Science.gov

Sample records for bio-chemical sensing applications

  1. Study of interfacial phenomena for bio/chemical sensing applications

    NASA Astrophysics Data System (ADS)

    Min, Hwall

    This work presents the fundamental study of biological and chemical interfacial phenomena and (bio)chemical sensing applications using high frequency resonator arrays. To realize a versatile (bio)chemical sensing system for the fundamental study as well as their practical applications, the following three distinct components were studied and developed: i) detection platforms with high sensitivity, ii) novel innovative sensing materials with high selectivity, iii) analytical model for data interpretation. 8-pixel micromachined quartz crystal resonator (muQCR) arrays with a fundamental resonance frequency of 60 ¡V 90 MHz have been used to provide a reliable detection platform with high sensitivity. Room temperature ionic liquid (RTIL) has been explored and integrated into the sensing system as a smart chemical sensing material. The use of nanoporous gold (np-Au) enables the combination of the resonator and surface-enhanced Raman spectroscopy for both quantitative and qualitative measurement. A statistical model for the characterization of resonator behavior to study the protein adsorption kinetics is developed by random sequential adsorption (RSA) approach with the integration of an effective surface depletion theory. The investigation of the adsorption kinetics of blood proteins is reported as the fundamental study of biological phenomena using the proposed sensing system. The aim of this work is to study different aspects of protein adsorption and kinetics of adsorption process with blood proteins on different surfaces. We specifically focus on surface depletion effect in conjunction with the RSA model to explain the observed adsorption isotherm characteristics. A number of case studies on protein adsorption conducted using the proposed sensing system has been discussed. Effort is specifically made to understand adsorption kinetics, and the effect of surface on the adsorption process as well as the properties of the adsorbed protein layer. The second half of the

  2. Advanced nanoporous materials for micro-gravimetric sensing to trace-level bio/chemical molecules.

    PubMed

    Xu, Pengcheng; Li, Xinxin; Yu, Haitao; Xu, Tiegang

    2014-10-13

    Functionalized nanoporous materials have been developed recently as bio/chemical sensing materials. Due to the huge specific surface of the nano-materials for molecular adsorption, high hopes have been placed on gravimetric detection with micro/nano resonant cantilevers for ultra-sensitive sensing of low-concentration bio/chemical substances. In order to enhance selectivity of the gravimetric resonant sensors to the target molecules, it is crucial to modify specific groups onto the pore-surface of the nano-materials. By loading the nanoporous sensing material onto the desired region of the mass-type transducers like resonant cantilevers, the micro-gravimetric bio/chemical sensors can be formed. Recently, such micro-gravimetric bio/chemical sensors have been successfully applied for rapid or on-the-spot detection of various bio/chemical molecules at the trace-concentration level. The applicable nanoporous sensing materials include mesoporous silica, zeolite, nanoporous graphene oxide (GO) and so on. This review article focuses on the recent achievements in design, preparation, functionalization and characterization of advanced nanoporous sensing materials for micro-gravimetric bio/chemical sensing.

  3. Advanced Nanoporous Materials for Micro-Gravimetric Sensing to Trace-Level Bio/Chemical Molecules

    PubMed Central

    Xu, Pengcheng; Li, Xinxin; Yu, Haitao; Xu, Tiegang

    2014-01-01

    Functionalized nanoporous materials have been developed recently as bio/chemical sensing materials. Due to the huge specific surface of the nano-materials for molecular adsorption, high hopes have been placed on gravimetric detection with micro/nano resonant cantilevers for ultra-sensitive sensing of low-concentration bio/chemical substances. In order to enhance selectivity of the gravimetric resonant sensors to the target molecules, it is crucial to modify specific groups onto the pore-surface of the nano-materials. By loading the nanoporous sensing material onto the desired region of the mass-type transducers like resonant cantilevers, the micro-gravimetric bio/chemical sensors can be formed. Recently, such micro-gravimetric bio/chemical sensors have been successfully applied for rapid or on-the-spot detection of various bio/chemical molecules at the trace-concentration level. The applicable nanoporous sensing materials include mesoporous silica, zeolite, nanoporous graphene oxide (GO) and so on. This review article focuses on the recent achievements in design, preparation, functionalization and characterization of advanced nanoporous sensing materials for micro-gravimetric bio/chemical sensing. PMID:25313499

  4. Optimizing integrated optical chips for label-free (bio-)chemical sensing.

    PubMed

    Kunz, R E; Cottier, K

    2006-01-01

    Label-free sensing is an important method for many (bio-)chemical applications in fields such as biotechnology, medicine, pharma, ecology and food quality control. The broad range of applications includes liquid refractive index sensing, molecule detection, and the detection of particles or cells. Integrated optics based on the use of waveguide modes offers a great potential and flexibility to tailor the sensor properties to these applications. In this paper, the results of a numerical study are presented, showing that this flexibility is founded on the many degrees of freedom that can be used for the integrated optical chip design, in contrast to other technologies such as those based on surface plasmon resonance, for which the materials' properties limit the range of choices. The applications that are explicitly considered and discussed include (1) bulk refractometry, (2) thin-layer sensing, for example biosensors monitoring molecular adsorption processes occurring within some 10 nm of the chip's surface, (3) thick-layer sensing with processes involving molecules or ions to be monitored within a sensing matrix extending to some 100 nm from the chip's surface, for example hydrogel-based layers and chemo-optically sensitive membranes, and (4) particle sensing with particles or, for example, biological cells to be monitored within probe volumes extending to some 1,000 nm from the chip's surface. The peculiarities for the different types of applications will be discussed, and suitable modeling methods presented. Finally, the application-specific design guidelines supplied will enable the optimization of various types of integrated optical sensors, including interferometers and grating-based sensors.

  5. SU-8 Cantilevers for Bio/chemical Sensing; Fabrication, Characterisation and Development of Novel Read-out Methods

    PubMed Central

    Nordström, Maria; Keller, Stephan; Lillemose, Michael; Johansson, Alicia; Dohn, Søren; Haefliger, Daniel; Blagoi, Gabriela; Havsteen-Jakobsen, Mogens; Boisen, Anja

    2008-01-01

    Here, we present the activities within our research group over the last five years with cantilevers fabricated in the polymer SU-8. We believe that SU-8 is an interesting polymer for fabrication of cantilevers for bio/chemical sensing due to its simple processing and low Young's modulus. We show examples of different integrated read-out methods and their characterisation. We also show that SU-8 cantilevers have a reduced sensitivity to changes in the environmental temperature and pH of the buffer solution. Moreover, we show that the SU-8 cantilever surface can be functionalised directly with receptor molecules for analyte detection, thereby avoiding gold-thiol chemistry. PMID:27879783

  6. Resonant-cantilever bio/chemical sensors with an integrated heater for both resonance exciting optimization and sensing repeatability enhancement

    NASA Astrophysics Data System (ADS)

    Yu, Haitao; Li, Xinxin; Gan, Xiaohua; Liu, Yongjing; Liu, Xiang; Xu, Pengcheng; Li, Jungang; Liu, Min

    2009-04-01

    With an integrated resonance exciting heater and a self-sensing piezoresistor, resonant micro-cantilever bio/chemical sensors are optimally designed and fabricated by micromachining techniques. This study is emphasized on the optimization of the integrated heating resistor. Previous research has put the heater at either the cantilever clamp end, the midpoint or the free end. Aiming at sufficiently high and stable resonant amplitude, our research indicates that the optimized location of the thermal-electric exciting resistor is the clamp end instead of other positions. By both theoretical analysis and resonance experiments where three heating resistors are placed at the three locations of the fabricated cantilever, it is clarified that the clamp end heating provides the most efficient resonance excitation in terms of resonant amplitude, Q-factor and resonance stability. Besides, the optimized combination of dc bias and ac voltage is determined by both analysis and experimental verification. With the optimized heating excitation, the resonant cantilever is used for biotin-avidin-specific detection, resulting in a ±0.1 Hz ultra-low noise floor of the frequency signal and a 130 fg mass resolution. In addition to resonance excitation, the heater is used to heat up the cantilever for speed-up desorption after detection that helps rapid and repeated sensing to chemical vapor. The clamp end is determined (by simulation) as the optimal heating location for uniform temperature distribution on the cantilever. Using the resonant cantilever, a rapid and repeated sensing experiment on dimethyl methylphosphonate (DMMP) vapor shows that a short-period heating at the detection interval significantly quickens the signal recovery and enhances the sensing repeatability.

  7. Lab-on-a-chip bio/chemical sensing system based on the liquid core optical ring resonator

    NASA Astrophysics Data System (ADS)

    White, Ian M.; Suter, Jonathan D.; Zhu, Hongying; Oveys, Hesam; Brewington, Lee; Gohring, John; Fan, Xudong

    2007-04-01

    The liquid core optical ring resonator (LCORR) sensor is a newly developed capillary-based ring resonator that integrates microfluidics with photonic sensing technology. The circular cross-section of the capillary forms a ring resonator that supports whispering gallery modes (WGM), which interact with the sample as it passes through the capillary. As in previous ring resonator sensor implementations, the interaction between the WGM evanescent field and the sample enables label-free detection. With a prototype of an LCORR sensor, we have achieved a refractive index detection limit of 10-6 RIU and a detection limit for protein of 2 pg/mm2. Several engineering developments have been accomplished as well, including a thermal noise characterization, a thermal stabilization implementation, integration of the LCORR with a planar waveguide array, and electro-kinetic sample delivery. In the near future, the LCORR will be integrated into a dense 2-dimensional sensing array by integrating multiple capillaries with a chip-based waveguide array. This lab-on-a-chip sensing system will have a number of applications, including environmental sensing for defense purposes, disease diagnostics for medical purposes, and as a lab tool for analytical chemistry and molecular analysis.

  8. Optofluidics in bio-chemical analysis

    NASA Astrophysics Data System (ADS)

    Guo, Yunbo; Fan, Xudong

    2012-01-01

    Optofluidics organically integrates microfluidics and photonics and is an emerging technology in biological and chemical analysis. In this paper, we overview the recent studies in bio-chemical sensing applications of optofluidics. Particularly, we report the research progress in our lab in developing diverse optofluidic devices using two unique configurations: thin-walled capillary based optofluidic ring resonator (OFRR) and multi-hole capillary based optofluidic platforms. The first one has been developed to be OFRR-based label-free biosensor, microfluidic laser based intra-cavity sensors, and on-column optical detectors for micro-gas chromatography (μGC), while the second one has been developed to be optofluidic Fabry-Pérot based label-free biosensor and optofluidic Surface-Enhanced Raman Spectroscopy (SERS) biosensor. All of these devices take advantage of superior fluidic handling capability and high sensitivity, and have been used in detecting various biological and chemical analytes in either liquid or vapor phase.

  9. Droplet microfluidics in (bio)chemical analysis.

    PubMed

    Basova, Evgenia Yu; Foret, Frantisek

    2015-01-07

    Droplet microfluidics may soon change the paradigm of performing chemical analyses and related instrumentation. It can improve not only the analysis scale, possibility for sensitivity improvement, and reduced consumption of chemical and biological reagents, but also the speed of performing a variety of unit operations. At present, microfluidic platforms can reproducibly generate monodisperse droplet populations at kHz or higher rates with droplet sizes suitable for high-throughput experiments, single-cell detection or even single molecule analysis. In addition to being used as microreactors with volume in the micro- to femtoliter range, droplet based systems have also been used to directly synthesize particles and encapsulate biological entities for biomedicine and biotechnology applications. This minireview summarizes various droplet microfluidics operations and applications for (bio)chemical assays described in the literature during the past few years.

  10. HIgh-Q Optical Micro-cavity Resonators as High Sensitive Bio-chemical and Ultrasonic Sensors

    NASA Astrophysics Data System (ADS)

    Ling, Tao

    Optical micro-cavity resonators have quickly emerged in the past few years as a new sensing platform in a wide range of applications, such as bio-chemical molecular detection, environmental monitoring, acoustic and electromagnetic waves detection. In this thesis, we will mainly focus on developing high sensitivity silica micro-tube resonator bio-chemical sensors and high sensitivity polymer micro-ring resonator acoustic sensors. In high sensitivity silica micro-tube resonator bio-chemical sensors part: We first demonstrated a prism coupled silica micro-tube bio-chemical sensing platform to overcome the reliability problem in a fiber coupled thin wall silica micro-tube sensing platform. In refractive index sensing experiment, a unique resonance mode with sensitivity around 600nm/refractive index unit (RIU) has been observed. Surface sensing experiments also have been performed in this platform to detect lipid monolayer, lipid bilayer, electrostatic self assemble layer-by-layer as well as the interaction between the lipid bilayer and proteins. Then a theoretical study on various sensing properties on the silica micro-tube based sensing platform has been realized. Furthermore, we have proposed a coupled cavity system to further enhance the device's sensitivity above 1000nm/RIU. In high sensitivity polymer micro-ring resonator acoustic sensors part: We first presented a simplified fabrication process and realized a polymer microring with a Q factor around 6000. The fabricated device has been used to detect acoustic wave with noise equivalent pressure (NEP) around 230Pa over 1-75MHz frequency rang, which is comparable to state-of-art piezoelectric transducer and the device's frequency response also have been characterized to be up to 90MHz. A new fabrication process combined with resist reflow and thermal oxidation process has been used to improve the Q factor up to 10 5 and the device's NEP has been tested to be around 88Pa over 1-75MHz range. Further improving the

  11. Silicon-based optoelectronic integrated circuit for label-free bio/chemical sensor.

    PubMed

    Song, Junfeng; Luo, Xianshu; Kee, Jack Sheng; Han, Kyungsup; Li, Chao; Park, Mi Kyoung; Tu, Xiaoguang; Zhang, Huijuan; Fang, Qing; Jia, Lianxi; Yoon, Yong-Jin; Liow, Tsung-Yang; Yu, Mingbin; Lo, Guo-Qiang

    2013-07-29

    We demonstrate a silicon-based optoelectronic integrated circuit (OEIC) for label-free bio/chemical sensing application. Such on-chip OEIC sensor system consists of optical grating couplers for vertical light coupling into silicon waveguides, a thermal-tunable microring as a tunable filter, an exposed microring as an optical label-free sensor, and a Ge photodetector for a direct electrical readout. Different from the conventional wavelength-scanning method, we adopt low-cost broadband ASE light source, together with the on-chip tunable filter to generate sliced light source. The effective refractive index change of the sensing microring induced by the sensing target is traced by scanning the supplied electrical power applied onto the tracing microring, and the detected electrical signal is read out by the Ge photodetector. For bulk refractive index sensing, we demonstrate using such OEIC sensing system with a sensitivity of ~15 mW/RIU and a detection limit of 3.9 μ-RIU, while for surface sensing of biotin-streptavidin, we obtain a surface mass sensitivity of S(m) = ~192 µW/ng·mm(-2) and a surface detection limit of 0.3 pg/mm(2). The presented OEIC sensing system is suitable for point-of-care applications.

  12. A strategy for design and fabrication of low cost microchannel for future reproductivity of bio/chemical lab-on-chip application

    NASA Astrophysics Data System (ADS)

    Humayun, Q.; Hashim, U.; Ruzaidi, C. M.; Noriman, N. Z.

    2017-03-01

    The fabrication and characterization of sensitive and selective fluids delivery system for the application of nano laboratory on a single chip is a challenging task till to date. This paper is one of the initial attempt to resolve this challenging task by using a simple, cost effective and reproductive technique for pattering a microchannel structures on SU-8 resist. The objective of the research is to design, fabricate and characterize polydimethylsiloxane (PDMS) microchannel. The proposed device mask was designed initially by using AutoCAD software and then the designed was transferred to transparency sheet and to commercial chrome mask for better photo masking process. The standard photolithography process coupled with wet chemical etching process was used for the fabrication of proposed microchannel. This is a low cost fabrication technique for the formation of microchannel structure at resist. The fabrication process start from microchannel formation and then the structure was transformed to PDMS substrate, the microchannel structure was cured from mold and then the cured mold was bonded with the glass substrate by plasma oxidation bonding process. The surface morphology was characterized by high power microscope (HPM) and the structure was characterized by Hawk 3 D surface nanoprofiler. The next part of the research will be focus onto device testing and validation by using real biological samples by the implementation of a simple manual injection technique.

  13. Polarimetric Interferometry - Remote Sensing Applications

    DTIC Science & Technology

    2007-02-01

    This lecture is mainly based on the work of S.R. Cloude and presents examples for remote sensing applications Polarimetric SAR Interferometry...PolInSAR). PolInSAR has its origins in remote sensing and was first developed for applications in 1997 using SIRC L-Band data [1,2]. In its original form it

  14. Remote sensing applications program

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The activities of the Mississippi Remote Sensing Center are described in addition to technology transfer and information dissemination, remote sensing topics such as timber identification, water quality, flood prevention, land use, erosion control, animal habitats, and environmental impact studies are also discussed.

  15. Field-effect-based multifunctional hybrid sensor module for the determination of both (bio-)chemical and physical parameters

    NASA Astrophysics Data System (ADS)

    Schoening, Michael J.; Poghossian, Arshak; Schultze, J. Walter; Lueth, Hans

    2002-02-01

    Sensor systems for multi-parameter detection in fluidics usually combine different sensors, which are designed to detect either a physical or (bio-)chemical parameter. Therefore, such systems include a more complicated fabrication technology and measuring set-up. In this work, an ISFET (ion-sensitive field-effect transistor), which is well known as a (bio-)chemical sensor, is utilized as transducer for the detection of both (bio-)chemical and physical parameters. A multifunctional hybrid module for the determination of two (bio-)chemical parameters (pH, penicillin concentration) and three physical parameters (temperature, flow velocity and flow direction) using only two sensor structures, an ion generator and a reference electrode, is realized and its performance has been investigated. Here, a multifunctionality of the sensor system is achieved by means of different sensor arrangements and/or different operation modes. A Ta2O5-gate ISFET was used as transducer for all sensors. A novel time-of-flight type ISFET-based flow-velocity (flow rate) and flow-direction sensor using in-situ electrochemical generation of chemical tracers is presented. Due to the fast response of the ISFET (usually in the millisecond range), an ISFET-based flow sensor is suitable for the measurement of the flow velocity in a wide range. With regard to practical applications, pH measurements with this ISFET were performed in rain droplets.

  16. Metamaterials Application in Sensing

    PubMed Central

    Chen, Tao; Li, Suyan; Sun, Hui

    2012-01-01

    Metamaterials are artificial media structured on a size scale smaller than wavelength of external stimuli, and they can exhibit a strong localization and enhancement of fields, which may provide novel tools to significantly enhance the sensitivity and resolution of sensors, and open new degrees of freedom in sensing design aspect. This paper mainly presents the recent progress concerning metamaterials-based sensing, and detailedly reviews the principle, detecting process and sensitivity of three distinct types of sensors based on metamaterials, as well as their challenges and prospects. Moreover, the design guidelines for each sensor and its performance are compared and summarized. PMID:22736975

  17. Application of remote sensing

    NASA Technical Reports Server (NTRS)

    Graff, W. J. (Compiler)

    1973-01-01

    Remote sensing and aerial photographic interpretation are discussed along with the specific imagery techniques used for this research. The method used to select sites, the results of data analyses for the Houston metropolitan area, and the location of dredging sites along the Houston Ship Channel are presented. The work proposed for the second year of the project is described.

  18. Applications of Remote Sensing

    NASA Astrophysics Data System (ADS)

    Jacha, Charlene

    2015-04-01

    Remote sensing is one of the best ways to be able to monitor and see changes in the Earth. The use of satellite images in the classroom can be a practical way to help students understand the importance and use of remote sensing and Geographic Information Systems (GIS). It is essential in helping students to understand that underlying individual data points are converted to a broad spatial form. The use of actual remote sensing data makes this more understandable to the students e.g. an online map of recent earthquake events, geologic maps, satellite imagery. For change detection, images of years ten or twenty years apart of the same area can be compared and observations recorded. Satellite images of different places can be available on the Internet or from the local space agency. In groups of mixed abilities, students can observe changes in land use over time and also give possible reasons and explanations to those changes. Students should answer essential questions like, how does satellite imagery offer valuable information to different faculties e.g. military, weather, environmental departments and others. Before and after images on disasters for example, volcanoes, floods and earthquakes should be obtained and observed. Key questions would be; how can scientists use these images to predict, or to change the future outcomes over time. How to manage disasters and how the archived images can assist developers in planning land use around that area in the future. Other material that would be useful includes maps and aerial photographs of the area. A flight should be organized over the area for students to acquire aerial photographs of their own; this further enhances their understanding of the concept "remote sensing". Environmental issues such as air, water and land pollution can also be identified on satellite images. Key questions for students would include causes, effects and possible solutions to the problem. Conducting a fieldwork exercise around the area would

  19. Sensing arrays based on integrated optics microresonators for homeland security applications

    NASA Astrophysics Data System (ADS)

    Klunder, Dion; Elders, Job; Burger, Gert-Jan; Amersfoort, Martin; Krioukov, Evgueni; Otto, Cees; Hoekstra, Hugo; Driessen, Alfred

    2004-03-01

    Integrated optics micoresonators (μ-resonators) are microstructures with dimensions typically in the order of tens of microns down to a few microns, whose response depends critically on optical wavelength and material properties. Recent experimental studies have shown that they are suitable as refractive index sensors, absorption sensors, and microresonator-assisted single and two-photon fluorescence. The absorption and fluorescence spectra are material-specific properties, that the devices can readily detect by using different excitation wavelengths. Therefore, the devices are suitable for non-specific agent detection. Due to their inherent small size and the ease of cascading several microresonators, they are suitable building blocks for a sensing array allowing sensing/detection of multiple quantities/agents on a single chip, by e.g., using different chemo-optical transduction layers on top of the microresonators. Such devices have a chip-area of only a few 100 μm2, making them suitable for sensing ultra-small analyte volumes (which is advantageous for bio-chemical sensing). In this contribution, sensing arrays based on integrated optics microresonators and their prospects for Homeland Security applications are discussed. Several device-concepts based on integrated optics microresonators will be treated. Their performance is analyzed using realistic parameters and experimental results of microresonator devices realized in silicon oxynitride (SiON) technology. The potential integration of theses devices with microelectronics, micro-mechanics and micro total analysis systems is discussed.

  20. Bio/chemical microsystem designed for wafer scale testing

    NASA Astrophysics Data System (ADS)

    Jorgensen, Anders M.; Mogensen, Klaus B.; Rong, Weimin; Telleman, Pieter; Kutter, Joerg P.

    2001-04-01

    We have designed a bio/chemical microsystem for online monitoring of glucose concentrations during fermentation. The system contains several passive microfluidic components including an enzyme reactor, a flow lamination part and a detector. Detection is based on the reaction of hydrogen peroxide, that is produced from glucose in an enzyme reactor, with luminol. This chemiluminescent reaction generates light that is detected by an integrated back-side contacted photodiode array. Various tests during fabrication are outlined with the emphasis on microwave detected photo conductance decay. The presented microsystem has both fluidic and electrical connection points accessible from the backside. This allows simultaneous testing of both fluidic and electrical parts before dicing the wafer.

  1. Econophysics and bio-chemical engineering thermodynamics: The exergetic analysis of a municipality

    NASA Astrophysics Data System (ADS)

    Lucia, Umberto

    2016-11-01

    Exergy is a fundamental quantity because it allows us to obtain information on the useful work obtainable in a process. The analyses of irreversibility are important not only in the design and development of the industrial devices, but also in fundamental thermodynamics and in the socio-economic analysis of municipality. Consequently, the link between entropy and exergy is discussed in order to link econophysics to the bio-chemical engineering thermodynamics. Last, this link holds to the fundamental role of fluxes and to the exergy exchanged in the interaction between the system and its environment. The result consists in a thermodynamic approach to the analysis of the unavailability of the economic, productive or social systems. The unavailability is what the system cannot use in relation to its internal processes. This quantity result is interesting also as a support to public manager for economic decisions. Here, the Alessandria Municipality is analyzed in order to highlight the application of the theoretical results.

  2. CMOS buried multi-junction (BMJ) detector for bio-chemical analysis

    NASA Astrophysics Data System (ADS)

    Lu, Guo-Neng; Courcier, Thierry; Mamdy, Bastien; Feruglio, Sylvain; Charette, Paul G.; Aimez, Vincent; Romain, Olivier; Pittet, Patrick

    2015-10-01

    The CMOS buried multi-junction (BMJ) detector with multiple outputs has distinct spectral responses that may be exploited for applications such as bio-chemical analysis. We tackle here dark current issue by identifying different components inside the detector structure. The identification methods are based on the observation of bias and temperature dependence, as well as measurements of test detector chip integrating different design variations. Surface thermal generation may become predominant when the detector size shrinks, thus causing dark current degradation. To prevent this effect, we propose a low-sized detector structure with passivation of all its surrounding Si/SiO2 interface areas. Also for the detector readout, we present a multi-channel charge-amplifier architecture with noise analysis. Effects of noise coming from amplifiers and related to the coupled detector's dynamic conductances are illuminated. To pick up weak signals, synchronous detection can be implemented. A BDJ (Buried Double Junction) detector chip designed with a switched-phase architectural approach gives a minimum detectable signal of 15μlx@555nm or 1μlx@555nm at 27°C or - 10°C, for an integration time of 3s or 45s respectively.

  3. (Bio)Chemical Tailoring of Biogenic 3-D Nanopatterned Templates with Energy-Relevant Functionalities

    SciTech Connect

    Sandhage, Kenneth H; Kroger, Nils

    2014-09-08

    The overall aim of this research has been to obtain fundamental understanding of (bio)chemical methodologies that will enable utilization of the unique 3-D nanopatterned architectures naturally produced by diatoms for the syntheses of advanced functional materials attractive for applications in energy harvesting/conversion and storage. This research has been conducted in three thrusts: Thrust 1 (In vivo immobilization of proteins in diatom biosilica) is directed towards elucidating the fundamental mechanism(s) underlying the cellular processes of in vivo immobilization of proteins in diatom silica. Thrust 2 (Shape-preserving reactive conversion of diatom biosilica into porous, high-surface area inorganic replicas) is aimed at understanding the fundamental mechanisms of shape preservation and nanostructural evolution associated with the reactive conversion and/or coating-based conversion of diatom biosilica templates into porous inorganic replicas. Thrust 3 (Immobilization of energy-relevant enzymes in diatom biosilica and onto diatom biosilica-derived inorganic replicas) involves use of the results from both Thrust 1 and 2 to develop strategies for in vivo and in vitro immobilization of enzymes in/on diatom biosilica and diatom biosilica-derived inorganic replicas, respectively. This Final Report describes progress achieved in all 3 of these thrusts.

  4. Remote sensing applications to hydrologic modeling

    NASA Technical Reports Server (NTRS)

    Dozier, J.; Estes, J. E.; Simonett, D. S.; Davis, R.; Frew, J.; Marks, D.; Schiffman, K.; Souza, M.; Witebsky, E.

    1977-01-01

    An energy balance snowmelt model for rugged terrain was devised and coupled to a flow model. A literature review of remote sensing applications to hydrologic modeling was included along with a software development outline.

  5. Application of Compressive Sensing to Digital Holography

    DTIC Science & Technology

    2015-05-01

    AFRL-RY-WP-TR-2015-0071 APPLICATION OF COMPRESSIVE SENSING TO DIGITAL HOLOGRAPHY Mark Neifeld University of Arizona...From - To) May 2015 Final 3 September 2013 – 27 February 2015 4. TITLE AND SUBTITLE APPLICATION OF COMPRESSIVE SENSING TO DIGITAL HOLOGRAPHY 5a...from under- sampled data. This work presents a new reconstruction algorithm for use with under-sampled digital holography measurements and yields

  6. Real-time nonlinear feedback control of pattern formation in (bio)chemical reaction-diffusion processes: a model study.

    PubMed

    Brandt-Pollmann, U; Lebiedz, D; Diehl, M; Sager, S; Schlöder, J

    2005-09-01

    Theoretical and experimental studies related to manipulation of pattern formation in self-organizing reaction-diffusion processes by appropriate control stimuli become increasingly important both in chemical engineering and cellular biochemistry. In a model study, we demonstrate here exemplarily the application of an efficient nonlinear model predictive control (NMPC) algorithm to real-time optimal feedback control of pattern formation in a bacterial chemotaxis system modeled by nonlinear partial differential equations. The corresponding drift-diffusion model type is representative for many (bio)chemical systems involving nonlinear reaction dynamics and nonlinear diffusion. We show how the computed optimal feedback control strategy exploits the system inherent physical property of wave propagation to achieve desired control aims. We discuss various applications of our approach to optimal control of spatiotemporal dynamics.

  7. Real-time nonlinear feedback control of pattern formation in (bio)chemical reaction-diffusion processes: A model study

    NASA Astrophysics Data System (ADS)

    Brandt-Pollmann, U.; Lebiedz, D.; Diehl, M.; Sager, S.; Schlöder, J.

    2005-09-01

    Theoretical and experimental studies related to manipulation of pattern formation in self-organizing reaction-diffusion processes by appropriate control stimuli become increasingly important both in chemical engineering and cellular biochemistry. In a model study, we demonstrate here exemplarily the application of an efficient nonlinear model predictive control (NMPC) algorithm to real-time optimal feedback control of pattern formation in a bacterial chemotaxis system modeled by nonlinear partial differential equations. The corresponding drift-diffusion model type is representative for many (bio)chemical systems involving nonlinear reaction dynamics and nonlinear diffusion. We show how the computed optimal feedback control strategy exploits the system inherent physical property of wave propagation to achieve desired control aims. We discuss various applications of our approach to optimal control of spatiotemporal dynamics.

  8. Remote sensing and aerial application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the increasing need for global food production in the presence of dwindling productive acres, the business of modern agriculture needs to use all possible information available to maximize production. One tool that is being used to obtain this information is remote sensing. Any crop disease o...

  9. Strain sensing technology for high temperature applications

    NASA Technical Reports Server (NTRS)

    Williams, W. Dan

    1993-01-01

    This review discusses the status of strain sensing technology for high temperature applications. Technologies covered are those supported by NASA such as required for applications in hypersonic vehicles and engines, advanced subsonic engines, as well as material and structure development. The applications may be at temperatures of 540 C (1000 F) to temperatures in excess of 1400 C (2500 F). The most promising technologies at present are the resistance strain gage and remote sensing schemes. Resistance strain gages discussed include the BCL gage, the LaRC compensated gage, and the PdCr gage. Remote sensing schemes such as laser based speckle strain measurement, phase-shifling interferometry, and x-ray extensometry are discussed. Present status and limitations of these technologies are presented.

  10. Energy and remote sensing applications

    NASA Technical Reports Server (NTRS)

    Summers, R. A.; Smith, W. L.; Short, N. M.

    1978-01-01

    The nature of the U.S. energy problem is examined. Based upon the best available estimates, it appears that demand for OPEC oil will exceed OPEC productive capacity in the early to mid-eighties. The upward pressure on world oil prices resulting from this supply/demand gap could have serious international consequences, both financial and in terms of foreign policy implementation. National Energy Plan objectives in response to this situation are discussed. Major strategies for achieving these objectives include a conversion of industry and utilities from oil and gas to coal and other abundant fuels. Remote sensing from aircraft and spacecraft could make significant contributions to the solution of energy problems in a number of ways, related to exploration of energy-related resources, the efficiency and safety of exploitation procedures, power plant siting, environmental monitoring and assessment, and the transportation infrastructure.

  11. Survey of remote sensing applications

    USGS Publications Warehouse

    Deutsch, Morris

    1974-01-01

    Data from the first earth resources technology satellite (ERTS) as well as from NASA and other aircraft, contain much of the information indicative of the distribution of groundwater and the extent of its utilization. Thermal infrared imagery from aircraft is particularly valuable in studying groundwater discharge to the sea and other surface water bodies. Color infrared photography from aircraft and space is also used to locate areas of potential groundwater development. Anomalies in vegetation, soils, moisture, and their pattern of distribution may be indicative of underlying groundwater conditions. Remote sensing may be used directly or indirectly to identify stream reaches for test holes or production wells. Similarly, location of submarine springs increase effectiveness of groundwater exploration in the coastal zone.

  12. Data compression in remote sensing applications

    NASA Technical Reports Server (NTRS)

    Sayood, Khalid

    1992-01-01

    A survey of current data compression techniques which are being used to reduce the amount of data in remote sensing applications is provided. The survey aspect is far from complete, reflecting the substantial activity in this area. The purpose of the survey is more to exemplify the different approaches being taken rather than to provide an exhaustive list of the various proposed approaches.

  13. Thermal remote sensing: theory, sensors, and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Applications of thermal infrared remote sensing for Earth science research are both varied and wide in scope. They range from understanding thermal energy responses that drive land-atmosphere energy exchanges in the hydrologic cycle, to measurement of dielectric surface properties for snow, ice, an...

  14. Second Eastern Regional Remote Sensing Applications Conference

    NASA Technical Reports Server (NTRS)

    Imhoff, M. L. (Editor); Witt, R. G. (Editor); Kugelmann, D. (Editor)

    1981-01-01

    Participants from state and local governments share experiences in remote sensing applications with one another and with users in the Federal government, universities, and the private sector during technical sessions and forums covering agriculture and forestry; land cover analysis and planning; surface mining and energy; data processing; water quality and the coastal zone; geographic information systems; and user development programs.

  15. Applications of remote sensing in public health.

    NASA Technical Reports Server (NTRS)

    Barnes, C. M.; Fuller, C. E.; Schneider, H. J.; Kennedy, E. E.; Jones, H. G.; Morrison, D. R.

    1973-01-01

    Current research concerning the determination of the habitat of mosquito vectors of disease is discussed. It is shown how advanced interpretative processes have enabled recognition of the breeding areas of salt marsh mosquitoes and the breeding sites of the mosquito responsible for the transmission of St. Louis strain of encephalitis and of human filariasis. In addition, remote sensing data have also been useful in the study of the habitat of endemic strains of Venezuelan encephalitis virus in Florida. The beginning of the application of remote sensing to such public health aspects as air, water, and urban degradation is noted.

  16. JPRS Report, Science & Technology, China, Remote Sensing Systems, Applications.

    DTIC Science & Technology

    1991-01-17

    Partial Contents: Short Introduction to Nation’s Remote Sensing Units, Domestic Airborne Remote - Sensing System, Applications in Monitoring Natural...Disasters, Applications of Imagery From Experimental Satellites Launched in 1985, 1986, Current Status, Future Prospects for Domestic Remote - Sensing -Satellite...Ground Station, and Radar Remote - Sensing Technology Used to Monitor Yellow River Delta,

  17. Computer applications in remote sensing education

    NASA Technical Reports Server (NTRS)

    Danielson, R. L.

    1980-01-01

    Computer applications to instruction in any field may be divided into two broad generic classes: computer-managed instruction and computer-assisted instruction. The division is based on how frequently the computer affects the instructional process and how active a role the computer affects the instructional process and how active a role the computer takes in actually providing instruction. There are no inherent characteristics of remote sensing education to preclude the use of one or both of these techniques, depending on the computer facilities available to the instructor. The characteristics of the two classes are summarized, potential applications to remote sensing education are discussed, and the advantages and disadvantages of computer applications to the instructional process are considered.

  18. Practical application of remote sensing in agriculture

    NASA Technical Reports Server (NTRS)

    Phelps, R. A.

    1975-01-01

    Remote sensing program imagery from several types of platforms, from light aircraft to the LANDSAT (ERTS) satellites, have been utilized during the past few years, with preference for inexpensive imagery over expensive magnetic tapes. Emphasis has been on practical application of remote sensing data to increase crop yield by decreasing plant stress, disease, weeds and undesirable insects and by improving irrigation. Imagery obtained from low altitudes via aircraft provides the necessary resolution and complements but does not replace data from high altitude aircraft, Gemini and Apollo spacecraft, Skylab space station and LANDSAT satellites. Federal government centers are now able to supply imagery within about thirty days from data of order. Nevertheless, if the full potential of space imagery in practical agricultural operations is to be realized, the time span from date of imaging to user application needs to be shortened from the current several months to not more than two weeks.

  19. Silica Nanowires: Growth, Integration, and Sensing Applications

    PubMed Central

    Kaushik, Ajeet; Kumar, Rajesh; Huey, Eric; Bhansali, Shekhar; Nair, Narayana; Nanir, Madhavan

    2014-01-01

    This review (with 129 refs.) gives an overview on how the integration of silica nanowires (NWs) into micro-scale devices has resulted, in recent years, in simple yet robust nano-instrumentation with improved performance in targeted application areas such as sensing. This has been achieved by the use of appropriate techniques such as di-electrophoresis and direct vapor-liquid-growth phenomena, to restrict the growth of NWs to site-specific locations. This also has eliminated the need for post-growth processing and enables nanostructures to be placed on pre-patterned substrates. Various kinds of NWs have been investigated to determine how their physical and chemical properties can be tuned for integration into sensing structures. NWs integrated onto interdigitated micro-electrodes have been applied to the determination of gases and biomarkers. The technique of directly growing NWs eliminates the need for their physical transfer and thus preserves their structure and performance, and further reduces the costs of fabrication. The biocompatibility of NWs also has been studied with respect to possible biological applications. This review addresses the challenges in growth and integration of NWs to understand related mechanism on biological contact or gas exposure and sensing performance for personalized health and environmental monitoring. PMID:25382871

  20. Fast, Continuous, and High-Throughput (Bio)Chemical Activity Assay for N-Acyl-l-Homoserine Lactone Quorum-Quenching Enzymes

    PubMed Central

    Last, Daniel; Krüger, Georg H. E.; Dörr, Mark

    2016-01-01

    ABSTRACT Quorum sensing, the bacterial cell-cell communication by small molecules, controls important processes such as infection and biofilm formation. Therefore, it is a promising target with several therapeutic and technical applications besides its significant ecological relevance. Enzymes inactivating N-acyl-l-homoserine lactones, the most common class of communication molecules among Gram-negative proteobacteria, mainly belong to the groups of quorum-quenching lactonases or quorum-quenching acylases. However, identification, characterization, and optimization of these valuable biocatalysts are based on a very limited number of fundamentally different methods with their respective strengths and weaknesses. Here, a (bio)chemical activity assay is described, which perfectly complements the other methods in this field. It enables continuous and high-throughput activity measurements of purified and unpurified quorum-quenching enzymes within several minutes. For this, the reaction products released by quorum-quenching lactonases and quorum-quenching acylases are converted either by a secondary enzyme or by autohydrolysis to l-homoserine. In turn, l-homoserine is detected by the previously described calcein assay, which is sensitive to α-amino acids with free N and C termini. Besides its establishment, the method was applied to the characterization of three previously undescribed quorum-quenching lactonases and variants thereof and to the identification of quorum-quenching acylase-expressing Escherichia coli clones in an artificial library. Furthermore, this study indicates that porcine aminoacylase 1 is not active toward N-acyl-l-homoserine lactones as published previously but instead converts the autohydrolysis product N-acyl-l-homoserine. IMPORTANCE In this study, a novel method is presented for the identification, characterization, and optimization of quorum-quenching enzymes that are active toward N-acyl-l-homoserine lactones. These are the most common

  1. Applications of Remote Sensing to Emergency Management.

    DTIC Science & Technology

    1980-02-15

    Contents: Foundations of Remote Sensing : Data Acquisition and Interpretation; Availability of Remote Sensing Technology for Disaster Response...Imaging Systems, Current and Near Future Satellite and Aircraft Remote Sensing Systems; Utilization of Remote Sensing in Disaster Response: Categories of...Disasters, Phases of Monitoring Activities; Recommendations for Utilization of Remote Sensing Technology in Disaster Response; Selected Reading List.

  2. Application of Remote Sensing in Agriculture

    NASA Astrophysics Data System (ADS)

    Piekarczyk, Jan

    2014-12-01

    With increasing intensity of agricultural crop production increases the need to obtain information about environmental conditions in which this production takes place. Remote sensing methods, including satellite images, airborne photographs and ground-based spectral measurements can greatly simplify the monitoring of crop development and decision-making to optimize inputs on agricultural production and reduce its harmful effects on the environment. One of the earliest uses of remote sensing in agriculture is crop identification and their acreage estimation. Satellite data acquired for this purpose are necessary to ensure food security and the proper functioning of agricultural markets at national and global scales. Due to strong relationship between plant bio-physical parameters and the amount of electromagnetic radiation reflected (in certain ranges of the spectrum) from plants and then registered by sensors it is possible to predict crop yields. Other applications of remote sensing are intensively developed in the framework of so-called precision agriculture, in small spatial scales including individual fields. Data from ground-based measurements as well as from airborne or satellite images are used to develop yield and soil maps which can be used to determine the doses of irrigation and fertilization and to take decisions on the use of pesticides.

  3. Gated Silica Mesoporous Materials in Sensing Applications

    PubMed Central

    Sancenón, Félix; Pascual, Lluís; Oroval, Mar; Aznar, Elena; Martínez-Máñez, Ramón

    2015-01-01

    Silica mesoporous supports (SMSs) have a large specific surface area and volume and are particularly exciting vehicles for delivery applications. Such container-like structures can be loaded with numerous different chemical substances, such as drugs and reporters. Gated systems also contain addressable functions at openings of voids, and cargo delivery can be controlled on-command using chemical, biochemical or physical stimuli. Many of these gated SMSs have been applied for drug delivery. However, fewer examples of their use in sensing protocols have been reported. The approach of applying SMSs in sensing uses another concept—that of loading pores with a reporter and designing a capping mechanism that is selectively opened in the presence of a target analyte, which results in the delivery of the reporter. According to this concept, we provide herein a complete compilation of published examples of probes based on the use of capped SMSs for sensing. Examples for the detection of anions, cations, small molecules and biomolecules are provided. The diverse range of gated silica mesoporous materials presented here highlights their usefulness in recognition protocols. PMID:26491626

  4. Multimodal sensing-based camera applications

    NASA Astrophysics Data System (ADS)

    Bordallo López, Miguel; Hannuksela, Jari; Silvén, J. Olli; Vehviläinen, Markku

    2011-02-01

    The increased sensing and computing capabilities of mobile devices can provide for enhanced mobile user experience. Integrating the data from different sensors offers a way to improve application performance in camera-based applications. A key advantage of using cameras as an input modality is that it enables recognizing the context. Therefore, computer vision has been traditionally utilized in user interfaces to observe and automatically detect the user actions. The imaging applications can also make use of various sensors for improving the interactivity and the robustness of the system. In this context, two applications fusing the sensor data with the results obtained from video analysis have been implemented on a Nokia Nseries mobile device. The first solution is a real-time user interface that can be used for browsing large images. The solution enables the display to be controlled by the motion of the user's hand using the built-in sensors as complementary information. The second application is a real-time panorama builder that uses the device's accelerometers to improve the overall quality, providing also instructions during the capture. The experiments show that fusing the sensor data improves camera-based applications especially when the conditions are not optimal for approaches using camera data alone.

  5. Applications of quorum sensing in biotechnology.

    PubMed

    Choudhary, Swati; Schmidt-Dannert, Claudia

    2010-05-01

    Many unicellular microorganisms use small signaling molecules to determine their local concentration. The processes involved in the production and recognition of these signals are collectively known as quorum sensing (QS). This form of cell-cell communication is used by unicellular microorganisms to co-ordinate their activities, which allows them to function as multi-cellular systems. Recently, several groups have demonstrated artificial intra-species and inter-species communication through synthetic circuits which incorporate components of bacterial QS systems. Engineered QS-based circuits have a wide range of applications such as production of biochemicals, tissue engineering, and mixed-species fermentations. They are also highly useful in designing microbial biosensors to identify bacterial species present in the environment and within living organisms. In this review, we first provide an overview of bacterial QS systems and the mechanisms developed by bacteria and higher organisms to obstruct QS communications. Next, we describe the different ways in which researchers have designed QS-based circuits and their applications in biotechnology. Finally, disruption of quorum sensing is discussed as a viable strategy for preventing the formation of harmful biofilms in membrane bioreactors and marine transportation.

  6. Layered classification techniques for remote sensing applications

    NASA Technical Reports Server (NTRS)

    Swain, P. H.; Wu, C. L.; Landgrebe, D. A.; Hauska, H.

    1975-01-01

    The single-stage method of pattern classification utilizes all available features in a single test which assigns the unknown to a category according to a specific decision strategy (such as the maximum likelihood strategy). The layered classifier classifies the unknown through a sequence of tests, each of which may be dependent on the outcome of previous tests. Although the layered classifier was originally investigated as a means of improving classification accuracy and efficiency, it was found that in the context of remote sensing data analysis, other advantages also accrue due to many of the special characteristics of both the data and the applications pursued. The layered classifier method and several of the diverse applications of this approach are discussed.

  7. Wireless Sensing Opportunities for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Wilson, William; Atkinson, Gary

    2007-01-01

    Wireless sensors and sensor networks is an emerging technology area with many applications within the aerospace industry. Integrated vehicle health monitoring (IVHM) of aerospace vehicles is needed to ensure the safety of the crew and the vehicle, yet often high costs, weight, size and other constraints prevent the incorporation of instrumentation onto spacecraft. This paper presents a few of the areas such as IVHM, where new wireless sensing technology is needed on both existing vehicles as well as future spacecraft. From ground tests to inflatable structures to the International Space Station, many applications could receive benefits from small, low power, wireless sensors. This paper also highlights some of the challenges that need to overcome when implementing wireless sensor networks for aerospace vehicles.

  8. Applications of remote sensing to hydrologic planning

    NASA Technical Reports Server (NTRS)

    Loats, H., Jr.; Fowler, T.; Castruccio, P.

    1978-01-01

    The transfer of LANDSAT remote sensing technology from the research sector to user operational applications requires demonstration of the utility and accuracy of LANDSAT data in solving real problems. This report describes such a demonstration project in the area of water resources, specifically the estimation of non-point source pollutant loads. Non-point source pollutants were estimated from land cover data from LANDSAT images. Classification accuracies for three small watersheds were above 95%. Land cover was converted to pollutant loads for a fourth watershed through the use of coefficients relating significant pollutants to land use and storm runoff volume. These data were input into a simulator model which simulated runoff from average rainfall. The result was the estimation of monthly expected pollutant loads for the 17 subbasins comprising the Magothy watershed.

  9. Genomic analysis of thermophilic Bacillus coagulans strains: efficient producers for platform bio-chemicals

    PubMed Central

    Su, Fei; Xu, Ping

    2014-01-01

    Microbial strains with high substrate efficiency and excellent environmental tolerance are urgently needed for the production of platform bio-chemicals. Bacillus coagulans has these merits; however, little genetic information is available about this species. Here, we determined the genome sequences of five B. coagulans strains, and used a comparative genomic approach to reconstruct the central carbon metabolism of this species to explain their fermentation features. A novel xylose isomerase in the xylose utilization pathway was identified in these strains. Based on a genome-wide positive selection scan, the selection pressure on amino acid metabolism may have played a significant role in the thermal adaptation. We also researched the immune systems of B. coagulans strains, which provide them with acquired resistance to phages and mobile genetic elements. Our genomic analysis provides comprehensive insights into the genetic characteristics of B. coagulans and paves the way for improving and extending the uses of this species. PMID:24473268

  10. State-of-the-Art of (Bio)Chemical Sensor Developments in Analytical Spanish Groups

    PubMed Central

    Plata, María Reyes; Contento, Ana María; Ríos, Angel

    2010-01-01

    (Bio)chemical sensors are one of the most exciting fields in analytical chemistry today. The development of these analytical devices simplifies and miniaturizes the whole analytical process. Although the initial expectation of the massive incorporation of sensors in routine analytical work has been truncated to some extent, in many other cases analytical methods based on sensor technology have solved important analytical problems. Many research groups are working in this field world-wide, reporting interesting results so far. Modestly, Spanish researchers have contributed to these recent developments. In this review, we summarize the more representative achievements carried out for these groups. They cover a wide variety of sensors, including optical, electrochemical, piezoelectric or electro-mechanical devices, used for laboratory or field analyses. The capabilities to be used in different applied areas are also critically discussed. PMID:22319260

  11. State-of-the-art of (bio)chemical sensor developments in analytical Spanish groups.

    PubMed

    Plata, María Reyes; Contento, Ana María; Ríos, Angel

    2010-01-01

    (Bio)chemical sensors are one of the most exciting fields in analytical chemistry today. The development of these analytical devices simplifies and miniaturizes the whole analytical process. Although the initial expectation of the massive incorporation of sensors in routine analytical work has been truncated to some extent, in many other cases analytical methods based on sensor technology have solved important analytical problems. Many research groups are working in this field world-wide, reporting interesting results so far. Modestly, Spanish researchers have contributed to these recent developments. In this review, we summarize the more representative achievements carried out for these groups. They cover a wide variety of sensors, including optical, electrochemical, piezoelectric or electro-mechanical devices, used for laboratory or field analyses. The capabilities to be used in different applied areas are also critically discussed.

  12. Genomic analysis of thermophilic Bacillus coagulans strains: efficient producers for platform bio-chemicals.

    PubMed

    Su, Fei; Xu, Ping

    2014-01-29

    Microbial strains with high substrate efficiency and excellent environmental tolerance are urgently needed for the production of platform bio-chemicals. Bacillus coagulans has these merits; however, little genetic information is available about this species. Here, we determined the genome sequences of five B. coagulans strains, and used a comparative genomic approach to reconstruct the central carbon metabolism of this species to explain their fermentation features. A novel xylose isomerase in the xylose utilization pathway was identified in these strains. Based on a genome-wide positive selection scan, the selection pressure on amino acid metabolism may have played a significant role in the thermal adaptation. We also researched the immune systems of B. coagulans strains, which provide them with acquired resistance to phages and mobile genetic elements. Our genomic analysis provides comprehensive insights into the genetic characteristics of B. coagulans and paves the way for improving and extending the uses of this species.

  13. Application of remote sensing for planning purposes

    NASA Technical Reports Server (NTRS)

    Hughes, T. H. (Editor)

    1977-01-01

    Types of remotely sensed data are many and varied but, all are primarily dependent on the sensor platform and the kind of sensing system used. A sensor platform is the type of aircraft or satellite to which a sensing system is attached; each platform has its own inherent advantages and disadvantages. Selected attributes of several current or recently used platforms are outlined. Though sensing systems are highly varied, they may be divided into various operational categories such as cameras, electromechanical scanners, and radars.

  14. Graphene Hybrid Materials in Gas Sensing Applications

    PubMed Central

    Latif, Usman; Dickert, Franz L.

    2015-01-01

    Graphene, a two dimensional structure of carbon atoms, has been widely used as a material for gas sensing applications because of its large surface area, excellent conductivity, and ease of functionalization. This article reviews the most recent advances in graphene hybrid materials developed for gas sensing applications. In this review, synthetic approaches to fabricate graphene sensors, the nano structures of hybrid materials, and their sensing mechanism are presented. Future perspectives of this rapidly growing field are also discussed. PMID:26690156

  15. MODIS Direct Broadcast and Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee

    2004-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard both Terra spacecraft on December 18, 1999 and Aqua spacecraft on May 4, 2002. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). Equipped with direct broadcast capability, the MODIS measurements can be received worldwide real time. There are 82 ingest sites (over 900 users, listed on the Direct Readout Portal) around the world for Terra/Aqua-MODIS Direct Broadcast DB) downlink. This represents 27 (6 from EOS science team members) science research organizations for DB land, ocean and atmospheric processing, and 53 companies that base their application algorithms and value added products on DB data. In this paper we will describe the various methods being used for the remote sensing of cloud properties using MODIS data, focusing primarily on the MODIS cloud mask used to distinguish clouds, clear sky, heavy aerosol, and shadows on the ground, and on the remote sensing of aerosol/cloud optical properties, especially optical thickness and effective particle size. Additional properties of clouds derived from multispectral thermal infrared measurements, especially cloud top pressure and emissivity, will also be described. Preliminary results will be presented and discussed their implications in regional-to-global climatic effects.

  16. Structured materials for catalytic and sensing applications

    NASA Astrophysics Data System (ADS)

    Hokenek, Selma

    The optical and chemical properties of the materials used in catalytic and sensing applications directly determine the characteristics of the resultant catalyst or sensor. It is well known that a catalyst needs to have high activity, selectivity, and stability to be viable in an industrial setting. The hydrogenation activity of palladium catalysts is known to be excellent, but the industrial applications are limited by the cost of obtaining catalyst in amounts large enough to make their use economical. As a result, alloying palladium with a cheaper, more widely available metal while maintaining the high catalytic activity seen in monometallic catalysts is, therefore, an attractive option. Similarly, the optical properties of nanoscale materials used for sensing must be attuned to their application. By adjusting the shape and composition of nanoparticles used in such applications, very fine changes can be made to the frequency of light that they absorb most efficiently. The design, synthesis, and characterization of (i) size controlled monometallic palladium nanoparticles for catalytic applications, (ii) nickel-palladium bimetallic nanoparticles and (iii) silver-palladium nanoparticles with applications in drug detection and biosensing through surface plasmon resonance, respectively, will be discussed. The composition, size, and shape of the nanoparticles formed were controlled through the use of wet chemistry techniques. After synthesis, the nanoparticles were analyzed using physical and chemical characterization techniques such as X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and Scanning Transmission Electron Microscopy- Energy-Dispersive Spectrometry (STEM-EDX). The Pd and Ni-Pd nanoparticles were then supported on silica for catalytic testing using mass spectrometry. The optical properties of the Ag-Pd nanoparticles in suspension were further investigated using ultraviolet-visible spectrometry (UV-Vis). Monometallic palladium particles have

  17. Applications of remote sensing to watershed management

    NASA Technical Reports Server (NTRS)

    Rango, A.

    1975-01-01

    Aircraft and satellite remote sensing systems which are capable of contributing to watershed management are described and include: the multispectral scanner subsystem on LANDSAT and the basic multispectral camera array flown on high altitude aircraft such as the U-2. Various aspects of watershed management investigated by remote sensing systems are discussed. Major areas included are: snow mapping, surface water inventories, flood management, hydrologic land use monitoring, and watershed modeling. It is indicated that technological advances in remote sensing of hydrological data must be coupled with an expansion of awareness and training in remote sensing techniques of the watershed management community.

  18. Industrial applications of fiber optic sensing

    NASA Astrophysics Data System (ADS)

    Desforges, Francois X.; Blocksidge, Robert

    1996-08-01

    Thanks to the growth of the fiber optics telecommunication industry, fiber optic components have become less expensive, more reliable and well known by potential fiber optic sensor users. LEDs, optical fibers, couplers and connectors are now widely distributed and are the building blocks for the fiber optic sensor manufacturer. Additionally, the huge demand in consumer electronics of the past 10 years has provided the manufacturer with cheap and powerful programmable logic components which reduce the development time as well as the cost of the associated instrumentation. This market trend has allowed Photonetics to develop, manufacture and sell fiber optic sensors for the last 10 years. The company contribution in the fields of fiber optic gyros (4 licenses sold world wide), white light interferometry and fiber optic sensor networks is widely recognized. Moreover, its 1992 acquisition of some of the assets of Metricor Inc., greatly reinforced its position and allowed it to pursue new markets. Over the past four years, Photonetics has done an important marketing effort to better understand the need of its customers. The result of this research has fed R&D efforts towards a new generation instrument, the Metricor 2000, better adapted to the expectations of fiber optic sensors users, thanks to its unique features: (1) universality -- the system can accept more than 20 different sensors (T, P, RI, . . .). (2) scalability -- depending on the customer needs, the system can be used with 1 to 64 sensors. (3) performance -- because of its improved design, overall accuracies of 0.01% FS can be reached. (4) versatility -- its modular design enables a fast and easy custom design for specific applications. This paper presents briefly the Metricor 2000 and its family of FO probes. Then, it describes two fiber optic sensing (FOS) applications/markets where FOS have proven to be very useful.

  19. A selected bibliography of remote sensing applications to soil science

    USGS Publications Warehouse

    Loveland, Thomas R.; Carter, Daniel B.; Draeger, William C.

    1979-01-01

    The bibliography contains approximately 200 references dealing with the application of remote sensing technology to the identification and analysis of soils. The scientific papers and reports listed describe procedures and methods used in data collection and include specific applications of those data to soil studies. Most citations discuss current work from 1970 to 1978 and all references are categorized according to the type of remotely sensed data used and their application.

  20. Hyperspectral remote sensing for terrestrial applications

    USGS Publications Warehouse

    Thenkabail, Prasad S.; Teluguntla, Pardhasaradhi G.; Murali Krishna Gumma,; Venkateswarlu Dheeravath,

    2015-01-01

    Remote sensing data are considered hyperspectral when the data are gathered from numerous wavebands, contiguously over an entire range of the spectrum (e.g., 400–2500 nm). Goetz (1992) defines hyperspectral remote sensing as “The acquisition of images in hundreds of registered, contiguous spectral bands such that for each picture element of an image it is possible to derive a complete reflectance spectrum.” However, Jensen (2004) defines hyperspectral remote sensing as “The simultaneous acquisition of images in many relatively narrow, contiguous and/or non contiguous spectral bands throughout the ultraviolet, visible, and infrared portions of the electromagnetic spectrum.

  1. Field Data Collection: an Essential Element in Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Pettinger, L. R.

    1971-01-01

    Field data collected in support of remote sensing projects are generally used for the following purposes: (1) calibration of remote sensing systems, (2) evaluation of experimental applications of remote sensing imagery on small test sites, and (3) designing and evaluating operational regional resource studies and inventories which are conducted using the remote sensing imagery obtained. Field data may be used to help develop a technique for a particular application, or to aid in the application of that technique to a resource evaluation or inventory problem for a large area. Scientists at the Forestry Remote Sensing Laboratory have utilized field data for both purposes. How meaningful field data has been collected in each case is discussed.

  2. Applications of remote sensing surveys in Texas

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The grant project continues to introduce remote sensing technology to users in Texas and other regions in the South through presentation of papers and briefings at technical and professional meetings.

  3. Airborne Remote Sensing for Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Aubrey, Andrew

    2013-01-01

    Topics covered include: Passive Remote Sensing Methods, Imaging Spectroscopy Approach, Remote Measurement via Spectral Fitting, Imaging Spectroscopy Mapping Wetland Dominants 2010 LA (AVIRIS), Deepwater Horizon Response I, Deepwater Horizon Response II, AVIRIS Ocean Color Studies.

  4. Bio- chemical and physical characterizations of mesenchymal stromal cells along the time course of directed differentiation

    PubMed Central

    Chen, Yin-Quan; Liu, Yi-Shiuan; Liu, Yu-An; Wu, Yi-Chang; del Álamo, Juan C.; Chiou, Arthur; Lee, Oscar K.

    2016-01-01

    Cellular biophysical properties are novel biomarkers of cell phenotypes which may reflect the status of differentiating stem cells. Accurate characterizations of cellular biophysical properties, in conjunction with the corresponding biochemical properties could help to distinguish stem cells from primary cells, cancer cells, and differentiated cells. However, the correlated evolution of these properties in the course of directed stem cells differentiation has not been well characterized. In this study, we applied video particle tracking microrheology (VPTM) to measure intracellular viscoelasticity of differentiating human mesenchymal stromal/stem cells (hMSCs). Our results showed that osteogenesis not only increased both elastic and viscous moduli, but also converted the intracellular viscoelasticity of differentiating hMSCs from viscous-like to elastic-like. In contrast, adipogenesis decreased both elastic and viscous moduli while hMSCs remained viscous-like during the differentiation. In conjunction with bio- chemical and physical parameters, such as gene expression profiles, cell morphology, and cytoskeleton arrangement, we demonstrated that VPTM is a unique approach to quantify, with high data throughput, the maturation level of differentiating hMSCs and to anticipate their fate decisions. This approach is well suited for time-lapsed study of the mechanobiology of differentiating stem cells especially in three dimensional physico-chemical biomimetic environments including porous scaffolds. PMID:27526936

  5. Membrane process designs in the recovery of bio-fuels and bio-chemicals

    SciTech Connect

    Leeper, S.A.

    1990-01-01

    In this presentation, the emerging membrane unit operations and process designs that can be used in recovery of fuels and organic chemicals produced via bioconversion are briefly summarized. Product recovery costs are a major barrier to increased use of bioconversion for the production of fuels and chemicals. The integration of developing membrane unit operations into product recovery schemes may reduce process energy requirements and cost. Membrane unit operations that are used or studied in recovery of bio-fuels and organic chemicals include pervaporation (PV), vapor permeation (VPe), reverse osmosis (RO), membrane extraction, and electrodialysis (ED). Although it can be argued that ultrafiltration (UF) is used to purify bio-fuels and bio-chemicals, UF is not included in this survey for two reasons: (1) the primary uses of UF in bioprocessing are to clarify fermentation broth and to retain cells/enzymes in bioreactors and (2) the literature on UF in biotechnology is expansive. Products of bioconversion for which data are compiled include ethanol, acetone, butanol, glycerol, isopropanol, ethyl acetate, fusel oils, acetaldehyde, acetic acid, butyric acid, citric acid, propionic acid, succinic acid, and tartaric acid. 13 refs.

  6. A selected bibliography: Remote sensing applications in wildlife management

    USGS Publications Warehouse

    Carneggie, David M.; Ohlen, Donald O.; Pettinger, Lawrence R.

    1980-01-01

    Citations of 165 selected technical reports, journal articles, and other publications on remote sensing applications for wildlife management are presented in a bibliography. These materials summarize developments in the use of remotely sensed data for wildlife habitat mapping, habitat inventory, habitat evaluation, and wildlife census. The bibliography contains selected citations published between 1947 and 1979.

  7. Some Defence Applications of Civilian Remote Sensing Satellite Images

    DTIC Science & Technology

    1993-11-01

    This report is on a pilot study to demonstrate some of the capabilities of remote sensing in intelligence gathering. A wide variety of issues, both...colour images. The procedure will be presented in a companion report. Remote sensing , Satellite imagery, Image analysis, Military applications, Military intelligence.

  8. Remote sensing with unmanned aircraft systems for precision agriculture applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Federal Aviation Administration is revising regulations for using unmanned aircraft systems (UAS) in the national airspace. An important potential application of UAS may be as a remote-sensing platform for precision agriculture, but simply down-scaling remote sensing methodologies developed usi...

  9. Basic principles, methodology, and applications of remote sensing in agriculture

    NASA Technical Reports Server (NTRS)

    Moreira, M. A. (Principal Investigator); Deassuncao, G. V.

    1984-01-01

    The basic principles of remote sensing applied to agriculture and the methods used in data analysis are described. Emphasis is placed on the importance of developing a methodology that may help crop forecast, basic concepts of spectral signatures of vegetation, the methodology of the LANDSAT data utilization in agriculture, and the remote sensing program application of INPE (Institute for Space Research) in agriculture.

  10. Integrated microcantilevers for high-resolution sensing and probing

    NASA Astrophysics Data System (ADS)

    Li, Xinxin; Lee, Dong-Weon

    2012-02-01

    This topical review is focused on microcantilever-based sensing and probing functions that are realized by integrating a mechanically compliant cantilever with self-sensing and self-actuating elements, specific sensing materials as well as functionalized nano-tips. Such integrated cantilever devices have shown great promise in ultra-sensitive applications such as on-the-spot portable bio/chemical detection and in situ micro/nanoscale surface analysis and manipulation. The technical details of this review will be given in a sequence of cantilever sensors and, then, cantilever-tip probes. For the integrated cantilever sensors, the frequency-output style dynamic cantilevers are described first, with the contents including optimized resonance modes, sensing-group-modified nanostructures for specific bio/chemical mass adsorption and nanoscale sensing effects, etc. Thereafter, the static cantilever sensors for surface-stress detection are described in the sequence of the sensing mechanism, surface modification of the sensitive molecule layer and the model of specific reaction-induced surface-energy variation. After technical description of the cantilever sensors, the emphasis of the review moves to functionalized nano-tip equipped cantilever-tip probing devices. The probing functions are not only integrated on the cantilever but also integrated at the sharp apex of the tip. After description of single integrated cantilever probes and their applications in surface scanning and imaging, arrayed cantilever-tip devices and their simultaneous parallel operation for high throughput imaging and nanomechanical data storage are also addressed. With cantilever-tip probes as key elements, micro-analysis instruments are introduced that can be widely used for macro/nanoscale characterizations.

