Sample records for bio-engineering high performance

  1. Performance Evaluation of Diesel Engine with Preheated Bio Diesel with Additives

    NASA Astrophysics Data System (ADS)

    Ram Vajja, Sai; Murali, R. B. V.

    2016-09-01

    This paper mainly reviews about the usage of preheated bio diesel added with 0.5% Etchant as an alternative fuel and evaluates its performance for various blends with different loads. Bio diesel is added with Etchant for rapid combustion as for the bio diesel, the cetane number is high that results in shorter delay of ignition and the mixture is preheated to raise its temperature to improve the combustion process. Analysis of the parameters required to define the combustion characteristics such as IP, BP, ηbth, ηm, ISFC, BSFC, IMEP, MFC, Exhaust Gas Temperature, Heat Release and heat balance is necessary as these values are significant to assess the performance of engine and its emissions of preheated bio diesel.

  2. Aerodynamic Performance and Particle Image Velocimetery of Piezo Actuated Biomimetic Manduca Sexta Engineered Wings Towards the Design and Application of a Flapping Wing Flight Vehicle

    DTIC Science & Technology

    2013-12-01

    95 3.3. Displacement sensor ... Bio vs. engineered wing modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.1. High speed camera specifications...expanding and evolving mission areas, especially in the arena of bio -inspired Flap- ping Wing Micro Air Vehicles (FWMAV). This chapter will introduce the

  3. Studies on the effects of storage stability of bio-oil obtained from pyrolysis of Calophyllum inophyllum deoiled seed cake on the performance and emission characteristics of a direct-injection diesel engine.

    PubMed

    Rajamohan, Sakthivel; Kasimani, Ramesh

    2018-04-19

    The highly unbalanced nature of bio-oil composition poses a serious threat in terms of storage and utilization of bio-oil as a viable fuel in engines. So it becomes inevitable to study the variations in physicochemical properties of the bio-oil during storage to value its chemical instability, for designing stabilization methodologies. The present study aims to investigate the effects of storage stability of bio-oil extracted from pyrolyzing Calophyllum inophyllum (CI) deoiled seed cake on the engine operating characteristics. The bio-oil is produced in a fixed bed reactor at 500 °C under the constant heating rate of 30 °C/min. All the stability analysis methods involve an accelerated aging procedure based on standards established by ASTM (D5304 and E2009) and European standard (EN 14112). Gas chromatography-mass spectrometry was employed to analytically characterize the unaged and aged bio-oil samples. The results clearly depict that stabilizing Calophyllum inophyllum bio-oil with 10% (w/w) methanol improved its stability than that of the unstabilized sample thereby reducing the aging rate of bio-oil to 0.04 and 0.13 cst/h for thermal and oxidative aging respectively. Engine testing of the bio-oil sample revealed that aged bio-oil samples deteriorated engine performance and increased emission levels at the exhaust. The oxidatively aged sample showed the lowest BTE (24.41%), the highest BSEC (20.14 MJ/kWh), CO (1.51%), HC (132 ppm), NOx (1098 ppm) and smoke opacity (34.8%).

  4. Analytical characterization of products obtained from slow pyrolysis of Calophyllum inophyllum seed cake: study on performance and emission characteristics of direct injection diesel engine fuelled with bio-oil blends.

    PubMed

    Rajamohan, Sakthivel; Kasimani, Ramesh

    2018-04-01

    This paper aims to analyse the characteristics and properties of the fractions obtained from slow pyrolysis of non-edible seed cake of Calophyllum inophyllum (CI). The gas, bio-oil and biochar obtained from the pyrolysis carried out at 500 °C in a fixed bed batch type reactor at a heating rate of 30 °C/min were characterized by various analytical techniques. Owing to the high volatile content of CI biomass (72.61%), it was selected as the raw material in this present investigation. GC-MS and FT-IR analysis of bio-oil showed the presence of higher amount of oxygenated compounds, phenol derivatives, esters, acid and furans. The physicochemical properties of the bio-oil were tested as per ASTM norms which imply that bio-oil is a highly viscous liquid with lower heating value as compared to that of diesel fuel. The chemical composition of evolved gas was analysed by using GC testing which revealed the presence of combustible components. The FT-IR characterization of biochar showed the presence of aliphatic and aromatic hydrocarbons whereas the elevated amount of carbon in biochar indicates its potential to be used as solid fuel. The performance and emission characteristics of CI engine were assessed with different CI bio-oil blends and compared with baseline diesel fuel. The results showed that addition of bio-oil leads to decreased brake thermal efficiency and increased brake specific energy consumption. Meanwhile, increase in blend ratio reduces harmful pollutants such as oxides of nitrogen and smoke in the exhaust. From the engine testing, it is suggested to employ 20% of CI bio-oil blends in CI engine to obtain better operation.

  5. Performance and emission characteristics of a low heat rejection engine with different air gap thicknesses with Jatropha oil based bio-diesel.

    PubMed

    Murali Krishna, M V S; Sarita, G; Seshagiri Rao, V V R; Chowdary, R P; Ramana Reddy, Ch V

    2010-04-01

    The research work on alternate fuels has been the topic of wider interest in the context of depletion of fossil fuels and increasing of pollution levels of the engines with conventional fossil fuels. Alcohols and vegetable oils are considered to replace diesel fuels as they are renewable in nature. However, use of alcohols in internal combustion engines is limited in India, as these fuels are diverted to PetroChemical industries and hence much emphasis is given to the non-edible vegetable oils as alternate fuels in internal combustion engines. However, the drawbacks of low volatility and high viscosity associated with non-edible vegetable oils call for hot combustion chamber, provided by low heat rejection (LHR) diesel engine. Investigations are carried out on a LHR diesel engine with varied air gap thicknesses and injection pressures with jatropha oil based bio-diesel at normal temperature. Performance is improved with high degree of insulation with LHR engine with vegetable oil in comparison with conventional engine (CE) with pure diesel operation.

  6. Microbial conversion of biomass into bio-based polymers.

    PubMed

    Kawaguchi, Hideo; Ogino, Chiaki; Kondo, Akihiko

    2017-12-01

    The worldwide market for plastics is rapidly growing, and plastics polymers are typically produced from petroleum-based chemicals. The overdependence on petroleum-based chemicals for polymer production raises economic and environmental sustainability concerns. Recent progress in metabolic engineering has expanded fermentation products from existing aliphatic acids or alcohols to include aromatic compounds. This diversity provides an opportunity to expand the development and industrial uses of high-performance bio-based polymers. However, most of the biomonomers are produced from edible sugars or starches that compete directly with food and feed uses. The present review focuses on recent progress in the microbial conversion of biomass into bio-based polymers, in which fermentative products from renewable feedstocks serve as biomonomers for the synthesis of bio-based polymers. In particular, the production of biomonomers from inedible lignocellulosic feedstocks by metabolically engineered microorganisms and the synthesis of bio-based engineered plastics from the biological resources are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Feasibility study of utilizing jatropha curcas oil as bio-diesel in an oil firing burner system

    NASA Astrophysics Data System (ADS)

    Shaiful, A. I. M.; Jaafar, M. N. Mohd; Sahar, A. M.

