidt Number Turbulent Jets
1991-01-01
the higher Sc jet is less well mixed. The difference is less pronounced at higher Re. Flame length estimates imply either an increase in entrainment...72 8.0 Estimation of flame lengths ....................................... 74 8.1 Estim ation m...A.4) Lf flame length N number of trials (Eq. 3.1) p exponent in fits of the variance behavior with Re p probability of a binomial event (Eq. 3.1) p
Bakbergenuly, Ilyas; Morgenthaler, Stephan
2016-01-01
We study bias arising as a result of nonlinear transformations of random variables in random or mixed effects models and its effect on inference in group‐level studies or in meta‐analysis. The findings are illustrated on the example of overdispersed binomial distributions, where we demonstrate considerable biases arising from standard log‐odds and arcsine transformations of the estimated probability p^, both for single‐group studies and in combining results from several groups or studies in meta‐analysis. Our simulations confirm that these biases are linear in ρ, for small values of ρ, the intracluster correlation coefficient. These biases do not depend on the sample sizes or the number of studies K in a meta‐analysis and result in abysmal coverage of the combined effect for large K. We also propose bias‐correction for the arcsine transformation. Our simulations demonstrate that this bias‐correction works well for small values of the intraclass correlation. The methods are applied to two examples of meta‐analyses of prevalence. PMID:27192062
Discrimination of numerical proportions: A comparison of binomial and Gaussian models.
Raidvee, Aire; Lember, Jüri; Allik, Jüri
2017-01-01
Observers discriminated the numerical proportion of two sets of elements (N = 9, 13, 33, and 65) that differed either by color or orientation. According to the standard Thurstonian approach, the accuracy of proportion discrimination is determined by irreducible noise in the nervous system that stochastically transforms the number of presented visual elements onto a continuum of psychological states representing numerosity. As an alternative to this customary approach, we propose a Thurstonian-binomial model, which assumes discrete perceptual states, each of which is associated with a certain visual element. It is shown that the probability β with which each visual element can be noticed and registered by the perceptual system can explain data of numerical proportion discrimination at least as well as the continuous Thurstonian-Gaussian model, and better, if the greater parsimony of the Thurstonian-binomial model is taken into account using AIC model selection. We conclude that Gaussian and binomial models represent two different fundamental principles-internal noise vs. using only a fraction of available information-which are both plausible descriptions of visual perception.
Selecting Tools to Model Integer and Binomial Multiplication
ERIC Educational Resources Information Center
Pratt, Sarah Smitherman; Eddy, Colleen M.
2017-01-01
Mathematics teachers frequently provide concrete manipulatives to students during instruction; however, the rationale for using certain manipulatives in conjunction with concepts may not be explored. This article focuses on area models that are currently used in classrooms to provide concrete examples of integer and binomial multiplication. The…
Xie, Haiyi; Tao, Jill; McHugo, Gregory J; Drake, Robert E
2013-07-01
Count data with skewness and many zeros are common in substance abuse and addiction research. Zero-adjusting models, especially zero-inflated models, have become increasingly popular in analyzing this type of data. This paper reviews and compares five mixed-effects Poisson family models commonly used to analyze count data with a high proportion of zeros by analyzing a longitudinal outcome: number of smoking quit attempts from the New Hampshire Dual Disorders Study. The findings of our study indicated that count data with many zeros do not necessarily require zero-inflated or other zero-adjusting models. For rare event counts or count data with small means, a simpler model such as the negative binomial model may provide a better fit. Copyright © 2013 Elsevier Inc. All rights reserved.
Cao, Qingqing; Wu, Zhenqiang; Sun, Ying; Wang, Tiezhu; Han, Tengwei; Gu, Chaomei; Sun, Yehuan
2011-11-01
To Eexplore the application of negative binomial regression and modified Poisson regression analysis in analyzing the influential factors for injury frequency and the risk factors leading to the increase of injury frequency. 2917 primary and secondary school students were selected from Hefei by cluster random sampling method and surveyed by questionnaire. The data on the count event-based injuries used to fitted modified Poisson regression and negative binomial regression model. The risk factors incurring the increase of unintentional injury frequency for juvenile students was explored, so as to probe the efficiency of these two models in studying the influential factors for injury frequency. The Poisson model existed over-dispersion (P < 0.0001) based on testing by the Lagrangemultiplier. Therefore, the over-dispersion dispersed data using a modified Poisson regression and negative binomial regression model, was fitted better. respectively. Both showed that male gender, younger age, father working outside of the hometown, the level of the guardian being above junior high school and smoking might be the results of higher injury frequencies. On a tendency of clustered frequency data on injury event, both the modified Poisson regression analysis and negative binomial regression analysis can be used. However, based on our data, the modified Poisson regression fitted better and this model could give a more accurate interpretation of relevant factors affecting the frequency of injury.
Bayesian analysis of volcanic eruptions
NASA Astrophysics Data System (ADS)
Ho, Chih-Hsiang
1990-10-01
The simple Poisson model generally gives a good fit to many volcanoes for volcanic eruption forecasting. Nonetheless, empirical evidence suggests that volcanic activity in successive equal time-periods tends to be more variable than a simple Poisson with constant eruptive rate. An alternative model is therefore examined in which eruptive rate(λ) for a given volcano or cluster(s) of volcanoes is described by a gamma distribution (prior) rather than treated as a constant value as in the assumptions of a simple Poisson model. Bayesian analysis is performed to link two distributions together to give the aggregate behavior of the volcanic activity. When the Poisson process is expanded to accomodate a gamma mixing distribution on λ, a consequence of this mixed (or compound) Poisson model is that the frequency distribution of eruptions in any given time-period of equal length follows the negative binomial distribution (NBD). Applications of the proposed model and comparisons between the generalized model and simple Poisson model are discussed based on the historical eruptive count data of volcanoes Mauna Loa (Hawaii) and Etna (Italy). Several relevant facts lead to the conclusion that the generalized model is preferable for practical use both in space and time.
Alekseeva, N P; Alekseev, A O; Vakhtin, Iu B; Kravtsov, V Iu; Kuzovatov, S N; Skorikova, T I
2008-01-01
Distributions of nuclear morphology anomalies in transplantable rabdomiosarcoma RA-23 cell populations were investigated under effect of ionizing radiation from 0 to 45 Gy. Internuclear bridges, nuclear protrusions and dumbbell-shaped nuclei were accepted for morphological anomalies. Empirical distributions of the number of anomalies per 100 nuclei were used. The adequate model of reentrant binomial distribution has been found. The sum of binomial random variables with binomial number of summands has such distribution. Averages of these random variables were named, accordingly, internal and external average reentrant components. Their maximum likelihood estimations were received. Statistical properties of these estimations were investigated by means of statistical modeling. It has been received that at equally significant correlation between the radiation dose and the average of nuclear anomalies in cell populations after two-three cellular cycles from the moment of irradiation in vivo the irradiation doze significantly correlates with internal average reentrant component, and in remote descendants of cell transplants irradiated in vitro - with external one.
Confidence Intervals for Weighted Composite Scores under the Compound Binomial Error Model
ERIC Educational Resources Information Center
Kim, Kyung Yong; Lee, Won-Chan
2018-01-01
Reporting confidence intervals with test scores helps test users make important decisions about examinees by providing information about the precision of test scores. Although a variety of estimation procedures based on the binomial error model are available for computing intervals for test scores, these procedures assume that items are randomly…
Bennett, Bradley C; Husby, Chad E
2008-03-28
Botanical pharmacopoeias are non-random subsets of floras, with some taxonomic groups over- or under-represented. Moerman [Moerman, D.E., 1979. Symbols and selectivity: a statistical analysis of Native American medical ethnobotany, Journal of Ethnopharmacology 1, 111-119] introduced linear regression/residual analysis to examine these patterns. However, regression, the commonly-employed analysis, suffers from several statistical flaws. We use contingency table and binomial analyses to examine patterns of Shuar medicinal plant use (from Amazonian Ecuador). We first analyzed the Shuar data using Moerman's approach, modified to better meet requirements of linear regression analysis. Second, we assessed the exact randomization contingency table test for goodness of fit. Third, we developed a binomial model to test for non-random selection of plants in individual families. Modified regression models (which accommodated assumptions of linear regression) reduced R(2) to from 0.59 to 0.38, but did not eliminate all problems associated with regression analyses. Contingency table analyses revealed that the entire flora departs from the null model of equal proportions of medicinal plants in all families. In the binomial analysis, only 10 angiosperm families (of 115) differed significantly from the null model. These 10 families are largely responsible for patterns seen at higher taxonomic levels. Contingency table and binomial analyses offer an easy and statistically valid alternative to the regression approach.
Xiao, Yundan; Zhang, Xiongqing; Ji, Ping
2015-01-01
Forest fires can cause catastrophic damage on natural resources. In the meantime, it can also bring serious economic and social impacts. Meteorological factors play a critical role in establishing conditions favorable for a forest fire. Effective prediction of forest fire occurrences could prevent or minimize losses. This paper uses count data models to analyze fire occurrence data which is likely to be dispersed and frequently contain an excess of zero counts (no fire occurrence). Such data have commonly been analyzed using count data models such as a Poisson model, negative binomial model (NB), zero-inflated models, and hurdle models. Data we used in this paper is collected from Qiannan autonomous prefecture of Guizhou province in China. Using the fire occurrence data from January to April (spring fire season) for the years 1996 through 2007, we introduced random effects to the count data models. In this study, the results indicated that the prediction achieved through NB model provided a more compelling and credible inferential basis for fitting actual forest fire occurrence, and mixed-effects model performed better than corresponding fixed-effects model in forest fire forecasting. Besides, among all meteorological factors, we found that relative humidity and wind speed is highly correlated with fire occurrence.
Ji, Ping
2015-01-01
Forest fires can cause catastrophic damage on natural resources. In the meantime, it can also bring serious economic and social impacts. Meteorological factors play a critical role in establishing conditions favorable for a forest fire. Effective prediction of forest fire occurrences could prevent or minimize losses. This paper uses count data models to analyze fire occurrence data which is likely to be dispersed and frequently contain an excess of zero counts (no fire occurrence). Such data have commonly been analyzed using count data models such as a Poisson model, negative binomial model (NB), zero-inflated models, and hurdle models. Data we used in this paper is collected from Qiannan autonomous prefecture of Guizhou province in China. Using the fire occurrence data from January to April (spring fire season) for the years 1996 through 2007, we introduced random effects to the count data models. In this study, the results indicated that the prediction achieved through NB model provided a more compelling and credible inferential basis for fitting actual forest fire occurrence, and mixed-effects model performed better than corresponding fixed-effects model in forest fire forecasting. Besides, among all meteorological factors, we found that relative humidity and wind speed is highly correlated with fire occurrence. PMID:25790309
Multivariate longitudinal data analysis with mixed effects hidden Markov models.
Raffa, Jesse D; Dubin, Joel A
2015-09-01
Multiple longitudinal responses are often collected as a means to capture relevant features of the true outcome of interest, which is often hidden and not directly measurable. We outline an approach which models these multivariate longitudinal responses as generated from a hidden disease process. We propose a class of models which uses a hidden Markov model with separate but correlated random effects between multiple longitudinal responses. This approach was motivated by a smoking cessation clinical trial, where a bivariate longitudinal response involving both a continuous and a binomial response was collected for each participant to monitor smoking behavior. A Bayesian method using Markov chain Monte Carlo is used. Comparison of separate univariate response models to the bivariate response models was undertaken. Our methods are demonstrated on the smoking cessation clinical trial dataset, and properties of our approach are examined through extensive simulation studies. © 2015, The International Biometric Society.
Bus accident analysis of routes with/without bus priority.
Goh, Kelvin Chun Keong; Currie, Graham; Sarvi, Majid; Logan, David
2014-04-01
This paper summarises findings on road safety performance and bus-involved accidents in Melbourne along roads where bus priority measures had been applied. Results from an empirical analysis of the accident types revealed significant reduction in the proportion of accidents involving buses hitting stationary objects and vehicles, which suggests the effect of bus priority in addressing manoeuvrability issues for buses. A mixed-effects negative binomial (MENB) regression and back-propagation neural network (BPNN) modelling of bus accidents considering wider influences on accident rates at a route section level also revealed significant safety benefits when bus priority is provided. Sensitivity analyses done on the BPNN model showed general agreement in the predicted accident frequency between both models. The slightly better performance recorded by the MENB model results suggests merits in adopting a mixed effects modelling approach for accident count prediction in practice given its capability to account for unobserved location and time-specific factors. A major implication of this research is that bus priority in Melbourne's context acts to improve road safety and should be a major consideration for road management agencies when implementing bus priority and road schemes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Data mining of tree-based models to analyze freeway accident frequency.
Chang, Li-Yen; Chen, Wen-Chieh
2005-01-01
Statistical models, such as Poisson or negative binomial regression models, have been employed to analyze vehicle accident frequency for many years. However, these models have their own model assumptions and pre-defined underlying relationship between dependent and independent variables. If these assumptions are violated, the model could lead to erroneous estimation of accident likelihood. Classification and Regression Tree (CART), one of the most widely applied data mining techniques, has been commonly employed in business administration, industry, and engineering. CART does not require any pre-defined underlying relationship between target (dependent) variable and predictors (independent variables) and has been shown to be a powerful tool, particularly for dealing with prediction and classification problems. This study collected the 2001-2002 accident data of National Freeway 1 in Taiwan. A CART model and a negative binomial regression model were developed to establish the empirical relationship between traffic accidents and highway geometric variables, traffic characteristics, and environmental factors. The CART findings indicated that the average daily traffic volume and precipitation variables were the key determinants for freeway accident frequencies. By comparing the prediction performance between the CART and the negative binomial regression models, this study demonstrates that CART is a good alternative method for analyzing freeway accident frequencies. By comparing the prediction performance between the CART and the negative binomial regression models, this study demonstrates that CART is a good alternative method for analyzing freeway accident frequencies.
Quantifying the safety effects of horizontal curves on two-way, two-lane rural roads.
Gooch, Jeffrey P; Gayah, Vikash V; Donnell, Eric T
2016-07-01
The objective of this study is to quantify the safety performance of horizontal curves on two-way, two-lane rural roads relative to tangent segments. Past research is limited by small samples sizes, outdated statistical evaluation methods, and unreported standard errors. This study overcomes these drawbacks by using the propensity scores-potential outcomes framework. The impact of adjacent curves on horizontal curve safety is also explored using a cross-sectional regression model of only horizontal curves. The models estimated in the present study used eight years of crash data (2005-2012) obtained from over 10,000 miles of state-owned two-lane rural roads in Pennsylvania. These data included information on roadway geometry (e.g., horizontal curvature, lane width, and shoulder width), traffic volume, roadside hazard rating, and the presence of various low-cost safety countermeasures (e.g., centerline and shoulder rumble strips, curve and intersection warning pavement markings, and aggressive driving pavement dots). Crash prediction is performed by means of mixed effects negative binomial regression using the explanatory variables noted previously, as well as attributes of adjacent horizontal curves. The results indicate that both the presence of a horizontal curve and its degree of curvature must be considered when predicting the frequency of total crashes on horizontal curves. Both are associated with an increase in crash frequency, which is consistent with previous findings in the literature. Mixed effects negative binomial regression models for total crash frequency on horizontal curves indicate that the distance to adjacent curves is not statistically significant. However, the degree of curvature of adjacent curves in close proximity (within 0.75 miles) was found to be statistically significant and negatively correlated with crash frequency on the subject curve. This is logical, as drivers exiting a sharp curve are likely to be driving slower and with more awareness as they approach the next horizontal curve. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bakbergenuly, Ilyas; Kulinskaya, Elena; Morgenthaler, Stephan
2016-07-01
We study bias arising as a result of nonlinear transformations of random variables in random or mixed effects models and its effect on inference in group-level studies or in meta-analysis. The findings are illustrated on the example of overdispersed binomial distributions, where we demonstrate considerable biases arising from standard log-odds and arcsine transformations of the estimated probability p̂, both for single-group studies and in combining results from several groups or studies in meta-analysis. Our simulations confirm that these biases are linear in ρ, for small values of ρ, the intracluster correlation coefficient. These biases do not depend on the sample sizes or the number of studies K in a meta-analysis and result in abysmal coverage of the combined effect for large K. We also propose bias-correction for the arcsine transformation. Our simulations demonstrate that this bias-correction works well for small values of the intraclass correlation. The methods are applied to two examples of meta-analyses of prevalence. © 2016 The Authors. Biometrical Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Lord, Dominique; Washington, Simon P; Ivan, John N
2005-01-01
There has been considerable research conducted over the last 20 years focused on predicting motor vehicle crashes on transportation facilities. The range of statistical models commonly applied includes binomial, Poisson, Poisson-gamma (or negative binomial), zero-inflated Poisson and negative binomial models (ZIP and ZINB), and multinomial probability models. Given the range of possible modeling approaches and the host of assumptions with each modeling approach, making an intelligent choice for modeling motor vehicle crash data is difficult. There is little discussion in the literature comparing different statistical modeling approaches, identifying which statistical models are most appropriate for modeling crash data, and providing a strong justification from basic crash principles. In the recent literature, it has been suggested that the motor vehicle crash process can successfully be modeled by assuming a dual-state data-generating process, which implies that entities (e.g., intersections, road segments, pedestrian crossings, etc.) exist in one of two states-perfectly safe and unsafe. As a result, the ZIP and ZINB are two models that have been applied to account for the preponderance of "excess" zeros frequently observed in crash count data. The objective of this study is to provide defensible guidance on how to appropriate model crash data. We first examine the motor vehicle crash process using theoretical principles and a basic understanding of the crash process. It is shown that the fundamental crash process follows a Bernoulli trial with unequal probability of independent events, also known as Poisson trials. We examine the evolution of statistical models as they apply to the motor vehicle crash process, and indicate how well they statistically approximate the crash process. We also present the theory behind dual-state process count models, and note why they have become popular for modeling crash data. A simulation experiment is then conducted to demonstrate how crash data give rise to "excess" zeros frequently observed in crash data. It is shown that the Poisson and other mixed probabilistic structures are approximations assumed for modeling the motor vehicle crash process. Furthermore, it is demonstrated that under certain (fairly common) circumstances excess zeros are observed-and that these circumstances arise from low exposure and/or inappropriate selection of time/space scales and not an underlying dual state process. In conclusion, carefully selecting the time/space scales for analysis, including an improved set of explanatory variables and/or unobserved heterogeneity effects in count regression models, or applying small-area statistical methods (observations with low exposure) represent the most defensible modeling approaches for datasets with a preponderance of zeros.
A Monte Carlo Risk Analysis of Life Cycle Cost Prediction.
1975-09-01
process which occurs with each FLU failure. With this in mind there is no alternative other than the binomial distribution. 24 GOR/SM/75D-6 With all of...Weibull distribution of failures as selected by user. For each failure of the ith FLU, the model then samples from the binomial distribution to deter- mine...which is sampled from the binomial . Neither of the two conditions for normality are met, i.e., that RTS Ie close to .5 and the number of samples close
Martínez-Ferrer, María Teresa; Ripollés, José Luís; Garcia-Marí, Ferran
2006-06-01
The spatial distribution of the citrus mealybug, Planococcus citri (Risso) (Homoptera: Pseudococcidae), was studied in citrus groves in northeastern Spain. Constant precision sampling plans were designed for all developmental stages of citrus mealybug under the fruit calyx, for late stages on fruit, and for females on trunks and main branches; more than 66, 286, and 101 data sets, respectively, were collected from nine commercial fields during 1992-1998. Dispersion parameters were determined using Taylor's power law, giving aggregated spatial patterns for citrus mealybug populations in three locations of the tree sampled. A significant relationship between the number of insects per organ and the percentage of occupied organs was established using either Wilson and Room's binomial model or Kono and Sugino's empirical formula. Constant precision (E = 0.25) sampling plans (i.e., enumerative plans) for estimating mean densities were developed using Green's equation and the two binomial models. For making management decisions, enumerative counts may be less labor-intensive than binomial sampling. Therefore, we recommend enumerative sampling plans for the use in an integrated pest management program in citrus. Required sample sizes for the range of population densities near current management thresholds, in the three plant locations calyx, fruit, and trunk were 50, 110-330, and 30, respectively. Binomial sampling, especially the empirical model, required a higher sample size to achieve equivalent levels of precision.
Cook, Richard J; Wei, Wei
2003-07-01
The design of clinical trials is typically based on marginal comparisons of a primary response under two or more treatments. The considerable gains in efficiency afforded by models conditional on one or more baseline responses has been extensively studied for Gaussian models. The purpose of this article is to present methods for the design and analysis of clinical trials in which the response is a count or a point process, and a corresponding baseline count is available prior to randomization. The methods are based on a conditional negative binomial model for the response given the baseline count and can be used to examine the effect of introducing selection criteria on power and sample size requirements. We show that designs based on this approach are more efficient than those proposed by McMahon et al. (1994).
Categorical Data Analysis Using a Skewed Weibull Regression Model
NASA Astrophysics Data System (ADS)
Caron, Renault; Sinha, Debajyoti; Dey, Dipak; Polpo, Adriano
2018-03-01
In this paper, we present a Weibull link (skewed) model for categorical response data arising from binomial as well as multinomial model. We show that, for such types of categorical data, the most commonly used models (logit, probit and complementary log-log) can be obtained as limiting cases. We further compare the proposed model with some other asymmetrical models. The Bayesian as well as frequentist estimation procedures for binomial and multinomial data responses are presented in details. The analysis of two data sets to show the efficiency of the proposed model is performed.
Lytras, Theodore; Georgakopoulou, Theano; Tsiodras, Sotirios
2018-01-01
Greece is currently experiencing a large measles outbreak, in the context of multiple similar outbreaks across Europe. We devised and applied a modified chain-binomial epidemic model, requiring very simple data, to estimate the transmission parameters of this outbreak. Model results indicate sustained measles transmission among the Greek Roma population, necessitating a targeted mass vaccination campaign to halt further spread of the epidemic. Our model may be useful for other countries facing similar measles outbreaks. PMID:29717695
Lytras, Theodore; Georgakopoulou, Theano; Tsiodras, Sotirios
2018-04-01
Greece is currently experiencing a large measles outbreak, in the context of multiple similar outbreaks across Europe. We devised and applied a modified chain-binomial epidemic model, requiring very simple data, to estimate the transmission parameters of this outbreak. Model results indicate sustained measles transmission among the Greek Roma population, necessitating a targeted mass vaccination campaign to halt further spread of the epidemic. Our model may be useful for other countries facing similar measles outbreaks.
The arcsine is asinine: the analysis of proportions in ecology.
Warton, David I; Hui, Francis K C
2011-01-01
The arcsine square root transformation has long been standard procedure when analyzing proportional data in ecology, with applications in data sets containing binomial and non-binomial response variables. Here, we argue that the arcsine transform should not be used in either circumstance. For binomial data, logistic regression has greater interpretability and higher power than analyses of transformed data. However, it is important to check the data for additional unexplained variation, i.e., overdispersion, and to account for it via the inclusion of random effects in the model if found. For non-binomial data, the arcsine transform is undesirable on the grounds of interpretability, and because it can produce nonsensical predictions. The logit transformation is proposed as an alternative approach to address these issues. Examples are presented in both cases to illustrate these advantages, comparing various methods of analyzing proportions including untransformed, arcsine- and logit-transformed linear models and logistic regression (with or without random effects). Simulations demonstrate that logistic regression usually provides a gain in power over other methods.
Use of the negative binomial-truncated Poisson distribution in thunderstorm prediction
NASA Technical Reports Server (NTRS)
Cohen, A. C.
1971-01-01
A probability model is presented for the distribution of thunderstorms over a small area given that thunderstorm events (1 or more thunderstorms) are occurring over a larger area. The model incorporates the negative binomial and truncated Poisson distributions. Probability tables for Cape Kennedy for spring, summer, and fall months and seasons are presented. The computer program used to compute these probabilities is appended.
Bianca N.I. Eskelson; Hailemariam Temesgen; Tara M. Barrett
2009-01-01
Cavity tree and snag abundance data are highly variable and contain many zero observations. We predict cavity tree and snag abundance from variables that are readily available from forest cover maps or remotely sensed data using negative binomial (NB), zero-inflated NB, and zero-altered NB (ZANB) regression models as well as nearest neighbor (NN) imputation methods....
Use of the binomial distribution to predict impairment: application in a nonclinical sample.
Axelrod, Bradley N; Wall, Jacqueline R; Estes, Bradley W
2008-01-01
A mathematical model based on the binomial theory was developed to illustrate when abnormal score variations occur by chance in a multitest battery (Ingraham & Aiken, 1996). It has been successfully used as a comparison for obtained test scores in clinical samples, but not in nonclinical samples. In the current study, this model has been applied to demographically corrected scores on the Halstead-Reitan Neuropsychological Test Battery, obtained from a sample of 94 nonclinical college students. Results found that 15% of the sample had impairments suggested by the Halstead Impairment Index, using criteria established by Reitan and Wolfson (1993). In addition, one-half of the sample obtained impaired scores on one or two tests. These results were compared to that predicted by the binomial model and found to be consistent. The model therefore serves as a useful resource for clinicians considering the probability of impaired test performance.
Hansson, Mari; Pemberton, John; Engkvist, Ola; Feierberg, Isabella; Brive, Lars; Jarvis, Philip; Zander-Balderud, Linda; Chen, Hongming
2014-06-01
High-throughput screening (HTS) is widely used in the pharmaceutical industry to identify novel chemical starting points for drug discovery projects. The current study focuses on the relationship between molecular hit rate in recent in-house HTS and four common molecular descriptors: lipophilicity (ClogP), size (heavy atom count, HEV), fraction of sp(3)-hybridized carbons (Fsp3), and fraction of molecular framework (f(MF)). The molecular hit rate is defined as the fraction of times the molecule has been assigned as active in the HTS campaigns where it has been screened. Beta-binomial statistical models were built to model the molecular hit rate as a function of these descriptors. The advantage of the beta-binomial statistical models is that the correlation between the descriptors is taken into account. Higher degree polynomial terms of the descriptors were also added into the beta-binomial statistic model to improve the model quality. The relative influence of different molecular descriptors on molecular hit rate has been estimated, taking into account that the descriptors are correlated to each other through applying beta-binomial statistical modeling. The results show that ClogP has the largest influence on the molecular hit rate, followed by Fsp3 and HEV. f(MF) has only a minor influence besides its correlation with the other molecular descriptors. © 2013 Society for Laboratory Automation and Screening.
Performance and structure of single-mode bosonic codes
NASA Astrophysics Data System (ADS)
Albert, Victor V.; Noh, Kyungjoo; Duivenvoorden, Kasper; Young, Dylan J.; Brierley, R. T.; Reinhold, Philip; Vuillot, Christophe; Li, Linshu; Shen, Chao; Girvin, S. M.; Terhal, Barbara M.; Jiang, Liang
2018-03-01
The early Gottesman, Kitaev, and Preskill (GKP) proposal for encoding a qubit in an oscillator has recently been followed by cat- and binomial-code proposals. Numerically optimized codes have also been proposed, and we introduce codes of this type here. These codes have yet to be compared using the same error model; we provide such a comparison by determining the entanglement fidelity of all codes with respect to the bosonic pure-loss channel (i.e., photon loss) after the optimal recovery operation. We then compare achievable communication rates of the combined encoding-error-recovery channel by calculating the channel's hashing bound for each code. Cat and binomial codes perform similarly, with binomial codes outperforming cat codes at small loss rates. Despite not being designed to protect against the pure-loss channel, GKP codes significantly outperform all other codes for most values of the loss rate. We show that the performance of GKP and some binomial codes increases monotonically with increasing average photon number of the codes. In order to corroborate our numerical evidence of the cat-binomial-GKP order of performance occurring at small loss rates, we analytically evaluate the quantum error-correction conditions of those codes. For GKP codes, we find an essential singularity in the entanglement fidelity in the limit of vanishing loss rate. In addition to comparing the codes, we draw parallels between binomial codes and discrete-variable systems. First, we characterize one- and two-mode binomial as well as multiqubit permutation-invariant codes in terms of spin-coherent states. Such a characterization allows us to introduce check operators and error-correction procedures for binomial codes. Second, we introduce a generalization of spin-coherent states, extending our characterization to qudit binomial codes and yielding a multiqudit code.
Hosseinpour, Mehdi; Yahaya, Ahmad Shukri; Sadullah, Ahmad Farhan
2014-01-01
Head-on crashes are among the most severe collision types and of great concern to road safety authorities. Therefore, it justifies more efforts to reduce both the frequency and severity of this collision type. To this end, it is necessary to first identify factors associating with the crash occurrence. This can be done by developing crash prediction models that relate crash outcomes to a set of contributing factors. This study intends to identify the factors affecting both the frequency and severity of head-on crashes that occurred on 448 segments of five federal roads in Malaysia. Data on road characteristics and crash history were collected on the study segments during a 4-year period between 2007 and 2010. The frequency of head-on crashes were fitted by developing and comparing seven count-data models including Poisson, standard negative binomial (NB), random-effect negative binomial, hurdle Poisson, hurdle negative binomial, zero-inflated Poisson, and zero-inflated negative binomial models. To model crash severity, a random-effect generalized ordered probit model (REGOPM) was used given a head-on crash had occurred. With respect to the crash frequency, the random-effect negative binomial (RENB) model was found to outperform the other models according to goodness of fit measures. Based on the results of the model, the variables horizontal curvature, terrain type, heavy-vehicle traffic, and access points were found to be positively related to the frequency of head-on crashes, while posted speed limit and shoulder width decreased the crash frequency. With regard to the crash severity, the results of REGOPM showed that horizontal curvature, paved shoulder width, terrain type, and side friction were associated with more severe crashes, whereas land use, access points, and presence of median reduced the probability of severe crashes. Based on the results of this study, some potential countermeasures were proposed to minimize the risk of head-on crashes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sileshi, G
2006-10-01
Researchers and regulatory agencies often make statistical inferences from insect count data using modelling approaches that assume homogeneous variance. Such models do not allow for formal appraisal of variability which in its different forms is the subject of interest in ecology. Therefore, the objectives of this paper were to (i) compare models suitable for handling variance heterogeneity and (ii) select optimal models to ensure valid statistical inferences from insect count data. The log-normal, standard Poisson, Poisson corrected for overdispersion, zero-inflated Poisson, the negative binomial distribution and zero-inflated negative binomial models were compared using six count datasets on foliage-dwelling insects and five families of soil-dwelling insects. Akaike's and Schwarz Bayesian information criteria were used for comparing the various models. Over 50% of the counts were zeros even in locally abundant species such as Ootheca bennigseni Weise, Mesoplatys ochroptera Stål and Diaecoderus spp. The Poisson model after correction for overdispersion and the standard negative binomial distribution model provided better description of the probability distribution of seven out of the 11 insects than the log-normal, standard Poisson, zero-inflated Poisson or zero-inflated negative binomial models. It is concluded that excess zeros and variance heterogeneity are common data phenomena in insect counts. If not properly modelled, these properties can invalidate the normal distribution assumptions resulting in biased estimation of ecological effects and jeopardizing the integrity of the scientific inferences. Therefore, it is recommended that statistical models appropriate for handling these data properties be selected using objective criteria to ensure efficient statistical inference.
Modeling number of claims and prediction of total claim amount
NASA Astrophysics Data System (ADS)
Acar, Aslıhan Şentürk; Karabey, Uǧur
2017-07-01
In this study we focus on annual number of claims of a private health insurance data set which belongs to a local insurance company in Turkey. In addition to Poisson model and negative binomial model, zero-inflated Poisson model and zero-inflated negative binomial model are used to model the number of claims in order to take into account excess zeros. To investigate the impact of different distributional assumptions for the number of claims on the prediction of total claim amount, predictive performances of candidate models are compared by using root mean square error (RMSE) and mean absolute error (MAE) criteria.
Modeling regional variation in riverine fish biodiversity in the Arkansas-White-Red River basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schweizer, Peter E; Jager, Yetta
The patterns of biodiversity in freshwater systems are shaped by biogeography, environmental gradients, and human-induced factors. In this study, we developed empirical models to explain fish species richness in subbasins of the Arkansas White Red River basin as a function of discharge, elevation, climate, land cover, water quality, dams, and longitudinal position. We used information-theoretic criteria to compare generalized linear mixed models and identified well-supported models. Subbasin attributes that were retained as predictors included discharge, elevation, number of downstream dams, percent forest, percent shrubland, nitrate, total phosphorus, and sediment. The random component of our models, which assumed a negative binomialmore » distribution, included spatial correlation within larger river basins and overdispersed residual variance. This study differs from previous biodiversity modeling efforts in several ways. First, obtaining likelihoods for negative binomial mixed models, and thereby avoiding reliance on quasi-likelihoods, has only recently become practical. We found the ranking of models based on these likelihood estimates to be more believable than that produced using quasi-likelihoods. Second, because we had access to a regional-scale watershed model for this river basin, we were able to include model-estimated water quality attributes as predictors. Thus, the resulting models have potential value as tools with which to evaluate the benefits of water quality improvements to fish.« less
Using the β-binomial distribution to characterize forest health
S.J. Zarnoch; R.L. Anderson; R.M. Sheffield
1995-01-01
The β-binomial distribution is suggested as a model for describing and analyzing the dichotomous data obtained from programs monitoring the health of forests in the United States. Maximum likelihood estimation of the parameters is given as well as asymptotic likelihood ratio tests. The procedure is illustrated with data on dogwood anthracnose infection (caused...
Pricing American Asian options with higher moments in the underlying distribution
NASA Astrophysics Data System (ADS)
Lo, Keng-Hsin; Wang, Kehluh; Hsu, Ming-Feng
2009-01-01
We develop a modified Edgeworth binomial model with higher moment consideration for pricing American Asian options. With lognormal underlying distribution for benchmark comparison, our algorithm is as precise as that of Chalasani et al. [P. Chalasani, S. Jha, F. Egriboyun, A. Varikooty, A refined binomial lattice for pricing American Asian options, Rev. Derivatives Res. 3 (1) (1999) 85-105] if the number of the time steps increases. If the underlying distribution displays negative skewness and leptokurtosis as often observed for stock index returns, our estimates can work better than those in Chalasani et al. [P. Chalasani, S. Jha, F. Egriboyun, A. Varikooty, A refined binomial lattice for pricing American Asian options, Rev. Derivatives Res. 3 (1) (1999) 85-105] and are very similar to the benchmarks in Hull and White [J. Hull, A. White, Efficient procedures for valuing European and American path-dependent options, J. Derivatives 1 (Fall) (1993) 21-31]. The numerical analysis shows that our modified Edgeworth binomial model can value American Asian options with greater accuracy and speed given higher moments in their underlying distribution.
Some considerations for excess zeroes in substance abuse research.
Bandyopadhyay, Dipankar; DeSantis, Stacia M; Korte, Jeffrey E; Brady, Kathleen T
2011-09-01
Count data collected in substance abuse research often come with an excess of "zeroes," which are typically handled using zero-inflated regression models. However, there is a need to consider the design aspects of those studies before using such a statistical model to ascertain the sources of zeroes. We sought to illustrate hurdle models as alternatives to zero-inflated models to validate a two-stage decision-making process in situations of "excess zeroes." We use data from a study of 45 cocaine-dependent subjects where the primary scientific question was to evaluate whether study participation influences drug-seeking behavior. The outcome, "the frequency (count) of cocaine use days per week," is bounded (ranging from 0 to 7). We fit and compare binomial, Poisson, negative binomial, and the hurdle version of these models to study the effect of gender, age, time, and study participation on cocaine use. The hurdle binomial model provides the best fit. Gender and time are not predictive of use. Higher odds of use versus no use are associated with age; however once use is experienced, odds of further use decrease with increase in age. Participation was associated with higher odds of no-cocaine use; once there is use, participation reduced the odds of further use. Age and study participation are significantly predictive of cocaine-use behavior. The two-stage decision process as modeled by a hurdle binomial model (appropriate for bounded count data with excess zeroes) provides interesting insights into the study of covariate effects on count responses of substance use, when all enrolled subjects are believed to be "at-risk" of use.
Distribution pattern of public transport passenger in Yogyakarta, Indonesia
NASA Astrophysics Data System (ADS)
Narendra, Alfa; Malkhamah, Siti; Sopha, Bertha Maya
2018-03-01
The arrival and departure distribution pattern of Trans Jogja bus passenger is one of the fundamental model for simulation. The purpose of this paper is to build models of passengers flows. This research used passengers data from January to May 2014. There is no policy that change the operation system affecting the nature of this pattern nowadays. The roads, buses, land uses, schedule, and people are relatively still the same. The data then categorized based on the direction, days, and location. Moreover, each category was fitted into some well-known discrete distributions. Those distributions are compared based on its AIC value and BIC. The chosen distribution model has the smallest AIC and BIC value and the negative binomial distribution found has the smallest AIC and BIC value. Probability mass function (PMF) plots of those models were compared to draw generic model from each categorical negative binomial distribution models. The value of accepted generic negative binomial distribution is 0.7064 and 1.4504 of mu. The minimum and maximum passenger vector value of distribution are is 0 and 41.
Differential expression analysis for RNAseq using Poisson mixed models
Sun, Shiquan; Hood, Michelle; Scott, Laura; Peng, Qinke; Mukherjee, Sayan; Tung, Jenny
2017-01-01
Abstract Identifying differentially expressed (DE) genes from RNA sequencing (RNAseq) studies is among the most common analyses in genomics. However, RNAseq DE analysis presents several statistical and computational challenges, including over-dispersed read counts and, in some settings, sample non-independence. Previous count-based methods rely on simple hierarchical Poisson models (e.g. negative binomial) to model independent over-dispersion, but do not account for sample non-independence due to relatedness, population structure and/or hidden confounders. Here, we present a Poisson mixed model with two random effects terms that account for both independent over-dispersion and sample non-independence. We also develop a scalable sampling-based inference algorithm using a latent variable representation of the Poisson distribution. With simulations, we show that our method properly controls for type I error and is generally more powerful than other widely used approaches, except in small samples (n <15) with other unfavorable properties (e.g. small effect sizes). We also apply our method to three real datasets that contain related individuals, population stratification or hidden confounders. Our results show that our method increases power in all three data compared to other approaches, though the power gain is smallest in the smallest sample (n = 6). Our method is implemented in MACAU, freely available at www.xzlab.org/software.html. PMID:28369632
O’Donnell, Katherine M.; Thompson, Frank R.; Semlitsch, Raymond D.
2015-01-01
Detectability of individual animals is highly variable and nearly always < 1; imperfect detection must be accounted for to reliably estimate population sizes and trends. Hierarchical models can simultaneously estimate abundance and effective detection probability, but there are several different mechanisms that cause variation in detectability. Neglecting temporary emigration can lead to biased population estimates because availability and conditional detection probability are confounded. In this study, we extend previous hierarchical binomial mixture models to account for multiple sources of variation in detectability. The state process of the hierarchical model describes ecological mechanisms that generate spatial and temporal patterns in abundance, while the observation model accounts for the imperfect nature of counting individuals due to temporary emigration and false absences. We illustrate our model’s potential advantages, including the allowance of temporary emigration between sampling periods, with a case study of southern red-backed salamanders Plethodon serratus. We fit our model and a standard binomial mixture model to counts of terrestrial salamanders surveyed at 40 sites during 3–5 surveys each spring and fall 2010–2012. Our models generated similar parameter estimates to standard binomial mixture models. Aspect was the best predictor of salamander abundance in our case study; abundance increased as aspect became more northeasterly. Increased time-since-rainfall strongly decreased salamander surface activity (i.e. availability for sampling), while higher amounts of woody cover objects and rocks increased conditional detection probability (i.e. probability of capture, given an animal is exposed to sampling). By explicitly accounting for both components of detectability, we increased congruence between our statistical modeling and our ecological understanding of the system. We stress the importance of choosing survey locations and protocols that maximize species availability and conditional detection probability to increase population parameter estimate reliability. PMID:25775182
I Remember You: Independence and the Binomial Model
ERIC Educational Resources Information Center
Levine, Douglas W.; Rockhill, Beverly
2006-01-01
We focus on the problem of ignoring statistical independence. A binomial experiment is used to determine whether judges could match, based on looks alone, dogs to their owners. The experimental design introduces dependencies such that the probability of a given judge correctly matching a dog and an owner changes from trial to trial. We show how…
Analysis of multiple tank car releases in train accidents.
Liu, Xiang; Liu, Chang; Hong, Yili
2017-10-01
There are annually over two million carloads of hazardous materials transported by rail in the United States. The American railroads use large blocks of tank cars to transport petroleum crude oil and other flammable liquids from production to consumption sites. Being different from roadway transport of hazardous materials, a train accident can potentially result in the derailment and release of multiple tank cars, which may result in significant consequences. The prior literature predominantly assumes that the occurrence of multiple tank car releases in a train accident is a series of independent Bernoulli processes, and thus uses the binomial distribution to estimate the total number of tank car releases given the number of tank cars derailing or damaged. This paper shows that the traditional binomial model can incorrectly estimate multiple tank car release probability by magnitudes in certain circumstances, thereby significantly affecting railroad safety and risk analysis. To bridge this knowledge gap, this paper proposes a novel, alternative Correlated Binomial (CB) model that accounts for the possible correlations of multiple tank car releases in the same train. We test three distinct correlation structures in the CB model, and find that they all outperform the conventional binomial model based on empirical tank car accident data. The analysis shows that considering tank car release correlations would result in a significantly improved fit of the empirical data than otherwise. Consequently, it is prudent to consider alternative modeling techniques when analyzing the probability of multiple tank car releases in railroad accidents. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dorazio, Robert M.; Martin, Juulien; Edwards, Holly H.
2013-01-01
The class of N-mixture models allows abundance to be estimated from repeated, point count surveys while adjusting for imperfect detection of individuals. We developed an extension of N-mixture models to account for two commonly observed phenomena in point count surveys: rarity and lack of independence induced by unmeasurable sources of variation in the detectability of individuals. Rarity increases the number of locations with zero detections in excess of those expected under simple models of abundance (e.g., Poisson or negative binomial). Correlated behavior of individuals and other phenomena, though difficult to measure, increases the variation in detection probabilities among surveys. Our extension of N-mixture models includes a hurdle model of abundance and a beta-binomial model of detectability that accounts for additional (extra-binomial) sources of variation in detections among surveys. As an illustration, we fit this model to repeated point counts of the West Indian manatee, which was observed in a pilot study using aerial surveys. Our extension of N-mixture models provides increased flexibility. The effects of different sets of covariates may be estimated for the probability of occurrence of a species, for its mean abundance at occupied locations, and for its detectability.
Dorazio, Robert M; Martin, Julien; Edwards, Holly H
2013-07-01
The class of N-mixture models allows abundance to be estimated from repeated, point count surveys while adjusting for imperfect detection of individuals. We developed an extension of N-mixture models to account for two commonly observed phenomena in point count surveys: rarity and lack of independence induced by unmeasurable sources of variation in the detectability of individuals. Rarity increases the number of locations with zero detections in excess of those expected under simple models of abundance (e.g., Poisson or negative binomial). Correlated behavior of individuals and other phenomena, though difficult to measure, increases the variation in detection probabilities among surveys. Our extension of N-mixture models includes a hurdle model of abundance and a beta-binomial model of detectability that accounts for additional (extra-binomial) sources of variation in detections among surveys. As an illustration, we fit this model to repeated point counts of the West Indian manatee, which was observed in a pilot study using aerial surveys. Our extension of N-mixture models provides increased flexibility. The effects of different sets of covariates may be estimated for the probability of occurrence of a species, for its mean abundance at occupied locations, and for its detectability.
Abstract knowledge versus direct experience in processing of binomial expressions
Morgan, Emily; Levy, Roger
2016-01-01
We ask whether word order preferences for binomial expressions of the form A and B (e.g. bread and butter) are driven by abstract linguistic knowledge of ordering constraints referencing the semantic, phonological, and lexical properties of the constituent words, or by prior direct experience with the specific items in questions. Using forced-choice and self-paced reading tasks, we demonstrate that online processing of never-before-seen binomials is influenced by abstract knowledge of ordering constraints, which we estimate with a probabilistic model. In contrast, online processing of highly frequent binomials is primarily driven by direct experience, which we estimate from corpus frequency counts. We propose a trade-off wherein processing of novel expressions relies upon abstract knowledge, while reliance upon direct experience increases with increased exposure to an expression. Our findings support theories of language processing in which both compositional generation and direct, holistic reuse of multi-word expressions play crucial roles. PMID:27776281
Binomial test statistics using Psi functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, Kimiko o
2007-01-01
For the negative binomial model (probability generating function (p + 1 - pt){sup -k}) a logarithmic derivative is the Psi function difference {psi}(k + x) - {psi}(k); this and its derivatives lead to a test statistic to decide on the validity of a specified model. The test statistic uses a data base so there exists a comparison available between theory and application. Note that the test function is not dominated by outliers. Applications to (i) Fisher's tick data, (ii) accidents data, (iii) Weldon's dice data are included.
Burr, T L
2000-05-01
This paper examines a quasi-equilibrium theory of rare alleles for subdivided populations that follow an island-model version of the Wright-Fisher model of evolution. All mutations are assumed to create new alleles. We present four results: (1) conditions for the theory to apply are formally established using properties of the moments of the binomial distribution; (2) approximations currently in the literature can be replaced with exact results that are in better agreement with our simulations; (3) a modified maximum likelihood estimator of migration rate exhibits the same good performance on island-model data or on data simulated from the multinomial mixed with the Dirichlet distribution, and (4) a connection between the rare-allele method and the Ewens Sampling Formula for the infinite-allele mutation model is made. This introduces a new and simpler proof for the expected number of alleles implied by the Ewens Sampling Formula. Copyright 2000 Academic Press.
Zipkin, Elise F.; Leirness, Jeffery B.; Kinlan, Brian P.; O'Connell, Allan F.; Silverman, Emily D.
2014-01-01
Determining appropriate statistical distributions for modeling animal count data is important for accurate estimation of abundance, distribution, and trends. In the case of sea ducks along the U.S. Atlantic coast, managers want to estimate local and regional abundance to detect and track population declines, to define areas of high and low use, and to predict the impact of future habitat change on populations. In this paper, we used a modified marked point process to model survey data that recorded flock sizes of Common eiders, Long-tailed ducks, and Black, Surf, and White-winged scoters. The data come from an experimental aerial survey, conducted by the United States Fish & Wildlife Service (USFWS) Division of Migratory Bird Management, during which east-west transects were flown along the Atlantic Coast from Maine to Florida during the winters of 2009–2011. To model the number of flocks per transect (the points), we compared the fit of four statistical distributions (zero-inflated Poisson, zero-inflated geometric, zero-inflated negative binomial and negative binomial) to data on the number of species-specific sea duck flocks that were recorded for each transect flown. To model the flock sizes (the marks), we compared the fit of flock size data for each species to seven statistical distributions: positive Poisson, positive negative binomial, positive geometric, logarithmic, discretized lognormal, zeta and Yule–Simon. Akaike’s Information Criterion and Vuong’s closeness tests indicated that the negative binomial and discretized lognormal were the best distributions for all species for the points and marks, respectively. These findings have important implications for estimating sea duck abundances as the discretized lognormal is a more skewed distribution than the Poisson and negative binomial, which are frequently used to model avian counts; the lognormal is also less heavy-tailed than the power law distributions (e.g., zeta and Yule–Simon), which are becoming increasingly popular for group size modeling. Choosing appropriate statistical distributions for modeling flock size data is fundamental to accurately estimating population summaries, determining required survey effort, and assessing and propagating uncertainty through decision-making processes.
Selecting a distributional assumption for modelling relative densities of benthic macroinvertebrates
Gray, B.R.
2005-01-01
The selection of a distributional assumption suitable for modelling macroinvertebrate density data is typically challenging. Macroinvertebrate data often exhibit substantially larger variances than expected under a standard count assumption, that of the Poisson distribution. Such overdispersion may derive from multiple sources, including heterogeneity of habitat (historically and spatially), differing life histories for organisms collected within a single collection in space and time, and autocorrelation. Taken to extreme, heterogeneity of habitat may be argued to explain the frequent large proportions of zero observations in macroinvertebrate data. Sampling locations may consist of habitats defined qualitatively as either suitable or unsuitable. The former category may yield random or stochastic zeroes and the latter structural zeroes. Heterogeneity among counts may be accommodated by treating the count mean itself as a random variable, while extra zeroes may be accommodated using zero-modified count assumptions, including zero-inflated and two-stage (or hurdle) approaches. These and linear assumptions (following log- and square root-transformations) were evaluated using 9 years of mayfly density data from a 52 km, ninth-order reach of the Upper Mississippi River (n = 959). The data exhibited substantial overdispersion relative to that expected under a Poisson assumption (i.e. variance:mean ratio = 23 ??? 1), and 43% of the sampling locations yielded zero mayflies. Based on the Akaike Information Criterion (AIC), count models were improved most by treating the count mean as a random variable (via a Poisson-gamma distributional assumption) and secondarily by zero modification (i.e. improvements in AIC values = 9184 units and 47-48 units, respectively). Zeroes were underestimated by the Poisson, log-transform and square root-transform models, slightly by the standard negative binomial model but not by the zero-modified models (61%, 24%, 32%, 7%, and 0%, respectively). However, the zero-modified Poisson models underestimated small counts (1 ??? y ??? 4) and overestimated intermediate counts (7 ??? y ??? 23). Counts greater than zero were estimated well by zero-modified negative binomial models, while counts greater than one were also estimated well by the standard negative binomial model. Based on AIC and percent zero estimation criteria, the two-stage and zero-inflated models performed similarly. The above inferences were largely confirmed when the models were used to predict values from a separate, evaluation data set (n = 110). An exception was that, using the evaluation data set, the standard negative binomial model appeared superior to its zero-modified counterparts using the AIC (but not percent zero criteria). This and other evidence suggest that a negative binomial distributional assumption should be routinely considered when modelling benthic macroinvertebrate data from low flow environments. Whether negative binomial models should themselves be routinely examined for extra zeroes requires, from a statistical perspective, more investigation. However, this question may best be answered by ecological arguments that may be specific to the sampled species and locations. ?? 2004 Elsevier B.V. All rights reserved.
Moineddin, Rahim; Meaney, Christopher; Agha, Mohammad; Zagorski, Brandon; Glazier, Richard Henry
2011-08-19
Emergency departments are medical treatment facilities, designed to provide episodic care to patients suffering from acute injuries and illnesses as well as patients who are experiencing sporadic flare-ups of underlying chronic medical conditions which require immediate attention. Supply and demand for emergency department services varies across geographic regions and time. Some persons do not rely on the service at all whereas; others use the service on repeated occasions. Issues regarding increased wait times for services and crowding illustrate the need to investigate which factors are associated with increased frequency of emergency department utilization. The evidence from this study can help inform policy makers on the appropriate mix of supply and demand targeted health care policies necessary to ensure that patients receive appropriate health care delivery in an efficient and cost-effective manner. The purpose of this report is to assess those factors resulting in increased demand for emergency department services in Ontario. We assess how utilization rates vary according to the severity of patient presentation in the emergency department. We are specifically interested in the impact that access to primary care physicians has on the demand for emergency department services. Additionally, we wish to investigate these trends using a series of novel regression models for count outcomes which have yet to be employed in the domain of emergency medical research. Data regarding the frequency of emergency department visits for the respondents of Canadian Community Health Survey (CCHS) during our study interval (2003-2005) are obtained from the National Ambulatory Care Reporting System (NACRS). Patients' emergency department utilizations were linked with information from the Canadian Community Health Survey (CCHS) which provides individual level medical, socio-demographic, psychological and behavioral information for investigating predictors of increased emergency department utilization. Six different multiple regression models for count data were fitted to assess the influence of predictors on demand for emergency department services, including: Poisson, Negative Binomial, Zero-Inflated Poisson, Zero-Inflated Negative Binomial, Hurdle Poisson, and Hurdle Negative Binomial. Comparison of competing models was assessed by the Vuong test statistic. The CCHS cycle 2.1 respondents were a roughly equal mix of males (50.4%) and females (49.6%). The majority (86.2%) were young-middle aged adults between the ages of 20-64, living in predominantly urban environments (85.9%), with mid-high household incomes (92.2%) and well-educated, receiving at least a high-school diploma (84.1%). Many participants reported no chronic disease (51.9%), fell into a small number (0-5) of ambulatory diagnostic groups (62.3%), and perceived their health status as good/excellent (88.1%); however, were projected to have high Resource Utilization Band levels of health resource utilization (68.2%). These factors were largely stable for CCHS cycle 3.1 respondents. Factors influencing demand for emergency department services varied according to the severity of triage scores at initial presentation. For example, although a non-significant predictor of the odds of emergency department utilization in high severity cases, access to a primary care physician was a statistically significant predictor of the likelihood of emergency department utilization (OR: 0.69; 95% CI OR: 0.63-0.75) and the rate of emergency department utilization (RR: 0.57; 95% CI RR: 0.50-0.66) in low severity cases. Using a theoretically appropriate hurdle negative binomial regression model this unique study illustrates that access to a primary care physician is an important predictor of both the odds and rate of emergency department utilization in Ontario. Restructuring primary care services, with aims of increasing access to undersupplied populations may result in decreased emergency department utilization rates by approximately 43% for low severity triage level cases.
Modelling parasite aggregation: disentangling statistical and ecological approaches.
Yakob, Laith; Soares Magalhães, Ricardo J; Gray, Darren J; Milinovich, Gabriel; Wardrop, Nicola; Dunning, Rebecca; Barendregt, Jan; Bieri, Franziska; Williams, Gail M; Clements, Archie C A
2014-05-01
The overdispersion in macroparasite infection intensity among host populations is commonly simulated using a constant negative binomial aggregation parameter. We describe an alternative to utilising the negative binomial approach and demonstrate important disparities in intervention efficacy projections that can come about from opting for pattern-fitting models that are not process-explicit. We present model output in the context of the epidemiology and control of soil-transmitted helminths due to the significant public health burden imposed by these parasites, but our methods are applicable to other infections with demonstrable aggregation in parasite numbers among hosts. Copyright © 2014. Published by Elsevier Ltd.
Analysis of railroad tank car releases using a generalized binomial model.
Liu, Xiang; Hong, Yili
2015-11-01
The United States is experiencing an unprecedented boom in shale oil production, leading to a dramatic growth in petroleum crude oil traffic by rail. In 2014, U.S. railroads carried over 500,000 tank carloads of petroleum crude oil, up from 9500 in 2008 (a 5300% increase). In light of continual growth in crude oil by rail, there is an urgent national need to manage this emerging risk. This need has been underscored in the wake of several recent crude oil release incidents. In contrast to highway transport, which usually involves a tank trailer, a crude oil train can carry a large number of tank cars, having the potential for a large, multiple-tank-car release incident. Previous studies exclusively assumed that railroad tank car releases in the same train accident are mutually independent, thereby estimating the number of tank cars releasing given the total number of tank cars derailed based on a binomial model. This paper specifically accounts for dependent tank car releases within a train accident. We estimate the number of tank cars releasing given the number of tank cars derailed based on a generalized binomial model. The generalized binomial model provides a significantly better description for the empirical tank car accident data through our numerical case study. This research aims to provide a new methodology and new insights regarding the further development of risk management strategies for improving railroad crude oil transportation safety. Copyright © 2015 Elsevier Ltd. All rights reserved.
Baldwin, R.A.; Bender, L.C.
2008-01-01
A clear understanding of habitat associations of martens (Martes americana) is necessary to effectively manage and monitor populations. However, this information was lacking for martens in most of their southern range, particularly during the summer season. We studied the distribution and habitat correlates of martens from 2004 to 2006 in Rocky Mountain National Park (RMNP) across 3 spatial scales: site-specific, home-range, and landscape. We used remote-sensored cameras from early August through late October to inventory occurrence of martens and modeled occurrence as a function of habitat and landscape variables using binary response (BR) and binomial count (BC) logistic regression, and occupancy modeling (OM). We also assessed which was the most appropriate modeling technique for martens in RMNP. Of the 3 modeling techniques, OM appeared to be most appropriate given the explanatory power of derived models and its incorporation of detection probabilities, although the results from BR and BC provided corroborating evidence of important habitat correlates. Location of sites in the western portion of the park, riparian mixed-conifer stands, and mixed-conifer with aspen patches were most frequently positively correlated with occurrence of martens, whereas more xeric and open sites were avoided. Additionally, OM yielded unbiased occupancy values ranging from 91% to 100% and 20% to 30% for the western and eastern portions of RMNP, respectively. ?? 2008 American Society of Mammalogists.
Turi, Christina E; Murch, Susan J
2013-07-09
Ethnobotanical research and the study of plants used for rituals, ceremonies and to connect with the spirit world have led to the discovery of many novel psychoactive compounds such as nicotine, caffeine, and cocaine. In North America, spiritual and ceremonial uses of plants are well documented and can be accessed online via the University of Michigan's Native American Ethnobotany Database. The objective of the study was to compare Residual, Bayesian, Binomial and Imprecise Dirichlet Model (IDM) analyses of ritual, ceremonial and spiritual plants in Moerman's ethnobotanical database and to identify genera that may be good candidates for the discovery of novel psychoactive compounds. The database was queried with the following format "Family Name AND Ceremonial OR Spiritual" for 263 North American botanical families. Spiritual and ceremonial flora consisted of 86 families with 517 species belonging to 292 genera. Spiritual taxa were then grouped further into ceremonial medicines and items categories. Residual, Bayesian, Binomial and IDM analysis were performed to identify over and under-utilized families. The 4 statistical approaches were in good agreement when identifying under-utilized families but large families (>393 species) were underemphasized by Binomial, Bayesian and IDM approaches for over-utilization. Residual, Binomial, and IDM analysis identified similar families as over-utilized in the medium (92-392 species) and small (<92 species) classes. The families Apiaceae, Asteraceae, Ericacea, Pinaceae and Salicaceae were identified as significantly over-utilized as ceremonial medicines in medium and large sized families. Analysis of genera within the Apiaceae and Asteraceae suggest that the genus Ligusticum and Artemisia are good candidates for facilitating the discovery of novel psychoactive compounds. The 4 statistical approaches were not consistent in the selection of over-utilization of flora. Residual analysis revealed overall trends that were supported by Binomial analysis when separated into small, medium and large families. The Bayesian, Binomial and IDM approaches identified different genera as potentially important. Species belonging to the genus Artemisia and Ligusticum were most consistently identified and may be valuable in future studies of the ethnopharmacology. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Small area estimation for estimating the number of infant mortality in West Java, Indonesia
NASA Astrophysics Data System (ADS)
Anggreyani, Arie; Indahwati, Kurnia, Anang
2016-02-01
Demographic and Health Survey Indonesia (DHSI) is a national designed survey to provide information regarding birth rate, mortality rate, family planning and health. DHSI was conducted by BPS in cooperation with National Population and Family Planning Institution (BKKBN), Indonesia Ministry of Health (KEMENKES) and USAID. Based on the publication of DHSI 2012, the infant mortality rate for a period of five years before survey conducted is 32 for 1000 birth lives. In this paper, Small Area Estimation (SAE) is used to estimate the number of infant mortality in districts of West Java. SAE is a special model of Generalized Linear Mixed Models (GLMM). In this case, the incidence of infant mortality is a Poisson distribution which has equdispersion assumption. The methods to handle overdispersion are binomial negative and quasi-likelihood model. Based on the results of analysis, quasi-likelihood model is the best model to overcome overdispersion problem. The basic model of the small area estimation used basic area level model. Mean square error (MSE) which based on resampling method is used to measure the accuracy of small area estimates.
Site occupancy models with heterogeneous detection probabilities
Royle, J. Andrew
2006-01-01
Models for estimating the probability of occurrence of a species in the presence of imperfect detection are important in many ecological disciplines. In these ?site occupancy? models, the possibility of heterogeneity in detection probabilities among sites must be considered because variation in abundance (and other factors) among sampled sites induces variation in detection probability (p). In this article, I develop occurrence probability models that allow for heterogeneous detection probabilities by considering several common classes of mixture distributions for p. For any mixing distribution, the likelihood has the general form of a zero-inflated binomial mixture for which inference based upon integrated likelihood is straightforward. A recent paper by Link (2003, Biometrics 59, 1123?1130) demonstrates that in closed population models used for estimating population size, different classes of mixture distributions are indistinguishable from data, yet can produce very different inferences about population size. I demonstrate that this problem can also arise in models for estimating site occupancy in the presence of heterogeneous detection probabilities. The implications of this are discussed in the context of an application to avian survey data and the development of animal monitoring programs.
Differential expression analysis for RNAseq using Poisson mixed models.
Sun, Shiquan; Hood, Michelle; Scott, Laura; Peng, Qinke; Mukherjee, Sayan; Tung, Jenny; Zhou, Xiang
2017-06-20
Identifying differentially expressed (DE) genes from RNA sequencing (RNAseq) studies is among the most common analyses in genomics. However, RNAseq DE analysis presents several statistical and computational challenges, including over-dispersed read counts and, in some settings, sample non-independence. Previous count-based methods rely on simple hierarchical Poisson models (e.g. negative binomial) to model independent over-dispersion, but do not account for sample non-independence due to relatedness, population structure and/or hidden confounders. Here, we present a Poisson mixed model with two random effects terms that account for both independent over-dispersion and sample non-independence. We also develop a scalable sampling-based inference algorithm using a latent variable representation of the Poisson distribution. With simulations, we show that our method properly controls for type I error and is generally more powerful than other widely used approaches, except in small samples (n <15) with other unfavorable properties (e.g. small effect sizes). We also apply our method to three real datasets that contain related individuals, population stratification or hidden confounders. Our results show that our method increases power in all three data compared to other approaches, though the power gain is smallest in the smallest sample (n = 6). Our method is implemented in MACAU, freely available at www.xzlab.org/software.html. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Dahabreh, Issa J; Trikalinos, Thomas A; Lau, Joseph; Schmid, Christopher H
2017-03-01
To compare statistical methods for meta-analysis of sensitivity and specificity of medical tests (e.g., diagnostic or screening tests). We constructed a database of PubMed-indexed meta-analyses of test performance from which 2 × 2 tables for each included study could be extracted. We reanalyzed the data using univariate and bivariate random effects models fit with inverse variance and maximum likelihood methods. Analyses were performed using both normal and binomial likelihoods to describe within-study variability. The bivariate model using the binomial likelihood was also fit using a fully Bayesian approach. We use two worked examples-thoracic computerized tomography to detect aortic injury and rapid prescreening of Papanicolaou smears to detect cytological abnormalities-to highlight that different meta-analysis approaches can produce different results. We also present results from reanalysis of 308 meta-analyses of sensitivity and specificity. Models using the normal approximation produced sensitivity and specificity estimates closer to 50% and smaller standard errors compared to models using the binomial likelihood; absolute differences of 5% or greater were observed in 12% and 5% of meta-analyses for sensitivity and specificity, respectively. Results from univariate and bivariate random effects models were similar, regardless of estimation method. Maximum likelihood and Bayesian methods produced almost identical summary estimates under the bivariate model; however, Bayesian analyses indicated greater uncertainty around those estimates. Bivariate models produced imprecise estimates of the between-study correlation of sensitivity and specificity. Differences between methods were larger with increasing proportion of studies that were small or required a continuity correction. The binomial likelihood should be used to model within-study variability. Univariate and bivariate models give similar estimates of the marginal distributions for sensitivity and specificity. Bayesian methods fully quantify uncertainty and their ability to incorporate external evidence may be useful for imprecisely estimated parameters. Copyright © 2017 Elsevier Inc. All rights reserved.
Shirazi, Mohammadali; Dhavala, Soma Sekhar; Lord, Dominique; Geedipally, Srinivas Reddy
2017-10-01
Safety analysts usually use post-modeling methods, such as the Goodness-of-Fit statistics or the Likelihood Ratio Test, to decide between two or more competitive distributions or models. Such metrics require all competitive distributions to be fitted to the data before any comparisons can be accomplished. Given the continuous growth in introducing new statistical distributions, choosing the best one using such post-modeling methods is not a trivial task, in addition to all theoretical or numerical issues the analyst may face during the analysis. Furthermore, and most importantly, these measures or tests do not provide any intuitions into why a specific distribution (or model) is preferred over another (Goodness-of-Logic). This paper ponders into these issues by proposing a methodology to design heuristics for Model Selection based on the characteristics of data, in terms of descriptive summary statistics, before fitting the models. The proposed methodology employs two analytic tools: (1) Monte-Carlo Simulations and (2) Machine Learning Classifiers, to design easy heuristics to predict the label of the 'most-likely-true' distribution for analyzing data. The proposed methodology was applied to investigate when the recently introduced Negative Binomial Lindley (NB-L) distribution is preferred over the Negative Binomial (NB) distribution. Heuristics were designed to select the 'most-likely-true' distribution between these two distributions, given a set of prescribed summary statistics of data. The proposed heuristics were successfully compared against classical tests for several real or observed datasets. Not only they are easy to use and do not need any post-modeling inputs, but also, using these heuristics, the analyst can attain useful information about why the NB-L is preferred over the NB - or vice versa- when modeling data. Copyright © 2017 Elsevier Ltd. All rights reserved.
Statistical inference involving binomial and negative binomial parameters.
García-Pérez, Miguel A; Núñez-Antón, Vicente
2009-05-01
Statistical inference about two binomial parameters implies that they are both estimated by binomial sampling. There are occasions in which one aims at testing the equality of two binomial parameters before and after the occurrence of the first success along a sequence of Bernoulli trials. In these cases, the binomial parameter before the first success is estimated by negative binomial sampling whereas that after the first success is estimated by binomial sampling, and both estimates are related. This paper derives statistical tools to test two hypotheses, namely, that both binomial parameters equal some specified value and that both parameters are equal though unknown. Simulation studies are used to show that in small samples both tests are accurate in keeping the nominal Type-I error rates, and also to determine sample size requirements to detect large, medium, and small effects with adequate power. Additional simulations also show that the tests are sufficiently robust to certain violations of their assumptions.
Estimating relative risks for common outcome using PROC NLP.
Yu, Binbing; Wang, Zhuoqiao
2008-05-01
In cross-sectional or cohort studies with binary outcomes, it is biologically interpretable and of interest to estimate the relative risk or prevalence ratio, especially when the response rates are not rare. Several methods have been used to estimate the relative risk, among which the log-binomial models yield the maximum likelihood estimate (MLE) of the parameters. Because of restrictions on the parameter space, the log-binomial models often run into convergence problems. Some remedies, e.g., the Poisson and Cox regressions, have been proposed. However, these methods may give out-of-bound predicted response probabilities. In this paper, a new computation method using the SAS Nonlinear Programming (NLP) procedure is proposed to find the MLEs. The proposed NLP method was compared to the COPY method, a modified method to fit the log-binomial model. Issues in the implementation are discussed. For illustration, both methods were applied to data on the prevalence of microalbuminuria (micro-protein leakage into urine) for kidney disease patients from the Diabetes Control and Complications Trial. The sample SAS macro for calculating relative risk is provided in the appendix.
Binomial tree method for pricing a regime-switching volatility stock loans
NASA Astrophysics Data System (ADS)
Putri, Endah R. M.; Zamani, Muhammad S.; Utomo, Daryono B.
2018-03-01
Binomial model with regime switching may represents the price of stock loan which follows the stochastic process. Stock loan is one of alternative that appeal investors to get the liquidity without selling the stock. The stock loan mechanism resembles that of American call option when someone can exercise any time during the contract period. From the resembles both of mechanism, determination price of stock loan can be interpreted from the model of American call option. The simulation result shows the behavior of the price of stock loan under a regime-switching with respect to various interest rate and maturity.
Zero-truncated negative binomial - Erlang distribution
NASA Astrophysics Data System (ADS)
Bodhisuwan, Winai; Pudprommarat, Chookait; Bodhisuwan, Rujira; Saothayanun, Luckhana
2017-11-01
The zero-truncated negative binomial-Erlang distribution is introduced. It is developed from negative binomial-Erlang distribution. In this work, the probability mass function is derived and some properties are included. The parameters of the zero-truncated negative binomial-Erlang distribution are estimated by using the maximum likelihood estimation. Finally, the proposed distribution is applied to real data, the number of methamphetamine in the Bangkok, Thailand. Based on the results, it shows that the zero-truncated negative binomial-Erlang distribution provided a better fit than the zero-truncated Poisson, zero-truncated negative binomial, zero-truncated generalized negative-binomial and zero-truncated Poisson-Lindley distributions for this data.
Modeling avian abundance from replicated counts using binomial mixture models
Kery, Marc; Royle, J. Andrew; Schmid, Hans
2005-01-01
Abundance estimation in ecology is usually accomplished by capture–recapture, removal, or distance sampling methods. These may be hard to implement at large spatial scales. In contrast, binomial mixture models enable abundance estimation without individual identification, based simply on temporally and spatially replicated counts. Here, we evaluate mixture models using data from the national breeding bird monitoring program in Switzerland, where some 250 1-km2 quadrats are surveyed using the territory mapping method three times during each breeding season. We chose eight species with contrasting distribution (wide–narrow), abundance (high–low), and detectability (easy–difficult). Abundance was modeled as a random effect with a Poisson or negative binomial distribution, with mean affected by forest cover, elevation, and route length. Detectability was a logit-linear function of survey date, survey date-by-elevation, and sampling effort (time per transect unit). Resulting covariate effects and parameter estimates were consistent with expectations. Detectability per territory (for three surveys) ranged from 0.66 to 0.94 (mean 0.84) for easy species, and from 0.16 to 0.83 (mean 0.53) for difficult species, depended on survey effort for two easy and all four difficult species, and changed seasonally for three easy and three difficult species. Abundance was positively related to route length in three high-abundance and one low-abundance (one easy and three difficult) species, and increased with forest cover in five forest species, decreased for two nonforest species, and was unaffected for a generalist species. Abundance estimates under the most parsimonious mixture models were between 1.1 and 8.9 (median 1.8) times greater than estimates based on territory mapping; hence, three surveys were insufficient to detect all territories for each species. We conclude that binomial mixture models are an important new approach for estimating abundance corrected for detectability when only repeated-count data are available. Future developments envisioned include estimation of trend, occupancy, and total regional abundance.