  11. Isosbestics in Infrared Aerosol Spectra: Proposed Applications for Remote Sensing.

    DTIC Science & Technology

    1989-04-01

    droplet solutions and chemical reactions if the complex indices of refraction are known. The technique seems most applicable in the Rayleigh regime. Remote ... sensing , Isosbestics, Infrared, Infrared spectra, Atmosphere, Water, Aerosols, Rayleigh regime.

  12. Remote Sensing Applications to Water Quality Management in Florida

    EPA Science Inventory

    Increasingly, optical datasets from estuarine and coastal systems are becoming available for remote sensing algorithm development, validation, and application. With validated algorithms, the data streams from satellite sensors can provide unprecedented spatial and temporal data ...

  13. Practical applications of remote sensing technology

    NASA Technical Reports Server (NTRS)

    Whitmore, Roy A., Jr.

    1990-01-01

    Land managers increasingly are becoming dependent upon remote sensing and automated analysis techniques for information gathering and synthesis. Remote sensing and geographic information system (GIS) techniques provide quick and economical information gathering for large areas. The outputs of remote sensing classification and analysis are most effective when combined with a total natural resources data base within the capabilities of a computerized GIS. Some examples are presented of the successes, as well as the problems, in integrating remote sensing and geographic information systems. The need to exploit remotely sensed data and the potential that geographic information systems offer for managing and analyzing such data continues to grow. New microcomputers with vastly enlarged memory, multi-fold increases in operating speed and storage capacity that was previously available only on mainframe computers are a reality. Improved raster GIS software systems have been developed for these high performance microcomputers. Vector GIS systems previously reserved for mini and mainframe systems are available to operate on these enhanced microcomputers. One of the more exciting areas that is beginning to emerge is the integration of both raster and vector formats on a single computer screen. This technology will allow satellite imagery or digital aerial photography to be presented as a background to a vector display.

  14. Application of remote sensing to state and regional problems. [Mississippi

    NASA Technical Reports Server (NTRS)

    Miller, W. F.; Carter, B. D.; Solomon, J. L.; Williams, S. G.; Powers, J. S.; Clark, J. R. (Principal Investigator)

    1980-01-01

    Progress is reported in the following areas: remote sensing applications to land use planning Lowndes County, applications of LANDSAT data to strip mine inventory and reclamation, white tailed deer habitat evaluation using LANDSAT data, remote sensing data analysis support system, and discrimination of unique forest habitats in potential lignite areas of Mississippi. Other projects discussed include LANDSAT change discrimination in gravel operations, environmental impact modeling for highway corridors, and discrimination of fresh water wetlands for inventory and monitoring.

  15. Enhancing Privacy in Participatory Sensing Applications with Multidimensional Data

    SciTech Connect

    Forrest, Stephanie; He, Wenbo; Groat, Michael; Edwards, Benjamin; Horey, James L

    2013-01-01

    Participatory sensing applications rely on individuals to share personal data to produce aggregated models and knowledge. In this setting, privacy concerns can discourage widespread adoption of new applications. We present a privacy-preserving participatory sensing scheme based on negative surveys for both continuous and multivariate categorical data. Without relying on encryption, our algorithms enhance the privacy of sensed data in an energy and computation efficient manner. Simulations and implementation on Android smart phones illustrate how multidimensional data can be aggregated in a useful and privacy-enhancing manner.

  16. Nutritional Applications of the Chemical Senses.

    ERIC Educational Resources Information Center

    Naim, Michael; Kare, Morley R.

    1984-01-01

    Discusses the relationship of taste and smell to ingestion, digestion, and metabolism. Indicates that the response of these physiological systems can be chemical specific and that chemical senses may play different roles in regulating diet during nutrient deficiency and during nutrient surplus situations. (JN)

  17. Physical and bio-chemical mass-balance model around seafloor cold seepages

    NASA Astrophysics Data System (ADS)

    Yamazaki, T.; Takeuchi, R.; Monoe, D.; Oomi, T.; Nakata, K.; Fukushima, T.

    2007-12-01

    Natural cold seepages are characterized as rapid upward transports of methane from deeper part of geological structures to the seafloors. Prior to reach the seafloors, when methane meets downwards diffusing seawater sulfate, it is oxidized anaerobically by a consortium of microorganisms that use sulfate as an oxidant, producing sulfide. The anaerobic oxidation of methane and anaerobic sulfate reduction are clarified as a coupled biological activity. A significant portion of the bicarbonate produced after the sulfate reduction as authigenic carbonate, mainly aragonite and high-Mg calcite, near the seafloor. Where the methane fluxes are much, these anaerobic reactions occur just beneath the seafloor. There, usually sulfur oxidizing microorganisms are visible on the seafloor just above the coupled consortium of microorganisms. They are called bacterial mats. When the fluxes too much, direct methane bubbling occurs and chemosynthesis-immobilization communities such as tubeworms and clams distribute around the bubbling locations with the bacterial mats. The physical and bio-chemical mass-balance model around cold seepages on seafloor and in water column has been studied by the authors and some preliminary results were reported (Yamazaki et al., 2005 and 2006; Takeuchi et al., 2007). The approach is to analyze the existing field observation and numerical modeling studies of cold seepages and to create a new physical and bio-chemical mass-balance model in the environment. The model is separated into three parts. They are methane supply, seafloor ecosystem, and water column units. The seafloor ecosystem unit has been improved to analyze the unsteady formation processes of the ecosystem. The time dependencies of formations of the consortium of microorganisms (AOM), the chemosynthetic community, and bicarbonates examined with the improved model are introduced. After the bubbling from seafloor, the methane bubble jet blows up in the water column due to the buoyancy. Then the

  18. Adaptive holography for optical sensing applications

    NASA Astrophysics Data System (ADS)

    Residori, S.; Bortolozzo, U.; Peigné, A.; Molin, S.; Nouchi, P.; Dolfi, D.; Huignard, J. P.

    2016-03-01

    Adaptive holography is a promising method for high sensitivity phase modulation measurements in the presence of slow perturbations from the environment. The technique is based on the use of a nonlinear recombining medium, here an optically addressed spatial light modulator specifically realized to operate at 1.55 μm. Owing to the physical mechanisms involved, the interferometer adapts to slow phase variations within a range of 5-10 Hz, thus filtering out low frequency noise while transmitting higher frequency phase modulations. We present the basic principles of the adaptive interferometer and show that it can be used in association with a sensing fiber in order to detect phase modulations. Finally, a phase-OTDR architecture using the adaptive holographic interferometer is presented and shown to allows the detection of localized perturbations along the sensing fiber.

  19. Conjugated amplifying polymers for optical sensing applications.

    PubMed

    Rochat, Sébastien; Swager, Timothy M

    2013-06-12

    Thanks to their unique optical and electrochemical properties, conjugated polymers have attracted considerable attention over the last two decades and resulted in numerous technological innovations. In particular, their implementation in sensing schemes and devices was widely investigated and produced a multitude of sensory systems and transduction mechanisms. Conjugated polymers possess numerous attractive features that make them particularly suitable for a broad variety of sensing tasks. They display sensory signal amplification (compared to their small-molecule counterparts) and their structures can easily be tailored to adjust solubility, absorption/emission wavelengths, energy offsets for excited state electron transfer, and/or for use in solution or in the solid state. This versatility has made conjugated polymers a fluorescence sensory platform of choice in the recent years. In this review, we highlight a variety of conjugated polymer-based sensory mechanisms together with selected examples from the recent literature.

  20. Measurement Strategies for Remote Sensing Applications

    SciTech Connect

    Weber, P.G.; Theiler, J.; Smith, B.; Love, S.P.; LaDelfe, P.C.; Cooke, B.J.; Clodius, W.B.; Borel, C.C.; Bender, S.C.

    1999-03-06

    Remote sensing has grown to encompass many instruments and observations, with concomitant data from a huge number of targets. As evidenced by the impressive growth in the number of published papers and presentations in this field, there is a great deal of interest in applying these capabilities. The true challenge is to transition from directly observed data sets to obtaining meaningful and robust information about remotely sensed targets. We use physics-based end-to-end modeling and analysis techniques as a framework for such a transition. Our technique starts with quantified observables and signatures of a target. The signatures are propagated through representative atmospheres to realistically modeled sensors. Simulated data are then propagated through analysis routines, yielding measurements that are directly compared to the original target attributes. We use this approach to develop measurement strategies which ensure that our efforts provide a balanced approach to obtaining substantive information on our targets.

  1. Eastern Regional Remote Sensing Applications Conference

    NASA Technical Reports Server (NTRS)

    Short, N. M. (Editor)

    1981-01-01

    The roles and activities of NASA and the National Conference of State Legislatures in fostering remote sensing technology utilization by the states and in promoting interstate communication and cooperation are reviewed. The reduction and interpretation of LANDSAT MSS and aerial reconnaissance data for resources management and environment assessment are described as well as resource information systems, and the value of SEASAT synthetic aperture radar and LANDSAT 4 data.

  2. Remote sensing application on geothermal exploration

    NASA Astrophysics Data System (ADS)

    Gaffar, Eddy Z.

    2013-09-01

    Geothermal energy is produced when water coming down from the surface of the earth and met with magma or hot rocks, which the heat comes from the very high levels of magma rises from the earth. This process produced a heated fluid supplied to a power generator system to finally use as energy. Geothermal field usually associated with volcanic area with a component from igneous rocks and a complex geological structures. The fracture and fault structure are important geological structures associated with geothermal. Furthermore, their geothermal manifestations also need to be evaluated associated their geological structures. The appearance of a geothermal surface manifestation is close to the structure of the fracture and the caldera volcanic areas. The relationship between the fault and geothermal manifestations can be seen in the form of a pattern of alignment between the manifestations of geothermal locations with other locations on the fault system. The use of remote sensing using electromagnetic radiation sensors to record images of the Earth's environment that can be interpreted to be a useful information. In this study, remote sensing was applied to determine the geological structure and mapping of the distribution of rocks and alteration rocks. It was found that remote sensing obtained a better localize areas of geothermal prospects, which in turn could cut the chain of geothermal exploration to reduce a cost of geothermal exploration.

  3. Review of Remote Sensing Needs and Applications in Africa

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.

    2007-01-01

    Remote sensing data has had an important role in identifying and responding to inter-annual variations in the African environment during the past three decades. As a largely agricultural region with diverse but generally limited government capacity to acquire and distribute ground observations of rainfall, temperature and other parameters, remote sensing is sometimes the only reliable measure of crop growing conditions in Africa. Thus, developing and maintaining the technical and scientific capacity to analyze and utilize satellite remote sensing data in Africa is critical to augmenting the continent's local weather/climate observation networks as well as its agricultural and natural resource development and management. The report Review of Remote Sensing Needs and Applications in Africa' has as its central goal to recommend to the US Agency for International Development an appropriate approach to support sustainable remote sensing applications at African regional remote sensing centers. The report focuses on "RS applications" to refer to the acquisition, maintenance and archiving, dissemination, distribution, analysis, and interpretation of remote sensing data, as well as the integration of interpreted data with other spatial data products. The report focuses on three primary remote sensing centers: (1) The AGRHYMET Regional Center in Niamey, Niger, created in 1974, is a specialized institute of the Permanent Interstate Committee for Drought Control in the Sahel (CILSS), with particular specialization in science and techniques applied to agricultural development, rural development, and natural resource management. (2) The Regional Centre for Maiming of Resources for Development (RCMRD) in Nairobi, Kenya, established in 1975 under the auspices of the United Nations Economic Commission for Africa and the Organization of African Unity (now the African Union), is an intergovernmental organization, with 15 member states from eastern and southern Africa. (3) The

  4. Millimeter-wave/THz FMCW radar techniques for sensing applications

    NASA Astrophysics Data System (ADS)

    Mirando, D. Amal; Higgins, Michael D.; Wang, Fenggui; Petkie, Douglas T.

    2016-10-01

    Millimeter-wave and terahertz continuous-wave radar systems have been used to measure physiological signatures for biometric applications and for a variety of non-destructive evaluation applications, such as the detection of defects in materials. Sensing strategies for the simplest homodyne systems, such as a Michelson Interferometer, can be enhanced by using Frequency Modulated Continuous Wave (FMCW) techniques. This allows multiple objects or surfaces to be range resolved while monitoring the phase of the signal in a particular range bin. We will discuss the latest developments in several studies aimed at demonstrating how FMCW techniques can enhance mmW/THz sensing applications.

  5. Application of remote sensing to hydrological problems and floods

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Novo, E. M. L. M.

    1983-01-01

    The main applications of remote sensors to hydrology are identified as well as the principal spectral bands and their advantages and disadvantages. Some examples of LANDSAT data applications to flooding-risk evaluation are cited. Because hydrology studies the amount of moisture and water involved in each phase of hydrological cycle, remote sensing must be emphasized as a technique for hydrological data acquisition.

  6. Live Cell Optical Sensing for High Throughput Applications

    NASA Astrophysics Data System (ADS)

    Fang, Ye

    Live cell optical sensing employs label-free optical biosensors to non-invasively measure stimulus-induced dynamic mass redistribution (DMR) in live cells within the sensing volume of the biosensor. The resultant DMR signal is an integrated cellular response, and reflects cell signaling mediated through the cellular target(s) with which the stimulus intervenes. This article describes the uses of live cell optical sensing for probing cell biology and ligand pharmacology, with an emphasis of resonant waveguide grating biosensor cellular assays for high throughput applications.

  7. RF modulated fiber optic sensing systems and their applications

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Eustace, John G.

    1992-01-01

    A fiber optic sensing system with an intensity sensor and a Radio Frequency (RF) modulated source was shown to have sensitivity and resolution much higher than a comparable system employing low modulating frequencies or DC mode of operation. Also the RF modulation with an appropriate configuration of the sensing system provides compensation for the unwanted intensity losses. The basic principles and applications of a fiber optic sensing system employing an RF modulated source are described. In addition the paper discusses various configurations of the system itself, its components, and modulation and detection schemes. Experimental data are also presented.

  8. Applications of remote sensing to estuarine management

    NASA Technical Reports Server (NTRS)

    Munday, J. C., Jr.; Gordon, H. H.; Hennigar, H. F.

    1977-01-01

    Remote sensing was used in the resolution of estuarine problems facing federal and Virginia governmental agencies. A prototype Elizabeth River Surface Circulation Atlas was produced from photogrammetry to aid in oil spill cleanup and source identification. Aerial photo analysis twice led to selection of alternative plans for dredging and spoil disposal which minimized marsh damage. Marsh loss due to a mud wave from a highway dyke was measured on sequential aerial photographs. An historical aerial photographic sequence gave basis to a potential Commonwealth of Virginia legal claim to accreting and migrating coastal islands.

  9. Remote sensing application for property tax evaluation

    NASA Astrophysics Data System (ADS)

    Jain, Sadhana

    2008-02-01

    This paper presents a study for linking remotely sensed data with property tax related issues. First, it discusses the key attributes required for property taxation and evaluates the capabilities of remote sensing technology to measure these attributes accurately at parcel level. Next, it presents a detailed case study of six representative wards of different characteristics in Dehradun, India, that illustrates how measurements of several of these attributes supported by field survey can be combined to address the issues related to property taxation. Information derived for various factors quantifies the property taxation contributed by an average dwelling unit of the different income groups. Results show that the property tax calculated in different wards varies between 55% for the high-income group, 32% for the middle-income group, 12% for the low-income group and 1% for squatter units. The study concludes that higher spatial resolution satellite data and integrates social survey helps to assess the socio-economic status of the population for tax contribution purposes.

  10. Water resources by orbital remote sensing: Examples of applications

    NASA Technical Reports Server (NTRS)

    Martini, P. R. (Principal Investigator)

    1984-01-01

    Selected applications of orbital remote sensing to water resources undertaken by INPE are described. General specifications of Earth application satellites and technical characteristics of LANDSAT 1, 2, 3, and 4 subsystems are described. Spatial, temporal and spectral image attributes of water as well as methods of image analysis for applications to water resources are discussed. Selected examples are referred to flood monitoring, analysis of water suspended sediments, spatial distribution of pollutants, inventory of surface water bodies and mapping of alluvial aquifers.

  11. Applications of remote sensing to water resources

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Analyses were made of selected long-term (1985 and beyond) objectives, with the intent of determining if significant data-related problems would be encountered and to develop alternative solutions to any potential problems. One long-term objective selected for analysis was Water Availability Forecasting. A brief overview was scheduled in FY-77 of the objective -- primarily a fact-finding study to allow Data Management personnel to gain adequate background information to perform subsequent data system analyses. This report, includes discussions on some of the larger problems currently encountered in water measurement, the potential users of water availability forecasts, projected demands of users, current sensing accuracies, required parameter monitoring, status of forecasting modeling, and some measurement accuracies likely to be achievable by 1980 and 1990.

  12. Remote sensing application to regional activities

    NASA Technical Reports Server (NTRS)

    Shahrokhi, F.; Jones, N. L.; Sharber, L. A.

    1976-01-01

    Two agencies within the State of Tennessee were identified whereby the transfer of aerospace technology, namely remote sensing, could be applied to their stated problem areas. Their stated problem areas are wetland and land classification and strip mining studies. In both studies, LANDSAT data was analyzed with the UTSI video-input analog/digital automatic analysis and classification facility. In the West Tennessee area three land-use classifications could be distinguished; cropland, wetland, and forest. In the East Tennessee study area, measurements were submitted to statistical tests which verified the significant differences due to natural terrain, stripped areas, various stages of reclamation, water, etc. Classifications for both studies were output in the form of maps of symbols and varying shades of gray.

  13. Urban environmental health applications of remote sensing

    NASA Technical Reports Server (NTRS)

    Rush, M.; Goldstein, J.; Hsi, B. P.; Olsen, C. B.

    1974-01-01

    An urban area was studied through the use of the inventory-by-surrogate method rather than by direct interpretation of photographic imagery. Prior uses of remote sensing in urban and public research are examined. The effects of crowding, poor housing conditions, air pollution, and street conditions on public health are considered. Color infrared photography was used to categorize land use features and the grid method was used in photo interpretation analysis. The incidence of shigella and salmonella, hepatitis, meningitis, tuberculosis, myocardial infarction and veneral disease were studied, together with mortality and morbidity rates. Sample census data were randomly collected and validated. The hypothesis that land use and residential quality are associated with and act as an influence upon health and physical well-being was studied and confirmed.

  14. Correlated electron perovskite films for optical sensing applications

    NASA Astrophysics Data System (ADS)

    Schultz, Andrew M.; Brown, Thomas D.; Ohodnicki, Paul R.

    2015-10-01

    Advanced power generation technologies including solid oxide fuel cells require advancements in sensor technologies for efficient operation. Gas sensors for SOFC anode streams must be stable in high temperature and under reducing atmospheres. Optical sensing technologies offer the potential for good stability and sensing response under harsh conditions but are relatively new as compared to alternative sensing approaches and require significant developments in underlying device and enabling materials technology. In this paper, the near infrared optical sensing response of La0.8Sr0.2MnO3, a representative correlated perovskite material, is presented. Hydrogen sensing performance was measured in laboratory scale sensing experiments in the range of 1-4% hydrogen. The effect of oxygen on sensor recovery behavior was also examined. The films show a large, recoverable response to the introduction of hydrogen to the gas stream. The results presented here suggest this unique class of materials is a strong candidate for future sensor development efforts targeted at optical sensor applications but also requires additional fundamental research to understand the mechanistic origin of observed optical sensing responses.

  15. Agricultural applications of remote sensing: A true life adventure

    NASA Technical Reports Server (NTRS)

    Schaller, E. S.

    1975-01-01

    A study of agricultural applications of remote sensing with a major US agricultural firm was undertaken in mid-1973. The study continued for eighteen months, and covered the areas of crop monitoring and management as well as large scale crop inventories. Pilot programs in the application of aircraft remote sensing and LANDSAT data were conducted. An operational aircraft survey program for ranch management has subsequently been implemented by the agricultural firm. LANDSAT data was successfully used to produce a ninety-seven percent accurate inventory of cotton over 4.8 million acres of California's San Joaquin Valley.

  16. Piezotronic Effect: An Emerging Mechanism for Sensing Applications

    PubMed Central

    Jenkins, Kory; Nguyen, Vu; Zhu, Ren; Yang, Rusen

    2015-01-01

    Strain-induced polarization charges in a piezoelectric semiconductor effectively modulate the band structure near the interface and charge carrier transport. Fundamental investigation of the piezotronic effect has attracted broad interest, and various sensing applications have been demonstrated. This brief review discusses the fundamentals of the piezotronic effect, followed by a review highlighting important applications for strain sensors, pressure sensors, chemical sensors, photodetectors, humidity sensors and temperature sensors. Finally, the review offers some perspectives and outlook for this new field of multi-functional sensing enabled by the piezotronic effect. PMID:26378536

  17. Harnessing Poly(ionic liquid)s for Sensing Applications.

    PubMed

    Guterman, Ryan; Ambrogi, Martina; Yuan, Jiayin

    2016-07-01

    The interest in poly(ionic liquid)s for sensing applications is derived from their strong interactions to a variety of analytes. By combining the desirable mechanical properties of polymers with the physical and chemical properties of ILs, new materials can be created. The tunable nature of both ionic liquids and polymers allows for incredible diversity, which is exemplified in their broad applicability. In this article we examine the new field of poly(ionic liquid) sensors by providing a detailed look at the current state-of-the-art sensing devices for solvents, gases, biomolecules, pH, and anions.

  18. An Enhanced Sensing Application Based on a Flexible Projected Capacitive-Sensing Mattress

    PubMed Central

    Chang, Wen-Ying; Chen, Chi-Chun; Chang, Chih-Cheng; Yang, Chin-Lung

    2014-01-01

    This paper presents a cost-effective sensor system for mattresses that can classify the sleeping posture of an individual and prevent pressure ulcers. This system applies projected capacitive sensing to the field of health care. The charge time (CT) method was used to sensitively and accurately measure the capacitance of the projected electrodes. The required characteristics of the projected capacitor were identified to develop large-area applications for sensory mattresses. The area of the electrodes, the use of shielding, and the increased length of the transmission line were calibrated to more accurately measure the capacitance of the electrodes in large-size applications. To offer the users comfort in the prone position, a flexible substrate was selected and covered with 16 × 20 electrodes. Compared with the static charge sensitive bed (SCSB), our proposed system-flexible projected capacitive-sensing mattress (FPCSM) comes with more electrodes to increase the resolution of posture identification. As for the body pressure system (BPS), the FPCSM has advantages such as lower cost, higher aging-resistance capability, and the ability to sense the capacitance of the covered regions without physical contact. The proposed guard ring design effectively absorbs the noise and interrupts leakage paths. The projected capacitive electrode is suitable for proximity-sensing applications and succeeds at quickly recognizing the sleeping pattern of the user. PMID:24747734

  19. Enhancing Privacy in Participatory Sensing Applications with Multidimensional Data

    SciTech Connect

    Groat, Michael; Forrest, Stephanie; Horey, James L; Edwards, Benjamin; He, Wenbo

    2012-01-01

    Participatory sensing applications rely on individuals to share local and personal data with others to produce aggregated models and knowledge. In this setting, privacy is an important consideration, and lack of privacy could discourage widespread adoption of many exciting applications. We present a privacy-preserving participatory sensing scheme for multidimensional data which uses negative surveys. Multidimensional data, such as vectors of attributes that include location and environment fields, pose a particular challenge for privacy protection and are common in participatory sensing applications. When reporting data in a negative survey, an individual participant randomly selects a value from the set complement of the sensed data value, once for each dimension, and returns the negative values to a central collection server. Using algorithms described in this paper, the server can reconstruct the probability density functions of the original distributions of sensed values, without knowing the participants actual data. As a consequence, complicated encryption and key management schemes are avoided, conserving energy. We study trade-offs between accuracy and privacy, and their relationships to the number of dimensions, categories, and participants. We introduce dimensional adjustment, a method that reduces the magnification of error associated with earlier work. Two simulation scenarios illustrate how the approach can protect the privacy of a participant's multidimensional data while allowing useful population information to be aggregated.

  20. Environmental monitoring: civilian applications of remote sensing

    SciTech Connect

    Bolton, W.; Lapp, M.; Vitko, J. Jr.; Phipps, G.

    1996-11-01

    This report documents the results of a Laboratory Directed Research and Development (LDRD) program to explore how best to utilize Sandia`s defense-related sensing expertise to meet the Department of Energy`s (DOE) ever-growing needs for environmental monitoring. In particular, we focused on two pressing DOE environmental needs: (1) reducing the uncertainties in global warming predictions, and (2) characterizing atmospheric effluents from a variety of sources. During the course of the study we formulated a concept for using unmanned aerospace vehicles (UAVs) for making key 0798 climate measurements; designed a highly accurate, compact, cloud radiometer to be flown on those UAVs; and established the feasibility of differential absorption Lidar (DIAL) to measure atmospheric effluents from waste sites, manufacturing processes, and potential treaty violations. These concepts have had major impact since first being formulated in this ,study. The DOE has adopted, and DoD`s Strategic Environmental Research Program has funded, much of the UAV work. And the ultraviolet DIAL techniques have already fed into a major DOE non- proliferation program.

  1. Application of remote sensing in aquatic ecosystems

    NASA Astrophysics Data System (ADS)

    Yousef, Foad

    I utilized state the art remote sensing and GIS (Geographical Information System) techniques to study large scale biological, physical and ecological processes of coastal, nearshore, and offshore waters of Lake Michigan and Lake Superior. These processes ranged from chlorophyll alpha and primary production time series analysies in Lake Michigan to coastal stamp sand threats on Buffalo Reef in Lake Superior. I used SeaWiFS (Sea-viewing Wide Field-of-view Sensor) satellite imagery to trace various biological, chemical and optical water properties of Lake Michigan during the past decade and to investigate the collapse of early spring primary production. Using spatial analysis techniques, I was able to connect these changes to some important biological processes of the lake (quagga mussels filtration). In a separate study on Lake Superior, using LiDAR (Light Detection and Ranging) and aerial photos, we examined natural coastal erosion in Grand Traverse Bay, Michigan, and discussed a variety of geological features that influence general sediment accumulation patterns and interactions with migrating tailings from legacy mining. These sediments are moving southwesterly towards Buffalo Reef, creating a threat to the lake trout and lake whitefish breeding ground.

  2. Battlefield Acoustic Sensing, Multimodal Sensing, and Networked Sensing for Intelligence, Surveillance, and Reconnaissance (ISR) Applications

    DTIC Science & Technology

    2015-09-01

    Intelligence, Surveillance, and Reconnaissance (ISR) Applications by Latasha Solomon, Wesley Wang, and Miriam Häge...Surveillance, and Reconnaissance (ISR) Applications by Latasha Solomon Sensors and Electron Devices Directorate, ARL Wesley Wang...Latasha Solomon, Wesley Wang, and Miriam Hӓge 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S

  3. Passive Microwave Remote Sensing for Land Applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land applications, in particular soil moisture retrieval, have been hampered by the lack of low frequency passive microwave observations and the coarse spatial resolution of existing sensors. The next decade could see several improved operational and exploratory missions using new technologies as w...

  4. Remote sensing applications to precision farming

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditional mechanized agriculture treats large fields with uniform agronomic practices. Precision agriculture/precision farming brings a new concept to manage in-field variability with variable rate application of fertilizers and pesticides, site-specific water management, as well as planting, etc....

  5. A three stage sampling model for remote sensing applications

    NASA Technical Reports Server (NTRS)

    Eisgruber, L. M.

    1972-01-01

    A conceptual model and an empirical application of the relationship between the manner of selecting observations and its effect on the precision of estimates from remote sensing are reported. This three stage sampling scheme considers flightlines, segments within flightlines, and units within these segments. The error of estimate is dependent on the number of observations in each of the stages.

  6. Remote sensing and GIS for regional environmental applications

    NASA Astrophysics Data System (ADS)

    Kafatos, Menas; El-Askary, Hesham; Chiu, Long S.; Gomez, Richard B.; Hegazy, Mohamed; Kinser, Jason M.; Liu, Xue; Liu, Yang; Liu, Zhong; McManus, James; Nie, Yixiang; Qu, Jianhe; Salem, Foudan; Sarkar, Sudipta; Shen, Suhung; Taylor, George; Wolf, Hank; Wong, David; Yang, Chaowei; Yang, Ruixin

    2003-03-01

    Virginia Access (VAccess) is a regional, remote sensing and Geographical Information Sciences project among several educational institutions. It is a prototype for regional projects in other states and other countries, and is funded by NASA's applications program. The user communities VAccess serves are the Commonwealth of Virginia and State of Maryland, local and regional users represented in a Technical Advisory Committee. Remote sensing data include global NASA and NOAA data tailored for regional applications as well as high-resolution multispectral (Landsat, MODIS, etc.), hyperspectral, LIDAR and SAR data sets. Broad beam LIDAR technology can provide canopy structure as well as other information for environmental concerns such as the state of wetlands. The data information system is based on a distributed architecture to serve remote sensing and GIS data to a variety of users via the WWW. Several remote sensing and GIS-based environmental and Earth systems science applications projects are discussed here, including flood and fire hazard mitigation, forestry, land use/land cover and epidemiology projects; as well as innovative data fusion, data access and analysis and various tools serving the users and their applications.

  7. A selected bibliography: Remote sensing applications in agriculture

    USGS Publications Warehouse

    Draeger, William C.; McClelland, David T.

    1977-01-01

    The bibliography contains nearly 300 citations of selected publications and technical reports dealing with the application of remote-sensing techniques to the collection and analysis of agricultural information. Most of the items included were published between January 1968 and December 1975, although some earlier works of continuing interest are included.

  8. A selected bibliography: Remote sensing applications in geography

    USGS Publications Warehouse

    Ripple, W.J.

    1977-01-01

    The bibliography contains 82 citations of selected publications and technical reports.  The references deal with the application of remote sensing techniques to the collection and analysis of geographic data.  All of the citations were published between January 1968 and July 1977.

  9. Airborne Remote Sensing (ARS) for Agricultural Research and Commercialization Applications

    NASA Technical Reports Server (NTRS)

    Narayanan, Ram; Bowen, Brent D.; Nickerson, Jocelyn S.

    2002-01-01

    Tremendous advances in remote sensing technology and computing power over the last few decades are now providing scientists with the opportunity to investigate, measure, and model environmental patterns and processes with increasing confidence. Such advances are being pursued by the Nebraska Remote Sensing Facility, which consists of approximately 30 faculty members and is very competitive with other institutions in the depth of the work that is accomplished. The development of this facility targeted at applications, commercialization, and education programs in the area of precision agriculture provides a unique opportunity. This critical area is within the scope of NASA goals and objectives of NASA s Applications, Technology Transfer, Commercialization, and Education Division and the Earth Science Enterprise. This innovative integration of Aerospace (Aeronautics) Technology Enterprise applications with other NASA enterprises serves as a model of cross-enterprise transfer of science with specific commercial applications.

  10. Advanced gloss sensing for robotic applications

    NASA Astrophysics Data System (ADS)

    Deinhammer, Christian; Brandner, Markus

    2012-10-01

    Specular gloss is an important measurand used in quality control of manufacturing processes of highly reflective parts. In this work we present an in-process quality control system to evaluate the gloss of free-form surfaces to be used in an automated polishing process. Due to the geometry of our test objects the presented sensor is mounted on a robot arm and, therefore, needs to be robust against sensor misalignment. This robustness is achieved using a 2D CCD-camera as detector which allows us to properly handle sensor orientation deviations of up to 10. The required dynamic range of the sensor is obtained based on the acquisition of high dynamic range images. We present first results of a sensor prototype and show its applicability to the target application.

  11. Novel developments in mobile sensing based on the integration of microfluidic devices and smartphones.

    PubMed

    Yang, Ke; Peretz-Soroka, Hagit; Liu, Yong; Lin, Francis

    2016-03-21

    Portable electronic devices and wireless communication systems enable a broad range of applications such as environmental and food safety monitoring, personalized medicine and healthcare management. Particularly, hybrid smartphone and microfluidic devices provide an integrated solution for the new generation of mobile sensing applications. Such mobile sensing based on microfluidic devices (broadly defined) and smartphones (MS(2)) offers a mobile laboratory for performing a wide range of bio-chemical detection and analysis functions such as water and food quality analysis, routine health tests and disease diagnosis. MS(2) offers significant advantages over traditional platforms in terms of test speed and control, low cost, mobility, ease-of-operation and data management. These improvements put MS(2) in a promising position in the fields of interdisciplinary basic and applied research. In particular, MS(2) enables applications to remote in-field testing, homecare, and healthcare in low-resource areas. The marriage of smartphones and microfluidic devices offers a powerful on-chip operating platform to enable various bio-chemical tests, remote sensing, data analysis and management in a mobile fashion. The implications of such integration are beyond telecommunication and microfluidic-related research and technology development. In this review, we will first provide the general background of microfluidic-based sensing, smartphone-based sensing, and their integration. Then, we will focus on several key application areas of MS(2) by systematically reviewing the important literature in each area. We will conclude by discussing our perspectives on the opportunities, issues and future directions of this emerging novel field.

  12. Novel Developments of Mobile Sensing Based on the Integration of Microfluidic Devices and Smartphone

    PubMed Central

    Yang, Ke; Peretz-Soroka, Hagit; Liu, Yong; Lin, Francis

    2016-01-01

    Portable electronic devices and wireless communication systems enable a broad range of applications such as environmental and food safety monitoring, personalized medicine and healthcare management. Particularly, hybrid smartphone and microfluidic devices provide an integrated solution for the new generation of mobile sensing applications. Such mobile sensing based on microfluidic devices (broadly defined) and smartphones (MS2) offers a mobile laboratory for performing a wide range of bio-chemical detection and analysis functions such as water and food quality analysis, routine health tests and disease diagnosis. MS2 offers significant advantages over traditional platforms in terms of test speed and control, low cost, mobility, ease-of-operation and data management. These improvements put MS2 in a promising position in the fields of interdisciplinary basic and applied research. In particular, MS2 enables applications to remote infield testing, homecare, and healthcare in low-resource areas. The marriage of smartphones and microfluidic devices offers a powerful on-chip operating platform to enable various bio-chemical tests, remote sensing, data analysis and management in a mobile fashion. The implications of such integration are beyond telecommunication and microfluidic-related research and technology development. In this review, we will first provide the general background of microfluidic-based sensing, smartphone-based sensing, and their integration. Then, we will focus on several key application areas of MS2 by systematically reviewing the important literature in each area. We will conclude by discussing our perspectives on the opportunities, issues and future directions of this emerging novel field. PMID:26899264

  13. Remote sensing applications for range management

    NASA Technical Reports Server (NTRS)

    Haas, R. H.

    1981-01-01

    The use of satellite information for range management is discussed. The use of infrared photography and color photography for analysis of vegetation cover is described. The methods of interpreting LANDSAT imagery are highlighted and possible applications of such interpretive methods to range management are considered. The concept of using LANDSAT as a sampling frame for renewable natural resource inventories was examined. It is concluded that a blending of LANDSAT vegetation data with soils and digital terrain data, will define a basic sampling unit that is appropriate for range management utilization.

  14. Liquid crystal optical fibers for sensing applications

    NASA Astrophysics Data System (ADS)

    Choudhury, P. K.

    2013-09-01

    Propagation characteristics of optical fibers are greatly dependent on materials, which the guides are comprised of. Varieties of materials have been developed and investigated for their usage in fabricating optical fibers for specific applications. Within the context, a liquid crystal medium is both inhomogeneous and optically anisotropic, and fibers made of such mediums are greatly useful. Also, liquid crystals exhibit strong electro-optic behavior, which allows alternation in their optical properties under the influence of external electric fields. These features make liquid crystal fibers greatly important for optical applications. The present communication is aimed at providing a glimpse of the efficacy of liquid crystals and/or fibers made of liquid crystals, followed by the analytical investigation of wave propagation through such guides. The sustainment of modes is explored in these fibers under varying fiber dimensions, and the novelty is discussed. The case of tapered liquid crystal fibers is also briefly discussed highlighting the usefulness. Control on the dispersion characteristics of such fibers may be imposed by making the guide even more complex; the possibility of devising such options is also touched upon.

  15. High-speed optical 3D sensing and its applications

    NASA Astrophysics Data System (ADS)

    Watanabe, Yoshihiro

    2016-12-01

    This paper reviews high-speed optical 3D sensing technologies for obtaining the 3D shape of a target using a camera. The focusing speed is from 100 to 1000 fps, exceeding normal camera frame rates, which are typically 30 fps. In particular, contactless, active, and real-time systems are introduced. Also, three example applications of this type of sensing technology are introduced, including surface reconstruction from time-sequential depth images, high-speed 3D user interaction, and high-speed digital archiving.

  16. Magnetoelectric excitations in hexaferrites utilizing solenoid coil for sensing applications

    NASA Astrophysics Data System (ADS)

    Zare, Saba; Izadkhah, Hessam; Somu, Sivasubramanian; Vittoria, Carmine

    2015-11-01

    We have developed techniques for H- and E-field sensors utilizing single phase magnetoelectric hexaferrite materials in the frequency range of 100 Hz to 10 MHz. Novel excitation method incorporating solenoid coils and single and multi-capacitor banks were developed and tested for sensor detections. For H-field sensing we obtained sensitivity of about 3000 V/mG and for E-field sensing the sensitivity was 10-4 G/Vm-1. Tunability of about 0.1% was achieved for tunable inductor applications. However, the proposed designs lend themselves to significant ( 106) improvements in sensitivity and tunability.

  17. Single crystal diamond for infrared sensing applications

    SciTech Connect

    Majdi, S. Kovi, K. K.; Isberg, J.; Kolahdouz, M.; Moeen, M.; Radamson, H. H.; Balmer, R. S.

    2014-10-20

    The synthesis of new materials for thermal infrared (IR) detection has been an intensive research area in recent years. Among new semiconductor materials, synthetic diamond has the ability to function even under very high temperature and high radiation conditions. In the present work, diamond Schottky diodes with boron concentrations in the range of 10{sup 14 }< B < 10{sup 17 }cm{sup −3} are presented as candidates for IR thermal sensors with an excellent temperature coefficient of resistance (−8.42%/K) and very low noise levels around 6.6 × 10{sup −15} V{sup 2}/Hz. This enables huge performance enhancements for a wide variety of systems, e.g., automotive and space applications.

  18. Applications of biological pores in nanomedicine, sensing, and nanoelectronics

    PubMed Central

    Majd, Sheereen; Yusko, Erik C; Billeh, Yazan N; Macrae, Michael X; Yang, Jerry; Mayer, Michael

    2011-01-01

    Biological protein pores and pore-forming peptides can generate a pathway for the flux of ions and other charged or polar molecules across cellular membranes. In nature, these nanopores have diverse and essential functions that range from maintaining cell homeostasis and participating in cell signaling to activating or killing cells. The combination of the nanoscale dimensions and sophisticated – often regulated – functionality of these biological pores make them particularly attractive for the growing field of nanobiotechnology. Applications range from single-molecule sensing to drug delivery and targeted killing of malignant cells. Potential future applications may include the use of nanopores for single strand DNA sequencing and for generating bio-inspired, and possibly, biocompatible visual detection systems and batteries. This article reviews the current state of applications of pore-forming peptides and proteins in nanomedicine, sensing, and nanoelectronics. PMID:20561776

  19. Application of remote sensing image interpretation in seismic safety evaluation

    NASA Astrophysics Data System (ADS)

    Li, Feng; Wei, Wen-xia; Wang, Gang

    2005-10-01

    As one of essential design gist in important engineering projects, the seismic safety evaluation on choosing engineering site has been applied widely. Using remote sensing images, the analysis to regional seismotectonic environment can bring macroscopic, integrative, dynamic and high efficiency information, so the application of remote sensing technology in seismic safety evaluation of engineering site has fine prospect and will bring great benefit. In this paper, based on remote sensing interpretation to Landsat7 ETM images, also using GIS and field geological investigations, as a case study in Qingdao City, we analyze the physiognomy environment, new tectonic movement, faults activities, and the distributing of deleterious geological objects around the site. Then we find this method can provide good basic geological information for seismic safety evaluation.

  20. China national space remote sensing infrastructure and its application

    NASA Astrophysics Data System (ADS)

    Li, Ming

    2016-07-01

    Space Infrastructure is a space system that provides communication, navigation and remote sensing service for broad users. China National Space Remote Sensing Infrastructure includes remote sensing satellites, ground system and related systems. According to the principle of multiple-function on one satellite, multiple satellites in one constellation and collaboration between constellations, series of land observation, ocean observation and atmosphere observation satellites have been suggested to have high, middle and low resolution and fly on different orbits and with different means of payloads to achieve a high ability for global synthetically observation. With such an infrastructure, we can carry out the research on climate change, geophysics global surveying and mapping, water resources management, safety and emergency management, and so on. I This paper gives a detailed introduction about the planning of this infrastructure and its application in different area, especially the international cooperation potential in the so called One Belt and One Road space information corridor.

  1. C-MEMS for bio-sensing applications

    NASA Astrophysics Data System (ADS)

    Song, Yin; Agrawal, Richa; Wang, Chunlei

    2015-05-01

    Developing highly sensitive, selective, and reproducible miniaturized bio-sensing platforms require reliable biointerface which should be compatible with microfabrication techniques. In this study, we have fabricated pyrolyzed carbon arrays with high surface area as a bio-sensing electrode, and developed the surface functionalization methods to increase biomolecules immobilization efficiency and further understand electrochemical phenomena at biointerfaces. The carbon microelectrode arrays with high aspect ratio have been fabricated by carbon microelectromechanical systems (C-MEMS) and nanomaterials such as graphene have been integrated to further increase surface area. To achieve the efficient covalent immobilization of biomolecules, various oxidation and reduction functionalization methods have been investigated. The oxidation treatment in this study includes vacuum ultraviolet, electrochemical activation, UV/Ozone and oxygen RIE. The reduction treatment includes direct amination and diazonium grafting. The developed bio-sensing platform was then applied for several applications, such as: DNA sensor; H2O2 sensor; aptamer sensor and HIV sensor.

  2. Remote sensing of aquatic vegetation: theory and applications.

    PubMed

    Silva, Thiago S F; Costa, Maycira P F; Melack, John M; Novo, Evlyn M L M

    2008-05-01

    Aquatic vegetation is an important component of wetland and coastal ecosystems, playing a key role in the ecological functions of these environments. Surveys of macrophyte communities are commonly hindered by logistic problems, and remote sensing represents a powerful alternative, allowing comprehensive assessment and monitoring. Also, many vegetation characteristics can be estimated from reflectance measurements, such as species composition, vegetation structure, biomass, and plant physiological parameters. However, proper use of these methods requires an understanding of the physical processes behind the interaction between electromagnetic radiation and vegetation, and remote sensing of aquatic plants have some particular difficulties that have to be properly addressed in order to obtain successful results. The present paper reviews the theoretical background and possible applications of remote sensing techniques to the study of aquatic vegetation.

  3. Future Applications of Remote Sensing to Archeological Research

    NASA Technical Reports Server (NTRS)

    Sever, Thomas L.

    2003-01-01

    Archeology was one of the first disciplines to use aerial photography in its investigations at the turn of the 20th century. However, the low resolution of satellite technology that became available in the 1970 s limited their application to regional studies. That has recently changed. The arrival of the high resolution, multi-spectral capabilities of the IKONOS and QUICKBIRD satellites and the scheduled launch of new satellites in the next few years provides an unlimited horizon for future archeological research. In addition, affordable aerial and ground-based remote sensing instrumentation are providing archeologists with information that is not available through traditional methodologies. Although many archeologists are not yet comfortable with remote sensing technology a new generation has embraced it and is accumulating a wealth of new evidence. They have discovered that through the use of remote sensing it is possible to gather information without disturbing the site and that those cultural resources can be monitored and protected for the future.

  4. Hybrid Materials for Sensing and Catalyst Applications

    NASA Astrophysics Data System (ADS)

    Snyder, Alexandra

    Novel hybrid materials are fabricated with the goal of achieving properties that are superior to those of each component individually. The properties of hybrid materials can be tailored by changing the composition or configuration, making them attractive for use in a wide variety of applications ranging from photovoltaics to drug delivery systems. In this work, several hybrid material systems were fabricated and evaluated as photocatalysts or electrochemical sensors. Polyelectrolyte microspheres with different surface chemistry and charge were created through layer by layer deposition. Two model enzymes, acetylcholinesterase and horseradish peroxidase, were immobilized on the microsphere surfaces via electrostatic adsorption and hydrogen bonding. The polyelectrolyte-enzyme hybrids were incorporated into amperometric biosensors for the detection of organophosphate pesticides and hydrogen peroxide. The effect of surface charge of the terminal polyelectrolyte layer on enzyme activity was investigated. Biosensor performance for each system was evaluated by determination of detection limits, amperometric response, and long-term stability. Electrochemical sensors based on graphene were also fabricated in order to take advantage of graphene's superior electrical properties. In the first system, a graphene - chitosan hybrid film was investigated as an immobilization matrix for acetylcholinesterase. Dispersion of graphene throughout chitosan was dependent on pH of the polymer solution, since pH will greatly affect surface charge. An electrochemical hydrogen peroxide sensor was formed from the combination of graphene oxide with Ag2O nanocrystals synthesized with different morphologies (hexapods, octahedra, and cubes). Amperometric response and sensitivity were greatest for sensors fabricated with Ag 2O hexapods. The configuration of the system was optimized by layering graphene oxide and Ag2O and comparing electrochemical performance. Overall, the presence of graphene oxide

  5. Remote Sensing Applications to Water Quality Management in Florida

    NASA Astrophysics Data System (ADS)

    Lehrter, J. C.; Schaeffer, B. A.; Hagy, J.; Spiering, B.; Barnes, B.; Hu, C.; Le, C.; McEachron, L.; Underwood, L. W.; Ellis, C.; Fisher, B.

    2013-12-01

    Optical datasets from estuarine and coastal systems are increasingly available for remote sensing algorithm development, validation, and application. With validated algorithms, the data streams from satellite sensors can provide unprecedented spatial and temporal data for local and regional coastal water quality management. Our presentation will highlight two recent applications of optical data and remote sensing to water quality decision-making in coastal regions of the state of Florida; (1) informing the development of estuarine and coastal nutrient criteria for the state of Florida and (2) informing the rezoning of the Florida Keys National Marine Sanctuary. These efforts involved building up the underlying science to demonstrate the applicability of satellite data as well as an outreach component to educate decision-makers about the use, utility, and uncertainties of remote sensing data products. Scientific developments included testing existing algorithms and generating new algorithms for water clarity and chlorophylla in case II (CDOM or turbidity dominated) estuarine and coastal waters and demonstrating the accuracy of remote sensing data products in comparison to traditional field based measurements. Including members from decision-making organizations on the research team and interacting with decision-makers early and often in the process were key factors for the success of the outreach efforts and the eventual adoption of satellite data into the data records and analyses used in decision-making. Florida coastal water bodies (black boxes) for which remote sensing imagery were applied to derive numeric nutrient criteria and in situ observations (black dots) used to validate imagery. Florida ocean color applied to development of numeric nutrient criteria

  6. Remote sensing applications for transportation and traffic engineering studies: A review of the literature

    NASA Technical Reports Server (NTRS)

    Epps, J. W.

    1973-01-01

    Current references were surveyed for the application of remote sensing to traffic and transportation studies. The major problems are presented that concern traffic engineers and transportation managers, and the literature references that discuss remote sensing applications are summarized.

  7. Application of remote sensing to state and regional problems

    NASA Technical Reports Server (NTRS)

    Miller, W. F. (Principal Investigator); Tingle, J.; Wright, L. H.; Tebbs, B.

    1984-01-01

    Progress was made in the hydroclimatology, habitat modeling and inventory, computer analysis, wildlife management, and data comparison programs that utilize LANDSAT and SEASAT data provided to Mississippi researchers through the remote sensing applications program. Specific topics include water runoff in central Mississippi, habitat models for the endangered gopher tortoise, coyote, and turkey Geographic Information Systems (GIS) development, forest inventory along the Mississipppi River, and the merging of LANDSAT and SEASAT data for enhanced forest type discrimination.

  8. Interpretation of remotely sensed data and its applications in oceanography

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Tanaka, K.; Inostroza, H. M.; Verdesio, J. J.

    1982-01-01

    The methodology of interpretation of remote sensing data and its oceanographic applications are described. The elements of image interpretation for different types of sensors are discussed. The sensors utilized are the multispectral scanner of LANDSAT, and the thermal infrared of NOAA and geostationary satellites. Visual and automatic data interpretation in studies of pollution, the Brazil current system, and upwelling along the southeastern Brazilian coast are compared.

  9. Remote sensing applications to resource problems in South Dakota

    NASA Technical Reports Server (NTRS)

    Myers, V. I. (Principal Investigator)

    1981-01-01

    The procedures used as well as the results obtained and conclusions derived are described for the following applications of remote sensing in South Dakota: (1) sage grouse management; (2) censusing Canada geese; (3) monitoring grasshopper infestation in rangeland; (4) detecting Dutch elm disease in an urban environment; (5) determining water usage from the Belle Fourche River; (6) resource management of the Lower James River; and (7) the National Model Implantation Program: Lake Herman watershed.

  10. Some applications of remote sensing in atmospheric monitoring programs

    NASA Technical Reports Server (NTRS)

    Heller, A. N.; Bryson, J. C.; Vasuki, N. C.

    1972-01-01

    The applications of remote sensing in atmospheric monitoring programs are described. The organization, operations, and functions of an air quality monitoring network at New Castle County, Delaware is discussed. The data obtained by the air quality monitoring network ground stations and the equipment used to obtain atmospheric data are explained. It is concluded that correlation of the information obtained by the network will make it possible to anticipate air pollution problems in the Chesapeake Bay area before a crisis develops.

  11. Review of passive imaging polarimetry for remote sensing applications.

    PubMed

    Tyo, J Scott; Goldstein, Dennis L; Chenault, David B; Shaw, Joseph A

    2006-08-01

    Imaging polarimetry has emerged over the past three decades as a powerful tool to enhance the information available in a variety of remote sensing applications. We discuss the foundations of passive imaging polarimetry, the phenomenological reasons for designing a polarimetric sensor, and the primary architectures that have been exploited for developing imaging polarimeters. Considerations on imaging polarimeters such as calibration, optimization, and error performance are also discussed. We review many important sources and examples from the scientific literature.

  12. Terahertz spectroscopy for chemicals and biological sensing applications

    NASA Astrophysics Data System (ADS)

    Liu, Hai-Bo

    Terahertz (THz) radiation offers innovative sensing and imaging technologies that can provide information unavailable through other conventional electromagnetic techniques. With the advancement of THz technologies, THz sensing will impact a broad range of areas. This thesis focuses on the use of THz spectroscopy for sensing applications including explosives detection, pharmaceutical identification and biological characterization. Using both a THz time-domain spectroscopy (THz-TDS) system and a Fourier transform far-infrared spectrometer (FT-FIR), a THz spectral database of explosives and related compounds (ERCs) in the range of 0.1-20 THz was established. The transmission measurements show good agreement with the diffuse reflectance measurements, which are more feasible for practical applications. Density Functional Theory was employed to calculate structures and vibrational modes of several important ERCs and the calculated spectra are in good accordance with the experimental data in the 3-20 THz range. The detection and identification of the explosive RDX using diffusely reflected THz waves were also demonstrated. THz-TDS was applied successfully for pharmaceutical study, such as investigating drug interactions, as well as identifying hydrated and anhydrous drugs, based upon the intermolecular vibrational modes of drug substances. Dehydrations and complex solid state reactions of pharmaceutical materials were studied with THz-TDS and the reaction kinetics was successfully probed. These investigations have opened new avenues for using THz technologies in pharmaceutical science and industry. THz spectra of amino acids, purines and other biomolecules were recorded. Most of these solid-state biocompounds have THz spectral features in the 0.1-3.0 THz range. THz spectroscopy of solid-state proteins and bioactive protein micro suspensions in organic media was studied and their THz absorption features may reflect their collective vibrational modes which could be used to

  13. Integrated cantilever sensors with a torsional resonance mode for ultraresoluble on-the-spot bio/chemical detection

    NASA Astrophysics Data System (ADS)

    Jin, Dazhong; Li, Xinxin; Bao, Hanhan; Zhang, Zhixiang; Wang, Yuelin; Yu, Haitao; Zuo, Guomin

    2007-01-01

    Torsion-mode resonance is built in an integrated cantilever sensor for ultraresoluble detection of specifically bio/chemical mass adsorption. The superior mass resolution of the torsion-mode cantilever to a conventional bending-mode one is verified by energy-dissipation analysis and Q-factor simulation. With integrated transverse piezoresistance for frequency-shift signal readout and Lorentz force for resonance excitation, the torsion-mode sensor is optimally designed for high sensitivity. The microfabricated torsion-mode sensor is measured with a high close-loop Q factor in air. By Allan-variance analysis for the measured frequency stability, 23fg resolution is obtained for the torsion-mode sensor, which is much improved compared to the 313fg for the conventional flexure-mode sensor. The torsional sensor is used to recognize biotin-avidin specific combination, resulting in 443Hz frequency shift for 50μM streptavidin solution.

  14. Numerical modeling of gas mixing and bio-chemical transformations during underground hydrogen storage within the project H2STORE

    NASA Astrophysics Data System (ADS)

    Hagemann, B.; Feldmann, F.; Panfilov, M.; Ganzer, L.

    2015-12-01

    The change from fossil to renewable energy sources is demanding an increasing amount of storage capacities for electrical energy. A promising technological solution is the storage of hydrogen in the subsurface. Hydrogen can be produced by electrolysis using excessive electrical energy and subsequently converted back into electricity by fuel cells or engine generators. The development of this technology starts with adding small amounts of hydrogen to the high pressure natural gas grid and continues with the creation of pure underground hydrogen storages. The feasibility of hydrogen storage in depleted gas reservoirs is investigated in the lighthouse project H2STORE financed by the German Ministry for Education and Research. The joint research project has project members from the University of Jena, the Clausthal University of Technology, the GFZ Potsdam and the French National Center for Scientic Research in Nancy. The six sub projects are based on laboratory experiments, numerical simulations and analytical work which cover the investigation of mineralogical, geochemical, physio-chemical, sedimentological, microbiological and gas mixing processes in reservoir and cap rocks. The focus in this presentation is on the numerical modeling of underground hydrogen storage. A mathematical model was developed which describes the involved coupled hydrodynamic and microbiological effects. Thereby, the bio-chemical reaction rates depend on the kinetics of microbial growth which is induced by the injection of hydrogen. The model has been numerically implemented on the basis of the open source code DuMuX. A field case study based on a real German gas reservoir was performed to investigate the mixing of hydrogen with residual gases and to discover the consequences of bio-chemical reactions.

  15. Workshop on remote sensing/lineament applications for energy extraction

    SciTech Connect

    Howard, J.F.; Komar, C.A.; Cooper, L.M.

    1984-04-01

    The following six papers are presented in this proceedings: (1) lineaments - a look forward and backward; (2) remote sensing/lineament analysis applications workshop - a general summary; (3) geologic controls on lineament systems, Pike County, Kentucky; (4) air-photo lineament domains in a portion of the Appalachian Basin - an application for exploration; (5) subsurface anomalies expressed as lineaments in the Northwest Pennsylvania portion of the Appalachian Plateau; and (6) effect of short lineaments on gas well yield from Devonian shales in Eastern Kentucky. All papers have been processed for inclusion in the Energy Data Base.

  16. Luminescent AIE materials for high-performance sensing applications

    NASA Astrophysics Data System (ADS)

    Leung, Chris Wai Tung; Tang, Ben Zhong

    2014-10-01

    Luminescent materials have been widely applied in chemo- and bio-sensing applications because these luminescent materials offer high signal-to-background ratio, superior sensitivity and broad dynamic ranges in various detections. Conventional luminogens suffer from aggregation-caused quenching (ACQ) effect due to strong π-π stacking interaction upon aggregate formation of the luminogens with analytes. Such ACQ effect limits the scope of practical sensing applications. Luminogens with aggregation-induced emission (AIE) characteristics enjoy high emission efficiency in solid or aggregated state while they are non-emissive in solution. AIE luminogens (AIEgens) tackle the lethal problem of ACQ materials in the sensing applications. Siloles and tetraphenylethene (TPE) are archetypal AIE cores and possess advantages of facile synthesis and readily functionalization. AIEgens have been utilized to develop various fluorescent chemosensors. For example, hyperbranched AIE polymers with different topologies can be worked as turn-off explosive sensor with high sensitivity. The explosive detections can be done in solid film, which facilitates practical usage. The AIEgens can also be used as sensors for volatile organic compounds and metal ions through alternating fluorescence on/off mechanisms. Besides chemosensor, the AIEgens have been applied in the fields of biology. Water-soluble AIEgens have been developed for quantifying nucleic acids and proteins. They can serve as bioprobes for real-time monitoring and studying the kinetic of protein conformational changes, making them promising for diagnostic and therapeutic applications. These demonstrations significantly expand the scope of analysis applications of AIEgens and offer new strategies to the design of new fluorescent chemo- and bio-sensors.

  17. NASA Remote Sensing Applications for Archaeology and Cultural Resources Management

    NASA Technical Reports Server (NTRS)

    Giardino, Marco J.

    2008-01-01

    NASA's Earth Science Mission Directorate recently completed the deployment of the Earth Observation System (EOS) which is a coordinated series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. One of the many applications derived from EOS is the advancement of archaeological research and applications. Using satellites, manned and unmanned airborne platform, NASA scientists and their partners have conducted archaeological research using both active and passive sensors. The NASA Stennis Space Center (SSC) located in south Mississippi, near New Orleans, has been a leader in space archaeology since the mid-1970s. Remote sensing is useful in a wide range of archaeological research applications from landscape classification and predictive modeling to site discovery and mapping. Remote sensing technology and image analysis are currently undergoing a profound shift in emphasis from broad classification to detection, identification and condition of specific materials, both organic and inorganic. In the last few years, remote sensing platforms have grown increasingly capable and sophisticated. Sensors currently in use, including commercial instruments, offer significantly improved spatial and spectral resolutions. Paired with new techniques of image analysis, this technology provides for the direct detection of archaeological sites. As in all archaeological research, the application of remote sensing to archaeology requires a priori development of specific research designs and objectives. Initially targeted at broad archaeological issues, NASA space archaeology has progressed toward developing practical applications for cultural resources management (CRM). These efforts culminated with the Biloxi Workshop held by NASA and the University of Mississippi in 2002. The workshop and resulting publication specifically address the requirements of cultural resource managers through

  18. Wireless power using magnetic resonance coupling for neural sensing applications

    NASA Astrophysics Data System (ADS)

    Yoon, Hargsoon; Kim, Hyunjung; Choi, Sang H.; Sanford, Larry D.; Geddis, Demetris; Lee, Kunik; Kim, Jaehwan; Song, Kyo D.

    2012-04-01

    Various wireless power transfer systems based on electromagnetic coupling have been investigated and applied in many biomedical applications including functional electrical stimulation systems and physiological sensing in humans and animals. By integrating wireless power transfer modules with wireless communication devices, electronic systems can deliver data and control system operation in untethered freely-moving conditions without requiring access through the skin, a potential source of infection. In this presentation, we will discuss a wireless power transfer module using magnetic resonance coupling that is specifically designed for neural sensing systems and in-vivo animal models. This research presents simple experimental set-ups and circuit models of magnetic resonance coupling modules and discusses advantages and concerns involved in positioning and sizing of source and receiver coils compared to conventional inductive coupling devices. Furthermore, the potential concern of tissue heating in the brain during operation of the wireless power transfer systems will also be addressed.

  19. A CMOS humidity sensor for passive RFID sensing applications.

    PubMed

    Deng, Fangming; He, Yigang; Zhang, Chaolong; Feng, Wei

    2014-05-16

    This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 µW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs.

  20. Application of airborne remote sensing to the ancient Pompeii site

    NASA Astrophysics Data System (ADS)

    Vitiello, Fausto; Giordano, Antonio; Borfecchia, Flavio; Martini, Sandro; De Cecco, Luigi

    1996-12-01

    The ancient Pompeii site is in the Sarno Valley, an area of about 400 km2 in the South of Italy near Naples, that was utilized by man since old time (thousands of years ago). Actually the valley is under critical environmental conditions because of the relevant industrial development. ENEA is conducting various studies and research in the valley. ENEA is employing historical research, ground campaigns, cartography and up-to-date airborne multispectral remote sensing technologies to make a geographical information system. Airborne remote sensing technologies are very suitable for situations as that of the Sarno Valley. The paper describes the archaeological application of the research in progress as regarding the ancient site of Pompeii and its fluvial port.

  1. A CMOS Humidity Sensor for Passive RFID Sensing Applications

    PubMed Central

    Deng, Fangming; He, Yigang; Zhang, Chaolong; Feng, Wei

    2014-01-01

    This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 μW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs. PMID:24841250

  2. Remote sensing of snowpack with microwave radiometers for hydrologic applications

    NASA Technical Reports Server (NTRS)

    Shiue, J. C.; Chang, A. T. C.; Boyne, H.; Ellerbruch, D.

    1978-01-01

    A microwave remote sensing of snowpack experiment is described and some preliminary data presented. A mobile field laboratory consisting of a four-frequency (5, 10.7, 18 and 37 GHz), all with dual linear (vertical and horizontal) polarizations, microwave radiometer system attached to a truck-mounted aerial lift was used to study the microwave emission characteristics of snowpacks in the Colorado Rocky Mountains during the winter of 1977-78. The influence of snowpack physical parameters such as water equivalent, grain size, and melt-freeze cycle on its microwave brightness temperature and its implications to the application of microwave radiometric technique to remote sensing of snowpack for runoff prediction are discussed.

  3. Functionalized DNA materials for sensing and medical applications

    NASA Astrophysics Data System (ADS)

    Woolard, Dwight L.; Jensen, James O.

    2011-06-01

    The U.S. Army has strong interests in nanoscale architectures that enable enhanced extraction and controllable multiplication of the THz/IR regime spectral signatures associated with specific bio-molecular targets. Emerging DNAbased nano-assemblies (i.e., either materials or structural devices) will be discussed that realize novel sensing paradigms through the incorporation of organic and/or biological molecules such that they effect highly predictable and controllable changes into the electro-optical properties of the resulting superstructures. Results will be given to illustrate the utility of functionalized DNA materials in biological (and chemical) sensing, and to demonstrate how the basic science can be leveraged to study and develop synthetic antibodies, reporters and vaccines for future medical applications.

  4. The Application of NASA Remote Sensing Technology to Human Health

    NASA Technical Reports Server (NTRS)

    Watts, C. T.

    2007-01-01

    With the help of satellites, the Earth's environment can be monitored from a distance. Earth observing satellites and sensors collect data and survey patterns that supply important information about the environment relating to its affect on human health. Combined with ground data, such patterns and remote sensing data can be essential to public health applications. Remote sensing technology is providing information that can help predict factors that affect human health, such as disease, drought, famine, and floods. A number of public health concerns that affect Earth's human population are part of the current National Aeronautics and Space Administration (NASA) Earth Science Applications Plan to provide remotely gathered data to public health decision-makers to aid in forming and implementing policy to protect human health and preserve well-being. These areas of concern are: air quality; water quality; weather and climate change; infectious, zoonotic, and vector-borne disease; sunshine; food resource security; and health risks associated with the built environment. Collaborations within the Earth Science Applications Plan join local, state, national, or global organizations and agencies as partners. These partnerships engage in projects that strive to understand the connection between the environment and health. The important outcome is to put this understanding to use through enhancement of decision support tools that aid policy and management decisions on environmental health risks. Future plans will further employ developed models in formats that are compatible and accessible to all public health organizations.