    2017-09-01

    Jatropha oil derived from the Jatropha Curcas Linnaeus is one of the high potential plants to be use as bio-diesel. The purpose of this research is to carry out a feasibility study of using jatropha oil as bio-diesel on oil firing burner system. Like other bio-diesels, jatropha oil can also be used in any combustion engine and the performance and emissions such as NOx, SO2, CO and CO2 as well as unburned hydocarbon (UHC) from the engine will vary depending on the bio-diesel blends. The properties of Conventional Diesel Fuel (CDF) obtained will be used as baseline and the jatropha oil properties will be compared as well as other bio-diesels. From several researches, the properties of jatropha oil was found to be quite similar with other bio-diesel such as palm oil, neem, keranja and pongamia bio-diesel and complying with the ASTM standard for bio-diesel. Still, there are factors and issues concerning the use of jatropha oil such as technology, economy, legislation and resource. Plus, there several challenges to the growth of bio-diesel industry development since the world right now do not totally depend on the bio-diesel.

  8. Past, Present, and Future Production of Bio-oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, Philip; Yu, Fei; Gajjela, Sanjeev

    Bio-oil is a liquid product produced by fast pyrol-ysis of biomass. The fast pyrolysis is performed by heating the biomass rapidly (2 sec) at temperatures ranging from 350 to 650 oC. The vapors produced by this rapid heating are then condensed to produce a dark brown water-based emulsion composed of frag-ments of the original hemicellulose, cellulose and lignin molecules contained in the biomass. Yields range from 60 to 75% based on the feedstock type and the pyrolysis reactor employed. The bio-oil pro-duced by this process has a number of negative prop-erties that are produced mainly by the high oxygen contentmore » (40 to 50%) contributed by that contained in water (25 to 30% of total mass) and oxygenated compounds. Each bio-oil contains hundreds of chemi-cal compounds. The chemical composition of bio-oil renders it a very recalcitrant chemical compound. To date, the difficulties in utilizing bio-oil have limited its commercial development to the production of liq-uid smoke as food flavoring. Practitioners have at-tempted to utilize raw bio-oil as a fuel; they have also applied many techniques to upgrade bio-oil to a fuel. Attempts to utilize raw bio-oil as a combustion engine fuel have resulted in engine or turbine dam-age; however, Stirling engines have been shown to successfully combust raw bio-oil without damage. Utilization of raw bio-oil as a boiler fuel has met with more success and an ASTM standard has recently been released describing bio-oil characteristics in relation to assigned fuel grades. However, commercialization has been slow to follow and no reports of distribution of these bio-oil boiler fuels have been reported. Co-feeding raw bio-oil with coal has been successfully performed but no current power generation facilities are following this practice. Upgrading of bio-oils to hydrocarbons via hydroprocessing is being performed by several organizations. Currently, limited catalyst life is the obstacle to commercialization of this tech-nology. Researchers have developed means to increase the anhydrosugars content of bio-oil above the usual 3% produced during normal pyrolysis by mild acid pretreatment of the biomass feedstock. Mississippi State University has developed a proprietary method to produce an aqueous fraction containing more than 50% of anhydrosugars content. These anhydrosugars can be catalyzed to hydrogen or hydrocarbons; alter-nately, the aqueous fraction can be hydrolyzed to pro-duce a high-glucose content. The hydrolyzed product can then be filtered to remove microbial inhibitor compounds followed by production of alcohols by fer-mentation. Production of bio-oil is now considered a major candidate as a technology promising production of drop-in transportation and boiler fuels.« less

  9. Combustion Performance and Exhaust Emission of DI Diesel Engine Using Various Sources of Waste Cooking Oil

    NASA Astrophysics Data System (ADS)

    Afiq, Mohd; Azuhairi, Mohd; Jazair, Wira

    2010-06-01

    In Malaysia, more than 200-tone of cooking oil are used by domestic users everyday. After frying process, about a quarter of these cooking oil was remained and drained into sewage system. This will pollutes waterways and affects the ecosystem. The use of waste cooking oil (WCO) for producing bio-diesel was considered in economical factor which current production cost of bio-diesel production is higher in Malaysia due to higher price of palm oil. Thus, the aim of this study is to investigate the most suitable source of WCO to become a main source of bio-diesel for bio-diesel production in this country. To perform this research, three type of WCO were obtained from house's kitchen, cafeteria and mamak's restaurant. In this study, prospect of these bio-diesel source was evaluated based on its combustion performance and exhaust emissions operated in diesel engine in the form of waste cooking oil methyl ester (WCOME) and have been compared with pure diesel fuel. A 0.6 liter, single-cylinder, air-cooled direct injection diesel engine was used to perform this experiment. Experiment was done at variable engine loads and constant engine speed. As the result, among three stated WCOMEs, the one collected from house's kitchen gives the best performance in term of brake specific fuel consumption (bsfc) and brake power (BP) with lowest soot emission.

  10. Overview of the HFM-181 Symposium Programme, Medical Technology Repurposed to Enhance Human Performance

    DTIC Science & Technology

    2009-10-01

    BIO -INSPIRED HUMAN PERFORMANCE ENHANCEMENT 3.1 Biological performance currently outside of the bounds of the human species HPE opportunities may...strategies to preferentially burn fat in weight reduction (85). 3.2 Bio -inspired opportunities for human performance There are many interesting...solutions to assist human performance Nonmedical applications of bio -inspired engineering and computing technologies are a recognized priority in

  11. Bio-printing cell-laden Matrigel–agarose constructs

    PubMed Central

    Fan, Rong; Piou, Marine; Darling, Evan; Cormier, Denis; Sun, Jun; Wan, Jiandi

    2017-01-01

    3D printing of biological architectures that mimic the structural and functional features of in vivo tissues is of great interest in tissue engineering and the development of transplantable organ constructs. Printable bio-inks that are compatible with cellular activities play critical roles in the process of 3D bio-printing. Although a variety of hydrogels have been used as bio-inks for 3D bio-printing, they inherit poor mechanical properties and/or the lack of essential protein components that compromise their performance. Here, a hybrid Matrigel–agarose hydrogel system has been demonstrated that possesses both desired rheological properties for bio-printing and biocompatibility for long-term (11 days) cell culture. The agarose component in the hybrid hydrogel system enables the maintenance of 3D-printed structures, whereas Matrigel provides essential microenvironments for cell growth. When human intestinal epithelial HCT116 cells are encapsulated in the printed Matrigel–agarose constructs, high cell viability and proper cell spreading morphology are observed. Given that Matrigel is used extensively for 3D cell culturing, the developed 3D-printable Matrigel–agarose system will open a new way to construct Matrigel-based 3D constructs for cell culture and tissue engineering. PMID:27638155

  12. Production of succinic acid by metabolically engineered microorganisms.

    PubMed

    Ahn, Jung Ho; Jang, Yu-Sin; Lee, Sang Yup

    2016-12-01

    Succinic acid (SA) has been recognized as one of the most important bio-based building block chemicals due to its numerous potential applications. For the economical bio-based production of SA, extensive research works have been performed on developing microbial strains by metabolic engineering as well as fermentation and downstream processes. Here we review metabolic engineering strategies applied for bio-based production of SA using representative microorganisms, including Saccharomyces cerevisiae, Pichia kudriavzevii, Escherichia coli, Mannheimia succiniciproducens, Basfia succiniciproducens, Actinobacillus succinogenes, and Corynebacterium glutamicum. In particular, strategies employed for developing engineered strains of these microorganisms leading to the best performance indices (titer, yield, and productivity) are showcased based on the published papers as well as patents. Those processes currently under commercialization are also analyzed and future perspectives are provided. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Mechanical Behavior of Polymer Nano Bio Composite for Orthopedic Implants

    NASA Astrophysics Data System (ADS)

    Marimuthu, K., Dr.; Rajan, Sankar

    2018-04-01

    The bio-based polymer composites have been the focus of many scientific and research projects, as well as many commercial programs. In recent years, scientists and engineers have been working together to use the inherent strength and performance of the new class of bio-based composites which is compactable with human body and can act as a substitute for living cells. In this stage the polymer composites also stepped into human bone implants as a replacement for metallic implants which was problems like corrosion resistance and high cost. The polymer composite have the advantage that it can be molded to the required shape, the polymers have high corrosion resistance, less weight and low cost. The aim of this research is to develop and analyze the suitable bio compactable polymer composite for human implants. The nano particles reinforced polymer composites provides good mechanical properties and shows good tribological properties especially in the total hip and knee replacements. The graphene oxide powders are bio compactable and acts as anti biotic. GO nano powder where reinforced into High-density polyethylene in various weight percentage of 0.5% to 2%. The performance of GO nano powder shows better tribological properties. The material produced does not cause any pollution to the environment and at the same time it can be bio compactable and sustainable. The product will act environmentally friendly.