Martina, R; Kay, R; van Maanen, R; Ridder, A
2015-01-01
Clinical studies in overactive bladder have traditionally used analysis of covariance or nonparametric methods to analyse the number of incontinence episodes and other count data. It is known that if the underlying distributional assumptions of a particular parametric method do not hold, an alternative parametric method may be more efficient than a nonparametric one, which makes no assumptions regarding the underlying distribution of the data. Therefore, there are advantages in using methods based on the Poisson distribution or extensions of that method, which incorporate specific features that provide a modelling framework for count data. One challenge with count data is overdispersion, but methods are available that can account for this through the introduction of random effect terms in the modelling, and it is this modelling framework that leads to the negative binomial distribution. These models can also provide clinicians with a clearer and more appropriate interpretation of treatment effects in terms of rate ratios. In this paper, the previously used parametric and non-parametric approaches are contrasted with those based on Poisson regression and various extensions in trials evaluating solifenacin and mirabegron in patients with overactive bladder. In these applications, negative binomial models are seen to fit the data well. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Handayani, Dewi; Cahyaning Putri, Hera; Mahmudah, AMH
2017-12-01
Solo-Ngawi toll road project is part of the mega project of the Trans Java toll road development initiated by the government and is still under construction until now. PT Solo Ngawi Jaya (SNJ) as the Solo-Ngawi toll management company needs to determine the toll fare that is in accordance with the business plan. The determination of appropriate toll rates will affect progress in regional economic sustainability and decrease the traffic congestion. These policy instruments is crucial for achieving environmentally sustainable transport. Therefore, the objective of this research is to find out how the toll fare sensitivity of Solo-Ngawi toll road based on Willingness To Pay (WTP). Primary data was obtained by distributing stated preference questionnaires to four wheeled vehicle users in Kartasura-Palang Joglo artery road segment. Further data obtained will be analysed with logit and probit model. Based on the analysis, it is found that the effect of fare change on the amount of WTP on the binomial logit model is more sensitive than the probit model on the same travel conditions. The range of tariff change against values of WTP on the binomial logit model is 20% greater than the range of values in the probit model . On the other hand, the probability results of the binomial logit model and the binary probit have no significant difference (less than 1%).
Casals, Martí; Girabent-Farrés, Montserrat; Carrasco, Josep L
2014-01-01
Modeling count and binary data collected in hierarchical designs have increased the use of Generalized Linear Mixed Models (GLMMs) in medicine. This article presents a systematic review of the application and quality of results and information reported from GLMMs in the field of clinical medicine. A search using the Web of Science database was performed for published original articles in medical journals from 2000 to 2012. The search strategy included the topic "generalized linear mixed models","hierarchical generalized linear models", "multilevel generalized linear model" and as a research domain we refined by science technology. Papers reporting methodological considerations without application, and those that were not involved in clinical medicine or written in English were excluded. A total of 443 articles were detected, with an increase over time in the number of articles. In total, 108 articles fit the inclusion criteria. Of these, 54.6% were declared to be longitudinal studies, whereas 58.3% and 26.9% were defined as repeated measurements and multilevel design, respectively. Twenty-two articles belonged to environmental and occupational public health, 10 articles to clinical neurology, 8 to oncology, and 7 to infectious diseases and pediatrics. The distribution of the response variable was reported in 88% of the articles, predominantly Binomial (n = 64) or Poisson (n = 22). Most of the useful information about GLMMs was not reported in most cases. Variance estimates of random effects were described in only 8 articles (9.2%). The model validation, the method of covariate selection and the method of goodness of fit were only reported in 8.0%, 36.8% and 14.9% of the articles, respectively. During recent years, the use of GLMMs in medical literature has increased to take into account the correlation of data when modeling qualitative data or counts. According to the current recommendations, the quality of reporting has room for improvement regarding the characteristics of the analysis, estimation method, validation, and selection of the model.
An examination of sources of sensitivity of consumer surplus estimates in travel cost models.
Blaine, Thomas W; Lichtkoppler, Frank R; Bader, Timothy J; Hartman, Travis J; Lucente, Joseph E
2015-03-15
We examine sensitivity of estimates of recreation demand using the Travel Cost Method (TCM) to four factors. Three of the four have been routinely and widely discussed in the TCM literature: a) Poisson verses negative binomial regression; b) application of Englin correction to account for endogenous stratification; c) truncation of the data set to eliminate outliers. A fourth issue we address has not been widely modeled: the potential effect on recreation demand of the interaction between income and travel cost. We provide a straightforward comparison of all four factors, analyzing the impact of each on regression parameters and consumer surplus estimates. Truncation has a modest effect on estimates obtained from the Poisson models but a radical effect on the estimates obtained by way of the negative binomial. Inclusion of an income-travel cost interaction term generally produces a more conservative but not a statistically significantly different estimate of consumer surplus in both Poisson and negative binomial models. It also generates broader confidence intervals. Application of truncation, the Englin correction and the income-travel cost interaction produced the most conservative estimates of consumer surplus and eliminated the statistical difference between the Poisson and the negative binomial. Use of the income-travel cost interaction term reveals that for visitors who face relatively low travel costs, the relationship between income and travel demand is negative, while it is positive for those who face high travel costs. This provides an explanation of the ambiguities on the findings regarding the role of income widely observed in the TCM literature. Our results suggest that policies that reduce access to publicly owned resources inordinately impact local low income recreationists and are contrary to environmental justice. Copyright © 2014 Elsevier Ltd. All rights reserved.
Preisser, John S; Long, D Leann; Stamm, John W
2017-01-01
Marginalized zero-inflated count regression models have recently been introduced for the statistical analysis of dental caries indices and other zero-inflated count data as alternatives to traditional zero-inflated and hurdle models. Unlike the standard approaches, the marginalized models directly estimate overall exposure or treatment effects by relating covariates to the marginal mean count. This article discusses model interpretation and model class choice according to the research question being addressed in caries research. Two data sets, one consisting of fictional dmft counts in 2 groups and the other on DMFS among schoolchildren from a randomized clinical trial comparing 3 toothpaste formulations to prevent incident dental caries, are analyzed with negative binomial hurdle, zero-inflated negative binomial, and marginalized zero-inflated negative binomial models. In the first example, estimates of treatment effects vary according to the type of incidence rate ratio (IRR) estimated by the model. Estimates of IRRs in the analysis of the randomized clinical trial were similar despite their distinctive interpretations. The choice of statistical model class should match the study's purpose, while accounting for the broad decline in children's caries experience, such that dmft and DMFS indices more frequently generate zero counts. Marginalized (marginal mean) models for zero-inflated count data should be considered for direct assessment of exposure effects on the marginal mean dental caries count in the presence of high frequencies of zero counts. © 2017 S. Karger AG, Basel.
Preisser, John S.; Long, D. Leann; Stamm, John W.
2017-01-01
Marginalized zero-inflated count regression models have recently been introduced for the statistical analysis of dental caries indices and other zero-inflated count data as alternatives to traditional zero-inflated and hurdle models. Unlike the standard approaches, the marginalized models directly estimate overall exposure or treatment effects by relating covariates to the marginal mean count. This article discusses model interpretation and model class choice according to the research question being addressed in caries research. Two datasets, one consisting of fictional dmft counts in two groups and the other on DMFS among schoolchildren from a randomized clinical trial (RCT) comparing three toothpaste formulations to prevent incident dental caries, are analysed with negative binomial hurdle (NBH), zero-inflated negative binomial (ZINB), and marginalized zero-inflated negative binomial (MZINB) models. In the first example, estimates of treatment effects vary according to the type of incidence rate ratio (IRR) estimated by the model. Estimates of IRRs in the analysis of the RCT were similar despite their distinctive interpretations. Choice of statistical model class should match the study’s purpose, while accounting for the broad decline in children’s caries experience, such that dmft and DMFS indices more frequently generate zero counts. Marginalized (marginal mean) models for zero-inflated count data should be considered for direct assessment of exposure effects on the marginal mean dental caries count in the presence of high frequencies of zero counts. PMID:28291962
Hosseinpour, Mehdi; Pour, Mehdi Hossein; Prasetijo, Joewono; Yahaya, Ahmad Shukri; Ghadiri, Seyed Mohammad Reza
2013-01-01
The objective of this study was to examine the effects of various roadway characteristics on the incidence of pedestrian-vehicle crashes by developing a set of crash prediction models on 543 km of Malaysia federal roads over a 4-year time span between 2007 and 2010. Four count models including the Poisson, negative binomial (NB), hurdle Poisson (HP), and hurdle negative binomial (HNB) models were developed and compared to model the number of pedestrian crashes. The results indicated the presence of overdispersion in the pedestrian crashes (PCs) and showed that it is due to excess zero rather than variability in the crash data. To handle the issue, the hurdle Poisson model was found to be the best model among the considered models in terms of comparative measures. Moreover, the variables average daily traffic, heavy vehicle traffic, speed limit, land use, and area type were significantly associated with PCs.
McGraw, Benjamin A; Koppenhöfer, Albrecht M
2009-06-01
Binomial sequential sampling plans were developed to forecast weevil Listronotus maculicollis Kirby (Coleoptera: Curculionidae), larval damage to golf course turfgrass and aid in the development of integrated pest management programs for the weevil. Populations of emerging overwintered adults were sampled over a 2-yr period to determine the relationship between adult counts, larval density, and turfgrass damage. Larval density and composition of preferred host plants (Poa annua L.) significantly affected the expression of turfgrass damage. Multiple regression indicates that damage may occur in moderately mixed P. annua stands with as few as 10 larvae per 0.09 m2. However, > 150 larvae were required before damage became apparent in pure Agrostis stolonifera L. plots. Adult counts during peaks in emergence as well as cumulative counts across the emergence period were significantly correlated to future densities of larvae. Eight binomial sequential sampling plans based on two tally thresholds for classifying infestation (T = 1 and two adults) and four adult density thresholds (0.5, 0.85, 1.15, and 1.35 per 3.34 m2) were developed to forecast the likelihood of turfgrass damage by using adult counts during peak emergence. Resampling for validation of sample plans software was used to validate sampling plans with field-collected data sets. All sampling plans were found to deliver accurate classifications (correct decisions were made between 84.4 and 96.8%) in a practical timeframe (average sampling cost < 22.7 min).
Distinguishing between Binomial, Hypergeometric and Negative Binomial Distributions
ERIC Educational Resources Information Center
Wroughton, Jacqueline; Cole, Tarah
2013-01-01
Recognizing the differences between three discrete distributions (Binomial, Hypergeometric and Negative Binomial) can be challenging for students. We present an activity designed to help students differentiate among these distributions. In addition, we present assessment results in the form of pre- and post-tests that were designed to assess the…
Library Book Circulation and the Beta-Binomial Distribution.
ERIC Educational Resources Information Center
Gelman, E.; Sichel, H. S.
1987-01-01
Argues that library book circulation is a binomial rather than a Poisson process, and that individual book popularities are continuous beta distributions. Three examples demonstrate the superiority of beta over negative binomial distribution, and it is suggested that a bivariate-binomial process would be helpful in predicting future book…
Modeling abundance using multinomial N-mixture models
Royle, Andy
2016-01-01
Multinomial N-mixture models are a generalization of the binomial N-mixture models described in Chapter 6 to allow for more complex and informative sampling protocols beyond simple counts. Many commonly used protocols such as multiple observer sampling, removal sampling, and capture-recapture produce a multivariate count frequency that has a multinomial distribution and for which multinomial N-mixture models can be developed. Such protocols typically result in more precise estimates than binomial mixture models because they provide direct information about parameters of the observation process. We demonstrate the analysis of these models in BUGS using several distinct formulations that afford great flexibility in the types of models that can be developed, and we demonstrate likelihood analysis using the unmarked package. Spatially stratified capture-recapture models are one class of models that fall into the multinomial N-mixture framework, and we discuss analysis of stratified versions of classical models such as model Mb, Mh and other classes of models that are only possible to describe within the multinomial N-mixture framework.
Extended Poisson process modelling and analysis of grouped binary data.
Faddy, Malcolm J; Smith, David M
2012-05-01
A simple extension of the Poisson process results in binomially distributed counts of events in a time interval. A further extension generalises this to probability distributions under- or over-dispersed relative to the binomial distribution. Substantial levels of under-dispersion are possible with this modelling, but only modest levels of over-dispersion - up to Poisson-like variation. Although simple analytical expressions for the moments of these probability distributions are not available, approximate expressions for the mean and variance are derived, and used to re-parameterise the models. The modelling is applied in the analysis of two published data sets, one showing under-dispersion and the other over-dispersion. More appropriate assessment of the precision of estimated parameters and reliable model checking diagnostics follow from this more general modelling of these data sets. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dispersion and sampling of adult Dermacentor andersoni in rangeland in Western North America.
Rochon, K; Scoles, G A; Lysyk, T J
2012-03-01
A fixed precision sampling plan was developed for off-host populations of adult Rocky Mountain wood tick, Dermacentor andersoni (Stiles) based on data collected by dragging at 13 locations in Alberta, Canada; Washington; and Oregon. In total, 222 site-date combinations were sampled. Each site-date combination was considered a sample, and each sample ranged in size from 86 to 250 10 m2 quadrats. Analysis of simulated quadrats ranging in size from 10 to 50 m2 indicated that the most precise sample unit was the 10 m2 quadrat. Samples taken when abundance < 0.04 ticks per 10 m2 were more likely to not depart significantly from statistical randomness than samples taken when abundance was greater. Data were grouped into ten abundance classes and assessed for fit to the Poisson and negative binomial distributions. The Poisson distribution fit only data in abundance classes < 0.02 ticks per 10 m2, while the negative binomial distribution fit data from all abundance classes. A negative binomial distribution with common k = 0.3742 fit data in eight of the 10 abundance classes. Both the Taylor and Iwao mean-variance relationships were fit and used to predict sample sizes for a fixed level of precision. Sample sizes predicted using the Taylor model tended to underestimate actual sample sizes, while sample sizes estimated using the Iwao model tended to overestimate actual sample sizes. Using a negative binomial with common k provided estimates of required sample sizes closest to empirically calculated sample sizes.
Su, Chun-Lung; Gardner, Ian A; Johnson, Wesley O
2004-07-30
The two-test two-population model, originally formulated by Hui and Walter, for estimation of test accuracy and prevalence estimation assumes conditionally independent tests, constant accuracy across populations and binomial sampling. The binomial assumption is incorrect if all individuals in a population e.g. child-care centre, village in Africa, or a cattle herd are sampled or if the sample size is large relative to population size. In this paper, we develop statistical methods for evaluating diagnostic test accuracy and prevalence estimation based on finite sample data in the absence of a gold standard. Moreover, two tests are often applied simultaneously for the purpose of obtaining a 'joint' testing strategy that has either higher overall sensitivity or specificity than either of the two tests considered singly. Sequential versions of such strategies are often applied in order to reduce the cost of testing. We thus discuss joint (simultaneous and sequential) testing strategies and inference for them. Using the developed methods, we analyse two real and one simulated data sets, and we compare 'hypergeometric' and 'binomial-based' inferences. Our findings indicate that the posterior standard deviations for prevalence (but not sensitivity and specificity) based on finite population sampling tend to be smaller than their counterparts for infinite population sampling. Finally, we make recommendations about how small the sample size should be relative to the population size to warrant use of the binomial model for prevalence estimation. Copyright 2004 John Wiley & Sons, Ltd.
Yelland, Lisa N; Salter, Amy B; Ryan, Philip
2011-10-15
Modified Poisson regression, which combines a log Poisson regression model with robust variance estimation, is a useful alternative to log binomial regression for estimating relative risks. Previous studies have shown both analytically and by simulation that modified Poisson regression is appropriate for independent prospective data. This method is often applied to clustered prospective data, despite a lack of evidence to support its use in this setting. The purpose of this article is to evaluate the performance of the modified Poisson regression approach for estimating relative risks from clustered prospective data, by using generalized estimating equations to account for clustering. A simulation study is conducted to compare log binomial regression and modified Poisson regression for analyzing clustered data from intervention and observational studies. Both methods generally perform well in terms of bias, type I error, and coverage. Unlike log binomial regression, modified Poisson regression is not prone to convergence problems. The methods are contrasted by using example data sets from 2 large studies. The results presented in this article support the use of modified Poisson regression as an alternative to log binomial regression for analyzing clustered prospective data when clustering is taken into account by using generalized estimating equations.
Meixner, Cara; O'Donoghue, Cynthia R; Hart, Vesna
2017-01-01
The psychological impact of TBI is vast, leading to adverse effects on survivors and their caregivers. Unhealthy family functioning may be mitigated by therapeutic strategies, particularly interdisciplinary family systems approaches like the well-documented Brain Injury Family Intervention (BIFI). Little is known about the experience of providers who offer such interventions. This mixed methods study aims to demonstrate that a structured three-day training on the BIFI protocol improves providers' knowledge and confidence in working with survivors and families, and that this outcome is sustainable. Participants were 34 providers who participated in an intensive training and completed a web-based survey at four points of time. Quantitative data were analyzed via Wilcoxon signed-rank tests and binomial test of proportions. Qualitative data were analyzed according to rigorous coding procedures. Providers' knowledge of brain injury and their ability to conceptualize treatment models for survivors and their families increased significantly and mostly remain consistent over time. Qualitative data point to additional gains, such as understanding of family systems. Past studies quantify the BIFI as an evidence-based intervention. This study supports the effectiveness of training and serves as first to demonstrate the benefit for providers short- and long-term.
Predictors of microbial agents in dust and respiratory health in the Ecrhs.
Tischer, Christina; Zock, Jan-Paul; Valkonen, Maria; Doekes, Gert; Guerra, Stefano; Heederik, Dick; Jarvis, Deborah; Norbäck, Dan; Olivieri, Mario; Sunyer, Jordi; Svanes, Cecilie; Täubel, Martin; Thiering, Elisabeth; Verlato, Giuseppe; Hyvärinen, Anne; Heinrich, Joachim
2015-05-02
Dampness and mould exposure have been repeatedly associated with respiratory health. However, less is known about the specific agents provoking or arresting health effects in adult populations. We aimed to assess predictors of microbial agents in mattress dust throughout Europe and to investigate associations between microbial exposures, home characteristics and respiratory health. Seven different fungal and bacterial parameters were assessed in mattress dust from 956 adult ECRHS II participants in addition to interview based home characteristics. Associations between microbial parameters and the asthma score and lung function were examined using mixed negative binomial regression and linear mixed models, respectively. Indoor dampness and pet keeping were significant predictors for higher microbial agent concentrations in mattress dust. Current mould and condensation in the bedroom were significantly associated with lung function decline and current mould at home was positively associated with the asthma score. Higher concentrations of muramic acid were associated with higher mean ratios of the asthma score (aMR 1.37, 95%CI 1.17-1.61). There was no evidence for any association between fungal and bacterial components and lung function. Indoor dampness was associated with microbial levels in mattress dust which in turn was positively associated with asthma symptoms.
Poisson and negative binomial item count techniques for surveys with sensitive question.
Tian, Guo-Liang; Tang, Man-Lai; Wu, Qin; Liu, Yin
2017-04-01
Although the item count technique is useful in surveys with sensitive questions, privacy of those respondents who possess the sensitive characteristic of interest may not be well protected due to a defect in its original design. In this article, we propose two new survey designs (namely the Poisson item count technique and negative binomial item count technique) which replace several independent Bernoulli random variables required by the original item count technique with a single Poisson or negative binomial random variable, respectively. The proposed models not only provide closed form variance estimate and confidence interval within [0, 1] for the sensitive proportion, but also simplify the survey design of the original item count technique. Most importantly, the new designs do not leak respondents' privacy. Empirical results show that the proposed techniques perform satisfactorily in the sense that it yields accurate parameter estimate and confidence interval.
Spatiotemporal and random parameter panel data models of traffic crash fatalities in Vietnam.
Truong, Long T; Kieu, Le-Minh; Vu, Tuan A
2016-09-01
This paper investigates factors associated with traffic crash fatalities in 63 provinces of Vietnam during the period from 2012 to 2014. Random effect negative binomial (RENB) and random parameter negative binomial (RPNB) panel data models are adopted to consider spatial heterogeneity across provinces. In addition, a spatiotemporal model with conditional autoregressive priors (ST-CAR) is utilised to account for spatiotemporal autocorrelation in the data. The statistical comparison indicates the ST-CAR model outperforms the RENB and RPNB models. Estimation results provide several significant findings. For example, traffic crash fatalities tend to be higher in provinces with greater numbers of level crossings. Passenger distance travelled and road lengths are also positively associated with fatalities. However, hospital densities are negatively associated with fatalities. The safety impact of the national highway 1A, the main transport corridor of the country, is also highlighted. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zero-state Markov switching count-data models: an empirical assessment.
Malyshkina, Nataliya V; Mannering, Fred L
2010-01-01
In this study, a two-state Markov switching count-data model is proposed as an alternative to zero-inflated models to account for the preponderance of zeros sometimes observed in transportation count data, such as the number of accidents occurring on a roadway segment over some period of time. For this accident-frequency case, zero-inflated models assume the existence of two states: one of the states is a zero-accident count state, which has accident probabilities that are so low that they cannot be statistically distinguished from zero, and the other state is a normal-count state, in which counts can be non-negative integers that are generated by some counting process, for example, a Poisson or negative binomial. While zero-inflated models have come under some criticism with regard to accident-frequency applications - one fact is undeniable - in many applications they provide a statistically superior fit to the data. The Markov switching approach we propose seeks to overcome some of the criticism associated with the zero-accident state of the zero-inflated model by allowing individual roadway segments to switch between zero and normal-count states over time. An important advantage of this Markov switching approach is that it allows for the direct statistical estimation of the specific roadway-segment state (i.e., zero-accident or normal-count state) whereas traditional zero-inflated models do not. To demonstrate the applicability of this approach, a two-state Markov switching negative binomial model (estimated with Bayesian inference) and standard zero-inflated negative binomial models are estimated using five-year accident frequencies on Indiana interstate highway segments. It is shown that the Markov switching model is a viable alternative and results in a superior statistical fit relative to the zero-inflated models.
Time-dependent summary receiver operating characteristics for meta-analysis of prognostic studies.
Hattori, Satoshi; Zhou, Xiao-Hua
2016-11-20
Prognostic studies are widely conducted to examine whether biomarkers are associated with patient's prognoses and play important roles in medical decisions. Because findings from one prognostic study may be very limited, meta-analyses may be useful to obtain sound evidence. However, prognostic studies are often analyzed by relying on a study-specific cut-off value, which can lead to difficulty in applying the standard meta-analysis techniques. In this paper, we propose two methods to estimate a time-dependent version of the summary receiver operating characteristics curve for meta-analyses of prognostic studies with a right-censored time-to-event outcome. We introduce a bivariate normal model for the pair of time-dependent sensitivity and specificity and propose a method to form inferences based on summary statistics reported in published papers. This method provides a valid inference asymptotically. In addition, we consider a bivariate binomial model. To draw inferences from this bivariate binomial model, we introduce a multiple imputation method. The multiple imputation is found to be approximately proper multiple imputation, and thus the standard Rubin's variance formula is justified from a Bayesian view point. Our simulation study and application to a real dataset revealed that both methods work well with a moderate or large number of studies and the bivariate binomial model coupled with the multiple imputation outperforms the bivariate normal model with a small number of studies. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Sánchez-Vizcaíno, Fernando; Perez, Andrés; Martínez-López, Beatriz; Sánchez-Vizcaíno, José Manuel
2012-08-01
Trade of animals and animal products imposes an uncertain and variable risk for exotic animal diseases introduction into importing countries. Risk analysis provides importing countries with an objective, transparent, and internationally accepted method for assessing that risk. Over the last decades, European Union countries have conducted probabilistic risk assessments quite frequently to quantify the risk for rare animal diseases introduction into their territories. Most probabilistic animal health risk assessments have been typically classified into one-level and multilevel binomial models. One-level models are more simple than multilevel models because they assume that animals or products originate from one single population. However, it is unknown whether such simplification may result in substantially different results compared to those obtained through the use of multilevel models. Here, data used on a probabilistic multilevel binomial model formulated to assess the risk for highly pathogenic avian influenza introduction into Spain were reanalyzed using a one-level binomial model and their outcomes were compared. An alternative ordinal model is also proposed here, which makes use of simpler assumptions and less information compared to those required by traditional one-level and multilevel approaches. Results suggest that, at least under certain circumstances, results of the one-level and ordinal approaches are similar to those obtained using multilevel models. Consequently, we argue that, when data are insufficient to run traditional probabilistic models, the ordinal approach presented here may be a suitable alternative to rank exporting countries in terms of the risk that they impose for the spread of rare animal diseases into disease-free countries. © 2012 Society for Risk Analysis.
Model studies of the beam-filling error for rain-rate retrieval with microwave radiometers
NASA Technical Reports Server (NTRS)
Ha, Eunho; North, Gerald R.
1995-01-01
Low-frequency (less than 20 GHz) single-channel microwave retrievals of rain rate encounter the problem of beam-filling error. This error stems from the fact that the relationship between microwave brightness temperature and rain rate is nonlinear, coupled with the fact that the field of view is large or comparable to important scales of variability of the rain field. This means that one may not simply insert the area average of the brightness temperature into the formula for rain rate without incurring both bias and random error. The statistical heterogeneity of the rain-rate field in the footprint of the instrument is key to determining the nature of these errors. This paper makes use of a series of random rain-rate fields to study the size of the bias and random error associated with beam filling. A number of examples are analyzed in detail: the binomially distributed field, the gamma, the Gaussian, the mixed gamma, the lognormal, and the mixed lognormal ('mixed' here means there is a finite probability of no rain rate at a point of space-time). Of particular interest are the applicability of a simple error formula due to Chiu and collaborators and a formula that might hold in the large field of view limit. It is found that the simple formula holds for Gaussian rain-rate fields but begins to fail for highly skewed fields such as the mixed lognormal. While not conclusively demonstrated here, it is suggested that the notionof climatologically adjusting the retrievals to remove the beam-filling bias is a reasonable proposition.
Analyzing crash frequency in freeway tunnels: A correlated random parameters approach.
Hou, Qinzhong; Tarko, Andrew P; Meng, Xianghai
2018-02-01
The majority of past road safety studies focused on open road segments while only a few focused on tunnels. Moreover, the past tunnel studies produced some inconsistent results about the safety effects of the traffic patterns, the tunnel design, and the pavement conditions. The effects of these conditions therefore remain unknown, especially for freeway tunnels in China. The study presented in this paper investigated the safety effects of these various factors utilizing a four-year period (2009-2012) of data as well as three models: 1) a random effects negative binomial model (RENB), 2) an uncorrelated random parameters negative binomial model (URPNB), and 3) a correlated random parameters negative binomial model (CRPNB). Of these three, the results showed that the CRPNB model provided better goodness-of-fit and offered more insights into the factors that contribute to tunnel safety. The CRPNB was not only able to allocate the part of the otherwise unobserved heterogeneity to the individual model parameters but also was able to estimate the cross-correlations between these parameters. Furthermore, the study results showed that traffic volume, tunnel length, proportion of heavy trucks, curvature, and pavement rutting were associated with higher frequencies of traffic crashes, while the distance to the tunnel wall, distance to the adjacent tunnel, distress ratio, International Roughness Index (IRI), and friction coefficient were associated with lower crash frequencies. In addition, the effects of the heterogeneity of the proportion of heavy trucks, the curvature, the rutting depth, and the friction coefficient were identified and their inter-correlations were analyzed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evaluation of surrogate measures for pedestrian safety in various road and roadside environments.
DOT National Transportation Integrated Search
2012-10-01
This report presents an investigation of pedestrian conflicts and crash count models to learn which exposure measures and roadway or roadside characteristics significantly influence pedestrian safety at road crossings. Negative binomial models were e...
An analytical framework for estimating aquatic species density from environmental DNA
Chambert, Thierry; Pilliod, David S.; Goldberg, Caren S.; Doi, Hideyuki; Takahara, Teruhiko
2018-01-01
Environmental DNA (eDNA) analysis of water samples is on the brink of becoming a standard monitoring method for aquatic species. This method has improved detection rates over conventional survey methods and thus has demonstrated effectiveness for estimation of site occupancy and species distribution. The frontier of eDNA applications, however, is to infer species density. Building upon previous studies, we present and assess a modeling approach that aims at inferring animal density from eDNA. The modeling combines eDNA and animal count data from a subset of sites to estimate species density (and associated uncertainties) at other sites where only eDNA data are available. As a proof of concept, we first perform a cross-validation study using experimental data on carp in mesocosms. In these data, fish densities are known without error, which allows us to test the performance of the method with known data. We then evaluate the model using field data from a study on a stream salamander species to assess the potential of this method to work in natural settings, where density can never be known with absolute certainty. Two alternative distributions (Normal and Negative Binomial) to model variability in eDNA concentration data are assessed. Assessment based on the proof of concept data (carp) revealed that the Negative Binomial model provided much more accurate estimates than the model based on a Normal distribution, likely because eDNA data tend to be overdispersed. Greater imprecision was found when we applied the method to the field data, but the Negative Binomial model still provided useful density estimates. We call for further model development in this direction, as well as further research targeted at sampling design optimization. It will be important to assess these approaches on a broad range of study systems.
Wilkes, E J A; Cowling, A; Woodgate, R G; Hughes, K J
2016-10-15
Faecal egg counts (FEC) are used widely for monitoring of parasite infection in animals, treatment decision-making and estimation of anthelmintic efficacy. When a single count or sample mean is used as a point estimate of the expectation of the egg distribution over some time interval, the variability in the egg density is not accounted for. Although variability, including quantifying sources, of egg count data has been described, the spatiotemporal distribution of nematode eggs in faeces is not well understood. We believe that statistical inference about the mean egg count for treatment decision-making has not been used previously. The aim of this study was to examine the density of Parascaris eggs in solution and faeces and to describe the use of hypothesis testing for decision-making. Faeces from two foals with Parascaris burdens were mixed with magnesium sulphate solution and 30 McMaster chambers were examined to determine the egg distribution in a well-mixed solution. To examine the distribution of eggs in faeces from an individual animal, three faecal piles from a foal with a known Parascaris burden were obtained, from which 81 counts were performed. A single faecal sample was also collected daily from 20 foals on three consecutive days and a FEC was performed on three separate portions of each sample. As appropriate, Poisson or negative binomial confidence intervals for the distribution mean were calculated. Parascaris eggs in a well-mixed solution conformed to a homogeneous Poisson process, while the egg density in faeces was not homogeneous, but aggregated. This study provides an extension from homogeneous to inhomogeneous Poisson processes, leading to an understanding of why Poisson and negative binomial distributions correspondingly provide a good fit for egg count data. The application of one-sided hypothesis tests for decision-making is presented. Copyright © 2016 Elsevier B.V. All rights reserved.
M-Bonomial Coefficients and Their Identities
ERIC Educational Resources Information Center
Asiru, Muniru A.
2010-01-01
In this note, we introduce M-bonomial coefficients or (M-bonacci binomial coefficients). These are similar to the binomial and the Fibonomial (or Fibonacci-binomial) coefficients and can be displayed in a triangle similar to Pascal's triangle from which some identities become obvious.
Martin, Peter; Davies, Roger; Macdougall, Amy; Ritchie, Benjamin; Vostanis, Panos; Whale, Andy; Wolpert, Miranda
2017-09-01
Case-mix classification is a focus of international attention in considering how best to manage and fund services, by providing a basis for fairer comparison of resource utilization. Yet there is little evidence of the best ways to establish case mix for child and adolescent mental health services (CAMHS). To develop a case mix classification for CAMHS that is clinically meaningful and predictive of number of appointments attended and to investigate the influence of presenting problems, context and complexity factors and provider variation. We analysed 4573 completed episodes of outpatient care from 11 English CAMHS. Cluster analysis, regression trees and a conceptual classification based on clinical best practice guidelines were compared regarding their ability to predict number of appointments, using mixed effects negative binomial regression. The conceptual classification is clinically meaningful and did as well as data-driven classifications in accounting for number of appointments. There was little evidence for effects of complexity or context factors, with the possible exception of school attendance problems. Substantial variation in resource provision between providers was not explained well by case mix. The conceptually-derived classification merits further testing and development in the context of collaborative decision making.
Continuity Between DSM-5 Section II and III Personality Disorders in a Dutch Clinical Sample.
Orbons, Irene M J; Rossi, Gina; Verheul, Roel; Schoutrop, Mirjam J A; Derksen, Jan L L; Segal, Daniel L; van Alphen, Sebastiaan P J
2018-05-14
The goal of this study was to evaluate the continuity across the Section II personality disorders (PDs) and the proposed Section III model of PDs in the Diagnostic and Statistical Manual of Mental Disorders (5th ed. [DSM-5]; American Psychiatric Association, 2013a ). More specifically, we analyzed association between the DSM-5 Section III pathological trait facets and Section II PDs among 110 Dutch adults (M age = 35.8 years, range = 19-60 years) receiving mental health care. We administered the Structured Clinical Interview for DSM-IV Axis II Disorders to all participants. Participants also completed the self-report Personality Inventory for DSM-5 (PID-5) as a measure of pathological trait facets. The distributions underlying the dependent variable were modeled as criterion counts, using negative binomial regression. The results provided some support for the validity of the PID-5 and the DSM-5 Section III Alternative Model, although analyses did not show a perfect match. Both at the trait level and the domain level, analyses showed mixed evidence of significant relationships between the PID-5 trait facets and domains with the traditional DSM-IV PDs.
Falk Delgado, Alberto; Falk Delgado, Anna
2017-07-26
Describe the prevalence and types of conflicts of interest (COI) in published randomized controlled trials (RCTs) in general medical journals with a binary primary outcome and assess the association between conflicts of interest and favorable outcome. Parallel-group RCTs with a binary primary outcome published in three general medical journals during 2013-2015 were identified. COI type, funding source, and outcome were extracted. Binomial logistic regression model was performed to assess association between COI and funding source with outcome. A total of 509 consecutive parallel-group RCTs were included in the study. COI was reported in 74% in mixed funded RCTs and in 99% in for-profit funded RCTs. Stock ownership was reported in none of the non-profit RCTs, in 7% of mixed funded RCTs, and in 50% of for-profit funded RCTs. Mixed-funded RCTs had employees from the funding company in 11% and for-profit RCTs in 76%. Multivariable logistic regression revealed that stock ownership in the funding company among any of the authors was associated with a favorable outcome (odds ratio = 3.53; 95% confidence interval = 1.59-7.86; p < 0.01). COI in for-profit funded RCTs is extensive, because the factors related to COI are not fully independent, a multivariable analysis should be cautiously interpreted. However, after multivariable adjustment only stock ownership from the funding company among authors is associated with a favorable outcome.
Bilgic, Abdulbaki; Florkowski, Wojciech J
2007-06-01
This paper identifies factors that influence the demand for a bass fishing trip taken in the southeastern United States using a hurdle negative binomial count data model. The probability of fishing for a bass is estimated in the first stage and the fishing trip frequency is estimated in the second stage for individuals reporting bass fishing trips in the Southeast. The applied approach allows the decomposition of the effects of factors responsible for the decision to take a trip and the trip number. Calculated partial and total elasticities indicate a highly inelastic demand for the number of fishing trips as trip costs increase. However, the demand can be expected to increase if anglers experience a success measured by the number of caught fish or their size. Benefit estimates based on alternative estimation methods differ substantially, suggesting the need for testing each modeling approach applied in empirical studies.
Computations of steady-state and transient premixed turbulent flames using pdf methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hulek, T.; Lindstedt, R.P.
1996-03-01
Premixed propagating turbulent flames are modeled using a one-point, single time, joint velocity-composition probability density function (pdf) closure. The pdf evolution equation is solved using a Monte Carlo method. The unclosed terms in the pdf equation are modeled using a modified version of the binomial Langevin model for scalar mixing of Valino and Dopazo, and the Haworth and Pope (HP) and Lagrangian Speziale-Sarkar-Gatski (LSSG) models for the viscous dissipation of velocity and the fluctuating pressure gradient. The source terms for the presumed one-step chemical reaction are extracted from the rate of fuel consumption in laminar premixed hydrocarbon flames, computed usingmore » a detailed chemical kinetic mechanism. Steady-state and transient solutions are obtained for planar turbulent methane-air and propane-air flames. The transient solution method features a coupling with a Finite Volume (FV) code to obtain the mean pressure field. The results are compared with the burning velocity measurements of Abdel-Gayed et al. and with velocity measurements obtained in freely propagating propane-air flames by Videto and Santavicca. The effects of different upstream turbulence fields, chemical source terms (different fuels and strained/unstrained laminar flames) and the influence of the velocity statistics models (HP and LSSG) are assessed.« less
Smisc - A collection of miscellaneous functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landon Sego, PNNL
2015-08-31
A collection of functions for statistical computing and data manipulation. These include routines for rapidly aggregating heterogeneous matrices, manipulating file names, loading R objects, sourcing multiple R files, formatting datetimes, multi-core parallel computing, stream editing, specialized plotting, etc. Smisc-package A collection of miscellaneous functions allMissing Identifies missing rows or columns in a data frame or matrix as.numericSilent Silent wrapper for coercing a vector to numeric comboList Produces all possible combinations of a set of linear model predictors cumMax Computes the maximum of the vector up to the current index cumsumNA Computes the cummulative sum of a vector without propogating NAsmore » d2binom Probability functions for the sum of two independent binomials dataIn A flexible way to import data into R. dbb The Beta-Binomial Distribution df2list Row-wise conversion of a data frame to a list dfplapply Parallelized single row processing of a data frame dframeEquiv Examines the equivalence of two dataframes or matrices dkbinom Probability functions for the sum of k independent binomials factor2character Converts all factor variables in a dataframe to character variables findDepMat Identify linearly dependent rows or columns in a matrix formatDT Converts date or datetime strings into alternate formats getExtension Filename manipulations: remove the extension or path, extract the extension or path getPath Filename manipulations: remove the extension or path, extract the extension or path grabLast Filename manipulations: remove the extension or path, extract the extension or path ifelse1 Non-vectorized version of ifelse integ Simple numerical integration routine interactionPlot Two-way Interaction Plot with Error Bar linearMap Linear mapping of a numerical vector or scalar list2df Convert a list to a data frame loadObject Loads and returns the object(s) in an ".Rdata" file more Display the contents of a file to the R terminal movAvg2 Calculate the moving average using a 2-sided window openDevice Opens a graphics device based on the filename extension p2binom Probability functions for the sum of two independent binomials padZero Pad a vector of numbers with zeros parseJob Parses a collection of elements into (almost) equal sized groups pbb The Beta-Binomial Distribution pcbinom A continuous version of the binomial cdf pkbinom Probability functions for the sum of k independent binomials plapply Simple parallelization of lapply plotFun Plot one or more functions on a single plot PowerData An example of power data pvar Prints the name and value of one or more objects qbb The Beta-Binomial Distribution rbb And numerous others (space limits reporting).« less
Development of enhanced pavement deterioration curves.
DOT National Transportation Integrated Search
2016-10-01
This report describes the research performed by the Center for Sustainable Transportation Infrastructure (CSTI) at the Virginia Tech Transportation Institute (VTTI) to develop a pavement condition prediction model, using (negative binomial) regressio...
Use of negative binomial distribution to describe the presence of Anisakis in Thyrsites atun.
Peña-Rehbein, Patricio; De los Ríos-Escalante, Patricio
2012-01-01
Nematodes of the genus Anisakis have marine fishes as intermediate hosts. One of these hosts is Thyrsites atun, an important fishery resource in Chile between 38 and 41° S. This paper describes the frequency and number of Anisakis nematodes in the internal organs of Thyrsites atun. An analysis based on spatial distribution models showed that the parasites tend to be clustered. The variation in the number of parasites per host could be described by the negative binomial distribution. The maximum observed number of parasites was nine parasites per host. The environmental and zoonotic aspects of the study are also discussed.
Weltz, Kay; Kock, Alison A; Winker, Henning; Attwood, Colin; Sikweyiya, Monwabisi
2013-01-01
Shark attacks on humans are high profile events which can significantly influence policies related to the coastal zone. A shark warning system in South Africa, Shark Spotters, recorded 378 white shark (Carcharodon carcharias) sightings at two popular beaches, Fish Hoek and Muizenberg, during 3690 six-hour long spotting shifts, during the months September to May 2006 to 2011. The probabilities of shark sightings were related to environmental variables using Binomial Generalized Additive Mixed Models (GAMMs). Sea surface temperature was significant, with the probability of shark sightings increasing rapidly as SST exceeded 14 °C and approached a maximum at 18 °C, whereafter it remains high. An 8 times (Muizenberg) and 5 times (Fish Hoek) greater likelihood of sighting a shark was predicted at 18 °C than at 14 °C. Lunar phase was also significant with a prediction of 1.5 times (Muizenberg) and 4 times (Fish Hoek) greater likelihood of a shark sighting at new moon than at full moon. At Fish Hoek, the probability of sighting a shark was 1.6 times higher during the afternoon shift compared to the morning shift, but no diel effect was found at Muizenberg. A significant increase in the number of shark sightings was identified over the last three years, highlighting the need for ongoing research into shark attack mitigation. These patterns will be incorporated into shark awareness and bather safety campaigns in Cape Town.
Weltz, Kay; Kock, Alison A.; Winker, Henning; Attwood, Colin; Sikweyiya, Monwabisi
2013-01-01
Shark attacks on humans are high profile events which can significantly influence policies related to the coastal zone. A shark warning system in South Africa, Shark Spotters, recorded 378 white shark (Carcharodon carcharias) sightings at two popular beaches, Fish Hoek and Muizenberg, during 3690 six-hour long spotting shifts, during the months September to May 2006 to 2011. The probabilities of shark sightings were related to environmental variables using Binomial Generalized Additive Mixed Models (GAMMs). Sea surface temperature was significant, with the probability of shark sightings increasing rapidly as SST exceeded 14°C and approached a maximum at 18°C, whereafter it remains high. An 8 times (Muizenberg) and 5 times (Fish Hoek) greater likelihood of sighting a shark was predicted at 18°C than at 14°C. Lunar phase was also significant with a prediction of 1.5 times (Muizenberg) and 4 times (Fish Hoek) greater likelihood of a shark sighting at new moon than at full moon. At Fish Hoek, the probability of sighting a shark was 1.6 times higher during the afternoon shift compared to the morning shift, but no diel effect was found at Muizenberg. A significant increase in the number of shark sightings was identified over the last three years, highlighting the need for ongoing research into shark attack mitigation. These patterns will be incorporated into shark awareness and bather safety campaigns in Cape Town. PMID:23874668
Blazquez, Carola; Lee, Jae Seung; Zegras, Christopher
2016-01-01
We examine and compare pedestrian-vehicle collisions and injury outcomes involving school-age children between 5 and 18 years of age in the capital cities of Santiago, Chile, and Seoul, South Korea. We conduct descriptive analysis of the child pedestrian-vehicle collision (P-VC) data (904 collisions for Santiago and 3,505 for Seoul) reported by the police between 2010 and 2011. We also statistically analyze factors associated with child P-VCs, by both incident severity and age group, using 3 regression models: negative binomial, probit, and spatial lag models. Descriptive statistics suggest that child pedestrians in Seoul have a higher risk of being involved in traffic crashes than their counterparts in Santiago. However, in Seoul a greater proportion of children are unharmed as a result of these incidents, whereas more child pedestrians are killed in Santiago. Younger children in Seoul suffer more injuries from P-VCs than in Santiago. The majority of P-VCs in both cities tend to occur in the afternoon and evening, at intersections in Santiago and at midblock locations in Seoul. Our model results suggest that the resident population of children is positively associated with P-VCs in both cities, and school concentrations apparently increase P-VC risk among older children in Santiago. Bus stops are associated with higher P-VCs in Seoul, and subway stations relate to higher P-VCs among older children in Santiago. Zone-level land use mix was negatively related to child P-VCs in Seoul but not in Santiago. Arterial roads are associated with fewer P-VCs, especially for younger children in both cities. A share of collector roads is associated with increased P-VCs in Seoul but fewer P-VCs in Santiago. Hilliness is related to fewer P-VCs in both cities. Differences in these model results for Santiago and Seoul warrant additional analysis, as do the differences in results across model type (negative binomial versus spatial lag models). To reduce child P-VCs, this study suggests the need to assess subway station and bus stop area conditions in Santiago and Seoul, respectively; areas with high density of schools in Santiago; areas with greater concentrations of children in both cities; and collector roads in Seoul.
Problems on Divisibility of Binomial Coefficients
ERIC Educational Resources Information Center
Osler, Thomas J.; Smoak, James
2004-01-01
Twelve unusual problems involving divisibility of the binomial coefficients are represented in this article. The problems are listed in "The Problems" section. All twelve problems have short solutions which are listed in "The Solutions" section. These problems could be assigned to students in any course in which the binomial theorem and Pascal's…
Application of binomial-edited CPMG to shale characterization
Washburn, Kathryn E.; Birdwell, Justin E.
2014-01-01
Unconventional shale resources may contain a significant amount of hydrogen in organic solids such as kerogen, but it is not possible to directly detect these solids with many NMR systems. Binomial-edited pulse sequences capitalize on magnetization transfer between solids, semi-solids, and liquids to provide an indirect method of detecting solid organic materials in shales. When the organic solids can be directly measured, binomial-editing helps distinguish between different phases. We applied a binomial-edited CPMG pulse sequence to a range of natural and experimentally-altered shale samples. The most substantial signal loss is seen in shales rich in organic solids while fluids associated with inorganic pores seem essentially unaffected. This suggests that binomial-editing is a potential method for determining fluid locations, solid organic content, and kerogen–bitumen discrimination.
Zhu, Carolyn W.; Scarmeas, Nikolaos; Ornstein, Katherine; Albert, Marilyn; Brandt, Jason; Blacker, Deborah; Sano, Mary; Stern, Yaakov
2014-01-01
OBJECTIVE: To examine the effects of caregiver and patient characteristics on caregivers’ medical care use and cost. METHODS: 147 caregiver/patient dyads were followed annually for 6 years in 3 academic AD centers in the US. Logistic, negative binomial, and generalized linear mixed models were used to examine overall effects of caregiver/patient characteristics on caregivers’ hospitalizations, doctor visits, outpatient tests and procedures, and prescription and over-the-counter medications. RESULTS: Patients’ comorbid conditions and dependence were associated with increased healthcare use and costs of caregivers. Increases in caregiver depressive symptoms are associated with increases in multiple domains of caregivers’ healthcare use and costs. DISCUSSION: Findings suggest that we should expand our focus on dementia patients to include family caregivers to obtain a fuller picture of effects of caregiving. Primary care providers should integrate caregivers’ needs in healthcare planning and delivery. Clinical interventions that treat patients and caregivers as a whole will likely achieve the greatest beneficial effects. PMID:24637299
Brown, Halley J; Andreason, Hope; Melling, Amy K; Imel, Zac E; Simon, Gregory E
2015-08-01
Retention, or its opposite, dropout, is a common metric of psychotherapy quality, but using it to assess provider performance can be problematic. Differences among providers in numbers of general dropouts, "good" dropouts (patients report positive treatment experiences and outcome), and "bad" dropouts (patients report negative treatment experiences and outcome) were evaluated. Patient records were paired with satisfaction surveys (N=3,054). Binomial mixed-effects models were used to examine differences among providers by dropout type. Thirty-four percent of treatment episodes resulted in dropout. Of these, 14% were bad dropouts and 27% were good dropouts. Providers accounted for approximately 17% of the variance in general dropout and 10% of the variance in both bad dropout and good dropout. The ranking of providers fluctuated by type of dropout. Provider assessments based on patient retention should offer a way to isolate dropout type, given that nonspecific metrics may lead to biased estimates of performance.
Modeling Zero-Inflated and Overdispersed Count Data: An Empirical Study of School Suspensions
ERIC Educational Resources Information Center
Desjardins, Christopher David
2016-01-01
The purpose of this article is to develop a statistical model that best explains variability in the number of school days suspended. Number of school days suspended is a count variable that may be zero-inflated and overdispersed relative to a Poisson model. Four models were examined: Poisson, negative binomial, Poisson hurdle, and negative…
NASA Astrophysics Data System (ADS)
Leier, André; Marquez-Lago, Tatiana T.; Burrage, Kevin
2008-05-01
The delay stochastic simulation algorithm (DSSA) by Barrio et al. [Plos Comput. Biol. 2, 117(E) (2006)] was developed to simulate delayed processes in cell biology in the presence of intrinsic noise, that is, when there are small-to-moderate numbers of certain key molecules present in a chemical reaction system. These delayed processes can faithfully represent complex interactions and mechanisms that imply a number of spatiotemporal processes often not explicitly modeled such as transcription and translation, basic in the modeling of cell signaling pathways. However, for systems with widely varying reaction rate constants or large numbers of molecules, the simulation time steps of both the stochastic simulation algorithm (SSA) and the DSSA can become very small causing considerable computational overheads. In order to overcome the limit of small step sizes, various τ-leap strategies have been suggested for improving computational performance of the SSA. In this paper, we present a binomial τ-DSSA method that extends the τ-leap idea to the delay setting and avoids drawing insufficient numbers of reactions, a common shortcoming of existing binomial τ-leap methods that becomes evident when dealing with complex chemical interactions. The resulting inaccuracies are most evident in the delayed case, even when considering reaction products as potential reactants within the same time step in which they are produced. Moreover, we extend the framework to account for multicellular systems with different degrees of intercellular communication. We apply these ideas to two important genetic regulatory models, namely, the hes1 gene, implicated as a molecular clock, and a Her1/Her 7 model for coupled oscillating cells.
Modeling left-turn crash occurrence at signalized intersections by conflicting patterns.
Wang, Xuesong; Abdel-Aty, Mohamed
2008-01-01
In order to better understand the underlying crash mechanisms, left-turn crashes occurring at 197 four-legged signalized intersections over 6 years were classified into nine patterns based on vehicle maneuvers and then were assigned to intersection approaches. Crash frequency of each pattern was modeled at the approach level by mainly using Generalized Estimating Equations (GEE) with the Negative Binomial as the link function to account for the correlation among the crash data. GEE with a binomial logit link function was also applied for patterns with fewer crashes. The Cumulative Residuals test shows that, for correlated left-turn crashes, GEE models usually outperformed basic Negative Binomial models. The estimation results show that there are obvious differences in the factors that cause the occurrence of different left-turn collision patterns. For example, for each pattern, the traffic flows to which the colliding vehicles belong are identified to be significant. The width of the crossing distance (represented by the number of through lanes on the opposing approach of the left-turning traffic) is associated with more left-turn traffic colliding with opposing through traffic (Pattern 5), but with less left-turning traffic colliding with near-side crossing through traffic (Pattern 8). The safety effectiveness of the left-turning signal is not consistent for different crash patterns; "protected" phasing is correlated with fewer Pattern 5 crashes, but with more Pattern 8 crashes. The study indicates that in order to develop efficient countermeasures for left-turn crashes and improve safety at signalized intersections, left-turn crashes should be considered in different patterns.
Lee, J-H; Han, G; Fulp, W J; Giuliano, A R
2012-06-01
The Poisson model can be applied to the count of events occurring within a specific time period. The main feature of the Poisson model is the assumption that the mean and variance of the count data are equal. However, this equal mean-variance relationship rarely occurs in observational data. In most cases, the observed variance is larger than the assumed variance, which is called overdispersion. Further, when the observed data involve excessive zero counts, the problem of overdispersion results in underestimating the variance of the estimated parameter, and thus produces a misleading conclusion. We illustrated the use of four models for overdispersed count data that may be attributed to excessive zeros. These are Poisson, negative binomial, zero-inflated Poisson and zero-inflated negative binomial models. The example data in this article deal with the number of incidents involving human papillomavirus infection. The four models resulted in differing statistical inferences. The Poisson model, which is widely used in epidemiology research, underestimated the standard errors and overstated the significance of some covariates.
Dorazio, R.M.; Royle, J. Andrew
2003-01-01
We develop a parameterization of the beta-binomial mixture that provides sensible inferences about the size of a closed population when probabilities of capture or detection vary among individuals. Three classes of mixture models (beta-binomial, logistic-normal, and latent-class) are fitted to recaptures of snowshoe hares for estimating abundance and to counts of bird species for estimating species richness. In both sets of data, rates of detection appear to vary more among individuals (animals or species) than among sampling occasions or locations. The estimates of population size and species richness are sensitive to model-specific assumptions about the latent distribution of individual rates of detection. We demonstrate using simulation experiments that conventional diagnostics for assessing model adequacy, such as deviance, cannot be relied on for selecting classes of mixture models that produce valid inferences about population size. Prior knowledge about sources of individual heterogeneity in detection rates, if available, should be used to help select among classes of mixture models that are to be used for inference.
A fast least-squares algorithm for population inference
2013-01-01
Background Population inference is an important problem in genetics used to remove population stratification in genome-wide association studies and to detect migration patterns or shared ancestry. An individual’s genotype can be modeled as a probabilistic function of ancestral population memberships, Q, and the allele frequencies in those populations, P. The parameters, P and Q, of this binomial likelihood model can be inferred using slow sampling methods such as Markov Chain Monte Carlo methods or faster gradient based approaches such as sequential quadratic programming. This paper proposes a least-squares simplification of the binomial likelihood model motivated by a Euclidean interpretation of the genotype feature space. This results in a faster algorithm that easily incorporates the degree of admixture within the sample of individuals and improves estimates without requiring trial-and-error tuning. Results We show that the expected value of the least-squares solution across all possible genotype datasets is equal to the true solution when part of the problem has been solved, and that the variance of the solution approaches zero as its size increases. The Least-squares algorithm performs nearly as well as Admixture for these theoretical scenarios. We compare least-squares, Admixture, and FRAPPE for a variety of problem sizes and difficulties. For particularly hard problems with a large number of populations, small number of samples, or greater degree of admixture, least-squares performs better than the other methods. On simulated mixtures of real population allele frequencies from the HapMap project, Admixture estimates sparsely mixed individuals better than Least-squares. The least-squares approach, however, performs within 1.5% of the Admixture error. On individual genotypes from the HapMap project, Admixture and least-squares perform qualitatively similarly and within 1.2% of each other. Significantly, the least-squares approach nearly always converges 1.5- to 6-times faster. Conclusions The computational advantage of the least-squares approach along with its good estimation performance warrants further research, especially for very large datasets. As problem sizes increase, the difference in estimation performance between all algorithms decreases. In addition, when prior information is known, the least-squares approach easily incorporates the expected degree of admixture to improve the estimate. PMID:23343408
A fast least-squares algorithm for population inference.
Parry, R Mitchell; Wang, May D
2013-01-23
Population inference is an important problem in genetics used to remove population stratification in genome-wide association studies and to detect migration patterns or shared ancestry. An individual's genotype can be modeled as a probabilistic function of ancestral population memberships, Q, and the allele frequencies in those populations, P. The parameters, P and Q, of this binomial likelihood model can be inferred using slow sampling methods such as Markov Chain Monte Carlo methods or faster gradient based approaches such as sequential quadratic programming. This paper proposes a least-squares simplification of the binomial likelihood model motivated by a Euclidean interpretation of the genotype feature space. This results in a faster algorithm that easily incorporates the degree of admixture within the sample of individuals and improves estimates without requiring trial-and-error tuning. We show that the expected value of the least-squares solution across all possible genotype datasets is equal to the true solution when part of the problem has been solved, and that the variance of the solution approaches zero as its size increases. The Least-squares algorithm performs nearly as well as Admixture for these theoretical scenarios. We compare least-squares, Admixture, and FRAPPE for a variety of problem sizes and difficulties. For particularly hard problems with a large number of populations, small number of samples, or greater degree of admixture, least-squares performs better than the other methods. On simulated mixtures of real population allele frequencies from the HapMap project, Admixture estimates sparsely mixed individuals better than Least-squares. The least-squares approach, however, performs within 1.5% of the Admixture error. On individual genotypes from the HapMap project, Admixture and least-squares perform qualitatively similarly and within 1.2% of each other. Significantly, the least-squares approach nearly always converges 1.5- to 6-times faster. The computational advantage of the least-squares approach along with its good estimation performance warrants further research, especially for very large datasets. As problem sizes increase, the difference in estimation performance between all algorithms decreases. In addition, when prior information is known, the least-squares approach easily incorporates the expected degree of admixture to improve the estimate.
NASA Astrophysics Data System (ADS)
Brenner, Tom; Chen, Johnny; Stait-Gardner, Tim; Zheng, Gang; Matsukawa, Shingo; Price, William S.
2018-03-01
A new family of binomial-like inversion sequences, named jump-and-return sandwiches (JRS), has been developed by inserting a binomial-like sequence into a standard jump-and-return sequence, discovered through use of a stochastic Genetic Algorithm optimisation. Compared to currently used binomial-like inversion sequences (e.g., 3-9-19 and W5), the new sequences afford wider inversion bands and narrower non-inversion bands with an equal number of pulses. As an example, two jump-and-return sandwich 10-pulse sequences achieved 95% inversion at offsets corresponding to 9.4% and 10.3% of the non-inversion band spacing, compared to 14.7% for the binomial-like W5 inversion sequence, i.e., they afforded non-inversion bands about two thirds the width of the W5 non-inversion band.
Temporal acceleration of spatially distributed kinetic Monte Carlo simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Abhijit; Vlachos, Dionisios G.
The computational intensity of kinetic Monte Carlo (KMC) simulation is a major impediment in simulating large length and time scales. In recent work, an approximate method for KMC simulation of spatially uniform systems, termed the binomial {tau}-leap method, was introduced [A. Chatterjee, D.G. Vlachos, M.A. Katsoulakis, Binomial distribution based {tau}-leap accelerated stochastic simulation, J. Chem. Phys. 122 (2005) 024112], where molecular bundles instead of individual processes are executed over coarse-grained time increments. This temporal coarse-graining can lead to significant computational savings but its generalization to spatially lattice KMC simulation has not been realized yet. Here we extend the binomial {tau}-leapmore » method to lattice KMC simulations by combining it with spatially adaptive coarse-graining. Absolute stability and computational speed-up analyses for spatial systems along with simulations provide insights into the conditions where accuracy and substantial acceleration of the new spatio-temporal coarse-graining method are ensured. Model systems demonstrate that the r-time increment criterion of Chatterjee et al. obeys the absolute stability limit for values of r up to near 1.« less
Revealing Word Order: Using Serial Position in Binomials to Predict Properties of the Speaker
ERIC Educational Resources Information Center
Iliev, Rumen; Smirnova, Anastasia
2016-01-01
Three studies test the link between word order in binomials and psychological and demographic characteristics of a speaker. While linguists have already suggested that psychological, cultural and societal factors are important in choosing word order in binomials, the vast majority of relevant research was focused on general factors and on broadly…
Wang, Zhu; Shuangge, Ma; Wang, Ching-Yun
2017-01-01
In health services and outcome research, count outcomes are frequently encountered and often have a large proportion of zeros. The zero-inflated negative binomial (ZINB) regression model has important applications for this type of data. With many possible candidate risk factors, this paper proposes new variable selection methods for the ZINB model. We consider maximum likelihood function plus a penalty including the least absolute shrinkage and selection operator (LASSO), smoothly clipped absolute deviation (SCAD) and minimax concave penalty (MCP). An EM (expectation-maximization) algorithm is proposed for estimating the model parameters and conducting variable selection simultaneously. This algorithm consists of estimating penalized weighted negative binomial models and penalized logistic models via the coordinated descent algorithm. Furthermore, statistical properties including the standard error formulae are provided. A simulation study shows that the new algorithm not only has more accurate or at least comparable estimation, also is more robust than the traditional stepwise variable selection. The proposed methods are applied to analyze the health care demand in Germany using an open-source R package mpath. PMID:26059498
Estimating safety effects of pavement management factors utilizing Bayesian random effect models.
Jiang, Ximiao; Huang, Baoshan; Zaretzki, Russell L; Richards, Stephen; Yan, Xuedong
2013-01-01
Previous studies of pavement management factors that relate to the occurrence of traffic-related crashes are rare. Traditional research has mostly employed summary statistics of bidirectional pavement quality measurements in extended longitudinal road segments over a long time period, which may cause a loss of important information and result in biased parameter estimates. The research presented in this article focuses on crash risk of roadways with overall fair to good pavement quality. Real-time and location-specific data were employed to estimate the effects of pavement management factors on the occurrence of crashes. This research is based on the crash data and corresponding pavement quality data for the Tennessee state route highways from 2004 to 2009. The potential temporal and spatial correlations among observations caused by unobserved factors were considered. Overall 6 models were built accounting for no correlation, temporal correlation only, and both the temporal and spatial correlations. These models included Poisson, negative binomial (NB), one random effect Poisson and negative binomial (OREP, ORENB), and two random effect Poisson and negative binomial (TREP, TRENB) models. The Bayesian method was employed to construct these models. The inference is based on the posterior distribution from the Markov chain Monte Carlo (MCMC) simulation. These models were compared using the deviance information criterion. Analysis of the posterior distribution of parameter coefficients indicates that the pavement management factors indexed by Present Serviceability Index (PSI) and Pavement Distress Index (PDI) had significant impacts on the occurrence of crashes, whereas the variable rutting depth was not significant. Among other factors, lane width, median width, type of terrain, and posted speed limit were significant in affecting crash frequency. The findings of this study indicate that a reduction in pavement roughness would reduce the likelihood of traffic-related crashes. Hence, maintaining a low level of pavement roughness is strongly suggested. In addition, the results suggested that the temporal correlation among observations was significant and that the ORENB model outperformed all other models.
Neelon, Brian; Chang, Howard H; Ling, Qiang; Hastings, Nicole S
2016-12-01
Motivated by a study exploring spatiotemporal trends in emergency department use, we develop a class of two-part hurdle models for the analysis of zero-inflated areal count data. The models consist of two components-one for the probability of any emergency department use and one for the number of emergency department visits given use. Through a hierarchical structure, the models incorporate both patient- and region-level predictors, as well as spatially and temporally correlated random effects for each model component. The random effects are assigned multivariate conditionally autoregressive priors, which induce dependence between the components and provide spatial and temporal smoothing across adjacent spatial units and time periods, resulting in improved inferences. To accommodate potential overdispersion, we consider a range of parametric specifications for the positive counts, including truncated negative binomial and generalized Poisson distributions. We adopt a Bayesian inferential approach, and posterior computation is handled conveniently within standard Bayesian software. Our results indicate that the negative binomial and generalized Poisson hurdle models vastly outperform the Poisson hurdle model, demonstrating that overdispersed hurdle models provide a useful approach to analyzing zero-inflated spatiotemporal data. © The Author(s) 2014.
Brenner, Tom; Chen, Johnny; Stait-Gardner, Tim; Zheng, Gang; Matsukawa, Shingo; Price, William S
2018-03-01
A new family of binomial-like inversion sequences, named jump-and-return sandwiches (JRS), has been developed by inserting a binomial-like sequence into a standard jump-and-return sequence, discovered through use of a stochastic Genetic Algorithm optimisation. Compared to currently used binomial-like inversion sequences (e.g., 3-9-19 and W5), the new sequences afford wider inversion bands and narrower non-inversion bands with an equal number of pulses. As an example, two jump-and-return sandwich 10-pulse sequences achieved 95% inversion at offsets corresponding to 9.4% and 10.3% of the non-inversion band spacing, compared to 14.7% for the binomial-like W5 inversion sequence, i.e., they afforded non-inversion bands about two thirds the width of the W5 non-inversion band. Copyright © 2018 Elsevier Inc. All rights reserved.
Investigating Individual Differences in Toddler Search with Mixture Models
ERIC Educational Resources Information Center
Berthier, Neil E.; Boucher, Kelsea; Weisner, Nina
2015-01-01
Children's performance on cognitive tasks is often described in categorical terms in that a child is described as either passing or failing a test, or knowing or not knowing some concept. We used binomial mixture models to determine whether individual children could be classified as passing or failing two search tasks, the DeLoache model room…
Adjusted Wald Confidence Interval for a Difference of Binomial Proportions Based on Paired Data
ERIC Educational Resources Information Center
Bonett, Douglas G.; Price, Robert M.
2012-01-01
Adjusted Wald intervals for binomial proportions in one-sample and two-sample designs have been shown to perform about as well as the best available methods. The adjusted Wald intervals are easy to compute and have been incorporated into introductory statistics courses. An adjusted Wald interval for paired binomial proportions is proposed here and…
NASA Astrophysics Data System (ADS)
Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badełek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Ftáčnik, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffré, M.; Jachołkowska, A.; Janata, F.; Jancsó, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettinghale, J.; Pietrzyk, B.; Pietrzyk, U.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Schneider, A.; Scholz, M.; Schröder, T.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.
1987-09-01
The multiplicity distributions of charged hadrons produced in the deep inelastic muon-proton scattering at 280 GeV are analysed in various rapidity intervals, as a function of the total hadronic centre of mass energy W ranging from 4 20 GeV. Multiplicity distributions for the backward and forward hemispheres are also analysed separately. The data can be well parameterized by binomial distributions, extending their range of applicability to the case of lepton-proton scattering. The energy and the rapidity dependence of the parameters is presented and a smooth transition from the negative binomial distribution via Poissonian to the ordinary binomial is observed.
Wang, Dongqing; Hawley, Nicola L; Thompson, Avery A; Lameko, Viali; Reupena, Muagatutia Sefuiva; McGarvey, Stephen T; Baylin, Ana
2017-04-01
Background: The Samoan population has been undergoing a nutrition transition toward more imported and processed foods and a more sedentary lifestyle. Objectives: We aimed to identify dietary patterns in Samoa and to evaluate their associations with metabolic outcomes. Methods: The sample of this cross-sectional study includes 2774 Samoan adults recruited in 2010 (1104 with metabolic syndrome compared with 1670 without). Principal component analysis on food items from a 104-item food-frequency questionnaire was used to identify dietary patterns. Adjusted least squares means of each component of metabolic syndrome were estimated by quintiles of factor scores for each dietary pattern. Metabolic syndrome status was regressed on quintiles of scores by using log-binomial models to obtain prevalence ratios. Results: We identified a modern pattern, a mixed-traditional pattern, and a mixed-modern pattern. The modern pattern included a high intake of imported and processed foods, including pizza, cheeseburgers, margarine, sugary drinks, desserts, snacks, egg products, noodles, nuts, breads, and cakes and a low intake of traditional agricultural products and fish. The mixed-traditional pattern had a high intake of neotraditional foods, including fruits, vegetables, soup, poultry, and fish, and imported and processed foods, including dairy products, breads, and cakes. The mixed-modern pattern was loaded with imported and processed foods, including pizza, cheeseburgers, red meat, egg products, noodles, and grains, but also with neotraditional foods, such as seafood and coconut. It also included a low intake of fish, tea, coffee, soup, and traditional agricultural staples. Higher adherence to the mixed-modern pattern was associated with lower abdominal circumference ( P -trend < 0.0001), lower serum triglycerides ( P -trend = 0.03), and higher serum HDL cholesterol ( P -trend = 0.0003). The mixed-modern pattern was inversely associated with prevalence of metabolic syndrome (the highest quintile: prevalence ratio = 0.79; 95% CI: 0.69, 0.91; P -trend = 0.006). Conclusion: Mixed dietary patterns containing healthier foods, rather than a largely imported and processed modern diet, may help prevent metabolic syndrome in Samoa. © 2017 American Society for Nutrition.
Forecasting asthma-related hospital admissions in London using negative binomial models.
Soyiri, Ireneous N; Reidpath, Daniel D; Sarran, Christophe
2013-05-01
Health forecasting can improve health service provision and individual patient outcomes. Environmental factors are known to impact chronic respiratory conditions such as asthma, but little is known about the extent to which these factors can be used for forecasting. Using weather, air quality and hospital asthma admissions, in London (2005-2006), two related negative binomial models were developed and compared with a naive seasonal model. In the first approach, predictive forecasting models were fitted with 7-day averages of each potential predictor, and then a subsequent multivariable model is constructed. In the second strategy, an exhaustive search of the best fitting models between possible combinations of lags (0-14 days) of all the environmental effects on asthma admission was conducted. Three models were considered: a base model (seasonal effects), contrasted with a 7-day average model and a selected lags model (weather and air quality effects). Season is the best predictor of asthma admissions. The 7-day average and seasonal models were trivial to implement. The selected lags model was computationally intensive, but of no real value over much more easily implemented models. Seasonal factors can predict daily hospital asthma admissions in London, and there is a little evidence that additional weather and air quality information would add to forecast accuracy.
REJEKI, Dwi Sarwani Sri; NURHAYATI, Nunung; AJI, Budi; MURHANDARWATI, E. Elsa Herdiana; KUSNANTO, Hari
2018-01-01
Background: Climatic and weather factors become important determinants of vector-borne diseases transmission like malaria. This study aimed to prove relationships between weather factors with considering human migration and previous case findings and malaria cases in endemic areas in Purworejo during 2005–2014. Methods: This study employed ecological time series analysis by using monthly data. The independent variables were the maximum temperature, minimum temperature, maximum humidity, minimum humidity, precipitation, human migration, and previous malaria cases, while the dependent variable was positive malaria cases. Three models of count data regression analysis i.e. Poisson model, quasi-Poisson model, and negative binomial model were applied to measure the relationship. The least Akaike Information Criteria (AIC) value was also performed to find the best model. Negative binomial regression analysis was considered as the best model. Results: The model showed that humidity (lag 2), precipitation (lag 3), precipitation (lag 12), migration (lag1) and previous malaria cases (lag 12) had a significant relationship with malaria cases. Conclusion: Weather, migration and previous malaria cases factors need to be considered as prominent indicators for the increase of malaria case projection. PMID:29900134
Kumar, Rajesh; Nguyen, Elizabeth A; Roth, Lindsey A; Oh, Sam S; Gignoux, Christopher R.; Huntsman, Scott; Eng, Celeste; Moreno-Estrada, Andres; Sandoval, Karla; Peñaloza-Espinosa, Rosenda; López-López, Marisol; Avila, Pedro C.; Farber, Harold J.; Tcheurekdjian, Haig; Rodriguez-Cintron, William; Rodriguez-Santana, Jose R; Serebrisky, Denise; Thyne, Shannon M.; Williams, L. Keoki; Winkler, Cheryl; Bustamante, Carlos D.; Pérez-Stable, Eliseo J.; Borrell, Luisa N.; Burchard, Esteban G
2013-01-01
Background Atopy varies by ethnicity even within Latino groups. This variation may be due to environmental, socio-cultural or genetic factors. Objective To examine risk factors for atopy within a nationwide study of U.S. Latino children with and without asthma. Methods Aeroallergen skin test repsonse was analyzed in 1830 US latino subjects. Key determinants of atopy included: country / region of origin, generation in the U.S., acculturation, genetic ancestry and site to which individuals migrated. Serial multivariate zero inflated negative binomial regressions, stratified by asthma status, examined the association of each key determinant variable with the number of positive skin tests. In addition, the independent effect of each key variable was determined by including all key variables in the final models. Results In baseline analyses, African ancestry was associated with 3 times as many positive skin tests in participants with asthma (95% CI:1.62–5.57) and 3.26 times as many positive skin tests in control participants (95% CI: 1.02–10.39). Generation and recruitment site were also associated with atopy in crude models. In final models adjusted for key variables, Puerto Rican [exp(β) (95%CI): 1.31(1.02–1.69)] and mixed ethnicity [exp(β) (95%CI):1.27(1.03–1.56)] asthmatics had a greater probability of positive skin tests compared to Mexican asthmatics. Ancestry associations were abrogated by recruitment site, but not region of origin. Conclusions Puerto Rican ethnicity and mixed origin were associated with degree of atopy within U.S. Latino children with asthma. African ancestry was not associated with degree of atopy after adjusting for recruitment site. Local environment variation, represented by site, was associated with degree of sensitization. PMID:23684070
Leavers, Movers, and Stayers: The Role of Workplace Conditions in Teacher Mobility Decisions
ERIC Educational Resources Information Center
Kukla-Acevedo, Sharon
2009-01-01
The author explored whether 3 workplace conditions were related to teacher mobility decisions. The modeling strategy incorporated a series of binomial and multinomial logistic models to estimate the effects of administrative support, classroom control, and behavioral climate on teachers' decisions to quit teaching or switch schools. The results…
Statistical models for RNA-seq data derived from a two-condition 48-replicate experiment.