  5. Evaluation and Application of Remotely Sensed Soil Moisture Products

    NASA Technical Reports Server (NTRS)

    Bolten, J.; Crow, W.; Zhan, X.; Jackson, T.; Reynolds, C.; Rodell, Matt

    2010-01-01

    Whereas in-situ measurements of soil moisture are very accurate, achieving accurate regional soil moisture estimates derived solely from point measurements is difficult because of the dependence upon the density of the gauge network and the proper upkeep of these instruments, which can be costly. Microwave remote sensing is the only technology capable of providing timely direct measurements of regional soil moisture in areas that are lacking in-situ networks. Soil moisture remote sensing technology is well established has been successfully applied in many fashions to Earth Science applications. Since the microwave emission from the soil surface has such a high dependency upon the moisture content within the soil, we can take advantage of this relationship and combined with physically-based models of the land surface, derive accurate regional estimates of the soil column water content from the microwave brightness temperature observed from satellite-based remote sensing instruments. However, there still remain many questions regarding the most efficient methodology for evaluating and applying satellite-based soil moisture estimates. As discussed below, we to use satellite-based estimates of soil moisture dynamics to improve the predictive capability of an optimized hydrologic model giving more accurate root-zone soil moisture estimates.

  6. Optical carrier-based microwave interferometers for sensing application

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Lan, Xinwei; Wang, Hanzheng; Yuan, Lei; Xiao, Hai

    2014-06-01

    Optical fiber interferometers (OFIs) have been extensively utilized for precise measurements of various physical/chemical quantities (e.g., temperature, strain, pressure, rotation, refractive index, etc.). However, the random change of polarization states along the optical fibers and the strong dependence on the materials and geometries of the optical waveguides are problematic for acquiring high quality interference signal. Meanwhile, difficulty in multiplexing has always been a bottleneck on the application scopes of OFIs. Here, we present a sensing concept of optical carrier based microwave interferometry (OCMI) by reading optical interferometric sensors in microwave domain. It combines the advantages from both optics and microwave. The low oscillation frequency of the microwave can hardly distinguish the optical differences from both modal and polarization dispersion making it insensitive to the optical waveguides/materials. The phase information of the microwave can be unambiguitly resolved so that it has potential in fully distributed sensing. The OCMI concept has been implemented in different types of interferometers (i.e., Michelson, Mach-Zehnder, Fabry-Perot) among different optical waveguides (i.e., singlemode, multimode, and sapphire fibers) with excellent signal-to-noise ratio (SNR) and low polarization dependence. A spatially continuous distributed strain sensing has been demonstrated.

  7. Application of optical remote sensing in the Wenchuan earthquake assessment

    NASA Astrophysics Data System (ADS)

    Zhang, Bing; Lei, Liping; Zhang, Li; Liu, Liangyun; Zhu, Boqin; Zuo, Zhengli

    2009-06-01

    A mega-earthquake of magnitude 8 of Richter scale occurred in Wenchuan County, Sichuan Province, China on May 12, 2008. The earthquake inflicted heavy loss of human lives and properties. The Wenchuan earthquake induced geological disasters, house collapse, and road blockage. In this paper, we demonstrate an application of optical remote sensing images acquired from airborne and satellite platforms in assessing the earthquake damages. The high-resolution airborne images were acquired by the Chinese Academy of Sciences (CAS). The pre- and post-earthquake satellite images of QuickBird, IKONOS, Landsat TM, ALOS, and SPOT were collected by the Center for Earth Observation & Digital Earth (CEODE), CAS, and some of the satellite data were provided by the United States, Japan, and the European Space Agency. The pre- and post-earthquake remote sensing images integrated with DEM and GIS data were adopted to monitor and analyze various earthquake disasters, such as road blockage, house collapse, landslides, avalanches, rock debris flows, and barrier lakes. The results showed that airborne optical images provide a convenient tool for quick and timely monitoring and assessing of the distribution and dynamic changes of the disasters over the earthquake-struck regions. In addition, our study showed that the optical remote sensing data integrated with GIS data can be used to assess disaster conditions such as damaged farmlands, soil erosion, etc, which in turn provides useful information for the postdisaster reconstruction.

  8. Calculations of atmospheric refraction for spacecraft remote-sensing applications

    NASA Technical Reports Server (NTRS)

    Chu, W. P.

    1983-01-01

    Analytical solutions to the refraction integrals appropriate for ray trajectories along slant paths through the atmosphere are derived in this paper. This type of geometry is commonly encountered in remote-sensing applications utilizing an occultation technique. The solutions are obtained by evaluating higher-order terms from expansion of the refraction integral and are dependent on the vertical temperature distributions. Refraction parameters such as total refraction angles, air masses, and path lengths can be accurately computed. It is also shown that the method can be used for computing refraction parameters in astronomical refraction geometry for large zenith angles.

  9. Application of remote sensing to state and regional problems. [mississippi

    NASA Technical Reports Server (NTRS)

    Miller, W. F.; Powers, J. S.; Clark, J. R.; Solomon, J. L.; Williams, S. G. (Principal Investigator)

    1981-01-01

    The methods and procedures used, accomplishments, current status, and future plans are discussed for each of the following applications of LANDSAT in Mississippi: (1) land use planning in Lowndes County; (2) strip mine inventory and reclamation; (3) white-tailed deer habitat evaluation; (4) remote sensing data analysis support systems; (5) discrimination of unique forest habitats in potential lignite areas; (6) changes in gravel operations; and (7) determining freshwater wetlands for inventory and monitoring. The documentation of all existing software and the integration of the image analysis and data base software into a single package are now considered very high priority items.

  10. Ultrafast laser inscribed fiber Bragg gratings for sensing applications

    NASA Astrophysics Data System (ADS)

    Mihailov, Stephen J.

    2016-05-01

    Because of their small size, passive nature, immunity to electromagnetic interference, and capability to directly measure physical parameters such as temperature and strain, fiber Bragg grating sensors have developed beyond a laboratory curiosity and are becoming a mainstream sensing technology. Recently, high temperature stable gratings based on femtosecond infrared laser-material processing have shown promise for use in extreme environments such as high temperature, pressure or ionizing radiation. Such gratings are ideally suited for energy production applications where there is a requirement for advanced energy system instrumentation and controls that are operable in harsh environments. This tutorial paper will present a review of some of the more recent developments.

  11. Remote sensing applied to agriculture: Basic principles, methodology, and applications

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Mendonca, F. J.

    1981-01-01

    The general principles of remote sensing techniques as applied to agriculture and the methods of data analysis are described. the theoretical spectral responses of crops; reflectance, transmittance, and absorbtance of plants; interactions of plants and soils with reflectance energy; leaf morphology; and factors which affect the reflectance of vegetation cover are dicussed. The methodologies of visual and computer-aided analyses of LANDSAT data are presented. Finally, a case study wherein infrared film was used to detect crop anomalies and other data applications are described.

  12. Methodology of remote sensing data interpretation and geological applications. [Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Veneziani, P.; Dosanjos, C. E.

    1982-01-01

    Elements of photointerpretation discussed include the analysis of photographic texture and structure as well as film tonality. The method used is based on conventional techniques developed for interpreting aerial black and white photographs. By defining the properties which characterize the form and individuality of dual images, homologous zones can be identified. Guy's logic method (1966) was adapted and used on functions of resolution, scale, and spectral characteristics of remotely sensed products. Applications of LANDSAT imagery are discussed for regional geological mapping, mineral exploration, hydrogeology, and geotechnical engineering in Brazil.

  13. Novel diode laser-based sensors for gas sensing applications

    NASA Technical Reports Server (NTRS)

    Tittel, F. K.; Lancaster, D. G.; Richter, D.

    2000-01-01

    The development of compact spectroscopic gas sensors and their applications to environmental sensing will be described. These sensors employ mid-infrared difference-frequency generation (DFG) in periodically poled lithium niobate (PPLN) crystals pumped by two single-frequency solid state lasers such as diode lasers, diode-pumped solid state, and fiber lasers. Ultrasensitive, highly selective, and real-time measurements of several important atmospheric trace gases, including carbon monoxide, nitrous oxide, carbon dioxide, formaldehyde [correction of formaldehye], and methane, have been demonstrated.

  14. Research investigations in and demonstrations of remote sensing applications to urban environmental problems

    NASA Technical Reports Server (NTRS)

    Hidalgo, J. U.

    1975-01-01

    The applicability of remote sensing to transportation and traffic analysis, urban quality, and land use problems is discussed. Other topics discussed include preliminary user analysis, potential uses, traffic study by remote sensing, and urban condition analysis using ERTS.

  15. New Optical Sensing Materials for Application in Marine Research

    NASA Astrophysics Data System (ADS)

    Borisov, S.; Klimant, I.

    2012-04-01

    Optical chemosensors are versatile analytical tools which find application in numerous fields of science and technology. They proved to be a promising alternative to electrochemical methods and are applied increasingly often in marine research. However, not all state-of-the- art optical chemosensors are suitable for these demanding applications since they do not fully fulfil the requirements of high luminescence brightness, high chemical- and photochemical stability or their spectral properties are not adequate. Therefore, development of new advanced sensing materials is still of utmost importance. Here we present a set of novel optical sensing materials recently developed in the Institute of Analytical Chemistry and Food Chemistry which are optimized for marine applications. Particularly, we present new NIR indicators and sensors for oxygen and pH which feature high brightness and low level of autofluorescence. The oxygen sensors rely on highly photostable metal complexes of benzoporphyrins and azabenzoporphyrins and enable several important applications such as simultaneous monitoring of oxygen and chlorophyll or ultra-fast oxygen monitoring (Eddy correlation). We also developed ulta-sensitive oxygen optodes which enable monitoring in nM range and are primary designed for investigation of oxygen minimum zones. The dynamic range of our new NIR pH indicators based on aza-BODIPY dyes is optimized for the marine environment. A highly sensitive NIR luminescent phosphor (chromium(III) doped yttrium aluminium borate) can be used for non-invasive temperature measurements. Notably, the oxygen, pH sensors and temperature sensors are fully compatible with the commercially available fiber-optic readers (Firesting from PyroScience). An optical CO2 sensor for marine applications employs novel diketopyrrolopyrrol indicators and enables ratiometric imaging using a CCD camera. Oxygen, pH and temperature sensors suitable for lifetime and ratiometric imaging of analytes

  16. Overview of novel integrated optical ring resonator bio/chemical sensors

    NASA Astrophysics Data System (ADS)

    Fan, Xudong; White, Ian M.; Zhu, Hongying; Suter, Jonanthan D.; Oveys, Hesam

    2007-02-01

    In parallel to a stand-alone microsphere resonator and a planar ring resonator on a wafer, the liquid core optical ring resonator (LCORR) is regarded as the third type of ring resonator that integrates microfluidics with state-of-the-art photonics. The LCORR employs a micro-sized glass capillary with a wall thickness of a few microns. The circular cross section of the capillary forms a ring resonator that supports the whispering gallery modes (WGMs), which has the evanescent field in the core, allowing for repetitive interaction with the analytes carried inside the capillary. Despite the small physical size of the LCORR and sub-nanoliter sensing volume, the effective interaction length can exceed 10 cm due to high Q-factor (10 6), significantly improving the LCORR detection limit. The LCORR is a versatile system that exhibits excellent fluid handling capability inherent to capillaries and permits non-invasive and quantitative measurement at any location along the capillary. Furthermore, the LCORR uses the refractive index change as a transduction signal, which enables label-free detection. Therefore, the LCORR is a promising technology platform for future sensitive, miniaturized, lab-on-a-chip type sensors. In this paper, we will introduce the concept of the LCORR and present the theoretical analysis and the experimental results related to the LCORR sensor development.

  17. Autonomous bio-chemical decontaminator (ABCD) against weapons of mass destruction

    NASA Astrophysics Data System (ADS)

    Hyacinthe, Berg P.

    2006-05-01

    The proliferation of weapons of mass destruction (WMD) and the use of such elements pose an eminent asymmetric threat with disastrous consequences to the national security of any nation. In particular, the use of biochemical warfare agents against civilians and unprotected troops in international conflicts or by terrorists against civilians is considered as a very peculiar threat. Accordingly, taking a quarantine-before-inhalation approach to biochemical warfare, the author introduces the notion of autonomous biochemical decontamination against WMD. In the unfortunate event of a biochemical attack, the apparatus proposed herein is intended to automatically detect, identify, and more importantly neutralize a biochemical threat. Along with warnings concerning a cyber-WMD nexus, various sections cover discussions on human senses and computer sensors, corroborating evidence related to detection and neutralization of chemical toxins, and cyber-assisted olfaction in stand alone, peer-to-peer, and network settings. In essence, the apparatus can be used in aviation and mass transit security to initiate mass decontamination by dispersing a decontaminant aerosol or to protect the public water supply against a potential bioterrorist attack. Future effort may involve a system-on-chip (SoC) embodiment of this apparatus that allows a safer environment for the emerging phenomenon of cyber-assisted olfaction and morph cell phones into ubiquitous sensors/decontaminators. Although this paper covers mechanisms and protocols to avail a neutralizing substance, further research will need to explore the substance's various pharmacological profiles and potential side effects.

  18. Bacterial quorum sensing: functional features and potential applications in biotechnology.

    PubMed

    Mangwani, Neelam; Dash, Hirak Ranjan; Chauhan, Ashvini; Das, Surajit

    2012-01-01

    Quorum sensing (QS) represents an exceptional pattern of cell-to-cell communication in bacteria using self-synthesized signalling molecules known as autoinducers. Various features regulated by QS in bacteria include virulence, biofilm formation, sporulation, genetic competence and bioluminescence, among others. Other than the diverse signalling properties of autoinducers, there are non-signalling properties also associated with these signalling molecules which make them potential antimicrobial agents and metal chelators. Additionally, QS signal antagonism has also been shown to be a promising alternative for blocking pathogenic diseases. Besides, QS has impressive design features useful in tissue engineering and biosensor technology. Although many aspects of QS are well understood, several other features remain largely unknown, especially in biotechnology applications. This review focuses on the functional features and potential applications of QS signalling molecules in biotechnology.

  19. Application of telecom planar lightwave circuits for homeland security sensing

    NASA Astrophysics Data System (ADS)

    Veldhuis, Gert J.; Elders, Job; van Weerden, Harm; Amersfoort, Martin

    2004-03-01

    Over the past decade, a massive effort has been made in the development of planar lightwave circuits (PLCs) for application in optical telecommunications. Major advances have been made, on both the technological and functional performance front. Highly sophisticated software tools that are used to tailor designs to required functional performance support these developments. In addition extensive know-how in the field of packaging, testing, and failure mode and effects analysis (FMEA) has been built up in the struggle for meeting the stringent Telcordia requirements that apply to telecom products. As an example, silica-on-silicon is now a mature technology available at several industrial foundries around the world, where, on the performance front, the arrayed-waveguide grating (AWG) has evolved into an off-the-shelf product. The field of optical chemical-biological (CB) sensors for homeland security application can greatly benefit from the advances as described above. In this paper we discuss the currently available technologies, device concepts, and modeling tools that have emerged from the telecommunications arena and that can effectively be applied to the field of homeland security. Using this profound telecom knowledge base, standard telecom components can readily be tailored for detecting CB agents. Designs for telecom components aim at complete isolation from the environment to exclude impact of environmental parameters on optical performance. For sensing applications, the optical path must be exposed to the measurand, in this area additional development is required beyond what has already been achieved in telecom development. We have tackled this problem, and are now in a position to apply standard telecom components for CB sensing. As an example, the application of an AWG as a refractometer is demonstrated, and its performance evaluated.

  20. Overview of detector technologies for EO/IR sensing applications

    NASA Astrophysics Data System (ADS)

    Sood, Ashok K.; Zeller, John W.; Welser, Roger E.; Puri, Yash R.; Lewis, Jay S.; Dhar, Nibir K.; Wijewarnasuriya, Priyalal

    2016-05-01

    Optical sensing technology is critical for optical communication, defense and security applications. Advances in optoelectronics materials in the UV, Visible and Infrared, using nanostructures, and use of novel materials such as CNT and Graphene have opened doors for new approaches to apply device design methodology that are expected to offer enhanced performance and low cost optical sensors in a wide range of applications. This paper is intended to review recent advancements and present different device architectures and analysis. The chapter will briefly introduce the basics of UV and Infrared detection physics and various wave bands of interest and their characteristics [1, 2] We will cover the UV band (200-400 nm) and address some of the recent advances in nanostructures growth and characterization using ZnO/MgZnO based technologies and their applications. Recent advancements in design and development of CNT and Graphene based detection technologies have shown promise for optical sensor applications. We will present theoretical and experimental results on these device and their potential applications in various bands of interest.

  1. Wearable technology for bio-chemical analysis of body fluids during exercise.

    PubMed

    Morris, Deirdre; Schazmann, Benjamin; Wu, Yangzhe; Coyle, Shirley; Brady, Sarah; Fay, Cormac; Hayes, Jer; Lau, King Tong; Wallace, Gordon; Diamond, Dermot

    2008-01-01

    This paper details the development of a textile based fluid handling system with integrated wireless biochemical sensors. Such research represents a new advancement in the area of wearable technologies. The system contains pH, sodium and conductivity sensors. It has been demonstrated during on-body trials that the pH sensor has close agreement with measurements obtained using a reference pH probe. Initial investigations into the sodium and conductivity sensors have shown their suitability for integration into the wearable system. It is thought that applications exist in personal health and sports performance and training.

  2. Proceedings of the Eleventh International Symposium on Remote Sensing of Environment, volume 2. [application and processing of remotely sensed data

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Application and processing of remotely sensed data are discussed. Areas of application include: pollution monitoring, water quality, land use, marine resources, ocean surface properties, and agriculture. Image processing and scene analysis are described along with automated photointerpretation and classification techniques. Data from infrared and multispectral band scanners onboard LANDSAT satellites are emphasized.

  3. Graphene-based hybrid for enantioselective sensing applications.

    PubMed

    Zor, Erhan; Morales-Narváez, Eden; Alpaydin, Sabri; Bingol, Haluk; Ersoz, Mustafa; Merkoçi, Arben

    2017-01-15

    Chirality is a major field of research of chemical biology and is essential in pharmacology. Accordingly, approaches for distinguishing between different chiral forms of a compound are of great interest. We report on an efficient and generic enantioselective sensor that is achieved by coupling reduced graphene oxide with γ-cyclodextrin (rGO/γ-CD). The enantioselective sensing capability of the resulting structure was operated in both electrical and optical mode for of tryptophan enantiomers (D-/L-Trp). In this sense, voltammetric and photoluminescence measurements were conducted and the experimental results were compared to molecular docking method. We gain insight into the occurring recognition mechanism with selectivity toward D- and L-Trp as shown in voltammetric, photoluminescence and molecular docking responses. As an enantioselective solid phase on an electrochemical transducer, thanks to the different dimensional interaction of enantiomers with hybrid material, a discrepancy occurs in the Gibbs free energy leading to a difference in oxidation peak potential as observed in electrochemical measurements. The optical sensing principle is based on the energy transfer phenomenon that occurs between photoexcited D-/L-Trp enantiomers and rGO/γ-CD giving rise to an enantioselective photoluminescence quenching due to the tendency of chiral enantiomers to form complexes with γ-CD in different molecular orientations as demonstrated by molecular docking studies. The approach, which is the first demonstration of applicability of molecular docking to show both enantioselective electrochemical and photoluminescence quenching capabilities of a graphene-related hybrid material, is truly new and may have broad interest in combination of experimental and computational methods for enantiosensing of chiral molecules.

  4. Tapered optical fibres for sensing

    NASA Astrophysics Data System (ADS)

    Martan, Tomas; Kanka, Jiri; Kasik, Ivan; Matejec, Vlastimil

    2008-11-01

    Recently, optical fibre tapers have intensively been investigated for many applications e.g. in telecommunications, medicine and (bio-) chemical sensing. The paper deals with enhancement of evanescent-field sensitivity of the solid-core microstructured fibre with steering-wheel air-cladding. Enhancement of a performance of the microstructured fibre is based on reduction of fibre core diameter down to narrow filament by tapering thereby defined part of light power is guided by an evanescent wave traveling in axial cladding air holes. The original fibre structure with outer diameter of 125 µm was reduced 2×, 2.5×, 3.33×, and 4× for increasing relatively small intensity overlap of guided core mode at wavelength of 1.55 μm with axial air holes. The inner structures of tapered microstructured fibre with steering-wheel aircladding were numerically analyzed and mode intensity distributions were calculated using the FDTD technique. Analyzed fiber tapers were prepared by constructed fibre puller employing 'flame brush technique'.

  5. Application of stochastic radiative transfer to remote sensing of vegetation

    NASA Astrophysics Data System (ADS)

    Shabanov, Nikolay V.

    2002-01-01

    The availability of high quality remote sensing data during the past decade provides an impetus for the development of methods that facilitate accurate retrieval of structural and optical properties of vegetation required for the study of global vegetation dynamics. Empirical and statistical methods have proven to be quite useful in many applications, but they often do not shed light on the underlying physical processes. Approaches based on radiative transfer and the physics of matter-energy interaction are therefore required to gain insight into the mechanisms responsible for signal generation. The goal of this dissertation is the development of advanced methods based on radiative transfer for the retrieval of biophysical information from satellite data. Classical radiative transfer theory is applicable to homogeneous vegetation and is generally inaccurate in characterizing the radiation regime in natural vegetation communities, such as forests or woodlands. A stochastic approach to radiative transfer was introduced in this dissertation to describe the radiation regime in discontinuous vegetation canopies. The resulting stochastic model was implemented and tested with field data and Monte Carlo simulations. The effect of gaps on radiation fluxes in vegetation canopies was quantified analytically and compared to classical representations. Next, the stochastic theory was applied to vegetation remote sensing in two case studies. First, the radiative transfer principles underlying an algorithm for leaf area index (LAI) retrieval were studied with data from Harvard Forest. The classical expression for uncollided radiation was modified according to stochastic principles to explain radiometric measurements and vegetation structure. In the second case study, vegetation dynamics in the northern latitudes inferred from the Pathfinder Advanced Very High-Resolution Radiometer Land data were investigated. The signatures of interannual and seasonal variation recorded in the

  6. Characterization of Flexible Copolymer Optical Fibers for Force Sensing Applications

    PubMed Central

    Krehel, Marek; Rossi, René M.; Bona, Gian-Luca; Scherer, Lukas J.

    2013-01-01

    In this paper, different polymer optical fibres for applications in force sensing systems in textile fabrics are reported. The proposed method is based on the deflection of the light in fibre waveguides. Applying a force on the fibre changes the geometry and affects the wave guiding properties and hence induces light loss in the optical fibre. Fibres out of three different elastic and transparent copolymer materials were successfully produced and tested. Moreover, the influence of the diameter on the sensing properties was studied. The detectable force ranges from 0.05 N to 40 N (applied on 3 cm of fibre length), which can be regulated with the material and the diameter of the fibre. The detected signal loss varied from 0.6% to 78.3%. The fibres have attenuation parameters between 0.16–0.25 dB/cm at 652 nm. We show that the cross-sensitivies to temperature, strain and bends are low. Moreover, the high yield strength (0.0039–0.0054 GPa) and flexibility make these fibres very attractive candidates for integration into textiles to form wearable sensors, medical textiles or even computing systems. PMID:24021967

  7. Potential Rainwater Harvesting Improvement Using Advanced Remote Sensing Applications

    PubMed Central

    Elhag, Mohamed; Bahrawi, Jarbou A.

    2014-01-01

    The amount of water on earth is the same and only the distribution and the reallocation of water forms are altered in both time and space. To improve the rainwater harvesting a better understanding of the hydrological cycle is mandatory. Clouds are major component of the hydrological cycle; therefore, clouds distribution is the keystone of better rainwater harvesting. Remote sensing technology has shown robust capabilities in resolving challenges of water resource management in arid environments. Soil moisture content and cloud average distribution are essential remote sensing applications in extracting information of geophysical, geomorphological, and meteorological interest from satellite images. Current research study aimed to map the soil moisture content using recent Landsat 8 images and to map cloud average distribution of the corresponding area using 59 MERIS satellite imageries collected from January 2006 to October 2011. Cloud average distribution map shows specific location in the study area where it is always cloudy all the year and the site corresponding soil moisture content map came in agreement with cloud distribution. The overlay of the two previously mentioned maps over the geological map of the study area shows potential locations for better rainwater harvesting. PMID:25114973

  8. Characterization of flexible copolymer optical fibers for force sensing applications.

    PubMed

    Krehel, Marek; Rossi, René M; Bona, Gian-Luca; Scherer, Lukas J

    2013-09-09

    In this paper, different polymer optical fibres for applications in force sensing systems in textile fabrics are reported. The proposed method is based on the deflection of the light in fibre waveguides. Applying a force on the fibre changes the geometry and affects the wave guiding properties and hence induces light loss in the optical fibre. Fibres out of three different elastic and transparent copolymer materials were successfully produced and tested. Moreover, the influence of the diameter on the sensing properties was studied. The detectable force ranges from 0.05 N to 40 N (applied on 3 cm of fibre length), which can be regulated with the material and the diameter of the fibre. The detected signal loss varied from 0.6% to 78.3%. The fibres have attenuation parameters between 0.16-0.25 dB/cm at 652 nm. We show that the cross-sensitivies to temperature, strain and bends are low. Moreover, the high yield strength (0.0039-0.0054 GPa) and flexibility make these fibres very attractive candidates for integration into textiles to form wearable sensors, medical textiles or even computing systems.

  9. Carbon Nanotubes Based Nanoelectrode Arrays: Fabrication, Evaluation, and Sensing Applications

    SciTech Connect

    Lin, Yuehe; Tu, Yi; Lu, Fang; Yantasee, Wassana; Ren, Zhifeng

    2004-10-05

    The fabrication, electrochemical characterization, and applications of low-site density carbon nanotubes based nanoelectrode arrays (CNT-NEAs) are reported in this work. Spin-coating of an epoxy resin provides a new way to create the electrode passivation layer that effectively reduces the current leakage and eliminates the electrode capacitance by sealing the side-wall of CNTs. The CNT-NEAs fabricated in our work effectively use the open ends of CNTs for electrochemical sensing. The open ends of the CNTs have fast electron transfer rates similar to a graphite edge-plane electrode, while the side-walls present very slow electron transfer rates similar to the graphitic basal plane. Cyclic voltammetry showed the sigmoidal shape curves with low capacitive current and scan-rate-independent limiting current. The CNT-NEAs were used successfully for voltammetric detection of trace concentrations of lead (II) at ppb level. The successful development of a glucose biosensor based on CNT-NEAs for the selective detection of glucose is also described. Glucose oxidase was covalently immobilized on the CNTs tips via carbodiimide chemistry by forming amide linkages between the amine residues and carboxylic acid groups on the open ends of CNTs. The biosensor effectively performs selective electrochemical detections of glucose in the presence of common interferences. The CNT-NEAs provide an excellent platform for ultra sensitive electrochemical sensors for chemical and biological sensing.

  10. Efficient Characterization of Parametric Uncertainty of Complex (Bio)chemical Networks.

    PubMed

    Schillings, Claudia; Sunnåker, Mikael; Stelling, Jörg; Schwab, Christoph

    2015-08-01

    Parametric uncertainty is a particularly challenging and relevant aspect of systems analysis in domains such as systems biology where, both for inference and for assessing prediction uncertainties, it is essential to characterize the system behavior globally in the parameter space. However, current methods based on local approximations or on Monte-Carlo sampling cope only insufficiently with high-dimensional parameter spaces associated with complex network models. Here, we propose an alternative deterministic methodology that relies on sparse polynomial approximations. We propose a deterministic computational interpolation scheme which identifies most significant expansion coefficients adaptively. We present its performance in kinetic model equations from computational systems biology with several hundred parameters and state variables, leading to numerical approximations of the parametric solution on the entire parameter space. The scheme is based on adaptive Smolyak interpolation of the parametric solution at judiciously and adaptively chosen points in parameter space. As Monte-Carlo sampling, it is "non-intrusive" and well-suited for massively parallel implementation, but affords higher convergence rates. This opens up new avenues for large-scale dynamic network analysis by enabling scaling for many applications, including parameter estimation, uncertainty quantification, and systems design.

  11. Triplet excited States as a source of relevant (bio)chemical information.

    PubMed

    Jiménez, M Consuelo; Miranda, Miguel A

    2014-01-01

    The properties of triplet excited states are markedly medium-dependent, which turns this species into valuable tools for investigating the microenvironments existing in protein binding pockets. Monitoring of the triplet excited state behavior of drugs within transport proteins (serum albumins and α1-acid glycoproteins) by laser flash photolysis constitutes a valuable source of information on the strength of interaction, conformational freedom and protection from oxygen or other external quenchers. With proteins, formation of spatially confined triplet excited states is favored over competitive processes affording ionic species. Remarkably, under aerobic atmosphere, the triplet decay of drug@protein complexes is dramatically longer than in bulk solution. This offers a convenient dynamic range for assignment of different triplet populations or for stereochemical discrimination. In this review, selected examples of the application of the laser flash photolysis technique are described, including drug distribution between the bulk solution and the protein cavities, or between two types of proteins, detection of drug-drug interactions inside proteins, and enzyme-like activity processes mediated by proteins. Finally, protein encapsulation can also modify the photoreactivity of the guest. This is illustrated by presenting an example of retarded photooxidation.

  12. Acyl-homoserine lactone quorum sensing: from evolution to application.

    PubMed

    Schuster, Martin; Sexton, D Joseph; Diggle, Stephen P; Greenberg, E Peter

    2013-01-01

    Quorum sensing (QS) is a widespread process in bacteria that employs autoinducing chemical signals to coordinate diverse, often cooperative activities such as bioluminescence, biofilm formation, and exoenzyme secretion. Signaling via acyl-homoserine lactones is the paradigm for QS in Proteobacteria and is particularly well understood in the opportunistic pathogen Pseudomonas aeruginosa. Despite thirty years of mechanistic research, empirical studies have only recently addressed the benefits of QS and provided support for the traditional assumptions regarding its social nature and its role in optimizing cell-density-dependent group behaviors. QS-controlled public-goods production has served to investigate principles that explain the evolution and stability of cooperation, including kin selection, pleiotropic constraints, and metabolic prudence. With respect to medical application, appreciating social dynamics is pertinent to understanding the efficacy of QS-inhibiting drugs and the evolution of resistance. Future work will provide additional insight into the foundational assumptions of QS and relate laboratory discoveries to natural ecosystems.

  13. High-Temperature Strain Sensing for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Piazza, Anthony; Richards, Lance W.; Hudson, Larry D.

    2008-01-01

    Thermal protection systems (TPS) and hot structures are utilizing advanced materials that operate at temperatures that exceed abilities to measure structural performance. Robust strain sensors that operate accurately and reliably beyond 1800 F are needed but do not exist. These shortcomings hinder the ability to validate analysis and modeling techniques and hinders the ability to optimize structural designs. This presentation examines high-temperature strain sensing for aerospace applications and, more specifically, seeks to provide strain data for validating finite element models and thermal-structural analyses. Efforts have been made to develop sensor attachment techniques for relevant structural materials at the small test specimen level and to perform laboratory tests to characterize sensor and generate corrections to apply to indicated strains. Areas highlighted in this presentation include sensors, sensor attachment techniques, laboratory evaluation/characterization of strain measurement, and sensor use in large-scale structures.

  14. Low-cost interferometric TDM technology for dynamic sensing applications

    NASA Astrophysics Data System (ADS)

    Bush, Jeff; Cekorich, Allen

    2004-12-01

    A low-cost design approach for Time Division Multiplexed (TDM) fiber-optic interferometric interrogation of multi-channel sensor arrays is presented. This paper describes the evolutionary design process of the subject design. First, the requisite elements of interferometric interrogation are defined for a single channel sensor. The concept is then extended to multi-channel sensor interrogation implementing a TDM multiplex scheme where "traditional" design elements are utilized. The cost of the traditional TDM interrogator is investigated and concluded to be too high for entry into many markets. A new design approach is presented which significantly reduces the cost for TDM interrogation. This new approach, in accordance with the cost objectives, shows promise to bring this technology to within the threshold of commercial acceptance for a wide range of distributed fiber sensing applications.

  15. Hierarchical Nafion enhanced carbon aerogels for sensing applications

    NASA Astrophysics Data System (ADS)

    Weng, Bo; Ding, Ailing; Liu, Yuqing; Diao, Jianglin; Razal, Joselito; Lau, King Tong; Shepherd, Roderick; Li, Changming; Chen, Jun

    2016-02-01

    This work describes the fabrication of hierarchical 3D Nafion enhanced carbon aerogels (NECAGs) for sensing applications via a fast freeze drying method. Graphene oxide, multiwalled carbon nanotubes and Nafion were mixed and extruded into liquid nitrogen followed by the removal of ice crystals by freeze drying. The addition of Nafion enhanced the mechanical strength of NECAGs and effective control of the cellular morphology and pore size was achieved. The resultant NECAGs demonstrated high strength, low density, and high specific surface area and can achieve a modulus of 20 kPa, an electrical conductivity of 140 S m-1, and a specific capacity of 136.8 F g-1 after reduction. Therefore, NECAG monoliths performed well as a gas sensor and as a biosensor with high sensitivity and selectivity. The remarkable sensitivity of 8.52 × 103 μA mM-1 cm-2 was obtained in dopamine (DA) detection, which is two orders of magnitude better than the literature reported values using graphene aerogel electrodes made from a porous Ni template. These outstanding properties make the NECAG a promising electrode candidate for a wide range of applications. Further in-depth investigations are being undertaken to probe the structure-property relationship of NECAG monoliths prepared under various conditions.This work describes the fabrication of hierarchical 3D Nafion enhanced carbon aerogels (NECAGs) for sensing applications via a fast freeze drying method. Graphene oxide, multiwalled carbon nanotubes and Nafion were mixed and extruded into liquid nitrogen followed by the removal of ice crystals by freeze drying. The addition of Nafion enhanced the mechanical strength of NECAGs and effective control of the cellular morphology and pore size was achieved. The resultant NECAGs demonstrated high strength, low density, and high specific surface area and can achieve a modulus of 20 kPa, an electrical conductivity of 140 S m-1, and a specific capacity of 136.8 F g-1 after reduction. Therefore, NECAG

  16. Hybrid nanomaterial and its applications: IR sensing and energy harvesting

    NASA Astrophysics Data System (ADS)

    Tseng, Yi-Hsuan

    In this dissertation, a hybrid nanomaterial, single-wall carbon nanotubes-copper sulfide nanoparticles (SWNTs-CuS NPs), was synthesized and its properties were analyzed. Due to its unique optical and thermal properties, the hybrid nanomaterial exhibited great potential for infrared (IR) sensing and energy harvesting. The hybrid nanomaterial was synthesized with the non-covalent bond technique to functionalize the surface of the SWNTs and bind the CuS nanoparticles on the surface of the SWNTs. For testing and analyzing the hybrid nanomaterial, SWNTs-CuS nanoparticles were formed as a thin film structure using the vacuum filtration method. Two conductive wires were bound on the ends of the thin film to build a thin film device for measurements and analyses. Measurements found that the hybrid nanomaterial had a significantly increased light absorption (up to 80%) compared to the pure SWNTs. Moreover, the hybrid nanomaterial thin film devices exhibited a clear optical and thermal switching effect, which could be further enhanced up to ten times with asymmetric illumination of light and thermal radiation on the thin film devices instead of symmetric illumination. A simple prototype thermoelectric generator enabled by the hybrid nanomaterials was demonstrated, indicating a new route for achieving thermoelectricity. In addition, CuS nanoparticles have great optical absorption especially in the near-infrared region. Therefore, the hybrid nanomaterial thin films also have the potential for IR sensing applications. The first application to be covered in this dissertation is the IR sensing application. IR thin film sensors based on the SWNTs-CuS nanoparticles hybrid nanomaterials were fabricated. The IR response in the photocurrent of the hybrid thin film sensor was significantly enhanced, increasing the photocurrent by 300% when the IR light illuminates the thin film device asymmetrically. The detection limit could be as low as 48mW mm-2. The dramatically enhanced

  17. Cyromazine resistance in a field strain of house flies, Musca domestica L.: Resistance risk assessment and bio-chemical mechanism.

    PubMed

    Khan, Hafiz Azhar Ali; Akram, Waseem

    2017-01-01

    Developing resistance management strategies for eco-friendly insecticides is essential for the management of insect pests without harming the environment. Cyromazine is a biorational insecticide with very low mammalian toxicity. Resistance to cyromazine has recently been reported in house flies from Punjab, Pakistan. In order to propose a resistance management strategy for cyromazine, experiments were planned to study risk for resistance development, possibility of cross-resistance and bio-chemical mechanisms. A field strain of house flies with 8.78 fold resistance ratio (RR) to cyromazine was re-selected under laboratory conditions. After seven rounds of selection (G1-G7), the RR values rapidly increased from 8.8 to 211 fold. However, these values declined to 81fold when the cyromazine selected (CYR-SEL) strain was reared without selection pressure, suggesting an unstable nature of resistance. The CYR-SEL strain showed lack of cross-resistance to pyriproxyfen, diflubenzuron, and methoxyfenozide. Synergism bioassays using enzyme inhibitors: piperonyl butoxide (PBO) and S,S,S-tributylphosphorotrithioate (DEF), and metabolic enzyme analyses revealed increased activity of carboxylesterase (CarE) and mixed-function oxidase (MFO) in the CYR-SEL strain compared to the laboratory susceptible (Lab-susceptible) strain, suggesting the metabolic resistance mechanism responsible for cyromazine resistance in the CYR-SEL strain. In conclusion, risk of rapid development of cyromazine resistance under consistent selection pressure discourages the sole reliance on cyromazine for controlling house flies in the field. The unstable nature of cyromazine resistance provides window for restoring cyromazine susceptibility by uplifting selection pressure in the field. Moreover, lack of cross-resistance between cyromazine and pyriproxyfen, diflubenzuron, or methoxyfenozide in the CYR-SEL strain suggest that cyromazine could be rotated with these insecticides whenever resistance crisis occur

  18. Engineering photo-plasmonic devices for spectroscopy and sensing applications

    NASA Astrophysics Data System (ADS)

    Pasquale, Alyssa J.

    The control of light on the nano-scale has driven the development of novel optical devices such as biosensors, antennas and guiding elements. These applications benefit from the distinctive resonant properties of noble metal thin films and nanoparticles. Many optimization parameters exist in order to engineer nanoparticle properties for spectroscopy and sensing applications: for example, the choice of metal, the particle morphology, and the array geometry. By utilizing various designs from simple monomer gratings to more complex engineered arrays, we model and characterize plasmonic arrays for sensing applications. In this thesis, I have focused on the novel paradigm of photonic-plasmonic coupling to design, fabricate, and characterize optimized nanosensors. In particular, nanoplasmonic necklaces, which consist of circular loops of closely spaced gold nanoparticles, are designed using 3D finite-difference time-domain (FDTD) simulations, fabricated with electron-beam lithography, and characterized using dark-field scattering and surface-enhanced Raman spectroscopy (SERS) of p-mercaptoaniline (pMA) monolayers. I show that such necklaces are able to support hybridized dipolar scattering resonances and polarization-controlled electromagnetic hot-spots. In addition, necklaces exhibit strong intensity enhancement when the necklace diameter leads to coupling between the broadband plasmonic resonance and the circular resonator structure of the necklace. Hence, these necklaces lead to stronger field intensity enhancement than nanoparticle monomers and dimers, which are also carefully studied. Furthermore, by embedding a dimer into one or more concentric necklace resonators, I am able to efficiently couple radiation into the dimer hot-spot by utilizing first- and second-order far-field coupling. This nanolensing leads to an order of 6-18 times improvement in Raman enhancement over isolated dimers, which is a promising platform for compact on-chip sensors. Additionally, I

  19. Remote sensing applications in evaluation of cadmium pollution effects

    NASA Astrophysics Data System (ADS)

    Kozma-Bognar, Veronika; Martin, Gizella; Berke, Jozsef

    2013-04-01

    According to the 21st century developments in information technology the remote sensing applications open new perspectives to the data collection of our environment. Using the images in different spectral bands we get more reliable and accurate information about the condition, process and phenomena of the earth surface compared to the traditional aircraft image technologies (RGB images). The effects of particulate pollution originated from road traffic were analysed by the research team of Department of Meteorology and Water Management (University of Pannonia, Georgikon Faculty) with the application of visible, near infrared and thermal infrared remote sensing aircraft images. In the scope of our research was to detect and monitor the effects of heavy metal contamination in plant-atmosphere system under field experiments. The testing area was situated at Agro-meteorological Research Station in Keszthely (Hungary), where maize crops were polluted once a week (0,5 M concentration) by cadmium. In our study we simulated the effects of cadmium pollution because this element is one of the most common toxic heavy metals in our environment. During two growing seasons (2011, 2012) time-series analyses were carried out based on the remote sensing data and parallel collected variables of field measurement. In each phenological phases of plant we took aerial images, in order to follow the changes of the structure and intensity values of plots images. The spatial resolution of these images were under 10x10 cm, which allowed to use a plot-level evaluation. The structural and intensity based measurement evaluation methods were applied to examine cadmium polluted and control maize canopy after data pre-processing. Research activities also focused on the examination of the influence of the irrigation and the comparison of aerial and terrain parameters. As conclusion, it could be determined the quantification of cadmium pollution effects is possible on maize plants by using remote

  20. Light-sensing ambipolar organic transistors for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Anthopoulos, Thomas D.; Wöbkenberg, Paul H.; Bradley, Donal D. C.

    2008-04-01

    Since their invention use of organic field-effect transistors (OFETs) has been restricted to applications that explore their unifunctional, i.e. current switching, characteristics. Recently, however, OFETs with additional functionalities have been designed and demonstrated with most notable examples the light-emitting (LE-OFET) [1] and light-sensing (LS-OFET) [2] transistors. These devices are of particular significance since design and fabrication of a new type of organic circuits can now be envisioned. Here we report on electro-optical circuits based on ambipolar LS-OFETs and unipolar OFETs. By carefully tuning the ambipolar transport of LS-OFETs their photosensitivity can be controlled and optimised. By going a step further and integrating LS-OFETs with unipolar OFETs we are able to demonstrate various optoelectronic circuits including electro-optical switches and logic gates. A unique characteristic of these gates is that their input signal(s) can be designed to be either all-optical or electro-optical. An additional advantage of the technology is that LS-OFETs can be integrated with the driving electronics using the same number of processing steps, hence eliminating the need of additional fabrication costs. This is one of the first demonstrations of organic circuits where signal processing involves the use of both optical and electrical input signals. Such optoelectronic devices/circuits could one day be explored in various applications including electro-optical transceivers and optical sensor arrays.

  1. Diamond micro-milling of lithium niobate for sensing applications

    NASA Astrophysics Data System (ADS)

    Huo, Dehong; Jie Choong, Zi; Shi, Yilun; Hedley, John; Zhao, Yan

    2016-09-01

    Lithium niobate (LiNbO3) is a crystalline material which is widely applied in surface acoustic wave, microelectromechanical systems (MEMS), and optical devices, owing to its superior physical, optical, and electronic properties. Due to its low toughness and chemical inactivity, LiNbO3 is considered to be a hard-to-machine material and has been traditionally left as as an inert substrate upon which other micro structures are deposited. However, in order to make use of its superior material properties and increase efficiency, the fabrication of microstructures directly on LiNbO3 is in high demand. This paper presents an experimental investigation on the micro machinability of LiNbO3 via micro milling with the aim of obtaining optimal process parameters. Machining of micro slots was performed on Z-cut LiNbO3 wafers using single crystal diamond tools. Surface and edge quality, cutting forces, and the crystallographic effect were examined and characterized. Ductile mode machining of LiNbO3 was found to be feasible at a low feed rate and small depth of cut. A strong crystallographic effect on the machined surface quality was also observed. Finally, some LiNbO3 micro components applicable to sensing applications were fabricated.

  2. Stochastic holey optical fibers for gas sensing applications

    NASA Astrophysics Data System (ADS)

    Pickrell, Gary; Scott, Brian; Ma, Cheng; Cooper, Kristie; Wang, Anbo

    2007-09-01

    Monitoring of gaseous species is important in a variety of applications including industrial process gas monitoring, mine safety, and homeland security. Fiber optic sensors have been used in a variety of forms to monitor various types of gaseous species. Optical fiber sensors utilizing both random hole and photonic crystal fibers have been investigated. One limitation to these types of fiber sensors is the fact that the holes run parallel to the optic axis of the fiber, requiring gases to diffuse over long distances. Diffusion of gases over long distances through tube sizes which are on the order of microns is a relatively slow process. This can significantly impact the response time of the sensors which are made from these types of fibers. This paper presents results on the development of optical fibers for gas sensing applications which have holes extending in the radial direction as opposed to the longitudinal direction (as in the case of photonic crystal fibers). The holes are made by a process which utilizes phase separation of the glass matrix at relatively low temperatures. The secondary phase is removed by subsequent leaching processes, leaving a three dimensionally porous structure. The porosity is arranged in a stochastic fashion within the fiber. Results of the fiber sensor development and testing will be presented. The microstructural analysis of the fibers by scanning electron microscopy as well as the optical characterization of the fibers will be presented. Fabrication procedures for the optical fibers and the optical fiber sensors will also be described.

  3. Soil surface roughness characterization for microwave remote sensing applications

    NASA Astrophysics Data System (ADS)

    Marzahn, P.; Rieke-Zapp, D.; Ludwig, R.

    2012-04-01

    With this poster we present a simple and efficient method to measure soil surface roughness in an agricultural environment. Micro scale soil surface roughness is a crucial parameter in many environmental applications. In recent studies it is strongly recognized that soil surface roughness significantly influences the backscatter of agricultural surface, especially on bare fields. Indeed, while different roughness indices depend on their measurement length, no satisfying roughness parametrization and measurement technique has been found yet, introducing large uncertainty in the interpretation of the radar backscattering. In this study, we introduce a photogrammetric system which consists of a customized consumer grade Canon EOS 5d camera and a reference frame providing ground control points. With the system one can generate digital surface models (DSM) with a minimum size of 1 x 2.5 m2, extendable to any desired size, with a ground x,y- resolution of 2 mm. Using this approach, we generated a set of DSM with sizes ranging from 2.5 m2 to 22 m2, acquired over different roughness conditions representing ploughed, harrowed as well as crusted fields on different test sites. For roughness characterization we calculated in microwave remote sensing common roughness indices such as the RMS- height s and the autocorrelation length l. In an extensive statistical investigation we show the behavior of the roughness indices for different acquisition sizes of the proposed method. Results indicate, compared to results from profiles generated out of the dataset, that using a three dimensional measuring device, the calculated roughness indices are more robust in their estimation. In addition, a strong directional dependency of the proposed roughness indices was observed which could be related to the orientation of the seedbed rows to the acqusition direction. In a geostatistical analysis, we decomposed the acquired roughness indices into different scales, yielding a roughness quantity

  4. Remote sensing applications in water resources - An opportunity for research in developing countries

    NASA Technical Reports Server (NTRS)

    Menenti, M.

    1992-01-01

    A review is presented of first-hand experience with remote sensing research in developing countries to illustrate the inherent semiempirical basis of remote sensing applications. This task is accomplished by means of examples drawn from actual research work. Results of case studies in different farming systems and countries are summarized to exemplify the relative, application-dependent, weight of satellite versus ground information.

  5. Basic considerations in development cooperation: the application of remote sensing in developing and newly industrialized countries

    NASA Astrophysics Data System (ADS)

    Itten, K. I.; Specter, C. N.; Sausen, T. M.

    Questions of principle concerning applications of remote sensing technology in developing, newly industrialized, and industrialized countries are discussed in terms of such problems as scale, accuracy, timeliness, and cost. The paper concludes that successful technology transfer and applications must be based on true cooperation between local and expatriate experts. Only in this way can the promise of remote sensing be realized.

  6. Proceedings of the Conference on Practical Applications of Remote Sensing

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Conference papers dealing with the principles of remote sensing are summarized. Summaries cover problem solving capabilities within the realms of urbanism, agriculture, forestry, and environmental impact assessment.

  7. Tellurium based glasses for bio-sensing and space applications

    NASA Astrophysics Data System (ADS)

    Wilhelm, Allison Anne

    2009-12-01

    Te2As3Se5 (TAS) fibers are often used in bio-sensing applications requiring direct contact between the fiber and live cells. However, the toxicity and stability of chalcogenide glasses typically used in such bio-sensing applications are not well known. The stability and toxicity of TAS glass fibers were therefore examined. The surface of TAS fibers stored for up to three years in air were analyzed using X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICP-MS), and atomic force microscopy (AFM). It is shown that an oxide layer develops on the surface of TAS fibers stored in air. This oxide layer is highly soluble in water and therefore easily removed. Additional studies using cyclic voltammetry show that the fresh TAS glass surface is insoluble in water for at least a few days, and attenuation measurements show that oxidation does not affect the transmission properties of the glass fibers. It was also determined that old, oxidized fibers pose a toxic threat to cells, while washed and new fibers show no toxic effect. Therefore, it is concluded that a soluble oxide layer forms on the surface of TAS fibers stored in air and that this layer has a toxic effect on cells in an aqueous environment. However, through etching, the oxide layer and the toxicity can be easily removed. In other applications of telluride glasses, such as the search for possible signs of life on exoplanets, a glass transmitting further into the IR is required in order to detect molecules, such as CO2. A new family of Tellurium based glasses from the Ge-Te-I ternary system has therefore been investigated for use in space and bio-sensing applications. A systematic series of compositions has been synthesized in order to explore the ternary phase diagram in an attempt to optimize the glass composition for the fiber drawing and molding process. The resulting glass transition temperature range lies between 139°C and 174°C, with DeltaT values between 64°C and 124

  8. Large scale electromechanical transistor with application in mass sensing

    SciTech Connect

    Jin, Leisheng; Li, Lijie

    2014-12-07

    Nanomechanical transistor (NMT) has evolved from the single electron transistor, a device that operates by shuttling electrons with a self-excited central conductor. The unfavoured aspects of the NMT are the complexity of the fabrication process and its signal processing unit, which could potentially be overcome by designing much larger devices. This paper reports a new design of large scale electromechanical transistor (LSEMT), still taking advantage of the principle of shuttling electrons. However, because of the large size, nonlinear electrostatic forces induced by the transistor itself are not sufficient to drive the mechanical member into vibration—an external force has to be used. In this paper, a LSEMT device is modelled, and its new application in mass sensing is postulated using two coupled mechanical cantilevers, with one of them being embedded in the transistor. The sensor is capable of detecting added mass using the eigenstate shifts method by reading the change of electrical current from the transistor, which has much higher sensitivity than conventional eigenfrequency shift approach used in classical cantilever based mass sensors. Numerical simulations are conducted to investigate the performance of the mass sensor.

  9. Application of NASA Giovanni to Coastal Zone Remote Sensing Search

    NASA Technical Reports Server (NTRS)

    Acker, James; Leptoukh, Gregory; Kempler, Steven; Berrick, Stephen; Rui, Hualan; Shen, Suhung

    2007-01-01

    The Goddard Earth Sciences Data and Information Services Center (GES DISC) Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) provides rapid access to, and enables effective utilization of, remotely-sensed data that are applicable to investigations of coastal environmental processes. Data sets in Giovanni include precipitation data from the Tropical Rainfall Measuring Mission (TRMM), particularly useful for coastal storm investigations; ocean color radiometry data from the Sea-viewing Wide Field-of-view Sensor (SeaWIFS) and Moderate Resolution Imaging Spectroradiometer (MODIS), useful for water quality evaluation, phytoplankton blooms, and terrestrial-marine interactions; and atmospheric data from MODIS and the Advanced Infrared Sounder (AIRS), providing the capability to characterize atmospheric variables. Giovanni provides a simple interface allowing discovery and analysis of environmental data sets with accompanying graphic visualizations. Examples of Giovanni investigations of the coastal zone include hurricane and storm impacts, hydrologically-induced phytoplankton blooms, chlorophyll trend analysis, and dust storm characterization. New and near-future capabilities of Giovanni will be described.

  10. Application of NASA Giovanni to Coastal Zone Remote Sensing Research

    NASA Technical Reports Server (NTRS)

    Acker, James; Leptoukh, Gregory; Kempler, Steven; Berrick, Stephen; Rui, Hualan; Shen, Suhung

    2007-01-01

    The Goddard Earth Sciences Data and Information Services Center (GES DISC) Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) provides rapid access to, and enables effective utilization of, remotely-sensed data that are applicable to investigations of coastal environmental processes. Data sets in Giovanni include precipitation data from the Tropical Rainfall Measuring Mission (TRMM), particularly useful for coastal storm investigations; ocean color radiometry data from the Sea-viewing Wide Field-of-view Sensor (SeaWIFS) and Moderate Resolution Imaging Spectroradiometer (MODIS), useful for water quality evaluation, phytoplankton blooms, and terrestrial-marine interactions; and atmospheric data from MODIS and the Advanced Infrared Sounder (AIRS), providing the capability to characterize atmospheric variables. Giovanni provides a simple interface allowing discovery and analysis of environmental data sets with accompanying graphic visualizations. Examples of Giovanni investigations of the coastal zone include hurricane and storm impacts, hydrologically-induced phytoplankton blooms, chlorophyll trend analysis, and dust storm characterization. New and near-future capabilities of Giovanni will be described.

  11. Speckle characterization in multimode fibers for sensing applications

    NASA Astrophysics Data System (ADS)

    Rodriguez-Cobo, Luis; Lomer, Mauro; Galindez, Carlos; Lopez-Higuera, J. M.

    2012-10-01

    This paper proposes the characterization of speckle patterns of multimode fibers in view of sensing applications and particularly for detection of vibration or seismic activity. Plastic optical fibers are used in this work due to its excellent flexibility and adaptability to build sensor heads. We are interested in the response to vibration, for which we use a short cylindrical piezoelectric transducer (PZT) vibrating in radial direction. The multimode fiber was coiled as tightly as possible around the mandrel of the PZT and periodic stretching effect was caused by the radial oscillations of the actuator. The PZT is modulated with a frequency generator by applying a sinusoidal signal in the range of 0 to 20 Hz, so the speckle patterns can be time averaged. The fiber extreme is attached to a high speed camera with a plastic adaptor, centering the speckle pattern into the CCD. Maintaining the fiber position, a region of interest is selected to capture the video sequence and it is captured to detect the variations in the speckle pattern. Once having the video sequence, it is processed by averaging the pixel differences between two consecutive frames. This processed sequence is also filtered in order to reduce the high frequency noise component. In this work we report the results of the characterization of 3 types of multimode fibers, with core diameters of 50 μm, 240 μm and 980 μm.

  12. Plasmonic Nanoparticles and Nanowires: Design, Fabrication and Application in Sensing

    PubMed Central

    Vo-Dinh, Tuan; Dhawan, Anuj; Norton, Stephen J.; Khoury, Christopher G.; Wang, Hsin-Neng; Misra, Veena; Gerhold, Michael D.

    2013-01-01

    This study involves two aspects of our investigations of plasmonics-active systems: (i) theoretical and simulation studies and (ii) experimental fabrication of plasmonics-active nanostructures. Two types of nanostructures are selected as the model systems for their unique plasmonics properties: (1) nanoparticles and (2) nanowires on substrate. Special focus is devoted to regions where the electromagnetic field is strongly concentrated by the metallic nanostructures or between nanostructures. The theoretical investigations deal with dimers of nanoparticles and nanoshells using a semi-analytical method based on a multipole expansion (ME) and the finite-element method (FEM) in order to determine the electromagnetic enhancement, especially at the interface areas of two adjacent nanoparticles. The experimental study involves the design of plasmonics-active nanowire arrays on substrates that can provide efficient electromagnetic enhancement in regions around and between the nanostructures. Fabrication of these nanowire structures over large chip-scale areas (from a few millimeters to a few centimeters) as well as FDTD simulations to estimate the EM fields between the nanowires are described. The application of these nanowire chips using surface-enhanced Raman scattering (SERS) for detection of chemicals and labeled DNA molecules is described to illustrate the potential of the plasmonics chips for sensing. PMID:24839505

  13. Optical properties and sensing applications of stellated and bimetallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Smith, Alison F.

    This dissertation focuses on developing guidelines to aid in the design of new bimetallic platforms for sensing applications. Stellated metal nanostructures are a class of plasmonic colloids in which large electric field enhancements can occur at sharp features, making them excellent candidates for surface enhanced Raman spectroscopy (SERS) and surface enhanced infrared spectroscopy (SE-IRS) platforms. Shape-dependent rules for convex polyhedra such as cubes or octahedra exist, which describe far-field scattering and near-field enhancements. However, such rules are lacking for their concave (stellated) counterparts. This dissertation presents the optical response of stellated Au nanocrystals with Oh, D4h, D3h, C2v, and T d symmetry, which were modeled to systematically investigate the role of symmetry, branching, and particle orientation with respect to excitation source using finite difference time domain (FDTD) calculations. Expanding on stellated nanostructures, bimetallic compositions introduce an interplay between overall architecture and composition to provide tunable optical properties and the potential of new functionality. However, decoupling the complex compositional and structural contributions to the localized surface plasmon resonance (LSPR) remains a challenge, especially when the monometallic counterparts are not synthetically accessible for comparison and the theoretical tools for capturing gradient compositions are lacking. This dissertation explores a stellated Au-Pd nanocrystal model system with Oh symmetry to decouple structural and complex compositional effects on LSPR. (Abstract shortened by ProQuest.).

  14. Applications of UAVs for Remote Sensing of Critical Infrastructure

    NASA Technical Reports Server (NTRS)

    Wegener, Steve; Brass, James; Schoenung, Susan

    2003-01-01

    The surveillance of critical facilities and national infrastructure such as waterways, roadways, pipelines and utilities requires advanced technological tools to provide timely, up to date information on structure status and integrity. Unmanned Aerial Vehicles (UAVs) are uniquely suited for these tasks, having large payload and long duration capabilities. UAVs also have the capability to fly dangerous and dull missions, orbiting for 24 hours over a particular area or facility providing around the clock surveillance with no personnel onboard. New UAV platforms and systems are becoming available for commercial use. High altitude platforms are being tested for use in communications, remote sensing, agriculture, forestry and disaster management. New payloads are being built and demonstrated onboard the UAVs in support of these applications. Smaller, lighter, lower power consumption imaging systems are currently being tested over coffee fields to determine yield and over fires to detect fire fronts and hotspots. Communication systems that relay video, meteorological and chemical data via satellite to users on the ground in real-time have also been demonstrated. Interest in this technology for infrastructure characterization and mapping has increased dramatically in the past year. Many of the UAV technological developments required for resource and disaster monitoring are being used for the infrastructure and facility mapping activity. This paper documents the unique contributions from NASA;s Environmental Research Aircraft and Sensor Technology (ERAST) program to these applications. ERAST is a UAV technology development effort by a consortium of private aeronautical companies and NASA. Details of demonstrations of UAV capabilities currently underway are also presented.

  15. Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications.

    USGS Publications Warehouse

    Clark, R.N.; Roush, T.L.

    1984-01-01

    Several methods for the analysis of remotely sensed reflectance data are compared, including empirical methods and scattering theories, both of which are important for solving remote sensing problems. The concept of the photon mean path length and the implications for use in modeling reflectance spectra are presented.-from Authors

  16. Background and principle applications of remote sensing in Mexico

    NASA Technical Reports Server (NTRS)

    Perez, J. A. D.

    1978-01-01

    Remote sensing, or the collection of information from objectives at a distance, crystallizes the interest in implementing techniques which assist in the search for solutions to the problems raised by the detection, exploitation, and conservation of the natural resources of the earth. An attempt is made to present an overview of the studies and achievements which have been obtained with remote sensing in Mexico.

  17. Hydrological Application of Remote Sensing: Surface States -- Snow

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Kelly, Richard E. J.; Foster, James L.; Chang, Alfred T. C.

    2004-01-01

    Remote sensing research of snow cover has been accomplished for nearly 40 years. The use of visible, near-infrared, active and passive-microwave remote sensing for the analysis of snow cover is reviewed with an emphasis on the work on the last decade.

  18. Sensing applications of rare-earth doped luminescent materials

    SciTech Connect

    Allison, S.W.; Cates, M.R.; Simpson, M.L.; Noel, B.W.; Turley, D.; Gillies, G.T.

    1988-01-01

    We are developing sensing techniques using phosphors and luminescing crystals. While their use in temperature sensing is becoming well known, there exists the potential to exploit them for other diagnostics. Examples are stress/strain, heat flux, skin friction, pressure, laser-beam profiling, aerodynamic flow, and radiation. We describe our recent results in these areas. 16 refs., 7 figs.

  19. Hybridization of Zinc Oxide Tetrapods for Selective Gas Sensing Applications.

    PubMed

    Lupan, O; Postica, V; Gröttrup, J; Mishra, A K; de Leeuw, N H; Carreira, J F C; Rodrigues, J; Ben Sedrine, N; Correia, M R; Monteiro, T; Cretu, V; Tiginyanu, I; Smazna, D; Mishra, Y K; Adelung, R

    2017-02-01

    In this work, the exceptionally improved sensing capability of highly porous three-dimensional (3-D) hybrid ceramic networks toward reducing gases is demonstrated for the first time. The 3-D hybrid ceramic networks are based on doped metal oxides (MexOy and ZnxMe1-xOy, Me = Fe, Cu, Al) and alloyed zinc oxide tetrapods (ZnO-T) forming numerous junctions and heterojunctions. A change in morphology of the samples and formation of different complex microstructures is achieved by mixing the metallic (Fe, Cu, Al) microparticles with ZnO-T grown by the flame transport synthesis (FTS) in different weight ratios (ZnO-T:Me, e.g., 20:1) followed by subsequent thermal annealing in air. The gas sensing studies reveal the possibility to control and change/tune the selectivity of the materials, depending on the elemental content ratio and the type of added metal oxide in the 3-D ZnO-T hybrid networks. While pristine ZnO-T networks showed a good response to H2 gas, a change/tune in selectivity to ethanol vapor with a decrease in optimal operating temperature was observed in the networks hybridized with Fe-oxide and Cu-oxide. In the case of hybridization with ZnAl2O4, an improvement of H2 gas response (to ∼7.5) was reached at lower doping concentrations (20:1), whereas the increase in concentration of ZnAl2O4 (ZnO-T:Al, 10:1), the selectivity changes to methane CH4 gas (response is about 28). Selectivity tuning to different gases is attributed to the catalytic properties of the metal oxides after hybridization, while the gas sensitivity improvement is mainly associated with additional modulation of the electrical resistance by the built-in potential barriers between n-n and n-p heterojunctions, during adsorption and desorption of gaseous species. Density functional theory based calculations provided the mechanistic insights into the interactions between different hybrid networks and gas molecules to support the experimentally observed results. The studied networked materials and

  20. Novel Magnetic Materials for Sensing and Cooling Applications

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Anurag

    2011-12-01

    The overall goals of the present PhD research are to explore the giant magnetoimpedance (GMI) and giant magnetocaloric (GMC) effects in functional magnetic materials and provide guidance on the optimization of the material properties for use in advanced magnetic sensor and refrigeration applications. GMI has attracted growing interest due to its promising applications in high-performance magnetic sensors. Research in this field is focused on the development of new materials with properties appropriate for practical GMI sensor applications. In this project, we have successfully set up a new magneto-impedance measurement system in the Functional Materials Laboratory at USF. We have established, for the first time, the correlation between sample surface, magnetic softness, critical length, and GMI in Co-based amorphous ribbon materials, which provide a good handle on selecting the suitable operating frequency range of magnetic materials for GMI-based field sensor applications. The impact of field-induced magnetic anisotropy on the GMI effect in Co-based nanocrystalline ribbon materials has also been investigated, providing an important understanding of the correlation between the microstructure, magnetic anisotropy, and GMI in these materials. We have shown that coating a thin layer of magnetic metal on the surface of a magnetic ribbon can reduce stray fields due to surface irregularities and enhance the magnetic flux paths closure of the bilayer structure, both of which, in effect, increase the GMI and its field sensitivity. This finding provides a new way for tailoring GMI in surface-modified soft ferromagnetic ribbons for use in highly sensitive magnetic sensors. We have also introduced the new concepts of incorporating GMI technology with superparamagnetic nanoparticles for biosensing applications and with carbon nanotubes for gas and chemical sensing applications. GMC forms the basis for developing advanced magnetic refrigeration technology and research in this

  1. An Update of NASA Public Health Applications Projects using Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Estes, Sue M.; Haynes, J. A.