  14. Ultrafast time-stretch imaging at 932 nm through a new highly-dispersive fiber

    PubMed Central

    Wei, Xiaoming; Kong, Cihang; Sy, Samuel; Ko, Ho; Tsia, Kevin K.; Wong, Kenneth K. Y.

    2016-01-01

    Optical glass fiber has played a key role in the development of modern optical communication and attracted the biotechnology researcher’s great attention because of its properties, such as the wide bandwidth, low attenuation and superior flexibility. For ultrafast optical imaging, particularly, it has been utilized to perform MHz time-stretch imaging with diffraction-limited resolutions, which is also known as serial time-encoded amplified microscopy (STEAM). Unfortunately, time-stretch imaging with dispersive fibers has so far mostly been demonstrated at the optical communication window of 1.5 μm due to lack of efficient dispersive optical fibers operating at the shorter wavelengths, particularly at the bio-favorable window, i.e., <1.0 μm. Through fiber-optic engineering, here we demonstrate a 7.6-MHz dual-color time-stretch optical imaging at bio-favorable wavelengths of 932 nm and 466 nm. The sensitivity at such a high speed is experimentally identified in a slow data-streaming manner. To the best of our knowledge, this is the first time that all-optical time-stretch imaging at ultrahigh speed, high sensitivity and high chirping rate (>1 ns/nm) has been demonstrated at a bio-favorable wavelength window through fiber-optic engineering. PMID:28018737

  15. Ultrafast time-stretch imaging at 932 nm through a new highly-dispersive fiber.

    PubMed

    Wei, Xiaoming; Kong, Cihang; Sy, Samuel; Ko, Ho; Tsia, Kevin K; Wong, Kenneth K Y

    2016-12-01

    Optical glass fiber has played a key role in the development of modern optical communication and attracted the biotechnology researcher's great attention because of its properties, such as the wide bandwidth, low attenuation and superior flexibility. For ultrafast optical imaging, particularly, it has been utilized to perform MHz time-stretch imaging with diffraction-limited resolutions, which is also known as serial time-encoded amplified microscopy (STEAM). Unfortunately, time-stretch imaging with dispersive fibers has so far mostly been demonstrated at the optical communication window of 1.5 μm due to lack of efficient dispersive optical fibers operating at the shorter wavelengths, particularly at the bio-favorable window, i.e., <1.0 μm. Through fiber-optic engineering, here we demonstrate a 7.6-MHz dual-color time-stretch optical imaging at bio-favorable wavelengths of 932 nm and 466 nm. The sensitivity at such a high speed is experimentally identified in a slow data-streaming manner. To the best of our knowledge, this is the first time that all-optical time-stretch imaging at ultrahigh speed, high sensitivity and high chirping rate (>1 ns/nm) has been demonstrated at a bio-favorable wavelength window through fiber-optic engineering.

  16. Low grade bioethanol for fuel mixing on gasoline engine using distillation process

    NASA Astrophysics Data System (ADS)

    Abikusna, Setia; Sugiarto, Bambang; Suntoro, Dedi; Azami

    2017-03-01

    Utilization of renewable energy in Indonesia is still low, compared to 34% oil, 20% coal and 20% gas, utilization of energy sources for water 3%, geothermal 1%, 2% biofuels, and biomass 20%. Whereas renewable energy sources dwindling due to the increasing consumption of gasoline as a fuel. It makes us have to look for alternative renewable energy, one of which is bio ethanol. Several studies on the use of ethanol was done to the researchers. Our studies using low grade bio ethanol which begins with the disitillation independently utilize flue gas heat at compact distillator, produces high grade bio ethanol and ready to be mixed with gasoline. Stages of our study is the compact distillator design of the motor dynamic continued with good performance and emission testing and ethanol distilled. Some improvement is made is through the flue gas heat control mechanism in compact distillator using gate valve, at low, medium, and high speed engine. Compact distillator used is kind of a batch distillation column. Column design process using the shortcut method, then carried the tray design to determine the overall geometry. The distillation is done by comparing the separator with a tray of different distances. As well as by varying the volume of the feed and ethanol levels that will feed distilled. In this study, we analyzed the mixing of ethanol through variation between main jet and pilot jet in the carburetor separately interchangeably with gasoline. And finally mixing mechanism bio ethanol with gasoline improved with fuel mixer for performance.

  17. Bio-inspired 3D microenvironments: a new dimension in tissue engineering.

    PubMed

    Magin, Chelsea M; Alge, Daniel L; Anseth, Kristi S

    2016-03-04

    Biomaterial scaffolds have been a foundational element of the tissue engineering paradigm since the inception of the field. Over the years there has been a progressive move toward the rational design and fabrication of bio-inspired materials that mimic the composition as well as the architecture and 3D structure of tissues. In this review, we chronicle advances in the field that address key challenges in tissue engineering as well as some emerging applications. Specifically, a summary of the materials and chemistries used to engineer bio-inspired 3D matrices that mimic numerous aspects of the extracellular matrix is provided, along with an overview of bioprinting, an additive manufacturing approach, for the fabrication of engineered tissues with precisely controlled 3D structures and architectures. To emphasize the potential clinical impact of the bio-inspired paradigm in biomaterials engineering, some applications of bio-inspired matrices are discussed in the context of translational tissue engineering. However, focus is also given to recent advances in the use of engineered 3D cellular microenvironments for fundamental studies in cell biology, including photoresponsive systems that are shedding new light on how matrix properties influence cell phenotype and function. In an outlook for future work, the need for high-throughput methods both for screening and fabrication is highlighted. Finally, microscale organ-on-a-chip technologies are highlighted as a promising area for future investment in the application of bio-inspired microenvironments.

  18. Visualizing feasible operating ranges within tissue engineering systems using a "windows of operation" approach: a perfusion-scaffold bioreactor case study.

    PubMed

    McCoy, Ryan J; O'Brien, Fergal J

    2012-12-01

    Tissue engineering approaches to developing functional substitutes are often highly complex, multivariate systems where many aspects of the biomaterials, bio-regulatory factors or cell sources may be controlled in an effort to enhance tissue formation. Furthermore, success is based on multiple performance criteria reflecting both the quantity and quality of the tissue produced. Managing the trade-offs between different performance criteria is a challenge. A "windows of operation" tool that graphically represents feasible operating spaces to achieve user-defined levels of performance has previously been described by researchers in the bio-processing industry. This paper demonstrates the value of "windows of operation" to the tissue engineering field using a perfusion-scaffold bioreactor system as a case study. In our laboratory, perfusion bioreactor systems are utilized in the context of bone tissue engineering to enhance the osteogenic differentiation of cell-seeded scaffolds. A key challenge of such perfusion bioreactor systems is to maximize the induction of osteogenesis but minimize cell detachment from the scaffold. Two key operating variables that influence these performance criteria are the mean scaffold pore size and flow-rate. Using cyclooxygenase-2 and osteopontin gene expression levels as surrogate indicators of osteogenesis, we employed the "windows of operation" methodology to rapidly identify feasible operating ranges for the mean scaffold pore size and flow-rate that achieved user-defined levels of performance for cell detachment and differentiation. Incorporation of such tools into the tissue engineer's armory will hopefully yield a greater understanding of the highly complex systems used and help aid decision making in future translation of products from the bench top to the market place. Copyright © 2012 Wiley Periodicals, Inc.