Gierliński, Marek; Cole, Christian; Schofield, Pietà; Schurch, Nicholas J; Sherstnev, Alexander; Singh, Vijender; Wrobel, Nicola; Gharbi, Karim; Simpson, Gordon; Owen-Hughes, Tom; Blaxter, Mark; Barton, Geoffrey J
2015-11-15
High-throughput RNA sequencing (RNA-seq) is now the standard method to determine differential gene expression. Identifying differentially expressed genes crucially depends on estimates of read-count variability. These estimates are typically based on statistical models such as the negative binomial distribution, which is employed by the tools edgeR, DESeq and cuffdiff. Until now, the validity of these models has usually been tested on either low-replicate RNA-seq data or simulations. A 48-replicate RNA-seq experiment in yeast was performed and data tested against theoretical models. The observed gene read counts were consistent with both log-normal and negative binomial distributions, while the mean-variance relation followed the line of constant dispersion parameter of ∼0.01. The high-replicate data also allowed for strict quality control and screening of 'bad' replicates, which can drastically affect the gene read-count distribution. RNA-seq data have been submitted to ENA archive with project ID PRJEB5348. g.j.barton@dundee.ac.uk. © The Author 2015. Published by Oxford University Press.
Statistical models for RNA-seq data derived from a two-condition 48-replicate experiment
Cole, Christian; Schofield, Pietà; Schurch, Nicholas J.; Sherstnev, Alexander; Singh, Vijender; Wrobel, Nicola; Gharbi, Karim; Simpson, Gordon; Owen-Hughes, Tom; Blaxter, Mark; Barton, Geoffrey J.
2015-01-01
Motivation: High-throughput RNA sequencing (RNA-seq) is now the standard method to determine differential gene expression. Identifying differentially expressed genes crucially depends on estimates of read-count variability. These estimates are typically based on statistical models such as the negative binomial distribution, which is employed by the tools edgeR, DESeq and cuffdiff. Until now, the validity of these models has usually been tested on either low-replicate RNA-seq data or simulations. Results: A 48-replicate RNA-seq experiment in yeast was performed and data tested against theoretical models. The observed gene read counts were consistent with both log-normal and negative binomial distributions, while the mean-variance relation followed the line of constant dispersion parameter of ∼0.01. The high-replicate data also allowed for strict quality control and screening of ‘bad’ replicates, which can drastically affect the gene read-count distribution. Availability and implementation: RNA-seq data have been submitted to ENA archive with project ID PRJEB5348. Contact: g.j.barton@dundee.ac.uk PMID:26206307
ERIC Educational Resources Information Center
Bergee, Martin J.; Westfall, Claude R.
2005-01-01
This is the third study in a line of inquiry whose purpose has been to develop a theoretical model of selected extra musical variables' influence on solo and small-ensemble festival ratings. Authors of the second of these (Bergee & McWhirter, 2005) had used binomial logistic regression as the basis for their model-formulation strategy. Their…
ERIC Educational Resources Information Center
Liou, Pey-Yan
2009-01-01
The current study examines three regression models: OLS (ordinary least square) linear regression, Poisson regression, and negative binomial regression for analyzing count data. Simulation results show that the OLS regression model performed better than the others, since it did not produce more false statistically significant relationships than…
A Negative Binomial Regression Model for Accuracy Tests
ERIC Educational Resources Information Center
Hung, Lai-Fa
2012-01-01
Rasch used a Poisson model to analyze errors and speed in reading tests. An important property of the Poisson distribution is that the mean and variance are equal. However, in social science research, it is very common for the variance to be greater than the mean (i.e., the data are overdispersed). This study embeds the Rasch model within an…
Moran, John L; Solomon, Patricia J
2012-05-16
For the analysis of length-of-stay (LOS) data, which is characteristically right-skewed, a number of statistical estimators have been proposed as alternatives to the traditional ordinary least squares (OLS) regression with log dependent variable. Using a cohort of patients identified in the Australian and New Zealand Intensive Care Society Adult Patient Database, 2008-2009, 12 different methods were used for estimation of intensive care (ICU) length of stay. These encompassed risk-adjusted regression analysis of firstly: log LOS using OLS, linear mixed model [LMM], treatment effects, skew-normal and skew-t models; and secondly: unmodified (raw) LOS via OLS, generalised linear models [GLMs] with log-link and 4 different distributions [Poisson, gamma, negative binomial and inverse-Gaussian], extended estimating equations [EEE] and a finite mixture model including a gamma distribution. A fixed covariate list and ICU-site clustering with robust variance were utilised for model fitting with split-sample determination (80%) and validation (20%) data sets, and model simulation was undertaken to establish over-fitting (Copas test). Indices of model specification using Bayesian information criterion [BIC: lower values preferred] and residual analysis as well as predictive performance (R2, concordance correlation coefficient (CCC), mean absolute error [MAE]) were established for each estimator. The data-set consisted of 111663 patients from 131 ICUs; with mean(SD) age 60.6(18.8) years, 43.0% were female, 40.7% were mechanically ventilated and ICU mortality was 7.8%. ICU length-of-stay was 3.4(5.1) (median 1.8, range (0.17-60)) days and demonstrated marked kurtosis and right skew (29.4 and 4.4 respectively). BIC showed considerable spread, from a maximum of 509801 (OLS-raw scale) to a minimum of 210286 (LMM). R2 ranged from 0.22 (LMM) to 0.17 and the CCC from 0.334 (LMM) to 0.149, with MAE 2.2-2.4. Superior residual behaviour was established for the log-scale estimators. There was a general tendency for over-prediction (negative residuals) and for over-fitting, the exception being the GLM negative binomial estimator. The mean-variance function was best approximated by a quadratic function, consistent with log-scale estimation; the link function was estimated (EEE) as 0.152(0.019, 0.285), consistent with a fractional-root function. For ICU length of stay, log-scale estimation, in particular the LMM, appeared to be the most consistently performing estimator(s). Neither the GLM variants nor the skew-regression estimators dominated.
C-5A Cargo Deck Low-Frequency Vibration Environment
1975-02-01
SAMPLE VIBRATION CALCULATIONS 13 1. Normal Distribution 13 2. Binomial Distribution 15 IV CONCLUSIONS 17 -! V REFERENCES 18 t: FEiCENDIJJ PAGS 2LANKNOT...Calculation for Binomial Distribution 108 (Vertical Acceleration, Right Rear Cargo Deck) xi I. INTRODUCTION The availability of large transport...the end of taxi. These peaks could then be used directly to compile the probability of occurrence of specific values of acceleration using the binomial
Metaprop: a Stata command to perform meta-analysis of binomial data.
Nyaga, Victoria N; Arbyn, Marc; Aerts, Marc
2014-01-01
Meta-analyses have become an essential tool in synthesizing evidence on clinical and epidemiological questions derived from a multitude of similar studies assessing the particular issue. Appropriate and accessible statistical software is needed to produce the summary statistic of interest. Metaprop is a statistical program implemented to perform meta-analyses of proportions in Stata. It builds further on the existing Stata procedure metan which is typically used to pool effects (risk ratios, odds ratios, differences of risks or means) but which is also used to pool proportions. Metaprop implements procedures which are specific to binomial data and allows computation of exact binomial and score test-based confidence intervals. It provides appropriate methods for dealing with proportions close to or at the margins where the normal approximation procedures often break down, by use of the binomial distribution to model the within-study variability or by allowing Freeman-Tukey double arcsine transformation to stabilize the variances. Metaprop was applied on two published meta-analyses: 1) prevalence of HPV-infection in women with a Pap smear showing ASC-US; 2) cure rate after treatment for cervical precancer using cold coagulation. The first meta-analysis showed a pooled HPV-prevalence of 43% (95% CI: 38%-48%). In the second meta-analysis, the pooled percentage of cured women was 94% (95% CI: 86%-97%). By using metaprop, no studies with 0% or 100% proportions were excluded from the meta-analysis. Furthermore, study specific and pooled confidence intervals always were within admissible values, contrary to the original publication, where metan was used.
Negative Binomial Process Count and Mixture Modeling.
Zhou, Mingyuan; Carin, Lawrence
2015-02-01
The seemingly disjoint problems of count and mixture modeling are united under the negative binomial (NB) process. A gamma process is employed to model the rate measure of a Poisson process, whose normalization provides a random probability measure for mixture modeling and whose marginalization leads to an NB process for count modeling. A draw from the NB process consists of a Poisson distributed finite number of distinct atoms, each of which is associated with a logarithmic distributed number of data samples. We reveal relationships between various count- and mixture-modeling distributions and construct a Poisson-logarithmic bivariate distribution that connects the NB and Chinese restaurant table distributions. Fundamental properties of the models are developed, and we derive efficient Bayesian inference. It is shown that with augmentation and normalization, the NB process and gamma-NB process can be reduced to the Dirichlet process and hierarchical Dirichlet process, respectively. These relationships highlight theoretical, structural, and computational advantages of the NB process. A variety of NB processes, including the beta-geometric, beta-NB, marked-beta-NB, marked-gamma-NB and zero-inflated-NB processes, with distinct sharing mechanisms, are also constructed. These models are applied to topic modeling, with connections made to existing algorithms under Poisson factor analysis. Example results show the importance of inferring both the NB dispersion and probability parameters.
Goodness-of-fit tests and model diagnostics for negative binomial regression of RNA sequencing data.
Mi, Gu; Di, Yanming; Schafer, Daniel W
2015-01-01
This work is about assessing model adequacy for negative binomial (NB) regression, particularly (1) assessing the adequacy of the NB assumption, and (2) assessing the appropriateness of models for NB dispersion parameters. Tools for the first are appropriate for NB regression generally; those for the second are primarily intended for RNA sequencing (RNA-Seq) data analysis. The typically small number of biological samples and large number of genes in RNA-Seq analysis motivate us to address the trade-offs between robustness and statistical power using NB regression models. One widely-used power-saving strategy, for example, is to assume some commonalities of NB dispersion parameters across genes via simple models relating them to mean expression rates, and many such models have been proposed. As RNA-Seq analysis is becoming ever more popular, it is appropriate to make more thorough investigations into power and robustness of the resulting methods, and into practical tools for model assessment. In this article, we propose simulation-based statistical tests and diagnostic graphics to address model adequacy. We provide simulated and real data examples to illustrate that our proposed methods are effective for detecting the misspecification of the NB mean-variance relationship as well as judging the adequacy of fit of several NB dispersion models.
Kadam, Shantanu; Vanka, Kumar
2013-02-15
Methods based on the stochastic formulation of chemical kinetics have the potential to accurately reproduce the dynamical behavior of various biochemical systems of interest. However, the computational expense makes them impractical for the study of real systems. Attempts to render these methods practical have led to the development of accelerated methods, where the reaction numbers are modeled by Poisson random numbers. However, for certain systems, such methods give rise to physically unrealistic negative numbers for species populations. The methods which make use of binomial variables, in place of Poisson random numbers, have since become popular, and have been partially successful in addressing this problem. In this manuscript, the development of two new computational methods, based on the representative reaction approach (RRA), has been discussed. The new methods endeavor to solve the problem of negative numbers, by making use of tools like the stochastic simulation algorithm and the binomial method, in conjunction with the RRA. It is found that these newly developed methods perform better than other binomial methods used for stochastic simulations, in resolving the problem of negative populations. Copyright © 2012 Wiley Periodicals, Inc.
Fitting Cure Rate Model to Breast Cancer Data of Cancer Research Center.
Baghestani, Ahmad Reza; Zayeri, Farid; Akbari, Mohammad Esmaeil; Shojaee, Leyla; Khadembashi, Naghmeh; Shahmirzalou, Parviz
2015-01-01
The Cox PH model is one of the most significant statistical models in studying survival of patients. But, in the case of patients with long-term survival, it may not be the most appropriate. In such cases, a cure rate model seems more suitable. The purpose of this study was to determine clinical factors associated with cure rate of patients with breast cancer. In order to find factors affecting cure rate (response), a non-mixed cure rate model with negative binomial distribution for latent variable was used. Variables selected were recurrence cancer, status for HER2, estrogen receptor (ER) and progesterone receptor (PR), size of tumor, grade of cancer, stage of cancer, type of surgery, age at the diagnosis time and number of removed positive lymph nodes. All analyses were performed using PROC MCMC processes in the SAS 9.2 program. The mean (SD) age of patients was equal to 48.9 (11.1) months. For these patients, 1, 5 and 10-year survival rates were 95, 79 and 50 percent respectively. All of the mentioned variables were effective in cure fraction. Kaplan-Meier curve showed cure model's use competence. Unlike other variables, existence of ER and PR positivity will increase probability of cure in patients. In the present study, Weibull distribution was used for the purpose of analysing survival times. Model fitness with other distributions such as log-N and log-logistic and other distributions for latent variable is recommended.
Park, Byung-Jung; Lord, Dominique; Wu, Lingtao
2016-10-28
This study aimed to investigate the relative performance of two models (negative binomial (NB) model and two-component finite mixture of negative binomial models (FMNB-2)) in terms of developing crash modification factors (CMFs). Crash data on rural multilane divided highways in California and Texas were modeled with the two models, and crash modification functions (CMFunctions) were derived. The resultant CMFunction estimated from the FMNB-2 model showed several good properties over that from the NB model. First, the safety effect of a covariate was better reflected by the CMFunction developed using the FMNB-2 model, since the model takes into account the differential responsiveness of crash frequency to the covariate. Second, the CMFunction derived from the FMNB-2 model is able to capture nonlinear relationships between covariate and safety. Finally, following the same concept as those for NB models, the combined CMFs of multiple treatments were estimated using the FMNB-2 model. The results indicated that they are not the simple multiplicative of single ones (i.e., their safety effects are not independent under FMNB-2 models). Adjustment Factors (AFs) were then developed. It is revealed that current Highway Safety Manual's method could over- or under-estimate the combined CMFs under particular combination of covariates. Safety analysts are encouraged to consider using the FMNB-2 models for developing CMFs and AFs. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Levin, Eugene M.
1981-01-01
Student access to programmable calculators and computer terminals, coupled with a familiarity with baseball, provides opportunities to enhance their understanding of the binomial distribution and other aspects of analysis. (MP)
Wang, Zhu; Ma, Shuangge; Wang, Ching-Yun
2015-09-01
In health services and outcome research, count outcomes are frequently encountered and often have a large proportion of zeros. The zero-inflated negative binomial (ZINB) regression model has important applications for this type of data. With many possible candidate risk factors, this paper proposes new variable selection methods for the ZINB model. We consider maximum likelihood function plus a penalty including the least absolute shrinkage and selection operator (LASSO), smoothly clipped absolute deviation (SCAD), and minimax concave penalty (MCP). An EM (expectation-maximization) algorithm is proposed for estimating the model parameters and conducting variable selection simultaneously. This algorithm consists of estimating penalized weighted negative binomial models and penalized logistic models via the coordinated descent algorithm. Furthermore, statistical properties including the standard error formulae are provided. A simulation study shows that the new algorithm not only has more accurate or at least comparable estimation, but also is more robust than the traditional stepwise variable selection. The proposed methods are applied to analyze the health care demand in Germany using the open-source R package mpath. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Donner, William R
2007-08-01
This study examines casualties from tornadoes in the United States between the years 1998 and 2000. A political model of human ecology (POET) was used to explore how the environment, technology, and social inequality influence rates of fatalities and injuries in two models. Data were drawn from four sources: John Hart's Severe Plot v2.0, National Weather Service (NWS) Warning Verification data, Storm Prediction Center (SPC) watch data, and tract-level census data. Negative binomial regression was used to analyze the causes of tornado fatalities and injuries. Independent variables (following POET) are classified in the following manner: population, organization, environment, and technology. Rural population, population density, and household size correspond to population; racial minorities and deprivation represent social organization; tornado area represents environment; and tornado watches and warnings, as well as mobile homes, correspond to technology. Findings suggest a strong relationship between the size of a tornado path and both fatalities and injuries, whereas other measures related to technology, population, and organization produce significant yet mixed results. Census tracts having larger populations of rural residents was, of the nonenvironmental factors, the most conclusive regarding its effects across the two models. The outcomes of analysis, although not entirely supportive of the model presented in this study, suggest to some degree that demographic and social factors play a role in vulnerability to tornadoes.
The Dirichlet-Multinomial Model for Multivariate Randomized Response Data and Small Samples
ERIC Educational Resources Information Center
Avetisyan, Marianna; Fox, Jean-Paul
2012-01-01
In survey sampling the randomized response (RR) technique can be used to obtain truthful answers to sensitive questions. Although the individual answers are masked due to the RR technique, individual (sensitive) response rates can be estimated when observing multivariate response data. The beta-binomial model for binary RR data will be generalized…
Random parameter models for accident prediction on two-lane undivided highways in India.
Dinu, R R; Veeraragavan, A
2011-02-01
Generalized linear modeling (GLM), with the assumption of Poisson or negative binomial error structure, has been widely employed in road accident modeling. A number of explanatory variables related to traffic, road geometry, and environment that contribute to accident occurrence have been identified and accident prediction models have been proposed. The accident prediction models reported in literature largely employ the fixed parameter modeling approach, where the magnitude of influence of an explanatory variable is considered to be fixed for any observation in the population. Similar models have been proposed for Indian highways too, which include additional variables representing traffic composition. The mixed traffic on Indian highways comes with a lot of variability within, ranging from difference in vehicle types to variability in driver behavior. This could result in variability in the effect of explanatory variables on accidents across locations. Random parameter models, which can capture some of such variability, are expected to be more appropriate for the Indian situation. The present study is an attempt to employ random parameter modeling for accident prediction on two-lane undivided rural highways in India. Three years of accident history, from nearly 200 km of highway segments, is used to calibrate and validate the models. The results of the analysis suggest that the model coefficients for traffic volume, proportion of cars, motorized two-wheelers and trucks in traffic, and driveway density and horizontal and vertical curvatures are randomly distributed across locations. The paper is concluded with a discussion on modeling results and the limitations of the present study. Copyright © 2010 Elsevier Ltd. All rights reserved.
New Class of Quantum Error-Correcting Codes for a Bosonic Mode
NASA Astrophysics Data System (ADS)
Michael, Marios H.; Silveri, Matti; Brierley, R. T.; Albert, Victor V.; Salmilehto, Juha; Jiang, Liang; Girvin, S. M.
2016-07-01
We construct a new class of quantum error-correcting codes for a bosonic mode, which are advantageous for applications in quantum memories, communication, and scalable computation. These "binomial quantum codes" are formed from a finite superposition of Fock states weighted with binomial coefficients. The binomial codes can exactly correct errors that are polynomial up to a specific degree in bosonic creation and annihilation operators, including amplitude damping and displacement noise as well as boson addition and dephasing errors. For realistic continuous-time dissipative evolution, the codes can perform approximate quantum error correction to any given order in the time step between error detection measurements. We present an explicit approximate quantum error recovery operation based on projective measurements and unitary operations. The binomial codes are tailored for detecting boson loss and gain errors by means of measurements of the generalized number parity. We discuss optimization of the binomial codes and demonstrate that by relaxing the parity structure, codes with even lower unrecoverable error rates can be achieved. The binomial codes are related to existing two-mode bosonic codes, but offer the advantage of requiring only a single bosonic mode to correct amplitude damping as well as the ability to correct other errors. Our codes are similar in spirit to "cat codes" based on superpositions of the coherent states but offer several advantages such as smaller mean boson number, exact rather than approximate orthonormality of the code words, and an explicit unitary operation for repumping energy into the bosonic mode. The binomial quantum codes are realizable with current superconducting circuit technology, and they should prove useful in other quantum technologies, including bosonic quantum memories, photonic quantum communication, and optical-to-microwave up- and down-conversion.
Ayifah, Emmanuel; Arimond, Mary; Arnold, Charles D; Cummins, Joseph; Matias, Susana L; Ashorn, Ulla; Lartey, Anna; Maleta, Kenneth M; Vosti, Stephen A; Dewey, Kathryn G
2017-01-01
Background: It is unknown whether self-reported measures of household food insecurity change in response to food-based nutrient supplementation. Objective: We assessed the impacts of providing lipid-based nutrient supplements (LNSs) to women during pregnancy and postpartum and/or to their children on self-reported household food insecurity in Malawi [DOSE and DYAD trial in Malawi (DYAD-M)], Ghana [DYAD trial in Ghana (DYAD-G)], and Bangladesh [Rang-Din Nutrition Study (RDNS) trial]. Methods: Longitudinal household food-insecurity data were collected during 3 individually randomized trials and 1 cluster-randomized trial testing the efficacy or effectiveness of LNSs (generally 118 kcal/d). Seasonally adjusted Household Food Insecurity Access Scale (HFIAS) scores were constructed for 1127 DOSE households, 732 DYAD-M households, 1109 DYAD-G households, and 3671 RDNS households. The impact of providing LNSs to women during pregnancy and the first 6 mo postpartum and/or to their children from 6 to 18–24 mo on seasonally adjusted HFIAS scores was assessed by using negative binomial models (DOSE, DYAD-M, and DYAD-G trials) and mixed-effect negative binomial models (RDNS trial). Results: In the DOSE and DYAD-G trials, seasonally adjusted HFIAS scores were not different between the LNS and non-LNS groups. In the DYAD-M trial, the average household food-insecurity scores were 14% lower (P = 0.01) in LNS households than in non-LNS households. In the RDNS trial, compared with non-LNS households, food-insecurity scores were 17% lower (P = 0.02) during pregnancy and the first 6 mo postpartum and 15% lower (P = 0.02) at 6–24 mo postpartum in LNS households. Conclusions: The daily provision of LNSs to mothers and their children throughout much of the “first 1000 d” may improve household food security in some settings, which could be viewed as an additional benefit that may accrue in households should policy makers choose to invest in LNSs to promote child growth and development. These trials were registered at clinicaltrials.gov as NCT00945698 (DOSE) NCT01239693 (DYAD-M), NCT00970866 (DYAD-G) and NCT01715038 (RDNS). PMID:28978680
Adams, Katherine P; Ayifah, Emmanuel; Phiri, Thokozani E; Mridha, Malay K; Adu-Afarwuah, Seth; Arimond, Mary; Arnold, Charles D; Cummins, Joseph; Hussain, Sohrab; Kumwenda, Chiza; Matias, Susana L; Ashorn, Ulla; Lartey, Anna; Maleta, Kenneth M; Vosti, Stephen A; Dewey, Kathryn G
2017-12-01
Background: It is unknown whether self-reported measures of household food insecurity change in response to food-based nutrient supplementation. Objective: We assessed the impacts of providing lipid-based nutrient supplements (LNSs) to women during pregnancy and postpartum and/or to their children on self-reported household food insecurity in Malawi [DOSE and DYAD trial in Malawi (DYAD-M)], Ghana [DYAD trial in Ghana (DYAD-G)], and Bangladesh [Rang-Din Nutrition Study (RDNS) trial]. Methods: Longitudinal household food-insecurity data were collected during 3 individually randomized trials and 1 cluster-randomized trial testing the efficacy or effectiveness of LNSs (generally 118 kcal/d). Seasonally adjusted Household Food Insecurity Access Scale (HFIAS) scores were constructed for 1127 DOSE households, 732 DYAD-M households, 1109 DYAD-G households, and 3671 RDNS households. The impact of providing LNSs to women during pregnancy and the first 6 mo postpartum and/or to their children from 6 to 18-24 mo on seasonally adjusted HFIAS scores was assessed by using negative binomial models (DOSE, DYAD-M, and DYAD-G trials) and mixed-effect negative binomial models (RDNS trial). Results: In the DOSE and DYAD-G trials, seasonally adjusted HFIAS scores were not different between the LNS and non-LNS groups. In the DYAD-M trial, the average household food-insecurity scores were 14% lower ( P = 0.01) in LNS households than in non-LNS households. In the RDNS trial, compared with non-LNS households, food-insecurity scores were 17% lower ( P = 0.02) during pregnancy and the first 6 mo postpartum and 15% lower ( P = 0.02) at 6-24 mo postpartum in LNS households. Conclusions: The daily provision of LNSs to mothers and their children throughout much of the "first 1000 d" may improve household food security in some settings, which could be viewed as an additional benefit that may accrue in households should policy makers choose to invest in LNSs to promote child growth and development. These trials were registered at clinicaltrials.gov as NCT00945698 (DOSE) NCT01239693 (DYAD-M), NCT00970866 (DYAD-G) and NCT01715038 (RDNS).
Liu, Lian; Zhang, Shao-Wu; Huang, Yufei; Meng, Jia
2017-08-31
As a newly emerged research area, RNA epigenetics has drawn increasing attention recently for the participation of RNA methylation and other modifications in a number of crucial biological processes. Thanks to high throughput sequencing techniques, such as, MeRIP-Seq, transcriptome-wide RNA methylation profile is now available in the form of count-based data, with which it is often of interests to study the dynamics at epitranscriptomic layer. However, the sample size of RNA methylation experiment is usually very small due to its costs; and additionally, there usually exist a large number of genes whose methylation level cannot be accurately estimated due to their low expression level, making differential RNA methylation analysis a difficult task. We present QNB, a statistical approach for differential RNA methylation analysis with count-based small-sample sequencing data. Compared with previous approaches such as DRME model based on a statistical test covering the IP samples only with 2 negative binomial distributions, QNB is based on 4 independent negative binomial distributions with their variances and means linked by local regressions, and in the way, the input control samples are also properly taken care of. In addition, different from DRME approach, which relies only the input control sample only for estimating the background, QNB uses a more robust estimator for gene expression by combining information from both input and IP samples, which could largely improve the testing performance for very lowly expressed genes. QNB showed improved performance on both simulated and real MeRIP-Seq datasets when compared with competing algorithms. And the QNB model is also applicable to other datasets related RNA modifications, including but not limited to RNA bisulfite sequencing, m 1 A-Seq, Par-CLIP, RIP-Seq, etc.
Lee, JuHee; Park, Chang Gi; Choi, Moonki
2016-05-01
This study was conducted to identify risk factors that influence regular exercise among patients with Parkinson's disease in Korea. Parkinson's disease is prevalent in the elderly, and may lead to a sedentary lifestyle. Exercise can enhance physical and psychological health. However, patients with Parkinson's disease are less likely to exercise than are other populations due to physical disability. A secondary data analysis and cross-sectional descriptive study were conducted. A convenience sample of 106 patients with Parkinson's disease was recruited at an outpatient neurology clinic of a tertiary hospital in Korea. Demographic characteristics, disease-related characteristics (including disease duration and motor symptoms), self-efficacy for exercise, balance, and exercise level were investigated. Negative binomial regression and zero-inflated negative binomial regression for exercise count data were utilized to determine factors involved in exercise. The mean age of participants was 65.85 ± 8.77 years, and the mean duration of Parkinson's disease was 7.23 ± 6.02 years. Most participants indicated that they engaged in regular exercise (80.19%). Approximately half of participants exercised at least 5 days per week for 30 min, as recommended (51.9%). Motor symptoms were a significant predictor of exercise in the count model, and self-efficacy for exercise was a significant predictor of exercise in the zero model. Severity of motor symptoms was related to frequency of exercise. Self-efficacy contributed to the probability of exercise. Symptom management and improvement of self-efficacy for exercise are important to encourage regular exercise in patients with Parkinson's disease. Copyright © 2015 Elsevier Inc. All rights reserved.
Naish, Suchithra; Hu, Wenbiao; Nicholls, Neville; Mackenzie, John S; Dale, Pat; McMichael, Anthony J; Tong, Shilu
2009-02-01
To assess the socio-environmental predictors of Barmah forest virus (BFV) transmission in coastal areas, Queensland, Australia. Data on BFV notified cases, climate, tidal levels and socioeconomic index for area (SEIFA) in six coastal cities, Queensland, for the period 1992-2001 were obtained from the relevant government agencies. Negative binomial regression models were used to assess the socio-environmental predictors of BFV transmission. The results show that maximum and minimum temperature, rainfall, relative humidity, high and low tide were statistically significantly associated with BFV incidence at lags 0-2 months. The fitted negative binomial regression models indicate a significant independent association of each of maximum temperature (beta = 0.139, P = 0.000), high tide (beta = 0.005, P = 0.000) and SEIFA index (beta = -0.010, P = 0.000) with BFV transmission after adjustment for confounding variables. The transmission of BFV disease in Queensland coastal areas seemed to be determined by a combination of local social and environmental factors. The model developed in this study may have applications in the control and prevention of BFV disease in these areas.
Mental health status and healthcare utilization among community dwelling older adults.
Adepoju, Omolola; Lin, Szu-Hsuan; Mileski, Michael; Kruse, Clemens Scott; Mask, Andrew
2018-04-27
Shifts in mental health utilization patterns are necessary to allow for meaningful access to care for vulnerable populations. There have been long standing issues in how mental health is provided, which has caused problems in that care being efficacious for those seeking it. To assess the relationship between mental health status and healthcare utilization among adults ≥65 years. A negative binomial regression model was used to assess the relationship between mental health status and healthcare utilization related to office-based physician visits, while a two-part model, consisting of logistic regression and negative binomial regression, was used to separately model emergency visits and inpatient services. The receipt of care in office-based settings were marginally higher for subjects with mental health difficulties. Both probabilities and counts of inpatient hospitalizations were similar across mental health categories. The count of ER visits was similar across mental health categories; however, the probability of having an emergency department visit was marginally higher for older adults who reported mental health difficulties in 2012. These findings are encouraging and lend promise to the recent initiatives on addressing gaps in mental healthcare services.
Possibility and Challenges of Conversion of Current Virus Species Names to Linnaean Binomials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Postler, Thomas S.; Clawson, Anna N.; Amarasinghe, Gaya K.
Botanical, mycological, zoological, and prokaryotic species names follow the Linnaean format, consisting of an italicized Latinized binomen with a capitalized genus name and a lower case species epithet (e.g., Homo sapiens). Virus species names, however, do not follow a uniform format, and, even when binomial, are not Linnaean in style. In this thought exercise, we attempted to convert all currently official names of species included in the virus family Arenaviridae and the virus order Mononegavirales to Linnaean binomials, and to identify and address associated challenges and concerns. Surprisingly, this endeavor was not as complicated or time-consuming as even the authorsmore » of this article expected when conceiving the experiment. [Arenaviridae; binomials; ICTV; International Committee on Taxonomy of Viruses; Mononegavirales; virus nomenclature; virus taxonomy.]« less
Predictive accuracy of particle filtering in dynamic models supporting outbreak projections.
Safarishahrbijari, Anahita; Teyhouee, Aydin; Waldner, Cheryl; Liu, Juxin; Osgood, Nathaniel D
2017-09-26
While a new generation of computational statistics algorithms and availability of data streams raises the potential for recurrently regrounding dynamic models with incoming observations, the effectiveness of such arrangements can be highly subject to specifics of the configuration (e.g., frequency of sampling and representation of behaviour change), and there has been little attempt to identify effective configurations. Combining dynamic models with particle filtering, we explored a solution focusing on creating quickly formulated models regrounded automatically and recurrently as new data becomes available. Given a latent underlying case count, we assumed that observed incident case counts followed a negative binomial distribution. In accordance with the condensation algorithm, each such observation led to updating of particle weights. We evaluated the effectiveness of various particle filtering configurations against each other and against an approach without particle filtering according to the accuracy of the model in predicting future prevalence, given data to a certain point and a norm-based discrepancy metric. We examined the effectiveness of particle filtering under varying times between observations, negative binomial dispersion parameters, and rates with which the contact rate could evolve. We observed that more frequent observations of empirical data yielded super-linearly improved accuracy in model predictions. We further found that for the data studied here, the most favourable assumptions to make regarding the parameters associated with the negative binomial distribution and changes in contact rate were robust across observation frequency and the observation point in the outbreak. Combining dynamic models with particle filtering can perform well in projecting future evolution of an outbreak. Most importantly, the remarkable improvements in predictive accuracy resulting from more frequent sampling suggest that investments to achieve efficient reporting mechanisms may be more than paid back by improved planning capacity. The robustness of the results on particle filter configuration in this case study suggests that it may be possible to formulate effective standard guidelines and regularized approaches for such techniques in particular epidemiological contexts. Most importantly, the work tentatively suggests potential for health decision makers to secure strong guidance when anticipating outbreak evolution for emerging infectious diseases by combining even very rough models with particle filtering method.
Hospital support services and the impacts of outsourcing on occupational health and safety.
Siganporia, Pearl; Astrakianakis, George; Alamgir, Hasanat; Ostry, Aleck; Nicol, Anne-Marie; Koehoorn, Mieke
2016-10-01
Outsourcing labor is linked to negative impacts on occupational health and safety (OHS). In British Columbia, Canada, provincial health care service providers outsource support services such as cleaners and food service workers (CFSWs) to external contractors. This study investigates the impact of outsourcing on the occupational health safety of hospital CFSWs through a mixed methods approach. Worker's compensation data for hospital CFSWs were analyzed by negative binomial and multiple linear regressions supplemented by iterative thematic analysis of telephone interviews of the same job groups. Non-significant decreases in injury rates and days lost per injury were observed in outsourced CFSWs post outsourcing. Significant decreases (P < 0.05) were observed in average costs per injury for cleaners post outsourcing. Outsourced workers interviewed implied instances of underreporting workplace injuries. This mixed methods study describes the impact of outsourcing on OHS of healthcare workers in British Columbia. Results will be helpful for policy-makers and workplace regulators to assess program effectiveness for outsourced workers.
Hospital support services and the impacts of outsourcing on occupational health and safety
Alamgir, Hasanat; Ostry, Aleck; Nicol, Anne-Marie; Koehoorn, Mieke
2016-01-01
Background Outsourcing labor is linked to negative impacts on occupational health and safety (OHS). In British Columbia, Canada, provincial health care service providers outsource support services such as cleaners and food service workers (CFSWs) to external contractors. Objectives This study investigates the impact of outsourcing on the occupational health safety of hospital CFSWs through a mixed methods approach. Methods Worker’s compensation data for hospital CFSWs were analyzed by negative binomial and multiple linear regressions supplemented by iterative thematic analysis of telephone interviews of the same job groups. Results Non-significant decreases in injury rates and days lost per injury were observed in outsourced CFSWs post outsourcing. Significant decreases (P < 0.05) were observed in average costs per injury for cleaners post outsourcing. Outsourced workers interviewed implied instances of underreporting workplace injuries. Conclusions This mixed methods study describes the impact of outsourcing on OHS of healthcare workers in British Columbia. Results will be helpful for policy-makers and workplace regulators to assess program effectiveness for outsourced workers. PMID:27696988
Football goal distributions and extremal statistics
NASA Astrophysics Data System (ADS)
Greenhough, J.; Birch, P. C.; Chapman, S. C.; Rowlands, G.
2002-12-01
We analyse the distributions of the number of goals scored by home teams, away teams, and the total scored in the match, in domestic football games from 169 countries between 1999 and 2001. The probability density functions (PDFs) of goals scored are too heavy-tailed to be fitted over their entire ranges by Poisson or negative binomial distributions which would be expected for uncorrelated processes. Log-normal distributions cannot include zero scores and here we find that the PDFs are consistent with those arising from extremal statistics. In addition, we show that it is sufficient to model English top division and FA Cup matches in the seasons of 1970/71-2000/01 on Poisson or negative binomial distributions, as reported in analyses of earlier seasons, and that these are not consistent with extremal statistics.
Introducing Perception and Modelling of Spatial Randomness in Classroom
ERIC Educational Resources Information Center
De Nóbrega, José Renato
2017-01-01
A strategy to facilitate understanding of spatial randomness is described, using student activities developed in sequence: looking at spatial patterns, simulating approximate spatial randomness using a grid of equally-likely squares, using binomial probabilities for approximations and predictions and then comparing with given Poisson…
Li, Jun; Tibshirani, Robert
2015-01-01
We discuss the identification of features that are associated with an outcome in RNA-Sequencing (RNA-Seq) and other sequencing-based comparative genomic experiments. RNA-Seq data takes the form of counts, so models based on the normal distribution are generally unsuitable. The problem is especially challenging because different sequencing experiments may generate quite different total numbers of reads, or ‘sequencing depths’. Existing methods for this problem are based on Poisson or negative binomial models: they are useful but can be heavily influenced by ‘outliers’ in the data. We introduce a simple, nonparametric method with resampling to account for the different sequencing depths. The new method is more robust than parametric methods. It can be applied to data with quantitative, survival, two-class or multiple-class outcomes. We compare our proposed method to Poisson and negative binomial-based methods in simulated and real data sets, and find that our method discovers more consistent patterns than competing methods. PMID:22127579
Kabaluk, J Todd; Binns, Michael R; Vernon, Robert S
2006-06-01
Counts of green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae), in potato, Solanum tuberosum L., fields were used to evaluate the performance of the sampling plan from a pest management company. The counts were further used to develop a binomial sampling method, and both full count and binomial plans were evaluated using operating characteristic curves. Taylor's power law provided a good fit of the data (r2 = 0.95), with the relationship between the variance (s2) and mean (m) as ln(s2) = 1.81(+/- 0.02) + 1.55(+/- 0.01) ln(m). A binomial sampling method was developed using the empirical model ln(m) = c + dln(-ln(1 - P(T))), to which the data fit well for tally numbers (T) of 0, 1, 3, 5, 7, and 10. Although T = 3 was considered the most reasonable given its operating characteristics and presumed ease of classification above or below critical densities (i.e., action thresholds) of one and 10 M. persicae per leaf, the full count method is shown to be superior. The mean number of sample sites per field visit by the pest management company was 42 +/- 19, with more than one-half (54%) of the field visits involving sampling 31-50 sample sites, which was acceptable in the context of operating characteristic curves for a critical density of 10 M. persicae per leaf. Based on operating characteristics, actual sample sizes used by the pest management company can be reduced by at least 50%, on average, for a critical density of 10 M. persicae per leaf. For a critical density of one M. persicae per leaf used to avert the spread of potato leaf roll virus, sample sizes from 50 to 100 were considered more suitable.
Garrido-Balsells, José María; Jurado-Navas, Antonio; Paris, José Francisco; Castillo-Vazquez, Miguel; Puerta-Notario, Antonio
2015-03-09
In this paper, a novel and deeper physical interpretation on the recently published Málaga or ℳ statistical distribution is provided. This distribution, which is having a wide acceptance by the scientific community, models the optical irradiance scintillation induced by the atmospheric turbulence. Here, the analytical expressions previously published are modified in order to express them by a mixture of the known Generalized-K and discrete Binomial and Negative Binomial distributions. In particular, the probability density function (pdf) of the ℳ model is now obtained as a linear combination of these Generalized-K pdf, in which the coefficients depend directly on the parameters of the ℳ distribution. In this way, the Málaga model can be physically interpreted as a superposition of different optical sub-channels each of them described by the corresponding Generalized-K fading model and weighted by the ℳ dependent coefficients. The expressions here proposed are simpler than the equations of the original ℳ model and are validated by means of numerical simulations by generating ℳ -distributed random sequences and their associated histogram. This novel interpretation of the Málaga statistical distribution provides a valuable tool for analyzing the performance of atmospheric optical channels for every turbulence condition.
NASA Astrophysics Data System (ADS)
Jian, Wang; Xiaohong, Meng; Hong, Liu; Wanqiu, Zheng; Yaning, Liu; Sheng, Gui; Zhiyang, Wang
2017-03-01
Full waveform inversion and reverse time migration are active research areas for seismic exploration. Forward modeling in the time domain determines the precision of the results, and numerical solutions of finite difference have been widely adopted as an important mathematical tool for forward modeling. In this article, the optimum combined of window functions was designed based on the finite difference operator using a truncated approximation of the spatial convolution series in pseudo-spectrum space, to normalize the outcomes of existing window functions for different orders. The proposed combined window functions not only inherit the characteristics of the various window functions, to provide better truncation results, but also control the truncation error of the finite difference operator manually and visually by adjusting the combinations and analyzing the characteristics of the main and side lobes of the amplitude response. Error level and elastic forward modeling under the proposed combined system were compared with outcomes from conventional window functions and modified binomial windows. Numerical dispersion is significantly suppressed, which is compared with modified binomial window function finite-difference and conventional finite-difference. Numerical simulation verifies the reliability of the proposed method.
Coe, J.A.; Michael, J.A.; Crovelli, R.A.; Savage, W.Z.; Laprade, W.T.; Nashem, W.D.
2004-01-01
Ninety years of historical landslide records were used as input to the Poisson and binomial probability models. Results from these models show that, for precipitation-triggered landslides, approximately 9 percent of the area of Seattle has annual exceedance probabilities of 1 percent or greater. Application of the Poisson model for estimating the future occurrence of individual landslides results in a worst-case scenario map, with a maximum annual exceedance probability of 25 percent on a hillslope near Duwamish Head in West Seattle. Application of the binomial model for estimating the future occurrence of a year with one or more landslides results in a map with a maximum annual exceedance probability of 17 percent (also near Duwamish Head). Slope and geology both play a role in localizing the occurrence of landslides in Seattle. A positive correlation exists between slope and mean exceedance probability, with probability tending to increase as slope increases. Sixty-four percent of all historical landslide locations are within 150 m (500 ft, horizontal distance) of the Esperance Sand/Lawton Clay contact, but within this zone, no positive or negative correlation exists between exceedance probability and distance to the contact.
Population heterogeneity in the salience of multiple risk factors for adolescent delinquency.
Lanza, Stephanie T; Cooper, Brittany R; Bray, Bethany C
2014-03-01
To present mixture regression analysis as an alternative to more standard regression analysis for predicting adolescent delinquency. We demonstrate how mixture regression analysis allows for the identification of population subgroups defined by the salience of multiple risk factors. We identified population subgroups (i.e., latent classes) of individuals based on their coefficients in a regression model predicting adolescent delinquency from eight previously established risk indices drawn from the community, school, family, peer, and individual levels. The study included N = 37,763 10th-grade adolescents who participated in the Communities That Care Youth Survey. Standard, zero-inflated, and mixture Poisson and negative binomial regression models were considered. Standard and mixture negative binomial regression models were selected as optimal. The five-class regression model was interpreted based on the class-specific regression coefficients, indicating that risk factors had varying salience across classes of adolescents. Standard regression showed that all risk factors were significantly associated with delinquency. Mixture regression provided more nuanced information, suggesting a unique set of risk factors that were salient for different subgroups of adolescents. Implications for the design of subgroup-specific interventions are discussed. Copyright © 2014 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
Varona, Luis; Sorensen, Daniel
2014-01-01
This work presents a model for the joint analysis of a binomial and a Gaussian trait using a recursive parametrization that leads to a computationally efficient implementation. The model is illustrated in an analysis of mortality and litter size in two breeds of Danish pigs, Landrace and Yorkshire. Available evidence suggests that mortality of piglets increased partly as a result of successful selection for total number of piglets born. In recent years there has been a need to decrease the incidence of mortality in pig-breeding programs. We report estimates of genetic variation at the level of the logit of the probability of mortality and quantify how it is affected by the size of the litter. Several models for mortality are considered and the best fits are obtained by postulating linear and cubic relationships between the logit of the probability of mortality and litter size, for Landrace and Yorkshire, respectively. An interpretation of how the presence of genetic variation affects the probability of mortality in the population is provided and we discuss and quantify the prospects of selecting for reduced mortality, without affecting litter size. PMID:24414548
Using beta binomials to estimate classification uncertainty for ensemble models.
Clark, Robert D; Liang, Wenkel; Lee, Adam C; Lawless, Michael S; Fraczkiewicz, Robert; Waldman, Marvin
2014-01-01
Quantitative structure-activity (QSAR) models have enormous potential for reducing drug discovery and development costs as well as the need for animal testing. Great strides have been made in estimating their overall reliability, but to fully realize that potential, researchers and regulators need to know how confident they can be in individual predictions. Submodels in an ensemble model which have been trained on different subsets of a shared training pool represent multiple samples of the model space, and the degree of agreement among them contains information on the reliability of ensemble predictions. For artificial neural network ensembles (ANNEs) using two different methods for determining ensemble classification - one using vote tallies and the other averaging individual network outputs - we have found that the distribution of predictions across positive vote tallies can be reasonably well-modeled as a beta binomial distribution, as can the distribution of errors. Together, these two distributions can be used to estimate the probability that a given predictive classification will be in error. Large data sets comprised of logP, Ames mutagenicity, and CYP2D6 inhibition data are used to illustrate and validate the method. The distributions of predictions and errors for the training pool accurately predicted the distribution of predictions and errors for large external validation sets, even when the number of positive and negative examples in the training pool were not balanced. Moreover, the likelihood of a given compound being prospectively misclassified as a function of the degree of consensus between networks in the ensemble could in most cases be estimated accurately from the fitted beta binomial distributions for the training pool. Confidence in an individual predictive classification by an ensemble model can be accurately assessed by examining the distributions of predictions and errors as a function of the degree of agreement among the constituent submodels. Further, ensemble uncertainty estimation can often be improved by adjusting the voting or classification threshold based on the parameters of the error distribution. Finally, the profiles for models whose predictive uncertainty estimates are not reliable provide clues to that effect without the need for comparison to an external test set.
Shi, Qi; Abdel-Aty, Mohamed; Yu, Rongjie
2016-03-01
In traffic safety studies, crash frequency modeling of total crashes is the cornerstone before proceeding to more detailed safety evaluation. The relationship between crash occurrence and factors such as traffic flow and roadway geometric characteristics has been extensively explored for a better understanding of crash mechanisms. In this study, a multi-level Bayesian framework has been developed in an effort to identify the crash contributing factors on an urban expressway in the Central Florida area. Two types of traffic data from the Automatic Vehicle Identification system, which are the processed data capped at speed limit and the unprocessed data retaining the original speed were incorporated in the analysis along with road geometric information. The model framework was proposed to account for the hierarchical data structure and the heterogeneity among the traffic and roadway geometric data. Multi-level and random parameters models were constructed and compared with the Negative Binomial model under the Bayesian inference framework. Results showed that the unprocessed traffic data was superior. Both multi-level models and random parameters models outperformed the Negative Binomial model and the models with random parameters achieved the best model fitting. The contributing factors identified imply that on the urban expressway lower speed and higher speed variation could significantly increase the crash likelihood. Other geometric factors were significant including auxiliary lanes and horizontal curvature. Copyright © 2015 Elsevier Ltd. All rights reserved.
Application of the Hyper-Poisson Generalized Linear Model for Analyzing Motor Vehicle Crashes.
Khazraee, S Hadi; Sáez-Castillo, Antonio Jose; Geedipally, Srinivas Reddy; Lord, Dominique
2015-05-01
The hyper-Poisson distribution can handle both over- and underdispersion, and its generalized linear model formulation allows the dispersion of the distribution to be observation-specific and dependent on model covariates. This study's objective is to examine the potential applicability of a newly proposed generalized linear model framework for the hyper-Poisson distribution in analyzing motor vehicle crash count data. The hyper-Poisson generalized linear model was first fitted to intersection crash data from Toronto, characterized by overdispersion, and then to crash data from railway-highway crossings in Korea, characterized by underdispersion. The results of this study are promising. When fitted to the Toronto data set, the goodness-of-fit measures indicated that the hyper-Poisson model with a variable dispersion parameter provided a statistical fit as good as the traditional negative binomial model. The hyper-Poisson model was also successful in handling the underdispersed data from Korea; the model performed as well as the gamma probability model and the Conway-Maxwell-Poisson model previously developed for the same data set. The advantages of the hyper-Poisson model studied in this article are noteworthy. Unlike the negative binomial model, which has difficulties in handling underdispersed data, the hyper-Poisson model can handle both over- and underdispersed crash data. Although not a major issue for the Conway-Maxwell-Poisson model, the effect of each variable on the expected mean of crashes is easily interpretable in the case of this new model. © 2014 Society for Risk Analysis.
Analysis of generalized negative binomial distributions attached to hyperbolic Landau levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chhaiba, Hassan, E-mail: chhaiba.hassan@gmail.com; Demni, Nizar, E-mail: nizar.demni@univ-rennes1.fr; Mouayn, Zouhair, E-mail: mouayn@fstbm.ac.ma
2016-07-15
To each hyperbolic Landau level of the Poincaré disc is attached a generalized negative binomial distribution. In this paper, we compute the moment generating function of this distribution and supply its atomic decomposition as a perturbation of the negative binomial distribution by a finitely supported measure. Using the Mandel parameter, we also discuss the nonclassical nature of the associated coherent states. Next, we derive a Lévy-Khintchine-type representation of its characteristic function when the latter does not vanish and deduce that it is quasi-infinitely divisible except for the lowest hyperbolic Landau level corresponding to the negative binomial distribution. By considering themore » total variation of the obtained quasi-Lévy measure, we introduce a new infinitely divisible distribution for which we derive the characteristic function.« less
Binomial leap methods for simulating stochastic chemical kinetics.
Tian, Tianhai; Burrage, Kevin
2004-12-01
This paper discusses efficient simulation methods for stochastic chemical kinetics. Based on the tau-leap and midpoint tau-leap methods of Gillespie [D. T. Gillespie, J. Chem. Phys. 115, 1716 (2001)], binomial random variables are used in these leap methods rather than Poisson random variables. The motivation for this approach is to improve the efficiency of the Poisson leap methods by using larger stepsizes. Unlike Poisson random variables whose range of sample values is from zero to infinity, binomial random variables have a finite range of sample values. This probabilistic property has been used to restrict possible reaction numbers and to avoid negative molecular numbers in stochastic simulations when larger stepsize is used. In this approach a binomial random variable is defined for a single reaction channel in order to keep the reaction number of this channel below the numbers of molecules that undergo this reaction channel. A sampling technique is also designed for the total reaction number of a reactant species that undergoes two or more reaction channels. Samples for the total reaction number are not greater than the molecular number of this species. In addition, probability properties of the binomial random variables provide stepsize conditions for restricting reaction numbers in a chosen time interval. These stepsize conditions are important properties of robust leap control strategies. Numerical results indicate that the proposed binomial leap methods can be applied to a wide range of chemical reaction systems with very good accuracy and significant improvement on efficiency over existing approaches. (c) 2004 American Institute of Physics.
Yes, the GIGP Really Does Work--And Is Workable!
ERIC Educational Resources Information Center
Burrell, Quentin L.; Fenton, Michael R.
1993-01-01
Discusses the generalized inverse Gaussian-Poisson (GIGP) process for informetric modeling. Negative binomial distribution is discussed, construction of the GIGP process is explained, zero-truncated GIGP is considered, and applications of the process with journals, library circulation statistics, and database index terms are described. (50…
Chang, Yu-Wei; Tsong, Yi; Zhao, Zhigen
2017-01-01
Assessing equivalence or similarity has drawn much attention recently as many drug products have lost or will lose their patents in the next few years, especially certain best-selling biologics. To claim equivalence between the test treatment and the reference treatment when assay sensitivity is well established from historical data, one has to demonstrate both superiority of the test treatment over placebo and equivalence between the test treatment and the reference treatment. Thus, there is urgency for practitioners to derive a practical way to calculate sample size for a three-arm equivalence trial. The primary endpoints of a clinical trial may not always be continuous, but may be discrete. In this paper, the authors derive power function and discuss sample size requirement for a three-arm equivalence trial with Poisson and negative binomial clinical endpoints. In addition, the authors examine the effect of the dispersion parameter on the power and the sample size by varying its coefficient from small to large. In extensive numerical studies, the authors demonstrate that required sample size heavily depends on the dispersion parameter. Therefore, misusing a Poisson model for negative binomial data may easily lose power up to 20%, depending on the value of the dispersion parameter.
Statistical tests to compare motif count exceptionalities
Robin, Stéphane; Schbath, Sophie; Vandewalle, Vincent
2007-01-01
Background Finding over- or under-represented motifs in biological sequences is now a common task in genomics. Thanks to p-value calculation for motif counts, exceptional motifs are identified and represent candidate functional motifs. The present work addresses the related question of comparing the exceptionality of one motif in two different sequences. Just comparing the motif count p-values in each sequence is indeed not sufficient to decide if this motif is significantly more exceptional in one sequence compared to the other one. A statistical test is required. Results We develop and analyze two statistical tests, an exact binomial one and an asymptotic likelihood ratio test, to decide whether the exceptionality of a given motif is equivalent or significantly different in two sequences of interest. For that purpose, motif occurrences are modeled by Poisson processes, with a special care for overlapping motifs. Both tests can take the sequence compositions into account. As an illustration, we compare the octamer exceptionalities in the Escherichia coli K-12 backbone versus variable strain-specific loops. Conclusion The exact binomial test is particularly adapted for small counts. For large counts, we advise to use the likelihood ratio test which is asymptotic but strongly correlated with the exact binomial test and very simple to use. PMID:17346349
Osman, Mugtaba; Parnell, Andrew C; Haley, Clifford
2017-02-01
Suicide is criminalized in more than 100 countries around the world. A dearth of research exists into the effect of suicide legislation on suicide rates and available statistics are mixed. This study investigates 10,353 suicide deaths in Ireland that took place between 1970 and 2000. Irish 1970-2000 annual suicide data were obtained from the Central Statistics Office and modelled via a negative binomial regression approach. We examined the effect of suicide legislation on different age groups and on both sexes. We used Bonferroni correction for multiple modelling. Statistical analysis was performed using the R statistical package version 3.1.2. The coefficient for the effect of suicide act on overall suicide deaths was -9.094 (95 % confidence interval (CI) -34.086 to 15.899), statistically non-significant (p = 0.476). The coefficient for the effect suicide act on undetermined deaths was statistically significant (p < 0.001) and was estimated to be -644.4 (95 % CI -818.6 to -469.9). The results of our study indicate that legalization of suicide is not associated with a significant increase in subsequent suicide deaths. However, undetermined death verdict rates have significantly dropped following legalization of suicide.
Mesa, A; Somarelli, J A; Wu, W; Martinez, L; Blom, M B; Greidinger, E L; Herrera, R J
2013-11-01
The objective of this paper is to determine whether patients with systemic lupus erythematosus (SLE) and mixed connective tissue disease (MCTD) possess differential IgM- and IgG-specific reactivity against peptides from the U1 small nuclear ribonucleoprotein particle (U1 snRNP). The IgM- and IgG-mediated responses against 15 peptides from subunits of the U1 snRNP were assessed by indirect enzyme linked immunosorbent assays (ELISAs) in sera from patients with SLE and MCTD and healthy individuals (n = 81, 41, and 31, respectively). Additionally, 42 laboratory tests and 40 clinical symptoms were evaluated to uncover potential differences. Binomial logistic regression analyses (BLR) were performed to construct models to support the independent nature of SLE and MCTD. Receiver operating characteristic (ROC) curves corroborated the classification power of the models. We analyzed IgM and IgG anti-U1 snRNP titers to classify SLE and MCTD patients. IgG anti-U1 snRNP reactivity segregates SLE and MCTD from nondisease controls with an accuracy of 94.1% while IgM-specific anti-U1 snRNP responses distinguish SLE from MCTD patients with an accuracy of 71.3%. Comparison of the IgG and IgM anti-U1 snRNP approach with clinical tests used for diagnosing SLE and MCTD revealed that our method is the best classification tool of those analyzed (p ≤ 0.0001). Our IgM anti-U1 snRNP system along with lab tests and symptoms provide additional molecular and clinical evidence to support the hypothesis that SLE and MCTD may be distinct syndromes.
General Methods for Evolutionary Quantitative Genetic Inference from Generalized Mixed Models.
de Villemereuil, Pierre; Schielzeth, Holger; Nakagawa, Shinichi; Morrissey, Michael
2016-11-01
Methods for inference and interpretation of evolutionary quantitative genetic parameters, and for prediction of the response to selection, are best developed for traits with normal distributions. Many traits of evolutionary interest, including many life history and behavioral traits, have inherently nonnormal distributions. The generalized linear mixed model (GLMM) framework has become a widely used tool for estimating quantitative genetic parameters for nonnormal traits. However, whereas GLMMs provide inference on a statistically convenient latent scale, it is often desirable to express quantitative genetic parameters on the scale upon which traits are measured. The parameters of fitted GLMMs, despite being on a latent scale, fully determine all quantities of potential interest on the scale on which traits are expressed. We provide expressions for deriving each of such quantities, including population means, phenotypic (co)variances, variance components including additive genetic (co)variances, and parameters such as heritability. We demonstrate that fixed effects have a strong impact on those parameters and show how to deal with this by averaging or integrating over fixed effects. The expressions require integration of quantities determined by the link function, over distributions of latent values. In general cases, the required integrals must be solved numerically, but efficient methods are available and we provide an implementation in an R package, QGglmm. We show that known formulas for quantities such as heritability of traits with binomial and Poisson distributions are special cases of our expressions. Additionally, we show how fitted GLMM can be incorporated into existing methods for predicting evolutionary trajectories. We demonstrate the accuracy of the resulting method for evolutionary prediction by simulation and apply our approach to data from a wild pedigreed vertebrate population. Copyright © 2016 de Villemereuil et al.
A Methodology for Quantifying Certain Design Requirements During the Design Phase
NASA Technical Reports Server (NTRS)
Adams, Timothy; Rhodes, Russel
2005-01-01
A methodology for developing and balancing quantitative design requirements for safety, reliability, and maintainability has been proposed. Conceived as the basis of a more rational approach to the design of spacecraft, the methodology would also be applicable to the design of automobiles, washing machines, television receivers, or almost any other commercial product. Heretofore, it has been common practice to start by determining the requirements for reliability of elements of a spacecraft or other system to ensure a given design life for the system. Next, safety requirements are determined by assessing the total reliability of the system and adding redundant components and subsystems necessary to attain safety goals. As thus described, common practice leaves the maintainability burden to fall to chance; therefore, there is no control of recurring costs or of the responsiveness of the system. The means that have been used in assessing maintainability have been oriented toward determining the logistical sparing of components so that the components are available when needed. The process established for developing and balancing quantitative requirements for safety (S), reliability (R), and maintainability (M) derives and integrates NASA s top-level safety requirements and the controls needed to obtain program key objectives for safety and recurring cost (see figure). Being quantitative, the process conveniently uses common mathematical models. Even though the process is shown as being worked from the top down, it can also be worked from the bottom up. This process uses three math models: (1) the binomial distribution (greaterthan- or-equal-to case), (2) reliability for a series system, and (3) the Poisson distribution (less-than-or-equal-to case). The zero-fail case for the binomial distribution approximates the commonly known exponential distribution or "constant failure rate" distribution. Either model can be used. The binomial distribution was selected for modeling flexibility because it conveniently addresses both the zero-fail and failure cases. The failure case is typically used for unmanned spacecraft as with missiles.
The Binomial Distribution in Shooting
ERIC Educational Resources Information Center
Chalikias, Miltiadis S.
2009-01-01
The binomial distribution is used to predict the winner of the 49th International Shooting Sport Federation World Championship in double trap shooting held in 2006 in Zagreb, Croatia. The outcome of the competition was definitely unexpected.
NASA Astrophysics Data System (ADS)
Rajakaruna, Harshana; VandenByllaardt, Julie; Kydd, Jocelyn; Bailey, Sarah
2018-03-01
The International Maritime Organization (IMO) has set limits on allowable plankton concentrations in ballast water discharge to minimize aquatic invasions globally. Previous guidance on ballast water sampling and compliance decision thresholds was based on the assumption that probability distributions of plankton are Poisson when spatially homogenous, or negative binomial when heterogeneous. We propose a hierarchical probability model, which incorporates distributions at the level of particles (i.e., discrete individuals plus colonies per unit volume) and also within particles (i.e., individuals per particle) to estimate the average plankton concentration in ballast water. We examined the performance of the models using data for plankton in the size class ≥ 10 μm and < 50 μm, collected from five different depths of a ballast tank of a commercial ship in three independent surveys. We show that the data fit to the negative binomial and the hierarchical probability models equally well, with both models performing better than the Poisson model at the scale of our sampling. The hierarchical probability model, which accounts for both the individuals and the colonies in a sample, reduces the uncertainty associated with the concentration estimation, and improves the power of rejecting the decision on ship's compliance when a ship does not truly comply with the standard. We show examples of how to test ballast water compliance using the above models.
A powerful and flexible approach to the analysis of RNA sequence count data.
Zhou, Yi-Hui; Xia, Kai; Wright, Fred A
2011-10-01
A number of penalization and shrinkage approaches have been proposed for the analysis of microarray gene expression data. Similar techniques are now routinely applied to RNA sequence transcriptional count data, although the value of such shrinkage has not been conclusively established. If penalization is desired, the explicit modeling of mean-variance relationships provides a flexible testing regimen that 'borrows' information across genes, while easily incorporating design effects and additional covariates. We describe BBSeq, which incorporates two approaches: (i) a simple beta-binomial generalized linear model, which has not been extensively tested for RNA-Seq data and (ii) an extension of an expression mean-variance modeling approach to RNA-Seq data, involving modeling of the overdispersion as a function of the mean. Our approaches are flexible, allowing for general handling of discrete experimental factors and continuous covariates. We report comparisons with other alternate methods to handle RNA-Seq data. Although penalized methods have advantages for very small sample sizes, the beta-binomial generalized linear model, combined with simple outlier detection and testing approaches, appears to have favorable characteristics in power and flexibility. An R package containing examples and sample datasets is available at http://www.bios.unc.edu/research/genomic_software/BBSeq yzhou@bios.unc.edu; fwright@bios.unc.edu Supplementary data are available at Bioinformatics online.
Accident prediction model for public highway-rail grade crossings.
Lu, Pan; Tolliver, Denver
2016-05-01
Considerable research has focused on roadway accident frequency analysis, but relatively little research has examined safety evaluation at highway-rail grade crossings. Highway-rail grade crossings are critical spatial locations of utmost importance for transportation safety because traffic crashes at highway-rail grade crossings are often catastrophic with serious consequences. The Poisson regression model has been employed to analyze vehicle accident frequency as a good starting point for many years. The most commonly applied variations of Poisson including negative binomial, and zero-inflated Poisson. These models are used to deal with common crash data issues such as over-dispersion (sample variance is larger than the sample mean) and preponderance of zeros (low sample mean and small sample size). On rare occasions traffic crash data have been shown to be under-dispersed (sample variance is smaller than the sample mean) and traditional distributions such as Poisson or negative binomial cannot handle under-dispersion well. The objective of this study is to investigate and compare various alternate highway-rail grade crossing accident frequency models that can handle the under-dispersion issue. The contributions of the paper are two-fold: (1) application of probability models to deal with under-dispersion issues and (2) obtain insights regarding to vehicle crashes at public highway-rail grade crossings. Copyright © 2016 Elsevier Ltd. All rights reserved.
Technical and biological variance structure in mRNA-Seq data: life in the real world
2012-01-01
Background mRNA expression data from next generation sequencing platforms is obtained in the form of counts per gene or exon. Counts have classically been assumed to follow a Poisson distribution in which the variance is equal to the mean. The Negative Binomial distribution which allows for over-dispersion, i.e., for the variance to be greater than the mean, is commonly used to model count data as well. Results In mRNA-Seq data from 25 subjects, we found technical variation to generally follow a Poisson distribution as has been reported previously and biological variability was over-dispersed relative to the Poisson model. The mean-variance relationship across all genes was quadratic, in keeping with a Negative Binomial (NB) distribution. Over-dispersed Poisson and NB distributional assumptions demonstrated marked improvements in goodness-of-fit (GOF) over the standard Poisson model assumptions, but with evidence of over-fitting in some genes. Modeling of experimental effects improved GOF for high variance genes but increased the over-fitting problem. Conclusions These conclusions will guide development of analytical strategies for accurate modeling of variance structure in these data and sample size determination which in turn will aid in the identification of true biological signals that inform our understanding of biological systems. PMID:22769017
Predicting Children's Asthma Hospitalizations: Rural and Urban Differences in Texas
ERIC Educational Resources Information Center
Grineski, Sara E.
2009-01-01
Asthma is the number one chronic health condition facing children today; however, little is known about rural-urban inequalities in asthma. This "area effects on health" study examines rural-urban differences in childhood asthma hospitalizations within the state of Texas using negative binomial regression models. Effects associated with…
DOT National Transportation Integrated Search
2011-03-01
This report documents the calibration of the Highway Safety Manual (HSM) safety performance function (SPF) : for rural two-lane two-way roadway segments in Utah and the development of new models using negative : binomial and hierarchical Bayesian mod...
Topics in Bayesian Hierarchical Modeling and its Monte Carlo Computations
NASA Astrophysics Data System (ADS)
Tak, Hyung Suk
The first chapter addresses a Beta-Binomial-Logit model that is a Beta-Binomial conjugate hierarchical model with covariate information incorporated via a logistic regression. Various researchers in the literature have unknowingly used improper posterior distributions or have given incorrect statements about posterior propriety because checking posterior propriety can be challenging due to the complicated functional form of a Beta-Binomial-Logit model. We derive data-dependent necessary and sufficient conditions for posterior propriety within a class of hyper-prior distributions that encompass those used in previous studies. Frequency coverage properties of several hyper-prior distributions are also investigated to see when and whether Bayesian interval estimates of random effects meet their nominal confidence levels. The second chapter deals with a time delay estimation problem in astrophysics. When the gravitational field of an intervening galaxy between a quasar and the Earth is strong enough to split light into two or more images, the time delay is defined as the difference between their travel times. The time delay can be used to constrain cosmological parameters and can be inferred from the time series of brightness data of each image. To estimate the time delay, we construct a Gaussian hierarchical model based on a state-space representation for irregularly observed time series generated by a latent continuous-time Ornstein-Uhlenbeck process. Our Bayesian approach jointly infers model parameters via a Gibbs sampler. We also introduce a profile likelihood of the time delay as an approximation of its marginal posterior distribution. The last chapter specifies a repelling-attracting Metropolis algorithm, a new Markov chain Monte Carlo method to explore multi-modal distributions in a simple and fast manner. This algorithm is essentially a Metropolis-Hastings algorithm with a proposal that consists of a downhill move in density that aims to make local modes repelling, followed by an uphill move in density that aims to make local modes attracting. The downhill move is achieved via a reciprocal Metropolis ratio so that the algorithm prefers downward movement. The uphill move does the opposite using the standard Metropolis ratio which prefers upward movement. This down-up movement in density increases the probability of a proposed move to a different mode.
Modeling recall memory for emotional objects in Alzheimer's disease.
Sundstrøm, Martin
2011-07-01
To examine whether emotional memory (EM) of objects with self-reference in Alzheimer's disease (AD) can be modeled with binomial logistic regression in a free recall and an object recognition test to predict EM enhancement. Twenty patients with AD and twenty healthy controls were studied. Six objects (three presented as gifts) were shown to each participant. Ten minutes later, a free recall and a recognition test were applied. The recognition test had target-objects mixed with six similar distracter objects. Participants were asked to name any object in the recall test and identify each object in the recognition test as known or unknown. The total of gift objects recalled in AD patients (41.6%) was larger than neutral objects (13.3%) and a significant EM recall effect for gifts was found (Wilcoxon: p < .003). EM was not found for recognition in AD patients due to a ceiling effect. Healthy older adults scored overall higher in recall and recognition but showed no EM enhancement due to a ceiling effect. A logistic regression showed that likelihood of emotional recall memory can be modeled as a function of MMSE score (p < .014) and object status (p < .0001) as gift or non-gift. Recall memory was enhanced in AD patients for emotional objects indicating that EM in mild to moderate AD although impaired can be provoked with strong emotional load. The logistic regression model suggests that EM declines with the progression of AD rather than disrupts and may be a useful tool for evaluating magnitude of emotional load.
Braicovich, P E; Ieno, E N; Sáez, M; Despos, J; Timi, J T
2016-11-01
In order to identify the best tools for stock assessment studies using fish parasites as biological indicators, different host traits (size, mass and age and their interaction with sex) were evaluated as descriptors of cumulative patterns of both parasite abundance and infracommunity species richness. The effect of such variables was analysed for a sample of 265 specimens of Percophis brasiliensis caught in the Argentine Sea. The abundances and species richness were modelled using generalized linear mixed models (GLMMs) with negative binomial and Poisson distribution respectively. Due to collinearity, separate models were fitted for each of the three main explanatory variables (length, mass and age) to identify the optimal set of factors determining the parasite burdens. Optimal GLMMs were selected on the basis of the lowest Akaike information criteria, residual information and simulation studies based on 10 000 iterations. Results indicated that the covariates length and sex consistently appeared in the most parsimonious models suggesting that fish length seems to be a slightly better predictor than age or mass. The biological causes of these patterns are discussed. It is recommended to use fish length as a measure of growth and to restrict comparisons with fish of similar length or to incorporate length as covariate when comparing parasite burdens. Host sex should be also taken into account for those species sexually dimorphic in terms of morphology, behaviour or growth rates. © 2016 The Fisheries Society of the British Isles.
Radial basis function and its application in tourism management
NASA Astrophysics Data System (ADS)
Hu, Shan-Feng; Zhu, Hong-Bin; Zhao, Lei
2018-05-01
In this work, several applications and the performances of the radial basis function (RBF) are briefly reviewed at first. After that, the binomial function combined with three different RBFs including the multiquadric (MQ), inverse quadric (IQ) and inverse multiquadric (IMQ) distributions are adopted to model the tourism data of Huangshan in China. Simulation results showed that all the models match very well with the sample data. It is found that among the three models, the IMQ-RBF model is more suitable for forecasting the tourist flow.
Sheu, Mei-Ling; Hu, Teh-Wei; Keeler, Theodore E; Ong, Michael; Sung, Hai-Yen
2004-08-01
The objective of this paper is to determine the price sensitivity of smokers in their consumption of cigarettes, using evidence from a major increase in California cigarette prices due to Proposition 10 and the Tobacco Settlement. The study sample consists of individual survey data from Behavioral Risk Factor Survey (BRFS) and price data from the Bureau of Labor Statistics between 1996 and 1999. A zero-inflated negative binomial (ZINB) regression model was applied for the statistical analysis. The statistical model showed that price did not have an effect on reducing the estimated prevalence of smoking. However, it indicated that among smokers the price elasticity was at the level of -0.46 and statistically significant. Since smoking prevalence is significantly lower than it was a decade ago, price increases are becoming less effective as an inducement for hard-core smokers to quit, although they may respond by decreasing consumption. For those who only smoke occasionally (many of them being young adults) price increases alone may not be an effective inducement to quit smoking. Additional underlying behavioral factors need to be identified so that more effective anti-smoking strategies can be developed.
Solar San Diego: The Impact of Binomial Rate Structures on Real PV Systems; Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
VanGeet, O.; Brown, E.; Blair, T.