    2009-01-01

    Satellite earth observations present a unique vantage point of the earth s environment from space which offers a wealth of health applications for the imaginative investigator. The session will present research results of the remote sensing environmental observations of earth and health applications. This session will an overview of many of the NASA public health applications using Remote Sensing Data and will also discuss opportunities to become a research collaborator with NASA.

  2. Nanostructured arrays for sensing and energy storage applications

    NASA Astrophysics Data System (ADS)

    Mangu, Raghu

    Vertically aligned multi walled carbon nanotube (MWCNT) arrays fabricated by xylene pyrolysis in anodized aluminum oxide (AAO) templates without the use of a catalyst, were integrated into a resistive sensor design. The steady state sensitivities as high as 5% and 10% for 100 ppm of NH3 and NO2 respectively at a flow rate of 750 sccm were observed. A study was undertaken to elucidate (i) the dependence of sensitivity on the thickness of amorphous carbon layers, (ii) the effect of UV light on gas desorption characteristics and (iii) the dependence of room temperature sensitivity on different NH3 and NO2 flow rates. An equivalent circuit model was developed to understand the operation and propose design changes for increased sensitivity. Multi Walled Carbon NanoTubes (MWCNTs) -- Polymer composite based hybrid sensors were fabricated and integrated into a resistive sensor design for gas sensing applications. Thin films of MWCNTs were grown onto Si/SiO 2 substrates via xylene pyrolysis using chemical vapor deposition technique. Polymers like PEDOT:PSS and Polyaniline (PANI) mixed with various solvents like DMSO, DMF, 2-Propanol and Ethylene Glycol were used to synthesize the composite films. These sensors exhibited excellent response and selectivity at room temperature when exposed to low concentrations (100ppm) of gases like NH3 and NO2. Effect of various solvents on the sensor response imparting selectivity to CNT -- Polymer nanocomposites was investigated extensively. Sensitivities as high as 28% was observed for a MWCNT -- PEDOT:PSS composite sensor when exposed to 100ppm of NH3 and -29.8% sensitivity for a MWCNT-PANI composite sensor to 100ppm of NO2. A novel nanostructured electrode design for Li based batteries and electrochemical capacitor applications was developed and tested. High density and highly aligned metal oxide nanowire arrays were fabricated via template assisted electrochemical deposition. Nickel and Molybdenum nanowires fabricated via cathodic

  3. Remote Sensing Sensors and Applications in Environmental Resources Mapping and Modelling

    PubMed Central

    Melesse, Assefa M.; Weng, Qihao; S.Thenkabail, Prasad; Senay, Gabriel B.

    2007-01-01

    The history of remote sensing and development of different sensors for environmental and natural resources mapping and data acquisition is reviewed and reported. Application examples in urban studies, hydrological modeling such as land-cover and floodplain mapping, fractional vegetation cover and impervious surface area mapping, surface energy flux and micro-topography correlation studies is discussed. The review also discusses the use of remotely sensed-based rainfall and potential evapotranspiration for estimating crop water requirement satisfaction index and hence provides early warning information for growers. The review is not an exhaustive application of the remote sensing techniques rather a summary of some important applications in environmental studies and modeling.

  4. Remote sensing sensors and applications in environmental resources mapping and modeling

    USGS Publications Warehouse

    Melesse, Assefa M.; Weng, Qihao; Thenkabail, Prasad S.; Senay, Gabriel B.

    2007-01-01

    The history of remote sensing and development of different sensors for environmental and natural resources mapping and data acquisition is reviewed and reported. Application examples in urban studies, hydrological modeling such as land-cover and floodplain mapping, fractional vegetation cover and impervious surface area mapping, surface energy flux and micro-topography correlation studies is discussed. The review also discusses the use of remotely sensed-based rainfall and potential evapotranspiration for estimating crop water requirement satisfaction index and hence provides early warning information for growers. The review is not an exhaustive application of the remote sensing techniques rather a summary of some important applications in environmental studies and modeling.

  5. Principles and applications of imaging radar. Manual of remote sensing: Third edition, Volume 2

    SciTech Connect

    Henderson, F.M.; Lewis, A.J.

    1998-12-31

    This second volume in the Third Edition of the Manual of Remote Sensing offers a current and comprehensive survey of the theory, methods, and applications of imaging radar for geoscientists, engineers and application scientists interested in the advantages of radar remote sensing. Produced under the auspices of the American Society for Photogrammetry and Remote Sensing, it brings together contributions from experts around the world to discuss the basic principles of imaging radars and trace the research activity--past, present, and future--across the many sciences where radar remote sensing may be applied. This book offers an invaluable snapshot of radar remote sensing technology, including radargrammetry, radar polarimetry and interferometry and its uses. It combines technical and procedural coverage of systems, data interpretation, and other fundamentals with generous coverage of practical applications in agriculture; forestry; soil moisture monitoring; geology; geomorphology and hydrology; oceanography; land use, land cover mapping and archeology.

  6. Remote sensing in forestry: Application to the Amazon region

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Tardin, A. T.; Dossantos, A.; Filho, P. H.; Shimabukuro, Y. E.

    1981-01-01

    The utilization of satellite remote sensing in forestry is reviewed with emphasis on studies performed for the Brazilian Amazon Region. Timber identification, deforestation, and pasture degradation after deforestation are discussed.

  7. REMOTE SENSING APPLICATIONS FOR SUSTAINABLE WATERSHED MANAGEMENT AND FOOD SECURITY

    EPA Science Inventory

    The integration of IKONOS satellite data, airborne color infrared remote sensing, visualization, and decision support tools is discussed, within the contexts of management techniques for minimizing non-point source pollution in inland waterways, such s riparian buffer restoration...

  8. Application of remote sensing to state and regional problems

    NASA Technical Reports Server (NTRS)

    Bouchillon, C. W.; Miller, W. F.; Landphair, H.; Zitta, V. L.

    1974-01-01

    The use of remote sensing techniques to help the state of Mississippi recognize and solve its environmental, resource, and socio-economic problems through inventory, analysis, and monitoring is suggested.

  9. Remote sensing and GIS applications for modeling species distributions

    NASA Astrophysics Data System (ADS)

    Harris, Grant

    Habitat loss is the leading cause of species endangerment. It fragments what remains (most harmful for habitat specialists) and isolates populations (applicable to all species). The fragments, parks and other protected areas where species remain are often too small for the long-term persistence of many species. Although these effects are more pronounced in tropical forests, where most species live, the problem is so widespread that it manifests itself across suites of ecosystems and taxa. Mitigating the problems caused by habitat and population fragmentation requires more information. Specifically, we must determine which species are most extinction prone, find ways to cheaply and quickly determine priority areas for conservation, quantify the minimum areas required for species persistence, and identify the key variables needed for species presence. Here, I analyze each of these four key points, using a spectrum of species, and a variety of remote sensing and GIS techniques. For habitat specialists, exemplified by tropical forest birds, I quantify habitat loss directly. It's simply a matter of measuring the remaining forest. To model habitat generalists, such as African elephants, I incorporate habitat and other variables (water, people, greenness) that dictate their presence. For birds, I find that habitat loss affects all forest endemic species equally. Species not threatened have large remaining ranges and high abundances in their ranges. My methods also refine conservation priorities in biological hotspots. The key lies in finding where species live now, and broad-scale natural history information plus coarse-scale imagery suits this purpose. Coarse imagery is also sufficient to understand the minimum range size at which birds become threatened. Be it habitat loss directly or induced by climate change, bird ranges must be over 20,000 km2 in lowland species, and 10,000 km2 for montane birds to avoid threat. For elephants, it is water and people that predict

  10. Applications of remote sensing techniques to county land use and flood hazard mapping

    NASA Technical Reports Server (NTRS)

    Clark, R. B.; Conn, J. S.; Miller, D. A.; Mouat, D. A.

    1975-01-01

    The application of remote sensing in Arizona is discussed. Land use and flood hazard mapping completed by the Applied Remote Sensing Program is described. Areas subject to periodic flood inundation are delineated and land use maps monitoring the growth within specific counties are provided.

  11. Applications of airborne remote sensing in atmospheric sciences research

    NASA Technical Reports Server (NTRS)

    Serafin, R. J.; Szejwach, G.; Phillips, B. B.

    1984-01-01

    This paper explores the potential for airborne remote sensing for atmospheric sciences research. Passive and active techniques from the microwave to visible bands are discussed. It is concluded that technology has progressed sufficiently in several areas that the time is right to develop and operate new remote sensing instruments for use by the community of atmospheric scientists as general purpose tools. Promising candidates include Doppler radar and lidar, infrared short range radiometry, and microwave radiometry.

  12. Application of Compressive Sensing to Gravitational Microlensing Experiments

    NASA Technical Reports Server (NTRS)

    Korde-Patel, Asmita; Barry, Richard K.; Mohsenin, Tinoosh

    2016-01-01

    Compressive Sensing is an emerging technology for data compression and simultaneous data acquisition. This is an enabling technique for significant reduction in data bandwidth, and transmission power and hence, can greatly benefit spaceflight instruments. We apply this process to detect exoplanets via gravitational microlensing. We experiment with various impact parameters that describe microlensing curves to determine the effectiveness and uncertainty caused by Compressive Sensing. Finally, we describe implications for spaceflight missions.

  13. Application of remote sensing to state and regional problems. [for Mississippi

    NASA Technical Reports Server (NTRS)

    Miller, W. F.; Bouchillon, C. W.; Harris, J. C.; Carter, B.; Whisler, F. D.; Robinette, R.

    1974-01-01

    The primary purpose of the remote sensing applications program is for various members of the university community to participate in activities that improve the effective communication between the scientific community engaged in remote sensing research and development and the potential users of modern remote sensing technology. Activities of this program are assisting the State of Mississippi in recognizing and solving its environmental, resource and socio-economic problems through inventory, analysis, and monitoring by appropriate remote sensing systems. Objectives, accomplishments, and current status of the following individual projects are reported: (1) bark beetle project; (2) state park location planning; and (3) waste source location and stream channel geometry monitoring.

  14. A forestry application simulation of man-machine techniques for analyzing remotely sensed data

    NASA Technical Reports Server (NTRS)

    Berkebile, J.; Russell, J.; Lube, B.

    1976-01-01

    The typical steps in the analysis of remotely sensed data for a forestry applications example are simulated. The example uses numerically-oriented pattern recognition techniques and emphasizes man-machine interaction.

  15. Application of Remote Sensing to the Chesapeake Bay Region. Volume 2: Proceedings

    NASA Technical Reports Server (NTRS)

    Chen, W. T. (Editor); Freas, G. W., Jr. (Editor); Hickman, G. D. (Editor); Pemberton, D. A. (Editor); Wilkerson, T. D. (Editor); Adler, I. (Editor); Laurie, V. J. (Editor)

    1978-01-01

    A conference was held on the application of remote sensing to the Chesapeake Bay region. Copies of the papers, resource contributions, panel discussions, and reports of the working groups are presented.

  16. Performance analysis of wireless sensor networks in geophysical sensing applications

    NASA Astrophysics Data System (ADS)

    Uligere Narasimhamurthy, Adithya

    Performance is an important criteria to consider before switching from a wired network to a wireless sensing network. Performance is especially important in geophysical sensing where the quality of the sensing system is measured by the precision of the acquired signal. Can a wireless sensing network maintain the same reliability and quality metrics that a wired system provides? Our work focuses on evaluating the wireless GeoMote sensor motes that were developed by previous computer science graduate students at Mines. Specifically, we conducted a set of experiments, namely WalkAway and Linear Array experiments, to characterize the performance of the wireless motes. The motes were also equipped with the Sticking Heartbeat Aperture Resynchronization Protocol (SHARP), a time synchronization protocol developed by a previous computer science graduate student at Mines. This protocol should automatically synchronize the mote's internal clocks and reduce time synchronization errors. We also collected passive data to evaluate the response of GeoMotes to various frequency components associated with the seismic waves. With the data collected from these experiments, we evaluated the performance of the SHARP protocol and compared the performance of our GeoMote wireless system against the industry standard wired seismograph system (Geometric-Geode). Using arrival time analysis and seismic velocity calculations, we set out to answer the following question. Can our wireless sensing system (GeoMotes) perform similarly to a traditional wired system in a realistic scenario?

  17. Indian remote sensing satellites: Planned missions and future applications

    NASA Astrophysics Data System (ADS)

    Chandrasekhar, M. G.; Jayaraman, V.; Rao, Mukund

    1996-02-01

    To cater the enhanced user demands, Indian Space Research Organisation is stepping a giant leap forward towards development of the state-of-the-art second generation Indian Remote Sensing Satellites, IRS-1C/1D following the successful design, launch and in-orbit performance of the first generation satellites, IRS-1A/1B. Characterised by improved spatial resolution, extended spectral bands, stereo-viewing and more frequent revisit capability, IRS-1C/1D are expected for launch during the timeframe of 1995-96/8. The IRS-1C and ID, which are identical, will have three major payloads. The Linear Imaging Spectral Scanner (LISS-III) in four spectral bands covering from 0.52 to 1.70 microns will have a spatial resolution of 23m along with a swath of 142 km in the visible and NIR spectral bands and a spatial resolution of 70m along with a swath of 148 km in the SWIR spectral band. The Panchromatic Camera (PAN) with a spectral band of 0.50 to 0.75 microns will have a spatial resolution of < 10m along with a swath of 70 km and a payload steering capability upto ±26 °. The Wide Field Sensor (WiFS) in visible and near IR with two bands and a spatial resolution of 188m will provide a swath of 774 kms. These sensors will provide better information on water stress, pest infestation and vegetation indices to arrive at better agricultural management practices, besides providing enhanced capabilities for arriving solutions for micro-level resource development and generation of digital terrain models. Having marked by the successful launch of IRS-P2 in 1994 through the indigenous development flight of PSLV, India is now poised to launch IRS-P3 satellite with unique payloads in the timeframe of 1995-1996 The IRS-P3 will carry three operational payloads viz., Wide Field Sensor (WiFS), Modular Opto-electronic Scanner (MOS) imaging spectrometer and an X-ray Astronomy payload. These payload mix of sensors will provide further capabilities for application studies related to vegetation

  18. AmericaView - A State-Based Remote Sensing Initiative Integrating Remote Sensing Data Into Geospatial Education and Applications

    NASA Astrophysics Data System (ADS)

    Dodge, R. L.; Lawrence, R.

    2007-12-01

    AmericaView (AV) is a national program created to advance the availability, timely distribution, and widespread use of land remote sensing data, especially among users within the university and government communities. Since the 1970s the federal government and private sector have spent billions of dollars on satellite-based earth observing systems, but distribution of data and development of real-world applications have been tough issues for the government and the academic research communities. It has often been hard for researchers to use or even access the data, particularly at smaller schools or research facilities, hindering applied research and current and future workforce development. Many state and local agencies working with applied research programs have not been able to effectively integrate remote sensing data into their geospatial management or decision-support programs. AV addresses these issues through a partnership between the U.S. Geological Survey and the AmericaView Consortium, which is a 501c3 non-profit comprised of university-led, state-based consortia. AmericaView is the federal government's partner in achieving the program vision and goals, which focus both on making data available in usable, cost-effective formats and on helping the university, secondary-education, and public sectors in each state identify, develop, and implement the kinds of remote sensing applications each state needs most. AV is developing applied remote sensing research programs in each of its thirty StateViews. Partner academic institutions are creating internships programs involving students and faculty with applications development, in cooperation with local, state, and federal government agencies. Education and training outreach programs are improving workforce preparation at K-12, post-secondary, and professional levels. Data distribution and sharing infrastructure that leverages funding and avoids duplication is enabling practical archive expansion and distribution

  19. Fiber inline Michelson interferometer fabricated by one-step femtosecond laser micromachining for sensing applications

    NASA Astrophysics Data System (ADS)

    Yuan, Lei; Wu, Hongbin; Wang, Cong; Yu, Yingyu; Wang, Sumei; Xiao, Hai

    2013-12-01

    A fiber inline Michelson interferometer fiber optic sensor was presented for sensing applications, including high temperature performance and refractive index change. The sensor was fabricated using one-step femtosecond (fs) laser micromachining technique. A step structure at the tip of a single mode optical fiber was formed during the micromachining process. The device had a loss of 16 dB and an interference visibility exceeding 18 dB. The capability of this device for temperature sensing up to 1000 °C and refractive index sensing application in various concentrations of ethanol solution were all demonstrated.

  20. [Spatial resolution standardization of payload on board of remote sensing satellite based on application requirements].

    PubMed

    Wei, Xiang-qin; Gu, Xing-fa; Yu, Tao; Meng, Qing-yan; Li, Bin; Guo, Hong

    2012-03-01

    Remote sensing application requirements are the starting point for design of payload on board earth observation satellite. The generalization, standardization and serialization of payload are the future development trend for payload design. In the present paper, based on the analysis of remote sensing application requirements, the spatial resolution standardization of satellite remote sensing payload, which is the main concerned indicator, was investigated. The design standards of national payload spatial resolution of earth observation satellite are presented, which are important to the promotion of satellite payload production and saving in design cost.

  1. Computational Imaging, Sensing and Diagnostics for Global Health Applications

    PubMed Central

    Coskun, Ahmet F.; Ozcan, Aydogan

    2013-01-01

    In this Review, we summarize some of the recent work in emerging computational imaging, sensing and diagnostics techniques, along with some of the complementary non-computational modalities that can potentially transform the delivery of health care globally. As computational resources are becoming more and more powerful, while also getting cheaper and more widely available, traditional imaging, sensing and diagnostic tools will continue to experience a revolution through simplification of their designs, making them compact, light-weight, cost-effective, and yet quite powerful in terms of their performance when compared to their bench-top counterparts. PMID:24484875

  2. Applications of Microwaves to Remote Sensing of Terrain

    NASA Technical Reports Server (NTRS)

    Porter, R. A.

    1975-01-01

    A survey and study was conducted to define the role that microwaves may play in the measurement of a variety of terrain-related parameters. The survey consisted of discussions with many users and researchers in the field of remote sensing. In addition, a survey questionnaire was prepared and replies were solicited from these and other users and researchers. The results of the survey, and associated bibliography, were studied and conclusions were drawn as to the usefulness of radiometric systems for remote sensing of terrain.

  3. Application of nano-structured conducting polymers to humidity sensing

    NASA Astrophysics Data System (ADS)

    Park, Pilyeon

    Nanostructures, such as nanowires, nanocolumns, and nanotubes, have attracted a lot of attention because of their huge potential impact on a variety of applications. For sensor applications, nanostructures provide high surface area to volume ratios. The high surface area to volume ratio allows more reaction areas between target species and detection materials and also improves the detection sensitivity and response time. The main goal of this research was to exploit the advantages and develop innovative methods to accomplish the synthesis of nanowires and nano-coulmn conducting polymers used in humidity detection. To accomplish this, two fabrication methods are used. The first one utilizes the geometric confinement effect of a temporary nanochannel template to orient, precisely position, and assemble Polyaniline (PANI) nanowires as they are synthesized. The other approach is to simply spin-coat a polymer onto a substrate, and then oxygen plasma etch to generate a nano-columned Polyethylenedioxythiophene (PEDOT) thin film. 200 nm silicon oxide coated wafers with embedded platinum electrodes are used as a substrate for both fabrication methods. The biggest advantage of this first method is that it is simple, requires a single-step, i.e., synthesizing and positioning procedures are carried out simultaneously. The second method is potentially manufacturable and economic yet environmentally safe. These two methods do not produce extra nano-building materials to discard or create a health hazard. Both PANI nanowires and nano-columned PEDOT films have been tested for humidity detection using a system designed and built for this research to monitor response (current changes) to moisture, To explain the surface to volume ratio effect, 200 nm PANI nanowires and 10 microm PANI wires were directly compared for detecting moisture, and it was shown that the PANI nanowire had a better sensitivity. It was found difficult to monitor the behaviors of the PEDOT reaction to varying

  4. Gas sensing using porous materials for automotive applications.

    PubMed

    Wales, Dominic J; Grand, Julien; Ting, Valeska P; Burke, Richard D; Edler, Karen J; Bowen, Chris R; Mintova, Svetlana; Burrows, Andrew D

    2015-07-07

    Improvements in the efficiency of combustion within a vehicle can lead to reductions in the emission of harmful pollutants and increased fuel efficiency. Gas sensors have a role to play in this process, since they can provide real time feedback to vehicular fuel and emissions management systems as well as reducing the discrepancy between emissions observed in factory tests and 'real world' scenarios. In this review we survey the current state-of-the-art in using porous materials for sensing the gases relevant to automotive emissions. Two broad classes of porous material - zeolites and metal-organic frameworks (MOFs) - are introduced, and their potential for gas sensing is discussed. The adsorptive, spectroscopic and electronic techniques for sensing gases using porous materials are summarised. Examples of the use of zeolites and MOFs in the sensing of water vapour, oxygen, NOx, carbon monoxide and carbon dioxide, hydrocarbons and volatile organic compounds, ammonia, hydrogen sulfide, sulfur dioxide and hydrogen are then detailed. Both types of porous material (zeolites and MOFs) reveal great promise for the fabrication of sensors for exhaust gases and vapours due to high selectivity and sensitivity. The size and shape selectivity of the zeolite and MOF materials are controlled by variation of pore dimensions, chemical composition (hydrophilicity/hydrophobicity), crystal size and orientation, thus enabling detection and differentiation between different gases and vapours.

  5. Applications of Remote Sensing to Alien Invasive Plant Studies

    PubMed Central

    Huang, Cho-ying; Asner, Gregory P.

    2009-01-01

    Biological invasions can affect ecosystems across a wide spectrum of bioclimatic conditions. Therefore, it is often important to systematically monitor the spread of species over a broad region. Remote sensing has been an important tool for large-scale ecological studies in the past three decades, but it was not commonly used to study alien invasive plants until the mid 1990s. We synthesize previous research efforts on remote sensing of invasive plants from spatial, temporal and spectral perspectives. We also highlight a recently developed state-of-the-art image fusion technique that integrates passive and active energies concurrently collected by an imaging spectrometer and a scanning-waveform light detection and ranging (LiDAR) system, respectively. This approach provides a means to detect the structure and functional properties of invasive plants of different canopy levels. Finally, we summarize regional studies of biological invasions using remote sensing, discuss the limitations of remote sensing approaches, and highlight current research needs and future directions. PMID:22408558

  6. Perspectives in remote sensing in Brazil. An approach of the remote sensing applications to Earth resources surveys

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Novaes, R. A.

    1982-01-01

    Since the systematic use of earth surface data collection by orbital sensor systems started in 1972 with the launching of the North American LANDSAT satellite, a great effort has been made to assimilate, develop and transfer remote sensing technology (data acquisition and analysis) in its many applications in Brazil. The availability of sensor systems and existing data is considered approached, as well as those which will soon be available to the Brazilian researchers. The new systems of the LANDSAT-4, of the Columbia space shuttle and of the French satellites of the SPOT series are discussed. Some characteristics of the sensor system for the first Brazilian remote sensing satellite, to be launched by the end of the decade, are presented. Some LANDSAT-4 and SPOT simulation products are shown, emphasizing how the data obtained by these new satellites can be applied.

  7. [Application and prospect of multi-spectral remote sensing in major natural disaster assessment].

    PubMed

    Wang, Fu-tao; Wang, Shi-xin; Zhou, Yi; Wang, Li-tao; Yan, Fu-li

    2011-03-01

    After the occurrence of major natural disasters, it is of great significance that disaster states are assessed timely and accurately for decision-making departments to draw up effective response programs. Multi-spectral remote sensing has a great advantage and potential in disaster assessment, with the characteristics of a wide range of data acquisition, high speed, etc. In several major natural disaster assessments in China, multi-spectral remote sensing technology has played an important role. Firstly, the present paper takes earthquake disasters, floods disasters and drought disasters as examples to summarize the specific applications of major natural disaster assessment based on the multi-spectral remote sensing. Secondly, in these specific applications they suffer from both relative shortage of data sources and limited breadth and depth of application; both of these problems are analyzed. Finally, the future development direction of major natural disaster assessment based on the multi-spectral remote sensing, such as the expansion of multi-spectral remote sensing data acquisition means, the establishment of major natural disasters assessment index system based on remote sensing, and the improvement of the assessment technology system based on multi-spectral remote sensing are also discussed.

  8. All-metal meta-surfaces for narrowband light absorption and high performance sensing

    NASA Astrophysics Data System (ADS)

    Liu, Zhengqi; Liu, Guiqiang; Fu, Guolan; Liu, Xiaoshan; Huang, Zhenping; Gu, Gang

    2016-11-01

    We report an experimental scheme for high performance sensing by an all-metal meta-surface (AMMS) platform. A dual-band resonant absorption spectrum with a bandwidth down to a single-digit nanometer level and an absorbance up to 89% is achieved due to the surface lattice resonances supported by the resonators array and their hybridization coupling with the particle plasmon resonances. The sensing application in the analysis of the sodium chloride solution has been demonstrated, where remarkable changes from a spectral ‘dark state’ to ‘bright state’ and vice versa are observed. Sensing performance factors of the figure of merit exceeding 50 and the spectral intensity change related FoM* up to 1075 are simultaneously achieved. The corresponding detection limit is as low as 8.849  ×  10-6 RIU. These features make such an AMMS-based sensor a promising route for efficient bio-chemical sensing, etc.

  9. Remote Sensing Applications to the Pennsylvania Abandoned Mine Reclamation Program

    NASA Technical Reports Server (NTRS)

    Clemens, E.; Warnick, L.

    1982-01-01

    Pennsylvania Abandoned Mine Land Inventory demonstrated the effective use of remote sensing techniques within the context of the Surface Mining Control and Reclamation Act of 1977. The inventory combined data from field work, a literature search, and photointerpretation to fulfill both State and Federal requirements. A primary project objective was to accurately identify and map all surface features and disturbances from abandoned surface and underground mining. Black-and-white aerial photographs were used to record pits, contour benches, highwalls, spoil material, graded and recontoured areas, impounded water, and serious erosion and slide prone areas. In addition, vegetation cover estimates and surrounding land uses were noted. The inventory data base provides Pennsylvania with a valuable resource management tool that should be systematically updated. The utilization of remotely sensed data from SPOT or LANDSAT-D satellites may prove valuable in the anticipated updating and monitoring of the Pennsylvania AML inventory over the next several years.

  10. Solid State Laser Technology Development for Atmospheric Sensing Applications

    NASA Technical Reports Server (NTRS)

    Barnes, James C.

    1998-01-01

    NASA atmospheric scientists are currently planning active remote sensing missions that will enable global monitoring of atmospheric ozone, water vapor, aerosols and clouds as well as global wind velocity. The measurements of these elements and parameters are important because of the effects they have on climate change, atmospheric chemistry and dynamics, atmospheric transport and, in general, the health of the planet. NASA will make use of Differential Absorption Lidar (DIAL) and backscatter lidar techniques for active remote sensing of molecular constituents and atmospheric phenomena from advanced high-altitude aircraft and space platforms. This paper provides an overview of NASA Langley Research Center's (LaRC's) development of advanced solid state lasers, harmonic generators, and wave mixing techniques aimed at providing the broad range of wavelengths necessary to meet measurement goals of NASA's Earth Science Enterprise.

  11. Application of remote sensing to estimating soil erosion potential

    NASA Technical Reports Server (NTRS)

    Morris-Jones, D. R.; Kiefer, R. W.

    1980-01-01

    A variety of remote sensing data sources and interpretation techniques has been tested in a 6136 hectare watershed with agricultural, forest and urban land cover to determine the relative utility of alternative aerial photographic data sources for gathering the desired land use/land cover data. The principal photographic data sources are high altitude 9 x 9 inch color infrared photos at 1:120,000 and 1:60,000 and multi-date medium altitude color and color infrared photos at 1:60,000. Principal data for estimating soil erosion potential include precipitation, soil, slope, crop, crop practice, and land use/land cover data derived from topographic maps, soil maps, and remote sensing. A computer-based geographic information system organized on a one-hectare grid cell basis is used to store and quantify the information collected using different data sources and interpretation techniques. Research results are compared with traditional Universal Soil Loss Equation field survey methods.

  12. Microfiber Bragg grating for temperature and strain sensing applications

    NASA Astrophysics Data System (ADS)

    Tian, Jie; Liu, Shuhui; Yu, Wenbing; Deng, Peigang

    2017-03-01

    Fiber Bragg grating is inscribed on microfiber with femtosecond laser pulses irradiation. The microfiber is fabricated by stretching a section of single mode fiber over a flame. Periodic grooves are carved on the microfiber by the laser as have been observed experimentally. The microfiber Bragg grating is demonstrated for temperature and strain sensing, and the strain sensitivity is improved with decreased diameters of the microfibers.

  13. Microfiber Bragg grating for temperature and strain sensing applications

    NASA Astrophysics Data System (ADS)

    Tian, Jie; Liu, Shuhui; Yu, Wenbing; Deng, Peigang

    2016-12-01

    Fiber Bragg grating is inscribed on microfiber with femtosecond laser pulses irradiation. The microfiber is fabricated by stretching a section of single mode fiber over a flame. Periodic grooves are carved on the microfiber by the laser as have been observed experimentally. The microfiber Bragg grating is demonstrated for temperature and strain sensing, and the strain sensitivity is improved with decreased diameters of the microfibers.

  14. Remote sensing applications to Missouri environmental resources information system

    NASA Technical Reports Server (NTRS)

    Myers, R. E.

    1977-01-01

    An efficient system for retrieval of remotely sensed data to be used by natural resources oriented agencies, and a natural resources data system that can meet the needs of state agencies were studied. To accomplish these objectives, natural resources data sources were identified, and study of systems already in operation which address themselves to the more efficient utilization of natural resources oriented data was prepared.

  15. Microscale Electrospinning of Polymer Nanowires for Sensing Applications

    DTIC Science & Technology

    2005-09-01

    Yes PVA - Poly(vinyl alcohol) PEO - Poly(ethylene oxide) PECH - Poly( epichlorohydrin ) PIB - Poly(isobutylene) PNVP - Poly(n-vinyl pyrrolidone) Figure 3...0.14 Current (Anus) Figure 6: I-V curve for the device of figure 5 Poly( epichlorohydrin ) - PECH is an attractive polymer for chemical sensing due to...four-component array was measured and was distinct for each vapor. Poly( epichlorohydrin ) (PECH), Mw of 700,000 , poly(ethylene Oxide) (PEO) Mw of

  16. Finite element analysis of (SA) mechanoreceptors in tactile sensing application

    NASA Astrophysics Data System (ADS)

    N, Syamimi; Yahud, S.

    2015-05-01

    This paper addresses the structural design of a fingertip model in order to analyse the sensory function of slow adapting (SA) mechanoreceptors by using the finite element analysis (FEA) method. A biologically inspired tactile sensor was designed to mimic a similar response of the human mechanoreceptors in the human glabrous skin. The simulation work was done by using COMSOL Multiphysics. The artificial skin was modelled as a solid square block of silicone elastomer with a semi cylinder protrusion on top. It was modelled as a nearly incompressible and linear hyperelastic material defined by Neo Hookean constitutive law. The sensing element on the other hand was modelled by using constantan alloy mimicking the SA1 receptor. Boundary loads of 1 N/m² to 4 N/m² with the increment of 1 N/m² were applied to the top surface of the protrusion in z and x-direction for normal and shear stress, respectively. The epidermal model base was constrained to maintain the same boundary conditions throughout all simulations. The changes of length experienced by the sensing element were calculated. The simulations result in terms of strain was identified. The simulated result was plotted in terms of sensing element strain against the boundary load and the graph should produce a linear response.

  17. Application of joint orthogonal bases in compressive sensing ghost image

    NASA Astrophysics Data System (ADS)

    Fan, Xiang; Chen, Yi; Cheng, Zheng-dong; Liang, Zheng-yu; Zhu, Bin

    2016-11-01

    Sparse decomposition is one of the core issue of compressive sensing ghost image. At this stage, traditional methods still have the problems of poor sparsity and low reconstruction accuracy, such as discrete fourier transform and discrete cosine transform. In order to solve these problems, joint orthogonal bases transform is proposed to optimize ghost imaging. First, introduce the principle of compressive sensing ghost imaging and point out that sparsity is related to the minimum sample data required for imaging. Then, analyze the development and principle of joint orthogonal bases in detail and find out it can use less nonzero coefficients to reach the same identification effect as other methods. So, joint orthogonal bases transform is able to provide the sparsest representation. Finally, the experimental setup is built in order to verify simulation results. Experimental results indicate that the PSNR of joint orthogonal bases is much higher than traditional methods by using same sample data in compressive sensing ghost image.Therefore, joint orthogonal bases transform can realize better imaging quality under less sample data, which can satisfy the system requirements of convenience and rapid speed in ghost image.

  18. A stochastic atmospheric model for remote sensing applications

    NASA Technical Reports Server (NTRS)

    Turner, R. E.

    1983-01-01

    There are many factors which reduce the accuracy of classification of objects in the satellite remote sensing of Earth's surface. One important factor is the variability in the scattering and absorptive properties of the atmospheric components such as particulates and the variable gases. For multispectral remote sensing of the Earth's surface in the visible and infrared parts of the spectrum the atmospheric particulates are a major source of variability in the received signal. It is difficult to design a sensor which will determine the unknown atmospheric components by remote sensing methods, at least to the accuracy needed for multispectral classification. The problem of spatial and temporal variations in the atmospheric quantities which can affect the measured radiances are examined. A method based upon the stochastic nature of the atmospheric components was developed, and, using actual data the statistical parameters needed for inclusion into a radiometric model was generated. Methods are then described for an improved correction of radiances. These algorithms will then result in a more accurate and consistent classification procedure.

  19. Microwave remote sensing: Active and passive. Volume 3 - From theory to applications

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Moore, R. K.; Fung, A. K.

    1986-01-01

    Aspects of volume scattering and emission theory are discussed, taking into account a weakly scattering medium, the Born approximation, first-order renormalization, the radiative transfer method, and the matrix-doubling method. Other topics explored are related to scatterometers and probing systems, the passive microwave sensing of the atmosphere, the passive microwave sensing of the ocean, the passive microwave sensing of land, the active microwave sensing of land, and radar remote sensing applications. Attention is given to inversion techniques, atmospheric attenuation and emission, a temperature profile retrieval from ground-based observations, mapping rainfall rates, the apparent temperature of the sea, the emission behavior of bare soil surfaces, the emission behavior of vegetation canopies, the emission behavior of snow, wind-vector radar scatterometry, radar measurements of sea ice, and the back-scattering behavior of cultural vegetation canopies.

  20. Parallel processing of remotely sensed data: Application to the ATSR-2 instrument

    NASA Astrophysics Data System (ADS)

    Simpson, J.; McIntire, T.; Berg, J.; Tsou, Y.

    2007-01-01

    Massively parallel computational paradigms can mitigate many issues associated with the analysis of large and complex remotely sensed data sets. Recently, the Beowulf cluster has emerged as the most attractive, massively parallel architecture due to its low cost and high performance. Whereas most Beowulf designs have emphasized numerical modeling applications, the Parallel Image Processing Environment (PIPE) specifically addresses the unique requirements of remote sensing applications. Automated, parallelization of user-defined analyses is fully supported. A neural network application, applied to Along Track Scanning Radiometer-2 (ATSR-2) data shows the advantages and performance characteristics of PIPE.

  1. Current achievements of nanoparticle applications in developing optical sensing and imaging techniques

    NASA Astrophysics Data System (ADS)

    Choi, Jong-ryul; Shin, Dong-Myeong; Song, Hyerin; Lee, Donghoon; Kim, Kyujung

    2016-11-01

    Metallic nanostructures have recently been demonstrated to improve the performance of optical sensing and imaging techniques due to their remarkable localization capability of electromagnetic fields. Particularly, the zero-dimensional nanostructure, commonly called a nanoparticle, is a promising component for optical measurement systems due to its attractive features, e.g., ease of fabrication, capability of surface modification and relatively high biocompatibility. This review summarizes the work to date on metallic nanoparticles for optical sensing and imaging applications, starting with the theoretical backgrounds of plasmonic effects in nanoparticles and moving through the applications in Raman spectroscopy and fluorescence biosensors. Various efforts for enhancing the sensitivity, selectivity and biocompatibility are summarized, and the future outlooks for this field are discussed. Convergent studies in optical sensing and imaging have been emerging field for the development of medical applications, including clinical diagnosis and therapeutic applications.

  2. Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy

    PubMed Central

    Leahy-Hoppa, Megan R.; Miragliotta, Joseph; Osiander, Robert; Burnett, Jennifer; Dikmelik, Yamac; McEnnis, Caroline; Spicer, James B.

    2010-01-01

    Ultrafast pulsed lasers find application in a range of spectroscopy and sensing techniques including laser induced breakdown spectroscopy (LIBS), coherent Raman spectroscopy, and terahertz (THz) spectroscopy. Whether based on absorption or emission processes, the characteristics of these techniques are heavily influenced by the use of ultrafast pulses in the signal generation process. Depending on the energy of the pulses used, the essential laser interaction process can primarily involve lattice vibrations, molecular rotations, or a combination of excited states produced by laser heating. While some of these techniques are currently confined to sensing at close ranges, others can be implemented for remote spectroscopic sensing owing principally to the laser pulse duration. We present a review of ultrafast laser-based spectroscopy techniques and discuss the use of these techniques to current and potential chemical and environmental sensing applications. PMID:22399883

  3. Using NASA Using Remote Sensing in Public Health Applications

    NASA Technical Reports Server (NTRS)

    Estes, Sue; Haynes, John

    2011-01-01

    The Public Health application area focuses on Earth science applications to public health and safety, particularly regarding infectious disease, emergency preparedness and response, and environmental health issues. The application explores issues of toxic and pathogenic exposure, as well as natural and man-made hazards and their effects, for risk characterization/mitigation and improvements to health and safety.

  4. Rangeland remote sensing applications with unmanned aerial systems (UAS) in the national airspace: challenges and experiences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, civilian applications of unmanned aerial systems (UAS) have increased considerably due to their greater availability and the miniaturization of sensors, GPS, inertial measurement units, and other hardware. UAS are well suited for rangeland remote sensing applications, because of the...

  5. Unmanned aircraft missions for rangeland remote sensing applications in the US National Airspace

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, civilian applications of unmanned aerial systems (UAS) have increased considerably due to their greater availability and the miniaturization of sensors, GPS, inertial measurement units, and other hardware. UAS are well suited for rangeland remote sensing applications, because of the...

  6. Commodity Cluster Computing for Remote Sensing Applications using Red Hat LINUX

    NASA Technical Reports Server (NTRS)

    Dorband, John

    2003-01-01

    Since 1994, we have been doing research at Goddard Space Flight Center on implementing a wide variety of applications on commodity based computing clusters. This talk is about these clusters and haw they are used on these applications including ones for remote sensing.

  7. Investigation of the application of remote sensing technology to environmental monitoring

    NASA Technical Reports Server (NTRS)

    Rader, M. L. (Principal Investigator)

    1980-01-01

    Activities and results are reported of a project to investigate the application of remote sensing technology developed for the LACIE, AgRISTARS, Forestry and other NASA remote sensing projects for the environmental monitoring of strip mining, industrial pollution, and acid rain. Following a remote sensing workshop for EPA personnel, the EOD clustering algorithm CLASSY was selected for evaluation by EPA as a possible candidate technology. LANDSAT data acquired for a North Dakota test sight was clustered in order to compare CLASSY with other algorithms.

  8. The application of remote sensing techniques to selected inter and intra urban data acquisition problems

    NASA Technical Reports Server (NTRS)

    Horton, F. E.

    1970-01-01

    The utility of remote sensing techniques to urban data acquisition problems in several distinct areas was identified. This endeavor included a comparison of remote sensing systems for urban data collection, the extraction of housing quality data from aerial photography, utilization of photographic sensors in urban transportation studies, urban change detection, space photography utilization, and an application of remote sensing techniques to the acquisition of data concerning intra-urban commercial centers. The systematic evaluation of variable extraction for urban modeling and planning at several different scales, and the model derivation for identifying and predicting economic growth and change within a regional system of cities are also studied.

  9. The application of remote sensing to resource management and environmental quality programs in Kansas

    NASA Technical Reports Server (NTRS)

    Barr, B. G.; Martinko, E. A.

    1976-01-01

    Activities of the Kansas Applied Remote Sensing Program (KARS) designed to establish interactions on cooperative projects with decision makers in Kansas agencies in the development and application of remote sensing procedures are reported. Cooperative demonstration projects undertaken with several different agencies involved three principal areas of effort: Wildlife Habitat and Environmental Analysis; Urban and Regional Analysis; Agricultural and Rural Analysis. These projects were designed to concentrate remote sensing concepts and methodologies on existing agency problems to insure the continued relevancy of the program and maximize the possibility for immediate operational use. Completed projects are briefly discussed.

  10. Enhanced modes excitation in photonic crystal fiber by long-period gratings for sensing application

    NASA Astrophysics Data System (ADS)

    Zheng, Shijie; Zhu, Yinian

    2016-03-01

    Evanescent-wave sensing platform is proposed by two interrogating schemes, core-cladding coupling and core-cladding-core coupling and re-coupling, in endlessly single-mode photonic crystal fiber (ESM-PCF) with long-period gratings (LPGs). The sensing characteristics are experimentally investigated by stress relaxation technique and point-by-point grating inscription via CO2 laser. It shows that the evanescent wave in cladding mode is significantly increased due to LPGs, compared with in core mode only. The introduced concept will further help explore the PCF evanescent-wave sensing and its applications.

  11. The application of remote sensing techniques to inter and intra urban analysis

    NASA Technical Reports Server (NTRS)

    Horton, F. E.

    1972-01-01

    This is an effort to assess the applicability of air and spaceborne photography toward providing data inputs to urban and regional planning, management, and research. Through evaluation of remote sensing inputs to urban change detection systems, analyzing an effort to replicate an existing urban land use data file using remotely sensed data, estimating population and dwelling units from imagery, and by identifying and evaluating a system of urban places ultilizing space photography, it was determined that remote sensing can provide data concerning land use, changes in commercial structure, data for transportation planning, housing quality, residential dynamics, and population density.

  12. Enhanced electricity generation by triclosan and iron anodes in the three-chambered membrane bio-chemical reactor (TC-MBCR).

    PubMed

    Song, Jing; Liu, Lifen; Yang, Fenglin; Ren, Nanqi; Crittenden, John

    2013-11-01

    A three-chambered membrane bio-chemical reactor (TC-MBCR) was developed. The stainless steel membrane modules were used as cathodes and iron plates in the middle chamber served as the anode. The TC-MBCR was able to reduce fouling, remove triclosan (TCS) from a synthetic wastewater treatment and enhance electricity generation by ~60% compared with the cell voltage before TCS addition. The TC-MBCR system generated a relatively stable power output (cell voltage ~0.2V) and the corrosion of iron plates contributed to electricity generation together with microbes on iron anode. The permeation flow from anode to cathode chamber was considered important in electricity generation. In addition, the negatively charged cathode membrane and Fe(2+)/Fe(3+) released by iron plates mitigated membrane fouling by approximately 30%, as compared with the control. The removal of COD and total phosphorus was approximately 99% and 90%. The highest triclosan removal rate reached 97.9%.

  13. Remote sensing applications to resource problems in South Dakota

    NASA Technical Reports Server (NTRS)

    Myers, V. I. (Principal Investigator); Best, R. G.; Dalsted, K. J.; Devries, M. E.; Eidenshink, J. C.; Fowler, R.; Heilman, J.; Schmer, F. A.

    1980-01-01

    Cooperative projects between RSI and numerous South Dakota agencies have provided a means of incorporating remote sensing techniques into operational programs. Eight projects discussed in detail are: (1) detection of high moisture zones near interstate 90; (2) thermal infrared census of Canada geese in South Dakota; (3) dutch elm disease detection in urban environment; (4) a feasibility study for monitoring effective precipitation in South Dakota using TIROS-N; (5) open and abandoned dump sites in Spink county; (6) the influence of soil reflectance on LANDSAT signatures of crops; (7) A model implementation program for Lake Herman watershed; and (8) the Six-Mile Creek investigation follow-on.

  14. The application of remote sensing techniques: Technical and methodological issues

    NASA Technical Reports Server (NTRS)

    Polcyn, F. C.; Wagner, T. W.

    1974-01-01

    Capabilities and limitations of modern imaging electromagnetic sensor systems are outlined, and the products of such systems are compared with those of the traditional aerial photographic system. Focus is given to the interface between the rapidly developing remote sensing technology and the information needs of operational agencies, and communication gaps are shown to retard early adoption of the technology by these agencies. An assessment is made of the current status of imaging remote sensors and their potential for the future. Public sources of remote sensor data and several cost comparisons are included.

  15. Applications of Earth Remote Sensing in Response to Meteorological Disasters

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Bell, Jordan R.; Schultz, Lori A.; Burks, Jason E.; McGrath, Kevin M.; Jedlovec, Gary J.

    2013-01-01

    NASA's Short-­-term Predic1on Research and Transi1on (SPoRT) Center supports the transi1on of unique NASA and NOAA research activities to the operational weather forecasing community. Our primary partners are NOAA's National Weather Service, their Weather Forecast Offices (WFOs), and National Centers. These organizations predict natural hazards and also assist in the disaster assessment process, benefiting from remotely sensed data. In 2013, SPoRT continued to transition high resolution satellite imagery, derived products, and value-­-added analysis to WFO partners and NASA's Applied Sciences Program.

  16. Remote sensing applications in marine science programs at VIMS

    NASA Technical Reports Server (NTRS)

    Gordon, H. H.; Penney, M. E.; Byrne, R. J.

    1974-01-01

    Scientists at the Virginia Institute of Marine Science (VIMS) utilized remote sensing in three programs: (1) tonal variations in imagery of wetlands; (2) use of the thermal infrared to delineate the discharge cooling water at the Virginia Electric and Power Company (VEPCO) nuclear power station on the James River; and (3) the use of aerial photography to determine the volume storage function for water in the marsh-bay complex fed by Wachapreague Inlet on the Eastern Shore of Virginia. Details of the investigations are given, along with significant results.

  17. Self-sensing miniature electromagnetic actuators for a cardiac assist device application

    NASA Astrophysics Data System (ADS)

    Hanson, Ben M.; Walker, Peter G.; Levesley, Martin C.; Watterson, Kevin; Richardson, Robert C.; Yang, Ming

    2004-07-01

    This paper describes the application of self-sensing control to a cardiac assist device. We propose to improve the pumping performance of diseased or weakened hearts by applying direct cardiac compression using artificial muscle. This particular application imposes strict limitations on size, weight and system complexity, therefore employing self-sensing could offer advantages over separate sensors and actuators. Many electromagnetic actuators produce a back-e.m.f. proportional to velocity. Using a simple system model, it is possible to separate this back-e.m.f. from the supply voltage, thus the actuator velocity can be self-sensed. Furthermore, using a more detailed model, it also is possible to self-sense the force being applied. Experimental results are presented for linear moving-coil actuators and miniature d.c. motors. Estimation of position has been performed by numerical integration of self-sensed velocity, and shown to compare favourably to data from displacement sensors. Force estimation has also been shown to closely agree with data from a load cell. Combined force and position control has been implemented, without using sensors. Unfortunately, since self-sensed position is derived by integrating velocity, the estimated position can suffer from drifting. An automatic re-calibration scheme is proposed for the cardiac assist application.

  18. RETRACTED ARTICLE: Quorum-sensing of bacteria and its application

    NASA Astrophysics Data System (ADS)

    Jiang, Guoliang; Su, Mingxia

    2009-12-01

    Quorum sensing, or auto induction, as a cell density dependent signaling mechanism in many microorganisms, is triggered via auto inducers which passively diffuse across the bacterial envelope and therefore intracellulaly accumulate only at higher bacterial densities to regulate specialized processes such as genetic competence, bioluminescence, virulence and sporulation. N-acyl homoserine lactones are the most common type of signal molecules. Aquaculture is one of the fastest-growing food-producing industries, but disease outbreaks caused by pathogenic bacteria are a significant constraint on the development of the sector worldwide. Many of these pathogens have been found to be controlled by their quorum sensing systems. As there is relevance between the pathogenic bacteria's virulence factor expression and their auto inducers, quorum quenching is a new effective anti-infective strategy to control infections caused by bacterial pathogens in aquaculture. The techniques used to do this mainly include the following: (1) the inhibition of signal molecule biosynthesis, (2) blocking signal transduction, and (3) chemical inactivation and biodegradation of signal molecules. To provide a basis for finding alternative means of controlling aquatic diseases by quorum quenching instead of treatment by antibiotics and disinfectants, we will discuss the examination, purification and identification of auto inducers in this paper.

  19. Remote sensing image denoising application by generalized morphological component analysis

    NASA Astrophysics Data System (ADS)

    Yu, Chong; Chen, Xiong

    2014-12-01

    In this paper, we introduced a remote sensing image denoising method based on generalized morphological component analysis (GMCA). This novel algorithm is the further extension of morphological component analysis (MCA) algorithm to the blind source separation framework. The iterative thresholding strategy adopted by GMCA algorithm firstly works on the most significant features in the image, and then progressively incorporates smaller features to finely tune the parameters of whole model. Mathematical analysis of the computational complexity of GMCA algorithm is provided. Several comparison experiments with state-of-the-art denoising algorithms are reported. In order to make quantitative assessment of algorithms in experiments, Peak Signal to Noise Ratio (PSNR) index and Structural Similarity (SSIM) index are calculated to assess the denoising effect from the gray-level fidelity aspect and the structure-level fidelity aspect, respectively. Quantitative analysis on experiment results, which is consistent with the visual effect illustrated by denoised images, has proven that the introduced GMCA algorithm possesses a marvelous remote sensing image denoising effectiveness and ability. It is even hard to distinguish the original noiseless image from the recovered image by adopting GMCA algorithm through visual effect.

  20. Amorphous photonic membranes for broadband chemical sensing applications

    NASA Astrophysics Data System (ADS)

    Abbey, Sonja P.; Whaley, Ralph D., Jr.

    2012-01-01

    While there has been extensive development on integrated sensors in the near-IR region due to the maturation of Si, SOI, and III-V materials, these technologies are not easily translated into the visible and near-UV regions which are critical for the detection of many chemicals of environmental and security interest. This work focuses on the use of wide bandgap, amorphous materials, specifically, amorphous zinc oxide (a-ZnO), amorphous hafnium oxide (a-HfO2) and amorphous beryllium zinc oxide (a-BeZnO), in the development of broadband chemical sensors operating at critical absorption lines spanning the near-UV (200 nm) to the near-IR (1.55 μm). The architecture employed for this research is a nanoscale membrane (typically 40 - 100 nm thick) that supports a guided low optical overlap mode (LOOM) - an optical mode in which approximately 1% of the electric field is confined to the lossy core region. The resulting extended mode has a greatly enhanced analyte overlap, yielding a device sensitivity (~70%) that is over an order of magnitude higher than current high-performance, dielectric evanescent wave sensors (~2%) as modeled by analytical and finite element methods. Due to the extended nature of the LOOM, sensing across the entire spectral range can be achieved with a single waveguide design - critical for multi-point chemical sensing architectures.

  1. Applications of remote-sensing data in Alaska

    NASA Technical Reports Server (NTRS)

    Miller, J. M. (Principal Investigator)

    1977-01-01

    Public and private agencies were introduced to the use of remotely sensed data obtained by both satellite and aircraft, and benefitted from facilities for data processing enhancement and interpretation as well as from the institute's data library. Cooperative ventures involving the performance of operational activities included assistance to the Bureau of Land Management in the suppression of wildfires; the selection of sites for power line right-of-way; the mapping of leads in sea ice; determination of portions of public lands to be allocated for small scale farming; the identification of areas for large scale farming of barley; the observation of coastal processes and sediment transport near Prudhoe Bay; the establishment of a colar infrared file of the entire state; and photomapping for geological surveys. Monitoring of the outer continental shelf environment and reindeer herds was also conducted. Institutional constraints to full utilization of satellite remote sensing in the state are explored and plans for future activites include the generation of awareness by government agencies, the training of state personnel, and improving coordination and communication with users.

  2. Fabrication strategies, sensing modes and analytical applications of ratiometric electrochemical biosensors.

    PubMed

    Jin, Hui; Gui, Rijun; Yu, Jianbo; Lv, Wei; Wang, Zonghua

    2017-05-15

    Previously developed electrochemical biosensors with single-electric signal output are probably affected by intrinsic and extrinsic factors. In contrast, the ratiometric electrochemical biosensors (RECBSs) with dual-electric signal outputs have an intrinsic built-in correction to the effects from system or background electric signals, and therefore exhibit a significant potential to improve the accuracy and sensitivity in electrochemical sensing applications. In this review, we systematically summarize the fabrication strategies, sensing modes and analytical applications of RECBSs. First, the different fabrication strategies of RECBSs were introduced, referring to the analytes-induced single- and dual-dependent electrochemical signal strategies for RECBSs. Second, the different sensing modes of RECBSs were illustrated, such as differential pulse voltammetry, square wave voltammetry, cyclic voltammetry, alternating current voltammetry, electrochemiluminescence, and so forth. Third, the analytical applications of RECBSs were discussed based on the types of target analytes. Finally, the forthcoming development and future prospects in the research field of RECBSs were also highlighted.

  3. Array Independent Component Analysis with Application to Remote Sensing

    NASA Astrophysics Data System (ADS)

    Kukuyeva, Irina A.

    2012-11-01

    There are three ways to learn about an object: from samples taken directly from the site, from simulation studies based on its known scientific properties, or from remote sensing images. All three are carried out to study Earth and Mars. Our goal, however, is to learn about the second largest storm on Jupiter, called the White Oval, whose characteristics are unknown to this day. As Jupiter is a gas giant and hundreds of millions of miles away from Earth, we can only make inferences about the planet from retrieval algorithms and remotely sensed images. Our focus is to find latent variables from the remotely sensed data that best explain its underlying atmospheric structure. Principal Component Analysis (PCA) is currently the most commonly employed technique to do so. For a data set with more than two modes, this approach fails to account for all of the variable interactions, especially if the distribution of the variables is not multivariate normal; an assumption that is rarely true of multispectral images. The thesis presents an overview of PCA along with the most commonly employed decompositions in other fields: Independent Component Analysis, Tucker-3 and CANDECOMP/PARAFAC and discusses their limitations in finding unobserved, independent structures in a data cube. We motivate the need for a novel dimension reduction technique that generalizes existing decompositions to find latent, statistically independent variables for one side of a multimodal (number of modes greater than two) data set while accounting for the variable interactions with its other modes. Our method is called Array Independent Component Analysis (AICA). As the main question of any decomposition is how to select a small number of latent variables that best capture the structure in the data, we extend the heuristic developed by Ceulemans and Kiers in [10] to aid in model selection for the AICA framework. The effectiveness of each dimension reduction technique is determined by the degree of

  4. Remote Sensing of Arizona Monsoons: Application of GOES Infrared Imagery

    NASA Astrophysics Data System (ADS)

    Carter, S.; Christensen, P. R.; Cerveny, R. S.

    2013-12-01

    Large, violent thunder and dust storms occur in the Phoenix area during monsoon season. Currently, the best ways to predict these dangerous and potentially damaging storms are not very accurate. The primary goal of this investigation is to attempt to develop a new technique to identify and predict these storms before they reach Phoenix. In order to address this question, two data sets (remote sensing satellite imagery and ground-based weather information) will be analyzed and compared against one another using time as a corresponding variable. The goal is to discern any correlations between data sets which be used as an indicator of imminent large monsoons. The moisture needed for the storms is carried to Arizona by events known as gulf surges (from the California Gulf); these will be the target of investigation. These chutes of moisture surge through Arizona, primarily up through Yuma in a northeasterly direction towards central/south central Arizona. The main goal is to identify if satellite imagery can be used as an accurate identifier of moisture movements preceding a storm in areas where ground measurements are not available. Presently, ground measurements of dew points are the primary technique by which these moisture surges are identified. However, while these measurements do have a fairly high temporal resolution (once an hour) they cover an awfully poor spacial range. Furthermore, it is suspected that because of interference to the instruments, the ground point data may not be as accurate as is preferred. On the other hand, satellite imagery such as GOES - the instrument used in this investigation - has both a remarkably high temporal resolution and spacial coverage. If a correlation can be demonstrated, then the high temporal resolution of the remote sensing data could be used as an identifier of oncoming monsoon storms. In order to proceed in this research, a software package known as Java Mission-planning and Analysis for Remote Sensing (JMARS) for

  5. Multimode-singlemode-multimode fiber sensor for alcohol sensing application

    NASA Astrophysics Data System (ADS)

    Rofi'ah, Iftihatur; Hatta, A. M.; Sekartedjo, Sekartedjo

    2016-11-01

    Alcohol is volatile and flammable liquid which is soluble substances both on polar and non polar substances that has been used in some industrial sectors. Alcohol detection method now widely used one of them is the optical fiber sensor. In this paper used fiber optic sensor based on Multimode-Single-mode-Multimode (MSM) to detect alcohol solution at a concentration range of 0-3%. The working principle of sensor utilizes the modal interference between the core modes and the cladding modes, thus make the sensor sensitive to environmental changes. The result showed that characteristic of the sensor not affect the length of the single-mode fiber (SMF). We obtain that the sensor with a length of 5 mm of single-mode can sensing the alcohol with a sensitivity of 0.107 dB/v%.

  6. Applications of remote sensing data to the Alaskan environment

    NASA Technical Reports Server (NTRS)

    Belon, A. E.; Iller, J. M.

    1973-01-01

    The ERTS program provides a means to overcome the formidable logistic and economic costs of preparing environmental surveys of the vast and relatively unexplored regions of Alaska. There is an excellent potential in satellite remote sensing to benefit Federal, state, local, and private agencies, by providing a new synoptic data base which is necessary for the preparation of the needed surveys and the search for solutions to environmental management problems. One approach in coupling satellite data to Alaskan problems is a major program initiated by the University of Alaska and funded by NASA's Goddard Space Flight Center. This included 12 projects whose aims were to study the feasibility of applying ERTS data to the disciplines of ecology, agriculture, hydrology, wildlife management, oceanography, geology, glaciology, volcanology, and archaeology.

  7. Grapefruit photonic crystal fiber sensor for gas sensing application

    NASA Astrophysics Data System (ADS)

    Tao, Chuanyi; Wei, Heming; Zhu, Yinian; Krishnaswamy, Sridhar

    2016-05-01

    Use of long period gratings (LPGs) formed in grapefruit photonic crystal fiber (PCF) with thin-film overlay coated on the inner surface of air holes for gas sensing is demonstrated. The finite-element method was used to numerically simulate the grapefruit PCF-LPG modal coupling characteristics and resonance spectral response with respect to the refractive index of thin-film inside the holey region. A gas analyte-induced index variation of the thin-film immobilized on the inner surface of the holey region of the fiber can be observed by a shift of the resonance wavelength. As an example, we demonstrate a 2,4-dinitrotoluene (DNT) sensor using grapefruit PCF-LPGs. The sensor exhibits a wavelength blue-shift of ˜820 pm as a result of exposure to DNT vapor with a vapor pressure of 411 ppbv at 25°C, and a sensitivity of 2 pm ppbv-1 can be achieved.

  8. Some applications of NIR tunable diodes for remote sensing

    NASA Astrophysics Data System (ADS)

    Schiff, H. I.; Mackay, G. I.; Nadler, S. D.

    1996-02-01

    Three versions of a near infrared system based on commercial communication type laser diodes have been developed. They have high selectivity and good sensitivity for a number of important gases. All three systems use a common control and data logging and analysis box. The LASAIR-R is a simple, inexpensive, remote sensing instrument using a single 10 cm Cassegrain telescope to both transmit and receive the laser beam. The LASAIR-S is a system for continuous, non-extractive stack monitoring. Fibre optics are used to take the laser beam from the control box (suitably located in the plant), to the stack and to return the absorbed beam. The LASAIR-P is a point source instrument using a multipath cell inside the box to provide the sensitivity required. The ease of operation and the relatively low cost should make these systems an attractive method for measuring specific gases for industrial and regulatory markets as well as for specific scientific measurements.

  9. Application of an ADS-B Sense and Avoid Algorithm

    NASA Technical Reports Server (NTRS)

    Arteaga, Ricardo; Kotcher, Robert; Cavalin, Moshe; Dandachy, Mohammed

    2016-01-01

    The National Aeronautics and Space Administration Armstrong Flight Research Center in Edwards, California is leading a program aimed towards integrating unmanned aircraft system into the national airspace system (UAS in the NAS). The overarching goal of the program is to reduce technical barriers associated with related safety issues as well as addressing challenges that will allow UAS routine access to the national airspace. This research paper focuses on three novel ideas: (1) A design of an integrated UAS equipped with Automatic Dependent Surveillance-Broadcast that constructs a more accurate state-based airspace model; (2) The use of Stratway Algorithm in a real-time environment; and (3) The verification and validation of sense and avoid performance and usability test results which provide a pilot's perspective on how our system will benefit the UAS in the NAS program for both piloted and unmanned aircraft.

  10. Airborne remote sensing applications to coastal wave research

    NASA Astrophysics Data System (ADS)

    Hwang, Paul A.; Walsh, Edward J.; Krabill, William B.; Swift, Robert N.; Manizade, Serdar S.; Scott, John F.; Earle, Marshall D.

    1998-08-01

    Airborne sensors provide effective coverage of a broad region and are suitable for large-scale experiments. In this paper, two scanning sensors that use the direct ranging technique to measure surface wave displacement are described. On a NASA P-3 aircraft the sensors can complete one run across a 100-km continental shelf in 17 min. A case study is presented using radar-measured, two-dimensional surface topography to derive wave damping due to bottom friction. The results are in good agreement with an analytical model based on a quadratic formulation of bottom shear stress. This study demonstrates that remote sensing measurements can be used for rapid characterization of surface waves on the continental shelf and in coastal regions. Examples illustrated in this paper include the derivation of wavenumber spectra and estimation of the dissipation rate of shoaling ocean swell.

  11. Environmental Public Health Applications Using Remotely Sensed Data

    PubMed Central

    Al-Hamdan, Mohammad Z.; Crosson, William L.; Economou, Sigrid A.; Estes, Maurice G.; Estes, Sue M.; Hemmings, Sarah N.; Kent, Shia T.; Puckett, Mark; Quattrochi, Dale A.; Rickman, Douglas L.; Wade, Gina M.; McClure, Leslie A.