  19. Evaluation of a human bio-engineered skin equivalent for drug permeation studies.

    PubMed

    Asbill, C; Kim, N; El-Kattan, A; Creek, K; Wertz, P; Michniak, B

    2000-09-01

    To test the barrier function of a bio-engineered human skin (BHS) using three model drugs (caffeine, hydrocortisone, and tamoxifen) in vitro. To investigate the lipid composition and microscopic structure of the BHS. The human skin substitute was composed of both epidermal and dermal layers, the latter having a bovine collagen matrix. The permeability of the BHS to three model drugs was compared to that obtained in other percutaneous testing models (human cadaver skin, hairless mouse skin, and EpiDerm). Lipid analysis of the BHS was performed by high performance thin layered chromatography. Histological evaluation of the BHS was performed using routine H&E staining. The BHS mimicked human skin in terms of lipid composition, gross ultrastructure, and the formation of a stratum corneum. However, the permeability of the BHS to caffeine, hydrocortisone, and tamoxifen was 3-4 fold higher than that of human cadaver skin. In summary, the results indicate that the BHS may be an acceptable in vitro model for drug permeability testing.

  20. Tailpipe emissions and engine performance of a light-duty diesel engine operating on petro- and bio-diesel fuel blends.

    DOT National Transportation Integrated Search

    2014-06-01

    This report summarizes the experimental apparatus developed in the Transportation Air Quality Laboratory (TAQ Lab) at the University of Vermont to compare light-duty diesel engine performance and exhaust emissions when operating on petroleum diesel (...

  1. Engineering cell factories for producing building block chemicals for bio-polymer synthesis.

    PubMed

    Tsuge, Yota; Kawaguchi, Hideo; Sasaki, Kengo; Kondo, Akihiko

    2016-01-21

    Synthetic polymers are widely used in daily life. Due to increasing environmental concerns related to global warming and the depletion of oil reserves, the development of microbial-based fermentation processes for the production of polymer building block chemicals from renewable resources is desirable to replace current petroleum-based methods. To this end, strains that efficiently produce the target chemicals at high yields and productivity are needed. Recent advances in metabolic engineering have enabled the biosynthesis of polymer compounds at high yield and productivities by governing the carbon flux towards the target chemicals. Using these methods, microbial strains have been engineered to produce monomer chemicals for replacing traditional petroleum-derived aliphatic polymers. These developments also raise the possibility of microbial production of aromatic chemicals for synthesizing high-performance polymers with desirable properties, such as ultraviolet absorbance, high thermal resistance, and mechanical strength. In the present review, we summarize recent progress in metabolic engineering approaches to optimize microbial strains for producing building blocks to synthesize aliphatic and high-performance aromatic polymers.

  2. Optimized bio-inspired stiffening design for an engine nacelle.

    PubMed

    Lazo, Neil; Vodenitcharova, Tania; Hoffman, Mark

    2015-11-04

    Structural efficiency is a common engineering goal in which an ideal solution provides a structure with optimized performance at minimized weight, with consideration of material mechanical properties, structural geometry, and manufacturability. This study aims to address this goal in developing high performance lightweight, stiff mechanical components by creating an optimized design from a biologically-inspired template. The approach is implemented on the optimization of rib stiffeners along an aircraft engine nacelle. The helical and angled arrangements of cellulose fibres in plants were chosen as the bio-inspired template. Optimization of total displacement and weight was carried out using a genetic algorithm (GA) coupled with finite element analysis. Iterations showed a gradual convergence in normalized fitness. Displacement was given higher emphasis in optimization, thus the GA optimization tended towards individual designs with weights near the mass constraint. Dominant features of the resulting designs were helical ribs with rectangular cross-sections having large height-to-width ratio. Displacement reduction was at 73% as compared to an unreinforced nacelle, and is attributed to the geometric features and layout of the stiffeners, while mass is maintained within the constraint.

  3. Bio-mimetic Flow Control

    NASA Astrophysics Data System (ADS)

    Choi, Haecheon

    2009-11-01

    Bio-mimetic engineering or bio-mimetics is the application of biological methods and systems found in nature to the study and design of engineering systems and modern technology (from Wikipedia). The concept itself is old, but successful developments have been made recently, especially in the research field of flow control. The objective of flow control based on the bio-mimetic approach is to develop novel concepts for reducing drag, increasing lift and enhancing aerodynamic performance. For skin friction reduction, a few ideas have been suggested such as the riblet from shark, compliant surface from dolphin, microbubble injection and multiple front-body curvature from penguin, and V-shaped protrusion from sailfish. For form drag reduction, several new attempts have been also made recently. Examples include the V-shaped spanwise grooves from saguaro cactus, overall shape of box fish, longitudinal grooves on scallop shell, bill of swordfish, hooked comb on owl wing, trailing-edge protrusion on dragonfly wing, and fillet. For the enhancement of aerodynamic performance, focuses have been made on the birds, fish and insects: e.g., double layered feather of landing bird, leading-edge serration of humpback-whale flipper, pectoral fin of flying fish, long tail on swallowtail-butterfly wing, wing flapping motion of dragonfly, and alula in birds. Living animals adapt their bodies to better performance in multi purposes, but engineering requires single purpose in most cases. Therefore, bio-mimetic approaches often produce excellent results more than expected. However, they are sometimes based on people's wrong understanding of nature and produce unwanted results. Successes and failures from bio-mimetic approaches in flow control will be discussed in the presentation.

  4. Effects of Alumina Nano Metal Oxide Blended Palm Stearin Methyl Ester Bio-Diesel on Direct Injection Diesel Engine Performance and Emissions

    NASA Astrophysics Data System (ADS)

    Krishna, K.; Kumar, B. Sudheer Prem; Reddy, K. Vijaya Kumar; Charan Kumar, S.; Kumar, K. Ravi

    2017-08-01

    The Present Investigation was carried out to study the effect of Alumina Metal Oxide (Al2O3) Nano Particles as additive for Palm Stearin Methyl Ester Biodiesel (B 100) and their blends as an alternate fuel in four stroke single cylinder water cooled, direct injection diesel engine. Alumina Nano Particles has high calorific value and relatively high thermal conductivity (30-1 W m K-1) compare to diesel, which helps to promote more combustion in engines due to their higher thermal efficiency. In the experimentation Al2O3 were doped in various proportions with the Palm Stearin Methyl Ester Biodiesel (B-100) using an ultrasonicator and a homogenizer with cetyl trimethyl ammonium bromide (CTAB) as the cationic surfactant. The test were performed on a Kirsloskar DI diesel engine at constant speed of 1500 rpm using different Nano Biodiesel Fuel blends (psme+50 ppm, psme+150 ppm, and psme+200 ppm) and results were compared with those of neat conventional diesel and Palm Stearin Methyl Ester Bio diesel. It was observed that for Nano Biodiesel Fuel blend (psme+50ppm) there is an significant reduction in carbon monoxide (CO) emissions and Nox emissions compared to diesel and the brake thermal efficiency for (psme+50ppm) was almost same as diesel.

