Science.gov

Sample records for bio-chemical sensing applications

  1. Study of interfacial phenomena for bio/chemical sensing applications

    NASA Astrophysics Data System (ADS)

    Min, Hwall

    This work presents the fundamental study of biological and chemical interfacial phenomena and (bio)chemical sensing applications using high frequency resonator arrays. To realize a versatile (bio)chemical sensing system for the fundamental study as well as their practical applications, the following three distinct components were studied and developed: i) detection platforms with high sensitivity, ii) novel innovative sensing materials with high selectivity, iii) analytical model for data interpretation. 8-pixel micromachined quartz crystal resonator (muQCR) arrays with a fundamental resonance frequency of 60 ¡V 90 MHz have been used to provide a reliable detection platform with high sensitivity. Room temperature ionic liquid (RTIL) has been explored and integrated into the sensing system as a smart chemical sensing material. The use of nanoporous gold (np-Au) enables the combination of the resonator and surface-enhanced Raman spectroscopy for both quantitative and qualitative measurement. A statistical model for the characterization of resonator behavior to study the protein adsorption kinetics is developed by random sequential adsorption (RSA) approach with the integration of an effective surface depletion theory. The investigation of the adsorption kinetics of blood proteins is reported as the fundamental study of biological phenomena using the proposed sensing system. The aim of this work is to study different aspects of protein adsorption and kinetics of adsorption process with blood proteins on different surfaces. We specifically focus on surface depletion effect in conjunction with the RSA model to explain the observed adsorption isotherm characteristics. A number of case studies on protein adsorption conducted using the proposed sensing system has been discussed. Effort is specifically made to understand adsorption kinetics, and the effect of surface on the adsorption process as well as the properties of the adsorbed protein layer. The second half of the

  2. Slow-light enhanced absorption for bio-chemical sensing applications: potential of low-contrast lossy materials

    NASA Astrophysics Data System (ADS)

    Pedersen, J.; Xiao, S.; Mortensen, N. A.

    2008-02-01

    Slow-light enhanced absorption in liquid-infiltrated photonic crystals has recently been proposed as a route to compensate for the reduced optical path in typical lab-on-a-chip systems for bio-chemical sensing applications. A simple perturbative expression has been applied to ideal structures composed of lossless dielectrics. In this work we study the enhancement in structures composed of lossy dielectrics such as a polymer. For this particular sensing application we find that the material loss has an unexpected limited drawback and surprisingly, it may even add to increase the bandwidth for low-index contrast systems such as polymer devices.

  3. Advanced Nanoporous Materials for Micro-Gravimetric Sensing to Trace-Level Bio/Chemical Molecules

    PubMed Central

    Xu, Pengcheng; Li, Xinxin; Yu, Haitao; Xu, Tiegang

    2014-01-01

    Functionalized nanoporous materials have been developed recently as bio/chemical sensing materials. Due to the huge specific surface of the nano-materials for molecular adsorption, high hopes have been placed on gravimetric detection with micro/nano resonant cantilevers for ultra-sensitive sensing of low-concentration bio/chemical substances. In order to enhance selectivity of the gravimetric resonant sensors to the target molecules, it is crucial to modify specific groups onto the pore-surface of the nano-materials. By loading the nanoporous sensing material onto the desired region of the mass-type transducers like resonant cantilevers, the micro-gravimetric bio/chemical sensors can be formed. Recently, such micro-gravimetric bio/chemical sensors have been successfully applied for rapid or on-the-spot detection of various bio/chemical molecules at the trace-concentration level. The applicable nanoporous sensing materials include mesoporous silica, zeolite, nanoporous graphene oxide (GO) and so on. This review article focuses on the recent achievements in design, preparation, functionalization and characterization of advanced nanoporous sensing materials for micro-gravimetric bio/chemical sensing. PMID:25313499

  4. Advanced nanoporous materials for micro-gravimetric sensing to trace-level bio/chemical molecules.

    PubMed

    Xu, Pengcheng; Li, Xinxin; Yu, Haitao; Xu, Tiegang

    2014-10-13

    Functionalized nanoporous materials have been developed recently as bio/chemical sensing materials. Due to the huge specific surface of the nano-materials for molecular adsorption, high hopes have been placed on gravimetric detection with micro/nano resonant cantilevers for ultra-sensitive sensing of low-concentration bio/chemical substances. In order to enhance selectivity of the gravimetric resonant sensors to the target molecules, it is crucial to modify specific groups onto the pore-surface of the nano-materials. By loading the nanoporous sensing material onto the desired region of the mass-type transducers like resonant cantilevers, the micro-gravimetric bio/chemical sensors can be formed. Recently, such micro-gravimetric bio/chemical sensors have been successfully applied for rapid or on-the-spot detection of various bio/chemical molecules at the trace-concentration level. The applicable nanoporous sensing materials include mesoporous silica, zeolite, nanoporous graphene oxide (GO) and so on. This review article focuses on the recent achievements in design, preparation, functionalization and characterization of advanced nanoporous sensing materials for micro-gravimetric bio/chemical sensing.

  5. Chalcogenide glass fibers: Optical window tailoring and suitability for bio-chemical sensing

    NASA Astrophysics Data System (ADS)

    Lucas, Pierre; Coleman, Garrett J.; Jiang, Shibin; Luo, Tao; Yang, Zhiyong

    2015-09-01

    Glassy materials based on chalcogen elements are becoming increasingly prominent in the development of advanced infrared sensors. In particular, infrared fibers constitute a desirable sensing platform due to their high sensitivity and versatile remote collection capabilities for in-situ detection. Tailoring the transparency window of an optical material to the vibrational signature of a target molecule is important for the design of infrared sensor, and particularly for fiber evanescent wave spectroscopy. Here we review the basic principles and recent developments in the fabrication of chalcogenide glass infrared fibers for application as bio-chemical sensors. We emphasize the challenges in designing materials that combine good rheological properties with chemical stability and sufficiently wide optical windows for bio-chemical sensing. The limitation in optical transparency due to higher order overtones of the amorphous network vibrations is established for this family of glasses. It is shown that glasses with wide optical window suffer from higher order overtone absorptions. Compositional engineering with heavy elements such as iodine is shown to widen the optical window but at the cost of lower chemical stability. The optical attenuations of various families of chalcogenide glass fibers are presented and weighed for their applications as chemical sensors. It is then shown that long-wave infrared fibers can be designed to optimize the collection of selective signal from bio-molecules such as cells and tissues. Issues of toxicity and mechanical resistance in the context of bio-sensing are also discussed.

  6. Novel Bio, Chemical, Environmental Sensing Based on New Model of Total Internal Reflection in Turbid Media

    NASA Astrophysics Data System (ADS)

    Bali, Samir; Judge, Patrick; Phillip, Nathan; Boivin, Jordan; Scaffidi, Jonathan; Berberich, Jason; Bali, Lalit

    2014-05-01

    We have initiated a collaborative experimental research program that combines new advances in optical physics, field portable chemical analysis, and biosensing. Our goal is to discover and characterize new optical sensing methodologies in opaque, highly scattering (i.e., ``turbid'') media, and demonstrate new paradigms for optical sensing in research and industry. We have three specific objectives. First, we propose to fully characterize and validate a new model of total internal reflection (TIR) from highly turbid media thus enabling a first demonstration of non-invasive, in-situ, real-time particle sizing for the case of arbitrary scattering particle size-a holy grail in colloidal science. Second, we propose to implement a first demonstration of real-time non-invasive measurement of nanoparticle aggregation in highly turbid media. Third, we propose to use our new sensing methodology to demonstrate real-time in-situ label-free monitoring of molecular interactions and adsorption at surfaces. We gratefully acknowledge support from the American Chemical Society Petroleum Research Fund and Miami University's Interdisciplinary Roundtable Fund. We also gratefully acknowledge experimental help from the Miami University Instrumentation Laboratory.

  7. Droplet microfluidics in (bio)chemical analysis.

    PubMed

    Basova, Evgenia Yu; Foret, Frantisek

    2015-01-01

    Droplet microfluidics may soon change the paradigm of performing chemical analyses and related instrumentation. It can improve not only the analysis scale, possibility for sensitivity improvement, and reduced consumption of chemical and biological reagents, but also the speed of performing a variety of unit operations. At present, microfluidic platforms can reproducibly generate monodisperse droplet populations at kHz or higher rates with droplet sizes suitable for high-throughput experiments, single-cell detection or even single molecule analysis. In addition to being used as microreactors with volume in the micro- to femtoliter range, droplet based systems have also been used to directly synthesize particles and encapsulate biological entities for biomedicine and biotechnology applications. This minireview summarizes various droplet microfluidics operations and applications for (bio)chemical assays described in the literature during the past few years.

  8. Label-Free Optical Ring Resonator Bio/Chemical Sensors

    NASA Astrophysics Data System (ADS)

    Zhu, Hongying; Suter, Jonathan D.; Fan, Xudong

    Optical micro-ring resonator sensors are an emerging category of label-free optical sensors for bio/chemical sensing that have recently been under intensive investigation. Researchers of this technology have been motivated by a tremendous breadth of different applications, including medical diagnosis, environmental monitoring, homeland security, and food quality control, which require sensitive analytical tools. Ring resonator sensors use total internal reflection to support circulating optical resonances called whispering gallery modes (WGMs). The WGMs have an evanescent field of several hundred nanometers into the surrounding medium, and can therefore detect the refractive index change induced when the analyte binds to the resonator surface. Despite the small physical size of a resonator, the circulating nature of the WGM creates extremely long effective lengths, greatly increasing light-matter interaction and improving its sensing performance. Moreover, only small sample volume is needed for detection because the sensors can be fabricated in sizes well below 100 μm. The small footprint allows integration of those ring resonator sensors onto lab-on-a-chip types of devices for multiplexed detection.

  9. Silicon-based optoelectronic integrated circuit for label-free bio/chemical sensor.

    PubMed

    Song, Junfeng; Luo, Xianshu; Kee, Jack Sheng; Han, Kyungsup; Li, Chao; Park, Mi Kyoung; Tu, Xiaoguang; Zhang, Huijuan; Fang, Qing; Jia, Lianxi; Yoon, Yong-Jin; Liow, Tsung-Yang; Yu, Mingbin; Lo, Guo-Qiang

    2013-07-29

    We demonstrate a silicon-based optoelectronic integrated circuit (OEIC) for label-free bio/chemical sensing application. Such on-chip OEIC sensor system consists of optical grating couplers for vertical light coupling into silicon waveguides, a thermal-tunable microring as a tunable filter, an exposed microring as an optical label-free sensor, and a Ge photodetector for a direct electrical readout. Different from the conventional wavelength-scanning method, we adopt low-cost broadband ASE light source, together with the on-chip tunable filter to generate sliced light source. The effective refractive index change of the sensing microring induced by the sensing target is traced by scanning the supplied electrical power applied onto the tracing microring, and the detected electrical signal is read out by the Ge photodetector. For bulk refractive index sensing, we demonstrate using such OEIC sensing system with a sensitivity of ~15 mW/RIU and a detection limit of 3.9 μ-RIU, while for surface sensing of biotin-streptavidin, we obtain a surface mass sensitivity of S(m) = ~192 µW/ng·mm(-2) and a surface detection limit of 0.3 pg/mm(2). The presented OEIC sensing system is suitable for point-of-care applications.

  10. Silicon-based optoelectronic integrated circuit for label-free bio/chemical sensor.

    PubMed

    Song, Junfeng; Luo, Xianshu; Kee, Jack Sheng; Han, Kyungsup; Li, Chao; Park, Mi Kyoung; Tu, Xiaoguang; Zhang, Huijuan; Fang, Qing; Jia, Lianxi; Yoon, Yong-Jin; Liow, Tsung-Yang; Yu, Mingbin; Lo, Guo-Qiang

    2013-07-29

    We demonstrate a silicon-based optoelectronic integrated circuit (OEIC) for label-free bio/chemical sensing application. Such on-chip OEIC sensor system consists of optical grating couplers for vertical light coupling into silicon waveguides, a thermal-tunable microring as a tunable filter, an exposed microring as an optical label-free sensor, and a Ge photodetector for a direct electrical readout. Different from the conventional wavelength-scanning method, we adopt low-cost broadband ASE light source, together with the on-chip tunable filter to generate sliced light source. The effective refractive index change of the sensing microring induced by the sensing target is traced by scanning the supplied electrical power applied onto the tracing microring, and the detected electrical signal is read out by the Ge photodetector. For bulk refractive index sensing, we demonstrate using such OEIC sensing system with a sensitivity of ~15 mW/RIU and a detection limit of 3.9 μ-RIU, while for surface sensing of biotin-streptavidin, we obtain a surface mass sensitivity of S(m) = ~192 µW/ng·mm(-2) and a surface detection limit of 0.3 pg/mm(2). The presented OEIC sensing system is suitable for point-of-care applications. PMID:23938665

  11. Remote sensing applications program

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The activities of the Mississippi Remote Sensing Center are described in addition to technology transfer and information dissemination, remote sensing topics such as timber identification, water quality, flood prevention, land use, erosion control, animal habitats, and environmental impact studies are also discussed.

  12. Field-effect-based multifunctional hybrid sensor module for the determination of both (bio-)chemical and physical parameters

    NASA Astrophysics Data System (ADS)

    Schoening, Michael J.; Poghossian, Arshak; Schultze, J. Walter; Lueth, Hans

    2002-02-01

    Sensor systems for multi-parameter detection in fluidics usually combine different sensors, which are designed to detect either a physical or (bio-)chemical parameter. Therefore, such systems include a more complicated fabrication technology and measuring set-up. In this work, an ISFET (ion-sensitive field-effect transistor), which is well known as a (bio-)chemical sensor, is utilized as transducer for the detection of both (bio-)chemical and physical parameters. A multifunctional hybrid module for the determination of two (bio-)chemical parameters (pH, penicillin concentration) and three physical parameters (temperature, flow velocity and flow direction) using only two sensor structures, an ion generator and a reference electrode, is realized and its performance has been investigated. Here, a multifunctionality of the sensor system is achieved by means of different sensor arrangements and/or different operation modes. A Ta2O5-gate ISFET was used as transducer for all sensors. A novel time-of-flight type ISFET-based flow-velocity (flow rate) and flow-direction sensor using in-situ electrochemical generation of chemical tracers is presented. Due to the fast response of the ISFET (usually in the millisecond range), an ISFET-based flow sensor is suitable for the measurement of the flow velocity in a wide range. With regard to practical applications, pH measurements with this ISFET were performed in rain droplets.

  13. Metamaterials Application in Sensing

    PubMed Central

    Chen, Tao; Li, Suyan; Sun, Hui

    2012-01-01

    Metamaterials are artificial media structured on a size scale smaller than wavelength of external stimuli, and they can exhibit a strong localization and enhancement of fields, which may provide novel tools to significantly enhance the sensitivity and resolution of sensors, and open new degrees of freedom in sensing design aspect. This paper mainly presents the recent progress concerning metamaterials-based sensing, and detailedly reviews the principle, detecting process and sensitivity of three distinct types of sensors based on metamaterials, as well as their challenges and prospects. Moreover, the design guidelines for each sensor and its performance are compared and summarized. PMID:22736975

  14. Application of remote sensing

    NASA Technical Reports Server (NTRS)

    Graff, W. J. (Compiler)

    1973-01-01

    Remote sensing and aerial photographic interpretation are discussed along with the specific imagery techniques used for this research. The method used to select sites, the results of data analyses for the Houston metropolitan area, and the location of dredging sites along the Houston Ship Channel are presented. The work proposed for the second year of the project is described.

  15. Applications of Remote Sensing

    NASA Astrophysics Data System (ADS)

    Jacha, Charlene

    2015-04-01

    Remote sensing is one of the best ways to be able to monitor and see changes in the Earth. The use of satellite images in the classroom can be a practical way to help students understand the importance and use of remote sensing and Geographic Information Systems (GIS). It is essential in helping students to understand that underlying individual data points are converted to a broad spatial form. The use of actual remote sensing data makes this more understandable to the students e.g. an online map of recent earthquake events, geologic maps, satellite imagery. For change detection, images of years ten or twenty years apart of the same area can be compared and observations recorded. Satellite images of different places can be available on the Internet or from the local space agency. In groups of mixed abilities, students can observe changes in land use over time and also give possible reasons and explanations to those changes. Students should answer essential questions like, how does satellite imagery offer valuable information to different faculties e.g. military, weather, environmental departments and others. Before and after images on disasters for example, volcanoes, floods and earthquakes should be obtained and observed. Key questions would be; how can scientists use these images to predict, or to change the future outcomes over time. How to manage disasters and how the archived images can assist developers in planning land use around that area in the future. Other material that would be useful includes maps and aerial photographs of the area. A flight should be organized over the area for students to acquire aerial photographs of their own; this further enhances their understanding of the concept "remote sensing". Environmental issues such as air, water and land pollution can also be identified on satellite images. Key questions for students would include causes, effects and possible solutions to the problem. Conducting a fieldwork exercise around the area would

  16. Econophysics and bio-chemical engineering thermodynamics: The exergetic analysis of a municipality

    NASA Astrophysics Data System (ADS)

    Lucia, Umberto

    2016-11-01

    Exergy is a fundamental quantity because it allows us to obtain information on the useful work obtainable in a process. The analyses of irreversibility are important not only in the design and development of the industrial devices, but also in fundamental thermodynamics and in the socio-economic analysis of municipality. Consequently, the link between entropy and exergy is discussed in order to link econophysics to the bio-chemical engineering thermodynamics. Last, this link holds to the fundamental role of fluxes and to the exergy exchanged in the interaction between the system and its environment. The result consists in a thermodynamic approach to the analysis of the unavailability of the economic, productive or social systems. The unavailability is what the system cannot use in relation to its internal processes. This quantity result is interesting also as a support to public manager for economic decisions. Here, the Alessandria Municipality is analyzed in order to highlight the application of the theoretical results.

  17. Combinatorial Chemistry for Optical Sensing Applications

    NASA Astrophysics Data System (ADS)

    Díaz-García, M. E.; Luis, G. Pina; Rivero-Espejel, I. A.

    The recent interest in combinatorial chemistry for the synthesis of selective recognition materials for optical sensing applications is presented. The preparation, screening, and applications of libraries of ligands and chemosensors against molecular species and metal ions are first considered. Included in this chapter are also the developments involving applications of combinatorial approaches to the discovery of sol-gel and acrylic-based imprinted materials for optical sensing of antibiotics and pesticides, as well as libraries of doped sol-gels for high-throughput optical sensing of oxygen. The potential of combinatorial chemistry applied to the discovery of new sensing materials is highlighted.

  18. Localized Surface Plasmon Resonance with Five-Branched Gold Nanostars in a Plastic Optical Fiber for Bio-Chemical Sensor Implementation

    PubMed Central

    Cennamo, Nunzio; D'Agostino, Girolamo; Donà, Alice; Dacarro, Giacomo; Pallavicini, Piersandro; Pesavento, Maria; Zeni, Luigi

    2013-01-01

    In this paper a refractive index sensor based on localized surface plasmon resonance (LSPR) in a Plastic Optical Fiber (POF), is presented and experimentally tested. LSPR is achieved exploiting five-branched gold nanostars (GNS) obtained using Triton X-100 in a seed-growth synthesis. They have the uncommon feature of three localized surface plasmon resonances. The strongest LSPRs fall in two ranges, one in the 600–900 nm range (LSPR 2) and the other one in the 1,100–1,600 nm range (LSPR 3), both sensible to refractive index changes. Anyway, due to the extremely strong attenuation (>102 dB/m) of the employed POF in the 1,100–1,600 nm range, only LSPR 2 will be exploited for refractive index change measurements, useful for bio-chemical sensing applications, as a proof of principle of the possibility of realizing a compact, low cost and easy-to-use GNS based device. PMID:24172284

  19. CMOS buried multi-junction (BMJ) detector for bio-chemical analysis

    NASA Astrophysics Data System (ADS)

    Lu, Guo-Neng; Courcier, Thierry; Mamdy, Bastien; Feruglio, Sylvain; Charette, Paul G.; Aimez, Vincent; Romain, Olivier; Pittet, Patrick

    2015-10-01

    The CMOS buried multi-junction (BMJ) detector with multiple outputs has distinct spectral responses that may be exploited for applications such as bio-chemical analysis. We tackle here dark current issue by identifying different components inside the detector structure. The identification methods are based on the observation of bias and temperature dependence, as well as measurements of test detector chip integrating different design variations. Surface thermal generation may become predominant when the detector size shrinks, thus causing dark current degradation. To prevent this effect, we propose a low-sized detector structure with passivation of all its surrounding Si/SiO2 interface areas. Also for the detector readout, we present a multi-channel charge-amplifier architecture with noise analysis. Effects of noise coming from amplifiers and related to the coupled detector's dynamic conductances are illuminated. To pick up weak signals, synchronous detection can be implemented. A BDJ (Buried Double Junction) detector chip designed with a switched-phase architectural approach gives a minimum detectable signal of 15μlx@555nm or 1μlx@555nm at 27°C or - 10°C, for an integration time of 3s or 45s respectively.

  20. (Bio)Chemical Tailoring of Biogenic 3-D Nanopatterned Templates with Energy-Relevant Functionalities

    SciTech Connect

    Sandhage, Kenneth H; Kroger, Nils

    2014-09-08

    The overall aim of this research has been to obtain fundamental understanding of (bio)chemical methodologies that will enable utilization of the unique 3-D nanopatterned architectures naturally produced by diatoms for the syntheses of advanced functional materials attractive for applications in energy harvesting/conversion and storage. This research has been conducted in three thrusts: Thrust 1 (In vivo immobilization of proteins in diatom biosilica) is directed towards elucidating the fundamental mechanism(s) underlying the cellular processes of in vivo immobilization of proteins in diatom silica. Thrust 2 (Shape-preserving reactive conversion of diatom biosilica into porous, high-surface area inorganic replicas) is aimed at understanding the fundamental mechanisms of shape preservation and nanostructural evolution associated with the reactive conversion and/or coating-based conversion of diatom biosilica templates into porous inorganic replicas. Thrust 3 (Immobilization of energy-relevant enzymes in diatom biosilica and onto diatom biosilica-derived inorganic replicas) involves use of the results from both Thrust 1 and 2 to develop strategies for in vivo and in vitro immobilization of enzymes in/on diatom biosilica and diatom biosilica-derived inorganic replicas, respectively. This Final Report describes progress achieved in all 3 of these thrusts.

  1. Remote-sensing applications to geology

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Results of two day workshop on applications of remote sensing to geology are summarized in report. Topics discussed are environmental analysis, crop classification, plant epidemics and diseases, irrigation reform, and soil surveys.

  2. Remote sensing applications to hydrologic modeling

    NASA Technical Reports Server (NTRS)

    Dozier, J.; Estes, J. E.; Simonett, D. S.; Davis, R.; Frew, J.; Marks, D.; Schiffman, K.; Souza, M.; Witebsky, E.

    1977-01-01

    An energy balance snowmelt model for rugged terrain was devised and coupled to a flow model. A literature review of remote sensing applications to hydrologic modeling was included along with a software development outline.

  3. Remote sensing and aerial application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the increasing need for global food production in the presence of dwindling productive acres, the business of modern agriculture needs to use all possible information available to maximize production. One tool that is being used to obtain this information is remote sensing. Any crop disease o...

  4. Energy and remote sensing applications

    NASA Technical Reports Server (NTRS)

    Summers, R. A.; Smith, W. L.; Short, N. M.

    1978-01-01

    The nature of the U.S. energy problem is examined. Based upon the best available estimates, it appears that demand for OPEC oil will exceed OPEC productive capacity in the early to mid-eighties. The upward pressure on world oil prices resulting from this supply/demand gap could have serious international consequences, both financial and in terms of foreign policy implementation. National Energy Plan objectives in response to this situation are discussed. Major strategies for achieving these objectives include a conversion of industry and utilities from oil and gas to coal and other abundant fuels. Remote sensing from aircraft and spacecraft could make significant contributions to the solution of energy problems in a number of ways, related to exploration of energy-related resources, the efficiency and safety of exploitation procedures, power plant siting, environmental monitoring and assessment, and the transportation infrastructure.

  5. Survey of remote sensing applications

    USGS Publications Warehouse

    Deutsch, Morris

    1974-01-01

    Data from the first earth resources technology satellite (ERTS) as well as from NASA and other aircraft, contain much of the information indicative of the distribution of groundwater and the extent of its utilization. Thermal infrared imagery from aircraft is particularly valuable in studying groundwater discharge to the sea and other surface water bodies. Color infrared photography from aircraft and space is also used to locate areas of potential groundwater development. Anomalies in vegetation, soils, moisture, and their pattern of distribution may be indicative of underlying groundwater conditions. Remote sensing may be used directly or indirectly to identify stream reaches for test holes or production wells. Similarly, location of submarine springs increase effectiveness of groundwater exploration in the coastal zone.

  6. Strain sensing technology for high temperature applications

    NASA Technical Reports Server (NTRS)

    Williams, W. Dan

    1993-01-01

    This review discusses the status of strain sensing technology for high temperature applications. Technologies covered are those supported by NASA such as required for applications in hypersonic vehicles and engines, advanced subsonic engines, as well as material and structure development. The applications may be at temperatures of 540 C (1000 F) to temperatures in excess of 1400 C (2500 F). The most promising technologies at present are the resistance strain gage and remote sensing schemes. Resistance strain gages discussed include the BCL gage, the LaRC compensated gage, and the PdCr gage. Remote sensing schemes such as laser based speckle strain measurement, phase-shifling interferometry, and x-ray extensometry are discussed. Present status and limitations of these technologies are presented.

  7. Thermal remote sensing: theory, sensors, and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Applications of thermal infrared remote sensing for Earth science research are both varied and wide in scope. They range from understanding thermal energy responses that drive land-atmosphere energy exchanges in the hydrologic cycle, to measurement of dielectric surface properties for snow, ice, an...

  8. Data compression in remote sensing applications

    NASA Technical Reports Server (NTRS)

    Sayood, Khalid

    1992-01-01

    A survey of current data compression techniques which are being used to reduce the amount of data in remote sensing applications is provided. The survey aspect is far from complete, reflecting the substantial activity in this area. The purpose of the survey is more to exemplify the different approaches being taken rather than to provide an exhaustive list of the various proposed approaches.

  9. Second Eastern Regional Remote Sensing Applications Conference

    NASA Technical Reports Server (NTRS)

    Imhoff, M. L. (Editor); Witt, R. G. (Editor); Kugelmann, D. (Editor)

    1981-01-01

    Participants from state and local governments share experiences in remote sensing applications with one another and with users in the Federal government, universities, and the private sector during technical sessions and forums covering agriculture and forestry; land cover analysis and planning; surface mining and energy; data processing; water quality and the coastal zone; geographic information systems; and user development programs.

  10. Novel optical microresonators for sensing applications

    NASA Astrophysics Data System (ADS)

    Wang, Hanzheng

    Optical microresonators have been proven as an effective means for sensing applications. The high quality (Q) optical whispering gallery modes (WGMs) circulating around the rotationally symmetric structures can interact with the local environment through the evanescent field. The high sensitivity in detection was achieved by the long photon lifetime of the high-Q resonator (thus the long light-environment interaction path). The environmental variation near the resonator surface leads to the effective refractive index change and thus a shift at the resonance wavelength. In this dissertation, we present our recent research on the development of new optical microresonators for sensing applications. Different structures and materials are used to develop optical resonator for broad sensing applications. Specifically, a new coupling method is designed and demonstrated for efficient excitation of microsphere resonators. The new coupler is made by fusion splicing an optical fiber with a capillary tube and consequently etching the capillary wall to a thickness of a few microns. Light is coupled through the peripheral contact between inserted microsphere and the etched capillary wall. Operating in the reflection mode and providing a robust mechanical support to the microresonator, the integrated structure has been experimentally proven as a convenient probe for sensing applications. Microspheres made of different materials (e.g., PMMA, porous glass, hollow core porous, and glass solid borosilicate glass) were successfully demonstrated for different sensing purposes, including temperature, chemical vapor concentration, and glucose concentration in aqueous solutions. In addition, the alignment free, integrated microresonator structure may also find other applications such as optical filters and microcavity lasers.

  11. Applications of remote sensing in public health.

    NASA Technical Reports Server (NTRS)

    Barnes, C. M.; Fuller, C. E.; Schneider, H. J.; Kennedy, E. E.; Jones, H. G.; Morrison, D. R.

    1973-01-01

    Current research concerning the determination of the habitat of mosquito vectors of disease is discussed. It is shown how advanced interpretative processes have enabled recognition of the breeding areas of salt marsh mosquitoes and the breeding sites of the mosquito responsible for the transmission of St. Louis strain of encephalitis and of human filariasis. In addition, remote sensing data have also been useful in the study of the habitat of endemic strains of Venezuelan encephalitis virus in Florida. The beginning of the application of remote sensing to such public health aspects as air, water, and urban degradation is noted.

  12. Integrated optical sensor platform for multiparameter bio-chemical analysis.

    PubMed

    Lützow, Peter; Pergande, Daniel; Heidrich, Helmut

    2011-07-01

    There is growing demand for robust, reliable, low cost, and easy to use sensor systems that feature multiparameter analysis in many application areas ranging from safety and security to point of care and medical diagnostics. Here, we highlight the theory and show first experimental results on a novel approach targeting the realization of massively multiplexed sensor arrays. The presented sensor platform is based on arrays of frequency-modulated integrated optical microring resonators (MRR) fed by a single bus waveguide combined with lock-in detection to filter out in a reliable and simple manner their individual response to external stimuli. The working principle is exemplified on an array of four thermo-optically modulated MRR. It is shown that with this technique tracking of individual resonances is possible even in case of strong spectral overlap. PMID:21747482

  13. Integrated optical sensor platform for multiparameter bio-chemical analysis.

    PubMed

    Lützow, Peter; Pergande, Daniel; Heidrich, Helmut

    2011-07-01

    There is growing demand for robust, reliable, low cost, and easy to use sensor systems that feature multiparameter analysis in many application areas ranging from safety and security to point of care and medical diagnostics. Here, we highlight the theory and show first experimental results on a novel approach targeting the realization of massively multiplexed sensor arrays. The presented sensor platform is based on arrays of frequency-modulated integrated optical microring resonators (MRR) fed by a single bus waveguide combined with lock-in detection to filter out in a reliable and simple manner their individual response to external stimuli. The working principle is exemplified on an array of four thermo-optically modulated MRR. It is shown that with this technique tracking of individual resonances is possible even in case of strong spectral overlap.

  14. Computer applications in remote sensing education

    NASA Technical Reports Server (NTRS)

    Danielson, R. L.

    1980-01-01

    Computer applications to instruction in any field may be divided into two broad generic classes: computer-managed instruction and computer-assisted instruction. The division is based on how frequently the computer affects the instructional process and how active a role the computer affects the instructional process and how active a role the computer takes in actually providing instruction. There are no inherent characteristics of remote sensing education to preclude the use of one or both of these techniques, depending on the computer facilities available to the instructor. The characteristics of the two classes are summarized, potential applications to remote sensing education are discussed, and the advantages and disadvantages of computer applications to the instructional process are considered.

  15. Practical application of remote sensing in agriculture

    NASA Technical Reports Server (NTRS)

    Phelps, R. A.

    1975-01-01

    Remote sensing program imagery from several types of platforms, from light aircraft to the LANDSAT (ERTS) satellites, have been utilized during the past few years, with preference for inexpensive imagery over expensive magnetic tapes. Emphasis has been on practical application of remote sensing data to increase crop yield by decreasing plant stress, disease, weeds and undesirable insects and by improving irrigation. Imagery obtained from low altitudes via aircraft provides the necessary resolution and complements but does not replace data from high altitude aircraft, Gemini and Apollo spacecraft, Skylab space station and LANDSAT satellites. Federal government centers are now able to supply imagery within about thirty days from data of order. Nevertheless, if the full potential of space imagery in practical agricultural operations is to be realized, the time span from date of imaging to user application needs to be shortened from the current several months to not more than two weeks.

  16. Compact heterodyne NEMS oscillator for sensing applications

    NASA Astrophysics Data System (ADS)

    Sansa, Marc; Gourlat, Guillaume; Jourdan, Guillaume; Gely, Marc; Villard, Patrick; Sicard, Gilles; Hentz, Sébastien

    2016-11-01

    We present a novel topology of heterodyne nanoelectromechanical self-oscillator, aimed at the dense integration of resonator arrays for sensing applications. This oscillator is based on an original measurement method, suitable for both open loop and closed loop operations, which simplifies current down-mixing set-ups. When implemented on-chip, it will allow the reduction of the size and power consumption of readout CMOS circuitry. This is today the limiting factor for the integration density of NEMS oscillators for real-life applications. Here we characterize this method in both open-loop and closed-loop, and evaluate its frequency stability.

  17. Silica Nanowires: Growth, Integration, and Sensing Applications

    PubMed Central

    Kaushik, Ajeet; Kumar, Rajesh; Huey, Eric; Bhansali, Shekhar; Nair, Narayana; Nanir, Madhavan

    2014-01-01

    This review (with 129 refs.) gives an overview on how the integration of silica nanowires (NWs) into micro-scale devices has resulted, in recent years, in simple yet robust nano-instrumentation with improved performance in targeted application areas such as sensing. This has been achieved by the use of appropriate techniques such as di-electrophoresis and direct vapor-liquid-growth phenomena, to restrict the growth of NWs to site-specific locations. This also has eliminated the need for post-growth processing and enables nanostructures to be placed on pre-patterned substrates. Various kinds of NWs have been investigated to determine how their physical and chemical properties can be tuned for integration into sensing structures. NWs integrated onto interdigitated micro-electrodes have been applied to the determination of gases and biomarkers. The technique of directly growing NWs eliminates the need for their physical transfer and thus preserves their structure and performance, and further reduces the costs of fabrication. The biocompatibility of NWs also has been studied with respect to possible biological applications. This review addresses the challenges in growth and integration of NWs to understand related mechanism on biological contact or gas exposure and sensing performance for personalized health and environmental monitoring. PMID:25382871

  18. Polymer planar Bragg grating for sensing applications

    NASA Astrophysics Data System (ADS)

    Rosenberger, M.; Hartlaub, N.; Koller, G.; Belle, S.; Schmauss, B.; Hellmann, R.

    2013-05-01

    Bragg gratings have become indispensable as optical sensing elements and are already used for a variety of technical applications. Mainly silica fiber Bragg gratings (FBGs) have been extensively studied over the last decades and are nowadays commercially available. Bragg grating sensors consisting of other materials like polymers, however, have only recently come into the focus of fundamental and applied research. Polymers exhibit significantly different properties advantageous for many sensing applications and therefore provide a good alternative to silica based devices. In addition, polymer materials are inexpensive, simple to handle as well as available in various forms like liquid resists or bulk material. Accordingly, polymer integrated optics attract increasing interest and can serve as a substitute for optical fibers. We report on the fabrication of a planar Bragg grating sensor in bulk Polymethylmethacrylate (PMMA). The sensor consists of an optical waveguide and a Bragg grating, both written simultaneously into a PMMA chip by a single writing step, for which a phase mask covered by an amplitude mask is placed on top of the PMMA and exposed to the UV radiation of a KrF excimer laser. Depending on the phase mask period, different Bragg gratings reflecting in the telecommunication wavelength range are fabricated and characterized. Reflection and transmission measurements show a narrow reflection band and a high reflectivity of the polymer planar Bragg grating (PPBG). After connecting to a single mode fiber, the portable PPBG based sensor was evaluated for different measurands like humidity and strain. The sensor performance was compared to already existing sensing systems. Due to the obtained results as well as the rapid and cheap fabrication of the sensor chip, the PPBG qualifies for a low cost sensing element.

  19. Applications of Remote Sensing to Precision Agriculture

    NASA Astrophysics Data System (ADS)

    Seielstad, G. A.; Laguette, S.; Seelan, S.; Lawrence, R.; Henry, M.; Maynard, C.; Dalsted, K.; Rattling Leaf, J.

    2001-05-01

    The Upper Midwest Aerospace Consortium (UMAC) has changed agricultural practices in the following ways: (1) farmers and ranchers have become partners with, not clients of, researchers; (2) experiments are carried out in the field rather than on small experimental plots; (3) the field is considered an agro-ecosystem, with all the complexities of multiple interactions, rather than attempting to isolate certain parameters and vary only a few; (4) both economic benefit to the producer and sound environmental stewardship for society are achievable. This approach has revealed that information is as significant an input to farm or ranch management as seeds, fertilizers, irrigation, and tillage. Accurate, timely information equips producers with the ability to make decisions during a growing season that optimize the yield at harvest time. An invaluable source of in-season information is imagery acquired from sensors on satellites or aircraft. In addition to sensing reflected sunlight in wavebands outside the visible, remote sensing's overview also reveals anomalous patterns in the vegetation cover that are difficult to spot on the ground. Anomalies can be caused by weeds, disease, water stress, inadequate nutrients, or other causes. Often, anomalies must be detected early or they spread too quickly to be addressed. The paper will demonstrate how remote sensing has been applied to (1) define management zones in farm fields, (2) prescribe variable rate applications of fertilizer, (3) detect pest infestations, and (4) manage cattle grazing according to forage available. The applications were possible because data were processed within 4-5 days of acquisition by the satellite, and then delivered by high-bandwidth satellite links to farmers, ranchers, and tribal government officials in minimal transit time. The applications research described was part of NASA's Synergy Program.

  20. Gated Silica Mesoporous Materials in Sensing Applications

    PubMed Central

    Sancenón, Félix; Pascual, Lluís; Oroval, Mar; Aznar, Elena; Martínez-Máñez, Ramón

    2015-01-01

    Silica mesoporous supports (SMSs) have a large specific surface area and volume and are particularly exciting vehicles for delivery applications. Such container-like structures can be loaded with numerous different chemical substances, such as drugs and reporters. Gated systems also contain addressable functions at openings of voids, and cargo delivery can be controlled on-command using chemical, biochemical or physical stimuli. Many of these gated SMSs have been applied for drug delivery. However, fewer examples of their use in sensing protocols have been reported. The approach of applying SMSs in sensing uses another concept—that of loading pores with a reporter and designing a capping mechanism that is selectively opened in the presence of a target analyte, which results in the delivery of the reporter. According to this concept, we provide herein a complete compilation of published examples of probes based on the use of capped SMSs for sensing. Examples for the detection of anions, cations, small molecules and biomolecules are provided. The diverse range of gated silica mesoporous materials presented here highlights their usefulness in recognition protocols. PMID:26491626

  1. Application of Remote Sensing in Agriculture

    NASA Astrophysics Data System (ADS)

    Piekarczyk, Jan

    2014-12-01

    With increasing intensity of agricultural crop production increases the need to obtain information about environmental conditions in which this production takes place. Remote sensing methods, including satellite images, airborne photographs and ground-based spectral measurements can greatly simplify the monitoring of crop development and decision-making to optimize inputs on agricultural production and reduce its harmful effects on the environment. One of the earliest uses of remote sensing in agriculture is crop identification and their acreage estimation. Satellite data acquired for this purpose are necessary to ensure food security and the proper functioning of agricultural markets at national and global scales. Due to strong relationship between plant bio-physical parameters and the amount of electromagnetic radiation reflected (in certain ranges of the spectrum) from plants and then registered by sensors it is possible to predict crop yields. Other applications of remote sensing are intensively developed in the framework of so-called precision agriculture, in small spatial scales including individual fields. Data from ground-based measurements as well as from airborne or satellite images are used to develop yield and soil maps which can be used to determine the doses of irrigation and fertilization and to take decisions on the use of pesticides.

  2. Gated Silica Mesoporous Materials in Sensing Applications.

    PubMed

    Sancenón, Félix; Pascual, Lluís; Oroval, Mar; Aznar, Elena; Martínez-Máñez, Ramón

    2015-08-01

    Silica mesoporous supports (SMSs) have a large specific surface area and volume and are particularly exciting vehicles for delivery applications. Such container-like structures can be loaded with numerous different chemical substances, such as drugs and reporters. Gated systems also contain addressable functions at openings of voids, and cargo delivery can be controlled on-command using chemical, biochemical or physical stimuli. Many of these gated SMSs have been applied for drug delivery. However, fewer examples of their use in sensing protocols have been reported. The approach of applying SMSs in sensing uses another concept-that of loading pores with a reporter and designing a capping mechanism that is selectively opened in the presence of a target analyte, which results in the delivery of the reporter. According to this concept, we provide herein a complete compilation of published examples of probes based on the use of capped SMSs for sensing. Examples for the detection of anions, cations, small molecules and biomolecules are provided. The diverse range of gated silica mesoporous materials presented here highlights their usefulness in recognition protocols. PMID:26491626

  3. THz wave sensing for petroleum industrial applications

    NASA Astrophysics Data System (ADS)

    Al-Douseri, Fatemah M.; Chen, Yunqing; Zhang, X.-C.

    2006-04-01

    We present the results of terahertz (THz) sensing of gasoline products. The frequency-dependent absorption coefficients, refractive indices, and complex dielectric constants of gasoline and xylene isomers were extracted in the spectral range from 0.5 3.0 THz. The THz spectra of gasoline (#87, #89, #93) and related BTEX (benzene, toluene, ethylbenzene, and xylene) compounds were studied by using Fourier transform infrared spectroscopy (FTIR) in the 1.5 20 THz (50 660 cm-1). The xylene isomers, which are used as antiknock agent in gasoline were determined quantitatively in gasoline in the THz range. Our investigations show the potential of THz technology for the petroleum industrial applications.

  4. Wireless Sensing Opportunities for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Wilson, William; Atkinson, Gary

    2007-01-01

    Wireless sensors and sensor networks is an emerging technology area with many applications within the aerospace industry. Integrated vehicle health monitoring (IVHM) of aerospace vehicles is needed to ensure the safety of the crew and the vehicle, yet often high costs, weight, size and other constraints prevent the incorporation of instrumentation onto spacecraft. This paper presents a few of the areas such as IVHM, where new wireless sensing technology is needed on both existing vehicles as well as future spacecraft. From ground tests to inflatable structures to the International Space Station, many applications could receive benefits from small, low power, wireless sensors. This paper also highlights some of the challenges that need to overcome when implementing wireless sensor networks for aerospace vehicles.

  5. Layered classification techniques for remote sensing applications

    NASA Technical Reports Server (NTRS)

    Swain, P. H.; Wu, C. L.; Landgrebe, D. A.; Hauska, H.

    1975-01-01

    The single-stage method of pattern classification utilizes all available features in a single test which assigns the unknown to a category according to a specific decision strategy (such as the maximum likelihood strategy). The layered classifier classifies the unknown through a sequence of tests, each of which may be dependent on the outcome of previous tests. Although the layered classifier was originally investigated as a means of improving classification accuracy and efficiency, it was found that in the context of remote sensing data analysis, other advantages also accrue due to many of the special characteristics of both the data and the applications pursued. The layered classifier method and several of the diverse applications of this approach are discussed.

  6. Applications of remote sensing to hydrologic planning

    NASA Technical Reports Server (NTRS)

    Loats, H., Jr.; Fowler, T.; Castruccio, P.

    1978-01-01

    The transfer of LANDSAT remote sensing technology from the research sector to user operational applications requires demonstration of the utility and accuracy of LANDSAT data in solving real problems. This report describes such a demonstration project in the area of water resources, specifically the estimation of non-point source pollutant loads. Non-point source pollutants were estimated from land cover data from LANDSAT images. Classification accuracies for three small watersheds were above 95%. Land cover was converted to pollutant loads for a fourth watershed through the use of coefficients relating significant pollutants to land use and storm runoff volume. These data were input into a simulator model which simulated runoff from average rainfall. The result was the estimation of monthly expected pollutant loads for the 17 subbasins comprising the Magothy watershed.

  7. Application of remote sensing for planning purposes

    NASA Technical Reports Server (NTRS)

    Hughes, T. H. (Editor)

    1977-01-01

    Types of remotely sensed data are many and varied but, all are primarily dependent on the sensor platform and the kind of sensing system used. A sensor platform is the type of aircraft or satellite to which a sensing system is attached; each platform has its own inherent advantages and disadvantages. Selected attributes of several current or recently used platforms are outlined. Though sensing systems are highly varied, they may be divided into various operational categories such as cameras, electromechanical scanners, and radars.

  8. MODIS Direct Broadcast and Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee

    2004-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard both Terra spacecraft on December 18, 1999 and Aqua spacecraft on May 4, 2002. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). Equipped with direct broadcast capability, the MODIS measurements can be received worldwide real time. There are 82 ingest sites (over 900 users, listed on the Direct Readout Portal) around the world for Terra/Aqua-MODIS Direct Broadcast DB) downlink. This represents 27 (6 from EOS science team members) science research organizations for DB land, ocean and atmospheric processing, and 53 companies that base their application algorithms and value added products on DB data. In this paper we will describe the various methods being used for the remote sensing of cloud properties using MODIS data, focusing primarily on the MODIS cloud mask used to distinguish clouds, clear sky, heavy aerosol, and shadows on the ground, and on the remote sensing of aerosol/cloud optical properties, especially optical thickness and effective particle size. Additional properties of clouds derived from multispectral thermal infrared measurements, especially cloud top pressure and emissivity, will also be described. Preliminary results will be presented and discussed their implications in regional-to-global climatic effects.

  9. Genomic analysis of thermophilic Bacillus coagulans strains: efficient producers for platform bio-chemicals

    PubMed Central

    Su, Fei; Xu, Ping

    2014-01-01

    Microbial strains with high substrate efficiency and excellent environmental tolerance are urgently needed for the production of platform bio-chemicals. Bacillus coagulans has these merits; however, little genetic information is available about this species. Here, we determined the genome sequences of five B. coagulans strains, and used a comparative genomic approach to reconstruct the central carbon metabolism of this species to explain their fermentation features. A novel xylose isomerase in the xylose utilization pathway was identified in these strains. Based on a genome-wide positive selection scan, the selection pressure on amino acid metabolism may have played a significant role in the thermal adaptation. We also researched the immune systems of B. coagulans strains, which provide them with acquired resistance to phages and mobile genetic elements. Our genomic analysis provides comprehensive insights into the genetic characteristics of B. coagulans and paves the way for improving and extending the uses of this species. PMID:24473268

  10. G-protein-coupled receptors and their (Bio) chemical significance win 2012 Nobel Prize in Chemistry.

    PubMed

    Lin, Hsi-Hsien

    2013-01-01

    G-protein-coupled receptors (GPCRs) are seven transmembrane cell surface proteins specialized in cellular communication. These receptors represent a major gateway through which cells convert external cues into intracellular signals and respond with appropriate actions. While the effects of hormones, neurotransmitters, and drugs on cells, tissues, organs, and even whole organisms are well described, the molecular identity of the direct targets and the diverse signaling mechanisms of these biological ligands have been slow and hard to define. The Nobel Prize in Chemistry for the year 2012 acknowledges the importance of GPCRs in these processes, especially for the contribution of Profs Robert J. Lefkowitz and Brian K. Kobilka to the studies of GPCRs. In this brief review, the seminal works accomplished by the two GPCR pioneers are summarized and the (bio) chemical significance of GPCRs in health and disease is discussed.

  11. State-of-the-Art of (Bio)Chemical Sensor Developments in Analytical Spanish Groups

    PubMed Central

    Plata, María Reyes; Contento, Ana María; Ríos, Angel

    2010-01-01

    (Bio)chemical sensors are one of the most exciting fields in analytical chemistry today. The development of these analytical devices simplifies and miniaturizes the whole analytical process. Although the initial expectation of the massive incorporation of sensors in routine analytical work has been truncated to some extent, in many other cases analytical methods based on sensor technology have solved important analytical problems. Many research groups are working in this field world-wide, reporting interesting results so far. Modestly, Spanish researchers have contributed to these recent developments. In this review, we summarize the more representative achievements carried out for these groups. They cover a wide variety of sensors, including optical, electrochemical, piezoelectric or electro-mechanical devices, used for laboratory or field analyses. The capabilities to be used in different applied areas are also critically discussed. PMID:22319260

  12. Graphene Hybrid Materials in Gas Sensing Applications

    PubMed Central

    Latif, Usman; Dickert, Franz L.

    2015-01-01

    Graphene, a two dimensional structure of carbon atoms, has been widely used as a material for gas sensing applications because of its large surface area, excellent conductivity, and ease of functionalization. This article reviews the most recent advances in graphene hybrid materials developed for gas sensing applications. In this review, synthetic approaches to fabricate graphene sensors, the nano structures of hybrid materials, and their sensing mechanism are presented. Future perspectives of this rapidly growing field are also discussed. PMID:26690156

  13. Application of remote sensing to solution of ecological problems

    NASA Technical Reports Server (NTRS)

    Adelman, A.

    1972-01-01

    The application of remote sensing techniques to solving ecological problems is discussed. The three phases of environmental ecological management are examined. The differences between discovery and exploitation of natural resources and their ecological management are described. The specific application of remote sensing to water management is developed.

  14. Applications of remote sensing in resource management in Nebraska

    NASA Technical Reports Server (NTRS)

    Drew, J. V.

    1974-01-01

    The project is reported for studying the application of remote sensing in land use classification and delineation of major tectonic lineaments in Nebraska. Other research reported include the use of aircraft and ERTS-1 satellite imagery in detecting and estimating the acreage of irrigated land, and the application of remote sensing in estimating evapotranspiration in the Platte River Basin.

  15. Structured materials for catalytic and sensing applications

    NASA Astrophysics Data System (ADS)

    Hokenek, Selma

    The optical and chemical properties of the materials used in catalytic and sensing applications directly determine the characteristics of the resultant catalyst or sensor. It is well known that a catalyst needs to have high activity, selectivity, and stability to be viable in an industrial setting. The hydrogenation activity of palladium catalysts is known to be excellent, but the industrial applications are limited by the cost of obtaining catalyst in amounts large enough to make their use economical. As a result, alloying palladium with a cheaper, more widely available metal while maintaining the high catalytic activity seen in monometallic catalysts is, therefore, an attractive option. Similarly, the optical properties of nanoscale materials used for sensing must be attuned to their application. By adjusting the shape and composition of nanoparticles used in such applications, very fine changes can be made to the frequency of light that they absorb most efficiently. The design, synthesis, and characterization of (i) size controlled monometallic palladium nanoparticles for catalytic applications, (ii) nickel-palladium bimetallic nanoparticles and (iii) silver-palladium nanoparticles with applications in drug detection and biosensing through surface plasmon resonance, respectively, will be discussed. The composition, size, and shape of the nanoparticles formed were controlled through the use of wet chemistry techniques. After synthesis, the nanoparticles were analyzed using physical and chemical characterization techniques such as X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and Scanning Transmission Electron Microscopy- Energy-Dispersive Spectrometry (STEM-EDX). The Pd and Ni-Pd nanoparticles were then supported on silica for catalytic testing using mass spectrometry. The optical properties of the Ag-Pd nanoparticles in suspension were further investigated using ultraviolet-visible spectrometry (UV-Vis). Monometallic palladium particles have

  16. Applications of remote sensing to watershed management

    NASA Technical Reports Server (NTRS)

    Rango, A.

    1975-01-01

    Aircraft and satellite remote sensing systems which are capable of contributing to watershed management are described and include: the multispectral scanner subsystem on LANDSAT and the basic multispectral camera array flown on high altitude aircraft such as the U-2. Various aspects of watershed management investigated by remote sensing systems are discussed. Major areas included are: snow mapping, surface water inventories, flood management, hydrologic land use monitoring, and watershed modeling. It is indicated that technological advances in remote sensing of hydrological data must be coupled with an expansion of awareness and training in remote sensing techniques of the watershed management community.

  17. Industrial applications of fiber optic sensing

    NASA Astrophysics Data System (ADS)

    Desforges, Francois X.; Blocksidge, Robert

    1996-08-01

    Thanks to the growth of the fiber optics telecommunication industry, fiber optic components have become less expensive, more reliable and well known by potential fiber optic sensor users. LEDs, optical fibers, couplers and connectors are now widely distributed and are the building blocks for the fiber optic sensor manufacturer. Additionally, the huge demand in consumer electronics of the past 10 years has provided the manufacturer with cheap and powerful programmable logic components which reduce the development time as well as the cost of the associated instrumentation. This market trend has allowed Photonetics to develop, manufacture and sell fiber optic sensors for the last 10 years. The company contribution in the fields of fiber optic gyros (4 licenses sold world wide), white light interferometry and fiber optic sensor networks is widely recognized. Moreover, its 1992 acquisition of some of the assets of Metricor Inc., greatly reinforced its position and allowed it to pursue new markets. Over the past four years, Photonetics has done an important marketing effort to better understand the need of its customers. The result of this research has fed R&D efforts towards a new generation instrument, the Metricor 2000, better adapted to the expectations of fiber optic sensors users, thanks to its unique features: (1) universality -- the system can accept more than 20 different sensors (T, P, RI, . . .). (2) scalability -- depending on the customer needs, the system can be used with 1 to 64 sensors. (3) performance -- because of its improved design, overall accuracies of 0.01% FS can be reached. (4) versatility -- its modular design enables a fast and easy custom design for specific applications. This paper presents briefly the Metricor 2000 and its family of FO probes. Then, it describes two fiber optic sensing (FOS) applications/markets where FOS have proven to be very useful.

  18. Application of remote sensing to water resources problems

    NASA Technical Reports Server (NTRS)

    Clapp, J. L.

    1972-01-01

    The following conclusions were reached concerning the applications of remote sensing to water resources problems: (1) Remote sensing methods provide the most practical method of obtaining data for many water resources problems; (2) the multi-disciplinary approach is essential to the effective application of remote sensing to water resource problems; (3) there is a correlation between the amount of suspended solids in an effluent discharged into a water body and reflected energy; (4) remote sensing provides for more effective and accurate monitoring, discovery and characterization of the mixing zone of effluent discharged into a receiving water body; and (5) it is possible to differentiate between blue and blue-green algae.

  19. A selected bibliography of remote sensing applications to soil science

    USGS Publications Warehouse

    Loveland, Thomas R.; Carter, Daniel B.; Draeger, William C.

    1979-01-01

    The bibliography contains approximately 200 references dealing with the application of remote sensing technology to the identification and analysis of soils. The scientific papers and reports listed describe procedures and methods used in data collection and include specific applications of those data to soil studies. Most citations discuss current work from 1970 to 1978 and all references are categorized according to the type of remotely sensed data used and their application.

  20. Application of Spaceborne Remote Sensing to Archaeology

    NASA Technical Reports Server (NTRS)

    Crippen, Robert E.

    1997-01-01

    Spaceborne remote sensing data have been underutilized in archaeology for a variety of seasons that are slowly but surely being overcome. Difficulties have included cost/availability of data, inadequate resolution, and data processing issues.

  1. Applications of remote sensing surveys in Texas

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The grant project continues to introduce remote sensing technology to users in Texas and other regions in the South through presentation of papers and briefings at technical and professional meetings.

  2. Airborne Remote Sensing for Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Aubrey, Andrew

    2013-01-01

    Topics covered include: Passive Remote Sensing Methods, Imaging Spectroscopy Approach, Remote Measurement via Spectral Fitting, Imaging Spectroscopy Mapping Wetland Dominants 2010 LA (AVIRIS), Deepwater Horizon Response I, Deepwater Horizon Response II, AVIRIS Ocean Color Studies.

  3. Field Data Collection: an Essential Element in Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Pettinger, L. R.

    1971-01-01

    Field data collected in support of remote sensing projects are generally used for the following purposes: (1) calibration of remote sensing systems, (2) evaluation of experimental applications of remote sensing imagery on small test sites, and (3) designing and evaluating operational regional resource studies and inventories which are conducted using the remote sensing imagery obtained. Field data may be used to help develop a technique for a particular application, or to aid in the application of that technique to a resource evaluation or inventory problem for a large area. Scientists at the Forestry Remote Sensing Laboratory have utilized field data for both purposes. How meaningful field data has been collected in each case is discussed.

  4. A selected bibliography: Remote sensing applications in wildlife management

    USGS Publications Warehouse

    Carneggie, David M.; Ohlen, Donald O.; Pettinger, Lawrence R.

    1980-01-01

    Citations of 165 selected technical reports, journal articles, and other publications on remote sensing applications for wildlife management are presented in a bibliography. These materials summarize developments in the use of remotely sensed data for wildlife habitat mapping, habitat inventory, habitat evaluation, and wildlife census. The bibliography contains selected citations published between 1947 and 1979.

  5. Basic principles, methodology, and applications of remote sensing in agriculture

    NASA Technical Reports Server (NTRS)

    Moreira, M. A. (Principal Investigator); Deassuncao, G. V.

    1984-01-01

    The basic principles of remote sensing applied to agriculture and the methods used in data analysis are described. Emphasis is placed on the importance of developing a methodology that may help crop forecast, basic concepts of spectral signatures of vegetation, the methodology of the LANDSAT data utilization in agriculture, and the remote sensing program application of INPE (Institute for Space Research) in agriculture.

  6. Remote sensing with unmanned aircraft systems for precision agriculture applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Federal Aviation Administration is revising regulations for using unmanned aircraft systems (UAS) in the national airspace. An important potential application of UAS may be as a remote-sensing platform for precision agriculture, but simply down-scaling remote sensing methodologies developed usi...

  7. Remote sensing for mined area reclamation: Application inventory

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Applications of aerial remote sensing to coal mined area reclamation are documented, and information concerning available data banks for coal producing areas in the east and midwest is given. A summary of mined area information requirements to which remote sensing methods might contribute is included.

  8. Practical applications of remote sensing technology

    NASA Technical Reports Server (NTRS)

    Whitmore, Roy A., Jr.

    1990-01-01

    Land managers increasingly are becoming dependent upon remote sensing and automated analysis techniques for information gathering and synthesis. Remote sensing and geographic information system (GIS) techniques provide quick and economical information gathering for large areas. The outputs of remote sensing classification and analysis are most effective when combined with a total natural resources data base within the capabilities of a computerized GIS. Some examples are presented of the successes, as well as the problems, in integrating remote sensing and geographic information systems. The need to exploit remotely sensed data and the potential that geographic information systems offer for managing and analyzing such data continues to grow. New microcomputers with vastly enlarged memory, multi-fold increases in operating speed and storage capacity that was previously available only on mainframe computers are a reality. Improved raster GIS software systems have been developed for these high performance microcomputers. Vector GIS systems previously reserved for mini and mainframe systems are available to operate on these enhanced microcomputers. One of the more exciting areas that is beginning to emerge is the integration of both raster and vector formats on a single computer screen. This technology will allow satellite imagery or digital aerial photography to be presented as a background to a vector display.

  9. Remote Sensing Applications to Water Quality Management in Florida

    EPA Science Inventory

    Increasingly, optical datasets from estuarine and coastal systems are becoming available for remote sensing algorithm development, validation, and application. With validated algorithms, the data streams from satellite sensors can provide unprecedented spatial and temporal data ...

  10. Remote sensing applications of the extended radiosity method

    SciTech Connect

    Gerstl, S.A.W.; Borel, C.C.

    1992-01-01

    In this paper we describe the progress made in the last three years on developing the radiosity method for remote sensing applications. The research covered canopy modeling, volumetric scattering and atmospheric corrections for future analysis of EOS imaging spectrometer data.

  11. Flow Type Bio-Chemical Calorimeter with Micro Differential Thermopile Sensor.

    PubMed

    Saito, Masataka; Nakabeppu, Osamu

    2015-04-01

    Bio-chemical calorimeters with a MEMS (Micro-Electro-Mechanical Systems) thermopile sensor have been studied for monitoring detailed processes of the biochemical reactions of a minute sample with a high temporal resolution. The bio-calorimeters are generally divided into a batch-type and a flow-type. We developed a highly sensitive batch-type calorimeter which can detect a 100 nW level thermal reaction. However it shows a long settling time of 2 hours because of the heat capacity of a whole calorimeter. Thus, the flow-type calorimeters in passive and active mode have been studied for measuring the thermal reactions in an early stage after starting an analysis. The flow-type calorimeter consists of the MEMS differential thermopile sensor, a pair of micro channel reactor in a PDMS (polydimethylsiloxane) sheet in a three-fold thermostat chamber. The calorimeter in the passive mode was tested with dilution reactions of ethanol to water and NaCl aqueous solution to water. It was shown that the calorimeter detects exo- and endothermic reaction over 250 nW at solution flow rate of 0.05 ~ 1 µl/min with a settling time of about 4 minutes. In the active mode, a response test was conducted by using heat removal by water flow from the reactor channel. The active calorimetry enhances the response time about three to four times faster. PMID:26353514

  12. Bio- chemical and physical characterizations of mesenchymal stromal cells along the time course of directed differentiation.

    PubMed

    Chen, Yin-Quan; Liu, Yi-Shiuan; Liu, Yu-An; Wu, Yi-Chang; Del Álamo, Juan C; Chiou, Arthur; Lee, Oscar K

    2016-01-01

    Cellular biophysical properties are novel biomarkers of cell phenotypes which may reflect the status of differentiating stem cells. Accurate characterizations of cellular biophysical properties, in conjunction with the corresponding biochemical properties could help to distinguish stem cells from primary cells, cancer cells, and differentiated cells. However, the correlated evolution of these properties in the course of directed stem cells differentiation has not been well characterized. In this study, we applied video particle tracking microrheology (VPTM) to measure intracellular viscoelasticity of differentiating human mesenchymal stromal/stem cells (hMSCs). Our results showed that osteogenesis not only increased both elastic and viscous moduli, but also converted the intracellular viscoelasticity of differentiating hMSCs from viscous-like to elastic-like. In contrast, adipogenesis decreased both elastic and viscous moduli while hMSCs remained viscous-like during the differentiation. In conjunction with bio- chemical and physical parameters, such as gene expression profiles, cell morphology, and cytoskeleton arrangement, we demonstrated that VPTM is a unique approach to quantify, with high data throughput, the maturation level of differentiating hMSCs and to anticipate their fate decisions. This approach is well suited for time-lapsed study of the mechanobiology of differentiating stem cells especially in three dimensional physico-chemical biomimetic environments including porous scaffolds.

  13. Bio- chemical and physical characterizations of mesenchymal stromal cells along the time course of directed differentiation

    PubMed Central

    Chen, Yin-Quan; Liu, Yi-Shiuan; Liu, Yu-An; Wu, Yi-Chang; del Álamo, Juan C.; Chiou, Arthur; Lee, Oscar K.

    2016-01-01

    Cellular biophysical properties are novel biomarkers of cell phenotypes which may reflect the status of differentiating stem cells. Accurate characterizations of cellular biophysical properties, in conjunction with the corresponding biochemical properties could help to distinguish stem cells from primary cells, cancer cells, and differentiated cells. However, the correlated evolution of these properties in the course of directed stem cells differentiation has not been well characterized. In this study, we applied video particle tracking microrheology (VPTM) to measure intracellular viscoelasticity of differentiating human mesenchymal stromal/stem cells (hMSCs). Our results showed that osteogenesis not only increased both elastic and viscous moduli, but also converted the intracellular viscoelasticity of differentiating hMSCs from viscous-like to elastic-like. In contrast, adipogenesis decreased both elastic and viscous moduli while hMSCs remained viscous-like during the differentiation. In conjunction with bio- chemical and physical parameters, such as gene expression profiles, cell morphology, and cytoskeleton arrangement, we demonstrated that VPTM is a unique approach to quantify, with high data throughput, the maturation level of differentiating hMSCs and to anticipate their fate decisions. This approach is well suited for time-lapsed study of the mechanobiology of differentiating stem cells especially in three dimensional physico-chemical biomimetic environments including porous scaffolds. PMID:27526936

  14. Flow Type Bio-Chemical Calorimeter with Micro Differential Thermopile Sensor.

    PubMed

    Saito, Masataka; Nakabeppu, Osamu

    2015-04-01

    Bio-chemical calorimeters with a MEMS (Micro-Electro-Mechanical Systems) thermopile sensor have been studied for monitoring detailed processes of the biochemical reactions of a minute sample with a high temporal resolution. The bio-calorimeters are generally divided into a batch-type and a flow-type. We developed a highly sensitive batch-type calorimeter which can detect a 100 nW level thermal reaction. However it shows a long settling time of 2 hours because of the heat capacity of a whole calorimeter. Thus, the flow-type calorimeters in passive and active mode have been studied for measuring the thermal reactions in an early stage after starting an analysis. The flow-type calorimeter consists of the MEMS differential thermopile sensor, a pair of micro channel reactor in a PDMS (polydimethylsiloxane) sheet in a three-fold thermostat chamber. The calorimeter in the passive mode was tested with dilution reactions of ethanol to water and NaCl aqueous solution to water. It was shown that the calorimeter detects exo- and endothermic reaction over 250 nW at solution flow rate of 0.05 ~ 1 µl/min with a settling time of about 4 minutes. In the active mode, a response test was conducted by using heat removal by water flow from the reactor channel. The active calorimetry enhances the response time about three to four times faster.