    2012-01-01

    We describe a remote sensing and GIS-based study that has three objectives: (1) characterize fine particulate matter (PM2.5), insolation and land surface temperature using NASA satellite observations, EPA ground-level monitor data and North American Land Data Assimilation System (NLDAS) data products on a national scale; (2) link these data with public health data from the REasons for Geographic And Racial Differences in Stroke (REGARDS) national cohort study to determine whether these environmental risk factors are related to cognitive decline, stroke and other health outcomes; and (3) disseminate the environmental datasets and public health linkage analyses to end users for decision-making through the Centers for Disease Control and Prevention (CDC) Wide-ranging Online Data for Epidemiologic Research (WONDER) system. This study directly addresses a public health focus of the NASA Applied Sciences Program, utilization of Earth Sciences products, by addressing issues of environmental health to enhance public health decision-making. PMID:24910505

  12. Urban environmental health applications of remote sensing, summary report

    NASA Technical Reports Server (NTRS)

    Rush, M.; Goldstein, J.; Hsi, B. P.; Olsen, C. B.

    1975-01-01

    Health and its association with the physical environment was studied based on the hypothesis that there is a relationship between the man-made physical environment and health status of a population. The statistical technique of regression analysis was employed to show the degree of association and aspects of physical environment which accounted for the greater variation in health status. Mortality, venereal disease, tuberculosis, hepatitis, meningitis, shigella/salmonella, hypertension and cardiac arrest/myocardial infarction were examined. The statistical techniques were used to measure association and variation, not necessarily cause and effect. Conclusions drawn show that the association still exists in the decade of the 1970's and that it can be successfully monitored with the methodology of remote sensing.

  13. Environmental Public Health Applications Using Remotely Sensed Data.

    PubMed

    Al-Hamdan, Mohammad Z; Crosson, William L; Economou, Sigrid A; Estes, Maurice G; Estes, Sue M; Hemmings, Sarah N; Kent, Shia T; Puckett, Mark; Quattrochi, Dale A; Rickman, Douglas L; Wade, Gina M; McClure, Leslie A

    2014-01-01

    We describe a remote sensing and GIS-based study that has three objectives: (1) characterize fine particulate matter (PM2.5), insolation and land surface temperature using NASA satellite observations, EPA ground-level monitor data and North American Land Data Assimilation System (NLDAS) data products on a national scale; (2) link these data with public health data from the REasons for Geographic And Racial Differences in Stroke (REGARDS) national cohort study to determine whether these environmental risk factors are related to cognitive decline, stroke and other health outcomes; and (3) disseminate the environmental datasets and public health linkage analyses to end users for decision-making through the Centers for Disease Control and Prevention (CDC) Wide-ranging Online Data for Epidemiologic Research (WONDER) system. This study directly addresses a public health focus of the NASA Applied Sciences Program, utilization of Earth Sciences products, by addressing issues of environmental health to enhance public health decision-making.

  14. Space-Time Data fusion for Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Braverman, Amy; Nguyen, H.; Cressie, N.

    2011-01-01

    NASA has been collecting massive amounts of remote sensing data about Earth's systems for more than a decade. Missions are selected to be complementary in quantities measured, retrieval techniques, and sampling characteristics, so these datasets are highly synergistic. To fully exploit this, a rigorous methodology for combining data with heterogeneous sampling characteristics is required. For scientific purposes, the methodology must also provide quantitative measures of uncertainty that propagate input-data uncertainty appropriately. We view this as a statistical inference problem. The true but notdirectly- observed quantities form a vector-valued field continuous in space and time. Our goal is to infer those true values or some function of them, and provide to uncertainty quantification for those inferences. We use a spatiotemporal statistical model that relates the unobserved quantities of interest at point-level to the spatially aggregated, observed data. We describe and illustrate our method using CO2 data from two NASA data sets.

  15. Remote Sensing Application in Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Sizov, Oleg; Aloltsov, Alexander; Rubtsova, Natalia

    2014-05-01

    The main environmental problems of the Khanty-Mansi Autonomous Okrug (a federal subject of Russia) related to the activities of oil and gas industry (82 active companies which hold 77,000 oil wells). As on the 1st of January 2013 the subject produces more than 50% of all oil in Russia. The principle of environmental responsibility makes it necessary to minimize human impact and ecological impact. One of the most effective tools for environmental monitoring is remote sensing. The main advantages of such approach are: wide coverage of areas of interest, high temporal resolution, precise location, automatic processing, large set of extracted parameters, etc. Authorities of KhMAO are interested in regular detection of the impact on the environment by processing satellite data and plan to increase the coverage from 434.9 to 659.9 square kilometers with resolution not less than 10 m/pixel. Years of experience of our company shows the significant potential to expand the use of such remote sensing data in the solution of environmental problems. The main directions are: monitoring of rational use of associated petroleum gas (detection of all gas flares and volumes of burned gas), monitoring of soil pollution (detection of areas of oil pollution, assess of the extent of pollution, planning of reclamation activities and assessment of their efficiency, detection of potential areas of pipelines corrosion), monitoring of status of sludge pits (inventory of all sludge pits, assessment of their liquidation), monitoring of technogenic impact (detection of changes), upgrading of a geospatial database (topographic map of not less than 1:50000 scale). Implementation of modeling, extrapolation and remote analysis techniques based on satellite images will help to reduce unnecessary costs for instrumental methods. Thus, the introduction of effective remote monitoring technology to the activity of oil and gas companies promotes environmental responsibility of these companies.

  16. Application of remote sensing to state and regional problems

    NASA Technical Reports Server (NTRS)

    Miller, W. F.; Clark, J. R.; Solomon, J. L.; Duffy, B.; Minchew, K.; Wright, L. H. (Principal Investigator)

    1981-01-01

    The objectives, accomplishments, and future plans of several LANDSAT applications projects in Mississippi are discussed. The applications include land use planning in Lowandes County, strip mine inventory and reclamation, white tailed deer habitat evaluation, data analysis support systems, discrimination of forest habitats in potential lignite areas, changes in gravel operations, and determination of freshwater wetlands for inventory and monitoring. In addition, a conceptual design for a LANDSAT based information system is discussed.

  17. The Application of GeoRSC Based on Domestic Satellite in Field Remote Sensing Anomaly Verification

    NASA Astrophysics Data System (ADS)

    Gao, Ting; Yang, Min; Han, Haihui; Li, Jianqiang; Yi, Huan

    2016-11-01

    The Geo REC is the digital remote sensing survey system which based on domestic satellites, and by means of it, the thesis carriedy out a remote sensing anomaly verification field application test in Nachitai area of Qinghai. Field test checks the system installation, the stability of the system operation, the efficiency of reading and show the romoate image or vector data, the security of the data management system and the accuracy of BeiDou navigation; through the test data, the author indicated that the hardware and software system could satisfy the remote sensing anomaly verification work in field, which could also could make it convenient forconvenient the workflow of remote sense survey and, improve the work efficiency,. Aat the same time, in the course of the experiment, we also found some shortcomings of the system, and give some suggestions for improvement combineding with the practical work for the system.

  18. On multidisciplinary research on the application of remote sensing to water resources problems

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This research is directed toward development of a practical, operational remote sensing water quality monitoring system. To accomplish this, five fundamental aspects of the problem have been under investigation during the past three years. These are: (1) development of practical and economical methods of obtaining, handling and analyzing remote sensing data; (2) determination of the correlation between remote sensed imagery and actual water quality parameters; (3) determination of the optimum technique for monitoring specific water pollution parameters and for evaluating the reliability with which this can be accomplished; (4) determination of the extent of masking due to depth of penetration, bottom effects, film development effects, and angle falloff, and development of techniques to eliminate or minimize them; and (5) development of operational procedures which might be employed by a municipal, state or federal agency for the application of remote sensing to water quality monitoring, including space-generated data.

  19. Application of ring down measurement approach to micro-cavities for bio-sensing applications

    NASA Astrophysics Data System (ADS)

    Cheema, M. I.; Kirk, Andrew G.

    2011-03-01

    Optical biosensors can detect biomarkers in the blood serum caused by either infections or exposure to toxins. Until now, most work on the micro-cavity biosensors has been based on measurement of the resonant frequency shift induced by binding of biomarkers to a cavity. However, frequency domain measurements are not precise for such high Q micro-cavities. We hypothesize that more accurate measurements and better noise tolerance can be achieved by the application of the ring down measurement approach to the micro-cavity in a biosensor. To test our hypothesis, we have developed a full vectorial finite element model of a silica toroidal micro-cavity immersed in water. Our modeling results show that a toroidal cavity with a major diameter of 70μm and a minor diameter of 6μm can achieve a sensitivity of 28.6μs/RIU refractive index units (RIU) at 580nm. Therefore, our sensor would achieve the resolution of 5 x 10-8 RIU by employing a detector with picosecond resolution. Hence we propose a micro-cavity ring down biosensor with high sensitivity which will find wide applications in real time and label free bio-sensing.

  20. Thermal Infrared Remote Sensing for Analysis of Landscape Ecological Processes: Methods and Applications

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.

    1998-01-01

    Thermal Infrared (TIR) remote sensing data can provide important measurements of surface energy fluxes and temperatures, which are integral to understanding landscape processes and responses. One example of this is the successful application of TIR remote sensing data to estimate evapotranspiration and soil moisture, where results from a number of studies suggest that satellite-based measurements from TIR remote sensing data can lead to more accurate regional-scale estimates of daily evapotranspiration. With further refinement in analytical techniques and models, the use of TIR data from airborne and satellite sensors could be very useful for parameterizing surface moisture conditions and developing better simulations of landscape energy exchange over a variety of conditions and space and time scales. Thus, TIR remote sensing data can significantly contribute to the observation, measurement, and analysis of energy balance characteristics (i.e., the fluxes and redistribution of thermal energy within and across the land surface) as an implicit and important aspect of landscape dynamics and landscape functioning. The application of TIR remote sensing data in landscape ecological studies has been limited, however, for several fundamental reasons that relate primarily to the perceived difficulty in use and availability of these data by the landscape ecology community, and from the fragmentation of references on TIR remote sensing throughout the scientific literature. It is our purpose here to provide evidence from work that has employed TIR remote sensing for analysis of landscape characteristics to illustrate how these data can provide important data for the improved measurement of landscape energy response and energy flux relationships. We examine the direct or indirect use of TIR remote sensing data to analyze landscape biophysical characteristics, thereby offering some insight on how these data can be used more robustly to further the understanding and modeling of

  1. International Conference on Remote Sensing Applications for Archaeological Research and World Heritage Conservation

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Contents include the following: Monitoring the Ancient Countryside: Remote Sensing and GIS at the Chora of Chersonesos (Crimea, Ukraine). Integration of Remote Sensing and GIS for Management Decision Support in the Pendjari Biosphere Reserve (Republic of Benin). Monitoring of deforestation invasion in natural reserves of northern Madagascar based on space imagery. Cartography of Kahuzi-Biega National Park. Cartography and Land Use Change of World Heritage Areas and the Benefits of Remote Sensing and GIS for Conservation. Assessing and Monitoring Vegetation in Nabq Protected Area, South Sinai, Egypt, using combine approach of Satellite Imagery and Land Surveys. Evaluation of forage resources in semi-arid savannah environments with satellite imagery: contribution to the management of a protected area (Nakuru National Park) in Kenya. SOGHA, the Surveillance of Gorilla Habitat in World Heritage sites using Space Technologies. Application of Remote Sensing to monitor the Mont-Saint-Michel Bay (France). Application of Remote Sensing & GIS for the Conservation of Natural and Cultural Heritage Sites of the Southern Province of Sri Lanka. Social and Environmental monitoring of a UNESCO Biosphere Reserve: Case Study over the Vosges du Nord and Pfalzerwald Parks using Corona and Spot Imagery. Satellite Remote Sensing as tool to Monitor Indian Reservation in the Brazilian Amazonia. Remote Sensing and GIS Technology for Monitoring UNESCO World Heritage Sites - A Pilot Project. Urban Green Spaces: Modern Heritage. Monitoring of the technical condition of the St. Sophia Cathedral and related monastic buildings in Kiev with Space Applications, geo-positioning systems and GIS tools. The Murghab delta palaeochannel Reconstruction on the Basis of Remote Sensing from Space. Acquisition, Registration and Application of IKONOS Space Imagery for the cultural World Heritage site at Mew, Turkmenistan. Remote Sensing and VR applications for the reconstruction of archaeological landscapes

  2. Six-Port Based Interferometry for Precise Radar and Sensing Applications

    PubMed Central

    Koelpin, Alexander; Lurz, Fabian; Linz, Sarah; Mann, Sebastian; Will, Christoph; Lindner, Stefan

    2016-01-01

    Microwave technology plays a more important role in modern industrial sensing applications. Pushed by the significant progress in monolithic microwave integrated circuit technology over the past decades, complex sensing systems operating in the microwave and even millimeter-wave range are available for reasonable costs combined with exquisite performance. In the context of industrial sensing, this stimulates new approaches for metrology based on microwave technology. An old measurement principle nearly forgotten over the years has recently gained more and more attention in both academia and industry: the six-port interferometer. This paper reviews the basic concept, investigates promising applications in remote, as well as contact-based sensing and compares the system with state-of-the-art metrology. The significant advantages will be discussed just as the limitations of the six-port architecture. Particular attention will be paid to impairment effects and non-ideal behavior, as well as compensation and linearization concepts. It will be shown that in application fields, like remote distance sensing, precise alignment measurements, as well as interferometrically-evaluated mechanical strain analysis, the six-port architecture delivers extraordinary measurement results combined with high measurement data update rates for reasonable system costs. This makes the six-port architecture a promising candidate for industrial metrology. PMID:27669246

  3. Six-Port Based Interferometry for Precise Radar and Sensing Applications.

    PubMed

    Koelpin, Alexander; Lurz, Fabian; Linz, Sarah; Mann, Sebastian; Will, Christoph; Lindner, Stefan

    2016-09-22

    Microwave technology plays a more important role in modern industrial sensing applications. Pushed by the significant progress in monolithic microwave integrated circuit technology over the past decades, complex sensing systems operating in the microwave and even millimeter-wave range are available for reasonable costs combined with exquisite performance. In the context of industrial sensing, this stimulates new approaches for metrology based on microwave technology. An old measurement principle nearly forgotten over the years has recently gained more and more attention in both academia and industry: the six-port interferometer. This paper reviews the basic concept, investigates promising applications in remote, as well as contact-based sensing and compares the system with state-of-the-art metrology. The significant advantages will be discussed just as the limitations of the six-port architecture. Particular attention will be paid to impairment effects and non-ideal behavior, as well as compensation and linearization concepts. It will be shown that in application fields, like remote distance sensing, precise alignment measurements, as well as interferometrically-evaluated mechanical strain analysis, the six-port architecture delivers extraordinary measurement results combined with high measurement data update rates for reasonable system costs. This makes the six-port architecture a promising candidate for industrial metrology.

  4. Developing Remote Sensing Applications Through an Engineering Life Cycle Development Approach

    NASA Astrophysics Data System (ADS)

    Kalluri, S.; Gilruth, P.

    2005-12-01

    Remote sensing applications have become an integral part of several federal and state government agencies for the monitoring and management of natural resources, land use planning and disaster mitigation. Traditionally, remote sensing applications were developed within the academic research community and these algorithms were adopted by the users for various applications. However, it is not a common practice within the academic environment to involve the end users in all stages of the research and development process. During 2000-2005, NASA funded several remote sensing application development projects under the Synergy program to promote the use of Earth Observing System (EOS) satellite data within the federal, state and local agencies. Several universities were funded around the US to develop applications in precision agriculture, management of water and other natural resources, urban planning, disaster mitigation and human health. Each application was aimed at providing spatial datasets derived from EOS satellites as decision aid tools for users within various agencies. One of the important lessons learned within this project was that a planned life cycle development improves the transition of remote sensing research to operations. The application lifecycle can be broadly divided into three stages: user needs and technical feasibility analysis, prototype development, and production and deployment. There are several checks within each phase to ensure that the final operational system adequately meets users needs. Metrics were instituted to track how the applications were being used and to plan improvements. While metrics such as web hits and data downloads could be automated and quantified, other metrics such as benefits to society and environment, impacts on policy, and other institutional benefits were difficult to quantify and monetize. Nonetheless, the metrics were useful for project management and to achieve project goals. Specific examples of applications

  5. New spectral methods in cloud and aerosol remote sensing applications

    NASA Astrophysics Data System (ADS)

    Schmidt, K. Sebastian; McBride, Patrick; Pilewskie, Peter; Feingold, Graham; Jiang, Hongli

    2010-05-01

    We present new remote sensing techniques that rely on spectral observations of clouds and aerosols in the solar wavelength range. As a first example, we show how the effects of heterogeneous clouds, aerosols of changing optical properties, and the surface within one pixel can be distinguished by means of their spectral signatures. This example is based on data from the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS, Houston, Texas, 2006), Large Eddy Simulations (LES) of polluted boundary layer clouds, and 3-dimensional radiative transfer calculations. In a second example, we show that the uncertainty of cloud retrievals can be improved considerably by exploiting the spectral information around liquid water absorption features in the near-infrared wavelength range. This is illustrated with spectral transmittance data from the NOAA International Chemistry Experiment in the Arctic LOwer Troposphere (ICEALOT, 2008). In contrast to reflected radiance, transmitted radiance is only weakly sensitive to cloud effective drop radius, and only cloud optical thickness can be obtained from the standard dual-channel technique. We show that effective radius and liquid water path can also be retrieved with the new spectral approach, and validate our results with microwave liquid water path measurements.

  6. [A remote sensing application to investigate urban endemics].

    PubMed

    Correia, Virginia Ragoni de Moraes; Monteiro, Antônio Miguel Vieira; Carvalho, Marilia Sá; Werneck, Guilherme Loureiro

    2007-05-01

    This paper presents a case study on environmental aspects related to the occurrence of visceral leishmaniasis in Teresina, Piauí, Brazil, from 1993 to 1996, in order to discuss the use of some appropriate geo-processing methods for median-resolution remote sensing images potentially useful for studying vector-borne transmissible diseases in urban areas. We present the main techniques: registration, geometric correction, restoration, fusion, segmentation, and classification. Using intra-class correlation indices applied to the proportion of area by class in the census tract, we compare four classifiers: Maxver, Bhattacharya, K-means, and Isoseg. This comparison was not devised to choose the best classifier, but to depict different classification scenarios aimed at recognizing the best identifiable image classes in urban settings. We conclude that even with limited resources, using low-cost and easily available median resolution images and free software to process and integrate information, it is possible to identify land use characteristics, potentially appropriate for analyzing urban areas exposed to environmental risk for vector-borne diseases.

  7. Remote Sensing Based Flood Mapping for Disaster Management Applications

    NASA Astrophysics Data System (ADS)

    Policelli, F.; Brakenridge, R.; Ouzounov, D. P.; Sun, J.; Slayback, D. A.; Fatoyinbo, L.

    2010-12-01

    Flooding is among the most destructive and costly natural disasters faced by modern society. The disaster management community requires flood extent information with very little latency and frequent updating. With the advent of near real time satellite data acquisition and rapid processing and distribution techniques, there is every reason to develop and deploy an automated system for near real time flood map production. Funded by a NASA Applied Sciences grant to conduct a “feasibility study”, the authors have developed the algorithms and methodology necessary to automate the production of global near real time flood maps based on remote sensing data from the MODIS instruments on the NASA AQUA and TERRA satellites. A number of challenges to developing a useful product have been addressed by this applied research, including minimizing product latency, identifying water in the data scenes and distinguishing flood water from “normal” water levels, minimizing the impact of data loss due to cloud and cloud shadow, and providing context. We provide an overview of the data sources used, the algorithms employed, the processing techniques, the initial results, and the validation approach.

  8. Flexible pH-Sensing Hydrogel Fibers for Epidermal Applications

    PubMed Central

    Tamayol, Ali; Akbari, Mohsen; Zilberman, Yael; Comotto, Mattia; Lesha, Emal; Serex, Ludovic; Bagherifard, Sara; Chen, Yu; Fu, Guoqing; Ameri, Shideh Kabiri; Ruan, Weitong; Miller, Eric L.; Dokmeci, Mehmet R.; Sonkusale, Sameer

    2016-01-01

    Epidermal pH is an indication of the skin’s physiological condition. For example, pH of wound can be correlated to angiogenesis, protease activity, bacterial infection, etc. Chronic non-healing wounds are known to have an elevated alkaline environment, while healing process occurs more readily in an acidic environment. Thus, dermal patches capable of continuous monitoring of pH can be used as point-of-care systems for monitoring skin disorder and the wound healing process. Here, we present pH-responsive hydrogel fibers that can be used for long-term monitoring of epidermal wound condition. We load pH-responsive dyes into mesoporous microparticles and incorporate them into hydrogel fibers developed through microfluidic spinning. The fabricated pH-responsive microfibers are flexible and can create conformal contact with skin. The response of pH-sensitive fibers with different compositions and thicknesses are characterized. The suggested technique is scalable and can be used to fabricate hydrogel based wound dressing with a wide range of sizes. Images of the pH-sensing fibers during real-time pH measurement can be captured with a smart phone camera for convenient readout on-site. Through image processing, a quantitative pH map of the hydrogel fibers and the underlying tissue can be extracted. The developed skin dressing can act as a point-of-care device for monitoring the wound healing process. PMID:26799457

  9. Optimization of a radiative membrane for gas sensing applications

    NASA Astrophysics Data System (ADS)

    Lefebvre, Anthony; Boutami, Salim; Greffet, Jean-Jacques; Benisty, Henri

    2014-05-01

    To engineer a cheap, portable and low-power optical gas sensor, incandescent sources are more suitable than expensive quantum cascade lasers and low-efficiency light-emitting diodes. Such sources of radiation have already been realized, using standard MEMS technology, consisting in free standing circular micro-hotplates. This paper deals with the design of such membranes in order to maximize their wall-plug efficiency. Specification constraints are taken into account, including available energy per measurement and maximum power delivered by the electrical supply source. The main drawback of these membranes is known to be the power lost through conduction to the substrate, thus not converted in (useful) radiated power. If the membrane temperature is capped by technological requirements, radiative flux can be favored by increasing the membrane radius. However, given a finite amount of energy, the larger the membrane and its heat capacity, the shorter the time it can be turned on. This clearly suggests that an efficiency optimum has to be found. Using simulations based on a spatio-temporal radial profile, we demonstrate how to optimally design such membrane systems, and provide an insight into the thermo-optical mechanisms governing this kind of devices, resulting in a nontrivial design with a substantial benefit over existing systems. To further improve the source, we also consider tailoring the membrane stack spectral emissivity to promote the infrared signal to be sensed as well as to maximize energy efficiency.

  10. High T(sub c) leads for remote sensing applications

    NASA Technical Reports Server (NTRS)

    Selim, R.; Caton, R.; Buoncristiani, A. M.; Hooker, M. W.; Wise, S. A.

    1993-01-01

    Several NASA programs designed to monitor the Earth's atmosphere from space utilize infrared detectors which operate at or below 4.2 K for optimum performance. At present, the detectors are maintained at cryogenic temperatures by a stored volume of liquid helium. These detectors must be electrically linked to amplification electronics data storage instruments maintained at 80 K. The electrical connections over the temperature gradient account for approximately 20% of the total heat load on the Dewar for some systems, accelerating the boil-off of liquid helium cryogen and reducing the operational lifetime of the space-borne instruments. The recent discovery of high temperature superconductors has provided an opportunity to develop electrically conductive, thermally insulating links to bridge this thermal gradient. This paper describes the modelling of the thermal transport properties of thick film, high T(sub c) electrical bridges across a 4.2-80 K temperature gradient and the impact of such devices on a spaceborne remote sensing system.

  11. Geological applications of machine learning on hyperspectral remote sensing data

    NASA Astrophysics Data System (ADS)

    Tse, C. H.; Li, Yi-liang; Lam, Edmund Y.

    2015-02-01

    The CRISM imaging spectrometer orbiting Mars has been producing a vast amount of data in the visible to infrared wavelengths in the form of hyperspectral data cubes. These data, compared with those obtained from previous remote sensing techniques, yield an unprecedented level of detailed spectral resolution in additional to an ever increasing level of spatial information. A major challenge brought about by the data is the burden of processing and interpreting these datasets and extract the relevant information from it. This research aims at approaching the challenge by exploring machine learning methods especially unsupervised learning to achieve cluster density estimation and classification, and ultimately devising an efficient means leading to identification of minerals. A set of software tools have been constructed by Python to access and experiment with CRISM hyperspectral cubes selected from two specific Mars locations. A machine learning pipeline is proposed and unsupervised learning methods were implemented onto pre-processed datasets. The resulting data clusters are compared with the published ASTER spectral library and browse data products from the Planetary Data System (PDS). The result demonstrated that this approach is capable of processing the huge amount of hyperspectral data and potentially providing guidance to scientists for more detailed studies.

  12. Infrared laser-based sensing in medical applications

    NASA Astrophysics Data System (ADS)

    Sigrist, Markus W.; Bartlome, Richard; Gianella, Michele

    2010-01-01

    Laser-spectroscopic applications in medicine increase in importance. We present two medical applications of laser-based analyses of trace gases. The analysis of exhaled breath concerns the determination of the D/H isotope ratio after intake of a small amount of heavy water. The D/H isotope ratio can be used to deduce the total body water weight and lays the foundation for many other laser-based clinical applications. An elevated D/H ratio could be monitored in breath samples up to 30 days after ingestion of only 5 ml of D2O. A second example concerns the analysis of surgical smoke produced in minimally invasive laparoscopic surgery with electroknives. The quantitative determination of harmless and hazardous compounds down to the ppm level is demonstrated. A specific example is the presence of sevoflurane at concentrations of 80 to 300 ppm, an anesthetic, which to our knowledge is measured for the first time in an abdominal cavity.

  13. Renewable resource applications of remote sensing in the 1980's

    NASA Technical Reports Server (NTRS)

    Ragan, R. M.; Calabrese, M. A.

    1980-01-01

    A number of renewable resource applications in the areas of agriculture, land, and water are summarized; and some of the current and future research efforts designed to enhance the utility of this tool are explored. Programs to incorporate microwave sensors with higher resolutions into the resource planning and management processes are also considered. Particular consideration is given to experience with LACIE and AgRISTARS; the current hydrologic land use, watershed physiography, and snow covered area applications of Landsat; and land cover mapping with MSS technology. Needed improvements are discussed with regard to goals of fundamental research, data acquisition requirements, and data handling and merging with other data sources.

  14. Polyaniline-lead titanate composites for humidity sensing and EMI shielding applications

    NASA Astrophysics Data System (ADS)

    Manocha, Aarushi; Thomas, Jocelyn T.; Fathima, Hana; V, Suveetha; Faisal, Muhammad

    2015-06-01

    The present paper reports the humidity sensing and electromagnetic interference (EMI) shielding properties of synthesized polyaniline-lead titanate (PANi/PbTiO3) composites. The humidity sensing of the PAni/PbTiO3 composites was discussed in terms of change in direct current (DC) resistance with respect to percentage relative humidity (% RH) ranging from 20% to 90%. The EMI shielding properties of the composites were measured in the frequency range of 8-12 GHz (X-band), relevant for practical applications. The composites showed shielding effectiveness (SE) in the range -29 dB to -34 dB and the variations in the shielding effectiveness with the frequency was minimal at a fixed composition. The observed effective humidity sensing and EMI shielding properties highlights the prospects of multifunctional applications of these composites.

  15. The application of satellite remote sensing to coastal management in Singapore.

    PubMed

    Sanderson, P G

    2001-02-01

    This paper reviews the application of satellite remote sensing to management of Singapore's coastal environment. Remotely sensed data have been used for marine habitat mapping, water quality monitoring, ship and ship-wake detection, oil spill detection, red tide monitoring, and mapping of reclamation activities. While these applications clearly cover most of the range of opportunities for use of remotely sensed data in the coastal zone, there is still a need for more complete baseline studies of natural resources and habitats, and monitoring of the impacts of development on the coastal and marine environment. There is also a requirement for more management-oriented research and continued development and revision of the available datasets. Integration and exchange of information between management agencies and research groups is also an important aspect of sustainable management of Singapore's coastal environment and marine resources.

  16. A mobile-agent based wireless sensing network for structural monitoring applications

    SciTech Connect

    Taylor, Stuart G; Farinholt, Kevin M; Figueiredo, Eloi; Park, Gyuhae; Farrar, Charles R; Flynn, Eric B; Mascarenas, David L; Todd, Michael D

    2008-01-01

    A new wireless sensing network paradigm is presented for structural monitoring applications. In this approach, both power and data interrogation commands are conveyed via a mobile agent that is sent to sensor nodes to perform intended interrogations, which can alleviate several limitations of the traditional sensing networks. Furthermore, the mobile agent provides computational power to make near real-time assessments on the structural conditions. This paper will discuss such prototype systems, which are used to interrogate impedance-based sensors for structural health monitoring applications. Our wireless sensor node is specifically designed to accept various energy sources, including wireless energy transmission, and to be wirelessly triggered on an as-needed basis by the mobile agent or other sensor nodes. The capabilities of this proposed sensing network paradigm are demonstrated in the laboratory and the field.

  17. Fabrication technologies and sensing applications of graphene-based composite films: Advances and challenges.

    PubMed

    Yu, Xiaoqing; Zhang, Wensi; Zhang, Panpan; Su, Zhiqiang

    2017-03-15

    Graphene (G)-based composite materials have been widely explored for the sensing applications ascribing to their atom-thick two-dimensional conjugated structures, high conductivity, large specific surface areas and controlled modification. With the enormous advantages of film structure, G-based composite films (GCFs), prepared by combining G with different functional nanomaterials (noble metals, metal compounds, carbon materials, polymer materials, etc.), show unique optical, mechanical, electrical, chemical, and catalytic properties. Therefore, great quantities of sensors with high sensitivity, selectivity, and stability have been created in recent years. In this review, we focus on the recent advances in the fabrication technologies of GCFs and their specific sensing applications. In addition, the relationship between the properties of GCFs and sensing performance is concentrated on. Finally, the personal perspectives and key challenges of GCFs are mentioned in the hope to shed a light on their potential future research directions.

  18. Nanoporous Anodic Alumina Platforms: Engineered Surface Chemistry and Structure for Optical Sensing Applications

    PubMed Central

    Kumeria, Tushar; Santos, Abel; Losic, Dusan

    2014-01-01

    Electrochemical anodization of pure aluminum enables the growth of highly ordered nanoporous anodic alumina (NAA) structures. This has made NAA one of the most popular nanomaterials with applications including molecular separation, catalysis, photonics, optoelectronics, sensing, drug delivery, and template synthesis. Over the past decades, the ability to engineer the structure and surface chemistry of NAA and its optical properties has led to the establishment of distinctive photonic structures that can be explored for developing low-cost, portable, rapid-response and highly sensitive sensing devices in combination with surface plasmon resonance (SPR) and reflective interference spectroscopy (RIfS) techniques. This review article highlights the recent advances on fabrication, surface modification and structural engineering of NAA and its application and performance as a platform for SPR- and RIfS-based sensing and biosensing devices. PMID:25004150

  19. Nanoporous anodic alumina platforms: engineered surface chemistry and structure for optical sensing applications.

    PubMed

    Kumeria, Tushar; Santos, Abel; Losic, Dusan

    2014-07-07

    Electrochemical anodization of pure aluminum enables the growth of highly ordered nanoporous anodic alumina (NAA) structures. This has made NAA one of the most popular nanomaterials with applications including molecular separation, catalysis, photonics, optoelectronics, sensing, drug delivery, and template synthesis. Over the past decades, the ability to engineer the structure and surface chemistry of NAA and its optical properties has led to the establishment of distinctive photonic structures that can be explored for developing low-cost, portable, rapid-response and highly sensitive sensing devices in combination with surface plasmon resonance (SPR) and reflective interference spectroscopy (RIfS) techniques. This review article highlights the recent advances on fabrication, surface modification and structural engineering of NAA and its application and performance as a platform for SPR- and RIfS-based sensing and biosensing devices.

  20. Application of remote sensing to state and regional programs

    NASA Technical Reports Server (NTRS)

    Miller, W. F.; Carter, B. D.; Pettry, D. E.; Higgs, G. K.

    1977-01-01

    The problem includes data acquisition and transformation to products acceptable to the users. Optimized institutionalization of data management, product transfer, and education of the user community are also of major concern. With respect to the lattice, various structures were suggested and the fields of application are presented.

  1. Application of terrestrial microwave remote sensing to agricultural drought monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root-zone soil moisture information is a valuable diagnostic for detecting the onset and severity of agricultural drought. Current attempts to globally monitor root-zone soil moisture are generally based on the application of soil water balance models driven by observed meteorological variables. Suc...

  2. Thin film materials and devices for resistive temperature sensing applications

    NASA Astrophysics Data System (ADS)

    Basantani, Hitesh A.

    Thin films of vanadium oxide (VOx) and hydrogenated amorphous silicon (a-Si:H) are the two dominant material systems used in resistive infrared radiation detectors (microbolometers) for sensing long wave infrared (LWIR) wavelengths in the 8--14 microm range. Typical thin films of VO x (x < 2) currently used in the bolometer industry have a magnitude of temperature coefficient of resistance (TCR) between 2%/K -- 3%/K. In contrast, thin films of hydrogenated germanium (SiGe:H) have |TCR| between 3%/K to 4%/K. Devices made from either of these materials have resulted in similar device performance with NETD ≈ 25 mK. The performance of the microbolometers is limited by the electronic noise, especially 1/f noise. Therefore, regardless of the choice of bolometer sensing material and read out circuitry, manufacturers are constantly striving to reduce 1/f noise while simultaneously increasing TCR to give better signal to noise ratios in their bolometers and ultimately, better image quality with more thermal information to the end user. In this work, thin films of VOx and hydrogenated germanium (Ge:H), having TCR values > 4 %/K are investigated as potential candidates for higher sensitivity next generation of microbolometers. Thin films of VO x were deposited by Biased Target Ion Beam Deposition (BTIBD) (˜85 nm thick). Electrical characterization of lateral resistor structures showed resistivity ranging from 104 O--cm to 2.1 x 104 O--cm, TCR varying from --4%/K to --5%/K, normalized Hooge parameter (alphaH/n) of 5 x 10 -21 to 5 x 10-18 cm3. Thin films of Ge:H were deposited by plasma enhanced chemical vapor deposition (PECVD) by incorporating an increasing amount of crystal fraction in the growing thin films. Thin films of Ge:H having a mixed phase, amorphous + nanocrystalline, having a |TCR| > 6 %/K were deposited with resistivity < 2,300 O--cm and a normalized Hooge's parameter 'alphaH/n' < 2 x 10-20 cm3. Higher TCR materials are desired, however, such materials have

  3. The Application of Reflected GPS Signals to Ocean Remote Sensing

    NASA Technical Reports Server (NTRS)

    Garrison, James L.; Katzberg, Stephen J.

    1998-01-01

    The L-band broadcast signal from the Global Positioning System (GPS) which has reflected off of the sea surface is under study for use as a ocean, coastal and wetlands remote sensing tool. The reflected signal from a given GPS satellite is cross-correlated with the pseudorandom noise code uniquely identifying that satellite. The shape of this cross-correlation, ordinarily a very sharp triangle when tracking a direct line of sight signal, becomes wider and smoother as the mean square slope of the reflecting surface increases. It is proposed that the surface wind speed can be determined by matching the recorded shape of this cross-correlation to that predicted by theoretical models as a function of wind speed and direction. The significance of these effects increases with altitude of the receiver. Experimental data have been collected using a specially modified GPS receiver on aircraft and on a balloon at altitudes of up to 25 km. These data compare favorably with predictions of analytical models and demonstrate the dependence of the waveform shape on surface wind speed and receiver altitude. The advantages that this measurement technique has over conventional scatterometers is the small size, low cost and simplicity of the receiver hardware, no requirement for a transmitter, and the ability to simultaneously collect data from usually 10 or more points (from a low earth orbiting satellite). This number could if the Russian GLONASS (Global Navigation Satellite System) satellites are also considered as additional sources of radiation. Furthermore, the bistatic scattering geometry is complementary to the backscatter used by conventional scatterometers.

  4. Management impacts and remote sensing applications for water quality assessment

    NASA Astrophysics Data System (ADS)

    Thoma, David Patrick

    This research, consisting of three parts, was designed to improve understanding of non-point pollution sources in the Minnesota River Basin and how adoption of conservation tillage practice (chisel plow with about 30% residue cover) might affect non-point source pollution and crop yield from relatively flat lands in the Minnesota River Basin. The first part was a plot experiment at Lamberton, MN that tested the water quality impacts of two tillage (moldboard vs. chisel) systems, and two nutrient source (liquid hog manure vs. urea) treatments. Four years of natural surface runoff and tile drainage showed few significant differences in water quality parameters from these relatively flat plots. Annual average sediment loss from the plots was 1260 kg/ha with 1.4 kg/ha and 0.13 kg/ha associated total and dissolved P loss respectively. Annual average NO3-N losses through tile drainage were 9.1 kg/ha. Average annual corn grain yield was reduced by 0.4 Mg/ha in the four-year average yield under the chisel system. The second project investigated remote sensing and the Tillage Transect Survey (TTS) accuracy for measuring crop residue cover. When residues were grouped into 5 cover categories the TTS accuracy (49%) outperformed all models (best model = 39%), but models performed as good or better (up to 80%) than the TTS when only two cover categories were used. The third project used airborne scanning laser altimetry to determine mass wasting of bank materials from the Blue Earth River. For the time between the April 2000 and April 2001 scans, between 23 and 56% of the sediment transported by the river had its source from bank collapse and erosion. For the same period, total P contribution from riverbank erosion was 201 t.

  5. REVIEW OF REMOTE SENSING TECHNOLOGIES AND DATA FOR DOE-EM APPLICATIONS

    SciTech Connect

    M.A. Ebadian, Ph.D

    1999-01-01

    Various governmental agencies and private companies throughout the world are involved in remote sensing activities. Remote sensing is a technology used for the purpose of monitoring the earth's environment, keeping track of the earth's resources, and for agricultural vegetation monitoring, among other things. There is a vast number of remote sensing technologies and data already commercially available for different applications (e.g., environmental, agricultural, and so on). Many entities are actively conducting research to generate new technologies and data (e.g., NASA). In addition, some of DOE's offices and programs have engaged in collection and analysis of remote sensing data. It is likely that some of these technologies and data could be useful for characterization and monitoring of EM's sites. Florida International University's Hemispheric Center for Environmental Technology (FIU-HCET) has reviewed remote sensing technologies and data that are currently available or in an advanced research state. The review focused on the technologies and data applicable to the environmental field. DOE has over 800 national laboratories and sites dispersed throughout the United States. involved in some current and past remote sensing projects. FIU-HCET personnel have searched governmental agency databases (e.g., DOE, NASA), the Internet, and library resources to obtain information about these technologies and generated a user-friendly database. This review km also produced an inventory and will be available on the Internet and on a CD-ROM that can be distributed to individuals or entities requesting information on remote sensing technologies and data for environmental applications. This database contains information regarding each technology, such as type of sensor, applications, and technical specifications (e.g., resolution). To the best of FIU-HCET's knowledge, a database of this type and with this level of detail does not exist within DOE. With the amount of remote

  6. Remote sensing with simulated unmanned aircraft systems for precision agriculture applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An important application of unmanned aircraft systems (UAS) may be remote-sensing for precision agriculture, because of its ability to acquire images with very small pixel sizes from low altitude flights. The objective of this study was to compare pixel sampling with plot-scale metrics for the remo...

  7. The application of remote sensing to the development and formulation of hydrologic planning models: Executive summary

    NASA Technical Reports Server (NTRS)

    Castruccio, P. A.; Loats, H. L., Jr.; Fowler, T. R.

    1977-01-01

    Methods for the reduction of remotely sensed data and its application in hydrologic land use assessment, surface water inventory, and soil property studies are presented. LANDSAT data is used to provide quantitative parameters and coefficients to construct watershed transfer functions for a hydrologic planning model aimed at estimating peak outflow from rainfall inputs.

  8. Laser Induced Patterning of Transparent Ceramics and Metallic Thin Films for Photonic and Sensing Applications

    DTIC Science & Technology

    2014-01-31

    complex brain processes. 4. Metallic oxides are of great interest for applications such as displays and gas-sensing due to their photochromic ...Plasmonic devices (sensors, light emitters)  Chromic sensors ( photochromic , gasochromic, thermo cromic, etc.)  Waveguide by laser-induced metallic

  9. On the spectrum of radiation pressure driven optomechanical oscillator and its application in sensing

    NASA Astrophysics Data System (ADS)

    Liu, F.; Hossein-Zadeh, M.

    2013-05-01

    We study the RF spectrum of radiation pressure driven optomechanical oscillators (OMO). Using experiments and theoretical estimations we have characterized the relative amplitude of OMO's spectral components as a function of optical detuning and optical input power. We have identified a regime where the optical resonance shift can be directly extracted from the RF spectrum for resonant optical sensing applications.

  10. A selected bibliography: Remote sensing applications in land-use and land-cover inventory tasks

    USGS Publications Warehouse

    Todd, William J.

    1978-01-01

    The bibliography contains more than 300 citations of selected publications on the application of remote-sensing techniques to regional and metropolitan land-use and land-cover inventroy and analysis tasks.  Most of the citations were published between January 1968 and June 1977, although some earlier works of continuing interest are included.

  11. Application of remote sensing technology in the study of vegetation: Example of vegetation of zhejiang province in China

    NASA Astrophysics Data System (ADS)

    CHU, MengRu

    2015-04-01

    Application of remote sensing technology in the study of vegetation: Example of vegetation of zhejiang province in China Remote sensing technology , is one of the pillars of the space information technology in the 21st century ,play an important role in the study of vegetation. Vegetation coverage as an important parameter reflecting surface information, has been an important research topic in the field of vegetation remote sensing. Administrative region in zhejiang Province as the study area, use of microwave remote sensing and hyperspectral remote sensing technology, combined with the related data, to survey the area of forest resources in zhejiang Province, establishes an index system of sustainable forest resources management ability in zhejiang, and to evaluate its ability. Remote Sensing is developed in the 1960 s of the earth observation technology, comprehensive instruments refers to the application, not contact with the object detection phase, the target characteristics of electromagnetic waves recorded from a distance, through the analysis, reveals the characteristics of the object properties and changes of comprehensive detection technology. Investigation of vegetation is an important application field of remote sensing investigation. Vegetation is an important factor of environment, and also is one of the best sign to reflect the regional ecological environment, at the same times is the interpretation of soil, hydrological elements such as logo, individual or prospecting indicator plant. Vegetation imaging and interpretation of research results for environmental monitoring, biodiversity conservation, agriculture, forestry and other relevant departments to provide information services.Microwave remote sensing hyperspectral remote sensing technology and application in the research of vegetation is an important direction of remote sensing technology in the future. This paper introduces the principle of microwave remote sensing and hyperspectral remote

  12. Recent advances in M13 bacteriophage-based optical sensing applications

    NASA Astrophysics Data System (ADS)

    Kim, Inhong; Moon, Jong-Sik; Oh, Jin-Woo

    2016-10-01

    Recently, M13 bacteriophage has started to be widely used as a functional nanomaterial for various electrical, chemical, or optical applications, such as battery components, photovoltaic cells, sensors, and optics. In addition, the use of M13 bacteriophage has expanded into novel research, such as exciton transporting. In these applications, the versatility of M13 phage is a result of its nontoxic, self-assembling, and specific binding properties. For these reasons, M13 phage is the most powerful candidate as a receptor for transducing chemical or optical phenomena of various analytes into electrical or optical signal. In this review, we will overview the recent progress in optical sensing applications of M13 phage. The structural and functional characters of M13 phage will be described and the recent results in optical sensing application using fluorescence, surface plasmon resonance, Förster resonance energy transfer, and surface enhanced Raman scattering will be outlined.

  13. Suspended core photonic microcells for sensing and device applications.

    PubMed

    Wang, Chao; Jin, Wei; Ma, Jun; Wang, Ying; Ho, Hoi Lut; Shi, Xin

    2013-06-01

    In-line fiber-optic microcells are fabricated by postprocessing NKT LMA10 photonic crystal fibers. The cells are suspended core (SC) elements created by locally inflating some of the air holes while the core is being tapered. Based on a SC microcell with six air holes, a cantilever beam accelerometer is demonstrated. The microcells could also be used as gain and absorption cells for amplifier and spectroscopy applications.

  14. Chemically Modified Graphene for Sensing and Nanomechanical Applications

    DTIC Science & Technology

    2009-01-01

    chemical vapors at parts-per-billion concentrations,5 although these sensors require somewhat sophisticated electronics to realize their full...chemically (e.g., with hydrazine , N2H4) or thermally (e.g., by annealing in H2), providing a knob with which to tune the sensor response. These devices are...and mechanical devices. CMG can be fine-tuned to its specific application and has been used to produce sensors of extraordinary sensitivity

  15. DARLA: Data Assimilation and Remote Sensing for Littoral Applications

    DTIC Science & Technology

    2013-09-30

    Littoral Applications Andrew T. Jessup Chris Chickadel, Gordon Farquharson, Jim Thomson Applied Physics Laboratory University of Washington Seattle...WA 98105 phone: (206) 685-2609 fax: (206) 543-6785 email: jessup @apl.washington.edu Robert A. Holman Merrick Haller, Alexander Kuropov, Tuba...reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching

  16. DARLA: Data Assimilation and Remote Sensing for Littoral Applications

    DTIC Science & Technology

    2012-09-30

    Applications Andrew T. Jessup Chris Chickadel, Gordon Farquharson, Jim Thomson Applied Physics Laboratory, University of Washington Seattle...WA 98105 phone: ((206) 685-2609 fax: (206) 543-6785 email: jessup @apl.washington.edu Robert A. Holman Merrick Haller, Alexander Kuropov, Tuba...reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching

  17. Research-grade CMOS image sensors for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Saint-Pe, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Magnan, Pierre; Martin-Gonthier, Philippe; Corbiere, Franck; Belliot, Pierre; Estribeau, Magali

    2004-11-01

    Imaging detectors are key elements for optical instruments and sensors on board space missions dedicated to Earth observation (high resolution imaging, atmosphere spectroscopy...), Solar System exploration (micro cameras, guidance for autonomous vehicle...) and Universe observation (space telescope focal planes, guiding sensors...). This market has been dominated by CCD technology for long. Since the mid-90s, CMOS Image Sensors (CIS) have been competing with CCDs for consumer domains (webcams, cell phones, digital cameras...). Featuring significant advantages over CCD sensors for space applications (lower power consumption, smaller system size, better radiations behaviour...), CMOS technology is also expanding in this field, justifying specific R&D and development programs funded by national and European space agencies (mainly CNES, DGA and ESA). All along the 90s and thanks to their increasingly improving performances, CIS have started to be successfully used for more and more demanding space applications, from vision and control functions requiring low-level performances to guidance applications requiring medium-level performances. Recent technology improvements have made possible the manufacturing of research-grade CIS that are able to compete with CCDs in the high-performances arena. After an introduction outlining the growing interest of optical instruments designers for CMOS image sensors, this paper will present the existing and foreseen ways to reach high-level electro-optics performances for CIS. The developments and performances of CIS prototypes built using an imaging CMOS process will be presented in the corresponding section.

  18. Universal and efficient compressed sensing by spread spectrum and application to realistic Fourier imaging techniques

    NASA Astrophysics Data System (ADS)

    Puy, Gilles; Vandergheynst, Pierre; Gribonval, Rémi; Wiaux, Yves

    2012-12-01

    We advocate a compressed sensing strategy that consists of multiplying the signal of interest by a wide bandwidth modulation before projection onto randomly selected vectors of an orthonormal basis. First, in a digital setting with random modulation, considering a whole class of sensing bases including the Fourier basis, we prove that the technique is universal in the sense that the required number of measurements for accurate recovery is optimal and independent of the sparsity basis. This universality stems from a drastic decrease of coherence between the sparsity and the sensing bases, which for a Fourier sensing basis relates to a spread of the original signal spectrum by the modulation (hence the name "spread spectrum"). The approach is also efficient as sensing matrices with fast matrix multiplication algorithms can be used, in particular in the case of Fourier measurements. Second, these results are confirmed by a numerical analysis of the phase transition of the ℓ1-minimization problem. Finally, we show that the spread spectrum technique remains effective in an analog setting with chirp modulation for application to realistic Fourier imaging. We illustrate these findings in the context of radio interferometry and magnetic resonance imaging.

  19. Refractive Index Sensing with D-Shaped Plastic Optical Fibers for Chemical and Biochemical Applications

    PubMed Central

    Sequeira, Filipa; Duarte, Daniel; Bilro, Lúcia; Rudnitskaya, Alisa; Pesavento, Maria; Zeni, Luigi; Cennamo, Nunzio

    2016-01-01

    We report the optimization of the length of a D-shaped plastic optical fiber (POF) sensor for refractive index (RI) sensing from a numerical and experimental point of view. The sensing principle is based on total internal reflection (TIR). POFs with 1 mm in diameter were embedded in grooves, realized in planar supports with different lengths, and polished to remove the cladding and part of the core. All D-shaped POF sensors were tested using aqueous medium with different refractive indices (from 1.332 to 1.471) through intensity-based configuration. Results showed two different responses. Considering the refractive index (RI) range (1.33–1.39), the sensitivity and the resolution of the sensor were strongly dependent on the sensing region length. The highest sensitivity (resolution of 6.48 × 10−3 refractive index units, RIU) was obtained with 6 cm sensing length. In the RI range (1.41–1.47), the length of the sensing region was not a critical aspect to obtain the best resolution. These results enable the application of this optical platform for chemical and biochemical evanescent field sensing. The sensor production procedure is very simple, fast, and low-cost. PMID:27983608

  20. Application of the Development in Environment Measurement and Sensibility Nano-Sensing

    NASA Astrophysics Data System (ADS)

    Noda, Kazutoshi; Aizawa, Hidenobu

    Recently, environmental pollution is social problem with nano materials and food contamination is a new social problem. On the other hand, the complaint related to the offensive odor in Japan exceeded 20,000 affairs in 1998, and these problems are not solved. The odor sensing system for detecting and control an offensive odor at an early stage is required. The sensing system using the sense of odor known as one of the fifth senses of human is proposed to these demands. Especially as for e-NOSE system, application will be expected from now on in many fields, such as medical diagnosis, health monitoring, environment, food, robot and a car. The sensing technology in which an electrochemical sensor called quartz crystal microbalance (QCM) is mainly used is making detection mechanisms, such as an electrode and a detection thin film on the nano-level. Therefore, detection films of sensor depend on the characteristic of the sensing devices using on material and processing technology. That the new technology sensor is asked can detect extremely low concentration from ppm to ppb level, and it is the sensor with low influence of environment, such as a gas of the outside for detection, temperature and humidity.

  1. Label-free optical resonant sensors for biochemical applications

    NASA Astrophysics Data System (ADS)

    Ciminelli, Caterina; Campanella, Clarissa Martina; Dell'Olio, Francesco; Campanella, Carlo Edoardo; Armenise, Mario Nicola

    2013-03-01

    For a number of years, the scientific community has been paying growing attention to the monitoring and enhancement of public health and the quality of life through the detection of all dangerous agents for the human body, including gases, proteins, virus, and bacterial agents. When these agents are detected through label-free biochemical sensors, the molecules are not modified structurally or functionally by adding fluorescent or radioactive dyes. This work focuses on label-free optical ring resonator-based configurations suited for bio-chemical sensing, highlighting their physical aspects and specific applications. Resonant wavelength shift and the modal splitting occurring when the analyte interacts with microresonant structures are the two major physical aspects analyzed in this paper. Competitive optical platforms proposed in the literature are also illustrated together with their properties and performance.

  2. ASPIS, A Flexible Multispectral System for Airborne Remote Sensing Environmental Applications

    PubMed Central

    Papale, Dario; Belli, Claudio; Gioli, Beniamino; Miglietta, Franco; Ronchi, Cesare; Vaccari, Francesco Primo; Valentini, Riccardo

    2008-01-01

    Airborne multispectral and hyperspectral remote sensing is a powerful tool for environmental monitoring applications. In this paper we describe a new system (ASPIS) composed by a 4-CCD spectral sensor, a thermal IR camera and a laser altimeter that is mounted on a flexible Sky-Arrow airplane. A test application of the multispectral sensor to estimate durum wheat quality is also presented. PMID:27879875

  3. Paper as a platform for sensing applications and other devices: a review.

    PubMed

    Mahadeva, Suresha K; Walus, Konrad; Stoeber, Boris

    2015-04-29

    Paper is a ubiquitous material that has various applications in day to day life. A sheet of paper is produced by pressing moist wood cellulose fibers together. Paper offers unique properties: paper allows passive liquid transport, it is compatible with many chemical and biochemical moieties, it exhibits piezoelectricity, and it is biodegradable. Hence, paper is an attractive low-cost functional material for sensing devices. In recent years, researchers in the field of science and engineering have witnessed an exponential growth in the number of research contributions that focus on the development of cost-effective and scalable fabrication methods and new applications of paper-based devices. In this review article, we highlight recent advances in the development of paper-based sensing devices in the areas of electronics, energy storage, strain sensing, microfluidic devices, and biosensing, including piezoelectric paper. Additionally, this review includes current limitations of paper-based sensing devices and points out issues that have limited the commercialization of some of the paper-based sensing devices.

  4. Hyperspectral remote sensing for water quality applications in Guatemala

    NASA Astrophysics Data System (ADS)

    Flores Cordova, A. I.; Christopher, S. A.; Irwin, D.

    2013-12-01

    Water quality measurements are relevant to control and prevent the pollution of surface water essential for human use. Previous studies have used standard methods of water sampling to estimate water quality parameters. Nevertheless those methods are extremely expensive and time-consuming and do not provide information for an entire water body. Hence it is important to implement techniques that allow for the monitoring of water quality parameters in a timely and cost-effective manner, and remote sensing represents a feasible alternative. This study focuses on the largest algal bloom affecting Lake Atitlan, located in Guatemala, by using the hyperspectral sensor Hyperion on board the EO-1 satellite. This algal bloom had a life span that extended for a little more than a month and had a maximum coverage of approximately 40% of the lake's 137 square kilometer surface. This algal bloom occurred at the end of the year 2009, with November being the most critical month. Different satellite sensors were used to monitor the extent of the algal bloom, including Landsat Enhanced Thematic Mapper Plus (ETM+), the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Advanced Land Imager (ALI). However, Hyperion images were used to distinguish the characteristics of the vegetation populating the algal bloom. Hyperion satellite images provided a more complete spectral profile of the algal bloom affecting the lake due to its high spectral resolution characteristics. This enabled the identification of unique peaks of reflectance and absorption features of the spectral signature obtained from the algal bloom. The algal bloom was formed mainly by the cyanobacteria Lyngbya robusta. Hyperion satellite images were used to characterize the algal bloom and the unique pigments of cyanobacteria such as phycocyanin. Atmospheric correction was critical to obtain the pure reflectance of the algal bloom and differentiate the spectral features unique to the cyanobacteria

  5. LAnd surface remote sensing Products VAlidation System (LAPVAS) and its preliminary application

    NASA Astrophysics Data System (ADS)

    Lin, Xingwen; Wen, Jianguang; Tang, Yong; Ma, Mingguo; Dou, Baocheng; Wu, Xiaodan; Meng, Lumin

    2014-11-01

    The long term record of remote sensing product shows the land surface parameters with spatial and temporal change to support regional and global scientific research widely. Remote sensing product with different sensors and different algorithms is necessary to be validated to ensure the high quality remote sensing product. Investigation about the remote sensing product validation shows that it is a complex processing both the quality of in-situ data requirement and method of precision assessment. A comprehensive validation should be needed with long time series and multiple land surface types. So a system named as land surface remote sensing product is designed in this paper to assess the uncertainty information of the remote sensing products based on a amount of in situ data and the validation techniques. The designed validation system platform consists of three parts: Validation databases Precision analysis subsystem, Inter-external interface of system. These three parts are built by some essential service modules, such as Data-Read service modules, Data-Insert service modules, Data-Associated service modules, Precision-Analysis service modules, Scale-Change service modules and so on. To run the validation system platform, users could order these service modules and choreograph them by the user interactive and then compete the validation tasks of remote sensing products (such as LAI ,ALBEDO ,VI etc.) . Taking SOA-based architecture as the framework of this system. The benefit of this architecture is the good service modules which could be independent of any development environment by standards such as the Web-Service Description Language(WSDL). The standard language: C++ and java will used as the primary programming language to create service modules. One of the key land surface parameter, albedo, is selected as an example of the system application. It is illustrated that the LAPVAS has a good performance to implement the land surface remote sensing product

  6. Integrating Spray Plane-Based Remote Sensing and Rapid Image Processing with Variable-Rate Aerial Application.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A remote sensing and variable rate application system was configured for agricultural aircraft. This combination system has the potential of providing a completely integrated solution for all aspects of aerial site-specific application and includes remote sensing, image processing and georegistratio...

  7. Thin Film Materials and Devices for Resistive Temperature Sensing Applications

    DTIC Science & Technology

    2015-05-21

    plasma enhanced atomic layer deposition (PEALD) with help from Yiyang Gong from the department of Electrical Engineering. A 32 nm of Al2O3 was...on Thin Film Physics and Applications, Proc. of SPIE Vol. 9068, 2013. [26] D. Zhao, Plasma-enhanced Atomic Layer Deposition Zinc Oxide Flexible... deposition of Si:H and SiGe:H 25 thin films, thin films of Ge:H also show a decrease in the thickness of amorphous bulk layer prior to the

  8. Integrated microsystems for optical sensing and imaging applications

    NASA Astrophysics Data System (ADS)

    Kleindienst, Roman; Sinzinger, Stefan

    2016-03-01

    Compact optical systems generally form the backbone of integrated optoelectronic microsystems. Miniaturization as well as integration requirements result in system configurations with folded optical axis such as in planar integrated freespace optics. For optimum performance in such systems geometries, the surface profiles of the corresponding optical elements deviate from classical spherical or aspherical shapes. Optimized plane-symmetric or freeform optical elements are required instead. We discuss design, fabrication and characterization of freeform optical elements for the integration of optical microsystems. The systems performance is demonstrated for imaging as well as sensor applications.

  9. Environment Sensing Merocyanine Dyes for Live Cell Imaging Applications

    PubMed Central

    MacNevin, Christopher J.; Gremyachinskiy, Dmitriy; Hsu, Chia-Wen; Li, Li; Rougie, Marie; Davis, Tamara T.; Hahn, Klaus M.

    2013-01-01

    Fluorescent biosensors based on environmentally sensitive dyes enable visualization and quantification of endogenous protein activation within living cells. Merocyanine dyes are especially useful for live cell imaging applications as they are extraordinarily bright, have long wavelengths of excitation and emission, and can exhibit readily detectable fluorescence changes in response to environment. We sought to systematically examine the effects of structural features on key photophysical properties, including dye brightness, environmental responsiveness, and photostability, through the synthesis of a library of 25 merocyanine dyes, derived from combinatorial reaction of 5 donor and 5 acceptor heterocycles. Four of these dyes showed optimal properties for specific imaging applications and were subsequently prepared with reactive side chains and enhanced aqueous solubility using a one-pot synthetic method. The new dyes were then applied within a biosensor design for Cdc42 activation, where dye mero60 showed a remarkable 1470% increase in fluorescence intensity on binding activated Cdc42 in vitro. The dye-based biosensors were used to report activation of endogenous Cdc42 in living cells. PMID:23297747

  10. Autonomous control systems: applications to remote sensing and image processing

    NASA Astrophysics Data System (ADS)

    Jamshidi, Mohammad

    2001-11-01

    One of the main challenges of any control (or image processing) paradigm is being able to handle complex systems under unforeseen uncertainties. A system may be called complex here if its dimension (order) is too high and its model (if available) is nonlinear, interconnected, and information on the system is uncertain such that classical techniques cannot easily handle the problem. Examples of complex systems are power networks, space robotic colonies, national air traffic control system, and integrated manufacturing plant, the Hubble Telescope, the International Space Station, etc. Soft computing, a consortia of methodologies such as fuzzy logic, neuro-computing, genetic algorithms and genetic programming, has proven to be powerful tools for adding autonomy and semi-autonomy to many complex systems. For such systems the size of soft computing control architecture will be nearly infinite. In this paper new paradigms using soft computing approaches are utilized to design autonomous controllers and image enhancers for a number of application areas. These applications are satellite array formations for synthetic aperture radar interferometry (InSAR) and enhancement of analog and digital images.

  11. Remote Sensing Applications for Antrim Shale Fracture Characterization, Michigan Basin

    NASA Technical Reports Server (NTRS)

    Kuuskraa, Vello

    1997-01-01

    Advanced Research International (ARI) sent seven staff members to the 1997 International Coalbed Methane Symposium, held in Tuscaloosa, Alabama from May 12-17. ARI gave a short course on risk reduction strategies, including remote fracture detection, for coalbed methane exploration and development that was attended by about 25 coalbed methane industry professionals; and presented a paper entitled 'Optimizing coalbed methane cavity completion operations with the application of a new discrete element model.' We met with many potential clients and discussed our fracture detection services. China has vast coalbed methane resources, but is still highly dependent on coal-and wood-burning. This workshop, sponsored by the United Nations, was intended to help China develop its less-polluting energy reserves. ARI is successfully finding new applications for its fracture detection services. Coalbed methane exploration became an important market in this quarter, with the inception of a joint industry/government collaboration between ARI, Texaco and DOE to use remote fracture detection to identify areas with good potential for coalbed methane production in the Ferron Coal Trend of central Utah. Geothermal energy exploration is another emerging market for ARI, where fracture detection is applied to identify pathways for groundwater recharge, movement, and the locations of potential geothermal reservoirs. Ari continued work on two industry/government collaborations to demonstrate fracture detection to potential clients. Also completed the technical content layout for multimedia CD-ROM that describes our remote fracture detection services.

  12. Applications of compressed sensing to coherent radar imaging

    NASA Astrophysics Data System (ADS)

    Zhu, Qian

    Although meteoroids fragmentation has been observed and studied in the optical meteor community since the 1950s, no definitive fragmentation mechanisms for the relatively small meteoroids (mass .10.4 kg) have been proposed. This is in part due to the lack of observations to constrain physical mechanisms of the fragmentation process. While it is challenging to record fragmentation in faint optical meteors, observing meteors using HPLA (High-Power, Large- Aperture) radars can yield considerable information especially when employing coherent radar imaging (CRI). CRI can potentially resolve the fragmentation process in three spatial dimensions by monitoring the evolution of the plasma in the meteor head-echo, flare-echo, and trail-echo regions. On the other hand, the emerging field of compressed sensing (CS) provides a novel paradigm for signal acquisition and processing. Furthermore, it has been, and continues to be, applied with great success in radar systems, offering various benefits such as better resolution compared to traditional techniques, reduced resource requirements, and so forth. In this dissertation, we examine how CS can be incorporated to improve the performance of CRI using HPLA radars. We propose a single CS-based formalism that enables the threedimensions (3D).the range, Doppler frequency, and cross range (represented by the direction cosines) domain.coherent imaging. We show that the CS-based CRI can not only reduce the system costs and decrease the needed number of baselines by spatial sparse sampling, which can be much less than the number required by Nyquist-Shannon sampling criterion, but also achieve high resolution for target detection. We implement the CS-based CRI for meteor studies with observations conducted at the Jicamarca Radio Observatory (JRO) in Peru. We present the unprecedented resolved details of meteoroids fragmentation, including both along and transverse to the trajectory spreading of the developing plasma, apparently caused by

  13. Wavefront phase retrieval with multi-aperture Zernike filter for atmospheric sensing and adaptive optics applications

    NASA Astrophysics Data System (ADS)

    Bordbar, Behzad; Farwell, Nathan H.; Vorontsov, Mikhail A.