2008-05-01
There is confusion in the marketplace regarding the impact of solar photovoltaics (PV) on the user's actual electricity bill under California Net Energy Metering, particularly with binomial tariffs (those that include both demand and energy charges) and time-of-use (TOU) rate structures. The City of San Diego has extensive real-time electrical metering on most of its buildings and PV systems, with interval data for overall consumption and PV electrical production available for multiple years. This paper uses 2007 PV-system data from two city facilities to illustrate the impacts of binomial rate designs. The analysis will determine the energy and demand savingsmore » that the PV systems are achieving relative to the absence of systems. A financial analysis of PV-system performance under various rate structures is presented. The data revealed that actual demand and energy use benefits of binomial tariffs increase in summer months, when solar resources allow for maximized electricity production. In a binomial tariff system, varying on- and semi-peak times can result in approximately $1,100 change in demand charges per month over not having a PV system in place, an approximate 30% cost savings. The PV systems are also shown to have a 30%-50% reduction in facility energy charges in 2007.« less
Analysis of dengue fever risk using geostatistics model in bone regency
NASA Astrophysics Data System (ADS)
Amran, Stang, Mallongi, Anwar
2017-03-01
This research aim is to analysis of dengue fever risk based on Geostatistics model in Bone Regency. Risk levels of dengue fever are denoted by parameter of Binomial distribution. Effect of temperature, rainfalls, elevation, and larvae abundance are investigated through Geostatistics model. Bayesian hierarchical method is used in estimation process. Using dengue fever data in eleven locations this research shows that temperature and rainfall have significant effect of dengue fever risk in Bone regency.
James Rentch; Mary Ann Fajvan; Richard Evans; Brad Onken
2008-01-01
This study examined the relationship between eastern hemlock (Tsuga canadensis (L.) Carr.) crown condition and changes in radial growth associated with infestation by hemlock woolly adelgid (HWA), Adelges tsugae (Hemiptera: Adelgidae). Tree-ring chronologies of eastern hemlock were used to develop a binomial decline index based on...
Racial Threat and White Opposition to Bilingual Education in Texas
ERIC Educational Resources Information Center
Hempel, Lynn M.; Dowling, Julie A.; Boardman, Jason D.; Ellison, Christopher G.
2013-01-01
This study examines local contextual conditions that influence opposition to bilingual education among non-Hispanic Whites, net of individual-level characteristics. Data from the Texas Poll (N = 615) are used in conjunction with U.S. Census data to test five competing hypotheses using binomial and multinomial logistic regression models. Our…
NASA Astrophysics Data System (ADS)
Skel'chik, V. S.; Ryabov, V. M.
1996-11-01
On the basis of the classical theory of thin anisotropic laminated plates the article analyzes the free vibrations of rectangular cantilever plates made of fibrous composites. The application of Kantorovich's method for the binomial representation of the shape of the elastic surface of a plate yielded for two unknown functions a system of two connected differential equations and the corresponding boundary conditions at the place of constraint and at the free edge. The exact solution for the frequencies and forms of the free vibrations was found with the use of Laplace transformation with respect to the space variable. The magnitudes of several first dimensionless frequencies of the bending and torsional vibrations of the plate were calculated for a wide range of change of two dimensionless complexes, with the dimensions of the plate and the anisotropy of the elastic properties of the material taken into account. The article shows that with torsional vibrations the warping constraint at the fixed end explains the apparent dependence of the shear modulus of the composite on the length of the specimen that had been discovered earlier on in experiments with a torsional pendulum. It examines the interaction and transformation of the second bending mode and of the first torsional mode of the vibrations. It analyzes the asymptotics of the dimensionless frequencies when the length of the plate is increased, and it shows that taking into account the bending-torsion interaction in strongly anisotropic materials type unidirectional carbon reinforced plastic can reduce substantially the frequencies of the bending vibrations but has no effect (within the framework of the binomial model) on the frequencies of the torsional vibrations.
Random trinomial tree models and vanilla options
NASA Astrophysics Data System (ADS)
Ganikhodjaev, Nasir; Bayram, Kamola
2013-09-01
In this paper we introduce and study random trinomial model. The usual trinomial model is prescribed by triple of numbers (u, d, m). We call the triple (u, d, m) an environment of the trinomial model. A triple (Un, Dn, Mn), where {Un}, {Dn} and {Mn} are the sequences of independent, identically distributed random variables with 0 < Dn < 1 < Un and Mn = 1 for all n, is called a random environment and trinomial tree model with random environment is called random trinomial model. The random trinomial model is considered to produce more accurate results than the random binomial model or usual trinomial model.
Gamma Oscillations of Spiking Neural Populations Enhance Signal Discrimination
Masuda, Naoki; Doiron, Brent
2007-01-01
Selective attention is an important filter for complex environments where distractions compete with signals. Attention increases both the gamma-band power of cortical local field potentials and the spike-field coherence within the receptive field of an attended object. However, the mechanisms by which gamma-band activity enhances, if at all, the encoding of input signals are not well understood. We propose that gamma oscillations induce binomial-like spike-count statistics across noisy neural populations. Using simplified models of spiking neurons, we show how the discrimination of static signals based on the population spike-count response is improved with gamma induced binomial statistics. These results give an important mechanistic link between the neural correlates of attention and the discrimination tasks where attention is known to enhance performance. Further, they show how a rhythmicity of spike responses can enhance coding schemes that are not temporally sensitive. PMID:18052541
Inferring subunit stoichiometry from single molecule photobleaching
2013-01-01
Single molecule photobleaching is a powerful tool for determining the stoichiometry of protein complexes. By attaching fluorophores to proteins of interest, the number of associated subunits in a complex can be deduced by imaging single molecules and counting fluorophore photobleaching steps. Because some bleaching steps might be unobserved, the ensemble of steps will be binomially distributed. In this work, it is shown that inferring the true composition of a complex from such data is nontrivial because binomially distributed observations present an ill-posed inference problem. That is, a unique and optimal estimate of the relevant parameters cannot be extracted from the observations. Because of this, a method has not been firmly established to quantify confidence when using this technique. This paper presents a general inference model for interpreting such data and provides methods for accurately estimating parameter confidence. The formalization and methods presented here provide a rigorous analytical basis for this pervasive experimental tool. PMID:23712552
Using the Binomial Series to Prove the Arithmetic Mean-Geometric Mean Inequality
ERIC Educational Resources Information Center
Persky, Ronald L.
2003-01-01
In 1968, Leon Gerber compared (1 + x)[superscript a] to its kth partial sum as a binomial series. His result is stated and, as an application of this result, a proof of the arithmetic mean-geometric mean inequality is presented.
Possibility and Challenges of Conversion of Current Virus Species Names to Linnaean Binomials.
Postler, Thomas S; Clawson, Anna N; Amarasinghe, Gaya K; Basler, Christopher F; Bavari, Sbina; Benko, Mária; Blasdell, Kim R; Briese, Thomas; Buchmeier, Michael J; Bukreyev, Alexander; Calisher, Charles H; Chandran, Kartik; Charrel, Rémi; Clegg, Christopher S; Collins, Peter L; Juan Carlos, De La Torre; Derisi, Joseph L; Dietzgen, Ralf G; Dolnik, Olga; Dürrwald, Ralf; Dye, John M; Easton, Andrew J; Emonet, Sébastian; Formenty, Pierre; Fouchier, Ron A M; Ghedin, Elodie; Gonzalez, Jean-Paul; Harrach, Balázs; Hewson, Roger; Horie, Masayuki; Jiang, Dàohóng; Kobinger, Gary; Kondo, Hideki; Kropinski, Andrew M; Krupovic, Mart; Kurath, Gael; Lamb, Robert A; Leroy, Eric M; Lukashevich, Igor S; Maisner, Andrea; Mushegian, Arcady R; Netesov, Sergey V; Nowotny, Norbert; Patterson, Jean L; Payne, Susan L; PaWeska, Janusz T; Peters, Clarence J; Radoshitzky, Sheli R; Rima, Bertus K; Romanowski, Victor; Rubbenstroth, Dennis; Sabanadzovic, Sead; Sanfaçon, Hélène; Salvato, Maria S; Schwemmle, Martin; Smither, Sophie J; Stenglein, Mark D; Stone, David M; Takada, Ayato; Tesh, Robert B; Tomonaga, Keizo; Tordo, Noël; Towner, Jonathan S; Vasilakis, Nikos; Volchkov, Viktor E; Wahl-Jensen, Victoria; Walker, Peter J; Wang, Lin-Fa; Varsani, Arvind; Whitfield, Anna E; Zerbini, F Murilo; Kuhn, Jens H
2017-05-01
Botanical, mycological, zoological, and prokaryotic species names follow the Linnaean format, consisting of an italicized Latinized binomen with a capitalized genus name and a lower case species epithet (e.g., Homo sapiens). Virus species names, however, do not follow a uniform format, and, even when binomial, are not Linnaean in style. In this thought exercise, we attempted to convert all currently official names of species included in the virus family Arenaviridae and the virus order Mononegavirales to Linnaean binomials, and to identify and address associated challenges and concerns. Surprisingly, this endeavor was not as complicated or time-consuming as even the authors of this article expected when conceiving the experiment. [Arenaviridae; binomials; ICTV; International Committee on Taxonomy of Viruses; Mononegavirales; virus nomenclature; virus taxonomy.]. Published by Oxford University Press on behalf of Society of Systematic Biologists 2016. This work is written by a US Government employee and is in the public domain in the US.
The Difference Calculus and The NEgative Binomial Distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, Kimiko o; Shenton, LR
2007-01-01
In a previous paper we state the dominant term in the third central moment of the maximum likelihood estimator k of the parameter k in the negative binomial probability function where the probability generating function is (p + 1 - pt){sup -k}. A partial sum of the series {Sigma}1/(k + x){sup 3} is involved, where x is a negative binomial random variate. In expectation this sum can only be found numerically using the computer. Here we give a simple definite integral in (0,1) for the generalized case. This means that now we do have a valid expression for {radical}{beta}{sub 11}(k)more » and {radical}{beta}{sub 11}(p). In addition we use the finite difference operator {Delta}, and E = 1 + {Delta} to set up formulas for low order moments. Other examples of the operators are quoted relating to the orthogonal set of polynomials associated with the negative binomial probability function used as a weight function.« less
Aitken, C G
1999-07-01
It is thought that, in a consignment of discrete units, a certain proportion of the units contain illegal material. A sample of the consignment is to be inspected. Various methods for the determination of the sample size are compared. The consignment will be considered as a random sample from some super-population of units, a certain proportion of which contain drugs. For large consignments, a probability distribution, known as the beta distribution, for the proportion of the consignment which contains illegal material is obtained. This distribution is based on prior beliefs about the proportion. Under certain specific conditions the beta distribution gives the same numerical results as an approach based on the binomial distribution. The binomial distribution provides a probability for the number of units in a sample which contain illegal material, conditional on knowing the proportion of the consignment which contains illegal material. This is in contrast to the beta distribution which provides probabilities for the proportion of a consignment which contains illegal material, conditional on knowing the number of units in the sample which contain illegal material. The interpretation when the beta distribution is used is much more intuitively satisfactory. It is also much more flexible in its ability to cater for prior beliefs which may vary given the different circumstances of different crimes. For small consignments, a distribution, known as the beta-binomial distribution, for the number of units in the consignment which are found to contain illegal material, is obtained, based on prior beliefs about the number of units in the consignment which are thought to contain illegal material. As with the beta and binomial distributions for large samples, it is shown that, in certain specific conditions, the beta-binomial and hypergeometric distributions give the same numerical results. However, the beta-binomial distribution, as with the beta distribution, has a more intuitively satisfactory interpretation and greater flexibility. The beta and the beta-binomial distributions provide methods for the determination of the minimum sample size to be taken from a consignment in order to satisfy a certain criterion. The criterion requires the specification of a proportion and a probability.
Freisthler, Bridget; Gruenewald, Paul J.; Wolf, Jennifer Price
2015-01-01
The current study extends previous research by examining whether and how current marijuana use and the physical availability of marijuana are related to child physical abuse, supervisory neglect, or physical neglect by parents while controlling for child, caregiver, and family characteristics in a general population survey in California. Individual level data on marijuana use and abusive and neglectful parenting were collected during a telephone survey of 3,023 respondents living in 50 mid-size cities in California. Medical marijuana dispensaries and delivery services data were obtained via six websites and official city lists. Data were analyzed using negative binomial and linear mixed effects multilevel models with individuals nested within cities. Current marijuana use was positively related to frequency of child physical abuse and negatively related to physical neglect. There was no relationship between supervisory neglect and marijuana use. Density of medical marijuana dispensaries and delivery services was positively related to frequency of physical abuse. As marijuana use becomes more prevalent, those who work with families, including child welfare workers must screen for how marijuana use may affect a parent’s ability to provide for care for their children, particularly related to physical abuse. PMID:26198452
A comparison of two gears for quantifying abundance of lotic-dwelling crayfish
Williams, Kristi; Brewer, Shannon K.; Ellersieck, Mark R.
2014-01-01
Crayfish (saddlebacked crayfish, Orconectes medius) catch was compared using a kick seine applied two different ways with a 1-m2 quadrat sampler (with known efficiency and bias in riffles) from three small streams in the Missouri Ozarks. Triplicate samples (one of each technique) were taken from two creeks and one headwater stream (n=69 sites) over a two-year period. General linear mixed models showed the number of crayfish collected using the quadrat sampler was greater than the number collected using either of the two seine techniques. However, there was no significant interaction with gear suggesting year, stream size, and channel unit type did not relate to different catches of crayfish by gear type. Variation in catch among gears was similar, as was the proportion of young-of-year individuals across samples taken with different gears or techniques. Negative binomial linear regression provided the appropriate relation between the gears which allows correction factors to be applied, if necessary, to relate catches by the kick seine to those of the quadrat sampler. The kick seine appears to be a reasonable substitute to the quadrat sampler in these shallow streams, with the advantage of ease of use and shorter time required per sample.
Serological survey of Neospora caninum infection in cattle herds from Western Romania.
Imre, Kálmán; Morariu, Sorin; Ilie, Marius S; Imre, Mirela; Ferrari, Nicola; Genchi, Claudio; Dărăbuş, Gheorghe
2012-06-01
Serum samples from 376 randomly selected adult cattle, from 25 farms located in 3 counties (Arad, Bihor, and Timiş) from western Romania, were sampled for Neospora caninum antibodies using a commercial ELISA-kit. Seroprevalence values and risk factors for neosporosis (cow age, breed, herd size, farming system, previous abortion, and number of farm dogs) were examined using a generalized linear mixed model with a binomial distribution. Overall, the seroprevalence of N. caninum was 27.7% (104/376) with a prevalence of 27.9% (24/86) in Arad, 26.9% (25/93) in Bihor, and 27.9% (55/197) in Timiş. Of 25 cattle herds, 23 were seropositive with a prevalence ranging from 10.0 to 52.2%. No correlation was found between N. caninum seropositivity and age, breed, herd size, breeding system, and previous abortion. The number of farm dogs was the only factor (P(Wald) = 0.03) positively associated with seroprevalence in cows and can be considered the risk factor in the acquiring of infection. The present work is the first regarding serological evidence of N. caninum infection in cattle from western Romania.
Consequences of corporal punishment among African Americans: the importance of context and outcome.
Simons, Leslie Gordon; Simons, Ronald L; Su, Xiaoli
2013-08-01
Corporal punishment is a controversial practice used by the majority of American parents and is especially prevalent among African Americans. Research regarding its consequences has produced mixed results although it is clear that there is a need for considering the context within which corporal punishment is administered. To assess the impact of spanking, we employed an expanded parenting typology that includes corporal punishment. Longitudinal self-report data from a sample of 683 African American youth (54% female) were utilized to evaluate the relative impact of the resulting eight parenting styles on three outcomes: conduct problems, depressive symptoms, and school engagement. Results from Negative Binomial Regression Models indicate that the effect of corporal punishment depends upon the constellation of parenting behaviors within which it is embedded and upon the type of outcome being considered. While it is never the case that there is any added benefit of adding corporal punishment, it is also the case that using corporal punishment is not always associated with poor outcomes. Overall, however, our findings show that parenting styles that include corporal punishment do not produce outcomes as positive as those associated with authoritative parenting.
van Laar, Marlous; Stark, Daniel P; McKinney, Patricia; Parslow, Roger C; Kinsey, Sally E; Picton, Susan V; Feltbower, Richard G
2014-09-23
Little aetiological epidemiological research has been undertaken for major cancers occurring in teenagers and young adults (TYA). Population mixing, as a possible proxy for infectious exposure, has been well researched for childhood malignancies. We aimed to investigate effects of population mixing in this older age group using an English national cancer dataset. Cases of leukaemia, lymphoma and central nervous system (CNS) tumours amongst 15-24 year olds in England (diagnosed 1996-2005) were included in the study. Data were obtained by ward of diagnosis and linked to 1991 census variables including population mixing (Shannon index); data on person-weighted population density and deprivation (Townsend score) were also used and considered as explanatory variables. Associations between TYA cancer incidence and census variables were investigated using negative binomial regression, and results presented as incidence rate ratios (IRR) with 95% confidence intervals (CI). A total of 6251 cases of leukaemia (21%), lymphoma (49%) and CNS tumours (30%) were analysed. Higher levels of population mixing were associated with a significant decrease in the incidence of CNS tumours (IRR=0.83, 95% CI=0.75-0.91), accounted for by astrocytomas and 'other CNS tumours'; however, there was no association with leukaemia or lymphoma. Incidence of CNS tumours and lymphoma was 3% lower in more deprived areas (IRR=0.97, 95% CI=0.96-0.99 and IRR=0.97, 95% CI=.96-0.98 respectively). Population density was not associated with the incidence of leukaemia, lymphoma or CNS tumours. Our results suggest a possible role for environmental risk factors with population correlates in the aetiology of CNS tumours amongst TYAs. Unlike studies of childhood cancer, associations between population mixing and the incidence of leukaemia and lymphoma were not observed.
Briët, Olivier J T; Amerasinghe, Priyanie H; Vounatsou, Penelope
2013-01-01
With the renewed drive towards malaria elimination, there is a need for improved surveillance tools. While time series analysis is an important tool for surveillance, prediction and for measuring interventions' impact, approximations by commonly used Gaussian methods are prone to inaccuracies when case counts are low. Therefore, statistical methods appropriate for count data are required, especially during "consolidation" and "pre-elimination" phases. Generalized autoregressive moving average (GARMA) models were extended to generalized seasonal autoregressive integrated moving average (GSARIMA) models for parsimonious observation-driven modelling of non Gaussian, non stationary and/or seasonal time series of count data. The models were applied to monthly malaria case time series in a district in Sri Lanka, where malaria has decreased dramatically in recent years. The malaria series showed long-term changes in the mean, unstable variance and seasonality. After fitting negative-binomial Bayesian models, both a GSARIMA and a GARIMA deterministic seasonality model were selected based on different criteria. Posterior predictive distributions indicated that negative-binomial models provided better predictions than Gaussian models, especially when counts were low. The G(S)ARIMA models were able to capture the autocorrelation in the series. G(S)ARIMA models may be particularly useful in the drive towards malaria elimination, since episode count series are often seasonal and non-stationary, especially when control is increased. Although building and fitting GSARIMA models is laborious, they may provide more realistic prediction distributions than do Gaussian methods and may be more suitable when counts are low.
Briët, Olivier J. T.; Amerasinghe, Priyanie H.; Vounatsou, Penelope
2013-01-01
Introduction With the renewed drive towards malaria elimination, there is a need for improved surveillance tools. While time series analysis is an important tool for surveillance, prediction and for measuring interventions’ impact, approximations by commonly used Gaussian methods are prone to inaccuracies when case counts are low. Therefore, statistical methods appropriate for count data are required, especially during “consolidation” and “pre-elimination” phases. Methods Generalized autoregressive moving average (GARMA) models were extended to generalized seasonal autoregressive integrated moving average (GSARIMA) models for parsimonious observation-driven modelling of non Gaussian, non stationary and/or seasonal time series of count data. The models were applied to monthly malaria case time series in a district in Sri Lanka, where malaria has decreased dramatically in recent years. Results The malaria series showed long-term changes in the mean, unstable variance and seasonality. After fitting negative-binomial Bayesian models, both a GSARIMA and a GARIMA deterministic seasonality model were selected based on different criteria. Posterior predictive distributions indicated that negative-binomial models provided better predictions than Gaussian models, especially when counts were low. The G(S)ARIMA models were able to capture the autocorrelation in the series. Conclusions G(S)ARIMA models may be particularly useful in the drive towards malaria elimination, since episode count series are often seasonal and non-stationary, especially when control is increased. Although building and fitting GSARIMA models is laborious, they may provide more realistic prediction distributions than do Gaussian methods and may be more suitable when counts are low. PMID:23785448
QMRA for Drinking Water: 2. The Effect of Pathogen Clustering in Single-Hit Dose-Response Models.
Nilsen, Vegard; Wyller, John
2016-01-01
Spatial and/or temporal clustering of pathogens will invalidate the commonly used assumption of Poisson-distributed pathogen counts (doses) in quantitative microbial risk assessment. In this work, the theoretically predicted effect of spatial clustering in conventional "single-hit" dose-response models is investigated by employing the stuttering Poisson distribution, a very general family of count distributions that naturally models pathogen clustering and contains the Poisson and negative binomial distributions as special cases. The analysis is facilitated by formulating the dose-response models in terms of probability generating functions. It is shown formally that the theoretical single-hit risk obtained with a stuttering Poisson distribution is lower than that obtained with a Poisson distribution, assuming identical mean doses. A similar result holds for mixed Poisson distributions. Numerical examples indicate that the theoretical single-hit risk is fairly insensitive to moderate clustering, though the effect tends to be more pronounced for low mean doses. Furthermore, using Jensen's inequality, an upper bound on risk is derived that tends to better approximate the exact theoretical single-hit risk for highly overdispersed dose distributions. The bound holds with any dose distribution (characterized by its mean and zero inflation index) and any conditional dose-response model that is concave in the dose variable. Its application is exemplified with published data from Norovirus feeding trials, for which some of the administered doses were prepared from an inoculum of aggregated viruses. The potential implications of clustering for dose-response assessment as well as practical risk characterization are discussed. © 2016 Society for Risk Analysis.
A powerful and flexible approach to the analysis of RNA sequence count data
Zhou, Yi-Hui; Xia, Kai; Wright, Fred A.
2011-01-01
Motivation: A number of penalization and shrinkage approaches have been proposed for the analysis of microarray gene expression data. Similar techniques are now routinely applied to RNA sequence transcriptional count data, although the value of such shrinkage has not been conclusively established. If penalization is desired, the explicit modeling of mean–variance relationships provides a flexible testing regimen that ‘borrows’ information across genes, while easily incorporating design effects and additional covariates. Results: We describe BBSeq, which incorporates two approaches: (i) a simple beta-binomial generalized linear model, which has not been extensively tested for RNA-Seq data and (ii) an extension of an expression mean–variance modeling approach to RNA-Seq data, involving modeling of the overdispersion as a function of the mean. Our approaches are flexible, allowing for general handling of discrete experimental factors and continuous covariates. We report comparisons with other alternate methods to handle RNA-Seq data. Although penalized methods have advantages for very small sample sizes, the beta-binomial generalized linear model, combined with simple outlier detection and testing approaches, appears to have favorable characteristics in power and flexibility. Availability: An R package containing examples and sample datasets is available at http://www.bios.unc.edu/research/genomic_software/BBSeq Contact: yzhou@bios.unc.edu; fwright@bios.unc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21810900
NASA Astrophysics Data System (ADS)
Ormerod, C. S.; Nelson, M.
2017-11-01
Various applied mathematics undergraduate skills are demonstrated via an adaptation of Crank's axisymmetric spherical diffusion model. By the introduction of a one-parameter Heaviside initial condition, the pharmaceutically problematic initial mass flux is attenuated. Quantities germane to the pharmaceutical industry are examined and the model is tested with data derived from industry journals. A binomial algorithm for the acceleration of alternating sequences is demonstrated. The model is accompanied by a MAPLE worksheet for further student exploration.
Estimating the Parameters of the Beta-Binomial Distribution.
ERIC Educational Resources Information Center
Wilcox, Rand R.
1979-01-01
For some situations the beta-binomial distribution might be used to describe the marginal distribution of test scores for a particular population of examinees. Several different methods of approximating the maximum likelihood estimate were investigated, and it was found that the Newton-Raphson method should be used when it yields admissable…
Tang, Wan; Lu, Naiji; Chen, Tian; Wang, Wenjuan; Gunzler, Douglas David; Han, Yu; Tu, Xin M
2015-10-30
Zero-inflated Poisson (ZIP) and negative binomial (ZINB) models are widely used to model zero-inflated count responses. These models extend the Poisson and negative binomial (NB) to address excessive zeros in the count response. By adding a degenerate distribution centered at 0 and interpreting it as describing a non-risk group in the population, the ZIP (ZINB) models a two-component population mixture. As in applications of Poisson and NB, the key difference between ZIP and ZINB is the allowance for overdispersion by the ZINB in its NB component in modeling the count response for the at-risk group. Overdispersion arising in practice too often does not follow the NB, and applications of ZINB to such data yield invalid inference. If sources of overdispersion are known, other parametric models may be used to directly model the overdispersion. Such models too are subject to assumed distributions. Further, this approach may not be applicable if information about the sources of overdispersion is unavailable. In this paper, we propose a distribution-free alternative and compare its performance with these popular parametric models as well as a moment-based approach proposed by Yu et al. [Statistics in Medicine 2013; 32: 2390-2405]. Like the generalized estimating equations, the proposed approach requires no elaborate distribution assumptions. Compared with the approach of Yu et al., it is more robust to overdispersed zero-inflated responses. We illustrate our approach with both simulated and real study data. Copyright © 2015 John Wiley & Sons, Ltd.
Buddhavarapu, Prasad; Smit, Andre F; Prozzi, Jorge A
2015-07-01
Permeable friction course (PFC), a porous hot-mix asphalt, is typically applied to improve wet weather safety on high-speed roadways in Texas. In order to warrant expensive PFC construction, a statistical evaluation of its safety benefits is essential. Generally, the literature on the effectiveness of porous mixes in reducing wet-weather crashes is limited and often inconclusive. In this study, the safety effectiveness of PFC was evaluated using a fully Bayesian before-after safety analysis. First, two groups of road segments overlaid with PFC and non-PFC material were identified across Texas; the non-PFC or reference road segments selected were similar to their PFC counterparts in terms of site specific features. Second, a negative binomial data generating process was assumed to model the underlying distribution of crash counts of PFC and reference road segments to perform Bayesian inference on the safety effectiveness. A data-augmentation based computationally efficient algorithm was employed for a fully Bayesian estimation. The statistical analysis shows that PFC is not effective in reducing wet weather crashes. It should be noted that the findings of this study are in agreement with the existing literature, although these studies were not based on a fully Bayesian statistical analysis. Our study suggests that the safety effectiveness of PFC road surfaces, or any other safety infrastructure, largely relies on its interrelationship with the road user. The results suggest that the safety infrastructure must be properly used to reap the benefits of the substantial investments. Copyright © 2015 Elsevier Ltd. All rights reserved.
Alkhamis, Mohammad; Perez, Andres; Batey, Nicole; Howard, Wendy; Baillie, Greg; Watson, Simon; Franz, Stephanie; Focosi-Snyman, Raffaella; Onita, Iuliana; Cioranu, Raluca; Turcitu, Mihai; Kellam, Paul; Brown, Ian H.; Breed, Andrew C.
2014-01-01
SUMMARY Molecular characterization studies of a diverse collection of avian influenza viruses (AIVs) have demonstrated that AIVs’ greatest genetic variability lies in the HA, NA, and NS genes. The objective here was to quantify the association between geographical locations, periods of time, and host species and pairwise nucleotide variation in the HA, NA, and NS genes of 70 isolates of H5N1 highly pathogenic avian influenza virus (HPAIV) collected from October 2005 to December 2007 from birds in Romania. A mixed-binomial Bayesian regression model was used to quantify the probability of nucleotide variation between isolates and its association with space, time, and host species. As expected for the three target genes, a higher probability of nucleotide differences (odds ratios [ORs] > 1) was found between viruses sampled from places at greater geographical distances from each other, viruses sampled over greater periods of time, and viruses derived from different species. The modeling approach in the present study maybe useful in further understanding the molecular epidemiology of H5N1 HPAI virus in bird populations. The methodology presented here will be useful in predicting the most likely genetic distance for any of the three gene segments of viruses that have not yet been isolated or sequenced based on space, time, and host species during the course of an epidemic. PMID:24283126
Alkhamis, Mohammad; Perez, Andres; Batey, Nicole; Howard, Wendy; Baillie, Greg; Watson, Simon; Franz, Stephanie; Focosi-Snyman, Raffaella; Onita, Iuliana; Cioranu, Raluca; Turcitu, Mihai; Kellam, Paul; Brown, Ian H; Breed, Andrew C
2013-09-01
Molecular characterization studies of a diverse collection of avian influenza viruses (AIVs) have demonstrated that AIVs' greatest genetic variability lies in the HA, NA, and NS genes. The objective here was to quantify the association between geographical locations, periods of time, and host species and pairwise nucleotide variation in the HA, NA, and NS genes of 70 isolates of H5N1 highly pathogenic avian influenza virus (HPAIV) collected from October 2005 to December 2007 from birds in Romania. A mixed-binomial Bayesian regression model was used to quantify the probability of nucleotide variation between isolates and its association with space, time, and host species. As expected for the three target genes, a higher probability of nucleotide differences (odds ratios [ORs] > 1) was found between viruses sampled from places at greater geographical distances from each other, viruses sampled over greater periods of time, and viruses derived from different species. The modeling approach in the present study maybe useful in further understanding the molecular epidemiology of H5N1 HPAI virus in bird populations. The methodology presented here will be useful in predicting the most likely genetic distance for any of the three gene segments of viruses that have not yet been isolated or sequenced based on space, time, and host species during the course of an epidemic.
Possibility and Challenges of Conversion of Current Virus Species Names to Linnaean Binomials
Postler, Thomas S.; Clawson, Anna N.; Amarasinghe, Gaya K.; Basler, Christopher F.; Bavari, Sbina; Benkő, Mária; Blasdell, Kim R.; Briese, Thomas; Buchmeier, Michael J.; Bukreyev, Alexander; Calisher, Charles H.; Chandran, Kartik; Charrel, Rémi; Clegg, Christopher S.; Collins, Peter L.; Juan Carlos, De La Torre; Derisi, Joseph L.; Dietzgen, Ralf G.; Dolnik, Olga; Dürrwald, Ralf; Dye, John M.; Easton, Andrew J.; Emonet, Sébastian; Formenty, Pierre; Fouchier, Ron A. M.; Ghedin, Elodie; Gonzalez, Jean-Paul; Harrach, Balázs; Hewson, Roger; Horie, Masayuki; Jiāng, Dàohóng; Kobinger, Gary; Kondo, Hideki; Kropinski, Andrew M.; Krupovic, Mart; Kurath, Gael; Lamb, Robert A.; Leroy, Eric M.; Lukashevich, Igor S.; Maisner, Andrea; Mushegian, Arcady R.; Netesov, Sergey V.; Nowotny, Norbert; Patterson, Jean L.; Payne, Susan L.; PaWeska, Janusz T.; Peters, Clarence J.; Radoshitzky, Sheli R.; Rima, Bertus K.; Romanowski, Victor; Rubbenstroth, Dennis; Sabanadzovic, Sead; Sanfaçon, Hélène; Salvato, Maria S.; Schwemmle, Martin; Smither, Sophie J.; Stenglein, Mark D.; Stone, David M.; Takada, Ayato; Tesh, Robert B.; Tomonaga, Keizo; Tordo, Noël; Towner, Jonathan S.; Vasilakis, Nikos; Volchkov, Viktor E.; Wahl-Jensen, Victoria; Walker, Peter J.; Wang, Lin-Fa; Varsani, Arvind; Whitfield, Anna E.; Zerbini, F. Murilo; Kuhn, Jens H.
2017-01-01
Abstract Botanical, mycological, zoological, and prokaryotic species names follow the Linnaean format, consisting of an italicized Latinized binomen with a capitalized genus name and a lower case species epithet (e.g., Homo sapiens). Virus species names, however, do not follow a uniform format, and, even when binomial, are not Linnaean in style. In this thought exercise, we attempted to convert all currently official names of species included in the virus family Arenaviridae and the virus order Mononegavirales to Linnaean binomials, and to identify and address associated challenges and concerns. Surprisingly, this endeavor was not as complicated or time-consuming as even the authors of this article expected when conceiving the experiment. PMID:27798405
Binomial Coefficients Modulo a Prime--A Visualization Approach to Undergraduate Research
ERIC Educational Resources Information Center
Bardzell, Michael; Poimenidou, Eirini
2011-01-01
In this article we present, as a case study, results of undergraduate research involving binomial coefficients modulo a prime "p." We will discuss how undergraduates were involved in the project, even with a minimal mathematical background beforehand. There are two main avenues of exploration described to discover these binomial…
Integer Solutions of Binomial Coefficients
ERIC Educational Resources Information Center
Gilbertson, Nicholas J.
2016-01-01
A good formula is like a good story, rich in description, powerful in communication, and eye-opening to readers. The formula presented in this article for determining the coefficients of the binomial expansion of (x + y)n is one such "good read." The beauty of this formula is in its simplicity--both describing a quantitative situation…
Rasch Model Analysis with the BICAL Computer Program
1976-09-01
and persons which lead to measures that persist from trial to trial . The measurement model is essential in this process because it provides a framework...and his students. Section 15 two derives the estimating equations for the Bernoulli (i.e. one trial per task) form : " and then generalizes to the...Binomial form (several trials per task). Finall) goodness of fit tests are presented for assessing the adequacy of the calibration. t { ) I I I 41 CHAPTER
Grennan, J Troy; Loutfy, Mona R; Su, DeSheng; Harrigan, P Richard; Cooper, Curtis; Klein, Marina; Machouf, Nima; Montaner, Julio S G; Rourke, Sean; Tsoukas, Christos; Hogg, Bob; Raboud, Janet
2012-04-15
The importance of human immunodeficiency virus (HIV) blip magnitude on virologic rebound has been raised in clinical guidelines relating to viral load assays. Antiretroviral-naive individuals initiating combination antiretroviral therapy (cART) after 1 January 2000 and achieving virologic suppression were studied. Negative binomial models were used to identify blip correlates. Recurrent event models were used to determine the association between blips and rebound by incorporating multiple periods of virologic suppression per individual. 3550 participants (82% male; median age, 40 years) were included. In a multivariable negative binomial regression model, the Amplicor assay was associated with a lower blip rate than branched DNA (rate ratio, 0.69; P < .01), controlling for age, sex, region, baseline HIV-1 RNA and CD4 count, AIDS-defining illnesses, year of cART initiation, cART type, and HIV-1 RNA testing frequency. In a multivariable recurrent event model controlling for age, sex, intravenous drug use, cART start year, cART type, assay type, and HIV-1 RNA testing frequency, blips of 500-999 copies/mL were associated with virologic rebound (hazard ratio, 2.70; P = .002), whereas blips of 50-499 were not. HIV-1 RNA assay was an important determinant of blip rates and should be considered in clinical guidelines. Blips ≥500 copies/mL were associated with increased rebound risk.
A statistical model to estimate the impact of a hepatitis A vaccination programme.
Oviedo, Manuel; Pilar Muñoz, M; Domínguez, Angela; Borras, Eva; Carmona, Gloria
2008-11-11
A program of routine hepatitis A+B vaccination in preadolescents was introduced in 1998 in Catalonia, a region situated in the northeast of Spain. The objective of this study was to quantify the reduction in the incidence of hepatitis A in order to differentiate the natural reduction of the incidence of hepatitis A from that produced due to the vaccination programme and to predict the evolution of the disease in forthcoming years. A generalized linear model (GLM) using negative binomial regression was used to estimate the incidence rates of hepatitis A in Catalonia by year, age group and vaccination. Introduction of the vaccine reduced cases by 5.5 by year (p-value<0.001), but there was a significant interaction between the year of report and vaccination that smoothed this reduction (p-value<0.001). The reduction was not equal in all age groups, being greater in the 12-18 years age group, which fell from a mean rate of 8.15 per 100,000 person/years in the pre-vaccination period (1992-1998) to 1.4 in the vaccination period (1999-2005). The model predicts the evolution accurately for the group of vaccinated subjects. Negative binomial regression is more appropriate than Poisson regression when observed variance exceeds the observed mean (overdispersed count data), can cause a variable apparently contribute more on the model of what really makes it.
A Quadriparametric Model to Describe the Diversity of Waves Applied to Hormonal Data.
Abdullah, Saman; Bouchard, Thomas; Klich, Amna; Leiva, Rene; Pyper, Cecilia; Genolini, Christophe; Subtil, Fabien; Iwaz, Jean; Ecochard, René
2018-05-01
Even in normally cycling women, hormone level shapes may widely vary between cycles and between women. Over decades, finding ways to characterize and compare cycle hormone waves was difficult and most solutions, in particular polynomials or splines, do not correspond to physiologically meaningful parameters. We present an original concept to characterize most hormone waves with only two parameters. The modelling attempt considered pregnanediol-3-alpha-glucuronide (PDG) and luteinising hormone (LH) levels in 266 cycles (with ultrasound-identified ovulation day) in 99 normally fertile women aged 18 to 45. The study searched for a convenient wave description process and carried out an extended search for the best fitting density distribution. The highly flexible beta-binomial distribution offered the best fit of most hormone waves and required only two readily available and understandable wave parameters: location and scale. In bell-shaped waves (e.g., PDG curves), early peaks may be fitted with a low location parameter and a low scale parameter; plateau shapes are obtained with higher scale parameters. I-shaped, J-shaped, and U-shaped waves (sometimes the shapes of LH curves) may be fitted with high scale parameter and, respectively, low, high, and medium location parameter. These location and scale parameters will be later correlated with feminine physiological events. Our results demonstrate that, with unimodal waves, complex methods (e.g., functional mixed effects models using smoothing splines, second-order growth mixture models, or functional principal-component- based methods) may be avoided. The use, application, and, especially, result interpretation of four-parameter analyses might be advantageous within the context of feminine physiological events. Schattauer GmbH.
Coleman, Marlize; Coleman, Michael; Mabuza, Aaron M; Kok, Gerdalize; Coetzee, Maureen; Durrheim, David N
2008-04-27
To evaluate the performance of a novel malaria outbreak identification system in the epidemic prone rural area of Mpumalanga Province, South Africa, for timely identification of malaria outbreaks and guiding integrated public health responses. Using five years of historical notification data, two binomial thresholds were determined for each primary health care facility in the highest malaria risk area of Mpumalanga province. Whenever the thresholds were exceeded at health facility level (tier 1), primary health care staff notified the malaria control programme, which then confirmed adequate stocks of malaria treatment to manage potential increased cases. The cases were followed up at household level to verify the likely source of infection. The binomial thresholds were reviewed at village/town level (tier 2) to determine whether additional response measures were required. In addition, an automated electronic outbreak identification system at town/village level (tier 2) was integrated into the case notification database (tier 3) to ensure that unexpected increases in case notification were not missed.The performance of these binomial outbreak thresholds was evaluated against other currently recommended thresholds using retrospective data. The acceptability of the system at primary health care level was evaluated through structured interviews with health facility staff. Eighty four percent of health facilities reported outbreaks within 24 hours (n = 95), 92% (n = 104) within 48 hours and 100% (n = 113) within 72 hours. Appropriate response to all malaria outbreaks (n = 113, tier 1, n = 46, tier 2) were achieved within 24 hours. The system was positively viewed by all health facility staff. When compared to other epidemiological systems for a specified 12 month outbreak season (June 2003 to July 2004) the binomial exact thresholds produced one false weekly outbreak, the C-sum 12 weekly outbreaks and the mean + 2 SD nine false weekly outbreaks. Exceeding the binomial level 1 threshold triggered an alert four weeks prior to an outbreak, but exceeding the binomial level 2 threshold identified an outbreak as it occurred. The malaria outbreak surveillance system using binomial thresholds achieved its primary goal of identifying outbreaks early facilitating appropriate local public health responses aimed at averting a possible large-scale epidemic in a low, and unstable, malaria transmission setting.
Multi-dimensionality and variability in folk classification of stingless bees (Apidae: Meliponini).
Zamudio, Fernando; Hilgert, Norma I
2015-05-23
Not long ago Eugene Hunn suggested using a combination of cognitive, linguistic, ecological and evolutionary theories in order to account for the dynamic character of ethnoecology in the study of folk classification systems. In this way he intended to question certain homogeneity in folk classifications models and deepen in the analysis and interpretation of variability in folk classifications. This paper studies how a rural culturally mixed population of the Atlantic Forest of Misiones (Argentina) classified honey-producing stingless bees according to the linguistic, cognitive and ecological dimensions of folk classification. We also analyze the socio-ecological meaning of binomialization in naming and the meaning of general local variability in the appointment of stingless bees. We used three different approaches: the classical approach developed by Brent Berlin which relies heavily on linguistic criteria, the approach developed by Eleonor Rosch which relies on psychological (cognitive) principles of categorization and finally we have captured the ecological dimension of folk classification in local narratives. For the second approximation, we developed ways of measuring the degree of prototypicality based on a total of 107 comparisons of the type "X is similar to Y" identified in personal narratives. Various logical and grouping strategies coexist and were identified as: graded of lateral linkage, hierarchical and functional. Similarity judgments among folk taxa resulted in an implicit logic of classification graded according to taxa's prototypicality. While there is a high agreement on naming stingless bees with monomial names, a considerable number of underrepresented binomial names and lack of names were observed. Two possible explanations about reported local naming variability are presented. We support the multidimensionality of folk classification systems. This confirms the specificity of local classification systems but also reflects the use of grouping strategies and mechanisms commonly observed in other cultural groups, such as the use of similarity judgments between more or less prototypical organisms. Also we support the idea that alternative naming results from a process of fragmentation of knowledge or incomplete transmission of knowledge. These processes lean on the facts that culturally based knowledge, on the one hand, and biologic knowledge of nature on the other, can be acquired through different learning pathways.
Gaillard, F O; Boudin, C; Chau, N P; Robert, V; Pichon, G
2003-11-01
Previous experimental gametocyte infections of Anopheles arabiensis on 3 volunteers naturally infected with Plasmodium falciparum were conducted in Senegal. They showed that gametocyte counts in the mosquitoes are, like macroparasite intakes, heterogeneous (overdispersed). They followed a negative binomial distribution, the overdispersion coefficient seeming constant (k = 3.1). To try to explain this heterogeneity, we used an individual-based model (IBM), simulating the behaviour of gametocytes in the human blood circulation and their ingestion by mosquitoes. The hypothesis was that there exists a clustering of the gametocytes in the capillaries. From a series of simulations, in the case of clustering the following results were obtained: (i) the distribution of the gametocytes ingested by the mosquitoes followed a negative binomial, (ii) the k coefficient significantly increased with the density of circulating gametocytes. To validate this model result, 2 more experiments were conducted in Cameroon. Pooled experiments showed a distinct density dependency of the k-values. The simulation results and the experimental results were thus in agreement and suggested that an aggregation process at the microscopic level might produce the density-dependent overdispersion at the macroscopic level. Simulations also suggested that the clustering of gametocytes might facilitate fertilization of gametes.
Effectiveness on Early Childhood Caries of an Oral Health Promotion Program for Medical Providers
Widmer-Racich, Katina; Sevick, Carter; Starzyk, Erin J.; Mauritson, Katya; Hambidge, Simon J.
2017-01-01
Objectives. To assess an oral health promotion (OHP) intervention for medical providers’ impact on early childhood caries (ECC). Methods. We implemented a quasiexperimental OHP intervention in 8 federally qualified health centers that trained medical providers on ECC risk assessment, oral examination and instruction, dental referral, and fluoride varnish applications (FVAs). We measured OHP delivery by FVA count at medical visits. We measured the intervention’s impact on ECC in 3 unique cohorts of children aged 3 to 4 years in 2009 (preintervention; n = 202), 2011 (midintervention; n = 420), and 2015 (≥ 4 FVAs; n = 153). We compared numbers of decayed, missing, and filled tooth surfaces using adjusted zero-inflated negative binomial models. Results. Across 3 unique cohorts, the FVA mean (range) count was 0.0 (0), 1.1 (0–7), and 4.5 (4–7) in 2009, 2011, and 2015, respectively. In adjusted zero-inflated negative binomial models analyses, children in the 2015 cohort had significantly fewer decayed, missing, and filled tooth surfaces than did children in previous cohorts. Conclusions. An OHP intervention targeting medical providers reduced ECC when children received 4 or more FVAs at a medical visit by age 3 years. PMID:28661802
Possibility and challenges of conversion of current virus species names to Linnaean binomials
Thomas, Postler; Clawson, Anna N.; Amarasinghe, Gaya K.; Basler, Christopher F.; Bavari, Sina; Benko, Maria; Blasdell, Kim R.; Briese, Thomas; Buchmeier, Michael J.; Bukreyev, Alexander; Calisher, Charles H.; Chandran, Kartik; Charrel, Remi; Clegg, Christopher S.; Collins, Peter L.; De la Torre, Juan Carlos; DeRisi, Joseph L.; Dietzgen, Ralf G.; Dolnik, Olga; Durrwald, Ralf; Dye, John M.; Easton, Andrew J.; Emonet, Sebastian; Formenty, Pierre; Fouchier, Ron A. M.; Ghedin, Elodie; Gonzalez, Jean-Paul; Harrach, Balazs; Hewson, Roger; Horie, Masayuki; Jiang, Daohong; Kobinger, Gary P.; Kondo, Hideki; Kropinski, Andrew; Krupovic, Mart; Kurath, Gael; Lamb, Robert A.; Leroy, Eric M.; Lukashevich, Igor S.; Maisner, Andrea; Mushegian, Arcady; Netesov, Sergey V.; Nowotny, Norbert; Patterson, Jean L.; Payne, Susan L.; Paweska, Janusz T.; Peters, C.J.; Radoshitzky, Sheli; Rima, Bertus K.; Romanowski, Victor; Rubbenstroth, Dennis; Sabanadzovic, Sead; Sanfacon, Helene; Salvato , Maria; Schwemmle, Martin; Smither, Sophie J.; Stenglein, Mark; Stone, D.M.; Takada , Ayato; Tesh, Robert B.; Tomonaga, Keizo; Tordo, N.; Towner, Jonathan S.; Vasilakis, Nikos; Volchkov, Victor E.; Jensen, Victoria; Walker, Peter J.; Wang, Lin-Fa; Varsani, Arvind; Whitfield , Anna E.; Zerbini, Francisco Murilo; Kuhn, Jens H.
2017-01-01
Botanical, mycological, zoological, and prokaryotic species names follow the Linnaean format, consisting of an italicized Latinized binomen with a capitalized genus name and a lower case species epithet (e.g., Homo sapiens). Virus species names, however, do not follow a uniform format, and, even when binomial, are not Linnaean in style. In this thought exercise, we attempted to convert all currently official names of species included in the virus family Arenaviridae and the virus order Mononegavirales to Linnaean binomials, and to identify and address associated challenges and concerns. Surprisingly, this endeavor was not as complicated or time-consuming as even the authors of this article expected when conceiving the experiment.
Burkhardt, John C; DesJardins, Stephen L; Teener, Carol A; Gay, Steven E; Santen, Sally A
2016-11-01
In higher education, enrollment management has been developed to accurately predict the likelihood of enrollment of admitted students. This allows evidence to dictate numbers of interviews scheduled, offers of admission, and financial aid package distribution. The applicability of enrollment management techniques for use in medical education was tested through creation of a predictive enrollment model at the University of Michigan Medical School (U-M). U-M and American Medical College Application Service data (2006-2014) were combined to create a database including applicant demographics, academic application scores, institutional financial aid offer, and choice of school attended. Binomial logistic regression and multinomial logistic regression models were estimated in order to study factors related to enrollment at the local institution versus elsewhere and to groupings of competing peer institutions. A predictive analytic "dashboard" was created for practical use. Both models were significant at P < .001 and had similar predictive performance. In the binomial model female, underrepresented minority students, grade point average, Medical College Admission Test score, admissions committee desirability score, and most individual financial aid offers were significant (P < .05). The significant covariates were similar in the multinomial model (excluding female) and provided separate likelihoods of students enrolling at different institutional types. An enrollment-management-based approach would allow medical schools to better manage the number of students they admit and target recruitment efforts to improve their likelihood of success. It also performs a key institutional research function for understanding failed recruitment of highly desirable candidates.
Dong, Chunjiao; Clarke, David B; Yan, Xuedong; Khattak, Asad; Huang, Baoshan
2014-09-01
Crash data are collected through police reports and integrated with road inventory data for further analysis. Integrated police reports and inventory data yield correlated multivariate data for roadway entities (e.g., segments or intersections). Analysis of such data reveals important relationships that can help focus on high-risk situations and coming up with safety countermeasures. To understand relationships between crash frequencies and associated variables, while taking full advantage of the available data, multivariate random-parameters models are appropriate since they can simultaneously consider the correlation among the specific crash types and account for unobserved heterogeneity. However, a key issue that arises with correlated multivariate data is the number of crash-free samples increases, as crash counts have many categories. In this paper, we describe a multivariate random-parameters zero-inflated negative binomial (MRZINB) regression model for jointly modeling crash counts. The full Bayesian method is employed to estimate the model parameters. Crash frequencies at urban signalized intersections in Tennessee are analyzed. The paper investigates the performance of MZINB and MRZINB regression models in establishing the relationship between crash frequencies, pavement conditions, traffic factors, and geometric design features of roadway intersections. Compared to the MZINB model, the MRZINB model identifies additional statistically significant factors and provides better goodness of fit in developing the relationships. The empirical results show that MRZINB model possesses most of the desirable statistical properties in terms of its ability to accommodate unobserved heterogeneity and excess zero counts in correlated data. Notably, in the random-parameters MZINB model, the estimated parameters vary significantly across intersections for different crash types. Copyright © 2014 Elsevier Ltd. All rights reserved.
Janković, Bojan; Marinović-Cincović, Milena; Janković, Marija
2017-09-01
Kinetics of degradation for Aronia melanocarpa fresh fruits in argon and air atmospheres were investigated. The investigation was based on probability distributions of apparent activation energy of counterparts (ε a ). Isoconversional analysis results indicated that the degradation process in an inert atmosphere was governed by decomposition reactions of esterified compounds. Also, based on same kinetics approach, it was assumed that in an air atmosphere, the primary compound in degradation pathways could be anthocyanins, which undergo rapid chemical reactions. A new model of reactivity demonstrated that, under inert atmospheres, expectation values for ε a occured at levels of statistical probability. These values corresponded to decomposition processes in which polyphenolic compounds might be involved. ε a values obeyed laws of binomial distribution. It was established that, for thermo-oxidative degradation, Poisson distribution represented a very successful approximation for ε a values where there was additional mechanistic complexity and the binomial distribution was no longer valid. Copyright © 2017 Elsevier Ltd. All rights reserved.
Raw and Central Moments of Binomial Random Variables via Stirling Numbers
ERIC Educational Resources Information Center
Griffiths, Martin
2013-01-01
We consider here the problem of calculating the moments of binomial random variables. It is shown how formulae for both the raw and the central moments of such random variables may be obtained in a recursive manner utilizing Stirling numbers of the first kind. Suggestions are also provided as to how students might be encouraged to explore this…
Robust inference in the negative binomial regression model with an application to falls data.
Aeberhard, William H; Cantoni, Eva; Heritier, Stephane
2014-12-01
A popular way to model overdispersed count data, such as the number of falls reported during intervention studies, is by means of the negative binomial (NB) distribution. Classical estimating methods are well-known to be sensitive to model misspecifications, taking the form of patients falling much more than expected in such intervention studies where the NB regression model is used. We extend in this article two approaches for building robust M-estimators of the regression parameters in the class of generalized linear models to the NB distribution. The first approach achieves robustness in the response by applying a bounded function on the Pearson residuals arising in the maximum likelihood estimating equations, while the second approach achieves robustness by bounding the unscaled deviance components. For both approaches, we explore different choices for the bounding functions. Through a unified notation, we show how close these approaches may actually be as long as the bounding functions are chosen and tuned appropriately, and provide the asymptotic distributions of the resulting estimators. Moreover, we introduce a robust weighted maximum likelihood estimator for the overdispersion parameter, specific to the NB distribution. Simulations under various settings show that redescending bounding functions yield estimates with smaller biases under contamination while keeping high efficiency at the assumed model, and this for both approaches. We present an application to a recent randomized controlled trial measuring the effectiveness of an exercise program at reducing the number of falls among people suffering from Parkinsons disease to illustrate the diagnostic use of such robust procedures and their need for reliable inference. © 2014, The International Biometric Society.
Bisseleua, D H B; Vidal, Stefan
2011-02-01
The spatio-temporal distribution of Sahlbergella singularis Haglung, a major pest of cacao trees (Theobroma cacao) (Malvaceae), was studied for 2 yr in traditional cacao forest gardens in the humid forest area of southern Cameroon. The first objective was to analyze the dispersion of this insect on cacao trees. The second objective was to develop sampling plans based on fixed levels of precision for estimating S. singularis populations. The following models were used to analyze the data: Taylor's power law, Iwao's patchiness regression, the Nachman model, and the negative binomial distribution. Our results document that Taylor's power law was a better fit for the data than the Iwao and Nachman models. Taylor's b and Iwao's β were both significantly >1, indicating that S. singularis aggregated on specific trees. This result was further supported by the calculated common k of 1.75444. Iwao's α was significantly <0, indicating that the basic distribution component of S. singularis was the individual insect. Comparison of negative binomial (NBD) and Nachman models indicated that the NBD model was appropriate for studying S. singularis distribution. Optimal sample sizes for fixed precision levels of 0.10, 0.15, and 0.25 were estimated with Taylor's regression coefficients. Required sample sizes increased dramatically with increasing levels of precision. This is the first study on S. singularis dispersion in cacao plantations. Sampling plans, presented here, should be a tool for research on population dynamics and pest management decisions of mirid bugs on cacao. © 2011 Entomological Society of America
ERIC Educational Resources Information Center
Sevigny, Eric L.; Zhang, Gary
2018-01-01
This study investigates how barriers to school-based crime prevention programming moderate the effects of situational crime prevention (SCP) policies on levels of violent crime in U.S. public high schools. Using data from the 2008 School Survey on Crime and Safety, we estimate a series of negative binomial regression models with interactions to…
Value-based purchasing and hospital acquired conditions: are we seeing improvement?
Spaulding, Aaron; Zhao, Mei; Haley, D Rob
2014-12-01
To determine if the Value-Based Purchasing Performance Scoring system correlates with hospital acquired condition quality indicators. This study utilizes the following secondary data sources: the American Hospital Association (AHA) annual survey and the Centers for Medicare and Medicaid (CMS) Value-Based Purchasing and Hospital Acquired Conditions databases. Zero-inflated negative binomial regression was used to examine the effect of CMS total performance score on counts of hospital acquired conditions. Hospital structure variables including size, ownership, teaching status, payer mix, case mix, and location were utilized as control variables. The secondary data sources were merged into a single database using Stata 10. Total performance scores, which are used to determine if hospitals should receive incentive money, do not correlate well with quality outcome in the form of hospital acquired conditions. Value-based purchasing does not appear to correlate with improved quality and patient safety as indicated by Hospital Acquired Condition (HAC) scores. This leads us to believe that either the total performance score does not measure what it should, or the quality outcome measurements do not reflect the quality of the total performance scores measure. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Pieper, Laura; Sorge, Ulrike S; DeVries, Trevor J; Godkin, Ann; Lissemore, Kerry; Kelton, David F
2015-10-01
Johne's disease (JD) is a production-limiting gastrointestinal disease in cattle. To minimize the effects of JD, the Ontario dairy industry launched the Ontario Johne's Education and Management Assistance Program in 2010. As part of the program, trained veterinarians conducted a risk assessment and management plan (RAMP), an on-farm questionnaire where high RAMP scores are associated with high risk of JD transmission. Subsequently, veterinarians recommended farm-specific management practices for JD prevention. Milk or serum ELISA results from the milking herd were used to determine the herd ELISA status (HES) and within-herd prevalence. After 3.5 yr of implementation of the program, the aim of this study was to evaluate the associations among RAMP scores, HES, and recommendations. Data from 2,103 herds were available for the analyses. A zero-inflated negative binomial model for the prediction of the number of ELISA-positive animals per farm was built. The model included individual RAMP questions about purchasing animals in the logistic portion, indicating risks for between-herd transmission, and purchasing bulls, birth of calves outside the designated calving area, colostrum and milk feeding management, and adult cow environmental hygiene in the negative binomial portion, indicating risk factors for within-herd transmission. However, farms which fed low-risk milk compared with milk replacer had fewer seropositive animals. The model additionally included the JD herd history in the negative binomial and the logistic portion, indicating that herds with a JD herd history were more likely to have at least 1 positive animal and to have a higher number of positive animals. Generally, a positive association was noted between RAMP scores and the odds of receiving a recommendation for the respective risk area; however, the relationship was not always linear. For general JD risk and calving area risk, seropositive herds had higher odds of receiving recommendations compared with seronegative herds if the section scores were low. This study suggests that the RAMP is a valuable tool to assess the risk for JD transmission within and between herds and to determine farm-specific recommendations for JD prevention. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Tearne, Jessica E; Robinson, Monique; Jacoby, Peter; Allen, Karina L; Cunningham, Nadia K; Li, Jianghong; McLean, Neil J
2016-01-01
The evidence regarding older parental age and incidence of mood disorder symptoms in offspring is limited, and that which exists is mixed. We sought to clarify these relationships by using data from the Western Australian Pregnancy Cohort (Raine) Study. The Raine Study provided comprehensive data from 2,900 pregnancies, resulting in 2,868 live born children. A total of 1,220 participants completed the short form of the Depression Anxiety Stress Scale (DASS-21) at the 20-year cohort follow-up. We used negative binomial regression analyses with log link and with adjustment for known perinatal risk factors to examine the extent to which maternal and paternal age at childbirth predicted continuous DASS-21 index scores. In the final multivariate models, a maternal age of 30-34 years was associated with significant increases in stress DASS-21 scores in female offspring relative to female offspring of 25- to 29-year-old mothers. A maternal age of 35 years and over was associated with increased scores on all DASS-21 scales in female offspring. Our results indicate that older maternal age is associated with depression, anxiety, and stress symptoms in young adult females. Further research into the mechanisms underpinning this relationship is needed. (c) 2016 APA, all rights reserved.
Fang, Huaming; Zhang, Peng; Huang, Lisa P.; Zhao, Zhengyi; Pi, Fengmei; Montemagno, Carlo; Guo, Peixuan
2014-01-01
Living systems produce ordered structures and nanomachines that inspire the development of biomimetic nanodevices such as chips, MEMS, actuators, sensors, sorters, and apparatuses for single-pore DNA sequencing, disease diagnosis, drug or therapeutic RNA delivery. Determination of the copy numbers of subunits that build these machines is challenging due to small size. Here we report a simple mathematical method to determine the stoichiometry, using phi29 DNA-packaging nanomotor as a model to elucidate the application of a formula ∑M=0Z(ZM)pZ−MqM, where p and q are the percentage of wild-type and inactive mutant in the empirical assay; M is the copy numbers of mutant and Z is the stoichiometry in question. Variable ratios of mutants and wild-type were mixed to inhibit motor function. Empirical data were plotted over the theoretical curves to determine the stoichiometry and the value of K, which is the number of mutant needed in each machine to block the function, all based on the condition that wild-type and mutant are equal in binding affinity. Both Z and K from 1–12 were investigated. The data precisely confirmed that phi29 motor contains six copies (Z) of the motor ATPase gp16, and K = 1. PMID:24650885
Awazu, Akinori; Tanabe, Takahiro; Kamitani, Mari; Tezuka, Ayumi; Nagano, Atsushi J
2018-05-29
Gene expression levels exhibit stochastic variations among genetically identical organisms under the same environmental conditions. In many recent transcriptome analyses based on RNA sequencing (RNA-seq), variations in gene expression levels among replicates were assumed to follow a negative binomial distribution, although the physiological basis of this assumption remains unclear. In this study, RNA-seq data were obtained from Arabidopsis thaliana under eight conditions (21-27 replicates), and the characteristics of gene-dependent empirical probability density function (ePDF) profiles of gene expression levels were analyzed. For A. thaliana and Saccharomyces cerevisiae, various types of ePDF of gene expression levels were obtained that were classified as Gaussian, power law-like containing a long tail, or intermediate. These ePDF profiles were well fitted with a Gauss-power mixing distribution function derived from a simple model of a stochastic transcriptional network containing a feedback loop. The fitting function suggested that gene expression levels with long-tailed ePDFs would be strongly influenced by feedback regulation. Furthermore, the features of gene expression levels are correlated with their functions, with the levels of essential genes tending to follow a Gaussian-like ePDF while those of genes encoding nucleic acid-binding proteins and transcription factors exhibit long-tailed ePDF.
Verbakel, Natasha J; Langelaan, Maaike; Verheij, Theo JM; Wagner, Cordula; Zwart, Dorien LM
2015-01-01
Background A constructive safety culture is essential for the successful implementation of patient safety improvements. Aim To assess the effect of two patient safety culture interventions on incident reporting as a proxy of safety culture. Design and setting A three-arm cluster randomised trial was conducted in a mixed method study, studying the effect of administering a patient safety culture questionnaire (intervention I), the questionnaire complemented with a practice-based workshop (intervention II) and no intervention (control) in 30 general practices in the Netherlands. Method The primary outcome, the number of reported incidents, was measured with a questionnaire at baseline and a year after. Analysis was performed using a negative binomial model. Secondary outcomes were quality and safety indicators and safety culture. Mixed effects linear regression was used to analyse the culture questionnaires. Results The number of incidents increased in both intervention groups, to 82 and 224 in intervention I and II respectively. Adjusted for baseline number of incidents, practice size and accreditation status, the study showed that practices that additionally participated in the workshop reported 42 (95% confidence interval [CI] = 9.81 to 177.50) times more incidents compared to the control group. Practices that only completed the questionnaire reported 5 (95% CI = 1.17 to 25.49) times more incidents. There were no statistically significant differences in staff perception of patient safety culture at follow-up between the three study groups. Conclusion Educating staff and facilitating discussion about patient safety culture in their own practice leads to increased reporting of incidents. It is beneficial to invest in a team-wise effort to improve patient safety. PMID:25918337
Verbakel, Natasha J; Langelaan, Maaike; Verheij, Theo J M; Wagner, Cordula; Zwart, Dorien L M
2015-05-01
A constructive safety culture is essential for the successful implementation of patient safety improvements. To assess the effect of two patient safety culture interventions on incident reporting as a proxy of safety culture. A three-arm cluster randomised trial was conducted in a mixed method study, studying the effect of administering a patient safety culture questionnaire (intervention I), the questionnaire complemented with a practice-based workshop (intervention II) and no intervention (control) in 30 general practices in the Netherlands. The primary outcome, the number of reported incidents, was measured with a questionnaire at baseline and a year after. Analysis was performed using a negative binomial model. Secondary outcomes were quality and safety indicators and safety culture. Mixed effects linear regression was used to analyse the culture questionnaires. The number of incidents increased in both intervention groups, to 82 and 224 in intervention I and II respectively. Adjusted for baseline number of incidents, practice size and accreditation status, the study showed that practices that additionally participated in the workshop reported 42 (95% confidence interval [CI] = 9.81 to 177.50) times more incidents compared to the control group. Practices that only completed the questionnaire reported 5 (95% CI = 1.17 to 25.49) times more incidents. There were no statistically significant differences in staff perception of patient safety culture at follow-up between the three study groups. Educating staff and facilitating discussion about patient safety culture in their own practice leads to increased reporting of incidents. It is beneficial to invest in a team-wise effort to improve patient safety. © British Journal of General Practice 2015.
2013-01-01
The literature has been mixed regarding how parent–child relationships are affected by the acculturation process and how this process relates to alcohol use among Latino youth. The mixed results may be due to, at least, two factors: First, staggered migration in which one or both parents arrive to the new country and then send for the children may lead to faster acculturation in parents than in children for some families. Second, acculturation may have different effects depending on which aspects of alcohol use are being examined. This study addresses the first factor by testing for a curvilinear trend in the acculturation-alcohol use relationship and the second by modeling past year alcohol use as a zero inflated negative binomial distribution. Additionally, this study examined the unique and mediation effects of parent–child acculturation discrepancies (gap), mother involvement in children’s schooling, father involvement in children’s schooling, and effective parenting on youth alcohol use during the last 12 months, measured as the probability of using and the extent of use. Direct paths from parent–child acculturation discrepancy to alcohol use, and mediated paths through mother involvement, father involvement, and effective parenting were also tested. Only father involvement fully mediated the path from parent–child acculturation discrepancies to the probability of alcohol use. None of the variables examined mediated the path from parent–child acculturation discrepancies to the extent of alcohol use. Effective parenting was unrelated to acculturation discrepancies; however, it maintained a significant direct effect on the probability of youth alcohol use and the extent of use after controlling for mother and father involvement. Implications for prevention strategies are discussed. PMID:23347822
Holsclaw, Tracy; Hallgren, Kevin A; Steyvers, Mark; Smyth, Padhraic; Atkins, David C
2015-12-01
Behavioral coding is increasingly used for studying mechanisms of change in psychosocial treatments for substance use disorders (SUDs). However, behavioral coding data typically include features that can be problematic in regression analyses, including measurement error in independent variables, non normal distributions of count outcome variables, and conflation of predictor and outcome variables with third variables, such as session length. Methodological research in econometrics has shown that these issues can lead to biased parameter estimates, inaccurate standard errors, and increased Type I and Type II error rates, yet these statistical issues are not widely known within SUD treatment research, or more generally, within psychotherapy coding research. Using minimally technical language intended for a broad audience of SUD treatment researchers, the present paper illustrates the nature in which these data issues are problematic. We draw on real-world data and simulation-based examples to illustrate how these data features can bias estimation of parameters and interpretation of models. A weighted negative binomial regression is introduced as an alternative to ordinary linear regression that appropriately addresses the data characteristics common to SUD treatment behavioral coding data. We conclude by demonstrating how to use and interpret these models with data from a study of motivational interviewing. SPSS and R syntax for weighted negative binomial regression models is included in online supplemental materials. (c) 2016 APA, all rights reserved).
Holsclaw, Tracy; Hallgren, Kevin A.; Steyvers, Mark; Smyth, Padhraic; Atkins, David C.
2015-01-01
Behavioral coding is increasingly used for studying mechanisms of change in psychosocial treatments for substance use disorders (SUDs). However, behavioral coding data typically include features that can be problematic in regression analyses, including measurement error in independent variables, non-normal distributions of count outcome variables, and conflation of predictor and outcome variables with third variables, such as session length. Methodological research in econometrics has shown that these issues can lead to biased parameter estimates, inaccurate standard errors, and increased type-I and type-II error rates, yet these statistical issues are not widely known within SUD treatment research, or more generally, within psychotherapy coding research. Using minimally-technical language intended for a broad audience of SUD treatment researchers, the present paper illustrates the nature in which these data issues are problematic. We draw on real-world data and simulation-based examples to illustrate how these data features can bias estimation of parameters and interpretation of models. A weighted negative binomial regression is introduced as an alternative to ordinary linear regression that appropriately addresses the data characteristics common to SUD treatment behavioral coding data. We conclude by demonstrating how to use and interpret these models with data from a study of motivational interviewing. SPSS and R syntax for weighted negative binomial regression models is included in supplementary materials. PMID:26098126
[Spatial epidemiological study on malaria epidemics in Hainan province].
Wen, Liang; Shi, Run-He; Fang, Li-Qun; Xu, De-Zhong; Li, Cheng-Yi; Wang, Yong; Yuan, Zheng-Quan; Zhang, Hui
2008-06-01
To better understand the characteristics of spatial distribution of malaria epidemics in Hainan province and to explore the relationship between malaria epidemics and environmental factors, as well to develop prediction model on malaria epidemics. Data on Malaria and meteorological factors were collected in all 19 counties in Hainan province from May to Oct., 2000, and the proportion of land use types of these counties in this period were extracted from digital map of land use in Hainan province. Land surface temperatures (LST) were extracted from MODIS images and elevations of these counties were extracted from DEM of Hainan province. The coefficients of correlation of malaria incidences and these environmental factors were then calculated with SPSS 13.0, and negative binomial regression analysis were done using SAS 9.0. The incidence of malaria showed (1) positive correlations to elevation, proportion of forest land area and grassland area; (2) negative correlations to the proportion of cultivated area, urban and rural residents and to industrial enterprise area, LST; (3) no correlations to meteorological factors, proportion of water area, and unemployed land area. The prediction model of malaria which came from negative binomial regression analysis was: I (monthly, unit: 1/1,000,000) = exp (-1.672-0.399xLST). Spatial distribution of malaria epidemics was associated with some environmental factors, and prediction model of malaria epidemic could be developed with indexes which extracted from satellite remote sensing images.
Xiao, Chuan-Le; Chen, Xiao-Zhou; Du, Yang-Li; Sun, Xuesong; Zhang, Gong; He, Qing-Yu
2013-01-04
Mass spectrometry has become one of the most important technologies in proteomic analysis. Tandem mass spectrometry (LC-MS/MS) is a major tool for the analysis of peptide mixtures from protein samples. The key step of MS data processing is the identification of peptides from experimental spectra by searching public sequence databases. Although a number of algorithms to identify peptides from MS/MS data have been already proposed, e.g. Sequest, OMSSA, X!Tandem, Mascot, etc., they are mainly based on statistical models considering only peak-matches between experimental and theoretical spectra, but not peak intensity information. Moreover, different algorithms gave different results from the same MS data, implying their probable incompleteness and questionable reproducibility. We developed a novel peptide identification algorithm, ProVerB, based on a binomial probability distribution model of protein tandem mass spectrometry combined with a new scoring function, making full use of peak intensity information and, thus, enhancing the ability of identification. Compared with Mascot, Sequest, and SQID, ProVerB identified significantly more peptides from LC-MS/MS data sets than the current algorithms at 1% False Discovery Rate (FDR) and provided more confident peptide identifications. ProVerB is also compatible with various platforms and experimental data sets, showing its robustness and versatility. The open-source program ProVerB is available at http://bioinformatics.jnu.edu.cn/software/proverb/ .
Zhang, Changsheng; Cai, Hongmin; Huang, Jingying; Song, Yan
2016-09-17
Variations in DNA copy number have an important contribution to the development of several diseases, including autism, schizophrenia and cancer. Single-cell sequencing technology allows the dissection of genomic heterogeneity at the single-cell level, thereby providing important evolutionary information about cancer cells. In contrast to traditional bulk sequencing, single-cell sequencing requires the amplification of the whole genome of a single cell to accumulate enough samples for sequencing. However, the amplification process inevitably introduces amplification bias, resulting in an over-dispersing portion of the sequencing data. Recent study has manifested that the over-dispersed portion of the single-cell sequencing data could be well modelled by negative binomial distributions. We developed a read-depth based method, nbCNV to detect the copy number variants (CNVs). The nbCNV method uses two constraints-sparsity and smoothness to fit the CNV patterns under the assumption that the read signals are negatively binomially distributed. The problem of CNV detection was formulated as a quadratic optimization problem, and was solved by an efficient numerical solution based on the classical alternating direction minimization method. Extensive experiments to compare nbCNV with existing benchmark models were conducted on both simulated data and empirical single-cell sequencing data. The results of those experiments demonstrate that nbCNV achieves superior performance and high robustness for the detection of CNVs in single-cell sequencing data.