  15. Spaceborne laser development for future remote sensing applications

    NASA Astrophysics Data System (ADS)

    Stephen, Mark A.; Yu, Anthony W.; Krainak, Michael A.; Abshire, James B.; Harding, David J.; Riris, Haris; Li, Steven X.; Chen, Jeffrey; Numata, Kenji; Wu, Stewart; Camp, Jordan

    2011-09-01

    At NASA's Goddard Space Flight Center, we are developing the next generation laser transmitters for future remote sensing applications including a micropulse altimeter for ice-sheet monitoring, laser spectroscopic measurements and high resolution mapping of the Earth's surface as well as potential missions to other planets for trace gas measurement and mapping. In this paper we will present an overview of the spaceborne laser programs and offer insights into future spaceborne lasers for remote sensing applications.

  16. Application of remote sensing to state and regional problems. [Mississippi

    NASA Technical Reports Server (NTRS)

    Miller, W. F.; Carter, B. D.; Solomon, J. L.; Williams, S. G.; Powers, J. S.; Clark, J. R. (Principal Investigator)

    1980-01-01

    Progress is reported in the following areas: remote sensing applications to land use planning Lowndes County, applications of LANDSAT data to strip mine inventory and reclamation, white tailed deer habitat evaluation using LANDSAT data, remote sensing data analysis support system, and discrimination of unique forest habitats in potential lignite areas of Mississippi. Other projects discussed include LANDSAT change discrimination in gravel operations, environmental impact modeling for highway corridors, and discrimination of fresh water wetlands for inventory and monitoring.

  17. Enhancing Privacy in Participatory Sensing Applications with Multidimensional Data

    SciTech Connect

    Forrest, Stephanie; He, Wenbo; Groat, Michael; Edwards, Benjamin; Horey, James L

    2013-01-01

    Participatory sensing applications rely on individuals to share personal data to produce aggregated models and knowledge. In this setting, privacy concerns can discourage widespread adoption of new applications. We present a privacy-preserving participatory sensing scheme based on negative surveys for both continuous and multivariate categorical data. Without relying on encryption, our algorithms enhance the privacy of sensed data in an energy and computation efficient manner. Simulations and implementation on Android smart phones illustrate how multidimensional data can be aggregated in a useful and privacy-enhancing manner.

  18. Nutritional Applications of the Chemical Senses.

    ERIC Educational Resources Information Center

    Naim, Michael; Kare, Morley R.

    1984-01-01

    Discusses the relationship of taste and smell to ingestion, digestion, and metabolism. Indicates that the response of these physiological systems can be chemical specific and that chemical senses may play different roles in regulating diet during nutrient deficiency and during nutrient surplus situations. (JN)

  19. Conjugated amplifying polymers for optical sensing applications.

    PubMed

    Rochat, Sébastien; Swager, Timothy M

    2013-06-12

    Thanks to their unique optical and electrochemical properties, conjugated polymers have attracted considerable attention over the last two decades and resulted in numerous technological innovations. In particular, their implementation in sensing schemes and devices was widely investigated and produced a multitude of sensory systems and transduction mechanisms. Conjugated polymers possess numerous attractive features that make them particularly suitable for a broad variety of sensing tasks. They display sensory signal amplification (compared to their small-molecule counterparts) and their structures can easily be tailored to adjust solubility, absorption/emission wavelengths, energy offsets for excited state electron transfer, and/or for use in solution or in the solid state. This versatility has made conjugated polymers a fluorescence sensory platform of choice in the recent years. In this review, we highlight a variety of conjugated polymer-based sensory mechanisms together with selected examples from the recent literature.

  20. Adaptive holography for optical sensing applications

    NASA Astrophysics Data System (ADS)

    Residori, S.; Bortolozzo, U.; Peigné, A.; Molin, S.; Nouchi, P.; Dolfi, D.; Huignard, J. P.

    2016-03-01

    Adaptive holography is a promising method for high sensitivity phase modulation measurements in the presence of slow perturbations from the environment. The technique is based on the use of a nonlinear recombining medium, here an optically addressed spatial light modulator specifically realized to operate at 1.55 μm. Owing to the physical mechanisms involved, the interferometer adapts to slow phase variations within a range of 5-10 Hz, thus filtering out low frequency noise while transmitting higher frequency phase modulations. We present the basic principles of the adaptive interferometer and show that it can be used in association with a sensing fiber in order to detect phase modulations. Finally, a phase-OTDR architecture using the adaptive holographic interferometer is presented and shown to allows the detection of localized perturbations along the sensing fiber.

  1. Measurement Strategies for Remote Sensing Applications

    SciTech Connect

    Weber, P.G.; Theiler, J.; Smith, B.; Love, S.P.; LaDelfe, P.C.; Cooke, B.J.; Clodius, W.B.; Borel, C.C.; Bender, S.C.

    1999-03-06

    Remote sensing has grown to encompass many instruments and observations, with concomitant data from a huge number of targets. As evidenced by the impressive growth in the number of published papers and presentations in this field, there is a great deal of interest in applying these capabilities. The true challenge is to transition from directly observed data sets to obtaining meaningful and robust information about remotely sensed targets. We use physics-based end-to-end modeling and analysis techniques as a framework for such a transition. Our technique starts with quantified observables and signatures of a target. The signatures are propagated through representative atmospheres to realistically modeled sensors. Simulated data are then propagated through analysis routines, yielding measurements that are directly compared to the original target attributes. We use this approach to develop measurement strategies which ensure that our efforts provide a balanced approach to obtaining substantive information on our targets.

  2. Eastern Regional Remote Sensing Applications Conference

    NASA Technical Reports Server (NTRS)

    Short, N. M. (Editor)

    1981-01-01

    The roles and activities of NASA and the National Conference of State Legislatures in fostering remote sensing technology utilization by the states and in promoting interstate communication and cooperation are reviewed. The reduction and interpretation of LANDSAT MSS and aerial reconnaissance data for resources management and environment assessment are described as well as resource information systems, and the value of SEASAT synthetic aperture radar and LANDSAT 4 data.

  3. Bio/chemical analysis of dioxin-like compounds in sediment samples from Osaka Bay, Japan.

    PubMed

    Takigami, H; Sakai, S; Brouwer, A

    2005-04-01

    The combinatorial bio/chemical investigation of sediments (six surface samples and one core sample) from Osaka Bay, Japan was conducted to clarify the horizontal and vertical distribution profiles of persistent organic pollutants in the sediments. Concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs), and polybrominated diphenylethers (PBDEs) were determined by chemical analysis and compared to bioassay results using H4IIE-luc/Dioxin Responsive-Chemical Activated LUciferase eXpression (DR-CALUX). For surface sediments, World Health Organization-toxicity equivalent (WHO-TEQ) values ranged from 1.8 to 92 pg g(-1) dry weight and the bioassay-TEQ (CALUX-TEQ) values (3.7-140 pg g(-1) dry weight) yielded significant correlation with them (r2 = 0.96). On the other hand, correlation between both TEQs (for WHO-TEQ, 5.5-47 and for CALUX-TEQ, 27-76 pg g(-1) dry weight) for core samples was not so good (r2 = 0.46). Comparing the vertical profiles of CALUX-TEQ and WHO-TEQ, they were different in that WHO-TEQ reached the maximum in the 1957 core section, while CALUX-TEQ reached in the 1984 core section. CALUX-TEQ values were 1-5-fold more than WHO-TEQ values in all the surface and core samples. CALUX-TEQ values were calculated for PBDE and PBDD/F concentrations, employing their CALUX toxicity equivalent factors (CALUX-TEFs). The estimated CALUX-TEQ values obtained for the brominated compounds could explain for 11% on average (range 4.7-31%) of the experimentally obtained CALUX-TEQ values in the investigated surface sediments.

  4. International workshop on remote-sensing applications to fisheries

    NASA Astrophysics Data System (ADS)

    Forget, Marie-Hélène; Petit, Michel A.; Ramos, Antonio Gonzalez; Andrefouet, Serge; Dupouy, Cécile; Lotlikar, Aneesh; Hampton, John

    2009-01-01

    A workshop on fisheries was held in Noumea on November 21, 2008 to address remote-sensing applications to fisheries adapted to the particular needs and problems of Western and Central Pacific Island countries. During the workshop, presentations and discussions covered various topics related to remote sensing of coastal and open ocean waters and its applications to fisheries. Participants were introduced to remote sensing of ocean colour and its significance vis-à-vis the marine food web. Applications to fisheries included improvements of fisheries operations to increase efficiency of fishing effort, assessment of fish stocks health, growth and recruitment, and ecosystem dynamics. A project on the Societal Applications in Fisheries & Aquaculture using Remote Sensing Imagery (SAFARI) and a global Network for marine ecosystem management (ChloroGIN) were also presented. The particular issues arising in the use of remote sensing for fisheries in the tropical island regimes were reviewed and recommendations on the use of remote sensing in the context of fisheries were presented.

  5. Review of Remote Sensing Needs and Applications in Africa

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.

    2007-01-01

    Remote sensing data has had an important role in identifying and responding to inter-annual variations in the African environment during the past three decades. As a largely agricultural region with diverse but generally limited government capacity to acquire and distribute ground observations of rainfall, temperature and other parameters, remote sensing is sometimes the only reliable measure of crop growing conditions in Africa. Thus, developing and maintaining the technical and scientific capacity to analyze and utilize satellite remote sensing data in Africa is critical to augmenting the continent's local weather/climate observation networks as well as its agricultural and natural resource development and management. The report Review of Remote Sensing Needs and Applications in Africa' has as its central goal to recommend to the US Agency for International Development an appropriate approach to support sustainable remote sensing applications at African regional remote sensing centers. The report focuses on "RS applications" to refer to the acquisition, maintenance and archiving, dissemination, distribution, analysis, and interpretation of remote sensing data, as well as the integration of interpreted data with other spatial data products. The report focuses on three primary remote sensing centers: (1) The AGRHYMET Regional Center in Niamey, Niger, created in 1974, is a specialized institute of the Permanent Interstate Committee for Drought Control in the Sahel (CILSS), with particular specialization in science and techniques applied to agricultural development, rural development, and natural resource management. (2) The Regional Centre for Maiming of Resources for Development (RCMRD) in Nairobi, Kenya, established in 1975 under the auspices of the United Nations Economic Commission for Africa and the Organization of African Unity (now the African Union), is an intergovernmental organization, with 15 member states from eastern and southern Africa. (3) The

  6. Application of remote sensing to hydrological problems and floods

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Novo, E. M. L. M.

    1983-01-01

    The main applications of remote sensors to hydrology are identified as well as the principal spectral bands and their advantages and disadvantages. Some examples of LANDSAT data applications to flooding-risk evaluation are cited. Because hydrology studies the amount of moisture and water involved in each phase of hydrological cycle, remote sensing must be emphasized as a technique for hydrological data acquisition.

  7. Satellite remote sensing facility for oceanograhic applications

    NASA Technical Reports Server (NTRS)

    Evans, R. H.; Kent, S. S.; Seidman, J. B.

    1980-01-01

    The project organization, design process, and construction of a Remote Sensing Facility at Scripps Institution of Oceanography at LaJolla, California are described. The facility is capable of receiving, processing, and displaying oceanographic data received from satellites. Data are primarily imaging data representing the multispectral ocean emissions and reflectances, and are accumulated during 8 to 10 minute satellite passes over the California coast. The most important feature of the facility is the reception and processing of satellite data in real time, allowing investigators to direct ships to areas of interest for on-site verifications and experiments.

  8. Applications of remote sensing to estuarine management

    NASA Technical Reports Server (NTRS)

    Munday, J. C., Jr.; Gordon, H. H.; Hennigar, H. F.

    1977-01-01

    Remote sensing was used in the resolution of estuarine problems facing federal and Virginia governmental agencies. A prototype Elizabeth River Surface Circulation Atlas was produced from photogrammetry to aid in oil spill cleanup and source identification. Aerial photo analysis twice led to selection of alternative plans for dredging and spoil disposal which minimized marsh damage. Marsh loss due to a mud wave from a highway dyke was measured on sequential aerial photographs. An historical aerial photographic sequence gave basis to a potential Commonwealth of Virginia legal claim to accreting and migrating coastal islands.

  9. Live Cell Optical Sensing for High Throughput Applications

    NASA Astrophysics Data System (ADS)

    Fang, Ye

    Live cell optical sensing employs label-free optical biosensors to non-invasively measure stimulus-induced dynamic mass redistribution (DMR) in live cells within the sensing volume of the biosensor. The resultant DMR signal is an integrated cellular response, and reflects cell signaling mediated through the cellular target(s) with which the stimulus intervenes. This article describes the uses of live cell optical sensing for probing cell biology and ligand pharmacology, with an emphasis of resonant waveguide grating biosensor cellular assays for high throughput applications.

  10. RF modulated fiber optic sensing systems and their applications

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Eustace, John G.

    1992-01-01

    A fiber optic sensing system with an intensity sensor and a Radio Frequency (RF) modulated source was shown to have sensitivity and resolution much higher than a comparable system employing low modulating frequencies or DC mode of operation. Also the RF modulation with an appropriate configuration of the sensing system provides compensation for the unwanted intensity losses. The basic principles and applications of a fiber optic sensing system employing an RF modulated source are described. In addition the paper discusses various configurations of the system itself, its components, and modulation and detection schemes. Experimental data are also presented.

  11. Remote sensing application for property tax evaluation

    NASA Astrophysics Data System (ADS)

    Jain, Sadhana

    2008-02-01

    This paper presents a study for linking remotely sensed data with property tax related issues. First, it discusses the key attributes required for property taxation and evaluates the capabilities of remote sensing technology to measure these attributes accurately at parcel level. Next, it presents a detailed case study of six representative wards of different characteristics in Dehradun, India, that illustrates how measurements of several of these attributes supported by field survey can be combined to address the issues related to property taxation. Information derived for various factors quantifies the property taxation contributed by an average dwelling unit of the different income groups. Results show that the property tax calculated in different wards varies between 55% for the high-income group, 32% for the middle-income group, 12% for the low-income group and 1% for squatter units. The study concludes that higher spatial resolution satellite data and integrates social survey helps to assess the socio-economic status of the population for tax contribution purposes.

  12. Remote sensing application to regional activities

    NASA Technical Reports Server (NTRS)

    Shahrokhi, F.; Jones, N. L.; Sharber, L. A.

    1976-01-01

    Two agencies within the State of Tennessee were identified whereby the transfer of aerospace technology, namely remote sensing, could be applied to their stated problem areas. Their stated problem areas are wetland and land classification and strip mining studies. In both studies, LANDSAT data was analyzed with the UTSI video-input analog/digital automatic analysis and classification facility. In the West Tennessee area three land-use classifications could be distinguished; cropland, wetland, and forest. In the East Tennessee study area, measurements were submitted to statistical tests which verified the significant differences due to natural terrain, stripped areas, various stages of reclamation, water, etc. Classifications for both studies were output in the form of maps of symbols and varying shades of gray.

  13. Advanced laser diodes for sensing applications

    SciTech Connect

    VAWTER,GREGORY A.; MAR,ALAN; CHOW,WENG W.; ALLERMAN,ANDREW A.

    2000-01-01

    The authors have developed diode lasers for short pulse duration and high peak pulse power in the 0.01--100.0 m pulsewidth regime. A primary goal of the program was producing up to 10 W while maintaining good far-field beam quality and ease of manufacturability for low cost. High peak power, 17 W, picosecond pulses have been achieved by gain switching of flared geometry waveguide lasers and amplifiers. Such high powers area world record for this type of diode laser. The light emission pattern from diode lasers is of critical importance for sensing systems such as range finding and chemical detection. They have developed a new integrated optical beam transformer producing rib-waveguide diode lasers with a symmetric, low divergence, output beam and increased upper power limits for irreversible facet damage.

  14. Urban environmental health applications of remote sensing

    NASA Technical Reports Server (NTRS)

    Rush, M.; Goldstein, J.; Hsi, B. P.; Olsen, C. B.

    1974-01-01

    An urban area was studied through the use of the inventory-by-surrogate method rather than by direct interpretation of photographic imagery. Prior uses of remote sensing in urban and public research are examined. The effects of crowding, poor housing conditions, air pollution, and street conditions on public health are considered. Color infrared photography was used to categorize land use features and the grid method was used in photo interpretation analysis. The incidence of shigella and salmonella, hepatitis, meningitis, tuberculosis, myocardial infarction and veneral disease were studied, together with mortality and morbidity rates. Sample census data were randomly collected and validated. The hypothesis that land use and residential quality are associated with and act as an influence upon health and physical well-being was studied and confirmed.

  15. Applications of remote sensing to water resources

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Analyses were made of selected long-term (1985 and beyond) objectives, with the intent of determining if significant data-related problems would be encountered and to develop alternative solutions to any potential problems. One long-term objective selected for analysis was Water Availability Forecasting. A brief overview was scheduled in FY-77 of the objective -- primarily a fact-finding study to allow Data Management personnel to gain adequate background information to perform subsequent data system analyses. This report, includes discussions on some of the larger problems currently encountered in water measurement, the potential users of water availability forecasts, projected demands of users, current sensing accuracies, required parameter monitoring, status of forecasting modeling, and some measurement accuracies likely to be achievable by 1980 and 1990.

  16. Water resources by orbital remote sensing: Examples of applications

    NASA Technical Reports Server (NTRS)

    Martini, P. R. (Principal Investigator)

    1984-01-01

    Selected applications of orbital remote sensing to water resources undertaken by INPE are described. General specifications of Earth application satellites and technical characteristics of LANDSAT 1, 2, 3, and 4 subsystems are described. Spatial, temporal and spectral image attributes of water as well as methods of image analysis for applications to water resources are discussed. Selected examples are referred to flood monitoring, analysis of water suspended sediments, spatial distribution of pollutants, inventory of surface water bodies and mapping of alluvial aquifers.

  17. Piezotronic Effect: An Emerging Mechanism for Sensing Applications

    PubMed Central

    Jenkins, Kory; Nguyen, Vu; Zhu, Ren; Yang, Rusen

    2015-01-01

    Strain-induced polarization charges in a piezoelectric semiconductor effectively modulate the band structure near the interface and charge carrier transport. Fundamental investigation of the piezotronic effect has attracted broad interest, and various sensing applications have been demonstrated. This brief review discusses the fundamentals of the piezotronic effect, followed by a review highlighting important applications for strain sensors, pressure sensors, chemical sensors, photodetectors, humidity sensors and temperature sensors. Finally, the review offers some perspectives and outlook for this new field of multi-functional sensing enabled by the piezotronic effect. PMID:26378536

  18. Agricultural applications of remote sensing: A true life adventure

    NASA Technical Reports Server (NTRS)

    Schaller, E. S.

    1975-01-01

    A study of agricultural applications of remote sensing with a major US agricultural firm was undertaken in mid-1973. The study continued for eighteen months, and covered the areas of crop monitoring and management as well as large scale crop inventories. Pilot programs in the application of aircraft remote sensing and LANDSAT data were conducted. An operational aircraft survey program for ranch management has subsequently been implemented by the agricultural firm. LANDSAT data was successfully used to produce a ninety-seven percent accurate inventory of cotton over 4.8 million acres of California's San Joaquin Valley.

  19. Application of remote sensing in aquatic ecosystems

    NASA Astrophysics Data System (ADS)

    Yousef, Foad

    I utilized state the art remote sensing and GIS (Geographical Information System) techniques to study large scale biological, physical and ecological processes of coastal, nearshore, and offshore waters of Lake Michigan and Lake Superior. These processes ranged from chlorophyll alpha and primary production time series analysies in Lake Michigan to coastal stamp sand threats on Buffalo Reef in Lake Superior. I used SeaWiFS (Sea-viewing Wide Field-of-view Sensor) satellite imagery to trace various biological, chemical and optical water properties of Lake Michigan during the past decade and to investigate the collapse of early spring primary production. Using spatial analysis techniques, I was able to connect these changes to some important biological processes of the lake (quagga mussels filtration). In a separate study on Lake Superior, using LiDAR (Light Detection and Ranging) and aerial photos, we examined natural coastal erosion in Grand Traverse Bay, Michigan, and discussed a variety of geological features that influence general sediment accumulation patterns and interactions with migrating tailings from legacy mining. These sediments are moving southwesterly towards Buffalo Reef, creating a threat to the lake trout and lake whitefish breeding ground.

  20. Environmental monitoring: civilian applications of remote sensing

    SciTech Connect

    Bolton, W.; Lapp, M.; Vitko, J. Jr.; Phipps, G.

    1996-11-01

    This report documents the results of a Laboratory Directed Research and Development (LDRD) program to explore how best to utilize Sandia`s defense-related sensing expertise to meet the Department of Energy`s (DOE) ever-growing needs for environmental monitoring. In particular, we focused on two pressing DOE environmental needs: (1) reducing the uncertainties in global warming predictions, and (2) characterizing atmospheric effluents from a variety of sources. During the course of the study we formulated a concept for using unmanned aerospace vehicles (UAVs) for making key 0798 climate measurements; designed a highly accurate, compact, cloud radiometer to be flown on those UAVs; and established the feasibility of differential absorption Lidar (DIAL) to measure atmospheric effluents from waste sites, manufacturing processes, and potential treaty violations. These concepts have had major impact since first being formulated in this ,study. The DOE has adopted, and DoD`s Strategic Environmental Research Program has funded, much of the UAV work. And the ultraviolet DIAL techniques have already fed into a major DOE non- proliferation program.

  1. An Enhanced Sensing Application Based on a Flexible Projected Capacitive-Sensing Mattress

    PubMed Central

    Chang, Wen-Ying; Chen, Chi-Chun; Chang, Chih-Cheng; Yang, Chin-Lung

    2014-01-01

    This paper presents a cost-effective sensor system for mattresses that can classify the sleeping posture of an individual and prevent pressure ulcers. This system applies projected capacitive sensing to the field of health care. The charge time (CT) method was used to sensitively and accurately measure the capacitance of the projected electrodes. The required characteristics of the projected capacitor were identified to develop large-area applications for sensory mattresses. The area of the electrodes, the use of shielding, and the increased length of the transmission line were calibrated to more accurately measure the capacitance of the electrodes in large-size applications. To offer the users comfort in the prone position, a flexible substrate was selected and covered with 16 × 20 electrodes. Compared with the static charge sensitive bed (SCSB), our proposed system-flexible projected capacitive-sensing mattress (FPCSM) comes with more electrodes to increase the resolution of posture identification. As for the body pressure system (BPS), the FPCSM has advantages such as lower cost, higher aging-resistance capability, and the ability to sense the capacitance of the covered regions without physical contact. The proposed guard ring design effectively absorbs the noise and interrupts leakage paths. The projected capacitive electrode is suitable for proximity-sensing applications and succeeds at quickly recognizing the sleeping pattern of the user. PMID:24747734

  2. Visible transmission response of nanoscale complementary metamaterials for sensing applications.

    PubMed

    Liu, Zhe; Xia, Xiaoxiang; Sun, Yimin; Yang, Haifang; Chen, Rongyan; Liu, Baoli; Quan, Baogang; Li, Junjie; Gu, Changzhi

    2012-07-11

    Metamaterials (MMs) have shown huge potential in sensing applications by detecting their optical properties, which can be designed to operate at frequencies from visible to mid-IR. Here we constructed complementary split ring resonator (CSRR) based metamaterials in nanoscale with unit length of 100 nm and slit width of 30 nm, and observed obvious responses in the visible waveband from 600 to 900 nm. These visible responses show a good tunability with the structure's geometry, and are well suited for dielectric detection. We demonstrated good refractive index sensing of CSRR based metamaterials in the visible region under both 0° and 90° polarized incidence. Our results extend the study of CSRR based metamaterials to the visible region, which is expected to deepen the understanding of the response mechanism of CSRRs and benefit their sensing applications in the visible region.

  3. A selected bibliography: Remote sensing applications in geography

    USGS Publications Warehouse

    Ripple, W.J.

    1977-01-01

    The bibliography contains 82 citations of selected publications and technical reports.  The references deal with the application of remote sensing techniques to the collection and analysis of geographic data.  All of the citations were published between January 1968 and July 1977.

  4. A selected bibliography: Remote sensing applications in agriculture

    USGS Publications Warehouse

    Draeger, William C.; McClelland, David T.

    1977-01-01

    The bibliography contains nearly 300 citations of selected publications and technical reports dealing with the application of remote-sensing techniques to the collection and analysis of agricultural information. Most of the items included were published between January 1968 and December 1975, although some earlier works of continuing interest are included.

  5. A three stage sampling model for remote sensing applications

    NASA Technical Reports Server (NTRS)

    Eisgruber, L. M.

    1972-01-01

    A conceptual model and an empirical application of the relationship between the manner of selecting observations and its effect on the precision of estimates from remote sensing are reported. This three stage sampling scheme considers flightlines, segments within flightlines, and units within these segments. The error of estimate is dependent on the number of observations in each of the stages.

  6. Airborne Remote Sensing (ARS) for Agricultural Research and Commercialization Applications

    NASA Technical Reports Server (NTRS)

    Narayanan, Ram; Bowen, Brent D.; Nickerson, Jocelyn S.

    2002-01-01

    Tremendous advances in remote sensing technology and computing power over the last few decades are now providing scientists with the opportunity to investigate, measure, and model environmental patterns and processes with increasing confidence. Such advances are being pursued by the Nebraska Remote Sensing Facility, which consists of approximately 30 faculty members and is very competitive with other institutions in the depth of the work that is accomplished. The development of this facility targeted at applications, commercialization, and education programs in the area of precision agriculture provides a unique opportunity. This critical area is within the scope of NASA goals and objectives of NASA s Applications, Technology Transfer, Commercialization, and Education Division and the Earth Science Enterprise. This innovative integration of Aerospace (Aeronautics) Technology Enterprise applications with other NASA enterprises serves as a model of cross-enterprise transfer of science with specific commercial applications.

  7. Single crystal diamond for infrared sensing applications

    NASA Astrophysics Data System (ADS)

    Majdi, S.; Kolahdouz, M.; Moeen, M.; Kovi, K. K.; Balmer, R. S.; Radamson, H. H.; Isberg, J.

    2014-10-01

    The synthesis of new materials for thermal infrared (IR) detection has been an intensive research area in recent years. Among new semiconductor materials, synthetic diamond has the ability to function even under very high temperature and high radiation conditions. In the present work, diamond Schottky diodes with boron concentrations in the range of 1014 < B < 1017 cm-3 are presented as candidates for IR thermal sensors with an excellent temperature coefficient of resistance (-8.42%/K) and very low noise levels around 6.6 × 10-15 V2/Hz. This enables huge performance enhancements for a wide variety of systems, e.g., automotive and space applications.

  8. Remote sensing applications for range management

    NASA Technical Reports Server (NTRS)

    Haas, R. H.

    1981-01-01

    The use of satellite information for range management is discussed. The use of infrared photography and color photography for analysis of vegetation cover is described. The methods of interpreting LANDSAT imagery are highlighted and possible applications of such interpretive methods to range management are considered. The concept of using LANDSAT as a sampling frame for renewable natural resource inventories was examined. It is concluded that a blending of LANDSAT vegetation data with soils and digital terrain data, will define a basic sampling unit that is appropriate for range management utilization.

  9. Graphene nanonet for biological sensing applications.

    PubMed

    Kim, Taekyeong; Park, Jaesung; Jin, Hye Jun; Lee, Hyungwoo; Byun, Kyung-Eun; Lee, Chang-Seuk; Kim, Kwang S; Hong, Byung Hee; Kim, Tae Hyun; Hong, Seunghun

    2013-09-20

    We report a simple but efficient method to fabricate versatile graphene nanonet (GNN)-devices. In this method, networks of V2O5 nanowires (NWs) were prepared in specific regions of single-layer graphene, and the graphene layer was selectively etched via a reactive ion etching method using the V2O5 NWs as a shadow mask. The process allowed us to prepare large scale patterns of GNN structures which were comprised of continuous networks of graphene nanoribbons (GNRs) with chemical functional groups on their edges. The GNN can be easily functionalized with biomolecules for fluorescent biochip applications. Furthermore, electrical channels based on GNN exhibited a rather high mobility and low noise compared with other network structures based on nanostructures such as carbon nanotubes, which was attributed to the continuous connection of nanoribbons in GNN structures. As a proof of concept, we built DNA sensors based on GNN channels and demonstrated the selective detection of DNA. Since our method allows us to prepare high-performance networks of GNRs over a large surface area, it should open up various practical biosensing applications.

  10. Harnessing the fiber fuse for sensing applications.

    PubMed

    Lin, Guei-Ru; Baiad, Mohamad Diaa; Gagne, Mathieu; Liu, Wen-Fung; Kashyap, Raman

    2014-04-21

    A simple refractive index sensor based on a small section of fiber damaged by the fiber fuse is proposed and demonstrated with a sensitivity of 350.58 nm/refractive index unit (RIU). For comparison, a hetero-core structure fiber sensor composed of a short no-core fiber (NCF) sandwiched between two pieces of single-mode fibers is demonstrated with a sensitivity of 157.29 nm/RIU. The fiber fuse technique can allow mass production of sensors by incorporating small sections of the damaged fiber of any type into each device. We believe this is the first application of the periodic damage tracks in optical fibers formed by the fiber fuse.

  11. Single crystal diamond for infrared sensing applications

    SciTech Connect

    Majdi, S. Kovi, K. K.; Isberg, J.; Kolahdouz, M.; Moeen, M.; Radamson, H. H.; Balmer, R. S.

    2014-10-20

    The synthesis of new materials for thermal infrared (IR) detection has been an intensive research area in recent years. Among new semiconductor materials, synthetic diamond has the ability to function even under very high temperature and high radiation conditions. In the present work, diamond Schottky diodes with boron concentrations in the range of 10{sup 14 }< B < 10{sup 17 }cm{sup −3} are presented as candidates for IR thermal sensors with an excellent temperature coefficient of resistance (−8.42%/K) and very low noise levels around 6.6 × 10{sup −15} V{sup 2}/Hz. This enables huge performance enhancements for a wide variety of systems, e.g., automotive and space applications.

  12. Magnetoelectric excitations in hexaferrites utilizing solenoid coil for sensing applications

    NASA Astrophysics Data System (ADS)

    Zare, Saba; Izadkhah, Hessam; Somu, Sivasubramanian; Vittoria, Carmine

    2015-11-01

    We have developed techniques for H- and E-field sensors utilizing single phase magnetoelectric hexaferrite materials in the frequency range of 100 Hz to 10 MHz. Novel excitation method incorporating solenoid coils and single and multi-capacitor banks were developed and tested for sensor detections. For H-field sensing we obtained sensitivity of about 3000 V/mG and for E-field sensing the sensitivity was 10-4 G/Vm-1. Tunability of about 0.1% was achieved for tunable inductor applications. However, the proposed designs lend themselves to significant (~106) improvements in sensitivity and tunability.

  13. Applications of biological pores in nanomedicine, sensing, and nanoelectronics

    PubMed Central

    Majd, Sheereen; Yusko, Erik C; Billeh, Yazan N; Macrae, Michael X; Yang, Jerry; Mayer, Michael

    2011-01-01

    Biological protein pores and pore-forming peptides can generate a pathway for the flux of ions and other charged or polar molecules across cellular membranes. In nature, these nanopores have diverse and essential functions that range from maintaining cell homeostasis and participating in cell signaling to activating or killing cells. The combination of the nanoscale dimensions and sophisticated – often regulated – functionality of these biological pores make them particularly attractive for the growing field of nanobiotechnology. Applications range from single-molecule sensing to drug delivery and targeted killing of malignant cells. Potential future applications may include the use of nanopores for single strand DNA sequencing and for generating bio-inspired, and possibly, biocompatible visual detection systems and batteries. This article reviews the current state of applications of pore-forming peptides and proteins in nanomedicine, sensing, and nanoelectronics. PMID:20561776

  14. Future Applications of Remote Sensing to Archeological Research

    NASA Technical Reports Server (NTRS)

    Sever, Thomas L.

    2003-01-01

    Archeology was one of the first disciplines to use aerial photography in its investigations at the turn of the 20th century. However, the low resolution of satellite technology that became available in the 1970 s limited their application to regional studies. That has recently changed. The arrival of the high resolution, multi-spectral capabilities of the IKONOS and QUICKBIRD satellites and the scheduled launch of new satellites in the next few years provides an unlimited horizon for future archeological research. In addition, affordable aerial and ground-based remote sensing instrumentation are providing archeologists with information that is not available through traditional methodologies. Although many archeologists are not yet comfortable with remote sensing technology a new generation has embraced it and is accumulating a wealth of new evidence. They have discovered that through the use of remote sensing it is possible to gather information without disturbing the site and that those cultural resources can be monitored and protected for the future.

  15. The importance of geobotany in geological remote sensing applications

    NASA Technical Reports Server (NTRS)

    Mouat, D. A.; Collins, W.; Elvidge, C.; Lyon, R. J. P.; Labovitz, M. L.; Milton, N. M.; Parrish, J.; Rock, B. N.; Wickland, D. E.; Arp, G. K.

    1983-01-01

    A description of the different effects of variations in ground cover vegetation on remote sensing data in geological and prospecting applications is presented. The different variations are divided into three categories: structural; taxonomic and spectral. Structural variations include changes in the physical appearance of ground cover which may be detectable by a remote sensing instrument. Taxonomic variations occur in those plant communities which are associated with specific geological regions. Spectral variations are due to specific geochemical stresses which may be useful in characterizing geological features at a site. The need for a general scheme for the interpretation of geobotanical remote sensing data is discussed: Geosat data for the field reflectance spectra of different tree species in West Virginia are presented as examples.

  16. C-MEMS for bio-sensing applications

    NASA Astrophysics Data System (ADS)

    Song, Yin; Agrawal, Richa; Wang, Chunlei

    2015-05-01

    Developing highly sensitive, selective, and reproducible miniaturized bio-sensing platforms require reliable biointerface which should be compatible with microfabrication techniques. In this study, we have fabricated pyrolyzed carbon arrays with high surface area as a bio-sensing electrode, and developed the surface functionalization methods to increase biomolecules immobilization efficiency and further understand electrochemical phenomena at biointerfaces. The carbon microelectrode arrays with high aspect ratio have been fabricated by carbon microelectromechanical systems (C-MEMS) and nanomaterials such as graphene have been integrated to further increase surface area. To achieve the efficient covalent immobilization of biomolecules, various oxidation and reduction functionalization methods have been investigated. The oxidation treatment in this study includes vacuum ultraviolet, electrochemical activation, UV/Ozone and oxygen RIE. The reduction treatment includes direct amination and diazonium grafting. The developed bio-sensing platform was then applied for several applications, such as: DNA sensor; H2O2 sensor; aptamer sensor and HIV sensor.

  17. China national space remote sensing infrastructure and its application

    NASA Astrophysics Data System (ADS)

    Li, Ming

    2016-07-01

    Space Infrastructure is a space system that provides communication, navigation and remote sensing service for broad users. China National Space Remote Sensing Infrastructure includes remote sensing satellites, ground system and related systems. According to the principle of multiple-function on one satellite, multiple satellites in one constellation and collaboration between constellations, series of land observation, ocean observation and atmosphere observation satellites have been suggested to have high, middle and low resolution and fly on different orbits and with different means of payloads to achieve a high ability for global synthetically observation. With such an infrastructure, we can carry out the research on climate change, geophysics global surveying and mapping, water resources management, safety and emergency management, and so on. I This paper gives a detailed introduction about the planning of this infrastructure and its application in different area, especially the international cooperation potential in the so called One Belt and One Road space information corridor.

  18. Novel developments in mobile sensing based on the integration of microfluidic devices and smartphones.

    PubMed

    Yang, Ke; Peretz-Soroka, Hagit; Liu, Yong; Lin, Francis

    2016-03-21

    Portable electronic devices and wireless communication systems enable a broad range of applications such as environmental and food safety monitoring, personalized medicine and healthcare management. Particularly, hybrid smartphone and microfluidic devices provide an integrated solution for the new generation of mobile sensing applications. Such mobile sensing based on microfluidic devices (broadly defined) and smartphones (MS(2)) offers a mobile laboratory for performing a wide range of bio-chemical detection and analysis functions such as water and food quality analysis, routine health tests and disease diagnosis. MS(2) offers significant advantages over traditional platforms in terms of test speed and control, low cost, mobility, ease-of-operation and data management. These improvements put MS(2) in a promising position in the fields of interdisciplinary basic and applied research. In particular, MS(2) enables applications to remote in-field testing, homecare, and healthcare in low-resource areas. The marriage of smartphones and microfluidic devices offers a powerful on-chip operating platform to enable various bio-chemical tests, remote sensing, data analysis and management in a mobile fashion. The implications of such integration are beyond telecommunication and microfluidic-related research and technology development. In this review, we will first provide the general background of microfluidic-based sensing, smartphone-based sensing, and their integration. Then, we will focus on several key application areas of MS(2) by systematically reviewing the important literature in each area. We will conclude by discussing our perspectives on the opportunities, issues and future directions of this emerging novel field. PMID:26899264

  19. Sensing technologies for semiconductor process applications

    NASA Astrophysics Data System (ADS)

    Iturralde, Armando

    1995-09-01

    As semiconductor manufacturing technology advances, there exists a need to review improvements in process monitoring and control. Some of these improvements may be possible by investigating and integrating advanced process sensors. Sensors typically provide information to equipment controllers for proper machine operation. Expanding this definition, a sensor could deliver quality information about the semiconductor product being manufactured. Sensors can provide effective manufacturing line operation, reduced cycle times, and improved product quality. Implementing advanced sensors can also reduce process variability, increase process stability, and provide many other benefits applicable to modern semiconductor production operation. In this paper, a review of the current literature on semiconductor process sensor technology is presented. Much of the literature discusses in-situ measurements for film thickness, particles, and/or other conditions which could affect the quality of the product. Instruments such as RGAs (Residual Gas Analyzers), in-situ film thickness monitors represent current and future advanced sensors. Prior to implementing sensors, it would be ideal to reduce the number of process measurements as much as possible to insure sensor effectiveness. It will be ideal to have working cost of ownership model in place to baseline operations and monitor improvements as sensors move into the production line. There are many new sensors available with highly improved performance, accuracy, and even built-in electronics. These sensors can replace or supplement existing equipment sensors to improve performance, reliability, and extend equipment life. With the increasing costs of maintaining capital equipment, successful implementation could mean substantial savings. These and many other implementation issues are also presented.

  20. Novel sensing materials for harsh environment subsurface pH sensing applications

    NASA Astrophysics Data System (ADS)

    Wang, Congjun; Su, Xin; Brown, Thomas D.; Ohodnicki, Paul R.

    2015-05-01

    Robust pH sensors that can operate under harsh environmental conditions are valuable for a variety of applications, such as oil and gas production, geological CO2 sequestration, etc. However, despite the significant advance in pH measurement technology, reliable pH sensing at elevated pressures (up to 30,000 psi) and high temperatures (up to 350 °C) remains challenging. We describe an optical pH sensor based on optical fiber technology. A sensing layer that is comprised of metal nanoparticles incorporated in a silica matrix coated on an optical fiber exhibits strong and reversible optical response to pH variation at 80 °C and in solutions with different salt concentrations. The same robust response is also observed at elevated pressures up to 2,000 psi. The optical fiber pH sensor is made of materials with high stability at temperatures at least up to ~ 600 °C. Therefore, this approach provides a new potential means to enable optical pH sensing for extreme environment applications.

  1. Remote sensing applications for transportation and traffic engineering studies: A review of the literature

    NASA Technical Reports Server (NTRS)

    Epps, J. W.

    1973-01-01

    Current references were surveyed for the application of remote sensing to traffic and transportation studies. The major problems are presented that concern traffic engineers and transportation managers, and the literature references that discuss remote sensing applications are summarized.

  2. Optimization of NV-Diamond for Ensemble Sensing Applications

    NASA Astrophysics Data System (ADS)

    Pham, Linh; Alsid, Scott; Cappellaro, Paola; Braje, Danielle

    2016-05-01

    The nitrogen-vacancy (NV) center in diamond is a promising spin system for a number of quantum sensing applications; in recent years, NV centers have been employed to measure temperature, electric field, and magnetic field. In bulk diamond sensors, which take advantage of probing an ensemble of NV centers for improved measurement sensitivity, the sensitivity may be further enhanced by increasing the concentration of NV centers through electron irradiation and annealing. We study the effects of a range of electron irradiation dosages and annealing recipes on the conversion of native substitutional nitrogen defects to negatively-charged NV centers and on NV spin coherence properties such as T2* and T2, in order to optimize NV properties in bulk diamond for a range of quantum sensing applications.

  3. Some applications of remote sensing in atmospheric monitoring programs

    NASA Technical Reports Server (NTRS)

    Heller, A. N.; Bryson, J. C.; Vasuki, N. C.

    1972-01-01

    The applications of remote sensing in atmospheric monitoring programs are described. The organization, operations, and functions of an air quality monitoring network at New Castle County, Delaware is discussed. The data obtained by the air quality monitoring network ground stations and the equipment used to obtain atmospheric data are explained. It is concluded that correlation of the information obtained by the network will make it possible to anticipate air pollution problems in the Chesapeake Bay area before a crisis develops.

  4. Application of remote sensing to state and regional problems

    NASA Technical Reports Server (NTRS)

    Miller, W. F. (Principal Investigator); Tingle, J.; Wright, L. H.; Tebbs, B.

    1984-01-01

    Progress was made in the hydroclimatology, habitat modeling and inventory, computer analysis, wildlife management, and data comparison programs that utilize LANDSAT and SEASAT data provided to Mississippi researchers through the remote sensing applications program. Specific topics include water runoff in central Mississippi, habitat models for the endangered gopher tortoise, coyote, and turkey Geographic Information Systems (GIS) development, forest inventory along the Mississipppi River, and the merging of LANDSAT and SEASAT data for enhanced forest type discrimination.

  5. Compressive sensing-based interior tomography: preliminary clinical application.

    PubMed

    Yu, Hengyong; Wang, Ge; Hsieh, Jiang; Entrikin, Daniel W; Ellis, Sandra; Liu, Baodong; Carr, John Jeffrey

    2011-01-01

    Compressive sensing (CS)-based interior tomography is a state-of-the-art method for accurate image reconstruction from only locally truncated projections. Here, we report our preliminary interior tomography results reconstructed from raw projections of a patient acquired on a GE Discovery CT750 HD scanner. This is the first clinical application of the CS-based interior reconstruction techniques, and the results show an excellent match with those reconstructed from global projections.

  6. Remote sensing applications to resource problems in South Dakota

    NASA Technical Reports Server (NTRS)

    Myers, V. I. (Principal Investigator)

    1981-01-01

    The procedures used as well as the results obtained and conclusions derived are described for the following applications of remote sensing in South Dakota: (1) sage grouse management; (2) censusing Canada geese; (3) monitoring grasshopper infestation in rangeland; (4) detecting Dutch elm disease in an urban environment; (5) determining water usage from the Belle Fourche River; (6) resource management of the Lower James River; and (7) the National Model Implantation Program: Lake Herman watershed.

  7. Interpretation of remotely sensed data and its applications in oceanography

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Tanaka, K.; Inostroza, H. M.; Verdesio, J. J.

    1982-01-01

    The methodology of interpretation of remote sensing data and its oceanographic applications are described. The elements of image interpretation for different types of sensors are discussed. The sensors utilized are the multispectral scanner of LANDSAT, and the thermal infrared of NOAA and geostationary satellites. Visual and automatic data interpretation in studies of pollution, the Brazil current system, and upwelling along the southeastern Brazilian coast are compared.

  8. Studies of metal/gallium nitride gas sensors: Sensing response, morphology and sensing applications

    NASA Astrophysics Data System (ADS)

    Duan, Barrett Kai-Bong

    Reliable gas sensors with excellent sensitivity and robustness are important for the development of advanced technological applications while ensuring a safe environment in both industrial and household security. The chemically and mechanically robust gallium nitride (GaN) is a promising semiconductor for these important applications, especially for use at high temperatures and in extreme environments. When a metal is in contact with a semiconductor surface, a space charge region and Schottky barrier are formed on the semiconductor side. In this thesis, the sensing response of Pt and GaN to gaseous H2 and CO and the dependence of the response on Pt and GaN surface morphologies are explored. The sensing opportunities are expanded when GaN is decorated with Ag and the structure is used for small molecule analysis using surface enhanced Raman scattering (SERS). Combining the high surface area of nanoporous GaN with Pt nanoparticles deposited by electroless chemical deposition, the sensing performance of the well-known H-mediated Schottky barrier based on the Pt/GaN sensor is studied. The H2 sensing performance of, as defined by the limit of detection (LOD), Pt-decorated porous GaN measured by AC four-point probe resistance measurements is more than an order of magnitude better than planar GaN sensors based on the same Pt/GaN Schottky barrier height concept. The potential utility of high surface area porous GaN was realized by decorating the confined nanopores with metal (Pt), thus increasing the surface area available for sensing and lowering the LOD. Pt/GaN structures can also be used to detect CO at high temperature. The CO sensing response is also dependent on the Pt morphology. For continuous films, CO signal increases as the thickness of the metal film decreases. In discontinuous Pt films, increasing Pt surface area also increases the CO signal when the Pt/GaN interfacial area remains constant. A model is proposed, in which the influence of the adsorbed CO on Pt

  9. Contributed Review: Quartz force sensing probes for micro-applications

    NASA Astrophysics Data System (ADS)

    Abrahamians, Jean-Ochin; Pham Van, Laurent; Régnier, Stéphane

    2016-07-01

    As self-sensing and self-exciting probes, quartz sensors present many advantages over silicon cantilevers for microscopy, micro-robotics, and other micro-applications. Their development and use is further bolstered by the fact that they can be manufactured from common quartz components. This paper therefore reviews applications of the increasingly popular quartz tuning fork probes as force sensors in the literature and examines the options for higher-frequency quartz probes using the other available types of flexional, thickness-shear or length-extensional resonators.

  10. Contributed Review: Quartz force sensing probes for micro-applications.

    PubMed

    Abrahamians, Jean-Ochin; Pham Van, Laurent; Régnier, Stéphane

    2016-07-01

    As self-sensing and self-exciting probes, quartz sensors present many advantages over silicon cantilevers for microscopy, micro-robotics, and other micro-applications. Their development and use is further bolstered by the fact that they can be manufactured from common quartz components. This paper therefore reviews applications of the increasingly popular quartz tuning fork probes as force sensors in the literature and examines the options for higher-frequency quartz probes using the other available types of flexional, thickness-shear or length-extensional resonators. PMID:27475541

  11. Workshop on remote sensing/lineament applications for energy extraction

    SciTech Connect

    Howard, J.F.; Komar, C.A.; Cooper, L.M.

    1984-04-01

    The following six papers are presented in this proceedings: (1) lineaments - a look forward and backward; (2) remote sensing/lineament analysis applications workshop - a general summary; (3) geologic controls on lineament systems, Pike County, Kentucky; (4) air-photo lineament domains in a portion of the Appalachian Basin - an application for exploration; (5) subsurface anomalies expressed as lineaments in the Northwest Pennsylvania portion of the Appalachian Plateau; and (6) effect of short lineaments on gas well yield from Devonian shales in Eastern Kentucky. All papers have been processed for inclusion in the Energy Data Base.

  12. Advanced remote sensing techniques for forestry applications: an application case in Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Nezry, Edmond; Yakam-Simen, Francis; Romeijn, Paul P.; Supit, Iwan; Demargne, Louis

    2001-02-01

    12 This paper reports the operational implementation of new techniques for the exploitation of remote sensing data (SAR and optical) in the framework of forestry applications. In particular, we present a new technique for standing timber volume estimation. This technique is based on remote sensing knowledge (SAR and optical synergy) and forestry knowledge (forest structure models), proved fairly accurate. To illustrate the application of these techniques, an operational commercial case study regarding forest concessions in Sarawak is presented. Validation of this technique by comparison of the remote sensing results and the database of the customer has shown that this technique is fairly accurate.

  13. Application of compressive sensing to radar altimeter design

    NASA Astrophysics Data System (ADS)

    Zhang, Yunhua; Dong, Xiao; Zhai, Wenshuai

    2015-10-01

    We propose to apply the compressive sensing technique to the design of satellite radar altimeter for increasing the sampling time window (STW) while keeping the same data rate so as to enhance the tracking robustness of an altimeter. A satellite radar altimeter can measure the range between the satellite platform where it is aboard and the averaged sea surface with centimeter level accuracy. The rising slope of the received waveform by altimeter contains important information about the sea surface, e.g. the larger the slope of the waveform, means the smoother the sea surface. Besides, the half-power point of the slope refers to the range information. For satellite altimeter, due to the rising slope just occupies fewer range bins compared with the whole range bins illuminated by the long pulse signal, i.e. the signal is sparse in this sense, thus compressive sensing technique is applicable. Altimeter echoes are simulated and the waveforms are constructed by using the traditional method as well as by compressive sensing (CS) method, they are very well agreed with each other. The advantage of using CS is that we can increase the sampling time window without increasing the data, thus the tracking capability can be enhanced without sacrificing the resolution.

  14. Numerical modeling of gas mixing and bio-chemical transformations during underground hydrogen storage within the project H2STORE

    NASA Astrophysics Data System (ADS)

    Hagemann, B.; Feldmann, F.; Panfilov, M.; Ganzer, L.

    2015-12-01

    The change from fossil to renewable energy sources is demanding an increasing amount of storage capacities for electrical energy. A promising technological solution is the storage of hydrogen in the subsurface. Hydrogen can be produced by electrolysis using excessive electrical energy and subsequently converted back into electricity by fuel cells or engine generators. The development of this technology starts with adding small amounts of hydrogen to the high pressure natural gas grid and continues with the creation of pure underground hydrogen storages. The feasibility of hydrogen storage in depleted gas reservoirs is investigated in the lighthouse project H2STORE financed by the German Ministry for Education and Research. The joint research project has project members from the University of Jena, the Clausthal University of Technology, the GFZ Potsdam and the French National Center for Scientic Research in Nancy. The six sub projects are based on laboratory experiments, numerical simulations and analytical work which cover the investigation of mineralogical, geochemical, physio-chemical, sedimentological, microbiological and gas mixing processes in reservoir and cap rocks. The focus in this presentation is on the numerical modeling of underground hydrogen storage. A mathematical model was developed which describes the involved coupled hydrodynamic and microbiological effects. Thereby, the bio-chemical reaction rates depend on the kinetics of microbial growth which is induced by the injection of hydrogen. The model has been numerically implemented on the basis of the open source code DuMuX. A field case study based on a real German gas reservoir was performed to investigate the mixing of hydrogen with residual gases and to discover the consequences of bio-chemical reactions.

  15. NASA Remote Sensing Applications for Archaeology and Cultural Resources Management

    NASA Technical Reports Server (NTRS)

    Giardino, Marco J.

    2008-01-01

    NASA's Earth Science Mission Directorate recently completed the deployment of the Earth Observation System (EOS) which is a coordinated series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. One of the many applications derived from EOS is the advancement of archaeological research and applications. Using satellites, manned and unmanned airborne platform, NASA scientists and their partners have conducted archaeological research using both active and passive sensors. The NASA Stennis Space Center (SSC) located in south Mississippi, near New Orleans, has been a leader in space archaeology since the mid-1970s. Remote sensing is useful in a wide range of archaeological research applications from landscape classification and predictive modeling to site discovery and mapping. Remote sensing technology and image analysis are currently undergoing a profound shift in emphasis from broad classification to detection, identification and condition of specific materials, both organic and inorganic. In the last few years, remote sensing platforms have grown increasingly capable and sophisticated. Sensors currently in use, including commercial instruments, offer significantly improved spatial and spectral resolutions. Paired with new techniques of image analysis, this technology provides for the direct detection of archaeological sites. As in all archaeological research, the application of remote sensing to archaeology requires a priori development of specific research designs and objectives. Initially targeted at broad archaeological issues, NASA space archaeology has progressed toward developing practical applications for cultural resources management (CRM). These efforts culminated with the Biloxi Workshop held by NASA and the University of Mississippi in 2002. The workshop and resulting publication specifically address the requirements of cultural resource managers through

  16. A CMOS humidity sensor for passive RFID sensing applications.

    PubMed

    Deng, Fangming; He, Yigang; Zhang, Chaolong; Feng, Wei

    2014-01-01

    This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 µW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs. PMID:24841250

  17. Wireless power using magnetic resonance coupling for neural sensing applications

    NASA Astrophysics Data System (ADS)

    Yoon, Hargsoon; Kim, Hyunjung; Choi, Sang H.; Sanford, Larry D.; Geddis, Demetris; Lee, Kunik; Kim, Jaehwan; Song, Kyo D.

    2012-04-01

    Various wireless power transfer systems based on electromagnetic coupling have been investigated and applied in many biomedical applications including functional electrical stimulation systems and physiological sensing in humans and animals. By integrating wireless power transfer modules with wireless communication devices, electronic systems can deliver data and control system operation in untethered freely-moving conditions without requiring access through the skin, a potential source of infection. In this presentation, we will discuss a wireless power transfer module using magnetic resonance coupling that is specifically designed for neural sensing systems and in-vivo animal models. This research presents simple experimental set-ups and circuit models of magnetic resonance coupling modules and discusses advantages and concerns involved in positioning and sizing of source and receiver coils compared to conventional inductive coupling devices. Furthermore, the potential concern of tissue heating in the brain during operation of the wireless power transfer systems will also be addressed.

  18. Application of L3 technology to wavefront sensing

    NASA Astrophysics Data System (ADS)

    Tulloch, Simon M.

    2004-10-01

    The new L3 Technology CCDs from E2V combine sub-electron read noise with high pixel rates. This makes them ideal candidates for wavefront sensing. ING's NAOMI adaptive optics instrument is currently limited by the readout noise of its wavefront sensor CCDs. Upgrading to L3 detectors has the potential to give a large increase in performance; simulations suggest a 2 magnitude improvement to the guide star limit. At ING we have explored the behaviour of various L3 devices in applications ranging from fast photometry, fast spectroscopy through to wavefront sensing. The investigations have been done using our own cryogenic cameras containing L3 devices coupled to an SDSU controller. An integral Peltier packaged CCD60 has also been purchased specifically for the WFS upgrade. This paper describes the progress we have made to date on the L3 wavefront sensor upgrade and our future plans for its use with a Rayleigh laser beacon.

  19. Functionalized DNA materials for sensing and medical applications

    NASA Astrophysics Data System (ADS)

    Woolard, Dwight L.; Jensen, James O.

    2011-06-01

    The U.S. Army has strong interests in nanoscale architectures that enable enhanced extraction and controllable multiplication of the THz/IR regime spectral signatures associated with specific bio-molecular targets. Emerging DNAbased nano-assemblies (i.e., either materials or structural devices) will be discussed that realize novel sensing paradigms through the incorporation of organic and/or biological molecules such that they effect highly predictable and controllable changes into the electro-optical properties of the resulting superstructures. Results will be given to illustrate the utility of functionalized DNA materials in biological (and chemical) sensing, and to demonstrate how the basic science can be leveraged to study and develop synthetic antibodies, reporters and vaccines for future medical applications.

  20. A CMOS humidity sensor for passive RFID sensing applications.

    PubMed

    Deng, Fangming; He, Yigang; Zhang, Chaolong; Feng, Wei

    2014-05-16

    This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 µW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs.

  1. A CMOS Humidity Sensor for Passive RFID Sensing Applications

    PubMed Central

    Deng, Fangming; He, Yigang; Zhang, Chaolong; Feng, Wei

    2014-01-01

    This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 μW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs. PMID:24841250

  2. Tailored draw tower fiber Bragg gratings for various sensing applications

    NASA Astrophysics Data System (ADS)

    Lindner, Eric; Mörbitz, Julia; Chojetzki, Christoph; Becker, Martin; Brückner, Sven; Schuster, Kay; Rothhardt, Manfred; Willsch, Reinhardt; Bartelt, H.

    2012-02-01

    The idea of fabricating fiber Bragg gratings during the drawing process of an optical fiber dates back almost 20 years. The application of a transverse holographic writing method on a fiber draw tower offers a promising solution for a highly effective Bragg grating production. Because of the high technology requirements it took more than 10 years to develop the method into a reliable process. The improvements in the technical development during the last five years enable today a cost efficient industrial production of draw tower grating (DTG®) arrays. In this paper we report about new possibilities of the improved process with respect to the grating type (type I gratings, type II gratings), the coating type (2ORMOCER®, metals) and the fiber diameter (125μm, 80μm and below). Furthermore, we present an example for the application of draw tower fiber Bragg gratings in sensing technologies for medical applications.

  3. The Application of NASA Remote Sensing Technology to Human Health

    NASA Technical Reports Server (NTRS)

    Watts, C. T.

    2007-01-01

    With the help of satellites, the Earth's environment can be monitored from a distance. Earth observing satellites and sensors collect data and survey patterns that supply important information about the environment relating to its affect on human health. Combined with ground data, such patterns and remote sensing data can be essential to public health applications. Remote sensing technology is providing information that can help predict factors that affect human health, such as disease, drought, famine, and floods. A number of public health concerns that affect Earth's human population are part of the current National Aeronautics and Space Administration (NASA) Earth Science Applications Plan to provide remotely gathered data to public health decision-makers to aid in forming and implementing policy to protect human health and preserve well-being. These areas of concern are: air quality; water quality; weather and climate change; infectious, zoonotic, and vector-borne disease; sunshine; food resource security; and health risks associated with the built environment. Collaborations within the Earth Science Applications Plan join local, state, national, or global organizations and agencies as partners. These partnerships engage in projects that strive to understand the connection between the environment and health. The important outcome is to put this understanding to use through enhancement of decision support tools that aid policy and management decisions on environmental health risks. Future plans will further employ developed models in formats that are compatible and accessible to all public health organizations.

  4. Evaluation and Application of Remotely Sensed Soil Moisture Products

    NASA Technical Reports Server (NTRS)

    Bolten, J.; Crow, W.; Zhan, X.; Jackson, T.; Reynolds, C.; Rodell, Matt

    2010-01-01

    Whereas in-situ measurements of soil moisture are very accurate, achieving accurate regional soil moisture estimates derived solely from point measurements is difficult because of the dependence upon the density of the gauge network and the proper upkeep of these instruments, which can be costly. Microwave remote sensing is the only technology capable of providing timely direct measurements of regional soil moisture in areas that are lacking in-situ networks. Soil moisture remote sensing technology is well established has been successfully applied in many fashions to Earth Science applications. Since the microwave emission from the soil surface has such a high dependency upon the moisture content within the soil, we can take advantage of this relationship and combined with physically-based models of the land surface, derive accurate regional estimates of the soil column water content from the microwave brightness temperature observed from satellite-based remote sensing instruments. However, there still remain many questions regarding the most efficient methodology for evaluating and applying satellite-based soil moisture estimates. As discussed below, we to use satellite-based estimates of soil moisture dynamics to improve the predictive capability of an optimized hydrologic model giving more accurate root-zone soil moisture estimates.

  5. Remote sensing applied to agriculture: Basic principles, methodology, and applications

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Mendonca, F. J.

    1981-01-01

    The general principles of remote sensing techniques as applied to agriculture and the methods of data analysis are described. the theoretical spectral responses of crops; reflectance, transmittance, and absorbtance of plants; interactions of plants and soils with reflectance energy; leaf morphology; and factors which affect the reflectance of vegetation cover are dicussed. The methodologies of visual and computer-aided analyses of LANDSAT data are presented. Finally, a case study wherein infrared film was used to detect crop anomalies and other data applications are described.

  6. Novel diode laser-based sensors for gas sensing applications

    NASA Technical Reports Server (NTRS)

    Tittel, F. K.; Lancaster, D. G.; Richter, D.

    2000-01-01

    The development of compact spectroscopic gas sensors and their applications to environmental sensing will be described. These sensors employ mid-infrared difference-frequency generation (DFG) in periodically poled lithium niobate (PPLN) crystals pumped by two single-frequency solid state lasers such as diode lasers, diode-pumped solid state, and fiber lasers. Ultrasensitive, highly selective, and real-time measurements of several important atmospheric trace gases, including carbon monoxide, nitrous oxide, carbon dioxide, formaldehyde [correction of formaldehye], and methane, have been demonstrated.

  7. Tunable resistive pulse sensing: potential applications in nanomedicine.

    PubMed

    Sivakumaran, Muttuswamy; Platt, Mark

    2016-08-01

    An accurate characterization of nanomaterials used in clinical diagnosis and therapeutics is of paramount importance to realize the full potential of nanotechnology in medicine and to avoid unexpected and potentially harmful toxic effects due to these materials. A number of technical modalities are currently in use to study the physical, chemical and biological properties of nanomaterials but they all have advantages and disadvantages. In this review, we discuss the potential of a relative newcomer, tunable resistive pulse sensing, for the characterization of nanomaterials and its applications in nanodiagnostics.

  8. Application of remote sensing to state and regional problems. [mississippi

    NASA Technical Reports Server (NTRS)

    Miller, W. F.; Powers, J. S.; Clark, J. R.; Solomon, J. L.; Williams, S. G. (Principal Investigator)

    1981-01-01

    The methods and procedures used, accomplishments, current status, and future plans are discussed for each of the following applications of LANDSAT in Mississippi: (1) land use planning in Lowndes County; (2) strip mine inventory and reclamation; (3) white-tailed deer habitat evaluation; (4) remote sensing data analysis support systems; (5) discrimination of unique forest habitats in potential lignite areas; (6) changes in gravel operations; and (7) determining freshwater wetlands for inventory and monitoring. The documentation of all existing software and the integration of the image analysis and data base software into a single package are now considered very high priority items.

  9. Methodology of remote sensing data interpretation and geological applications. [Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Veneziani, P.; Dosanjos, C. E.

    1982-01-01

    Elements of photointerpretation discussed include the analysis of photographic texture and structure as well as film tonality. The method used is based on conventional techniques developed for interpreting aerial black and white photographs. By defining the properties which characterize the form and individuality of dual images, homologous zones can be identified. Guy's logic method (1966) was adapted and used on functions of resolution, scale, and spectral characteristics of remotely sensed products. Applications of LANDSAT imagery are discussed for regional geological mapping, mineral exploration, hydrogeology, and geotechnical engineering in Brazil.

  10. Calculations of atmospheric refraction for spacecraft remote-sensing applications

    NASA Technical Reports Server (NTRS)

    Chu, W. P.