  5. Experimental studies on natural aspirated diesel engine fuelled with corn seed oil methyl ester as a bio-diesel.

    NASA Astrophysics Data System (ADS)

    Rama Krishna Reddy, E.; Dhana Raju, V.

    2018-03-01

    This paper evaluates the possibilities of using corn seed oil methyl ester as a fuel for compression ignition engines. The biodiesels are contained high oxygen content, and high Cetane number, due to this properties efficiency of biodiesel is higher than diesel fuel. The experiments were conducted with different biodiesel blends of (B10, B15, B20 and B25) corn seed oil on single cylinder four stroke natural aspirated diesel engines. Performance parameters and exhaust emissions are investigated in this experimental with the blends of the corn seed oil methyl ester and diesel fuel. The test results showed that the bio-diesel blends gives improved results for brake thermal efficiency and specific fuel consumption when compared with the diesel fuel. The emissions of corn seed methyl esters follow the same trend of diesel but the smoke opacity was reduces for all blends. From the investigation, corn seed methyl ester is also having the properties similar to diesel fuel; it is biodegradable and renewable fuel, so it will be used as an alternative for diesel fuel.

  6. Creating a Bio-Inspired Solution to Prevent Erosion

    NASA Astrophysics Data System (ADS)

    Reher, R.; Martinez, A.; Cola, J.; Frost, D.

    2016-12-01

    Through the study of geophysical sciences, lessons can be developed which allow for the introduction of bio-inspired design and art concepts to K-5 elementary students. Students are placed into an engineering mindset in which they must apply the concepts of bio-geotechnics to observe how we can use nature to prevent and abate erosion. Problems are staged for students using realistic engineering scenarios such as erosion prevention through biomimicry and the study of anchorage characteristics of root structures in regard to stability of soil. Specifically, a lesson is introduced where students research, learn, and present information about bio-inspired designs to understand these concepts. They lean how plant roots differ in size and shape to stabilize soil. In addition, students perform a series of hands-on experiments which demonstrate how bio-cements and roots can slow erosion.

  7. Jessica Olstad | NREL

    Science.gov Websites

    effects of feedstocks and catalysts on gasification products. She is currently the lead engineer on the -based liquid products (such as bio-oil) due to the high oxygen content, high viscosity, and fuel. Olstad is very interested in studying the effects of feeding bio-vapors into the DCR system

  8. Advances in liquid metals for biomedical applications.

    PubMed

    Yan, Junjie; Lu, Yue; Chen, Guojun; Yang, Min; Gu, Zhen

    2018-04-23

    To date, liquid metals have been widely applied in many fields such as electronics, mechanical engineering and energy. In the last decade, with a better understanding of the physicochemical properties such as low viscosity, good fluidity, high thermal/electrical conductivity and good biocompatibility, gallium and gallium-based low-melting-point (near or below physiological temperature) alloys have attracted considerable attention in bio-related applications. This tutorial review introduces the common performances of liquid metals, highlights their featured properties, as well as summarizes various state-of-the-art bio-applications involving carriers for drug delivery, molecular imaging, cancer therapy and biomedical devices. Challenges for the clinical translation of liquid metals are also discussed.

  9. Branding the bio/biomedical engineering degree.

    PubMed

    Voigt, Herbert F

    2011-01-01

    The future challenges to medical and biological engineering, sometimes referred to as biomedical engineering or simply bioengineering, are many. Some of these are identifiable now and others will emerge from time to time as new technologies are introduced and harnessed. There is a fundamental issue regarding "Branding the bio/biomedical engineering degree" that requires a common understanding of what is meant by a B.S. degree in Biomedical Engineering, Bioengineering, or Biological Engineering. In this paper we address some of the issues involved in branding the Bio/Biomedical Engineering degree, with the aim of clarifying the Bio/Biomedical Engineering brand.

  10. Design and optimization of a novel bio-loom to weave melt-spun absorbable polymers for bone tissue engineering.

    PubMed

    Gilmore, Jordon; Burg, Timothy; Groff, Richard E; Burg, Karen J L

    2017-08-01

    Bone graft procedures are currently among the most common surgical procedures performed worldwide, but due to high risk of complication and lack of viable donor tissue, there exists a need to develop alternatives for bone defect healing. Tissue engineering, for example, combining biocompatible scaffolds with mesenchymal stem cells to achieve new bone growth, is a possible solution. Recent work has highlighted the potential for woven polymer meshes to serve as bone tissue engineering scaffolds; since, scaffolds can be iteratively designed by adjusting weave settings, material types, and mesh parameters. However, there are a number of material and system challenges preventing the implementation of such a tissue engineering strategy. Fiber compliance, tensile strength, brittleness, cross-sectional geometry, and size present specific challenges for using traditional textile weaving methods. In the current work, two potential scaffold materials, melt-spun poly-l-lactide, and poly-l-lactide-co-ε-caprolactone, were investigated. An automated bio-loom was engineered and built to weave these materials. The bio-loom was used to successfully demonstrate the weaving of these difficult-to-handle fiber types into various mesh configurations and material combinations. The dobby-loom design, adapted with an air jet weft placement system, warp tension control system, and automated collection spool, provides minimal damage to the polymer fibers while overcoming the physical constraints presented by the inherent material structure. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1342-1351, 2017. © 2016 Wiley Periodicals, Inc.

  11. Programmable bioelectronics in a stimuli-encoded 3D graphene interface

    NASA Astrophysics Data System (ADS)

    Parlak, Onur; Beyazit, Selim; Tse-Sum-Bui, Bernadette; Haupt, Karsten; Turner, Anthony P. F.; Tiwari, Ashutosh

    2016-05-01

    The ability to program and mimic the dynamic microenvironment of living organisms is a crucial step towards the engineering of advanced bioelectronics. Here, we report for the first time a design for programmable bioelectronics, with `built-in' switchable and tunable bio-catalytic performance that responds simultaneously to appropriate stimuli. The designed bio-electrodes comprise light and temperature responsive compartments, which allow the building of Boolean logic gates (i.e. ``OR'' and ``AND'') based on enzymatic communications to deliver logic operations.The ability to program and mimic the dynamic microenvironment of living organisms is a crucial step towards the engineering of advanced bioelectronics. Here, we report for the first time a design for programmable bioelectronics, with `built-in' switchable and tunable bio-catalytic performance that responds simultaneously to appropriate stimuli. The designed bio-electrodes comprise light and temperature responsive compartments, which allow the building of Boolean logic gates (i.e. ``OR'' and ``AND'') based on enzymatic communications to deliver logic operations. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02355j

  12. Natural and bio-inspired underwater adhesives: Current progress and new perspectives

    NASA Astrophysics Data System (ADS)

    Cui, Mengkui; Ren, Susu; Wei, Shicao; Sun, Chengjun; Zhong, Chao

    2017-11-01

    Many marine organisms harness diverse protein molecules as underwater adhesives to achieve strong and robust interfacial adhesion under dynamic and turbulent environments. Natural underwater adhesion phenomena thus provide inspiration for engineering adhesive materials that can perform in water or high-moisture settings for biomedical and industrial applications. Here we review examples of biological adhesives to show the molecular features of natural adhesives and discuss how such knowledge serves as a heuristic guideline for the rational design of biologically inspired underwater adhesives. In view of future bio-inspired research, we propose several potential opportunities, either in improving upon current L-3, 4-dihydroxyphenylalanine-based and coacervates-enabled adhesives with new features or engineering conceptually new types of adhesives that recapitulate important characteristics of biological adhesives. We underline the importance of viewing natural adhesives as dynamic materials, which owe their outstanding performance to the cellular coordination of protein expression, delivery, deposition, assembly, and curing of corresponding components with spatiotemporal control. We envision that the emerging synthetic biology techniques will provide great opportunities for advancing both fundamental and application aspects of underwater adhesives.