Carter, Evelene M; Potts, Henry W W
2014-04-04
To investigate whether factors can be identified that significantly affect hospital length of stay from those available in an electronic patient record system, using primary total knee replacements as an example. To investigate whether a model can be produced to predict the length of stay based on these factors to help resource planning and patient expectations on their length of stay. Data were extracted from the electronic patient record system for discharges from primary total knee operations from January 2007 to December 2011 (n=2,130) at one UK hospital and analysed for their effect on length of stay using Mann-Whitney and Kruskal-Wallis tests for discrete data and Spearman's correlation coefficient for continuous data. Models for predicting length of stay for primary total knee replacements were tested using the Poisson regression and the negative binomial modelling techniques. Factors found to have a significant effect on length of stay were age, gender, consultant, discharge destination, deprivation and ethnicity. Applying a negative binomial model to these variables was successful. The model predicted the length of stay of those patients who stayed 4-6 days (~50% of admissions) with 75% accuracy within 2 days (model data). Overall, the model predicted the total days stayed over 5 years to be only 88 days more than actual, a 6.9% uplift (test data). Valuable information can be found about length of stay from the analysis of variables easily extracted from an electronic patient record system. Models can be successfully created to help improve resource planning and from which a simple decision support system can be produced to help patient expectation on their length of stay.
ERIC Educational Resources Information Center
Abrahamson, Dor
2009-01-01
This article reports on a case study from a design-based research project that investigated how students make sense of the disciplinary tools they are taught to use, and specifically, what personal, interpersonal, and material resources support this process. The probability topic of binomial distribution was selected due to robust documentation of…
Galvan, T L; Burkness, E C; Hutchison, W D
2007-06-01
To develop a practical integrated pest management (IPM) system for the multicolored Asian lady beetle, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), in wine grapes, we assessed the spatial distribution of H. axyridis and developed eight sampling plans to estimate adult density or infestation level in grape clusters. We used 49 data sets collected from commercial vineyards in 2004 and 2005, in Minnesota and Wisconsin. Enumerative plans were developed using two precision levels (0.10 and 0.25); the six binomial plans reflected six unique action thresholds (3, 7, 12, 18, 22, and 31% of cluster samples infested with at least one H. axyridis). The spatial distribution of H. axyridis in wine grapes was aggregated, independent of cultivar and year, but it was more randomly distributed as mean density declined. The average sample number (ASN) for each sampling plan was determined using resampling software. For research purposes, an enumerative plan with a precision level of 0.10 (SE/X) resulted in a mean ASN of 546 clusters. For IPM applications, the enumerative plan with a precision level of 0.25 resulted in a mean ASN of 180 clusters. In contrast, the binomial plans resulted in much lower ASNs and provided high probabilities of arriving at correct "treat or no-treat" decisions, making these plans more efficient for IPM applications. For a tally threshold of one adult per cluster, the operating characteristic curves for the six action thresholds provided binomial sequential sampling plans with mean ASNs of only 19-26 clusters, and probabilities of making correct decisions between 83 and 96%. The benefits of the binomial sampling plans are discussed within the context of improving IPM programs for wine grapes.
Butsick, Andrew J; Wood, Jonathan S; Jovanis, Paul P
2017-09-01
The Highway Safety Manual provides multiple methods that can be used to identify sites with promise (SWiPs) for safety improvement. However, most of these methods cannot be used to identify sites with specific problems. Furthermore, given that infrastructure funding is often specified for use related to specific problems/programs, a method for identifying SWiPs related to those programs would be very useful. This research establishes a method for Identifying SWiPs with specific issues. This is accomplished using two safety performance functions (SPFs). This method is applied to identifying SWiPs with geometric design consistency issues. Mixed effects negative binomial regression was used to develop two SPFs using 5 years of crash data and over 8754km of two-lane rural roadway. The first SPF contained typical roadway elements while the second contained additional geometric design consistency parameters. After empirical Bayes adjustments, sites with promise (SWiPs) were identified. The disparity between SWiPs identified by the two SPFs was evident; 40 unique sites were identified by each model out of the top 220 segments. By comparing sites across the two models, candidate road segments can be identified where a lack design consistency may be contributing to an increase in expected crashes. Practitioners can use this method to more effectively identify roadway segments suffering from reduced safety performance due to geometric design inconsistency, with detailed engineering studies of identified sites required to confirm the initial assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bayesian hierarchical modeling for detecting safety signals in clinical trials.
Xia, H Amy; Ma, Haijun; Carlin, Bradley P
2011-09-01
Detection of safety signals from clinical trial adverse event data is critical in drug development, but carries a challenging statistical multiplicity problem. Bayesian hierarchical mixture modeling is appealing for its ability to borrow strength across subgroups in the data, as well as moderate extreme findings most likely due merely to chance. We implement such a model for subject incidence (Berry and Berry, 2004 ) using a binomial likelihood, and extend it to subject-year adjusted incidence rate estimation under a Poisson likelihood. We use simulation to choose a signal detection threshold, and illustrate some effective graphics for displaying the flagged signals.
Gaussian Process Regression Model in Spatial Logistic Regression
NASA Astrophysics Data System (ADS)
Sofro, A.; Oktaviarina, A.
2018-01-01
Spatial analysis has developed very quickly in the last decade. One of the favorite approaches is based on the neighbourhood of the region. Unfortunately, there are some limitations such as difficulty in prediction. Therefore, we offer Gaussian process regression (GPR) to accommodate the issue. In this paper, we will focus on spatial modeling with GPR for binomial data with logit link function. The performance of the model will be investigated. We will discuss the inference of how to estimate the parameters and hyper-parameters and to predict as well. Furthermore, simulation studies will be explained in the last section.
Sleep Disruption Medical Intervention Forecasting (SDMIF) Module for the Integrated Medical Model
NASA Technical Reports Server (NTRS)
Lewandowski, Beth; Brooker, John; Mallis, Melissa; Hursh, Steve; Caldwell, Lynn; Myers, Jerry
2011-01-01
The NASA Integrated Medical Model (IMM) assesses the risk, including likelihood and impact of occurrence, of all credible in-flight medical conditions. Fatigue due to sleep disruption is a condition that could lead to operational errors, potentially resulting in loss of mission or crew. Pharmacological consumables are mitigation strategies used to manage the risks associated with sleep deficits. The likelihood of medical intervention due to sleep disruption was estimated with a well validated sleep model and a Monte Carlo computer simulation in an effort to optimize the quantity of consumables. METHODS: The key components of the model are the mission parameter program, the calculation of sleep intensity and the diagnosis and decision module. The mission parameter program was used to create simulated daily sleep/wake schedules for an ISS increment. The hypothetical schedules included critical events such as dockings and extravehicular activities and included actual sleep time and sleep quality. The schedules were used as inputs to the Sleep, Activity, Fatigue and Task Effectiveness (SAFTE) Model (IBR Inc., Baltimore MD), which calculated sleep intensity. Sleep data from an ISS study was used to relate calculated sleep intensity to the probability of sleep medication use, using a generalized linear model for binomial regression. A human yes/no decision process using a binomial random number was also factored into sleep medication use probability. RESULTS: These probability calculations were repeated 5000 times resulting in an estimate of the most likely amount of sleep aids used during an ISS mission and a 95% confidence interval. CONCLUSIONS: These results were transferred to the parent IMM for further weighting and integration with other medical conditions, to help inform operational decisions. This model is a potential planning tool for ensuring adequate sleep during sleep disrupted periods of a mission.
Market Competition and Density in Liver Transplantation: Relationship to Volume and Outcomes.
Adler, Joel T; Yeh, Heidi; Markmann, James F; Nguyen, Louis L
2015-08-01
Liver transplantation centers are unevenly distributed within the Donor Service Areas (DSAs) of the United States. This study assessed how market competition and liver transplantation center density are associated with liver transplantation volume within individual DSAs. We conducted a retrospective cohort study of 53,156 adult liver transplants in 45 DSAs with 110 transplantation centers identified from the Scientific Registry of Transplant Recipients between 2003 and 2012. The following measures were derived annually for each DSA: market competition using the Herfindahl Hirschman Index, transplantation center density by the Average Nearest Neighbor method, liver quality by the Liver Donor Risk Index, and patient risk by the Model for End-Stage Liver Disease. A hierarchical mixed effects negative binomial regression model of the relationship between liver transplants and market factors was created annually. Patient and graft survival were investigated with a Cox proportional hazards model. Transplantation center density was associated with market competition (p < 0.0001), listings for organ transplantation (p < 0.0001), and Model for End-Stage Liver Disease at transplantation (p = 0.0005). More liver transplantation centers (incidence rate ratio [IRR] = 1.03; p = 0.04), greater market competition (IRR = 1.36; p = 0.02), increased listings (IRR = 1.14; p < 0.0001), more donors (IRR = 1.24; p < 0.0001), and higher Liver Donor Risk Index (IRR = 3.35; p < 0.0001) were associated with more transplants. No market variables were associated with increased mortality after transplantation. After controlling for demographic and market factors, a greater concentration of centers was associated with more liver transplants without impacting overall survival. These results warrant additional investigation into the relationship between geospatial factors and liver transplantation volume with consideration for the optimization of scarce resources. Copyright © 2015 American College of Surgeons. Published by Elsevier Inc. All rights reserved.
Relation between social information processing and intimate partner violence in dating couples.
Setchell, Sarah; Fritz, Patti Timmons; Glasgow, Jillian
2017-07-01
We used couple-level data to predict physical acts of intimate partner violence (IPV) from self-reported negative emotions and social information-processing (SIP) abilities among 100 dating couples (n = 200; mean age = 21.45 years). Participants read a series of hypothetical conflict situation vignettes and responded to questionnaires to assess negative emotions and various facets of SIP including attributions for partner behavior, generation of response alternatives, and response selection. We conducted a series of negative binomial mixed-model regressions based on the actor-partner interdependence model (APIM; Kenny, Kashy, & Cook, 2006, Dyadic data analysis. New York, NY: Guilford Press). There were significant results for the response generation and negative emotion models. Participants who generated fewer coping response alternatives were at greater risk of victimization (actor effect). Women were at greater risk of victimization if they had partners who generated fewer coping response alternatives (sex by partner interaction effect). Generation of less competent coping response alternatives predicted greater risk of perpetration among men, whereas generation of more competent coping response alternatives predicted greater risk of victimization among women (sex by actor interaction effects). Two significant actor by partner interaction effects were found for the negative emotion models. Participants who reported discrepant levels of negative emotions from their partners were at greatest risk of perpetration. Participants who reported high levels of negative emotions were at greatest risk of victimization if they had partners who reported low levels of negative emotions. This research has implications for researchers and clinicians interested in addressing the problem of IPV. Aggr. Behav. 43:329-341, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Lowe, Rachel; Bailey, Trevor C.; Stephenson, David B.; Graham, Richard J.; Coelho, Caio A. S.; Sá Carvalho, Marilia; Barcellos, Christovam
2011-03-01
This paper considers the potential for using seasonal climate forecasts in developing an early warning system for dengue fever epidemics in Brazil. In the first instance, a generalised linear model (GLM) is used to select climate and other covariates which are both readily available and prove significant in prediction of confirmed monthly dengue cases based on data collected across the whole of Brazil for the period January 2001 to December 2008 at the microregion level (typically consisting of one large city and several smaller municipalities). The covariates explored include temperature and precipitation data on a 2.5°×2.5° longitude-latitude grid with time lags relevant to dengue transmission, an El Niño Southern Oscillation index and other relevant socio-economic and environmental variables. A negative binomial model formulation is adopted in this model selection to allow for extra-Poisson variation (overdispersion) in the observed dengue counts caused by unknown/unobserved confounding factors and possible correlations in these effects in both time and space. Subsequently, the selected global model is refined in the context of the South East region of Brazil, where dengue predominates, by reverting to a Poisson framework and explicitly modelling the overdispersion through a combination of unstructured and spatio-temporal structured random effects. The resulting spatio-temporal hierarchical model (or GLMM—generalised linear mixed model) is implemented via a Bayesian framework using Markov Chain Monte Carlo (MCMC). Dengue predictions are found to be enhanced both spatially and temporally when using the GLMM and the Bayesian framework allows posterior predictive distributions for dengue cases to be derived, which can be useful for developing a dengue alert system. Using this model, we conclude that seasonal climate forecasts could have potential value in helping to predict dengue incidence months in advance of an epidemic in South East Brazil.
1987-07-01
multinomial distribution as a magazine exposure model. J. of Marketing Research . 21, 100-106. Lehmann, E.L. (1983). Theory of Point Estimation. John Wiley and... Marketing Research . 21, 89-99. V I flWflW WflW~WWMWSS tWN ,rw fl rwwrwwr-w~ w-. ~. - - -- .~ 4’.) ~a 4’ ., . ’-4. .4.: .4~ I .4. ~J3iAf a,’ -a’ 4
Brian S. Cade; Barry R. Noon; Rick D. Scherer; John J. Keane
2017-01-01
Counts of avian fledglings, nestlings, or clutch size that are bounded below by zero and above by some small integer form a discrete random variable distribution that is not approximated well by conventional parametric count distributions such as the Poisson or negative binomial. We developed a logistic quantile regression model to provide estimates of the empirical...
Oral health of schoolchildren in Western Australia.
Arrow, P
2016-09-01
The West Australian School Dental Service (SDS) provides free, statewide, primary dental care to schoolchildren aged 5-17 years. This study reports on an evaluation of the oral health of children examined during the 2014 calendar year. Children were sampled, based on their date of birth, and SDS clinicians collected the clinical information. Weighted mean values of caries experience were presented. Negative binomial regression modelling was undertaken to test for factors of significance in the rate of caries occurrence. Data from children aged 5-15 years were used (girls = 4616, boys = 4900). Mean dmft (5-10-year-olds), 1.42 SE 0.03; mean DMFT (6-15-year-olds), 0.51 SE 0.01. Negative binomial regression model of permanent tooth caries found higher rates of caries in children who were from non-fluoridated areas (RR 2.1); Aboriginal (RR 2.4); had gingival inflammation (RR 1.5); lower ICSEA level (RR 1.4); and recalled at more than 24-month interval (RR 1.8). The study highlighted poor dental health associated with living in non-fluoridated areas, Aboriginal identity, poor oral hygiene, lower socioeconomic level and having extended intervals between dental checkups. Timely assessments and preventive measures targeted at groups, including extending community water fluoridation, may assist in further improving the oral health of children in Western Australia. © 2015 Australian Dental Association.
Rocheleau, J P; Michel, P; Lindsay, L R; Drebot, M; Dibernardo, A; Ogden, N H; Fortin, A; Arsenault, J
2017-10-01
The identification of specific environments sustaining emerging arbovirus amplification and transmission to humans is a key component of public health intervention planning. This study aimed at identifying environmental factors associated with West Nile virus (WNV) infections in southern Quebec, Canada, by modelling and jointly interpreting aggregated clinical data in humans and serological data in pet dogs. Environmental risk factors were estimated in humans by negative binomial regression based on a dataset of 191 human WNV clinical cases reported in the study area between 2011 and 2014. Risk factors for infection in dogs were evaluated by logistic and negative binomial models based on a dataset including WNV serological results from 1442 dogs sampled from the same geographical area in 2013. Forested lands were identified as low-risk environments in humans. Agricultural lands represented higher risk environments for dogs. Environments identified as impacting risk in the current study were somewhat different from those identified in other studies conducted in north-eastern USA, which reported higher risk in suburban environments. In the context of the current study, combining human and animal data allowed a more comprehensive and possibly a more accurate view of environmental WNV risk factors to be obtained than by studying aggregated human data alone.
DRME: Count-based differential RNA methylation analysis at small sample size scenario.
Liu, Lian; Zhang, Shao-Wu; Gao, Fan; Zhang, Yixin; Huang, Yufei; Chen, Runsheng; Meng, Jia
2016-04-15
Differential methylation, which concerns difference in the degree of epigenetic regulation via methylation between two conditions, has been formulated as a beta or beta-binomial distribution to address the within-group biological variability in sequencing data. However, a beta or beta-binomial model is usually difficult to infer at small sample size scenario with discrete reads count in sequencing data. On the other hand, as an emerging research field, RNA methylation has drawn more and more attention recently, and the differential analysis of RNA methylation is significantly different from that of DNA methylation due to the impact of transcriptional regulation. We developed DRME to better address the differential RNA methylation problem. The proposed model can effectively describe within-group biological variability at small sample size scenario and handles the impact of transcriptional regulation on RNA methylation. We tested the newly developed DRME algorithm on simulated and 4 MeRIP-Seq case-control studies and compared it with Fisher's exact test. It is in principle widely applicable to several other RNA-related data types as well, including RNA Bisulfite sequencing and PAR-CLIP. The code together with an MeRIP-Seq dataset is available online (https://github.com/lzcyzm/DRME) for evaluation and reproduction of the figures shown in this article. Copyright © 2016 Elsevier Inc. All rights reserved.
Decreasing annual nest counts in a globally important loggerhead sea turtle population.
Witherington, Blair; Kubilis, Paul; Brost, Beth; Meylan, Anne
2009-01-01
The loggerhead sea turtle (Caretta caretta) nests on sand beaches, has both oceanic and neritic life stages, and migrates internationally. We analyzed an 18-year time series of Index Nesting Beach Survey (Index) nest-count data to describe spatial and temporal trends in loggerhead nesting on Florida (USA) beaches. The Index data were highly resolved: 368 fixed zones (mean length 0.88 km) were surveyed daily during annual 109-day survey seasons. Spatial and seasonal coverage averaged 69% of estimated total nesting by loggerheads in the state. We carried out trend analyses on both annual survey-region nest-count totals (N = 18) and annual zone-level nest densities (N = 18 x 368 = 6624). In both analyses, negative binomial regression models were used to fit restricted cubic spline curves to aggregated nest counts. Between 1989 and 2006, loggerhead nest counts on Florida Index beaches increased and then declined, with a net decrease over the 18-year period. This pattern was evident in both a trend model of annual survey-region nest-count totals and a mixed-effect, "single-region" trend model of annual zone-level nest densities that took into account both spatial and temporal correlation between counts. We also saw this pattern in a zone-level model that allowed trend line shapes to vary between six coastal subregions. Annual mean zone-level nest density declined significantly (-28%; 95% CI: -34% to -21%) between 1989 and 2006 and declined steeply (-43%; 95% CI: -48% to -39%) during 1998-2006. Rates of change in annual mean nest density varied more between coastal subregions during the "mostly increasing" period prior to 1998 than during the "steeply declining" period after 1998. The excellent fits (observed vs. expected count R2 > 0.91) of the mixed-effect zone-level models confirmed the presence of strong, positive, within-zone autocorrelation (R > 0.93) between annual counts, indicating a remarkable year-to-year consistency in the longshore spatial distribution of nests over the survey region. We argue that the decline in annual loggerhead nest counts in peninsular Florida can best be explained by a decline in the number of adult female loggerheads in the population. Causes of this decline are explored.
Tobit analysis of vehicle accident rates on interstate highways.
Anastasopoulos, Panagiotis Ch; Tarko, Andrew P; Mannering, Fred L
2008-03-01
There has been an abundance of research that has used Poisson models and its variants (negative binomial and zero-inflated models) to improve our understanding of the factors that affect accident frequencies on roadway segments. This study explores the application of an alternate method, tobit regression, by viewing vehicle accident rates directly (instead of frequencies) as a continuous variable that is left-censored at zero. Using data from vehicle accidents on Indiana interstates, the estimation results show that many factors relating to pavement condition, roadway geometrics and traffic characteristics significantly affect vehicle accident rates.
Mallick, Himel; Tiwari, Hemant K.
2016-01-01
Count data are increasingly ubiquitous in genetic association studies, where it is possible to observe excess zero counts as compared to what is expected based on standard assumptions. For instance, in rheumatology, data are usually collected in multiple joints within a person or multiple sub-regions of a joint, and it is not uncommon that the phenotypes contain enormous number of zeroes due to the presence of excessive zero counts in majority of patients. Most existing statistical methods assume that the count phenotypes follow one of these four distributions with appropriate dispersion-handling mechanisms: Poisson, Zero-inflated Poisson (ZIP), Negative Binomial, and Zero-inflated Negative Binomial (ZINB). However, little is known about their implications in genetic association studies. Also, there is a relative paucity of literature on their usefulness with respect to model misspecification and variable selection. In this article, we have investigated the performance of several state-of-the-art approaches for handling zero-inflated count data along with a novel penalized regression approach with an adaptive LASSO penalty, by simulating data under a variety of disease models and linkage disequilibrium patterns. By taking into account data-adaptive weights in the estimation procedure, the proposed method provides greater flexibility in multi-SNP modeling of zero-inflated count phenotypes. A fast coordinate descent algorithm nested within an EM (expectation-maximization) algorithm is implemented for estimating the model parameters and conducting variable selection simultaneously. Results show that the proposed method has optimal performance in the presence of multicollinearity, as measured by both prediction accuracy and empirical power, which is especially apparent as the sample size increases. Moreover, the Type I error rates become more or less uncontrollable for the competing methods when a model is misspecified, a phenomenon routinely encountered in practice. PMID:27066062
Mallick, Himel; Tiwari, Hemant K
2016-01-01
Count data are increasingly ubiquitous in genetic association studies, where it is possible to observe excess zero counts as compared to what is expected based on standard assumptions. For instance, in rheumatology, data are usually collected in multiple joints within a person or multiple sub-regions of a joint, and it is not uncommon that the phenotypes contain enormous number of zeroes due to the presence of excessive zero counts in majority of patients. Most existing statistical methods assume that the count phenotypes follow one of these four distributions with appropriate dispersion-handling mechanisms: Poisson, Zero-inflated Poisson (ZIP), Negative Binomial, and Zero-inflated Negative Binomial (ZINB). However, little is known about their implications in genetic association studies. Also, there is a relative paucity of literature on their usefulness with respect to model misspecification and variable selection. In this article, we have investigated the performance of several state-of-the-art approaches for handling zero-inflated count data along with a novel penalized regression approach with an adaptive LASSO penalty, by simulating data under a variety of disease models and linkage disequilibrium patterns. By taking into account data-adaptive weights in the estimation procedure, the proposed method provides greater flexibility in multi-SNP modeling of zero-inflated count phenotypes. A fast coordinate descent algorithm nested within an EM (expectation-maximization) algorithm is implemented for estimating the model parameters and conducting variable selection simultaneously. Results show that the proposed method has optimal performance in the presence of multicollinearity, as measured by both prediction accuracy and empirical power, which is especially apparent as the sample size increases. Moreover, the Type I error rates become more or less uncontrollable for the competing methods when a model is misspecified, a phenomenon routinely encountered in practice.
Multiple imputation for handling missing outcome data when estimating the relative risk.
Sullivan, Thomas R; Lee, Katherine J; Ryan, Philip; Salter, Amy B
2017-09-06
Multiple imputation is a popular approach to handling missing data in medical research, yet little is known about its applicability for estimating the relative risk. Standard methods for imputing incomplete binary outcomes involve logistic regression or an assumption of multivariate normality, whereas relative risks are typically estimated using log binomial models. It is unclear whether misspecification of the imputation model in this setting could lead to biased parameter estimates. Using simulated data, we evaluated the performance of multiple imputation for handling missing data prior to estimating adjusted relative risks from a correctly specified multivariable log binomial model. We considered an arbitrary pattern of missing data in both outcome and exposure variables, with missing data induced under missing at random mechanisms. Focusing on standard model-based methods of multiple imputation, missing data were imputed using multivariate normal imputation or fully conditional specification with a logistic imputation model for the outcome. Multivariate normal imputation performed poorly in the simulation study, consistently producing estimates of the relative risk that were biased towards the null. Despite outperforming multivariate normal imputation, fully conditional specification also produced somewhat biased estimates, with greater bias observed for higher outcome prevalences and larger relative risks. Deleting imputed outcomes from analysis datasets did not improve the performance of fully conditional specification. Both multivariate normal imputation and fully conditional specification produced biased estimates of the relative risk, presumably since both use a misspecified imputation model. Based on simulation results, we recommend researchers use fully conditional specification rather than multivariate normal imputation and retain imputed outcomes in the analysis when estimating relative risks. However fully conditional specification is not without its shortcomings, and so further research is needed to identify optimal approaches for relative risk estimation within the multiple imputation framework.
Mapping CHU9D Utility Scores from the PedsQLTM 4.0 SF-15.
Mpundu-Kaambwa, Christine; Chen, Gang; Russo, Remo; Stevens, Katherine; Petersen, Karin Dam; Ratcliffe, Julie
2017-04-01
The Pediatric Quality of Life Inventory™ 4.0 Short Form 15 Generic Core Scales (hereafter the PedsQL) and the Child Health Utility-9 Dimensions (CHU9D) are two generic instruments designed to measure health-related quality of life in children and adolescents in the general population and paediatric patient groups living with specific health conditions. Although the PedsQL is widely used among paediatric patient populations, presently it is not possible to directly use the scores from the instrument to calculate quality-adjusted life-years (QALYs) for application in economic evaluation because it produces summary scores which are not preference-based. This paper examines different econometric mapping techniques for estimating CHU9D utility scores from the PedsQL for the purpose of calculating QALYs for cost-utility analysis. The PedsQL and the CHU9D were completed by a community sample of 755 Australian adolescents aged 15-17 years. Seven regression models were estimated: ordinary least squares estimator, generalised linear model, robust MM estimator, multivariate factorial polynomial estimator, beta-binomial estimator, finite mixture model and multinomial logistic model. The mean absolute error (MAE) and the mean squared error (MSE) were used to assess predictive ability of the models. The MM estimator with stepwise-selected PedsQL dimension scores as explanatory variables had the best predictive accuracy using MAE and the equivalent beta-binomial model had the best predictive accuracy using MSE. Our mapping algorithm facilitates the estimation of health-state utilities for use within economic evaluations where only PedsQL data is available and is suitable for use in community-based adolescents aged 15-17 years. Applicability of the algorithm in younger populations should be assessed in further research.
A review on models for count data with extra zeros
NASA Astrophysics Data System (ADS)
Zamri, Nik Sarah Nik; Zamzuri, Zamira Hasanah
2017-04-01
Typically, the zero inflated models are usually used in modelling count data with excess zeros. The existence of the extra zeros could be structural zeros or random which occur by chance. These types of data are commonly found in various disciplines such as finance, insurance, biomedical, econometrical, ecology, and health sciences. As found in the literature, the most popular zero inflated models used are zero inflated Poisson and zero inflated negative binomial. Recently, more complex models have been developed to account for overdispersion and unobserved heterogeneity. In addition, more extended distributions are also considered in modelling data with this feature. In this paper, we review related literature, provide a recent development and summary on models for count data with extra zeros.
Analyzing hospitalization data: potential limitations of Poisson regression.
Weaver, Colin G; Ravani, Pietro; Oliver, Matthew J; Austin, Peter C; Quinn, Robert R
2015-08-01
Poisson regression is commonly used to analyze hospitalization data when outcomes are expressed as counts (e.g. number of days in hospital). However, data often violate the assumptions on which Poisson regression is based. More appropriate extensions of this model, while available, are rarely used. We compared hospitalization data between 206 patients treated with hemodialysis (HD) and 107 treated with peritoneal dialysis (PD) using Poisson regression and compared results from standard Poisson regression with those obtained using three other approaches for modeling count data: negative binomial (NB) regression, zero-inflated Poisson (ZIP) regression and zero-inflated negative binomial (ZINB) regression. We examined the appropriateness of each model and compared the results obtained with each approach. During a mean 1.9 years of follow-up, 183 of 313 patients (58%) were never hospitalized (indicating an excess of 'zeros'). The data also displayed overdispersion (variance greater than mean), violating another assumption of the Poisson model. Using four criteria, we determined that the NB and ZINB models performed best. According to these two models, patients treated with HD experienced similar hospitalization rates as those receiving PD {NB rate ratio (RR): 1.04 [bootstrapped 95% confidence interval (CI): 0.49-2.20]; ZINB summary RR: 1.21 (bootstrapped 95% CI 0.60-2.46)}. Poisson and ZIP models fit the data poorly and had much larger point estimates than the NB and ZINB models [Poisson RR: 1.93 (bootstrapped 95% CI 0.88-4.23); ZIP summary RR: 1.84 (bootstrapped 95% CI 0.88-3.84)]. We found substantially different results when modeling hospitalization data, depending on the approach used. Our results argue strongly for a sound model selection process and improved reporting around statistical methods used for modeling count data. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Dental Caries and Enamel Defects in Very Low Birth Weight Adolescents
Nelson, S.; Albert, J.M.; Lombardi, G.; Wishnek, S.; Asaad, G.; Kirchner, H.L.; Singer, L.T.
2011-01-01
Objectives The purpose of this study was to examine developmental enamel defects and dental caries in very low birth weight adolescents with high risk (HR-VLBW) and low risk (LR-VLBW) compared to full-term (term) adolescents. Methods The sample consisted of 224 subjects (80 HR-VLBW, 59 LR-VLBW, 85 term adolescents) recruited from an ongoing longitudinal study. Sociodemographic and medical information was available from birth. Dental examination of the adolescent at the 14-year visit included: enamel defects (opacity and hypoplasia); decayed, missing, filled teeth of incisors and molars (DMFT-IM) and of overall permanent teeth (DMFT); Simplified Oral Hygiene Index for debris/calculus on teeth, and sealant presence. A caregiver questionnaire completed simultaneously assessed dental behavior, access, insurance status and prevention factors. Hierarchical analysis utilized the zero-inflated negative binomial model and zero-inflated Poisson model. Results The zero-inflated negative binomial model controlling for sociodemographic variables indicated that the LR-VLBW group had an estimated 75% increase (p < 0.05) in number of demarcated opacities in the incisors and first molar teeth compared to the term group. Hierarchical modeling indicated that demarcated opacities were a significant predictor of DMFT-IM after control for relevant covariates. The term adolescents had significantly increased DMFT-IM and DMFT scores compared to the LR-VLBW adolescents. Conclusion LR-VLBW was a significant risk factor for increased enamel defects in the permanent incisors and first molars. Term children had increased caries compared to the LR-VLBW group. The effect of birth group and enamel defects on caries has to be investigated longitudinally from birth. PMID:20975268
NASA Astrophysics Data System (ADS)
Hilpert, Markus; Johnson, William P.
2018-01-01
We used a recently developed simple mathematical network model to upscale pore-scale colloid transport information determined under unfavorable attachment conditions. Classical log-linear and nonmonotonic retention profiles, both well-reported under favorable and unfavorable attachment conditions, respectively, emerged from our upscaling. The primary attribute of the network is colloid transfer between bulk pore fluid, the near-surface fluid domain (NSFD), and attachment (treated as irreversible). The network model accounts for colloid transfer to the NSFD of downgradient grains and for reentrainment to bulk pore fluid via diffusion or via expulsion at rear flow stagnation zones (RFSZs). The model describes colloid transport by a sequence of random trials in a one-dimensional (1-D) network of Happel cells, which contain a grain and a pore. Using combinatorial analysis that capitalizes on the binomial coefficient, we derived from the pore-scale information the theoretical residence time distribution of colloids in the network. The transition from log-linear to nonmonotonic retention profiles occurs when the conditions underlying classical filtration theory are not fulfilled, i.e., when an NSFD colloid population is maintained. Then, nonmonotonic retention profiles result potentially both for attached and NSFD colloids. The concentration maxima shift downgradient depending on specific parameter choice. The concentration maxima were also shown to shift downgradient temporally (with continued elution) under conditions where attachment is negligible, explaining experimentally observed downgradient transport of retained concentration maxima of adhesion-deficient bacteria. For the case of zero reentrainment, we develop closed-form, analytical expressions for the shape, and the maximum of the colloid retention profile.
Poulin, Robert; Lagrue, Clément
2017-01-01
The spatial distribution of individuals of any species is a basic concern of ecology. The spatial distribution of parasites matters to control and conservation of parasites that affect human and nonhuman populations. This paper develops a quantitative theory to predict the spatial distribution of parasites based on the distribution of parasites in hosts and the spatial distribution of hosts. Four models are tested against observations of metazoan hosts and their parasites in littoral zones of four lakes in Otago, New Zealand. These models differ in two dichotomous assumptions, constituting a 2 × 2 theoretical design. One assumption specifies whether the variance function of the number of parasites per host individual is described by Taylor's law (TL) or the negative binomial distribution (NBD). The other assumption specifies whether the numbers of parasite individuals within each host in a square meter of habitat are independent or perfectly correlated among host individuals. We find empirically that the variance–mean relationship of the numbers of parasites per square meter is very well described by TL but is not well described by NBD. Two models that posit perfect correlation of the parasite loads of hosts in a square meter of habitat approximate observations much better than two models that posit independence of parasite loads of hosts in a square meter, regardless of whether the variance–mean relationship of parasites per host individual obeys TL or NBD. We infer that high local interhost correlations in parasite load strongly influence the spatial distribution of parasites. Local hotspots could influence control and conservation of parasites. PMID:27994156
NASA Astrophysics Data System (ADS)
Hilpert, Markus; Rasmuson, Anna; Johnson, William P.
2017-07-01
Colloid transport in saturated porous media is significantly influenced by colloidal interactions with grain surfaces. Near-surface fluid domain colloids experience relatively low fluid drag and relatively strong colloidal forces that slow their downgradient translation relative to colloids in bulk fluid. Near-surface fluid domain colloids may reenter into the bulk fluid via diffusion (nanoparticles) or expulsion at rear flow stagnation zones, they may immobilize (attach) via primary minimum interactions, or they may move along a grain-to-grain contact to the near-surface fluid domain of an adjacent grain. We introduce a simple model that accounts for all possible permutations of mass transfer within a dual pore and grain network. The primary phenomena thereby represented in the model are mass transfer of colloids between the bulk and near-surface fluid domains and immobilization. Colloid movement is described by a Markov chain, i.e., a sequence of trials in a 1-D network of unit cells, which contain a pore and a grain. Using combinatorial analysis, which utilizes the binomial coefficient, we derive the residence time distribution, i.e., an inventory of the discrete colloid travel times through the network and of their probabilities to occur. To parameterize the network model, we performed mechanistic pore-scale simulations in a single unit cell that determined the likelihoods and timescales associated with the above colloid mass transfer processes. We found that intergrain transport of colloids in the near-surface fluid domain can cause extended tailing, which has traditionally been attributed to hydrodynamic dispersion emanating from flow tortuosity of solute trajectories.
Counihan, Timothy D.; Chapman, Colin G.
2018-01-01
The goals were to (i) determine if river discharge and water temperature during various early life history stages were predictors of age‐0 White Sturgeon, Acipenser transmontanus, recruitment, and (ii) provide an example of how over‐dispersed catch data, including data with many zero observations, can be used to better understand the effects of regulated rivers on the productivity of depressed sturgeon populations. An information theoretic approach was used to develop and select negative binomial and zero‐inflated negative binomial models that model the relation of age‐0 White Sturgeon survey data from three contiguous Columbia River reservoirs to river discharge and water temperature during spawning, egg incubation, larval, and post‐larval phases. Age‐0 White Sturgeon were collected with small mesh gill nets in The Dalles and John Day reservoirs from 1997 to 2014 and a bottom trawl in Bonneville Reservoir from 1989 to 2006. Results suggest that seasonal river discharge was positively correlated with age‐0 recruitment; notably that discharge, 16 June–31 July was positively correlated to age‐0 recruitment in all three reservoirs. The best approximating models for two of the three reservoirs also suggest that seasonal water temperature may be a determinant of age‐0 recruitment. Our research demonstrates how over‐dispersed catch data can be used to better understand the effects of environmental conditions on sturgeon populations caused by the construction and operation of dams.
Linear algebra of the permutation invariant Crow-Kimura model of prebiotic evolution.
Bratus, Alexander S; Novozhilov, Artem S; Semenov, Yuri S
2014-10-01
A particular case of the famous quasispecies model - the Crow-Kimura model with a permutation invariant fitness landscape - is investigated. Using the fact that the mutation matrix in the case of a permutation invariant fitness landscape has a special tridiagonal form, a change of the basis is suggested such that in the new coordinates a number of analytical results can be obtained. In particular, using the eigenvectors of the mutation matrix as the new basis, we show that the quasispecies distribution approaches a binomial one and give simple estimates for the speed of convergence. Another consequence of the suggested approach is a parametric solution to the system of equations determining the quasispecies. Using this parametric solution we show that our approach leads to exact asymptotic results in some cases, which are not covered by the existing methods. In particular, we are able to present not only the limit behavior of the leading eigenvalue (mean population fitness), but also the exact formulas for the limit quasispecies eigenvector for special cases. For instance, this eigenvector has a geometric distribution in the case of the classical single peaked fitness landscape. On the biological side, we propose a mathematical definition, based on the closeness of the quasispecies to the binomial distribution, which can be used as an operational definition of the notorious error threshold. Using this definition, we suggest two approximate formulas to estimate the critical mutation rate after which the quasispecies delocalization occurs. Copyright © 2014 Elsevier Inc. All rights reserved.
Chen, Connie; Gribble, Matthew O; Bartroff, Jay; Bay, Steven M; Goldstein, Larry
2017-05-01
The United States's Clean Water Act stipulates in section 303(d) that states must identify impaired water bodies for which total maximum daily loads (TMDLs) of pollution inputs into water bodies are developed. Decision-making procedures about how to list, or delist, water bodies as impaired, or not, per Clean Water Act 303(d) differ across states. In states such as California, whether or not a particular monitoring sample suggests that water quality is impaired can be regarded as a binary outcome variable, and California's current regulatory framework invokes a version of the exact binomial test to consolidate evidence across samples and assess whether the overall water body complies with the Clean Water Act. Here, we contrast the performance of California's exact binomial test with one potential alternative, the Sequential Probability Ratio Test (SPRT). The SPRT uses a sequential testing framework, testing samples as they become available and evaluating evidence as it emerges, rather than measuring all the samples and calculating a test statistic at the end of the data collection process. Through simulations and theoretical derivations, we demonstrate that the SPRT on average requires fewer samples to be measured to have comparable Type I and Type II error rates as the current fixed-sample binomial test. Policymakers might consider efficient alternatives such as SPRT to current procedure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Calibration of short rate term structure models from bid-ask coupon bond prices
NASA Astrophysics Data System (ADS)
Gomes-Gonçalves, Erika; Gzyl, Henryk; Mayoral, Silvia
2018-02-01
In this work we use the method of maximum entropy in the mean to provide a model free, non-parametric methodology that uses only market data to provide the prices of the zero coupon bonds, and then, a term structure of the short rates. The data used consists of the prices of the bid-ask ranges of a few coupon bonds quoted in the market. The prices of the zero coupon bonds obtained in the first stage, are then used as input to solve a recursive set of equations to determine a binomial recombinant model of the short term structure of the interest rates.
Trend estimation in populations with imperfect detection
Kery, Marc; Dorazio, Robert M.; Soldaat, Leo; Van Strien, Arco; Zuiderwijk, Annie; Royle, J. Andrew
2009-01-01
1. Trends of animal populations are of great interest in ecology but cannot be directly observed owing to imperfect detection. Binomial mixture models use replicated counts to estimate abundance, corrected for detection, in demographically closed populations. Here, we extend these models to open populations and illustrate them using sand lizard Lacerta agilis counts from the national Dutch reptile monitoring scheme. 2. Our model requires replicated counts from multiple sites in each of several periods, within which population closure is assumed. Counts are described by a hierarchical generalized linear model, where the state model deals with spatio-temporal patterns in true abundance and the observation model with imperfect counts, given that true state. We used WinBUGS to fit the model to lizard counts from 208 transects with 1–10 (mean 3) replicate surveys during each spring 1994–2005. 3. Our state model for abundance contained two independent log-linear Poisson regressions on year for coastal and inland sites, and random site effects to account for unexplained heterogeneity. The observation model for detection of an individual lizard contained effects of region, survey date, temperature, observer experience and random survey effects. 4. Lizard populations increased in both regions but more steeply on the coast. Detectability increased over the first few years of the study, was greater on the coast and for the most experienced observers, and highest around 1 June. Interestingly, the population increase inland was not detectable when the observed counts were analysed without account of detectability. The proportional increase between 1994 and 2005 in total lizard abundance across all sites was estimated at 86% (95% CRI 35–151). 5. Synthesis and applications. Open-population binomial mixture models are attractive for studying true population dynamics while explicitly accounting for the observation process, i.e. imperfect detection. We emphasize the important conceptual benefit provided by temporal replicate observations in terms of the interpretability of animal counts.
Void probability as a function of the void's shape and scale-invariant models
NASA Technical Reports Server (NTRS)
Elizalde, E.; Gaztanaga, E.
1991-01-01
The dependence of counts in cells on the shape of the cell for the large scale galaxy distribution is studied. A very concrete prediction can be done concerning the void distribution for scale invariant models. The prediction is tested on a sample of the CfA catalog, and good agreement is found. It is observed that the probability of a cell to be occupied is bigger for some elongated cells. A phenomenological scale invariant model for the observed distribution of the counts in cells, an extension of the negative binomial distribution, is presented in order to illustrate how this dependence can be quantitatively determined. An original, intuitive derivation of this model is presented.
NASA Astrophysics Data System (ADS)
Naumovich, E. N.; Kharton, V. V.; Yaremchenko, A. A.; Patrakeev, M. V.; Kellerman, D. G.; Logvinovich, D. I.; Kozhevnikov, V. L.
2006-08-01
A statistical thermodynamic approach to analyze defect thermodynamics in strongly nonideal solid solutions was proposed and validated by a case study focused on the oxygen intercalation processes in mixed-conducting LaGa0.65Mg0.15Ni0.20O3-δ perovskite. The oxygen nonstoichiometry of Ni-doped lanthanum gallate, measured by coulometric titration and thermogravimetric analysis at 923-1223K in the oxygen partial pressure range 5×10-5to0.9atm , indicates the coexistence of Ni2+ , Ni3+ , and Ni4+ oxidation states. The formation of tetravalent nickel was also confirmed by the magnetic susceptibility data at 77-600K , and by the analysis of p -type electronic conductivity and Seebeck coefficient as function of the oxygen pressure at 1023-1223K . The oxygen thermodynamics and the partial ionic and hole conductivities are strongly affected by the point-defect interactions, primarily the Coulombic repulsion between oxygen vacancies and/or electron holes and the vacancy association with Mg2+ cations. These factors can be analyzed by introducing the defect interaction energy in the concentration-dependent part of defect chemical potentials expressed by the discrete Fermi-Dirac distribution, and taking into account the probabilities of local configurations calculated via binomial distributions.
Bennett, Bradley C; Balick, Michael J
2014-03-28
Medical research on plant-derived compounds requires a breadth of expertise from field to laboratory and clinical skills. Too often basic botanical skills are evidently lacking, especially with respect to plant taxonomy and botanical nomenclature. Binomial and familial names, synonyms and author citations are often misconstrued. The correct botanical name, linked to a vouchered specimen, is the sine qua non of phytomedical research. Without the unique identifier of a proper binomial, research cannot accurately be linked to the existing literature. Perhaps more significant, is the ambiguity of species determinations that ensues of from poor taxonomic practices. This uncertainty, not surprisingly, obstructs reproducibility of results-the cornerstone of science. Based on our combined six decades of experience with medicinal plants, we discuss the problems of inaccurate taxonomy and botanical nomenclature in biomedical research. This problems appear all too frequently in manuscripts and grant applications that we review and they extend to the published literature. We also review the literature on the importance of taxonomy in other disciplines that relate to medicinal plant research. In most cases, questions regarding orthography, synonymy, author citations, and current family designations of most plant binomials can be resolved using widely-available online databases and other electronic resources. Some complex problems require consultation with a professional plant taxonomist, which also is important for accurate identification of voucher specimens. Researchers should provide the currently accepted binomial and complete author citation, provide relevant synonyms, and employ the Angiosperm Phylogeny Group III family name. Taxonomy is a vital adjunct not only to plant-medicine research but to virtually every field of science. Medicinal plant researchers can increase the precision and utility of their investigations by following sound practices with respect to botanical nomenclature. Correct spellings, accepted binomials, author citations, synonyms, and current family designations can readily be found on reliable online databases. When questions arise, researcher should consult plant taxonomists. © 2013 Published by Elsevier Ireland Ltd.
Drinking with mixed-gender groups is associated with heavy weekend drinking among young adults.
Thrul, Johannes; Labhart, Florian; Kuntsche, Emmanuel
2017-03-01
To investigate how gender composition of the drinking group affects young adults' alcohol consumption on weekend evenings over and above the effect of drinking-group size. Using the internet-based cellphone-optimized assessment technique (ICAT), participants completed online questionnaires on their cell phones every hour from 8 p.m. to midnight on Thursday, Friday and Saturday evenings during five consecutive weekends. French-speaking Switzerland. Convenience sample of 183 young adults (53.0% female, mean age = 23.1) who completed a total of 4141 hourly assessments. Alcohol consumption and number of male and female friends present assessed at 8 p.m., 9 p.m., 10 p.m., 11 p.m. and midnight. Results of three-level negative binomial regression analyses showed that women consumed significantly more drinks per hour when drinking in mixed-gender groups (Z-values ranging from 2.9 to 5.3, all P < 0.01) and significantly fewer drinks when drinking with men only (Z = -2.7, P < 0.01), compared with drinking with women only. Men reported consuming more drinks per hour in mixed-gender groups of equal gender composition (Z = 2.4, P < 0.05) or mixed-gender groups with men in the majority (Z = 2.2, P < 0.05) and fewer hourly drinks when drinking with women only (Z = -4.9, P < 0.001), compared with drinking with men only. Drinking-group size predicted the hourly number of drinks for women (Z = 6.0, P < 0.001) and men (Z = 5.5, P < 0.001). Drinking-group gender composition is associated with number of drinks consumed per hour, over and above the impact of the drinking-group size. Young adults report consuming more drinks per hour when drinking with mixed-gender groups than with same-gender groups. © 2016 Society for the Study of Addiction.
Effect of summer outdoor temperatures on work-related injuries in Quebec (Canada).
Adam-Poupart, Ariane; Smargiassi, Audrey; Busque, Marc-Antoine; Duguay, Patrice; Fournier, Michel; Zayed, Joseph; Labrèche, France
2015-05-01
To quantify the associations between occupational injury compensations and exposure to summer outdoor temperatures in Quebec (Canada). The relationship between 374,078 injuries compensated by the Workers' Compensation Board (WCB) (between May and September, 2003-2010) and maximum daily outdoor temperatures was modelled using generalised linear models with negative binomial distributions. Pooled effect sizes for all 16 health regions of Quebec were estimated with random-effect models for meta-analyses for all compensations and by sex, age group, mechanism of injury, industrial sector and occupations (manual vs other) within each sector. Time lags and cumulative effect of temperatures were also explored. The relationship between daily counts of compensations and maximum daily temperatures reached statistical significance for three health regions. The incidence rate ratio (IRR) of daily compensations per 1°C increase was 1.002 (95% CI 1.002 to 1.003) for all health regions combined. Statistically significant positive associations were observed for men, workers aged less than 45 years, various industrial sectors with both indoor and outdoor activities, and for slips/trips/falls, contact with object/equipment and exposure to harmful substances/environment. Manual occupations were not systematically at higher risk than non-manual and mixed ones. This study is the first to quantify the association between work-related injury compensations and exposure to summer temperatures according to physical demands of the occupation and this warrants further investigations. In the context of global warming, results can be used to estimate future impacts of summer outdoor temperatures on workers, as well as to plan preventive interventions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Ciurtin, Coziana; Wyszynski, Karol; Clarke, Robert; Mouyis, Maria; Manson, Jessica; Marra, Giampiero
2016-10-01
Limited data are available about the ultrasound (US)-detected inflammatory features in patients with suspicion of inflammatory arthritis (S-IA) vs. established rheumatoid arthritis (RA). Our study aimed to assess if the presence of power Doppler (PD) can be predicted by a combination of clinical, laboratory and US parameters. We conducted a real-life, retrospective cohort study comparing clinical, laboratory and US parameters of 108 patients with established RA and 93 patients with S-IA. We propose a PD signal prediction model based on a beta-binomial distribution for PD variable using a mix of outcome measures. Patients with RA in clinical remission had significantly more active inflammation and erosions on US when compared with patients with S-IA with similar disease scores (p = 0.03 and p = 0.01, respectively); however, RA patients with different disease activity score (DAS-28) scores had similar PD scores (p = 0.058). The PD scores did not correlate with erosions (p = 0.38) or DAS-28 scores (p = 0.28) in RA patients, but they correlated with high disease activity in S-IA patients (p = 0.048). Subclinical inflammation is more common in patients with RA in clinical remission or with low disease activity than in patients with S-IA; therefore, US was more useful in assessing for true remission in RA rather than diagnosing IA in patients with low disease activity scores. This is the first study to propose a PD prediction model integrating several outcome measures in the two different groups of patients. Further research into validating this model can minimise the risk of underdiagnosing subclinical inflammation.
Verhoeven, Hannah; Simons, Dorien; Van Dyck, Delfien; Van Cauwenberg, Jelle; Clarys, Peter; De Bourdeaudhuij, Ilse; de Geus, Bas; Vandelanotte, Corneel; Deforche, Benedicte
2016-01-01
Background Active transport is a convenient way to incorporate physical activity in adolescents’ daily life. The present study aimed to investigate which psychosocial and environmental factors are associated with walking, cycling, public transport (train, tram, bus, metro) and passive transport (car, motorcycle, moped) over short distances (maximum eight kilometres) among older adolescents (17–18 years), to school and to other destinations. Methods 562 older adolescents completed an online questionnaire assessing socio-demographic variables, psychosocial variables, environmental variables and transport to school/other destinations. Zero-inflated negative binomial regression models were performed. Results More social modelling and a higher residential density were positively associated with walking to school and walking to other destinations, respectively. Regarding cycling, higher self-efficacy and a higher social norm were positively associated with cycling to school and to other destinations. Regarding public transport, a higher social norm, more social modelling of siblings and/or friends, more social support and a higher land use mix access were positively related to public transport to school and to other destinations, whereas a greater distance to school only related positively to public transport to school. Regarding passive transport, more social support and more perceived benefits were positively associated with passive transport to school and to other destinations. Perceiving less walking and cycling facilities at school was positively related to passive transport to school only, and more social modelling was positively related to passive transport to other destinations. Conclusions Overall, psychosocial variables seemed to be more important than environmental variables across the four transport modes. Social norm, social modelling and social support were the most consistent psychosocial factors which indicates that it is important to target both older adolescents and their social environment in interventions promoting active transport. Walking or cycling together with siblings or friends has the potential to increase social norm, social modelling and social support towards active transport. PMID:26784933
Verhoeven, Hannah; Simons, Dorien; Van Dyck, Delfien; Van Cauwenberg, Jelle; Clarys, Peter; De Bourdeaudhuij, Ilse; de Geus, Bas; Vandelanotte, Corneel; Deforche, Benedicte
2016-01-01
Active transport is a convenient way to incorporate physical activity in adolescents' daily life. The present study aimed to investigate which psychosocial and environmental factors are associated with walking, cycling, public transport (train, tram, bus, metro) and passive transport (car, motorcycle, moped) over short distances (maximum eight kilometres) among older adolescents (17-18 years), to school and to other destinations. 562 older adolescents completed an online questionnaire assessing socio-demographic variables, psychosocial variables, environmental variables and transport to school/other destinations. Zero-inflated negative binomial regression models were performed. More social modelling and a higher residential density were positively associated with walking to school and walking to other destinations, respectively. Regarding cycling, higher self-efficacy and a higher social norm were positively associated with cycling to school and to other destinations. Regarding public transport, a higher social norm, more social modelling of siblings and/or friends, more social support and a higher land use mix access were positively related to public transport to school and to other destinations, whereas a greater distance to school only related positively to public transport to school. Regarding passive transport, more social support and more perceived benefits were positively associated with passive transport to school and to other destinations. Perceiving less walking and cycling facilities at school was positively related to passive transport to school only, and more social modelling was positively related to passive transport to other destinations. Overall, psychosocial variables seemed to be more important than environmental variables across the four transport modes. Social norm, social modelling and social support were the most consistent psychosocial factors which indicates that it is important to target both older adolescents and their social environment in interventions promoting active transport. Walking or cycling together with siblings or friends has the potential to increase social norm, social modelling and social support towards active transport.
Landau-Zener extension of the Tavis-Cummings model: Structure of the solution
Sun, Chen; Sinitsyn, Nikolai A.
2016-09-07
We explore the recently discovered solution of the driven Tavis-Cummings model (DTCM). It describes interaction of an arbitrary number of two-level systems with a bosonic mode that has linearly time-dependent frequency. We derive compact and tractable expressions for transition probabilities in terms of the well-known special functions. In this form, our formulas are suitable for fast numerical calculations and analytical approximations. As an application, we obtain the semiclassical limit of the exact solution and compare it to prior approximations. Furthermore, we also reveal connection between DTCM and q-deformed binomial statistics.
Rusli, Rusdi; Haque, Md Mazharul; King, Mark; Voon, Wong Shaw
2017-05-01
Mountainous highways generally associate with complex driving environment because of constrained road geometries, limited cross-section elements, inappropriate roadside features, and adverse weather conditions. As a result, single-vehicle (SV) crashes are overrepresented along mountainous roads, particularly in developing countries, but little attention is known about the roadway geometric, traffic and weather factors contributing to these SV crashes. As such, the main objective of the present study is to investigate SV crashes using detailed data obtained from a rigorous site survey and existing databases. The final dataset included a total of 56 variables representing road geometries including horizontal and vertical alignment, traffic characteristics, real-time weather condition, cross-sectional elements, roadside features, and spatial characteristics. To account for structured heterogeneities resulting from multiple observations within a site and other unobserved heterogeneities, the study applied a random parameters negative binomial model. Results suggest that rainfall during the crash is positively associated with SV crashes, but real-time visibility is negatively associated. The presence of a road shoulder, particularly a bitumen shoulder or wider shoulders, along mountainous highways is associated with less SV crashes. While speeding along downgrade slopes increases the likelihood of SV crashes, proper delineation decreases the likelihood. Findings of this study have significant implications for designing safer highways in mountainous areas, particularly in the context of a developing country. Copyright © 2017 Elsevier Ltd. All rights reserved.
Factors affecting road mortality of white-tailed deer in eastern South Dakota
Grovenburg, Troy W.; Jenks, Jonathan A.; Klaver, Robert W.; Monteith, Kevin L.; Galster, Dwight H.; Schauer, Ron J.; Morlock, Wilbert W.; Delger, Joshua A.
2008-01-01
White-tailed deer (Odocoileus virginianus) mortalities (n = 4,433) caused by collisions with automobiles during 2003 were modeled in 35 counties in eastern South Dakota. Seventeen independent variables and 5 independent variable interactions were evaluated to explain deer mortalities. A negative binomial regression model (Ln Y = 1.25 – 0.12 [percentage tree coverage] + 0.0002 [county area] + 5.39 [county hunter success rate] + 0.0023 [vehicle proxy 96–104 km/hr roads], model deviance = 33.43, χ2 = 27.53, df = 27) was chosen using a combination of a priori model selection and AICc. Management options include use of the model to predict road mortalities and to increase the number of hunting licenses, which could result in fewer DVCs.
KilBride, A L; Mendl, M; Statham, P; Held, S; Harris, M; Marchant-Forde, J N; Booth, H; Green, L E
2014-11-01
A prospective longitudinal study was carried out on 39 outdoor breeding pig farms in England in 2003 and 2004 to investigate the risks associated with mortality in liveborn preweaning piglets. Researchers visited each farm and completed a questionnaire with the farmer and made observations of the paddocks, huts and pigs. The farmer recorded the number of piglets born alive and stillborn, fostered on and off and the number of piglets that died before weaning for 20 litters born after the visit. Data were analysed from a cohort of 9424 liveborn piglets from 855 litters. Overall 1274 liveborn piglets (13.5%) died before weaning. A mixed effect binomial model was used to investigate the associations between preweaning mortality and farm and litter level factors, controlling for litter size and number of piglets stillborn and fostered. Increased risk of mortality was associated with fostering piglets over 24h of age, organic certification or membership of an assurance scheme with higher welfare standards, farmer's perception that there was a problem with pest birds, use of medication to treat coccidiosis and presence of lame sows on the farm. Reduced mortality was associated with insulated farrowing huts and door flaps, women working on the farm and the farmer reporting a problem with foxes. Copyright © 2014 Elsevier B.V. All rights reserved.
Chimpanzees demonstrate individual differences in social information use.
Watson, Stuart K; Vale, Gillian L; Hopper, Lydia M; Dean, Lewis G; Kendal, Rachel L; Price, Elizabeth E; Wood, Lara A; Davis, Sarah J; Schapiro, Steven J; Lambeth, Susan P; Whiten, Andrew
2018-06-19
Studies of transmission biases in social learning have greatly informed our understanding of how behaviour patterns may diffuse through animal populations, yet within-species inter-individual variation in social information use has received little attention and remains poorly understood. We have addressed this question by examining individual performances across multiple experiments with the same population of primates. We compiled a dataset spanning 16 social learning studies (26 experimental conditions) carried out at the same study site over a 12-year period, incorporating a total of 167 chimpanzees. We applied a binary scoring system to code each participant's performance in each study according to whether they demonstrated evidence of using social information from conspecifics to solve the experimental task or not (Social Information Score-'SIS'). Bayesian binomial mixed effects models were then used to estimate the extent to which individual differences influenced SIS, together with any effects of sex, rearing history, age, prior involvement in research and task type on SIS. An estimate of repeatability found that approximately half of the variance in SIS was accounted for by individual identity, indicating that individual differences play a critical role in the social learning behaviour of chimpanzees. According to the model that best fit the data, females were, depending on their rearing history, 15-24% more likely to use social information to solve experimental tasks than males. However, there was no strong evidence of an effect of age or research experience, and pedigree records indicated that SIS was not a strongly heritable trait. Our study offers a novel, transferable method for the study of individual differences in social learning.
Smart growth community design and physical activity in children.
Jerrett, Michael; Almanza, Estela; Davies, Molly; Wolch, Jennifer; Dunton, Genevieve; Spruitj-Metz, Donna; Ann Pentz, Mary
2013-10-01
Physical inactivity is a leading cause of death and disease globally. Research suggests physical inactivity might be linked to community designs that discourage active living. A "smart growth" community contains features likely to promote active living (walkability, green space, mixed land use), but objective evidence on the potential benefits of smart growth communities is limited. To assess whether living in a smart growth community was associated with increased neighborhood-centered leisure-time physical activity in children aged 8-14 years, compared to residing in a conventional community (i.e., one not designed according to smart growth principles). Participants were recruited from a smart growth community, "The Preserve," located in Chino, California, and eight conventional communities within a 30-minute drive of The Preserve. The analytic sample included 147 children. During 2009-2010, each child carried an accelerometer and a GPS for 7 days to ascertain physical activity and location information. Negative binomial models were used to assess the association between residence in the smart growth community and physical activity. Analyses were conducted in 2012. Smart growth community residence was associated with a 46% increase in the proportion of neighborhood moderate-to-vigorous physical activity (MVPA) as compared to conventional community residence. This analysis included neighborhood activity data collected during the school season and outside of school hours and home. Counterfactual simulations with model parameters suggested that smart growth community residence could add 10 minutes per day of neighborhood MVPA. Living in a smart growth community may increase local physical activity in children as compared to residence in conventionally designed communities. © 2013 American Journal of Preventive Medicine.
Using variance structure to quantify responses to perturbation in fish catches
Vidal, Tiffany E.; Irwin, Brian J.; Wagner, Tyler; Rudstam, Lars G.; Jackson, James R.; Bence, James R.
2017-01-01
We present a case study evaluation of gill-net catches of Walleye Sander vitreus to assess potential effects of large-scale changes in Oneida Lake, New York, including the disruption of trophic interactions by double-crested cormorants Phalacrocorax auritus and invasive dreissenid mussels. We used the empirical long-term gill-net time series and a negative binomial linear mixed model to partition the variability in catches into spatial and coherent temporal variance components, hypothesizing that variance partitioning can help quantify spatiotemporal variability and determine whether variance structure differs before and after large-scale perturbations. We found that the mean catch and the total variability of catches decreased following perturbation but that not all sampling locations responded in a consistent manner. There was also evidence of some spatial homogenization concurrent with a restructuring of the relative productivity of individual sites. Specifically, offshore sites generally became more productive following the estimated break point in the gill-net time series. These results provide support for the idea that variance structure is responsive to large-scale perturbations; therefore, variance components have potential utility as statistical indicators of response to a changing environment more broadly. The modeling approach described herein is flexible and would be transferable to other systems and metrics. For example, variance partitioning could be used to examine responses to alternative management regimes, to compare variability across physiographic regions, and to describe differences among climate zones. Understanding how individual variance components respond to perturbation may yield finer-scale insights into ecological shifts than focusing on patterns in the mean responses or total variability alone.
Center-Specific Factors Associated with Peritonitis Risk-A Multi-Center Registry Analysis.
Nadeau-Fredette, Annie-Claire; Johnson, David W; Hawley, Carmel M; Pascoe, Elaine M; Cho, Yeoungjee; Clayton, Philip A; Borlace, Monique; Badve, Sunil V; Sud, Kamal; Boudville, Neil; McDonald, Stephen P
♦ Previous studies have reported significant variation in peritonitis rates across dialysis centers. Limited evidence is available to explain this variability. The aim of this study was to assess center-level predictors of peritonitis and their relationship with peritonitis rate variations. ♦ All incident peritoneal dialysis (PD) patients treated in Australia between October 2003 and December 2013 were included. Data were accessed through the Australia and New Zealand Dialysis and Transplant Registry. The primary outcome was peritonitis rate, evaluated in a mixed effects negative binomial regression model. Peritonitis-free survival was assessed as a secondary outcome in a Cox proportional hazards model. ♦ Overall, 8,711 incident PD patients from 51 dialysis centers were included in the study. Center-level predictors of lower peritonitis rates included smaller center size, high proportion of PD, low peritoneal equilibration test use at PD start, and low proportion of hospitalization for peritonitis. In contrast, a low proportion of automated PD exposure, high icodextrin exposure and low or high use of antifungal prophylaxis at the time of peritonitis were associated with a higher peritonitis rate. Similar results were obtained for peritonitis-free survival. Overall, accounting for center-level characteristics appreciably decreased peritonitis variability among dialysis centers (p = 0.02). ♦ This study identified specific center-level characteristics associated with the variation in peritonitis risk. Whether these factors are directly related to peritonitis risk or surrogate markers for other center characteristics is uncertain and should be validated in further studies. Copyright © 2016 International Society for Peritoneal Dialysis.
Venkataraman, Narayan; Ulfarsson, Gudmundur F; Shankar, Venky N
2013-10-01
A nine-year (1999-2007) continuous panel of crash histories on interstates in Washington State, USA, was used to estimate random parameter negative binomial (RPNB) models for various aggregations of crashes. A total of 21 different models were assessed in terms of four ways to aggregate crashes, by: (a) severity, (b) number of vehicles involved, (c) crash type, and by (d) location characteristics. The models within these aggregations include specifications for all severities (property damage only, possible injury, evident injury, disabling injury, and fatality), number of vehicles involved (one-vehicle to five-or-more-vehicle), crash type (sideswipe, same direction, overturn, head-on, fixed object, rear-end, and other), and location types (urban interchange, rural interchange, urban non-interchange, rural non-interchange). A total of 1153 directional road segments comprising of the seven Washington State interstates were analyzed, yielding statistical models of crash frequency based on 10,377 observations. These results suggest that in general there was a significant improvement in log-likelihood when using RPNB compared to a fixed parameter negative binomial baseline model. Heterogeneity effects are most noticeable for lighting type, road curvature, and traffic volume (ADT). Median lighting or right-side lighting are linked to increased crash frequencies in many models for more than half of the road segments compared to both-sides lighting. Both-sides lighting thereby appears to generally lead to a safety improvement. Traffic volume has a random parameter but the effect is always toward increasing crash frequencies as expected. However that the effect is random shows that the effect of traffic volume on crash frequency is complex and varies by road segment. The number of lanes has a random parameter effect only in the interchange type models. The results show that road segment-specific insights into crash frequency occurrence can lead to improved design policy and project prioritization. Copyright © 2013 Elsevier Ltd. All rights reserved.
Solar San Diego: The Impact of Binomial Rate Structures on Real PV-Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Geet, O.; Brown, E.; Blair, T.
2008-01-01
There is confusion in the marketplace regarding the impact of solar photovoltaics (PV) on the user's actual electricity bill under California Net Energy Metering, particularly with binomial tariffs (those that include both demand and energy charges) and time-of-use (TOU) rate structures. The City of San Diego has extensive real-time electrical metering on most of its buildings and PV systems, with interval data for overall consumption and PV electrical production available for multiple years. This paper uses 2007 PV-system data from two city facilities to illustrate the impacts of binomial rate designs. The analysis will determine the energy and demand savingsmore » that the PV systems are achieving relative to the absence of systems. A financial analysis of PV-system performance under various rates structures is presented. The data revealed that actual demand and energy use benefits of bionomial tariffs increase in summer months, when solar resources allow for maximized electricity production. In a binomial tariff system, varying on- and semi-peak times can result in approximately $1,100 change in demand charges per month over not having a PV system in place, an approximate 30% cost savings. The PV systems are also shown to have a 30%-50% reduction in facility energy charges in 2007. Future work will include combining demand and electricity charges and increasing the breadth of rate structures tested, including the impacts of non-coincident demand charges.« less
Experimental model of atelectasis in newborn piglets.
Comaru, Talitha; Fiori, Humberto Holmer; Fiori, Renato Machado; Padoim, Priscila; Stivanin, Jaqueline Basso; da Silva, Vinicius Duval
2014-01-01
There are few studies using animal models in chest physical therapy. However, there are no models to assess these effects in newborns. This study aimed to develop a model of obstructive atelectasis induced by artificial mucus injection in the lungs of newborn piglets, for the study of neonatal physiotherapy. Thirteen newborn piglets received artificial mucus injection via the endotracheal tube. X-rays and blood gas analysis confirmed the atelectasis. The model showed consistent results between oxygenation parameters and radiological findings. Ten (76.9%) of the 13 piglets responded to the intervention. This did not significantly differ from the expected percentage of 50% by the binomial test (95% CI 46.2-95%, P = .09). Our model of atelectasis in newborn piglets is both feasible and appropriate to evaluate the impact of physical therapies on atelectasis in newborns.
Derivation of a formula to predict patient volume based on temperature at college football games.
Kman, Nicholas E; Russell, Gregory B; Bozeman, William P; Ehrman, Kevin; Winslow, James
2007-01-01
We sought to explore the relationship between temperature and spectator illness at Division I college football games by deriving a formula to predict the number of patrons seeking medical care based on the ambient temperature and attendance of the game. A retrospective review was conducted of medical records from 47 Division I college football games at two outdoor stadiums from 2001 through 2005. Any person presenting for medical care was counted as a patient seen. Weather data were collected from the National Weather Service. A binomial model was fit to the spectator illness records by using the patients seen per attendance as the outcome measure, with temperature as the predictor. Using a binomial model, a formula was derived to estimate the number of patients needing medical attention based on the temperature and the number of spectators in attendance. Predicted # of Patients = exp (-7.4383 - 0.24439* Temperature C + 0.0156032 * Temperature C(2) - 0.000229196 * Temperature(3)) * number of spectators; all factors were highly significant (p < 0.0001). The model suggests that as the temperature rises, the number of patients seeking medical attention will also increase. The formula shows that an increase in temperature from 20 to 21 degrees C will show an increase in patient encounters from 3.64 to 4.05 visits per 10,000 in attendance (an 11% increase). These results show that temperature is an important variable to consider when determining the medical resources needed in caring for spectators at outdoor football games. Our model may help providers predict the number of spectators presenting for medical care based on the forecasted temperature and predicted attendance.
Heidar, Z; Bakhtiyari, M; Mirzamoradi, M; Zadehmodarres, S; Sarfjoo, F S; Mansournia, M A
2015-09-01
The purpose of this study was to predict the poor and excessive ovarian response using anti-Müllerian hormone (AMH) levels following a long agonist protocol in IVF candidates. Through a prospective cohort study, the type of relationship and appropriate scale for AMH were determined using the fractional polynomial regression. To determine the effect of AMH on the outcomes of ovarian stimulation and different ovarian responses, the multi-nominal and negative binomial regression models were fitted using backward stepwise method. The ovarian response of study subject who entered a standard long-term treatment cycle with GnRH agonist was evaluated using prediction model, separately and in combined models with (ROC) curves. The use of standard long-term treatments with GnRH agonist led to positive pregnancy test results in 30% of treated patients. With each unit increase in the log of AMH, the odds ratio of having poor response compared to normal response decreases by 64% (OR 0.36, 95% CI 0.19-0.68). Also the results of negative binomial regression model indicated that for one unit increase in the log of AMH blood levels, the odds of releasing an oocyte increased 24% (OR 1.24, 95% CI 1.14-1.35). The optimal cut-off points of AMH for predicting excessive and poor ovarian responses were 3.4 and 1.2 ng/ml, respectively, with area under curves of 0.69 (0.60-0.77) and 0.76 (0.66-0.86), respectively. By considering the age of the patient undergoing infertility treatment as a variable affecting ovulation, use of AMH levels showed to be a good test to discriminate between different ovarian responses.