    1983-01-01

    Analytical solutions to the refraction integrals appropriate for ray trajectories along slant paths through the atmosphere are derived in this paper. This type of geometry is commonly encountered in remote-sensing applications utilizing an occultation technique. The solutions are obtained by evaluating higher-order terms from expansion of the refraction integral and are dependent on the vertical temperature distributions. Refraction parameters such as total refraction angles, air masses, and path lengths can be accurately computed. It is also shown that the method can be used for computing refraction parameters in astronomical refraction geometry for large zenith angles.

  11. Tunable resistive pulse sensing: potential applications in nanomedicine.

    PubMed

    Sivakumaran, Muttuswamy; Platt, Mark

    2016-08-01

    An accurate characterization of nanomaterials used in clinical diagnosis and therapeutics is of paramount importance to realize the full potential of nanotechnology in medicine and to avoid unexpected and potentially harmful toxic effects due to these materials. A number of technical modalities are currently in use to study the physical, chemical and biological properties of nanomaterials but they all have advantages and disadvantages. In this review, we discuss the potential of a relative newcomer, tunable resistive pulse sensing, for the characterization of nanomaterials and its applications in nanodiagnostics. PMID:27480794

  12. Ultrafast laser inscribed fiber Bragg gratings for sensing applications

    NASA Astrophysics Data System (ADS)

    Mihailov, Stephen J.

    2016-05-01

    Because of their small size, passive nature, immunity to electromagnetic interference, and capability to directly measure physical parameters such as temperature and strain, fiber Bragg grating sensors have developed beyond a laboratory curiosity and are becoming a mainstream sensing technology. Recently, high temperature stable gratings based on femtosecond infrared laser-material processing have shown promise for use in extreme environments such as high temperature, pressure or ionizing radiation. Such gratings are ideally suited for energy production applications where there is a requirement for advanced energy system instrumentation and controls that are operable in harsh environments. This tutorial paper will present a review of some of the more recent developments.

  13. Research investigations in and demonstrations of remote sensing applications to urban environmental problems

    NASA Technical Reports Server (NTRS)

    Hidalgo, J. U.

    1975-01-01

    The applicability of remote sensing to transportation and traffic analysis, urban quality, and land use problems is discussed. Other topics discussed include preliminary user analysis, potential uses, traffic study by remote sensing, and urban condition analysis using ERTS.

  14. New Optical Sensing Materials for Application in Marine Research

    NASA Astrophysics Data System (ADS)

    Borisov, S.; Klimant, I.

    2012-04-01

    Optical chemosensors are versatile analytical tools which find application in numerous fields of science and technology. They proved to be a promising alternative to electrochemical methods and are applied increasingly often in marine research. However, not all state-of-the- art optical chemosensors are suitable for these demanding applications since they do not fully fulfil the requirements of high luminescence brightness, high chemical- and photochemical stability or their spectral properties are not adequate. Therefore, development of new advanced sensing materials is still of utmost importance. Here we present a set of novel optical sensing materials recently developed in the Institute of Analytical Chemistry and Food Chemistry which are optimized for marine applications. Particularly, we present new NIR indicators and sensors for oxygen and pH which feature high brightness and low level of autofluorescence. The oxygen sensors rely on highly photostable metal complexes of benzoporphyrins and azabenzoporphyrins and enable several important applications such as simultaneous monitoring of oxygen and chlorophyll or ultra-fast oxygen monitoring (Eddy correlation). We also developed ulta-sensitive oxygen optodes which enable monitoring in nM range and are primary designed for investigation of oxygen minimum zones. The dynamic range of our new NIR pH indicators based on aza-BODIPY dyes is optimized for the marine environment. A highly sensitive NIR luminescent phosphor (chromium(III) doped yttrium aluminium borate) can be used for non-invasive temperature measurements. Notably, the oxygen, pH sensors and temperature sensors are fully compatible with the commercially available fiber-optic readers (Firesting from PyroScience). An optical CO2 sensor for marine applications employs novel diketopyrrolopyrrol indicators and enables ratiometric imaging using a CCD camera. Oxygen, pH and temperature sensors suitable for lifetime and ratiometric imaging of analytes

  15. Hybrid organic/inorganic resonators for sensing and telecommunications applications

    NASA Astrophysics Data System (ADS)

    Armani, Andrea M.; Deka, Nishita; Harker, Audrey; Maker, Ashley J.; Mehrabani, Simin

    2013-03-01

    Historically, integrated photonic devices have been fabricated from inorganic material systems, such as silicon, silicon nitride, silica and gallium arsenide. As a result of their inherently low material loss and compatibility with nanofabrication tools, high performance waveguides and resonant cavities have been demonstrated. However, to achieve many of the desired performance metrics, it is necessary to implement active stabilization systems. For example, as a result of the thermo-optic effect, the resonant wavelength of a microcavity will change with temperature, resulting in an unpredictable resonant wavelength without temperature stabilization. Therefore, new materials and material systems are desired. One approach is to combine the inorganic materials conventionally used in telecommunications with organic polymeric materials. These hybrid systems offer the ability to tune the optical and mechanical properties of the inorganic materials, achieving athermal or temperature-independent performance. Additionally, given the wide range of polymeric material available, new material systems with previously unrealized behavior are possible; for example, materials which mechanically respond to UV, humidity and specific chemicals. Using silica toroidal whispering gallery mode resonant cavities as the device platform, a series of hybrid organic/inorganic resonators were fabricated. Several different types of organic layers were studied, varying both the specific polymeric material and the deposition method. For example, polyisobutylene was coated on the devices using either a spin-coating method or a surface initiated cationic polymerization process. With the wide range of possible organic materials, many different devices have been fabricated, including athermal devices, humidity and bio/chemical sensors, and microlasers.

  16. Applications of Terrestrial Remote Sensing to Volcanic Rock Masses

    NASA Astrophysics Data System (ADS)

    Dewit, M.; Williams-Jones, G.; Stead, D.; Kremsater, R.; So, M.; Francioni, M.

    2015-12-01

    Remote sensing methods are widely used in geological applications today. The physical properties of rock such as composition, texture and structure have previously been difficult to accurately quantify through remote sensing, however, new research in the fields of terrestrial LiDAR and infrared thermography has proven useful in the differentiation of lithology in sedimentary outcrops. This study focuses on the application of these methods, in conjunction with digital photogrammetry, to a number of volcanic rock masses in the Garibaldi Volcanic Belt (GVB) and Chilcotin Group (CG) of British Columbia. The GVB is a chain of volcanoes and related features extending through southwestern British Columbia and is the northern extension of the Cascade Volcanic Arc. The CG is an assemblage of Neogene-aged lavas covering nearly 36,500 km2 in central British Columbia. We integrate infrared chronothermography, which enables the characterization of temporal change in the thermal signature, laser waveform attributes such as amplitude and intensity, and digital photogrammetry, in order to distinguish between a range of rock types, lithologies and structures. This data is compared to laboratory experiments on field samples and ground-truth information collected by classical geological and geotechnical methods. Our research clearly shows that it is possible to remotely map, in 3D, otherwise inaccessible volcanic rock masses.

  17. Spaceflight laser development for future remote sensing applications

    NASA Astrophysics Data System (ADS)

    Yu, Anthony W.; Krainak, Michael A.; Stephen, Mark A.; Abshire, James B.; Harding, David J.; Riris, Haris; Li, Steven X.; Chen, Jeffrey R.; Allan, Graham R.; Numata, Kenji; Wu, Stewart T.; Camp, Jordan B.

    2011-11-01

    At NASA's Goddard Space Flight Center we are developing next generation laser transmitters for future spaceflight, remote instruments including a micropulse altimeter for ice-sheet and sea ice monitoring, laser spectroscopic measurements of atmospheric CO2 and an imaging lidar for high resolution mapping of the Earth's surface. These laser transmitters also have applicability to potential missions to other solar-system bodies for trace gas measurements and surface mapping. In this paper we review NASA spaceflight laser transmitters used to acquire measurements in orbit around Mars, Mercury, Earth and the Moon. We then present an overview of our current spaceflight laser programs and describe their intended uses for remote sensing science and exploration applications.

  18. Application of telecom planar lightwave circuits for homeland security sensing

    NASA Astrophysics Data System (ADS)

    Veldhuis, Gert J.; Elders, Job; van Weerden, Harm; Amersfoort, Martin

    2004-03-01

    Over the past decade, a massive effort has been made in the development of planar lightwave circuits (PLCs) for application in optical telecommunications. Major advances have been made, on both the technological and functional performance front. Highly sophisticated software tools that are used to tailor designs to required functional performance support these developments. In addition extensive know-how in the field of packaging, testing, and failure mode and effects analysis (FMEA) has been built up in the struggle for meeting the stringent Telcordia requirements that apply to telecom products. As an example, silica-on-silicon is now a mature technology available at several industrial foundries around the world, where, on the performance front, the arrayed-waveguide grating (AWG) has evolved into an off-the-shelf product. The field of optical chemical-biological (CB) sensors for homeland security application can greatly benefit from the advances as described above. In this paper we discuss the currently available technologies, device concepts, and modeling tools that have emerged from the telecommunications arena and that can effectively be applied to the field of homeland security. Using this profound telecom knowledge base, standard telecom components can readily be tailored for detecting CB agents. Designs for telecom components aim at complete isolation from the environment to exclude impact of environmental parameters on optical performance. For sensing applications, the optical path must be exposed to the measurand, in this area additional development is required beyond what has already been achieved in telecom development. We have tackled this problem, and are now in a position to apply standard telecom components for CB sensing. As an example, the application of an AWG as a refractometer is demonstrated, and its performance evaluated.

  19. Overview of detector technologies for EO/IR sensing applications

    NASA Astrophysics Data System (ADS)

    Sood, Ashok K.; Zeller, John W.; Welser, Roger E.; Puri, Yash R.; Lewis, Jay S.; Dhar, Nibir K.; Wijewarnasuriya, Priyalal

    2016-05-01

    Optical sensing technology is critical for optical communication, defense and security applications. Advances in optoelectronics materials in the UV, Visible and Infrared, using nanostructures, and use of novel materials such as CNT and Graphene have opened doors for new approaches to apply device design methodology that are expected to offer enhanced performance and low cost optical sensors in a wide range of applications. This paper is intended to review recent advancements and present different device architectures and analysis. The chapter will briefly introduce the basics of UV and Infrared detection physics and various wave bands of interest and their characteristics [1, 2] We will cover the UV band (200-400 nm) and address some of the recent advances in nanostructures growth and characterization using ZnO/MgZnO based technologies and their applications. Recent advancements in design and development of CNT and Graphene based detection technologies have shown promise for optical sensor applications. We will present theoretical and experimental results on these device and their potential applications in various bands of interest.

  20. Autonomous bio-chemical decontaminator (ABCD) against weapons of mass destruction

    NASA Astrophysics Data System (ADS)

    Hyacinthe, Berg P.

    2006-05-01

    The proliferation of weapons of mass destruction (WMD) and the use of such elements pose an eminent asymmetric threat with disastrous consequences to the national security of any nation. In particular, the use of biochemical warfare agents against civilians and unprotected troops in international conflicts or by terrorists against civilians is considered as a very peculiar threat. Accordingly, taking a quarantine-before-inhalation approach to biochemical warfare, the author introduces the notion of autonomous biochemical decontamination against WMD. In the unfortunate event of a biochemical attack, the apparatus proposed herein is intended to automatically detect, identify, and more importantly neutralize a biochemical threat. Along with warnings concerning a cyber-WMD nexus, various sections cover discussions on human senses and computer sensors, corroborating evidence related to detection and neutralization of chemical toxins, and cyber-assisted olfaction in stand alone, peer-to-peer, and network settings. In essence, the apparatus can be used in aviation and mass transit security to initiate mass decontamination by dispersing a decontaminant aerosol or to protect the public water supply against a potential bioterrorist attack. Future effort may involve a system-on-chip (SoC) embodiment of this apparatus that allows a safer environment for the emerging phenomenon of cyber-assisted olfaction and morph cell phones into ubiquitous sensors/decontaminators. Although this paper covers mechanisms and protocols to avail a neutralizing substance, further research will need to explore the substance's various pharmacological profiles and potential side effects.

  1. Proceedings of the Eleventh International Symposium on Remote Sensing of Environment, volume 2. [application and processing of remotely sensed data

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Application and processing of remotely sensed data are discussed. Areas of application include: pollution monitoring, water quality, land use, marine resources, ocean surface properties, and agriculture. Image processing and scene analysis are described along with automated photointerpretation and classification techniques. Data from infrared and multispectral band scanners onboard LANDSAT satellites are emphasized.

  2. Potential rainwater harvesting improvement using advanced remote sensing applications.

    PubMed

    Elhag, Mohamed; Bahrawi, Jarbou A

    2014-01-01

    The amount of water on earth is the same and only the distribution and the reallocation of water forms are altered in both time and space. To improve the rainwater harvesting a better understanding of the hydrological cycle is mandatory. Clouds are major component of the hydrological cycle; therefore, clouds distribution is the keystone of better rainwater harvesting. Remote sensing technology has shown robust capabilities in resolving challenges of water resource management in arid environments. Soil moisture content and cloud average distribution are essential remote sensing applications in extracting information of geophysical, geomorphological, and meteorological interest from satellite images. Current research study aimed to map the soil moisture content using recent Landsat 8 images and to map cloud average distribution of the corresponding area using 59 MERIS satellite imageries collected from January 2006 to October 2011. Cloud average distribution map shows specific location in the study area where it is always cloudy all the year and the site corresponding soil moisture content map came in agreement with cloud distribution. The overlay of the two previously mentioned maps over the geological map of the study area shows potential locations for better rainwater harvesting.

  3. Carbon Nanotubes Based Nanoelectrode Arrays: Fabrication, Evaluation, and Sensing Applications

    SciTech Connect

    Lin, Yuehe; Tu, Yi; Lu, Fang; Yantasee, Wassana; Ren, Zhifeng

    2004-10-05

    The fabrication, electrochemical characterization, and applications of low-site density carbon nanotubes based nanoelectrode arrays (CNT-NEAs) are reported in this work. Spin-coating of an epoxy resin provides a new way to create the electrode passivation layer that effectively reduces the current leakage and eliminates the electrode capacitance by sealing the side-wall of CNTs. The CNT-NEAs fabricated in our work effectively use the open ends of CNTs for electrochemical sensing. The open ends of the CNTs have fast electron transfer rates similar to a graphite edge-plane electrode, while the side-walls present very slow electron transfer rates similar to the graphitic basal plane. Cyclic voltammetry showed the sigmoidal shape curves with low capacitive current and scan-rate-independent limiting current. The CNT-NEAs were used successfully for voltammetric detection of trace concentrations of lead (II) at ppb level. The successful development of a glucose biosensor based on CNT-NEAs for the selective detection of glucose is also described. Glucose oxidase was covalently immobilized on the CNTs tips via carbodiimide chemistry by forming amide linkages between the amine residues and carboxylic acid groups on the open ends of CNTs. The biosensor effectively performs selective electrochemical detections of glucose in the presence of common interferences. The CNT-NEAs provide an excellent platform for ultra sensitive electrochemical sensors for chemical and biological sensing.

  4. Potential Rainwater Harvesting Improvement Using Advanced Remote Sensing Applications

    PubMed Central

    Elhag, Mohamed; Bahrawi, Jarbou A.

    2014-01-01

    The amount of water on earth is the same and only the distribution and the reallocation of water forms are altered in both time and space. To improve the rainwater harvesting a better understanding of the hydrological cycle is mandatory. Clouds are major component of the hydrological cycle; therefore, clouds distribution is the keystone of better rainwater harvesting. Remote sensing technology has shown robust capabilities in resolving challenges of water resource management in arid environments. Soil moisture content and cloud average distribution are essential remote sensing applications in extracting information of geophysical, geomorphological, and meteorological interest from satellite images. Current research study aimed to map the soil moisture content using recent Landsat 8 images and to map cloud average distribution of the corresponding area using 59 MERIS satellite imageries collected from January 2006 to October 2011. Cloud average distribution map shows specific location in the study area where it is always cloudy all the year and the site corresponding soil moisture content map came in agreement with cloud distribution. The overlay of the two previously mentioned maps over the geological map of the study area shows potential locations for better rainwater harvesting. PMID:25114973

  5. Synthesis, Characterization, and Gas Sensing Applications of WO3 Nanobricks

    NASA Astrophysics Data System (ADS)

    Xiao, Jingkun; Song, Chengwen; Dong, Wei; Li, Chen; Yin, Yanyan; Zhang, Xiaoni; Song, Mingyan

    2015-08-01

    WO3 nanobricks are fabricated by a simple hydrothermal method. Morphology and structure of the WO3 nanobricks are characterized by scanning electron microscopy and x-ray diffraction. Gas sensing properties of the as-prepared WO3 sensor are systematically investigated by a static gas sensing system. The results show that the WO3 nanobricks with defect corners demonstrate good crystallinity, and the mean edge length and wall thickness are 1-1.5 and 400 nm, respectively. The WO3 sensor achieves its maximum sensitivity to 100 ppm ethanol at the optimal operating temperature of 300 °C. Ultra-fast response time (2-3 s) and fast recovery time (4-11 s) of the WO3 sensor toward 100 ppm ethanol are also observed at this optimal operating temperature. Moreover, the WO3 sensor exhibits high selectivity to other gases such as methanol, benzene, hexane, and dichloromethane, indicating its excellent potential application as a gas sensor for ethanol detection.

  6. Characterization of Flexible Copolymer Optical Fibers for Force Sensing Applications

    PubMed Central

    Krehel, Marek; Rossi, René M.; Bona, Gian-Luca; Scherer, Lukas J.

    2013-01-01

    In this paper, different polymer optical fibres for applications in force sensing systems in textile fabrics are reported. The proposed method is based on the deflection of the light in fibre waveguides. Applying a force on the fibre changes the geometry and affects the wave guiding properties and hence induces light loss in the optical fibre. Fibres out of three different elastic and transparent copolymer materials were successfully produced and tested. Moreover, the influence of the diameter on the sensing properties was studied. The detectable force ranges from 0.05 N to 40 N (applied on 3 cm of fibre length), which can be regulated with the material and the diameter of the fibre. The detected signal loss varied from 0.6% to 78.3%. The fibres have attenuation parameters between 0.16–0.25 dB/cm at 652 nm. We show that the cross-sensitivies to temperature, strain and bends are low. Moreover, the high yield strength (0.0039–0.0054 GPa) and flexibility make these fibres very attractive candidates for integration into textiles to form wearable sensors, medical textiles or even computing systems. PMID:24021967

  7. Evaluation of the effect of conventionally prepared swarna makshika bhasma on different bio-chemical parameters in experimental animals

    PubMed Central

    Mohapatra, Sudhaldev; Jha, C.B.

    2011-01-01

    Swarna makshika (chalcopyrite) bhasma (SMB) has been used for different therapeutic purposes since long in Ayurveda. The present study is conducted to evaluate the effect of conventionally prepared SMB on different bio-chemical parameters in experimental animals, for providing scientific data base for its logical use in clinical practice. The genuine SMB was prepared by following classical techniques of shodhana and marana most commonly used by different Ayurvedic drug manufacturers. Shodhana was done by roasting raw swarna makshika with lemon juice for three days and marana was performed by 11 putas. The experimental animals (rats) were divided into two groups. SMB mixed with diluted honey was administered orally in therapeutic dose to Group SMB and diluted honey only was administered to vehicle control Group, for 30 days. The blood samples were collected twice, after 15 days and after 30 days of drug administration and different biochemical investigations were done. Biochemical parameters were chosen based on references from Ayurvedic classics and contemporary medicine. It was observed that Hb% was found significantly increased and LDL and VLDL were found significantly decreased in Group SMB when compared with vehicle control group. This experimental data will help the clinician for the logical use of SMB in different disease conditions with findings like low Hb% and high LDL, VLDL levels. PMID:22253508

  8. Evaluation of the effect of conventionally prepared swarna makshika bhasma on different bio-chemical parameters in experimental animals.

    PubMed

    Mohapatra, Sudhaldev; Jha, C B

    2011-10-01

    Swarna makshika (chalcopyrite) bhasma (SMB) has been used for different therapeutic purposes since long in Ayurveda. The present study is conducted to evaluate the effect of conventionally prepared SMB on different bio-chemical parameters in experimental animals, for providing scientific data base for its logical use in clinical practice. The genuine SMB was prepared by following classical techniques of shodhana and marana most commonly used by different Ayurvedic drug manufacturers. Shodhana was done by roasting raw swarna makshika with lemon juice for three days and marana was performed by 11 putas. The experimental animals (rats) were divided into two groups. SMB mixed with diluted honey was administered orally in therapeutic dose to Group SMB and diluted honey only was administered to vehicle control Group, for 30 days. The blood samples were collected twice, after 15 days and after 30 days of drug administration and different biochemical investigations were done. Biochemical parameters were chosen based on references from Ayurvedic classics and contemporary medicine. It was observed that Hb% was found significantly increased and LDL and VLDL were found significantly decreased in Group SMB when compared with vehicle control group. This experimental data will help the clinician for the logical use of SMB in different disease conditions with findings like low Hb% and high LDL, VLDL levels. PMID:22253508

  9. High-Temperature Strain Sensing for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Piazza, Anthony; Richards, Lance W.; Hudson, Larry D.

    2008-01-01

    Thermal protection systems (TPS) and hot structures are utilizing advanced materials that operate at temperatures that exceed abilities to measure structural performance. Robust strain sensors that operate accurately and reliably beyond 1800 F are needed but do not exist. These shortcomings hinder the ability to validate analysis and modeling techniques and hinders the ability to optimize structural designs. This presentation examines high-temperature strain sensing for aerospace applications and, more specifically, seeks to provide strain data for validating finite element models and thermal-structural analyses. Efforts have been made to develop sensor attachment techniques for relevant structural materials at the small test specimen level and to perform laboratory tests to characterize sensor and generate corrections to apply to indicated strains. Areas highlighted in this presentation include sensors, sensor attachment techniques, laboratory evaluation/characterization of strain measurement, and sensor use in large-scale structures.

  10. Flexible and tunable metamaterials and their applications in sensing

    NASA Astrophysics Data System (ADS)

    Wen, Xinglin; Li, Guangyuan; Zhang, Jun; Zhang, Qing; Peng, Bo; Wong, Lai Mun; Wang, Shijie; Xiong, Qihua

    2014-03-01

    Attributing metamaterials (MMs) to flexible substrates can provide many advantages such as transparency, lightweight, deformability and biocompatibility, and provides additional benefits to practical applications of metamaterials. Herein, we demonstrate a very simple and effective nickel sacrificial layer-assisted transfer method to fabricate Visible-Near IR metamaterials on polydimethylsiloxane (PDMS). The PDMS-MMs can serve as a well-defined and reproducible Surface-enhanced Raman Scattering (SERS) substrate and it can be covered to the surface with interesting analytes attached to obtain the SERS signal. Hybridizing a metamaterial with phase change material vanadium dioxide (VO2) is very another promising way to achieve active metamaterial devices. Both the electric and magnetic resonances frequency of a split ring resonator can be tuned by controlling the phases of VO2 by tuning the temperature. We also demonstrated that this VO2-based metamaterials device can be used to tune the SERS intensity, which suggests considerable potential as an active sensing device.

  11. Remote sensing applications with NH hyperspectral portable video camera

    NASA Astrophysics Data System (ADS)

    Takara, Yohei; Manago, Naohiro; Saito, Hayato; Mabuchi, Yusaku; Kondoh, Akihiko; Fujimori, Takahiro; Ando, Fuminori; Suzuki, Makoto; Kuze, Hiroaki

    2012-11-01

    Recent advances in image sensor and information technologies have enabled the development of small hyperspectral imaging systems. EBA JAPAN (Tokyo, Japan) has developed a novel grating-based, portable hyperspectral imaging camera NH-1 and NH-7 that can acquire a 2D spatial image (640 x 480 and 1280 x 1024 pixels, respectively) with a single exposure using an internal self-scanning system. The imagers cover a wavelength range of 350 - 1100 nm, with a spectral resolution of 5 nm. Because of their small weight of 750 g, the NH camera systems can easily be installed on a small UAV platform. We show the results from the analysis of data obtained by remote sensing applications including land vegetation and atmospheric monitoring from both ground- and airborne/UAV-based observations.

  12. Applications of thermal remote sensing to detailed ground water studies

    NASA Technical Reports Server (NTRS)

    Souto-Maior, J.

    1973-01-01

    Three possible applications of thermal (8-14 microns) remote sensing to detailed hydrogeologic studies are discussed in this paper: (1) the direct detection of seeps and springs, (2) the indirect evaluation of shallow ground water flow through its thermal effects on the land surface, and (3) the indirect location of small volumes of ground water inflow into surface water bodies. An investigation carried out with this purpose in an area containing a complex shallow ground water flow system indicates that the interpretation of the thermal imageries is complicated by many factors, among which the most important are: (1) altitude, angle of view, and thermal-spatial resolution of the sensor; (2) vegetation type, density, and vigor; (3) topography; (4) climatological and micrometeorological effects; (5) variation in soil type and soil moisture; (6) variation in volume and temperature of ground water inflow; (7) the hydraulic characteristics of the receiving water body, and (8) the presence of decaying organic material.

  13. Corps of Engineers applications for remote sensing of the environment

    NASA Technical Reports Server (NTRS)

    Kurtz, M. K., Jr.; Jarman, J. W.

    1977-01-01

    An objective overview is presented of the application of remote sensing technology in the Corps of Engineers. Examples are given of attempts to use the current state of the art to achieve particular disciplinary or mission oriented goals. The Corps, presently engaged in both research and development and technology transfer, has encountered some interesting situations. Practical operational utilization depends not only on technology, but also economic benefit/cost factors and some unprecedented legal, political, and social issues. Yet, at a time when increased agency commitment to operational usage is being sought, an assessment of the state of the art reveals that sensor technology, data processing and analysis, and models still require further development. There is a challenge in synchronizing technology push with the demand pull of dimly perceived user needs. They should complement each other rather than oppose. The goal is to use the combined push-pull effect to lead to increased productivity and responsiveness by the Corps.

  14. Hierarchical Nafion enhanced carbon aerogels for sensing applications

    NASA Astrophysics Data System (ADS)

    Weng, Bo; Ding, Ailing; Liu, Yuqing; Diao, Jianglin; Razal, Joselito; Lau, King Tong; Shepherd, Roderick; Li, Changming; Chen, Jun

    2016-02-01

    This work describes the fabrication of hierarchical 3D Nafion enhanced carbon aerogels (NECAGs) for sensing applications via a fast freeze drying method. Graphene oxide, multiwalled carbon nanotubes and Nafion were mixed and extruded into liquid nitrogen followed by the removal of ice crystals by freeze drying. The addition of Nafion enhanced the mechanical strength of NECAGs and effective control of the cellular morphology and pore size was achieved. The resultant NECAGs demonstrated high strength, low density, and high specific surface area and can achieve a modulus of 20 kPa, an electrical conductivity of 140 S m-1, and a specific capacity of 136.8 F g-1 after reduction. Therefore, NECAG monoliths performed well as a gas sensor and as a biosensor with high sensitivity and selectivity. The remarkable sensitivity of 8.52 × 103 μA mM-1 cm-2 was obtained in dopamine (DA) detection, which is two orders of magnitude better than the literature reported values using graphene aerogel electrodes made from a porous Ni template. These outstanding properties make the NECAG a promising electrode candidate for a wide range of applications. Further in-depth investigations are being undertaken to probe the structure-property relationship of NECAG monoliths prepared under various conditions.This work describes the fabrication of hierarchical 3D Nafion enhanced carbon aerogels (NECAGs) for sensing applications via a fast freeze drying method. Graphene oxide, multiwalled carbon nanotubes and Nafion were mixed and extruded into liquid nitrogen followed by the removal of ice crystals by freeze drying. The addition of Nafion enhanced the mechanical strength of NECAGs and effective control of the cellular morphology and pore size was achieved. The resultant NECAGs demonstrated high strength, low density, and high specific surface area and can achieve a modulus of 20 kPa, an electrical conductivity of 140 S m-1, and a specific capacity of 136.8 F g-1 after reduction. Therefore, NECAG

  15. Efficient Characterization of Parametric Uncertainty of Complex (Bio)chemical Networks.

    PubMed

    Schillings, Claudia; Sunnåker, Mikael; Stelling, Jörg; Schwab, Christoph

    2015-08-01

    Parametric uncertainty is a particularly challenging and relevant aspect of systems analysis in domains such as systems biology where, both for inference and for assessing prediction uncertainties, it is essential to characterize the system behavior globally in the parameter space. However, current methods based on local approximations or on Monte-Carlo sampling cope only insufficiently with high-dimensional parameter spaces associated with complex network models. Here, we propose an alternative deterministic methodology that relies on sparse polynomial approximations. We propose a deterministic computational interpolation scheme which identifies most significant expansion coefficients adaptively. We present its performance in kinetic model equations from computational systems biology with several hundred parameters and state variables, leading to numerical approximations of the parametric solution on the entire parameter space. The scheme is based on adaptive Smolyak interpolation of the parametric solution at judiciously and adaptively chosen points in parameter space. As Monte-Carlo sampling, it is "non-intrusive" and well-suited for massively parallel implementation, but affords higher convergence rates. This opens up new avenues for large-scale dynamic network analysis by enabling scaling for many applications, including parameter estimation, uncertainty quantification, and systems design.

  16. Efficient Characterization of Parametric Uncertainty of Complex (Bio)chemical Networks.

    PubMed

    Schillings, Claudia; Sunnåker, Mikael; Stelling, Jörg; Schwab, Christoph

    2015-08-01

    Parametric uncertainty is a particularly challenging and relevant aspect of systems analysis in domains such as systems biology where, both for inference and for assessing prediction uncertainties, it is essential to characterize the system behavior globally in the parameter space. However, current methods based on local approximations or on Monte-Carlo sampling cope only insufficiently with high-dimensional parameter spaces associated with complex network models. Here, we propose an alternative deterministic methodology that relies on sparse polynomial approximations. We propose a deterministic computational interpolation scheme which identifies most significant expansion coefficients adaptively. We present its performance in kinetic model equations from computational systems biology with several hundred parameters and state variables, leading to numerical approximations of the parametric solution on the entire parameter space. The scheme is based on adaptive Smolyak interpolation of the parametric solution at judiciously and adaptively chosen points in parameter space. As Monte-Carlo sampling, it is "non-intrusive" and well-suited for massively parallel implementation, but affords higher convergence rates. This opens up new avenues for large-scale dynamic network analysis by enabling scaling for many applications, including parameter estimation, uncertainty quantification, and systems design. PMID:26317784

  17. Hybrid nanomaterial and its applications: IR sensing and energy harvesting

    NASA Astrophysics Data System (ADS)

    Tseng, Yi-Hsuan

    In this dissertation, a hybrid nanomaterial, single-wall carbon nanotubes-copper sulfide nanoparticles (SWNTs-CuS NPs), was synthesized and its properties were analyzed. Due to its unique optical and thermal properties, the hybrid nanomaterial exhibited great potential for infrared (IR) sensing and energy harvesting. The hybrid nanomaterial was synthesized with the non-covalent bond technique to functionalize the surface of the SWNTs and bind the CuS nanoparticles on the surface of the SWNTs. For testing and analyzing the hybrid nanomaterial, SWNTs-CuS nanoparticles were formed as a thin film structure using the vacuum filtration method. Two conductive wires were bound on the ends of the thin film to build a thin film device for measurements and analyses. Measurements found that the hybrid nanomaterial had a significantly increased light absorption (up to 80%) compared to the pure SWNTs. Moreover, the hybrid nanomaterial thin film devices exhibited a clear optical and thermal switching effect, which could be further enhanced up to ten times with asymmetric illumination of light and thermal radiation on the thin film devices instead of symmetric illumination. A simple prototype thermoelectric generator enabled by the hybrid nanomaterials was demonstrated, indicating a new route for achieving thermoelectricity. In addition, CuS nanoparticles have great optical absorption especially in the near-infrared region. Therefore, the hybrid nanomaterial thin films also have the potential for IR sensing applications. The first application to be covered in this dissertation is the IR sensing application. IR thin film sensors based on the SWNTs-CuS nanoparticles hybrid nanomaterials were fabricated. The IR response in the photocurrent of the hybrid thin film sensor was significantly enhanced, increasing the photocurrent by 300% when the IR light illuminates the thin film device asymmetrically. The detection limit could be as low as 48mW mm-2. The dramatically enhanced

  18. Remote sensing applications in evaluation of cadmium pollution effects

    NASA Astrophysics Data System (ADS)

    Kozma-Bognar, Veronika; Martin, Gizella; Berke, Jozsef

    2013-04-01

    According to the 21st century developments in information technology the remote sensing applications open new perspectives to the data collection of our environment. Using the images in different spectral bands we get more reliable and accurate information about the condition, process and phenomena of the earth surface compared to the traditional aircraft image technologies (RGB images). The effects of particulate pollution originated from road traffic were analysed by the research team of Department of Meteorology and Water Management (University of Pannonia, Georgikon Faculty) with the application of visible, near infrared and thermal infrared remote sensing aircraft images. In the scope of our research was to detect and monitor the effects of heavy metal contamination in plant-atmosphere system under field experiments. The testing area was situated at Agro-meteorological Research Station in Keszthely (Hungary), where maize crops were polluted once a week (0,5 M concentration) by cadmium. In our study we simulated the effects of cadmium pollution because this element is one of the most common toxic heavy metals in our environment. During two growing seasons (2011, 2012) time-series analyses were carried out based on the remote sensing data and parallel collected variables of field measurement. In each phenological phases of plant we took aerial images, in order to follow the changes of the structure and intensity values of plots images. The spatial resolution of these images were under 10x10 cm, which allowed to use a plot-level evaluation. The structural and intensity based measurement evaluation methods were applied to examine cadmium polluted and control maize canopy after data pre-processing. Research activities also focused on the examination of the influence of the irrigation and the comparison of aerial and terrain parameters. As conclusion, it could be determined the quantification of cadmium pollution effects is possible on maize plants by using remote

  19. Diamond micro-milling of lithium niobate for sensing applications

    NASA Astrophysics Data System (ADS)

    Huo, Dehong; Jie Choong, Zi; Shi, Yilun; Hedley, John; Zhao, Yan

    2016-09-01

    Lithium niobate (LiNbO3) is a crystalline material which is widely applied in surface acoustic wave, microelectromechanical systems (MEMS), and optical devices, owing to its superior physical, optical, and electronic properties. Due to its low toughness and chemical inactivity, LiNbO3 is considered to be a hard-to-machine material and has been traditionally left as as an inert substrate upon which other micro structures are deposited. However, in order to make use of its superior material properties and increase efficiency, the fabrication of microstructures directly on LiNbO3 is in high demand. This paper presents an experimental investigation on the micro machinability of LiNbO3 via micro milling with the aim of obtaining optimal process parameters. Machining of micro slots was performed on Z-cut LiNbO3 wafers using single crystal diamond tools. Surface and edge quality, cutting forces, and the crystallographic effect were examined and characterized. Ductile mode machining of LiNbO3 was found to be feasible at a low feed rate and small depth of cut. A strong crystallographic effect on the machined surface quality was also observed. Finally, some LiNbO3 micro components applicable to sensing applications were fabricated.

  20. Hierarchical Nafion enhanced carbon aerogels for sensing applications.

    PubMed

    Weng, Bo; Ding, Ailing; Liu, Yuqing; Diao, Jianglin; Razal, Joselito; Lau, King Tong; Shepherd, Roderick; Li, Changming; Chen, Jun

    2016-02-14

    This work describes the fabrication of hierarchical 3D Nafion enhanced carbon aerogels (NECAGs) for sensing applications via a fast freeze drying method. Graphene oxide, multiwalled carbon nanotubes and Nafion were mixed and extruded into liquid nitrogen followed by the removal of ice crystals by freeze drying. The addition of Nafion enhanced the mechanical strength of NECAGs and effective control of the cellular morphology and pore size was achieved. The resultant NECAGs demonstrated high strength, low density, and high specific surface area and can achieve a modulus of 20 kPa, an electrical conductivity of 140 S m(-1), and a specific capacity of 136.8 F g(-1) after reduction. Therefore, NECAG monoliths performed well as a gas sensor and as a biosensor with high sensitivity and selectivity. The remarkable sensitivity of 8.52 × 10(3)μA mM(-1) cm(-2) was obtained in dopamine (DA) detection, which is two orders of magnitude better than the literature reported values using graphene aerogel electrodes made from a porous Ni template. These outstanding properties make the NECAG a promising electrode candidate for a wide range of applications. Further in-depth investigations are being undertaken to probe the structure-property relationship of NECAG monoliths prepared under various conditions. PMID:26791962

  1. Application of database technology to red tide remote sensing

    NASA Astrophysics Data System (ADS)

    Leng, Xiuhua; Zhang, Jie; Ma, Yi; Zhang, Hongliang

    2003-05-01

    The red tide spectrum database is the basis and prerequisite for red tide hyperspectral remote sensing, a technical support for the field investigation on red tide and the main technical measure for red tide data management and application. The data in the database mentioned in this paper come mainly from the red tide mesocosm experiment, and include the simultaneously collected biological, chemical, hydrographic and meteorological data besides the spectrum data of red tide dominant species. The database has not only the conventional functions for data query, retrieval and plotting, but also the algorithmic functions for the ground object spectrum data processing in the Visual FoxPro system environment and the biological information extraction using the ground object spectrum data. This system is not only an effective application system for detecting the red tide organism, identifying the red tide dominant species and analyzing the characteristic amount of red tide organism, but also a powerful tool for the marine environmental protection and the red tide disaster reduction in the future.

  2. Taste sensing systems (electronic tongues) for pharmaceutical applications.

    PubMed

    Woertz, Katharina; Tissen, Corinna; Kleinebudde, Peter; Breitkreutz, Jörg

    2011-09-30

    Electronic tongues are sensor array systems able to detect single substances as well as complex mixtures by means of particular sensor membranes and electrochemical techniques. Two systems are already commercially available, the Insent taste sensing system and the αAstree electronic tongue. In addition, various laboratory prototype versions exist. Besides the successful use in food industry, the implementation for pharmaceutical purposes has strongly grown within the recent years. A reason for this is the increased interest of developing palatable formulations, especially for children. As taste assessment of drugs comes along with challenges due to possible toxicity and subjectivity of the taste assessors, electronic tongues could offer a safe and objective alternative. In order to provide guidance on the use of these systems, possible fields of interest are presented in this review, as for example, system qualification, quality control, formulation development, comparison between marketed drug products, and the validation of the methods used. Further, different approaches for solid and liquid dosage forms are summarized. But, also the difficulty to obtain absolute statements regarding taste was identified and the need of more validated data was discussed to offer guidance for the next years of research and application of electronic tongues for pharmaceutical applications.

  3. Characterization of POF for liquid level and concentration sensing applications

    NASA Astrophysics Data System (ADS)

    Lumanta, B. G.; Candidato, R. T., Jr.; Reserva, R. L.

    2015-06-01

    Measuring liquid level and solution concentration play an important role in commercial and technological applications. For years, polymer optical fibers (POFs) have been very attractive for industrial applications because of their unique characteristics. In this work, we created simple, low cost and efficient set-up for sensing liquid level and solution concentration using POFs. We have calculated the acceptance angle of the POF to be 30°from numerical aperture (NA) measurements (NA ≈ 0.500).Images of a single POF showed the presence of impurities within the fiber which can contribute to power loss of the transmitted light. Light leakage was also observed when the fiber was bent to a tight radius, i.e. beyond its minimum bend radius of 15 mm. The experimental results show that as liquid level increases, the output power decreases. Furthermore, when the liquid concentration was increased, its response showed a greater loss of optical power due to the light rays in the submerged region of the POF tend to be refracted out of the fiber instead of being totally internally reflected and transmitted when index of refraction of the surrounding liquid medium is increased.

  4. FASCODE: An update and applications in atmospheric remote sensing

    SciTech Connect

    Chetwynd, J.G.; Wang, J.; Anderson, G.P.

    1994-12-31

    The Air Force has long maintained an ``exact`` accelerated line-by-line (LBL) radiative transfer model, the Fast Atmospheric Signature CODE (FASCODE), appropriate for applications in both the laboratory and any arbitrary line-of-sight in the atmosphere. The first version was released in 1978 with optimized Voigt line shape decomposition and layering algorithms; it had a speed advantage of about 100 over existing fixed frequency LBL codes. The current version of FASCODE, FASCOD3, is fully compatible with the HITRAN92 database, including access to the temperature-dependent cross sections for heavy molecules (e.g. chloro-fluorocarbons/CFCs, etc.). Some new features of FASCOD3 are: line coupling algorithms for both 15 micron CO{sub 2} and the mm lines of O{sub 2}; non-local thermodynamic equilibrium models; updated H{sub 2}O continuum; multiple scattering capability; and laser options for lidar modeling applications. Because of its speed over other LBL codes and extensive validations against measurements, FASCOD3 is increasingly being used as a high resolution remote sensing data analysis tool from microwave and infrared (IR) to ultraviolet (UV) spectral ranges.

  5. Nanoscale and manufacturable sensing tip for biomedical applications

    NASA Astrophysics Data System (ADS)

    Wang, Xingwei; Wang, Wenhui

    2007-09-01

    This paper presents a novel miniature sensing tip structure for various biomedical applications. With such a tiny tip, the sensor has potential to be inserted into cells for intracellular measurements without any label as indicator. This label-free detection method is very useful in biological areas such as DNA hybridization detection and antigen-antibody interaction monitoring. Single-cell analysis (SCA) technology can provide dynamic analysis of interactions within individual living cells, in addition to providing a complement to conventional bulk cell assays. When the number of sample cells obtained from surgical procedures is limited, and cannot be propagated for study, SCA is especially important. It provides a valuable tool for intracellular studies that have applications ranging from medicine to national security. In addition, the sensor fabrication is simple and has potential for batch manufacturing. The sensor performance will be reproducible and uniform. Uniformity and reproducibility are two very important requirements for sensor manufacturing. Unfortunately, most current optical fiber sensors are hand-made one by one, and the sensors' performance is not easy to be uniform. Our novel sensor will be able to address this problem. This may lead to batch processing and a great reduction of the fabrication cost.

  6. Remote sensing applications in water resources - An opportunity for research in developing countries

    NASA Technical Reports Server (NTRS)

    Menenti, M.

    1992-01-01

    A review is presented of first-hand experience with remote sensing research in developing countries to illustrate the inherent semiempirical basis of remote sensing applications. This task is accomplished by means of examples drawn from actual research work. Results of case studies in different farming systems and countries are summarized to exemplify the relative, application-dependent, weight of satellite versus ground information.

  7. Proceedings of the Conference on Practical Applications of Remote Sensing

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Conference papers dealing with the principles of remote sensing are summarized. Summaries cover problem solving capabilities within the realms of urbanism, agriculture, forestry, and environmental impact assessment.

  8. Plasmonic Nanoparticles and Nanowires: Design, Fabrication and Application in Sensing

    PubMed Central

    Vo-Dinh, Tuan; Dhawan, Anuj; Norton, Stephen J.; Khoury, Christopher G.; Wang, Hsin-Neng; Misra, Veena; Gerhold, Michael D.

    2013-01-01

    This study involves two aspects of our investigations of plasmonics-active systems: (i) theoretical and simulation studies and (ii) experimental fabrication of plasmonics-active nanostructures. Two types of nanostructures are selected as the model systems for their unique plasmonics properties: (1) nanoparticles and (2) nanowires on substrate. Special focus is devoted to regions where the electromagnetic field is strongly concentrated by the metallic nanostructures or between nanostructures. The theoretical investigations deal with dimers of nanoparticles and nanoshells using a semi-analytical method based on a multipole expansion (ME) and the finite-element method (FEM) in order to determine the electromagnetic enhancement, especially at the interface areas of two adjacent nanoparticles. The experimental study involves the design of plasmonics-active nanowire arrays on substrates that can provide efficient electromagnetic enhancement in regions around and between the nanostructures. Fabrication of these nanowire structures over large chip-scale areas (from a few millimeters to a few centimeters) as well as FDTD simulations to estimate the EM fields between the nanowires are described. The application of these nanowire chips using surface-enhanced Raman scattering (SERS) for detection of chemicals and labeled DNA molecules is described to illustrate the potential of the plasmonics chips for sensing. PMID:24839505

  9. Large scale electromechanical transistor with application in mass sensing

    SciTech Connect

    Jin, Leisheng; Li, Lijie

    2014-12-07

    Nanomechanical transistor (NMT) has evolved from the single electron transistor, a device that operates by shuttling electrons with a self-excited central conductor. The unfavoured aspects of the NMT are the complexity of the fabrication process and its signal processing unit, which could potentially be overcome by designing much larger devices. This paper reports a new design of large scale electromechanical transistor (LSEMT), still taking advantage of the principle of shuttling electrons. However, because of the large size, nonlinear electrostatic forces induced by the transistor itself are not sufficient to drive the mechanical member into vibration—an external force has to be used. In this paper, a LSEMT device is modelled, and its new application in mass sensing is postulated using two coupled mechanical cantilevers, with one of them being embedded in the transistor. The sensor is capable of detecting added mass using the eigenstate shifts method by reading the change of electrical current from the transistor, which has much higher sensitivity than conventional eigenfrequency shift approach used in classical cantilever based mass sensors. Numerical simulations are conducted to investigate the performance of the mass sensor.

  10. Application of NASA Giovanni to Coastal Zone Remote Sensing Search

    NASA Technical Reports Server (NTRS)

    Acker, James; Leptoukh, Gregory; Kempler, Steven; Berrick, Stephen; Rui, Hualan; Shen, Suhung

    2007-01-01

    The Goddard Earth Sciences Data and Information Services Center (GES DISC) Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) provides rapid access to, and enables effective utilization of, remotely-sensed data that are applicable to investigations of coastal environmental processes. Data sets in Giovanni include precipitation data from the Tropical Rainfall Measuring Mission (TRMM), particularly useful for coastal storm investigations; ocean color radiometry data from the Sea-viewing Wide Field-of-view Sensor (SeaWIFS) and Moderate Resolution Imaging Spectroradiometer (MODIS), useful for water quality evaluation, phytoplankton blooms, and terrestrial-marine interactions; and atmospheric data from MODIS and the Advanced Infrared Sounder (AIRS), providing the capability to characterize atmospheric variables. Giovanni provides a simple interface allowing discovery and analysis of environmental data sets with accompanying graphic visualizations. Examples of Giovanni investigations of the coastal zone include hurricane and storm impacts, hydrologically-induced phytoplankton blooms, chlorophyll trend analysis, and dust storm characterization. New and near-future capabilities of Giovanni will be described.

  11. Application of Terrestrial Microwave Remote Sensing to Agricultural Drought Monitoring

    NASA Astrophysics Data System (ADS)

    Crow, W. T.; Bolten, J. D.

    2014-12-01

    Root-zone soil moisture information is a valuable diagnostic for detecting the onset and severity of agricultural drought. Current attempts to globally monitor root-zone soil moisture are generally based on the application of soil water balance models driven by observed meteorological variables. Such systems, however, are prone to random error associated with: incorrect process model physics, poor parameter choices and noisy meteorological inputs. The presentation will describe attempts to remediate these sources of error via the assimilation of remotely-sensed surface soil moisture retrievals from satellite-based passive microwave sensors into a global soil water balance model. Results demonstrate the ability of satellite-based soil moisture retrieval products to significantly improve the global characterization of root-zone soil moisture - particularly in data-poor regions lacking adequate ground-based rain gage instrumentation. This success has lead to an on-going effort to implement an operational land data assimilation system at the United States Department of Agriculture's Foreign Agricultural Service (USDA FAS) to globally monitor variations in root-zone soil moisture availability via the integration of satellite-based precipitation and soil moisture information. Prospects for improving the performance of the USDA FAS system via the simultaneous assimilation of both passive and active-based soil moisture retrievals derived from the upcoming NASA Soil Moisture Active/Passive mission will also be discussed.

  12. Photonic crystal based 2D integrating cell for sensing applications

    NASA Astrophysics Data System (ADS)

    Fohrmann, Lena Simone; Petrov, Alexander Y.; Sommer, Gerrit; Krauss, Thomas; Eich, Manfred

    2016-04-01

    We present a concept of a silicon slab based 2D integrating cell where photonic crystal (PhC) reflectors are used in order to confine light in a two-dimensional area to acquire a long propagation length. The evanescent field of the guided wave can be used for sensing applications. We use FDTD simulations to investigate the dependence of the reflectivity of photonic crystal mirrors with a hexagonal lattice. The reflectivity in ΓM direction demonstrates reduced vertical losses compared to the ΓK direction and can be further improved by adiabatically tapering the hole radii of the photonic crystal. A small hexagonal 2D integrating cell was studied with PhC boundaries oriented in ΓM and ΓK direction. It is shown that average reflectivities of 99% can be obtained in a rectangular 2D cell with optimized reflector design, limited only by residual vertical scattering losses at the PhC boundary. This reflectivity is already comparable to the best metallic reflectors.

  13. Tellurium based glasses for bio-sensing and space applications

    NASA Astrophysics Data System (ADS)

    Wilhelm, Allison Anne

    2009-12-01

    Te2As3Se5 (TAS) fibers are often used in bio-sensing applications requiring direct contact between the fiber and live cells. However, the toxicity and stability of chalcogenide glasses typically used in such bio-sensing applications are not well known. The stability and toxicity of TAS glass fibers were therefore examined. The surface of TAS fibers stored for up to three years in air were analyzed using X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICP-MS), and atomic force microscopy (AFM). It is shown that an oxide layer develops on the surface of TAS fibers stored in air. This oxide layer is highly soluble in water and therefore easily removed. Additional studies using cyclic voltammetry show that the fresh TAS glass surface is insoluble in water for at least a few days, and attenuation measurements show that oxidation does not affect the transmission properties of the glass fibers. It was also determined that old, oxidized fibers pose a toxic threat to cells, while washed and new fibers show no toxic effect. Therefore, it is concluded that a soluble oxide layer forms on the surface of TAS fibers stored in air and that this layer has a toxic effect on cells in an aqueous environment. However, through etching, the oxide layer and the toxicity can be easily removed. In other applications of telluride glasses, such as the search for possible signs of life on exoplanets, a glass transmitting further into the IR is required in order to detect molecules, such as CO2. A new family of Tellurium based glasses from the Ge-Te-I ternary system has therefore been investigated for use in space and bio-sensing applications. A systematic series of compositions has been synthesized in order to explore the ternary phase diagram in an attempt to optimize the glass composition for the fiber drawing and molding process. The resulting glass transition temperature range lies between 139°C and 174°C, with DeltaT values between 64°C and 124

  14. Application of NASA Giovanni to Coastal Zone Remote Sensing Research

    NASA Technical Reports Server (NTRS)

    Acker, James; Leptoukh, Gregory; Kempler, Steven; Berrick, Stephen; Rui, Hualan; Shen, Suhung

    2007-01-01

    The Goddard Earth Sciences Data and Information Services Center (GES DISC) Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) provides rapid access to, and enables effective utilization of, remotely-sensed data that are applicable to investigations of coastal environmental processes. Data sets in Giovanni include precipitation data from the Tropical Rainfall Measuring Mission (TRMM), particularly useful for coastal storm investigations; ocean color radiometry data from the Sea-viewing Wide Field-of-view Sensor (SeaWIFS) and Moderate Resolution Imaging Spectroradiometer (MODIS), useful for water quality evaluation, phytoplankton blooms, and terrestrial-marine interactions; and atmospheric data from MODIS and the Advanced Infrared Sounder (AIRS), providing the capability to characterize atmospheric variables. Giovanni provides a simple interface allowing discovery and analysis of environmental data sets with accompanying graphic visualizations. Examples of Giovanni investigations of the coastal zone include hurricane and storm impacts, hydrologically-induced phytoplankton blooms, chlorophyll trend analysis, and dust storm characterization. New and near-future capabilities of Giovanni will be described.

  15. Eye-safe digital 3-D sensing for space applications

    NASA Astrophysics Data System (ADS)

    Beraldin, J.-Angelo; Blais, Francois; Rioux, Marc; Cournoyer, Luc; Laurin, Denis G.; MacLean, Steve G.

    2000-01-01

    This paper focuses on the characteristics and performance of an eye-safe laser range scanner (LARS) with short- and medium-range 3D sensing capabilities for space applications. This versatile LARS is a precision measurement tool that will complement the current Canadian Space Vision System. The major advantages of the LARS over conventional video- based imaging are its ability to operate with sunlight shining directly into the scanner and its immunity to spurious reflections and shadows, which occur frequently in space. Because the LARS is equipped with two high-speed galvanometers to steer the laser beam, any spatial location within the field of view of the camera can be addressed. This versatility enables the LARS to operate in two basis scan pattern modes: (1) variable-scan-resolution mode and (2) raster-scan mode. In the variable-resolution mode, the LARS can search and track targets and geometrical features on objects located within a field of view of 30 by 30 deg and with corresponding range from about 0.5 to 2000 m. The tracking mode can reach a refresh rate of up to 130 Hz. The raster mode is used primarily for the measurement of registered range and intensity information on large stationary objects. It allows, among other things, target- based measurements, feature-based measurements, and surface- reflectance monitoring. The digitizing and modeling of human subjects, cargo payloads, and environments are also possible with the LARS. Examples illustrating its capabilities are presented.

  16. Applications of UAVs for Remote Sensing of Critical Infrastructure

    NASA Technical Reports Server (NTRS)

    Wegener, Steve; Brass, James; Schoenung, Susan

    2003-01-01

    The surveillance of critical facilities and national infrastructure such as waterways, roadways, pipelines and utilities requires advanced technological tools to provide timely, up to date information on structure status and integrity. Unmanned Aerial Vehicles (UAVs) are uniquely suited for these tasks, having large payload and long duration capabilities. UAVs also have the capability to fly dangerous and dull missions, orbiting for 24 hours over a particular area or facility providing around the clock surveillance with no personnel onboard. New UAV platforms and systems are becoming available for commercial use. High altitude platforms are being tested for use in communications, remote sensing, agriculture, forestry and disaster management. New payloads are being built and demonstrated onboard the UAVs in support of these applications. Smaller, lighter, lower power consumption imaging systems are currently being tested over coffee fields to determine yield and over fires to detect fire fronts and hotspots. Communication systems that relay video, meteorological and chemical data via satellite to users on the ground in real-time have also been demonstrated. Interest in this technology for infrastructure characterization and mapping has increased dramatically in the past year. Many of the UAV technological developments required for resource and disaster monitoring are being used for the infrastructure and facility mapping activity. This paper documents the unique contributions from NASA;s Environmental Research Aircraft and Sensor Technology (ERAST) program to these applications. ERAST is a UAV technology development effort by a consortium of private aeronautical companies and NASA. Details of demonstrations of UAV capabilities currently underway are also presented.

  17. The use of UAV platforms for remote sensing applications: case studies in Cyprus

    NASA Astrophysics Data System (ADS)

    Themistocleous, K.

    2014-08-01

    The use of cost-effective Unmanned Aerial Vehicles (UAVs) are becoming common tools for researchers for numerous applications. Since UAVs vary in size and payload capacity, various sensors can be installed onto the platform. UAVs can be a efficient and low cost resource for remote sensing applications. Different remote sensing techniques can be used with UAVs, such as field spectroscopy, multi-spectral cameras, infrared cameras and thermal cameras. This paper examines several UAV platforms that were used by the Cyprus University of Technology for remote sensing applications in Cyprus. Using these UAV systems for different applications, the advantages and disadvantages were examined and discussed.

  18. Background and principle applications of remote sensing in Mexico

    NASA Technical Reports Server (NTRS)

    Perez, J. A. D.

    1978-01-01

    Remote sensing, or the collection of information from objectives at a distance, crystallizes the interest in implementing techniques which assist in the search for solutions to the problems raised by the detection, exploitation, and conservation of the natural resources of the earth. An attempt is made to present an overview of the studies and achievements which have been obtained with remote sensing in Mexico.

  19. Sensing applications of rare-earth doped luminescent materials

    SciTech Connect

    Allison, S.W.; Cates, M.R.; Simpson, M.L.; Noel, B.W.; Turley, D.; Gillies, G.T.

    1988-01-01

    We are developing sensing techniques using phosphors and luminescing crystals. While their use in temperature sensing is becoming well known, there exists the potential to exploit them for other diagnostics. Examples are stress/strain, heat flux, skin friction, pressure, laser-beam profiling, aerodynamic flow, and radiation. We describe our recent results in these areas. 16 refs., 7 figs.

  20. Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications.

    USGS Publications Warehouse

    Clark, R.N.; Roush, T.L.

    1984-01-01

    Several methods for the analysis of remotely sensed reflectance data are compared, including empirical methods and scattering theories, both of which are important for solving remote sensing problems. The concept of the photon mean path length and the implications for use in modeling reflectance spectra are presented.-from Authors

  1. Hydrological Application of Remote Sensing: Surface States -- Snow

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Kelly, Richard E. J.; Foster, James L.; Chang, Alfred T. C.

    2004-01-01

    Remote sensing research of snow cover has been accomplished for nearly 40 years. The use of visible, near-infrared, active and passive-microwave remote sensing for the analysis of snow cover is reviewed with an emphasis on the work on the last decade.

  2. Two Dimensional Materials for Sensing and Energy Applications

    NASA Astrophysics Data System (ADS)

    Kuru, Cihan

    Since the discovery of graphene in 2004, two dimensional materials (2D) have become the focus of tremendous research owing to their unprecedented properties. Atomically thin nature of 2D materials gives rise to unique physicochemical properties, which makes them attractive for flexible electronics, chemical and biological sensing, energy storage, and solar cells. In this dissertation, sensing and energy related applications of 2D materials are studied. In chapter 1, graphene based ammonia sensors are presented, in which nano-structuring graphene significantly improves the sensitivity towards ammonia due to the formation of highly reactive edge defects. It was found that sensitivity could be further enhanced by decoration of Pd nanoparticles on the nano-structured graphene. In chapter 2, hydrogen sensors based on solution processed transition metal dichalcogenides (TMDs) nanosheets-Pd nanoparticles composites are introduced. The sensors can detect hydrogen at room temperature with high sensitivities. The ease of fabrication holds a great potential for low-cost and scalable manufacturing of chemical sensors. In chapter 3, the fabrication and characterization of graphene/Si heterojunction solar cells are described and various methods to improve the power conversion efficiency (PCE) are presented. A single layer graphene is highly transparent; therefore suitable as a transparent Schottky electrode for solar cells. However, the PCEs of the pristine graphene/Si solar cells are low due to the high sheet resistance of graphene as well as the low Schottky barrier height between pristine graphene and Si. We improved the PCE by a magnitude of order (achieving 9% PCE) with Au nanoparticle decoration followed by a nitric acid treatment owing to the dramatic reduction in the series resistance of the cells and the enhanced Schottky barrier height. Furthermore, we used NiO as a transparent and stable hole doping material for graphene, in which NiO doped cell shows enhanced PCE

  3. Novel Magnetic Materials for Sensing and Cooling Applications

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Anurag

    2011-12-01

    The overall goals of the present PhD research are to explore the giant magnetoimpedance (GMI) and giant magnetocaloric (GMC) effects in functional magnetic materials and provide guidance on the optimization of the material properties for use in advanced magnetic sensor and refrigeration applications. GMI has attracted growing interest due to its promising applications in high-performance magnetic sensors. Research in this field is focused on the development of new materials with properties appropriate for practical GMI sensor applications. In this project, we have successfully set up a new magneto-impedance measurement system in the Functional Materials Laboratory at USF. We have established, for the first time, the correlation between sample surface, magnetic softness, critical length, and GMI in Co-based amorphous ribbon materials, which provide a good handle on selecting the suitable operating frequency range of magnetic materials for GMI-based field sensor applications. The impact of field-induced magnetic anisotropy on the GMI effect in Co-based nanocrystalline ribbon materials has also been investigated, providing an important understanding of the correlation between the microstructure, magnetic anisotropy, and GMI in these materials. We have shown that coating a thin layer of magnetic metal on the surface of a magnetic ribbon can reduce stray fields due to surface irregularities and enhance the magnetic flux paths closure of the bilayer structure, both of which, in effect, increase the GMI and its field sensitivity. This finding provides a new way for tailoring GMI in surface-modified soft ferromagnetic ribbons for use in highly sensitive magnetic sensors. We have also introduced the new concepts of incorporating GMI technology with superparamagnetic nanoparticles for biosensing applications and with carbon nanotubes for gas and chemical sensing applications. GMC forms the basis for developing advanced magnetic refrigeration technology and research in this

  4. Nanostructured arrays for sensing and energy storage applications

    NASA Astrophysics Data System (ADS)

    Mangu, Raghu

    Vertically aligned multi walled carbon nanotube (MWCNT) arrays fabricated by xylene pyrolysis in anodized aluminum oxide (AAO) templates without the use of a catalyst, were integrated into a resistive sensor design. The steady state sensitivities as high as 5% and 10% for 100 ppm of NH3 and NO2 respectively at a flow rate of 750 sccm were observed. A study was undertaken to elucidate (i) the dependence of sensitivity on the thickness of amorphous carbon layers, (ii) the effect of UV light on gas desorption characteristics and (iii) the dependence of room temperature sensitivity on different NH3 and NO2 flow rates. An equivalent circuit model was developed to understand the operation and propose design changes for increased sensitivity. Multi Walled Carbon NanoTubes (MWCNTs) -- Polymer composite based hybrid sensors were fabricated and integrated into a resistive sensor design for gas sensing applications. Thin films of MWCNTs were grown onto Si/SiO 2 substrates via xylene pyrolysis using chemical vapor deposition technique. Polymers like PEDOT:PSS and Polyaniline (PANI) mixed with various solvents like DMSO, DMF, 2-Propanol and Ethylene Glycol were used to synthesize the composite films. These sensors exhibited excellent response and selectivity at room temperature when exposed to low concentrations (100ppm) of gases like NH3 and NO2. Effect of various solvents on the sensor response imparting selectivity to CNT -- Polymer nanocomposites was investigated extensively. Sensitivities as high as 28% was observed for a MWCNT -- PEDOT:PSS composite sensor when exposed to 100ppm of NH3 and -29.8% sensitivity for a MWCNT-PANI composite sensor to 100ppm of NO2. A novel nanostructured electrode design for Li based batteries and electrochemical capacitor applications was developed and tested. High density and highly aligned metal oxide nanowire arrays were fabricated via template assisted electrochemical deposition. Nickel and Molybdenum nanowires fabricated via cathodic

  5. Development of fiber-optic current sensing technique and its applications in electric power systems

    NASA Astrophysics Data System (ADS)

    Kurosawa, Kiyoshi

    2014-03-01

    This paper describes the development and applications of a fiber-optic electric current sensing technique with the stable properties and compact, simple, and flexible structure of the sensing device. The special characteristics of the sensors were achieved by use of the special low birefringence fiber as the Faraday-effect sensing element and were also achieved with creation of sensing schemes which matched with the features of the fiber. Making use of the excellent features of the sensing technique, various current monitoring devices and systems were developed and applied practically for the control and maintenance in the electric power facility. In this paper, the design and performance of the sensing devices are introduced first. After that, examples of the application systems practically applied are also introduced, including fault section/point location systems for power transmission cable lines.

  6. Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol.