  13. A bio-hybrid DNA rotor-stator nanoengine that moves along predefined tracks

    NASA Astrophysics Data System (ADS)

    Valero, Julián; Pal, Nibedita; Dhakal, Soma; Walter, Nils G.; Famulok, Michael

    2018-06-01

    Biological motors are highly complex protein assemblies that generate linear or rotary motion, powered by chemical energy. Synthetic motors based on DNA nanostructures, bio-hybrid designs or synthetic organic chemistry have been assembled. However, unidirectionally rotating biomimetic wheel motors with rotor-stator units that consume chemical energy are elusive. Here, we report a bio-hybrid nanoengine consisting of a catalytic stator that unidirectionally rotates an interlocked DNA wheel, powered by NTP hydrolysis. The engine consists of an engineered T7 RNA polymerase (T7RNAP-ZIF) attached to a dsDNA nanoring that is catenated to a rigid rotating dsDNA wheel. The wheel motor produces long, repetitive RNA transcripts that remain attached to the engine and are used to guide its movement along predefined ssDNA tracks arranged on a DNA nanotube. The simplicity of the design renders this walking nanoengine adaptable to other biological nanoarchitectures, facilitating the construction of complex bio-hybrid structures that achieve NTP-driven locomotion.

  14. A bio-hybrid DNA rotor-stator nanoengine that moves along predefined tracks.

    PubMed

    Valero, Julián; Pal, Nibedita; Dhakal, Soma; Walter, Nils G; Famulok, Michael

    2018-06-01

    Biological motors are highly complex protein assemblies that generate linear or rotary motion, powered by chemical energy. Synthetic motors based on DNA nanostructures, bio-hybrid designs or synthetic organic chemistry have been assembled. However, unidirectionally rotating biomimetic wheel motors with rotor-stator units that consume chemical energy are elusive. Here, we report a bio-hybrid nanoengine consisting of a catalytic stator that unidirectionally rotates an interlocked DNA wheel, powered by NTP hydrolysis. The engine consists of an engineered T7 RNA polymerase (T7RNAP-ZIF) attached to a dsDNA nanoring that is catenated to a rigid rotating dsDNA wheel. The wheel motor produces long, repetitive RNA transcripts that remain attached to the engine and are used to guide its movement along predefined ssDNA tracks arranged on a DNA nanotube. The simplicity of the design renders this walking nanoengine adaptable to other biological nanoarchitectures, facilitating the construction of complex bio-hybrid structures that achieve NTP-driven locomotion.

  15. Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil.

    PubMed

    Hassan, H; Lim, J K; Hameed, B H

    2016-12-01

    Co-pyrolysis of biomass with abundantly available materials could be an economical method for production of bio-fuels. However, elimination of oxygenated compounds poses a considerable challenge. Catalytic co-pyrolysis is another potential technique for upgrading bio-oils for application as liquid fuels in standard engines. This technique promotes the production of high-quality bio-oil through acid catalyzed reduction of oxygenated compounds and mutagenic polyaromatic hydrocarbons. This work aims to review and summarize research progress on co-pyrolysis and catalytic co-pyrolysis, as well as their benefits on enhancement of bio-oils derived from biomass. This review focuses on the potential of plastic wastes and coal materials as co-feed in co-pyrolysis to produce valuable liquid fuel. This paper also proposes future directions for using this technique to obtain high yields of bio-oils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Combinatorial Nano-Bio Interfaces.

    PubMed

    Cai, Pingqiang; Zhang, Xiaoqian; Wang, Ming; Wu, Yun-Long; Chen, Xiaodong

    2018-06-08

    Nano-bio interfaces are emerging from the convergence of engineered nanomaterials and biological entities. Despite rapid growth, clinical translation of biomedical nanomaterials is heavily compromised by the lack of comprehensive understanding of biophysicochemical interactions at nano-bio interfaces. In the past decade, a few investigations have adopted a combinatorial approach toward decoding nano-bio interfaces. Combinatorial nano-bio interfaces comprise the design of nanocombinatorial libraries and high-throughput bioevaluation. In this Perspective, we address challenges in combinatorial nano-bio interfaces and call for multiparametric nanocombinatorics (composition, morphology, mechanics, surface chemistry), multiscale bioevaluation (biomolecules, organelles, cells, tissues/organs), and the recruitment of computational modeling and artificial intelligence. Leveraging combinatorial nano-bio interfaces will shed light on precision nanomedicine and its potential applications.

  17. Diclofenac sodium delivery to the eye: in vitro evaluation of novel solid lipid nanoparticle formulation using human cornea construct.

    PubMed

    Attama, Anthony A; Reichl, Stephan; Müller-Goymann, Christel C

    2008-05-01

    Solid lipid nanoparticles (SLNs) were prepared with a combination of homolipid from goat (goat fat) and phospholipid, and evaluated for diclofenac sodium (DNa) delivery to the eye using bio-engineered human cornea, produced from immortalized human corneal endothelial cells (HENC), stromal fibroblasts and epithelial cells CEPI 17 CL 4. Encapsulation efficiency was high and sustained release of DNa and high permeation through the bio-engineered cornea were achieved. Results obtained in this work showed that permeation of DNa through the cornea construct was improved by formulation as SLN modified with phospholipid.

  18. Modules for in vitro metabolic engineering: Pathway assembly for bio-based production of value-added chemicals.

    PubMed

    Taniguchi, Hironori; Okano, Kenji; Honda, Kohsuke

    2017-06-01

    Bio-based chemical production has drawn attention regarding the realization of a sustainable society. In vitro metabolic engineering is one of the methods used for the bio-based production of value-added chemicals. This method involves the reconstitution of natural or artificial metabolic pathways by assembling purified/semi-purified enzymes in vitro . Enzymes from distinct sources can be combined to construct desired reaction cascades with fewer biological constraints in one vessel, enabling easier pathway design with high modularity. Multiple modules have been designed, built, tested, and improved by different groups for different purpose. In this review, we focus on these in vitro metabolic engineering modules, especially focusing on the carbon metabolism, and present an overview of input modules, output modules, and other modules related to cofactor management.

  19. Biological issues in materials science and engineering: Interdisciplinarity and the bio-materials paradigm

    NASA Astrophysics Data System (ADS)

    Murr, L. E.

    2006-07-01

    Biological systems and processes have had, and continue to have, important implications and applications in materials extraction, processing, and performance. This paper illustrates some interdisciplinary, biological issues in materials science and engineering. These include metal extraction involving bacterial catalysis, galvanic couples, bacterial-assisted corrosion and degradation of materials, biosorption and bioremediation of toxic and other heavy metals, metal and material implants and prostheses and related dental and medical biomaterials developments and applications, nanomaterials health benefits and toxicity issue, and biomimetics and biologically inspired materials developments. These and other examples provide compelling evidence and arguments for emphasizing biological sicences in materials science and engineering curricula and the implementation of a bio-materials paradigm to facilitate the emergence of innovative interdisciplinarity involving the biological sciences and materials sciences and engineering.