    2016-09-01

    A novel scintillation resistant wavefront sensor based on a densely packed array of classical Zernike filters, referred to as the multi-aperture Zernike wavefront sensor (MAZ-WFS), is introduced and analyzed through numerical simulations. Wavefront phase reconstruction in the MAZ-WFS is performed using iterative algorithms that are optimized for phase aberration sensing in severe atmospheric turbulence conditions. The results demonstrate the potential of the MAZ-WFS for high-resolution retrieval of turbulence-induced phase aberrations in strong scintillation conditions for atmospheric sensing and adaptive optics applications.

  14. The application of remote sensing to resource management and environmental quality programs in Kansas

    NASA Technical Reports Server (NTRS)

    Barr, B. G.

    1975-01-01

    Specific assistance to state agencies and public bodies on over 15 remote sensing projects concerned with (1) urban and regional analysis, (2) rural development, and (3) habitat management and environmental analysis is discussed. Specific problems of officials are considered and a basis for communication by demonstration is provided. In addition to data products in support of specific agency projects; consultation and training in use of satellite and aircraft imagery is provided to personnel from several state, regional, and county agencies. Effective communication and confidence is established through these efforts and users now routinely seek information and advice about the application of remote sensing technology to solution of their agency problems.

  15. Stainless steel component with compressed fiber Bragg grating for high temperature sensing applications

    NASA Astrophysics Data System (ADS)

    Jinesh, Mathew; MacPherson, William N.; Hand, Duncan P.; Maier, Robert R. J.

    2016-05-01

    A smart metal component having the potential for high temperature strain sensing capability is reported. The stainless steel (SS316) structure is made by selective laser melting (SLM). A fiber Bragg grating (FBG) is embedded in to a 3D printed U-groove by high temperature brazing using a silver based alloy, achieving an axial FBG compression of 13 millistrain at room temperature. Initial results shows that the test component can be used for up to 700°C for sensing applications.

  16. Applications of remote sensing for water quality and biological measurements in coastal waters

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; Harriss, R. C.

    1979-01-01

    Potential applications of remote sensing technology to the study of coastal marine environments are reviewed, emphasizing water quality and biological measurements. Parameters measurable by airborne or spaceborne remote sensors include particulates, measured by visual or multispectral photography, chlorophyll a, measured by the Ocean Color Scanner or Coastal Zone Color Scanner, temperature distributions, by IR or microwave sensors, and salinity, by means of microwave radiometers. Research projects in which wide area synoptic or repetitive remote sensing can make a major contribution include the study of estuarine and continental shelf sediment transport dynamics, marine pollutant transport, marine phytoplankton dynamics and ocean fronts.

  17. UV-laser-inscribed fiber Bragg gratings in photonic crystal fibers and sensing applications

    NASA Astrophysics Data System (ADS)

    Wang, Yiping; Bartelt, Hartmut; Ecke, Wolfgang; Willsch, Reinhardt; Kobelke, Jens

    2011-11-01

    We report about fiber Bragg gratings (FBGs) inscribed in two different types of small-core Ge-doped photonic crystal fibers with a UV laser. Sensing applications of the FBGs were systematically investigated by means of demonstrating the responses of Bragg wavelengths to temperature, strain, bending, and transverse-loading. The Bragg wavelength of the FBGs shifts toward longer wavelengths with increasing temperature, tensile strain, and transverse-loading. Moreover, the bending and transverse-loading properties of the FBGs are sensitive to the fiber orientations. The reasonable analyses for these sensing properties also are presented.

  18. Upconversion Nanomaterials: Synthesis, Mechanism, and Applications in Sensing

    PubMed Central

    Chen, Jiao; Zhao, Julia Xiaojun

    2012-01-01

    Upconversion is an optical process that involves the conversion of lower-energy photons into higher-energy photons. It has been extensively studied since mid-1960s and widely applied in optical devices. Over the past decade, high-quality rare earth-doped upconversion nanoparticles have been successfully synthesized with the rapid development of nanotechnology and are becoming more prominent in biological sciences. The synthesis methods are usually phase-based processes, such as thermal decomposition, hydrothermal reaction, and ionic liquids-based synthesis. The main difference between upconversion nanoparticles and other nanomaterials is that they can emit visible light under near infrared irradiation. The near infrared irradiation leads to low autofluorescence, less scattering and absorption, and deep penetration in biological samples. In this review, the synthesis of upconversion nanoparticles and the mechanisms of upconversion process will be discussed, followed by their applications in different areas, especially in the biological field for biosensing. PMID:22736958

  19. Inexpensive photonic crystal spectrometer for colorimetric sensing applications.

    PubMed

    Bryan, Kurt M; Jia, Zhang; Pervez, Nadia K; Cox, Marshall P; Gazes, Michael J; Kymissis, Ioannis

    2013-02-25

    Photonic crystal spectrometers possess significant size and cost advantages over traditional grating-based spectrometers. In a previous work [Pervez, et al, Opt. Express 18, 8277 (2010)] we demonstrated a proof of this concept by implementing a 9-element array photonic crystal spectrometer with a resolution of 20 nm. Here we demonstrate a photonic crystal spectrometer with improved performance. The dependence of the spectral recovery resolution on the number of photonic crystal arrays and the width of the response function from each photonic crystal is investigated. A mathematical treatment, regularization based on known information of the spectrum, is utilized in order to stabilize the spectral estimation inverse problem and achieve improved spectral recovery. Colorimetry applications, the measurement of CIE 1931 chromaticities and the color rendering index, are demonstrated with the improved spectrometer.

  20. Optofluidic devices and applications in photonics, sensing and imaging.

    PubMed

    Pang, Lin; Chen, H Matthew; Freeman, Lindsay M; Fainman, Yeshaiahu

    2012-10-07

    Optofluidics integrates the fields of photonics and microfluidics, providing new freedom to both fields and permitting the realization of optical and fluidic property manipulations at the chip scale. Optofluidics was formed only after many breakthroughs in microfluidics, as understanding of fluid behaviour at the micron level enabled researchers to combine the advantages of optics and fluids. This review describes the progress of optofluidics from a photonics perspective, highlighting various optofluidic aspects ranging from the device's property manipulation to an interactive integration between optics and fluids. First, we describe photonic elements based on the functionalities that enable fluid manipulation. We then discuss the applications of optofluidic biodetection with an emphasis on nanosensing. Next, we discuss the progress of optofluidic lenses with an emphasis on its various architectures, and finally we conceptualize on where the field may lead.

  1. Upconversion nanomaterials: synthesis, mechanism, and applications in sensing.

    PubMed

    Chen, Jiao; Zhao, Julia Xiaojun

    2012-01-01

    Upconversion is an optical process that involves the conversion of lower-energy photons into higher-energy photons. It has been extensively studied since mid-1960s and widely applied in optical devices. Over the past decade, high-quality rare earth-doped upconversion nanoparticles have been successfully synthesized with the rapid development of nanotechnology and are becoming more prominent in biological sciences. The synthesis methods are usually phase-based processes, such as thermal decomposition, hydrothermal reaction, and ionic liquids-based synthesis. The main difference between upconversion nanoparticles and other nanomaterials is that they can emit visible light under near infrared irradiation. The near infrared irradiation leads to low autofluorescence, less scattering and absorption, and deep penetration in biological samples. In this review, the synthesis of upconversion nanoparticles and the mechanisms of upconversion process will be discussed, followed by their applications in different areas, especially in the biological field for biosensing.

  2. A hybrid silicon-PDMS optofluidic platform for sensing applications

    PubMed Central

    Testa, Genni; Persichetti, Gianluca; Sarro, Pasqualina M.; Bernini, Romeo

    2014-01-01

    A hybrid silicon-poly(dimethysiloxane) (PDMS) optofluidic platform for lab-on-a-chip applications is proposed. A liquid-core waveguide with a self-aligned solid-core waveguide and a microfluidic device are integrated with a multilayer approach, resulting in a three-dimensional device assembly. The optofluidic layer was fabricated with a hybrid silicon-polymer technology, whereas the microfluidic layer was fabricated with a soft lithography technique. The combination of different materials and fabrication processes allows a modular approach, enabling both the benefits from the high optical quality achievable with silicon technology and the low cost of polymer processing. The proposed chip has been tested for fluorescence measurements on Cy5 water solutions, demonstrating the possibility to obtain a limit of detection of 2.5 nM. PMID:24575337

  3. Adaptive Sensing of Time Series with Application to Remote Exploration

    NASA Technical Reports Server (NTRS)

    Thompson, David R.; Cabrol, Nathalie A.; Furlong, Michael; Hardgrove, Craig; Low, Bryan K. H.; Moersch, Jeffrey; Wettergreen, David

    2013-01-01

    We address the problem of adaptive informationoptimal data collection in time series. Here a remote sensor or explorer agent throttles its sampling rate in order to track anomalous events while obeying constraints on time and power. This problem is challenging because the agent has limited visibility -- all collected datapoints lie in the past, but its resource allocation decisions require predicting far into the future. Our solution is to continually fit a Gaussian process model to the latest data and optimize the sampling plan on line to maximize information gain. We compare the performance characteristics of stationary and nonstationary Gaussian process models. We also describe an application based on geologic analysis during planetary rover exploration. Here adaptive sampling can improve coverage of localized anomalies and potentially benefit mission science yield of long autonomous traverses.

  4. An Adaptive Web-Based Learning Environment for the Application of Remote Sensing in Schools

    NASA Astrophysics Data System (ADS)

    Wolf, N.; Fuchsgruber, V.; Riembauer, G.; Siegmund, A.

    2016-06-01

    Satellite images have great educational potential for teaching on environmental issues and can promote the motivation of young people to enter careers in natural science and technology. Due to the importance and ubiquity of remote sensing in science, industry and the public, the use of satellite imagery has been included into many school curricular in Germany. However, its implementation into school practice is still hesitant, mainly due to lack of teachers' know-how and education materials that align with the curricula. In the project "Space4Geography" a web-based learning platform is developed with the aim to facilitate the application of satellite imagery in secondary school teaching and to foster effective student learning experiences in geography and other related subjects in an interdisciplinary way. The platform features ten learning modules demonstrating the exemplary application of original high spatial resolution remote sensing data (RapidEye and TerraSAR-X) to examine current environmental issues such as droughts, deforestation and urban sprawl. In this way, students will be introduced into the versatile applications of spaceborne earth observation and geospatial technologies. The integrated web-based remote sensing software "BLIF" equips the students with a toolset to explore, process and analyze the satellite images, thereby fostering the competence of students to work on geographical and environmental questions without requiring prior knowledge of remote sensing. This contribution presents the educational concept of the learning environment and its realization by the example of the learning module "Deforestation of the rainforest in Brasil".

  5. Hybrid plasmonic microcavity with an air-filled gap for sensing applications

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Liu, Binbin; Wu, Genzhu; Chen, Daru

    2016-12-01

    In this paper, a novel hybrid plasmonic microcavity with air-filled regions in the low-permittivity dielectric gap is proposed for sensing applications. Compared with the conventional structure with homogeneous gap, the introduced air-filled regions could improve the key modal characteristics of the hybrid mode. Simulation results reveal that this kind of hybrid microcavity maintains low loss with high quality factor ∼3062, and high field confinement with small mode volume 0.891 μm3. Moreover, in the sensing applications, this hybrid microcavity features simultaneously large refractive index sensitivity of 100 nm/RIU (refractive index unit) and relatively high quality factor of 3062. Hence, it shows that the hybrid plasmonic microcavity has potential applications in ultra-compact refractive index sensor.

  6. Rapid On-Site Formation of a Free-Standing Flexible Optical Link for Sensing Applications

    PubMed Central

    Barrios, Carlos Angulo

    2016-01-01

    An optical link, based on a conventional Scotch tape waveguide, for sensing applications requiring rapid on-site assembly is proposed and demonstrated. The flexible waveguide contains an integrated aluminum one-dimensional grating coupler that, when stuck on the radiative surface of a light emitting device, allows light to be coupled in and transmitted through the tape, whose tip end is, in turn, adhered onto the photosensitive surface of a photodetector. The (de)coupling approaches exhibit high alignment tolerances that permit the formation of a free-standing flexible optical connection between surface-normal optoelectronic devices without the need of specialized equipment. As the first demonstration of a sensing application, the proposed optical link is easily configured as a cost-effective intensity-based refractometric sensor for liquid detection, which can be applicable to on-site quality and process control of, for example, beverages. PMID:27782049

  7. A remote sensing applications update: Results of interviews with Earth Observations Commercialization Program (EOCAP) participants

    NASA Technical Reports Server (NTRS)

    Mcvey, Sally

    1991-01-01

    Earth remote sensing is a uniquely valuable tool for large-scale resource management, a task whose importance will likely increase world-wide through the foreseeable future. NASA research and engineering have virtually created the existing U.S. system, and will continue to push the frontiers, primarily through Earth Observing System (EOS) instruments, research, and data and information systems. It is the researchers' view that the near-term health of remote sensing applications also deserves attention; it seems important not to abandon the system or its clients. The researchers suggest that, like its Landsat predecessor, a successful Earth Observing System program is likely to reinforce pressure to 'manage' natural resources, and consequently, to create more pressure for Earth Observations Commercialization (EOCAP) type applications. The current applications programs, though small, are valuable because of their technical and commercial results, and also because they support a community whose contributions will increase along with our ability to observe the Earth from space.

  8. Theoretical Studies of Spectroscopic Line Mixing in Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Boulet, C.; Tipping, R. H.

    2015-01-01

    The phenomenon of collisional transfer of intensity due to line mixing has an increasing importance for atmospheric monitoring. From a theoretical point of view, all relevant information about the collisional processes is contained in the relaxation matrix where the diagonal elements give half-widths and shifts, and the off-diagonal elements correspond to line interferences. For simple systems such as those consisting of diatom-atom or diatom-diatom, accurate fully quantum calculations based on interaction potentials are feasible. However, fully quantum calculations become unrealistic for more complex systems. On the other hand, the semi-classical Robert-Bonamy (RB) formalism, which has been widely used to calculate half-widths and shifts for decades, fails in calculating the off-diagonal matrix elements. As a result, in order to simulate atmospheric spectra where the effects from line mixing are important, semi-empirical fitting or scaling laws such as the ECS (Energy-Corrected Sudden) and IOS (Infinite-Order Sudden) models are commonly used. Recently, while scrutinizing the development of the RB formalism, we have found that these authors applied the isolated line approximation in their evaluating matrix elements of the Liouville scattering operator given in exponential form. Since the criterion of this assumption is so stringent, it is not valid for many systems of interest in atmospheric applications. Furthermore, it is this assumption that blocks the possibility to calculate the whole relaxation matrix at all. By eliminating this unjustified application, and accurately evaluating matrix elements of the exponential operators, we have developed a more capable formalism. With this new formalism, we are now able not only to reduce uncertainties for calculated half-widths and shifts, but also to remove a once insurmountable obstacle to calculate the whole relaxation matrix. This implies that we can address the line mixing with the semi-classical theory based on

  9. Direct laser deposition of nanostructured tungsten oxide for sensing applications

    NASA Astrophysics Data System (ADS)

    Palla-Papavlu, Alexandra; Filipescu, Mihaela; Schneider, Christof W.; Antohe, Stefan; Ossi, Paolo M.; Radnóczi, György; Dinescu, Maria; Wokaun, Alexander; Lippert, Thomas

    2016-05-01

    Nanostructured tungsten trioxide (WO3) thin films are deposited by pulsed laser deposition (PLD) and radio-frequency (RF) assisted PLD onto interdigitated sensor structures. Structural characterization by x-ray diffraction and Raman spectroscopy shows the WO3 films are polycrystalline, with a pure monoclinic phase for the PLD grown films. The as-fabricated WO3 sensors are tested for ammonia (NH3) detection, by measuring the electrical response to NH3 at different temperatures. Sensors based on WO3 deposited by RF-PLD do not show any response to NH3. In contrast, sensors fabricated by PLD operating at 100 °C and 200 °C show a slow recovery time whilst at 300 °C, these sensors are highly sensitive in the low ppm range with a recovery time in the range of a few seconds. The microstructure of the films is suggested to explain their excellent electrical response. Columnar WO3 thin films are obtained by both deposition methods. However, the WO3 films grown by PLD are porous, (which may allow NH3 molecules to diffuse through the film) whereas RF-PLD films are dense. Our results highlight that WO3 thin films deposited by PLD can be applied for the fabrication of gas sensors with a performance level required for industrial applications.

  10. Terahertz sources and detectors and their application to biological sensing.

    PubMed

    Crowe, Thomas W; Globus, Tatiana; Woolard, Dwight L; Hesler, Jeffrey L

    2004-02-15

    Terahertz spectroscopy has long been used as an important measurement tool in fields such as radio astronomy, physical chemistry, atmospheric studies and plasma research. More recently terahertz technology has been used to develop an exciting new technique to investigate the properties of a wide range of biological materials. Although much research remains before a full understanding of the interaction between biomaterials and terahertz radiation is developed, these initial studies have created a compelling case for further scientific study. Also, the potential development of practical tools to detect and identify biological materials such as biological-warfare agents and food contaminants, or of medical diagnostic tools, is driving the need for improved terahertz technology. In particular, improved terahertz sources and detectors that can be used in practical spectroscopy systems are needed. This paper overviews some of the recent measurements of the terahertz spectra of biomaterials and the ongoing efforts to create an all-solid-state technology suitable not only for improved scientific experiments but also for military and commercial applications.

  11. High resolution remote sensing image processing technology and its application to uranium geology

    NASA Astrophysics Data System (ADS)

    Zhang, Jie-lin

    2008-12-01

    Hyperspectral and high spatial resolution remote sensing technology take important role in uranium geological application, data mining and knowledge discovery methods are key to character spectral and spatial information of uranium mineralization factors. Based on curvelet transform algorithm, this paper developed the image fusion technology of hyperspectral (Hyperion) and high spatial data (SPOT5), and results demonstrated that fusion image had advantage in denoising, enhancing and information identification. Used discrete wavelet transform, the spectral parameters of uranium mineralization factors were acquired, the spectral identification pedigrees of typical quadrivalence and hexavalence uranium minerals were established. Furthermore, utilizing hyperspectral remote sensing observation technology, this paper developed hyperspectral logging of drill cores and trench, it can quickly processed lots of geological and spectral information, and the relationship between radioactive intensity and abnormal spectral characteristics of Fe3+ was established. All those provided remote sensing technical bases to uranium geology, and the better results have been achieved in Taoshan uranium deposits in south China.

  12. Aerospace remote sensing of the coastal zone for water quality and biotic productivity applications

    NASA Technical Reports Server (NTRS)

    Pritchard, E. B.; Harriss, R. C.

    1981-01-01

    Remote sensing can provide the wide area synoptic coverage of surface waters which is required for studies of such phenomena as river plume mixing, phytoplankton dynamics, and pollutant transport and fate, but which is not obtainable by conventional oceanographic techniques. The application of several remote sensors (aircraftborne and spacecraftborne multispectral scanners, passive microwave radiometers, and active laser systems) to coastal zone research is discussed. Current measurement capabilities (particulates, chlorophyll a, temperature, salinity, ocean dumped materials, other pollutants, and surface winds and roughness) are defined and the results of recent remote sensing experiments conducted in the North Atlantic coastal zone are presented. The future development of remote sensing must rely on an integrated laboratory research program in optical physics. Recent results indicate the potential for separation of particulates into subsets by remote sensors.

  13. Application of remote sensing to monitoring and studying dispersion in ocean dumping

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; Ohlhorst, C. W.

    1981-01-01

    Remotely sensed wide area synoptic data provides information on ocean dumping that is not readily available by other means. A qualitative approach has been used to map features, such as river plumes. Results of quantitative analyses have been used to develop maps showing quantitative distributions of one or more water quality parameters, such as suspended solids or chlorophyll a. Joint NASA/NOAA experiments have been conducted at designated dump areas in the U.S. coastal zones to determine the applicability of aircraft remote sensing systems to map plumes resulting from ocean dumping of sewage sludge and industrial wastes. A second objective is related to the evaluation of previously developed quantitative analysis techniques for studying dispersion of materials in these plumes. It was found that plumes resulting from dumping of four waste materials have distinctive spectral characteristics. The development of a technology for use in a routine monitoring system, based on remote sensing techniques, is discussed.

  14. Parallel K-dimensional tree classification based on semi-matroid structure for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Chang, Yang-Lang; Chen, Zhi-Ming; Liu, Jin-Nan; Chang, Lena; Fang, Jyh Perng

    2010-08-01

    Satellite remote sensing images can be interpreted to provide important information of large-scale natural resources, such as lands, oceans, mountains, rivers, forests and minerals for Earth observations. Recent advances of remote sensing technologies have improved the availability of satellite imagery in a wide range of applications including high dimensional remote sensing data sets (e.g. high spectral and high spatial resolution images). The information of high dimensional remote sensing images obtained by state-of-the-art sensor technologies can be identified more accurately than images acquired by conventional remote sensing techniques. However, due to its large volume of image data, it requires a huge amount of storages and computing time. In response, the computational complexity of data processing for high dimensional remote sensing data analysis will increase. Consequently, this paper proposes a novel classification algorithm based on semi-matroid structure, known as the parallel k-dimensional tree semi-matroid (PKTSM) classification, which adopts a new hybrid parallel approach to deal with high dimensional data sets. It is implemented by combining the message passing interface (MPI) library, the open multi-processing (OpenMP) application programming interface and the compute unified device architecture (CUDA) of graphics processing units (GPU) in a hybrid mode. The effectiveness of the proposed PKTSM is evaluated by using MODIS/ASTER airborne simulator (MASTER) images and airborne synthetic aperture radar (AIRSAR) images for land cover classification during the Pacrim II campaign. The experimental results demonstrated that the proposed hybrid PKTSM can significantly improve the performance in terms of both computational speed-up and classification accuracy.

  15. Temporal Analysis of Remotely Sensed Precipitation Products for Hydrological Applications

    NASA Astrophysics Data System (ADS)

    Tobin, K. J.; Bennett, M. E.

    2011-12-01

    No study has systematically evaluated streamflow modeling between monthly and daily timescales. This study examines streamflow from eight watersheds across the United States where five different precipitation products were used as primary input into the Soil and Water Assessment Tool to generate simulated streamflow. Timescales examined include monthly, dekad (10 day), pentad (5 day), triad (3 day), and daily. The eight basins studied are the San Pedro (Arizona); Cimarron (north-central Oklahoma); mid-Nueces (south Texas); mid-Rio Grande (south Texas and northern Mexico), Yocano (northern Mississippi); Alapaha (south Georgia); Upper Tar (North Carolina) and mid-St. Francis (eastern Arkansas). The precipitation products used to drive simulations include rain gauge, NWS Multisensor Precipitation Estimator, Tropical Rainfall Measurement Mission, Multi-Satellite (TRMM) Precipitation Analysis, TRMM 3B42-V6, and Climate Prediction Center Morphing Method (CMORPH). Understanding how streamflow varies at sub-monthly timescales is important because there are a host of hydrological applications such a flood forecast guidance and reservoir inflow forecasts that reside in a temporal domain between monthly and daily timescales. The major finding of this study is the quantification of a strong positive correlation between performance metrics and time step at which model performance deteriorates. Basically, better performing simulations, with higher Nash-Sutcliffe values of 0.80 and above can support modeling at finer timescales to at least daily and perhaps beyond into the sub-daily realm. These findings are significant in that they clearly document the ability of SWAT to support modeling at sub-monthly time steps, which is beyond the capability for which SWAT was initially designed.

  16. A new application of compressive sensing in MRI

    NASA Astrophysics Data System (ADS)

    Baselice, Fabio; Ferraioli, Giampaolo; Lenti, Flavia; Pascazio, Vito

    2014-03-01

    Image formation in Magnetic Resonance Imaging (MRI) is the procedure which allows the generation of the image starting from data acquired in the so called k-space. At the present, many image formation techniques have been presented, working with different k-space filling strategies. Recently, Compressive Sampling (CS) has been successfully used for image formation from non fully sampled k-space acquisitions, due to its interesting property of reconstructing signal from highly undetermined linear systems. The main advantage consists in greatly reducing the acquisition time. Within this manuscript, a novel application of CS to MRI field is presented, named Intra Voxel Analysis (IVA). The idea is to achieve the so-called super resolution, i.e. the possibility of distinguish anatomical structures smaller than the spatial resolution of the image. For this aim, multiple Spin Echo images acquired with different Echo Times are required. The output of the algorithm is the estimation of the number of contributions present in the same pixel, i.e. the number of tissues inside the same voxel, and their spin-spin relaxation times. This allows us not only to identify the number of involved tissues, but also to discriminate them. At the present, simulated case studies have been considered, obtaining interesting and promising results. In particular, a study on the required number of images, on the estimation noise and on the regularization parameter of different CS algorithms has been conducted. As future work, the method will be applied to real clinical datasets, in order to validate the estimations.

  17. 3D sensing for machine guidance in meat cutting applications

    NASA Astrophysics Data System (ADS)

    Daley, Wayne; Britton, Doug; Usher, Colin; Diao, Mamadou; Ruffin, Kevin

    2005-11-01

    Most cutting and deboning operations in meat processing require accurate cuts be made to obtain maximum yield and ensure food safety. This is a significant concern for purveyors of deboned product. This task is made more difficult by the variability that is present in most natural products. The specific application of interest in this paper is the production of deboned poultry breast. This is typically obtained from a cut of the broiler called a 'front half' that includes the breast and the wings. The deboning operation typically consists of a cut that starts at the shoulder joint and then continues along the scapula. Attentive humans with training do a very good job of making this cut. The breast meat is then removed by pulling on the wings. Inaccurate cuts lead to poor yield (amount of boneless meat obtained relative to the weight of the whole carcass) and increase the probability that bone fragments might end up in the product. As equipment designers seek to automate the deboning operation, the cutting task has been a significant obstacle to developing automation that maximizes yield without generating unacceptable levels of bone fragments. The current solution is to sort the bone-in product into different weight ranges and then to adjust the deboning machines to the average of these weight ranges. We propose an approach for obtaining key cut points by extrapolation from external reference points based on the anatomy of the bird. We show that this approach can be implemented using a stereo imaging system, and the accuracy in locating the cut points of interest is significantly improved. This should result in more accurate cuts and with this concomitantly improved yield while reducing the incidence of bones. We also believe the approach could be extended to the processing of other species.

  18. Application of Compressive Sensing to Gravitational Microlensing Data and Implications for Miniaturized Space Observatories

    NASA Technical Reports Server (NTRS)

    Korde-Patel, Asmita (Inventor); Barry, Richard K.; Mohsenin, Tinoosh

    2016-01-01

    Compressive Sensing is a technique for simultaneous acquisition and compression of data that is sparse or can be made sparse in some domain. It is currently under intense development and has been profitably employed for industrial and medical applications. We here describe the use of this technique for the processing of astronomical data. We outline the procedure as applied to exoplanet gravitational microlensing and analyze measurement results and uncertainty values. We describe implications for on-spacecraft data processing for space observatories. Our findings suggest that application of these techniques may yield significant, enabling benefits especially for power and volume-limited space applications such as miniaturized or micro-constellation satellites.

  19. Thermal infrared remote sensing of surface features for renewable resource applications

    NASA Technical Reports Server (NTRS)

    Welker, J. E.

    1981-01-01

    The subjects of infrared remote sensing of surface features for renewable resource applications is reviewed with respect to the basic physical concepts involved at the Earth's surface and up through the atmosphere, as well as the historical development of satellite systems which produce such data at increasingly greater spatial resolution. With this general background in hand, the growth of a variety of specific renewable resource applications using the developing thermal infrared technology are discussed, including data from HCMM investigators. Recommendations are made for continued growth in this field of applications.

  20. Dynamically tunable chemiluminescence of luminol-functionalized silver nanoparticles and its application to protein sensing arrays.

    PubMed

    He, Yi; He, Xiao; Liu, Xiaoying; Gao, Lingfeng; Cui, Hua

    2014-12-16

    It is still a great challenge to develop an array-based sensing system that can obtain only multiparameters, according to a single experiment and device. The role of conventional chemiluminescence (CL) in biosensing has been limited to a signal transducer in which a single signal (CL intensity) can be obtained for quantifying the concentrations of analytes. In this work, we have developed an dynamically tunable CL system, based on the reaction of luminol-functionalized silver nanoparticles (luminol-AgNPs) with H2O2, which could be tunable via adjusting various conditions such as the concentration of H2O2, pH value, and addition of protein. A single experiment operation could obtain multiparameters including CL intensity, the time to appear CL emission and the time to reach CL peak value. The tunable, low-background, and highly reproducible CL system based on luminol-AgNPs is applied, for the first time, as a sensing platform with trichannel properties for protein sensing arrays by principal component analysis. Identification of 35 unknowns demonstrated a success rate of >96%. The developed sensing arrays based on the luminol-AgNPs provide a new way to use nanoparticles-based CL for the fabrication of sensing arrays and hold great promise for biomedical application in the future.

  1. Plasmonic transparent conducting metal oxide nanoparticles and nanoparticle films for optical sensing applications

    SciTech Connect

    Ohodnicki, Paul R; Wang, Congjun; Andio, Mark

    2013-07-31

    The ability to monitor gas species selectively, sensitively, and reliably in extreme temperatures and harsh conditions is critically important for more efficient energy production using conventional fossil energy based production technologies, enabling advanced technologies for fossil based power plants of the future, and improving efficiency in domestic manufacturing industries. Optical waveguide based sensing platforms have become increasingly important but a need exists for materials that exhibit useful changes in optical properties in response to changing gas atmospheres at high temperatures. In this manuscript, the onset of a near-IR absorption associated with an increase in free carrier density in doped metal oxide nanoparticles to form so-called conducting metal oxides is discussed in the context of results obtained for undoped and Al-doped ZnO nanoparticle based films. Detailed film characterization results are presented along with measured changes in optical absorption resulting from various high temperature treatments in a range of gas atmospheres. Optical property changes are also discussed in the context of a simple model for optical absorption in conducting metal oxide nanoparticles and thin films. The combination of experimental results and theoretical modeling presented here suggests that such materials have potential for high temperature optical gas sensing applications. Simulated sensing experiments were performed at 500 °C and a useful, rapid, and reproducible near-IR optical sensing response to H{sub 2} confirms that this class of materials shows great promise for optical gas sensing.

  2. Development of techniques required for the application of a laser to three dimensional visual sensing

    NASA Technical Reports Server (NTRS)

    Ryan, Arthur M.; Gerhardt, Lester A.

    1991-01-01

    The ongoing vision research at the Center for Intelligent Robotic Systems for Space Exploration (CIRSSE) is directed toward identifying and addressing the relevant issues involved in applying visual sensing to space assembly tasks. A considerable amount of effort has been devoted to passive sensing techniques such as using multiple cameras to identify objects in a scene. To compliment the capabilities of the passive visual system in the CIRSSE robotics testbed, research is being conducted in active sensing techniques. This report is description of the research associated with the testbed's laser scanner and its application as an active sensing device. The report is comprised of five major topics. First is a brief description of the CIRSSE visual system and a summary of the active sensing research that has been conducted up to this point. Second, some of the methods currently used to calibrate CIRSSE's laser scanner are described as well as an appraisal of the effectiveness of these methods. Third, is a discussion of how the laser scanner can be employed in concert with a camera to provide a three dimensional point estimation capability. Fourth, there is a description of methods that can be used to detect the presence of the laser beam in a cluttered camera image. Finally, there is a summary of the current state of this research and a description of research planned for the future.

  3. Aerosol Remote Sensing Applications for Airborne Multiangle, Multispectral Shortwave Radiometers

    NASA Astrophysics Data System (ADS)

    von Bismarck, Jonas; Ruhtz, Thomas; Starace, Marco; Hollstein, André; Preusker, René; Fischer, Jürgen

    2010-05-01

    and ground based operations of the instruments so far, only two exemplary campaigns shall be introduced here. FUBEX in July 2008 was the first airborne campaign with FUBISS-ASA2, FUBISS-ZENITH and AMSSP-EM simultaneously mounted on the Cessna 207T of the Institute for Space Sciences, based in Berlin. Vertical radiation profiles recorded on July 28 in 2008 where used for a first application of the introduced inversion algorithm. In Oktober/November 2009, FUBISS-ASA2 and FUBISS-ZENITH where mounted on the German research icebreaker FS Polarstern, crossing the Atlantic on its cruise from Bremerhaven (Germany) to Punta Arenas (Chile). Measurements where performed throughout the whole cruise on days with a variety of different atmospheric conditions, as a Saharan dust outbreak over Cape Verde, typical marine conditions with salt particles in the marine boundary layer and also pristine conditions in the southern Atlantic. Access to the data of other instruments aboard the ship, as a Raman-Lidar, a cloud camera, weather station, and a microwave radiometer, provided valuable a priori information for processing and calibration of the measurements. The results may be of special interest for the validation of satellite aerosol products.

  4. Application of multivariate curve resolution alternating least squares (MCR-ALS) to remote sensing hyperspectral imaging.

    PubMed

    Zhang, Xin; Tauler, Romà

    2013-01-31

    The application of the MCR-ALS method is demonstrated on two simulated remote sensing spectroscopic images and on one experimental reference remote sensing spectroscopic image obtained by the Airborn Visible/Infrared Imaging Spectrometer (AVIRIS). By application of MCR-ALS, the spectra signatures of the pure constituents present in the image and their concentration distribution at a pixel level are estimated. Results obtained by MCR-ALS are compared to those obtained by other methods frequently used in the remote sensing spectroscopic imaging field like VCA and MVSA. In the case of the analysis of the experimental data set, the resolved pure spectra signatures were compared to reference spectra from USGS library for their identification. In all cases, results were also evaluated for the presence of rotational ambiguities using the MCR-BANDS method. The obtained results confirmed that the MCR-ALS method can be successfully used for remote sensing hyperspectral image resolution purposes. However, the amount of rotation ambiguity still present in the solutions obtained by this and other resolution methods (like VCA or MVSA) can still be large and it should be evaluated with care, trying to reduce its effects by selecting the more appropriate constraints. Only in this way it is possible to increase the reliability of the solutions provided by these methods and decrease the uncertainties associated to their use.

  5. Public health applications of remote sensing of the environment, an evaluation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The available techniques were examined in the field of remote sensing (including aerial photography, infrared detection, radar, etc.) and applications to a number of problems in the wide field of public health determined. The specific areas of public health examined included: air pollution, water pollution, communicable disease, and the combined problems of urban growth and the effect of disasters on human communities. The assessment of the possible applications of remote sensing to these problems was made primarily by examination of the available literature in each field, and by interviews with health authorities, physicists, biologists, and other interested workers. Three types of programs employing remote sensors were outlined in the air pollution field: (1) proving ability of sensors to monitor pollutants at three levels of interest - point source, ambient levels in cities, and global patterns; (2) detection of effects of pollutants on the environment at local and global levels; and (3) routine monitoring.

  6. Bioinspired ion-transport properties of solid-state single nanochannels and their applications in sensing.

    PubMed

    Tian, Ye; Wen, Liping; Hou, Xu; Hou, Guanglei; Jiang, Lei

    2012-07-16

    Biological ion channels are able to control ion-transport processes precisely because of their intriguing properties, such as selectivity, rectification, and gating. Learning from nature, scientists have developed a promising system--solid-state single nanochannels--to mimic biological ion-transport properties. These nanochannels have many impressive properties, such as excess surface charge, making them selective; the ability to be produced or modified asymmetrically, endowing them with rectification; and chemical reactivity of the inner surface, imparting them with desired gating properties. Based on these unique characteristics, solid-state single nanochannels have been explored in various applications, such as sensing. In this context, we summarize recent developments of bioinspired solid-state single nanochannels with ion-transport properties that resemble their biological counterparts, including selectivity, rectification, and gating; their applications in sensing are also introduced briefly.

  7. Advances in electrospun carbon fiber-based electrochemical sensing platforms for bioanalytical applications.

    PubMed

    Mao, Xianwen; Tian, Wenda; Hatton, T Alan; Rutledge, Gregory C

    2016-02-01

    Electrochemical sensing is an efficient and inexpensive method for detection of a range of chemicals of biological, clinical, and environmental interest. Carbon materials-based electrodes are commonly employed for the development of electrochemical sensors because of their low cost, biocompatibility, and facile electron transfer kinetics. Electrospun carbon fibers (ECFs), prepared by electrospinning of a polymeric precursor and subsequent thermal treatment, have emerged as promising carbon systems for biosensing applications since the electrochemical properties of these carbon fibers can be easily modified by processing conditions and post-treatment. This review addresses recent progress in the use of ECFs for sensor fabrication and analyte detection. We focus on the modification strategies of ECFs and identification of the key components that impart the bioelectroanalytical activities, and point out the future challenges that must be addressed in order to advance the fundamental understanding of the ECF electrochemistry and to realize the practical applications of ECF-based sensing devices.

  8. Eighth year projects and activities of the Environmental Remote Sensing Applications Laboratory (ERSAL). [Oregon

    NASA Technical Reports Server (NTRS)

    Lewis, A. J.; Isaacson, D. L.; Schrumpf, B. J. (Principal Investigator)

    1980-01-01

    Projects completed for the NASA Office of University Affairs include the application of remote sensing data in support of rehabilitation of wild fire damaged areas and the use of LANDSAT 3 return beam vidicon in forestry mapping applications. Continuing projects for that office include monitoring western Oregon timber clearcut; detecting and monitoring wheat disease; land use monitoring for tax assessment in Umatilla, Lake, and Morrow Counties; and the use of Oregon Air National Guard thermal infrared scanning data. Projects funded through other agencies include the remote sensing inventory of elk in the Blue Mountains; the estimation of burned agricultural acreage in the Willamette Valley; a resource inventory of Deschutes County; and hosting a LANDSAT digital workshop.

  9. Meteorological and Remote Sensing Applications of High Altitude Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Schoenung, S. M.; Wegener, S. S.

    1999-01-01

    Unmanned aerial vehicles (UAVs) are maturing in performance and becoming available for routine use in environmental applications including weather reconnaissance and remote sensing. This paper presents a discussion of UAV characteristics and unique features compared with other measurement platforms. A summary of potential remote sensing applications is provided, along with details for four types of tropical cyclone missions. Capabilities of platforms developed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program are reviewed, including the Altus, Perseus, and solar- powered Pathfinder, all of which have flown to over 57,000 ft (17 km). In many scientific missions, the science objectives drive the experimental design, thus defining the sensor payload, aircraft performance, and operational requirements. Some examples of science missions and the requisite UAV / payload system are given. A discussion of technology developments needed to fully mature UAV systems for routine operational use is included, along with remarks on future science and commercial UAV business opportunities.

  10. A new bio-inspired decision chain for UAV sense-and-avoid applications

    NASA Astrophysics Data System (ADS)

    Fallavollita, P.; Cimini, F.; Balsi, M.; Esposito, S.; Jankowski, S.

    This work, after a preliminary feasibility study using a Matlab environment simulation, defines the design and the real hardware testing of a new bio-inspired decision chain for UAV sense-and-avoid applications. Relying on a single and cheap visible camera sensor, computer vision, bio-inspired and automatic decision algorithms have been adopted and implemented on a specific ARM embedded platform through C++/OpenCV coding. A first data set processing, really captured on flight, has been presented.

  11. Development of a quartz digital accelerometer for environmental sensing and navigation applications

    SciTech Connect

    Kass, W.J.; Vianco, P.T.

    1993-03-01

    A quartz digital accelerometer has been developed which uses double ended tuning forks as the active sensing elements. The authors have demonstrated the ability of this accelerometer to be capable of acceleration measurements between {+-}150G with {+-}0.5G accuracy. They have further refined the original design and assembly processes to produce accelerometers with < 1mG stability in inertial measurement applications. This report covers the development, design, processing, assembly, and testing of these devices.

  12. Remote sensing retrieval of water constituents in shallow coastal waters with applications to the Venice lagoon

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Marani, M.; Albertson, J. D.; Silvestri, S.

    2013-12-01

    Lagoons and estuaries worldwide are experiencing accelerated ecosystem degradation due to increased direct and indirect anthropogenic pressure. Monitoring the environmental state and trends in such environment would benefit from the use of remote sensing techniques, which can access a wide range of spatial and temporal scales. However, most remote sensors are not suitable for monitoring shallow and optically-complex waters, because of their low spatial and spectral-resolution and of the uncertainties associated with the contribution of the bottom sediment to the observed remote sensing signal. We apply here a remote sensing-based approach to mapping suspended sediment and chlorophyll concentrations in the shallow Venice lagoon, which integrates hyperspectral remote sensing data, a simplified radiative transfer model, and in-situ water quality measurements. First, we calibrate and validate the key parameters of the model, such as bottom albedo and absorption/backscattering coefficients of sediment, by comparing remote sensing derived water constituent concentrations with in-situ data. We then determine the statistics of those parameters, and the associated estimation uncertainty, by applying a bootstrapping technique. Finally, the lagoon-wide distribution of water constituent concentrations, and of the estimation uncertainty, is derived by inverting the model. The estimates are consistent with measured concentrations and their known optical properties, particularly for the suspended sediment concentrations, while chlorophyll concentration estimates remain more uncertain. Our analyses show that remote sensing methods can provide reliable water constituent concentrations at the system scale and that uncertainties become overwhelming only in particularly shallow areas (water depths indicatively lower than 1 m in the present application). Importantly, the joint use of radiative transfer models, in situ observations, and statistical techniques allows the production of

  13. Potentially efficient forest and range applications of remote sensing using earth orbital space craft, circa 1980

    NASA Technical Reports Server (NTRS)

    Wilson, R. C.

    1970-01-01

    Sixteen remote sensing applications or groups of related applications judged to be most important of any in the forestry and range disciplines were evaluated. In one application, major land classification, large amounts of useful data are anticipated to be contributed by space sensors in 1980. In four applications moderate amounts are anticipated to be so contributed. These are timber inventory, range inventory, fire weather forecasting, and monitoring snowfields. In the following seven applications small but significant amounts of data are anticipated to be contributed by space sensors: (1) detailed land classification; (2) inventory of wildlife habitat; (3) recreation resource inventory; (4) detecting stresses on the vegetation (5) monitoring air pollution caused by wildfires and prescribed burning; (6) monitoring water cycle, (7) pollution and erosion; and (8) evaluating damage to forests and ranges.

  14. Advantages of high-frequency Pulse-tube technology and its applications in infrared sensing

    NASA Astrophysics Data System (ADS)

    Arts, R.; Willems, D.; Mullié, J.; Benschop, T.

    2016-05-01

    The low-frequency pulse-tube cryocooler has been a workhorse for large heat lift applications. However, the highfrequency pulse tube has to date not seen the widespread use in tactical infrared applications that Stirling cryocoolers have had, despite significant advantages in terms of exported vibrations and lifetime. Thales Cryogenics has produced large series of high-frequency pulse-tube cryocoolers for non-infrared applications since 2005. However, the use of Thales pulse-tube cryocoolers for infrared sensing has to date largely been limited to high-end space applications. In this paper, the performances of existing available off-the-shelf pulse-tube cryocoolers are examined versus typical tactical infrared requirements. A comparison is made on efficiency, power density, reliability, and cost. An outlook is given on future developments that could bring the pulse-tube into the mainstream for tactical infrared applications.

  15. Application of indicators derived by remote sensing for mapping of landslide hazard and vulnerability

    NASA Astrophysics Data System (ADS)

    Eidsvig, Unni; Vidar Vangelsten, Bjørn; Geiss, Christian; Klotz, Martin; Ekseth, Kristine; Taubenböck, Hannes

    2014-05-01

    The choice and the development of methods for risk assessment of landslides depends on several factors. Important factors are the type of landslide and the elements at risk, the choice of spatial and temporal scale, the purpose of the analysis and the needs of the end-users. In addition, data availability is a major constraint, which greatly affects the type of methods and models that can be developed. Remote sensing is a promising tool for an economical and up-to-date data collection, which also could be applied to monitor the dynamic development of risk. The spatial and temporal distribution of the risk for landslides can be assessed by monitoring hazard indicators (e.g. slope height and slope angle), exposure indicators (e.g. number of houses and the total population) and vulnerability indicators (e.g. population density, settlement structures or indicators related to structural vulnerability). Several of the indicators applicable for landslide risk and vulnerability can be obtained by remote sensing techniques. However, for better results, indicators from remote sensing should be combined with other type of data. In this work, a review on the application of indicators for landslide risk assessment in explicit models as well as an assessment of end user needs was conducted in order to determine the most relevant indicators for landslide hazard and vulnerability. Lists of recommended indicators, mainly derivable from remote sensing, have been developed. These indicators are supposed to be used in risk assessment, e.g. by combining hazard, vulnerability and exposure indicators to produce risk indices. Moreover schemes for ranking, weighting and aggregation of the indicators into hazard- and vulnerability indices are provided. The research leading to these results has received funding from the European Community's Seventh Framework Programme [FP7-SPACE-2012-1] under Grant agreement No 312972 Framework to integrate Space-based and in-situ sENSing for dynamic v

  16. Advanced Spatial-Division Multiplexed Measurement Systems Propositions-From Telecommunication to Sensing Applications: A Review.

    PubMed

    Weng, Yi; Ip, Ezra; Pan, Zhongqi; Wang, Ting

    2016-08-30

    The concepts of spatial-division multiplexing (SDM) technology were first proposed in the telecommunications industry as an indispensable solution to reduce the cost-per-bit of optical fiber transmission. Recently, such spatial channels and modes have been applied in optical sensing applications where the returned echo is analyzed for the collection of essential environmental information. The key advantages of implementing SDM techniques in optical measurement systems include the multi-parameter discriminative capability and accuracy improvement. In this paper, to help readers without a telecommunication background better understand how the SDM-based sensing systems can be incorporated, the crucial components of SDM techniques, such as laser beam shaping, mode generation and conversion, multimode or multicore elements using special fibers and multiplexers are introduced, along with the recent developments in SDM amplifiers, opto-electronic sources and detection units of sensing systems. The examples of SDM-based sensing systems not only include Brillouin optical time-domain reflectometry or Brillouin optical time-domain analysis (BOTDR/BOTDA) using few-mode fibers (FMF) and the multicore fiber (MCF) based integrated fiber Bragg grating (FBG) sensors, but also involve the widely used components with their whole information used in the full multimode constructions, such as the whispering gallery modes for fiber profiling and chemical species measurements, the screw/twisted modes for examining water quality, as well as the optical beam shaping to improve cantilever deflection measurements. Besides, the various applications of SDM sensors, the cost efficiency issue, as well as how these complex mode multiplexing techniques might improve the standard fiber-optic sensor approaches using single-mode fibers (SMF) and photonic crystal fibers (PCF) have also been summarized. Finally, we conclude with a prospective outlook for the opportunities and challenges of SDM

  17. Fast vision through frameless event-based sensing and convolutional processing: application to texture recognition.

    PubMed

    Perez-Carrasco, Jose Antonio; Acha, Begona; Serrano, Carmen; Camunas-Mesa, Luis; Serrano-Gotarredona, Teresa; Linares-Barranco, Bernabe

    2010-04-01

    Address-event representation (AER) is an emergent hardware technology which shows a high potential for providing in the near future a solid technological substrate for emulating brain-like processing structures. When used for vision, AER sensors and processors are not restricted to capturing and processing still image frames, as in commercial frame-based video technology, but sense and process visual information in a pixel-level event-based frameless manner. As a result, vision processing is practically simultaneous to vision sensing, since there is no need to wait for sensing full frames. Also, only meaningful information is sensed, communicated, and processed. Of special interest for brain-like vision processing are some already reported AER convolutional chips, which have revealed a very high computational throughput as well as the possibility of assembling large convolutional neural networks in a modular fashion. It is expected that in a near future we may witness the appearance of large scale convolutional neural networks with hundreds or thousands of individual modules. In the meantime, some research is needed to investigate how to assemble and configure such large scale convolutional networks for specific applications. In this paper, we analyze AER spiking convolutional neural networks for texture recognition hardware applications. Based on the performance figures of already available individual AER convolution chips, we emulate large scale networks using a custom made event-based behavioral simulator. We have developed a new event-based processing architecture that emulates with AER hardware Manjunath's frame-based feature recognition software algorithm, and have analyzed its performance using our behavioral simulator. Recognition rate performance is not degraded. However, regarding speed, we show that recognition can be achieved before an equivalent frame is fully sensed and transmitted.

  18. Advanced Spatial-Division Multiplexed Measurement Systems Propositions—From Telecommunication to Sensing Applications: A Review

    PubMed Central

    Weng, Yi; Ip, Ezra; Pan, Zhongqi; Wang, Ting

    2016-01-01

    The concepts of spatial-division multiplexing (SDM) technology were first proposed in the telecommunications industry as an indispensable solution to reduce the cost-per-bit of optical fiber transmission. Recently, such spatial channels and modes have been applied in optical sensing applications where the returned echo is analyzed for the collection of essential environmental information. The key advantages of implementing SDM techniques in optical measurement systems include the multi-parameter discriminative capability and accuracy improvement. In this paper, to help readers without a telecommunication background better understand how the SDM-based sensing systems can be incorporated, the crucial components of SDM techniques, such as laser beam shaping, mode generation and conversion, multimode or multicore elements using special fibers and multiplexers are introduced, along with the recent developments in SDM amplifiers, opto-electronic sources and detection units of sensing systems. The examples of SDM-based sensing systems not only include Brillouin optical time-domain reflectometry or Brillouin optical time-domain analysis (BOTDR/BOTDA) using few-mode fibers (FMF) and the multicore fiber (MCF) based integrated fiber Bragg grating (FBG) sensors, but also involve the widely used components with their whole information used in the full multimode constructions, such as the whispering gallery modes for fiber profiling and chemical species measurements, the screw/twisted modes for examining water quality, as well as the optical beam shaping to improve cantilever deflection measurements. Besides, the various applications of SDM sensors, the cost efficiency issue, as well as how these complex mode multiplexing techniques might improve the standard fiber-optic sensor approaches using single-mode fibers (SMF) and photonic crystal fibers (PCF) have also been summarized. Finally, we conclude with a prospective outlook for the opportunities and challenges of SDM

  19. Single molecule sensing with solid-state nanopores: novel materials, methods, and applications.

    PubMed

    Miles, Benjamin N; Ivanov, Aleksandar P; Wilson, Kerry A; Doğan, Fatma; Japrung, Deanpen; Edel, Joshua B

    2013-01-07

    This tutorial review will introduce and explore the fundamental aspects of nanopore (bio)sensing, fabrication, modification, and the emerging technologies and applications that both intrigue and inspire those working in and around the field. Although nanopores can be classified into two categories, solid-state and biological, they are essentially two sides of the same coin. For instance, both garner popularity due to their ability to confine analytes of interest to a nanoscale volume. Due to the vast diversity of nanopore platforms and applications, no single review can cover the entire landscape of published work in the field. Therefore, in this article focus will be placed on recent advancements and developments taking place in the field of solid-state nanopores. It should be stated that the intention of this tutorial review is not to cite all articles relating to solid-state nanopores, but rather to highlight recent, select developments that will hopefully benefit the new and seasoned scientist alike. Initially we begin with the fundamentals of solid-state nanopore sensing. Then the spotlight is shone on the sophisticated fabrication methods that have their origins in the semiconductor industry. One inherent advantage of solid-state nanopores is in the ease of functionalizing the surface with a range of molecules carrying functional groups. Therefore, an entire section is devoted to highlighting various chemical and bio-molecular modifications and explores how these permit the development of novel sensors with specific targets and functions. The review is completed with a discussion on novel detection strategies using nanopores. Although the most popular mode of nanopore sensing is based upon what has come to be known as ionic-current blockade sensing, there is a vast, growing literature based around exploring alternative detection techniques to further expand on the versatility of the sensors. Such techniques include optical, electronic, and force based methods

  20. Advances in AlGaInN laser diode technology for defence, security and sensing applications

    NASA Astrophysics Data System (ADS)

    Najda, S. P.; Perlin, P.; Suski, T.; Marona, L.; Boćkowski, M.; Leszczyński, M.; Wisnieski, P.; Czernecki, R.; Targowski, G.

    2016-10-01

    Laser diodes fabricated from the AlGaInN material system is an emerging technology for defence, security and sensing applications. The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., 380nm, to the visible 530nm, by tuning the indium content of the laser GaInN quantum well, giving rise to new and novel applications including displays and imaging systems, free-space and underwater telecommunications and the latest quantum technologies such as optical atomic clocks and atom interferometry.

  1. Lateral access to the holes of photonic crystal fibers - selective filling and sensing applications.

    PubMed

    Cordeiro, Cristiano M B; Dos Santos, Eliane M; Brito Cruz, C H; de Matos, Christiano J; Ferreiira, Daniel S

    2006-09-04

    A new, simple, technique is demonstrated to laterally access the cladding holes of solid-core photonic crystal fibers (PCFs) or the central hole of hollow-core PCFs by blowing a hole through the fiber wall (using a fusion splicer and the application of pressure). For both fiber types material was subsequently and successfully inserted into the holes. The proposed method compares favorably with other reported selective filling techniques in terms of simplicity and reproducibility. Also, since the holes are laterally filled, simultaneous optical access to the PCFs is possible, which can prove useful for practical sensing applications. As a proof-of-concept experiment, Rhodamine fluorescence measurements are shown.

  2. Exposed-core chalcogenide microstructured optical fibers for chemical sensing

    NASA Astrophysics Data System (ADS)

    Troles, Johann; Toupin, Perrine; Brilland, Laurent; Boussard-Plédel, Catherine; Bureau, Bruno; Cui, Shuo; Mechin, David; Adam, Jean-Luc

    2013-05-01

    Chemical bonds of most of the molecules vibrate at a frequency corresponding to the near or mid infrared field. It is thus of a great interest to develop sensitive and portable devices for the detection of specific chemicals and biomolecules for various applications in health, the environment, national security and so on. Optical fibers define practical sensing tools. Chalcogenide glasses are known for their transparency in the infrared optical range and their ability to be drawn as fibers. They are consequently good candidates to be used in biological/chemical sensing. For that matter, in the past decade, chalcogenide glass fibers have been successfully implemented in evanescent wave spectroscopy experiments, for the detection of bio-chemical species in various fields of applications including microbiology and medicine, water pollution and CO2 detection. Different types of fiber can be used: single index fibers or microstructured fibers. Besides, in recent years a new configuration of microstructured fibers has been developed: microstructured exposed-core fibers. This design consists of an optical fiber with a suspended micron-scale core that is partially exposed to the external environment. This configuration has been chosen to elaborate, using the molding method, a chalcogenide fiber for chemical species detection. The sensitivity of this fiber to detect molecules such as propan-2-ol and acetone has been compared with those of single index fibers. Although evanescent wave absorption is inversely proportional to the fiber diameter, the result shows that an exposed-core fiber is much more sensitive than a single index fiber having a twice smaller external diameter.

  3. Advanced nanoimprint patterning for functional electronics and biochemical sensing

    NASA Astrophysics Data System (ADS)

    Wang, Chao

    Nano-fabrication has been widely used for a variety of disciplines, including electronics, material science, nano-optics, and nano-biotechnology. This dissertation focuses on nanoimprint lithography (NIL) based novel nano-patterning techniques for fabricating functional structures, and discusses their applications in advanced electronics and high-sensitivity molecular sensing. In this dissertation, examples of using nano-fabricated structures for promising electronic applications are presented. For instance, 10 nm and 18 nm features are NIL-fabricated for Si/SiGe heterojunction tunneling transistors and graphene nano-ribbon transistors, using shadow evaporation and line-width shrinking techniques, respectively. An ultrafast laser melting based method is applied on flexible plastic substrates to correct defects of nano-features. Nano-texturing of sapphire substrate is developed to improve the light extraction of GaN light emitting diodes (LEDs) by 70 %. A novel multi-layer nano-patterned Si-mediated catalyst is discovered to grow straight and uniform Si nanowires with optimized properties in size, location, and crystallization on amorphous SiO2 substrate. Nano-structures are also functionalized into highly sensitive bio-chemical sensors. Plasmonic nano-bar antenna arrays are demonstrated to effectively sense infrared molecules >10 times better than conventional plasmonic sensors. As small as 20 nm wide nano-channel fluidic devices are developed to linearize and detect DNA molecules for potential DNA sequencing. An integrated fluidic system is built to incorporate plasmonic nano-structures for 30X-enhanced fluorescence detection of large DNA molecules.

  4. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges.

    PubMed

    Porcar-Castell, Albert; Tyystjärvi, Esa; Atherton, Jon; van der Tol, Christiaan; Flexas, Jaume; Pfündel, Erhard E; Moreno, Jose; Frankenberg, Christian; Berry, Joseph A

    2014-08-01

    Chlorophyll a fluorescence (ChlF) has been used for decades to study the organization, functioning, and physiology of photosynthesis at the leaf and subcellular levels. ChlF is now measurable from remote sensing platforms. This provides a new optical means to track photosynthesis and gross primary productivity of terrestrial ecosystems. Importantly, the spatiotemporal and methodological context of the new applications is dramatically different compared with most of the available ChlF literature, which raises a number of important considerations. Although we have a good mechanistic understanding of the processes that control the ChlF signal over the short term, the seasonal link between ChlF and photosynthesis remains obscure. Additionally, while the current understanding of in vivo ChlF is based on pulse amplitude-modulated (PAM) measurements, remote sensing applications are based on the measurement of the passive solar-induced chlorophyll fluorescence (SIF), which entails important differences and new challenges that remain to be solved. In this review we introduce and revisit the physical, physiological, and methodological factors that control the leaf-level ChlF signal in the context of the new remote sensing applications. Specifically, we present the basis of photosynthetic acclimation and its optical signals, we introduce the physical and physiological basis of ChlF from the molecular to the leaf level and beyond, and we introduce and compare PAM and SIF methodology. Finally, we evaluate and identify the challenges that still remain to be answered in order to consolidate our mechanistic understanding of the remotely sensed SIF signal.

  5. Recent Progress and Development on Multi-parameters Remote Sensing Application in Earthquake Monitoring in China

    NASA Astrophysics Data System (ADS)

    Shen, Xuhui; Zhang, Xuemin; Hong, Shunying; Jing, Feng; Zhao, Shufan

    2014-05-01

    In the last ten years, a few national research plans and scientific projects on remote sensing application in Earthquake monitoring research are implemented in China. Focusing on advancing earthquake monitoring capability searching for the way of earthquake prediction, satellite electromagnetism, satellite infrared and D-InSAR technology were developed systematically and some remarkable progress were achieved by statistical research on historical earthquakes and summarized initially the space precursory characters, which laid the foundation for gradually promoting the practical use. On the basis of these works, argumentation on the first space-based platform has been finished in earthquake stereoscope observation system in China, and integrated earthquake remote sensing application system has been designed comprehensively. To develop the space-based earthquake observational system has become a major trend of technological development in earthquake monitoring and prediction. We shall pay more emphasis on the construction of the space segment of China earthquake stereoscope observation system and Imminent major scientific projects such as earthquake deformation observation system and application research combined INSAR, satellite gravity and GNSS with the goal of medium and long term earthquake monitoring and forcasting, infrared observation and technical system and application research with the goal of medium and short term earthquake monitoring and forcasting, and satellite-based electromagnetic observation and technical system and application system with the goal of short term and imminent earthquake monitoring.

  6. Optical and optomechanical resonators and their applications in communication and sensing

    NASA Astrophysics Data System (ADS)

    Liu, Fenfei

    The radiation pressure of the large circulating optical power inside micro-scale high quality factor Whispering-Gallery mode micoresonators couples the mechanical deformation of the resonator structure to the optical resonance. This coupling results in damping or amplification of the corresponding mechanical modes. Self-sustained mechanical oscillation takes place when the optomechanical gain becomes larger than mechanical loss. In this dissertation, several applications of optomechanical oscillator (OMO) in communication and sensing are proposed and explored using silica microtoroid resonator. First we investigate the spectrum of the OMO and define "weak" and "strong" harmonic generation regimes based on two distinct spectral behaviors. In weak harmonic regime, an analytical method is proposed to optimize the spectral behavior of an OMO for RF-photonic communication systems. In the strong harmonic regime, we show that OMO spectrum can be used in a read-out system for resonant optical sensing applications. Next, we explore optomechanical RF mixing and its application in RF-photonics. We study optomechanical RF mixing using coupled differential equations as well as a semi-analytical model that simplifies the calculation of mixed frequency components. Furthermore, optomechanical down-conversion of various waveforms and audio signal from an RF carrier are demonstrated. Here for the first time we show that an OMO can function as a high-resolution mass sensor based on optomechanical oscillation frequency shift. In an OMO based mass sensor, optical power simultaneously servers as an efficient actuator and a sensitive probe for monitoring optomechanical oscillation frequency variations. The narrow linewidth of optomechanical oscillation and the small effective mass of the corresponding mechanical mode result in sub-pg mass sensitivity. We analyze the performance of microtoroid OMO mass sensor and evaluate its ultimate detection limit. The outcomes of our study enable

  7. Application of Compressed Sensing to 2-D Ultrasonic Propagation Imaging System data

    SciTech Connect

    Mascarenas, David D.; Farrar, Charles R.; Chong, See Yenn; Lee, J.R.; Park, Gyu Hae; Flynn, Eric B.

    2012-06-29

    The Ultrasonic Propagation Imaging (UPI) System is a unique, non-contact, laser-based ultrasonic excitation and measurement system developed for structural health monitoring applications. The UPI system imparts laser-induced ultrasonic excitations at user-defined locations on a structure of interest. The response of these excitations is then measured by piezoelectric transducers. By using appropriate data reconstruction techniques, a time-evolving image of the response can be generated. A representative measurement of a plate might contain 800x800 spatial data measurement locations and each measurement location might be sampled at 500 instances in time. The result is a total of 640,000 measurement locations and 320,000,000 unique measurements. This is clearly a very large set of data to collect, store in memory and process. The value of these ultrasonic response images for structural health monitoring applications makes tackling these challenges worthwhile. Recently compressed sensing has presented itself as a candidate solution for directly collecting relevant information from sparse, high-dimensional measurements. The main idea behind compressed sensing is that by directly collecting a relatively small number of coefficients it is possible to reconstruct the original measurement. The coefficients are obtained from linear combinations of (what would have been the original direct) measurements. Often compressed sensing research is simulated by generating compressed coefficients from conventionally collected measurements. The simulation approach is necessary because the direct collection of compressed coefficients often requires compressed sensing analog front-ends that are currently not commercially available. The ability of the UPI system to make measurements at user-defined locations presents a unique capability on which compressed measurement techniques may be directly applied. The application of compressed sensing techniques on this data holds the potential to

  8. Changes in speckle patterns induced by load application onto an optical fiber and its possible application for sensing purpose

    NASA Astrophysics Data System (ADS)

    Hasegawa, Makoto; Okumura, Jyun-ya; Hyuga, Akio

    2015-08-01

    Speckle patterns to be observed in an output light spot from an optical fiber are known to be changed due to external disturbances applied onto the optical fiber. In order to investigate possibilities of utilizing such changes in speckle patterns for sensing application, a certain load was applied onto a jacket-covered communication-grade multi-mode glass optical fiber through which laser beams emitted from a laser diode were propagating, and observed changes in speckle patterns in the output light spot from the optical fiber were investigated both as image data via a CCD camera and as an output voltage from a photovoltaic panel irradiated with the output light spot. The load was applied via a load application mechanism in which several ridges were provided onto opposite flat plates and a certain number of weights were placed there so that corrugated bending of the optical fiber was intentionally induced via load application due to the ridges. The obtained results showed that the number of speckles in the observed pattern in the output light spot as well as the output voltage from the photovoltaic panel irradiated with the output light spot showed decreases upon load application with relatively satisfactory repeatability. When the load was reduced, i.e., the weights were removed, the number of speckles then showed recovery. These results indicate there is a certain possibility of utilizing changes in speckle patterns for sensing of load application onto the optical fiber.