    PubMed

    Xu, Youqiang; Chu, Haipei; Gao, Chao; Tao, Fei; Zhou, Zikang; Li, Kun; Li, Lixiang; Ma, Cuiqing; Xu, Ping

    2014-05-01

    The production of biofuels by recombinant Escherichia coli is restricted by the toxicity of the products. 2,3-Butanediol (2,3-BD), a platform and fuel bio-chemical with low toxicity to microbes, could be a promising alternative for biofuel production. However, the yield and productivity of 2,3-BD produced by recombinant E. coli strains are not sufficient for industrial scale fermentation. In this work, the production of 2,3-BD by recombinant E. coli strains was optimized by applying a systematic approach. 2,3-BD biosynthesis gene clusters were cloned from several native 2,3-BD producers, including Bacillus subtilis, Bacillus licheniformis, Klebsiella pneumoniae, Serratia marcescens, and Enterobacter cloacae, inserted into the expression vector pET28a, and compared for 2,3-BD synthesis. The recombinant strain E. coli BL21/pETPT7-EcABC, carrying the 2,3-BD pathway gene cluster from Enterobacter cloacae, showed the best ability to synthesize 2,3-BD. Thereafter, expression of the most efficient gene cluster was optimized by using different promoters, including PT7, Ptac, Pc, and Pabc. E. coli BL21/pET-RABC with Pabc as promoter was superior in 2,3-BD synthesis. On the basis of the results of biomass and extracellular metabolite profiling analyses, fermentation conditions, including pH, agitation speed, and aeration rate, were optimized for the efficient production of 2,3-BD. After fed-batch fermentation under the optimized conditions, 73.8g/L of 2,3-BD was produced by using E. coli BL21/pET-RABC within 62h. The values of both yield and productivity of 2,3-BD obtained with the optimized biological system are the highest ever achieved with an engineered E. coli strain. In addition to the 2,3-BD production, the systematic approach might also be used in the production of other important chemicals through recombinant E. coli strains.

  7. An Update of NASA Public Health Applications Projects using Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Estes, Sue M.; Haynes, J. A.

    2009-01-01

    Satellite earth observations present a unique vantage point of the earth s environment from space which offers a wealth of health applications for the imaginative investigator. The session will present research results of the remote sensing environmental observations of earth and health applications. This session will an overview of many of the NASA public health applications using Remote Sensing Data and will also discuss opportunities to become a research collaborator with NASA.

  8. Application of remote sensing to state and regional problems

    NASA Technical Reports Server (NTRS)

    Bouchillon, C. W.; Miller, W. F.; Landphair, H.; Zitta, V. L.

    1974-01-01

    The use of remote sensing techniques to help the state of Mississippi recognize and solve its environmental, resource, and socio-economic problems through inventory, analysis, and monitoring is suggested.

  9. REMOTE SENSING APPLICATIONS FOR SUSTAINABLE WATERSHED MANAGEMENT AND FOOD SECURITY

    EPA Science Inventory

    The integration of IKONOS satellite data, airborne color infrared remote sensing, visualization, and decision support tools is discussed, within the contexts of management techniques for minimizing non-point source pollution in inland waterways, such s riparian buffer restoration...

  10. Remote sensing in forestry: Application to the Amazon region

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Tardin, A. T.; Dossantos, A.; Filho, P. H.; Shimabukuro, Y. E.

    1981-01-01

    The utilization of satellite remote sensing in forestry is reviewed with emphasis on studies performed for the Brazilian Amazon Region. Timber identification, deforestation, and pasture degradation after deforestation are discussed.

  11. Principles and applications of imaging radar. Manual of remote sensing: Third edition, Volume 2

    SciTech Connect

    Henderson, F.M.; Lewis, A.J.

    1998-12-31

    This second volume in the Third Edition of the Manual of Remote Sensing offers a current and comprehensive survey of the theory, methods, and applications of imaging radar for geoscientists, engineers and application scientists interested in the advantages of radar remote sensing. Produced under the auspices of the American Society for Photogrammetry and Remote Sensing, it brings together contributions from experts around the world to discuss the basic principles of imaging radars and trace the research activity--past, present, and future--across the many sciences where radar remote sensing may be applied. This book offers an invaluable snapshot of radar remote sensing technology, including radargrammetry, radar polarimetry and interferometry and its uses. It combines technical and procedural coverage of systems, data interpretation, and other fundamentals with generous coverage of practical applications in agriculture; forestry; soil moisture monitoring; geology; geomorphology and hydrology; oceanography; land use, land cover mapping and archeology.

  12. Remote sensing sensors and applications in environmental resources mapping and modeling

    USGS Publications Warehouse

    Melesse, Assefa M.; Weng, Qihao; Thenkabail, Prasad S.; Senay, Gabriel B.

    2007-01-01

    The history of remote sensing and development of different sensors for environmental and natural resources mapping and data acquisition is reviewed and reported. Application examples in urban studies, hydrological modeling such as land-cover and floodplain mapping, fractional vegetation cover and impervious surface area mapping, surface energy flux and micro-topography correlation studies is discussed. The review also discusses the use of remotely sensed-based rainfall and potential evapotranspiration for estimating crop water requirement satisfaction index and hence provides early warning information for growers. The review is not an exhaustive application of the remote sensing techniques rather a summary of some important applications in environmental studies and modeling.

  13. Remote Sensing Sensors and Applications in Environmental Resources Mapping and Modelling

    PubMed Central

    Melesse, Assefa M.; Weng, Qihao; S.Thenkabail, Prasad; Senay, Gabriel B.

    2007-01-01

    The history of remote sensing and development of different sensors for environmental and natural resources mapping and data acquisition is reviewed and reported. Application examples in urban studies, hydrological modeling such as land-cover and floodplain mapping, fractional vegetation cover and impervious surface area mapping, surface energy flux and micro-topography correlation studies is discussed. The review also discusses the use of remotely sensed-based rainfall and potential evapotranspiration for estimating crop water requirement satisfaction index and hence provides early warning information for growers. The review is not an exhaustive application of the remote sensing techniques rather a summary of some important applications in environmental studies and modeling.

  14. Applications of airborne remote sensing in atmospheric sciences research

    NASA Technical Reports Server (NTRS)

    Serafin, R. J.; Szejwach, G.; Phillips, B. B.

    1984-01-01

    This paper explores the potential for airborne remote sensing for atmospheric sciences research. Passive and active techniques from the microwave to visible bands are discussed. It is concluded that technology has progressed sufficiently in several areas that the time is right to develop and operate new remote sensing instruments for use by the community of atmospheric scientists as general purpose tools. Promising candidates include Doppler radar and lidar, infrared short range radiometry, and microwave radiometry.

  15. Remote sensing and GIS applications for modeling species distributions

    NASA Astrophysics Data System (ADS)

    Harris, Grant

    Habitat loss is the leading cause of species endangerment. It fragments what remains (most harmful for habitat specialists) and isolates populations (applicable to all species). The fragments, parks and other protected areas where species remain are often too small for the long-term persistence of many species. Although these effects are more pronounced in tropical forests, where most species live, the problem is so widespread that it manifests itself across suites of ecosystems and taxa. Mitigating the problems caused by habitat and population fragmentation requires more information. Specifically, we must determine which species are most extinction prone, find ways to cheaply and quickly determine priority areas for conservation, quantify the minimum areas required for species persistence, and identify the key variables needed for species presence. Here, I analyze each of these four key points, using a spectrum of species, and a variety of remote sensing and GIS techniques. For habitat specialists, exemplified by tropical forest birds, I quantify habitat loss directly. It's simply a matter of measuring the remaining forest. To model habitat generalists, such as African elephants, I incorporate habitat and other variables (water, people, greenness) that dictate their presence. For birds, I find that habitat loss affects all forest endemic species equally. Species not threatened have large remaining ranges and high abundances in their ranges. My methods also refine conservation priorities in biological hotspots. The key lies in finding where species live now, and broad-scale natural history information plus coarse-scale imagery suits this purpose. Coarse imagery is also sufficient to understand the minimum range size at which birds become threatened. Be it habitat loss directly or induced by climate change, bird ranges must be over 20,000 km2 in lowland species, and 10,000 km2 for montane birds to avoid threat. For elephants, it is water and people that predict

  16. Applications of remote sensing techniques to county land use and flood hazard mapping

    NASA Technical Reports Server (NTRS)

    Clark, R. B.; Conn, J. S.; Miller, D. A.; Mouat, D. A.

    1975-01-01

    The application of remote sensing in Arizona is discussed. Land use and flood hazard mapping completed by the Applied Remote Sensing Program is described. Areas subject to periodic flood inundation are delineated and land use maps monitoring the growth within specific counties are provided.

  17. DARLA: Data Assimilation and Remote Sensing for Littoral Applications

    NASA Astrophysics Data System (ADS)

    Jessup, A.; Holman, R. A.; Chickadel, C.; Elgar, S.; Farquharson, G.; Haller, M. C.; Kurapov, A. L.; Özkan-Haller, H. T.; Raubenheimer, B.; Thomson, J. M.

    2012-12-01

    DARLA is 5-year collaborative project that couples state-of-the-art remote sensing and in situ measurements with advanced data assimilation (DA) modeling to (a) evaluate and improve remote sensing retrieval algorithms for environmental parameters, (b) determine the extent to which remote sensing data can be used in place of in situ data in models, and (c) infer bathymetry for littoral environments by combining remotely-sensed parameters and data assimilation models. The project uses microwave, electro-optical, and infrared techniques to characterize the littoral ocean with a focus on wave and current parameters required for DA modeling. In conjunction with the RIVET (River and Inlets) Project, extensive in situ measurements provide ground truth for both the remote sensing retrieval algorithms and the DA modeling. Our goal is to use remote sensing to constrain data assimilation models of wave and circulation dynamics in a tidal inlet and surrounding beaches. We seek to improve environmental parameter estimation via remote sensing fusion, determine the success of using remote sensing data to drive DA models, and produce a dynamically consistent representation of the wave, circulation, and bathymetry fields in complex environments. The objectives are to test the following three hypotheses: 1. Environmental parameter estimation using remote sensing techniques can be significantly improved by fusion of multiple sensor products. 2. Data assimilation models can be adequately constrained (i.e., forced or guided) with environmental parameters derived from remote sensing measurements. 3. Bathymetry on open beaches, river mouths, and at tidal inlets can be inferred from a combination of remotely-sensed parameters and data assimilation models. Our approach is to conduct a series of field experiments combining remote sensing and in situ measurements to investigate signature physics and to gather data for developing and testing DA models. A preliminary experiment conducted at

  18. Application of remote sensing to state and regional problems. [for Mississippi

    NASA Technical Reports Server (NTRS)

    Miller, W. F.; Bouchillon, C. W.; Harris, J. C.; Carter, B.; Whisler, F. D.; Robinette, R.

    1974-01-01

    The primary purpose of the remote sensing applications program is for various members of the university community to participate in activities that improve the effective communication between the scientific community engaged in remote sensing research and development and the potential users of modern remote sensing technology. Activities of this program are assisting the State of Mississippi in recognizing and solving its environmental, resource and socio-economic problems through inventory, analysis, and monitoring by appropriate remote sensing systems. Objectives, accomplishments, and current status of the following individual projects are reported: (1) bark beetle project; (2) state park location planning; and (3) waste source location and stream channel geometry monitoring.

  19. Performance analysis of wireless sensor networks in geophysical sensing applications

    NASA Astrophysics Data System (ADS)

    Uligere Narasimhamurthy, Adithya

    Performance is an important criteria to consider before switching from a wired network to a wireless sensing network. Performance is especially important in geophysical sensing where the quality of the sensing system is measured by the precision of the acquired signal. Can a wireless sensing network maintain the same reliability and quality metrics that a wired system provides? Our work focuses on evaluating the wireless GeoMote sensor motes that were developed by previous computer science graduate students at Mines. Specifically, we conducted a set of experiments, namely WalkAway and Linear Array experiments, to characterize the performance of the wireless motes. The motes were also equipped with the Sticking Heartbeat Aperture Resynchronization Protocol (SHARP), a time synchronization protocol developed by a previous computer science graduate student at Mines. This protocol should automatically synchronize the mote's internal clocks and reduce time synchronization errors. We also collected passive data to evaluate the response of GeoMotes to various frequency components associated with the seismic waves. With the data collected from these experiments, we evaluated the performance of the SHARP protocol and compared the performance of our GeoMote wireless system against the industry standard wired seismograph system (Geometric-Geode). Using arrival time analysis and seismic velocity calculations, we set out to answer the following question. Can our wireless sensing system (GeoMotes) perform similarly to a traditional wired system in a realistic scenario?

  20. Application of Remote Sensing to the Chesapeake Bay Region. Volume 2: Proceedings

    NASA Technical Reports Server (NTRS)

    Chen, W. T. (Editor); Freas, G. W., Jr. (Editor); Hickman, G. D. (Editor); Pemberton, D. A. (Editor); Wilkerson, T. D. (Editor); Adler, I. (Editor); Laurie, V. J. (Editor)

    1978-01-01

    A conference was held on the application of remote sensing to the Chesapeake Bay region. Copies of the papers, resource contributions, panel discussions, and reports of the working groups are presented.

  1. A forestry application simulation of man-machine techniques for analyzing remotely sensed data

    NASA Technical Reports Server (NTRS)

    Berkebile, J.; Russell, J.; Lube, B.

    1976-01-01

    The typical steps in the analysis of remotely sensed data for a forestry applications example are simulated. The example uses numerically-oriented pattern recognition techniques and emphasizes man-machine interaction.

  2. Military reconnaissance application of high-resolution optical satellite remote sensing

    NASA Astrophysics Data System (ADS)

    Wang, Zheng-gang; Kang, Qing; Xun, Yi-jia; Shen, Zhi-qiang; Cui, Chang-bin

    2014-11-01

    As the remote sensing technology transformation from military use to civil use becomes deeper and faster, the resolution is better and better, and the relative techniques of the civil optical remote sensing satellite are richer and richer. So, modes such as civil use replacing military use, civil use covering military use, and civil use supporting military use are the real portraiture of high-resolution optical satellite remote sensing development currently. Taking the situations of the Taiwan authorities buying commercial remote sensing image to military reconnaissance, and the so-called military establishments exposed by media using satellite image as an example, the military reconnaissance application of civil high-resolution optical satellite remote sensing is discussed. Then, the actuality and reasons of huge measure engineering and ruled configuring, environment and signs of military area, equipment and exercitation establishments and three-dimension information of engineering and equipment which can be detected easily by remote sensing are analyzed.

  3. AmericaView - A State-Based Remote Sensing Initiative Integrating Remote Sensing Data Into Geospatial Education and Applications

    NASA Astrophysics Data System (ADS)

    Dodge, R. L.; Lawrence, R.

    2007-12-01

    AmericaView (AV) is a national program created to advance the availability, timely distribution, and widespread use of land remote sensing data, especially among users within the university and government communities. Since the 1970s the federal government and private sector have spent billions of dollars on satellite-based earth observing systems, but distribution of data and development of real-world applications have been tough issues for the government and the academic research communities. It has often been hard for researchers to use or even access the data, particularly at smaller schools or research facilities, hindering applied research and current and future workforce development. Many state and local agencies working with applied research programs have not been able to effectively integrate remote sensing data into their geospatial management or decision-support programs. AV addresses these issues through a partnership between the U.S. Geological Survey and the AmericaView Consortium, which is a 501c3 non-profit comprised of university-led, state-based consortia. AmericaView is the federal government's partner in achieving the program vision and goals, which focus both on making data available in usable, cost-effective formats and on helping the university, secondary-education, and public sectors in each state identify, develop, and implement the kinds of remote sensing applications each state needs most. AV is developing applied remote sensing research programs in each of its thirty StateViews. Partner academic institutions are creating internships programs involving students and faculty with applications development, in cooperation with local, state, and federal government agencies. Education and training outreach programs are improving workforce preparation at K-12, post-secondary, and professional levels. Data distribution and sharing infrastructure that leverages funding and avoids duplication is enabling practical archive expansion and distribution

  4. Resource analysis applications in Michigan. [NASA remote sensing

    NASA Technical Reports Server (NTRS)

    Schar, S. W.; Enslin, W. R.; Sattinger, I. J.; Robinson, J. G.; Hosford, K. R.; Fellows, R. S.; Raad, J. H.

    1974-01-01

    During the past two years, available NASA imagery has been applied to a broad spectrum of problems of concern to Michigan-based agencies. These demonstrations include the testing of remote sensing for the purposes of (1) highway corridor planning and impact assessments, (2) game management-area information bases, (3) multi-agency river basin planning, (4) timber resource management information systems, (5) agricultural land reservation policies, and (6) shoreline flooding damage assessment. In addition, cost accounting procedures have been developed for evaluating the relative costs of utilizing remote sensing in land cover and land use analysis data collection procedures.

  5. Computational Imaging, Sensing and Diagnostics for Global Health Applications

    PubMed Central

    Coskun, Ahmet F.; Ozcan, Aydogan

    2013-01-01

    In this Review, we summarize some of the recent work in emerging computational imaging, sensing and diagnostics techniques, along with some of the complementary non-computational modalities that can potentially transform the delivery of health care globally. As computational resources are becoming more and more powerful, while also getting cheaper and more widely available, traditional imaging, sensing and diagnostic tools will continue to experience a revolution through simplification of their designs, making them compact, light-weight, cost-effective, and yet quite powerful in terms of their performance when compared to their bench-top counterparts. PMID:24484875

  6. Applications of Microwaves to Remote Sensing of Terrain

    NASA Technical Reports Server (NTRS)

    Porter, R. A.

    1975-01-01

    A survey and study was conducted to define the role that microwaves may play in the measurement of a variety of terrain-related parameters. The survey consisted of discussions with many users and researchers in the field of remote sensing. In addition, a survey questionnaire was prepared and replies were solicited from these and other users and researchers. The results of the survey, and associated bibliography, were studied and conclusions were drawn as to the usefulness of radiometric systems for remote sensing of terrain.

  7. [Development and application of quantum cascade laser based gas sensing system].

    PubMed

    Wen, Zhi-yu; Wang, Ling-fang; Chen, Gang

    2010-08-01

    Quantum cascade laser (QCL) is an ideal mid-infrared source for gas sensing in the wavelength range from 2.5 to 25 microm, due to its fast response, high sensitivity and selectivity for gas detecting. Prototypes of gas sensing system based on QCL have been developed by worldwide research groups. They have great potential in many applications, such as environment monitoring, space exploration, anti-terrorism and so on. The present paper gives a broad review of QCL gas sensing system, including the basic working principle, existing systems, and its application and future development.

  8. Gas sensing using porous materials for automotive applications.

    PubMed

    Wales, Dominic J; Grand, Julien; Ting, Valeska P; Burke, Richard D; Edler, Karen J; Bowen, Chris R; Mintova, Svetlana; Burrows, Andrew D

    2015-07-01

    Improvements in the efficiency of combustion within a vehicle can lead to reductions in the emission of harmful pollutants and increased fuel efficiency. Gas sensors have a role to play in this process, since they can provide real time feedback to vehicular fuel and emissions management systems as well as reducing the discrepancy between emissions observed in factory tests and 'real world' scenarios. In this review we survey the current state-of-the-art in using porous materials for sensing the gases relevant to automotive emissions. Two broad classes of porous material - zeolites and metal-organic frameworks (MOFs) - are introduced, and their potential for gas sensing is discussed. The adsorptive, spectroscopic and electronic techniques for sensing gases using porous materials are summarised. Examples of the use of zeolites and MOFs in the sensing of water vapour, oxygen, NOx, carbon monoxide and carbon dioxide, hydrocarbons and volatile organic compounds, ammonia, hydrogen sulfide, sulfur dioxide and hydrogen are then detailed. Both types of porous material (zeolites and MOFs) reveal great promise for the fabrication of sensors for exhaust gases and vapours due to high selectivity and sensitivity. The size and shape selectivity of the zeolite and MOF materials are controlled by variation of pore dimensions, chemical composition (hydrophilicity/hydrophobicity), crystal size and orientation, thus enabling detection and differentiation between different gases and vapours. PMID:25982991

  9. Applications of Remote Sensing to Alien Invasive Plant Studies

    PubMed Central

    Huang, Cho-ying; Asner, Gregory P.

    2009-01-01

    Biological invasions can affect ecosystems across a wide spectrum of bioclimatic conditions. Therefore, it is often important to systematically monitor the spread of species over a broad region. Remote sensing has been an important tool for large-scale ecological studies in the past three decades, but it was not commonly used to study alien invasive plants until the mid 1990s. We synthesize previous research efforts on remote sensing of invasive plants from spatial, temporal and spectral perspectives. We also highlight a recently developed state-of-the-art image fusion technique that integrates passive and active energies concurrently collected by an imaging spectrometer and a scanning-waveform light detection and ranging (LiDAR) system, respectively. This approach provides a means to detect the structure and functional properties of invasive plants of different canopy levels. Finally, we summarize regional studies of biological invasions using remote sensing, discuss the limitations of remote sensing approaches, and highlight current research needs and future directions. PMID:22408558

  10. Gas sensing using porous materials for automotive applications.

    PubMed

    Wales, Dominic J; Grand, Julien; Ting, Valeska P; Burke, Richard D; Edler, Karen J; Bowen, Chris R; Mintova, Svetlana; Burrows, Andrew D

    2015-07-01

    Improvements in the efficiency of combustion within a vehicle can lead to reductions in the emission of harmful pollutants and increased fuel efficiency. Gas sensors have a role to play in this process, since they can provide real time feedback to vehicular fuel and emissions management systems as well as reducing the discrepancy between emissions observed in factory tests and 'real world' scenarios. In this review we survey the current state-of-the-art in using porous materials for sensing the gases relevant to automotive emissions. Two broad classes of porous material - zeolites and metal-organic frameworks (MOFs) - are introduced, and their potential for gas sensing is discussed. The adsorptive, spectroscopic and electronic techniques for sensing gases using porous materials are summarised. Examples of the use of zeolites and MOFs in the sensing of water vapour, oxygen, NOx, carbon monoxide and carbon dioxide, hydrocarbons and volatile organic compounds, ammonia, hydrogen sulfide, sulfur dioxide and hydrogen are then detailed. Both types of porous material (zeolites and MOFs) reveal great promise for the fabrication of sensors for exhaust gases and vapours due to high selectivity and sensitivity. The size and shape selectivity of the zeolite and MOF materials are controlled by variation of pore dimensions, chemical composition (hydrophilicity/hydrophobicity), crystal size and orientation, thus enabling detection and differentiation between different gases and vapours.

  11. Applications of remote sensing to alien invasive plant studies.

    PubMed

    Huang, Cho-Ying; Asner, Gregory P

    2009-01-01

    Biological invasions can affect ecosystems across a wide spectrum of bioclimatic conditions. Therefore, it is often important to systematically monitor the spread of species over a broad region. Remote sensing has been an important tool for large-scale ecological studies in the past three decades, but it was not commonly used to study alien invasive plants until the mid 1990s. We synthesize previous research efforts on remote sensing of invasive plants from spatial, temporal and spectral perspectives. We also highlight a recently developed state-of-the-art image fusion technique that integrates passive and active energies concurrently collected by an imaging spectrometer and a scanning-waveform light detection and ranging (LiDAR) system, respectively. This approach provides a means to detect the structure and functional properties of invasive plants of different canopy levels. Finally, we summarize regional studies of biological invasions using remote sensing, discuss the limitations of remote sensing approaches, and highlight current research needs and future directions. PMID:22408558

  12. Perspectives in remote sensing in Brazil. An approach of the remote sensing applications to Earth resources surveys

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Novaes, R. A.

    1982-01-01

    Since the systematic use of earth surface data collection by orbital sensor systems started in 1972 with the launching of the North American LANDSAT satellite, a great effort has been made to assimilate, develop and transfer remote sensing technology (data acquisition and analysis) in its many applications in Brazil. The availability of sensor systems and existing data is considered approached, as well as those which will soon be available to the Brazilian researchers. The new systems of the LANDSAT-4, of the Columbia space shuttle and of the French satellites of the SPOT series are discussed. Some characteristics of the sensor system for the first Brazilian remote sensing satellite, to be launched by the end of the decade, are presented. Some LANDSAT-4 and SPOT simulation products are shown, emphasizing how the data obtained by these new satellites can be applied.

  13. Inland and coastal water environment remote sensing monitoring system: rapid construction and application

    NASA Astrophysics Data System (ADS)

    Xu, Hua; Gu, Xingfa; Yin, Qiu; Li, Li; Chen, Qiang; Ren, Yuhuan; Chen, Hong; Liu, Xudong; Zhang, Juan

    2009-10-01

    This paper aims at bridging the gap between the academic research and practical application in water environment monitoring by remote sensing. It mainly focuses on how to rapidly construct the Inland and coastal Water Environment Remote Sensing Monitoring System (IWERSMS) in a software perspective. In this paper, the remote sensed data processing framework, dataflow and product levels are designed based on the retrieval algorithms of water quality parameters. The prototype is four-tier architecture and modules are designed elaborately. The paper subsequently analyzes the strategy and key technology of conglutinating hybrid components, adopting semantic metafiles and tiling image during rapid construction of prototype. Finally, the paper introduces the successful application to 2008 Qingdao enteromorpha prolifra disaster emergency monitoring in Olympics Sailing Match fields. The solution can also fit other domains in remote sensing and especially it provides a clue for researchers who are in an attempt to establish a prototype to apply research fruits to practical applications.

  14. [Application and prospect of multi-spectral remote sensing in major natural disaster assessment].

    PubMed

    Wang, Fu-tao; Wang, Shi-xin; Zhou, Yi; Wang, Li-tao; Yan, Fu-li

    2011-03-01

    After the occurrence of major natural disasters, it is of great significance that disaster states are assessed timely and accurately for decision-making departments to draw up effective response programs. Multi-spectral remote sensing has a great advantage and potential in disaster assessment, with the characteristics of a wide range of data acquisition, high speed, etc. In several major natural disaster assessments in China, multi-spectral remote sensing technology has played an important role. Firstly, the present paper takes earthquake disasters, floods disasters and drought disasters as examples to summarize the specific applications of major natural disaster assessment based on the multi-spectral remote sensing. Secondly, in these specific applications they suffer from both relative shortage of data sources and limited breadth and depth of application; both of these problems are analyzed. Finally, the future development direction of major natural disaster assessment based on the multi-spectral remote sensing, such as the expansion of multi-spectral remote sensing data acquisition means, the establishment of major natural disasters assessment index system based on remote sensing, and the improvement of the assessment technology system based on multi-spectral remote sensing are also discussed.

  15. Solid State Laser Technology Development for Atmospheric Sensing Applications

    NASA Technical Reports Server (NTRS)

    Barnes, James C.

    1998-01-01

    NASA atmospheric scientists are currently planning active remote sensing missions that will enable global monitoring of atmospheric ozone, water vapor, aerosols and clouds as well as global wind velocity. The measurements of these elements and parameters are important because of the effects they have on climate change, atmospheric chemistry and dynamics, atmospheric transport and, in general, the health of the planet. NASA will make use of Differential Absorption Lidar (DIAL) and backscatter lidar techniques for active remote sensing of molecular constituents and atmospheric phenomena from advanced high-altitude aircraft and space platforms. This paper provides an overview of NASA Langley Research Center's (LaRC's) development of advanced solid state lasers, harmonic generators, and wave mixing techniques aimed at providing the broad range of wavelengths necessary to meet measurement goals of NASA's Earth Science Enterprise.

  16. Application of remote sensing to estimating soil erosion potential

    NASA Technical Reports Server (NTRS)

    Morris-Jones, D. R.; Kiefer, R. W.

    1980-01-01

    A variety of remote sensing data sources and interpretation techniques has been tested in a 6136 hectare watershed with agricultural, forest and urban land cover to determine the relative utility of alternative aerial photographic data sources for gathering the desired land use/land cover data. The principal photographic data sources are high altitude 9 x 9 inch color infrared photos at 1:120,000 and 1:60,000 and multi-date medium altitude color and color infrared photos at 1:60,000. Principal data for estimating soil erosion potential include precipitation, soil, slope, crop, crop practice, and land use/land cover data derived from topographic maps, soil maps, and remote sensing. A computer-based geographic information system organized on a one-hectare grid cell basis is used to store and quantify the information collected using different data sources and interpretation techniques. Research results are compared with traditional Universal Soil Loss Equation field survey methods.

  17. Remote Sensing Applications to the Pennsylvania Abandoned Mine Reclamation Program

    NASA Technical Reports Server (NTRS)

    Clemens, E.; Warnick, L.

    1982-01-01

    Pennsylvania Abandoned Mine Land Inventory demonstrated the effective use of remote sensing techniques within the context of the Surface Mining Control and Reclamation Act of 1977. The inventory combined data from field work, a literature search, and photointerpretation to fulfill both State and Federal requirements. A primary project objective was to accurately identify and map all surface features and disturbances from abandoned surface and underground mining. Black-and-white aerial photographs were used to record pits, contour benches, highwalls, spoil material, graded and recontoured areas, impounded water, and serious erosion and slide prone areas. In addition, vegetation cover estimates and surrounding land uses were noted. The inventory data base provides Pennsylvania with a valuable resource management tool that should be systematically updated. The utilization of remotely sensed data from SPOT or LANDSAT-D satellites may prove valuable in the anticipated updating and monitoring of the Pennsylvania AML inventory over the next several years.

  18. Application of air remote sensing in investigation of engineering environment

    SciTech Connect

    Kejie, L.

    1996-11-01

    Engineering environment is a research field with broad scope in which air remote sensing can play an important role. Longtan Reservoir is located in a mountainous region with high ridges and deep canyons. Air remote sensing technique was used to evaluate engineering environment of the reservoir area. Various types of land use were interpreted and mapped on a scale of 1:10000 by using infrared color orthophoto, and selecting training samples, meanwhile types and dimensions of slumps and landslides were recognized and measured within the reservoir area. Furthermore an evaluation and regionalization of slope stability of reservoir bank were carried out. Finally a precision over 90% was given for the results of this investigation by field sampling checking. 3 refs., 1 fig., 2 tabs.

  19. Remote sensing applications to Missouri environmental resources information system

    NASA Technical Reports Server (NTRS)

    Myers, R. E.

    1977-01-01

    An efficient system for retrieval of remotely sensed data to be used by natural resources oriented agencies, and a natural resources data system that can meet the needs of state agencies were studied. To accomplish these objectives, natural resources data sources were identified, and study of systems already in operation which address themselves to the more efficient utilization of natural resources oriented data was prepared.

  20. Magneto-photonic crystals for optical sensing applications

    NASA Astrophysics Data System (ADS)

    Dissanayake, Neluka

    Among the optical structures investigated for optical sensing purpose, a significant amount of research has been conducted on photonic crystal based sensors. A particular advantage of photonic crystal based sensors is that they show superior sensitivity for ultra-small volume sensing. In this study we investigate polarization changes in response to the changes in the cover index of magneto-optic active photonic band gap structures. One-dimensional photonic-band gap structures fabricated on iron garnet materials yield large polarization rotations at the band gap edges. The enhanced polarization effects serve as an excellent tool for chemical sensing showing high degree of sensitivity for photonic crystal cover refractive index changes. The one dimensional waveguide photonic crystals are fabricated on single-layer bismuth-substituted rare earth iron garnet films ((Bi, Y, Lu)3(Fe, Ga)5O12 ) grown by liquid phase epitaxy on gadolinium gallium garnet substrates. Band gaps have been observed where Bragg scattering conditions links forward-going fundamental waveguide modes to backscattered high-order waveguide modes. Large near-band-edge polarization rotations which increase progressively with backscattered-mode order have been experimentally demonstrated for multiple samples with different composition, film thickness and fabrication parameters. Experimental findings are supported by theoretical analysis of Bloch modes polarization states showing that large near stop-band edge rotations are induced by the magneto-photonic crystal. Theoretical and experimental analysis conducted on polarization rotation sensitivity to waveguide photonic crystal cover refractive index changes shows a monotonic enhancement of the rotation with cover index. The sensor is further developed for selective chemical sensing by employing Polypyrrole as the photonic crystal cover layer. Polypyrrole is one of the extensively studied conducting polymers for selective analyte detection. Successful

  1. Application of radar remote sensing in landslide geohazard risk assessment

    NASA Astrophysics Data System (ADS)

    Xue, Dongjian; He, Zhengwei; Hu, Deyong

    2011-10-01

    It is the difficulties to radar image interpretation, present remote sensing investigation and assessment of geohazard is mainly dependent on the high-resolution optical images, resulting in limited ability to extract surface information. The main advantage of radar is that it provides superior penetration capability under any type of weather condition, and can be used in the day or night time, rich image information and so on for the risk assessment of landslide, especially in geohazard emergency; optical image cannot match this advantage. The use of the "5.12" earthquake-induced landslide hazard for the research prototype, elaborate unique advantages and technical support role of remote sensing technology in landslide investigation and risk assessment, from the basic terrain data acquisition, disaster background analysis, interpretation of landslide hazard, monitoring, mapping, etc. Use of airborne and satellite radar remote sensing and Multi-source data to composite analysis of hazard information, indicates that the better interpretation effect by field investigation. The research results of this paper have great reference value to emergency disaster prevention and reduction of occurred frequent and dangerous geohazard.

  2. A stochastic atmospheric model for remote sensing applications

    NASA Technical Reports Server (NTRS)

    Turner, R. E.

    1983-01-01

    There are many factors which reduce the accuracy of classification of objects in the satellite remote sensing of Earth's surface. One important factor is the variability in the scattering and absorptive properties of the atmospheric components such as particulates and the variable gases. For multispectral remote sensing of the Earth's surface in the visible and infrared parts of the spectrum the atmospheric particulates are a major source of variability in the received signal. It is difficult to design a sensor which will determine the unknown atmospheric components by remote sensing methods, at least to the accuracy needed for multispectral classification. The problem of spatial and temporal variations in the atmospheric quantities which can affect the measured radiances are examined. A method based upon the stochastic nature of the atmospheric components was developed, and, using actual data the statistical parameters needed for inclusion into a radiometric model was generated. Methods are then described for an improved correction of radiances. These algorithms will then result in a more accurate and consistent classification procedure.

  3. Finite element analysis of (SA) mechanoreceptors in tactile sensing application

    NASA Astrophysics Data System (ADS)

    N, Syamimi; Yahud, S.

    2015-05-01

    This paper addresses the structural design of a fingertip model in order to analyse the sensory function of slow adapting (SA) mechanoreceptors by using the finite element analysis (FEA) method. A biologically inspired tactile sensor was designed to mimic a similar response of the human mechanoreceptors in the human glabrous skin. The simulation work was done by using COMSOL Multiphysics. The artificial skin was modelled as a solid square block of silicone elastomer with a semi cylinder protrusion on top. It was modelled as a nearly incompressible and linear hyperelastic material defined by Neo Hookean constitutive law. The sensing element on the other hand was modelled by using constantan alloy mimicking the SA1 receptor. Boundary loads of 1 N/m² to 4 N/m² with the increment of 1 N/m² were applied to the top surface of the protrusion in z and x-direction for normal and shear stress, respectively. The epidermal model base was constrained to maintain the same boundary conditions throughout all simulations. The changes of length experienced by the sensing element were calculated. The simulations result in terms of strain was identified. The simulated result was plotted in terms of sensing element strain against the boundary load and the graph should produce a linear response.

  4. Application of nano-structured conducting polymers to humidity sensing

    NASA Astrophysics Data System (ADS)

    Park, Pilyeon

    Nanostructures, such as nanowires, nanocolumns, and nanotubes, have attracted a lot of attention because of their huge potential impact on a variety of applications. For sensor applications, nanostructures provide high surface area to volume ratios. The high surface area to volume ratio allows more reaction areas between target species and detection materials and also improves the detection sensitivity and response time. The main goal of this research was to exploit the advantages and develop innovative methods to accomplish the synthesis of nanowires and nano-coulmn conducting polymers used in humidity detection. To accomplish this, two fabrication methods are used. The first one utilizes the geometric confinement effect of a temporary nanochannel template to orient, precisely position, and assemble Polyaniline (PANI) nanowires as they are synthesized. The other approach is to simply spin-coat a polymer onto a substrate, and then oxygen plasma etch to generate a nano-columned Polyethylenedioxythiophene (PEDOT) thin film. 200 nm silicon oxide coated wafers with embedded platinum electrodes are used as a substrate for both fabrication methods. The biggest advantage of this first method is that it is simple, requires a single-step, i.e., synthesizing and positioning procedures are carried out simultaneously. The second method is potentially manufacturable and economic yet environmentally safe. These two methods do not produce extra nano-building materials to discard or create a health hazard. Both PANI nanowires and nano-columned PEDOT films have been tested for humidity detection using a system designed and built for this research to monitor response (current changes) to moisture, To explain the surface to volume ratio effect, 200 nm PANI nanowires and 10 microm PANI wires were directly compared for detecting moisture, and it was shown that the PANI nanowire had a better sensitivity. It was found difficult to monitor the behaviors of the PEDOT reaction to varying

  5. Using NASA Using Remote Sensing in Public Health Applications

    NASA Technical Reports Server (NTRS)

    Estes, Sue; Haynes, John

    2011-01-01

    The Public Health application area focuses on Earth science applications to public health and safety, particularly regarding infectious disease, emergency preparedness and response, and environmental health issues. The application explores issues of toxic and pathogenic exposure, as well as natural and man-made hazards and their effects, for risk characterization/mitigation and improvements to health and safety.

  6. Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy

    PubMed Central

    Leahy-Hoppa, Megan R.; Miragliotta, Joseph; Osiander, Robert; Burnett, Jennifer; Dikmelik, Yamac; McEnnis, Caroline; Spicer, James B.

    2010-01-01

    Ultrafast pulsed lasers find application in a range of spectroscopy and sensing techniques including laser induced breakdown spectroscopy (LIBS), coherent Raman spectroscopy, and terahertz (THz) spectroscopy. Whether based on absorption or emission processes, the characteristics of these techniques are heavily influenced by the use of ultrafast pulses in the signal generation process. Depending on the energy of the pulses used, the essential laser interaction process can primarily involve lattice vibrations, molecular rotations, or a combination of excited states produced by laser heating. While some of these techniques are currently confined to sensing at close ranges, others can be implemented for remote spectroscopic sensing owing principally to the laser pulse duration. We present a review of ultrafast laser-based spectroscopy techniques and discuss the use of these techniques to current and potential chemical and environmental sensing applications. PMID:22399883

  7. Parallel processing of remotely sensed data: Application to the ATSR-2 instrument

    NASA Astrophysics Data System (ADS)

    Simpson, J.; McIntire, T.; Berg, J.; Tsou, Y.

    2007-01-01

    Massively parallel computational paradigms can mitigate many issues associated with the analysis of large and complex remotely sensed data sets. Recently, the Beowulf cluster has emerged as the most attractive, massively parallel architecture due to its low cost and high performance. Whereas most Beowulf designs have emphasized numerical modeling applications, the Parallel Image Processing Environment (PIPE) specifically addresses the unique requirements of remote sensing applications. Automated, parallelization of user-defined analyses is fully supported. A neural network application, applied to Along Track Scanning Radiometer-2 (ATSR-2) data shows the advantages and performance characteristics of PIPE.

  8. All-metal meta-surfaces for narrowband light absorption and high performance sensing

    NASA Astrophysics Data System (ADS)

    Liu, Zhengqi; Liu, Guiqiang; Fu, Guolan; Liu, Xiaoshan; Huang, Zhenping; Gu, Gang

    2016-11-01

    We report an experimental scheme for high performance sensing by an all-metal meta-surface (AMMS) platform. A dual-band resonant absorption spectrum with a bandwidth down to a single-digit nanometer level and an absorbance up to 89% is achieved due to the surface lattice resonances supported by the resonators array and their hybridization coupling with the particle plasmon resonances. The sensing application in the analysis of the sodium chloride solution has been demonstrated, where remarkable changes from a spectral ‘dark state’ to ‘bright state’ and vice versa are observed. Sensing performance factors of the figure of merit exceeding 50 and the spectral intensity change related FoM* up to 1075 are simultaneously achieved. The corresponding detection limit is as low as 8.849  ×  10‑6 RIU. These features make such an AMMS-based sensor a promising route for efficient bio-chemical sensing, etc.

  9. Nanostructured Materials in Different Dimensions for Sensing Applications

    NASA Astrophysics Data System (ADS)

    Morgen, Per; Drews, J.; Dhiman, Rajnish; Nielsen, Peter

    Future sensing elements should be more specific, more sensitive, more reversible, and faster than today's elements. These future sensing devices will either be integrated with suitable signal detection circuitry, typically based on Si microelectronics, or with optical signal detection, and finally interfaced to relevant state-of-the-art signal recognition hard- and software. Some of the more critical uses of sensors are in the dynamic surveillance of system parameters in complex machinery or in biological systems, such as our own bodies. Most of these demands are likely to be met by the continued rapid development of functional nanomaterials including bio-nanomaterials and biocompatible nanomaterials. A strong and increasing trend, also clear at this NATO-ASI, is the focus on using Au-dots deposited on various substrates for optical field enhancements and for other synergistic effects on electronic properties such as sheet conductivity, when deposited on polymer films or on metal oxide surfaces. Gas sensing with metal oxide surfaces is another very active area of development, where the high surface to volume ratio of thin films or nano-crystalline objects are in focus. In this report we demonstrate examples of the processing of silicon surfaces, aluminum surfaces and wooden saw dust powders to create nanostructured materials with interesting functional properties in novel types of self-limiting and self-organizing growths of one-, two- and three dimensional nano-template (i.e. nano-building block) systems, with a range of functionalities, as-formed, or after further integration. However, the focus in this report is on the growth processes and further treatments, as these are relatively new, and thus not widely known, but highly relevant for the functional properties of the resulting nanostructures, and for integration of the structures with silicon or in more complex systems.

  10. Commodity Cluster Computing for Remote Sensing Applications using Red Hat LINUX

    NASA Technical Reports Server (NTRS)

    Dorband, John

    2003-01-01

    Since 1994, we have been doing research at Goddard Space Flight Center on implementing a wide variety of applications on commodity based computing clusters. This talk is about these clusters and haw they are used on these applications including ones for remote sensing.

  11. Rangeland remote sensing applications with unmanned aerial systems (UAS) in the national airspace: challenges and experiences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, civilian applications of unmanned aerial systems (UAS) have increased considerably due to their greater availability and the miniaturization of sensors, GPS, inertial measurement units, and other hardware. UAS are well suited for rangeland remote sensing applications, because of the...

  12. Unmanned aircraft missions for rangeland remote sensing applications in the US National Airspace

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, civilian applications of unmanned aerial systems (UAS) have increased considerably due to their greater availability and the miniaturization of sensors, GPS, inertial measurement units, and other hardware. UAS are well suited for rangeland remote sensing applications, because of the...

  13. Applications of Earth Remote Sensing in Response to Meteorological Disasters

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Bell, Jordan R.; Schultz, Lori A.; Burks, Jason E.; McGrath, Kevin M.; Jedlovec, Gary J.

    2013-01-01

    NASA's Short-­-term Predic1on Research and Transi1on (SPoRT) Center supports the transi1on of unique NASA and NOAA research activities to the operational weather forecasing community. Our primary partners are NOAA's National Weather Service, their Weather Forecast Offices (WFOs), and National Centers. These organizations predict natural hazards and also assist in the disaster assessment process, benefiting from remotely sensed data. In 2013, SPoRT continued to transition high resolution satellite imagery, derived products, and value-­-added analysis to WFO partners and NASA's Applied Sciences Program.

  14. Wireless Structural Sensing for Health Monitoring and Control Applications

    NASA Astrophysics Data System (ADS)

    Lynch, J. P.

    2003-12-01

    The economic and societal impact of civil structures under-performing during large earthquakes can be significant. While in recent years the structural engineering community has made great strides in advancing knowledge of structural behavior under extreme loads, a need still exists for the rapid assessment of structural performance during seismic events. Numerous options are commercially available to facility owners who wish to install a structural monitoring system within their structures. However, these structural monitoring systems are defined by their use of coaxial cables for the transfer of response measurements from sensors to centralized data servers. The installation and maintenance of cables within a civil structure often drive system costs high thereby preventing widespread industry adoption. In response to these limitations, the integration of information technologies such as wireless communications and microcontrollers have been explored for the creation of alternative structural monitoring systems defined by low installation costs and decentralized computational frameworks. In particular, a novel wireless structural monitoring system assembled from a dense network of inexpensive wireless sensing units has been designed and fabricated. The wireless sensing unit architecture consists of three functional components: a data acquisition interface for the collection of data from attached sensors, a computational core for data interrogation, and a wireless communication channel for the transfer of data to the sensor network. The use of wireless modems drastically reduces the efforts and costs of system installations rendering the technology attractive for widespread adoption in a broad class of civil structures. A second innovation of the system is the inclusion of computational power within each wireless sensing unit allowing for local execution of embedded engineering analyses. In particular, analyses for the detection of damage in structures (structural

  15. Remote sensing applications to resource problems in South Dakota

    NASA Technical Reports Server (NTRS)

    Myers, V. I. (Principal Investigator); Best, R. G.; Dalsted, K. J.; Devries, M. E.; Eidenshink, J. C.; Fowler, R.; Heilman, J.; Schmer, F. A.

    1980-01-01

    Cooperative projects between RSI and numerous South Dakota agencies have provided a means of incorporating remote sensing techniques into operational programs. Eight projects discussed in detail are: (1) detection of high moisture zones near interstate 90; (2) thermal infrared census of Canada geese in South Dakota; (3) dutch elm disease detection in urban environment; (4) a feasibility study for monitoring effective precipitation in South Dakota using TIROS-N; (5) open and abandoned dump sites in Spink county; (6) the influence of soil reflectance on LANDSAT signatures of crops; (7) A model implementation program for Lake Herman watershed; and (8) the Six-Mile Creek investigation follow-on.

  16. Remote sensing applications in marine science programs at VIMS

    NASA Technical Reports Server (NTRS)

    Gordon, H. H.; Penney, M. E.; Byrne, R. J.

    1974-01-01

    Scientists at the Virginia Institute of Marine Science (VIMS) utilized remote sensing in three programs: (1) tonal variations in imagery of wetlands; (2) use of the thermal infrared to delineate the discharge cooling water at the Virginia Electric and Power Company (VEPCO) nuclear power station on the James River; and (3) the use of aerial photography to determine the volume storage function for water in the marsh-bay complex fed by Wachapreague Inlet on the Eastern Shore of Virginia. Details of the investigations are given, along with significant results.

  17. The application of remote sensing techniques: Technical and methodological issues

    NASA Technical Reports Server (NTRS)

    Polcyn, F. C.; Wagner, T. W.

    1974-01-01

    Capabilities and limitations of modern imaging electromagnetic sensor systems are outlined, and the products of such systems are compared with those of the traditional aerial photographic system. Focus is given to the interface between the rapidly developing remote sensing technology and the information needs of operational agencies, and communication gaps are shown to retard early adoption of the technology by these agencies. An assessment is made of the current status of imaging remote sensors and their potential for the future. Public sources of remote sensor data and several cost comparisons are included.

  18. The application of remote sensing to resource management and environmental quality programs in Kansas

    NASA Technical Reports Server (NTRS)

    Barr, B. G.; Martinko, E. A.

    1976-01-01

    Activities of the Kansas Applied Remote Sensing Program (KARS) designed to establish interactions on cooperative projects with decision makers in Kansas agencies in the development and application of remote sensing procedures are reported. Cooperative demonstration projects undertaken with several different agencies involved three principal areas of effort: Wildlife Habitat and Environmental Analysis; Urban and Regional Analysis; Agricultural and Rural Analysis. These projects were designed to concentrate remote sensing concepts and methodologies on existing agency problems to insure the continued relevancy of the program and maximize the possibility for immediate operational use. Completed projects are briefly discussed.

  19. Investigation of the application of remote sensing technology to environmental monitoring

    NASA Technical Reports Server (NTRS)

    Rader, M. L. (Principal Investigator)

    1980-01-01

    Activities and results are reported of a project to investigate the application of remote sensing technology developed for the LACIE, AgRISTARS, Forestry and other NASA remote sensing projects for the environmental monitoring of strip mining, industrial pollution, and acid rain. Following a remote sensing workshop for EPA personnel, the EOD clustering algorithm CLASSY was selected for evaluation by EPA as a possible candidate technology. LANDSAT data acquired for a North Dakota test sight was clustered in order to compare CLASSY with other algorithms.

  20. New trends and applications of optical fiber sensing technologies at the NEL-FOST

    NASA Astrophysics Data System (ADS)

    Yang, Minghong; Huang, Chujia; Yuan, Yinquan; Ding, Liyun; Zhou, Ciming

    2015-07-01

    This paper reviews the recent development of optical fiber sensors at the National Engineering Laboratory for Optic Fiber Sensing Technologies (NEL-FOST) at Wuhan University of Technology. Integration of optical fiber with sensitive thin films will new possibilities for industry application, such as optical fiber hydrogen sensors based on Pt-doped WO3 coatings, fiber humidity sensors with porous oxide coating and high-temperature sapphire fiber sensors based on multilayer coating on fiber tip. Ultra-weak FBG array with thousand of FBGs with on-line draw tower technology will enable FBG sensing network with large capacity, also improved sensing performance and mechanical stability.

  1. The application of remote sensing techniques to inter and intra urban analysis

    NASA Technical Reports Server (NTRS)

    Horton, F. E.

    1972-01-01

    This is an effort to assess the applicability of air and spaceborne photography toward providing data inputs to urban and regional planning, management, and research. Through evaluation of remote sensing inputs to urban change detection systems, analyzing an effort to replicate an existing urban land use data file using remotely sensed data, estimating population and dwelling units from imagery, and by identifying and evaluating a system of urban places ultilizing space photography, it was determined that remote sensing can provide data concerning land use, changes in commercial structure, data for transportation planning, housing quality, residential dynamics, and population density.

  2. Zinc oxide doped graphene oxide films for gas sensing applications

    NASA Astrophysics Data System (ADS)

    Chetna, Kumar, Shani; Garg, A.; Chowdhuri, A.; Dhingra, V.; Chaudhary, S.; Kapoor, A.

    2016-05-01

    Graphene Oxide (GO) is analogous to graphene, but presence of many functional groups makes its physical and chemical properties essentially different from those of graphene. GO is found to be a promising material for low cost fabrication of highly versatile and environment friendly gas sensors. Selectivity, reversibility and sensitivity of GO based gas sensor have been improved by hybridization with Zinc Oxide nanoparticles. The device is fabricated by spin coating of deionized water dispersed GO flakes (synthesized using traditional hummer's method) doped with Zinc Oxide on standard glass substrate. Since GO is an insulator and functional groups on GO nanosheets play vital role in adsorbing gas molecules, it is being used as an adsorber. Additionally, on being exposed to certain gases the electric and optical characteristics of GO material exhibit an alteration in behavior. For the conductivity, we use Zinc Oxide, as it displays a high sensitivity towards conduction. The effects of the compositions, structural defects and morphologies of graphene based sensing layers and the configurations of sensing devices on the performances of gas sensors were investigated by Raman Spectroscopy, X-ray diffraction(XRD) and Keithley Sourcemeter.

  3. Applications of remote-sensing data in Alaska

    NASA Technical Reports Server (NTRS)

    Miller, J. M. (Principal Investigator)

    1977-01-01

    Public and private agencies were introduced to the use of remotely sensed data obtained by both satellite and aircraft, and benefitted from facilities for data processing enhancement and interpretation as well as from the institute's data library. Cooperative ventures involving the performance of operational activities included assistance to the Bureau of Land Management in the suppression of wildfires; the selection of sites for power line right-of-way; the mapping of leads in sea ice; determination of portions of public lands to be allocated for small scale farming; the identification of areas for large scale farming of barley; the observation of coastal processes and sediment transport near Prudhoe Bay; the establishment of a colar infrared file of the entire state; and photomapping for geological surveys. Monitoring of the outer continental shelf environment and reindeer herds was also conducted. Institutional constraints to full utilization of satellite remote sensing in the state are explored and plans for future activites include the generation of awareness by government agencies, the training of state personnel, and improving coordination and communication with users.

  4. Remote sensing image denoising application by generalized morphological component analysis

    NASA Astrophysics Data System (ADS)

    Yu, Chong; Chen, Xiong

    2014-12-01

    In this paper, we introduced a remote sensing image denoising method based on generalized morphological component analysis (GMCA). This novel algorithm is the further extension of morphological component analysis (MCA) algorithm to the blind source separation framework. The iterative thresholding strategy adopted by GMCA algorithm firstly works on the most significant features in the image, and then progressively incorporates smaller features to finely tune the parameters of whole model. Mathematical analysis of the computational complexity of GMCA algorithm is provided. Several comparison experiments with state-of-the-art denoising algorithms are reported. In order to make quantitative assessment of algorithms in experiments, Peak Signal to Noise Ratio (PSNR) index and Structural Similarity (SSIM) index are calculated to assess the denoising effect from the gray-level fidelity aspect and the structure-level fidelity aspect, respectively. Quantitative analysis on experiment results, which is consistent with the visual effect illustrated by denoised images, has proven that the introduced GMCA algorithm possesses a marvelous remote sensing image denoising effectiveness and ability. It is even hard to distinguish the original noiseless image from the recovered image by adopting GMCA algorithm through visual effect.

  5. RETRACTED ARTICLE: Quorum-sensing of bacteria and its application

    NASA Astrophysics Data System (ADS)

    Jiang, Guoliang; Su, Mingxia

    2009-12-01

    Quorum sensing, or auto induction, as a cell density dependent signaling mechanism in many microorganisms, is triggered via auto inducers which passively diffuse across the bacterial envelope and therefore intracellulaly accumulate only at higher bacterial densities to regulate specialized processes such as genetic competence, bioluminescence, virulence and sporulation. N-acyl homoserine lactones are the most common type of signal molecules. Aquaculture is one of the fastest-growing food-producing industries, but disease outbreaks caused by pathogenic bacteria are a significant constraint on the development of the sector worldwide. Many of these pathogens have been found to be controlled by their quorum sensing systems. As there is relevance between the pathogenic bacteria's virulence factor expression and their auto inducers, quorum quenching is a new effective anti-infective strategy to control infections caused by bacterial pathogens in aquaculture. The techniques used to do this mainly include the following: (1) the inhibition of signal molecule biosynthesis, (2) blocking signal transduction, and (3) chemical inactivation and biodegradation of signal molecules. To provide a basis for finding alternative means of controlling aquatic diseases by quorum quenching instead of treatment by antibiotics and disinfectants, we will discuss the examination, purification and identification of auto inducers in this paper.

  6. Applications of remote sensing to wind power facility siting

    NASA Astrophysics Data System (ADS)

    Wade, J. E.; Rosenfeld, C. L.; Maule, P. A.

    A method by which wind energy prospectors can use remote sensing to rapidly examine extensive geographical areas to identify potential wind turbine generators' sites is outlined. Remote sensing in wind prospecting is not being considered as a tool for determining wind power potential but, rather, as an aid in identifying terrestrial, marine, and atmospheric characteristics associated with desirable wind power sites. It is noted that locations with interesting features noted in a regional assessment can be more closely evaluated using medium-scale imagery, which can be acquired from a number of different agencies, among them the U.S. Forest Service, the Bureau of Land Management, Water and Power Resources and the Soil Conservation Service. Once specific locations have been identified from small- and medium-scale imagery, low-level aerial reconnaissance in a locally chartered aircraft can verify the information obtained. Wind-deformed trees, active slip faces on dunes, snow cornices, snow fences, and the slopes of ridges can be evaluated.

  7. Self-sensing miniature electromagnetic actuators for a cardiac assist device application

    NASA Astrophysics Data System (ADS)

    Hanson, Ben M.; Walker, Peter G.; Levesley, Martin C.; Watterson, Kevin; Richardson, Robert C.; Yang, Ming

    2004-07-01

    This paper describes the application of self-sensing control to a cardiac assist device. We propose to improve the pumping performance of diseased or weakened hearts by applying direct cardiac compression using artificial muscle. This particular application imposes strict limitations on size, weight and system complexity, therefore employing self-sensing could offer advantages over separate sensors and actuators. Many electromagnetic actuators produce a back-e.m.f. proportional to velocity. Using a simple system model, it is possible to separate this back-e.m.f. from the supply voltage, thus the actuator velocity can be self-sensed. Furthermore, using a more detailed model, it also is possible to self-sense the force being applied. Experimental results are presented for linear moving-coil actuators and miniature d.c. motors. Estimation of position has been performed by numerical integration of self-sensed velocity, and shown to compare favourably to data from displacement sensors. Force estimation has also been shown to closely agree with data from a load cell. Combined force and position control has been implemented, without using sensors. Unfortunately, since self-sensed position is derived by integrating velocity, the estimated position can suffer from drifting. An automatic re-calibration scheme is proposed for the cardiac assist application.

  8. Grapefruit photonic crystal fiber sensor for gas sensing application

    NASA Astrophysics Data System (ADS)

    Tao, Chuanyi; Wei, Heming; Zhu, Yinian; Krishnaswamy, Sridhar

    2016-05-01

    Use of long period gratings (LPGs) formed in grapefruit photonic crystal fiber (PCF) with thin-film overlay coated on the inner surface of air holes for gas sensing is demonstrated. The finite-element method was used to numerically simulate the grapefruit PCF-LPG modal coupling characteristics and resonance spectral response with respect to the refractive index of thin-film inside the holey region. A gas analyte-induced index variation of the thin-film immobilized on the inner surface of the holey region of the fiber can be observed by a shift of the resonance wavelength. As an example, we demonstrate a 2,4-dinitrotoluene (DNT) sensor using grapefruit PCF-LPGs. The sensor exhibits a wavelength blue-shift of ˜820 pm as a result of exposure to DNT vapor with a vapor pressure of 411 ppbv at 25°C, and a sensitivity of 2 pm ppbv-1 can be achieved.

  9. Application of an ADS-B Sense and Avoid Algorithm

    NASA Technical Reports Server (NTRS)

    Arteaga, Ricardo; Kotcher, Robert; Cavalin, Moshe; Dandachy, Mohammed

    2016-01-01

    The National Aeronautics and Space Administration Armstrong Flight Research Center in Edwards, California is leading a program aimed towards integrating unmanned aircraft system into the national airspace system (UAS in the NAS). The overarching goal of the program is to reduce technical barriers associated with related safety issues as well as addressing challenges that will allow UAS routine access to the national airspace. This research paper focuses on three novel ideas: (1) A design of an integrated UAS equipped with Automatic Dependent Surveillance-Broadcast that constructs a more accurate state-based airspace model; (2) The use of Stratway Algorithm in a real-time environment; and (3) The verification and validation of sense and avoid performance and usability test results which provide a pilot's perspective on how our system will benefit the UAS in the NAS program for both piloted and unmanned aircraft.

  10. Space-Time Data fusion for Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Braverman, Amy; Nguyen, H.; Cressie, N.

    2011-01-01

    NASA has been collecting massive amounts of remote sensing data about Earth's systems for more than a decade. Missions are selected to be complementary in quantities measured, retrieval techniques, and sampling characteristics, so these datasets are highly synergistic. To fully exploit this, a rigorous methodology for combining data with heterogeneous sampling characteristics is required. For scientific purposes, the methodology must also provide quantitative measures of uncertainty that propagate input-data uncertainty appropriately. We view this as a statistical inference problem. The true but notdirectly- observed quantities form a vector-valued field continuous in space and time. Our goal is to infer those true values or some function of them, and provide to uncertainty quantification for those inferences. We use a spatiotemporal statistical model that relates the unobserved quantities of interest at point-level to the spatially aggregated, observed data. We describe and illustrate our method using CO2 data from two NASA data sets.

  11. Environmental Public Health Applications Using Remotely Sensed Data

    PubMed Central

    Al-Hamdan, Mohammad Z.; Crosson, William L.; Economou, Sigrid A.; Estes, Maurice G.; Estes, Sue M.; Hemmings, Sarah N.; Kent, Shia T.; Puckett, Mark; Quattrochi, Dale A.; Rickman, Douglas L.; Wade, Gina M.; McClure, Leslie A.

    2012-01-01

    We describe a remote sensing and GIS-based study that has three objectives: (1) characterize fine particulate matter (PM2.5), insolation and land surface temperature using NASA satellite observations, EPA ground-level monitor data and North American Land Data Assimilation System (NLDAS) data products on a national scale; (2) link these data with public health data from the REasons for Geographic And Racial Differences in Stroke (REGARDS) national cohort study to determine whether these environmental risk factors are related to cognitive decline, stroke and other health outcomes; and (3) disseminate the environmental datasets and public health linkage analyses to end users for decision-making through the Centers for Disease Control and Prevention (CDC) Wide-ranging Online Data for Epidemiologic Research (WONDER) system. This study directly addresses a public health focus of the NASA Applied Sciences Program, utilization of Earth Sciences products, by addressing issues of environmental health to enhance public health decision-making. PMID:24910505

  12. Applications of remote sensing data to the Alaskan environment

    NASA Technical Reports Server (NTRS)

    Belon, A. E.; Iller, J. M.

    1973-01-01

    The ERTS program provides a means to overcome the formidable logistic and economic costs of preparing environmental surveys of the vast and relatively unexplored regions of Alaska. There is an excellent potential in satellite remote sensing to benefit Federal, state, local, and private agencies, by providing a new synoptic data base which is necessary for the preparation of the needed surveys and the search for solutions to environmental management problems. One approach in coupling satellite data to Alaskan problems is a major program initiated by the University of Alaska and funded by NASA's Goddard Space Flight Center. This included 12 projects whose aims were to study the feasibility of applying ERTS data to the disciplines of ecology, agriculture, hydrology, wildlife management, oceanography, geology, glaciology, volcanology, and archaeology.

  13. Urban environmental health applications of remote sensing, summary report

    NASA Technical Reports Server (NTRS)

    Rush, M.; Goldstein, J.; Hsi, B. P.; Olsen, C. B.

    1975-01-01

    Health and its association with the physical environment was studied based on the hypothesis that there is a relationship between the man-made physical environment and health status of a population. The statistical technique of regression analysis was employed to show the degree of association and aspects of physical environment which accounted for the greater variation in health status. Mortality, venereal disease, tuberculosis, hepatitis, meningitis, shigella/salmonella, hypertension and cardiac arrest/myocardial infarction were examined. The statistical techniques were used to measure association and variation, not necessarily cause and effect. Conclusions drawn show that the association still exists in the decade of the 1970's and that it can be successfully monitored with the methodology of remote sensing.

  14. Environmental Public Health Applications Using Remotely Sensed Data.

    PubMed

    Al-Hamdan, Mohammad Z; Crosson, William L; Economou, Sigrid A; Estes, Maurice G; Estes, Sue M; Hemmings, Sarah N; Kent, Shia T; Puckett, Mark; Quattrochi, Dale A; Rickman, Douglas L; Wade, Gina M; McClure, Leslie A

    2014-01-01

    We describe a remote sensing and GIS-based study that has three objectives: (1) characterize fine particulate matter (PM2.5), insolation and land surface temperature using NASA satellite observations, EPA ground-level monitor data and North American Land Data Assimilation System (NLDAS) data products on a national scale; (2) link these data with public health data from the REasons for Geographic And Racial Differences in Stroke (REGARDS) national cohort study to determine whether these environmental risk factors are related to cognitive decline, stroke and other health outcomes; and (3) disseminate the environmental datasets and public health linkage analyses to end users for decision-making through the Centers for Disease Control and Prevention (CDC) Wide-ranging Online Data for Epidemiologic Research (WONDER) system. This study directly addresses a public health focus of the NASA Applied Sciences Program, utilization of Earth Sciences products, by addressing issues of environmental health to enhance public health decision-making. PMID:24910505

  15. Remote Sensing of Arizona Monsoons: Application of GOES Infrared Imagery

    NASA Astrophysics Data System (ADS)

    Carter, S.; Christensen, P. R.; Cerveny, R. S.