Clinical and MRI activity as determinants of sample size for pediatric multiple sclerosis trials
Verhey, Leonard H.; Signori, Alessio; Arnold, Douglas L.; Bar-Or, Amit; Sadovnick, A. Dessa; Marrie, Ruth Ann; Banwell, Brenda
2013-01-01
Objective: To estimate sample sizes for pediatric multiple sclerosis (MS) trials using new T2 lesion count, annualized relapse rate (ARR), and time to first relapse (TTFR) endpoints. Methods: Poisson and negative binomial models were fit to new T2 lesion and relapse count data, and negative binomial time-to-event and exponential models were fit to TTFR data of 42 children with MS enrolled in a national prospective cohort study. Simulations were performed by resampling from the best-fitting model of new T2 lesion count, number of relapses, or TTFR, under various assumptions of the effect size, trial duration, and model parameters. Results: Assuming a 50% reduction in new T2 lesions over 6 months, 90 patients/arm are required, whereas 165 patients/arm are required for a 40% treatment effect. Sample sizes for 2-year trials using relapse-related endpoints are lower than that for 1-year trials. For 2-year trials and a conservative assumption of overdispersion (ϑ), sample sizes range from 70 patients/arm (using ARR) to 105 patients/arm (TTFR) for a 50% reduction in relapses, and 230 patients/arm (ARR) to 365 patients/arm (TTFR) for a 30% relapse reduction. Assuming a less conservative ϑ, 2-year trials using ARR require 45 patients/arm (60 patients/arm for TTFR) for a 50% reduction in relapses and 145 patients/arm (200 patients/arm for TTFR) for a 30% reduction. Conclusion: Six-month phase II trials using new T2 lesion count as an endpoint are feasible in the pediatric MS population; however, trials powered on ARR or TTFR will need to be 2 years in duration and will require multicentered collaboration. PMID:23966255
NASA Astrophysics Data System (ADS)
Barle, Stanko
In this dissertation, two dynamical systems with many degrees of freedom are analyzed. One is the system of highly correlated electrons in the two-impurity Kondo problem. The other deals with building a realistic model of diffusion underlying financial markets. The simplest mean-field theory capable of mimicking the non-Fermi liquid behavior of the critical point in the two-impurity Kondo problem is presented. In this approach Landau's adiabaticity assumption--of a one-to-one correspondence between the low-energy excitations of the interacting and noninteracting systems--is violated through the presence of decoupled local degrees of freedom. These do not couple directly to external fields but appear indirectly in the physical properties leading, for example, to the log(T, omega) behavior of the staggered magnetic susceptibility. Also, as observed previously, the correlation function <{bf S}_1 cdot{bf S}_2> = -1/4 is a consequence of the equal weights of the singlet and triplet impurity configurations at the critical point. In the second problem, a numerical model is developed to describe the diffusion of prices in the market. Implied binomial (or multinomial) trees are constructed to enable practical pricing of derivative securities in consistency with the existing market. The method developed here is capable of accounting for both the strike price and term structure of the implied volatility. It includes the correct treatment of interest rate and dividends which proves robust even if these quantities are unusually large. The method is explained both as a set of individual innovations and, from a different prospective, as a consequence of a single plausible transformation from the tree of spot prices to the tree of futures prices.
Football fever: goal distributions and non-Gaussian statistics
NASA Astrophysics Data System (ADS)
Bittner, E.; Nußbaumer, A.; Janke, W.; Weigel, M.
2009-02-01
Analyzing football score data with statistical techniques, we investigate how the not purely random, but highly co-operative nature of the game is reflected in averaged properties such as the probability distributions of scored goals for the home and away teams. As it turns out, especially the tails of the distributions are not well described by the Poissonian or binomial model resulting from the assumption of uncorrelated random events. Instead, a good effective description of the data is provided by less basic distributions such as the negative binomial one or the probability densities of extreme value statistics. To understand this behavior from a microscopical point of view, however, no waiting time problem or extremal process need be invoked. Instead, modifying the Bernoulli random process underlying the Poissonian model to include a simple component of self-affirmation seems to describe the data surprisingly well and allows to understand the observed deviation from Gaussian statistics. The phenomenological distributions used before can be understood as special cases within this framework. We analyzed historical football score data from many leagues in Europe as well as from international tournaments, including data from all past tournaments of the “FIFA World Cup” series, and found the proposed models to be applicable rather universally. In particular, here we analyze the results of the German women’s premier football league and consider the two separate German men’s premier leagues in the East and West during the cold war times as well as the unified league after 1990 to see how scoring in football and the component of self-affirmation depend on cultural and political circumstances.
Wall, Stephen P; Lee, David C; Frangos, Spiros G; Sethi, Monica; Heyer, Jessica H; Ayoung-Chee, Patricia; DiMaggio, Charles J
2016-01-01
We conducted individual and ecologic analyses of prospectively collected data from 839 injured bicyclists who collided with motorized vehicles and presented to Bellevue Hospital, an urban Level-1 trauma center in New York City, from December 2008 to August 2014. Variables included demographics, scene information, rider behaviors, bicycle route availability, and whether the collision occurred before the road segment was converted to a bicycle route. We used negative binomial modeling to assess the risk of injury occurrence following bicycle path or lane implementation. We dichotomized U.S. National Trauma Data Bank Injury Severity Scores (ISS) into none/mild (0-8) versus moderate, severe, or critical (>8) and used adjusted multivariable logistic regression to model the association of ISS with collision proximity to sharrows (i.e., bicycle lanes designated for sharing with cars), painted bicycle lanes, or physically protected paths. Negative binomial modeling of monthly counts, while adjusting for pedestrian activity, revealed that physically protected paths were associated with 23% fewer injuries. Painted bicycle lanes reduced injury risk by nearly 90% (IDR 0.09, 95% CI 0.02-0.33). Holding all else equal, compared to no bicycle route, a bicycle injury nearby sharrows was nearly twice as likely to be moderate, severe, or critical (adjusted odds ratio 1.94; 95% confidence interval (CI) 0.91-4.15). Painted bicycle lanes and physically protected paths were 1.52 (95% CI 0.85-2.71) and 1.66 (95% CI 0.85-3.22) times as likely to be associated with more than mild injury respectively.
Milner, Allison; Butterworth, Peter; Bentley, Rebecca; Kavanagh, Anne M; LaMontagne, Anthony D
2015-05-15
Sickness absence is associated with adverse health, organizational, and societal outcomes. Using data from a longitudinal cohort study of working Australians (the Household, Income and Labour Dynamics in Australia (HILDA) Survey), we examined the relationship between changes in individuals' overall psychosocial job quality and variation in sickness absence. The outcome variables were paid sickness absence (yes/no) and number of days of paid sickness absence in the past year (2005-2012). The main exposure variable was psychosocial job quality, measured using a psychosocial job quality index (levels of job control, demands and complexity, insecurity, and perceptions of unfair pay). Analysis was conducted using longitudinal fixed-effects logistic regression models and negative binomial regression models. There was a dose-response relationship between the number of psychosocial job stressors reported by an individual and the odds of paid sickness absence (1 adversity: odds ratio (OR) = 1.26, 95% confidence interval (CI): 1.09, 1.45 (P = 0.002); 2 adversities: OR = 1.28, 95% CI: 1.09, 1.51 (P = 0.002); ≥3 adversities: OR = 1.58, 95% CI: 1.29, 1.94 (P < 0.001)). The negative binomial regression models also indicated that respondents reported a greater number of days of sickness absence in response to worsening psychosocial job quality. These results suggest that workplace interventions aiming to improve the quality of work could help reduce sickness absence. © The Author 2015. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Distribution of chewing lice upon the polygynous peacock Pavo cristatus.
Stewart, I R; Clark, F; Petrie, M
1996-04-01
An opportunistic survey of louse distribution upon the peacock Pavo cristatus was undertaken following a cull of 23 birds from an English zoo. After complete skin and feather dissolution, 2 species of lice were retrieved, Goniodes pavonis and Amyrsidea minuta. The distribution of both louse species could be described by a negative binomial model. The significance of this is discussed in relation to transmission dynamics of lice in the atypical avian mating system found in the peacock, which involves no male parental care.
NASA Technical Reports Server (NTRS)
Elizalde, E.; Gaztanaga, E.
1992-01-01
The dependence of counts in cells on the shape of the cell for the large scale galaxy distribution is studied. A very concrete prediction can be done concerning the void distribution for scale invariant models. The prediction is tested on a sample of the CfA catalog, and good agreement is found. It is observed that the probability of a cell to be occupied is bigger for some elongated cells. A phenomenological scale invariant model for the observed distribution of the counts in cells, an extension of the negative binomial distribution, is presented in order to illustrate how this dependence can be quantitatively determined. An original, intuitive derivation of this model is presented.
A binomial stochastic kinetic approach to the Michaelis-Menten mechanism
NASA Astrophysics Data System (ADS)
Lente, Gábor
2013-05-01
This Letter presents a new method that gives an analytical approximation of the exact solution of the stochastic Michaelis-Menten mechanism without computationally demanding matrix operations. The method is based on solving the deterministic rate equations and then using the results as guiding variables of calculating probability values using binomial distributions. This principle can be generalized to a number of different kinetic schemes and is expected to be very useful in the evaluation of measurements focusing on the catalytic activity of one or a few individual enzyme molecules.
Taxonomy of the order Mononegavirales: update 2017.
Amarasinghe, Gaya K; Bào, Yīmíng; Basler, Christopher F; Bavari, Sina; Beer, Martin; Bejerman, Nicolás; Blasdell, Kim R; Bochnowski, Alisa; Briese, Thomas; Bukreyev, Alexander; Calisher, Charles H; Chandran, Kartik; Collins, Peter L; Dietzgen, Ralf G; Dolnik, Olga; Dürrwald, Ralf; Dye, John M; Easton, Andrew J; Ebihara, Hideki; Fang, Qi; Formenty, Pierre; Fouchier, Ron A M; Ghedin, Elodie; Harding, Robert M; Hewson, Roger; Higgins, Colleen M; Hong, Jian; Horie, Masayuki; James, Anthony P; Jiāng, Dàohóng; Kobinger, Gary P; Kondo, Hideki; Kurath, Gael; Lamb, Robert A; Lee, Benhur; Leroy, Eric M; Li, Ming; Maisner, Andrea; Mühlberger, Elke; Netesov, Sergey V; Nowotny, Norbert; Patterson, Jean L; Payne, Susan L; Paweska, Janusz T; Pearson, Michael N; Randall, Rick E; Revill, Peter A; Rima, Bertus K; Rota, Paul; Rubbenstroth, Dennis; Schwemmle, Martin; Smither, Sophie J; Song, Qisheng; Stone, David M; Takada, Ayato; Terregino, Calogero; Tesh, Robert B; Tomonaga, Keizo; Tordo, Noël; Towner, Jonathan S; Vasilakis, Nikos; Volchkov, Viktor E; Wahl-Jensen, Victoria; Walker, Peter J; Wang, Beibei; Wang, David; Wang, Fei; Wang, Lin-Fa; Werren, John H; Whitfield, Anna E; Yan, Zhichao; Ye, Gongyin; Kuhn, Jens H
2017-08-01
In 2017, the order Mononegavirales was expanded by the inclusion of a total of 69 novel species. Five new rhabdovirus genera and one new nyamivirus genus were established to harbor 41 of these species, whereas the remaining new species were assigned to already established genera. Furthermore, non-Latinized binomial species names replaced all paramyxovirus and pneumovirus species names, thereby accomplishing application of binomial species names throughout the entire order. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).
Genetic parameters for racing records in trotters using linear and generalized linear models.
Suontama, M; van der Werf, J H J; Juga, J; Ojala, M
2012-09-01
Heritability and repeatability and genetic and phenotypic correlations were estimated for trotting race records with linear and generalized linear models using 510,519 records on 17,792 Finnhorses and 513,161 records on 25,536 Standardbred trotters. Heritability and repeatability were estimated for single racing time and earnings traits with linear models, and logarithmic scale was used for racing time and fourth-root scale for earnings to correct for nonnormality. Generalized linear models with a gamma distribution were applied for single racing time and with a multinomial distribution for single earnings traits. In addition, genetic parameters for annual earnings were estimated with linear models on the observed and fourth-root scales. Racing success traits of single placings, winnings, breaking stride, and disqualifications were analyzed using generalized linear models with a binomial distribution. Estimates of heritability were greatest for racing time, which ranged from 0.32 to 0.34. Estimates of heritability were low for single earnings with all distributions, ranging from 0.01 to 0.09. Annual earnings were closer to normal distribution than single earnings. Heritability estimates were moderate for annual earnings on the fourth-root scale, 0.19 for Finnhorses and 0.27 for Standardbred trotters. Heritability estimates for binomial racing success variables ranged from 0.04 to 0.12, being greatest for winnings and least for breaking stride. Genetic correlations among racing traits were high, whereas phenotypic correlations were mainly low to moderate, except correlations between racing time and earnings were high. On the basis of a moderate heritability and moderate to high repeatability for racing time and annual earnings, selection of horses for these traits is effective when based on a few repeated records. Because of high genetic correlations, direct selection for racing time and annual earnings would also result in good genetic response in racing success.
Wang, Xuezhi; Huang, Xiaotao; Suvorova, Sofia; Moran, Bill
2018-01-01
Golay complementary waveforms can, in theory, yield radar returns of high range resolution with essentially zero sidelobes. In practice, when deployed conventionally, while high signal-to-noise ratios can be achieved for static target detection, significant range sidelobes are generated by target returns of nonzero Doppler causing unreliable detection. We consider signal processing techniques using Golay complementary waveforms to improve radar detection performance in scenarios involving multiple nonzero Doppler targets. A signal processing procedure based on an existing, so called, Binomial Design algorithm that alters the transmission order of Golay complementary waveforms and weights the returns is proposed in an attempt to achieve an enhanced illumination performance. The procedure applies one of three proposed waveform transmission ordering algorithms, followed by a pointwise nonlinear processor combining the outputs of the Binomial Design algorithm and one of the ordering algorithms. The computational complexity of the Binomial Design algorithm and the three ordering algorithms are compared, and a statistical analysis of the performance of the pointwise nonlinear processing is given. Estimation of the areas in the Delay–Doppler map occupied by significant range sidelobes for given targets are also discussed. Numerical simulations for the comparison of the performances of the Binomial Design algorithm and the three ordering algorithms are presented for both fixed and randomized target locations. The simulation results demonstrate that the proposed signal processing procedure has a better detection performance in terms of lower sidelobes and higher Doppler resolution in the presence of multiple nonzero Doppler targets compared to existing methods. PMID:29324708
NASA Astrophysics Data System (ADS)
March, R. G.; Moore, G. W.; Edgar, C. B.; Lawing, A. M.; Washington-Allen, R. A.
2015-12-01
In recorded history, the 2011 Texas Drought was comparable in severity only to a drought that occurred 300 years ago. By mid-September, 88% of the state experienced 'exceptional' conditions, with the rest experiencing 'extreme' or 'severe' drought. By recent estimates, the 2011 Texas Drought killed 6.2% of all the state's trees, at a rate nearly 9 times greater than average. The vast spatial scale and relatively uniform intensity of this drought has provided an opportunity to examine the comparative interactions among forest types, terrain, and edaphic factors across major climate gradients which in 2011 were subjected to extreme drought conditions that ultimately caused massive tree mortality. We used maximum entropy modeling (Maxent) to rank environmental landscape factors with the potential to drive drought-related tree mortality and test the assumption that the relative importance of these factors are scale-dependent. Occurrence data of dead trees were collected during the summer of 2012 from 599 field plots distributed across Texas with 30% used for model evaluation. Bioclimatic variables, ecoregions, soils characteristics, and topographic variables were modeled with drought-killed tree occurrence. Their relative contribution to the model was seen as their relative importance in driving mortality. To test determinants at a more local scale, we examined Landsat 7 scenes in East and West Texas with moderate-resolution data for the same variables above with the exception of climate. All models were significantly better than random in binomial tests of omission and receiver operating characteristic analyses. The modeled spatial distribution of probability of occurrence showed high probability of mortality in the east-central oak woodlands and the mixed pine-hardwood forest region in northeast Texas. Both regional and local models were dominated by biotic factors (ecoregion and forest type, respectively). Forest density and precipitation of driest month also contributed highly to the regional model. The local models gave more importance to available water storage at root zone and hillshade. Understanding how environmental factors drive drought-related mortality can help predict vulnerable landscapes and aid in preparing for future drought events.
A Taxonomic Reduced-Space Pollen Model for Paleoclimate Reconstruction
NASA Astrophysics Data System (ADS)
Wahl, E. R.; Schoelzel, C.
2010-12-01
Paleoenvironmental reconstruction from fossil pollen often attempts to take advantage of the rich taxonomic diversity in such data. Here, a taxonomically "reduced-space" reconstruction model is explored that would be parsimonious in introducing parameters needing to be estimated within a Bayesian Hierarchical Modeling context. This work involves a refinement of the traditional pollen ratio method. This method is useful when one (or a few) dominant pollen type(s) in a region have a strong positive correlation with a climate variable of interest and another (or a few) dominant pollen type(s) have a strong negative correlation. When, e.g., counts of pollen taxa a and b (r >0) are combined with pollen types c and d (r <0) to form ratios of the form (a + b) / (a + b + c + d), an appropriate estimation form is the binomial logistic generalized linear model (GLM). The GLM can readily model this relationship in the forward form, pollen = g(climate), which is more physically realistic than inverse models often used in paleoclimate reconstruction [climate = f(pollen)]. The specification of the model is: rnum Bin(n,p), where E(r|T) = p = exp(η)/[1+exp(η)], and η = α + β(T); r is the pollen ratio formed as above, rnum is the ratio numerator, n is the ratio denominator (i.e., the sum of pollen counts), the denominator-specific count is (n - rnum), and T is the temperature at each site corresponding to a specific value of r. Ecological and empirical screening identified the model (Spruce+Birch) / (Spruce+Birch+Oak+Hickory) for use in temperate eastern N. America. α and β were estimated using both "traditional" and Bayesian GLM algorithms (in R). Although it includes only four pollen types, the ratio model yields more explained variation ( 80%) in the pollen-temperature relationship of the study region than a 64-taxon modern analog technique (MAT). Thus, the new pollen ratio method represents an information-rich, reduced space data model that can be efficiently employed in a BHM framework. The ratio model can directly reconstruct past temperature by solving the GLM equations for T as a function of α, β, and E(r|T): T = {ln[E(r|T)/{1-E(r|T)}]-α}/β. To enable use in paleoreconstruction, the observed r values from fossil pollen data are, by assumption, treated as unbiased estimators of the true r value at each time sampled, which can be substituted for E(r|T). Uncertainty in this reconstruction is systematically evaluated in two parts: 1) the observed r values and their corresponding n values are input as parameters into the binomial distribution, Monte Carlo random pollen count draws are made, and a new ratio value is determined for each iteration; and 2) in the "traditional" GLM the estimated SEs for α and β are used with the α and β EV estimates to yield Monte Carlo random draws for each binomial draw (assuming α and β are Gaussian), in the Bayesian GLM random draws for α and β are taken directly from their estimated posterior distribution. Both methods yield nearly identical reconstructions from varved lakes in Wisconsin where the model has been tested; slightly narrower uncertainty ranges are produced by the Bayesian model. The Little Ice Age is readily identified. Pine:Oak and Fir:Oak versions of the model used in S. California show differences from MAT-based reconstructions.
Kabera, Fidèle; Dufour, Simon; Keefe, Greg; Roy, Jean-Philippe
2018-04-04
Our objectives were to evaluate the prevalence of quarters with an observable internal teat sealant (ITS) plug at first milking following calving and investigate persistency of ITS residues in milk after calving. An observational cohort study was carried out on 557 quarters of 156 cows treated with ITS in 6 farms in Quebec, Canada. The presence of an ITS plug at first milking and ITS residues in milk at each milking were observed by producers. The effects of various factors on the odds of observing an ITS plug and persistency of ITS residues in milk were studied using generalized logistic mixed and generalized negative binomial mixed models, respectively. Milk samples were taken on the day before dry-off and on 2 occasions after calving for bacterial identification to detect intramammary infection (IMI) using bacteriological culture followed by MALDI-TOF identification. The association between the absence of an ITS plug and the presence of new IMI was assessed using a mixed logistic regression model. Internal teat sealant plugs after calving were more often observed in rear quarters and in quarters receiving ITS alone at drying-off versus antimicrobial and ITS. We observed an average (standard deviation) persistency of 4.0 d (2.3 d). When an ITS plug was still present at first milking (83% of quarters), the elimination of ITS residues in milk after calving was significantly longer (4.5 d, on average) compared with 1.2 d when an ITS plug was absent. In cows with an ITS plug at calving, we observed a higher number of days of excretion in older cows. When a plug could not be observed, rear quarters, older cows, and cows with a long dry period duration excreted ITS residues for a significantly longer period. The lack of a significant association between the absence of a plug and the odds of new IMI at calving suggests that despite the loss of the plug, cows were still protected against new IMI. Although we were able to highlight some statistically significant risk factors explaining persistency of ITS residues following calving, observed differences were often relatively small and, perhaps, not clinically relevant. In conclusion, an ITS plug was present until first milking after calving for 83% quarters, quarters without an ITS plug at first milking appeared to have been protected from new IMI, and ITS residues could be observed in milk up to 12 d in milk. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Modeling species-abundance relationships in multi-species collections
Peng, S.; Yin, Z.; Ren, H.; Guo, Q.
2003-01-01
Species-abundance relationship is one of the most fundamental aspects of community ecology. Since Motomura first developed the geometric series model to describe the feature of community structure, ecologists have developed many other models to fit the species-abundance data in communities. These models can be classified into empirical and theoretical ones, including (1) statistical models, i.e., negative binomial distribution (and its extension), log-series distribution (and its extension), geometric distribution, lognormal distribution, Poisson-lognormal distribution, (2) niche models, i.e., geometric series, broken stick, overlapping niche, particulate niche, random assortment, dominance pre-emption, dominance decay, random fraction, weighted random fraction, composite niche, Zipf or Zipf-Mandelbrot model, and (3) dynamic models describing community dynamics and restrictive function of environment on community. These models have different characteristics and fit species-abundance data in various communities or collections. Among them, log-series distribution, lognormal distribution, geometric series, and broken stick model have been most widely used.
Furr-Holden, C Debra M; Milam, Adam J; Nesoff, Elizabeth D; Johnson, Renee M; Fakunle, David O; Jennings, Jacky M; Thorpe, Roland J
2016-01-01
This research examined whether publicly funded drug treatment centers (DTCs) were associated with violent crime in excess of the violence happening around other commercial businesses. Violent crime data and locations of community entities were geocoded and mapped. DTCs and other retail outlets were matched based on a Neighborhood Disadvantage score at the census tract level. Street network buffers ranging from 100 to 1,400 feet were placed around each location. Negative binomial regression models were used to estimate the relationship between the count of violent crimes and the distance from each business type. Compared with the mean count of violent crime around drug treatment centers, the mean count of violent crime (M = 2.87) was significantly higher around liquor stores (M = 3.98; t test; p < .01) and corner stores (M = 3.78; t test; p < .01), and there was no statistically significant difference between the count around convenience stores (M = 2.65; t test; p = .32). In the adjusted negative binomial regression models, there was a negative and significant relationship between the count of violent crime and the distance from drug treatment centers (β = -.069, p < .01), liquor stores (β = -.081, p < .01), corner stores (β = -.116, p < .01), and convenience stores (β = -.154, p < .01). Violent crime associated with drug treatment centers is similar to that associated with liquor stores and is less frequent than that associated with convenience stores and corner stores.
[Epidemiology of scrub typhus and influencing factors in Yunnan province, 2006-2013].
Sun, Y; Shi, C; Li, X L; Fang, L Q; Cao, W C
2018-01-10
Objective: To understand the epidemiological characteristics of scrub typhu s and influencing factors in Yunnan province, and provide further information for the prevention and control of scrub typhus. Methods: Based on the incidence data of scrub typhus reported in Yunnan from 2006 to 2013, the epidemiological characteristics of scrub typhus were analyzed and related environmental factors were identified with panel negative binomial regression model. Results: A total of 8 980 scrub typhus cases were reported during 2006-2013 in Yunnan. The average annual incidence was 2.46/100 000, with an uptrend observed. Natural focus expansion was found, affecting 71.3% of the counties in 2013. The epidemic mainly occurred in summer and autumn with the incidence peak during July-October. The annual incidence was higher in females than in males. More cases occurred in children and farmers, the proportions of cases in farmers and pre-school aged children showed an obvious increase. Panel negative binomial regression model indicated that the transmission risk of scrub typhus was positive associated with monthly temperature and monthly relative humidity. Furthermore, an "U" pattern between the risk and the increased coverage of cropland and grassland as well as an "inverted-U" pattern between the risk and increased coverage of shrub were observed. Conclusion: It is necessary to strengthen the scrub typhus surveillance in warm and moist areas as well as the areas with high coverage of cropland and grassland in Yunnan, and the health education in children and farmers who are at high risk.
Di, Yanming; Schafer, Daniel W.; Wilhelm, Larry J.; Fox, Samuel E.; Sullivan, Christopher M.; Curzon, Aron D.; Carrington, James C.; Mockler, Todd C.; Chang, Jeff H.
2011-01-01
GENE-counter is a complete Perl-based computational pipeline for analyzing RNA-Sequencing (RNA-Seq) data for differential gene expression. In addition to its use in studying transcriptomes of eukaryotic model organisms, GENE-counter is applicable for prokaryotes and non-model organisms without an available genome reference sequence. For alignments, GENE-counter is configured for CASHX, Bowtie, and BWA, but an end user can use any Sequence Alignment/Map (SAM)-compliant program of preference. To analyze data for differential gene expression, GENE-counter can be run with any one of three statistics packages that are based on variations of the negative binomial distribution. The default method is a new and simple statistical test we developed based on an over-parameterized version of the negative binomial distribution. GENE-counter also includes three different methods for assessing differentially expressed features for enriched gene ontology (GO) terms. Results are transparent and data are systematically stored in a MySQL relational database to facilitate additional analyses as well as quality assessment. We used next generation sequencing to generate a small-scale RNA-Seq dataset derived from the heavily studied defense response of Arabidopsis thaliana and used GENE-counter to process the data. Collectively, the support from analysis of microarrays as well as the observed and substantial overlap in results from each of the three statistics packages demonstrates that GENE-counter is well suited for handling the unique characteristics of small sample sizes and high variability in gene counts. PMID:21998647
Xu, Jiadi; Chan, Kannie W.Y.; Xu, Xiang; Yadav, Nibhay; Liu, Guanshu; van Zijl, Peter C. M.
2016-01-01
Purpose To develop an on-resonance variable delay multi-pulse (VDMP) scheme to image magnetization transfer contrast (MTC) as well as the chemical exchange saturation transfer (CEST) contrast of total fast-exchanging protons (TFP) with exchange rate above about 1 kHz. Methods A train of high power binomial pulses was applied at the water resonance. The inter-pulse delay, called mixing time, was varied to observe its effect on the water signal reduction, allowing separation and quantification of MTC and CEST contributions due to their different proton transfer rates. The fast-exchanging protons in CEST and MTC are labeled together with the short T2 components in MTC and separated out using a variable mixing time. Results Phantom studies of selected metabolite solutions (glucose, glutamate, creatine, myo-inositol), bovine serum albumin (BSA) and hair conditioner show the capability of on-resonance VDMP to separate out exchangeable protons with exchange rates above 1 kHz. Quantitative MTC and TFP maps were acquired on healthy mouse brains using this method showing strong gray/white matter contrast for the slowly transferring MTC protons while the TFP map was more uniform across the brain but somewhat higher in gray matter. Conclusions The new method provides a simple way of imaging fast-exchanging protons, as well as MTC components with a slow transfer rate. PMID:26900759
Dorazio, R.M.; Jelks, H.L.; Jordan, F.
2005-01-01
A statistical modeling framework is described for estimating the abundances of spatially distinct subpopulations of animals surveyed using removal sampling. To illustrate this framework, hierarchical models are developed using the Poisson and negative-binomial distributions to model variation in abundance among subpopulations and using the beta distribution to model variation in capture probabilities. These models are fitted to the removal counts observed in a survey of a federally endangered fish species. The resulting estimates of abundance have similar or better precision than those computed using the conventional approach of analyzing the removal counts of each subpopulation separately. Extension of the hierarchical models to include spatial covariates of abundance is straightforward and may be used to identify important features of an animal's habitat or to predict the abundance of animals at unsampled locations.
Deger, Leylâ; Plante, Céline; Jacques, Louis; Goudreau, Sophie; Perron, Stéphane; Hicks, John; Kosatsky, Tom; Smargiassi, Audrey
2012-01-01
BACKGROUND: Little attention has been devoted to the effects on children’s respiratory health of exposure to sulphur dioxide (SO2) in ambient air from local industrial emissions. Most studies on the effects of SO2 have assessed its impact as part of the regional ambient air pollutant mix. OBJECTIVE: To examine the association between exposure to stack emissions of SO2 from petroleum refineries located in Montreal’s (Quebec) east-end industrial complex and the prevalence of active asthma and poor asthma control among children living nearby. METHODS: The present cross-sectional study used data from a respiratory health survey of Montreal children six months to 12 years of age conducted in 2006. Of 7964 eligible households that completed the survey, 842 children between six months and 12 years of age lived in an area impacted by refinery emissions. Ambient SO2 exposure levels were estimated using dispersion modelling. Log-binomial regression models were used to estimate crude and adjusted prevalence ratios (PRs) and 95% CIs for the association between yearly school and residential SO2 exposure estimates and asthma outcomes. Adjustments were made for child’s age, sex, parental history of atopy and tobacco smoke exposure at home. RESULTS: The adjusted PR for the association between active asthma and SO2 levels was 1.14 (95% CI 0.94 to 1.39) per interquartile range increase in modelled annual SO2. The effect on poor asthma control was greater (PR=1.39 per interquartile range increase in modelled SO2 [95% CI 1.00 to 1.94]). CONCLUSIONS: Results of the present study suggest a relationship between exposure to refinery stack emissions of SO2 and the prevalence of active and poor asthma control in children who live and attend school in proximity to refineries. PMID:22536578
Umbral Calculus and Holonomic Modules in Positive Characteristic
NASA Astrophysics Data System (ADS)
Kochubei, Anatoly N.
2006-03-01
In the framework of analysis over local fields of positive characteristic, we develop algebraic tools for introducing and investigating various polynomial systems. In this survey paper we describe a function field version of umbral calculus developed on the basis of a relation of binomial type satisfied by the Carlitz polynomials. We consider modules over the Weyl-Carlitz ring, a function field counterpart of the Weyl algebra. It is shown that some basic objects of function field arithmetic, like the Carlitz module, Thakur's hypergeometric polynomials, and analogs of binomial coefficients arising in the positive characteristic version of umbral calculus, generate holonomic modules.
FluBreaks: early epidemic detection from Google flu trends.
Pervaiz, Fahad; Pervaiz, Mansoor; Abdur Rehman, Nabeel; Saif, Umar
2012-10-04
The Google Flu Trends service was launched in 2008 to track changes in the volume of online search queries related to flu-like symptoms. Over the last few years, the trend data produced by this service has shown a consistent relationship with the actual number of flu reports collected by the US Centers for Disease Control and Prevention (CDC), often identifying increases in flu cases weeks in advance of CDC records. However, contrary to popular belief, Google Flu Trends is not an early epidemic detection system. Instead, it is designed as a baseline indicator of the trend, or changes, in the number of disease cases. To evaluate whether these trends can be used as a basis for an early warning system for epidemics. We present the first detailed algorithmic analysis of how Google Flu Trends can be used as a basis for building a fully automated system for early warning of epidemics in advance of methods used by the CDC. Based on our work, we present a novel early epidemic detection system, called FluBreaks (dritte.org/flubreaks), based on Google Flu Trends data. We compared the accuracy and practicality of three types of algorithms: normal distribution algorithms, Poisson distribution algorithms, and negative binomial distribution algorithms. We explored the relative merits of these methods, and related our findings to changes in Internet penetration and population size for the regions in Google Flu Trends providing data. Across our performance metrics of percentage true-positives (RTP), percentage false-positives (RFP), percentage overlap (OT), and percentage early alarms (EA), Poisson- and negative binomial-based algorithms performed better in all except RFP. Poisson-based algorithms had average values of 99%, 28%, 71%, and 76% for RTP, RFP, OT, and EA, respectively, whereas negative binomial-based algorithms had average values of 97.8%, 17.8%, 60%, and 55% for RTP, RFP, OT, and EA, respectively. Moreover, the EA was also affected by the region's population size. Regions with larger populations (regions 4 and 6) had higher values of EA than region 10 (which had the smallest population) for negative binomial- and Poisson-based algorithms. The difference was 12.5% and 13.5% on average in negative binomial- and Poisson-based algorithms, respectively. We present the first detailed comparative analysis of popular early epidemic detection algorithms on Google Flu Trends data. We note that realizing this opportunity requires moving beyond the cumulative sum and historical limits method-based normal distribution approaches, traditionally employed by the CDC, to negative binomial- and Poisson-based algorithms to deal with potentially noisy search query data from regions with varying population and Internet penetrations. Based on our work, we have developed FluBreaks, an early warning system for flu epidemics using Google Flu Trends.
Li, Ji; Gray, B.R.; Bates, D.M.
2008-01-01
Partitioning the variance of a response by design levels is challenging for binomial and other discrete outcomes. Goldstein (2003) proposed four definitions for variance partitioning coefficients (VPC) under a two-level logistic regression model. In this study, we explicitly derived formulae for multi-level logistic regression model and subsequently studied the distributional properties of the calculated VPCs. Using simulations and a vegetation dataset, we demonstrated associations between different VPC definitions, the importance of methods for estimating VPCs (by comparing VPC obtained using Laplace and penalized quasilikehood methods), and bivariate dependence between VPCs calculated at different levels. Such an empirical study lends an immediate support to wider applications of VPC in scientific data analysis.
Construction of moment-matching multinomial lattices using Vandermonde matrices and Gröbner bases
NASA Astrophysics Data System (ADS)
Lundengârd, Karl; Ogutu, Carolyne; Silvestrov, Sergei; Ni, Ying; Weke, Patrick
2017-01-01
In order to describe and analyze the quantitative behavior of stochastic processes, such as the process followed by a financial asset, various discretization methods are used. One such set of methods are lattice models where a time interval is divided into equal time steps and the rate of change for the process is restricted to a particular set of values in each time step. The well-known binomial- and trinomial models are the most commonly used in applications, although several kinds of higher order models have also been examined. Here we will examine various ways of designing higher order lattice schemes with different node placements in order to guarantee moment-matching with the process.
Financial Data Analysis by means of Coupled Continuous-Time Random Walk in Rachev-Rűschendorf Model
NASA Astrophysics Data System (ADS)
Jurlewicz, A.; Wyłomańska, A.; Żebrowski, P.
2008-09-01
We adapt the continuous-time random walk formalism to describe asset price evolution. We expand the idea proposed by Rachev and Rűschendorf who analyzed the binomial pricing model in the discrete time with randomization of the number of price changes. As a result, in the framework of the proposed model we obtain a mixture of the Gaussian and a generalized arcsine laws as the limiting distribution of log-returns. Moreover, we derive an European-call-option price that is an extension of the Black-Scholes formula. We apply the obtained theoretical results to model actual financial data and try to show that the continuous-time random walk offers alternative tools to deal with several complex issues of financial markets.
The Predisposing Factors between Dental Caries and Deviations from Normal Weight.
Chopra, Amandeep; Rao, Nanak Chand; Gupta, Nidhi; Vashisth, Shelja; Lakhanpal, Manav
2015-04-01
Dental caries and deviations from normal weight are two conditions which share several broadly predisposing factors. So it's important to understand any relationship between dental state and body weight if either is to be managed appropriately. The study was done to find out the correlation between body mass index (BMI), diet, and dental caries among 12-15-year-old schoolgoing children in Panchkula District. A multistage sample of 12-15-year-old school children (n = 810) in Panchkula district, Haryana was considered. Child demographic details and diet history for 5 days was recorded. Data regarding dental caries status was collected using World Health Organization (1997) format. BMI was calculated and categorized according to the World Health Organization classification system for BMI. The data were subjected to statistical analysis using chi-square test and binomial regression developed using the Statistical Package for Social Sciences (SPSS) 20.0. The mean Decayed Missing Filled Teeth (DMFT) score was found to be 1.72 with decayed, missing, and filled teeth to be 1.22, 0.04, and 0.44, respectively. When the sample was assessed based on type of diet, it was found that vegetarians had higher mean DMFT (1.72) as compared to children having mixed diet. Overweight children had highest DMFT (3.21) which was followed by underweight (2.31) and obese children (2.23). Binomial regression revealed that females were 1.293 times at risk of developing caries as compared to males. Fair and poor Simplified-Oral Hygiene Index (OHI-S) showed 3.920 and 4.297 times risk of developing caries as compared to good oral hygiene, respectively. Upper high socioeconomic status (SES) is at most risk of developing caries. Underweight, overweight, and obese are at 2.7, 2.5, and 3 times risk of developing caries as compared to children with normal BMI, respectively. Dental caries and deviations from normal weight are two conditions which share several broadly predisposing factors such as diet, SES, lifestyle and other environmental factors.
Moraleda, Cinta; de Deus, Nilsa; Serna-Bolea, Celia; Renom, Montse; Quintó, Llorenç; Macete, Eusebio; Menéndez, Clara; Naniche, Denise
2014-02-01
Up to 30% of infants may be HIV-exposed noninfected (ENI) in countries with high HIV prevalence, but the impact of maternal HIV on the child's health remains unclear. One hundred fifty-eight HIV ENI and 160 unexposed (UE) Mozambican infants were evaluated at 1, 3, 9, and 12 months postdelivery. At each visit, a questionnaire was administered, and HIV DNA polymerase chain reaction and hematologic and CD4/CD8 determinations were measured. Linear mixed models were used to evaluate differences in hematologic parameters and T-cell counts between the study groups. All outpatient visits and admissions were registered. ENI infants received cotrimoxazol prophylaxis (CTXP). Negative binomial regression models were estimated to compare incidence rates of outpatient visits and admissions. Hematocrit was lower in ENI than in UE infants at 1, 3, and 9 months of age (P = 0.024, 0.025, and 0.012, respectively). Percentage of CD4 T cells was 3% lower (95% confidence interval: 0.86 to 5.15; P = 0.006) and percentage of CD8 T cells 1.15 times higher (95% confidence interval: 1.06 to 1.25; P = 0.001) in ENI vs. UE infants. ENI infants had a lower weight-for-age Z score (P = 0.049) but reduced incidence of outpatient visits, overall (P = 0.042), diarrhea (P = 0.001), and respiratory conditions (P = 0.042). ENI children were more frequently anemic, had poorer nutritional status, and alterations in some immunologic profiles compared with UE children. CTXP may explain their reduced mild morbidity. These findings may reinforce continuation of CTXP and the need to understand the consequences of maternal HIV exposure in this vulnerable group of children.
Channel unit use by Smallmouth Bass: Do land-use constraints or quantity of habitat matter?
Brewer, Shannon K.
2013-01-01
I examined how land use influenced the distribution of Smallmouth Bass Micropterus dolomieu in channel units (discrete morphological features—e.g., pools) of streams in the Midwestern USA. Stream segments (n = 36), from four clusters of different soil and runoff conditions, were identified that had the highest percent of forest (n = 12), pasture (n = 12), and urban land use (n = 12) within each cluster. Channel units within each stream were delineated and independently sampled once using multiple gears in summer 2006. Data were analyzed using a generalized linear mixed model procedure with a binomial distribution and odds ratio statistics. Land use and channel unit were strong predictors of age-0, age-1, and age->1 Smallmouth Bass presence. Each age-class was more likely to be present in streams within watersheds dominated by forest land use than in those with pasture or urban land uses. The interaction between land use and channel unit was not significant in any of the models, indicating channel unit use by Smallmouth Bass did not depend on watershed land use. Each of the three age-classes was more likely to use pools than other channel units. However, streams with high densities of Smallmouth Bass age >1 had lower proportions of pools suggesting a variety of channel units is important even though habitat needs exist at the channel-unit scale. Management may benefit from future research addressing the significance of channel-unit quality as a possible mechanism for how land use impacts Smallmouth Bass populations. Further, management efforts aimed at improving stream habitat would likely be more beneficial if focused at the stream segment or landscape scale, where a variety of quality habitats might be supported.
Black Clouds vs Random Variation in Hospital Admissions.
Ong, Luei Wern; Dawson, Jeffrey D; Ely, John W
2018-06-01
Physicians often accuse their peers of being "black clouds" if they repeatedly have more than the average number of hospital admissions while on call. Our purpose was to determine whether the black-cloud phenomenon is real or explainable by random variation. We analyzed hospital admissions to the University of Iowa family medicine service from July 1, 2010 to June 30, 2015. Analyses were stratified by peer group (eg, night shift attending physicians, day shift senior residents). We analyzed admission numbers to find evidence of black-cloud physicians (those with significantly more admissions than their peers) and white-cloud physicians (those with significantly fewer admissions). The statistical significance of whether there were actual differences across physicians was tested with mixed-effects negative binomial regression. The 5-year study included 96 physicians and 6,194 admissions. The number of daytime admissions ranged from 0 to 10 (mean 2.17, SD 1.63). Night admissions ranged from 0 to 11 (mean 1.23, SD 1.22). Admissions increased from 1,016 in the first year to 1,523 in the fifth year. We found 18 white-cloud and 16 black-cloud physicians in simple regression models that did not control for this upward trend. After including study year and other potential confounding variables in the regression models, there were no significant associations between physicians and admission numbers and therefore no true black or white clouds. In this study, apparent black-cloud and white-cloud physicians could be explained by random variation in hospital admissions. However, this randomness incorporated a wide range in workload among physicians, with potential impact on resident education at the low end and patient safety at the high end.
Stocks, S Jill; McNamee, Roseanne; van der Molen, Henk F; Paris, Christophe; Urban, Pavel; Campo, Giuseppe; Sauni, Riitta; Martínez Jarreta, Begoña; Valenty, Madeleine; Godderis, Lode; Miedinger, David; Jacquetin, Pascal; Gravseth, Hans M; Bonneterre, Vincent; Telle-Lamberton, Maylis; Bensefa-Colas, Lynda; Faye, Serge; Mylle, Godewina; Wannag, Axel; Samant, Yogindra; Pal, Teake; Scholz-Odermatt, Stefan; Papale, Adriano; Schouteden, Martijn; Colosio, Claudio; Mattioli, Stefano; Agius, Raymond
2015-04-01
The European Union (EU) strategy for health and safety at work underlines the need to reduce the incidence of occupational diseases (OD), but European statistics to evaluate this common goal are scarce. We aim to estimate and compare changes in incidence over time for occupational asthma, contact dermatitis, noise-induced hearing loss (NIHL), carpal tunnel syndrome (CTS) and upper limb musculoskeletal disorders across 10 European countries. OD surveillance systems that potentially reflected nationally representative trends in incidence within Belgium, the Czech Republic, Finland, France, Italy, the Netherlands, Norway, Spain, Switzerland and the UK provided data. Case counts were analysed using a negative binomial regression model with year as the main covariate. Many systems collected data from networks of 'centres', requiring the use of a multilevel negative binomial model. Some models made allowance for changes in compensation or reporting rules. Reports of contact dermatitis and asthma, conditions with shorter time between exposure to causal substances and OD, were consistently declining with only a few exceptions. For OD with physical causal exposures there was more variation between countries. Reported NIHL was increasing in Belgium, Spain, Switzerland and the Netherlands and decreasing elsewhere. Trends in CTS and upper limb musculoskeletal disorders varied widely within and between countries. This is the first direct comparison of trends in OD within Europe and is consistent with a positive impact of European initiatives addressing exposures relevant to asthma and contact dermatitis. Taking a more flexible approach allowed comparisons of surveillance data between and within countries without harmonisation of data collection methods. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Song, Jeffery W; Small, Mitchell J; Casman, Elizabeth A
2017-12-15
Environmental DNA (eDNA) sampling is an emerging tool for monitoring the spread of aquatic invasive species. One confounding factor when interpreting eDNA sampling evidence is that eDNA can be present in the water in the absence of living target organisms, originating from excreta, dead tissue, boats, or sewage effluent, etc. In the Chicago Area Waterway System (CAWS), electric fish dispersal barriers were built to prevent non-native Asian carp species from invading Lake Michigan, and yet Asian carp eDNA has been detected above the barriers sporadically since 2009. In this paper the influence of stream flow characteristics in the CAWS on the probability of invasive Asian carp eDNA detection in the CAWS from 2009 to 2012 was examined. In the CAWS, the direction of stream flow is mostly away from Lake Michigan, though there are infrequent reversals in flow direction towards Lake Michigan during dry spells. We find that the flow reversal volume into the Lake has a statistically significant positive relationship with eDNA detection probability, while other covariates, like gage height, precipitation, season, water temperature, dissolved oxygen concentration, pH and chlorophyll concentration do not. This suggests that stream flow direction is highly influential on eDNA detection in the CAWS and should be considered when interpreting eDNA evidence. We also find that the beta-binomial regression model provides a stronger fit for eDNA detection probability compared to a binomial regression model. This paper provides a statistical modeling framework for interpreting eDNA sampling evidence and for evaluating covariates influencing eDNA detection. Copyright © 2017 Elsevier B.V. All rights reserved.
Buckland, Steeves; Cole, Nik C; Aguirre-Gutiérrez, Jesús; Gallagher, Laura E; Henshaw, Sion M; Besnard, Aurélien; Tucker, Rachel M; Bachraz, Vishnu; Ruhomaun, Kevin; Harris, Stephen
2014-01-01
The invasion of the giant Madagascar day gecko Phelsuma grandis has increased the threats to the four endemic Mauritian day geckos (Phelsuma spp.) that have survived on mainland Mauritius. We had two main aims: (i) to predict the spatial distribution and overlap of P. grandis and the endemic geckos at a landscape level; and (ii) to investigate the effects of P. grandis on the abundance and risks of extinction of the endemic geckos at a local scale. An ensemble forecasting approach was used to predict the spatial distribution and overlap of P. grandis and the endemic geckos. We used hierarchical binomial mixture models and repeated visual estimate surveys to calculate the abundance of the endemic geckos in sites with and without P. grandis. The predicted range of each species varied from 85 km2 to 376 km2. Sixty percent of the predicted range of P. grandis overlapped with the combined predicted ranges of the four endemic geckos; 15% of the combined predicted ranges of the four endemic geckos overlapped with P. grandis. Levin's niche breadth varied from 0.140 to 0.652 between P. grandis and the four endemic geckos. The abundance of endemic geckos was 89% lower in sites with P. grandis compared to sites without P. grandis, and the endemic geckos had been extirpated at four of ten sites we surveyed with P. grandis. Species Distribution Modelling, together with the breadth metrics, predicted that P. grandis can partly share the equivalent niche with endemic species and survive in a range of environmental conditions. We provide strong evidence that smaller endemic geckos are unlikely to survive in sympatry with P. grandis. This is a cause of concern in both Mauritius and other countries with endemic species of Phelsuma.
Mendez, Bomar Rojas
2017-01-01
Background Improving access to delivery services does not guarantee access to quality obstetric care and better survival, and therefore, concerns for quality of maternal and newborn care in low- and middle-income countries have been raised. Our study explored characteristics associated with the quality of initial assessment, intrapartum, and immediate postpartum and newborn care, and further assessed the relationships along the continuum of care. Methods The 2010 Service Provision Assessment data of Kenya for 627 routine deliveries of women aged 15–49 were used. Quality of care measures were assessed using recently validated quality of care measures during initial assessment, intrapartum, and postpartum periods. Data were analyzed with negative binomial regression and structural equation modeling technique. Results The negative binomial regression results identified a number of determinants of quality, such as the level of health facilities, managing authority, presence of delivery fee, central electricity supply and clinical guideline for maternal and neonatal care. Our structural equation modeling (SEM) further demonstrated that facility characteristics were important determinants of quality for initial assessment and postpartum care, while characteristics at the provider level became more important in shaping the quality of intrapartum care. Furthermore we also noted that quality of initial assessment had a positive association with quality of intrapartum care (β = 0.71, p < 0.001), which in turn was positively associated with the quality of newborn and immediate postpartum care (β = 1.29, p = 0.004). Conclusions A continued focus on quality of care along the continuum of maternity care is important not only to mothers but also their newborns. Policymakers should therefore ensure that required resources, as well as adequate supervision and emphasis on the quality of obstetric care, are available. PMID:28520771
Density of wild prey modulates lynx kill rates on free-ranging domestic sheep.
Odden, John; Nilsen, Erlend B; Linnell, John D C
2013-01-01
Understanding the factors shaping the dynamics of carnivore-livestock conflicts is vital to facilitate large carnivore conservation in multi-use landscapes. We investigated how the density of their main wild prey, roe deer Capreolus capreolus, modulates individual Eurasian lynx Lynx lynx kill rates on free-ranging domestic sheep Ovis aries across a range of sheep and roe deer densities. Lynx kill rates on free-ranging domestic sheep were collected in south-eastern Norway from 1995 to 2011 along a gradient of different livestock and wild prey densities using VHF and GPS telemetry. We used zero-inflated negative binomial (ZINB) models including lynx sex, sheep density and an index of roe deer density as explanatory variables to model observed kill rates on sheep, and ranked the models based on their AICc values. The model including the effects of lynx sex and sheep density in the zero-inflation model and the effect of lynx sex and roe deer density in the negative binomial part received most support. Irrespective of sheep density and sex, we found the lowest sheep kill rates in areas with high densities of roe deer. As roe deer density decreased, males killed sheep at higher rates, and this pattern held for both high and low sheep densities. Similarly, females killed sheep at higher rates in areas with high densities of sheep and low densities of roe deer. However, when sheep densities were low females rarely killed sheep irrespective of roe deer density. Our quantification of depredation rates can be the first step towards establishing fairer compensation systems based on more accurate and area specific estimation of losses. This study demonstrates how we can use ecological theory to predict where losses of sheep will be greatest, and can be used to identify areas where mitigation measures are most likely to be needed.
Density of Wild Prey Modulates Lynx Kill Rates on Free-Ranging Domestic Sheep
Odden, John; Nilsen, Erlend B.; Linnell, John D. C.
2013-01-01
Understanding the factors shaping the dynamics of carnivore–livestock conflicts is vital to facilitate large carnivore conservation in multi-use landscapes. We investigated how the density of their main wild prey, roe deer Capreolus capreolus, modulates individual Eurasian lynx Lynx lynx kill rates on free-ranging domestic sheep Ovis aries across a range of sheep and roe deer densities. Lynx kill rates on free-ranging domestic sheep were collected in south-eastern Norway from 1995 to 2011 along a gradient of different livestock and wild prey densities using VHF and GPS telemetry. We used zero-inflated negative binomial (ZINB) models including lynx sex, sheep density and an index of roe deer density as explanatory variables to model observed kill rates on sheep, and ranked the models based on their AICc values. The model including the effects of lynx sex and sheep density in the zero-inflation model and the effect of lynx sex and roe deer density in the negative binomial part received most support. Irrespective of sheep density and sex, we found the lowest sheep kill rates in areas with high densities of roe deer. As roe deer density decreased, males killed sheep at higher rates, and this pattern held for both high and low sheep densities. Similarly, females killed sheep at higher rates in areas with high densities of sheep and low densities of roe deer. However, when sheep densities were low females rarely killed sheep irrespective of roe deer density. Our quantification of depredation rates can be the first step towards establishing fairer compensation systems based on more accurate and area specific estimation of losses. This study demonstrates how we can use ecological theory to predict where losses of sheep will be greatest, and can be used to identify areas where mitigation measures are most likely to be needed. PMID:24278123
Private equity ownership and nursing home financial performance.
Pradhan, Rohit; Weech-Maldonado, Robert; Harman, Jeffrey S; Laberge, Alex; Hyer, Kathryn
2013-01-01
Private equity has acquired multiple large nursing home chains within the last few years; by 2009, it owned nearly 1,900 nursing homes. Private equity is said to improve the financial performance of acquired facilities. However, no study has yet examined the financial performance of private equity nursing homes, ergo this study. The primary purpose of this study is to understand the financial performance of private equity nursing homes and how it compares with other investor-owned facilities. It also seeks to understand the approach favored by private equity to improve financial performance-for instance, whether they prefer to cut costs or maximize revenues or follow a mixed approach. Secondary data from Medicare cost reports, the Online Survey, Certification and Reporting, Area Resource File, and Brown University's Long-term Care Focus data set are combined to construct a longitudinal data set for the study period 2000-2007. The final sample is 2,822 observations after eliminating all not-for-profit, independent, and hospital-based facilities. Dependent financial variables consist of operating revenues and costs, operating and total margins, payer mix (census Medicare, census Medicaid, census other), and acuity index. Independent variables primarily reflect private equity ownership. The study was analyzed using ordinary least squares, gamma distribution with log link, logit with binomial family link, and logistic regression. Private equity nursing homes have higher operating margin as well as total margin; they also report higher operating revenues and costs. No significant differences in payer mix are noted. Results suggest that private equity delivers superior financial performance compared with other investor-owned nursing homes. However, causes for concern remain particularly with the long-term financial sustainability of these facilities.
Himsworth, Chelsea G; Parsons, Kirbee L; Feng, Alice Y T; Kerr, Thomas; Jardine, Claire M; Patrick, David M
2014-01-01
Urban rats (Rattus spp.) are among the most ubiquitous pest species in the world. Previous research has shown that rat abundance is largely determined by features of the environment; however, the specific urban environmental factors that influence rat population density within cities have yet to be clearly identified. Additionally, there are no well described tools or methodologies for conducting an in-depth evaluation of the relationship between urban rat abundance and the environment. In this study, we developed a systematic environmental observation tool using methods borrowed from the field of systematic social observation. This tool, which employed a combination of quantitative and qualitative methodologies, was then used to identify environmental factors associated with the relative abundance of Norway rats (Rattus norvegicus) in an inner-city neighborhood of Vancouver, Canada. Using a multivariate zero-inflated negative binomial model, we found that a variety of factors, including specific land use, building condition, and amount of refuse, were related to rat presence and abundance. Qualitative data largely supported and further clarified observed statistical relationships, but also identified conflicting and unique situations not easily captured through quantitative methods. Overall, the tool helped us to better understand the relationship between features of the urban environment and relative rat abundance within our study area and may useful for studying environmental determinants of zoonotic disease prevalence/distribution among urban rat populations in the future.
Himsworth, Chelsea G.; Parsons, Kirbee L.; Feng, Alice Y. T.; Kerr, Thomas; Jardine, Claire M.; Patrick, David M.
2014-01-01
Urban rats (Rattus spp.) are among the most ubiquitous pest species in the world. Previous research has shown that rat abundance is largely determined by features of the environment; however, the specific urban environmental factors that influence rat population density within cities have yet to be clearly identified. Additionally, there are no well described tools or methodologies for conducting an in-depth evaluation of the relationship between urban rat abundance and the environment. In this study, we developed a systematic environmental observation tool using methods borrowed from the field of systematic social observation. This tool, which employed a combination of quantitative and qualitative methodologies, was then used to identify environmental factors associated with the relative abundance of Norway rats (Rattus norvegicus) in an inner-city neighborhood of Vancouver, Canada. Using a multivariate zero-inflated negative binomial model, we found that a variety of factors, including specific land use, building condition, and amount of refuse, were related to rat presence and abundance. Qualitative data largely supported and further clarified observed statistical relationships, but also identified conflicting and unique situations not easily captured through quantitative methods. Overall, the tool helped us to better understand the relationship between features of the urban environment and relative rat abundance within our study area and may useful for studying environmental determinants of zoonotic disease prevalence/distribution among urban rat populations in the future. PMID:24830847
Walkability and walking for transport: characterizing the built environment using space syntax.
Koohsari, Mohammad Javad; Owen, Neville; Cerin, Ester; Giles-Corti, Billie; Sugiyama, Takemi
2016-11-24
Neighborhood walkability has been shown to be associated with walking behavior. However, the availability of geographical data necessary to construct it remains a limitation. Building on the concept of space syntax, we propose an alternative walkability index, space syntax walkability (SSW). This study examined associations of the full walkability index and SSW with walking for transport (WT). Data were collected in 2003-2004 from 2544 adults living in 154 Census Collection Districts (CCD) in Adelaide, Australia. Participants reported past week WT frequency. Full walkability (consisting of net residential density, intersection density, land use mix, and net retail area ratio) and SSW (consisting of gross population density and a space syntax measure of street integration) were calculated for each CCD using geographic information systems and space syntax software. Generalized linear models with negative binomial variance and logarithmic link functions were employed to examine the associations of each walkability index with WT frequency, adjusting for socio-demographic variables. Two walkability indices were closely correlated (ρ = 0.76, p < 0.01). The associations of full walkability and SSW with WT frequency were positive, with regression coefficients of 1.12 (95% CI: 1.08, 1.17) and 1.14 (95% CI: 1.10, 1.19), respectively. SSW employs readily-available geographic data, yet is comparable to full walkability in its association with WT. The concept and methods of space syntax provide a novel approach to further understanding how urban design influences walking behaviors.
Ahmad, Aftab; Khan, Vikram; Badola, Smita; Arya, Gaurav; Bansal, Nayanci; Saxena, A. K.
2010-01-01
The prevalence, intensities of infestation, range of infestation and population composition of two phthirapteran species, Ardeicola expallidus Blagoveshtchensky (Phthiraptera: Philopteridae) and Ciconiphilus decimfasciatus Boisduval and Lacordaire (Menoponidae) on seventy cattle egrets were recorded during August 2004 to March 2005, in India. The frequency distribution patterns of both the species were skewed but did not correspond to the negative binomial model. The oviposition sites, egg laying patterns and the nature of the eggs of the two species were markedly different. PMID:21067416
CUMBIN - CUMULATIVE BINOMIAL PROGRAMS
NASA Technical Reports Server (NTRS)
Bowerman, P. N.
1994-01-01
The cumulative binomial program, CUMBIN, is one of a set of three programs which calculate cumulative binomial probability distributions for arbitrary inputs. The three programs, CUMBIN, NEWTONP (NPO-17556), and CROSSER (NPO-17557), can be used independently of one another. CUMBIN can be used by statisticians and users of statistical procedures, test planners, designers, and numerical analysts. The program has been used for reliability/availability calculations. CUMBIN calculates the probability that a system of n components has at least k operating if the probability that any one operating is p and the components are independent. Equivalently, this is the reliability of a k-out-of-n system having independent components with common reliability p. CUMBIN can evaluate the incomplete beta distribution for two positive integer arguments. CUMBIN can also evaluate the cumulative F distribution and the negative binomial distribution, and can determine the sample size in a test design. CUMBIN is designed to work well with all integer values 0 < k <= n. To run the program, the user simply runs the executable version and inputs the information requested by the program. The program is not designed to weed out incorrect inputs, so the user must take care to make sure the inputs are correct. Once all input has been entered, the program calculates and lists the result. The CUMBIN program is written in C. It was developed on an IBM AT with a numeric co-processor using Microsoft C 5.0. Because the source code is written using standard C structures and functions, it should compile correctly with most C compilers. The program format is interactive. It has been implemented under DOS 3.2 and has a memory requirement of 26K. CUMBIN was developed in 1988.
Recent patterns in antibiotic use for children with group A streptococcal infections in Japan.
Okubo, Yusuke; Michihata, Nobuaki; Morisaki, Naho; Kinoshita, Noriko; Miyairi, Isao; Urayama, Kevin Y; Yasunaga, Hideo
2017-11-13
Antibiotics are the most frequently prescribed medicines for children, however inappropriate antibiotic prescribing is prevalent. This study investigated recent trends in antibiotic use and factors associated with appropriate antibiotic selection among children with group A streptococcal infections in Japan. Records of outpatients aged <18years with a diagnosis of group A streptococcal infection were obtained using the Japan Medical Data Center database. Prescription patterns for antibiotics were investigated and factors associated with penicillin use were evaluated using a multivariable log-binomial regression model. Overall, 5030 patients with a diagnosis of group A streptococcal infection were identified. The most commonly prescribed antibiotics were third-generation cephalosporins (53.3%), followed by penicillins (40.1%). In the multivariable log-binomial regression analysis, out-of-hours visits were independently associated with penicillin prescriptions [prevalence ratio (PR)=1.10, 95% confidence interval (CI) 1.03-1.18], whereas clinical departments other than paediatrics and internal medicine were related to non-penicillin prescriptions (PR=0.57, 95% CI 0.46-0.71). Third-generation cephalosporins were overprescribed for children with group A streptococcal infections. This investigation provides important information for promoting education for physicians and for constructing health policies for appropriate antibiotic prescription. Copyright © 2017. Published by Elsevier Ltd.
Community covariates of malnutrition based mortality among older adults.
Lee, Matthew R; Berthelot, Emily R
2010-05-01
The purpose of this study was to identify community level covariates of malnutrition-based mortality among older adults. A community level framework was delineated which explains rates of malnutrition-related mortality among older adults as a function of community levels of socioeconomic disadvantage, disability, and social isolation among members of this group. County level data on malnutrition mortality of people 65 years of age and older for the period 2000-2003 were drawn from the CDC WONDER system databases. County level measures of older adult socioeconomic disadvantage, disability, and social isolation were derived from the 2000 US Census of Population and Housing. Negative binomial regression models adjusting for the size of the population at risk, racial composition, urbanism, and region were estimated to assess the relationships among these indicators. Results from negative binomial regression analysis yielded the following: a standard deviation increase in socioeconomic/physical disadvantage was associated with a 12% increase in the rate of malnutrition mortality among older adults (p < 0.001), whereas a standard deviation increase in social isolation was associated with a 5% increase in malnutrition mortality among older adults (p < 0.05). Community patterns of malnutrition based mortality among older adults are partly a function of levels of socioeconomic and physical disadvantage and social isolation among older adults. 2010 Elsevier Inc. All rights reserved.
Austin, Shamly; Qu, Haiyan; Shewchuk, Richard M
2012-10-01
To examine the association between adherence to physical activity guidelines and health-related quality of life (HRQOL) among individuals with arthritis. A cross-sectional sample with 33,071 US adults, 45 years or older with physician-diagnosed arthritis was obtained from 2007 Behavioral Risk Factor Surveillance System survey. We conducted negative binomial regression analysis to examine HRQOL as a function of adherence to physical activity guidelines controlling for physicians' recommendations for physical activity, age, sex, race, education, marital status, employment, annual income, health insurance, personal physician, emotional support, body mass index, activity limitations, health status, and co-morbidities based on Behavioral Model of Health Services Utilization. Descriptive statistics showed that 60% adults with arthritis did not adhere to physical activity guidelines, mean physically and mentally unhealthy days were 7.7 and 4.4 days, respectively. Results from negative binomial regression indicated that individuals who did not adhere to physical activity guidelines had 1.14 days more physically unhealthy days and 1.12 days more mentally unhealthy days than those who adhered controlling for covariates. Adherence to physical activity is important to improve HRQOL for individuals with arthritis. However, adherence is low among this population. Interventions are required to engage individuals with arthritis in physical activity.
Boolean function applied to Mimosa pudica movements.
De Luccia, Thiago Paes de Barros; Friedman, Pedro
2011-09-01
Seismonastic or thigmonastic movements of Mimosa pudica L. is mostly because of the fast loss of water from swollen motor cells, resulting in temporary collapse of cells and quick curvature in the parts where these cells are located. Because of this, the plant has been much studied since the 18th century, leading us to think about the classical binomial stimulus-response (action-reaction) when compared to animals. Mechanic and electrical stimuli were used to investigate the analogy of mimosa branch with an artificial neuron model and to observe the action potential propagation through the mimosa branch. Boolean function applied to the mimosa branch in analogy with an artificial neuron model is one of the peculiarities of our hypothesis.
Lessons learned from the misuse of mathematical models: The 2008 financial crisis
NASA Astrophysics Data System (ADS)
Campanario, M. L.; Lara, J. A.
2014-10-01
In this paper, we report the immediate causes of the 2008 financial crisis, in the shape of products of financial engineering associated with human greed and stupidity, and necessarily aided and abetted by the Black-Scholes-Merton model, and the mediate, and deeper, causesderived from development promoted by the scientific and technological binomial. We finally draw realistic conclusions regarding the inexorable effects that logically derive from the above causes. An important finding is that human beingsare the only animals to make the same mistake twice. The necessaryconditions are again being generated and will soon be sufficient for acrash, like the one thatcaused the 2007-08 financial crisis, to recur.
Bayesian inference for disease prevalence using negative binomial group testing
Pritchard, Nicholas A.; Tebbs, Joshua M.
2011-01-01
Group testing, also known as pooled testing, and inverse sampling are both widely used methods of data collection when the goal is to estimate a small proportion. Taking a Bayesian approach, we consider the new problem of estimating disease prevalence from group testing when inverse (negative binomial) sampling is used. Using different distributions to incorporate prior knowledge of disease incidence and different loss functions, we derive closed form expressions for posterior distributions and resulting point and credible interval estimators. We then evaluate our new estimators, on Bayesian and classical grounds, and apply our methods to a West Nile Virus data set. PMID:21259308
The association between major depression prevalence and sex becomes weaker with age.
Patten, Scott B; Williams, Jeanne V A; Lavorato, Dina H; Wang, Jian Li; Bulloch, Andrew G M; Sajobi, Tolulope
2016-02-01
Women have a higher prevalence of major depressive episodes (MDE) than men, and the annual prevalence of MDE declines with age. Age by sex interactions may occur (a weakening of the sex effect with age), but are easily overlooked since individual studies lack statistical power to detect interactions. The objective of this study was to evaluate age by sex interactions in MDE prevalence. In Canada, a series of 10 national surveys conducted between 1996 and 2013 assessed MDE prevalence in respondents over the age of 14. Treating age as a continuous variable, binomial and linear regression was used to model age by sex interactions in each survey. To increase power, the survey-specific interaction coefficients were then pooled using meta-analytic methods. The estimated interaction terms were homogeneous. In the binomial regression model I (2) was 31.2 % and was not statistically significant (Q statistic = 13.1, df = 9, p = 0.159). The pooled estimate (-0.004) was significant (z = 3.13, p = 0.002), indicating that the effect of sex became weaker with increasing age. This resulted in near disappearance of the sex difference in the 75+ age group. This finding was also supported by an examination of age- and sex-specific estimates pooled across the surveys. The association of MDE prevalence with sex becomes weaker with age. The interaction may reflect biological effect modification. Investigators should test for, and consider inclusion of age by sex interactions in epidemiological analyses of MDE prevalence.
Goyette, Marielle S; Mutiti, Peter M; Bukusi, David; Wamuti, Beatrice M; Otieno, Felix A; Cherutich, Peter; Golden, Matthew R; Spiegel, Hans; Richardson, Barbra A; Ngʼangʼa, Anne; Farquhar, Carey
2018-05-01
HIV assisted partner services (APS) are a notification and testing strategy for sex partners of HIV-infected index patients. This cluster-randomized controlled trial secondary data analysis investigated whether history of intimate partner violence (IPV) modified APS effectiveness and risk of relationship dissolution. Eighteen HIV testing and counseling sites in Kenya randomized to provide immediate APS (intervention) or APS delayed for 6 weeks (control). History of IPV was ascertained at study enrollment and defined as reporting ever experiencing physical or sexual IPV. Those reporting IPV in the month before enrollment were excluded. We tested whether history of IPV modified intervention effectiveness and risk of relationship dissolution using population-averaged Poisson and log-binomial generalized estimating equation models. Exploratory analyses investigated associations between history of IPV and events that occurred after HIV diagnosis using log-binomial generalized estimating equation models. The study enrolled 1119 index participants and 1286 partners. Among index participants, 81 (7%) had history of IPV. History of IPV did not modify APS effectiveness in testing, newly diagnosing, or linking partners to care. History of IPV did not modify the association between receiving immediate APS and relationship dissolution during the study. Among participants who had not experienced IPV in the last month but had experienced IPV in their lifetimes, our results suggest that APS is an effective and safe partner notification strategy in Kenya. As APS is scaled up in different contexts, these data support including those reporting past IPV and closely monitoring adverse events.
Association between month of birth and melanoma risk: fact or fiction?
Fiessler, Cornelia; Pfahlberg, Annette B; Keller, Andrea K; Radespiel-Tröger, Martin; Uter, Wolfgang; Gefeller, Olaf
2017-04-01
Evidence on the effect of ultraviolet radiation (UVR) exposure in infancy on melanoma risk in later life is scarce. Three recent studies suggest that people born in spring carry a higher melanoma risk. Our study aimed at verifying whether such a seasonal pattern of melanoma risk actually exists. Data from the population-based Cancer Registry Bavaria (CRB) on the birth months of 28 374 incident melanoma cases between 2002 and 2012 were analysed and compared with data from the Bavarian State Office for Statistics and Data Processing on the birth month distribution in the Bavarian population. Crude and adjusted analyses using negative binomial regression models were performed in the total study group and supplemented by several subgroup analyses. In the crude analysis, the birth months March-May were over-represented among melanoma cases. Negative binomial regression models adjusted only for sex and birth year revealed a seasonal association between melanoma risk and birth month with 13-21% higher relative incidence rates for March, April and May compared with the reference December. However, after additionally adjusting for the birth month distribution of the Bavarian population, these risk estimates decreased markedly and no association with the birth month was observed any more. Similar results emerged in all subgroup analyses. Our large registry-based study provides no evidence that people born in spring carry a higher risk for developing melanoma in later life and thus lends no support to the hypothesis of higher UVR susceptibility during the first months of life. © The Author 2016; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association
Hopelessness as a Predictor of Suicide Ideation in Depressed Male and Female Adolescent Youth.
Wolfe, Kristin L; Nakonezny, Paul A; Owen, Victoria J; Rial, Katherine V; Moorehead, Alexandra P; Kennard, Beth D; Emslie, Graham J
2017-12-21
We examined hopelessness as a predictor of suicide ideation in depressed youth after acute medication treatment. A total of 158 depressed adolescents were administered the Children's Depression Rating Scale-Revised (CDRS-R) and Columbia Suicide Severity Rating Scale (C-SSRS) as part of a larger battery at baseline and at weekly visits across 6 weeks of acute fluoxetine treatment. The Beck Hopelessness Scale (BHS) was administered at baseline and week 6. A negative binomial regression model via a generalized estimating equation analysis of repeated measures was used to estimate suicide ideation over the 6 weeks of acute treatment from baseline measure of hopelessness. Depression severity and gender were included as covariates in the model. The negative binomial analysis was also conducted separately for the sample of males and females (in a gender-stratified analysis). Mean CDRS-R total scores were 60.30 ± 8.93 at baseline and 34.65 ± 10.41 at week 6. Mean baseline and week 6 BHS scores were 9.57 ± 5.51 and 5.59 ± 5.38, respectively. Per the C-SSRS, 43.04% and 83.54% reported having no suicide ideation at baseline and at week 6, respectively. The analyses revealed that baseline hopelessness was positively related to suicide ideation over treatment (p = .0027), independent of changes in depression severity. This significant finding persisted only for females (p = .0024). These results indicate the importance of early identification of hopelessness. © 2017 The American Association of Suicidology.
Kim, Dae-Hwan; Ramjan, Lucie M; Mak, Kwok-Kei
2016-01-01
Traffic safety is a significant public health challenge, and vehicle crashes account for the majority of injuries. This study aims to identify whether drivers' characteristics and past traffic violations may predict vehicle crashes in Korea. A total of 500,000 drivers were randomly selected from the 11.6 million driver records of the Ministry of Land, Transport and Maritime Affairs in Korea. Records of traffic crashes were obtained from the archives of the Korea Insurance Development Institute. After matching the past violation history for the period 2004-2005 with the number of crashes in year 2006, a total of 488,139 observations were used for the analysis. Zero-inflated negative binomial model was used to determine the incident risk ratio (IRR) of vehicle crashes by past violations of individual drivers. The included covariates were driver's age, gender, district of residence, vehicle choice, and driving experience. Drivers violating (1) a hit-and-run or drunk driving regulation at least once and (2) a signal, central line, or speed regulation more than once had a higher risk of a vehicle crash with respective IRRs of 1.06 and 1.15. Furthermore, female gender, a younger age, fewer years of driving experience, and middle-sized vehicles were all significantly associated with a higher likelihood of vehicle crashes. Drivers' demographic characteristics and past traffic violations could predict vehicle crashes in Korea. Greater resources should be assigned to the provision of traffic safety education programs for the high-risk driver groups.