  20. Engineering tolerance to industrially relevant stress factors in yeast cell factories.

    PubMed

    Deparis, Quinten; Claes, Arne; Foulquié-Moreno, Maria R; Thevelein, Johan M

    2017-06-01

    The main focus in development of yeast cell factories has generally been on establishing optimal activity of heterologous pathways and further metabolic engineering of the host strain to maximize product yield and titer. Adequate stress tolerance of the host strain has turned out to be another major challenge for obtaining economically viable performance in industrial production. Although general robustness is a universal requirement for industrial microorganisms, production of novel compounds using artificial metabolic pathways presents additional challenges. Many of the bio-based compounds desirable for production by cell factories are highly toxic to the host cells in the titers required for economic viability. Artificial metabolic pathways also turn out to be much more sensitive to stress factors than endogenous pathways, likely because regulation of the latter has been optimized in evolution in myriads of environmental conditions. We discuss different environmental and metabolic stress factors with high relevance for industrial utilization of yeast cell factories and the experimental approaches used to engineer higher stress tolerance. Improving stress tolerance in a predictable manner in yeast cell factories should facilitate their widespread utilization in the bio-based economy and extend the range of products successfully produced in large scale in a sustainable and economically profitable way. © FEMS 2017.

  1. Engineering tolerance to industrially relevant stress factors in yeast cell factories

    PubMed Central

    Deparis, Quinten; Claes, Arne; Foulquié-Moreno, Maria R.

    2017-01-01

    Abstract The main focus in development of yeast cell factories has generally been on establishing optimal activity of heterologous pathways and further metabolic engineering of the host strain to maximize product yield and titer. Adequate stress tolerance of the host strain has turned out to be another major challenge for obtaining economically viable performance in industrial production. Although general robustness is a universal requirement for industrial microorganisms, production of novel compounds using artificial metabolic pathways presents additional challenges. Many of the bio-based compounds desirable for production by cell factories are highly toxic to the host cells in the titers required for economic viability. Artificial metabolic pathways also turn out to be much more sensitive to stress factors than endogenous pathways, likely because regulation of the latter has been optimized in evolution in myriads of environmental conditions. We discuss different environmental and metabolic stress factors with high relevance for industrial utilization of yeast cell factories and the experimental approaches used to engineer higher stress tolerance. Improving stress tolerance in a predictable manner in yeast cell factories should facilitate their widespread utilization in the bio-based economy and extend the range of products successfully produced in large scale in a sustainable and economically profitable way. PMID:28586408

  2. Bio-based materials with novel characteristics for tissue engineering applications - A review.

    PubMed

    Bedian, Luis; Villalba-Rodríguez, Angel M; Hernández-Vargas, Gustavo; Parra-Saldivar, Roberto; Iqbal, Hafiz M N

    2017-05-01

    Recently, a wider spectrum of bio-based materials and materials-based novel constructs and systems has been engineered with high interests. The key objective is to help for an enhanced/better quality of life in a secure way by avoiding/limiting various adverse effects of some in practice traditional therapies. In this context, different methodological approaches including in vitro, in vivo, and ex vivo techniques have been exploited, so far. Among them, bio-based therapeutic constructs are of supreme interests for an enhanced and efficient delivery in the current biomedical sector of the modern world. The development of new types of novel, effective and highly reliable materials-based novel constructs for multipurpose applications is essential and a core demand to tackle many human health related diseases. Bio-based materials possess several complementary functionalities, e.g. unique chemical structure, bioactivity, non-toxicity, biocompatibility, biodegradability, recyclability, etc. that position them well in the modern world's materials sector. In this context, the utilization of biomaterials provides extensive opportunities for experimentation in the field of interdisciplinary and multidisciplinary scientific research. With an aim to address the global dependence on petroleum-based polymers, researchers have been redirecting their interests to the engineering of biological materials for targeted applications in different industries including cosmetics, pharmaceuticals, and other biotechnological or biomedical applications. Herein, we reviewed biotechnological advancements at large and tissue engineering from a biomaterials perspective in particular and envision directions of future developments. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Advancing sustainable forestry by using engineered wood or bio-composites

    Treesearch

    Jerrold E. Winandy

    2005-01-01

    As worldwide demand for timber and bio-fiber resources grows, sustainable resource management and industrial utilization must collaborate to develop a shared vision for both long-term sustainable management of forest and bio-resources and sustainable economic development. Engineered wood- and bio-composites offer a tool that can both achieve resource sustainability and...

  4. BioSIGHT: Interactive Visualization Modules for Science Education

    NASA Technical Reports Server (NTRS)

    Wong, Wee Ling

    1998-01-01

    Redefining science education to harness emerging integrated media technologies with innovative pedagogical goals represents a unique challenge. The Integrated Media Systems Center (IMSC) is the only engineering research center in the area of multimedia and creative technologies sponsored by the National Science Foundation. The research program at IMSC is focused on developing advanced technologies that address human-computer interfaces, database management, and high-speed network capabilities. The BioSIGHT project at is a demonstration technology project in the area of education that seeks to address how such emerging multimedia technologies can make an impact on science education. The scope of this project will help solidify NASA's commitment for the development of innovative educational resources that promotes science literacy for our students and the general population as well. These issues must be addressed as NASA marches toward the goal of enabling human space exploration that requires an understanding of life sciences in space. The IMSC BioSIGHT lab was established with the purpose of developing a novel methodology that will map a high school biology curriculum into a series of interactive visualization modules that can be easily incorporated into a space biology curriculum. Fundamental concepts in general biology must be mastered in order to allow a better understanding and application for space biology. Interactive visualization is a powerful component that can capture the students' imagination, facilitate their assimilation of complex ideas, and help them develop integrated views of biology. These modules will augment the role of the teacher and will establish the value of student-centered interactivity, both in an individual setting as well as in a collaborative learning environment. Students will be able to interact with the content material, explore new challenges, and perform virtual laboratory simulations. The BioSIGHT effort is truly cross-disciplinary in nature and requires expertise from many areas including Biology, Computer Science Electrical Engineering, Education, and the Cognitive Sciences. The BioSIGHT team includes a scientific illustrator, educational software designer, computer programmers as well as IMSC graduate and undergraduate students.

  5. Recent advances in high performance poly(lactide): from "green" plasticization to super-tough materials via (reactive) compounding.

    PubMed

    Kfoury, Georgio; Raquez, Jean-Marie; Hassouna, Fatima; Odent, Jérémy; Toniazzo, Valérie; Ruch, David; Dubois, Philippe

    2013-01-01

    Due to its origin from renewable resources, its biodegradability, and recently, its industrial implementation at low costs, poly(lactide) (PLA) is considered as one of the most promising ecological, bio-sourced and biodegradable plastic materials to potentially and increasingly replace traditional petroleum derived polymers in many commodity and engineering applications. Beside its relatively high rigidity [high tensile strength and modulus compared with many common thermoplastics such as poly(ethylene terephthalate) (PET), high impact poly(styrene) (HIPS) and poly(propylene) (PP)], PLA suffers from an inherent brittleness, which can limit its applications especially where mechanical toughness such as plastic deformation at high impact rates or elongation is required. Therefore, the curve plotting stiffness vs. impact resistance and ductility must be shifted to higher values for PLA-based materials, while being preferably fully bio-based and biodegradable upon the application. This review aims to establish a state of the art focused on the recent progresses and preferably economically viable strategies developed in the literature for significantly improve the mechanical performances of PLA. A particular attention is given to plasticization as well as to impact resistance modification of PLA in the case of (reactive) blending PLA-based systems.