    2013-12-01

    Large, violent thunder and dust storms occur in the Phoenix area during monsoon season. Currently, the best ways to predict these dangerous and potentially damaging storms are not very accurate. The primary goal of this investigation is to attempt to develop a new technique to identify and predict these storms before they reach Phoenix. In order to address this question, two data sets (remote sensing satellite imagery and ground-based weather information) will be analyzed and compared against one another using time as a corresponding variable. The goal is to discern any correlations between data sets which be used as an indicator of imminent large monsoons. The moisture needed for the storms is carried to Arizona by events known as gulf surges (from the California Gulf); these will be the target of investigation. These chutes of moisture surge through Arizona, primarily up through Yuma in a northeasterly direction towards central/south central Arizona. The main goal is to identify if satellite imagery can be used as an accurate identifier of moisture movements preceding a storm in areas where ground measurements are not available. Presently, ground measurements of dew points are the primary technique by which these moisture surges are identified. However, while these measurements do have a fairly high temporal resolution (once an hour) they cover an awfully poor spacial range. Furthermore, it is suspected that because of interference to the instruments, the ground point data may not be as accurate as is preferred. On the other hand, satellite imagery such as GOES - the instrument used in this investigation - has both a remarkably high temporal resolution and spacial coverage. If a correlation can be demonstrated, then the high temporal resolution of the remote sensing data could be used as an identifier of oncoming monsoon storms. In order to proceed in this research, a software package known as Java Mission-planning and Analysis for Remote Sensing (JMARS) for

  16. Enhanced electricity generation by triclosan and iron anodes in the three-chambered membrane bio-chemical reactor (TC-MBCR).

    PubMed

    Song, Jing; Liu, Lifen; Yang, Fenglin; Ren, Nanqi; Crittenden, John

    2013-11-01

    A three-chambered membrane bio-chemical reactor (TC-MBCR) was developed. The stainless steel membrane modules were used as cathodes and iron plates in the middle chamber served as the anode. The TC-MBCR was able to reduce fouling, remove triclosan (TCS) from a synthetic wastewater treatment and enhance electricity generation by ~60% compared with the cell voltage before TCS addition. The TC-MBCR system generated a relatively stable power output (cell voltage ~0.2V) and the corrosion of iron plates contributed to electricity generation together with microbes on iron anode. The permeation flow from anode to cathode chamber was considered important in electricity generation. In addition, the negatively charged cathode membrane and Fe(2+)/Fe(3+) released by iron plates mitigated membrane fouling by approximately 30%, as compared with the control. The removal of COD and total phosphorus was approximately 99% and 90%. The highest triclosan removal rate reached 97.9%.

  17. Remote Sensing Application in Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Sizov, Oleg; Aloltsov, Alexander; Rubtsova, Natalia

    2014-05-01

    The main environmental problems of the Khanty-Mansi Autonomous Okrug (a federal subject of Russia) related to the activities of oil and gas industry (82 active companies which hold 77,000 oil wells). As on the 1st of January 2013 the subject produces more than 50% of all oil in Russia. The principle of environmental responsibility makes it necessary to minimize human impact and ecological impact. One of the most effective tools for environmental monitoring is remote sensing. The main advantages of such approach are: wide coverage of areas of interest, high temporal resolution, precise location, automatic processing, large set of extracted parameters, etc. Authorities of KhMAO are interested in regular detection of the impact on the environment by processing satellite data and plan to increase the coverage from 434.9 to 659.9 square kilometers with resolution not less than 10 m/pixel. Years of experience of our company shows the significant potential to expand the use of such remote sensing data in the solution of environmental problems. The main directions are: monitoring of rational use of associated petroleum gas (detection of all gas flares and volumes of burned gas), monitoring of soil pollution (detection of areas of oil pollution, assess of the extent of pollution, planning of reclamation activities and assessment of their efficiency, detection of potential areas of pipelines corrosion), monitoring of status of sludge pits (inventory of all sludge pits, assessment of their liquidation), monitoring of technogenic impact (detection of changes), upgrading of a geospatial database (topographic map of not less than 1:50000 scale). Implementation of modeling, extrapolation and remote analysis techniques based on satellite images will help to reduce unnecessary costs for instrumental methods. Thus, the introduction of effective remote monitoring technology to the activity of oil and gas companies promotes environmental responsibility of these companies.

  18. Application of Remote Sensing Technologies for Forest Cover Monitoring

    NASA Astrophysics Data System (ADS)

    Agoltsov, Alexander; Sizov, Oleg; Rubtsova, Natalia

    2014-05-01

    Today we don't have full and reliable information about forests in Russia, so it is impossible to make any well-timed decision for forest management. Update of all this information by means of traditional methods (fieldwork) is a time-consuming and in fact impossible task. Also we do not think that using of the reports without objective information for cameral data actualization is an appropriate method in such situation. So our company uses remote sensing data and technologies to resolve this problem. Nowadays numerous satellites record numerous images every day. Remote sensing data are widespread and accessible, so we can use them as the source of actual and reliable information about current status of the Forest Fund. Furthermore regular monitoring allows extracting the information about the location and intensity of forests' changes like degradation and destruction. First of all we create a georeferenced data set to cover the area of interest with orthomosaic in targeting scale depending on the goals of the project (1:25 000 - 1:10 000). For example, we can do a mosaic from RapidEye (Germany) imagery with GSD = 6.5 m or from WorldView-2 (USA) imagery with GSD = 0.5 m. The next step is to create vector layers to describe the content of images. We use visual and contemporary automatic interpretation techniques. The benefit of such approach that we can extract not only information about forests (like boundary) but also the information about roads, hydrographic objects, power lines and so on. During vectorization except relevant orthomosaic we can use multi-temporal composites of images based on archive of satellite imagery. This helps us not only to detect general changes but detect illegal logging, areas affected by fires, windfalls. Then this information can be used for different products e.g. forest cover statistics, forest cover change statistics, maps of forest management and also we can analyze transport accessibility and economic assessment of forests.

  19. Submillimeter-Wave Radiometer Technology for Earth Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Siegel, P.

    2000-01-01

    Recent innovations in ultra-high frequency, semiconductor device/component technology have enabled both traditional and new applications for space-borne millimeter- and submillimeter-wave heterodyne radiometer instruments.

  20. Application of remote sensing to state and regional problems

    NASA Technical Reports Server (NTRS)

    Miller, W. F.; Clark, J. R.; Solomon, J. L.; Duffy, B.; Minchew, K.; Wright, L. H. (Principal Investigator)

    1981-01-01

    The objectives, accomplishments, and future plans of several LANDSAT applications projects in Mississippi are discussed. The applications include land use planning in Lowandes County, strip mine inventory and reclamation, white tailed deer habitat evaluation, data analysis support systems, discrimination of forest habitats in potential lignite areas, changes in gravel operations, and determination of freshwater wetlands for inventory and monitoring. In addition, a conceptual design for a LANDSAT based information system is discussed.

  1. Applications of high-resolution remote sensing image data

    NASA Technical Reports Server (NTRS)

    Strome, W. M.; Leckie, D.; Miller, J.; Buxton, R.

    1990-01-01

    There are many situations in which the image resolution of satellite data is insufficient to provide the detail required for resource management and environmental monitoring. This paper will focus on applications of high-resolution (0.4 to 10 m) airborne multispectral and imaging spectrometer data acquired in Canada using the MEIS II multispectral line imager and the PMI imaging spectrometer. Applications discussed will include forestry, mapping, and geobotany.

  2. Research On Fiber Optic Sensing Systems And Their Application As Final Repository Monitoring Tools

    SciTech Connect

    Jobmann, M.; Biurrun, E.

    2003-02-24

    For several years, fiber-optic sensing devices had been used for straightforward on/off monitoring functions such as presence and position detection. Recently, they gained interest as they offer a novel, exciting technology for a multitude of sensing applications. In the deep geological environment most physical properties, and thus most parameters important to safety, can be measured with fiber-optic technology. Typical examples are displacements, strains, radiation dose and dose rate, presence of some gases, temperature, pressure, etc. Their robustness, immunity to electromagnetic interference, as well as their large bandwidths and data rates ensure high reliability and superior performance. Moreover, the networking capabilities of meanwhile available fiber-optic sensors allow for efficient management of large sensor systems. Distributed sensing with multiple sensing locations on a single fiber reduces significantly the number of cables and connecting points. Reliable, cost effective, and maintenance-free solutions can thus be implemented.

  3. Distributed sensing with OFDR and its application to structural health monitoring

    NASA Astrophysics Data System (ADS)

    Murayama, Hideaki; Igawa, Hirotaka; Omichi, Koji; Machijima, Yuichi

    2011-05-01

    Optical fiber sensors are promised candidates as sensor elements in structural health monitoring (SHM). Especially fiber-optic distributed strain sensors that return a strain value as a function of linear position along an optical fiber have been attractive for people in the field of SHM. We have developed a distributed strain sensing system using long-length fiber Bragg gratings (FBGs), based on optical frequency domain reflectometry (OFDR). We employ long-length FBGs whose length is about 100 mm and the sensing region, in other words the gauge length, can be expanded up to more than 1 m by serially-cascaded long-length FBGs. This sensing system has the high spatial resolution of less than 1 mm. In this paper the distributed sensing system with OFDR and its application to SHM are described.

  4. On multidisciplinary research on the application of remote sensing to water resources problems

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This research is directed toward development of a practical, operational remote sensing water quality monitoring system. To accomplish this, five fundamental aspects of the problem have been under investigation during the past three years. These are: (1) development of practical and economical methods of obtaining, handling and analyzing remote sensing data; (2) determination of the correlation between remote sensed imagery and actual water quality parameters; (3) determination of the optimum technique for monitoring specific water pollution parameters and for evaluating the reliability with which this can be accomplished; (4) determination of the extent of masking due to depth of penetration, bottom effects, film development effects, and angle falloff, and development of techniques to eliminate or minimize them; and (5) development of operational procedures which might be employed by a municipal, state or federal agency for the application of remote sensing to water quality monitoring, including space-generated data.

  5. Orbital remote sensing - Space technology applications in south-east Asia

    NASA Technical Reports Server (NTRS)

    Malingreau, J.-P.

    1985-01-01

    The evolution of remote sensing techniques in the developing countries of southeast Asia is reviewed. The use of the images for monitoring soil, water, and vegetation resources, in order to develop a national policy for conservation of the resources, is described. The remote sensing data are helpful in observing deforestation in southeast Asia; however, excessive cloud coverage does not allow accurate evaluation of the rice crop. The effects of the capabilities of the developing countries to process the data and remote sensing program of industrial countries on the future application of satellite imagery in developing countries are studied. The need for improved data banking and dissemination of the imagery is analyzed. Agreements on proprietary rights due to the improved ground resolution of orbital sensors are required. The designing of remote sensing equipment to meet the requirements of its users is discussed.

  6. Thermal Infrared Remote Sensing for Analysis of Landscape Ecological Processes: Methods and Applications

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.

    1998-01-01

    Thermal Infrared (TIR) remote sensing data can provide important measurements of surface energy fluxes and temperatures, which are integral to understanding landscape processes and responses. One example of this is the successful application of TIR remote sensing data to estimate evapotranspiration and soil moisture, where results from a number of studies suggest that satellite-based measurements from TIR remote sensing data can lead to more accurate regional-scale estimates of daily evapotranspiration. With further refinement in analytical techniques and models, the use of TIR data from airborne and satellite sensors could be very useful for parameterizing surface moisture conditions and developing better simulations of landscape energy exchange over a variety of conditions and space and time scales. Thus, TIR remote sensing data can significantly contribute to the observation, measurement, and analysis of energy balance characteristics (i.e., the fluxes and redistribution of thermal energy within and across the land surface) as an implicit and important aspect of landscape dynamics and landscape functioning. The application of TIR remote sensing data in landscape ecological studies has been limited, however, for several fundamental reasons that relate primarily to the perceived difficulty in use and availability of these data by the landscape ecology community, and from the fragmentation of references on TIR remote sensing throughout the scientific literature. It is our purpose here to provide evidence from work that has employed TIR remote sensing for analysis of landscape characteristics to illustrate how these data can provide important data for the improved measurement of landscape energy response and energy flux relationships. We examine the direct or indirect use of TIR remote sensing data to analyze landscape biophysical characteristics, thereby offering some insight on how these data can be used more robustly to further the understanding and modeling of

  7. International Conference on Remote Sensing Applications for Archaeological Research and World Heritage Conservation

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Contents include the following: Monitoring the Ancient Countryside: Remote Sensing and GIS at the Chora of Chersonesos (Crimea, Ukraine). Integration of Remote Sensing and GIS for Management Decision Support in the Pendjari Biosphere Reserve (Republic of Benin). Monitoring of deforestation invasion in natural reserves of northern Madagascar based on space imagery. Cartography of Kahuzi-Biega National Park. Cartography and Land Use Change of World Heritage Areas and the Benefits of Remote Sensing and GIS for Conservation. Assessing and Monitoring Vegetation in Nabq Protected Area, South Sinai, Egypt, using combine approach of Satellite Imagery and Land Surveys. Evaluation of forage resources in semi-arid savannah environments with satellite imagery: contribution to the management of a protected area (Nakuru National Park) in Kenya. SOGHA, the Surveillance of Gorilla Habitat in World Heritage sites using Space Technologies. Application of Remote Sensing to monitor the Mont-Saint-Michel Bay (France). Application of Remote Sensing & GIS for the Conservation of Natural and Cultural Heritage Sites of the Southern Province of Sri Lanka. Social and Environmental monitoring of a UNESCO Biosphere Reserve: Case Study over the Vosges du Nord and Pfalzerwald Parks using Corona and Spot Imagery. Satellite Remote Sensing as tool to Monitor Indian Reservation in the Brazilian Amazonia. Remote Sensing and GIS Technology for Monitoring UNESCO World Heritage Sites - A Pilot Project. Urban Green Spaces: Modern Heritage. Monitoring of the technical condition of the St. Sophia Cathedral and related monastic buildings in Kiev with Space Applications, geo-positioning systems and GIS tools. The Murghab delta palaeochannel Reconstruction on the Basis of Remote Sensing from Space. Acquisition, Registration and Application of IKONOS Space Imagery for the cultural World Heritage site at Mew, Turkmenistan. Remote Sensing and VR applications for the reconstruction of archaeological landscapes

  8. Rapid Scan Absorption Spectroscopy with Applications for Remote Sensing

    NASA Astrophysics Data System (ADS)

    Douglass, K.; Maxwell, S. E.; Truong, G.; Van Zee, R. D.; Hodges, J. T.; Plusquellic, D.; Long, D.; Whetstone, J. R.

    2013-12-01

    Our objective is to develop accurate and reliable methods for quantifying distributed carbon sources and sinks to support both mitigation efforts and climate change research. The presentation will describe a method for rapid step-scan absorption spectroscopy in the near-infrared wavelength range for the measurement of greenhouse gases. The method utilizes a fiber coupled laser system and a free space confocal cavity to effectively scan the laser system over a bandwidth of 37.5 GHz (1.25 cm-1), with a step size of 300 MHz (0.01 cm-1) and a scan rate of 40 kHz. The laser system is scanned with microwave precision over a full absorption lineshape profile. Measurements have been demonstrated in a 45 m long multipass cell for detection of carbon dioxide near 1602.4 nm (6240.6 cm-1) and for methane near 1645.5 nm (6077.2 cm 1). Ambient level detection is demonstrated using the multipass cell with a signal-to-noise ratio of ~5:1 in a 5 ms integration time. The scan speed, resolution and bandwidth are well suited for remote sensing using integrated path and differential absorption LIDAR techniques.

  9. Flexible pH-Sensing Hydrogel Fibers for Epidermal Applications.

    PubMed

    Tamayol, Ali; Akbari, Mohsen; Zilberman, Yael; Comotto, Mattia; Lesha, Emal; Serex, Ludovic; Bagherifard, Sara; Chen, Yu; Fu, Guoqing; Ameri, Shideh Kabiri; Ruan, Weitong; Miller, Eric L; Dokmeci, Mehmet R; Sonkusale, Sameer; Khademhosseini, Ali

    2016-03-01

    Epidermal pH is an indication of the skin's physiological condition. For example, pH of wound can be correlated to angiogenesis, protease activity, bacterial infection, etc. Chronic nonhealing wounds are known to have an elevated alkaline environment, while healing process occurs more readily in an acidic environment. Thus, dermal patches capable of continuous pH measurement can be used as point-of-care systems for monitoring skin disorder and the wound healing process. Here, pH-responsive hydrogel fibers are presented that can be used for long-term monitoring of epidermal wound condition. pH-responsive dyes are loaded into mesoporous microparticles and incorporated into hydrogel fibers using a microfluidic spinning system. The fabricated pH-responsive microfibers are flexible and can create conformal contact with skin. The response of pH-sensitive fibers with different compositions and thicknesses are characterized. The suggested technique is scalable and can be used to fabricate hydrogel-based wound dressings with clinically relevant dimensions. Images of the pH-sensing fibers during real-time pH measurement can be captured with a smart phone camera for convenient readout on-site. Through image processing, a quantitative pH map of the hydrogel fibers and the underlying tissue can be extracted. The developed skin dressing can act as a point-of-care device for monitoring the wound healing process. PMID:26799457

  10. GMG - A guaranteed global optimization algorithm: Application to remote sensing

    SciTech Connect

    D'Helon, Cassius; Protopopescu, Vladimir A; Wells, Jack C; Barhen, Jacob

    2007-01-01

    We investigate the role of additional information in reducing the computational complexity of the global optimization problem (GOP). Following this approach, we develop GMG -- an algorithm to find the Global Minimum with a Guarantee. The new algorithm breaks up an originally continuous GOP into a discrete (grid) search problem followed by a descent problem. The discrete search identifies the basin of attraction of the global minimum after which the actual location of the minimizer is found upon applying a descent algorithm. The algorithm is first applied to the golf course problem, which serves as a litmus test for its performance in the presence of both complete and degraded additional information. GMG is further assessed on a set of standard benchmark functions. We then illustrate the performance of the the validated algorithm on a simple realization of the monocular passive ranging (MPR) problem in remote sensing, which consists of identifying the range of an airborne target (missile, plane, etc.) from its observed radiance. This inverse problem is set as a GOP whereby the difference between the observed and model predicted radiances is minimized over the possible ranges and atmospheric conditions. We solve the GOP using GMG and report on the performance of the algorithm.

  11. New spectral methods in cloud and aerosol remote sensing applications

    NASA Astrophysics Data System (ADS)

    Schmidt, K. Sebastian; McBride, Patrick; Pilewskie, Peter; Feingold, Graham; Jiang, Hongli

    2010-05-01

    We present new remote sensing techniques that rely on spectral observations of clouds and aerosols in the solar wavelength range. As a first example, we show how the effects of heterogeneous clouds, aerosols of changing optical properties, and the surface within one pixel can be distinguished by means of their spectral signatures. This example is based on data from the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS, Houston, Texas, 2006), Large Eddy Simulations (LES) of polluted boundary layer clouds, and 3-dimensional radiative transfer calculations. In a second example, we show that the uncertainty of cloud retrievals can be improved considerably by exploiting the spectral information around liquid water absorption features in the near-infrared wavelength range. This is illustrated with spectral transmittance data from the NOAA International Chemistry Experiment in the Arctic LOwer Troposphere (ICEALOT, 2008). In contrast to reflected radiance, transmitted radiance is only weakly sensitive to cloud effective drop radius, and only cloud optical thickness can be obtained from the standard dual-channel technique. We show that effective radius and liquid water path can also be retrieved with the new spectral approach, and validate our results with microwave liquid water path measurements.

  12. Geological applications of machine learning on hyperspectral remote sensing data

    NASA Astrophysics Data System (ADS)

    Tse, C. H.; Li, Yi-liang; Lam, Edmund Y.

    2015-02-01

    The CRISM imaging spectrometer orbiting Mars has been producing a vast amount of data in the visible to infrared wavelengths in the form of hyperspectral data cubes. These data, compared with those obtained from previous remote sensing techniques, yield an unprecedented level of detailed spectral resolution in additional to an ever increasing level of spatial information. A major challenge brought about by the data is the burden of processing and interpreting these datasets and extract the relevant information from it. This research aims at approaching the challenge by exploring machine learning methods especially unsupervised learning to achieve cluster density estimation and classification, and ultimately devising an efficient means leading to identification of minerals. A set of software tools have been constructed by Python to access and experiment with CRISM hyperspectral cubes selected from two specific Mars locations. A machine learning pipeline is proposed and unsupervised learning methods were implemented onto pre-processed datasets. The resulting data clusters are compared with the published ASTER spectral library and browse data products from the Planetary Data System (PDS). The result demonstrated that this approach is capable of processing the huge amount of hyperspectral data and potentially providing guidance to scientists for more detailed studies.

  13. Flexible pH-Sensing Hydrogel Fibers for Epidermal Applications.

    PubMed

    Tamayol, Ali; Akbari, Mohsen; Zilberman, Yael; Comotto, Mattia; Lesha, Emal; Serex, Ludovic; Bagherifard, Sara; Chen, Yu; Fu, Guoqing; Ameri, Shideh Kabiri; Ruan, Weitong; Miller, Eric L; Dokmeci, Mehmet R; Sonkusale, Sameer; Khademhosseini, Ali

    2016-03-01

    Epidermal pH is an indication of the skin's physiological condition. For example, pH of wound can be correlated to angiogenesis, protease activity, bacterial infection, etc. Chronic nonhealing wounds are known to have an elevated alkaline environment, while healing process occurs more readily in an acidic environment. Thus, dermal patches capable of continuous pH measurement can be used as point-of-care systems for monitoring skin disorder and the wound healing process. Here, pH-responsive hydrogel fibers are presented that can be used for long-term monitoring of epidermal wound condition. pH-responsive dyes are loaded into mesoporous microparticles and incorporated into hydrogel fibers using a microfluidic spinning system. The fabricated pH-responsive microfibers are flexible and can create conformal contact with skin. The response of pH-sensitive fibers with different compositions and thicknesses are characterized. The suggested technique is scalable and can be used to fabricate hydrogel-based wound dressings with clinically relevant dimensions. Images of the pH-sensing fibers during real-time pH measurement can be captured with a smart phone camera for convenient readout on-site. Through image processing, a quantitative pH map of the hydrogel fibers and the underlying tissue can be extracted. The developed skin dressing can act as a point-of-care device for monitoring the wound healing process.

  14. Six-Port Based Interferometry for Precise Radar and Sensing Applications.

    PubMed

    Koelpin, Alexander; Lurz, Fabian; Linz, Sarah; Mann, Sebastian; Will, Christoph; Lindner, Stefan

    2016-09-22

    Microwave technology plays a more important role in modern industrial sensing applications. Pushed by the significant progress in monolithic microwave integrated circuit technology over the past decades, complex sensing systems operating in the microwave and even millimeter-wave range are available for reasonable costs combined with exquisite performance. In the context of industrial sensing, this stimulates new approaches for metrology based on microwave technology. An old measurement principle nearly forgotten over the years has recently gained more and more attention in both academia and industry: the six-port interferometer. This paper reviews the basic concept, investigates promising applications in remote, as well as contact-based sensing and compares the system with state-of-the-art metrology. The significant advantages will be discussed just as the limitations of the six-port architecture. Particular attention will be paid to impairment effects and non-ideal behavior, as well as compensation and linearization concepts. It will be shown that in application fields, like remote distance sensing, precise alignment measurements, as well as interferometrically-evaluated mechanical strain analysis, the six-port architecture delivers extraordinary measurement results combined with high measurement data update rates for reasonable system costs. This makes the six-port architecture a promising candidate for industrial metrology.

  15. Six-Port Based Interferometry for Precise Radar and Sensing Applications.

    PubMed

    Koelpin, Alexander; Lurz, Fabian; Linz, Sarah; Mann, Sebastian; Will, Christoph; Lindner, Stefan

    2016-01-01

    Microwave technology plays a more important role in modern industrial sensing applications. Pushed by the significant progress in monolithic microwave integrated circuit technology over the past decades, complex sensing systems operating in the microwave and even millimeter-wave range are available for reasonable costs combined with exquisite performance. In the context of industrial sensing, this stimulates new approaches for metrology based on microwave technology. An old measurement principle nearly forgotten over the years has recently gained more and more attention in both academia and industry: the six-port interferometer. This paper reviews the basic concept, investigates promising applications in remote, as well as contact-based sensing and compares the system with state-of-the-art metrology. The significant advantages will be discussed just as the limitations of the six-port architecture. Particular attention will be paid to impairment effects and non-ideal behavior, as well as compensation and linearization concepts. It will be shown that in application fields, like remote distance sensing, precise alignment measurements, as well as interferometrically-evaluated mechanical strain analysis, the six-port architecture delivers extraordinary measurement results combined with high measurement data update rates for reasonable system costs. This makes the six-port architecture a promising candidate for industrial metrology. PMID:27669246

  16. Renewable resource applications of remote sensing in the 1980's

    NASA Technical Reports Server (NTRS)

    Ragan, R. M.; Calabrese, M. A.

    1980-01-01

    A number of renewable resource applications in the areas of agriculture, land, and water are summarized; and some of the current and future research efforts designed to enhance the utility of this tool are explored. Programs to incorporate microwave sensors with higher resolutions into the resource planning and management processes are also considered. Particular consideration is given to experience with LACIE and AgRISTARS; the current hydrologic land use, watershed physiography, and snow covered area applications of Landsat; and land cover mapping with MSS technology. Needed improvements are discussed with regard to goals of fundamental research, data acquisition requirements, and data handling and merging with other data sources.

  17. Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics.

    PubMed

    West, Jennifer L; Halas, Naomi J

    2003-01-01

    Advances in chemistry and physics are providing an expanding array of nanostructured materials with unique and powerful optical properties. These nanomaterials provide a new set of tools that are available to biomedical engineers, biologists, and medical scientists who seek new tools as biosensors and probes of biological fluids, cells, and tissue chemistry and function. Nanomaterials are also being used to develop optically controlled devices for applications such as modulated drug delivery as well as optical therapeutics. This review discusses applications that have been successfully demonstrated using nanomaterials including semiconductor nanocrystals, gold nanoparticles, gold nanoshells, and silver plasmon resonant particles. PMID:14527314

  18. Application of remote sensing to state and regional programs

    NASA Technical Reports Server (NTRS)

    Miller, W. F.; Carter, B. D.; Pettry, D. E.; Higgs, G. K.

    1977-01-01

    The problem includes data acquisition and transformation to products acceptable to the users. Optimized institutionalization of data management, product transfer, and education of the user community are also of major concern. With respect to the lattice, various structures were suggested and the fields of application are presented.

  19. Application of terrestrial microwave remote sensing to agricultural drought monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root-zone soil moisture information is a valuable diagnostic for detecting the onset and severity of agricultural drought. Current attempts to globally monitor root-zone soil moisture are generally based on the application of soil water balance models driven by observed meteorological variables. Suc...

  20. Advances in the development of remote sensing technology for agricultural applications

    NASA Technical Reports Server (NTRS)

    Powers, J. E.; Erb, R. B.; Hall, F. G.; Macdonald, R. B.

    1979-01-01

    The application of remote sensing technology to crop forecasting is discussed. The importance of crop forecasts to the world economy and agricultural management is explained, and the development of aerial and spaceborne remote sensing for global crop forecasting by the United States is outlined. The structure, goals and technical aspects of the Large Area Crop Inventory Experiment (LACIE) are presented, and main findings on the accuracy, efficiency, applicability and areas for further study of the LACIE procedure are reviewed. The current status of NASA crop forecasting activities in the United States and worldwide is discussed, and the objectives and organization of the newly created Agriculture and Resources Inventory Surveys through Aerospace Remote Sensing (AgRISTARS) program are presented.

  1. Optimization of design parameters for bulk micromachined silicon membranes for piezoresistive pressure sensing application

    NASA Astrophysics Data System (ADS)

    Belwanshi, Vinod; Topkar, Anita

    2016-05-01

    Finite element analysis study has been carried out to optimize the design parameters for bulk micro-machined silicon membranes for piezoresistive pressure sensing applications. The design is targeted for measurement of pressure up to 200 bar for nuclear reactor applications. The mechanical behavior of bulk micro-machined silicon membranes in terms of deflection and stress generation has been simulated. Based on the simulation results, optimization of the membrane design parameters in terms of length, width and thickness has been carried out. Subsequent to optimization of membrane geometrical parameters, the dimensions and location of the high stress concentration region for implantation of piezoresistors have been obtained for sensing of pressure using piezoresistive sensing technique.

  2. Nanoporous Anodic Alumina Platforms: Engineered Surface Chemistry and Structure for Optical Sensing Applications

    PubMed Central

    Kumeria, Tushar; Santos, Abel; Losic, Dusan

    2014-01-01

    Electrochemical anodization of pure aluminum enables the growth of highly ordered nanoporous anodic alumina (NAA) structures. This has made NAA one of the most popular nanomaterials with applications including molecular separation, catalysis, photonics, optoelectronics, sensing, drug delivery, and template synthesis. Over the past decades, the ability to engineer the structure and surface chemistry of NAA and its optical properties has led to the establishment of distinctive photonic structures that can be explored for developing low-cost, portable, rapid-response and highly sensitive sensing devices in combination with surface plasmon resonance (SPR) and reflective interference spectroscopy (RIfS) techniques. This review article highlights the recent advances on fabrication, surface modification and structural engineering of NAA and its application and performance as a platform for SPR- and RIfS-based sensing and biosensing devices. PMID:25004150

  3. Polyaniline-lead titanate composites for humidity sensing and EMI shielding applications

    NASA Astrophysics Data System (ADS)

    Manocha, Aarushi; Thomas, Jocelyn T.; Fathima, Hana; V, Suveetha; Faisal, Muhammad

    2015-06-01

    The present paper reports the humidity sensing and electromagnetic interference (EMI) shielding properties of synthesized polyaniline-lead titanate (PANi/PbTiO3) composites. The humidity sensing of the PAni/PbTiO3 composites was discussed in terms of change in direct current (DC) resistance with respect to percentage relative humidity (% RH) ranging from 20% to 90%. The EMI shielding properties of the composites were measured in the frequency range of 8-12 GHz (X-band), relevant for practical applications. The composites showed shielding effectiveness (SE) in the range -29 dB to -34 dB and the variations in the shielding effectiveness with the frequency was minimal at a fixed composition. The observed effective humidity sensing and EMI shielding properties highlights the prospects of multifunctional applications of these composites.

  4. A mobile-agent based wireless sensing network for structural monitoring applications

    SciTech Connect

    Taylor, Stuart G; Farinholt, Kevin M; Figueiredo, Eloi; Park, Gyuhae; Farrar, Charles R; Flynn, Eric B; Mascarenas, David L; Todd, Michael D

    2008-01-01

    A new wireless sensing network paradigm is presented for structural monitoring applications. In this approach, both power and data interrogation commands are conveyed via a mobile agent that is sent to sensor nodes to perform intended interrogations, which can alleviate several limitations of the traditional sensing networks. Furthermore, the mobile agent provides computational power to make near real-time assessments on the structural conditions. This paper will discuss such prototype systems, which are used to interrogate impedance-based sensors for structural health monitoring applications. Our wireless sensor node is specifically designed to accept various energy sources, including wireless energy transmission, and to be wirelessly triggered on an as-needed basis by the mobile agent or other sensor nodes. The capabilities of this proposed sensing network paradigm are demonstrated in the laboratory and the field.

  5. REVIEW OF REMOTE SENSING TECHNOLOGIES AND DATA FOR DOE-EM APPLICATIONS

    SciTech Connect

    M.A. Ebadian, Ph.D

    1999-01-01

    Various governmental agencies and private companies throughout the world are involved in remote sensing activities. Remote sensing is a technology used for the purpose of monitoring the earth's environment, keeping track of the earth's resources, and for agricultural vegetation monitoring, among other things. There is a vast number of remote sensing technologies and data already commercially available for different applications (e.g., environmental, agricultural, and so on). Many entities are actively conducting research to generate new technologies and data (e.g., NASA). In addition, some of DOE's offices and programs have engaged in collection and analysis of remote sensing data. It is likely that some of these technologies and data could be useful for characterization and monitoring of EM's sites. Florida International University's Hemispheric Center for Environmental Technology (FIU-HCET) has reviewed remote sensing technologies and data that are currently available or in an advanced research state. The review focused on the technologies and data applicable to the environmental field. DOE has over 800 national laboratories and sites dispersed throughout the United States. involved in some current and past remote sensing projects. FIU-HCET personnel have searched governmental agency databases (e.g., DOE, NASA), the Internet, and library resources to obtain information about these technologies and generated a user-friendly database. This review km also produced an inventory and will be available on the Internet and on a CD-ROM that can be distributed to individuals or entities requesting information on remote sensing technologies and data for environmental applications. This database contains information regarding each technology, such as type of sensor, applications, and technical specifications (e.g., resolution). To the best of FIU-HCET's knowledge, a database of this type and with this level of detail does not exist within DOE. With the amount of remote

  6. The workshop. [use and application of remotely sensed data

    NASA Technical Reports Server (NTRS)

    Wake, W. H.

    1981-01-01

    The plan is presented for a two day workshop held to provide educational and training experience in the reading, interpretation, and application of LANDSAT and correlated larger scale imagery, digital printout maps, and other collateral material for a large number of participants with widely diverse levels of expertise, backgrounds, and occupations in government, industry, and education. The need for using surface truth field studies with correlated aerial imagery in solving real world problems was demonstrated.

  7. Suspended core photonic microcells for sensing and device applications.

    PubMed

    Wang, Chao; Jin, Wei; Ma, Jun; Wang, Ying; Ho, Hoi Lut; Shi, Xin

    2013-06-01

    In-line fiber-optic microcells are fabricated by postprocessing NKT LMA10 photonic crystal fibers. The cells are suspended core (SC) elements created by locally inflating some of the air holes while the core is being tapered. Based on a SC microcell with six air holes, a cantilever beam accelerometer is demonstrated. The microcells could also be used as gain and absorption cells for amplifier and spectroscopy applications. PMID:23722776

  8. Research-grade CMOS image sensors for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Saint-Pe, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Magnan, Pierre; Martin-Gonthier, Philippe; Corbiere, Franck; Belliot, Pierre; Estribeau, Magali

    2004-11-01

    Imaging detectors are key elements for optical instruments and sensors on board space missions dedicated to Earth observation (high resolution imaging, atmosphere spectroscopy...), Solar System exploration (micro cameras, guidance for autonomous vehicle...) and Universe observation (space telescope focal planes, guiding sensors...). This market has been dominated by CCD technology for long. Since the mid-90s, CMOS Image Sensors (CIS) have been competing with CCDs for consumer domains (webcams, cell phones, digital cameras...). Featuring significant advantages over CCD sensors for space applications (lower power consumption, smaller system size, better radiations behaviour...), CMOS technology is also expanding in this field, justifying specific R&D and development programs funded by national and European space agencies (mainly CNES, DGA and ESA). All along the 90s and thanks to their increasingly improving performances, CIS have started to be successfully used for more and more demanding space applications, from vision and control functions requiring low-level performances to guidance applications requiring medium-level performances. Recent technology improvements have made possible the manufacturing of research-grade CIS that are able to compete with CCDs in the high-performances arena. After an introduction outlining the growing interest of optical instruments designers for CMOS image sensors, this paper will present the existing and foreseen ways to reach high-level electro-optics performances for CIS. The developments and performances of CIS prototypes built using an imaging CMOS process will be presented in the corresponding section.

  9. The application of remote sensing to the development and formulation of hydrologic planning models: Executive summary

    NASA Technical Reports Server (NTRS)

    Castruccio, P. A.; Loats, H. L., Jr.; Fowler, T. R.

    1977-01-01

    Methods for the reduction of remotely sensed data and its application in hydrologic land use assessment, surface water inventory, and soil property studies are presented. LANDSAT data is used to provide quantitative parameters and coefficients to construct watershed transfer functions for a hydrologic planning model aimed at estimating peak outflow from rainfall inputs.

  10. A selected bibliography: Remote sensing applications in land-use and land-cover inventory tasks

    USGS Publications Warehouse

    Todd, William J.

    1978-01-01

    The bibliography contains more than 300 citations of selected publications on the application of remote-sensing techniques to regional and metropolitan land-use and land-cover inventroy and analysis tasks.  Most of the citations were published between January 1968 and June 1977, although some earlier works of continuing interest are included.

  11. Remote sensing with simulated unmanned aircraft systems for precision agriculture applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An important application of unmanned aircraft systems (UAS) may be remote-sensing for precision agriculture, because of its ability to acquire images with very small pixel sizes from low altitude flights. The objective of this study was to compare pixel sampling with plot-scale metrics for the remo...

  12. Combustion synthesis of tin dioxide nanocomposites for gas sensing applications

    NASA Astrophysics Data System (ADS)

    Bakrania, Smitesh Dhirajlal

    The current work focuses on understanding the mechanisms controlling tin dioxide (SnO2) nanoparticle morphology in combustion synthesis systems and how nanoarchitecture affects performance of solid-state gas sensors. A range of analytical methods (including transmission and scanning electron microscopy, x-ray diffraction, nitrogen absorption, and XEDS) were used to characterize the materials properties as a function of the combustion synthesis conditions. A novel method of generating tin dioxide materials was developed which provides a new degree of control over SnO2 morphology; including spherical, nanorod and encapsulated particle architectures. A simplified model for particle formation based on characteristic times was developed to identify the physical and chemical processes affecting the morphologies observed using transmission electron microscope imaging. The SnO2 nanoparticles evolve from primary particles sizes of 7 nm to 14 nm through the synthesis region, and the results indicate interparticle collision and sintering are the dominant mechanisms in determining particle size and morphology for the flame conditions studied. Metal acetates were used to create metal/SnO 2 nanocomposite materials, and the processes controlling gold acetate decomposition in particular were explored. The results of the studies suggest a relationship between the precursor crystallite size and the product nanoparticles. The well-characterized SnO2 particles were evaluated as the active materials for gas-sensing. Sensor sensitivity and time response to carbon monoxide in dry air was used to investigate microstructure-performance links. Excellent sensitivity (3 7, based on the ratio of the resistance of the sensor in air to the resistance in the target gas) and time response (4--20 seconds) were demonstrated for the thin film gas sensors. Fabrication studies demonstrated the sensor performance was a strong function of the film deposition method. A novel method for manufacturing

  13. Hyperspectral remote sensing for water quality applications in Guatemala

    NASA Astrophysics Data System (ADS)

    Flores Cordova, A. I.; Christopher, S. A.; Irwin, D.

    2013-12-01

    Water quality measurements are relevant to control and prevent the pollution of surface water essential for human use. Previous studies have used standard methods of water sampling to estimate water quality parameters. Nevertheless those methods are extremely expensive and time-consuming and do not provide information for an entire water body. Hence it is important to implement techniques that allow for the monitoring of water quality parameters in a timely and cost-effective manner, and remote sensing represents a feasible alternative. This study focuses on the largest algal bloom affecting Lake Atitlan, located in Guatemala, by using the hyperspectral sensor Hyperion on board the EO-1 satellite. This algal bloom had a life span that extended for a little more than a month and had a maximum coverage of approximately 40% of the lake's 137 square kilometer surface. This algal bloom occurred at the end of the year 2009, with November being the most critical month. Different satellite sensors were used to monitor the extent of the algal bloom, including Landsat Enhanced Thematic Mapper Plus (ETM+), the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Advanced Land Imager (ALI). However, Hyperion images were used to distinguish the characteristics of the vegetation populating the algal bloom. Hyperion satellite images provided a more complete spectral profile of the algal bloom affecting the lake due to its high spectral resolution characteristics. This enabled the identification of unique peaks of reflectance and absorption features of the spectral signature obtained from the algal bloom. The algal bloom was formed mainly by the cyanobacteria Lyngbya robusta. Hyperion satellite images were used to characterize the algal bloom and the unique pigments of cyanobacteria such as phycocyanin. Atmospheric correction was critical to obtain the pure reflectance of the algal bloom and differentiate the spectral features unique to the cyanobacteria

  14. Application of the Development in Environment Measurement and Sensibility Nano-Sensing

    NASA Astrophysics Data System (ADS)

    Noda, Kazutoshi; Aizawa, Hidenobu

    Recently, environmental pollution is social problem with nano materials and food contamination is a new social problem. On the other hand, the complaint related to the offensive odor in Japan exceeded 20,000 affairs in 1998, and these problems are not solved. The odor sensing system for detecting and control an offensive odor at an early stage is required. The sensing system using the sense of odor known as one of the fifth senses of human is proposed to these demands. Especially as for e-NOSE system, application will be expected from now on in many fields, such as medical diagnosis, health monitoring, environment, food, robot and a car. The sensing technology in which an electrochemical sensor called quartz crystal microbalance (QCM) is mainly used is making detection mechanisms, such as an electrode and a detection thin film on the nano-level. Therefore, detection films of sensor depend on the characteristic of the sensing devices using on material and processing technology. That the new technology sensor is asked can detect extremely low concentration from ppm to ppb level, and it is the sensor with low influence of environment, such as a gas of the outside for detection, temperature and humidity.

  15. Paper as a platform for sensing applications and other devices: a review.

    PubMed

    Mahadeva, Suresha K; Walus, Konrad; Stoeber, Boris

    2015-04-29

    Paper is a ubiquitous material that has various applications in day to day life. A sheet of paper is produced by pressing moist wood cellulose fibers together. Paper offers unique properties: paper allows passive liquid transport, it is compatible with many chemical and biochemical moieties, it exhibits piezoelectricity, and it is biodegradable. Hence, paper is an attractive low-cost functional material for sensing devices. In recent years, researchers in the field of science and engineering have witnessed an exponential growth in the number of research contributions that focus on the development of cost-effective and scalable fabrication methods and new applications of paper-based devices. In this review article, we highlight recent advances in the development of paper-based sensing devices in the areas of electronics, energy storage, strain sensing, microfluidic devices, and biosensing, including piezoelectric paper. Additionally, this review includes current limitations of paper-based sensing devices and points out issues that have limited the commercialization of some of the paper-based sensing devices. PMID:25745887

  16. Paper as a platform for sensing applications and other devices: a review.

    PubMed

    Mahadeva, Suresha K; Walus, Konrad; Stoeber, Boris

    2015-04-29

    Paper is a ubiquitous material that has various applications in day to day life. A sheet of paper is produced by pressing moist wood cellulose fibers together. Paper offers unique properties: paper allows passive liquid transport, it is compatible with many chemical and biochemical moieties, it exhibits piezoelectricity, and it is biodegradable. Hence, paper is an attractive low-cost functional material for sensing devices. In recent years, researchers in the field of science and engineering have witnessed an exponential growth in the number of research contributions that focus on the development of cost-effective and scalable fabrication methods and new applications of paper-based devices. In this review article, we highlight recent advances in the development of paper-based sensing devices in the areas of electronics, energy storage, strain sensing, microfluidic devices, and biosensing, including piezoelectric paper. Additionally, this review includes current limitations of paper-based sensing devices and points out issues that have limited the commercialization of some of the paper-based sensing devices.

  17. Energy transfer cassettes based on organic fluorophores: construction and applications in ratiometric sensing.

    PubMed

    Fan, Jiangli; Hu, Mingming; Zhan, Peng; Peng, Xiaojun

    2013-01-01

    This tutorial review presents some recent developments in the construction and applications of cassettes based on resonance energy transfer between fluorescent dyes in the visible and infrared region. We focused on the contributions of different connections between the energy donor and acceptor according to the "through-space" and "through-bond" methods, and emphasised their applications in ratiometric sensing for the detection of ions and small molecules. PMID:23059554

  18. Mid-wave/long-wave infrared lasers and their sensing applications

    NASA Astrophysics Data System (ADS)

    Law, K. K.; Shori, R.; Miller, J. K.; Sharma, S.

    2011-06-01

    Many advances have been made recently in both solid-state and semiconductor based mid-wave infrared (MWIR) and long-wave infrared (LWIR) laser technologies, and there is an ever growing demand for these laser sources for Naval, DOD and homeland security applications. We will present various current and future programs and efforts at Naval Air Warfare Center Weapons Division (NAWCWD) on the development of high-power, broadly tunable MWIR/LWIR lasers for sensing applications.

  19. LAnd surface remote sensing Products VAlidation System (LAPVAS) and its preliminary application

    NASA Astrophysics Data System (ADS)

    Lin, Xingwen; Wen, Jianguang; Tang, Yong; Ma, Mingguo; Dou, Baocheng; Wu, Xiaodan; Meng, Lumin

    2014-11-01

    The long term record of remote sensing product shows the land surface parameters with spatial and temporal change to support regional and global scientific research widely. Remote sensing product with different sensors and different algorithms is necessary to be validated to ensure the high quality remote sensing product. Investigation about the remote sensing product validation shows that it is a complex processing both the quality of in-situ data requirement and method of precision assessment. A comprehensive validation should be needed with long time series and multiple land surface types. So a system named as land surface remote sensing product is designed in this paper to assess the uncertainty information of the remote sensing products based on a amount of in situ data and the validation techniques. The designed validation system platform consists of three parts: Validation databases Precision analysis subsystem, Inter-external interface of system. These three parts are built by some essential service modules, such as Data-Read service modules, Data-Insert service modules, Data-Associated service modules, Precision-Analysis service modules, Scale-Change service modules and so on. To run the validation system platform, users could order these service modules and choreograph them by the user interactive and then compete the validation tasks of remote sensing products (such as LAI ,ALBEDO ,VI etc.) . Taking SOA-based architecture as the framework of this system. The benefit of this architecture is the good service modules which could be independent of any development environment by standards such as the Web-Service Description Language(WSDL). The standard language: C++ and java will used as the primary programming language to create service modules. One of the key land surface parameter, albedo, is selected as an example of the system application. It is illustrated that the LAPVAS has a good performance to implement the land surface remote sensing product

  20. Autonomous control systems: applications to remote sensing and image processing

    NASA Astrophysics Data System (ADS)

    Jamshidi, Mohammad

    2001-11-01

    One of the main challenges of any control (or image processing) paradigm is being able to handle complex systems under unforeseen uncertainties. A system may be called complex here if its dimension (order) is too high and its model (if available) is nonlinear, interconnected, and information on the system is uncertain such that classical techniques cannot easily handle the problem. Examples of complex systems are power networks, space robotic colonies, national air traffic control system, and integrated manufacturing plant, the Hubble Telescope, the International Space Station, etc. Soft computing, a consortia of methodologies such as fuzzy logic, neuro-computing, genetic algorithms and genetic programming, has proven to be powerful tools for adding autonomy and semi-autonomy to many complex systems. For such systems the size of soft computing control architecture will be nearly infinite. In this paper new paradigms using soft computing approaches are utilized to design autonomous controllers and image enhancers for a number of application areas. These applications are satellite array formations for synthetic aperture radar interferometry (InSAR) and enhancement of analog and digital images.

  1. Remote Sensing Applications for Antrim Shale Fracture Characterization, Michigan Basin

    NASA Technical Reports Server (NTRS)

    Kuuskraa, Vello

    1997-01-01

    Advanced Research International (ARI) sent seven staff members to the 1997 International Coalbed Methane Symposium, held in Tuscaloosa, Alabama from May 12-17. ARI gave a short course on risk reduction strategies, including remote fracture detection, for coalbed methane exploration and development that was attended by about 25 coalbed methane industry professionals; and presented a paper entitled 'Optimizing coalbed methane cavity completion operations with the application of a new discrete element model.' We met with many potential clients and discussed our fracture detection services. China has vast coalbed methane resources, but is still highly dependent on coal-and wood-burning. This workshop, sponsored by the United Nations, was intended to help China develop its less-polluting energy reserves. ARI is successfully finding new applications for its fracture detection services. Coalbed methane exploration became an important market in this quarter, with the inception of a joint industry/government collaboration between ARI, Texaco and DOE to use remote fracture detection to identify areas with good potential for coalbed methane production in the Ferron Coal Trend of central Utah. Geothermal energy exploration is another emerging market for ARI, where fracture detection is applied to identify pathways for groundwater recharge, movement, and the locations of potential geothermal reservoirs. Ari continued work on two industry/government collaborations to demonstrate fracture detection to potential clients. Also completed the technical content layout for multimedia CD-ROM that describes our remote fracture detection services.

  2. Miniature mass spectrometer for chemical sensing in homeland defense applications

    NASA Astrophysics Data System (ADS)

    Sinha, Mahadeva P.; Houseman, John

    2003-07-01

    A Miniature Mass Spectrometer (MMS) with an array detector has been developed at the Jet Propulsion Laboratory (JPL). The spectrometer has a focal plane geometry, and an array detector that can measure the intensities of different masses simultaneously after their separation along the focal plane. In the past, the large mass, size and the lack of an array detector with high gain (such as an electron multiplier) did not allow the application of focal plane mass spectrometer to the measurement that required high sensitivity and portability. In the JPL developed-MMS, miniaturization has been accomplished by using rare earth magnet material and novelties in the design of the magnetic and electric sectors. A new ion detector was developed for the measurement of the intensities of different mass ions. The array detector is based on the conversion sequence of ions into electrons into photons and their final measurement by a photon array detector. MMS possesses high sensitivity, specificity, and fast response time and can be used as a universal chemical analyzer. It will find application in a variety of Home Defense tasks. MMS is presently being applied for the detection of propellants (hydrazine and its derivatives). The instrument will have a mass of 1-2 kg and consume a power of 2-4 W for operation

  3. Integrating Spray Plane-Based Remote Sensing and Rapid Image Processing with Variable-Rate Aerial Application.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A remote sensing and variable rate application system was configured for agricultural aircraft. This combination system has the potential of providing a completely integrated solution for all aspects of aerial site-specific application and includes remote sensing, image processing and georegistratio...

  4. A hybrid silicon-PDMS optofluidic platform for sensing applications

    PubMed Central

    Testa, Genni; Persichetti, Gianluca; Sarro, Pasqualina M.; Bernini, Romeo

    2014-01-01

    A hybrid silicon-poly(dimethysiloxane) (PDMS) optofluidic platform for lab-on-a-chip applications is proposed. A liquid-core waveguide with a self-aligned solid-core waveguide and a microfluidic device are integrated with a multilayer approach, resulting in a three-dimensional device assembly. The optofluidic layer was fabricated with a hybrid silicon-polymer technology, whereas the microfluidic layer was fabricated with a soft lithography technique. The combination of different materials and fabrication processes allows a modular approach, enabling both the benefits from the high optical quality achievable with silicon technology and the low cost of polymer processing. The proposed chip has been tested for fluorescence measurements on Cy5 water solutions, demonstrating the possibility to obtain a limit of detection of 2.5 nM. PMID:24575337

  5. Optofluidic devices and applications in photonics, sensing and imaging.

    PubMed

    Pang, Lin; Chen, H Matthew; Freeman, Lindsay M; Fainman, Yeshaiahu

    2012-10-01

    Optofluidics integrates the fields of photonics and microfluidics, providing new freedom to both fields and permitting the realization of optical and fluidic property manipulations at the chip scale. Optofluidics was formed only after many breakthroughs in microfluidics, as understanding of fluid behaviour at the micron level enabled researchers to combine the advantages of optics and fluids. This review describes the progress of optofluidics from a photonics perspective, highlighting various optofluidic aspects ranging from the device's property manipulation to an interactive integration between optics and fluids. First, we describe photonic elements based on the functionalities that enable fluid manipulation. We then discuss the applications of optofluidic biodetection with an emphasis on nanosensing. Next, we discuss the progress of optofluidic lenses with an emphasis on its various architectures, and finally we conceptualize on where the field may lead.

  6. Adaptive Sensing of Time Series with Application to Remote Exploration

    NASA Technical Reports Server (NTRS)

    Thompson, David R.; Cabrol, Nathalie A.; Furlong, Michael; Hardgrove, Craig; Low, Bryan K. H.; Moersch, Jeffrey; Wettergreen, David

    2013-01-01

    We address the problem of adaptive informationoptimal data collection in time series. Here a remote sensor or explorer agent throttles its sampling rate in order to track anomalous events while obeying constraints on time and power. This problem is challenging because the agent has limited visibility -- all collected datapoints lie in the past, but its resource allocation decisions require predicting far into the future. Our solution is to continually fit a Gaussian process model to the latest data and optimize the sampling plan on line to maximize information gain. We compare the performance characteristics of stationary and nonstationary Gaussian process models. We also describe an application based on geologic analysis during planetary rover exploration. Here adaptive sampling can improve coverage of localized anomalies and potentially benefit mission science yield of long autonomous traverses.

  7. Stainless steel component with compressed fiber Bragg grating for high temperature sensing applications

    NASA Astrophysics Data System (ADS)

    Jinesh, Mathew; MacPherson, William N.; Hand, Duncan P.; Maier, Robert R. J.

    2016-05-01

    A smart metal component having the potential for high temperature strain sensing capability is reported. The stainless steel (SS316) structure is made by selective laser melting (SLM). A fiber Bragg grating (FBG) is embedded in to a 3D printed U-groove by high temperature brazing using a silver based alloy, achieving an axial FBG compression of 13 millistrain at room temperature. Initial results shows that the test component can be used for up to 700°C for sensing applications.

  8. The application of remote sensing to resource management and environmental quality programs in Kansas

    NASA Technical Reports Server (NTRS)

    Barr, B. G.

    1975-01-01

    Specific assistance to state agencies and public bodies on over 15 remote sensing projects concerned with (1) urban and regional analysis, (2) rural development, and (3) habitat management and environmental analysis is discussed. Specific problems of officials are considered and a basis for communication by demonstration is provided. In addition to data products in support of specific agency projects; consultation and training in use of satellite and aircraft imagery is provided to personnel from several state, regional, and county agencies. Effective communication and confidence is established through these efforts and users now routinely seek information and advice about the application of remote sensing technology to solution of their agency problems.

  9. Applications of remote sensing for water quality and biological measurements in coastal waters

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; Harriss, R. C.

    1979-01-01

    Potential applications of remote sensing technology to the study of coastal marine environments are reviewed, emphasizing water quality and biological measurements. Parameters measurable by airborne or spaceborne remote sensors include particulates, measured by visual or multispectral photography, chlorophyll a, measured by the Ocean Color Scanner or Coastal Zone Color Scanner, temperature distributions, by IR or microwave sensors, and salinity, by means of microwave radiometers. Research projects in which wide area synoptic or repetitive remote sensing can make a major contribution include the study of estuarine and continental shelf sediment transport dynamics, marine pollutant transport, marine phytoplankton dynamics and ocean fronts.

  10. An Adaptive Web-Based Learning Environment for the Application of Remote Sensing in Schools

    NASA Astrophysics Data System (ADS)

    Wolf, N.; Fuchsgruber, V.; Riembauer, G.; Siegmund, A.

    2016-06-01

    Satellite images have great educational potential for teaching on environmental issues and can promote the motivation of young people to enter careers in natural science and technology. Due to the importance and ubiquity of remote sensing in science, industry and the public, the use of satellite imagery has been included into many school curricular in Germany. However, its implementation into school practice is still hesitant, mainly due to lack of teachers' know-how and education materials that align with the curricula. In the project "Space4Geography" a web-based learning platform is developed with the aim to facilitate the application of satellite imagery in secondary school teaching and to foster effective student learning experiences in geography and other related subjects in an interdisciplinary way. The platform features ten learning modules demonstrating the exemplary application of original high spatial resolution remote sensing data (RapidEye and TerraSAR-X) to examine current environmental issues such as droughts, deforestation and urban sprawl. In this way, students will be introduced into the versatile applications of spaceborne earth observation and geospatial technologies. The integrated web-based remote sensing software "BLIF" equips the students with a toolset to explore, process and analyze the satellite images, thereby fostering the competence of students to work on geographical and environmental questions without requiring prior knowledge of remote sensing. This contribution presents the educational concept of the learning environment and its realization by the example of the learning module "Deforestation of the rainforest in Brasil".

  11. Theoretical Studies of Spectroscopic Line Mixing in Remote Sensing Applications

    NASA Astrophysics Data System (ADS)

    Ma, Q.

    2015-12-01

    The phenomenon of collisional transfer of intensity due to line mixing has an increasing importance for atmospheric monitoring. From a theoretical point of view, all relevant information about the collisional processes is contained in the relaxation matrix where the diagonal elements give half-widths and shifts, and the off-diagonal elements correspond to line interferences. For simple systems such as those consisting of diatom-atom or diatom-diatom, accurate fully quantum calculations based on interaction potentials are feasible. However, fully quantum calculations become unrealistic for more complex systems. On the other hand, the semi-classical Robert-Bonamy (RB) formalism, which has been widely used to calculate half-widths and shifts for decades, fails in calculating the off-diagonal matrix elements. As a result, in order to simulate atmospheric spectra where the effects from line mixing are important, semi-empirical fitting or scaling laws such as the ECS and IOS models are commonly used. Recently, while scrutinizing the development of the RB formalism, we have found that these authors applied the isolated line approximation in their evaluating matrix elements of the Liouville scattering operator given in exponential form. Since the criterion of this assumption is so stringent, it is not valid for many systems of interest in atmospheric applications. Furthermore, it is this assumption that blocks the possibility to calculate the whole relaxation matrix at all. By eliminating this unjustified application, and accurately evaluating matrix elements of the exponential operators, we have developed a more capable formalism. With this new formalism, we are now able not only to reduce uncertainties for calculated half-widths and shifts, but also to remove a once insurmountable obstacle to calculate the whole relaxation matrix. This implies that we can address the line mixing with the semi-classical theory based on interaction potentials between molecular absorber and

  12. Theoretical Studies of Spectroscopic Line Mixing in Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Boulet, C.; Tipping, R. H.

    2015-01-01

    The phenomenon of collisional transfer of intensity due to line mixing has an increasing importance for atmospheric monitoring. From a theoretical point of view, all relevant information about the collisional processes is contained in the relaxation matrix where the diagonal elements give half-widths and shifts, and the off-diagonal elements correspond to line interferences. For simple systems such as those consisting of diatom-atom or diatom-diatom, accurate fully quantum calculations based on interaction potentials are feasible. However, fully quantum calculations become unrealistic for more complex systems. On the other hand, the semi-classical Robert-Bonamy (RB) formalism, which has been widely used to calculate half-widths and shifts for decades, fails in calculating the off-diagonal matrix elements. As a result, in order to simulate atmospheric spectra where the effects from line mixing are important, semi-empirical fitting or scaling laws such as the ECS (Energy-Corrected Sudden) and IOS (Infinite-Order Sudden) models are commonly used. Recently, while scrutinizing the development of the RB formalism, we have found that these authors applied the isolated line approximation in their evaluating matrix elements of the Liouville scattering operator given in exponential form. Since the criterion of this assumption is so stringent, it is not valid for many systems of interest in atmospheric applications. Furthermore, it is this assumption that blocks the possibility to calculate the whole relaxation matrix at all. By eliminating this unjustified application, and accurately evaluating matrix elements of the exponential operators, we have developed a more capable formalism. With this new formalism, we are now able not only to reduce uncertainties for calculated half-widths and shifts, but also to remove a once insurmountable obstacle to calculate the whole relaxation matrix. This implies that we can address the line mixing with the semi-classical theory based on

  13. Direct laser deposition of nanostructured tungsten oxide for sensing applications

    NASA Astrophysics Data System (ADS)

    Palla-Papavlu, Alexandra; Filipescu, Mihaela; Schneider, Christof W.; Antohe, Stefan; Ossi, Paolo M.; Radnóczi, György; Dinescu, Maria; Wokaun, Alexander; Lippert, Thomas

    2016-05-01

    Nanostructured tungsten trioxide (WO3) thin films are deposited by pulsed laser deposition (PLD) and radio-frequency (RF) assisted PLD onto interdigitated sensor structures. Structural characterization by x-ray diffraction and Raman spectroscopy shows the WO3 films are polycrystalline, with a pure monoclinic phase for the PLD grown films. The as-fabricated WO3 sensors are tested for ammonia (NH3) detection, by measuring the electrical response to NH3 at different temperatures. Sensors based on WO3 deposited by RF-PLD do not show any response to NH3. In contrast, sensors fabricated by PLD operating at 100 °C and 200 °C show a slow recovery time whilst at 300 °C, these sensors are highly sensitive in the low ppm range with a recovery time in the range of a few seconds. The microstructure of the films is suggested to explain their excellent electrical response. Columnar WO3 thin films are obtained by both deposition methods. However, the WO3 films grown by PLD are porous, (which may allow NH3 molecules to diffuse through the film) whereas RF-PLD films are dense. Our results highlight that WO3 thin films deposited by PLD can be applied for the fabrication of gas sensors with a performance level required for industrial applications.

  14. A remote sensing applications update: Results of interviews with Earth Observations Commercialization Program (EOCAP) participants

    NASA Technical Reports Server (NTRS)

    Mcvey, Sally

    1991-01-01

    Earth remote sensing is a uniquely valuable tool for large-scale resource management, a task whose importance will likely increase world-wide through the foreseeable future. NASA research and engineering have virtually created the existing U.S. system, and will continue to push the frontiers, primarily through Earth Observing System (EOS) instruments, research, and data and information systems. It is the researchers' view that the near-term health of remote sensing applications also deserves attention; it seems important not to abandon the system or its clients. The researchers suggest that, like its Landsat predecessor, a successful Earth Observing System program is likely to reinforce pressure to 'manage' natural resources, and consequently, to create more pressure for Earth Observations Commercialization (EOCAP) type applications. The current applications programs, though small, are valuable because of their technical and commercial results, and also because they support a community whose contributions will increase along with our ability to observe the Earth from space.

  15. Fluorescent copper nanoparticles: recent advances in synthesis and applications for sensing metal ions

    NASA Astrophysics Data System (ADS)

    Guo, Yongming; Cao, Fengpu; Lei, Xiaoling; Mang, Lianghong; Cheng, Shengjuan; Song, Jintong

    2016-02-01

    Fluorescent copper nanoparticles (F-CuNPs) have received great attention due to their attractive features, such as water solubility, wide availability, ease of functionalization and good biocompatibility, and considerable efforts have been devoted to the preparation and applications of F-CuNPs. This review article comprises three main parts. In the first part, we briefly present the fluorescence properties of F-CuNPs. Then we cover the fabrication strategies of various F-CuNPs functionalized by different ligands. In the third part, we focus on the applications of F-CuNPs for sensing metal ions, including Hg2+, Pb2+, Cu2+, Fe3+ and other metal ions. Lastly, we further discuss the opportunities and challenges of F-CuNPs in the synthetic strategies and applications for sensing metal ions.

  16. Fluorescent copper nanoparticles: recent advances in synthesis and applications for sensing metal ions.

    PubMed

    Guo, Yongming; Cao, Fengpu; Lei, Xiaoling; Mang, Lianghong; Cheng, Shengjuan; Song, Jintong

    2016-03-01

    Fluorescent copper nanoparticles (F-CuNPs) have received great attention due to their attractive features, such as water solubility, wide availability, ease of functionalization and good biocompatibility, and considerable efforts have been devoted to the preparation and applications of F-CuNPs. This review article comprises three main parts. In the first part, we briefly present the fluorescence properties of F-CuNPs. Then we cover the fabrication strategies of various F-CuNPs functionalized by different ligands. In the third part, we focus on the applications of F-CuNPs for sensing metal ions, including Hg(2+), Pb(2+), Cu(2+), Fe(3+) and other metal ions. Lastly, we further discuss the opportunities and challenges of F-CuNPs in the synthetic strategies and applications for sensing metal ions. PMID:26879547

  17. Application of remote sensing to monitoring and studying dispersion in ocean dumping

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; Ohlhorst, C. W.

    1981-01-01

    Remotely sensed wide area synoptic data provides information on ocean dumping that is not readily available by other means. A qualitative approach has been used to map features, such as river plumes. Results of quantitative analyses have been used to develop maps showing quantitative distributions of one or more water quality parameters, such as suspended solids or chlorophyll a. Joint NASA/NOAA experiments have been conducted at designated dump areas in the U.S. coastal zones to determine the applicability of aircraft remote sensing systems to map plumes resulting from ocean dumping of sewage sludge and industrial wastes. A second objective is related to the evaluation of previously developed quantitative analysis techniques for studying dispersion of materials in these plumes. It was found that plumes resulting from dumping of four waste materials have distinctive spectral characteristics. The development of a technology for use in a routine monitoring system, based on remote sensing techniques, is discussed.