  9. Utilizing Remote Sensing Data to Ascertain Soil Moisture Applications and Air Quality Conditions

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory; Kempler, Steve; Teng, William; Friedl, Lawrence; Lynnes, Chris

    2009-01-01

    Recognizing the significance of NASA remote sensing Earth science data in monitoring and better understanding our planet's natural environment, NASA Earth Applied Sciences has implemented the 'Decision Support Through Earth Science Research Results' program. Several applications support systems through collaborations with benefiting organizations have been implemented. The Goddard Earth Sciences Data and Information Services Center (GES DISC) has participated in this program on two projects (one complete, one ongoing), and has had opportune ad hoc collaborations utilizing NASA Earth science data. GES DISC's understanding of Earth science missions and resulting data and information enables the GES DISC to identify challenges that come with bringing science data to research applications. In this presentation we describe applications research projects utilizing NASA Earth science data and a variety of resulting GES DISC applications support system project experiences. In addition, defining metrics that really evaluate success will be exemplified.

  10. The applicability of remote sensing to Earth biological problems. Part 2: The potential of remote sensing in pest management

    NASA Technical Reports Server (NTRS)

    Polhemus, J. T.

    1980-01-01

    Five troublesome insect pest groups were chosen for study. These represent a broad spectrum of life cycles, ecological indicators, pest management strategies, and remote sensing requirements. Background data, and field study results for each of these subjects is discussed for each insect group. Specific groups studied include tsetse flies, locusts, western rangeland grasshoppers, range caterpillars, and mosquitoes. It is concluded that remote sensing methods are aplicable to the pest management of the insect groups studied.

  11. A summary of the history of the development of automated remote sensing for agricultural applications

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.

    1983-01-01

    The research conducted in the United States for the past 20 years with the objective of developing automated satellite remote sensing for monitoring the earth's major food crops is reviewed. The highlights of this research include a National Academy of Science study on the applicability of remote sensing monitoring given impetus by the introduction in the mid-1960's of the first airborne multispectral scanner (MSS); design simulations for the first earth resource satellite in 1969; and the use of the airborne MSS in the Corn Blight Watch, the first large application of remote sensing in agriculture, in 1970. Other programs discussed include the CITAR research project in 1972 which established the feasibility of automating digital classification to process high volumes of Landsat MSS data; the Large Area Crop Inventory Experiment (LACIE) in 1974-78, which demonstrated automated processing of Landsat MSS data in estimating wheat crop production on a global basis; and AgRISTARS, a program designed to address the technical issues defined by LACIE.

  12. Dynamic Response of Tapered Optical Multimode Fiber Coated with Carbon Nanotubes for Ethanol Sensing Application

    PubMed Central

    Shabaneh, Arafat; Girei, Saad; Arasu, Punitha; Mahdi, Mohd; Rashid, Suraya; Paiman, Suriati; Yaacob, Mohd

    2015-01-01

    Ethanol is a highly combustible chemical universally designed for biomedical applications. In this paper, optical sensing performance of tapered multimode fiber tip coated with carbon nanotube (CNT) thin film towards aqueous ethanol with different concentrations is investigated. The tapered optical multimode fiber tip is coated with CNT using drop-casting technique and is annealed at 70 °C to enhance the binding of the nanomaterial to the silica fiber tip. The optical fiber tip and the CNT sensing layer are micro-characterized using FESEM and Raman spectroscopy techniques. When the developed sensor was exposed to different concentrations of ethanol (5% to 80%), the sensor reflectance reduced proportionally. The developed sensors showed high sensitivity, repeatability and fast responses (<55 s) towards ethanol. PMID:25946634

  13. Total-Internal-Reflection Platforms for Chemical and Biological Sensing Applications

    NASA Astrophysics Data System (ADS)

    Sapsford, Kim E.

    Sensing platforms based on the principle of total internal reflection (TIR) represent a fairly mature yet still expanding and exciting field of research. Sensor development has mainly been driven by the need for rapid, stand-alone, automated devices for application in the fields of clinical diagnosis and screening, food and water safety, environmental monitoring, and chemical and biological warfare agent detection. The technologies highlighted in this chapter are continually evolving, taking advantage of emerging advances in microfabrication, lab-on-a-chip, excitation, and detection techniques. This chapter describes many of the underlying principles of TIR-based sensing platforms and additionally focusses on planar TIR fluorescence (TIRF)-based chemical and biological sensors.

  14. Summary of workshop on the application of VLSI for robotic sensing

    NASA Technical Reports Server (NTRS)

    Brooks, T.; Wilcox, B.

    1984-01-01

    It was one of the objectives of the considered workshop to identify near, mid, and far-term applications of VLSI for robotic sensing and sensor data preprocessing. The workshop was also to indicate areas in which VLSI technology can provide immediate and future payoffs. A third objective is related to the promotion of dialog and collaborative efforts between research communities, industry, and government. The workshop was held on March 24-25, 1983. Conclusions and recommendations are discussed. Attention is given to the need for a pixel correction chip, an image sensor with 10,000 dynamic range, VLSI enhanced architectures, the need for a high-density serpentine memory, an LSI-tactile sensing program, an analog-signal preprocessor chip, a smart strain gage, a protective proximity envelope, a VLSI-proximity sensor program, a robot-net chip, and aspects of silicon micromechanics.

  15. Application of optical distributed sensing and computation to control of large space structures

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1992-01-01

    A real time holographic sensing technique is introduced and its advantages are investigated from the filtering and control point of view. A feature of holographic sensing is its capability to make distributed measurements of the position and velocity of moving objects, such as a vibrating flexible space structure. This work is based upon the distributed parameter models of linear time invariant systems, particularly including the linear oscillator equations describing the vibration of large flexible space structures. The general conclusion is that application of optical distributed sensors bring gains in the situation where Kalman filtering is necessary for state estimation. In this case, both steady state and transient filtering error covariance become smaller. This in turn results in smaller cost in the LQG problem.

  16. Application of space remote sensing technology to living marine resources in coastal zones

    NASA Technical Reports Server (NTRS)

    Tilton, E. L., III

    1978-01-01

    This paper describes a compilation of new Landsat satellite remote sensing techniques for treatment of Coastal Zone Living Marine Resource problems. The techniques have been developed over the past three to five years using optimized digital analysis procedures and evaluated in limited coastal areas of the United States. However, most of the techniques are directly applicable to other areas of the world, particularly in those areas where Landsat satellite data are available. Each technique presented herein has been documented and published separately as a NASA report within the last three years. The data required to substantiate the conclusion that 'significant new space remote sensing techniques are now available for the treatment of Coastal Zone Living Marine Resource problems' are contained within these reports and are referenced herein.

  17. Dynamic response of tapered optical multimode fiber coated with carbon nanotubes for ethanol sensing application.

    PubMed

    Shabaneh, Arafat; Girei, Saad; Arasu, Punitha; Mahdi, Mohd; Rashid, Suraya; Paiman, Suriati; Yaacob, Mohd

    2015-05-04

    Ethanol is a highly combustible chemical universally designed for biomedical applications. In this paper, optical sensing performance of tapered multimode fiber tip coated with carbon nanotube (CNT) thin film towards aqueous ethanol with different concentrations is investigated. The tapered optical multimode fiber tip is coated with CNT using drop-casting technique and is annealed at 70 °C to enhance the binding of the nanomaterial to the silica fiber tip. The optical fiber tip and the CNT sensing layer are micro-characterized using FESEM and Raman spectroscopy techniques. When the developed sensor was exposed to different concentrations of ethanol (5% to 80%), the sensor reflectance reduced proportionally. The developed sensors showed high sensitivity, repeatability and fast responses (<55 s) towards ethanol.

  18. Hyperspectral remote sensing application for monitoring and preservation of plant ecosystems

    NASA Astrophysics Data System (ADS)

    Krezhova, Dora; Maneva, Svetla; Zdravev, Tomas; Petrov, Nikolay; Stoev, Antoniy

    Remote sensing technologies have advanced significantly at last decade and have improved the capability to gather information about Earth’s resources and environment. They have many applications in Earth observation, such as mapping and updating land-use and cover, weather forecasting, biodiversity determination, etc. Hyperspectral remote sensing offers unique opportunities in the environmental monitoring and sustainable use of natural resources. Remote sensing sensors on space-based platforms, aircrafts, or on ground, are capable of providing detailed spectral, spatial and temporal information on terrestrial ecosystems. Ground-based sensors are used to record detailed information about the land surface and to create a data base for better characterizing the objects which are being imaged by the other sensors. In this paper some applications of two hyperspectral remote sensing techniques, leaf reflectance and chlorophyll fluorescence, for monitoring and assessment of the effects of adverse environmental conditions on plant ecosystems are presented. The effect of stress factors such as enhanced UV-radiation, acid rain, salinity, viral infections applied to some young plants (potato, pea, tobacco) and trees (plums, apples, paulownia) as well as of some growth regulators were investigated. Hyperspectral reflectance and fluorescence data were collected by means of a portable fiber-optics spectrometer in the visible and near infrared spectral ranges (450-850 nm and 600-900 nm), respectively. The differences between the reflectance data of healthy (control) and injured (stressed) plants were assessed by means of statistical (Student’s t-criterion), first derivative, and cluster analysis and calculation of some vegetation indices in four most informative for the investigated species regions: green (520-580 nm), red (640-680 nm), red edge (690-720 nm) and near infrared (720-780 nm). Fluorescence spectra were analyzed at five characteristic wavelengths located at the

  19. Novel applications of multiple-point geostatistics in remote sensing, geophysics, climate science and surface hydrology

    NASA Astrophysics Data System (ADS)

    Mariethoz, G.; Jha, S. K.; McCabe, M. F.; Evans, J. P.

    2012-12-01

    Recent advances in multiple-point geostatistics (MPS) offer new possibilities in remote sensing, surface hydrology and climate modeling. MPS is an ensemble of tools for the characterization of spatial phenomena. Its most prominent characteristic is the use of training images for defining what type of spatial patterns are deemed to result from the processes under study. In the last decade, MPS have been increasingly used to characterize 3D subsurface structures consisting of geological facies, with application primarily to reservoir engineering, hydrogeology and mining. Although the methods show good results, a consistent difficulty relates to finding appropriate training images to describe largely unknown geological formations. Despite this issue, the growing interest in MPS triggered a series of different methodological advances, leading to improved computational performance and increased flexibility. With these recent improvements, the scientific community now has unprecedented numerical tools that allow dealing with a wide range of problems outside the realm of subsurface applications. These include the simulation of continuous variables as well as complex non-linear ensembles of multivariate properties. It is found that these new tools are ideal to address a number of issues in scientific fields related to surface modeling of environmental systems and geophysical data. Shifting focus and investigating the application of MPS to surface hydrology results in a wealth of training images that are readily available, thanks to global networks of remote sensing measurements. This presentation will delineate recent results in this direction, including MPS applications to the stochastic downscaling of climate models, the completion of partially informed remote sensing images and the processing of geophysical data. A major advantage is the use of satellite images taken at regular intervals, which can be used to inform both the spatial and temporal variability of

  20. Nanomaterial processing for multifunctional patterned composites for in situ sensing applications

    NASA Astrophysics Data System (ADS)

    Melrose, Zachary R.

    The increasing performance demands on composite materials have stimulated the development of new approaches and manufacturing techniques to integrate various system functionalities within the composite structure. Opportunity exists to produce smart, self-sensing composites, by altering the microstructure of the composite where sensors can be patterned for assessing damage locality and severity. Introduction of nanomaterials into continuous fiber-reinforced composites either at the fiber/matrix interface or within the polymer matrix enables further tailoring of mechanical and electrical properties. Carbon nanotubes have been studied extensively for modifying the mechanical and physical properties of fiber composites. Recently graphene has generated scientific and technical interest due to potential lower raw material costs and ease of processing. This work studies graphene nano-platelet processing parameters to determine the suitability of graphene nanocomposites for in situ sensing applications. Processing parameters for optimizing the piezoresistive response of graphene nano-platelet composites for in situ sensing applications are determined and applied in for the development of a patterning media suitable for deposition onto glass fibers. A new approach to selectively modify the electrical properties of composite fibers is employed to selectively deposit carbon nanotube and graphene nano-platelet enhanced patterning media through an adapted screen printing process. These nano-modified depositions create hierarchical patterns of piezoresistive sensors as fully integrated components and form a distributed sensor network at the fiber/matrix interface. New analysis tools for resistance based sensing techniques are applied to nanocomposites and patterned unidirectional hybrid nanocomposites to assess damage onset and accumulation. The sensitivity of the electrical response for the graphene nano-platelet is compared with the electrical response of the carbon nanotube

  1. Evaluating Remotely-Sensed Soil Moisture with Data Synthesis for Ecological Applications (Invited)

    NASA Astrophysics Data System (ADS)

    Jones, L. A.; Kimball, J. S.

    2013-12-01

    Evaluation of remotely-sensed soil moisture products for ecological applications remains a challenge, despite an increasing abundance of soil-moisture related data. Available data vary by spatial representation, temporal fidelity and sensitivity, while some data, such as precipitation or evapotranspiration, indirectly relate to soil moisture. Soil moisture cross-correlates with potential confounding factors including vegetation biomass, surface temperature and flooding, further complicating positive attribution of the remotely-sensed signal. The quality of remotely-sensed soil moisture is spatially and temporally heterogeneous and often contains significant retrieval gaps limiting utility for many applications. To address these challenges, we developed a system for simultaneous satellite microwave retrieval of multiple land surface parameters from AMSR-E multi-frequency brightness temperatures. Rather than evaluate soil moisture in isolation, we evaluate consistency of all retrieved parameters in relation to each other and independent datasets. We also develop a data-assimilation-inspired time series merging method for exploiting soil-moisture related data from multiple independent sources to improve soil moisture accuracy and provide detailed uncertainty information. The merging method improves correlations with in situ soil moisture measurements from regional monitoring networks, while estimated RMS errors correlate closely with RMS error calculated directly from the in situ data. The resulting integrated soil moisture dataset serves as a primary driver for remote-sensing-based carbon model simulations of soil respiration and net ecosystem CO2 exchange (NEE). Model fit relative to tower observed NEE improves over model estimates derived using individual unmerged soil moisture inputs for moisture-constrained ecosystems. The results of this work are relevant to several upcoming NASA Decadal Survey missions, including SMAP, GPM, and OCO-2.

  2. Applications of Earth Remote Sensing for Identifying Tornado and Severe Weather Damage

    NASA Astrophysics Data System (ADS)

    Burks, J. E.; Molthan, A.; Schultz, L. A.; McGrath, K.; Bell, J. R.; Cole, T.; Angle, K.

    2014-12-01

    In 2014, collaborations between the Short-term Prediction Research and Transition (SPoRT) Center at NASA Marshall Space Flight Center, the National Weather Service (NWS), and the USGS led to the incorporation of Earth remote sensing imagery within the NOAA/NWS Damage Assessment Toolkit (DAT). The DAT is a smartphone, tablet, and web-based application that allows NWS meteorologists to acquire, quality control, and manage various storm damage indicators following a severe weather event, such as a tornado, occurrence of widespread damaging winds, or significant hail. Earth remote sensing supports the damage assessment process by providing a broad overview of how various acquired damage indicators relate to scarring visible from space, ranging from high spatial resolution commercial imagery (~1-4m) acquired via USGS and in collaboration with other federal and private sector partners, to moderate resolution imaging from NASA sensors (~15-30m) such as those aboard Landsat 7 and 8 and Terra's ASTER, to lower resolution but routine imaging from NASA's Terra and Aqua MODIS, or the Suomi-NPP VIIRS instrument. In several cases, the acquisition and delivery of imagery in the days after a severe weather event has proven helpful in confirming or in some cases adjusting the preliminary damage track acquired during a ground survey. For example, limited road networks and access to private property may make it difficult to observe the entire length of a tornado track, while satellite imagery can fill in observation gaps to complete a more detailed damage track assessment. This presentation will highlight successful applications of Earth remote sensing for the improvement of damage surveys, discuss remaining challenges, and provide direction on future efforts that will improve the delivery of remote sensing data and use through new automation processes and training opportunities.

  3. Applications of Earth Remote Sensing for Identifying Tornado and Severe Weather Damage

    NASA Astrophysics Data System (ADS)

    Burks, J. E.; Molthan, A.; Schultz, L. A.; McGrath, K.; Bell, J. R.; Cole, T.; Angle, K.

    2015-12-01

    In 2014, collaborations between the Short-term Prediction Research and Transition (SPoRT) Center at NASA Marshall Space Flight Center, the National Weather Service (NWS), and the USGS led to the incorporation of Earth remote sensing imagery within the NOAA/NWS Damage Assessment Toolkit (DAT). The DAT is a smartphone, tablet, and web-based application that allows NWS meteorologists to acquire, quality control, and manage various storm damage indicators following a severe weather event, such as a tornado, occurrence of widespread damaging winds, or significant hail. Earth remote sensing supports the damage assessment process by providing a broad overview of how various acquired damage indicators relate to scarring visible from space, ranging from high spatial resolution commercial imagery (~1-4m) acquired via USGS and in collaboration with other federal and private sector partners, to moderate resolution imaging from NASA sensors (~15-30m) such as those aboard Landsat 7 and 8 and Terra's ASTER, to lower resolution but routine imaging from NASA's Terra and Aqua MODIS, or the Suomi-NPP VIIRS instrument. In several cases, the acquisition and delivery of imagery in the days after a severe weather event has proven helpful in confirming or in some cases adjusting the preliminary damage track acquired during a ground survey. For example, limited road networks and access to private property may make it difficult to observe the entire length of a tornado track, while satellite imagery can fill in observation gaps to complete a more detailed damage track assessment. This presentation will highlight successful applications of Earth remote sensing for the improvement of damage surveys, discuss remaining challenges, and provide direction on future efforts that will improve the delivery of remote sensing data and use through new automation processes and training opportunities.

  4. Climate Literacy: STEM and Climate Change Education and Remote Sensing Applications

    NASA Astrophysics Data System (ADS)

    Reddy, S. R.

    2015-12-01

    NASA Innovations in Climate Education (NICE) is a competitive project to promote climate and Earth system science literacy and seeks to increase the access of underrepresented minority groups to science careers and educational opportunities. A three year funding was received from NASA to partnership with JSU and MSU under cooperative agreement "Strengthening Global Climate Change education through Remote Sensing Application in Coastal Environment using NASA Satellite Data and Models". The goal is to increase the number of highschool and undergraduate students at Jackson State University, a Historically Black University, who are prepared to pursue higher academic degrees and careers in STEM fields. A five Saturday course/workshop was held during March/April 2015 at JSU, focusing on historical and technical concepts of math, enginneering, technology and atmosphere and climate change and remote sensing technology and applications to weather and climate. Nine students from meteorology, biology, industrial technology and computer science/engineering of JSU and 19 high scool students from Jackson Public Schools participated in the course/workshop. The lecture topics include: introduction to remote sensing and GIS, introduction to atmospheric science, math and engineering, climate, introduction to NASA innovations in climate education, introduction to remote sensing technology for bio-geosphere, introduction to earth system science, principles of paleoclimatology and global change, daily weather briefing, satellite image interpretation and so on. In addition to lectures, lab sessions were held for hand-on experiences for remote sensing applications to atmosphere, biosphere, earth system science and climate change using ERDAS/ENVI GIS software and satellite tools. Field trip to Barnett reservoir and National weather Service (NWS) was part of the workshop. Basics of Earth System Science is a non-mathematical introductory course designed for high school seniors, high school

  5. Magnetic Field Sensors Based on Giant Magnetoresistance (GMR) Technology: Applications in Electrical Current Sensing.

    PubMed

    Reig, Candid; Cubells-Beltran, María-Dolores; Muñoz, Diego Ramírez

    2009-01-01

    The 2007 Nobel Prize in Physics can be understood as a global recognition to the rapid development of the Giant Magnetoresistance (GMR), from both the physics and engineering points of view. Behind the utilization of GMR structures as read heads for massive storage magnetic hard disks, important applications as solid state magnetic sensors have emerged. Low cost, compatibility with standard CMOS technologies and high sensitivity are common advantages of these sensors. This way, they have been successfully applied in a lot different environments. In this work, we are trying to collect the Spanish contributions to the progress of the research related to the GMR based sensors covering, among other subjects, the applications, the sensor design, the modelling and the electronic interfaces, focusing on electrical current sensing applications.

  6. Magnetic Field Sensors Based on Giant Magnetoresistance (GMR) Technology: Applications in Electrical Current Sensing

    PubMed Central

    Reig, Candid; Cubells-Beltran, María-Dolores; Muñoz, Diego Ramírez

    2009-01-01

    The 2007 Nobel Prize in Physics can be understood as a global recognition to the rapid development of the Giant Magnetoresistance (GMR), from both the physics and engineering points of view. Behind the utilization of GMR structures as read heads for massive storage magnetic hard disks, important applications as solid state magnetic sensors have emerged. Low cost, compatibility with standard CMOS technologies and high sensitivity are common advantages of these sensors. This way, they have been successfully applied in a lot different environments. In this work, we are trying to collect the Spanish contributions to the progress of the research related to the GMR based sensors covering, among other subjects, the applications, the sensor design, the modelling and the electronic interfaces, focusing on electrical current sensing applications. PMID:22408486

  7. Recent advances in cortisol sensing technologies for point-of-care application.

    PubMed

    Kaushik, Ajeet; Vasudev, Abhay; Arya, Sunil K; Pasha, Syed Khalid; Bhansali, Shekhar

    2014-03-15

    Everyday lifestyle related issues are the main cause of psychological stress, which contributes to health disparities experienced by individuals. Prolonged exposure to stress leads to the activation of signaling pathways from the brain that leads to release of cortisol from the adrenal cortex. Various biomarkers have been affected by psychological stress, but cortisol "a steroid hormone" is known as a potential biomarker for its estimation. Cortisol can also be used as a target analyte marker to determine the effect of exposure such as organophosphates on central nervous system, which alters the endocrine system, leading to imbalance in cortisol secretion. Cortisol secretion of individuals depends on day-night cycle and field environment hence its detection at point-of-care (POC) is deemed essential to provide personalized healthcare. Chromatographic techniques have been traditionally used to detect cortisol. The issues relating to assay formation, system complexity, and multistep extraction/purification limits its application in the field. In order to overcome these issues and to make portable and effective miniaturized platform, various immunoassays sensing strategies are being explored. However, electrochemical immunosensing of cortisol is considered as a recent advancement towards POC application. Highly sensitive, label-free and selective cortisol immunosensor based on microelectrodes are being integrated with the microfluidic system for automated diurnal cortisol monitoring useful for personalized healthcare. Although the reported sensing devices for cortisol detection may have a great scope to improve portability, electronic designing, performance of the integrated sensor, data safety and lifetime for point-of-care applications, This review is an attempt to describe the various cortisol sensing platforms and their potential to be integrated into a wearable system for online and continuous monitoring of cortisol rhythm at POC as a function of one

  8. Plasmon field effect transistor: A novel sensing platform for biomedical applications

    NASA Astrophysics Data System (ADS)

    Shokri Kojori, Hossein

    The interest in plasmons, associated with nanostructured metals, has remarkably increased in the past decade. A Recent improvement in fabrication techniques to create well-controlled nanostructures also contributed to the rapid development of plasmonic applications, such as meta-materials, nonlinear optics, photovoltaic devices, biomedical sensors, medical therapies and spectroscopy. The surface plasmon resonance (SPR) sensor is one of the successful applications, which is widely used in biomedical research. On the other hand, localized surface plasmon resonance (LSPR) is also widely studied in a broad range of applications. The distinct property of LSPR is a tailored and sharp absorption/scattering peaks depending on the shape and sizes of the metal nanostructures. In addition, plasmonics can enable integration of high speed optical circuit by taking the advantages from the current electronics and optics technologies. Thus, plasmonics is considered as a solution for the next generation systems that offers ultra-high speed data processing. In this dissertation, we will introduce a novel plasmon field effect transistor (FET) that enables direct detection and efficient amplification of plasmon energy. This FET has several advantages such as electrical isolation of plasmon absorber nanostructures from a sensing and drug screening. Currently, we have proof of concept for the antigen-antibody bonding using the plasmon field effect transistor. We will develop a multiplexing capable plasmon FET sensing platform by integrating an array of plasmon FETs with microfluidic channels to detect cancer biomarkers.

  9. Standardized Low-Power Wireless Communication Technologies for Distributed Sensing Applications

    PubMed Central

    Vilajosana, Xavier; Tuset-Peiro, Pere; Vazquez-Gallego, Francisco; Alonso-Zarate, Jesus; Alonso, Luis

    2014-01-01

    Recent standardization efforts on low-power wireless communication technologies, including time-slotted channel hopping (TSCH) and DASH7 Alliance Mode (D7AM), are starting to change industrial sensing applications, enabling networks to scale up to thousands of nodes whilst achieving high reliability. Past technologies, such as ZigBee, rooted in IEEE 802.15.4, and ISO 18000-7, rooted in frame-slotted ALOHA (FSA), are based on contention medium access control (MAC) layers and have very poor performance in dense networks, thus preventing the Internet of Things (IoT) paradigm from really taking off. Industrial sensing applications, such as those being deployed in oil refineries, have stringent requirements on data reliability and are being built using new standards. Despite the benefits of these new technologies, industrial shifts are not happening due to the enormous technology development and adoption costs and the fact that new standards are not well-known and completely understood. In this article, we provide a deep analysis of TSCH and D7AM, outlining operational and implementation details with the aim of facilitating the adoption of these technologies to sensor application developers. PMID:24518893

  10. Standardized low-power wireless communication technologies for distributed sensing applications.

    PubMed

    Vilajosana, Xavier; Tuset-Peiro, Pere; Vazquez-Gallego, Francisco; Alonso-Zarate, Jesus; Alonso, Luis

    2014-02-10

    Recent standardization efforts on low-power wireless communication technologies, including time-slotted channel hopping (TSCH) and DASH7 Alliance Mode (D7AM), are starting to change industrial sensing applications, enabling networks to scale up to thousands of nodes whilst achieving high reliability. Past technologies, such as ZigBee, rooted in IEEE 802.15.4, and ISO 18000-7, rooted in frame-slotted ALOHA (FSA), are based on contention medium access control (MAC) layers and have very poor performance in dense networks, thus preventing the Internet of Things (IoT) paradigm from really taking off. Industrial sensing applications, such as those being deployed in oil refineries, have stringent requirements on data reliability and are being built using new standards. Despite the benefits of these new technologies, industrial shifts are not happening due to the enormous technology development and adoption costs and the fact that new standards are not well-known and completely understood. In this article, we provide a deep analysis of TSCH and D7AM, outlining operational and implementation details with the aim of facilitating the adoption of these technologies to sensor application developers.

  11. Graphene-Elastomer Composites with Segregated Nanostructured Network for Liquid and Strain Sensing Application.

    PubMed

    Lin, Yong; Dong, Xuchu; Liu, Shuqi; Chen, Song; Wei, Yong; Liu, Lan

    2016-09-14

    One of the critical issues for the fabrication of desirable sensing materials has focused on the construction of an effective continuous network with a low percolation threshold. Herein, graphene-based elastomer composites with a segregated nanostructured graphene network were prepared by a novel and effective ice-templating strategy. The segregated graphene network bestowed on the natural rubber (NR) composites an ultralow electrical percolation threshold (0.4 vol %), 8-fold lower than that of the NR/graphene composites with homogeneous dispersion morphology (3.6 vol %). The resulting composites containing 0.63 vol % graphene exhibited high liquid sensing responsivity (6700), low response time (114 s), and good reproducibility. The unique segregated structure also provides this graphene-based elastomer (containing 0.42 vol % graphene) with exceptionally high stretchability, sensitivity (gauge factor ≈ 139), and good reproducibility (∼400 cycles) of up to 60% strain under cyclic tests. The fascinating performances highlight the potential applications of graphene-elastomer composites with an effective segregated network as multifunctional sensing materials.

  12. Designing Zoning of Remote Sensing Drones for Urban Applications: a Review

    NASA Astrophysics Data System (ADS)

    Norzailawati, M. N.; Alias, A.; Akma, R. S.

    2016-06-01

    This paper discusses on-going research related to zoning regulation for the remote sensing drone in the urban applications. Timestamped maps are presented here follow a citation-based approach, where significant information is retrieved from the scientific literature. The emergence of drones in domestic air raises lots understandable issues on privacy, security and uncontrolled pervasive surveillance that require a careful and alternative solution. The effective solution is to adopt a privacy and property rights approach that create a drone zoning and clear drone legislatures. In providing a differential trend to other reviews, this paper is not limited to drones zoning and regulations, but also, discuss on trend remote sensing drones specification in designing a drone zones. Remote sensing drone will specific according to their features and performances; size and endurance, maximum airspeed and altitude level and particular references are made to the drones range. The implementation of laws zoning could lie with the urban planners whereby, a zoning for drone could become a new tactic used to specify areas, where drones could be used, will provide remedies for the harm that arise from drones, and act as a different against irresponsible behaviour. Finally, underlines the need for next regulations on guidelines and standards which can be used as a guidance for urban decision makers to control the drones' operating, thus ensuring a quality and sustainability of resilience cities simultaneously encouraging the revolution of technology.

  13. Investigation of the applicability of using the triple redundant hydrogen sensor for methane sensing

    NASA Technical Reports Server (NTRS)

    Lantz, J. B.; Wynveen, R. A.

    1983-01-01

    Application specifications for the methane sensor were assembled and design guidelines, development goals and evaluation criteria were formulated. This was done to provide a framework to evaluate sensor performance and any design adjustments to the preprototype sensor that could be required to provide methane sensitivity. Good response to hydrogen was experimentally established for four hydrogen sensor elements to be later evaluated for methane response. Prior results were assembled and analyzed for other prototype hydrogen sensor performance parameters to form a comparison base. The four sensor elements previously shown to have good hydrogen response were experimentally evaluated for methane response in 2.5% methane-in-air. No response was obtained for any of the elements, despite the high methane concentration used (50% of the Lower Flammability Limit). It was concluded that the preprototype sensing elements were insensitive to methane and were hydrogen specific. Alternative sensor operating conditions and hardware design changes were considered to provide methane sensitivity to the preprototype sensor, including a variety of different methane sensing techniques. Minor changes to the existing sensor elements, sensor geometry and operating conditions will not make the preprototype hydrogen sensor respond to methane. New sensor elements that will provide methane and hydrogen sensitivity require replacement of the existing thermistor type elements. Some hydrogen sensing characteristics of the modified sensor will be compromised (larger in situ calibration gas volume and H2 nonspecificity). The preprototype hydrogen sensor should be retained for hydrogen monitoring and a separate methane sensor should be developed.

  14. Application of airborne hyperspectral remote sensing for the retrieval of forest inventory parameters

    NASA Astrophysics Data System (ADS)

    Dmitriev, Yegor V.; Kozoderov, Vladimir V.; Sokolov, Anton A.

    2016-04-01

    Collecting and updating forest inventory data play an important part in the forest management. The data can be obtained directly by using exact enough but low efficient ground based methods as well as from the remote sensing measurements. We present applications of airborne hyperspectral remote sensing for the retrieval of such important inventory parameters as the forest species and age composition. The hyperspectral images of the test region were obtained from the airplane equipped by the produced in Russia light-weight airborne video-spectrometer of visible and near infrared spectral range and high resolution photo-camera on the same gyro-stabilized platform. The quality of the thematic processing depends on many factors such as the atmospheric conditions, characteristics of measuring instruments, corrections and preprocessing methods, etc. An important role plays the construction of the classifier together with methods of the reduction of the feature space. The performance of different spectral classification methods is analyzed for the problem of hyperspectral remote sensing of soil and vegetation. For the reduction of the feature space we used the earlier proposed stable feature selection method. The results of the classification of hyperspectral airborne images by using the Multiclass Support Vector Machine method with Gaussian kernel and the parametric Bayesian classifier based on the Gaussian mixture model and their comparative analysis are demonstrated.

  15. Report of the Workshop on Geologic Applications of Remote Sensing to the Study of Sedimentary Basins

    NASA Technical Reports Server (NTRS)

    Lang, H. R. (Editor)

    1985-01-01

    The Workshop on Geologic Applications of Remote Sensing to the Study of Sedimentary Basins, held January 10 to 11, 1985 in Lakewood, Colorado, involved 43 geologists from industry, government, and academia. Disciplines represented ranged from vertebrate paleontology to geophysical modeling of continents. Deliberations focused on geologic problems related to the formation, stratigraphy, structure, and evolution of foreland basins in general, and to the Wind River/Bighorn Basin area of Wyoming in particular. Geological problems in the Wind River/Bighorn basin area that should be studied using state-of-the-art remote sensing methods were identified. These include: (1) establishing the stratigraphic sequence and mapping, correlating, and analyzing lithofacies of basin-filling strata in order to refine the chronology of basin sedimentation, and (2) mapping volcanic units, fracture patterns in basement rocks, and Tertiary-Holocene landforms in searches for surface manifestations of concealed structures in order to refine models of basin tectonics. Conventional geologic, topographic, geophysical, and borehole data should be utilized in these studies. Remote sensing methods developed in the Wind River/Bighorn Basin area should be applied in other basins.

  16. Platinum Electrodeposition on Unsupported Single Wall Carbon Nanotubes and Its Application as Methane Sensing Material.

    PubMed

    Jesus, Enid Contes-de; Santiago, Diana; Casillas, Gilberto; Mayoral, Alvaro; Magen, Cesar; José-Yacaman, Miguel; Li, Jing; Cabrera, Carlos R

    2012-01-01

    This paper reports the decoration of single wall carbon nanotubes (SWCNTs) with platinum (Pt) nanoparticles using an electrochemical technique, rotating disk slurry electrode (RoDSE). Pt/SWCNTs were electrochemically characterized by cyclic voltammetry technique (CV) and physically characterized through the use of transmission electron microscopy (TEM), energy dispersive spectroscopy - X-ray florescence (EDS-XRF) and X-ray diffraction (XRD). After characterization it was found that electrodeposited nanoparticles had an average particle size of 4.1 ± 0.8 nm. Pt/SWCNTs were used as sensing material for methane (CH4) detection and showed improved sensing properties in a range of concentration from 50 ppm to 200 ppm parts per million (ppm) at room temperature, when compared to other Pt/CNTs-based sensors. The use of this technique for the preparation of Pt/SWCNTs opens a new possibility in the bulk preparation of samples using an electrochemical method and thus their potential use in a wide variety of applications in chemical sensing, fuel cell and others.

  17. Tools and Data Services from the NASA Earth Satellite Observations for Remote Sensing Commercial Applications

    NASA Technical Reports Server (NTRS)

    Vicente, Gilberto

    2005-01-01

    Several commercial applications of remote sensing data, such as water resources management, environmental monitoring, climate prediction, agriculture, forestry, preparation for and migration of extreme weather events, require access to vast amounts of archived high quality data, software tools and services for data manipulation and information extraction. These on the other hand require gaining detailed understanding of the data's internal structure and physical implementation of data reduction, combination and data product production. The time-consuming task must be undertaken before the core investigation can begin and is an especially difficult challenge when science objectives require users to deal with large multi-sensor data sets of different formats, structures, and resolutions.

  18. Laser fabrication of large-scale nanoparticle arrays for sensing applications.

    PubMed

    Kuznetsov, Arseniy I; Evlyukhin, Andrey B; Gonçalves, Manuel R; Reinhardt, Carsten; Koroleva, Anastasia; Arnedillo, Maria Luisa; Kiyan, Roman; Marti, Othmar; Chichkov, Boris N

    2011-06-28

    A novel method for high-speed fabrication of large scale periodic arrays of nanoparticles (diameters 40-200 nm) is developed. This method is based on a combination of nanosphere lithography and laser-induced transfer. Fabricated spherical nanoparticles are partially embedded into a polymer substrate. They are arranged into a hexagonal array and can be used for sensing applications. An optical sensor with the sensitivity of 365 nm/RIU and the figure of merit of 21.5 in the visible spectral range is demonstrated.

  19. Multiband enhanced absorption of monolayer graphene with attenuated total reflectance configuration and sensing application

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Bu, Lingbing; Chen, Yunyun; Zheng, Gaige; Zou, Xiujuan; Xu, Linhua; Wang, Jicheng

    2017-01-01

    An enhanced absorption of monolayer graphene is obtained in a multilayer film-based attenuated total reflectance configuration in the visible wavelength range. The enhanced absorption under transverse magnetic and electric conditions is associated with the excitation of the waveguide mode in the thin-film layer, which is verified by the numerical calculation of field profiles. The obtained results manifest that the model induces a high field enhancement at the graphene-dielectric interface with the resonant angle, which implies potential sensing applications. The magnitude of the figure of merit is found to be three times higher than that of a conventional surface plasmon sensor.

  20. A covariance-based anomaly detector for polarimetric remote sensing applications

    NASA Astrophysics Data System (ADS)

    Romano, Joao M.; Rosario, Dalton

    2014-05-01

    The proposed paper recommends a new anomaly detection algorithm for polarimetric remote sensing applications based on the M-Box covariance test by taking advantage of key features found in a multi-polarimetric data cube. The paper demonstrates: 1) that independent polarization measurements contain information suitable for manmade object discrimination from natural clutter; 2) analysis between the variability exhibited by manmade objects relative to natural clutter; 3) comparison between the proposed M-Box covariance test with Stokes parameters S0 and S1, DoLP, RX­ Stokes, and PCA RX-Stokes; and finally 4) the data used for the comparison spans a full24-hour measurement.

  1. DFB Lasers Between 760 nm and 16 μm for Sensing Applications

    PubMed Central

    Zeller, Wolfgang; Naehle, Lars; Fuchs, Peter; Gerschuetz, Florian; Hildebrandt, Lars; Koeth, Johannes

    2010-01-01

    Recent years have shown the importance of tunable semiconductor lasers in optical sensing. We describe the status quo concerning DFB laser diodes between 760 nm and 3,000 nm as well as new developments aiming for up to 80 nm tuning range in this spectral region. Furthermore we report on QCL between 3 μm and 16 μm and present new developments. An overview of the most interesting applications using such devices is given at the end of this paper. PMID:22319259

  2. Remote radiation sensing module based on a silicon photomultiplier for industrial applications.

    PubMed

    Park, Hye Min; Joo, Koan Sik

    2016-09-01

    We have designed a silicon-photomultiplier-based remote radiation-sensing module consisting of a master port (displaying radiation information) and a slave port (detects radiation, transmits to master). The master port merges radiation and dose values and displays them. Counting detection efficiency and radiation response simulated using MCNPX were used to calibrate the module. We performed radioactive source tests ((137)Cs, (22)Na, (60)Co, (55)Fe) and compared experimental and simulation results. Remote detection capability was demonstrated and the detection accuracy was determined. Applications abound in the radioactivity industry.

  3. Public health applications of remote sensing of vector borne and parasitic diseases

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Results of an investigation of the potential application of remote sensing to various fields of public health are presented. Specific topics discussed include: detection of snail habitats in connection with the epidemiology of schistosomiasis; the detection of certain Anopheles breeding sites, and location of transient human populations, both in connection with malaria eradication programs; and detection of overwintering population sites for the primary screwworm (Cochliomyia americana). Emphasis was placed on the determination of ground truth data on the biological, chemical, and physical characteristics of ground waters which would or would not support the growth of significant populations of mosquitoes.

  4. Mass sensitivity of layered shear-horizontal surface acoustic wave devices for sensing applications

    NASA Astrophysics Data System (ADS)

    Kalantar-Zadeh, Kourosh; Trinchi, Adrian; Wlodarski, Wojtek; Holland, Anthony; Galatsis, Kosmas

    2001-11-01

    Layered Surface Acoustic Wave (SAW) devices that allow the propagation of Love mode acoustic waves will be studied in this paper. In these devices, the substrate allows the propagation of Surface Skimming Bulks Waves (SSBWs). By depositing layers, that the speed of Shear Horizontal (SH) acoustic wave propagation is less than that of the substrate, the propagation mode transforms to Love mode. Love mode devices which will be studied in this paper, have SiO2 and ZnO acoustic guiding layers. As Love mode of propagation has no movement of particles component normal to the active sensor surface, they can be employed for the sensing applications in the liquid media.

  5. Grid workflow validation using ontology-based tacit knowledge: A case study for quantitative remote sensing applications

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Liu, Longli; Xue, Yong; Dong, Jing; Hu, Yingcui; Hill, Richard; Guang, Jie; Li, Chi

    2017-01-01

    Workflow for remote sensing quantitative retrieval is the ;bridge; between Grid services and Grid-enabled application of remote sensing quantitative retrieval. Workflow averts low-level implementation details of the Grid and hence enables users to focus on higher levels of application. The workflow for remote sensing quantitative retrieval plays an important role in remote sensing Grid and Cloud computing services, which can support the modelling, construction and implementation of large-scale complicated applications of remote sensing science. The validation of workflow is important in order to support the large-scale sophisticated scientific computation processes with enhanced performance and to minimize potential waste of time and resources. To research the semantic correctness of user-defined workflows, in this paper, we propose a workflow validation method based on tacit knowledge research in the remote sensing domain. We first discuss the remote sensing model and metadata. Through detailed analysis, we then discuss the method of extracting the domain tacit knowledge and expressing the knowledge with ontology. Additionally, we construct the domain ontology with Protégé. Through our experimental study, we verify the validity of this method in two ways, namely data source consistency error validation and parameters matching error validation.

  6. Label-free screening of single biomolecules through resistive pulse sensing technology for precision medicine applications.

    PubMed

    Harrer, S; Kim, S C; Schieber, C; Kannam, S; Gunn, N; Moore, S; Scott, D; Bathgate, R; Skafidas, S; Wagner, J M

    2015-05-08

    systems genomics has to be accompanied by an equally strong effort to develop next-generation DNA-sequencing and next-generation drug screening and design platforms. In that context lab-on-a-chip devices utilizing nanopore- and nanochannel based resistive pulse-sensing technology for DNA-sequencing and protein screening applications occupy a key role. This paper describes the status quo of resistive pulse sensing technology for these two application areas with a special focus on current technology trends and challenges ahead.

  7. Label-free screening of single biomolecules through resistive pulse sensing technology for precision medicine applications

    NASA Astrophysics Data System (ADS)

    Harrer, S.; Kim, S. C.; Schieber, C.; Kannam, S.; Gunn, N.; Moore, S.; Scott, D.; Bathgate, R.; Skafidas, S.; Wagner, J. M.

    2015-05-01

    systems genomics has to be accompanied by an equally strong effort to develop next-generation DNA-sequencing and next-generation drug screening and design platforms. In that context lab-on-a-chip devices utilizing nanopore- and nanochannel based resistive pulse-sensing technology for DNA-sequencing and protein screening applications occupy a key role. This paper describes the status quo of resistive pulse sensing technology for these two application areas with a special focus on current technology trends and challenges ahead.

  8. KOH post-etching-induced rough silicon nanowire array for H2 gas sensing application

    NASA Astrophysics Data System (ADS)

    Qin, Yuxiang; Wang, Yongyao; Liu, Yi; Zhang, Xiaojuan

    2016-11-01

    The limited surface area and compacted configuration of silicon nanowires (SiNWs), which are made by one-step metal-assisted chemical etching (MACE) go against target gas diffusion and adsorbtion for gas sensing application. To harvest suitable gas sensitivity and fast response-recovery characteristics, an aligned, rough SiNW array with loose configuration and high surface area was fabricated by a two-step etching process. The MACE technique was first employed to fabricate a smooth SiNW array, and then a KOH post-etching method was developed to roughen the NW surface further. The influence of the KOH post-etching time on the array density and surface roughness of the SiNWs was investigated, and the H2-sensing properties of the sensor based on the as-fabricated rough SiNW array were evaluated systematically at room temperature. It was revealed that the post-etching of KOH roughens the NW surface effectively, and also decreases the wire diameter and array density considerably. The resulting configuration of the SiNW array with high active surface and loose geometry is favorable for gas sensing. Consequently, the rough SiNW array-based sensor exhibited a linear response to H2 with a wide range of concentrations (50-10 000 ppm) at room temperature. Good stability and selectivity, satisfying response-recovery characteristics were also achieved. However, over-etching of SiNWs by KOH solution results in a considerable decrease in surface roughness and then in the H2-sensing response of the NWs.

  9. In-database processing of a large collection of remote sensing data: applications and implementation

    NASA Astrophysics Data System (ADS)

    Kikhtenko, Vladimir; Mamash, Elena; Chubarov, Dmitri; Voronina, Polina

    2016-04-01

    Large archives of remote sensing data are now available to scientists, yet the need to work with individual satellite scenes or product files constrains studies that span a wide temporal range or spatial extent. The resources (storage capacity, computing power and network bandwidth) required for such studies are often beyond the capabilities of individual geoscientists. This problem has been tackled before in remote sensing research and inspired several information systems. Some of them such as NASA Giovanni [1] and Google Earth Engine have already proved their utility for science. Analysis tasks involving large volumes of numerical data are not unique to Earth Sciences. Recent advances in data science are enabled by the development of in-database processing engines that bring processing closer to storage, use declarative query languages to facilitate parallel scalability and provide high-level abstraction of the whole dataset. We build on the idea of bridging the gap between file archives containing remote sensing data and databases by integrating files into relational database as foreign data sources and performing analytical processing inside the database engine. Thereby higher level query language can efficiently address problems of arbitrary size: from accessing the data associated with a specific pixel or a grid cell to complex aggregation over spatial or temporal extents over a large number of individual data files. This approach was implemented using PostgreSQL for a Siberian regional archive of satellite data products holding hundreds of terabytes of measurements from multiple sensors and missions taken over a decade-long span. While preserving the original storage layout and therefore compatibility with existing applications the in-database processing engine provides a toolkit for provisioning remote sensing data in scientific workflows and applications. The use of SQL - a widely used higher level declarative query language - simplifies interoperability

  10. Uncertainty budgets of major ozone absorption cross sections used in UV remote sensing applications

    NASA Astrophysics Data System (ADS)

    Weber, Mark; Gorshelev, Victor; Serdyuchenko, Anna

    2016-09-01

    Detailed uncertainty budgets of three major ultraviolet (UV) ozone absorption cross-section datasets that are used in remote sensing application are provided and discussed. The datasets are Bass-Paur (BP), Brion-Daumont-Malicet (BDM), and the more recent Serdyuchenko-Gorshelev (SG). For most remote sensing application the temperature dependence of the Huggins ozone band is described by a quadratic polynomial in temperature (Bass-Paur parameterization) by applying a regression to the cross-section data measured at selected atmospherically relevant temperatures. For traceability of atmospheric ozone measurements, uncertainties from the laboratory measurements as well as from the temperature parameterization of the ozone cross-section data are needed as input for detailed uncertainty calculation of atmospheric ozone measurements. In this paper the uncertainty budgets of the three major ozone cross-section datasets are summarized from the original literature. The quadratic temperature dependence of the cross-section datasets is investigated. Combined uncertainty budgets is provided for all datasets based upon Monte Carlo simulation that includes uncertainties from the laboratory measurements as well as uncertainties from the temperature parameterization. Between 300 and 330 nm both BDM and SG have an overall uncertainty of 1.5 %, while BP has a somewhat larger uncertainty of 2.1 %. At temperatures below about 215 K, uncertainties in the BDM data increase more strongly than the others due to the lack of very low temperature laboratory measurements (lowest temperature of BDM available is 218 K).

  11. Applications of optical fibre Bragg gratings sensing technology-based smart stay cables

    NASA Astrophysics Data System (ADS)

    Li, Hui; Ou, Jinping; Zhou, Zhi

    2009-10-01

    Stay cable is one of the most critical structural components of a bridge. However, it readily suffers from fatigue damage, corrosion damage, and their coupled effects. Thus, health monitoring of stay cables is important for ensuring the integrity and safety of a bridge. A smart stay cable assembled with optical fibre Bragg grating (OFBG) strain and temperature sensors was proposed in this study. To protect the OFBG sensors against breakage in application, the OFBG sensors were first incorporated into a glass-fibre-reinforced polymer (GFRP) bar (GFRP-OFBG bar) when the bar was fabricated. To fabricate cables assembled with OFBG sensors, several GFRP-OFBG bars were inserted into the hollows of steel wires and fixed with the steel wires together at the anchorages of the cable. Therefore, the GFRP-OFBG bars can consistently deform with the steel wires in a cable and the smart stay cable can sense its own strain and temperature through OFBG sensors. The fabrication procedure of the smart stay cable was developed and the self-sensing property of the smart stay cable was calibrated. Finally, the application of the smart stay cables on the Tianjing Yonghe Bridge was demonstrated. The fatigue accumulative damage of the smart stay cables was evaluated based on field monitoring strain.

  12. [Vegetation water content retrieval and application of drought monitoring using multi-spectral remote sensing].

    PubMed

    Wang, Li-Tao; Wang, Shi-Xin; Zhou, Yi; Liu, Wen-Liang; Wang, Fu-Tao

    2011-10-01

    The vegetation is one of main drying carriers. The change of Vegetation Water Content (VWC) reflects the spatial-temporal distribution of drought situation and the degree of drought. In the present paper, a method of retrieving the VWC based on remote sensing data is introduced and analyzed, including the monitoring theory, vegetation water content indicator and retrieving model. The application was carried out in the region of Southwest China in the spring, 2010. The VWC data was calculated from MODIS data and spatially-temporally analyzed. Combined with the meteorological data from weather stations, the relationship between the EWT and weather data shows that precipitation has impact on the change in vegetation moisture to a certain extent. However, there is a process of delay during the course of vegetation absorbing water. So precipitation has a delaying impact on VWC. Based on the above analysis, the probability of drought monitoring and evaluation based on multi-spectral VWC data was discussed. Through temporal synthesis and combined with auxiliary data (i. e. historical data), it will help overcome the limitation of data itself and enhance the application of drought monitoring and evaluation based on the multi-spectral remote sensing.

  13. An overview of remote sensing and geodesy for epidemiology and public health application.

    PubMed

    Hay, S I

    2000-01-01

    The techniques of remote sensing (RS) and geodesy have the potential to revolutionize the discipline of epidemiology and its application in human health. As a new departure from conventional epidemiological methods, these techniques require some detailed explanation. This review provides the theoretical background to RS including (i) its physical basis, (ii) an explanation of the orbital characteristics and specifications of common satellite sensor systems, (iii) details of image acquisition and procedures adopted to overcome inherent sources of data degradation, and (iv) a background to geophysical data preparation. This information allows RS applications in epidemiology to be readily interpreted. Some of the techniques used in geodesy, to locate features precisely on Earth so that they can be registered to satellite sensor-derived images, are also included. While the basic principles relevant to public health are presented here, inevitably many of the details must be left to specialist texts.

  14. A selected bibliography: Remote sensing applications for tropical and subtropical vegetation analysis

    USGS Publications Warehouse

    Pettinger, Lawrence R.

    1978-01-01

    This bibliography contains 425 citations of selected technical reports, journal articles, and other publications covering the general subject of tropical and subtropical vegetation analysis. Functionally related topics that include vegetation analysis are included for completeness, and citations have been organized under the following subheadings for ease of reference: remote sensing application overviews, vegetation (general), forestry, grasslands/savannah/shrublands, agriculture, land use/thematic mapping, and integrated surveys/multiple resource analysis/land systems. The terms "tropics and subtropics" are used in the widest context to include applications related to a broad range of equatorial environments. The bibliography contains selected citations published between 1924 and 1978. Many foreign language and non U.S.- source items are included.

  15. An Overview of Remote Sensing and Geodesy for Epidemiology and Public Health Application

    PubMed Central

    Hay, S.I.

    2011-01-01

    The techniques of remote sensing (RS) and geodesy have the potential to revolutionize the discipline of epidemiology and its application in human health. As a new departure from conventional epidemiological methods, these techniques require some detailed explanation. This review provides the theoretical background to RS including (i) its physical basis, (ii) an explanation of the orbital characteristics and specifications of common satellite sensor systems, (iii) details of image acquisition and procedures adopted to overcome inherent sources of data degradation, and (iv) a background to geophysical data preparation. This information allows RS applications in epidemiology to be readily interpreted. Some of the techniques used in geodesy, to locate features precisely on Earth so that they can be registered to satellite sensor-derived images, are also included. While the basic principles relevant to public health are presented here, inevitably many of the details must be left to specialist texts. PMID:10997203

  16. Characterization of piezoelectric materials for simultaneous strain and temperature sensing for ultra-low frequency applications

    NASA Astrophysics Data System (ADS)

    Nouroz Islam, Mohammad; Seethaler, Rudolf; Shahria Alam, M.

    2015-08-01

    Piezoelectric materials are used extensively in a number of sensing applications ranging from aerospace industries to medical diagnostics. Piezoelectric materials generate charge when they are subjected to strain. However, since measuring charge is difficult at low frequencies, traditional piezoelectric sensors are limited to dynamic applications. In this research an alternative technique is proposed to determine static strain that relies upon the measurement of piezoelectric capacitance and resistance using piezoelectric sensors. To demonstrate the validity of this approach, the capacitance and resistance of a piezoelectric patch sensor was characterized for a wide range of strain and temperature. The study shows that the piezoelectric capacitance is sensitive to both strain and temperature while the resistance is mostly dependent on the temperature variation. The findings can be implemented to obtain thermally compensated static strain from piezoelectric sensors, which does not require an additional temperature sensor.

  17. [Application of hyper-spectral remote sensing technology in environmental protection].

    PubMed

    Zhao, Shao-Hua; Zhang, Feng; Wang, Qiao; Yao, Yun-Jun; Wang, Zhong-Ting; You, Dai-An

    2013-12-01

    Hyper-spectral remote sensing (RS) technology has been widely used in environmental protection. The present work introduces its recent application in the RS monitoring of pollution gas, green-house gas, algal bloom, water quality of catch water environment, safety of drinking water sources, biodiversity, vegetation classification, soil pollution, and so on. Finally, issues such as scarce hyper-spectral satellites, the limits of data processing and information extract are related. Some proposals are also presented, including developing subsequent satellites of HJ-1 satellite with differential optical absorption spectroscopy, greenhouse gas spectroscopy and hyper-spectral imager, strengthening the study of hyper-spectral data processing and information extraction, and promoting the construction of environmental application system.

  18. New insights into the application of geographical information systems and remote sensing in veterinary parasitology.

    PubMed

    Rinaldi, Laura; Musella, Vincenzo; Biggeri, Annibale; Cringoli, Giuseppe

    2006-11-01

    Over the past 10-15 years, significant advances have been made in the development and application of geographical information systems (GIS) and remote sensing (RS). In veterinary sciences, particularly in veterinary parasitology, GIS and RS offer powerful means for disease mapping, ecological analysis and epidemiological surveillance and have become indispensable tools for processing, analysing and visualising spatial data. They can also significantly assist with the assessment of the distribution of health-relevant environmental factors via interpolation and modelling. In this review, we first summarize general aspects of GIS and RS, and emphasize the most important applications of these tools in veterinary parasitology, including recent advances in territorial sampling. Disease mapping, spatial statistics, including Bayesian inference, ecological analyses and epidemiological surveillance are summarized in the next section and illustrated with a set of figures. Finally, a set of conclusions is put forward.

  19. Development and Application of Gas Sensing Technologies to Enable Boiler Balancing

    SciTech Connect

    Dutta, Prabir

    2008-12-31

    Identifying gas species and their quantification is important for optimization of many industrial applications involving high temperatures, including combustion processes. CISM (Center for Industrial Sensors and Measurements) at the Ohio State University has developed CO, O{sub 2}, NO{sub x}, and CO{sub 2} sensors based on TiO{sub 2} semiconducting oxides, zirconia and lithium phosphate based electrochemical sensors and sensor arrays for high-temperature emission control. The underlying theme in our sensor development has been the use of materials science and chemistry to promote high-temperature performance with selectivity. A review article presenting key results of our studies on CO, NO{sub x}, CO{sub 2} and O{sub 2} sensors is described in: Akbar, Sheikh A.; Dutta, Prabir K. Development and Application of Gas Sensing Technologies for Combustion Processes, PowerPlant Chemistry, 9(1) 2006, 28-33.

  20. Proceedings of the fourth international conference on remote sensing for marine and coastal environments. Technology and applications: Volume I

    SciTech Connect

    1997-06-01

    The conference proceedings contain papers which focus on the application of remote sensing technology and geographic information systems to solve problems in marine and coastal environments. Sixty-nine papers were selected for the database from Volume 1 of the proceedings. The topics included in the proceedings are: natural resource management, coastal hazards, oceanographic applications, mapping and charting, data access, coastal ocean color, radar satellites/coastal radars, underwater remote sensing, and new sensors and systems. Subtopics of papers in Volume 1 include: oil spills and marine pollution; Florida ecosystems; air-sea interaction and sea ice; living resources; optics and models; hyperspectral sensors and applications; and charting and mapping.

  1. High-efficiency VCSEL arrays for illumination and sensing in consumer applications

    NASA Astrophysics Data System (ADS)

    Seurin, Jean-Francois; Zhou, Delai; Xu, Guoyang; Miglo, Alexander; Li, Daizong; Chen, Tong; Guo, Baiming; Ghosh, Chuni

    2016-03-01

    There has been increased interest in vertical-cavity surface-emitting lasers (VCSELs) for illumination and sensing in the consumer market, especially for 3D sensing ("gesture recognition") and 3D image capture. For these applications, the typical wavelength range of interest is 830~950nm and power levels vary from a few milli-Watts to several Watts. The devices are operated in short pulse mode (a few nano-seconds) with fast rise and fall times for time-of-flight applications (ToF), or in CW/quasi-CW for structured light applications. In VCSELs, the narrow spectrum and its low temperature dependence allows the use of narrower filters and therefore better signal-to-noise performance, especially for outdoor applications. In portable devices (mobile devices, wearable devices, laptops etc.) the size of the illumination module (VCSEL and optics) is a primary consideration. VCSELs offer a unique benefit compared to other laser sources in that they are "surface-mountable" and can be easily integrated along with other electronics components on a printed circuit board (PCB). A critical concern is the power-conversion efficiency (PCE) of the illumination source operating at high temperatures (>50 deg C). We report on various VCSEL based devices and diffuser-integrated modules with high efficiency at high temperatures. Over 40% PCE was achieved in broad temperature range of 0-70 °C for either low power single devices or high power VCSEL arrays, with sub- nano-second rise and fall time. These high power VCSEL arrays show excellent reliability, with extracted mean-time-to-failure (MTTF) of over 500 years at 60 °C ambient temperature and 8W peak output.

  2. Segmentation, object-oriented applications for remote sensing land cover and land use classification

    NASA Astrophysics Data System (ADS)

    Magee, Kevin S.

    2011-12-01

    Multiscale segmentation, object-oriented methods in remote sensing have predominantly focused on urban applications using very fine resolution imagery. This dissertation explores three distinct but methodologically related remote sensing applications of multiscale segmentation, object-oriented classification using 30 m Landsat data. The first article reveals that object-oriented methods can achieve high classification accuracy for spectrally indistinct classes, even when forced to utilize non-ideal datasets such as hazy Landsat imagery and the "research grade" ASTER DEM. By incorporating spatial metrics, and exploiting elevational characteristics, seasonal wetlands can be differentiated from spectrally inseparable anthropogenically modified land use and from the upland, mixed tropical forest with high regional and local accuracies. The second article proposes and tests an object-oriented, target-constrained method for mangrove-specific change detection. By integrating pixel-based matched filter probability outputs with fuzzy object classification the proposed hybrid method bypass the need for exhaustive classification reducing classification time immensely. This method, then, has provided a means to globally assess mangrove stocks with the accuracy of object-based methods, but with the rapidity and repeatability found normally in less intensive methods. The third article demonstrates how both textural operators can be used at the object level for residential density classification with 30 m Landsat data. It was concluded that both mean GLCM and local Moran's I spatial statistics should be considered for the classification of residential density with the caveat that their utility is class-dependent. Object level usage of Moran's I was found to be able to be better differentiate high density land use classes while mean GLCM texture was indicated to be superior for separating low density land use and land cover. These applications demonstrate the utility of multiscale

  3. Earth resources programs at the Langley Research Center. Part 1: Advanced Applications Flight Experiments (AAFE) and microwave remote sensing program

    NASA Technical Reports Server (NTRS)

    Parker, R. N.

    1972-01-01

    The earth resources activity is comprised of two basic programs as follows: advanced applications flight experiments, and microwave remote sensing. The two programs are in various stages of implementation, extending from experimental investigations within both the AAFE program and the microwave remote sensing program, to multidisciplinary studies and planning. The purpose of this paper is simply to identify the main thrust of the Langley Research Center activity in earth resources.

  4. Fourier plane colorimetric sensing using broadband imaging of surface plasmons and application to biosensing

    SciTech Connect

    Arora, P.; Krishnan, A.

    2015-12-21

    dielectrics, where real plane image analysis may fail to sense index perturbations, simply due to superposition of different modes in the real plane images of such substrates. Control experiments and analysis revealed a refractive index resolution of 10{sup –5} RIU. The results were correlated with simulations to establish the physical origin of the change in the fundamental mode and higher-order modes due to the refractive index and thickness of analyte. As a demonstration of an application and to test the limits of sensing, the substrates were used to image the surface functionalization using 2-nm-thick 11-mercaptoundecanoic acid and immobilization of 7-nm-thick mouse anti-human IgG antibody. In biological systems, where a priori knowledge about a process step is available, where accurate chemical composition testing is not necessary or possible, the presented method could be used to study the surface changes using a label-free sensing mechanism.

  5. Visible-infrared remote-sensing model and applications for ocean waters. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lee, Zhongping

    1994-01-01

    and value of the chlorophyll-specific absorption coefficient. The simulation was tested for a wide range of water types, including waters from Monterey Bay, the West Florida Shelf, and the Mississippi River plume. Using the simulation, the R(sub rs)-derived in-water absorption coefficients were consistent with the values from in-water measurements (r(exp 2) greater than 0.94, slope approximately 1.0). In the remote-sensing applications, a new approach is suggested for the estimation of primary production based on remote sensing. Using this approach, the calculated primary production (PP) values based upon remotely sensed data were very close to the measured values for the euphotic zone (r(exp 2) = 0.95, slope 1.26, and 32% average difference), while traditional, pigment-based PP model provided values only one-third the size of the measured data. This indicates a potential to significantly improve the accuracy of the estimation of primary production based upon remote sensing.

  6. Fourier plane colorimetric sensing using broadband imaging of surface plasmons and application to biosensing

    NASA Astrophysics Data System (ADS)

    Arora, P.; Krishnan, A.

    2015-12-01

    dielectrics, where real plane image analysis may fail to sense index perturbations, simply due to superposition of different modes in the real plane images of such substrates. Control experiments and analysis revealed a refractive index resolution of 10-5 RIU. The results were correlated with simulations to establish the physical origin of the change in the fundamental mode and higher-order modes due to the refractive index and thickness of analyte. As a demonstration of an application and to test the limits of sensing, the substrates were used to image the surface functionalization using 2-nm-thick 11-mercaptoundecanoic acid and immobilization of 7-nm-thick mouse anti-human IgG antibody. In biological systems, where a priori knowledge about a process step is available, where accurate chemical composition testing is not necessary or possible, the presented method could be used to study the surface changes using a label-free sensing mechanism.