Maximizing Statistical Power When Verifying Probabilistic Forecasts of Hydrometeorological Events
NASA Astrophysics Data System (ADS)
DeChant, C. M.; Moradkhani, H.
2014-12-01
Hydrometeorological events (i.e. floods, droughts, precipitation) are increasingly being forecasted probabilistically, owing to the uncertainties in the underlying causes of the phenomenon. In these forecasts, the probability of the event, over some lead time, is estimated based on some model simulations or predictive indicators. By issuing probabilistic forecasts, agencies may communicate the uncertainty in the event occurring. Assuming that the assigned probability of the event is correct, which is referred to as a reliable forecast, the end user may perform some risk management based on the potential damages resulting from the event. Alternatively, an unreliable forecast may give false impressions of the actual risk, leading to improper decision making when protecting resources from extreme events. Due to this requisite for reliable forecasts to perform effective risk management, this study takes a renewed look at reliability assessment in event forecasts. Illustrative experiments will be presented, showing deficiencies in the commonly available approaches (Brier Score, Reliability Diagram). Overall, it is shown that the conventional reliability assessment techniques do not maximize the ability to distinguish between a reliable and unreliable forecast. In this regard, a theoretical formulation of the probabilistic event forecast verification framework will be presented. From this analysis, hypothesis testing with the Poisson-Binomial distribution is the most exact model available for the verification framework, and therefore maximizes one's ability to distinguish between a reliable and unreliable forecast. Application of this verification system was also examined within a real forecasting case study, highlighting the additional statistical power provided with the use of the Poisson-Binomial distribution.
Kramer, Michael R; Dunlop, Anne L; Hogue, Carol J R
2014-02-01
A life course conceptual framework for MCH research demands new tools for understanding population health and measuring exposures. We propose a method for measuring population-based socio-environmental trajectories for women of reproductive age. We merged maternal longitudinally-linked births to Georgia-resident women from 1994 to 2007 with census economic and social measures using residential geocodes to create woman-centered socio-environmental trajectories. We calculated a woman's neighborhood deprivation index (NDI) at the time of each of her births and, from these, we calculated a cumulative NDI. We fit Loess curves to describe average life course NDI trajectories and binomial regression models to test specific life course theory hypotheses relating cumulative NDI to risk for preterm birth. Of the 1,815,944 total live births, we linked 1,000,437 live births to 413,048 unique women with two or more births. Record linkage had high specificity but relatively low sensitivity which appears non-differential with respect to maternal characteristics. Georgia women on average experienced upward mobility across the life course, although differences by race, early life neighborhood quality, and age at first birth produced differences in cumulative NDI. Adjusted binomial models found evidence for modification of the effect of history of prior preterm birth and advancing age on risk for preterm birth by cumulative NDI. The creation of trajectories from geocoded maternal longitudinally-linked vital records is one method to carry out life course MCH research. We discuss approaches for investigating the impact of truncation of the life course, selection bias from migration, and misclassification of cumulative exposure.
Furr-Holden, C. Debra M.; Milam, Adam J.; Nesoff, Elizabeth D.; Johnson, Renee M.; Fakunle, David O.; Jennings, Jacky M.; Thorpe, Roland J.
2016-01-01
Objective: This research examined whether publicly funded drug treatment centers (DTCs) were associated with violent crime in excess of the violence happening around other commercial businesses. Method: Violent crime data and locations of community entities were geocoded and mapped. DTCs and other retail outlets were matched based on a Neighborhood Disadvantage score at the census tract level. Street network buffers ranging from 100 to 1,400 feet were placed around each location. Negative binomial regression models were used to estimate the relationship between the count of violent crimes and the distance from each business type. Results: Compared with the mean count of violent crime around drug treatment centers, the mean count of violent crime (M = 2.87) was significantly higher around liquor stores (M = 3.98; t test; p < .01) and corner stores (M = 3.78; t test; p < .01), and there was no statistically significant difference between the count around convenience stores (M = 2.65; t test; p = .32). In the adjusted negative binomial regression models, there was a negative and significant relationship between the count of violent crime and the distance from drug treatment centers (β = -.069, p < .01), liquor stores (β = -.081, p < .01), corner stores (β = -.116, p < .01), and convenience stores (β = -.154, p < .01). Conclusions: Violent crime associated with drug treatment centers is similar to that associated with liquor stores and is less frequent than that associated with convenience stores and corner stores. PMID:26751351
Mayne, Stephanie L; Auchincloss, Amy H; Moore, Kari A; Michael, Yvonne L; Tabb, Loni Philip; Echeverria, Sandra E; Diez Roux, Ana V
2017-04-01
Social features of neighbourhood environments may influence smoking by creating a stressful environment or by buffering stress through social cohesion. However, the association of the overall neighbourhood social environment (NSE) with smoking, and the association of specific neighbourhood social factors with change in smoking behaviour over time, has rarely been examined. This study included 5856 adults aged 45-84 years from the Multi-Ethnic Study of Atherosclerosis (2000-2012, average follow-up: 7.8 years). Outcomes included current smoking status and smoking intensity (average number of cigarettes smoked per day among baseline smokers). NSE was assessed as a composite score composed of aesthetic quality, safety and social cohesion scales (derived from neighbourhood surveys). Generalised linear mixed models evaluated the association of baseline NSE (composite score and individual scales) with current smoking (modified Poisson models) and smoking intensity (negative binomial models) cross-sectionally and longitudinally. Each SD increase in baseline NSE composite score was associated with 13% lower prevalence of smoking at baseline (adjusted prevalence ratio (aPR) 0.87 (95% CI 0.78 to 0.98). Neighbourhood safety and aesthetic quality were similarly associated with lower smoking prevalence (aPR 0.87 (0.78 to 0.97) and aPR 0.87 (0.77 to 0.99), respectively) but the association with social cohesion was weaker or null. No significant associations were observed for smoking intensity among baseline smokers. Baseline NSE was not associated with changes in smoking risk or intensity over time. Results suggest that neighbourhood social context influences whether older adults smoke, but does not promote smoking cessation or reduction over time. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Eggers, Ruben; Tuinenbreijer, Lizz; Kouwenhoven, Dorette; Verhaagen, Joost; Mason, Matthew R. J.
2016-01-01
The dorsal column lesion model of spinal cord injury targets sensory fibres which originate from the dorsal root ganglia and ascend in the dorsal funiculus. It has the advantages that fibres can be specifically traced from the sciatic nerve, verifiably complete lesions can be performed of the labelled fibres, and it can be used to study sprouting in the central nervous system from the conditioning lesion effect. However, functional deficits from this type of lesion are mild, making assessment of experimental treatment-induced functional recovery difficult. Here, five functional tests were compared for their sensitivity to functional deficits, and hence their suitability to reliably measure recovery of function after dorsal column injury. We assessed the tape removal test, the rope crossing test, CatWalk gait analysis, and the horizontal ladder, and introduce a new test, the inclined rolling ladder. Animals with dorsal column injuries at C4 or T7 level were compared to sham-operated animals for a duration of eight weeks. As well as comparing groups at individual timepoints we also compared the longitudinal data over the whole time course with linear mixed models (LMMs), and for tests where steps are scored as success/error, using generalized LMMs for binomial data. Although, generally, function recovered to sham levels within 2–6 weeks, in most tests we were able to detect significant deficits with whole time-course comparisons. On the horizontal ladder deficits were detected until 5–6 weeks. With the new inclined rolling ladder functional deficits were somewhat more consistent over the testing period and appeared to last for 6–7 weeks. Of the CatWalk parameters base of support was sensitive to cervical and thoracic lesions while hind-paw print-width was affected by cervical lesion only. The inclined rolling ladder test in combination with the horizontal ladder and the CatWalk may prove useful to monitor functional recovery after experimental treatment in this lesion model. PMID:26934672
Xu, Jiadi; Chan, Kannie W Y; Xu, Xiang; Yadav, Nirbhay; Liu, Guanshu; van Zijl, Peter C M
2017-02-01
To develop an on-resonance variable delay multipulse (VDMP) scheme to image magnetization transfer contrast (MTC) and the chemical exchange saturation transfer (CEST) contrast of total fast-exchanging protons (TFP) with exchange rate above approximately 1 kHz. A train of high power binomial pulses was applied at the water resonance. The interpulse delay, called mixing time, was varied to observe its effect on the water signal reduction, allowing separation and quantification of MTC and CEST contributions as a result of their different proton transfer rates. The fast-exchanging protons in CEST and MTC are labeled together with the short T 2 components in MTC and separated out using a variable mixing time. Phantom studies of selected metabolite solutions (glucose, glutamate, creatine, myo-inositol), bovine serum albumin (BSA), and hair conditioner show the capability of on-resonance VDMP to separate out exchangeable protons with exchange rates above 1 kHz. Quantitative MTC and TFP maps were acquired on healthy mouse brains using this method, showing strong gray/white matter contrast for the slowly transferring MTC protons, whereas the TFP map was more uniform across the brain but somewhat higher in gray matter. The new method provides a simple way of imaging fast-exchanging protons and MTC components with a slow transfer rate. Magn Reson Med 77:730-739, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Forecast of severe fever with thrombocytopenia syndrome incidence with meteorological factors.
Sun, Ji-Min; Lu, Liang; Liu, Ke-Ke; Yang, Jun; Wu, Hai-Xia; Liu, Qi-Yong
2018-06-01
Severe fever with thrombocytopenia syndrome (SFTS) is emerging and some studies reported that SFTS incidence was associated with meteorological factors, while no report on SFTS forecast models was reported up to date. In this study, we constructed and compared three forecast models using autoregressive integrated moving average (ARIMA) model, negative binomial regression model (NBM), and quasi-Poisson generalized additive model (GAM). The dataset from 2011 to 2015 were used for model construction and the dataset in 2016 were used for external validity assessment. All the three models fitted the SFTS cases reasonably well during the training process and forecast process, while the NBM model forecasted better than other two models. Moreover, we demonstrated that temperature and relative humidity played key roles in explaining the temporal dynamics of SFTS occurrence. Our study contributes to better understanding of SFTS dynamics and provides predictive tools for the control and prevention of SFTS. Copyright © 2018 Elsevier B.V. All rights reserved.
Subramanian, S V; Kawachi, Ichiro
2006-06-01
The empirical relationship between income inequality and health has been much debated and discussed. Recent reviews suggest that the current evidence is mixed, with the relationship between state income inequality and health in the United States (US) being perhaps the most robust. In this paper, we examine the multilevel interactions between state income inequality, individual poor self-rated health, and a range of individual demographic and socioeconomic markers in the US. We use the pooled data from the 1995 and 1997 Current Population Surveys, and the data on state income inequality (represented using Gini coefficient) from the 1990, 1980, and 1970 US Censuses. Utilizing a cross-sectional multilevel design of 201,221 adults nested within 50 US states we calibrated two-level binomial hierarchical mixed models (with states specified as a random effect). Our analyses suggest that for a 0.05 change in the state income inequality, the odds ratio (OR) of reporting poor health was 1.30 (95% CI: 1.17-1.45) in a conditional model that included individual age, sex, race, marital status, education, income, and health insurance coverage as well as state median income. With few exceptions, we did not find strong statistical support for differential effects of state income inequality across different population groups. For instance, the relationship between state income inequality and poor health was steeper for whites compared to blacks (OR=1.34; 95% CI: 1.20-1.48) and for individuals with incomes greater than $75,000 compared to less affluent individuals (OR=1.65; 95% CI: 1.26-2.15). Our findings, however, primarily suggests an overall (as opposed to differential) contextual effect of state income inequality on individual self-rated poor health. To the extent that contemporaneous state income inequality differentially affects population sub-groups, our analyses suggest that the adverse impact of inequality is somewhat stronger for the relatively advantaged socioeconomic groups. This pattern was found to be consistent regardless of whether we consider contemporaneous or lagged effects of state income inequality on health. At the same time, the contemporaneous main effect of state income inequality remained statistically significant even when conditioned for past levels of income inequality and median income of states.
Generalization of multifractal theory within quantum calculus
NASA Astrophysics Data System (ADS)
Olemskoi, A.; Shuda, I.; Borisyuk, V.
2010-03-01
On the basis of the deformed series in quantum calculus, we generalize the partition function and the mass exponent of a multifractal, as well as the average of a random variable distributed over a self-similar set. For the partition function, such expansion is shown to be determined by binomial-type combinations of the Tsallis entropies related to manifold deformations, while the mass exponent expansion generalizes the known relation τq=Dq(q-1). We find the equation for the set of averages related to ordinary, escort, and generalized probabilities in terms of the deformed expansion as well. Multifractals related to the Cantor binomial set, exchange currency series, and porous-surface condensates are considered as examples.
Using real options analysis to support strategic management decisions
NASA Astrophysics Data System (ADS)
Kabaivanov, Stanimir; Markovska, Veneta; Milev, Mariyan
2013-12-01
Decision making is a complex process that requires taking into consideration multiple heterogeneous sources of uncertainty. Standard valuation and financial analysis techniques often fail to properly account for all these sources of risk as well as for all sources of additional flexibility. In this paper we explore applications of a modified binomial tree method for real options analysis (ROA) in an effort to improve decision making process. Usual cases of use of real options are analyzed with elaborate study on the applications and advantages that company management can derive from their application. A numeric results based on extending simple binomial tree approach for multiple sources of uncertainty are provided to demonstrate the improvement effects on management decisions.
Distribution pattern of phthirapterans infesting certain common Indian birds.
Saxena, A K; Kumar, Sandeep; Gupta, Nidhi; Mitra, J D; Ali, S A; Srivastava, Roshni
2007-08-01
The prevalence and frequency distribution patterns of 10 phthirapteran species infesting house sparrows, Indian parakeets, common mynas, and white breasted kingfishers were recorded in the district of Rampur, India, during 2004-05. The sample mean abundances, mean intensities, range of infestations, variance to mean ratios, values of the exponent of the negative binomial distribution, and the indices of discrepancy were also computed. Frequency distribution patterns of all phthirapteran species were skewed, but the observed frequencies did not correspond to the negative binomial distribution. Thus, adult-nymph ratios varied in different species from 1:0.53 to 1:1.25. Sex ratios of different phthirapteran species ranged from 1:1.10 to 1:1.65 and were female biased.
The role of ENSO in understanding changes in Colombia's annual malaria burden by region, 1960–2006
Mantilla, Gilma; Oliveros, Hugo; Barnston, Anthony G
2009-01-01
Background Malaria remains a serious problem in Colombia. The number of malaria cases is governed by multiple climatic and non-climatic factors. Malaria control policies, and climate controls such as rainfall and temperature variations associated with the El Niño/Southern Oscillation (ENSO), have been associated with malaria case numbers. Using historical climate data and annual malaria case number data from 1960 to 2006, statistical models are developed to isolate the effects of climate in each of Colombia's five contrasting geographical regions. Methods Because year to year climate variability associated with ENSO causes interannual variability in malaria case numbers, while changes in population and institutional control policy result in more gradual trends, the chosen predictors in the models are annual indices of the ENSO state (sea surface temperature [SST] in the tropical Pacific Ocean) and time reference indices keyed to two major malaria trends during the study period. Two models were used: a Poisson and a Negative Binomial regression model. Two ENSO indices, two time reference indices, and one dummy variable are chosen as candidate predictors. The analysis was conducted using the five geographical regions to match the similar aggregation used by the National Institute of Health for its official reports. Results The Negative Binomial regression model is found better suited to the malaria cases in Colombia. Both the trend variables and the ENSO measures are significant predictors of malaria case numbers in Colombia as a whole, and in two of the five regions. A one degree Celsius change in SST (indicating a weak to moderate ENSO event) is seen to translate to an approximate 20% increase in malaria cases, holding other variables constant. Conclusion Regional differentiation in the role of ENSO in understanding changes in Colombia's annual malaria burden during 1960–2006 was found, constituting a new approach to use ENSO as a significant predictor of the malaria cases in Colombia. These results naturally point to additional needed work: (1) refining the regional and seasonal dependence of climate on the ENSO state, and of malaria on the climate variables; (2) incorporating ENSO-related climate variability into dynamic malaria models. PMID:19133152
Characterization of trapped charges distribution in terms of mirror plot curve.
Al-Obaidi, Hassan N; Mahdi, Ali S; Khaleel, Imad H
2018-01-01
Accumulation of charges (electrons) at the specimen surface in scanning electron microscope (SEM) lead to generate an electrostatic potential. By using the method of image charges, this potential is defined in the chamber's space of such apparatus. The deduced formula is expressed in terms a general volumetric distribution which proposed to be an infinitesimal spherical extension. With aid of a binomial theorem the defined potential is expanded to a multipolar form. Then resultant formula is adopted to modify a novel mirror plot equation so as to detect the real distribution of trapped charges. Simulation results reveal that trapped charges may take a various sort of arrangement such as monopole, quadruple and octuple. But existence of any of these arrangements alone may never be take place, rather are some a formations of a mix of them. Influence of each type of these profiles depends on the distance between the incident electron and surface of a sample. Result also shows that trapped charge's amount of trapped charges can refer to a threshold for failing of point charge approximation. Copyright © 2017 Elsevier B.V. All rights reserved.
Charged particle multiplicities in deep inelastic scattering at HERA
NASA Astrophysics Data System (ADS)
Aid, S.; Anderson, M.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Babaev, A.; Bähr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Braunschweig, W.; Brisson, V.; Bruel, P.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burton, M. J.; Calvet, D.; Campbell, A. J.; Carli, T.; Charlet, M.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Cocks, S.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Cousinou, M.-C.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Davis, C. L.; Delcourt, B.; de Roeck, A.; de Wolf, E. A.; Dirkmann, M.; Dixon, P.; di Nezza, P.; Dlugosz, W.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Fahr, A. B.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gaede, F.; Garvey, J.; Gayler, J.; Gebauer, M.; Genzel, H.; Gerhards, R.; Glazov, A.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Golec-Biernat, K.; Gonzalez-Pineiro, B.; Gorelov, I.; Grab, C.; Grässler, H.; Greenshaw, T.; Griffiths, R. K.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Hadig, T.; Haidt, D.; Hajduk, L.; Hampel, M.; Haynes, W. J.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herynek, I.; Hess, M. F.; Hewitt, K.; Hildesheim, W.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Hoffmann, D.; Holtom, T.; Horisberger, R.; Hudgson, V. L.; Hütte, M.; Ibbotson, M.; Itterbeck, H.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johnson, D. P.; Jung, H.; Kalmus, P. I. P.; Kander, M.; Kant, D.; Kaschowitz, R.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kaufmann, O.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Lacour, D.; Laforge, B.; Lander, R.; Landon, M. P. J.; Lange, W.; Langenegger, U.; Laporte, J.-F.; Lebedev, A.; Lehner, F.; Levonian, S.; Lindström, G.; Lindstroem, M.; Link, J.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Lomas, J. W.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Meyer, A.; Meyer, A.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Migliori, A.; Mikocki, S.; Milstead, D.; Moeck, J.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, D.; Müller, G.; Müller, K.; Müller, M.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Négri, I.; Newman, P. R.; Newton, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Niggli, H.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Olsson, J. E.; Ozerov, D.; Palmen, P.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Pawletta, H.; Peppel, E.; Perez, E.; Phillips, J. P.; Pieuchot, A.; Pitzl, D.; Pope, G.; Prell, S.; Rabbertz, K.; Rädel, G.; Reimer, P.; Reinshagen, S.; Rick, H.; Riech, V.; Riedlberger, J.; Riepenhausen, F.; Riess, S.; Rizvi, E.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Solochenko, V.; Soloviev, Y.; Specka, A.; Spiekermann, J.; Spielman, S.; Spitzer, H.; Squinabol, F.; Steenbock, M.; Steffen, P.; Steinberg, R.; Steiner, H.; Steinhart, J.; Stella, B.; Stellberger, A.; Stier, J.; Stiewe, J.; Stößlein, U.; Stolze, K.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taševský, M.; Tchernyshov, V.; Tchetchelnitski, S.; Theissen, J.; Thiebaux, C.; Thompson, G.; Truöl, P.; Tsipolitis, G.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Vandenplas, D.; van Esch, P.; van Mechelen, P.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walther, A.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; West, L. R.; Wilksen, T.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wobisch, M.; Wünsch, E.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zini, P.; Zomer, F.; Zsembery, J.; Zuber, K.; Zurnedden, M.
1996-12-01
Using the H1 detector at HERA, charged particle multiplicity distributions in deep inelastic e + p scattering have been measured over a large kinematical region. The evolution with W and Q 2 of the multiplicity distribution and of the multiplicity moments in pseudorapidity domains of varying size is studied in the current fragmentation region of the hadronic centre-of-mass frame. The results are compared with data from fixed target lepton-nucleon interactions, e + e - annihilations and hadron-hadron collisions as well as with expectations from QCD based parton models. Fits to the Negative Binomial and Lognormal distributions are presented.
Wavelet analysis and scaling properties of time series
NASA Astrophysics Data System (ADS)
Manimaran, P.; Panigrahi, Prasanta K.; Parikh, Jitendra C.
2005-10-01
We propose a wavelet based method for the characterization of the scaling behavior of nonstationary time series. It makes use of the built-in ability of the wavelets for capturing the trends in a data set, in variable window sizes. Discrete wavelets from the Daubechies family are used to illustrate the efficacy of this procedure. After studying binomial multifractal time series with the present and earlier approaches of detrending for comparison, we analyze the time series of averaged spin density in the 2D Ising model at the critical temperature, along with several experimental data sets possessing multifractal behavior.
Boolean function applied to Mimosa pudica movements
Friedman, Pedro
2011-01-01
Seismonastic or thigmonastic movements of Mimosa pudica L. is mostly because of the fast loss of water from swollen motor cells, resulting in temporary collapse of cells and quick curvature in the parts where these cells are located. Because of this, the plant has been much studied since the 18th century, leading us to think about the classical binomial stimulus-response (action-reaction) when compared to animals. Mechanic and electrical stimuli were used to investigate the analogy of mimosa branch with an artificial neuron model and to observe the action potential propagation through the mimosa branch. Boolean function applied to the mimosa branch in analogy with an artificial neuron model is one of the peculiarities of our hypothesis. PMID:21847029
Multiple electron processes of He and Ne by proton impact
NASA Astrophysics Data System (ADS)
Terekhin, Pavel Nikolaevich; Montenegro, Pablo; Quinto, Michele; Monti, Juan; Fojon, Omar; Rivarola, Roberto
2016-05-01
A detailed investigation of multiple electron processes (single and multiple ionization, single capture, transfer-ionization) of He and Ne is presented for proton impact at intermediate and high collision energies. Exclusive absolute cross sections for these processes have been obtained by calculation of transition probabilities in the independent electron and independent event models as a function of impact parameter in the framework of the continuum distorted wave-eikonal initial state theory. A binomial analysis is employed to calculate exclusive probabilities. The comparison with available theoretical and experimental results shows that exclusive probabilities are needed for a reliable description of the experimental data. The developed approach can be used for obtaining the input database for modeling multiple electron processes of charged particles passing through the matter.
Valuating Privacy with Option Pricing Theory
NASA Astrophysics Data System (ADS)
Berthold, Stefan; Böhme, Rainer
One of the key challenges in the information society is responsible handling of personal data. An often-cited reason why people fail to make rational decisions regarding their own informational privacy is the high uncertainty about future consequences of information disclosures today. This chapter builds an analogy to financial options and draws on principles of option pricing to account for this uncertainty in the valuation of privacy. For this purpose, the development of a data subject's personal attributes over time and the development of the attribute distribution in the population are modeled as two stochastic processes, which fit into the Binomial Option Pricing Model (BOPM). Possible applications of such valuation methods to guide decision support in future privacy-enhancing technologies (PETs) are sketched.
Relaxed Poisson cure rate models.
Rodrigues, Josemar; Cordeiro, Gauss M; Cancho, Vicente G; Balakrishnan, N
2016-03-01
The purpose of this article is to make the standard promotion cure rate model (Yakovlev and Tsodikov, ) more flexible by assuming that the number of lesions or altered cells after a treatment follows a fractional Poisson distribution (Laskin, ). It is proved that the well-known Mittag-Leffler relaxation function (Berberan-Santos, ) is a simple way to obtain a new cure rate model that is a compromise between the promotion and geometric cure rate models allowing for superdispersion. So, the relaxed cure rate model developed here can be considered as a natural and less restrictive extension of the popular Poisson cure rate model at the cost of an additional parameter, but a competitor to negative-binomial cure rate models (Rodrigues et al., ). Some mathematical properties of a proper relaxed Poisson density are explored. A simulation study and an illustration of the proposed cure rate model from the Bayesian point of view are finally presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
P-Hacking in Orthopaedic Literature: A Twist to the Tail.
Bin Abd Razak, Hamid Rahmatullah; Ang, Jin-Guang Ernest; Attal, Hersh; Howe, Tet-Sen; Allen, John Carson
2016-10-19
"P-hacking" occurs when researchers preferentially select data or statistical analyses until nonsignificant results become significant. We wanted to evaluate if the phenomenon of p-hacking was evident in orthopaedic literature. We text-mined through all articles published in three top orthopaedic journals in 2015. For anonymity, we cipher-coded the three journals. We included all studies that reported a single p value to answer their main hypothesis. These p values were then charted and frequency graphs were generated to illustrate any evidence of p-hacking. Binomial tests were employed to look for evidence of evidential value and significance of p-hacking. Frequency plots for all three journals revealed evidence of p-hacking. Binomial tests for all three journals were significant for evidence of evidential value (p < 0.0001 for all). However, the binomial test for p-hacking was significant only for one journal (p = 0.0092). P-hacking is an evolving phenomenon that threatens to jeopardize the evidence-based practice of medicine. Although our results show that there is good evidential value for orthopaedic literature published in our top journals, there is some evidence of p-hacking of which authors and readers should be wary. Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated.
NASA Technical Reports Server (NTRS)
Generazio, Edward R.
2014-01-01
Unknown risks are introduced into failure critical systems when probability of detection (POD) capabilities are accepted without a complete understanding of the statistical method applied and the interpretation of the statistical results. The presence of this risk in the nondestructive evaluation (NDE) community is revealed in common statements about POD. These statements are often interpreted in a variety of ways and therefore, the very existence of the statements identifies the need for a more comprehensive understanding of POD methodologies. Statistical methodologies have data requirements to be met, procedures to be followed, and requirements for validation or demonstration of adequacy of the POD estimates. Risks are further enhanced due to the wide range of statistical methodologies used for determining the POD capability. Receiver/Relative Operating Characteristics (ROC) Display, simple binomial, logistic regression, and Bayes' rule POD methodologies are widely used in determining POD capability. This work focuses on Hit-Miss data to reveal the framework of the interrelationships between Receiver/Relative Operating Characteristics Display, simple binomial, logistic regression, and Bayes' Rule methodologies as they are applied to POD. Knowledge of these interrelationships leads to an intuitive and global understanding of the statistical data, procedural and validation requirements for establishing credible POD estimates.
Cocco, Arturo; Serra, Giuseppe; Lentini, Andrea; Deliperi, Salvatore; Delrio, Gavino
2015-09-01
The within- and between-plant distribution of the tomato leafminer, Tuta absoluta (Meyrick), was investigated in order to define action thresholds based on leaf infestation and to propose enumerative and binomial sequential sampling plans for pest management applications in protected crops. The pest spatial distribution was aggregated between plants, and median leaves were the most suitable sample to evaluate the pest density. Action thresholds of 36 and 48%, 43 and 56% and 60 and 73% infested leaves, corresponding to economic thresholds of 1 and 3% damaged fruits, were defined for tomato cultivars with big, medium and small fruits respectively. Green's method was a more suitable enumerative sampling plan as it required a lower sampling effort. Binomial sampling plans needed lower average sample sizes than enumerative plans to make a treatment decision, with probabilities of error of <0.10. The enumerative sampling plan required 87 or 343 leaves to estimate the population density in extensive or intensive ecological studies respectively. Binomial plans would be more practical and efficient for control purposes, needing average sample sizes of 17, 20 and 14 leaves to take a pest management decision in order to avoid fruit damage higher than 1% in cultivars with big, medium and small fruits respectively. © 2014 Society of Chemical Industry.
The Social Acceptance of Community Solar: A Portland Case Study
NASA Astrophysics Data System (ADS)
Weaver, Anne
Community solar is a renewable energy practice that's been adopted by multiple U.S. states and is being considered by many more, including the state of Oregon. A recent senate bill in Oregon, called the "Clean Electricity and Coal Transition Plan", includes a provision that directs the Oregon Public Utility Commission to establish a community solar program for investor-owned utilities by late 2017. Thus, energy consumers in Portland will be offered participation in community solar projects in the near future. Community solar is a mechanism that allows ratepayers to experience both the costs and benefits of solar energy while also helping to offset the proportion of fossil-fuel generated electricity in utility grids, thus aiding climate change mitigation. For community solar to achieve market success in the residential sector of Portland, ratepayers of investor-owned utilities must socially accept this energy practice. The aim of this study was to forecast the potential social acceptance of community solar among Portland residents by measuring willingness to participate in these projects. Additionally, consumer characteristics, attitudes, awareness, and knowledge were captured to assess the influence of these factors on intent to enroll in community solar. The theory of planned behavior, as well as the social acceptance, diffusion of innovation, and dual-interest theories were frameworks used to inform the analysis of community solar adoption. These research objectives were addressed through a mixed-mode survey of Portland residents, using a stratified random sample of Portland neighborhoods to acquire a gradient of demographics. 330 questionnaires were completed, yielding a 34.2% response rate. Descriptive statistics, binomial logistic regression models, and mean willingness to pay were the analyses conducted to measure the influence of project factors and demographic characteristics on likelihood of community solar participation. Roughly 60% of respondents exhibited interest in community solar enrollment. The logistic regression model revealed the percent change in utility bill (essentially the rate of return on the community solar investment) as a dramatically influential variable predicting willingness to participate. Community solar project scenarios also had a strong influence on willingness to participate: larger, cheaper, and distant projects were preferred over small and expensive local projects. Results indicate that community solar project features that accentuate affordability are most important to energy consumers. Additionally, demographic characteristics that were strongly correlated with willingness to enroll were politically liberal ideologies, higher incomes, current enrollment in green utility programs, and membership in an environmental organization. Thus, the market acceptance of community solar in Portland will potentially be broadened by emphasizing affordability over other features, such as community and locality. Additionally, I explored attitudinal influences on interest in community solar by conducting exploratory factor analysis on attitudes towards energy, climate change, and solar barriers and subsequently conducting binomial logistic regression models. Results found that perceiving renewable energy as environmentally beneficial was positively correlated with intent to enroll in community solar, which supported the notion that environmental attitudes will lead to environmental behaviors. The logistic regression model also revealed a negative correlation between community solar interest and negative attitudes towards renewable energy. Perceptions of solar barriers were mild, indicating that lack of an enabling mechanism may be the reason solar continues to be underutilized in this region.
Writing and overwriting short-term memory
Killeen, Peter R.
2008-01-01
An integrative account of short-term memory is based on data from pigeons trained to report the majority color in a sequence of lights. Performance showed strong recency effects, was invariant over changes in the interstimulus interval, and improved with increases in the intertrial interval. A compound model of binomial variance around geometrically decreasing memory described the data; a logit transformation rendered it isomorphic with other memory models. The model was generalized for variance in the parameters, where it was shown that averaging exponential and power functions from individuals or items with different decay rates generates new functions that are hyperbolic in time and in log time, respectively. The compound model provides a unified treatment of both the accrual and the dissipation of memory and is consistent with data from various experiments, including the choose-short bias in delayed recall, multielement stimuli, and Rubin and Wenzel’s (1996) meta-analyses of forgetting. PMID:11340865
Multi-scaling modelling in financial markets
NASA Astrophysics Data System (ADS)
Liu, Ruipeng; Aste, Tomaso; Di Matteo, T.
2007-12-01
In the recent years, a new wave of interest spurred the involvement of complexity in finance which might provide a guideline to understand the mechanism of financial markets, and researchers with different backgrounds have made increasing contributions introducing new techniques and methodologies. In this paper, Markov-switching multifractal models (MSM) are briefly reviewed and the multi-scaling properties of different financial data are analyzed by computing the scaling exponents by means of the generalized Hurst exponent H(q). In particular we have considered H(q) for price data, absolute returns and squared returns of different empirical financial time series. We have computed H(q) for the simulated data based on the MSM models with Binomial and Lognormal distributions of the volatility components. The results demonstrate the capacity of the multifractal (MF) models to capture the stylized facts in finance, and the ability of the generalized Hurst exponents approach to detect the scaling feature of financial time series.
Matranga, Domenica; Firenze, Alberto; Vullo, Angela
2013-10-01
The aim of this study was to show the potential of Bayesian analysis in statistical modelling of dental caries data. Because of the bounded nature of the dmft (DMFT) index, zero-inflated binomial (ZIB) and beta-binomial (ZIBB) models were considered. The effects of incorporating prior information available about the parameters of models were also shown. The data set used in this study was the Belo Horizonte Caries Prevention (BELCAP) study (Böhning et al. (1999)), consisting of five variables collected among 797 Brazilian school children designed to evaluate four programmes for reducing caries. Only the eight primary molar teeth were considered in the data set. A data augmentation algorithm was used for estimation. Firstly, noninformative priors were used to express our lack of knowledge about the regression parameters. Secondly, prior information about the probability of being a structural zero dmft and the probability of being caries affected in the subpopulation of susceptible children was incorporated. With noninformative priors, the best fitting model was the ZIBB. Education (OR = 0.76, 95% CrI: 0.59, 0.99), all interventions (OR = 0.46, 95% CrI: 0.35, 0.62), rinsing (OR = 0.61, 95% CrI: 0.47, 0.80) and hygiene (OR = 0.65, 95% CrI: 0.49, 0.86) were demonstrated to be factors protecting children from being caries affected. Being male increased the probability of being caries diseased (OR = 1.19, 95% CrI: 1.01, 1.42). However, after incorporating informative priors, ZIB models' estimates were not influenced, while ZIBB models reduced deviance and confirmed the association with all interventions and rinsing only. In our application, Bayesian estimates showed a similar accuracy and precision than likelihood-based estimates, although they offered many computational advantages and the possibility of expressing all forms of uncertainty in terms of probability. The overdispersion parameter could expound why the introduction of prior information had significant effects on the parameters of the ZIBB model, while ZIB estimates remained unchanged. Finally, the best performance of ZIBB compared to the ZIB model was shown to catch overdispersion in data. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Hoyer, A; Kuss, O
2015-05-20
In real life and somewhat contrary to biostatistical textbook knowledge, sensitivity and specificity (and not only predictive values) of diagnostic tests can vary with the underlying prevalence of disease. In meta-analysis of diagnostic studies, accounting for this fact naturally leads to a trivariate expansion of the traditional bivariate logistic regression model with random study effects. In this paper, a new model is proposed using trivariate copulas and beta-binomial marginal distributions for sensitivity, specificity, and prevalence as an expansion of the bivariate model. Two different copulas are used, the trivariate Gaussian copula and a trivariate vine copula based on the bivariate Plackett copula. This model has a closed-form likelihood, so standard software (e.g., SAS PROC NLMIXED) can be used. The results of a simulation study have shown that the copula models perform at least as good but frequently better than the standard model. The methods are illustrated by two examples. Copyright © 2015 John Wiley & Sons, Ltd.
Lv, Shao-Wa; Liu, Dong; Hu, Pan-Pan; Ye, Xu-Yan; Xiao, Hong-Bin; Kuang, Hai-Xue
2010-03-01
To optimize the process of extracting effective constituents from Aralia elata by response surface methodology. The independent variables were ethanol concentration, reflux time and solvent fold, the dependent variable was extraction rate of total saponins in Aralia elata. Linear or no-linear mathematic models were used to estimate the relationship between independent and dependent variables. Response surface methodology was used to optimize the process of extraction. The prediction was carried out through comparing the observed and predicted values. Regression coefficient of binomial fitting complex model was as high as 0.9617, the optimum conditions of extraction process were 70% ethanol, 2.5 hours for reflux, 20-fold solvent and 3 times for extraction. The bias between observed and predicted values was -2.41%. It shows the optimum model is highly predictive.
Miri, Mehdi; Khavasi, Amin; Mehrany, Khashayar; Rashidian, Bizhan
2010-01-15
The transmission-line analogy of the planar electromagnetic reflection problem is exploited to obtain a transmission-line model that can be used to design effective, robust, and wideband interference-based matching stages. The proposed model based on a new definition for a scalar impedance is obtained by using the reflection coefficient of the zeroth-order diffracted plane wave outside the photonic crystal. It is shown to be accurate for in-band applications, where the normalized frequency is low enough to ensure that the zeroth-order diffracted plane wave is the most important factor in determining the overall reflection. The frequency limitation of employing the proposed approach is explored, highly dispersive photonic crystals are considered, and wideband matching stages based on binomial impedance transformers are designed to work at the first two photonic bands.
Left-turn phase: permissive, protected, or both? A quasi-experimental design in New York City.
Chen, Li; Chen, Cynthia; Ewing, Reid
2015-03-01
The practice of left-turn phasing selection (permissive, protected-only, or both) varies from one locality to another. The literature evidence on this issue is equally mixed and insufficient. In this study, we evaluate the safety impacts of changing left-turn signal phasing from permissive to protected/permissive or protected-only at 68 intersections in New York City using a rigorous quasi-experimental design accompanied with regression modeling. Changes in police reported crashes including total crashes, multiple-vehicle crashes, left-turn crashes, pedestrian crashes and bicyclist crashes were compared between before period and after period for the treatment group and comparison group by means of negative binomial regression using a Generalized Estimating Equations (GEE) technique. Confounding factors such as the built environment characteristics that were not controlled in comparison group selection are accounted for by this approach. The results show that the change of permissive left-turn signal phasing to protected/permissive or protected-only signal phasing does not result in a significant reduction in intersection crashes. Though the protected-only signal phasing does reduce the left-turn crashes and pedestrian crashes, this reduction was offset by a possible increase in over-taking crashes. These results suggest that left-turn phasing should not be treated as a universal solution that is always better than the permissive control for left-turn vehicles. The selection and implementation of left-turn signal phasing needs to be done carefully, considering potential trade-offs between safety and delay, and many other factors such as geometry, traffic flows and operations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Population-level resource selection by sympatric brown and American black bears in Alaska
Belant, Jerrold L.; Griffith, Brad; Zhang, Yingte; Follmann, Erich H.; Adams, Layne G.
2010-01-01
Distribution theory predicts that for two species living in sympatry, the subordinate species would be constrained from using the most suitable resources (e.g., habitat), resulting in its use of less suitable habitat and spatial segregation between species. We used negative binomial generalized linear mixed models with fixed effects to estimate seasonal population-level resource selection at two spatial resolutions for female brown bears (Ursus arctos) and female American black bears (U. americanus) in southcentral Alaska during May–September 2000. Black bears selected areas occupied by brown bears during spring which may be related to spatially restricted (i.e., restricted to low elevations) but dispersed or patchy availability of food. In contrast, black bears avoided areas occupied by brown bears during summer. Brown bears selected areas near salmon streams during summer, presumably to access spawning salmon. Use of areas with high berry production by black bears during summer appeared in response to avoidance of areas containing brown bears. Berries likely provided black bears a less nutritious, but adequate food source. We suggest that during summer, black bears were displaced by brown bears, which supports distribution theory in that black bears appeared to be partially constrained from areas containing salmon, resulting in their use of areas containing less nutritious forage. Spatial segregation of brown and American black bears apparently occurs when high-quality resources are spatially restricted and alternate resources are available to the subordinate species. This and previous work suggest that individual interactions between species can result in seasonal population-level responses.
Mínguez-Alarcón, L; Afeiche, M C; Chiu, Y-H; Vanegas, J C; Williams, P L; Tanrikut, C; Toth, T L; Hauser, R; Chavarro, J E
2015-07-01
Male factor etiology may be a contributing factor in up to 60% of infertility cases. Dietary intake of phytoestrogens has been related to abnormal semen quality and hormone levels. However, its effect on couple fecundity is still unclear. Intake of soy products was assessed in 184 men from couples undergoing infertility treatment with in vitro fertilization. Couples were recruited between February 2007 and May 2014 and prospectively followed to document treatment outcomes including fertilization, implantation, clinical pregnancy and live birth. Multivariate generalized linear mixed models with random intercepts, binomial distribution and logit link function were used to examine this relation while accounting for repeated treatment cycles and adjusting for potential confounders. Male partner's intake of soy foods and soy isoflavones was unrelated to fertilization rates, the proportions of poor quality embryos, accelerated or slow embryo cleavage rate, and implantation, clinical pregnancy and live birth. The adjusted live birth rates per initiated cycle (95% CI) for partners of men in increasing categories of soy food intake were 0.36 (0.28-0.45), 0.42 (0.29-0.56), 0.36 (0.24-0.51), and 0.37 (0.24-0.52), respectively. Soy food intake in men was not related to clinical outcomes among couples presenting at an infertility clinic. Data on the relation between phytoestrogens and male reproductive potential remain scarce and additional research is required to clarify its role in human reproduction. © 2015 American Society of Andrology and European Academy of Andrology.
Colombo, Valeria C; Nava, Santiago; Antoniazzi, Leandro R; Monje, Lucas D; Racca, Andrea L; Guglielmone, Alberto A; Beldomenico, Pablo M
2015-10-01
The present study explores associations of different factors (i.e. host parameters, presence of other ectoparasites and [mainly biotic] environmental factors) with burdens of Ixodes loricatus immature stages in one of its main hosts in Argentina, the rodent Akodon azarae. For 2 years, rodents were trapped and sampled monthly at 16 points located in four different sites in the Parana River Delta region. Data were analysed with generalized linear mixed models with a negative binomial response (counts of larvae or nymphs). The independent variables assessed were (a) environmental: trapping year, presence of cattle, type of vegetation, rodent abundance; (b) host parameters: body length, sex, body condition, blood cell counts, natural antibody titers and (c) co-infestation with other ectoparasites. Two-way interaction terms deemed a priori as relevant were also included in the analysis. Most of the associations investigated were found significant, but in general, the direction and magnitude of the associations were context-dependent. An exception was the presence of cattle, which was consistently negatively associated with both larvae and nymphs independently of all other variables considered and had the strongest effect on tick burdens. Mites, fleas and Amblyomma triste were also significantly associated (mostly positively) with larval and nymph burdens, and in many cases, they influenced associations with environmental or host factors. Our findings strongly support that raising cattle may have a substantial impact on the dynamics of I. loricatus and that interactions within the ectoparasite community may be an important-but generally ignored-driver of tick dynamics.
Temporal Analysis of Market Competition and Density in Renal Transplantation Volume and Outcome.
Adler, Joel T; Yeh, Heidi; Markmann, James F; Nguyen, Louis L
2016-03-01
Kidney transplant centers are distributed unevenly throughout 58 donor service areas (DSAs) in the United States. Market competition and transplant center density may affect transplantation access and outcomes. We evaluated the role of spatial organization of transplant centers in conjunction with market competition in the conduct of kidney transplantation. The Scientific Registry of Transplant Recipients was queried for market characteristics associated with kidney transplantation between 2003 and 2012. Market competition was calculated using the Herfindahl Hirschman Index. Kidney transplant centers were geocoded to measure spatial organization by the average nearest neighbor (ANN) method. Kidney quality was assessed by kidney donor risk index. A hierarchical negative binomial mixed effects model tested the relationship between market characteristics and annual kidney transplants by DSA. About 152,071 kidney transplants were performed at 229 adult kidney transplant centers in 58 DSAs. Greater market competition was associated with kidney transplant center spatial clustering (P < 0.001). In multivariable analysis, more kidney transplant centers (incidence rate ratio [IRR], 1.04; P = 0.005), 100 more new listings (IRR, 1.02; P = 0.003), 100 more deceased donors (IRR, 1.23; P < 0.001), 100 more new dialysis registrants (IRR, 1.01; P < 0.001), and higher kidney donor risk index (IRR, 1.98; P < 0.001) were associated with increased kidney transplants. After controlling for market characteristics, larger numbers of kidney transplant centers were associated with more kidney transplants and increased utilization of deceased donor kidneys. This underlines the importance of understanding geography as well as competition in improving access to kidney transplantation.
Cvikl, Barbara; Haubenberger-Praml, Gertraud; Drabo, Petra; Hagmann, Michael; Gruber, Reinhard; Moritz, Andreas; Nell, Andrea
2014-05-09
A low level of education and the migration background of parents are associated with the development of caries in children. The aim of this study was to evaluate whether a higher educational level of parents can overcome risks for the development of caries in immigrants in Vienna, Austria. The educational level of the parents, the school type, and the caries status of 736 randomly selected twelve-year-old children with and without migration background was determined in this cross sectional study. In children attending school in Vienna the decayed, missing, and filled teeth (DMFT) index was determined. For statistical analysis, a mixed negative-binomial-model was used. The caries status of the children with migration background was significantly worse compared to that of the native Viennese population. A significant interaction was found between migration background and the educational level of the parents (p = 0.045). No interaction was found between the school type and either the migration background (p = 0.220) or the education level of the parents (p = 0.08). In parents with a higher scholarly education level, migration background (p < 0.01) and school type (p = 0.018) showed an association with DMFT values. In parents with a low education level, however, migration background and school type had no significant association with DMFT values. These data indicate that children with a migration background are at higher risk to acquire caries than other Viennese children, even when the parents have received a higher education.
Liquid nitrogen for the treatment of actinic keratosis: a longitudinal assessment.
Ianhez, Mayra; Miot, Hélio Amante; Bagatin, Edileia
2014-08-01
Cryosurgery with liquid nitrogen is one of the most used treatments for actinic keratosis. We aimed to study the effectiveness of two consecutive sessions of cryosurgery for actinic keratosis and investigate factors associated with its therapeutic success. Hence, we conducted a longitudinal study including 92 patients of both sexes, aged 50-75 years with 5-50 actinic keratosis on the face and forearms, who underwent cryosurgery and treatment with sunscreen SPF 30, at baseline and after 120 days. The lesions were counted in duplicate by the same examiner before the start of treatment and after 120 (N=92) and 300 days (N=33), represented by their medians and quartiles and compared using the generalized linear mixed effects model (negative binomial). Treatment behavior was investigated in relation to sex, age, education, skin type, smoking, sun exposure at work and the use of aspirin, anti-inflammatory and angiotensin-converting enzyme inhibitors. There was a significant reduction in the actinic keratosis count on the face and forearms (p<0.05). Our results confirmed the effectiveness of cryosurgery for actinic keratosis, with a 57% reduction in the number, and size of the lesions. Higher education levels (p=0.02) and less sun exposure at work (p=0.02) independently promoted a significant reduction in the actinic keratosis count. Different population groups showed characteristic responses to the treatment, which may be explained by the degree of adherence to the use of photoprotection. In two sessions, cryosurgery with liquid nitrogen reduced the actinic keratosis count. Copyright © 2014 Elsevier Inc. All rights reserved.
Linard, Catherine; Lamarque, Pénélope; Heyman, Paul; Ducoffre, Geneviève; Luyasu, Victor; Tersago, Katrien; Vanwambeke, Sophie O; Lambin, Eric F
2007-05-02
Vector-borne and zoonotic diseases generally display clear spatial patterns due to different space-dependent factors. Land cover and land use influence disease transmission by controlling both the spatial distribution of vectors or hosts, and the probability of contact with susceptible human populations. The objective of this study was to combine environmental and socio-economic factors to explain the spatial distribution of two emerging human diseases in Belgium, Puumala virus (PUUV) and Lyme borreliosis. Municipalities were taken as units of analysis. Negative binomial regressions including a correction for spatial endogeneity show that the spatial distribution of PUUV and Lyme borreliosis infections are associated with a combination of factors linked to the vector and host populations, to human behaviours, and to landscape attributes. Both diseases are associated with the presence of forests, which are the preferred habitat for vector or host populations. The PUUV infection risk is higher in remote forest areas, where the level of urbanisation is low, and among low-income populations. The Lyme borreliosis transmission risk is higher in mixed landscapes with forests and spatially dispersed houses, mostly in wealthy peri-urban areas. The spatial dependence resulting from a combination of endogenous and exogenous processes could be accounted for in the model on PUUV but not for Lyme borreliosis. A large part of the spatial variation in disease risk can be explained by environmental and socio-economic factors. The two diseases not only are most prevalent in different regions but also affect different groups of people. Combining these two criteria may increase the efficiency of information campaigns through appropriate targeting.
Bybee, S N; Scorza, A V; Lappin, M R
2011-01-01
Beneficial effects of probiotics have never been analyzed in an animal shelter. Dogs and cats housed in an animal shelter and administered a probiotic are less likely to have diarrhea of ≥2 days duration than untreated controls. Two hundred and seventeen cats and 182 dogs. Double blinded and placebo controlled. Shelter dogs and cats were housed in 2 separate rooms for each species. For 4 weeks, animals in 1 room for each species was fed Enterococcus faecium SF68 while animals in the other room were fed a placebo. After a 1-week washout period, the treatments by room were switched and the study continued an additional 4 weeks. A standardized fecal score system was applied to feces from each animal every day by a blinded individual. Feces of animals with and without diarrhea were evaluated for enteric parasites. Data were analyzed by a generalized linear mixed model using a binomial distribution with treatment being a fixed effect and the room being a random effect. The percentage of cats with diarrhea ≥2 days was significantly lower (P = .0297) in the probiotic group (7.4%) when compared with the placebo group (20.7%). Statistical differences between groups of dogs were not detected but diarrhea was uncommon in both groups of dogs during the study. Cats fed SF68 had fewer episodes of diarrhea of ≥2 days when compared with controls suggests the probiotic may have beneficial effects on the gastrointestinal tract. Copyright © 2011 by the American College of Veterinary Internal Medicine.
Stroke code simulation benefits advanced practice providers similar to neurology residents.
Khan, Muhib; Baird, Grayson L; Price, Theresa; Tubergen, Tricia; Kaskar, Omran; De Jesus, Michelle; Zachariah, Joseph; Oostema, Adam; Scurek, Raymond; Coleman, Robert R; Sherman, Wendy; Hingtgen, Cynthia; Abdelhak, Tamer; Smith, Brien; Silver, Brian
2018-04-01
Advanced practice providers (APPs) are important members of stroke teams. Stroke code simulations offer valuable experience in the evaluation and treatment of stroke patients without compromising patient care. We hypothesized that simulation training would increase APP confidence, comfort level, and preparedness in leading a stroke code similar to neurology residents. This is a prospective quasi-experimental, pretest/posttest study. Nine APPs and 9 neurology residents participated in 3 standardized simulated cases to determine need for IV thrombolysis, thrombectomy, and blood pressure management for intracerebral hemorrhage. Emergency medicine physicians and neurologists were preceptors. APPs and residents completed a survey before and after the simulation. Generalized mixed modeling assuming a binomial distribution was used to evaluate change. On a 5-point Likert scale (1 = strongly disagree and 5 = strongly agree), confidence in leading a stroke code increased from 2.4 to 4.2 ( p < 0.05) among APPs. APPs reported improved comfort level in rapidly assessing a stroke patient for thrombolytics (3.1-4.2; p < 0.05), making the decision to give thrombolytics (2.8 vs 4.2; p < 0.05), and assessing a patient for embolectomy (2.4-4.0; p < 0.05). There was no difference in the improvement observed in all the survey questions as compared to neurology residents. Simulation training is a beneficial part of medical education for APPs and should be considered in addition to traditional didactics and clinical training. Further research is needed to determine whether simulation education of APPs results in improved treatment times and outcomes of acute stroke patients.
2014-01-01
Background A low level of education and the migration background of parents are associated with the development of caries in children. The aim of this study was to evaluate whether a higher educational level of parents can overcome risks for the development of caries in immigrants in Vienna, Austria. Methods The educational level of the parents, the school type, and the caries status of 736 randomly selected twelve-year-old children with and without migration background was determined in this cross sectional study. In children attending school in Vienna the decayed, missing, and filled teeth (DMFT) index was determined. For statistical analysis, a mixed negative-binomial-model was used. Results The caries status of the children with migration background was significantly worse compared to that of the native Viennese population. A significant interaction was found between migration background and the educational level of the parents (p = 0.045). No interaction was found between the school type and either the migration background (p = 0.220) or the education level of the parents (p = 0.08). In parents with a higher scholarly education level, migration background (p < 0.01) and school type (p = 0.018) showed an association with DMFT values. In parents with a low education level, however, migration background and school type had no significant association with DMFT values. Conclusion These data indicate that children with a migration background are at higher risk to acquire caries than other Viennese children, even when the parents have received a higher education. PMID:24886105
Risk factors related to Toxoplasma gondii seroprevalence in indoor-housed Dutch dairy goats.
Deng, Huifang; Dam-Deisz, Cecile; Luttikholt, Saskia; Maas, Miriam; Nielen, Mirjam; Swart, Arno; Vellema, Piet; van der Giessen, Joke; Opsteegh, Marieke
2016-02-01
Toxoplasma gondii can cause disease in goats, but also has impact on human health through food-borne transmission. Our aims were to determine the seroprevalence of T. gondii infection in indoor-housed Dutch dairy goats and to identify the risk factors related to T. gondii seroprevalence. Fifty-two out of ninety approached farmers with indoor-kept goats (58%) participated by answering a standardized questionnaire and contributing 32 goat blood samples each. Serum samples were tested for T. gondii SAG1 antibodies by ELISA and results showed that the frequency distribution of the log10-transformed OD-values fitted well with a binary mixture of a shifted gamma and a shifted reflected gamma distribution. The overall animal seroprevalence was 13.3% (95% CI: 11.7–14.9%), and at least one seropositive animal was found on 61.5% (95% CI: 48.3–74.7%) of the farms. To evaluate potential risk factors on herd level, three modeling strategies (Poisson, negative binomial and zero-inflated) were compared. The negative binomial model fitted the data best with the number of cats (1–4 cats: IR: 2.6, 95% CI: 1.1–6.5; > = 5 cats:IR: 14.2, 95% CI: 3.9–51.1) and mean animal age (IR: 1.5, 95% CI: 1.1–2.1) related to herd positivity. In conclusion, the ELISA test was 100% sensitive and specific based on binary mixture analysis. T. gondii infection is prevalent in indoor housed Dutch dairy goats but at a lower overall animal level seroprevalence than outdoor farmed goats in other European countries, and cat exposure is an important risk factor.
del Socorro Herrera, Miriam; Medina-Solis, Carlo Eduardo; Minaya-Sánchez, Mirna; Pontigo-Loyola, América Patricia; Villalobos-Rodelo, Juan José; Islas-Granillo, Horacio; de la Rosa-Santillana, Rubén; Maupomé, Gerardo
2013-01-01
Background Our study aimed to evaluate the effect of various risk indicators for dental caries on primary teeth of Nicaraguan children (from Leon, Nicaragua) ages 6 to 9, using the negative binomial regression model. Material/Methods A cross-sectional study was carried out to collect clinical, demographic, socioeconomic, and behavioral data from 794 schoolchildren ages 6 to 9 years, randomly selected from 25 schools in the city of León, Nicaragua. Clinical examinations for dental caries (dmft index) were performed by 2 trained and standardized examiners. Socio-demographic, socioeconomic, and behavioral data were self-reported using questionnaires. Multivariate negative binomial regression (NBR) analysis was used. Results Mean age was 7.49±1.12 years. Boys accounted for 50.1% of the sample. Mean dmft was 3.54±3.13 and caries prevalence (dmft >0) was 77.6%. In the NBR multivariate model (p<0.05), for each year of age, the expected mean dmft decreased by 7.5%. Brushing teeth at least once a day and having received preventive dental care in the last year before data collection were associated with declines in the expected mean dmft by 19.5% and 69.6%, respectively. Presence of dental plaque increased the expected mean dmft by 395.5%. Conclusions The proportion of students with caries in this sample was high. We found associations between dental caries in the primary dentition and dental plaque, brushing teeth at least once a day, and having received preventive dental care. To improve oral health, school programs and/or age-appropriate interventions need to be developed based on the specific profile of caries experience and the associated risk indicators. PMID:24247119
Frequency distribution of Echinococcus multilocularis and other helminths of foxes in Kyrgyzstan
I., Ziadinov; P., Deplazes; A., Mathis; B., Mutunova; K., Abdykerimov; R., Nurgaziev; P.R, Torgerson
2010-01-01
Echinococcosis is a major emerging zoonosis in central Asia. A study of the helminth fauna of foxes from Naryn Oblast in central Kyrgyzstan was undertaken to investigate the abundance of Echinococcus multilocularis in a district where a high prevalence of this parasite had previously been detected in dogs. A total of 151 foxes (Vulpes vulpes) were investigated in a necropsy study. Of these 96 (64%) were infected with E. multilocularis with a mean abundance of 8669 parasites per fox. This indicates that red foxes are a major definitive host of E. multilocularis in this country. This also demonstrates that the abundance and prevalence of E. multilocularis in the natural definitive host are likely to be high in geographical regions where there is a concomitant high prevalence in alternative definitive hosts such as dogs. In addition Mesocestoides spp., Dipylidium caninum, Taenia spp., Toxocara canis, Toxascaris leonina, Capillaria and Acanthocephala spp. were found in 99 (66%), 50 (33%), 48 (32%), 46 (30%), 9 (6%), 34 (23%) and 2 (1%) of foxes, respectively. The prevalence but not the abundance of E. multilocularis decreased with age. The abundance of Dipylidium caninum also decreased with age. The frequency distribution of E. multilocularis and Mesocestoides spp. followed a zero inflated negative binomial distribution, whilst all other helminths had a negative binomial distribution. This demonstrates that the frequency distribution of positive counts and not just the frequency of zeros in the data set can determine if a zero inflated or non-zero inflated model is more appropriate. This is because the prevalences of E. multolocularis and Mesocestoides spp. were the highest (and hence had fewest zero counts) yet the parasite distribution nevertheless gave a better fit to the zero inflated models. PMID:20434845
Tellier, Stéphanie; Dallocchio, Aymeric; Guigonis, Vincent; Saint-Marcoux, Frank; Llanas, Brigitte; Ichay, Lydia; Bandin, Flavio; Godron, Astrid; Morin, Denis; Brochard, Karine; Gandia, Peggy; Bouchet, Stéphane; Marquet, Pierre; Decramer, Stéphane
2016-01-01
Background and objectives Therapeutic drug monitoring of mycophenolic acid can improve clinical outcome in organ transplantation and lupus, but data are scarce in idiopathic nephrotic syndrome. The aim of our study was to investigate whether mycophenolic acid pharmacokinetics are associated with disease control in children receiving mycophenolate mofetil for the treatment of steroid–dependent nephrotic syndrome. Design, setting, participants, & measurements This was a retrospective multicenter study including 95 children with steroid–dependent nephrotic syndrome treated with mycophenolate mofetil with or without steroids. Area under the concentration-time curve of mycophenolic acid was determined in all children on the basis of sampling times at 20, 60, and 180 minutes postdose, using Bayesian estimation. The association between a threshold value of the area under the concentration-time curve of mycophenolic acid and the relapse rate was assessed using a negative binomial model. Results In total, 140 areas under the concentration-time curve of mycophenolic acid were analyzed. The findings indicate individual dose adaptation in 53 patients (38%) to achieve an area under the concentration-time curve target of 30–60 mg·h/L. In a multivariable negative binomial model including sex, age at disease onset, time to start of mycophenolate mofetil, previous immunomodulatory treatment, and concomitant prednisone dose, a level of area under the concentration-time curve of mycophenolic acid >45 mg·h/L was significantly associated with a lower relapse rate (rate ratio, 0.65; 95% confidence interval, 0.46 to 0.89; P=0.01). Conclusions Therapeutic drug monitoring leading to individualized dosing may improve the efficacy of mycophenolate mofetil in steroid–dependent nephrotic syndrome. Additional prospective studies are warranted to determine the optimal target for area under the concentration-time curve of mycophenolic acid in this population. PMID:27445161
Tellier, Stéphanie; Dallocchio, Aymeric; Guigonis, Vincent; Saint-Marcoux, Frank; Llanas, Brigitte; Ichay, Lydia; Bandin, Flavio; Godron, Astrid; Morin, Denis; Brochard, Karine; Gandia, Peggy; Bouchet, Stéphane; Marquet, Pierre; Decramer, Stéphane; Harambat, Jérôme
2016-10-07
Therapeutic drug monitoring of mycophenolic acid can improve clinical outcome in organ transplantation and lupus, but data are scarce in idiopathic nephrotic syndrome. The aim of our study was to investigate whether mycophenolic acid pharmacokinetics are associated with disease control in children receiving mycophenolate mofetil for the treatment of steroid-dependent nephrotic syndrome. This was a retrospective multicenter study including 95 children with steroid-dependent nephrotic syndrome treated with mycophenolate mofetil with or without steroids. Area under the concentration-time curve of mycophenolic acid was determined in all children on the basis of sampling times at 20, 60, and 180 minutes postdose, using Bayesian estimation. The association between a threshold value of the area under the concentration-time curve of mycophenolic acid and the relapse rate was assessed using a negative binomial model. In total, 140 areas under the concentration-time curve of mycophenolic acid were analyzed. The findings indicate individual dose adaptation in 53 patients (38%) to achieve an area under the concentration-time curve target of 30-60 mg·h/L. In a multivariable negative binomial model including sex, age at disease onset, time to start of mycophenolate mofetil, previous immunomodulatory treatment, and concomitant prednisone dose, a level of area under the concentration-time curve of mycophenolic acid >45 mg·h/L was significantly associated with a lower relapse rate (rate ratio, 0.65; 95% confidence interval, 0.46 to 0.89; P =0.01). Therapeutic drug monitoring leading to individualized dosing may improve the efficacy of mycophenolate mofetil in steroid-dependent nephrotic syndrome. Additional prospective studies are warranted to determine the optimal target for area under the concentration-time curve of mycophenolic acid in this population. Copyright © 2016 by the American Society of Nephrology.
[Association between cesarean birth and the risk of obesity in 6-17 year-olds].
Wang, Z H; Xu, R B; Dong, Y H; Yang, Y D; Wang, S; Wang, X J; Yang, Z G; Zou, Z Y; Ma, J
2017-12-10
Objective: To explore the association between cesarean section and obesity in child and adolescent. Methods: In this study, a total number of 42 758 primary and middle school students aged between 6 and 17 were selected, using the stratified cluster sampling method in 93 primary and middle schools in Hunan, Ningxia, Tianjin, Chongqing, Liaoning, Shanghai and Guangdong provinces and autonomous regions. Log-Binomial regression model was used to analyze the association between cesarean section and obesity in childhood or adolescent. Results: Mean age of the subjects was (10.5±3.2) years. The overall rate of cesarean section among subjects attending primary or secondary schools was 42.3%, with 55.9% in boys and, 40.6% in girls respectively and with difference statistically significant ( P <0.001). The rate on obesity among those that received cesarean section (17.6%) was significantly higher than those who experienced vaginal delivery (10.2%) ( P <0.001). Results from the log-binomial regression model showed that cesarean section significantly increased the risk of obesity in child and adolescent ( OR =1.72, 95% CI : 1.63-1.82; P <0.001). After adjusting for factors as sex, residential areas (urban or rural), feeding patterns, frequencies of milk-feeding, eating high-energy foods, eating fried foods and the levels of parental education, family income, parental obesity, physical activity levels, gestational age and birth weight etc ., the differences were still statistically significant ( OR =1.48, 95% CI : 1.39-1.57; P <0.001). Conclusion: The rate of cesarean section among pregnant women in China appeared high which may significantly increase the risk of obesity in child or adolescent.
Minaya-Sánchez, Mirna; Medina-Solís, Carlo E.; Vallejos-Sánchez, Ana A.; Marquez-Corona, Maria L.; Pontigo-Loyola, América P.; Islas-Granillo, Horacio; Maupomé, Gerardo
2012-01-01
Background: Diverse variables are implicated in the pathogenesis of gingival recession; more detailed knowledge about the relationship between the clinical presentation of gingival recession and assorted risk indicators may lead to improved patient monitoring, early intervention, and subsequent prevention. The objective was to evaluate clinically gingival recession in a homogeneous Mexican adult male population and to determine the strength of association with related factors. Method: A cross-sectional study was carried out in a largely homogeneous group in terms of ethnic background, socioeconomic status, gender, occupation, and medical/dental insurance, in Campeche, Mexico. Periodontal examinations were undertaken to determine diverse clinical dental variables. All periodontal clinical examinations were assessed using the Florida Probe System, a dental chair and one examiner. Questionnaires were used to collect diverse risk indicators. Statistical analyses were undertaken with negative binomial regression models. Results: The mean number of sites with gingival recession per subject was 6.73±5.81; the prevalence was 87.6%. In the negative binomial regression model we observed that for (i) each year of age, and (ii) each percentage unit of increase in sites with plaque, and (iii) with suppuration, mean sites with gingival recession increased 2.9%, 1.0% and 13.0%, respectively. Having a spouse was associated with gingival recession. Conclusions: We observed association between gingival recession, and sociodemographic and clinical parameters. Patients need to be educated about risk indicators for gingival recession as well as the preventive maneuvers that may be implemented to minimize its occurrence. The potential of improved oral self-care to prevent a largely benign condition such as gingival recession is important, given the associated disorders that may ensue root exposure, such as root caries and root hypersensitivity. Key words:Oral health, periodontal health, gingival recession, adults, Mexico. PMID:22549678
Choi, Seung Hoan; Labadorf, Adam T; Myers, Richard H; Lunetta, Kathryn L; Dupuis, Josée; DeStefano, Anita L
2017-02-06
Next generation sequencing provides a count of RNA molecules in the form of short reads, yielding discrete, often highly non-normally distributed gene expression measurements. Although Negative Binomial (NB) regression has been generally accepted in the analysis of RNA sequencing (RNA-Seq) data, its appropriateness has not been exhaustively evaluated. We explore logistic regression as an alternative method for RNA-Seq studies designed to compare cases and controls, where disease status is modeled as a function of RNA-Seq reads using simulated and Huntington disease data. We evaluate the effect of adjusting for covariates that have an unknown relationship with gene expression. Finally, we incorporate the data adaptive method in order to compare false positive rates. When the sample size is small or the expression levels of a gene are highly dispersed, the NB regression shows inflated Type-I error rates but the Classical logistic and Bayes logistic (BL) regressions are conservative. Firth's logistic (FL) regression performs well or is slightly conservative. Large sample size and low dispersion generally make Type-I error rates of all methods close to nominal alpha levels of 0.05 and 0.01. However, Type-I error rates are controlled after applying the data adaptive method. The NB, BL, and FL regressions gain increased power with large sample size, large log2 fold-change, and low dispersion. The FL regression has comparable power to NB regression. We conclude that implementing the data adaptive method appropriately controls Type-I error rates in RNA-Seq analysis. Firth's logistic regression provides a concise statistical inference process and reduces spurious associations from inaccurately estimated dispersion parameters in the negative binomial framework.
Assessing operating characteristics of CAD algorithms in the absence of a gold standard
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy Choudhury, Kingshuk; Paik, David S.; Yi, Chin A.
2010-04-15
Purpose: The authors examine potential bias when using a reference reader panel as ''gold standard'' for estimating operating characteristics of CAD algorithms for detecting lesions. As an alternative, the authors propose latent class analysis (LCA), which does not require an external gold standard to evaluate diagnostic accuracy. Methods: A binomial model for multiple reader detections using different diagnostic protocols was constructed, assuming conditional independence of readings given true lesion status. Operating characteristics of all protocols were estimated by maximum likelihood LCA. Reader panel and LCA based estimates were compared using data simulated from the binomial model for a range ofmore » operating characteristics. LCA was applied to 36 thin section thoracic computed tomography data sets from the Lung Image Database Consortium (LIDC): Free search markings of four radiologists were compared to markings from four different CAD assisted radiologists. For real data, bootstrap-based resampling methods, which accommodate dependence in reader detections, are proposed to test of hypotheses of differences between detection protocols. Results: In simulation studies, reader panel based sensitivity estimates had an average relative bias (ARB) of -23% to -27%, significantly higher (p-value <0.0001) than LCA (ARB -2% to -6%). Specificity was well estimated by both reader panel (ARB -0.6% to -0.5%) and LCA (ARB 1.4%-0.5%). Among 1145 lesion candidates LIDC considered, LCA estimated sensitivity of reference readers (55%) was significantly lower (p-value 0.006) than CAD assisted readers' (68%). Average false positives per patient for reference readers (0.95) was not significantly lower (p-value 0.28) than CAD assisted readers' (1.27). Conclusions: Whereas a gold standard based on a consensus of readers may substantially bias sensitivity estimates, LCA may be a significantly more accurate and consistent means for evaluating diagnostic accuracy.« less
Herrera, Miriam del Socorro; Medina-Solís, Carlo Eduardo; Minaya-Sánchez, Mirna; Pontigo-Loyola, América Patricia; Villalobos-Rodelo, Juan José; Islas-Granillo, Horacio; de la Rosa-Santillana, Rubén; Maupomé, Gerardo
2013-11-19
Our study aimed to evaluate the effect of various risk indicators for dental caries on primary teeth of Nicaraguan children (from Leon, Nicaragua) ages 6 to 9, using the negative binomial regression model. A cross-sectional study was carried out to collect clinical, demographic, socioeconomic, and behavioral data from 794 schoolchildren ages 6 to 9 years, randomly selected from 25 schools in the city of León, Nicaragua. Clinical examinations for dental caries (dmft index) were performed by 2 trained and standardized examiners. Socio-demographic, socioeconomic, and behavioral data were self-reported using questionnaires. Multivariate negative binomial regression (NBR) analysis was used. Mean age was 7.49 ± 1.12 years. Boys accounted for 50.1% of the sample. Mean dmft was 3.54 ± 3.13 and caries prevalence (dmft >0) was 77.6%. In the NBR multivariate model (p<0.05), for each year of age, the expected mean dmft decreased by 7.5%. Brushing teeth at least once a day and having received preventive dental care in the last year before data collection were associated with declines in the expected mean dmft by 19.5% and 69.6%, respectively. Presence of dental plaque increased the expected mean dmft by 395.5%. The proportion of students with caries in this sample was high. We found associations between dental caries in the primary dentition and dental plaque, brushing teeth at least once a day, and having received preventive dental care. To improve oral health, school programs and/or age-appropriate interventions need to be developed based on the specific profile of caries experience and the associated risk indicators.
A mixing timescale model for TPDF simulations of turbulent premixed flames
Kuron, Michael; Ren, Zhuyin; Hawkes, Evatt R.; ...