  18. Aerospace remote sensing of the coastal zone for water quality and biotic productivity applications

    NASA Technical Reports Server (NTRS)

    Pritchard, E. B.; Harriss, R. C.

    1981-01-01

    Remote sensing can provide the wide area synoptic coverage of surface waters which is required for studies of such phenomena as river plume mixing, phytoplankton dynamics, and pollutant transport and fate, but which is not obtainable by conventional oceanographic techniques. The application of several remote sensors (aircraftborne and spacecraftborne multispectral scanners, passive microwave radiometers, and active laser systems) to coastal zone research is discussed. Current measurement capabilities (particulates, chlorophyll a, temperature, salinity, ocean dumped materials, other pollutants, and surface winds and roughness) are defined and the results of recent remote sensing experiments conducted in the North Atlantic coastal zone are presented. The future development of remote sensing must rely on an integrated laboratory research program in optical physics. Recent results indicate the potential for separation of particulates into subsets by remote sensors.

  19. 3D sensing for machine guidance in meat cutting applications

    NASA Astrophysics Data System (ADS)

    Daley, Wayne; Britton, Doug; Usher, Colin; Diao, Mamadou; Ruffin, Kevin

    2005-11-01

    Most cutting and deboning operations in meat processing require accurate cuts be made to obtain maximum yield and ensure food safety. This is a significant concern for purveyors of deboned product. This task is made more difficult by the variability that is present in most natural products. The specific application of interest in this paper is the production of deboned poultry breast. This is typically obtained from a cut of the broiler called a 'front half' that includes the breast and the wings. The deboning operation typically consists of a cut that starts at the shoulder joint and then continues along the scapula. Attentive humans with training do a very good job of making this cut. The breast meat is then removed by pulling on the wings. Inaccurate cuts lead to poor yield (amount of boneless meat obtained relative to the weight of the whole carcass) and increase the probability that bone fragments might end up in the product. As equipment designers seek to automate the deboning operation, the cutting task has been a significant obstacle to developing automation that maximizes yield without generating unacceptable levels of bone fragments. The current solution is to sort the bone-in product into different weight ranges and then to adjust the deboning machines to the average of these weight ranges. We propose an approach for obtaining key cut points by extrapolation from external reference points based on the anatomy of the bird. We show that this approach can be implemented using a stereo imaging system, and the accuracy in locating the cut points of interest is significantly improved. This should result in more accurate cuts and with this concomitantly improved yield while reducing the incidence of bones. We also believe the approach could be extended to the processing of other species.

  20. Crosswell Magnetic Sensing of Superparamagnetic Nanoparticles for Subsurface Applications

    NASA Astrophysics Data System (ADS)

    Rahmani, A.; Athey, A.; Wilt, M.; Chen, J.

    2012-12-01

    Stable dispersions of superparamagnetic nanoparticles, already used in biomedicine as image-enhancing agents, have potential in subsurface applications. The surface-coated nanoparticles are capable of flowing through micron-size pores across long distances in a reservoir with minimal retention in rock. These particles change the magnetic permeability of the flooded region, and when added to the injected fluid during enhanced oil recovery processes, they can be used to tag the flood. In this paper, we model the propagation of a "ferrofluid" slug in a reservoir and its response to a crosswell magnetic tomography system. The magnetic response to these contrast agents can thus help characterize the formation and fluid displacement mechanisms. The monitoring of fluid injections into reservoirs builds upon the established EM conductivity monitoring technology. In this work, however, particular attention is paid to distinguish the injected and resident fluids when they have similar conductivities but different magnetic permeabilities. Specifically, we focus on low-frequency (less than 100 Hz) magnetic excitations generated by a vertical magnetic dipole source positioned at the injection well. At such low frequencies, the induction effect is small, the casing effect is manageable, and the crosswell response originates purely from the magnetic contrast in the formation. In this study, we assume a 2d axisymmetric model and track a donut-shaped ferrofluid slug of magnetic permeability 2 as it propagates toward an observatory well, housing magnetic field receivers and located 100 m away from the injection well. We apply vertical magnetic dipole source and receivers at multiple levels within the tomography section. A non-magnetic and non-conductive casing is assumed for both wells. The ferrofluid slug volume is conserved throughout the dispersionless propagation and confined within a 20 m thick reservoir layer at a depth of 1 Km. We compare the response of a conductive slug

  1. A new application of compressive sensing in MRI

    NASA Astrophysics Data System (ADS)

    Baselice, Fabio; Ferraioli, Giampaolo; Lenti, Flavia; Pascazio, Vito

    2014-03-01

    Image formation in Magnetic Resonance Imaging (MRI) is the procedure which allows the generation of the image starting from data acquired in the so called k-space. At the present, many image formation techniques have been presented, working with different k-space filling strategies. Recently, Compressive Sampling (CS) has been successfully used for image formation from non fully sampled k-space acquisitions, due to its interesting property of reconstructing signal from highly undetermined linear systems. The main advantage consists in greatly reducing the acquisition time. Within this manuscript, a novel application of CS to MRI field is presented, named Intra Voxel Analysis (IVA). The idea is to achieve the so-called super resolution, i.e. the possibility of distinguish anatomical structures smaller than the spatial resolution of the image. For this aim, multiple Spin Echo images acquired with different Echo Times are required. The output of the algorithm is the estimation of the number of contributions present in the same pixel, i.e. the number of tissues inside the same voxel, and their spin-spin relaxation times. This allows us not only to identify the number of involved tissues, but also to discriminate them. At the present, simulated case studies have been considered, obtaining interesting and promising results. In particular, a study on the required number of images, on the estimation noise and on the regularization parameter of different CS algorithms has been conducted. As future work, the method will be applied to real clinical datasets, in order to validate the estimations.

  2. Temporal Analysis of Remotely Sensed Precipitation Products for Hydrological Applications

    NASA Astrophysics Data System (ADS)

    Tobin, K. J.; Bennett, M. E.

    2011-12-01

    No study has systematically evaluated streamflow modeling between monthly and daily timescales. This study examines streamflow from eight watersheds across the United States where five different precipitation products were used as primary input into the Soil and Water Assessment Tool to generate simulated streamflow. Timescales examined include monthly, dekad (10 day), pentad (5 day), triad (3 day), and daily. The eight basins studied are the San Pedro (Arizona); Cimarron (north-central Oklahoma); mid-Nueces (south Texas); mid-Rio Grande (south Texas and northern Mexico), Yocano (northern Mississippi); Alapaha (south Georgia); Upper Tar (North Carolina) and mid-St. Francis (eastern Arkansas). The precipitation products used to drive simulations include rain gauge, NWS Multisensor Precipitation Estimator, Tropical Rainfall Measurement Mission, Multi-Satellite (TRMM) Precipitation Analysis, TRMM 3B42-V6, and Climate Prediction Center Morphing Method (CMORPH). Understanding how streamflow varies at sub-monthly timescales is important because there are a host of hydrological applications such a flood forecast guidance and reservoir inflow forecasts that reside in a temporal domain between monthly and daily timescales. The major finding of this study is the quantification of a strong positive correlation between performance metrics and time step at which model performance deteriorates. Basically, better performing simulations, with higher Nash-Sutcliffe values of 0.80 and above can support modeling at finer timescales to at least daily and perhaps beyond into the sub-daily realm. These findings are significant in that they clearly document the ability of SWAT to support modeling at sub-monthly time steps, which is beyond the capability for which SWAT was initially designed.

  3. Development of techniques required for the application of a laser to three dimensional visual sensing

    NASA Technical Reports Server (NTRS)

    Ryan, Arthur M.; Gerhardt, Lester A.

    1991-01-01

    The ongoing vision research at the Center for Intelligent Robotic Systems for Space Exploration (CIRSSE) is directed toward identifying and addressing the relevant issues involved in applying visual sensing to space assembly tasks. A considerable amount of effort has been devoted to passive sensing techniques such as using multiple cameras to identify objects in a scene. To compliment the capabilities of the passive visual system in the CIRSSE robotics testbed, research is being conducted in active sensing techniques. This report is description of the research associated with the testbed's laser scanner and its application as an active sensing device. The report is comprised of five major topics. First is a brief description of the CIRSSE visual system and a summary of the active sensing research that has been conducted up to this point. Second, some of the methods currently used to calibrate CIRSSE's laser scanner are described as well as an appraisal of the effectiveness of these methods. Third, is a discussion of how the laser scanner can be employed in concert with a camera to provide a three dimensional point estimation capability. Fourth, there is a description of methods that can be used to detect the presence of the laser beam in a cluttered camera image. Finally, there is a summary of the current state of this research and a description of research planned for the future.

  4. Thermal infrared remote sensing of surface features for renewable resource applications

    NASA Technical Reports Server (NTRS)

    Welker, J. E.

    1981-01-01

    The subjects of infrared remote sensing of surface features for renewable resource applications is reviewed with respect to the basic physical concepts involved at the Earth's surface and up through the atmosphere, as well as the historical development of satellite systems which produce such data at increasingly greater spatial resolution. With this general background in hand, the growth of a variety of specific renewable resource applications using the developing thermal infrared technology are discussed, including data from HCMM investigators. Recommendations are made for continued growth in this field of applications.

  5. Aerosol Remote Sensing Applications for Airborne Multiangle, Multispectral Shortwave Radiometers

    NASA Astrophysics Data System (ADS)

    von Bismarck, Jonas; Ruhtz, Thomas; Starace, Marco; Hollstein, André; Preusker, René; Fischer, Jürgen

    2010-05-01

    and ground based operations of the instruments so far, only two exemplary campaigns shall be introduced here. FUBEX in July 2008 was the first airborne campaign with FUBISS-ASA2, FUBISS-ZENITH and AMSSP-EM simultaneously mounted on the Cessna 207T of the Institute for Space Sciences, based in Berlin. Vertical radiation profiles recorded on July 28 in 2008 where used for a first application of the introduced inversion algorithm. In Oktober/November 2009, FUBISS-ASA2 and FUBISS-ZENITH where mounted on the German research icebreaker FS Polarstern, crossing the Atlantic on its cruise from Bremerhaven (Germany) to Punta Arenas (Chile). Measurements where performed throughout the whole cruise on days with a variety of different atmospheric conditions, as a Saharan dust outbreak over Cape Verde, typical marine conditions with salt particles in the marine boundary layer and also pristine conditions in the southern Atlantic. Access to the data of other instruments aboard the ship, as a Raman-Lidar, a cloud camera, weather station, and a microwave radiometer, provided valuable a priori information for processing and calibration of the measurements. The results may be of special interest for the validation of satellite aerosol products.

  6. The NASA CYGNSS mission: a pathfinder for GNSS scatterometry remote sensing applications

    NASA Astrophysics Data System (ADS)

    Rose, Randy; Gleason, Scott; Ruf, Chris

    2014-10-01

    Global Navigation Satellite System (GNSS) based scatterometry offers breakthrough opportunities for wave, wind, ice, and soil moisture remote sensing. Recent developments in electronics and nano-satellite technologies combined with modeling techniques developed over the past 20 years are enabling a new class of remote sensing capabilities that present more cost effective solutions to existing problems while opening new applications of Earth remote sensing. Key information about the ocean and global climate is hidden from existing space borne observatories because of the frequency band in which they operate. Using GNSS-based bi-static scatterometry performed by a constellation of microsatellites offers remote sensing of ocean wave, wind, and ice data with unprecedented temporal resolution and spatial coverage across the full dynamic range of ocean wind speeds in all precipitating conditions. The NASA Cyclone Global Navigation Satellite System (CYGNSS) is a space borne mission being developed to study tropical cyclone inner core processes. CYGNSS consists of 8 GPS bi-static radar receivers to be deployed on separate micro-satellites in October 2016. CYGNSS will provide data to address what are thought to be the principle deficiencies with current tropical cyclone intensity forecasts: inadequate observations and modeling of the inner core. The inadequacy in observations results from two causes: 1) Much of the inner core ocean surface is obscured from conventional remote sensing instruments by intense precipitation in the eye wall and inner rain bands. 2) The rapidly evolving (genesis and intensification) stages of the tropical cyclone life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. It is anticipated that numerous additional Earth science applications can also benefit from the cost effective high spatial and temporal sampling capabilities of GNSS remote sensing. These applications include monitoring of rough and

  7. Remote sensing applications in the meteorology and operational hydrology programmes of WMO

    NASA Astrophysics Data System (ADS)

    Leese, John A.

    Remote sensing from satellites continues to have a very large impact on the activities of the World Meteorological Organization (WMO) and continues to provide very great benefits to meteorological services throughout the world. Meteorological satellites provide remotely sensed data which can be converted into meteorological measurements such as cloud cover, cloud motion vectors, surface temperature, vertical profiles of atmospheric temperature and humidity, snow and ice cover, ozone and various radiation measurements. The meteorological satellites are part of the global operations of the World Weather Watch Programme which serves as the basic programme of the WMO by supporting other programmes and activities. Satellite measurements are critical to the success of many different components in the World Climate Programme. Special projects are being designed for the 1990s to take advantage of the data from satellite systems designed primarily to provide land or ocean observations. The Applications of Meteorology Programme makes use of remotely sensed data to provide products and services to agricultural, aeronautical and marine activities. The transfer of knowledge and technology in satellite remote sensing applications are important elements of the Technical Co-operation and the Education and Training Programmes. The views expressed in this paper are those of the author and not necessarily the views of the World Meteorological Organization.

  8. Application of multivariate curve resolution alternating least squares (MCR-ALS) to remote sensing hyperspectral imaging.

    PubMed

    Zhang, Xin; Tauler, Romà

    2013-01-31

    The application of the MCR-ALS method is demonstrated on two simulated remote sensing spectroscopic images and on one experimental reference remote sensing spectroscopic image obtained by the Airborn Visible/Infrared Imaging Spectrometer (AVIRIS). By application of MCR-ALS, the spectra signatures of the pure constituents present in the image and their concentration distribution at a pixel level are estimated. Results obtained by MCR-ALS are compared to those obtained by other methods frequently used in the remote sensing spectroscopic imaging field like VCA and MVSA. In the case of the analysis of the experimental data set, the resolved pure spectra signatures were compared to reference spectra from USGS library for their identification. In all cases, results were also evaluated for the presence of rotational ambiguities using the MCR-BANDS method. The obtained results confirmed that the MCR-ALS method can be successfully used for remote sensing hyperspectral image resolution purposes. However, the amount of rotation ambiguity still present in the solutions obtained by this and other resolution methods (like VCA or MVSA) can still be large and it should be evaluated with care, trying to reduce its effects by selecting the more appropriate constraints. Only in this way it is possible to increase the reliability of the solutions provided by these methods and decrease the uncertainties associated to their use.

  9. Advances in electrospun carbon fiber-based electrochemical sensing platforms for bioanalytical applications.

    PubMed

    Mao, Xianwen; Tian, Wenda; Hatton, T Alan; Rutledge, Gregory C

    2016-02-01

    Electrochemical sensing is an efficient and inexpensive method for detection of a range of chemicals of biological, clinical, and environmental interest. Carbon materials-based electrodes are commonly employed for the development of electrochemical sensors because of their low cost, biocompatibility, and facile electron transfer kinetics. Electrospun carbon fibers (ECFs), prepared by electrospinning of a polymeric precursor and subsequent thermal treatment, have emerged as promising carbon systems for biosensing applications since the electrochemical properties of these carbon fibers can be easily modified by processing conditions and post-treatment. This review addresses recent progress in the use of ECFs for sensor fabrication and analyte detection. We focus on the modification strategies of ECFs and identification of the key components that impart the bioelectroanalytical activities, and point out the future challenges that must be addressed in order to advance the fundamental understanding of the ECF electrochemistry and to realize the practical applications of ECF-based sensing devices. PMID:26650731

  10. Advances in electrospun carbon fiber-based electrochemical sensing platforms for bioanalytical applications.

    PubMed

    Mao, Xianwen; Tian, Wenda; Hatton, T Alan; Rutledge, Gregory C

    2016-02-01

    Electrochemical sensing is an efficient and inexpensive method for detection of a range of chemicals of biological, clinical, and environmental interest. Carbon materials-based electrodes are commonly employed for the development of electrochemical sensors because of their low cost, biocompatibility, and facile electron transfer kinetics. Electrospun carbon fibers (ECFs), prepared by electrospinning of a polymeric precursor and subsequent thermal treatment, have emerged as promising carbon systems for biosensing applications since the electrochemical properties of these carbon fibers can be easily modified by processing conditions and post-treatment. This review addresses recent progress in the use of ECFs for sensor fabrication and analyte detection. We focus on the modification strategies of ECFs and identification of the key components that impart the bioelectroanalytical activities, and point out the future challenges that must be addressed in order to advance the fundamental understanding of the ECF electrochemistry and to realize the practical applications of ECF-based sensing devices.

  11. Meteorological and Remote Sensing Applications of High Altitude Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Schoenung, S. M.; Wegener, S. S.

    1999-01-01

    Unmanned aerial vehicles (UAVs) are maturing in performance and becoming available for routine use in environmental applications including weather reconnaissance and remote sensing. This paper presents a discussion of UAV characteristics and unique features compared with other measurement platforms. A summary of potential remote sensing applications is provided, along with details for four types of tropical cyclone missions. Capabilities of platforms developed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program are reviewed, including the Altus, Perseus, and solar- powered Pathfinder, all of which have flown to over 57,000 ft (17 km). In many scientific missions, the science objectives drive the experimental design, thus defining the sensor payload, aircraft performance, and operational requirements. Some examples of science missions and the requisite UAV / payload system are given. A discussion of technology developments needed to fully mature UAV systems for routine operational use is included, along with remarks on future science and commercial UAV business opportunities.

  12. Eighth year projects and activities of the Environmental Remote Sensing Applications Laboratory (ERSAL). [Oregon

    NASA Technical Reports Server (NTRS)

    Lewis, A. J.; Isaacson, D. L.; Schrumpf, B. J. (Principal Investigator)

    1980-01-01

    Projects completed for the NASA Office of University Affairs include the application of remote sensing data in support of rehabilitation of wild fire damaged areas and the use of LANDSAT 3 return beam vidicon in forestry mapping applications. Continuing projects for that office include monitoring western Oregon timber clearcut; detecting and monitoring wheat disease; land use monitoring for tax assessment in Umatilla, Lake, and Morrow Counties; and the use of Oregon Air National Guard thermal infrared scanning data. Projects funded through other agencies include the remote sensing inventory of elk in the Blue Mountains; the estimation of burned agricultural acreage in the Willamette Valley; a resource inventory of Deschutes County; and hosting a LANDSAT digital workshop.

  13. Public health applications of remote sensing of the environment, an evaluation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The available techniques were examined in the field of remote sensing (including aerial photography, infrared detection, radar, etc.) and applications to a number of problems in the wide field of public health determined. The specific areas of public health examined included: air pollution, water pollution, communicable disease, and the combined problems of urban growth and the effect of disasters on human communities. The assessment of the possible applications of remote sensing to these problems was made primarily by examination of the available literature in each field, and by interviews with health authorities, physicists, biologists, and other interested workers. Three types of programs employing remote sensors were outlined in the air pollution field: (1) proving ability of sensors to monitor pollutants at three levels of interest - point source, ambient levels in cities, and global patterns; (2) detection of effects of pollutants on the environment at local and global levels; and (3) routine monitoring.

  14. Development of a quartz digital accelerometer for environmental sensing and navigation applications

    SciTech Connect

    Kass, W.J.; Vianco, P.T.

    1993-03-01

    A quartz digital accelerometer has been developed which uses double ended tuning forks as the active sensing elements. The authors have demonstrated the ability of this accelerometer to be capable of acceleration measurements between {+-}150G with {+-}0.5G accuracy. They have further refined the original design and assembly processes to produce accelerometers with < 1mG stability in inertial measurement applications. This report covers the development, design, processing, assembly, and testing of these devices.

  15. A new bio-inspired decision chain for UAV sense-and-avoid applications

    NASA Astrophysics Data System (ADS)

    Fallavollita, P.; Cimini, F.; Balsi, M.; Esposito, S.; Jankowski, S.

    This work, after a preliminary feasibility study using a Matlab environment simulation, defines the design and the real hardware testing of a new bio-inspired decision chain for UAV sense-and-avoid applications. Relying on a single and cheap visible camera sensor, computer vision, bio-inspired and automatic decision algorithms have been adopted and implemented on a specific ARM embedded platform through C++/OpenCV coding. A first data set processing, really captured on flight, has been presented.

  16. Development of Optically Active Nanostructures for Potential Applications in Sensing, Therapeutics and Imaging

    NASA Astrophysics Data System (ADS)

    Joshi, Padmanabh

    Materials at nanoscale are finding manifold applications in the various fields like sensing, plasmonics, therapeutics, to mention a few. Large amount of development has taken place regarding synthesis and exploring the novel applications of the various types of nanomaterials like organic, inorganic and hybrid of both. Yet, it is believed that the full potential of different nanomaterials is yet to be fully established stimulating researchers to explore more in the field of nanotechnology. Building on the same premise, in the following studies we have developed the nanomaterials in the class of optically active nanoparticles. First part of the study we have successfully designed, synthesized, and characterized Ag-Fe3O4 nanocomposite substrate for potential applications in quantitative Surface Enhanced Raman Scattering (SERS) measurements. Quantitative SERS-based detection of dopamine was performed successfully. In subsequent study, facile, single-step synthesis of polyethyleneimine (PEI) coated lanthanide based NaYF4 (Yb, Er) nanoparticles was developed and their application as potential photodynamic therapy agent was studied using excitations by light in near infra-red and visible region. In the following and last study, synthesis and characterization of the conjugated polymer nanoparticles was attempted successfully. Functionalization of the conjugated nanoparticles, which is a bottleneck for their potential applications, was successfully performed by encapsulating them in the silica nanoparticles, surface of which was then functionalized by amine group. Three types of optically active nanoparticles were developed for potential applications in sensing, therapeutics and imaging.

  17. Advantages of high-frequency Pulse-tube technology and its applications in infrared sensing

    NASA Astrophysics Data System (ADS)

    Arts, R.; Willems, D.; Mullié, J.; Benschop, T.

    2016-05-01

    The low-frequency pulse-tube cryocooler has been a workhorse for large heat lift applications. However, the highfrequency pulse tube has to date not seen the widespread use in tactical infrared applications that Stirling cryocoolers have had, despite significant advantages in terms of exported vibrations and lifetime. Thales Cryogenics has produced large series of high-frequency pulse-tube cryocoolers for non-infrared applications since 2005. However, the use of Thales pulse-tube cryocoolers for infrared sensing has to date largely been limited to high-end space applications. In this paper, the performances of existing available off-the-shelf pulse-tube cryocoolers are examined versus typical tactical infrared requirements. A comparison is made on efficiency, power density, reliability, and cost. An outlook is given on future developments that could bring the pulse-tube into the mainstream for tactical infrared applications.

  18. Potentially efficient forest and range applications of remote sensing using earth orbital space craft, circa 1980

    NASA Technical Reports Server (NTRS)

    Wilson, R. C.

    1970-01-01

    Sixteen remote sensing applications or groups of related applications judged to be most important of any in the forestry and range disciplines were evaluated. In one application, major land classification, large amounts of useful data are anticipated to be contributed by space sensors in 1980. In four applications moderate amounts are anticipated to be so contributed. These are timber inventory, range inventory, fire weather forecasting, and monitoring snowfields. In the following seven applications small but significant amounts of data are anticipated to be contributed by space sensors: (1) detailed land classification; (2) inventory of wildlife habitat; (3) recreation resource inventory; (4) detecting stresses on the vegetation (5) monitoring air pollution caused by wildfires and prescribed burning; (6) monitoring water cycle, (7) pollution and erosion; and (8) evaluating damage to forests and ranges.

  19. A large-scale ceramic package of the CMOS image sensor chip for remote sensing application

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Hung; Ling, Jer; Lo, Shih-Hung; Hsu, Wen-Chih; Liu, Cynthia

    2012-10-01

    A CMOS image sensor chip with the ceramic package technique for remote sensing application is presented in this paper. The chip is fabricated using the United Microelectronics Corporation (UMC) 0.18 um CMOS technology and occupies 25 mm x 120 mm of chip area, which is much larger than the conventional ones. Furthermore, a trade-off in sealing of the cover glass faces the gas leak and moisture sorption. The package of the CMOS image sensor chip in space may cause crack, leakage, and deformation. Consequently, a large-scale and specific package is required to meet remote sensing application. The proposed ceramic package comprises a ceramic substrate, a cover glass, a chip seal, a glass seal, and golden lines. The dimension with lead is approximately 155 mm x 60 mm x 7.87 mm, including 76 Pin Grid Array (PGA) at each side. To demonstrate the reliabilities, the sensor with large-scale ceramic package is also analyzed, manufactured, and tested by the thermal shock, vibration, and vacuum tests. Moreover, the Coordinate Measuring Machine (CMM) is employed to measure the common plane of the package. By testing 12 points on the top plane of the package, the measured relatively peak-to-peak variation can be lower than 10 um. A large-scale ceramic package of the CMOS image sensor chip is implemented in this work to achieve the specifications of the remote sensing application in space.

  20. A study on the application of ICCD in low light level remote sensing

    NASA Astrophysics Data System (ADS)

    Bai, Zhe; Zhang, Jian; Fan, Xue-wu; Yang, Wen-gang

    2013-08-01

    Image intensifiers are always used to amplify low light level (LLL) images in a wide wavelength range to observable levels. As a leader in image intensifiers for industrial and scientific applications, intensified CCD (ICCD) is an innovative product which is a hybrid of image intensifier and CCD. Over the past few decades ICCDs have been increasingly developed and widely used in a variety of fields such as LLL television system and medical diagnostics. In this paper, we present the application of ICCD in the field of LLL remote sensing. General LLL imaging devices are introduced briefly, and their advantages and disadvantages are compared. ICCD technology which includes fundamental, configuration and development, is expatiated on. The major parameters which incarnate the performance of the LLL remote sensing ICCD camera are analyzed in detail, such as signal noise ratio (SNR), dynamic range, spatial resolution, etc. An ICCD camera is designed, and an imaging experiment is made to validate the imaging ability of it in LLL condition. The experiment results are discussed and summarized. At last, the most important issues to the application of ICCD in LLL remote sensing are generalized in detail.

  1. Remote sensing and implications for variable-rate application using agricultural aircraft

    NASA Astrophysics Data System (ADS)

    Thomson, Steven J.; Smith, Lowrey A.; Ray, Jeffrey D.; Zimba, Paul V.

    2004-01-01

    Aircraft routinely used for agricultural spray application are finding utility for remote sensing. Data obtained from remote sensing can be used for prescription application of pesticides, fertilizers, cotton growth regulators, and water (the latter with the assistance of hyperspectral indices and thermal imaging). Digital video was used to detect weeds in early cotton, and preliminary data were obtained to see if nitrogen status could be detected in early soybeans. Weeds were differentiable from early cotton at very low altitudes (65-m), with the aid of supervised classification algorithms in the ENVI image analysis software. The camera was flown at very low altitude for acceptable pixel resolution. Nitrogen status was not detectable by statistical analysis of digital numbers (DNs) obtained from images, but soybean cultivar differences were statistically discernable (F=26, p=0.01). Spectroradiometer data are being analyzed to identify narrow spectral bands that might aid in selecting camera filters for determination of plant nitrogen status. Multiple camera configurations are proposed to allow vegetative indices to be developed more readily. Both remotely sensed field images and ground data are to be used for decision-making in a proposed variable-rate application system for agricultural aircraft. For this system, prescriptions generated from digital imagery and data will be coupled with GPS-based swath guidance and programmable flow control.

  2. Advanced Spatial-Division Multiplexed Measurement Systems Propositions-From Telecommunication to Sensing Applications: A Review.

    PubMed

    Weng, Yi; Ip, Ezra; Pan, Zhongqi; Wang, Ting

    2016-01-01

    The concepts of spatial-division multiplexing (SDM) technology were first proposed in the telecommunications industry as an indispensable solution to reduce the cost-per-bit of optical fiber transmission. Recently, such spatial channels and modes have been applied in optical sensing applications where the returned echo is analyzed for the collection of essential environmental information. The key advantages of implementing SDM techniques in optical measurement systems include the multi-parameter discriminative capability and accuracy improvement. In this paper, to help readers without a telecommunication background better understand how the SDM-based sensing systems can be incorporated, the crucial components of SDM techniques, such as laser beam shaping, mode generation and conversion, multimode or multicore elements using special fibers and multiplexers are introduced, along with the recent developments in SDM amplifiers, opto-electronic sources and detection units of sensing systems. The examples of SDM-based sensing systems not only include Brillouin optical time-domain reflectometry or Brillouin optical time-domain analysis (BOTDR/BOTDA) using few-mode fibers (FMF) and the multicore fiber (MCF) based integrated fiber Bragg grating (FBG) sensors, but also involve the widely used components with their whole information used in the full multimode constructions, such as the whispering gallery modes for fiber profiling and chemical species measurements, the screw/twisted modes for examining water quality, as well as the optical beam shaping to improve cantilever deflection measurements. Besides, the various applications of SDM sensors, the cost efficiency issue, as well as how these complex mode multiplexing techniques might improve the standard fiber-optic sensor approaches using single-mode fibers (SMF) and photonic crystal fibers (PCF) have also been summarized. Finally, we conclude with a prospective outlook for the opportunities and challenges of SDM

  3. Fast vision through frameless event-based sensing and convolutional processing: application to texture recognition.

    PubMed

    Perez-Carrasco, Jose Antonio; Acha, Begona; Serrano, Carmen; Camunas-Mesa, Luis; Serrano-Gotarredona, Teresa; Linares-Barranco, Bernabe

    2010-04-01

    Address-event representation (AER) is an emergent hardware technology which shows a high potential for providing in the near future a solid technological substrate for emulating brain-like processing structures. When used for vision, AER sensors and processors are not restricted to capturing and processing still image frames, as in commercial frame-based video technology, but sense and process visual information in a pixel-level event-based frameless manner. As a result, vision processing is practically simultaneous to vision sensing, since there is no need to wait for sensing full frames. Also, only meaningful information is sensed, communicated, and processed. Of special interest for brain-like vision processing are some already reported AER convolutional chips, which have revealed a very high computational throughput as well as the possibility of assembling large convolutional neural networks in a modular fashion. It is expected that in a near future we may witness the appearance of large scale convolutional neural networks with hundreds or thousands of individual modules. In the meantime, some research is needed to investigate how to assemble and configure such large scale convolutional networks for specific applications. In this paper, we analyze AER spiking convolutional neural networks for texture recognition hardware applications. Based on the performance figures of already available individual AER convolution chips, we emulate large scale networks using a custom made event-based behavioral simulator. We have developed a new event-based processing architecture that emulates with AER hardware Manjunath's frame-based feature recognition software algorithm, and have analyzed its performance using our behavioral simulator. Recognition rate performance is not degraded. However, regarding speed, we show that recognition can be achieved before an equivalent frame is fully sensed and transmitted.

  4. Advanced Spatial-Division Multiplexed Measurement Systems Propositions—From Telecommunication to Sensing Applications: A Review

    PubMed Central

    Weng, Yi; Ip, Ezra; Pan, Zhongqi; Wang, Ting

    2016-01-01

    The concepts of spatial-division multiplexing (SDM) technology were first proposed in the telecommunications industry as an indispensable solution to reduce the cost-per-bit of optical fiber transmission. Recently, such spatial channels and modes have been applied in optical sensing applications where the returned echo is analyzed for the collection of essential environmental information. The key advantages of implementing SDM techniques in optical measurement systems include the multi-parameter discriminative capability and accuracy improvement. In this paper, to help readers without a telecommunication background better understand how the SDM-based sensing systems can be incorporated, the crucial components of SDM techniques, such as laser beam shaping, mode generation and conversion, multimode or multicore elements using special fibers and multiplexers are introduced, along with the recent developments in SDM amplifiers, opto-electronic sources and detection units of sensing systems. The examples of SDM-based sensing systems not only include Brillouin optical time-domain reflectometry or Brillouin optical time-domain analysis (BOTDR/BOTDA) using few-mode fibers (FMF) and the multicore fiber (MCF) based integrated fiber Bragg grating (FBG) sensors, but also involve the widely used components with their whole information used in the full multimode constructions, such as the whispering gallery modes for fiber profiling and chemical species measurements, the screw/twisted modes for examining water quality, as well as the optical beam shaping to improve cantilever deflection measurements. Besides, the various applications of SDM sensors, the cost efficiency issue, as well as how these complex mode multiplexing techniques might improve the standard fiber-optic sensor approaches using single-mode fibers (SMF) and photonic crystal fibers (PCF) have also been summarized. Finally, we conclude with a prospective outlook for the opportunities and challenges of SDM

  5. Application of indicators derived by remote sensing for mapping of landslide hazard and vulnerability

    NASA Astrophysics Data System (ADS)

    Eidsvig, Unni; Vidar Vangelsten, Bjørn; Geiss, Christian; Klotz, Martin; Ekseth, Kristine; Taubenböck, Hannes

    2014-05-01

    The choice and the development of methods for risk assessment of landslides depends on several factors. Important factors are the type of landslide and the elements at risk, the choice of spatial and temporal scale, the purpose of the analysis and the needs of the end-users. In addition, data availability is a major constraint, which greatly affects the type of methods and models that can be developed. Remote sensing is a promising tool for an economical and up-to-date data collection, which also could be applied to monitor the dynamic development of risk. The spatial and temporal distribution of the risk for landslides can be assessed by monitoring hazard indicators (e.g. slope height and slope angle), exposure indicators (e.g. number of houses and the total population) and vulnerability indicators (e.g. population density, settlement structures or indicators related to structural vulnerability). Several of the indicators applicable for landslide risk and vulnerability can be obtained by remote sensing techniques. However, for better results, indicators from remote sensing should be combined with other type of data. In this work, a review on the application of indicators for landslide risk assessment in explicit models as well as an assessment of end user needs was conducted in order to determine the most relevant indicators for landslide hazard and vulnerability. Lists of recommended indicators, mainly derivable from remote sensing, have been developed. These indicators are supposed to be used in risk assessment, e.g. by combining hazard, vulnerability and exposure indicators to produce risk indices. Moreover schemes for ranking, weighting and aggregation of the indicators into hazard- and vulnerability indices are provided. The research leading to these results has received funding from the European Community's Seventh Framework Programme [FP7-SPACE-2012-1] under Grant agreement No 312972 Framework to integrate Space-based and in-situ sENSing for dynamic v

  6. Advanced Spatial-Division Multiplexed Measurement Systems Propositions-From Telecommunication to Sensing Applications: A Review.

    PubMed

    Weng, Yi; Ip, Ezra; Pan, Zhongqi; Wang, Ting

    2016-01-01

    The concepts of spatial-division multiplexing (SDM) technology were first proposed in the telecommunications industry as an indispensable solution to reduce the cost-per-bit of optical fiber transmission. Recently, such spatial channels and modes have been applied in optical sensing applications where the returned echo is analyzed for the collection of essential environmental information. The key advantages of implementing SDM techniques in optical measurement systems include the multi-parameter discriminative capability and accuracy improvement. In this paper, to help readers without a telecommunication background better understand how the SDM-based sensing systems can be incorporated, the crucial components of SDM techniques, such as laser beam shaping, mode generation and conversion, multimode or multicore elements using special fibers and multiplexers are introduced, along with the recent developments in SDM amplifiers, opto-electronic sources and detection units of sensing systems. The examples of SDM-based sensing systems not only include Brillouin optical time-domain reflectometry or Brillouin optical time-domain analysis (BOTDR/BOTDA) using few-mode fibers (FMF) and the multicore fiber (MCF) based integrated fiber Bragg grating (FBG) sensors, but also involve the widely used components with their whole information used in the full multimode constructions, such as the whispering gallery modes for fiber profiling and chemical species measurements, the screw/twisted modes for examining water quality, as well as the optical beam shaping to improve cantilever deflection measurements. Besides, the various applications of SDM sensors, the cost efficiency issue, as well as how these complex mode multiplexing techniques might improve the standard fiber-optic sensor approaches using single-mode fibers (SMF) and photonic crystal fibers (PCF) have also been summarized. Finally, we conclude with a prospective outlook for the opportunities and challenges of SDM

  7. Opportunities for the application of advanced remotely-sensed data in ecological studies of terrestrial animal movement.

    PubMed

    Neumann, Wiebke; Martinuzzi, Sebastian; Estes, Anna B; Pidgeon, Anna M; Dettki, Holger; Ericsson, Göran; Radeloff, Volker C

    2015-01-01

    Animal movement patterns in space and time are a central aspect of animal ecology. Remotely-sensed environmental indices can play a key role in understanding movement patterns by providing contiguous, relatively fine-scale data that link animal movements to their environment. Still, implementation of newly available remotely-sensed data is often delayed in studies of animal movement, calling for a better flow of information to researchers less familiar with remotely-sensed data applications. Here, we reviewed the application of remotely-sensed environmental indices to infer movement patterns of animals in terrestrial systems in studies published between 2002 and 2013. Next, we introduced newly available remotely-sensed products, and discussed their opportunities for animal movement studies. Studies of coarse-scale movement mostly relied on satellite data representing plant phenology or climate and weather. Studies of small-scale movement frequently used land cover data based on Landsat imagery or aerial photographs. Greater documentation of the type and resolution of remotely-sensed products in ecological movement studies would enhance their usefulness. Recent advancements in remote sensing technology improve assessments of temporal dynamics of landscapes and the three-dimensional structures of habitats, enabling near real-time environmental assessment. Online movement databases that now integrate remotely-sensed data facilitate access to remotely-sensed products for movement ecologists. We recommend that animal movement studies incorporate remotely-sensed products that provide time series of environmental response variables. This would facilitate wildlife management and conservation efforts, as well as the predictive ability of movement analyses. Closer collaboration between ecologists and remote sensing experts could considerably alleviate the implementation gap. Ecologists should not expect that indices derived from remotely-sensed data will be directly

  8. Multiplexed optical operation of nanoelectromechanical systems (NEMS) arrays for sensing and signal-processing applications

    NASA Astrophysics Data System (ADS)

    Sampathkumar, Ashwin

    2014-06-01

    NEMS are rapidly being developed for a variety of sensing applications as well as for exploring interesting regimes in fundamental physics. In most of these endeavors, operation of a NEMS device involves actuating the device harmonically around its fundamental resonance and detecting subsequent motion while the device interacts with its environment. Even though a single NEMS resonator is exceptionally sensitive, a typical application, such as sensing or signal processing, requires the detection of signals from many resonators distributed over the surface of a chip. Therefore, one of the key technological challenges in the field of NEMS is development of multiplexed measurement techniques to detect the motion of a large number of NEMS resonators simultaneously. In this work, we address the important and difficult problem of interfacing with a large number of NEMS devices and facilitating the use of such arrays in, for example, sensing and signal processing applications. We report a versatile, all-optical technique to excite and read-out a distributed NEMS array. The NEMS array is driven by a distributed, intensity-modulated, optical pump through the photothermal effect. The ensuing vibrational response of the array is multiplexed onto a single, probe beam as a high-frequency phase modulation. The phase modulation is optically down converted to a low-frequency, intensity modulation using an adaptive full -field interferometer, and subsequently is detected using a charge-coupled device (CCD) array. Rapid and single-step mechanical characterization of approximately 60 nominally identical, high-frequency resonators is demonstrated. The technique may enable sensitivity improvements over single NEMS resonators by averaging signals coming from a multitude of devices in the array. In addition, the diffraction-limited spatial resolution may allow for position-dependent read-out of NEMS sensor chips for sensing multiple analytes or spatially inhomogeneous forces.

  9. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges.

    PubMed

    Porcar-Castell, Albert; Tyystjärvi, Esa; Atherton, Jon; van der Tol, Christiaan; Flexas, Jaume; Pfündel, Erhard E; Moreno, Jose; Frankenberg, Christian; Berry, Joseph A

    2014-08-01

    Chlorophyll a fluorescence (ChlF) has been used for decades to study the organization, functioning, and physiology of photosynthesis at the leaf and subcellular levels. ChlF is now measurable from remote sensing platforms. This provides a new optical means to track photosynthesis and gross primary productivity of terrestrial ecosystems. Importantly, the spatiotemporal and methodological context of the new applications is dramatically different compared with most of the available ChlF literature, which raises a number of important considerations. Although we have a good mechanistic understanding of the processes that control the ChlF signal over the short term, the seasonal link between ChlF and photosynthesis remains obscure. Additionally, while the current understanding of in vivo ChlF is based on pulse amplitude-modulated (PAM) measurements, remote sensing applications are based on the measurement of the passive solar-induced chlorophyll fluorescence (SIF), which entails important differences and new challenges that remain to be solved. In this review we introduce and revisit the physical, physiological, and methodological factors that control the leaf-level ChlF signal in the context of the new remote sensing applications. Specifically, we present the basis of photosynthetic acclimation and its optical signals, we introduce the physical and physiological basis of ChlF from the molecular to the leaf level and beyond, and we introduce and compare PAM and SIF methodology. Finally, we evaluate and identify the challenges that still remain to be answered in order to consolidate our mechanistic understanding of the remotely sensed SIF signal.

  10. Two dimensional atomically thin MoS2 nanosheets and their sensing applications

    NASA Astrophysics Data System (ADS)

    Huang, Yinxi; Guo, Jinhong; Kang, Yuejun; Ai, Ye; Li, Chang Ming

    2015-11-01

    The extraordinary properties of layered graphene and its successful applications in electronics, sensors, and energy devices have inspired and renewed interest in other two-dimensional (2D) layered materials. Particularly, a semiconducting analogue of graphene, molybdenum disulfide (MoS2), has attracted huge attention in the last few years. With efforts in exfoliation and synthetic techniques, atomically thin films of MoS2 (single- and few-layer) have been recently prepared and characterized. 2D MoS2 nanosheets have properties that are distinct and complementary to those of graphene, making it more appealing for various applications. Unlike graphene with an indirect bandgap, the direct bandgap of single-layer MoS2 results in better semiconductor behavior as well as photoluminescence, suggesting its great suitability for electronic and optoelectronic applications. Compared to their applications in energy storage and optoelectronic devices, the use of MoS2 nanosheets as a sensing platform, especially for biosensing, is still largely unexplored. Here, we present a review of the preparation of 2D atomically thin MoS2 nanosheets, with an emphasis on their use in various sensing applications.

  11. Application of Compressed Sensing to 2-D Ultrasonic Propagation Imaging System data

    SciTech Connect

    Mascarenas, David D.; Farrar, Charles R.; Chong, See Yenn; Lee, J.R.; Park, Gyu Hae; Flynn, Eric B.

    2012-06-29

    The Ultrasonic Propagation Imaging (UPI) System is a unique, non-contact, laser-based ultrasonic excitation and measurement system developed for structural health monitoring applications. The UPI system imparts laser-induced ultrasonic excitations at user-defined locations on a structure of interest. The response of these excitations is then measured by piezoelectric transducers. By using appropriate data reconstruction techniques, a time-evolving image of the response can be generated. A representative measurement of a plate might contain 800x800 spatial data measurement locations and each measurement location might be sampled at 500 instances in time. The result is a total of 640,000 measurement locations and 320,000,000 unique measurements. This is clearly a very large set of data to collect, store in memory and process. The value of these ultrasonic response images for structural health monitoring applications makes tackling these challenges worthwhile. Recently compressed sensing has presented itself as a candidate solution for directly collecting relevant information from sparse, high-dimensional measurements. The main idea behind compressed sensing is that by directly collecting a relatively small number of coefficients it is possible to reconstruct the original measurement. The coefficients are obtained from linear combinations of (what would have been the original direct) measurements. Often compressed sensing research is simulated by generating compressed coefficients from conventionally collected measurements. The simulation approach is necessary because the direct collection of compressed coefficients often requires compressed sensing analog front-ends that are currently not commercially available. The ability of the UPI system to make measurements at user-defined locations presents a unique capability on which compressed measurement techniques may be directly applied. The application of compressed sensing techniques on this data holds the potential to

  12. One and three dimensional models for the dynamical sensing response of Galfenol with applications to energy harvesting

    NASA Astrophysics Data System (ADS)

    Weetman, Philip; Akhras, George

    2010-04-01

    One and three-dimensional computational models for the dynamical sensing response of Galfenol based magnetostrictive devices are developed. The sensing model calculates the fraction of magnetic moments oriented along each of the energetically preferred directions of the crystal as a function of time, which can then be used to determine the time evolution of the total magnetization. Results from the sensing model are compared to quasi-static loading experiments for validation and extraction of phenomenological parameters. As a sample application, the sensing model is incorporated into an AC energy harvesting circuit to predict the magnetization and energy harvested under dynamical loading conditions.

  13. The applicability of remote sensing to Earth biological problems. Part 2: The potential of remote sensing in pest management

    NASA Technical Reports Server (NTRS)

    Polhemus, J. T.

    1980-01-01

    Five troublesome insect pest groups were chosen for study. These represent a broad spectrum of life cycles, ecological indicators, pest management strategies, and remote sensing requirements. Background data, and field study results for each of these subjects is discussed for each insect group. Specific groups studied include tsetse flies, locusts, western rangeland grasshoppers, range caterpillars, and mosquitoes. It is concluded that remote sensing methods are aplicable to the pest management of the insect groups studied.

  14. Utilizing Remote Sensing Data to Ascertain Soil Moisture Applications and Air Quality Conditions

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory; Kempler, Steve; Teng, William; Friedl, Lawrence; Lynnes, Chris

    2009-01-01

    Recognizing the significance of NASA remote sensing Earth science data in monitoring and better understanding our planet's natural environment, NASA Earth Applied Sciences has implemented the 'Decision Support Through Earth Science Research Results' program. Several applications support systems through collaborations with benefiting organizations have been implemented. The Goddard Earth Sciences Data and Information Services Center (GES DISC) has participated in this program on two projects (one complete, one ongoing), and has had opportune ad hoc collaborations utilizing NASA Earth science data. GES DISC's understanding of Earth science missions and resulting data and information enables the GES DISC to identify challenges that come with bringing science data to research applications. In this presentation we describe applications research projects utilizing NASA Earth science data and a variety of resulting GES DISC applications support system project experiences. In addition, defining metrics that really evaluate success will be exemplified.

  15. A summary of the history of the development of automated remote sensing for agricultural applications

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.

    1983-01-01

    The research conducted in the United States for the past 20 years with the objective of developing automated satellite remote sensing for monitoring the earth's major food crops is reviewed. The highlights of this research include a National Academy of Science study on the applicability of remote sensing monitoring given impetus by the introduction in the mid-1960's of the first airborne multispectral scanner (MSS); design simulations for the first earth resource satellite in 1969; and the use of the airborne MSS in the Corn Blight Watch, the first large application of remote sensing in agriculture, in 1970. Other programs discussed include the CITAR research project in 1972 which established the feasibility of automating digital classification to process high volumes of Landsat MSS data; the Large Area Crop Inventory Experiment (LACIE) in 1974-78, which demonstrated automated processing of Landsat MSS data in estimating wheat crop production on a global basis; and AgRISTARS, a program designed to address the technical issues defined by LACIE.

  16. Recent progress in applications of graphene oxide for gas sensing: A review.

    PubMed

    Toda, Kei; Furue, Ryo; Hayami, Shinya

    2015-06-01

    This paper is a review of the recent progress on gas sensors using graphene oxide (GO). GO is not a new material but its unique features have recently been of interest for gas sensing applications, and not just as an intermediate for reduced graphene oxide (RGO). Graphene and RGO have been well known gas-sensing materials, but GO is also an attractive sensing material that has been well studied these last few years. The functional groups on GO nanosheets play important roles in adsorbing gas molecules, and the electric or optical properties of GO materials change with exposure to certain gases. Addition of metal nanoparticles and metal oxide nanocomposites is an effective way to make GO materials selective and sensitive to analyte gases. In this paper, several applications of GO based sensors are summarized for detection of water vapor, NO2, H2, NH3, H2S, and organic vapors. Also binding energies of gas molecules onto graphene and the oxygenous functional groups are summarized, and problems and possible solutions are discussed for the GO-based gas sensors. PMID:26002325

  17. Total-Internal-Reflection Platforms for Chemical and Biological Sensing Applications

    NASA Astrophysics Data System (ADS)

    Sapsford, Kim E.

    Sensing platforms based on the principle of total internal reflection (TIR) represent a fairly mature yet still expanding and exciting field of research. Sensor development has mainly been driven by the need for rapid, stand-alone, automated devices for application in the fields of clinical diagnosis and screening, food and water safety, environmental monitoring, and chemical and biological warfare agent detection. The technologies highlighted in this chapter are continually evolving, taking advantage of emerging advances in microfabrication, lab-on-a-chip, excitation, and detection techniques. This chapter describes many of the underlying principles of TIR-based sensing platforms and additionally focusses on planar TIR fluorescence (TIRF)-based chemical and biological sensors.

  18. Dynamic response of tapered optical multimode fiber coated with carbon nanotubes for ethanol sensing application.

    PubMed

    Shabaneh, Arafat; Girei, Saad; Arasu, Punitha; Mahdi, Mohd; Rashid, Suraya; Paiman, Suriati; Yaacob, Mohd

    2015-05-04

    Ethanol is a highly combustible chemical universally designed for biomedical applications. In this paper, optical sensing performance of tapered multimode fiber tip coated with carbon nanotube (CNT) thin film towards aqueous ethanol with different concentrations is investigated. The tapered optical multimode fiber tip is coated with CNT using drop-casting technique and is annealed at 70 °C to enhance the binding of the nanomaterial to the silica fiber tip. The optical fiber tip and the CNT sensing layer are micro-characterized using FESEM and Raman spectroscopy techniques. When the developed sensor was exposed to different concentrations of ethanol (5% to 80%), the sensor reflectance reduced proportionally. The developed sensors showed high sensitivity, repeatability and fast responses (<55 s) towards ethanol.

  19. Application of immune network theory for target-oriented multi-spectral remote sensing information mining

    NASA Astrophysics Data System (ADS)

    Liu, Qing-jie; Lin, Qi-zhong

    2008-12-01

    To use target information for space transformation in remote sensing data field, artificial immune network theory is introduced to multi-spectral remote sensing information mining, based on the knowledge of target spectrum. First, the target spectrums are fuzzy clustered into several subclasses, to retain different features of target in different subclasses. Then we develop a novel Regional-memory-pattern Artificial Immune Idiotypic Network (RAIN) model based on artificial idiotypic network theory, and train RAIN with subclasses samples. And then, the affinities of the target spectrum and other objects can be calculated according to the immune microscopic dynamics including stimulation and suppression effect. Finally, principal component analysis (PCA) is performed to affinities to explore more weak and hidden information. With its application in Baoguto Area, Xinjiang Uyghur Autonomous Region China, choosing tuffaceous siltstone as target object, the result supports the efficiency of the RAIN-affinity-PCA scheme.

  20. Dynamic Response of Tapered Optical Multimode Fiber Coated with Carbon Nanotubes for Ethanol Sensing Application

    PubMed Central

    Shabaneh, Arafat; Girei, Saad; Arasu, Punitha; Mahdi, Mohd; Rashid, Suraya; Paiman, Suriati; Yaacob, Mohd

    2015-01-01

    Ethanol is a highly combustible chemical universally designed for biomedical applications. In this paper, optical sensing performance of tapered multimode fiber tip coated with carbon nanotube (CNT) thin film towards aqueous ethanol with different concentrations is investigated. The tapered optical multimode fiber tip is coated with CNT using drop-casting technique and is annealed at 70 °C to enhance the binding of the nanomaterial to the silica fiber tip. The optical fiber tip and the CNT sensing layer are micro-characterized using FESEM and Raman spectroscopy techniques. When the developed sensor was exposed to different concentrations of ethanol (5% to 80%), the sensor reflectance reduced proportionally. The developed sensors showed high sensitivity, repeatability and fast responses (<55 s) towards ethanol. PMID:25946634

  1. Summary of workshop on the application of VLSI for robotic sensing

    NASA Technical Reports Server (NTRS)

    Brooks, T.; Wilcox, B.

    1984-01-01

    It was one of the objectives of the considered workshop to identify near, mid, and far-term applications of VLSI for robotic sensing and sensor data preprocessing. The workshop was also to indicate areas in which VLSI technology can provide immediate and future payoffs. A third objective is related to the promotion of dialog and collaborative efforts between research communities, industry, and government. The workshop was held on March 24-25, 1983. Conclusions and recommendations are discussed. Attention is given to the need for a pixel correction chip, an image sensor with 10,000 dynamic range, VLSI enhanced architectures, the need for a high-density serpentine memory, an LSI-tactile sensing program, an analog-signal preprocessor chip, a smart strain gage, a protective proximity envelope, a VLSI-proximity sensor program, a robot-net chip, and aspects of silicon micromechanics.

  2. Application of space remote sensing technology to living marine resources in coastal zones

    NASA Technical Reports Server (NTRS)

    Tilton, E. L., III

    1978-01-01

    This paper describes a compilation of new Landsat satellite remote sensing techniques for treatment of Coastal Zone Living Marine Resource problems. The techniques have been developed over the past three to five years using optimized digital analysis procedures and evaluated in limited coastal areas of the United States. However, most of the techniques are directly applicable to other areas of the world, particularly in those areas where Landsat satellite data are available. Each technique presented herein has been documented and published separately as a NASA report within the last three years. The data required to substantiate the conclusion that 'significant new space remote sensing techniques are now available for the treatment of Coastal Zone Living Marine Resource problems' are contained within these reports and are referenced herein.

  3. Application of remote sensing to land and water resource planning: The Pocomoke River Basin, Maryland

    NASA Technical Reports Server (NTRS)

    Wildesen, S. E.; Phillips, E. P.

    1981-01-01

    Because of the size of the Pocomoke River Basin, the inaccessibility of certain areas, and study time constraints, several remote sensing techniques were used to collect base information on the river corridor, (a 23.2 km channel) and on a 1.2 km wooded floodplain. This information provided an adequate understanding of the environment and its resources, thus enabling effective management options to be designed. The remote sensing techniques used for assessment included manual analysis of high altitude color-infrared photography, computer-assisted analysis of LANDSAT-2 imagery, and the application of airborne oceanographic Lidar for topographic mapping. Results show that each techniques was valuable in providing the needed base data necessary for resource planning.

  4. Hyperspectral remote sensing application for monitoring and preservation of plant ecosystems

    NASA Astrophysics Data System (ADS)

    Krezhova, Dora; Maneva, Svetla; Zdravev, Tomas; Petrov, Nikolay; Stoev, Antoniy

    Remote sensing technologies have advanced significantly at last decade and have improved the capability to gather information about Earth’s resources and environment. They have many applications in Earth observation, such as mapping and updating land-use and cover, weather forecasting, biodiversity determination, etc. Hyperspectral remote sensing offers unique opportunities in the environmental monitoring and sustainable use of natural resources. Remote sensing sensors on space-based platforms, aircrafts, or on ground, are capable of providing detailed spectral, spatial and temporal information on terrestrial ecosystems. Ground-based sensors are used to record detailed information about the land surface and to create a data base for better characterizing the objects which are being imaged by the other sensors. In this paper some applications of two hyperspectral remote sensing techniques, leaf reflectance and chlorophyll fluorescence, for monitoring and assessment of the effects of adverse environmental conditions on plant ecosystems are presented. The effect of stress factors such as enhanced UV-radiation, acid rain, salinity, viral infections applied to some young plants (potato, pea, tobacco) and trees (plums, apples, paulownia) as well as of some growth regulators were investigated. Hyperspectral reflectance and fluorescence data were collected by means of a portable fiber-optics spectrometer in the visible and near infrared spectral ranges (450-850 nm and 600-900 nm), respectively. The differences between the reflectance data of healthy (control) and injured (stressed) plants were assessed by means of statistical (Student’s t-criterion), first derivative, and cluster analysis and calculation of some vegetation indices in four most informative for the investigated species regions: green (520-580 nm), red (640-680 nm), red edge (690-720 nm) and near infrared (720-780 nm). Fluorescence spectra were analyzed at five characteristic wavelengths located at the

  5. Nanomaterial processing for multifunctional patterned composites for in situ sensing applications

    NASA Astrophysics Data System (ADS)

    Melrose, Zachary R.

    The increasing performance demands on composite materials have stimulated the development of new approaches and manufacturing techniques to integrate various system functionalities within the composite structure. Opportunity exists to produce smart, self-sensing composites, by altering the microstructure of the composite where sensors can be patterned for assessing damage locality and severity. Introduction of nanomaterials into continuous fiber-reinforced composites either at the fiber/matrix interface or within the polymer matrix enables further tailoring of mechanical and electrical properties. Carbon nanotubes have been studied extensively for modifying the mechanical and physical properties of fiber composites. Recently graphene has generated scientific and technical interest due to potential lower raw material costs and ease of processing. This work studies graphene nano-platelet processing parameters to determine the suitability of graphene nanocomposites for in situ sensing applications. Processing parameters for optimizing the piezoresistive response of graphene nano-platelet composites for in situ sensing applications are determined and applied in for the development of a patterning media suitable for deposition onto glass fibers. A new approach to selectively modify the electrical properties of composite fibers is employed to selectively deposit carbon nanotube and graphene nano-platelet enhanced patterning media through an adapted screen printing process. These nano-modified depositions create hierarchical patterns of piezoresistive sensors as fully integrated components and form a distributed sensor network at the fiber/matrix interface. New analysis tools for resistance based sensing techniques are applied to nanocomposites and patterned unidirectional hybrid nanocomposites to assess damage onset and accumulation. The sensitivity of the electrical response for the graphene nano-platelet is compared with the electrical response of the carbon nanotube

  6. Applications of Earth Remote Sensing for Identifying Tornado and Severe Weather Damage

    NASA Astrophysics Data System (ADS)

    Burks, J. E.; Molthan, A.; Schultz, L. A.; McGrath, K.; Bell, J. R.; Cole, T.; Angle, K.

    2014-12-01

    In 2014, collaborations between the Short-term Prediction Research and Transition (SPoRT) Center at NASA Marshall Space Flight Center, the National Weather Service (NWS), and the USGS led to the incorporation of Earth remote sensing imagery within the NOAA/NWS Damage Assessment Toolkit (DAT). The DAT is a smartphone, tablet, and web-based application that allows NWS meteorologists to acquire, quality control, and manage various storm damage indicators following a severe weather event, such as a tornado, occurrence of widespread damaging winds, or significant hail. Earth remote sensing supports the damage assessment process by providing a broad overview of how various acquired damage indicators relate to scarring visible from space, ranging from high spatial resolution commercial imagery (~1-4m) acquired via USGS and in collaboration with other federal and private sector partners, to moderate resolution imaging from NASA sensors (~15-30m) such as those aboard Landsat 7 and 8 and Terra's ASTER, to lower resolution but routine imaging from NASA's Terra and Aqua MODIS, or the Suomi-NPP VIIRS instrument. In several cases, the acquisition and delivery of imagery in the days after a severe weather event has proven helpful in confirming or in some cases adjusting the preliminary damage track acquired during a ground survey. For example, limited road networks and access to private property may make it difficult to observe the entire length of a tornado track, while satellite imagery can fill in observation gaps to complete a more detailed damage track assessment. This presentation will highlight successful applications of Earth remote sensing for the improvement of damage surveys, discuss remaining challenges, and provide direction on future efforts that will improve the delivery of remote sensing data and use through new automation processes and training opportunities.

  7. Applications of Earth Remote Sensing for Identifying Tornado and Severe Weather Damage

    NASA Astrophysics Data System (ADS)

    Burks, J. E.; Molthan, A.; Schultz, L. A.; McGrath, K.; Bell, J. R.; Cole, T.; Angle, K.

    2015-12-01

    In 2014, collaborations between the Short-term Prediction Research and Transition (SPoRT) Center at NASA Marshall Space Flight Center, the National Weather Service (NWS), and the USGS led to the incorporation of Earth remote sensing imagery within the NOAA/NWS Damage Assessment Toolkit (DAT). The DAT is a smartphone, tablet, and web-based application that allows NWS meteorologists to acquire, quality control, and manage various storm damage indicators following a severe weather event, such as a tornado, occurrence of widespread damaging winds, or significant hail. Earth remote sensing supports the damage assessment process by providing a broad overview of how various acquired damage indicators relate to scarring visible from space, ranging from high spatial resolution commercial imagery (~1-4m) acquired via USGS and in collaboration with other federal and private sector partners, to moderate resolution imaging from NASA sensors (~15-30m) such as those aboard Landsat 7 and 8 and Terra's ASTER, to lower resolution but routine imaging from NASA's Terra and Aqua MODIS, or the Suomi-NPP VIIRS instrument. In several cases, the acquisition and delivery of imagery in the days after a severe weather event has proven helpful in confirming or in some cases adjusting the preliminary damage track acquired during a ground survey. For example, limited road networks and access to private property may make it difficult to observe the entire length of a tornado track, while satellite imagery can fill in observation gaps to complete a more detailed damage track assessment. This presentation will highlight successful applications of Earth remote sensing for the improvement of damage surveys, discuss remaining challenges, and provide direction on future efforts that will improve the delivery of remote sensing data and use through new automation processes and training opportunities.

  8. Novel applications of multiple-point geostatistics in remote sensing, geophysics, climate science and surface hydrology

    NASA Astrophysics Data System (ADS)

    Mariethoz, G.; Jha, S. K.; McCabe, M. F.; Evans, J. P.

    2012-12-01

    Recent advances in multiple-point geostatistics (MPS) offer new possibilities in remote sensing, surface hydrology and climate modeling. MPS is an ensemble of tools for the characterization of spatial phenomena. Its most prominent characteristic is the use of training images for defining what type of spatial patterns are deemed to result from the processes under study. In the last decade, MPS have been increasingly used to characterize 3D subsurface structures consisting of geological facies, with application primarily to reservoir engineering, hydrogeology and mining. Although the methods show good results, a consistent difficulty relates to finding appropriate training images to describe largely unknown geological formations. Despite this issue, the growing interest in MPS triggered a series of different methodological advances, leading to improved computational performance and increased flexibility. With these recent improvements, the scientific community now has unprecedented numerical tools that allow dealing with a wide range of problems outside the realm of subsurface applications. These include the simulation of continuous variables as well as complex non-linear ensembles of multivariate properties. It is found that these new tools are ideal to address a number of issues in scientific fields related to surface modeling of environmental systems and geophysical data. Shifting focus and investigating the application of MPS to surface hydrology results in a wealth of training images that are readily available, thanks to global networks of remote sensing measurements. This presentation will delineate recent results in this direction, including MPS applications to the stochastic downscaling of climate models, the completion of partially informed remote sensing images and the processing of geophysical data. A major advantage is the use of satellite images taken at regular intervals, which can be used to inform both the spatial and temporal variability of

  9. Climate Literacy: STEM and Climate Change Education and Remote Sensing Applications

    NASA Astrophysics Data System (ADS)

    Reddy, S. R.