  7. Remote sensing application for identifying wetland sites on Cyprus: problems and prospects

    NASA Astrophysics Data System (ADS)

    Markogianni, Vassilik; Tzirkalli, Elli; Gücel, Salih; Dimitriou, Elias; Zogaris, Stamatis

    2014-08-01

    Wetland features in seasonally semi-arid islands pose particular difficulties in identification, inventory and conservation assessment. Our survey presents an application of utilizing images of a newly launched sensor, Landsat 8, to rapidly identify inland water bodies and produce a screening-level island-wide inventory of wetlands for the first time in Cyprus. The method treats all lentic water bodies (artificial and natural) and areas holding semi-aquatic vegetation as wetland sites. The results show that 179 sites are delineated by the remote sensing application and when this is supplemented by expert-guided identification and ground surveys during favourable wet-season conditions the total number of inventoried wetland sites is 315. The number of wetland sites is surprisingly large since it does not include micro-wetlands (under 2000 m2 or 0.2 ha) or widespread narrow lotic and riparian stream reaches. In Cyprus, a number of different wetland types occur and often in temporary or ephemerally flooded conditions and they are usually of very small areal extent. Many wetlands are artificial or semi-artificial water bodies, and numerous natural small wetland features are often degraded by anthropogenic changes or exist as remnant patches and are therefore heavily modified compared to their original natural state. The study proves that there is an urgent need for integrated and multidisciplinary study and monitoring of wetlands cover due to either climate change effects and/or anthropogenic interventions. Small wetlands are particularly vulnerable while many artificial wetlands are not managed for biodiversity values. The remote sensing and GIS application are efficient tools for this initial screening-level inventory. The need for baseline inventory information collection in support of wetland conservation is multi-scalar and requires an adaptive protocol to guide effective conservation planning.

  8. Semiconductor Reference Oscillator Development for Coherent Detection Optical Remote Sensing Applications

    NASA Technical Reports Server (NTRS)

    Tratt, David M.; Mansour, Kamjou; Menzies, Robert T.; Qiu, Yueming; Forouhar, Siamak; Maker, Paul D.; Muller, Richard E.

    2001-01-01

    The NASA Earth Science Enterprise Advanced Technology Initiatives Program is supporting a program for the development of semiconductor laser reference oscillators for application to coherent optical remote sensing from Earth orbit. Local oscillators provide the frequency reference required for active spaceborne optical remote sensing concepts that involve heterodyne (coherent) detection. Two recent examples of such schemes are Doppler wind lidar and tropospheric carbon dioxide measurement by laser absorption spectrometry, both of which are being proposed at a wavelength of 2.05 microns. Frequency-agile local oscillator technology is important to such applications because of the need to compensate for large platform-induced Doppler components that would otherwise interfere with data interpretation. Development of frequency-agile local oscillator approaches has heretofore utilized the same laser material as the transmitter laser (Tm,Ho:YLF in the case of the 2.05-micron wavelength mentioned above). However, a semiconductor laser-based frequency-agile local oscillator offers considerable scope for reduced mechanical complexity and improved frequency agility over equivalent crystal laser devices, while their potentially faster tuning capability suggest the potential for greater scanning versatility. The program we report on here is specifically tasked with the development of prototype novel architecture semiconductor lasers with the power, tunability, and spectral characteristics required for coherent Doppler lidar. The baseline approach for this work is the distributed feedback (DFB) laser, in which gratings are etched into the semiconductor waveguide structures along the entire length of the laser cavity. However, typical DFB lasers at the wavelength of interest have linewidths that exhibit unacceptable growth when driven at the high currents and powers that are required for the Doppler lidar application. Suppression of this behavior by means of corrugation pitch

  9. Plasmonic Properties of Bimetallic Nanostructures and Their Applications in Hydrogen Sensing and Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Jiang, Ruibin

    Noble metal nanocrystals have attracted great interest from a wide range of research fields because of their intriguing properties endowed by their localized surface plasmon resonances, which are the collective oscillations of free electrons. Under resonant excitation, metal nanostructures exhibit very large scattering and absorption cross sections and large near-field enhancement. These extraordinary properties can be used in different applications, such as plasmonic sensing and imaging, plasmon-controlled optics, photothermal therapy, photocatalysis, solar cells, and so on. Gold and Silver nanocrystals have plasmon resonances in the visible and near-infrared regions. However, gold and silver are not suitable for some applications. For example, they are generally inactive for catalyzing chemical reactions. The integration of plasmonic metals with other metals can offer superior or new physical/chemical properties. In this thesis, I prepared Au/Ag and Au/Pd bimetallic nanostructures and studied their plasmonic properties and applications in hydrogen sensing and photocatalysis. Seeds have a crucial importance in the synthesis of bimetallic nanostructures. I therefore first studied the roles of the crystalline structure and shape of seeds on the overgrowth of bimetallic nanostructures. The overgrowth of silver and palladium on single crystalline Au nanorods, multicrystalline Au nanorods, and nanobipyramids were studied under the same conditions for each metal. The growths of silver and palladium on single crystalline Au nanorods gave cuboidal nanostructures, while rod-shaped nanostructures were obtained from the growths of silver and palladium on multicrystalline Au nanorods and nanobipyramids. Moreover, the growths of silver and palladium on multicrystalline Au nanobipyramids started at the stepped side facets, while the growths started at the twin boundaries on multicrystalline Au nanorods. These results unambiguously indicate that the crystalline structure of

  10. Mechanical characterization of bucky gel morphing nanocomposite for actuating/sensing applications

    NASA Astrophysics Data System (ADS)

    Kadhoda Ghamsari, Ali; Jin, Yoonyoung; Woldesenbet, Eyassu

    2012-04-01

    Since the demonstration of the bucky gel actuator (BGA) in 2005, a great deal of effort has been exerted to develop novel applications for this electro-active morphing nanocomposite. This three-layered bimorph nanocomposite can be easily fabricated, operated in air and driven with a few volts. The BGA with improved mechanical strength is an excellent candidate for application in macro- to micro-scale smart structures with actuating and sensing capabilities. However, developing new applications requires identifying and understanding the effective design parameters and mechanical properties, respectively. There has been limited published studies on the mechanical properties of BGA. In this study, the effect of three parameters—layer thickness, carbon nanotube type and weight fraction of components—on the mechanical properties was investigated. Samples were characterized via nano-indentation and DMA. The BGA composed of 22 wt% single-walled carbon nanotubes and 45 wt% ionic liquid exhibited the highest hardness, adhesion, viscosity, and elastic and storage moduli. This study revealed the important role of the carbon nanotube type on BGA adhesion. Samples made with multi-walled carbon nanotubes had the lowest adhesion, which is a required factor in applications such as microfluidics.

  11. A Ubiquitous Optical Microsystem Platform with Application to Optical Metrology and Chemical Sensing

    NASA Astrophysics Data System (ADS)

    Gerling, John David

    This dissertation is concerned with the development of a novel, versatile optical sensor platform for optical metrology and chemical sensing. We demonstrate the feasibility of embedding optical components between bonded silicon wafers with receptor cavities and optical windows to create a self-contained sensor microsystem that can be used for in-situ measurement of hostile environments. Arrays of these sensors internal to a silicon wafer can enable optical sensing for in-situ, real-time mapping and process development for the semiconductor industry in the form of an instrumented substrate. Single-die versions of these optical sensor platforms can also enable point-of-care diagnostics, high throughput disease screening, bio-warfare agent detection, and environmental monitoring. Our first discussion will focus on a single-wavelength interferometry-based prototype sensor. Several applications are demonstrated using this single wavelength prototype: refractive index monitoring, SiO2 plasma etching, chemical mechanical polishing, photoresist cure and dissolution, copper etch end-point detection, and also nanopore wetting phenomena. Subsequent sections of this dissertation will describe efforts to improve the optical sensor platform to achieve multi-wavelength sensing function. We explore the use of an off-the-shelf commercial RGB sensor for colorimetric monitoring of copper and aluminum thin-film etchings. We then expand upon our prior work and concepts to realize a fully integrated, chip-sized microspectrometer with a photon engine based on a diffraction grating. The design, fabrication, and demonstration of a working prototype with dimensions < 1 mm thick using standard planar microfabrication techniques is described. Proof-of-concept demonstrations indicate the working principle of dispersion, although with a low spectral resolution of 120 nm. With working knowledge of the issues of the first prototype, we present an improved 5-channel microspectrometer with a

  12. Implementation of Simple and Functional Web Applications at the Alaska Volcano Observatory Remote Sensing Group

    NASA Astrophysics Data System (ADS)

    Skoog, R. A.

    2007-12-01

    Web pages are ubiquitous and accessible, but when compared to stand-alone applications they are limited in capability. The Alaska Volcano Observatory (AVO) Remote Sensing Group has implemented web pages and supporting server software that provide relatively advanced features to any user able to meet basic requirements. Anyone in the world with access to a modern web browser (such as Mozilla Firefox 1.5 or Internet Explorer 6) and reasonable internet connection can fully use the tools, with no software installation or configuration. This allows faculty, staff and students at AVO to perform many aspects of volcano monitoring from home or the road as easily as from the office. Additionally, AVO collaborators such as the National Weather Service and the Anchorage Volcanic Ash Advisory Center are able to use these web tools to quickly assess volcanic events. Capabilities of this web software include (1) ability to obtain accurate measured remote sensing data values on an semi- quantitative compressed image of a large area, (2) to view any data from a wide time range of data swaths, (3) to view many different satellite remote sensing spectral bands and combinations, to adjust color range thresholds, (4) and to export to KML files which are viewable virtual globes such as Google Earth. The technologies behind this implementation are primarily Javascript, PHP, and MySQL which are free to use and well documented, in addition to Terascan, a commercial software package used to extract data from level-0 data files. These technologies will be presented in conjunction with the techniques used to combine them into the final product used by AVO and its collaborators for operational volcanic monitoring.

  13. Application of Thermal Infrared Remote Sensing for Quantitative Evaluation of Crop Characteristics

    NASA Technical Reports Server (NTRS)

    Shaw, J.; Luvall, J.; Rickman, D.; Mask, P.; Wersinger, J.; Sullivan, D.; Arnold, James E. (Technical Monitor)

    2002-01-01

    Evidence suggests that thermal infrared emittance (TIR) at the field-scale is largely a function of the integrated crop/soil moisture continuum. Because soil moisture dynamics largely determine crop yields in non-irrigated farming (85 % of Alabama farms are non-irrigated), TIR may be an effective method of mapping within field crop yield variability, and possibly, absolute yields. The ability to map yield variability at juvenile growth stages can lead to improved soil fertility and pest management, as well as facilitating the development of economic forecasting. Researchers at GHCC/MSFC/NASA and Auburn University are currently investigating the role of TIR in site-specific agriculture. Site-specific agriculture (SSA), or precision farming, is a method of crop production in which zones and soils within a field are delineated and managed according to their unique properties. The goal of SSA is to improve farm profits and reduce environmental impacts through targeted agrochemical applications. The foundation of SSA depends upon the spatial and temporal characterization of soil and crop properties through the creation of management zones. Management zones can be delineated using: 1) remote sensing (RS) data, 2) conventional soil testing and soil mapping, and 3) yield mapping. Portions of this research have concentrated on using remote sensing data to map yield variability in corn (Zea mays L.) and soybean (Glycine max L.) crops. Remote sensing data have been collected for several fields in the Tennessee Valley region at various crop growth stages during the last four growing seasons. Preliminary results of this study will be presented.

  14. On the Application of OPAC in the Remote Sensing of Aerosols

    NASA Astrophysics Data System (ADS)

    Veroustraete, Frank; Maiheu, Bino; Janssen, Stijn; Mensink, Clemens

    2010-05-01

    This paper gives an account of the use of remotely sensed Aerosol Optical Depth (AOD) imagery for the determination of particulate matter (PM) concentrations. One of the tasks of the Belgian Interregional Environment Agency is to provide information to the population as well as governmental institutes on the air quality in the country. One approach to reach this goal is to use the data collected by measuring sites and to interpolate these data to produce pollution maps. These maps commonly provide information on the concentrations of O3, NO2, SO2 and PM10 for Belgium. However, when it comes to mapping ultra-fine particulate matter (PM2.5) the required information for interpolation from measuring stations is lacking due to an inadequate amount and spatial spread of measuring stations of PM2.5. A possible approach to still provide information on spatially explicit PM2.5 pollution fields is to make use of satellite observations, more specifically by measuring AOD and the Angstrom coefficient. Many studies have been performed and papers published which investigate the relationship between aerosol optical depth and particulate matter - especially PM2.5 - at field level. This paper gives outcome on what we have learned from the use of the OPAC model (Optical Properties of Aerosols and Clouds) to establish relationships between AOD and PM under cloud-free atmospheric conditions. An example of OPAC model application will be presented. Key words: Remote Sensing, AOD, PM2.5, OPAC

  15. Microfiber Mach-Zehnder interferometer based on long period grating for sensing applications.

    PubMed

    Tan, Yanzhen; Sun, Li-Peng; Jin, Long; Li, Jie; Guan, Bai-Ou

    2013-01-14

    A Mach-Zehnder interferometer (MZI) composed by a pair of long period gratings (LPGs) fabricated in silica microfiber for sensing applications is demonstrated. Each LPG is fabricated with a pulsed CO2 laser by creating six periodical deformations along fiber length with only one scanning cycle. The length of the MZI can reach as short as 8.84 mm when the diameter of the microfiber is 9.5 μm. Compared with the ones fabricated in single-mode fibers, the present MZI is much shorter owing to the large effective-index difference between the fundamental and higher order modes. The microfiber MZI exhibits a sensitivity to surrounding refractive index (RI) of 2225 nm per refractive index unit and the temperature sensitivity of only 11.7 pm/°C. Theoretical analysis suggests that the performances of the MZI sensor can be improved by using thinner microfibers with a diameter down to 3.5 μm: The sensitivity can be greatly enhanced due to the stronger evanescent-field interaction and reduced dispersion factor; the transmission dips become narrower which benefits high-resolution measurement; the thinner fiber also allows further reduction in device length. The present device has great potential in biochemical and medical sensing due to the advantages including easy fabrication, excellent compactness and high sensitivity.

  16. Bio-Inspired Pressure Sensitive Foam Arrays for use in Hydrodynamic Sensing Applications

    NASA Astrophysics Data System (ADS)

    Dusek, Jeff; Triantafyllou, Michael; Lang, Jeffrey

    2015-11-01

    Shallow, turbid, and highly dynamic coastal waters provide a challenging environment for safe and reliable operation of marine vehicles faced with a distinct environmentally driven perceptual deficit. In nature, fish have solved this perplexing sensory problem and exhibit an intimate knowledge of the near-body flow field. This enhanced perception is mediated by the ability to discern and interpret hydrodynamic flow structures through the velocity and pressure sensing capabilities of the fish's lateral line. Taking cues from biological sensory principles, highly conformal pressure sensor arrays have been developed utilizing a novel piezoresistive carbon black-PDMS foam active material. By leveraging the low Young's modulus and watertight structure of closed-cell PDMS (silicone) foam, the sensor arrays are well suited for hydrodynamic sensing applications and prolonged exposure to fluid environments. Prototype arrays were characterized experimentally using hydrodynamic stimuli inspired by biological flows, and were found to exhibit a high degree of sensitivity while improving on the flexibility, robustness, and cost of existing pressure sensors.

  17. Tactile Sensing System Based on Arrays of Graphene Woven Microfabrics: Electromechanical Behavior and Electronic Skin Application.

    PubMed

    Yang, Tingting; Wang, Wen; Zhang, Hongze; Li, Xinming; Shi, Jidong; He, Yijia; Zheng, Quan-shui; Li, Zhihong; Zhu, Hongwei

    2015-11-24

    Nanomaterials serve as promising candidates for strain sensing due to unique electromechanical properties by appropriately assembling and tailoring their configurations. Through the crisscross interlacing of graphene microribbons in an over-and-under fashion, the obtained graphene woven fabric (GWF) indicates a good trade-off between sensitivity and stretchability compared with those in previous studies. In this work, the function of woven fabrics for highly sensitive strain sensing is investigated, although network configuration is always a strategy to retain resistance stability. The experimental and simulation results indicate that the ultrahigh mechanosensitivity with gauge factors of 500 under 2% strain is attributed to the macro-woven-fabric geometrical conformation of graphene, which induces a large interfacial resistance between the interlaced ribbons and the formation of microscale-controllable, locally oriented zigzag cracks near the crossover location, both of which have a synergistic effect on improving sensitivity. Meanwhile, the stretchability of the GWF could be tailored to as high as over 40% strain by adjusting graphene growth parameters and adopting oblique angle direction stretching simultaneously. We also demonstrate that sensors based on GWFs are applicable to human motion detection, sound signal acquisition, and spatially resolved monitoring of external stress distribution.

  18. Simple design of novel triple-band terahertz metamaterial absorber for sensing application

    NASA Astrophysics Data System (ADS)

    Wang, Ben-Xin; Wang, Gui-Zhen; Sang, Tian

    2016-04-01

    For a general metamaterial absorber, single patterned structure has only one resonance absorption peak. Therefore, a multi-band perfect absorber can be obtained by employing multiple different-sized metallic patterns. However, this kind of design strategy removes the novelty of their resonance mechanism and is also quite troublesome in regard to fabrication. Here, a novel and simple design of a triple-band terahertz absorber formed by only an asymmetric cross is presented. Theoretical results show that the proposed structure has three distinct absorption bands whose peaks are all over 99%. The first two absorption peaks are due to the magnetic resonances of the different sections of the asymmetric cross, and the third peak is based on the surface response of the structure. Moreover, sensing performance of the absorber is investigated in terms of the surrounding index. It is found that the figure of merit and quality factor of the third peak is much larger than those of the first two peaks, which reveals the proposed absorber’s, in particular the third resonance mode of the metamaterial, potential applications in sensing and detection.

  19. An investigation into the performance of macro-fiber composites for sensing and structural vibration applications

    NASA Astrophysics Data System (ADS)

    Sodano, Henry A.; Park, Gyuhae; Inman, Daniel J.

    2004-05-01

    This paper presents the use of macro-fiber composites (MFC) for vibration suppression and structural health monitoring. The major advantages of the piezoelectric fiber composite actuators are their high performance, flexibility, and durability when compared with the traditional piezoceramic (PZT) actuators. The recently developed MFC actuator provides these advantages and can be used in structural vibration applications. In addition, the ability of MFC devices to couple the electrical and mechanical fields is larger than in monolithic PZT. In this study, we showed that an MFC could be used as a sensor and actuator to find modal parameters of an inflatable structure. This sensor and actuator combination has also been used to reduce vibration in an inflated object. Once the sensing capability was identified, we developed a self-sensing circuit for an MFC. Our experimental results clearly indicate that this strategy can suppress structural vibration, while reducing the number of system components. Finally, the MFC has been implemented as impedance sensor for structural health monitoring (e.g. a of bolted joint connection). The experimental results presented in this paper show the potential of MFC for use in the dynamics and control of flexible structures.

  20. Grapefruit photonic crystal fiber long period gratings sensor for DNT sensing application

    NASA Astrophysics Data System (ADS)

    Tao, Chuanyi; Li, Jingke; Zhu, Tenglong

    2016-10-01

    The detection of explosives and their residues is of great importance in public health, antiterrorism and homeland security applications. The vapor pressures of most explosive compounds are extremely low and attenuation of the available vapor is often great due to diffusion in the environment, making direct vapor detection difficult. In reality bomb dogs are still the most efficient way to quickly detect explosives on the spot. Many formulations of TNT-based explosives contain DNT residues. The use of long period gratings (LPGs) formed in grapefruit photonic crystal fiber (PCF) with thin-film overlay coated on the inner surface of air holes for gas sensing is demonstrated. A gas analyteinduced index variation of the thin-film immobilized on the inner surface of the holey region of the fiber can be observed by a shift of the resonance wavelength. We demonstrate a 2,4-dinitrotoluene (DNT) sensor using grapefruit PCF-LPGs. Coating with gas-sensitive thin-film on the inner surface of the air holes of the grapefruit PCF-LPG could provide a promising platform for rapid highly sensitive gas sensing. A rapid and highly sensitive detection of DNT has been demonstrated using the grapefruit PCF-LPG sensor to show the feasibility of the proposed approach.

  1. Methodology for classification of geographical features with remote sensing images: Application to tidal flats

    NASA Astrophysics Data System (ADS)

    Revollo Sarmiento, G. N.; Cipolletti, M. P.; Perillo, M. M.; Delrieux, C. A.; Perillo, Gerardo M. E.

    2016-03-01

    Tidal flats generally exhibit ponds of diverse size, shape, orientation and origin. Studying the genesis, evolution, stability and erosive mechanisms of these geographic features is critical to understand the dynamics of coastal wetlands. However, monitoring these locations through direct access is hard and expensive, not always feasible, and environmentally damaging. Processing remote sensing images is a natural alternative for the extraction of qualitative and quantitative data due to their non-invasive nature. In this work, a robust methodology for automatic classification of ponds and tidal creeks in tidal flats using Google Earth images is proposed. The applicability of our method is tested in nine zones with different morphological settings. Each zone is processed by a segmentation stage, where ponds and tidal creeks are identified. Next, each geographical feature is measured and a set of shape descriptors is calculated. This dataset, together with a-priori classification of each geographical feature, is used to define a regression model, which allows an extensive automatic classification of large volumes of data discriminating ponds and tidal creeks against other various geographical features. In all cases, we identified and automatically classified different geographic features with an average accuracy over 90% (89.7% in the worst case, and 99.4% in the best case). These results show the feasibility of using freely available Google Earth imagery for the automatic identification and classification of complex geographical features. Also, the presented methodology may be easily applied in other wetlands of the world and perhaps employing other remote sensing imagery.

  2. Evaluation of zinc oxide nano-microtetrapods for biomolecule sensing applications

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Zhao, Yichen; Karlsson, Mikael; Wang, Qin; Toprak, Muhammet S.

    2015-12-01

    Zinc oxide tetrapods (ZnO-Ts) were synthesized by flame transport synthesis using Zn microparticles. This work herein reports a systematical study on the structural, optical and electrochemical properties of the ZnO-Ts. The morphology of the ZnO-Ts was confirmed by scanning electron microscopy (SEM) as joint structures of four nano-microstructured legs, of which the diameter of each leg is 0.7-2.2 μm in average from the tip to the stem. The ZnO-Ts were dispersed in glucose solution to study the luminescence as well as photocatalytic activity in a mimicked biological environment. The photoluminescence (PL) intensity in the ultraviolet (UV) region quenches with linear dependence to increased glucose concentration up to 4 mM. The ZnO-Ts were also attached with glucose oxidase (GOx) and over coated with a thin film of Nafion to form active layers for electrochemical glucose sensing. The attachment of GOx and coating of Nafion were confirmed by infrared spectroscopy (FT-IR). Furthermore, the current response of the active layers based on ZnO-Ts was investigated by cyclic voltammetry (CV) in various glucose concentrations. Stable current response of glucose was detected with linear dependence to glucose concentration up to 12 mM, which confirms the potential of ZnO-Ts for biomolecule sensing applications.

  3. The sensitivity of synthetic aperture radiometers for remote sensing applications from space

    NASA Technical Reports Server (NTRS)

    Le Vine, David M.

    1990-01-01

    Aperture synthesis offers a means of realizing the full potential microwave remote sensing from space by helping to overcome the limitations set by antenna size. The result is a potentially lighter, more adaptable structure for applications in space. However, because the physical collecting area is reduced, the signal-to-noise ratio is also reduced and may adversely affect the radiometric sensitivity. Sensitivity is an especially critical issue for measurements from low earth orbit because the motion of the platform (about 7 km/s) limits the integration time available for forming an image. The purpose of this paper is to develop expressions for the sensitivity of remote sensing systems which use aperture synthesis. The objective is to develop basic equations general enough to be used to obtain the sensitivity of the several variations of aperture synthesis which have been proposed for sensors in space. The conventional microwave imager (a scanning total power radiometer) is treated as a special case, and the paper concludes with a comparison of three synthetic aperture configurations with the conventional imager.

  4. The application of the unmanned aerial vehicle remote sensing technology in the FAST project construction

    NASA Astrophysics Data System (ADS)

    Zhu, Boqin

    2015-08-01

    The purpose of using unmanned aerial vehicle (UAV) remote sensing application in Five-hundred-meter aperture spherical telescope (FAST) project is to dynamically record the construction process with high resolution image, monitor the environmental impact, and provide services for local environmental protection and the reserve immigrants. This paper introduces the use of UAV remote sensing system and the course design and implementation for the FAST site. Through the analysis of the time series data, we found that: (1) since the year 2012, the project has been widely carried out; (2) till 2013, the internal project begun to take shape;(3) engineering excavation scope was kept stable in 2014, and the initial scale of the FAST engineering construction has emerged as in the meantime, the vegetation recovery went well on the bare soil area; (4) in 2015, none environmental problems caused by engineering construction and other engineering geological disaster were found in the work area through the image interpretation of UAV images. This paper also suggested that the UAV technology need some improvements to fulfill the requirements of surveying and mapping specification., including a new data acquisition and processing measures assigned with the background of highly diverse elevation, usage of telephoto camera, hierarchical photography with different flying height, and adjustment with terrain using the joint empty three settlement method.

  5. [An improved method and its application for agricultural drought monitoring based on remote sensing].

    PubMed

    Zheng, You-Fei; Cheng, Jin-Xin; Wu, Rong-Jun; Guan, Fu-Lai; Yao, Shu-Ran

    2013-09-01

    From the viewpoint of land surface evapotranspiration, and by using the semi-empirical evapotranspiration model based on the Priestley-Taylor equation and the land surface temperature-vegetation index (LST-VI) triangle algorithm, the current monitoring technology of agricultural drought based on remote sensing was improved, and a simplified Evapotranspiration Stress Index (SESI) was derived. With the application of the MODIS land products from March to November in 2008 and 2009, the triangle algorithm modeling with three different schemes was constructed to calculate the SESI to monitor the agricultural drought in the plain areas of Beijing, Tianjin, and Hebei, in comparison with the Temperature Vegetation Dryness Index (TVDI). The results showed that SESI could effectively simplify the remote sensing drought monitoring method, and there was a good agreement between SESI and surface soil (10 and 20 cm depth) moisture content. Moreover, the performance of SESI was better in spring and autumn than in summer, and the SESI during different periods was more comparable than TVDI. It was feasible to apply the SESI to the continuous monitoring of a large area of agricultural drought.

  6. Quorum quenching enzymes and their application in degrading signal molecules to block quorum sensing-dependent infection.

    PubMed

    Chen, Fang; Gao, Yuxin; Chen, Xiaoyi; Yu, Zhimin; Li, Xianzhen

    2013-08-26

    With the emergence of antibiotic-resistant strains of bacteria, the available options for treating bacterial infections have become very limited, and the search for a novel general antibacterial therapy has received much greater attention. Quorum quenching can be used to control disease in a quorum sensing system by triggering the pathogenic phenotype. The interference with the quorum sensing system by the quorum quenching enzyme is a potential strategy for replacing traditional antibiotics because the quorum quenching strategy does not aim to kill the pathogen or limit cell growth but to shut down the expression of the pathogenic gene. Quorum quenching enzymes have been identified in quorum sensing and non-quorum sensing microbes, including lactonase, acylase, oxidoreductase and paraoxonase. Lactonase is widely conserved in a range of bacterial species and has variable substrate spectra. The existence of quorum quenching enzymes in the quorum sensing microbes can attenuate their quorum sensing, leading to blocking unnecessary gene expression and pathogenic phenotypes. In this review, we discuss the physiological function of quorum quenching enzymes in bacterial infection and elucidate the enzymatic protection in quorum sensing systems for host diseases and their application in resistance against microbial diseases.

  7. Drought monitoring with remote sensing based land surface phenology applications and validation

    NASA Astrophysics Data System (ADS)

    El Vilaly, Mohamed Abd salam M.

    Droughts are a recurrent part of our climate, and are still considered to be one of the most complex and least understood of all natural hazards in terms of their impact on the environment. In recent years drought has become more common and more severe across the world. For more than a decade, the US southwest has faced extensive and persistent drought conditions that have impacted vegetation communities and local water resources. The focus of this work is achieving a better understanding of the impact of drought on the lands of the Hopi Tribe and Navajo Nation, situated in the Northeastern corner of Arizona. This research explores the application of remote sensing data and geospatial tools in two studies to monitor drought impacts on vegetation productivity. In both studies we used land surface phenometrics as the data tool. In a third related study, I have compared satellite-derived land surface phenology (LSP) to field observations of crop stages at the Maricopa Agricultural Center to achieve a better understanding of the temporal sensitivity of satellite derived phenology of vegetation and understand their accuracy as a tool for monitoring change. The first study explores long-term vegetation productivity responses to drought. The paper develops a framework for drought monitoring and assessment by integrating land cover, climate, and topographical data with LSP. The objective of the framework is to detect long-term vegetation changes and trends in the Normalized Difference Vegetation Index (NDVI) related productivity. The second study examines the major driving forces of vegetation dynamics in order to provide valuable spatial information related to inter-annual variability in vegetation productivity for mitigating drought impacts. The third study tests the accuracy of remote sensing-derived LSP by comparing them to the actual seasonal phases of crop growth. This provides a way to compare and validate the various LSP algorithms, and more crucially, helps to

  8. Surrounding Sensitive Electronic Properties of Bi2Te3 Nanoplates—Potential Sensing Applications of Topological Insulators

    PubMed Central

    Liu, Bin; Xie, Wuyuan; Li, Han; Wang, Yanrong; Cai, Daoping; Wang, Dandan; Wang, Lingling; Liu, Yuan; Li, Qiuhong; Wang, Taihong

    2014-01-01

    Significant efforts have been paid to exploring the fundamental properties of topological insulators (TIs) in recent years. However, the investigation of TIs as functional materials for practical device applications is still quite limited. In this work, electronic sensors based on Bi2Te3 nanoplates were fabricated and the sensing performance was investigated. On exposure to different surrounding environments, significant changes in the conducting properties were observed by direct electrical measurements. These results suggest that nanostructured TIs hold great potential for sensing applications. PMID:24717774

  9. Mesoporous Silica Nanomaterials for Applications in Catalysis, Sensing, Drug Delivery and Gene Transfection

    SciTech Connect

    Radu, Daniela Rodica

    2004-01-01

    The central theme of this dissertation is represented by the versatility of mesoporous silica nanomaterials in various applications such as catalysis and bio-applications, with main focus on biological applications of Mesoporous Silica Nanospheres (MSN). The metamorphosis that we impose to these materials from catalysis to sensing and to drug and gene delivery is detailed in this dissertation. First, we developed a synthetic method that can fine tune the amount of chemically accessible organic functional groups on the pores surface of MSN by exploiting electrostatic and size matching between the cationic alkylammonium head group of the cetyltrimethylammonium bromide (CTAB) surfactant and various anionic organoalkoxysilane precursors at the micelle-water interface in a base-catalyzed condensation reaction of silicate. Aiming nature imitation, we demonstrated the catalytic abilities of the MSNs, We utilized an ethylenediamine functional group for chelating Cu2+ as a catalytic functional group anchored inside the mesopores. Thus, a polyalkynylene-based conducting polymer (molecular wire) was synthesized within the Cu-functionalized MSNs silica catalyst. For sensing applications, we have synthesized a poly(lactic acid) coated mesoporous silica nanosphere (PLA-MSN) material that serves as a fluorescence sensor system for detection of amino-containing neurotransmitters in neutral aqueous buffer. We exploited the mesoporosity of MSNs for encapsulating pharmaceutical drugs. We examined bio-friendly capping molecules such as polyamidoamine dendrimers of generations G2 to G4, to prevent the drug leaching. Next, the drug delivery system employed MSNs loaded with Doxorubicin, an anticancer drug. The results demonstrated that these nano-Trojan horses have ability to deliver Doxorubicin to cancer cells and induce their death. Finally, to demonstrate the potential of MSN as an universal cellular transmembrane nanovehicle, we anchored positively charged dendrimers on

  10. Construction of Self-Stabilizing k Disjoint Sense-Sleep Trees with Application to Sensor Networks

    NASA Astrophysics Data System (ADS)

    Kiniwa, Jun

    Sensor networks have promising applications such as battlefield surveillance, biological detection, and emergency navigation, etc. Crucial problems in sensor networks are energy-efficiency and collision avoidance in wireless communication. To deal with the problems, we consider a self-stabilizing solution to the construction of k disjoint sense-sleep trees, where range adjustment and the use of GPS are allowed. Each root is determined by its identifier and is distinguished by its color, the identification of a tree. Using a dominating k-partition rule, each non-root node first determines a color irrelevant to the root. Then, the non-root node determines a parent node that is equally colored with minimal distance. If there is no appropriate parent, the range is extended or shrunk until the nearest parent is determined. Finally, we perform a simulation.

  11. Boronic Acid-Based Approach for Separation and Immobilization of Glycoproteins and Its Application in Sensing

    PubMed Central

    Wang, Xiaojin; Xia, Ning; Liu, Lin

    2013-01-01

    Glycoproteins influence a broad spectrum of biological processes including cell-cell interaction, host-pathogen interaction, or protection of proteins against proteolytic degradation. The analysis of their glyco-structures and concentration levels are increasingly important in diagnosis and proteomics. Boronic acids can covalently react with cis-diols in the oligosaccharide chains of glycoproteins to form five- or six-membered cyclic esters. Based on this interaction, boronic acid-based ligands and materials have attracted much attention in both chemistry and biology as the recognition motif for enrichment and chemo/biosensing of glycoproteins in recent years. In this work, we reviewed the progress in the separation, immobilization and detection of glycoproteins with boronic acid-functionalized materials and addressed its application in sensing. PMID:24141187

  12. Long term storage of virus templated fluorescent materials for sensing applications.

    PubMed

    Seetharam, Raviraja N; Szuchmacher Blum, Amy; Soto, Carissa M; Whitley, Jessica L; Sapsford, Kim E; Chatterji, Anju; Lin, Tianwei; Johnson, John E; Guerra, Charles; Satir, Peter; Ratna, Banahalli R

    2008-03-12

    Wild type, mutant, and chemically modified Cowpea mosaic viruses (CPMV) were studied for long term preservation in the presence and absence of cryoprotectants. Viral complexes were reconstituted and tested via fluorescence spectroscopy and a UV/vis-based RNase assay for structural integrity. When viruses lyophilized in the absence of cryoprotectant were rehydrated and RNase treated, UV absorption increased, indicating that the capsids were damaged. The addition of trehalose during lyophilization protected capsid integrity for at least 7 weeks. Measurements of the fluorescence peak maximum of CPMV lyophilized with trehalose and reconstituted also indicate that the virus remained intact. Microarray binding assays indicated that CPMV particles chemically modified for use as a fluorescent tracer were intact and retained binding specificity after lyophilization in the presence of trehalose. Thus, we demonstrate that functionalized CPMV nanostructures can be stored for the long term, enabling their use in practical sensing applications.

  13. Application of remote sensing to selected problems within the state of California

    NASA Technical Reports Server (NTRS)

    Colwell, R. N. (Principal Investigator); Benson, A. S.; Estes, J. E.; Johnson, C.

    1981-01-01

    Specific case studies undertaken to demonstrate the usefulness of remote sensing technology to resource managers in California are highlighted. Applications discussed include the mapping and quantization of wildland fire fuels in Mendocino and Shasta Counties as well as in the Central Valley; the development of a digital spectral/terrain data set for Colusa County; the Forsythe Planning Experiment to maximize the usefulness of inputs from LANDSAT and geographic information systems to county planning in Mendocino County; the development of a digital data bank for Big Basin State Park in Santa Cruz County; the detection of salinity related cotton canopy reflectance differences in the Central Valley; and the surveying of avocado acreage and that of other fruits and nut crops in Southern California. Special studies include the interpretability of high altitude, large format photography of forested areas for coordinated resource planning using U-2 photographs of the NASA Bucks Lake Forestry test site in the Plumas National Forest in the Sierra Nevada Mountains.

  14. Investigation of remote sensing scale up for hot cell waste tank applications. CPAC optical moisture monitoring

    SciTech Connect

    Jones, P.L.

    1994-09-01

    This report discusses work done to investigate the feasibility of using non-contact optical absorption to remotely sense the surface moisture content of salt cake materials. Optical measurements were made in a dimensionally scaled setup to investigate this technique for in-situ waste tank applications. Moisture measurements were obtained from BY-104 simulant samples with 0 wt%, 10 wt%, and 20 wt% moisture content using the back-scattered light from a pulsed infrared optical parametric converter (OPC) laser source operating from 1.51 to 2.12 micron. An InGaAs detector, with 0.038 steradian solid angle (hemisphere = 6.28 steradians) collection angle was used to detect the back-scattered light. This work indicated that there was sufficient back-scatter from the BY-104 material to provide an indication of the surface moisture content.

  15. Estimating the amount of Ship Recycling Activity Using Remote Sensing Application

    NASA Astrophysics Data System (ADS)

    Watagawa, M.; Shinoda, T.; Hasegawa, K.

    2016-06-01

    The Advanced Land Observing Satellite (ALOS) was launched for earth observation and there are more than 6 million scenes of archives including coastal areas during period of five years. The wealth of satellite imagery is noticeable for investigating monitoring methods such as ship detection in wide ocean area. Especially, it is useful way to estimate past behaviour from satellite imagery compared to reference data. We collected satellite imagery and analysis breaking process in major ship breaking yards between year 2009 and 2011. Comparing the number of recycling ships by satellite imagery to the world statistics is in good agreement. In this study, Remote Sensing Application has been discussed in order to assess the potential to be used for economic activities such as ship recycling in wide coastal area. It was used to evaluate the performance of ship recycling monitoring by Satellite imagery. Additionally, an approach for recognizing ships by SAR imagery regardless of weather conditions is presented.

  16. Green preparation of reduced graphene oxide for sensing and energy storage applications

    PubMed Central

    Bo, Zheng; Shuai, Xiaorui; Mao, Shun; Yang, Huachao; Qian, Jiajing; Chen, Junhong; Yan, Jianhua; Cen, Kefa

    2014-01-01

    Preparation of graphene from chemical reduction of graphene oxide (GO) is recognized as one of the most promising methods for large-scale and low-cost production of graphene-based materials. This study reports a new, green, and efficient reducing agent (caffeic acid/CA) for GO reduction. The CA-reduced GO (CA-rGO) shows a high C/O ratio (7.15) that is among the best rGOs prepared with green reducing reagents. Electronic gas sensors and supercapacitors have been fabricated with the CA-rGO and show good performance, which demonstrates the potential of CA-rGO for sensing and energy storage applications. PMID:24732631

  17. Applications of tunable high energy/pressure pulsed lasers to atmospheric transmission and remote sensing

    NASA Technical Reports Server (NTRS)

    Hess, R. V.; Seals, R. K.

    1974-01-01

    Atmospheric transmission of high energy C12 O2(16) lasers were improved by pulsed high pressure operation which, due to pressure broadening of laser lines, permits tuning the laser 'off' atmospheric C12 O2(16) absorption lines. Pronounced improvement is shown for horizontal transmission at altitudes above several kilometers, and for vertical transmission through the entire atmosphere. The atmospheric transmission of tuned C12 O2(16) lasers compares favorably with C12 O2(18) isotope lasers and CO lasers. The advantages of tunable, high energy, high pressure pulsed lasers over tunable diode lasers and waveguide lasers, in combining high energies with a large tuning range, are evaluated for certain applications to remote sensing of atmospheric constituents and pollutants. Pulsed operation considerably increases the signal to noise ratio without seriously affecting the high spectral resolution of signal detection obtained with laser heterodyning.

  18. Application of remote sensing techniques to the geology of the bonanza volcanic center

    NASA Technical Reports Server (NTRS)

    Marrs, R. W.

    1973-01-01

    A program is reported for evaluating remote sensing as an aid to geologic mapping for the past four years. Data tested in this evaluation include color and color infrared photography, multiband photography, low sun-angle photography, thermal infrared scanner imagery, and side-looking airborne radar. The relative utility of color and color infrared photography was tested as it was used to refine geologic maps in previously mapped areas, as field photos while mapping in the field, and in making photogeologic maps prior to field mapping. The latter technique served as a test of the maximum utility of the photography. In this application the photography was used successfully to locate 75% of all faults in a portion of the geologically complex Bonanza volcanic center and to map and correctly identify 93% of all Quaternary deposits and 62% of all areas of Tertiary volcanic outcrop in the area.

  19. Acousto-optic control of the LPG spectrum for sensing applications

    NASA Astrophysics Data System (ADS)

    Oliveira, Roberson A.; Possetti, Gustavo R. C.; Marques, Carlos A. F.; Neves, Paulo T., Jr.; Bavastri, Carlos A.; Kamikawachi, Ricardo C.; Fabris, José L.; Muller, Marcia; Nogueira, Rogério N.; Canning, John; Pohl, Alexandre A. P.

    2011-05-01

    Experimental and numerical demonstration of the acousto-optic effect applied in long period grating by means of flexural waves is presented. The interaction between acoustic and optical waves is modeled with help of the method of assumed modes, which delivers the strain field inside the grating and the transfer matrix method, which, given the strain field as input, calculate the resultant grating spectrum. The experimental and theoretical results are found to be in good agreement. The main effect of the bends in the grating is the break of degeneracy of the circular cladding modes, leading the attenuation band to be changed. Among all the applications of this methodology, it is important to mention the possibility of use as a tunable filter, laser cavity gain controller, switching device and transducer in sensing systems.

  20. Development of Si(1-x)Ge(x) technology for microwave sensing applications

    NASA Technical Reports Server (NTRS)

    Mena, Rafael A.; Taub, Susan R.; Alterovitz, Samuel A.; Young, Paul E.; Simons, Rainee N.; Rosenfeld, David

    1993-01-01

    The progress for the first year of the work done under the Director's Discretionary Fund (DDF) research project entitled, 'Development of Si(1-x)Ge(x) Technology for Microwave Sensing Applications.' This project includes basic material characterization studies of silicon-germanium (SiGe), device processing on both silicon (Si) and SiGe substrates, and microwave characterization of transmission lines on silicon substrates. The material characterization studies consisted of ellipsometric and magneto-transport measurements and theoretical calculations of the SiGe band-structure. The device fabrication efforts consisted of establishing SiGe device processing capabilities in the Lewis cleanroom. The characterization of microwave transmission lines included studying the losses of various coplanar transmission lines and the development of transitions on silicon. Each part of the project is discussed individually and the findings for each part are presented. Future directions are also discussed.

  1. Application of pulsed GaAs diode lasers to spectral atmospheric monitoring and remote sensing

    NASA Astrophysics Data System (ADS)

    Pencheva, Vasilka H.; Penchev, S.; Naboko, Vassily N.; Naboko, Sergei V.

    1999-05-01

    We report new aspects of application of pulsed GaAs diode lasers, concerning absorption spectroscopy of water vapor of third oscillatory molecular overtone 8990 - 9012 angstroms, and Mie-scattering lidar signal in the 15 km range. It is accessible by the power characteristics of a system utilizing the powerful `chip-stack' GaAs diode lasers, employing optimal photodetection technique based on an analyzing system with computer operated boxcar. Data on atmospheric aerosol backscatter signal acquired by DL lidar are presented with relevance to the potential of complex atmospheric remote sensing. GaAs diode lasers, with radiation matching water vapor spectrum of absorption- coefficients of 0.5 - 5 km-1 in Beer's law, are shown feasible for DIAL monitoring of atmospheric humidity.

  2. Application of remote sensing to thermal pollution analysis. [satellite sea surface temperature measurement assessment

    NASA Technical Reports Server (NTRS)

    Hiser, H. W.; Lee, S. S.; Veziroglu, T. N.; Sengupta, S.

    1975-01-01

    A comprehensive numerical model development program for near-field thermal plume discharge and far field general circulation in coastal regions is being carried on at the University of Miami Clean Energy Research Institute. The objective of the program is to develop a generalized, three-dimensional, predictive model for thermal pollution studies. Two regions of specific application of the model are the power plants sites at the Biscayne Bay and Hutchinson Island area along the Florida coastline. Remote sensing from aircraft as well as satellites are used in parallel with in situ measurements to provide information needed for the development and verification of the mathematical model. This paper describes the efforts that have been made to identify problems and limitations of the presently available satellite data and to develop methods for enhancing and enlarging thermal infrared displays for mesoscale sea surface temperature measurements.

  3. A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications

    PubMed Central

    Amin, M.; Farhat, M.; Baǧcı, H.

    2013-01-01

    We report on a novel electrically tunable hybrid graphene-gold Fano resonator. The proposed metamaterial consists of a square graphene patch and a square gold frame. The destructive interference between the narrow- and broadband dipolar surface plasmons, which are induced respectively on the surfaces of the graphene patch and the gold frame, leads to the plasmonic equivalent of electromagnetically induced transparency (EIT). The response of the metamaterial is polarization independent due to the symmetry of the structure and its spectral features are shown to be highly controllable by changing a gate voltage applied to the graphene patch. Additionally, effective group index of the device is retrieved and is found to be very high within the EIT window suggesting its potential use in slow light applications. Potential outcomes such as high sensing ability and switching at terahertz frequencies are demonstrated through numerical simulations with realistic parameters. PMID:23811780

  4. Application of Remote Sensing Techniques for Appraising Changes in Wildlife Habitat

    NASA Technical Reports Server (NTRS)

    Nelson, H. K.; Klett, A. T.; Johnston, J. E.

    1971-01-01

    An attempt was made to investigate the potential of airborne, multispectral, line scanner data acquisition and computer-implemented automatic recognition techniques for providing useful information about waterfowl breeding habitat in North Dakota. The spectral characteristics of the components of a landscape containing waterfowl habitat can be detected with airborne scanners. By analyzing these spectral characteristics it is possible to identify and map the landscape components through analog and digital processing methods. At the present stage of development multispectral remote sensing techniques are not ready for operational application to surveys of migratory bird habitat and other such resources. Further developments are needed to: (1) increase accuracy; (2) decrease retrieval and processing time; and (3) reduce costs.

  5. Long term storage of virus templated fluorescent materials for sensing applications

    NASA Astrophysics Data System (ADS)

    Seetharam, Raviraja N.; Szuchmacher Blum, Amy; Soto, Carissa M.; Whitley, Jessica L.; Sapsford, Kim E.; Chatterji, Anju; Lin, Tianwei; Johnson, John E.; Guerra, Charles; Satir, Peter; Ratna, Banahalli R.

    2008-03-01

    Wild type, mutant, and chemically modified Cowpea mosaic viruses (CPMV) were studied for long term preservation in the presence and absence of cryoprotectants. Viral complexes were reconstituted and tested via fluorescence spectroscopy and a UV/vis-based RNase assay for structural integrity. When viruses lyophilized in the absence of cryoprotectant were rehydrated and RNase treated, UV absorption increased, indicating that the capsids were damaged. The addition of trehalose during lyophilization protected capsid integrity for at least 7 weeks. Measurements of the fluorescence peak maximum of CPMV lyophilized with trehalose and reconstituted also indicate that the virus remained intact. Microarray binding assays indicated that CPMV particles chemically modified for use as a fluorescent tracer were intact and retained binding specificity after lyophilization in the presence of trehalose. Thus, we demonstrate that functionalized CPMV nanostructures can be stored for the long term, enabling their use in practical sensing applications.

  6. A study of application of remote sensing to river forecasting. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A project is described whose goal was to define, implement and evaluate a pilot demonstration test to show the practicability of applying remotely sensed data to operational river forecasting in gaged or previously ungaged watersheds. A secondary objective was to provide NASA with documentation describing the computer programs that comprise the streamflow forecasting simulation model used. A computer-based simulation model was adapted to a streamflow forecasting application and implemented in an IBM System/360 Model 44 computer, operating in a dedicated mode, with operator interactive control through a Model 2250 keyboard/graphic CRT terminal. The test site whose hydrologic behavior was simulated is a small basin (365 square kilometers) designated Town Creek near Geraldine, Alabama.

  7. Green preparation of reduced graphene oxide for sensing and energy storage applications.

    PubMed

    Bo, Zheng; Shuai, Xiaorui; Mao, Shun; Yang, Huachao; Qian, Jiajing; Chen, Junhong; Yan, Jianhua; Cen, Kefa

    2014-04-15

    Preparation of graphene from chemical reduction of graphene oxide (GO) is recognized as one of the most promising methods for large-scale and low-cost production of graphene-based materials. This study reports a new, green, and efficient reducing agent (caffeic acid/CA) for GO reduction. The CA-reduced GO (CA-rGO) shows a high C/O ratio (7.15) that is among the best rGOs prepared with green reducing reagents. Electronic gas sensors and supercapacitors have been fabricated with the CA-rGO and show good performance, which demonstrates the potential of CA-rGO for sensing and energy storage applications.

  8. Narrow linewidth UV laser transmitter for ozone DIAL remote sensing application

    NASA Astrophysics Data System (ADS)

    Chuang, Ti; Hansell, Joe; Shuman, Tim; Schum, Tom; Puffenberger, Kent; Burnham, Ralph

    2016-03-01

    Fibertek has demonstrated a dual-wavelength narrow linewidth UV laser transmitter for NASA airborne ozone DIAL remote sensing application. The application requires two narrow linewidth lasers in the UV region between 300 nm and 320 nm with at least 12 nm separation between the two wavelengths. Each UV laser was based on a novel ring structure incorporating an optical parametric oscillator (OPO) and a sum frequency generator (SFG). The fundamental pump source of the UV laser was a single frequency 532 nm laser, which was frequency-doubled from a diode-pumped, injection-seeded single frequency Nd:YAG laser operating at 1064 nm and 50 Hz repetition rate. The ring frequency converters generated UV wavelengths at 304 nm and 316 nm respectively. The demonstrated output energies were 2.6 mJ for 304 nm and 2.3 mJ for 316 nm UV lines, with room to potentially achieve more energy for each laser. Linewidth narrowing was achieved using a volume Bragg grating as the output coupler of the OPO in each ring oscillator. We obtained spectral linewidths (FWHM) of 0.12 nm for the 304 nm line and 0.1 nm for the 316 nm line, and the UV energy conversion efficiencies of 12.2% and 9.1%. Fibertek built an airborne DIAL transmitter based on the reported demonstration, which was a single optical module with dual-wavelength output at the demonstrated wavelengths. NASA plans to field the UV laser transmitter as a key component of the High Spectral Resolution Lidar-II (HSRL-II) high altitude airborne instrument to perform autonomous global ozone DIAL remote sensing field campaigns.

  9. Climate- and remote sensing-based tools for drought management application in North and South Korea

    NASA Astrophysics Data System (ADS)

    Nam, W.; Wardlow, B.; Hayes, M. J.; Tadesse, T.; Svoboda, M.; Fuchs, B.; Wilhite, D. A.

    2015-12-01

    North and South Korea have experienced more frequent and extreme droughts since the late 1990s. In recent years, severe droughts in 2000-2001, 2012, and 2015 have led to widespread agricultural and environmental impacts, and resulted in water shortages and large reductions in crop yields. This has been particularly problematic in the agricultural sector of North Korea, which has a high-level of vulnerability due to variations of climate and this, in turn, results in food security issues. This vulnerability is exacerbated by North Korea's relatively small area of arable land, most of which is not very productive. The objective of this study was to develop a drought management application using climate- and remote sensing-based tools for North and South Korea. These tools are essential for improving drought planning and preparedness in this area. In this study, various drought indicators derived from climate and remote sensing data (SPI, SC-PDSI, SPEI, and VegDRI-Korea) were investigated to monitor the current drought condition and evaluate their ability to characterize agricultural and meteorological drought events and their potential impacts. Results from this study can be used to develop or improve the national-level drought management application for these countries. The goal is to provide improved and more timely information on both the spatial and temporal dimensions of drought conditions and provide a tool to identify both past and present drought events in order to make more informed management decisions and reduce the impacts of current droughts and reduce the risk to future events.

  10. Remote Sensing of Cloud, Aerosol, and Land Properties from MODIS: Applications to the East Asia Region

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, Steven; Chu, D. Allen; Moody, Eric G.

    2001-01-01

    MODIS is an earth-viewing cross-track scanning spectroradiometer launched on the Terra satellite in December 1999. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (two bands), 500 m (five bands) and 1000 m (29 bands). These bands have been carefully selected to enable advanced studies of land, ocean, and atmospheric processes. In this presentation we review the comprehensive set of remote sensing algorithms that have been developed for the remote sensing of atmospheric properties using MODIS data, placing primary emphasis on the principal atmospheric applications of (i) developing a cloud mask for distinguishing clear sky from clouds, (ii) retrieving global cloud radiative and microphysical properties, including cloud top pressure and temperature, effective emissivity, cloud optical thickness, thermodynamic phase, and effective radius, (iii) monitoring tropospheric aerosol optical thickness over the land and ocean and aerosol size distribution over the ocean, (iv) determining atmospheric profiles of moisture and temperature, and (v) estimating column water amount. The physical principles behind the determination of each of these atmospheric products will be described, together with an example of their application using MODIS observations to the east Asian region in Spring 2001. All products are archived into two categories: pixel-level retrievals (referred to as Level-2 products) and global gridded products at a latitude and longitude resolution of 1 degree (Level-3 products). An overview of the MODIS atmosphere algorithms and products, status, validation activities, and early level-2 and -3 results will be presented.

  11. Best Practices for the Application of Functional Near Infrared Spectroscopy to Operator State Sensing

    NASA Technical Reports Server (NTRS)

    Harrivel, Angela R.; Hylton, Alan G.; Hearn, Tristan A.

    2012-01-01

    Functional Near Infrared Spectroscopy (fNIRS) is an emerging neuronal measurement technique with many advantages for application in operational and training contexts. Instrumentation and protocol improvements, however, are required to obtain useful signals and produce expeditiously self-applicable, comfortable and unobtrusive headgear. Approaches for improving the validity and reliability of fNIRS data for the purpose of sensing the mental state of commercial aircraft operators are identified, and an exemplary system design for attentional state monitoring is outlined. Intelligent flight decks of the future can be responsive to state changes to optimally support human performance. Thus, the identification of cognitive performance decrement, such as lapses in operator attention, may be used to predict and avoid error-prone states. We propose that attentional performance may be monitored with fNIRS through the quantification of hemodynamic activations in cortical regions which are part of functionally-connected attention and resting state networks. Activations in these regions have been shown to correlate with behavioral performance and task engagement. These regions lie beneath superficial tissue in head regions beyond the forehead. Headgear development is key to reliably and robustly accessing locations beyond the hair line to measure functionally-connected networks across the whole head. Human subject trials using both fNIRS and functional Magnetic Resonance Imaging (fMRI) will be used to test this system. Data processing employs Support Vector Machines for state classification based on the fNIRS signals. If accurate state classification is achieved based on sensed activation patterns, fNIRS will be shown to be useful for monitoring attentional performance.

  12. Green synthesis and characterization of novel gold nanocomposites for electrochemical sensing applications.

    PubMed

    Tanwar, Shivani; Ho, Ja-an Annie; Magi, Emanuele

    2013-12-15

    Synthesis, characterization and application of Au-PANI-Calix and Au-PANI-Nap nanocomposites, is reported herein. An easy template free green synthesis is proposed and discussed for easy expediency. A variety of analytical techniques were used to characterize the nanocomposites: UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Dynamic light scattering (DLS), X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS) were used to characterize the nanocomposites. Surface morphology was studied by transmission electron microscopy (TEM). The nanocomposites were immobilized on screen-printed electrode and showed electroactivity in neutral pH, making them promising candidates for various analytical applications. A sensitive and selective detection of Cu(2+) was perceived on the Au-PANI-Calix modified electrode with no interference from ions K(+), Ni(2+), Co(2+), Pb(2+), Cr(3+) with a detection limit of 10nM. The copper detection is facilitated for accessible ligation with 4-sulfocalix[4]arene, so as the Cu(II)-Calix complex formed. The electrode modified with Au-PANI-Nap showed sensing application towards H2O2 with a detection limit of 1 μM. The modified electrodes were reproducible and stable for 2 months.

  13. Practical application of RINO, a smartphone-based dynamic displacement sensing application for wind tunnel tests

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Woo; Jeong, Jong-Hyun; Knez, Kyle P.; Min, Jae-Hong; Jo, Hongki

    2016-04-01

    Dynamic displacement is one of the most important measurands in wind tunnel tests of structures. Laser sensors or optical sensors are usually used in wind tunnel tests to measure displacements. However, these commercial sensors have limitations in its use, cost and installation despite of their good performance in accuracy. RINO (Real-time Image- processing for Non-contact monitoring), an iOS software application for dynamic displacement monitoring, has been developed in the previous study. In this study, feasibility of RINO in practical use for wind tunnel tests is explored. Series of wind tunnel tests show that performances of RINO are comparable with those of conventional displacement sensors.

  14. Guided-mode resonance in planar photonic crystals: Application to sensing

    NASA Astrophysics Data System (ADS)

    Ganesh, Nikhil

    This dissertation addresses the design, fabrication and characterization of planar photonic crystals that employ the guided-mode resonance effect for sensing and detection applications. A theoretical basis for these applications is first developed, followed by the demonstration of a near-ultraviolet reflectance filter that provides high reflection efficiency in the 400-450 nm spectral range. The response of photonic crystal label-free biosensors is shown to be greatly improved by the use of a near-ultraviolet device, and this improvement in performance is shown to stem from the enhanced surface sensitivity and lowered bulk sensitivity for devices operating in this wavelength range. The application of PCs for wavelength detection is demonstrated by developing a system employing a continuously variable reflectance filter. The system is composed of only two components and allows detection of wavelength changes as small as 0.011 nm. Visible wavelength PCs are also studied for application as fluorescence enhancement biosensors. For the first time, a PC capable of a dual enhancement modality (enhanced excitation and enhanced extraction of fluorescence) is demonstrated for boosting quantum dot fluorescence by over two orders of magnitude. The distance dependence of the enhanced excitation effect is studied and provides clarification for its mechanism and suggests that the PC can be modified to accommodate a wide range of analyte sizes. Finally the enhanced extraction effect is studied in detail using a model system involving quantum dots and waveguide gratings. The results suggest that enhanced extraction can greatly improve the output of fluorophores that are spectrally and spatially matched to the device. A practical demonstration of this effect is carried out in the detection of the cytokine TNF-alpha.

  15. Development and Evaluation of a Uav Based Mapping System for Remote Sensing and Surveying Applications

    NASA Astrophysics Data System (ADS)

    Eling, C.; Wieland, M.; Hess, C.; Klingbeil, L.; Kuhlmann, H.

    2015-08-01

    In recent years, unmanned aerial vehicles (UAVs) have increasingly been used in various application areas, such as in the remote sensing or surveying. For these applications the UAV has to be equipped with a mapping sensor, which is mostly a camera. Furthermore, a georeferencing of the UAV platform and/or the acquired mapping data is required. The most efficient way to realize this georeferencing is the direct georeferencing, which is based on an onboard multi-sensor system. In recent decades, direct georeferencing systems have been researched and used extensively in airborne, ship and land vehicle applications. However, these systems cannot easily be adapted to UAV platforms, which is mainly due to weight and size limitations. In this paper a direct georeferencing system for micro- and mini-sized UAVs is presented, which consists of a dual-frequency geodetic grade OEM GPS board, a low-cost single-frequency GPS chip, a tactical grade IMU and a magnetometer. To allow for cm-level position and sub-degree attitude accuracies, RTK GPS (real-time kinematic) and GPS attitude (GPS compass) determination algorithms are running on this system, as well as a GPS/IMU integration. Beside the direct georeferencing, also the precise time synchronization of the camera, which acts as the main sensor for mobile mapping applications, and the calibration of the lever arm between the camera reference point and the direct georeferencing reference point are explained in this paper. Especially the high accurate time synchronization of the camera is very important, to still allow for high surveying accuracies, when the images are taken during the motion of the UAV. Results of flight tests demonstrate that the developed system, the camera synchronization and the lever arm calibration make directly georeferenced UAV based single point measurements possible, which have cm-level accuracies on the ground.

  16. User Requirements for the Application of Remote Sensing in the Planning and Management of Water Resource Systems

    NASA Technical Reports Server (NTRS)

    Burgy, R. H.

    1972-01-01

    Data relating to hydrologic and water resource systems and subsystems management are reported. Systems models, user application, and remote sensing technology are covered. Parameters governing water resources include evaportranspiration, vegetation, precipitation, streams and estuaries, reservoirs and lakes, and unsaturate and saturated soil zones.

  17. Will algorithms modified with soil and weather information improve in-field reflectance-sensing corn nitrogen applications?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen (N) needs to support corn (Zea mays L.) production can be highly variable within fields. Canopy reflectance sensing for assessing crop N health has been implemented on many farmers’ fields to side-dress or top-dress variable-rate N application, but at times farmers report the performance of...

  18. The Association of Depression and Sense of Belonging with Suicidal Ideation among Older Adults: Applicability of Resiliency Models

    ERIC Educational Resources Information Center

    McLaren, Suzanne; Gomez, Rapson; Bailey, Maria; Van Der Horst, Renee K.

    2007-01-01

    Suicide among older people, especially men, is a significant problem. In this study the applicability of the compensatory, the risk-protective, the challenge, and the protective-protective models of resiliency for the prediction of suicidal ideation from depression (the risk factor) and sense of belonging to the community (the protective factor)…

  19. Investigation on strain sensing properties of carbon-based nanocomposites for structural aircraft applications

    NASA Astrophysics Data System (ADS)

    Lamberti, Patrizia; Spinelli, Giovanni; Tucci, Vincenzo; Guadagno, Liberata; Vertuccio, Luigi; Russo, Salvatore

    2016-05-01

    The mechanical and electrical properties of a thermosetting epoxy resin particularly indicated for the realization of structural aeronautic components and reinforced with multiwalled carbon nanotubes (MWCNTs, at 0.3 wt%) are investigated for specimens subjected to cycles and different levels of applied strain (i.e. ɛ) loaded both in axial tension and flexural mode. It is found that the piezoresistive behavior of the resulting nanocomposite evaluated in terms of variation of the electrical resistance is strongly affected by the applied mechanical stress mainly due to the high sensibility and consequent rearrangement of the electrical percolating network formed by MWCNTs in the composite at rest or even under a small strain. In fact, the variations in electrical resistance that occur during the mechanical stress are correlated to the deformation exhibited by the nanocomposites. In particular, the overall response of electrical resistance of the composite is characterized by a linear increase with the strain at least in the region of elastic deformation of the material in which the gauge factor (i.e. G.F.) of the sensor is usually evaluated. Therefore, the present study aims at investigating the possible use of the nanotechnology for application of embedded sensor systems in composite structures thus having capability of self-sensing and of responding to the surrounding environmental changes, which are some fundamental requirements especially for structural aircraft monitoring applications.

  20. Applications of Earth Remote Sensing for Identifying Tornado and Severe Weather Damage

    NASA Technical Reports Server (NTRS)

    Schultz, Lori; Molthan, Andrew; Burks, Jason E.; Bell, Jordan; McGrath, Kevin; Cole, Tony

    2016-01-01

    NASA SPoRT (Short-term Prediction Research and Transition Center) provided MODIS (Moderate Resolution Imaging Spectrometer) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) imagery to WFOs (Weather Forecast Offices) in Alabama to support April 27th, 2011 damage assessments across the state. SPoRT was awarded a NASA Applied Science: Disasters Feasibility award to investigate the applicability of including remote sensing imagery and derived products into the NOAA/NWS (National Oceanic and Atmospheric Administration/National Weather System) Damage Assessment Toolkit (DAT). Proposal team was awarded the 3-year proposal to implement a web mapping service and associate data feeds from the USGS (U.S. Geological Survey) to provide satellite imagery and derived products directly to the NWS thru the DAT. In the United States, NOAA/NWS is charged with performing damage assessments when storm or tornado damage is suspected after a severe weather event. This has led to the development of the Damage Assessment Toolkit (DAT), an application for smartphones, tablets and web browsers that allows for the collection, geo-location, and aggregation of various damage indicators collected during storm surveys.