2017-02-06
Transported probability density function (TPDF) methods are an attractive modeling approach for turbulent flames as chemical reactions appear in closed form. However, molecular micro-mixing needs to be modeled and this modeling is considered a primary challenge for TPDF methods. In the present study, a new algebraic mixing rate model for TPDF simulations of turbulent premixed flames is proposed, which is a key ingredient in commonly used molecular mixing models. The new model aims to properly account for the transition in reactive scalar mixing rate behavior from the limit of turbulence-dominated mixing to molecular mixing behavior in flamelets. An a priorimore » assessment of the new model is performed using direct numerical simulation (DNS) data of a lean premixed hydrogen–air jet flame. The new model accurately captures the mixing timescale behavior in the DNS and is found to be a significant improvement over the commonly used constant mechanical-to-scalar mixing timescale ratio model. An a posteriori TPDF study is then performed using the same DNS data as a numerical test bed. The DNS provides the initial conditions and time-varying input quantities, including the mean velocity, turbulent diffusion coefficient, and modeled scalar mixing rate for the TPDF simulations, thus allowing an exclusive focus on the mixing model. Here, the new mixing timescale model is compared with the constant mechanical-to-scalar mixing timescale ratio coupled with the Euclidean Minimum Spanning Tree (EMST) mixing model, as well as a laminar flamelet closure. It is found that the laminar flamelet closure is unable to properly capture the mixing behavior in the thin reaction zones regime while the constant mechanical-to-scalar mixing timescale model under-predicts the flame speed. Furthermore, the EMST model coupled with the new mixing timescale model provides the best prediction of the flame structure and flame propagation among the models tested, as the dynamics of reactive scalar mixing across different flame regimes are appropriately accounted for.« less
A mixing timescale model for TPDF simulations of turbulent premixed flames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuron, Michael; Ren, Zhuyin; Hawkes, Evatt R.
Transported probability density function (TPDF) methods are an attractive modeling approach for turbulent flames as chemical reactions appear in closed form. However, molecular micro-mixing needs to be modeled and this modeling is considered a primary challenge for TPDF methods. In the present study, a new algebraic mixing rate model for TPDF simulations of turbulent premixed flames is proposed, which is a key ingredient in commonly used molecular mixing models. The new model aims to properly account for the transition in reactive scalar mixing rate behavior from the limit of turbulence-dominated mixing to molecular mixing behavior in flamelets. An a priorimore » assessment of the new model is performed using direct numerical simulation (DNS) data of a lean premixed hydrogen–air jet flame. The new model accurately captures the mixing timescale behavior in the DNS and is found to be a significant improvement over the commonly used constant mechanical-to-scalar mixing timescale ratio model. An a posteriori TPDF study is then performed using the same DNS data as a numerical test bed. The DNS provides the initial conditions and time-varying input quantities, including the mean velocity, turbulent diffusion coefficient, and modeled scalar mixing rate for the TPDF simulations, thus allowing an exclusive focus on the mixing model. Here, the new mixing timescale model is compared with the constant mechanical-to-scalar mixing timescale ratio coupled with the Euclidean Minimum Spanning Tree (EMST) mixing model, as well as a laminar flamelet closure. It is found that the laminar flamelet closure is unable to properly capture the mixing behavior in the thin reaction zones regime while the constant mechanical-to-scalar mixing timescale model under-predicts the flame speed. Furthermore, the EMST model coupled with the new mixing timescale model provides the best prediction of the flame structure and flame propagation among the models tested, as the dynamics of reactive scalar mixing across different flame regimes are appropriately accounted for.« less
Exact tests using two correlated binomial variables in contemporary cancer clinical trials.
Yu, Jihnhee; Kepner, James L; Iyer, Renuka
2009-12-01
New therapy strategies for the treatment of cancer are rapidly emerging because of recent technology advances in genetics and molecular biology. Although newer targeted therapies can improve survival without measurable changes in tumor size, clinical trial conduct has remained nearly unchanged. When potentially efficacious therapies are tested, current clinical trial design and analysis methods may not be suitable for detecting therapeutic effects. We propose an exact method with respect to testing cytostatic cancer treatment using correlated bivariate binomial random variables to simultaneously assess two primary outcomes. The method is easy to implement. It does not increase the sample size over that of the univariate exact test and in most cases reduces the sample size required. Sample size calculations are provided for selected designs.
Does walkable neighbourhood design influence the association between objective crime and walking?
2014-01-01
Background Few studies have investigated associations between objectively measured crime and walking, and findings are mixed. One explanation for null or counterintuitive findings emerges from criminology studies, which indicate that the permeable street layouts and non-residential land uses that underpin walkable neighbourhoods are also associated with more crime. This study examined associations between objective crime and walking, controlling for the characteristics of walkable neighbourhoods. Methods A population representative sample of adults (25–65 years) (n = 3,487) completed the Western Australian Health and Wellbeing Survey (2006–2008) demographic and walking frequency items. Objective environmental measures were generated for each participant’s 400 m and 1600 m neighbourhood areas, including burglary, personal crime (i.e., crimes committed against people) in public space, residential density, street connectivity and local destinations. Log-linear negative binomial regression models were used to examine associations between crime and walking frequency/week, with progressive adjustment for residential density, street connectivity and local destinations. Results Burglary and personal crime occurring within a participant’s 400 m and 1600 m neighbourhoods were positively and significantly associated with walking frequency. For example, for every additional 10 crimes against the person/year within 400 m of a participant’s home, walking frequency increased by 8% (relative change = 1.077, p = 0.017). Associations remained constant after controlling for residential density and street connectivity, but attenuated after adjusting for local destinations (e.g., for personal crime in 400 m: relative change = 1.054, p = 0.104). This pattern of attenuation was evident across both crime categories and both neighbourhood sizes. Conclusions The observed positive associations between objective crime and walking appear to be a function of living in a more walkable environment, as the presence of destinations has the capacity to both promote walking and attract crime. This study provides a plausible explanation for some mixed findings emerging from studies examining crime as a barrier to walking. In some settings, the hypothesised deterrent effect of crime on walking may be insufficient to outweigh the positive impacts of living in a more walkable environment. PMID:25063998
Does walkable neighbourhood design influence the association between objective crime and walking?
Foster, Sarah; Knuiman, Matthew; Villanueva, Karen; Wood, Lisa; Christian, Hayley; Giles-Corti, Billie
2014-07-26
Few studies have investigated associations between objectively measured crime and walking, and findings are mixed. One explanation for null or counterintuitive findings emerges from criminology studies, which indicate that the permeable street layouts and non-residential land uses that underpin walkable neighbourhoods are also associated with more crime. This study examined associations between objective crime and walking, controlling for the characteristics of walkable neighbourhoods. A population representative sample of adults (25-65 years) (n = 3,487) completed the Western Australian Health and Wellbeing Survey (2006-2008) demographic and walking frequency items. Objective environmental measures were generated for each participant's 400 m and 1600 m neighbourhood areas, including burglary, personal crime (i.e., crimes committed against people) in public space, residential density, street connectivity and local destinations. Log-linear negative binomial regression models were used to examine associations between crime and walking frequency/week, with progressive adjustment for residential density, street connectivity and local destinations. Burglary and personal crime occurring within a participant's 400 m and 1600 m neighbourhoods were positively and significantly associated with walking frequency. For example, for every additional 10 crimes against the person/year within 400 m of a participant's home, walking frequency increased by 8% (relative change = 1.077, p = 0.017). Associations remained constant after controlling for residential density and street connectivity, but attenuated after adjusting for local destinations (e.g., for personal crime in 400 m: relative change = 1.054, p = 0.104). This pattern of attenuation was evident across both crime categories and both neighbourhood sizes. The observed positive associations between objective crime and walking appear to be a function of living in a more walkable environment, as the presence of destinations has the capacity to both promote walking and attract crime. This study provides a plausible explanation for some mixed findings emerging from studies examining crime as a barrier to walking. In some settings, the hypothesised deterrent effect of crime on walking may be insufficient to outweigh the positive impacts of living in a more walkable environment.
A Random Variable Transformation Process.
ERIC Educational Resources Information Center
Scheuermann, Larry
1989-01-01
Provides a short BASIC program, RANVAR, which generates random variates for various theoretical probability distributions. The seven variates include: uniform, exponential, normal, binomial, Poisson, Pascal, and triangular. (MVL)
Bakuza, Jared S.; Denwood, Matthew J.; Nkwengulila, Gamba
2017-01-01
Background Schistosoma mansoni is a parasite of major public health importance in developing countries, where it causes a neglected tropical disease known as intestinal schistosomiasis. However, the distribution of the parasite within many endemic regions is currently unknown, which hinders effective control. The purpose of this study was to characterize the prevalence and intensity of infection of S. mansoni in a remote area of western Tanzania. Methodology/Principal findings Stool samples were collected from 192 children and 147 adults residing in Gombe National Park and four nearby villages. Children were actively sampled in local schools, and adults were sampled passively by voluntary presentation at the local health clinics. The two datasets were therefore analysed separately. Faecal worm egg count (FWEC) data were analysed using negative binomial and zero-inflated negative binomial (ZINB) models with explanatory variables of site, sex, and age. The ZINB models indicated that a substantial proportion of the observed zero FWEC reflected a failure to detect eggs in truly infected individuals, meaning that the estimated true prevalence was much higher than the apparent prevalence as calculated based on the simple proportion of non-zero FWEC. For the passively sampled data from adults, the data were consistent with close to 100% true prevalence of infection. Both the prevalence and intensity of infection differed significantly between sites, but there were no significant associations with sex or age. Conclusions/Significance Overall, our data suggest a more widespread distribution of S. mansoni in this part of Tanzania than was previously thought. The apparent prevalence estimates substantially under-estimated the true prevalence as determined by the ZINB models, and the two types of sampling strategies also resulted in differing conclusions regarding prevalence of infection. We therefore recommend that future surveillance programmes designed to assess risk factors should use active sampling whenever possible, in order to avoid the self-selection bias associated with passive sampling. PMID:28934206
Chan, Ta-Chien; Teng, Yung-Chu; Hwang, Jing-Shiang
2015-02-21
Emerging novel influenza outbreaks have increasingly been a threat to the public and a major concern of public health departments. Real-time data in seamless surveillance systems such as health insurance claims data for influenza-like illnesses (ILI) are ready for analysis, making it highly desirable to develop practical techniques to analyze such readymade data for outbreak detection so that the public can receive timely influenza epidemic warnings. This study proposes a simple and effective approach to analyze area-based health insurance claims data including outpatient and emergency department (ED) visits for early detection of any aberrations of ILI. The health insurance claims data during 2004-2009 from a national health insurance research database were used for developing early detection methods. The proposed approach fitted the daily new ILI visits and monitored the Pearson residuals directly for aberration detection. First, negative binomial regression was used for both outpatient and ED visits to adjust for potentially influential factors such as holidays, weekends, seasons, temporal dependence and temperature. Second, if the Pearson residuals exceeded 1.96, aberration signals were issued. The empirical validation of the model was done in 2008 and 2009. In addition, we designed a simulation study to compare the time of outbreak detection, non-detection probability and false alarm rate between the proposed method and modified CUSUM. The model successfully detected the aberrations of 2009 pandemic (H1N1) influenza virus in northern, central and southern Taiwan. The proposed approach was more sensitive in identifying aberrations in ED visits than those in outpatient visits. Simulation studies demonstrated that the proposed approach could detect the aberrations earlier, and with lower non-detection probability and mean false alarm rate in detecting aberrations compared to modified CUSUM methods. The proposed simple approach was able to filter out temporal trends, adjust for temperature, and issue warning signals for the first wave of the influenza epidemic in a timely and accurate manner.
A crash-prediction model for multilane roads.
Caliendo, Ciro; Guida, Maurizio; Parisi, Alessandra
2007-07-01
Considerable research has been carried out in recent years to establish relationships between crashes and traffic flow, geometric infrastructure characteristics and environmental factors for two-lane rural roads. Crash-prediction models focused on multilane rural roads, however, have rarely been investigated. In addition, most research has paid but little attention to the safety effects of variables such as stopping sight distance and pavement surface characteristics. Moreover, the statistical approaches have generally included Poisson and Negative Binomial regression models, whilst Negative Multinomial regression model has been used to a lesser extent. Finally, as far as the authors are aware, prediction models involving all the above-mentioned factors have still not been developed in Italy for multilane roads, such as motorways. Thus, in this paper crash-prediction models for a four-lane median-divided Italian motorway were set up on the basis of accident data observed during a 5-year monitoring period extending between 1999 and 2003. The Poisson, Negative Binomial and Negative Multinomial regression models, applied separately to tangents and curves, were used to model the frequency of accident occurrence. Model parameters were estimated by the Maximum Likelihood Method, and the Generalized Likelihood Ratio Test was applied to detect the significant variables to be included in the model equation. Goodness-of-fit was measured by means of both the explained fraction of total variation and the explained fraction of systematic variation. The Cumulative Residuals Method was also used to test the adequacy of a regression model throughout the range of each variable. The candidate set of explanatory variables was: length (L), curvature (1/R), annual average daily traffic (AADT), sight distance (SD), side friction coefficient (SFC), longitudinal slope (LS) and the presence of a junction (J). Separate prediction models for total crashes and for fatal and injury crashes only were considered. For curves it is shown that significant variables are L, 1/R and AADT, whereas for tangents they are L, AADT and junctions. The effect of rain precipitation was analysed on the basis of hourly rainfall data and assumptions about drying time. It is shown that a wet pavement significantly increases the number of crashes. The models developed in this paper for Italian motorways appear to be useful for many applications such as the detection of critical factors, the estimation of accident reduction due to infrastructure and pavement improvement, and the predictions of accidents counts when comparing different design options. Thus this research may represent a point of reference for engineers in adjusting or designing multilane roads.
Hovi, Tapani; Ollgren, Jukka; Haapakoski, Jaason; Savolainen-Kopra, Carita
2016-11-16
Occurrence of respiratory tract infection (RTI) or gastrointestinal tract infection (GTI) is known to vary between individuals and may be a confounding factor in the analysis of the results of intervention trials. We aimed at developing a prognostic model for predicting individual incidences of RTI and GTI on the basis of data collected in a hand-hygiene intervention trial among adult office workers, and comprising a prior-to-onset questionnaire on potential infection-risk factors and weekly electronic follow-up reports on occurrence of symptoms of, and on exposures to RTI or GTI. A mixed-effect negative binomial regression model was used to calculate a predictor-specific incidence rate ratio for each questionnaire variable and for each of the four endpoints, and predicted individual incidences for symptoms of and exposures to RTI and GTI. In the fitting test these were then compared with the observed incidences. Out of 1270 eligible employees of six enterprises, 683 volunteered to participate in the trial. Ninety-two additional participants were recruited during the follow-up. Out of the 775 registered participants, 717 returned the questionnaire with data on potential predictor variables and follow-up reports for determination of outcomes. Age and gender were the strongest predictors of both exposure to, and symptoms of RTI or GTI, although no gender difference was seen in the RTI incidence. In addition, regular use of public transport, and history of seasonal influenza vaccination increased the risk of RTI. The individual incidence values predicted by the model showed moderate correlation with those observed in each of the four categories. According to the Cox-Snell multivariate formula the model explained 11.2% of RTI and 3.3% of GTI incidences. Resampling revealed mean and 90% confidence interval values of 10.9 (CI 6.9-14.5)% for RTI and 2.4 (0.6-4.4)% for GTI. The model created explained a relatively small proportion of the occurrence of RTI or GTI. Unpredictable exposure to disease agents, and individual susceptibility factors are likely to be key determinants of disease emergence. Yet, the model might be useful in prerandomization stratification of study population in RTI intervention trials where the expected difference between trial arms is relatively small. Registered at ClinicalTrials.gov with Identifier NCT00821509 on 12 March 2009.
Goovaerts, Pierre
2009-01-01
This paper presents a geostatistical approach to incorporate individual-level data (e.g. patient residences) and area-based data (e.g. rates recorded at census tract level) into the mapping of late-stage cancer incidence, with an application to breast cancer in three Michigan counties. Spatial trends in cancer incidence are first estimated from census data using area-to-point binomial kriging. This prior model is then updated using indicator kriging and individual-level data. Simulation studies demonstrate the benefits of this two-step approach over methods (kernel density estimation and indicator kriging) that process only residence data.
Meade, Christina S; McDonald, Leah J; Graff, Fiona S; Fitzmaurice, Garrett M; Griffin, Margaret L; Weiss, Roger D
2009-06-01
Prior research suggests possible gender differences in the longitudinal course of bipolar disorder. This study prospectively examined gender differences in mood outcomes and tested the effects of sexual/physical abuse and posttraumatic stress disorder (PTSD). Participants (49 men, 41 women) with co-occurring bipolar I and substance use disorders (92% alcohol, 42% drug) were enrolled in a group treatment trial. They were followed for eight months, with monthly assessments, yielding 32 weeks of data. Primary outcome measures were number of weeks in each mood state, recurrences of depression or mania, and polarity shifts from depression to mania or vice versa. Negative binomial regression was used to examine the effects of gender, lifetime abuse, and PTSD on these outcomes. Participants met syndromal criteria for a mood episode on a mean of 27% of 32 weeks, with depression occurring most frequently. Compared to men, women reported significantly more weeks of mixed mania [relative rate (RR) = 8.53], fewer weeks of euthymia (RR = 0.58), more recurrences of mania (RR = 1.96), and more direct polarity shifts (RR = 1.49) (all p < 0.05). Women also reported significantly higher rates of lifetime sexual or physical abuse (68% versus 33%), which partially explained the relationships between gender and mixed mania and direct polarity shifts. Participants experienced persistent mood symptoms over time. Women consistently reported poorer mood outcomes, and lifetime abuse may help explain observed gender differences in mood outcomes. Further research is necessary to better understand the treatment implications of these findings.
MITIE: Simultaneous RNA-Seq-based transcript identification and quantification in multiple samples.
Behr, Jonas; Kahles, André; Zhong, Yi; Sreedharan, Vipin T; Drewe, Philipp; Rätsch, Gunnar
2013-10-15
High-throughput sequencing of mRNA (RNA-Seq) has led to tremendous improvements in the detection of expressed genes and reconstruction of RNA transcripts. However, the extensive dynamic range of gene expression, technical limitations and biases, as well as the observed complexity of the transcriptional landscape, pose profound computational challenges for transcriptome reconstruction. We present the novel framework MITIE (Mixed Integer Transcript IdEntification) for simultaneous transcript reconstruction and quantification. We define a likelihood function based on the negative binomial distribution, use a regularization approach to select a few transcripts collectively explaining the observed read data and show how to find the optimal solution using Mixed Integer Programming. MITIE can (i) take advantage of known transcripts, (ii) reconstruct and quantify transcripts simultaneously in multiple samples, and (iii) resolve the location of multi-mapping reads. It is designed for genome- and assembly-based transcriptome reconstruction. We present an extensive study based on realistic simulated RNA-Seq data. When compared with state-of-the-art approaches, MITIE proves to be significantly more sensitive and overall more accurate. Moreover, MITIE yields substantial performance gains when used with multiple samples. We applied our system to 38 Drosophila melanogaster modENCODE RNA-Seq libraries and estimated the sensitivity of reconstructing omitted transcript annotations and the specificity with respect to annotated transcripts. Our results corroborate that a well-motivated objective paired with appropriate optimization techniques lead to significant improvements over the state-of-the-art in transcriptome reconstruction. MITIE is implemented in C++ and is available from http://bioweb.me/mitie under the GPL license.
Derivation of the expressions for γ50 and D50 for different individual TCP and NTCP models
NASA Astrophysics Data System (ADS)
Stavreva, N.; Stavrev, P.; Warkentin, B.; Fallone, B. G.
2002-10-01
This paper presents a complete set of formulae for the position (D50) and the normalized slope (γ50) of the dose-response relationship based on the most commonly used radiobiological models for tumours as well as for normal tissues. The functional subunit response models (critical element and critical volume) are used in the derivation of the formulae for the normal tissue. Binomial statistics are used to describe the tumour control probability, the functional subunit response as well as the normal tissue complication probability. The formulae are derived for the single hit and linear quadratic models of cell kill in terms of the number of fractions and dose per fraction. It is shown that the functional subunit models predict very steep, almost step-like, normal tissue individual dose-response relationships. Furthermore, the formulae for the normalized gradient depend on the cellular parameters α and β when written in terms of number of fractions, but not when written in terms of dose per fraction.
Polcicová, Gabriela; Tino, Peter
2004-01-01
We introduce topographic versions of two latent class models (LCM) for collaborative filtering. Latent classes are topologically organized on a square grid. Topographic organization of latent classes makes orientation in rating/preference patterns captured by the latent classes easier and more systematic. The variation in film rating patterns is modelled by multinomial and binomial distributions with varying independence assumptions. In the first stage of topographic LCM construction, self-organizing maps with neural field organized according to the LCM topology are employed. We apply our system to a large collection of user ratings for films. The system can provide useful visualization plots unveiling user preference patterns buried in the data, without loosing potential to be a good recommender model. It appears that multinomial distribution is most adequate if the model is regularized by tight grid topologies. Since we deal with probabilistic models of the data, we can readily use tools from probability and information theories to interpret and visualize information extracted by our system.
NASA Astrophysics Data System (ADS)
Heberling, Matthew T.; Templeton, Joshua J.
2009-04-01
We estimate an individual travel cost model for Great Sand Dunes National Park and Preserve (GSD) in Colorado using on-site, secondary data. The purpose of the on-site survey was to help the National Park Service better understand the visitors of GSD; it was not intended for a travel cost model. Variables such as travel cost and income were estimated based on respondents’ Zip Codes. Following approaches found in the literature, a negative binomial model corrected for truncation and endogenous stratification fit the data the best. We estimate a recreational benefit of U.S. 89/visitor/year or U.S. 54/visitor/24-h recreational day (in 2002 U.S. ). Based on the approach presented here, there are other data sets for national parks, preserves, and battlefields where travel cost models could be estimated and used to support National Park Service management decisions.
Narrow log-periodic modulations in non-Markovian random walks
NASA Astrophysics Data System (ADS)
Diniz, R. M. B.; Cressoni, J. C.; da Silva, M. A. A.; Mariz, A. M.; de Araújo, J. M.
2017-12-01
What are the necessary ingredients for log-periodicity to appear in the dynamics of a random walk model? Can they be subtle enough to be overlooked? Previous studies suggest that long-range damaged memory and negative feedback together are necessary conditions for the emergence of log-periodic oscillations. The role of negative feedback would then be crucial, forcing the system to change direction. In this paper we show that small-amplitude log-periodic oscillations can emerge when the system is driven by positive feedback. Due to their very small amplitude, these oscillations can easily be mistaken for numerical finite-size effects. The models we use consist of discrete-time random walks with strong memory correlations where the decision process is taken from memory profiles based either on a binomial distribution or on a delta distribution. Anomalous superdiffusive behavior and log-periodic modulations are shown to arise in the large time limit for convenient choices of the models parameters.
On Statistical Modeling of Sequencing Noise in High Depth Data to Assess Tumor Evolution
NASA Astrophysics Data System (ADS)
Rabadan, Raul; Bhanot, Gyan; Marsilio, Sonia; Chiorazzi, Nicholas; Pasqualucci, Laura; Khiabanian, Hossein
2018-07-01
One cause of cancer mortality is tumor evolution to therapy-resistant disease. First line therapy often targets the dominant clone, and drug resistance can emerge from preexisting clones that gain fitness through therapy-induced natural selection. Such mutations may be identified using targeted sequencing assays by analysis of noise in high-depth data. Here, we develop a comprehensive, unbiased model for sequencing error background. We find that noise in sufficiently deep DNA sequencing data can be approximated by aggregating negative binomial distributions. Mutations with frequencies above noise may have prognostic value. We evaluate our model with simulated exponentially expanded populations as well as data from cell line and patient sample dilution experiments, demonstrating its utility in prognosticating tumor progression. Our results may have the potential to identify significant mutations that can cause recurrence. These results are relevant in the pretreatment clinical setting to determine appropriate therapy and prepare for potential recurrence pretreatment.
On Statistical Modeling of Sequencing Noise in High Depth Data to Assess Tumor Evolution
NASA Astrophysics Data System (ADS)
Rabadan, Raul; Bhanot, Gyan; Marsilio, Sonia; Chiorazzi, Nicholas; Pasqualucci, Laura; Khiabanian, Hossein
2017-12-01
One cause of cancer mortality is tumor evolution to therapy-resistant disease. First line therapy often targets the dominant clone, and drug resistance can emerge from preexisting clones that gain fitness through therapy-induced natural selection. Such mutations may be identified using targeted sequencing assays by analysis of noise in high-depth data. Here, we develop a comprehensive, unbiased model for sequencing error background. We find that noise in sufficiently deep DNA sequencing data can be approximated by aggregating negative binomial distributions. Mutations with frequencies above noise may have prognostic value. We evaluate our model with simulated exponentially expanded populations as well as data from cell line and patient sample dilution experiments, demonstrating its utility in prognosticating tumor progression. Our results may have the potential to identify significant mutations that can cause recurrence. These results are relevant in the pretreatment clinical setting to determine appropriate therapy and prepare for potential recurrence pretreatment.
MixSIAR: advanced stable isotope mixing models in R
Background/Question/Methods The development of stable isotope mixing models has coincided with modeling products (e.g. IsoSource, MixSIR, SIAR), where methodological advances are published in parity with software packages. However, while mixing model theory has recently been ex...
Informal and paid care for Brazilian older adults (National Health Survey, 2013).
Lima-Costa, Maria Fernanda; Peixoto, Sérgio Viana; Malta, Deborah Carvalho; Szwarcwald, Célia Landmann; Mambrini, Juliana Vaz de Melo
2017-06-01
To describe the prevalence and sociodemographic factors associated with informal and paid care for Brazilian older adults with functional limitations. Of the 23,815 participants of the National Health Survey aged 60 or older, 5,978 reported needing help to perform activities of daily living and were included in this analysis. The dependent variable was the source of care, categorized as exclusively informal (unpaid), exclusively formal (paid), mixed or none. The socio-demographic variables were age (60-64, 65-74, ≥ 75 years old), gender and number of residents in the household (1, 2, ≥ 3). The multivariate analysis was based on binomial and multinomial logistic regressions. Informal care predominated (81.8%), followed by paid (5.8%) or mixed (6.8%) and no care (5.7%). The receipt of care from any source increased gradually with the number of residents in a same household, regardless of age and gender (OR = 4.85 and 9.74 for 2 and ≥ 3, respectively). Age was positively associated with receiving any care while the male gender showed a negative association. The number of residents in the household showed the strongest association with informal care (OR = 10.94 for ≥ 3 residents), compared with paid (OR = 5.48) and mixed (OR = 4.16) care. Informal care is the main source of help for community-dwelling older adults with functional limitations. In a context of rapid population aging and decline in family size, the results reinforce the need for policies to support long-term care for older Brazilians. Descrever a prevalência e fatores sociodemográficos associados à ajuda informal e remunerada a idosos com limitações funcionais. Dos 23.815 participantes com 60 anos ou mais da Pesquisa Nacional de Saúde, 5.978 declararam necessitar de ajuda para realizar atividades da vida diária e foram incluídos nesta análise. A variável dependente foi a fonte de ajuda, categorizada como exclusivamente informal (não remunerada), exclusivamente remunerada, mista ou nenhuma. Os fatores sociodemográficos foram idade (60-64, 65-74, ≥ 75 anos), sexo e número de moradores no domicílio (1, 2, ≥ 3). A análise multivariada foi baseada nas regressões logísticas binomial e multinomial. A ajuda informal predominou (81,8%), seguida pela remunerada (5,8%) ou mista (6,8%) e nenhuma (5,7%). A propensão ao recebimento da ajuda por qualquer fonte aumentou gradativamente com o número de moradores no domicílio, independentemente da idade e do sexo (OR = 4,85 e 9,74 para 2 e ≥ 3 moradores, respectivamente). A idade apresentou associação positiva e o sexo masculino apresentou associação negativa com o recebimento de qualquer ajuda. O número de moradores no domicílio apresentou associação mais forte com a ajuda informal (OR = 10,94 para ≥ 3 moradores), em comparação à ajuda remunerada (OR = 5,48) e mista (OR = 4,16). O cuidado informal é a principal fonte de ajuda domiciliar aos idosos com limitações funcionais. Em um contexto de rápido envelhecimento populacional e diminuição do tamanho das famílias, os resultados reforçam a necessidade de políticas para garantir o cuidado domiciliar aos idosos com limitações funcionais.
Wei, Feng; Lovegrove, Gordon
2013-12-01
Today, North American governments are more willing to consider compact neighborhoods with increased use of sustainable transportation modes. Bicycling, one of the most effective modes for short trips with distances less than 5km is being encouraged. However, as vulnerable road users (VRUs), cyclists are more likely to be injured when involved in collisions. In order to create a safe road environment for them, evaluating cyclists' road safety at a macro level in a proactive way is necessary. In this paper, different generalized linear regression methods for collision prediction model (CPM) development are reviewed and previous studies on micro-level and macro-level bicycle-related CPMs are summarized. On the basis of insights gained in the exploration stage, this paper also reports on efforts to develop negative binomial models for bicycle-auto collisions at a community-based, macro-level. Data came from the Central Okanagan Regional District (CORD), of British Columbia, Canada. The model results revealed two types of statistical associations between collisions and each explanatory variable: (1) An increase in bicycle-auto collisions is associated with an increase in total lane kilometers (TLKM), bicycle lane kilometers (BLKM), bus stops (BS), traffic signals (SIG), intersection density (INTD), and arterial-local intersection percentage (IALP). (2) A decrease in bicycle collisions was found to be associated with an increase in the number of drive commuters (DRIVE), and in the percentage of drive commuters (DRP). These results support our hypothesis that in North America, with its current low levels of bicycle use (<4%), we can initially expect to see an increase in bicycle collisions as cycle mode share increases. However, as bicycle mode share increases beyond some unknown 'critical' level, our hypothesis also predicts a net safety improvement. To test this hypothesis and to further explore the statistical relationships between bicycle mode split and overall road safety, future research needs to pursue further development and application of community-based, macro-level CPMs. Copyright © 2012. Published by Elsevier Ltd.
Logistic regression for dichotomized counts.
Preisser, John S; Das, Kalyan; Benecha, Habtamu; Stamm, John W
2016-12-01
Sometimes there is interest in a dichotomized outcome indicating whether a count variable is positive or zero. Under this scenario, the application of ordinary logistic regression may result in efficiency loss, which is quantifiable under an assumed model for the counts. In such situations, a shared-parameter hurdle model is investigated for more efficient estimation of regression parameters relating to overall effects of covariates on the dichotomous outcome, while handling count data with many zeroes. One model part provides a logistic regression containing marginal log odds ratio effects of primary interest, while an ancillary model part describes the mean count of a Poisson or negative binomial process in terms of nuisance regression parameters. Asymptotic efficiency of the logistic model parameter estimators of the two-part models is evaluated with respect to ordinary logistic regression. Simulations are used to assess the properties of the models with respect to power and Type I error, the latter investigated under both misspecified and correctly specified models. The methods are applied to data from a randomized clinical trial of three toothpaste formulations to prevent incident dental caries in a large population of Scottish schoolchildren. © The Author(s) 2014.
A preliminary investigation of the relationships between historical crash and naturalistic driving.
Pande, Anurag; Chand, Sai; Saxena, Neeraj; Dixit, Vinayak; Loy, James; Wolshon, Brian; Kent, Joshua D
2017-04-01
This paper describes a project that was undertaken using naturalistic driving data collected via Global Positioning System (GPS) devices to demonstrate a proof-of-concept for proactive safety assessments of crash-prone locations. The main hypothesis for the study is that the segments where drivers have to apply hard braking (higher jerks) more frequently might be the "unsafe" segments with more crashes over a long-term. The linear referencing methodology in ArcMap was used to link the GPS data with roadway characteristic data of US Highway 101 northbound (NB) and southbound (SB) in San Luis Obispo, California. The process used to merge GPS data with quarter-mile freeway segments for traditional crash frequency analysis is also discussed in the paper. A negative binomial regression analyses showed that proportion of high magnitude jerks while decelerating on freeway segments (from the driving data) was significantly related with the long-term crash frequency of those segments. A random parameter negative binomial model with uniformly distributed parameter for ADT and a fixed parameter for jerk provided a statistically significant estimate for quarter-mile segments. The results also indicated that roadway curvature and the presence of auxiliary lane are not significantly related with crash frequency for the highway segments under consideration. The results from this exploration are promising since the data used to derive the explanatory variable(s) can be collected using most off-the-shelf GPS devices, including many smartphones. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pagé, M Gabrielle; Fortier, Maude; Ware, Mark A; Choinière, Manon
2018-01-01
Introduction The presence of multiple coexisting chronic pain (CP) conditions (eg, low-back pain and migraines) within patients has received little attention in literature. The goals of this observational longitudinal study were to determine the prevalence of coexisting CP conditions, identify the most frequent ones and patterns of coexistence, investigate the relationships among patients’ biopsychosocial characteristics and number of CP conditions, and determine the impact of coexisting CP conditions on treatment response. Patients and methods A total of 3,966 patients attending multidisciplinary pain-treatment centers who were enrolled in the Quebec Pain Registry were included. Patients completed self-report and nurse-administered questionnaires before their first visit and 6 months later. Results were analyzed using descriptive statistics, factor and cluster analyses, negative binomials with log-link generalized linear models, and linear mixed-effect models. Results A third of patients reported coexisting CP conditions. No specific patterns of comorbidities emerged. The presence of coexisting CP conditions was associated with longer pain duration, older age, being female, and poorer quality of life. The presence of more than one CP condition did not have a clinically significant impact on treatment responses. Discussion The novelty of the study results relate to the heterogeneity that was found in the patterns of coexistence of CP conditions and the fact that having multiple CP conditions did not clinically impact treatment response. These results highlight the need for future research that examines causes of coexistence among CP conditions across the spectrum of CP, as opposed to focusing on specific conditions, and to examine whether multiple CP conditions impact on additional domains, such as treatment satisfaction. These results highlight the importance of studying the pathophysiological mechanisms underlying the development of coexisting CP conditions, in order eventually to prevent/minimize their occurrence and/or develop optimal treatment and management approaches. PMID:29416373
Forns, Joan; Dadvand, Payam; Foraster, Maria; Alvarez-Pedrerol, Mar; Rivas, Ioar; López-Vicente, Mònica; Suades-Gonzalez, Elisabet; Garcia-Esteban, Raquel; Esnaola, Mikel; Cirach, Marta; Grellier, James; Basagaña, Xavier; Querol, Xavier; Guxens, Mònica; Nieuwenhuijsen, Mark J; Sunyer, Jordi
2016-04-01
The available evidence of the effects of air pollution and noise on behavioral development is limited, and it overlooks exposure at schools, where children spend a considerable amount of time. We aimed to investigate the associations of exposure to traffic-related air pollutants (TRAPs) and noise at school on behavioral development of schoolchildren. We evaluated children 7-11 years of age in Barcelona (Catalonia, Spain) during 2012-2013 within the BREATHE project. Indoor and outdoor concentrations of elemental carbon (EC), black carbon (BC), and nitrogen dioxide (NO2) were measured at schools in two separate 1-week campaigns. In one campaign we also measured noise levels inside classrooms. Parents filled out the strengths and difficulties questionnaire (SDQ) to assess child behavioral development, while teachers completed the attention deficit/hyperactivity disorder criteria of the DSM-IV (ADHD-DSM-IV) list to assess specific ADHD symptomatology. Negative binomial mixed-effects models were used to estimate associations between the exposures and behavioral development scores. Interquartile range (IQR) increases in indoor and outdoor EC, BC, and NO2 concentrations were positively associated with SDQ total difficulties scores (suggesting more frequent behavioral problems) in adjusted multivariate models, whereas noise was significantly associated with ADHD-DSM-IV scores. In our study population of 7- to 11-year-old children residing in Barcelona, exposure to TRAPs at school was associated with increased behavioral problems in schoolchildren. Noise exposure at school was associated with more ADHD symptoms. Forns J, Dadvand P, Foraster M, Alvarez-Pedrerol M, Rivas I, López-Vicente M, Suades-Gonzalez E, Garcia-Esteban R, Esnaola M, Cirach M, Grellier J, Basagaña X, Querol X, Guxens M, Nieuwenhuijsen MJ, Sunyer J. 2016. Traffic-related air pollution, noise at school, and behavioral problems in Barcelona schoolchildren: a cross-sectional study. Environ Health Perspect 124:529-535; http://dx.doi.org/10.1289/ehp.1409449.
NASA Astrophysics Data System (ADS)
Tay, J.; Hood, R. R.
2016-02-01
Although jellyfish exert strong control over marine plankton dynamics (Richardson et al. 2009, Robison et al. 2014) and negatively impact human commercial and recreational activities (Purcell et al. 2007, Purcell 2012), jellyfish biomass is not well quantified due primarily to sampling difficulties with plankton nets or fisheries trawls (Haddock 2004). As a result, some of the longest records of jellyfish are visual shore-based surveys, such as the fixed-station time series of Chrysaora quinquecirrha that began in 1960 in the Patuxent River in Chesapeake Bay, USA (Cargo and King 1990). Time series counts from fixed-station surveys capture two signals: 1) demographic change at timescales on the order of reproductive processes and 2) spatial patchiness at shorter timescales as different parcels of water move in and out of the survey area by tidal and estuarine advection and turbulent mixing (Lee and McAlice 1979). In this study, our goal was to separate these two signals using a 4-year time series of C. quinquecirrha medusa counts from a fixed-station in the Choptank River, Chesapeake Bay. Idealized modeling of tidal and estuarine advection was used to conceptualize the sampling scheme. Change point and time series analysis was used to detect demographic changes. Indices of aggregation (Negative Binomial coefficient, Taylor's Power Law coefficient, and Morisita's Index) were calculated to describe the spatial patchiness of the medusae. Abundance estimates revealed a bloom cycle that differed in duration and magnitude for each of the study years. Indices of aggregation indicated that medusae were aggregated and that patches grew in the number of individuals, and likely in size, as abundance increased. Further inference from the conceptual modeling suggested that medusae patch structure was generally homogenous over the tidal extent. This study highlights the benefits of using fixed-station shore-based surveys for understanding the biology and ecology of jellyfish.
Wang, Xiaoyan; Laubenbacher, Reinhard C.
2017-01-01
Background Investigations into the factors behind coauthorship growth in biomedical research have mostly focused on specific disciplines or journals, and have rarely controlled for factors in combination or considered changes in their effects over time. Observers often attribute the growth to the increasing complexity or competition (or both) of research practices, but few attempts have been made to parse the contributions of these two likely causes. Objectives We aimed to assess the effects of complexity and competition on the incidence and growth of coauthorship, using a sample of the biomedical literature spanning multiple journals and disciplines. Methods Article-level bibliographic data from PubMed were combined with publicly available bibliometric data from Web of Science and SCImago over the years 1999–2007. We selected four predictors of coauthorship were selected, two (study type, topical scope of the study) associated with complexity and two (financial support for the project, popularity of the publishing journal) associated with competition. A negative binomial regression model was used to estimate the effects of each predictor on coauthorship incidence and growth. A second, mixed-effect model included the journal as a random effect. Results Coauthorship increased at about one author per article per decade. Clinical trials, supported research, and research of broader scope produced articles with more authors, while review articles credited fewer; and more popular journals published higher-authorship articles. Incidence and growth rates varied widely across journals and were themselves uncorrelated. Most effects remained statistically discernible after controlling for the publishing journal. The effects of complexity-associated factors held constant or diminished over time, while competition-related effects strengthened. These trends were similar in size but not discernible from subject-specific subdata. Conclusions Coauthorship incidence rates are multifactorial and vary with factors associated with both complexity and competition. Coauthorship growth is likewise multifactorial and increasingly associated with research competition. PMID:28329003
Brunson, Jason Cory; Wang, Xiaoyan; Laubenbacher, Reinhard C
2017-01-01
Investigations into the factors behind coauthorship growth in biomedical research have mostly focused on specific disciplines or journals, and have rarely controlled for factors in combination or considered changes in their effects over time. Observers often attribute the growth to the increasing complexity or competition (or both) of research practices, but few attempts have been made to parse the contributions of these two likely causes. We aimed to assess the effects of complexity and competition on the incidence and growth of coauthorship, using a sample of the biomedical literature spanning multiple journals and disciplines. Article-level bibliographic data from PubMed were combined with publicly available bibliometric data from Web of Science and SCImago over the years 1999-2007. We selected four predictors of coauthorship were selected, two (study type, topical scope of the study) associated with complexity and two (financial support for the project, popularity of the publishing journal) associated with competition. A negative binomial regression model was used to estimate the effects of each predictor on coauthorship incidence and growth. A second, mixed-effect model included the journal as a random effect. Coauthorship increased at about one author per article per decade. Clinical trials, supported research, and research of broader scope produced articles with more authors, while review articles credited fewer; and more popular journals published higher-authorship articles. Incidence and growth rates varied widely across journals and were themselves uncorrelated. Most effects remained statistically discernible after controlling for the publishing journal. The effects of complexity-associated factors held constant or diminished over time, while competition-related effects strengthened. These trends were similar in size but not discernible from subject-specific subdata. Coauthorship incidence rates are multifactorial and vary with factors associated with both complexity and competition. Coauthorship growth is likewise multifactorial and increasingly associated with research competition.
Forns, Joan; Dadvand, Payam; Foraster, Maria; Alvarez-Pedrerol, Mar; Rivas, Ioar; López-Vicente, Mònica; Suades-Gonzalez, Elisabet; Garcia-Esteban, Raquel; Esnaola, Mikel; Cirach, Marta; Grellier, James; Basagaña, Xavier; Querol, Xavier; Guxens, Mònica; Nieuwenhuijsen, Mark J.; Sunyer, Jordi
2015-01-01
Background: The available evidence of the effects of air pollution and noise on behavioral development is limited, and it overlooks exposure at schools, where children spend a considerable amount of time. Objective: We aimed to investigate the associations of exposure to traffic-related air pollutants (TRAPs) and noise at school on behavioral development of schoolchildren. Methods: We evaluated children 7–11 years of age in Barcelona (Catalonia, Spain) during 2012–2013 within the BREATHE project. Indoor and outdoor concentrations of elemental carbon (EC), black carbon (BC), and nitrogen dioxide (NO2) were measured at schools in two separate 1-week campaigns. In one campaign we also measured noise levels inside classrooms. Parents filled out the strengths and difficulties questionnaire (SDQ) to assess child behavioral development, while teachers completed the attention deficit/hyperactivity disorder criteria of the DSM-IV (ADHD-DSM-IV) list to assess specific ADHD symptomatology. Negative binomial mixed-effects models were used to estimate associations between the exposures and behavioral development scores. Results: Interquartile range (IQR) increases in indoor and outdoor EC, BC, and NO2 concentrations were positively associated with SDQ total difficulties scores (suggesting more frequent behavioral problems) in adjusted multivariate models, whereas noise was significantly associated with ADHD-DSM-IV scores. Conclusion: In our study population of 7- to 11-year-old children residing in Barcelona, exposure to TRAPs at school was associated with increased behavioral problems in schoolchildren. Noise exposure at school was associated with more ADHD symptoms. Citation: Forns J, Dadvand P, Foraster M, Alvarez-Pedrerol M, Rivas I, López-Vicente M, Suades-Gonzalez E, Garcia-Esteban R, Esnaola M, Cirach M, Grellier J, Basagaña X, Querol X, Guxens M, Nieuwenhuijsen MJ, Sunyer J. 2016. Traffic-related air pollution, noise at school, and behavioral problems in Barcelona schoolchildren: a cross-sectional study. Environ Health Perspect 124:529–535; http://dx.doi.org/10.1289/ehp.1409449 PMID:26241036
Jao, Jennifer; Kacanek, Deborah; Williams, Paige L; Geffner, Mitchell E; Livingston, Elizabeth G; Sperling, Rhoda S; Patel, Kunjal; Bardeguez, Arlene D; Burchett, Sandra K; Chakhtoura, Nahida; Scott, Gwendolyn B; Van Dyke, Russell B; Abrams, Elaine J
2017-09-15
Pregnancy outcomes of perinatally human immunodeficiency virus-infected women (PHIV) are poorly defined. We compared preterm delivery and birth weight (BW) outcomes (low BW [LBW], <2500 g), small-for-gestational-age [SGA], and BW z scores [BWZ]) in HIV-exposed uninfected infants of PHIV vs nonperinatally HIV-infected (NPHIV) pregnant women in the Pediatric HIV/AIDS Cohort Study Surveillance Monitoring of ART Toxicities or International Maternal Pediatric Adolescent AIDS Clinical Trials P1025 studies. Mixed effects models and log binomial models were used to assess the association of maternal PHIV status with infant outcomes. Age-stratified analyses were performed. From 1998 to 2013, 2270 HIV-infected pregnant women delivered 2692 newborns (270 born to PHIV and 2422 to NPHIV women). PHIV women were younger, (mean age 21 vs 25 years, P < .01) and more likely to have a pregnancy CD4 count <200 cells/mm3 (19% vs 11%, P = .01). No associations between maternal PHIV status and preterm delivery, SGA, or LBW were observed. After adjustment, BWZ was 0.12 lower in infants of PHIV vs NPHIV women (adjusted mean, -0.45 vs -0.33; P = .04). Among women aged 23-30 years (n = 1770), maternal PHIV was associated with LBW (aRR = 1.74; 95% confidence interval, 1.18, 2.58; P < .01). The overall lack of association between maternal PHIV status and preterm delivery or infant BW outcomes is reassuring. The higher rates of LBW observed in PHIV women aged 23-30 years warrants further mechanism-based investigations as this is a rapidly growing and aging population worldwide. PHACS SMARTT study, NCT01310023. IMPAACT 1025, NCT00028145. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Zhang, Donglan; Shi, Lu; Tian, Fang; Zhang, Lingling
2016-12-01
China's New Rural Cooperative Medical Scheme (NRCMS), a healthcare financing system for rural residents in China, underwent significant enhancement since 2008. Studies based on pre-2008 NRCMS data showed an increase in inpatient care utilization after NRCMS coverage. However evidence was mixed for the relationship between outpatient care use and NRCMS coverage. We assessed whether enrollment in the enhanced NRCMS was associated with less delaying or foregoing medical care, as a reduction in foregoing needed care signals about removing liquidity constraint among the enrollees. Using a national sample of rural residents (N = 12,740) from the 2011-2012 wave of China Health and Retirement Longitudinal Study, we examined the association between NRCMS coverage and the likelihood of delaying or foregoing medical care (outpatient and inpatient) by survey-weighted regression models controlling for demographics, education, geographic regions, household expenditures, pre-existing chronic diseases, and access to local healthcare facilities. Zero-inflated negative binomial model was used to estimate the association between NRCMS coverage and number of medical visits. NRCMS coverage was significantly associated with lower odds of delaying or foregoing inpatient care (OR: 0.42, 95 % CI: 0.22-0.81). A negative but insignificant association was found between NRCMS coverage and delaying/foregoing outpatient care when ill. Among those who needed health care, the expected number of outpatient visits for NRCMS enrollees was 1.35 (95 % CI: 1.03-1.77) times of those uninsured, and the expected number of inpatient visits for NRCMS enrollees was 1.83 (95 % CI: 1.16-2.88) times of those uninsured. This study shows that the enhanced NRCMS coverage was associated with less delaying or foregoing inpatient care deemed as necessary by health professionals, which is likely to result from improved financial reimbursement of the NRCMS.
HYPERSAMP - HYPERGEOMETRIC ATTRIBUTE SAMPLING SYSTEM BASED ON RISK AND FRACTION DEFECTIVE
NASA Technical Reports Server (NTRS)
De, Salvo L. J.
1994-01-01
HYPERSAMP is a demonstration of an attribute sampling system developed to determine the minimum sample size required for any preselected value for consumer's risk and fraction of nonconforming. This statistical method can be used in place of MIL-STD-105E sampling plans when a minimum sample size is desirable, such as when tests are destructive or expensive. HYPERSAMP utilizes the Hypergeometric Distribution and can be used for any fraction nonconforming. The program employs an iterative technique that circumvents the obstacle presented by the factorial of a non-whole number. HYPERSAMP provides the required Hypergeometric sample size for any equivalent real number of nonconformances in the lot or batch under evaluation. Many currently used sampling systems, such as the MIL-STD-105E, utilize the Binomial or the Poisson equations as an estimate of the Hypergeometric when performing inspection by attributes. However, this is primarily because of the difficulty in calculation of the factorials required by the Hypergeometric. Sampling plans based on the Binomial or Poisson equations will result in the maximum sample size possible with the Hypergeometric. The difference in the sample sizes between the Poisson or Binomial and the Hypergeometric can be significant. For example, a lot size of 400 devices with an error rate of 1.0% and a confidence of 99% would require a sample size of 400 (all units would need to be inspected) for the Binomial sampling plan and only 273 for a Hypergeometric sampling plan. The Hypergeometric results in a savings of 127 units, a significant reduction in the required sample size. HYPERSAMP is a demonstration program and is limited to sampling plans with zero defectives in the sample (acceptance number of zero). Since it is only a demonstration program, the sample size determination is limited to sample sizes of 1500 or less. The Hypergeometric Attribute Sampling System demonstration code is a spreadsheet program written for IBM PC compatible computers running DOS and Lotus 1-2-3 or Quattro Pro. This program is distributed on a 5.25 inch 360K MS-DOS format diskette, and the program price includes documentation. This statistical method was developed in 1992.
Indicators of Terrorism Vulnerability in Africa
2015-03-26
the terror threat and vulnerabilities across Africa. Key words: Terrorism, Africa, Negative Binomial Regression, Classification Tree iv I would like...31 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Log -likelihood...70 viii Page 5.3 Classification Tree Description
Points on the Path to Probability.
ERIC Educational Resources Information Center
Kiernan, James F.
2001-01-01
Presents the problem of points and the development of the binomial triangle, or Pascal's triangle. Examines various attempts to solve this problem to give students insight into the nature of mathematical discovery. (KHR)
Stamm, John W.; Long, D. Leann; Kincade, Megan E.
2012-01-01
Over the past five to ten years, zero-inflated count regression models have been increasingly applied to the analysis of dental caries indices (e.g., DMFT, dfms, etc). The main reason for that is linked to the broad decline in children’s caries experience, such that dmf and DMF indices more frequently generate low or even zero counts. This article specifically reviews the application of zero-inflated Poisson and zero-inflated negative binomial regression models to dental caries, with emphasis on the description of the models and the interpretation of fitted model results given the study goals. The review finds that interpretations provided in the published caries research are often imprecise or inadvertently misleading, particularly with respect to failing to discriminate between inference for the class of susceptible persons defined by such models and inference for the sampled population in terms of overall exposure effects. Recommendations are provided to enhance the use as well as the interpretation and reporting of results of count regression models when applied to epidemiological studies of dental caries. PMID:22710271
Zhang, Xin; Liu, Pan; Chen, Yuguang; Bai, Lu; Wang, Wei
2014-01-01
The primary objective of this study was to identify whether the frequency of traffic conflicts at signalized intersections can be modeled. The opposing left-turn conflicts were selected for the development of conflict predictive models. Using data collected at 30 approaches at 20 signalized intersections, the underlying distributions of the conflicts under different traffic conditions were examined. Different conflict-predictive models were developed to relate the frequency of opposing left-turn conflicts to various explanatory variables. The models considered include a linear regression model, a negative binomial model, and separate models developed for four traffic scenarios. The prediction performance of different models was compared. The frequency of traffic conflicts follows a negative binominal distribution. The linear regression model is not appropriate for the conflict frequency data. In addition, drivers behaved differently under different traffic conditions. Accordingly, the effects of conflicting traffic volumes on conflict frequency vary across different traffic conditions. The occurrences of traffic conflicts at signalized intersections can be modeled using generalized linear regression models. The use of conflict predictive models has potential to expand the uses of surrogate safety measures in safety estimation and evaluation.
Mifsud, Borbala; Martincorena, Inigo; Darbo, Elodie; Sugar, Robert; Schoenfelder, Stefan; Fraser, Peter; Luscombe, Nicholas M
2017-01-01
Hi-C is one of the main methods for investigating spatial co-localisation of DNA in the nucleus. However, the raw sequencing data obtained from Hi-C experiments suffer from large biases and spurious contacts, making it difficult to identify true interactions. Existing methods use complex models to account for biases and do not provide a significance threshold for detecting interactions. Here we introduce a simple binomial probabilistic model that resolves complex biases and distinguishes between true and false interactions. The model corrects biases of known and unknown origin and yields a p-value for each interaction, providing a reliable threshold based on significance. We demonstrate this experimentally by testing the method against a random ligation dataset. Our method outperforms previous methods and provides a statistical framework for further data analysis, such as comparisons of Hi-C interactions between different conditions. GOTHiC is available as a BioConductor package (http://www.bioconductor.org/packages/release/bioc/html/GOTHiC.html).
An Efficient Alternative Mixed Randomized Response Procedure
ERIC Educational Resources Information Center
Singh, Housila P.; Tarray, Tanveer A.
2015-01-01
In this article, we have suggested a new modified mixed randomized response (RR) model and studied its properties. It is shown that the proposed mixed RR model is always more efficient than the Kim and Warde's mixed RR model. The proposed mixed RR model has also been extended to stratified sampling. Numerical illustrations and graphical…
Quantifying the effect of mixing on the mean age of air in CCMVal-2 and CCMI-1 models
NASA Astrophysics Data System (ADS)
Dietmüller, Simone; Eichinger, Roland; Garny, Hella; Birner, Thomas; Boenisch, Harald; Pitari, Giovanni; Mancini, Eva; Visioni, Daniele; Stenke, Andrea; Revell, Laura; Rozanov, Eugene; Plummer, David A.; Scinocca, John; Jöckel, Patrick; Oman, Luke; Deushi, Makoto; Kiyotaka, Shibata; Kinnison, Douglas E.; Garcia, Rolando; Morgenstern, Olaf; Zeng, Guang; Stone, Kane Adam; Schofield, Robyn
2018-05-01
The stratospheric age of air (AoA) is a useful measure of the overall capabilities of a general circulation model (GCM) to simulate stratospheric transport. Previous studies have reported a large spread in the simulation of AoA by GCMs and coupled chemistry-climate models (CCMs). Compared to observational estimates, simulated AoA is mostly too low. Here we attempt to untangle the processes that lead to the AoA differences between the models and between models and observations. AoA is influenced by both mean transport by the residual circulation and two-way mixing; we quantify the effects of these processes using data from the CCM inter-comparison projects CCMVal-2 (Chemistry-Climate Model Validation Activity 2) and CCMI-1 (Chemistry-Climate Model Initiative, phase 1). Transport along the residual circulation is measured by the residual circulation transit time (RCTT). We interpret the difference between AoA and RCTT as additional aging by mixing. Aging by mixing thus includes mixing on both the resolved and subgrid scale. We find that the spread in AoA between the models is primarily caused by differences in the effects of mixing and only to some extent by differences in residual circulation strength. These effects are quantified by the mixing efficiency, a measure of the relative increase in AoA by mixing. The mixing efficiency varies strongly between the models from 0.24 to 1.02. We show that the mixing efficiency is not only controlled by horizontal mixing, but by vertical mixing and vertical diffusion as well. Possible causes for the differences in the models' mixing efficiencies are discussed. Differences in subgrid-scale mixing (including differences in advection schemes and model resolutions) likely contribute to the differences in mixing efficiency. However, differences in the relative contribution of resolved versus parameterized wave forcing do not appear to be related to differences in mixing efficiency or AoA.
Child Schooling in Ethiopia: The Role of Maternal Autonomy.
Gebremedhin, Tesfaye Alemayehu; Mohanty, Itismita
2016-01-01
This paper examines the effects of maternal autonomy on child schooling outcomes in Ethiopia using a nationally representative Ethiopian Demographic and Health survey for 2011. The empirical strategy uses a Hurdle Negative Binomial Regression model to estimate years of schooling. An ordered probit model is also estimated to examine age grade distortion using a trichotomous dependent variable that captures three states of child schooling. The large sample size and the range of questions available in this dataset allow us to explore the influence of individual and household level social, economic and cultural factors on child schooling. The analysis finds statistically significant effects of maternal autonomy variables on child schooling in Ethiopia. The roles of maternal autonomy and other household-level factors on child schooling are important issues in Ethiopia, where health and education outcomes are poor for large segments of the population.
A Bayesian method for inferring transmission chains in a partially observed epidemic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marzouk, Youssef M.; Ray, Jaideep
2008-10-01
We present a Bayesian approach for estimating transmission chains and rates in the Abakaliki smallpox epidemic of 1967. The epidemic affected 30 individuals in a community of 74; only the dates of appearance of symptoms were recorded. Our model assumes stochastic transmission of the infections over a social network. Distinct binomial random graphs model intra- and inter-compound social connections, while disease transmission over each link is treated as a Poisson process. Link probabilities and rate parameters are objects of inference. Dates of infection and recovery comprise the remaining unknowns. Distributions for smallpox incubation and recovery periods are obtained from historicalmore » data. Using Markov chain Monte Carlo, we explore the joint posterior distribution of the scalar parameters and provide an expected connectivity pattern for the social graph and infection pathway.« less
Landau-Zener extension of the Tavis-Cummings model: structure of the solution
NASA Astrophysics Data System (ADS)
Sun, Chen; Sinitsyn, Nikolai
We explore the recently discovered solution of the driven Tavis-Cummings model (DTCM). It describes interaction of arbitrary number of two-level systems with a bosonic mode that has linearly time-dependent frequency. We derive compact and tractable expressions for transition probabilities in terms of the well known special functions. In the new form, our formulas are suitable for fast numerical calculations and analytical approximations. As an application, we obtain the semiclassical limit of the exact solution and compare it to prior approximations. We also reveal connection between DTCM and q-deformed binomial statistics. Under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. Authors also thank the support from the LDRD program at LANL.
Oldham, Justin M; Lee, Cathryn; Valenzi, Eleanor; Witt, Leah J; Adegunsoye, Ayodeji; Hsu, Scully; Chen, Lena; Montner, Steven; Chung, Jonathan H; Noth, Imre; Vij, Rekha; Strek, Mary E
2016-12-01
Azathioprine is a commonly prescribed therapy for connective tissue disease-associated interstitial lung disease (CTD-ILD). Combination therapy that included azathioprine was recently shown to increase the risk of death and hospitalization in patients with idiopathic pulmonary fibrosis. Whether azathioprine increases the risk of adverse outcomes in patients with fibrotic CTD-ILD, including those with CTD-associated usual interstitial pneumonia (UIP), remains unknown. A retrospective cohort analysis was performed to determine the combined incidence rate of death, transplant and respiratory hospitalization associated with azathioprine exposure. A fibrotic CTD-ILD cohort treated with mycophenolate mofetil served as a comparator group. Incidence rates were compared with an incidence rate ratio (IRR) generated by negative binomial regression. Longitudinal pulmonary function response was then assessed using mixed effects linear regression models. Fifty-four patients were treated with azathioprine and forty-three with mycophenolate. Medication discontinuation due to non-respiratory side effects occurred in 27% and 5% of the azathioprine and mycophenolate cohorts, respectively. The combined incidence rate of adverse outcomes was 0.015 and 0.013 for azathioprine and mycophenolate, respectively (IRR 1.23; 95% CI 0.49-3.12; p = 0.66). Similar incidence rates were observed among those with CTD-UIP (IRR 0.83; 95% CI 0.21-3.31; p = 0.79). Both groups demonstrated pulmonary function stability over time, with the azathioprine group demonstrating a marginal improvement. A significant minority of patients could not tolerate azathioprine due to non-respiratory side effects. Of those who did tolerate azathioprine, a similar incidence of adverse outcomes was observed as those treated with mycophenolate. Both therapies were associated with stability in pulmonary function. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kiadaliri, Aliasghar A; Asadi-Lari, Mohsen; Kalantari, Naser; Jafari, Mehdi; Vaez Mahdavi, Mohammad Reza; Faghihzadeh, Soghrat
2016-09-01
The prevalence of obesity is increasing in Iran. Previous studies showed mixed results in relation to association between socioeconomic status and obesity in the country. The current study aimed to examine educational inequalities among adults in Tehran in 2011. Data on 90,435 persons 18 years and older from Urban Health Equity Assessment and Response Tool (Urban HEART-2) were analyzed. The Slope Index of Inequality (SII) and the Relative Index of Inequality (RII) were used for assessing educational inequalities in obesity. These measures were quantified using generalized linear models for the binomial family adjusted for sex and age. Subgroup analysis was conducted across sex, age groups and the 22 districts of Tehran. Both SII and RII showed substantial educational inequalities in obesity in favour of more educated adults [RII and SII (95% CI were equal to 2.91 (2.71-3.11) and 0.12 (0.12-0.13)), respectively]. These educational inequalities were persistent even after adjusting for employment, marital status and smoking. Subgroup analysis revealed that educational inequalities were more profound among women. While among men educational inequalities were generally increasing with age, an inverse trend was observed among women. Educational inequalities were observed within all 22 districts of Tehran and generally there were no statistically significant differences between districts. An inverse association between education and obesity was observed in the current study. To decrease educational inequalities in Tehran, priority should be given to younger women and older men. Further analyses are needed to explain these inequalities. Copyright © 2015 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.
Linard, Catherine; Lamarque, Pénélope; Heyman, Paul; Ducoffre, Geneviève; Luyasu, Victor; Tersago, Katrien; Vanwambeke, Sophie O; Lambin, Eric F
2007-01-01
Background Vector-borne and zoonotic diseases generally display clear spatial patterns due to different space-dependent factors. Land cover and land use influence disease transmission by controlling both the spatial distribution of vectors or hosts, and the probability of contact with susceptible human populations. The objective of this study was to combine environmental and socio-economic factors to explain the spatial distribution of two emerging human diseases in Belgium, Puumala virus (PUUV) and Lyme borreliosis. Municipalities were taken as units of analysis. Results Negative binomial regressions including a correction for spatial endogeneity show that the spatial distribution of PUUV and Lyme borreliosis infections are associated with a combination of factors linked to the vector and host populations, to human behaviours, and to landscape attributes. Both diseases are associated with the presence of forests, which are the preferred habitat for vector or host populations. The PUUV infection risk is higher in remote forest areas, where the level of urbanisation is low, and among low-income populations. The Lyme borreliosis transmission risk is higher in mixed landscapes with forests and spatially dispersed houses, mostly in wealthy peri-urban areas. The spatial dependence resulting from a combination of endogenous and exogenous processes could be accounted for in the model on PUUV but not for Lyme borreliosis. Conclusion A large part of the spatial variation in disease risk can be explained by environmental and socio-economic factors. The two diseases not only are most prevalent in different regions but also affect different groups of people. Combining these two criteria may increase the efficiency of information campaigns through appropriate targeting. PMID:17474974
Ranapurwala, Shabbar I; Casteel, Carri; Peek-Asa, Corinne
2016-12-01
Experiences in adolescence may have a lasting impact on adulthood. The objective of this study is to evaluate the association between adolescent (12-18 years of age) volunteerism with the incidence of illegal behaviors, arrests, and convictions in adulthood (>18 years of age). We conducted a retrospective cohort study using secondary data from the National Longitudinal Study of Adolescent to Adult Health. Students from grades 7-12 were recruited in 1994-1995 (n = 20,745), and then followed in 2001-2002 (n = 14,322) and in 2008-2009 (n = 12,288). In 2000-2001, participants were retrospectively asked about their volunteering experience from 12 to 18 years of age. Consequently, participants were divided into non-volunteers, self-volunteers, adult-required volunteers, and court-ordered volunteers. Groups were compared for rates of illegal behaviors, arrest, and convictions in adulthood (>18 years of age) using weighted generalized linear mixed negative binomial models while accounting for sampling design. Relative to non-volunteers, self-volunteers reported 11 % fewer illegal behaviors (RR: 0.89, 95 % CI: 0.80, 0.99), 31 % fewer arrests (RR: 0.69, 95 %: 0.57, 0.85), and 39 % fewer convictions (RR: 0.61, 95 % CI: 0.47, 0.79) by age 18-28 years, and 28 % fewer illegal behaviors, 53 % fewer arrests, and 36 % fewer convictions by age 24-34. In comparison the adult-required volunteers also reported fewer arrests and convictions; however, they reported more illegal behaviors than the non-volunteers. The court-ordered volunteers reported higher rates of criminal involvement than the non-volunteers, throughout. This study suggests that volunteering in adolescence may reduce crime involvement in adulthood.
Chadeka, Evans Asena; Nagi, Sachiyo; Sunahara, Toshihiko; Cheruiyot, Ngetich Benard; Bahati, Felix; Ozeki, Yuriko; Inoue, Manabu; Osada-Oka, Mayuko; Okabe, Mayuko; Hirayama, Yukio; Changoma, Mwatasa; Adachi, Keishi; Mwende, Faith; Kikuchi, Mihoko; Nakamura, Risa; Kalenda, Yombo Dan Justin; Kaneko, Satoshi; Hirayama, Kenji; Shimada, Masaaki; Ichinose, Yoshio; Njenga, Sammy M.; Matsumoto, Sohkichi
2017-01-01
Background Large-scale schistosomiasis control programs are implemented in regions with diverse social and economic environments. A key epidemiological feature of schistosomiasis is its small-scale heterogeneity. Locally profiling disease dynamics including risk factors associated with its transmission is essential for designing appropriate control programs. To determine spatial distribution of schistosomiasis and its drivers, we examined schoolchildren in Kwale, Kenya. Methodology/Principal findings We conducted a cross-sectional study of 368 schoolchildren from six primary schools. Soil-transmitted helminths and Schistosoma mansoni eggs in stool were evaluated by the Kato-Katz method. We measured the intensity of Schistosoma haematobium infection by urine filtration. The geometrical mean intensity of S. haematobium was 3.1 eggs/10 ml urine (school range, 1.4–9.2). The hookworm geometric mean intensity was 3.2 eggs/g feces (school range, 0–17.4). Heterogeneity in the intensity of S. haematobium and hookworm infections was evident in the study area. To identify factors associated with the intensity of helminth infections, we utilized negative binomial generalized linear mixed models. The intensity of S. haematobium infection was associated with religion and socioeconomic status (SES), while that of hookworm infection was related to SES, sex, distance to river and history of anthelmintic treatment. Conclusions/Significance Both S. haematobium and hookworm infections showed micro-geographical heterogeneities in this Kwale community. To confirm and explain our observation of high S. haematobium risk among Muslims, further extensive investigations are necessary. The observed small scale clustering of the S. haematobium and hookworm infections might imply less uniform strategies even at finer scale for efficient utilization of limited resources. PMID:28863133
Dupuytren disease is highly prevalent in male field hockey players aged over 60 years.
Broekstra, Dieuwke C; van den Heuvel, Edwin R; Lanting, Rosanne; Harder, Tom; Smits, Inge; Werker, Paul M N
2016-09-22
Dupuytren disease is a fibroproliferative hand condition. The role of exposure to vibration as a risk factor has been studied with contradictory results. Since field hockey is expected to be a strong source of hand-arm vibration, we hypothesised that long-term exposure to field hockey is associated with Dupuytren disease. In this cross-sectional cohort study, the hands of 169 male field hockey players (IQR: 65-71 years) and 156 male controls (IQR: 59-71 years) were examined for signs of Dupuytren disease. Details about their age, lifestyle factors, medical history, employment history and leisure activities were gathered. Prior to the analyses, the groups were balanced in risk factors using propensity score matching. The association between field hockey and Dupuytren disease was determined using a subject-specific generalised linear mixed model with a binomial distribution and logit link function (matched pairs analysis). Dupuytren disease was observed in 51.7% of the field hockey players, and in 13.8% of the controls. After propensity score matching, field hockey playing as dichotomous variable, was associated with Dupuytren disease (OR=9.42, 95% CI 3.01 to 29.53). A linear dose-response effect of field hockey (hours/week x years) within the field hockey players could not be demonstrated (OR=1.03, 95% CI 0.68 to 1.56). We found that field hockey playing has a strong association with the presence of Dupuytren disease. Clinicians in sports medicine should be alert to this less common diagnosis in this sport. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Magnus, Maria C.; Stigum, Hein; Håberg, Siri E.; Nafstad, Per; London, Stephanie J.; Nystad, Wenche
2015-01-01
Background The immediate postnatal period is the period of the fastest growth in the entire life span and a critical period for lung development. Therefore, it is interesting to examine the association between growth during this period and childhood respiratory disorders. Methods We examined the association of peak weight and height velocity to age 36 months with maternal report of current asthma at 36 months (n = 50,311), recurrent lower respiratory tract infections (LRTIs) by 36 months (n = 47,905) and current asthma at 7 years (n = 24,827) in the Norwegian Mother and Child Cohort Study. Peak weight and height velocity was calculated using the Reed1 model through multilevel mixed-effects linear regression. Multivariable log-binomial regression was used to calculate adjusted relative risks (adj.RR) and 95% confidence intervals (CI). We also conducted a sibling pair analysis using conditional logistic regression. Results Peak weight velocity was positively associated with current asthma at 36 months [adj.RR 1.22 (95%CI: 1.18, 1.26) per standard deviation (SD) increase], recurrent LRTIs by 36 months [adj.RR 1.14 (1.10, 1.19) per SD increase] and current asthma at 7 years [adj.RR 1.13 (95%CI: 1.07, 1.19) per SD increase]. Peak height velocity was not associated with any of the respiratory disorders. The positive association of peak weight velocity and asthma at 36 months remained in the sibling pair analysis. Conclusions Higher peak weight velocity, achieved during the immediate postnatal period, increased the risk of respiratory disorders. This might be explained by an influence on neonatal lung development, shared genetic/epigenetic mechanisms and/or environmental factors. PMID:25635872
Walker, Dilys M.; Cohen, Susanna R.; Fritz, Jimena; Olvera-García, Marisela; Zelek, Sarah T.; Fahey, Jenifer O.; Romero-Martínez, Martín; Montoya-Rodríguez, Alejandra; Lamadrid-Figueroa, Héctor
2016-01-01
Introduction Most maternal deaths in Mexico occur within health facilities, often attributable to suboptimal care and lack of access to emergency services. Improving obstetric and neonatal emergency care can improve health outcomes. We evaluated the impact of PRONTO, a simulation-based low-cost obstetric and neonatal emergency and team training program on patient outcomes. Methods We conducted a pair-matched hospital-based trial in Mexico from 2010 to 2013 with 24 public hospitals. Obstetric and neonatal care providers participated in PRONTO trainings at intervention hospitals. Control hospitals received no intervention. Outcome measures included hospital-based neonatal mortality, maternal complications, and cesarean delivery. We fitted mixed-effects negative binomial regression models to estimate incidence rate ratios and 95% confidence intervals using a difference-in-differences approach, cumulatively, and at follow-up intervals measured at 4, 8, and 12 months. Results There was a significant estimated impact of PRONTO on the incidence of cesarean sections in intervention hospitals relative to controls adjusting for baseline differences during all 12 months cumulative of follow-up (21% decrease, P = 0.005) and in intervals measured at 4 (16% decrease, P = 0.02), 8 (20% decrease, P = 0.004), and 12 months’ (20% decrease, P = 0.003) follow-up. We found no statistically significant impact of the intervention on the incidence of maternal complications. A significant impact of a 40% reduction in neonatal mortality adjusting for baseline differences was apparent at 8 months postintervention but not at 4 or 12 months. Conclusions PRONTO reduced the incidence of cesarean delivery and may improve neonatal mortality, although the effect on the latter might not be sustainable. Further study is warranted to confirm whether obstetric and neonatal emergency simulation and team training can have lasting results on patient outcomes. PMID:26312613