    2015-12-01

    NASA Innovations in Climate Education (NICE) is a competitive project to promote climate and Earth system science literacy and seeks to increase the access of underrepresented minority groups to science careers and educational opportunities. A three year funding was received from NASA to partnership with JSU and MSU under cooperative agreement "Strengthening Global Climate Change education through Remote Sensing Application in Coastal Environment using NASA Satellite Data and Models". The goal is to increase the number of highschool and undergraduate students at Jackson State University, a Historically Black University, who are prepared to pursue higher academic degrees and careers in STEM fields. A five Saturday course/workshop was held during March/April 2015 at JSU, focusing on historical and technical concepts of math, enginneering, technology and atmosphere and climate change and remote sensing technology and applications to weather and climate. Nine students from meteorology, biology, industrial technology and computer science/engineering of JSU and 19 high scool students from Jackson Public Schools participated in the course/workshop. The lecture topics include: introduction to remote sensing and GIS, introduction to atmospheric science, math and engineering, climate, introduction to NASA innovations in climate education, introduction to remote sensing technology for bio-geosphere, introduction to earth system science, principles of paleoclimatology and global change, daily weather briefing, satellite image interpretation and so on. In addition to lectures, lab sessions were held for hand-on experiences for remote sensing applications to atmosphere, biosphere, earth system science and climate change using ERDAS/ENVI GIS software and satellite tools. Field trip to Barnett reservoir and National weather Service (NWS) was part of the workshop. Basics of Earth System Science is a non-mathematical introductory course designed for high school seniors, high school

  10. Magnetic Field Sensors Based on Giant Magnetoresistance (GMR) Technology: Applications in Electrical Current Sensing

    PubMed Central

    Reig, Candid; Cubells-Beltran, María-Dolores; Muñoz, Diego Ramírez

    2009-01-01

    The 2007 Nobel Prize in Physics can be understood as a global recognition to the rapid development of the Giant Magnetoresistance (GMR), from both the physics and engineering points of view. Behind the utilization of GMR structures as read heads for massive storage magnetic hard disks, important applications as solid state magnetic sensors have emerged. Low cost, compatibility with standard CMOS technologies and high sensitivity are common advantages of these sensors. This way, they have been successfully applied in a lot different environments. In this work, we are trying to collect the Spanish contributions to the progress of the research related to the GMR based sensors covering, among other subjects, the applications, the sensor design, the modelling and the electronic interfaces, focusing on electrical current sensing applications. PMID:22408486

  11. Standardized Low-Power Wireless Communication Technologies for Distributed Sensing Applications

    PubMed Central

    Vilajosana, Xavier; Tuset-Peiro, Pere; Vazquez-Gallego, Francisco; Alonso-Zarate, Jesus; Alonso, Luis

    2014-01-01

    Recent standardization efforts on low-power wireless communication technologies, including time-slotted channel hopping (TSCH) and DASH7 Alliance Mode (D7AM), are starting to change industrial sensing applications, enabling networks to scale up to thousands of nodes whilst achieving high reliability. Past technologies, such as ZigBee, rooted in IEEE 802.15.4, and ISO 18000-7, rooted in frame-slotted ALOHA (FSA), are based on contention medium access control (MAC) layers and have very poor performance in dense networks, thus preventing the Internet of Things (IoT) paradigm from really taking off. Industrial sensing applications, such as those being deployed in oil refineries, have stringent requirements on data reliability and are being built using new standards. Despite the benefits of these new technologies, industrial shifts are not happening due to the enormous technology development and adoption costs and the fact that new standards are not well-known and completely understood. In this article, we provide a deep analysis of TSCH and D7AM, outlining operational and implementation details with the aim of facilitating the adoption of these technologies to sensor application developers. PMID:24518893

  12. Standardized low-power wireless communication technologies for distributed sensing applications.

    PubMed

    Vilajosana, Xavier; Tuset-Peiro, Pere; Vazquez-Gallego, Francisco; Alonso-Zarate, Jesus; Alonso, Luis

    2014-02-10

    Recent standardization efforts on low-power wireless communication technologies, including time-slotted channel hopping (TSCH) and DASH7 Alliance Mode (D7AM), are starting to change industrial sensing applications, enabling networks to scale up to thousands of nodes whilst achieving high reliability. Past technologies, such as ZigBee, rooted in IEEE 802.15.4, and ISO 18000-7, rooted in frame-slotted ALOHA (FSA), are based on contention medium access control (MAC) layers and have very poor performance in dense networks, thus preventing the Internet of Things (IoT) paradigm from really taking off. Industrial sensing applications, such as those being deployed in oil refineries, have stringent requirements on data reliability and are being built using new standards. Despite the benefits of these new technologies, industrial shifts are not happening due to the enormous technology development and adoption costs and the fact that new standards are not well-known and completely understood. In this article, we provide a deep analysis of TSCH and D7AM, outlining operational and implementation details with the aim of facilitating the adoption of these technologies to sensor application developers.

  13. Standardized low-power wireless communication technologies for distributed sensing applications.

    PubMed

    Vilajosana, Xavier; Tuset-Peiro, Pere; Vazquez-Gallego, Francisco; Alonso-Zarate, Jesus; Alonso, Luis

    2014-01-01

    Recent standardization efforts on low-power wireless communication technologies, including time-slotted channel hopping (TSCH) and DASH7 Alliance Mode (D7AM), are starting to change industrial sensing applications, enabling networks to scale up to thousands of nodes whilst achieving high reliability. Past technologies, such as ZigBee, rooted in IEEE 802.15.4, and ISO 18000-7, rooted in frame-slotted ALOHA (FSA), are based on contention medium access control (MAC) layers and have very poor performance in dense networks, thus preventing the Internet of Things (IoT) paradigm from really taking off. Industrial sensing applications, such as those being deployed in oil refineries, have stringent requirements on data reliability and are being built using new standards. Despite the benefits of these new technologies, industrial shifts are not happening due to the enormous technology development and adoption costs and the fact that new standards are not well-known and completely understood. In this article, we provide a deep analysis of TSCH and D7AM, outlining operational and implementation details with the aim of facilitating the adoption of these technologies to sensor application developers. PMID:24518893

  14. Designing Zoning of Remote Sensing Drones for Urban Applications: a Review

    NASA Astrophysics Data System (ADS)

    Norzailawati, M. N.; Alias, A.; Akma, R. S.

    2016-06-01

    This paper discusses on-going research related to zoning regulation for the remote sensing drone in the urban applications. Timestamped maps are presented here follow a citation-based approach, where significant information is retrieved from the scientific literature. The emergence of drones in domestic air raises lots understandable issues on privacy, security and uncontrolled pervasive surveillance that require a careful and alternative solution. The effective solution is to adopt a privacy and property rights approach that create a drone zoning and clear drone legislatures. In providing a differential trend to other reviews, this paper is not limited to drones zoning and regulations, but also, discuss on trend remote sensing drones specification in designing a drone zones. Remote sensing drone will specific according to their features and performances; size and endurance, maximum airspeed and altitude level and particular references are made to the drones range. The implementation of laws zoning could lie with the urban planners whereby, a zoning for drone could become a new tactic used to specify areas, where drones could be used, will provide remedies for the harm that arise from drones, and act as a different against irresponsible behaviour. Finally, underlines the need for next regulations on guidelines and standards which can be used as a guidance for urban decision makers to control the drones' operating, thus ensuring a quality and sustainability of resilience cities simultaneously encouraging the revolution of technology.

  15. Design and application of a field sensing system for ground anchors in slopes.

    PubMed

    Choi, Se Woon; Lee, Jihoon; Kim, Jong Moon; Park, Hyo Seon

    2013-01-01

    In a ground anchor system, cables or tendons connected to a bearing plate are used for stabilization of slopes. Then, the stability of a slope is dependent on maintaining the tension levels in the cables. So far, no research on a strain-based field sensing system for ground anchors has been reported. Therefore, in this study, a practical monitoring system for long-term sensing of tension levels in tendons for anchor-reinforced slopes is proposed. The system for anchor-reinforced slopes is composed of: (1) load cells based on vibrating wire strain gauges (VWSGs), (2) wireless sensor nodes which receive and process the signals from load cells and then transmit the result to a master node through local area communication, (3) master nodes which transmit the data sent from sensor nodes to the server through mobile communication, and (4) a server located at the base station. The system was applied to field sensing of ground anchors in the 62 m-long and 26 m-high slope at the side of the highway. Based on the long-term monitoring, the safety of the anchor-reinforced slope can be secured by the timely applications of re-tensioning processes in tendons. PMID:23507820

  16. Molecular-level engineering of THz/IR-sensitive materials for future biological sensing application

    NASA Astrophysics Data System (ADS)

    Woolard, Dwight; Recine, Gregory; Bykhovski, Alexei; Zhang, Weidong

    2010-08-01

    While the unique spectral information associated with chemical and biological molecules within the terahertz frequency regime (~ 3.0-3.0 millimeters) motivates its use for practical sensing applications, limiting factors at the macroscale (weak spectral absorption, broad line widths and masking geometrical effects introduced by the samples) provides motivation for man-engineered sensing materials that allow for the transduction of the spectral information about target molecules from the nanoscale. This brief letter will overview work being performed by our research group to define molecular-level functionality that will be useful for realizing "THz/IR-sensitive" materials. Here the goal is to define switchable molecular components that when incorporated into larger DNA-based nanoscaffolds lead to THz and/or IR regime electronic and/or photonic material properties that are dictated in a predictable manner by novel functionality paradigms. In particular, theoretical modeling and design studies are being performed to engineer organic and biological switches that can be incorporated into DNA-based architectures that enable the precise extraction of nanoscale information (e.g., composition, dynamics, conformation) through electronic/photonic transformations to the macroscale. Hence, these studies seek to define new spectral-based sensing modalities useful for characterizing bio-molecules

  17. Report of the Workshop on Geologic Applications of Remote Sensing to the Study of Sedimentary Basins

    NASA Technical Reports Server (NTRS)

    Lang, H. R. (Editor)

    1985-01-01

    The Workshop on Geologic Applications of Remote Sensing to the Study of Sedimentary Basins, held January 10 to 11, 1985 in Lakewood, Colorado, involved 43 geologists from industry, government, and academia. Disciplines represented ranged from vertebrate paleontology to geophysical modeling of continents. Deliberations focused on geologic problems related to the formation, stratigraphy, structure, and evolution of foreland basins in general, and to the Wind River/Bighorn Basin area of Wyoming in particular. Geological problems in the Wind River/Bighorn basin area that should be studied using state-of-the-art remote sensing methods were identified. These include: (1) establishing the stratigraphic sequence and mapping, correlating, and analyzing lithofacies of basin-filling strata in order to refine the chronology of basin sedimentation, and (2) mapping volcanic units, fracture patterns in basement rocks, and Tertiary-Holocene landforms in searches for surface manifestations of concealed structures in order to refine models of basin tectonics. Conventional geologic, topographic, geophysical, and borehole data should be utilized in these studies. Remote sensing methods developed in the Wind River/Bighorn Basin area should be applied in other basins.

  18. Graphene-Elastomer Composites with Segregated Nanostructured Network for Liquid and Strain Sensing Application.

    PubMed

    Lin, Yong; Dong, Xuchu; Liu, Shuqi; Chen, Song; Wei, Yong; Liu, Lan

    2016-09-14

    One of the critical issues for the fabrication of desirable sensing materials has focused on the construction of an effective continuous network with a low percolation threshold. Herein, graphene-based elastomer composites with a segregated nanostructured graphene network were prepared by a novel and effective ice-templating strategy. The segregated graphene network bestowed on the natural rubber (NR) composites an ultralow electrical percolation threshold (0.4 vol %), 8-fold lower than that of the NR/graphene composites with homogeneous dispersion morphology (3.6 vol %). The resulting composites containing 0.63 vol % graphene exhibited high liquid sensing responsivity (6700), low response time (114 s), and good reproducibility. The unique segregated structure also provides this graphene-based elastomer (containing 0.42 vol % graphene) with exceptionally high stretchability, sensitivity (gauge factor ≈ 139), and good reproducibility (∼400 cycles) of up to 60% strain under cyclic tests. The fascinating performances highlight the potential applications of graphene-elastomer composites with an effective segregated network as multifunctional sensing materials. PMID:27552175

  19. Report of the Workshop on Geologic Applications of Remote Sensing to the Study of Sedimentary Basins

    SciTech Connect

    Lang, H.R.

    1985-08-01

    The Workshop on Geologic Applications of Remote Sensing to the Study of Sedimentary Basins, held January 10 to 11, 1985 in Lakewood, Colorado, involved 43 geologists from industry, government, and academia. Disciplines represented ranged from vertebrate paleontology to geophysical modeling of continents. Deliberations focused on geologic problems related to the formation, stratigraphy, structure, and evolution of foreland basins in general, and to the Wind River/Bighorn Basin area of Wyoming in particular. Geological problems in the Wind River/Bighorn basin area that should be studied using state-of-the-art remote sensing methods were identified. These include: (1) establishing the stratigraphic sequence and mapping, correlating, and analyzing lithofacies of basin-filling strata in order to refine the chronology of basin sedimentation, and (2) mapping volcanic units, fracture patterns in basement rocks, and Tertiary-Holocene landforms in searches for surface manifestations of concealed structures in order to refine models of basin tectonics. Conventional geologic, topographic, geophysical, and borehole data should be utilized in these studies. Remote sensing methods developed in the Wind River/Bighorn Basin area should be applied in other basins.

  20. Graphene-Elastomer Composites with Segregated Nanostructured Network for Liquid and Strain Sensing Application.

    PubMed

    Lin, Yong; Dong, Xuchu; Liu, Shuqi; Chen, Song; Wei, Yong; Liu, Lan

    2016-09-14

    One of the critical issues for the fabrication of desirable sensing materials has focused on the construction of an effective continuous network with a low percolation threshold. Herein, graphene-based elastomer composites with a segregated nanostructured graphene network were prepared by a novel and effective ice-templating strategy. The segregated graphene network bestowed on the natural rubber (NR) composites an ultralow electrical percolation threshold (0.4 vol %), 8-fold lower than that of the NR/graphene composites with homogeneous dispersion morphology (3.6 vol %). The resulting composites containing 0.63 vol % graphene exhibited high liquid sensing responsivity (6700), low response time (114 s), and good reproducibility. The unique segregated structure also provides this graphene-based elastomer (containing 0.42 vol % graphene) with exceptionally high stretchability, sensitivity (gauge factor ≈ 139), and good reproducibility (∼400 cycles) of up to 60% strain under cyclic tests. The fascinating performances highlight the potential applications of graphene-elastomer composites with an effective segregated network as multifunctional sensing materials.

  1. Distributed fiber-optic sensing system with OFDR and its applications to structural health monitoring

    NASA Astrophysics Data System (ADS)

    Murayama, H.; Kageyama, K.; Uzawa, K.; Igawa, H.; Omichi, K.; Machijima, Y.

    2009-07-01

    In the field of fiber-optic sensing technology, distributed sensors that return a value of the measurand as a function of linear position along an optical fiber are regarded as a promising sensor which can be applied to structural health monitoring (SHM). We have developed a distributed strain sensing technique using long gauge fiber Bragg grating (FBG) based on optical frequency domain reflectometry (OFDR). FBGs functioning as mirrors with wavelengthselective reflectivity have been used as strain or temperature sensors. OFDR is a technique designed to measure backreflections from optical fiber networks and components. In our system, we use a longer gauge FBG whose length is ordinarily more than 100 mm and we can measure strain at an arbitrary position along the FBG. Therefore, we can obtain continuous strain data along the FBG. Furthermore, since the spatial resolution in strain measurements is less than 1 mm, it enables us to measure the strain distribution of stress concentrated area, such as welded and bonded joints, precisely. In this paper, we describe the principle of the distributed sensing technique based on OFDR and the applications to strain monitoring of a bonded joint and a wing box structure.

  2. Design and Application of a Field Sensing System for Ground Anchors in Slopes

    PubMed Central

    Choi, Se Woon; Lee, Jihoon; Kim, Jong Moon; Park, Hyo Seon

    2013-01-01

    In a ground anchor system, cables or tendons connected to a bearing plate are used for stabilization of slopes. Then, the stability of a slope is dependent on maintaining the tension levels in the cables. So far, no research on a strain-based field sensing system for ground anchors has been reported. Therefore, in this study, a practical monitoring system for long-term sensing of tension levels in tendons for anchor-reinforced slopes is proposed. The system for anchor-reinforced slopes is composed of: (1) load cells based on vibrating wire strain gauges (VWSGs), (2) wireless sensor nodes which receive and process the signals from load cells and then transmit the result to a master node through local area communication, (3) master nodes which transmit the data sent from sensor nodes to the server through mobile communication, and (4) a server located at the base station. The system was applied to field sensing of ground anchors in the 62 m-long and 26 m-high slope at the side of the highway. Based on the long-term monitoring, the safety of the anchor-reinforced slope can be secured by the timely applications of re-tensioning processes in tendons. PMID:23507820

  3. Investigation of the applicability of using the triple redundant hydrogen sensor for methane sensing

    NASA Technical Reports Server (NTRS)

    Lantz, J. B.; Wynveen, R. A.

    1983-01-01

    Application specifications for the methane sensor were assembled and design guidelines, development goals and evaluation criteria were formulated. This was done to provide a framework to evaluate sensor performance and any design adjustments to the preprototype sensor that could be required to provide methane sensitivity. Good response to hydrogen was experimentally established for four hydrogen sensor elements to be later evaluated for methane response. Prior results were assembled and analyzed for other prototype hydrogen sensor performance parameters to form a comparison base. The four sensor elements previously shown to have good hydrogen response were experimentally evaluated for methane response in 2.5% methane-in-air. No response was obtained for any of the elements, despite the high methane concentration used (50% of the Lower Flammability Limit). It was concluded that the preprototype sensing elements were insensitive to methane and were hydrogen specific. Alternative sensor operating conditions and hardware design changes were considered to provide methane sensitivity to the preprototype sensor, including a variety of different methane sensing techniques. Minor changes to the existing sensor elements, sensor geometry and operating conditions will not make the preprototype hydrogen sensor respond to methane. New sensor elements that will provide methane and hydrogen sensitivity require replacement of the existing thermistor type elements. Some hydrogen sensing characteristics of the modified sensor will be compromised (larger in situ calibration gas volume and H2 nonspecificity). The preprototype hydrogen sensor should be retained for hydrogen monitoring and a separate methane sensor should be developed.

  4. Characterisation of an electrical heating method for metallic-coated optical fibres for distributed sensing applications

    NASA Astrophysics Data System (ADS)

    Lu, Xin; Soto, Marcelo A.; Thévenaz, Luc

    2016-05-01

    In several applications a temperature contrast between the sensing fibre and the environment is required to detect changes in the environmental heat capacity. For this purpose the process of electrical heating in metallic-coated fibres is theoretically analysed and modelled in steady-state conditions based on the thermal energy generated by resistive heating and the losses induced by convection and radiation. The impact of ambient temperature and pressure is investigated. The proposed model for the thermal exchange is experimentally validated using a high-resolution Brillouin distributed fibre sensor, which is used to measure the longitudinal profile of the temperature reached by electrical heating along an Alcoated optical fibre.

  5. Public health applications of remote sensing of vector borne and parasitic diseases

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Results of an investigation of the potential application of remote sensing to various fields of public health are presented. Specific topics discussed include: detection of snail habitats in connection with the epidemiology of schistosomiasis; the detection of certain Anopheles breeding sites, and location of transient human populations, both in connection with malaria eradication programs; and detection of overwintering population sites for the primary screwworm (Cochliomyia americana). Emphasis was placed on the determination of ground truth data on the biological, chemical, and physical characteristics of ground waters which would or would not support the growth of significant populations of mosquitoes.

  6. Atmospheric remote sensing and applications from GNSS: Recent results and progress

    NASA Astrophysics Data System (ADS)

    Jin, Shuanggen; Gurbuz, Gokhan; Akgul, Volkan

    2016-07-01

    The atmospheric delay is one of Global Navigation Satellite Systems (GNSS) errors. Nowadays, the total zenith tropospheric delay (ZTD) and ionospheric total electron content (TEC) can be precisely obtained from GNSS, which can be used for weather prediction and atmospheric research as well as space weather. In this paper, recent results and progress on atmospheric remote sensing and applications from GNSS are presented, including ocean tide models and mapping functions effects, high-order ionospheric delay correction, tropoapause variations, ionospheric climatology, seismo-atmospheric anomalies and characteristics. Finally, some possible mechanism on atmospheric anomalies and coupling processes are given and discussed as well as future challenges.

  7. Remote radiation sensing module based on a silicon photomultiplier for industrial applications.

    PubMed

    Park, Hye Min; Joo, Koan Sik

    2016-09-01

    We have designed a silicon-photomultiplier-based remote radiation-sensing module consisting of a master port (displaying radiation information) and a slave port (detects radiation, transmits to master). The master port merges radiation and dose values and displays them. Counting detection efficiency and radiation response simulated using MCNPX were used to calibrate the module. We performed radioactive source tests ((137)Cs, (22)Na, (60)Co, (55)Fe) and compared experimental and simulation results. Remote detection capability was demonstrated and the detection accuracy was determined. Applications abound in the radioactivity industry. PMID:27295513

  8. Laser fabrication of large-scale nanoparticle arrays for sensing applications.

    PubMed

    Kuznetsov, Arseniy I; Evlyukhin, Andrey B; Gonçalves, Manuel R; Reinhardt, Carsten; Koroleva, Anastasia; Arnedillo, Maria Luisa; Kiyan, Roman; Marti, Othmar; Chichkov, Boris N

    2011-06-28

    A novel method for high-speed fabrication of large scale periodic arrays of nanoparticles (diameters 40-200 nm) is developed. This method is based on a combination of nanosphere lithography and laser-induced transfer. Fabricated spherical nanoparticles are partially embedded into a polymer substrate. They are arranged into a hexagonal array and can be used for sensing applications. An optical sensor with the sensitivity of 365 nm/RIU and the figure of merit of 21.5 in the visible spectral range is demonstrated. PMID:21539373

  9. DFB lasers between 760 nm and 16 μm for sensing applications.

    PubMed

    Zeller, Wolfgang; Naehle, Lars; Fuchs, Peter; Gerschuetz, Florian; Hildebrandt, Lars; Koeth, Johannes

    2010-01-01

    Recent years have shown the importance of tunable semiconductor lasers in optical sensing. We describe the status quo concerning DFB laser diodes between 760 nm and 3,000 nm as well as new developments aiming for up to 80 nm tuning range in this spectral region. Furthermore we report on QCL between 3 μm and 16 μm and present new developments. An overview of the most interesting applications using such devices is given at the end of this paper.

  10. [Application of SPOT 4 remote sensing imagine in classification of Qira oasis landscape in China].

    PubMed

    Wang, Xizhi; Wang, Gang; Bruelheide, Helge; Runge, Michael

    2002-09-01

    The landscape surounding Qira osais at the southern fringe of the Taklamakan Desert in China was analyzed by using the SPOT 4 multispectrum remote sensing data and GPS (global positioning system) data. The SPOT 4 scene was projected into an UTM grid, and a supervised classification by ERDAS IMAGINE software was applied. In total, 13 landscape units could be distinguished, and a "frame of reference" was set up for establishing monitoring system of landscape patterns dynamics. Limitations, possible improvements and further applications of the approach were discussed.

  11. DFB Lasers Between 760 nm and 16 μm for Sensing Applications

    PubMed Central

    Zeller, Wolfgang; Naehle, Lars; Fuchs, Peter; Gerschuetz, Florian; Hildebrandt, Lars; Koeth, Johannes

    2010-01-01

    Recent years have shown the importance of tunable semiconductor lasers in optical sensing. We describe the status quo concerning DFB laser diodes between 760 nm and 3,000 nm as well as new developments aiming for up to 80 nm tuning range in this spectral region. Furthermore we report on QCL between 3 μm and 16 μm and present new developments. An overview of the most interesting applications using such devices is given at the end of this paper. PMID:22319259

  12. Remote radiation sensing module based on a silicon photomultiplier for industrial applications.

    PubMed

    Park, Hye Min; Joo, Koan Sik

    2016-09-01

    We have designed a silicon-photomultiplier-based remote radiation-sensing module consisting of a master port (displaying radiation information) and a slave port (detects radiation, transmits to master). The master port merges radiation and dose values and displays them. Counting detection efficiency and radiation response simulated using MCNPX were used to calibrate the module. We performed radioactive source tests ((137)Cs, (22)Na, (60)Co, (55)Fe) and compared experimental and simulation results. Remote detection capability was demonstrated and the detection accuracy was determined. Applications abound in the radioactivity industry.

  13. Due Permafrost: a Circumpolar Remote Sensing Service for Permafrost - Evaluation and Application Case Studies

    NASA Astrophysics Data System (ADS)

    Heim, B.; Bartsch, A.; Elger, K. K.; Rinke, A.; Gellhorn, C.; Matthes, H.; Buchhorn, M.; Klehmet, K.; Soliman, A. S.; Duguay, C.; Hachem, S.; Schwamborn, G.; Muster, S.; Langer, M.; Boike, J.; Lantuit, H.; Herzschuh, U.; Seifert, F.

    2012-12-01

    The task of the ESA Data User Element DUE Permafrost project is to build up a Remote Sensing Service for permafrost applications. The DUE Permafrost remote sensing products are land temperature, soil moisture, frozen/thawed surface status, terrain parameters, land cover, and surface waters. The DUE Permafrost products are freely available for download under http://www.ipf.tuwien.ac.at/permafrost/. The products are also published at the world data centre PANGAEA (doi:10.1594/PANGAEA.780111, 2012: ESA Data User Element Permafrost), Snow parameters (snow extent and snow water equivalent) can be derived from the ESA DUE project GlobSnow. A major component is the evaluation of the DUE Permafrost products to test their scientific validity for high-latitudinal permafrost landscapes. The primary programme providing ground data is the Global Terrestrial Network for Permafrost (GTN-P) initiated by the International Permafrost Association (IPA). The involvement of scientific stakeholders and the IPA, and the ongoing evaluation of the remote sensing derived products make the DUE Permafrost products accepted by the scientific community. We show evaluation case studies of DUE Permafrost remote sensing products using GTN-P in-situ data in Alaska and Siberia. The Helmholtz Climate Initiative REKLIM (Regionale Klimaänderungen/Regional climate change) is a climate research program where regional observations and process studies are innovatively coupled with model simulations (http://www.reklim.de/en/home/). Within the REKLIM framework we spatio-temporally compare the geophysical surface parameters derived from regional climate modelling with the DUE Permafrost and DUE GlobSnow remote sensing products. The case studies are: i) spatio-temporal comparison of the ESA GlobSnow satellite-derived snow-water equivalent data with the output from the regional climate model COSMO-CLM for Central Siberia for 1987-2010. ii) circum-arctic spatio-temporal comparison of the ESA DUE Permafrost

  14. Label-free screening of single biomolecules through resistive pulse sensing technology for precision medicine applications

    NASA Astrophysics Data System (ADS)

    Harrer, S.; Kim, S. C.; Schieber, C.; Kannam, S.; Gunn, N.; Moore, S.; Scott, D.; Bathgate, R.; Skafidas, S.; Wagner, J. M.

    2015-05-01

    systems genomics has to be accompanied by an equally strong effort to develop next-generation DNA-sequencing and next-generation drug screening and design platforms. In that context lab-on-a-chip devices utilizing nanopore- and nanochannel based resistive pulse-sensing technology for DNA-sequencing and protein screening applications occupy a key role. This paper describes the status quo of resistive pulse sensing technology for these two application areas with a special focus on current technology trends and challenges ahead.

  15. In-database processing of a large collection of remote sensing data: applications and implementation

    NASA Astrophysics Data System (ADS)

    Kikhtenko, Vladimir; Mamash, Elena; Chubarov, Dmitri; Voronina, Polina

    2016-04-01

    Large archives of remote sensing data are now available to scientists, yet the need to work with individual satellite scenes or product files constrains studies that span a wide temporal range or spatial extent. The resources (storage capacity, computing power and network bandwidth) required for such studies are often beyond the capabilities of individual geoscientists. This problem has been tackled before in remote sensing research and inspired several information systems. Some of them such as NASA Giovanni [1] and Google Earth Engine have already proved their utility for science. Analysis tasks involving large volumes of numerical data are not unique to Earth Sciences. Recent advances in data science are enabled by the development of in-database processing engines that bring processing closer to storage, use declarative query languages to facilitate parallel scalability and provide high-level abstraction of the whole dataset. We build on the idea of bridging the gap between file archives containing remote sensing data and databases by integrating files into relational database as foreign data sources and performing analytical processing inside the database engine. Thereby higher level query language can efficiently address problems of arbitrary size: from accessing the data associated with a specific pixel or a grid cell to complex aggregation over spatial or temporal extents over a large number of individual data files. This approach was implemented using PostgreSQL for a Siberian regional archive of satellite data products holding hundreds of terabytes of measurements from multiple sensors and missions taken over a decade-long span. While preserving the original storage layout and therefore compatibility with existing applications the in-database processing engine provides a toolkit for provisioning remote sensing data in scientific workflows and applications. The use of SQL - a widely used higher level declarative query language - simplifies interoperability

  16. Synthesis and integration of one-dimensional nanostructures for chemical gas sensing applications

    NASA Astrophysics Data System (ADS)

    Parthangal, Prahalad Madhavan

    The need for improved measurement technology for the detection and monitoring of gases has increased tremendously for maintenance of domestic and industrial health and safety, environmental surveys, national security, food-processing, medical diagnostics and various other industrial applications. Among the several varieties of gas sensors available in the market, solid-state sensors are the most popular owing to their excellent sensitivity, ruggedness, versatility and low cost. Semiconducting metal oxides such as tin oxide (SnO2), zinc oxide (ZnO), and tungsten oxide (WO3) are routinely employed as active materials in these sensors. Since their performance is directly linked to the exposed surface area of the sensing material, one-dimensional nanostructures possessing very high surface to volume ratios are attractive candidates for designing the next generation of sensors. Such nano-sensors also enable miniaturization thereby reducing power consumption. The key to achieve success in one-dimensional nanotechnologies lies in assembly. While synthesis techniques and capabilities continue to expand rapidly, progress in controlled assembly has been sluggish due to numerous technical challenges. In this doctoral thesis work, synthesis and characterization of various one-dimensional nanostructures including nanotubes of SnO2, and nanowires of WO3 and ZnO, as well as their direct integration into miniature sensor platforms called microhotplates have been demonstrated. The key highlights of this research include devising elegant strategies for growing metal oxide nanotubes using carbon nanotubes as templates, substantially reducing process temperatures to enable growth of WO3 nanowires on microhotplates, and successfully fabricating a ZnO nanowire array based sensor using a hybrid nanowire-nanoparticle assembly approach. In every process, the gas-sensing properties of one-dimensional nanostructures were observed to be far superior in comparison with thin films of the same

  17. All-silicon monolithic optoelectronic platform for multi-analyte biochemical sensing

    NASA Astrophysics Data System (ADS)

    Misiakos, K.; Makarona, E.; Raptis, I.; Salapatas, A.; Psarouli, A.; Kakabakos, S.; Petrou, P.; Hoekman, M.; Heideman, R.; Stoffer, R.; Tukkiniemi, K.; Soppanen, M.; Jobst, G.; Nounessis, G.; Budkowski, A.; Rysz, J.

    2013-05-01

    Despite the advances in optical biosensors, the existing technological approaches still face two major challenges: the inherent inability of most sensors to integrate the optical source in the transducer chip, and the need to specifically design the optical transducer per application. In this work, the development of a radical optoelectronic platform is demonstrated based on a monolithic optocoupler array fabricated by standard Si-technology and suitable for multi-analyte detection. The platform has been specifically designed biochemical sensing. In the all-silicon array of transducers, each optocoupler has its own excitation source, while the entire array share a common detector. The light emitting devices (LEDs) are silicon avalanche diodes biased beyond their breakdown voltage and emit in the VIS-NIR part of the spectrum. The LEDs are coupled to individually functionalized optical transducers that converge to a single detector for multiplexed operation. The integrated nature of the basic biosensor scheme and the ability to functionalize each transducer independently allows for the development of miniaturized optical transducers tailored towards multi-analyte tests. The monolithic arrays can be used for a plethora of bio/chemical interactions becoming thus a versatile analytical tool. The platform has been successfully applied in bioassays and binding in a real-time and label-free format and is currently being applied to ultra-sensitive food safety applications.

  18. Application of unified array calculus to connect 4-D spacetime sensing with string theory and relativity

    NASA Astrophysics Data System (ADS)

    Rauhala, U. A.

    2013-12-01

    Array algebra of photogrammetry and geodesy unified multi-linear matrix and tensor operators in an expansion of Gaussian adjustment calculus to general matrix inverses and solutions of inverse problems to find all, or some optimal, parametric solutions that satisfy the available observables. By-products in expanding array and tensor calculus to handle redundant observables resulted in general theories of estimation in mathematical statistics and fast transform technology of signal processing. Their applications in gravity modeling and system automation of multi-ray digital image and terrain matching evolved into fast multi-nonlinear differential and integral array calculus. Work since 1980's also uncovered closed-form inverse Taylor and least squares Newton-Raphson-Gauss perturbation solutions of nonlinear systems of equations. Fast nonlinear integral matching of array wavelets enabled an expansion of the bundle adjustment to 4-D stereo imaging and range sensing where real-time stereo sequence and waveform phase matching enabled data-to-info conversion and compression on-board advanced sensors. The resulting unified array calculus of spacetime sensing is applicable in virtually any math and engineering science, including recent work in spacetime physics. The paper focuses on geometric spacetime reconstruction from its image projections inspired by unified relativity and string theories. The collinear imaging equations of active object space shutter of special relativity are expanded to 4-D Lorentz transform. However, regular passive imaging and shutter inside the sensor expands the law of special relativity by a quantum geometric explanation of 4-D photogrammetry. The collinear imaging equations provide common sense explanations to the 10 (and 26) dimensional hyperspace concepts of a purely geometric string theory. The 11-D geometric M-theory is interpreted as a bundle adjustment of spacetime images using 2-D or 5-D membrane observables of image, string and

  19. [Vegetation water content retrieval and application of drought monitoring using multi-spectral remote sensing].

    PubMed

    Wang, Li-Tao; Wang, Shi-Xin; Zhou, Yi; Liu, Wen-Liang; Wang, Fu-Tao

    2011-10-01

    The vegetation is one of main drying carriers. The change of Vegetation Water Content (VWC) reflects the spatial-temporal distribution of drought situation and the degree of drought. In the present paper, a method of retrieving the VWC based on remote sensing data is introduced and analyzed, including the monitoring theory, vegetation water content indicator and retrieving model. The application was carried out in the region of Southwest China in the spring, 2010. The VWC data was calculated from MODIS data and spatially-temporally analyzed. Combined with the meteorological data from weather stations, the relationship between the EWT and weather data shows that precipitation has impact on the change in vegetation moisture to a certain extent. However, there is a process of delay during the course of vegetation absorbing water. So precipitation has a delaying impact on VWC. Based on the above analysis, the probability of drought monitoring and evaluation based on multi-spectral VWC data was discussed. Through temporal synthesis and combined with auxiliary data (i. e. historical data), it will help overcome the limitation of data itself and enhance the application of drought monitoring and evaluation based on the multi-spectral remote sensing.

  20. Water quality monitoring and assessment of an urban Mediterranean lake facilitated by remote sensing applications.

    PubMed

    Markogianni, V; Dimitriou, E; Karaouzas, I

    2014-08-01

    Degradation of water quality is a major problem worldwide and often leads to serious environmental impacts and concerns about public health. In this study, the water quality monitoring and assessment of the Koumoundourou Lake, a brackish urban shallow lake located in the northeastern part of Elefsis Bay (Greece), were evaluated. A number of water quality parameters (pH, temperature, dissolved oxygen concentration, electrical conductivity, turbidity, nutrients, and chlorophyll-a concentration) were analyzed in water samples collected bimonthly over a 1-year period from five stations throughout the lake. Moreover, biological quality elements were analysed seasonally over the 1-year period (benthic fauna). Statistical analysis was performed in order to evaluate the water quality of the lake and distinguish sources of variation measured in the samples. Furthermore, the chemical and trophic status of the lake was evaluated according to the most widely applicable classification schemes. Satellite images of Landsat 5 Thematic Mapper were used in order for algorithms to be developed and calculate the concentration of chlorophyll-a (Chl-a). The trophic status of the lake was characterized as oligotrophic based on phosphorus and as mesotrophic-eutrophic based on Chl-a concentrations. The results of the remote sensing application indicated a relatively high coefficient of determination (R (2)) among point sampling results and the remotely sensed data, which implies that the selected algorithm is reliable and could be used for the monitoring of Chl-a concentration in the particular water body when no field data are available.

  1. Electrochemical fabrication of metal/organic/metal junctions for molecular electronics and sensing applications.

    PubMed

    Dasari, Radhika; Ibañez, Francisco J; Zamborini, Francis P

    2011-06-01

    A simple electrochemical approach was used for fabricating electrode/metal nanowire/(molecule or polymer)/electrode junctions for sensing or molecular electronics applications. The procedure for fabricating these molecule-based devices involves electropolymerization of phenol or chemisorption of alkanethiols on one set of electrodes (E1) and electrodeposition of Ag metal nano/microwires on a second electrode (E2) which is ∼5 μm away from E1. Under appropriate deposition conditions, Ag nanowires grow from E2 and cross over to E1, forming a E1/(molecule or polymer)/Ag nanowire (NW)/E2 junction. The junction resistance was controlled by (1) electrodepositing polyphenol of varied densities on E1 and (2) assembling alkanethiols of different chain lengths on E1. Ag NWs at high resistance E1/polyphenol/Ag NW/E2 junctions functionalized with Pd monolayer protected clusters (MPCs) responded fast and reversibly to H(2) concentrations as low as 0.11% in a nitrogen carrier gas by a resistance decrease, likely due to volume expansion of the Pd nanoparticles, demonstrating the use of these electrochemically fabricated junctions for gas sensing applications.

  2. Water quality monitoring and assessment of an urban Mediterranean lake facilitated by remote sensing applications.

    PubMed

    Markogianni, V; Dimitriou, E; Karaouzas, I

    2014-08-01

    Degradation of water quality is a major problem worldwide and often leads to serious environmental impacts and concerns about public health. In this study, the water quality monitoring and assessment of the Koumoundourou Lake, a brackish urban shallow lake located in the northeastern part of Elefsis Bay (Greece), were evaluated. A number of water quality parameters (pH, temperature, dissolved oxygen concentration, electrical conductivity, turbidity, nutrients, and chlorophyll-a concentration) were analyzed in water samples collected bimonthly over a 1-year period from five stations throughout the lake. Moreover, biological quality elements were analysed seasonally over the 1-year period (benthic fauna). Statistical analysis was performed in order to evaluate the water quality of the lake and distinguish sources of variation measured in the samples. Furthermore, the chemical and trophic status of the lake was evaluated according to the most widely applicable classification schemes. Satellite images of Landsat 5 Thematic Mapper were used in order for algorithms to be developed and calculate the concentration of chlorophyll-a (Chl-a). The trophic status of the lake was characterized as oligotrophic based on phosphorus and as mesotrophic-eutrophic based on Chl-a concentrations. The results of the remote sensing application indicated a relatively high coefficient of determination (R (2)) among point sampling results and the remotely sensed data, which implies that the selected algorithm is reliable and could be used for the monitoring of Chl-a concentration in the particular water body when no field data are available. PMID:24705815

  3. Uncertainty budgets of major ozone absorption cross sections used in UV remote sensing applications

    NASA Astrophysics Data System (ADS)

    Weber, Mark; Gorshelev, Victor; Serdyuchenko, Anna

    2016-09-01

    Detailed uncertainty budgets of three major ultraviolet (UV) ozone absorption cross-section datasets that are used in remote sensing application are provided and discussed. The datasets are Bass-Paur (BP), Brion-Daumont-Malicet (BDM), and the more recent Serdyuchenko-Gorshelev (SG). For most remote sensing application the temperature dependence of the Huggins ozone band is described by a quadratic polynomial in temperature (Bass-Paur parameterization) by applying a regression to the cross-section data measured at selected atmospherically relevant temperatures. For traceability of atmospheric ozone measurements, uncertainties from the laboratory measurements as well as from the temperature parameterization of the ozone cross-section data are needed as input for detailed uncertainty calculation of atmospheric ozone measurements. In this paper the uncertainty budgets of the three major ozone cross-section datasets are summarized from the original literature. The quadratic temperature dependence of the cross-section datasets is investigated. Combined uncertainty budgets is provided for all datasets based upon Monte Carlo simulation that includes uncertainties from the laboratory measurements as well as uncertainties from the temperature parameterization. Between 300 and 330 nm both BDM and SG have an overall uncertainty of 1.5 %, while BP has a somewhat larger uncertainty of 2.1 %. At temperatures below about 215 K, uncertainties in the BDM data increase more strongly than the others due to the lack of very low temperature laboratory measurements (lowest temperature of BDM available is 218 K).

  4. [Application of hyper-spectral remote sensing technology in environmental protection].

    PubMed

    Zhao, Shao-Hua; Zhang, Feng; Wang, Qiao; Yao, Yun-Jun; Wang, Zhong-Ting; You, Dai-An

    2013-12-01

    Hyper-spectral remote sensing (RS) technology has been widely used in environmental protection. The present work introduces its recent application in the RS monitoring of pollution gas, green-house gas, algal bloom, water quality of catch water environment, safety of drinking water sources, biodiversity, vegetation classification, soil pollution, and so on. Finally, issues such as scarce hyper-spectral satellites, the limits of data processing and information extract are related. Some proposals are also presented, including developing subsequent satellites of HJ-1 satellite with differential optical absorption spectroscopy, greenhouse gas spectroscopy and hyper-spectral imager, strengthening the study of hyper-spectral data processing and information extraction, and promoting the construction of environmental application system.

  5. An overview of remote sensing and geodesy for epidemiology and public health application.

    PubMed

    Hay, S I

    2000-01-01

    The techniques of remote sensing (RS) and geodesy have the potential to revolutionize the discipline of epidemiology and its application in human health. As a new departure from conventional epidemiological methods, these techniques require some detailed explanation. This review provides the theoretical background to RS including (i) its physical basis, (ii) an explanation of the orbital characteristics and specifications of common satellite sensor systems, (iii) details of image acquisition and procedures adopted to overcome inherent sources of data degradation, and (iv) a background to geophysical data preparation. This information allows RS applications in epidemiology to be readily interpreted. Some of the techniques used in geodesy, to locate features precisely on Earth so that they can be registered to satellite sensor-derived images, are also included. While the basic principles relevant to public health are presented here, inevitably many of the details must be left to specialist texts.

  6. A selected bibliography: Remote sensing applications for tropical and subtropical vegetation analysis

    USGS Publications Warehouse

    Pettinger, Lawrence R.

    1978-01-01

    This bibliography contains 425 citations of selected technical reports, journal articles, and other publications covering the general subject of tropical and subtropical vegetation analysis. Functionally related topics that include vegetation analysis are included for completeness, and citations have been organized under the following subheadings for ease of reference: remote sensing application overviews, vegetation (general), forestry, grasslands/savannah/shrublands, agriculture, land use/thematic mapping, and integrated surveys/multiple resource analysis/land systems. The terms "tropics and subtropics" are used in the widest context to include applications related to a broad range of equatorial environments. The bibliography contains selected citations published between 1924 and 1978. Many foreign language and non U.S.- source items are included.

  7. Environment effects on surface-plasmon spectra in gold-island films potential for sensing applications

    SciTech Connect

    Meriaudeau, F.; Downey, T.R.; Passian, A.; Wig, A.; Ferrell, T.L.

    1998-12-01

    The effects of the local dielectric environment on the surface-plasmon resonances of annealed gold-island films as a potential for sensing applications are studied experimentally and modeled theoretically. Gold-island films were annealed at 600{degree}C to produce spheroidal shape particles that exhibit well-resolved resonances in polarized, angle-resolved, absorption spectra. These resonances are shifted in different amounts by the depolarization effect of the surrounding medium (liquids with various refraction indices). Cross-section calculations based on nonretarded, single-particle, dielectric interaction for these various configurations are presented and are found to be in good agreement with the experimental observations. The results show an interesting potential for biosensing or environmental monitoring applications. {copyright} 1998 Optical Society of America

  8. Characterization of piezoelectric materials for simultaneous strain and temperature sensing for ultra-low frequency applications

    NASA Astrophysics Data System (ADS)

    Nouroz Islam, Mohammad; Seethaler, Rudolf; Shahria Alam, M.

    2015-08-01

    Piezoelectric materials are used extensively in a number of sensing applications ranging from aerospace industries to medical diagnostics. Piezoelectric materials generate charge when they are subjected to strain. However, since measuring charge is difficult at low frequencies, traditional piezoelectric sensors are limited to dynamic applications. In this research an alternative technique is proposed to determine static strain that relies upon the measurement of piezoelectric capacitance and resistance using piezoelectric sensors. To demonstrate the validity of this approach, the capacitance and resistance of a piezoelectric patch sensor was characterized for a wide range of strain and temperature. The study shows that the piezoelectric capacitance is sensitive to both strain and temperature while the resistance is mostly dependent on the temperature variation. The findings can be implemented to obtain thermally compensated static strain from piezoelectric sensors, which does not require an additional temperature sensor.

  9. An Overview of Remote Sensing and Geodesy for Epidemiology and Public Health Application

    PubMed Central

    Hay, S.I.

    2011-01-01

    The techniques of remote sensing (RS) and geodesy have the potential to revolutionize the discipline of epidemiology and its application in human health. As a new departure from conventional epidemiological methods, these techniques require some detailed explanation. This review provides the theoretical background to RS including (i) its physical basis, (ii) an explanation of the orbital characteristics and specifications of common satellite sensor systems, (iii) details of image acquisition and procedures adopted to overcome inherent sources of data degradation, and (iv) a background to geophysical data preparation. This information allows RS applications in epidemiology to be readily interpreted. Some of the techniques used in geodesy, to locate features precisely on Earth so that they can be registered to satellite sensor-derived images, are also included. While the basic principles relevant to public health are presented here, inevitably many of the details must be left to specialist texts. PMID:10997203

  10. Crop identification technology assessment for remote sensing (CITARS). Volume 6: Data processing at the laboratory for applications of remote sensing

    NASA Technical Reports Server (NTRS)

    Bauer, M. E.; Cary, T. K.; Davis, B. J.; Swain, P. H.

    1975-01-01

    The results of classifications and experiments for the crop identification technology assessment for remote sensing are summarized. Using two analysis procedures, 15 data sets were classified. One procedure used class weights while the other assumed equal probabilities of occurrence for all classes. Additionally, 20 data sets were classified using training statistics from another segment or date. The classification and proportion estimation results of the local and nonlocal classifications are reported. Data also describe several other experiments to provide additional understanding of the results of the crop identification technology assessment for remote sensing. These experiments investigated alternative analysis procedures, training set selection and size, effects of multitemporal registration, spectral discriminability of corn, soybeans, and other, and analyses of aircraft multispectral data.

  11. High-efficiency VCSEL arrays for illumination and sensing in consumer applications

    NASA Astrophysics Data System (ADS)

    Seurin, Jean-Francois; Zhou, Delai; Xu, Guoyang; Miglo, Alexander; Li, Daizong; Chen, Tong; Guo, Baiming; Ghosh, Chuni

    2016-03-01

    There has been increased interest in vertical-cavity surface-emitting lasers (VCSELs) for illumination and sensing in the consumer market, especially for 3D sensing ("gesture recognition") and 3D image capture. For these applications, the typical wavelength range of interest is 830~950nm and power levels vary from a few milli-Watts to several Watts. The devices are operated in short pulse mode (a few nano-seconds) with fast rise and fall times for time-of-flight applications (ToF), or in CW/quasi-CW for structured light applications. In VCSELs, the narrow spectrum and its low temperature dependence allows the use of narrower filters and therefore better signal-to-noise performance, especially for outdoor applications. In portable devices (mobile devices, wearable devices, laptops etc.) the size of the illumination module (VCSEL and optics) is a primary consideration. VCSELs offer a unique benefit compared to other laser sources in that they are "surface-mountable" and can be easily integrated along with other electronics components on a printed circuit board (PCB). A critical concern is the power-conversion efficiency (PCE) of the illumination source operating at high temperatures (>50 deg C). We report on various VCSEL based devices and diffuser-integrated modules with high efficiency at high temperatures. Over 40% PCE was achieved in broad temperature range of 0-70 °C for either low power single devices or high power VCSEL arrays, with sub- nano-second rise and fall time. These high power VCSEL arrays show excellent reliability, with extracted mean-time-to-failure (MTTF) of over 500 years at 60 °C ambient temperature and 8W peak output.

  12. Fourier plane colorimetric sensing using broadband imaging of surface plasmons and application to biosensing

    SciTech Connect

    Arora, P.; Krishnan, A.

    2015-12-21

    dielectrics, where real plane image analysis may fail to sense index perturbations, simply due to superposition of different modes in the real plane images of such substrates. Control experiments and analysis revealed a refractive index resolution of 10{sup –5} RIU. The results were correlated with simulations to establish the physical origin of the change in the fundamental mode and higher-order modes due to the refractive index and thickness of analyte. As a demonstration of an application and to test the limits of sensing, the substrates were used to image the surface functionalization using 2-nm-thick 11-mercaptoundecanoic acid and immobilization of 7-nm-thick mouse anti-human IgG antibody. In biological systems, where a priori knowledge about a process step is available, where accurate chemical composition testing is not necessary or possible, the presented method could be used to study the surface changes using a label-free sensing mechanism.

  13. Visible-infrared remote-sensing model and applications for ocean waters. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lee, Zhongping

    1994-01-01

    and value of the chlorophyll-specific absorption coefficient. The simulation was tested for a wide range of water types, including waters from Monterey Bay, the West Florida Shelf, and the Mississippi River plume. Using the simulation, the R(sub rs)-derived in-water absorption coefficients were consistent with the values from in-water measurements (r(exp 2) greater than 0.94, slope approximately 1.0). In the remote-sensing applications, a new approach is suggested for the estimation of primary production based on remote sensing. Using this approach, the calculated primary production (PP) values based upon remotely sensed data were very close to the measured values for the euphotic zone (r(exp 2) = 0.95, slope 1.26, and 32% average difference), while traditional, pigment-based PP model provided values only one-third the size of the measured data. This indicates a potential to significantly improve the accuracy of the estimation of primary production based upon remote sensing.

  14. Semiconductor Reference Oscillator Development for Coherent Detection Optical Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Tratt, David M.; Mansour, Kamjou; Menzies, Robert T.; Qiu, Yueming; Forouhar, Siamak; Maker, Paul D.; Muller, Richard E.

    2001-01-01

    The NASA Earth Science Enterprise Advanced Technology Initiatives Program is supporting a program for the development of semiconductor laser reference oscillators for application to coherent optical remote sensing from Earth orbit. Local oscillators provide the frequency reference required for active spaceborne optical remote sensing concepts that involve heterodyne (coherent) detection. Two recent examples of such schemes are Doppler wind lidar and tropospheric carbon dioxide measurement by laser absorption spectrometry, both of which are being proposed at a wavelength of 2.05 microns. Frequency-agile local oscillator technology is important to such applications because of the need to compensate for large platform-induced Doppler components that would otherwise interfere with data interpretation. Development of frequency-agile local oscillator approaches has heretofore utilized the same laser material as the transmitter laser (Tm,Ho:YLF in the case of the 2.05-micron wavelength mentioned above). However, a semiconductor laser-based frequency-agile local oscillator offers considerable scope for reduced mechanical complexity and improved frequency agility over equivalent crystal laser devices, while their potentially faster tuning capability suggest the potential for greater scanning versatility. The program we report on here is specifically tasked with the development of prototype novel architecture semiconductor lasers with the power, tunability, and spectral characteristics required for coherent Doppler lidar. The baseline approach for this work is the distributed feedback (DFB) laser, in which gratings are etched into the semiconductor waveguide structures along the entire length of the laser cavity. However, typical DFB lasers at the wavelength of interest have linewidths that exhibit unacceptable growth when driven at the high currents and powers that are required for the Doppler lidar application. Suppression of this behavior by means of corrugation pitch

  15. Remote sensing application for identifying wetland sites on Cyprus: problems and prospects

    NASA Astrophysics Data System (ADS)

    Markogianni, Vassilik; Tzirkalli, Elli; Gücel, Salih; Dimitriou, Elias; Zogaris, Stamatis

    2014-08-01

    Wetland features in seasonally semi-arid islands pose particular difficulties in identification, inventory and conservation assessment. Our survey presents an application of utilizing images of a newly launched sensor, Landsat 8, to rapidly identify inland water bodies and produce a screening-level island-wide inventory of wetlands for the first time in Cyprus. The method treats all lentic water bodies (artificial and natural) and areas holding semi-aquatic vegetation as wetland sites. The results show that 179 sites are delineated by the remote sensing application and when this is supplemented by expert-guided identification and ground surveys during favourable wet-season conditions the total number of inventoried wetland sites is 315. The number of wetland sites is surprisingly large since it does not include micro-wetlands (under 2000 m2 or 0.2 ha) or widespread narrow lotic and riparian stream reaches. In Cyprus, a number of different wetland types occur and often in temporary or ephemerally flooded conditions and they are usually of very small areal extent. Many wetlands are artificial or semi-artificial water bodies, and numerous natural small wetland features are often degraded by anthropogenic changes or exist as remnant patches and are therefore heavily modified compared to their original natural state. The study proves that there is an urgent need for integrated and multidisciplinary study and monitoring of wetlands cover due to either climate change effects and/or anthropogenic interventions. Small wetlands are particularly vulnerable while many artificial wetlands are not managed for biodiversity values. The remote sensing and GIS application are efficient tools for this initial screening-level inventory. The need for baseline inventory information collection in support of wetland conservation is multi-scalar and requires an adaptive protocol to guide effective conservation planning.

  16. Plasmonic Properties of Bimetallic Nanostructures and Their Applications in Hydrogen Sensing and Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Jiang, Ruibin

    Noble metal nanocrystals have attracted great interest from a wide range of research fields because of their intriguing properties endowed by their localized surface plasmon resonances, which are the collective oscillations of free electrons. Under resonant excitation, metal nanostructures exhibit very large scattering and absorption cross sections and large near-field enhancement. These extraordinary properties can be used in different applications, such as plasmonic sensing and imaging, plasmon-controlled optics, photothermal therapy, photocatalysis, solar cells, and so on. Gold and Silver nanocrystals have plasmon resonances in the visible and near-infrared regions. However, gold and silver are not suitable for some applications. For example, they are generally inactive for catalyzing chemical reactions. The integration of plasmonic metals with other metals can offer superior or new physical/chemical properties. In this thesis, I prepared Au/Ag and Au/Pd bimetallic nanostructures and studied their plasmonic properties and applications in hydrogen sensing and photocatalysis. Seeds have a crucial importance in the synthesis of bimetallic nanostructures. I therefore first studied the roles of the crystalline structure and shape of seeds on the overgrowth of bimetallic nanostructures. The overgrowth of silver and palladium on single crystalline Au nanorods, multicrystalline Au nanorods, and nanobipyramids were studied under the same conditions for each metal. The growths of silver and palladium on single crystalline Au nanorods gave cuboidal nanostructures, while rod-shaped nanostructures were obtained from the growths of silver and palladium on multicrystalline Au nanorods and nanobipyramids. Moreover, the growths of silver and palladium on multicrystalline Au nanobipyramids started at the stepped side facets, while the growths started at the twin boundaries on multicrystalline Au nanorods. These results unambiguously indicate that the crystalline structure of

  17. Application of Thermal Infrared Remote Sensing for Quantitative Evaluation of Crop Characteristics

    NASA Technical Reports Server (NTRS)

    Shaw, J.; Luvall, J.; Rickman, D.; Mask, P.; Wersinger, J.; Sullivan, D.; Arnold, James E. (Technical Monitor)

    2002-01-01

    Evidence suggests that thermal infrared emittance (TIR) at the field-scale is largely a function of the integrated crop/soil moisture continuum. Because soil moisture dynamics largely determine crop yields in non-irrigated farming (85 % of Alabama farms are non-irrigated), TIR may be an effective method of mapping within field crop yield variability, and possibly, absolute yields. The ability to map yield variability at juvenile growth stages can lead to improved soil fertility and pest management, as well as facilitating the development of economic forecasting. Researchers at GHCC/MSFC/NASA and Auburn University are currently investigating the role of TIR in site-specific agriculture. Site-specific agriculture (SSA), or precision farming, is a method of crop production in which zones and soils within a field are delineated and managed according to their unique properties. The goal of SSA is to improve farm profits and reduce environmental impacts through targeted agrochemical applications. The foundation of SSA depends upon the spatial and temporal characterization of soil and crop properties through the creation of management zones. Management zones can be delineated using: 1) remote sensing (RS) data, 2) conventional soil testing and soil mapping, and 3) yield mapping. Portions of this research have concentrated on using remote sensing data to map yield variability in corn (Zea mays L.) and soybean (Glycine max L.) crops. Remote sensing data have been collected for several fields in the Tennessee Valley region at various crop growth stages during the last four growing seasons. Preliminary results of this study will be presented.

  18. Unmanned Aerial Systems and Spectroscopy for Remote Sensing Applications in Archaeology

    NASA Astrophysics Data System (ADS)

    Themistocleous, K.; Agapiou, A.; Cuca, B.; Hadjimitsis, D. G.

    2015-04-01

    Remote sensing has open up new dimensions in archaeological research. Although there has been significant progress in increasing the resolution of space/aerial sensors and image processing, the detection of the crop (and soil marks) formations, which relate to buried archaeological remains, are difficult to detect since these marks may not be visible in the images if observed over different period or at different spatial/spectral resolution. In order to support the improvement of earth observation remote sensing technologies specifically targeting archaeological research, a better understanding of the crop/soil marks formation needs to be studied in detail. In this paper the contribution of both Unmanned Aerial Systems as well ground spectroradiometers is discussed in a variety of examples applied in the eastern Mediterranean region (Cyprus and Greece) as well in Central Europe (Hungary). In- situ spectroradiometric campaigns can be applied for the removal of atmospheric impact to simultaneous satellite overpass images. In addition, as shown in this paper, the systematic collection of ground truth data prior to the satellite/aerial acquisition can be used to detect the optimum temporal and spectral resolution for the detection of stress vegetation related to buried archaeological remains. Moreover, phenological studies of the crops from the area of interest can be simulated to the potential sensors based on their Relative Response Filters and therefore prepare better the satellite-aerial campaigns. Ground data and the use of Unmanned Aerial Systems (UAS) can provide an increased insight for studying the formation of crop and soil marks. New algorithms such as vegetation indices and linear orthogonal equations for the enhancement of crop marks can be developed based on the specific spectral characteristics of the area. As well, UAS can be used for remote sensing applications in order to document, survey and model cultural heritage and archaeological sites.

  19. Mechanical characterization of bucky gel morphing nanocomposite for actuating/sensing applications

    NASA Astrophysics Data System (ADS)

    Kadhoda Ghamsari, Ali; Jin, Yoonyoung; Woldesenbet, Eyassu

    2012-04-01

    Since the demonstration of the bucky gel actuator (BGA) in 2005, a great deal of effort has been exerted to develop novel applications for this electro-active morphing nanocomposite. This three-layered bimorph nanocomposite can be easily fabricated, operated in air and driven with a few volts. The BGA with improved mechanical strength is an excellent candidate for application in macro- to micro-scale smart structures with actuating and sensing capabilities. However, developing new applications requires identifying and understanding the effective design parameters and mechanical properties, respectively. There has been limited published studies on the mechanical properties of BGA. In this study, the effect of three parameters—layer thickness, carbon nanotube type and weight fraction of components—on the mechanical properties was investigated. Samples were characterized via nano-indentation and DMA. The BGA composed of 22 wt% single-walled carbon nanotubes and 45 wt% ionic liquid exhibited the highest hardness, adhesion, viscosity, and elastic and storage moduli. This study revealed the important role of the carbon nanotube type on BGA adhesion. Samples made with multi-walled carbon nanotubes had the lowest adhesion, which is a required factor in applications such as microfluidics.

  20. Application of remote sensing techniques at different scales of observation on wetland evapotranspiration

    NASA Astrophysics Data System (ADS)

    Juan, Chung-Hsin

    The establishment and maintenance of the structure and functions in wetland ecosystems is greatly influenced by hydrologic conditions. Evapotranspiration (ET) is the major output component in the hydrologic water budget. Therefore, in order to provide efficient information for water resources management and the conservation of wetland ecosystems, research on ET is urgently needed. Moreover, to overcome the variable spatial vegetation distribution and the temporal change of wetlands, appropriate remote sensing techniques are also greatly needed. The goal of this research was to study fundamental wetland ET and then with the aid of remote sensing techniques from the micro scale to the macro scale to develop useful wetland ET estimation methods. The study site was located in the Ft. Drum Marsh, Upper St. John's River Basin in Indian River County, Florida. The site is a freshwater marsh with southern cattail ( Typha domingensis Pers.) and sawgrass (Cladium jamaicense Crantz) as the dominant vegetation species. There were four stages of the study: (1) a fundamental ET study with a lysimeter system, (2) ground measurements and analyses of spectral responses of wetland vegetation using a field spectroradiometer, (3) wetland vegetation mapping using aerial hyperspectral images, and (4) application of satellite images to delineate wetland vegetation and estimate marsh-wide ET. The results of the fundamental ET study showed the various important vegetation parameters of sawgrass and cattail. A more appropriate estimation method of canopy resistance for sawgrass and cattail was proposed. Among the various ET estimation methods, the Priestley-Taylor method was found to be most applicable. The ground spectral response measurements of sawgrass and cattail demonstrated a distinguishable difference in red wavebands and normalized difference vegetation index (NDVI), which indicated the spectral separability of the two wetland species. Leaf area index and stomatal resistance

  1. Stratospheric platforms: a novel technological support for Earth observation and remote sensing applications

    NASA Astrophysics Data System (ADS)

    Dovis, Fabio; Lo Presti, Letizia; Magli, Enrico; Mulassano, Paolo; Olmo, Gabriella

    2001-12-01

    The international community agrees that the new technology based on the use of Unmanned Air Vehicles High Altitude Very long Endurance (UAV-HAVE) could play an important role for the development of remote sensing and telecommunication applications. A UAV-HAVE vehicle can be described as a low- cost flying infrastructure (compared with satellites) optimized for long endurance operations at an altitude of about 20 km. Due to such features, its role is similar to satellites, with the major advantages of being less expensive, more flexible, movable on demand, and suitable for a larger class of applications. According to this background, Politecnico di Torino is involved as coordinator in an important project named HeliNet, that represent one of the main activities in Europe in the field of stratospheric platforms, and is concerned with the development of a network of UAV-HAVE aircraft. A key point of this project is the feasibility study for the provision of several services, namely traffic monitoring, environmental surveillance, broadband communications and navigation. This paper reports preliminary results on the HeliNet imaging system and its remote sensing applications. In fact, many environmental surveillance services (e.g. regional public services for agriculture, hydrology, fire protection, and more) require very high-resolution imaging, and can be offered at a lower cost if operated by a shared platform. The philosophy behind the HeliNet project seems to be particularly suitable to manage such missions. In particular, we present a system- level study of possible imaging payloads to be mounted on- board of a stratospheric platform to collect Earth observation data. Firstly, we address optical payloads such as multispectral and/or hyperspectral ones, which are a very short-term objective of the project. Secondly, as an example of mid-term on-board payload, we examine the possibility to carry on the platform a light-SAR system. For both types of payload, we show

  2. Gaussian-optics-based optical modeling and characterization of a Fabry-Perot microcavity for sensing applications.

    PubMed

    Guo, Dagang; Lin, Rongming; Wang, Weijun

    2005-08-01

    A generalized study has been carried out on the modeling of a Fabry-Perot microcavity for sensing applications. Different analytical models on transmission characteristics of a Fabry-Perot microcavity are established by using plane-wave-based techniques, such as the Macleod characteristic matrix technique, the transfer matrix technique, and Smith's technique. A novel Gaussian-optics-based model for a Fabry-Perot microcavity illuminated by a laser beam is then developed and validated. The influence of laser beam waist on microcavity optical response is investigated, and the required minimal beam waist size is explored to ensure a useful optical response for sensing applications that can be accurately predicted by plane-wave optics. Also, the perturbations of microcavity performance induced by different types of microcavity mirror imperfections are discussed, based on the novel optical model. The prototype of the proposed Fabry-Perot microcavity for sensing applications has been successfully fabricated and characterized.

  3. A Bayesian approach to optimal sensor placement for structural health monitoring with application to active sensing

    NASA Astrophysics Data System (ADS)

    Flynn, Eric B.; Todd, Michael D.

    2010-05-01

    This paper introduces a novel approach for optimal sensor and/or actuator placement for structural health monitoring (SHM) applications. Starting from a general formulation of Bayes risk, we derive a global optimality criterion within a detection theory framework. The optimal configuration is then established as the one that minimizes the expected total presence of either type I or type II error during the damage detection process. While the approach is suitable for many sensing/actuation SHM processes, we focus on the example of active sensing using guided ultrasonic waves by implementing an appropriate statistical model of the wave propagation and feature extraction process. This example implements both pulse-echo and pitch-catch actuation schemes and takes into account line-of-site visibility and non-uniform damage probabilities over the monitored structure. The optimization space is searched using a genetic algorithm with a time-varying mutation rate. We provide three actuator/sensor placement test problems and discuss the optimal solutions generated by the algorithm.

  4. Tactile Sensing System Based on Arrays of Graphene Woven Microfabrics: Electromechanical Behavior and Electronic Skin Application.

    PubMed

    Yang, Tingting; Wang, Wen; Zhang, Hongze; Li, Xinming; Shi, Jidong; He, Yijia; Zheng, Quan-shui; Li, Zhihong; Zhu, Hongwei

    2015-11-24

    Nanomaterials serve as promising candidates for strain sensing due to unique electromechanical properties by appropriately assembling and tailoring their configurations. Through the crisscross interlacing of graphene microribbons in an over-and-under fashion, the obtained graphene woven fabric (GWF) indicates a good trade-off between sensitivity and stretchability compared with those in previous studies. In this work, the function of woven fabrics for highly sensitive strain sensing is investigated, although network configuration is always a strategy to retain resistance stability. The experimental and simulation results indicate that the ultrahigh mechanosensitivity with gauge factors of 500 under 2% strain is attributed to the macro-woven-fabric geometrical conformation of graphene, which induces a large interfacial resistance between the interlaced ribbons and the formation of microscale-controllable, locally oriented zigzag cracks near the crossover location, both of which have a synergistic effect on improving sensitivity. Meanwhile, the stretchability of the GWF could be tailored to as high as over 40% strain by adjusting graphene growth parameters and adopting oblique angle direction stretching simultaneously. We also demonstrate that sensors based on GWFs are applicable to human motion detection, sound signal acquisition, and spatially resolved monitoring of external stress distribution. PMID:26468735

  5. Tactile Sensing System Based on Arrays of Graphene Woven Microfabrics: Electromechanical Behavior and Electronic Skin Application.

    PubMed

    Yang, Tingting; Wang, Wen; Zhang, Hongze; Li, Xinming; Shi, Jidong; He, Yijia; Zheng, Quan-shui; Li, Zhihong; Zhu, Hongwei

    2015-11-24

    Nanomaterials serve as promising candidates for strain sensing due to unique electromechanical properties by appropriately assembling and tailoring their configurations. Through the crisscross interlacing of graphene microribbons in an over-and-under fashion, the obtained graphene woven fabric (GWF) indicates a good trade-off between sensitivity and stretchability compared with those in previous studies. In this work, the function of woven fabrics for highly sensitive strain sensing is investigated, although network configuration is always a strategy to retain resistance stability. The experimental and simulation results indicate that the ultrahigh mechanosensitivity with gauge factors of 500 under 2% strain is attributed to the macro-woven-fabric geometrical conformation of graphene, which induces a large interfacial resistance between the interlaced ribbons and the formation of microscale-controllable, locally oriented zigzag cracks near the crossover location, both of which have a synergistic effect on improving sensitivity. Meanwhile, the stretchability of the GWF could be tailored to as high as over 40% strain by adjusting graphene growth parameters and adopting oblique angle direction stretching simultaneously. We also demonstrate that sensors based on GWFs are applicable to human motion detection, sound signal acquisition, and spatially resolved monitoring of external stress distribution.

  6. Methodology for classification of geographical features with remote sensing images: Application to tidal flats

    NASA Astrophysics Data System (ADS)

    Revollo Sarmiento, G. N.; Cipolletti, M. P.; Perillo, M. M.; Delrieux, C. A.; Perillo, Gerardo M. E.

    2016-03-01

    Tidal flats generally exhibit ponds of diverse size, shape, orientation and origin. Studying the genesis, evolution, stability and erosive mechanisms of these geographic features is critical to understand the dynamics of coastal wetlands. However, monitoring these locations through direct access is hard and expensive, not always feasible, and environmentally damaging. Processing remote sensing images is a natural alternative for the extraction of qualitative and quantitative data due to their non-invasive nature. In this work, a robust methodology for automatic classification of ponds and tidal creeks in tidal flats using Google Earth images is proposed. The applicability of our method is tested in nine zones with different morphological settings. Each zone is processed by a segmentation stage, where ponds and tidal creeks are identified. Next, each geographical feature is measured and a set of shape descriptors is calculated. This dataset, together with a-priori classification of each geographical feature, is used to define a regression model, which allows an extensive automatic classification of large volumes of data discriminating ponds and tidal creeks against other various geographical features. In all cases, we identified and automatically classified different geographic features with an average accuracy over 90% (89.7% in the worst case, and 99.4% in the best case). These results show the feasibility of using freely available Google Earth imagery for the automatic identification and classification of complex geographical features. Also, the presented methodology may be easily applied in other wetlands of the world and perhaps employing other remote sensing imagery.

  7. Microwave-heating synthesis and sensing applications of bright gold nanoclusters

    SciTech Connect

    He, Ding-Fei; Xiang, Yang; Wang, Xu; Yu, Xue-Feng

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer We establish a microwave-heating method to synthesize protein-stabilized Au nanoclusters. Black-Right-Pointing-Pointer The obtained Au nanoclusters show bright red fluorescence. Black-Right-Pointing-Pointer The Au nanoclusters can be used as efficient fluorescence probe for Cu{sup 2+} ion sensing. -- Abstract: A rapid microwave-heating method has been developed for the synthesis of bright Au nanoclusters by using bull serum albumin as the template in an aqueous environment. The reaction time needed is only 7.0 min, and the weight of the products at one batch can reach 15 g. The Au nanoclusters exhibit bright fluorescence at {approx}613 nm with quantum yield of {approx}6.0%. By adjusting the pH value, the products can be controlled to precipitate or re-disperse in aqueous solution. Furthermore, the Au nanoclusters have exhibited high sensitivity and selectivity in the determination of Cu{sup 2+} ions in water. These results suggest an efficient method for obtaining metal nanoclusters for the detection and sensing applications.

  8. Application of circularly polarized laser radiation for sensing of crystal clouds.

    PubMed

    Balin, Yurii; Kaul, Bruno; Kokhanenko, Grigorii; Winker, David

    2009-04-13

    The application of circularly polarized laser radiation and measurement of the fourth Stokes parameter of scattered radiation considerably reduce the probability of obtaining ambiguous results for radiation depolarization in laser sensing of crystal clouds. The uncertainty arises when cloud particles appear partially oriented by their large diameters along a certain azimuth direction. Approximately in 30% of all cases, the measured depolarization depends noticeably on the orientation of the lidar reference plane with respect to the particle orientation direction. In this case, the corridor of the most probable depolarization values is about 0.1-0.15, but in individual cases, it can be noticeably wider. The present article considers theoretical aspects of this phenomenon and configuration of a lidar capable of measuring the fourth Stokes parameter together with an algorithm of lidar signal processing in the presence of optically thin cloudiness when molecular scattering cannot be neglected. It is demonstrated that the element ?44 of the normalized backscattering phase matrix (BSPM) can be measured. Results of measurements are independent of the presence or absence of azimuthal particle orientation. For sensing in the zenith or nadir, this element characterizes the degree of horizontal orientation of long particle diameters under the action of aerodynamic forces arising during free fall of particles.

  9. Application of Multitemporal Remotely Sensed Soil Moisture for the Estimation of Soil Physical Properties

    NASA Technical Reports Server (NTRS)

    Mattikalli, N. M.; Engman, E. T.; Jackson, T. J.; Ahuja, L. R.

    1997-01-01

    This paper demonstrates the use of multitemporal soil moisture derived from microwave remote sensing to estimate soil physical properties. The passive microwave ESTAR instrument was employed during June 10-18, 1992, to obtain brightness temperature (TB) and surface soil moisture data in the Little Washita watershed, Oklahoma. Analyses of spatial and temporal variations of TB and soil moisture during the dry-down period revealed a direct relationship between changes in T and soil moisture and soil physical (viz. texture) and hydraulic (viz. saturated hydraulic conductivity, K(sat)) properties. Statistically significant regression relationships were developed for the ratio of percent sand to percent clay (RSC) and K(sat), in terms of change components of TB and surface soil moisture. Validation of results using field measured values and soil texture map indicated that both RSC and K(sat) can be estimated with reasonable accuracy. These findings have potential applications of microwave remote sensing to obtain quick estimates of the spatial distributions of K(sat), over large areas for input parameterization of hydrologic models.

  10. Evaluation of zinc oxide nano-microtetrapods for biomolecule sensing applications

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Zhao, Yichen; Karlsson, Mikael; Wang, Qin; Toprak, Muhammet S.

    2015-12-01

    Zinc oxide tetrapods (ZnO-Ts) were synthesized by flame transport synthesis using Zn microparticles. This work herein reports a systematical study on the structural, optical and electrochemical properties of the ZnO-Ts. The morphology of the ZnO-Ts was confirmed by scanning electron microscopy (SEM) as joint structures of four nano-microstructured legs, of which the diameter of each leg is 0.7-2.2 μm in average from the tip to the stem. The ZnO-Ts were dispersed in glucose solution to study the luminescence as well as photocatalytic activity in a mimicked biological environment. The photoluminescence (PL) intensity in the ultraviolet (UV) region quenches with linear dependence to increased glucose concentration up to 4 mM. The ZnO-Ts were also attached with glucose oxidase (GOx) and over coated with a thin film of Nafion to form active layers for electrochemical glucose sensing. The attachment of GOx and coating of Nafion were confirmed by infrared spectroscopy (FT-IR). Furthermore, the current response of the active layers based on ZnO-Ts was investigated by cyclic voltammetry (CV) in various glucose concentrations. Stable current response of glucose was detected with linear dependence to glucose concentration up to 12 mM, which confirms the potential of ZnO-Ts for biomolecule sensing applications.

  11. Integrated pressure-sensing microsystem by CMOS IC technology for barometal applications

    NASA Astrophysics Data System (ADS)

    Zhou, Minxin; Huang, Qing-An

    2001-10-01

    Most currently integrated silicon microsystems available for pressure sensing are based on preprocessing before CMOS IC technology. These microsystems are generally very sensitive to parasitism effect and not available for IC-compatible process. This limits the accuracy of the microsystem and batch-fabrication. Calibration cost is also increased. To overcome these problems, a new generation of pressure microsystems without preprocessing CMOS IC technology has been proposed. This pressure-sensing system consists of a miniature silicon capacitive sensor, fabricated with silicon-silicon bonding technique, and a detection integrated circuit. Only the standard layers of CMOS process are used to build the system and only several photolithography steps are necessary to achieve the micromachined structure in postprocessing, so a high long-term stability could be assured. The entire system converts absolute pressure changes, in the pressure range useful for barometal applications, to frequency changes. A reference capacitor is used in the system and a (delta) C model is applied to cancel out temperature dependence and to compensate non-linearity. The pressure range of the sensor is from 0.5 bar to 1.5bar and the temperature varies between -25 degree(s)C and -60 degree(s)C. A sensitivity of 50Hz/Torr could be achieved.

  12. The application of the unmanned aerial vehicle remote sensing technology in the FAST project construction

    NASA Astrophysics Data System (ADS)

    Zhu, Boqin

    2015-08-01

    The purpose of using unmanned aerial vehicle (UAV) remote sensing application in Five-hundred-meter aperture spherical telescope (FAST) project is to dynamically record the construction process with high resolution image, monitor the environmental impact, and provide services for local environmental protection and the reserve immigrants. This paper introduces the use of UAV remote sensing system and the course design and implementation for the FAST site. Through the analysis of the time series data, we found that: (1) since the year 2012, the project has been widely carried out; (2) till 2013, the internal project begun to take shape;(3) engineering excavation scope was kept stable in 2014, and the initial scale of the FAST engineering construction has emerged as in the meantime, the vegetation recovery went well on the bare soil area; (4) in 2015, none environmental problems caused by engineering construction and other engineering geological disaster were found in the work area through the image interpretation of UAV images. This paper also suggested that the UAV technology need some improvements to fulfill the requirements of surveying and mapping specification., including a new data acquisition and processing measures assigned with the background of highly diverse elevation, usage of telephoto camera, hierarchical photography with different flying height, and adjustment with terrain using the joint empty three settlement method.

  13. The sensitivity of synthetic aperture radiometers for remote sensing applications from space

    NASA Technical Reports Server (NTRS)

    Levine, D. M.

    1989-01-01

    Aperture synthesis offers a means of realizing the full potential of microwave remote sensing from space by helping to overcome the limitations set by antenna size. The result is a potentially lighter, more adaptable structure for applications in space. However, because the physical collecting area is reduced, the signal-to-noise ratio is reduced and may adversely affect the radiometric sensitivity. Sensitivity is an especially critical issue for measurements to be made from low earth orbit because the motion of the platform limits the integration time available for forming an image. The purpose is to develop expression for the sensitivity of remote sensing systems which use aperture synthesis. The objective is to develop basic equations general enough to be used to obtain the sensitivity of the several variations of aperture synthesis which were proposed for sensors in space. The conventional microwave imager (a scanning total power radiometer) is treated as a special case and a comparison of three synthetic aperture configurations with the conventional imager is presented.

  14. Recent Advances in Intracellular and In Vivo ROS Sensing: Focus on Nanoparticle and Nanotube Applications

    PubMed Central

    Uusitalo, Larissa M.; Hempel, Nadine

    2012-01-01

    Reactive oxygen species (ROS) are increasingly being implicated in the regulation of cellular signaling cascades. Intracellular ROS fluxes are associated with cellular function ranging from proliferation to cell death. Moreover, the importance of subtle, spatio-temporal shifts in ROS during localized cellular signaling events is being realized. Understanding the biochemical nature of the ROS involved will enhance our knowledge of redox-signaling. An ideal intracellular sensor should therefore resolve real-time, localized ROS changes, be highly sensitive to physiologically relevant shifts in ROS and provide specificity towards a particular molecule. For in vivo applications issues such as bioavailability of the probe, tissue penetrance of the signal and signal-to-noise ratio also need to be considered. In the past researchers have heavily relied on the use of ROS-sensitive fluorescent probes and, more recently, genetically engineered ROS sensors. However, there is a great need to improve on current methods to address the above issues. Recently, the field of molecular sensing and imaging has begun to take advantage of the unique physico-chemical properties of nanoparticles and nanotubes. Here we discuss the recent advances in the use of these nanostructures as alternative platforms for ROS sensing, with particular emphasis on intracellular and in vivo ROS detection and quantification. PMID:23109815

  15. [An improved method and its application for agricultural drought monitoring based on remote sensing].

    PubMed

    Zheng, You-Fei; Cheng, Jin-Xin; Wu, Rong-Jun; Guan, Fu-Lai; Yao, Shu-Ran

    2013-09-01

    From the viewpoint of land surface evapotranspiration, and by using the semi-empirical evapotranspiration model based on the Priestley-Taylor equation and the land surface temperature-vegetation index (LST-VI) triangle algorithm, the current monitoring technology of agricultural drought based on remote sensing was improved, and a simplified Evapotranspiration Stress Index (SESI) was derived. With the application of the MODIS land products from March to November in 2008 and 2009, the triangle algorithm modeling with three different schemes was constructed to calculate the SESI to monitor the agricultural drought in the plain areas of Beijing, Tianjin, and Hebei, in comparison with the Temperature Vegetation Dryness Index (TVDI). The results showed that SESI could effectively simplify the remote sensing drought monitoring method, and there was a good agreement between SESI and surface soil (10 and 20 cm depth) moisture content. Moreover, the performance of SESI was better in spring and autumn than in summer, and the SESI during different periods was more comparable than TVDI. It was feasible to apply the SESI to the continuous monitoring of a large area of agricultural drought.

  16. [An improved method and its application for agricultural drought monitoring based on remote sensing].

    PubMed

    Zheng, You-Fei; Cheng, Jin-Xin; Wu, Rong-Jun; Guan, Fu-Lai; Yao, Shu-Ran

    2013-09-01

    From the viewpoint of land surface evapotranspiration, and by using the semi-empirical evapotranspiration model based on the Priestley-Taylor equation and the land surface temperature-vegetation index (LST-VI) triangle algorithm, the current monitoring technology of agricultural drought based on remote sensing was improved, and a simplified Evapotranspiration Stress Index (SESI) was derived. With the application of the MODIS land products from March to November in 2008 and 2009, the triangle algorithm modeling with three different schemes was constructed to calculate the SESI to monitor the agricultural drought in the plain areas of Beijing, Tianjin, and Hebei, in comparison with the Temperature Vegetation Dryness Index (TVDI). The results showed that SESI could effectively simplify the remote sensing drought monitoring method, and there was a good agreement between SESI and surface soil (10 and 20 cm depth) moisture content. Moreover, the performance of SESI was better in spring and autumn than in summer, and the SESI during different periods was more comparable than TVDI. It was feasible to apply the SESI to the continuous monitoring of a large area of agricultural drought. PMID:24417121

  17. Radiative transfer model for aerosols in infrared wavelengths for passive remote sensing applications.

    PubMed

    Ben-David, Avishai; Embury, Janon F; Davidson, Charles E

    2006-09-10

    A comprehensive analytical radiative transfer model for isothermal aerosols and vapors for passive infrared remote sensing applications (ground-based and airborne sensors) has been developed. The theoretical model illustrates the qualitative difference between an aerosol cloud and a chemical vapor cloud. The model is based on two and two/four stream approximations and includes thermal emission-absorption by the aerosols; scattering of diffused sky radiances incident from all sides on the aerosols (downwelling, upwelling, left, and right); and scattering of aerosol thermal emission. The model uses moderate resolution transmittance ambient atmospheric radiances as boundary conditions and provides analytical expressions for the information on the aerosol cloud that is contained in remote sensing measurements by using thermal contrasts between the aerosols and diffused sky radiances. Simulated measurements of a ground-based sensor viewing Bacillus subtilis var. niger bioaerosols and kaolin aerosols are given and discussed to illustrate the differences between a vapor-only model (i.e., only emission-absorption effects) and a complete model that adds aerosol scattering effects.

  18. Drought monitoring with remote sensing based land surface phenology applications and validation

    NASA Astrophysics Data System (ADS)

    El Vilaly, Mohamed Abd salam M.

    Droughts are a recurrent part of our climate, and are still considered to be one of the most complex and least understood of all natural hazards in terms of their impact on the environment. In recent years drought has become more common and more severe across the world. For more than a decade, the US southwest has faced extensive and persistent drought conditions that have impacted vegetation communities and local water resources. The focus of this work is achieving a better understanding of the impact of drought on the lands of the Hopi Tribe and Navajo Nation, situated in the Northeastern corner of Arizona. This research explores the application of remote sensing data and geospatial tools in two studies to monitor drought impacts on vegetation productivity. In both studies we used land surface phenometrics as the data tool. In a third related study, I have compared satellite-derived land surface phenology (LSP) to field observations of crop stages at the Maricopa Agricultural Center to achieve a better understanding of the temporal sensitivity of satellite derived phenology of vegetation and understand their accuracy as a tool for monitoring change. The first study explores long-term vegetation productivity responses to drought. The paper develops a framework for drought monitoring and assessment by integrating land cover, climate, and topographical data with LSP. The objective of the framework is to detect long-term vegetation changes and trends in the Normalized Difference Vegetation Index (NDVI) related productivity. The second study examines the major driving forces of vegetation dynamics in order to provide valuable spatial information related to inter-annual variability in vegetation productivity for mitigating drought impacts. The third study tests the accuracy of remote sensing-derived LSP by comparing them to the actual seasonal phases of crop growth. This provides a way to compare and validate the various LSP algorithms, and more crucially, helps to

  19. Quorum Quenching Enzymes and Their Application in Degrading Signal Molecules to Block Quorum Sensing-Dependent Infection

    PubMed Central

    Chen, Fang; Gao, Yuxin; Chen, Xiaoyi; Yu, Zhimin; Li, Xianzhen

    2013-01-01

    With the emergence of antibiotic-resistant strains of bacteria, the available options for treating bacterial infections have become very limited, and the search for a novel general antibacterial therapy has received much greater attention. Quorum quenching can be used to control disease in a quorum sensing system by triggering the pathogenic phenotype. The interference with the quorum sensing system by the quorum quenching enzyme is a potential strategy for replacing traditional antibiotics because the quorum quenching strategy does not aim to kill the pathogen or limit cell growth but to shut down the expression of the pathogenic gene. Quorum quenching enzymes have been identified in quorum sensing and non-quorum sensing microbes, including lactonase, acylase, oxidoreductase and paraoxonase. Lactonase is widely conserved in a range of bacterial species and has variable substrate spectra. The existence of quorum quenching enzymes in the quorum sensing microbes can attenuate their quorum sensing, leading to blocking unnecessary gene expression and pathogenic phenotypes. In this review, we discuss the physiological function of quorum quenching enzymes in bacterial infection and elucidate the enzymatic protection in quorum sensing systems for host diseases and their application in resistance against microbial diseases. PMID:24065091

  20. Mesoporous Silica Nanomaterials for Applications in Catalysis, Sensing, Drug Delivery and Gene Transfection

    SciTech Connect

    Radu, Daniela Rodica

    2004-01-01

    The central theme of this dissertation is represented by the versatility of mesoporous silica nanomaterials in various applications such as catalysis and bio-applications, with main focus on biological applications of Mesoporous Silica Nanospheres (MSN). The metamorphosis that we impose to these materials from catalysis to sensing and to drug and gene delivery is detailed in this dissertation. First, we developed a synthetic method that can fine tune the amount of chemically accessible organic functional groups on the pores surface of MSN by exploiting electrostatic and size matching between the cationic alkylammonium head group of the cetyltrimethylammonium bromide (CTAB) surfactant and various anionic organoalkoxysilane precursors at the micelle-water interface in a base-catalyzed condensation reaction of silicate. Aiming nature imitation, we demonstrated the catalytic abilities of the MSNs, We utilized an ethylenediamine functional group for chelating Cu2+ as a catalytic functional group anchored inside the mesopores. Thus, a polyalkynylene-based conducting polymer (molecular wire) was synthesized within the Cu-functionalized MSNs silica catalyst. For sensing applications, we have synthesized a poly(lactic acid) coated mesoporous silica nanosphere (PLA-MSN) material that serves as a fluorescence sensor system for detection of amino-containing neurotransmitters in neutral aqueous buffer. We exploited the mesoporosity of MSNs for encapsulating pharmaceutical drugs. We examined bio-friendly capping molecules such as polyamidoamine dendrimers of generations G2 to G4, to prevent the drug leaching. Next, the drug delivery system employed MSNs loaded with Doxorubicin, an anticancer drug. The results demonstrated that these nano-Trojan horses have ability to deliver Doxorubicin to cancer cells and induce their death. Finally, to demonstrate the potential of MSN as an universal cellular transmembrane nanovehicle, we anchored positively charged dendrimers on

  1. Surrounding Sensitive Electronic Properties of Bi2Te3 Nanoplates—Potential Sensing Applications of Topological Insulators

    PubMed Central

    Liu, Bin; Xie, Wuyuan; Li, Han; Wang, Yanrong; Cai, Daoping; Wang, Dandan; Wang, Lingling; Liu, Yuan; Li, Qiuhong; Wang, Taihong

    2014-01-01

    Significant efforts have been paid to exploring the fundamental properties of topological insulators (TIs) in recent years. However, the investigation of TIs as functional materials for practical device applications is still quite limited. In this work, electronic sensors based on Bi2Te3 nanoplates were fabricated and the sensing performance was investigated. On exposure to different surrounding environments, significant changes in the conducting properties were observed by direct electrical measurements. These results suggest that nanostructured TIs hold great potential for sensing applications. PMID:24717774

  2. Development of Si(1-x)Ge(x) technology for microwave sensing applications

    NASA Technical Reports Server (NTRS)

    Mena, Rafael A.; Taub, Susan R.; Alterovitz, Samuel A.; Young, Paul E.; Simons, Rainee N.; Rosenfeld, David

    1993-01-01

    The progress for the first year of the work done under the Director's Discretionary Fund (DDF) research project entitled, 'Development of Si(1-x)Ge(x) Technology for Microwave Sensing Applications.' This project includes basic material characterization studies of silicon-germanium (SiGe), device processing on both silicon (Si) and SiGe substrates, and microwave characterization of transmission lines on silicon substrates. The material characterization studies consisted of ellipsometric and magneto-transport measurements and theoretical calculations of the SiGe band-structure. The device fabrication efforts consisted of establishing SiGe device processing capabilities in the Lewis cleanroom. The characterization of microwave transmission lines included studying the losses of various coplanar transmission lines and the development of transitions on silicon. Each part of the project is discussed individually and the findings for each part are presented. Future directions are also discussed.

  3. The Integration of Remote Sensing and Socioeconomic Data: Lessons from the Socioeconomic Data and Applications Center

    NASA Astrophysics Data System (ADS)

    de Sherbinin, A. M.; Chen, R. S.

    2014-12-01

    Many of the core research questions of the "anthropocene" are spatial in nature, and require spatial data integration to provide the answers: Where are the people most vulnerable to environmental changes located? How do global environmental changes affect people, ecosystems or production systems in a given location? What are the impacts of human activities in the coastal zone, or mountainous areas, or drylands? This paper provides examples of the integration of remotely sensed biophysical and socioeconomic data that illustrate the benefits of spatial data integration. It also addresses some of the challenges in integrating data developed at different scales and for different purposes, sharing lessons learned from twenty years of operating the NASA Socioeconomic Data and Applications Center (SEDAC). Examples will be drawn from the literature on land use/land cover change, urbanization, disaster risk management, climate impact and vulnerability assessment, and natural resource management.

  4. Tunability of double layer coupled plasmonic system and its application in displacement sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Wanwan; Feng, Yuanming; Zhang, Yanxiao; Lin, Wang

    2016-04-01

    We illustrate the mechanism of multispectral Fano-like phenomenon in a double layer coupled plasmonic system and investigate its tunability by changing the geometrical parameters. By tuning the parameters in the double layer system, we show that the height of the dielectric layer between two layers plays an important role in the transmission spectrum for the studied range. The application of the double layer coupled plasmonic system in displacement sensing is also demonstrated by moving the bottom layer leftward and forward with respect to the top layer. The frequency of the spectrum peak is shown to be a linear function of forward displacement up to 2 nm. The simulations demonstrate that the small displacement can lead to frequency shift and amplitude change of the transmission peak.

  5. Engineering of composite metallic microfibers towards development of plasmonic devices for sensing applications

    NASA Astrophysics Data System (ADS)

    Petropoulou, A.; Antonopoulos, G.; Bastock, P.; Craig, C.; Kakarantzas, G.; Hewak, D. W.; Zervas, M. N.; Riziotis, C.

    2016-03-01

    The paper discusses the analysis of tapered hybrid composite microfibers based on a metal-core and dielectric-cladding composite material system. Its advantages over the pure metal tips conventionally used, are the inherent enhanced environmental robustness due to inert borosilicate cladding and the capability of multiple excitation of the tapered nanowire through the length of the fiber due to the enabled total internal reflection at the borosilicate/air interface. Simulations through finite element method (FEM) have demonstrated an improved field enhancement at the tapered region of such microfibers. Furthermore, experimental results on tapering in copper based microfibers together with light coupling and propagation studies will be demonstrated revealing the potential for the development of plasmonic devices for sensing applications.

  6. Application of remote sensing to selected problems within the state of California

    NASA Technical Reports Server (NTRS)

    Colwell, R. N. (Principal Investigator); Benson, A. S.; Estes, J. E.; Johnson, C.

    1981-01-01

    Specific case studies undertaken to demonstrate the usefulness of remote sensing technology to resource managers in California are highlighted. Applications discussed include the mapping and quantization of wildland fire fuels in Mendocino and Shasta Counties as well as in the Central Valley; the development of a digital spectral/terrain data set for Colusa County; the Forsythe Planning Experiment to maximize the usefulness of inputs from LANDSAT and geographic information systems to county planning in Mendocino County; the development of a digital data bank for Big Basin State Park in Santa Cruz County; the detection of salinity related cotton canopy reflectance differences in the Central Valley; and the surveying of avocado acreage and that of other fruits and nut crops in Southern California. Special studies include the interpretability of high altitude, large format photography of forested areas for coordinated resource planning using U-2 photographs of the NASA Bucks Lake Forestry test site in the Plumas National Forest in the Sierra Nevada Mountains.

  7. Application of Remote Sensing Techniques for Appraising Changes in Wildlife Habitat

    NASA Technical Reports Server (NTRS)

    Nelson, H. K.; Klett, A. T.; Johnston, J. E.

    1971-01-01

    An attempt was made to investigate the potential of airborne, multispectral, line scanner data acquisition and computer-implemented automatic recognition techniques for providing useful information about waterfowl breeding habitat in North Dakota. The spectral characteristics of the components of a landscape containing waterfowl habitat can be detected with airborne scanners. By analyzing these spectral characteristics it is possible to identify and map the landscape components through analog and digital processing methods. At the present stage of development multispectral remote sensing techniques are not ready for operational application to surveys of migratory bird habitat and other such resources. Further developments are needed to: (1) increase accuracy; (2) decrease retrieval and processing time; and (3) reduce costs.

  8. Estimating the amount of Ship Recycling Activity Using Remote Sensing Application

    NASA Astrophysics Data System (ADS)

    Watagawa, M.; Shinoda, T.; Hasegawa, K.

    2016-06-01

    The Advanced Land Observing Satellite (ALOS) was launched for earth observation and there are more than 6 million scenes of archives including coastal areas during period of five years. The wealth of satellite imagery is noticeable for investigating monitoring methods such as ship detection in wide ocean area. Especially, it is useful way to estimate past behaviour from satellite imagery compared to reference data. We collected satellite imagery and analysis breaking process in major ship breaking yards between year 2009 and 2011. Comparing the number of recycling ships by satellite imagery to the world statistics is in good agreement. In this study, Remote Sensing Application has been discussed in order to assess the potential to be used for economic activities such as ship recycling in wide coastal area. It was used to evaluate the performance of ship recycling monitoring by Satellite imagery. Additionally, an approach for recognizing ships by SAR imagery regardless of weather conditions is presented.

  9. Construction of Self-Stabilizing k Disjoint Sense-Sleep Trees with Application to Sensor Networks

    NASA Astrophysics Data System (ADS)

    Kiniwa, Jun

    Sensor networks have promising applications such as battlefield surveillance, biological detection, and emergency navigation, etc. Crucial problems in sensor networks are energy-efficiency and collision avoidance in wireless communication. To deal with the problems, we consider a self-stabilizing solution to the construction of k disjoint sense-sleep trees, where range adjustment and the use of GPS are allowed. Each root is determined by its identifier and is distinguished by its color, the identification of a tree. Using a dominating k-partition rule, each non-root node first determines a color irrelevant to the root. Then, the non-root node determines a parent node that is equally colored with minimal distance. If there is no appropriate parent, the range is extended or shrunk until the nearest parent is determined. Finally, we perform a simulation.

  10. Development and sensing applications of fluorescent motifs within the mitochondrial environment.

    PubMed

    Roopa; Kumar, Naresh; Bhalla, Vandana; Kumar, Manoi

    2015-11-01

    The potential use of fluorescent molecular probes to measure ions and biomolecules has contributed incessantly to the understanding of chemical and biological systems. The approach has many advantages such as high sensitivity, simplicity and non-destructive cellular imaging that offer visible information about the targeted species. In this article, our objective is to discuss fluorescent probes that have sensing applications within the mitochondrial environment. Mitochondria are cellular organelles which are well known for their unique physiological functions and have been found to be associated with various diseases and disorders. It is therefore, important to develop new tools and tactics that can provide useful information concerning the mitochondrial environment which in turn is essential to understand its biophysical functioning and related diseases.

  11. Green preparation of reduced graphene oxide for sensing and energy storage applications

    NASA Astrophysics Data System (ADS)

    Bo, Zheng; Shuai, Xiaorui; Mao, Shun; Yang, Huachao; Qian, Jiajing; Chen, Junhong; Yan, Jianhua; Cen, Kefa

    2014-04-01

    Preparation of graphene from chemical reduction of graphene oxide (GO) is recognized as one of the most promising methods for large-scale and low-cost production of graphene-based materials. This study reports a new, green, and efficient reducing agent (caffeic acid/CA) for GO reduction. The CA-reduced GO (CA-rGO) shows a high C/O ratio (7.15) that is among the best rGOs prepared with green reducing reagents. Electronic gas sensors and supercapacitors have been fabricated with the CA-rGO and show good performance, which demonstrates the potential of CA-rGO for sensing and energy storage applications.

  12. A study of application of remote sensing to river forecasting. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A project is described whose goal was to define, implement and evaluate a pilot demonstration test to show the practicability of applying remotely sensed data to operational river forecasting in gaged or previously ungaged watersheds. A secondary objective was to provide NASA with documentation describing the computer programs that comprise the streamflow forecasting simulation model used. A computer-based simulation model was adapted to a streamflow forecasting application and implemented in an IBM System/360 Model 44 computer, operating in a dedicated mode, with operator interactive control through a Model 2250 keyboard/graphic CRT terminal. The test site whose hydrologic behavior was simulated is a small basin (365 square kilometers) designated Town Creek near Geraldine, Alabama.

  13. Analysis of multimode POF gratings in stress and strain sensing applications

    NASA Astrophysics Data System (ADS)

    Luo, Yanhua; Yan, Binbin; Li, Mo; Zhang, Xiaolei; Wu, Wenxuan; Zhang, Qijin; Peng, Gang-Ding

    2011-05-01

    Polymer fiber Bragg gratings (FBGs) are made using the modified sagnac system with a 355 nm pulsed laser from a photosensitive polymer optical fiber (POF) with external and core diameters of 290.6 and 21.0 μm, respectively. Multimodes are reflected based on the reflection spectra of the gratings. The reflectivity spectra are also studied when such multimode polymer FBGs are subjected to axial static stress and strain. The respective effects of stress and strain on the sensor are decoupled and analyzed independently. Experiments and regression show that the effect of stress and the relaxation of stress in multimode FBGs (MM FBGs) in POF during loading and unloading have a more evident non-linear effect than that of strain. These non-linear properties make FBGs attractive for mechanical sensing applications.

  14. Green preparation of reduced graphene oxide for sensing and energy storage applications

    PubMed Central

    Bo, Zheng; Shuai, Xiaorui; Mao, Shun; Yang, Huachao; Qian, Jiajing; Chen, Junhong; Yan, Jianhua; Cen, Kefa

    2014-01-01

    Preparation of graphene from chemical reduction of graphene oxide (GO) is recognized as one of the most promising methods for large-scale and low-cost production of graphene-based materials. This study reports a new, green, and efficient reducing agent (caffeic acid/CA) for GO reduction. The CA-reduced GO (CA-rGO) shows a high C/O ratio (7.15) that is among the best rGOs prepared with green reducing reagents. Electronic gas sensors and supercapacitors have been fabricated with the CA-rGO and show good performance, which demonstrates the potential of CA-rGO for sensing and energy storage applications. PMID:24732631

  15. Application of remote sensing techniques to the geology of the bonanza volcanic center

    NASA Technical Reports Server (NTRS)

    Marrs, R. W.

    1973-01-01

    A program is reported for evaluating remote sensing as an aid to geologic mapping for the past four years. Data tested in this evaluation include color and color infrared photography, multiband photography, low sun-angle photography, thermal infrared scanner imagery, and side-looking airborne radar. The relative utility of color and color infrared photography was tested as it was used to refine geologic maps in previously mapped areas, as field photos while mapping in the field, and in making photogeologic maps prior to field mapping. The latter technique served as a test of the maximum utility of the photography. In this application the photography was used successfully to locate 75% of all faults in a portion of the geologically complex Bonanza volcanic center and to map and correctly identify 93% of all Quaternary deposits and 62% of all areas of Tertiary volcanic outcrop in the area.

  16. Boronic Acid-Based Approach for Separation and Immobilization of Glycoproteins and Its Application in Sensing

    PubMed Central

    Wang, Xiaojin; Xia, Ning; Liu, Lin

    2013-01-01

    Glycoproteins influence a broad spectrum of biological processes including cell-cell interaction, host-pathogen interaction, or protection of proteins against proteolytic degradation. The analysis of their glyco-structures and concentration levels are increasingly important in diagnosis and proteomics. Boronic acids can covalently react with cis-diols in the oligosaccharide chains of glycoproteins to form five- or six-membered cyclic esters. Based on this interaction, boronic acid-based ligands and materials have attracted much attention in both chemistry and biology as the recognition motif for enrichment and chemo/biosensing of glycoproteins in recent years. In this work, we reviewed the progress in the separation, immobilization and detection of glycoproteins with boronic acid-functionalized materials and addressed its application in sensing. PMID:24141187

  17. Characterization of InGaAs linear array for applications to remote sensing

    NASA Astrophysics Data System (ADS)

    Garcia, Christopher S.; Refaat, Tamer F.; Farnsworth, Glenn R.; Abedin, M. N.; Elsayed-Ali, Hani E.

    2005-05-01

    An Indium Gallium Arsenide linear photodiode array in the 1.1-2.5 μm spectral range was characterized. The array has 1024X1 pixels with a 25 μm pitch and was manufactured by Sensors Unlimited, Inc. Characterization and analysis of the electrical and optical properties of a camera system were carried out at room temperature to obtain detector performance parameters. The signal and noise were measured while the array was uniformly illuminated at varying exposure levels. A photon transfer curve was generated by plotting noise as a function of average signal to obtain the camera gain constant. The spectral responsivity was also measured, and the quantum efficiency, read noise and full-well capacity were determined. This paper describes the characterization procedure, analyzes the experimental results, and discusses the applications of the InGaAs linear array to future earth and planetary remote sensing mission.

  18. Green preparation of reduced graphene oxide for sensing and energy storage applications.

    PubMed

    Bo, Zheng; Shuai, Xiaorui; Mao, Shun; Yang, Huachao; Qian, Jiajing; Chen, Junhong; Yan, Jianhua; Cen, Kefa

    2014-04-15

    Preparation of graphene from chemical reduction of graphene oxide (GO) is recognized as one of the most promising methods for large-scale and low-cost production of graphene-based materials. This study reports a new, green, and efficient reducing agent (caffeic acid/CA) for GO reduction. The CA-reduced GO (CA-rGO) shows a high C/O ratio (7.15) that is among the best rGOs prepared with green reducing reagents. Electronic gas sensors and supercapacitors have been fabricated with the CA-rGO and show good performance, which demonstrates the potential of CA-rGO for sensing and energy storage applications.

  19. Characterization of InGaAs Linear Array for Applications to Remote Sensing

    NASA Technical Reports Server (NTRS)

    Garcia, Christopher S.; Refaat, Tamer F.; Farnsworth, Glenn R.; Abedin, M. N.; Elsayed-Ali, Hani E.

    2005-01-01

    An Indium Gallium Arsenide linear photodiode array in the 1.1-2.5 micron spectral range was characterized. The array has 1024x1 pixels with a 25 micron pitch and was manufactured by Sensors Unlimited, Inc. Characterization and analysis of the electrical and optical properties of a camera system were carried out at room temperature to obtain detector performance parameters. The signal and noise were measured while the array was uniformly illuminated at varying exposure levels. A photon transfer curve was generated by plotting noise as a function of average signal to obtain the camera gain constant. The spectral responsivity was also measured, and the quantum efficiency, read noise and full-well capacity were determined. This paper describes the characterization procedure, analyzes the experimental results, and discusses the applications of the InGaAs linear array to future earth and planetary remote sensing mission.

  20. Long term storage of virus templated fluorescent materials for sensing applications

    NASA Astrophysics Data System (ADS)

    Seetharam, Raviraja N.; Szuchmacher Blum, Amy; Soto, Carissa M.; Whitley, Jessica L.; Sapsford, Kim E.; Chatterji, Anju; Lin, Tianwei; Johnson, John E.; Guerra, Charles; Satir, Peter; Ratna, Banahalli R.

    2008-03-01

    Wild type, mutant, and chemically modified Cowpea mosaic viruses (CPMV) were studied for long term preservation in the presence and absence of cryoprotectants. Viral complexes were reconstituted and tested via fluorescence spectroscopy and a UV/vis-based RNase assay for structural integrity. When viruses lyophilized in the absence of cryoprotectant were rehydrated and RNase treated, UV absorption increased, indicating that the capsids were damaged. The addition of trehalose during lyophilization protected capsid integrity for at least 7 weeks. Measurements of the fluorescence peak maximum of CPMV lyophilized with trehalose and reconstituted also indicate that the virus remained intact. Microarray binding assays indicated that CPMV particles chemically modified for use as a fluorescent tracer were intact and retained binding specificity after lyophilization in the presence of trehalose. Thus, we demonstrate that functionalized CPMV nanostructures can be stored for the long term, enabling their use in practical sensing applications.

  1. Recent Developments in the Application of Biologically Inspired Computation to Chemical Sensing

    NASA Astrophysics Data System (ADS)

    Marco, S.; Gutierrez-Gálvez, A.

    2009-05-01

    Biological olfaction outperforms chemical instrumentation in specificity, response time, detection limit, coding capacity, time stability, robustness, size, power consumption, and portability. This biological function provides outstanding performance due, to a large extent, to the unique architecture of the olfactory pathway, which combines a high degree of redundancy, an efficient combinatorial coding along with unmatched chemical information processing mechanisms. The last decade has witnessed important advances in the understanding of the computational primitives underlying the functioning of the olfactory system. In this work, the state of the art concerning biologically inspired computation for chemical sensing will be reviewed. Instead of reviewing the whole body of computational neuroscience of olfaction, we restrict this review to the application of models to the processing of real chemical sensor data.

  2. Application of remote sensing to thermal pollution analysis. [satellite sea surface temperature measurement assessment

    NASA Technical Reports Server (NTRS)

    Hiser, H. W.; Lee, S. S.; Veziroglu, T. N.; Sengupta, S.

    1975-01-01

    A comprehensive numerical model development program for near-field thermal plume discharge and far field general circulation in coastal regions is being carried on at the University of Miami Clean Energy Research Institute. The objective of the program is to develop a generalized, three-dimensional, predictive model for thermal pollution studies. Two regions of specific application of the model are the power plants sites at the Biscayne Bay and Hutchinson Island area along the Florida coastline. Remote sensing from aircraft as well as satellites are used in parallel with in situ measurements to provide information needed for the development and verification of the mathematical model. This paper describes the efforts that have been made to identify problems and limitations of the presently available satellite data and to develop methods for enhancing and enlarging thermal infrared displays for mesoscale sea surface temperature measurements.

  3. Compressive sensing of full wave field data for structural health monitoring applications.

    PubMed

    Di Ianni, Tommaso; De Marchi, Luca; Perelli, Alessandro; Marzani, Alessandro

    2015-07-01

    Numerous nondestructive evaluations and structural health monitoring approaches based on guide waves rely on analysis of wave fields recorded through scanning laser Doppler vibrometers (SLDVs) or ultrasonic scanners. The informative content which can be extracted from these inspections is relevant; however, the acquisition process is generally time-consuming, posing a limit in the applicability of such approaches. To reduce the acquisition time, we use a random sampling scheme based on compressive sensing (CS) to minimize the number of points at which the field is measured. The CS reconstruction performance is mostly influenced by the choice of a proper decomposition basis to exploit the sparsity of the acquired signal. Here, different bases have been tested to recover the guided waves wave field acquired on both an aluminum and a composite plate. Experimental results show that the proposed approach allows a reduction of the measurement locations required for accurate signal recovery to less than 34% of the original sampling grid.

  4. Best Practices for the Application of Functional Near Infrared Spectroscopy to Operator State Sensing

    NASA Technical Reports Server (NTRS)

    Harrivel, Angela R.; Hylton, Alan G.; Hearn, Tristan A.

    2012-01-01

    Functional Near Infrared Spectroscopy (fNIRS) is an emerging neuronal measurement technique with many advantages for application in operational and training contexts. Instrumentation and protocol improvements, however, are required to obtain useful signals and produce expeditiously self-applicable, comfortable and unobtrusive headgear. Approaches for improving the validity and reliability of fNIRS data for the purpose of sensing the mental state of commercial aircraft operators are identified, and an exemplary system design for attentional state monitoring is outlined. Intelligent flight decks of the future can be responsive to state changes to optimally support human performance. Thus, the identification of cognitive performance decrement, such as lapses in operator attention, may be used to predict and avoid error-prone states. We propose that attentional performance may be monitored with fNIRS through the quantification of hemodynamic activations in cortical regions which are part of functionally-connected attention and resting state networks. Activations in these regions have been shown to correlate with behavioral performance and task engagement. These regions lie beneath superficial tissue in head regions beyond the forehead. Headgear development is key to reliably and robustly accessing locations beyond the hair line to measure functionally-connected networks across the whole head. Human subject trials using both fNIRS and functional Magnetic Resonance Imaging (fMRI) will be used to test this system. Data processing employs Support Vector Machines for state classification based on the fNIRS signals. If accurate state classification is achieved based on sensed activation patterns, fNIRS will be shown to be useful for monitoring attentional performance.

  5. Climate- and remote sensing-based tools for drought management application in North and South Korea

    NASA Astrophysics Data System (ADS)

    Nam, W.; Wardlow, B.; Hayes, M. J.; Tadesse, T.; Svoboda, M.; Fuchs, B.; Wilhite, D. A.

    2015-12-01

    North and South Korea have experienced more frequent and extreme droughts since the late 1990s. In recent years, severe droughts in 2000-2001, 2012, and 2015 have led to widespread agricultural and environmental impacts, and resulted in water shortages and large reductions in crop yields. This has been particularly problematic in the agricultural sector of North Korea, which has a high-level of vulnerability due to variations of climate and this, in turn, results in food security issues. This vulnerability is exacerbated by North Korea's relatively small area of arable land, most of which is not very productive. The objective of this study was to develop a drought management application using climate- and remote sensing-based tools for North and South Korea. These tools are essential for improving drought planning and preparedness in this area. In this study, various drought indicators derived from climate and remote sensing data (SPI, SC-PDSI, SPEI, and VegDRI-Korea) were investigated to monitor the current drought condition and evaluate their ability to characterize agricultural and meteorological drought events and their potential impacts. Results from this study can be used to develop or improve the national-level drought management application for these countries. The goal is to provide improved and more timely information on both the spatial and temporal dimensions of drought conditions and provide a tool to identify both past and present drought events in order to make more informed management decisions and reduce the impacts of current droughts and reduce the risk to future events.

  6. Narrow linewidth UV laser transmitter for ozone DIAL remote sensing application

    NASA Astrophysics Data System (ADS)

    Chuang, Ti; Hansell, Joe; Shuman, Tim; Schum, Tom; Puffenberger, Kent; Burnham, Ralph

    2016-03-01

    Fibertek has demonstrated a dual-wavelength narrow linewidth UV laser transmitter for NASA airborne ozone DIAL remote sensing application. The application requires two narrow linewidth lasers in the UV region between 300 nm and 320 nm with at least 12 nm separation between the two wavelengths. Each UV laser was based on a novel ring structure incorporating an optical parametric oscillator (OPO) and a sum frequency generator (SFG). The fundamental pump source of the UV laser was a single frequency 532 nm laser, which was frequency-doubled from a diode-pumped, injection-seeded single frequency Nd:YAG laser operating at 1064 nm and 50 Hz repetition rate. The ring frequency converters generated UV wavelengths at 304 nm and 316 nm respectively. The demonstrated output energies were 2.6 mJ for 304 nm and 2.3 mJ for 316 nm UV lines, with room to potentially achieve more energy for each laser. Linewidth narrowing was achieved using a volume Bragg grating as the output coupler of the OPO in each ring oscillator. We obtained spectral linewidths (FWHM) of 0.12 nm for the 304 nm line and 0.1 nm for the 316 nm line, and the UV energy conversion efficiencies of 12.2% and 9.1%. Fibertek built an airborne DIAL transmitter based on the reported demonstration, which was a single optical module with dual-wavelength output at the demonstrated wavelengths. NASA plans to field the UV laser transmitter as a key component of the High Spectral Resolution Lidar-II (HSRL-II) high altitude airborne instrument to perform autonomous global ozone DIAL remote sensing field campaigns.

  7. Remote Sensing of Cloud, Aerosol, and Land Properties from MODIS: Applications to the East Asia Region

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, Steven; Chu, D. Allen; Moody, Eric G.

    2001-01-01

    MODIS is an earth-viewing cross-track scanning spectroradiometer launched on the Terra satellite in December 1999. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (two bands), 500 m (five bands) and 1000 m (29 bands). These bands have been carefully selected to enable advanced studies of land, ocean, and atmospheric processes. In this presentation we review the comprehensive set of remote sensing algorithms that have been developed for the remote sensing of atmospheric properties using MODIS data, placing primary emphasis on the principal atmospheric applications of (i) developing a cloud mask for distinguishing clear sky from clouds, (ii) retrieving global cloud radiative and microphysical properties, including cloud top pressure and temperature, effective emissivity, cloud optical thickness, thermodynamic phase, and effective radius, (iii) monitoring tropospheric aerosol optical thickness over the land and ocean and aerosol size distribution over the ocean, (iv) determining atmospheric profiles of moisture and temperature, and (v) estimating column water amount. The physical principles behind the determination of each of these atmospheric products will be described, together with an example of their application using MODIS observations to the east Asian region in Spring 2001. All products are archived into two categories: pixel-level retrievals (referred to as Level-2 products) and global gridded products at a latitude and longitude resolution of 1 degree (Level-3 products). An overview of the MODIS atmosphere algorithms and products, status, validation activities, and early level-2 and -3 results will be presented.

  8. Advances in three-dimensional integral imaging: sensing, display, and applications [Invited].

    PubMed

    Xiao, Xiao; Javidi, Bahram; Martinez-Corral, Manuel; Stern, Adrian

    2013-02-01

    Three-dimensional (3D) sensing and imaging technologies have been extensively researched for many applications in the fields of entertainment, medicine, robotics, manufacturing, industrial inspection, security, surveillance, and defense due to their diverse and significant benefits. Integral imaging is a passive multiperspective imaging technique, which records multiple two-dimensional images of a scene from different perspectives. Unlike holography, it can capture a scene such as outdoor events with incoherent or ambient light. Integral imaging can display a true 3D color image with full parallax and continuous viewing angles by incoherent light; thus it does not suffer from speckle degradation. Because of its unique properties, integral imaging has been revived over the past decade or so as a promising approach for massive 3D commercialization. A series of key articles on this topic have appeared in the OSA journals, including Applied Optics. Thus, it is fitting that this Commemorative Review presents an overview of literature on physical principles and applications of integral imaging. Several data capture configurations, reconstruction, and display methods are overviewed. In addition, applications including 3D underwater imaging, 3D imaging in photon-starved environments, 3D tracking of occluded objects, 3D optical microscopy, and 3D polarimetric imaging are reviewed. PMID:23385893

  9. Practical application of RINO, a smartphone-based dynamic displacement sensing application for wind tunnel tests

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Woo; Jeong, Jong-Hyun; Knez, Kyle P.; Min, Jae-Hong; Jo, Hongki

    2016-04-01

    Dynamic displacement is one of the most important measurands in wind tunnel tests of structures. Laser sensors or optical sensors are usually used in wind tunnel tests to measure displacements. However, these commercial sensors have limitations in its use, cost and installation despite of their good performance in accuracy. RINO (Real-time Image- processing for Non-contact monitoring), an iOS software application for dynamic displacement monitoring, has been developed in the previous study. In this study, feasibility of RINO in practical use for wind tunnel tests is explored. Series of wind tunnel tests show that performances of RINO are comparable with those of conventional displacement sensors.

  10. Development and Evaluation of a Uav Based Mapping System for Remote Sensing and Surveying Applications

    NASA Astrophysics Data System (ADS)

    Eling, C.; Wieland, M.; Hess, C.; Klingbeil, L.; Kuhlmann, H.

    2015-08-01

    In recent years, unmanned aerial vehicles (UAVs) have increasingly been used in various application areas, such as in the remote sensing or surveying. For these applications the UAV has to be equipped with a mapping sensor, which is mostly a camera. Furthermore, a georeferencing of the UAV platform and/or the acquired mapping data is required. The most efficient way to realize this georeferencing is the direct georeferencing, which is based on an onboard multi-sensor system. In recent decades, direct georeferencing systems have been researched and used extensively in airborne, ship and land vehicle applications. However, these systems cannot easily be adapted to UAV platforms, which is mainly due to weight and size limitations. In this paper a direct georeferencing system for micro- and mini-sized UAVs is presented, which consists of a dual-frequency geodetic grade OEM GPS board, a low-cost single-frequency GPS chip, a tactical grade IMU and a magnetometer. To allow for cm-level position and sub-degree attitude accuracies, RTK GPS (real-time kinematic) and GPS attitude (GPS compass) determination algorithms are running on this system, as well as a GPS/IMU integration. Beside the direct georeferencing, also the precise time synchronization of the camera, which acts as the main sensor for mobile mapping applications, and the calibration of the lever arm between the camera reference point and the direct georeferencing reference point are explained in this paper. Especially the high accurate time synchronization of the camera is very important, to still allow for high surveying accuracies, when the images are taken during the motion of the UAV. Results of flight tests demonstrate that the developed system, the camera synchronization and the lever arm calibration make directly georeferenced UAV based single point measurements possible, which have cm-level accuracies on the ground.

  11. User Requirements for the Application of Remote Sensing in the Planning and Management of Water Resource Systems

    NASA Technical Reports Server (NTRS)

    Burgy, R. H.

    1972-01-01

    Data relating to hydrologic and water resource systems and subsystems management are reported. Systems models, user application, and remote sensing technology are covered. Parameters governing water resources include evaportranspiration, vegetation, precipitation, streams and estuaries, reservoirs and lakes, and unsaturate and saturated soil zones.

  12. The Association of Depression and Sense of Belonging with Suicidal Ideation among Older Adults: Applicability of Resiliency Models

    ERIC Educational Resources Information Center

    McLaren, Suzanne; Gomez, Rapson; Bailey, Maria; Van Der Horst, Renee K.

    2007-01-01

    Suicide among older people, especially men, is a significant problem. In this study the applicability of the compensatory, the risk-protective, the challenge, and the protective-protective models of resiliency for the prediction of suicidal ideation from depression (the risk factor) and sense of belonging to the community (the protective factor)…

  13. Truly Fluorescent Excitation-Dependent Carbon Dots and Their Applications in Multicolor Cellular Imaging and Multidimensional Sensing.

    PubMed

    Pan, Lulu; Sun, Shan; Zhang, Aidi; Jiang, Kai; Zhang, Ling; Dong, Chaoqing; Huang, Qing; Wu, Aiguo; Lin, Hengwei

    2015-12-16

    Truly fluorescent excitation-dependent carbon dots are prepared, and the relationship between their chemical composition and fluorescent emission is discussed. Furthermore, potential applications of the as-prepared carbon dots to multicolor bio-labeling and multidimodal sensing are demonstrated.

  14. Will algorithms modified with soil and weather information improve in-field reflectance-sensing corn nitrogen applications?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen (N) needs to support corn (Zea mays L.) production can be highly variable within fields. Canopy reflectance sensing for assessing crop N health has been implemented on many farmers’ fields to side-dress or top-dress variable-rate N application, but at times farmers report the performance of...

  15. Low-Power Analog Processing for Sensing Applications: Low-Frequency Harmonic Signal Classification

    PubMed Central

    White, Daniel J.; William, Peter E.; Hoffman, Michael W.; Balkir, Sina

    2013-01-01

    A low-power analog sensor front-end is described that reduces the energy required to extract environmental sensing spectral features without using Fast Fouriér Transform (FFT) or wavelet transforms. An Analog Harmonic Transform (AHT) allows selection of only the features needed by the back-end, in contrast to the FFT, where all coefficients must be calculated simultaneously. We also show that the FFT coefficients can be easily calculated from the AHT results by a simple back-substitution. The scheme is tailored for low-power, parallel analog implementation in an integrated circuit (IC). Two different applications are tested with an ideal front-end model and compared to existing studies with the same data sets. Results from the military vehicle classification and identification of machine-bearing fault applications shows that the front-end suits a wide range of harmonic signal sources. Analog-related errors are modeled to evaluate the feasibility of and to set design parameters for an IC implementation to maintain good system-level performance. Design of a preliminary transistor-level integrator circuit in a 0.13 μm complementary metal-oxide-silicon (CMOS) integrated circuit process showed the ability to use online self-calibration to reduce fabrication errors to a sufficiently low level. Estimated power dissipation is about three orders of magnitude less than similar vehicle classification systems that use commercially available FFT spectral extraction. PMID:23892765

  16. High-Throughput Heterogeneous Integration of Diverse Nanomaterials on a Single Chip for Sensing Applications

    PubMed Central

    MacNaughton, Samuel; Ammu, Srikanth; Manohar, Sanjeev K.; Sonkusale, Sameer

    2014-01-01

    There is a large variety of nanomaterials each with unique electronic, optical and sensing properties. However, there is currently no paradigm for integration of different nanomaterials on a single chip in a low-cost high-throughput manner. We present a high throughput integration approach based on spatially controlled dielectrophoresis executed sequentially for each nanomaterial type to realize a scalable array of individually addressable assemblies of graphene, carbon nanotubes, metal oxide nanowires and conductive polymers on a single chip. This is a first time where such a diversity of nanomaterials has been assembled on the same layer in a single chip. The resolution of assembly can range from mesoscale to microscale and is limited only by the size and spacing of the underlying electrodes on chip used for assembly. While many applications are possible, the utility of such an array is demonstrated with an example application of a chemical sensor array for detection of volatile organic compounds below parts-per-million sensitivity. PMID:25350279

  17. Spectroscopic Properties of Metamorphosed Mafic Rocks: Remote Sensing Applications on Mars

    NASA Technical Reports Server (NTRS)

    Graff, Trevor G.

    1999-01-01

    Reflectance spectroscopy in the visible and near-infrared wavelengths, between 420 mn to 2588 nm. was utilized on a suite of hydrothermally metamorphosed mafic rocks from the Smartville complex in the northern Sierra Nevada mountains in California. A detailed data base of 102 samples was compiled in order to distinguish differences in mineralogy, petrology, and degree of metamorphism for remote sensing applications. Study was limited to metaigneous and metasedimentary rocks in an attempt to spectrally characterize terrestrial rocks analogous to the possible surface of Mars, for a better understanding and possible detection of the geologic features on the remote surface. Diagnostic absorption bands of iron, water, and hydroxyl produced the majority of discernible features in this study. Mossbauer spectroscopy was performed in order to determine specific iron sites. The resulting spectral data base along with thin section mineral identification, metamorphic zone, rock type and location were recorded and available for future application and research. Continued exploration of Mars in the advancing years, will further advance our understanding of the geology of Mars. Spectroscopic techniques will undoubtedly be integral parts of these future missions. Work on terrestrial analogs to the Martian surface must continue, in order to produce extensive data bases and broaden our knowledge of spectral features.

  18. Investigation on strain sensing properties of carbon-based nanocomposites for structural aircraft applications

    NASA Astrophysics Data System (ADS)

    Lamberti, Patrizia; Spinelli, Giovanni; Tucci, Vincenzo; Guadagno, Liberata; Vertuccio, Luigi; Russo, Salvatore

    2016-05-01

    The mechanical and electrical properties of a thermosetting epoxy resin particularly indicated for the realization of structural aeronautic components and reinforced with multiwalled carbon nanotubes (MWCNTs, at 0.3 wt%) are investigated for specimens subjected to cycles and different levels of applied strain (i.e. ɛ) loaded both in axial tension and flexural mode. It is found that the piezoresistive behavior of the resulting nanocomposite evaluated in terms of variation of the electrical resistance is strongly affected by the applied mechanical stress mainly due to the high sensibility and consequent rearrangement of the electrical percolating network formed by MWCNTs in the composite at rest or even under a small strain. In fact, the variations in electrical resistance that occur during the mechanical stress are correlated to the deformation exhibited by the nanocomposites. In particular, the overall response of electrical resistance of the composite is characterized by a linear increase with the strain at least in the region of elastic deformation of the material in which the gauge factor (i.e. G.F.) of the sensor is usually evaluated. Therefore, the present study aims at investigating the possible use of the nanotechnology for application of embedded sensor systems in composite structures thus having capability of self-sensing and of responding to the surrounding environmental changes, which are some fundamental requirements especially for structural aircraft monitoring applications.

  19. Introduction to structure from motion and its applications in remote sensing

    SciTech Connect

    Fair, Matt B

    2011-01-11

    This talk discusses my experience at Los Alamos National Laboratories developing the Wide Area Persistent Surveillance (WAPS) system AngelFire and the problems with working with low resolution surface models. This experience provided a motivation to seek solutions to utilize the redundant WAPS imagery to build surface models of the urban environment. Structure from Motion (SfM) is a process that takes multiple view imagery and compute the 3D structure of a scene. We will walk through the basic algorithm and discuss areas for optimization. Military services and intelligence agencies face long-standing challenges with processing, exploiting, and disseminating ISR data. The problem is that too much data is being produced and not enough people to look at it and the problem is not going away. As a result of this data overload, we need to shift the way we think about data and find creative ways to use and present it so it can be easily digested by decision makers. SfM also provides a means for developing a data processing and organization architecture. Applications for various remote sensing applications will be discussed for motivation for why SfM and Multi-View Stereo rendering is an important area that needs to be continued to be developed.

  20. Tunable emission in surface passivated Mn-ZnS nanophosphors and its application for Glucose sensing

    NASA Astrophysics Data System (ADS)

    Sharma, Manoj; Jain, Tarun; Singh, Sukhvir; Pandey, O. P.

    2012-03-01

    The present work describes the tunable emission in inorganic-organic hybrid NPs which can be useful for optoelectronic and biosensing applications. In this work, Mn- ZnS nanoparticles emitting various colors, including blue and orange, were synthesized by simple chemical precipitation method using chitosan as a capping agent. Earlier reports describe that emission color characteristics in nanoparticles are tuned by varying particle size and with doping concentration. Here in this article tunable emission has been achieved by varying excitation wavelength in a single sample. This tunable emission property with high emission intensity was further achieved by changing capping concentration keeping host Mn-ZnS concentration same. Tunable emission is explained by FRET mechanism. Commission Internationale de l'Eclairage (CIE) chromaticity coordinates shifts from (0.273, 0.20) and (0.344, 0.275) for same naocrystals by suitably tuning excitation energy from higher and lower ultra-violet (UV) range. Synthesized nanoparticles have been characterized by X-ray diffraction, SEM, HRTEM, UV- Visible absorption and PL spectroscopy for structural and optical studies. Using tunable emission property, these highly emissive nanoparticles functionalized with biocompatible polymer chitosan were further used for glucose sensing applications.