  6. Recent advances in high performance poly(lactide): from “green” plasticization to super-tough materials via (reactive) compounding

    PubMed Central

    Kfoury, Georgio; Raquez, Jean-Marie; Hassouna, Fatima; Odent, Jérémy; Toniazzo, Valérie; Ruch, David; Dubois, Philippe

    2013-01-01

    Due to its origin from renewable resources, its biodegradability, and recently, its industrial implementation at low costs, poly(lactide) (PLA) is considered as one of the most promising ecological, bio-sourced and biodegradable plastic materials to potentially and increasingly replace traditional petroleum derived polymers in many commodity and engineering applications. Beside its relatively high rigidity [high tensile strength and modulus compared with many common thermoplastics such as poly(ethylene terephthalate) (PET), high impact poly(styrene) (HIPS) and poly(propylene) (PP)], PLA suffers from an inherent brittleness, which can limit its applications especially where mechanical toughness such as plastic deformation at high impact rates or elongation is required. Therefore, the curve plotting stiffness vs. impact resistance and ductility must be shifted to higher values for PLA-based materials, while being preferably fully bio-based and biodegradable upon the application. This review aims to establish a state of the art focused on the recent progresses and preferably economically viable strategies developed in the literature for significantly improve the mechanical performances of PLA. A particular attention is given to plasticization as well as to impact resistance modification of PLA in the case of (reactive) blending PLA-based systems. PMID:24790960

  7. Bionic Manufacturing: Towards Cyborg Cells and Sentient Microbots.

    PubMed

    Srivastava, Sarvesh Kumar; Yadav, Vikramaditya G

    2018-05-01

    Bio-inspired engineering applies biological design principles towards developing engineering solutions but is not practical as a manufacturing paradigm. We advocate 'bionic manufacturing', a synergistic fusion of biotic and abiotic components, to transition away from bio-inspiration toward bio-augmentation to address current limitations in bio-inspired manufacturing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Human Engineering Operations and Habitability Assessment: A Process for Advanced Life Support Ground Facility Testbeds

    NASA Technical Reports Server (NTRS)

    Connolly, Janis H.; Arch, M.; Elfezouaty, Eileen Schultz; Novak, Jennifer Blume; Bond, Robert L. (Technical Monitor)

    1999-01-01

    Design and Human Engineering (HE) processes strive to ensure that the human-machine interface is designed for optimal performance throughout the system life cycle. Each component can be tested and assessed independently to assure optimal performance, but it is not until full integration that the system and the inherent interactions between the system components can be assessed as a whole. HE processes (which are defining/app lying requirements for human interaction with missions/systems) are included in space flight activities, but also need to be included in ground activities and specifically, ground facility testbeds such as Bio-Plex. A unique aspect of the Bio-Plex Facility is the integral issue of Habitability which includes qualities of the environment that allow humans to work and live. HE is a process by which Habitability and system performance can be assessed.

  9. Bioinformatics Education in High School: Implications for Promoting Science, Technology, Engineering, and Mathematics Careers

    ERIC Educational Resources Information Center

    Kovarik, Dina N.; Patterson, Davis G.; Cohen, Carolyn; Sanders, Elizabeth A.; Peterson, Karen A.; Porter, Sandra G.; Chowning, Jeanne Ting

    2013-01-01

    We investigated the effects of our Bio-ITEST teacher professional development model and bioinformatics curricula on cognitive traits (awareness, engagement, self-efficacy, and relevance) in high school teachers and students that are known to accompany a developing interest in science, technology, engineering, and mathematics (STEM) careers. The…

  10. Accelerating the design of biomimetic materials by integrating RNA-seq with proteomics and materials science.

    PubMed

    Guerette, Paul A; Hoon, Shawn; Seow, Yiqi; Raida, Manfred; Masic, Admir; Wong, Fong T; Ho, Vincent H B; Kong, Kiat Whye; Demirel, Melik C; Pena-Francesch, Abdon; Amini, Shahrouz; Tay, Gavin Z; Ding, Dawei; Miserez, Ali

    2013-10-01

    Efforts to engineer new materials inspired by biological structures are hampered by the lack of genomic data from many model organisms studied in biomimetic research. Here we show that biomimetic engineering can be accelerated by integrating high-throughput RNA-seq with proteomics and advanced materials characterization. This approach can be applied to a broad range of systems, as we illustrate by investigating diverse high-performance biological materials involved in embryo protection, adhesion and predation. In one example, we rapidly engineer recombinant squid sucker ring teeth proteins into a range of structural and functional materials, including nanopatterned surfaces and photo-cross-linked films that exceed the mechanical properties of most natural and synthetic polymers. Integrating RNA-seq with proteomics and materials science facilitates the molecular characterization of natural materials and the effective translation of their molecular designs into a wide range of bio-inspired materials.

  11. Development of Biotin-Prototrophic and -Hyperauxotrophic Corynebacterium glutamicum Strains

    PubMed Central

    Miyamoto, Aya; Mutoh, Sumire; Kitano, Yuko; Tajima, Mei; Shirakura, Daisuke; Takasaki, Manami; Mitsuhashi, Satoshi; Takeno, Seiki

    2013-01-01

    To develop the infrastructure for biotin production through naturally biotin-auxotrophic Corynebacterium glutamicum, we attempted to engineer the organism into a biotin prototroph and a biotin hyperauxotroph. To confer biotin prototrophy on the organism, the cotranscribed bioBF genes of Escherichia coli were introduced into the C. glutamicum genome, which originally lacked the bioF gene. The resulting strain still required biotin for growth, but it could be replaced by exogenous pimelic acid, a source of the biotin precursor pimelate thioester linked to either coenzyme A (CoA) or acyl carrier protein (ACP). To bridge the gap between the pimelate thioester and its dedicated precursor acyl-CoA (or -ACP), the bioI gene of Bacillus subtilis, which encoded a P450 protein that cleaves a carbon-carbon bond of an acyl-ACP to generate pimeloyl-ACP, was further expressed in the engineered strain by using a plasmid system. This resulted in a biotin prototroph that is capable of the de novo synthesis of biotin. On the other hand, the bioY gene responsible for biotin uptake was disrupted in wild-type C. glutamicum. Whereas the wild-type strain required approximately 1 μg of biotin per liter for normal growth, the bioY disruptant (ΔbioY) required approximately 1 mg of biotin per liter, almost 3 orders of magnitude higher than the wild-type level. The ΔbioY strain showed a similar high requirement for the precursor dethiobiotin, a substrate for bioB-encoded biotin synthase. To eliminate the dependency on dethiobiotin, the bioB gene was further disrupted in both the wild-type strain and the ΔbioY strain. By selectively using the resulting two strains (ΔbioB and ΔbioBY) as indicator strains, we developed a practical biotin bioassay system that can quantify biotin in the seven-digit range, from approximately 0.1 μg to 1 g per liter. This bioassay proved that the engineered biotin prototroph of C. glutamicum produced biotin directly from glucose, albeit at a marginally detectable level (approximately 0.3 μg per liter). PMID:23709504

  12. Development of biotin-prototrophic and -hyperauxotrophic Corynebacterium glutamicum strains.

    PubMed

    Ikeda, Masato; Miyamoto, Aya; Mutoh, Sumire; Kitano, Yuko; Tajima, Mei; Shirakura, Daisuke; Takasaki, Manami; Mitsuhashi, Satoshi; Takeno, Seiki

    2013-08-01

    To develop the infrastructure for biotin production through naturally biotin-auxotrophic Corynebacterium glutamicum, we attempted to engineer the organism into a biotin prototroph and a biotin hyperauxotroph. To confer biotin prototrophy on the organism, the cotranscribed bioBF genes of Escherichia coli were introduced into the C. glutamicum genome, which originally lacked the bioF gene. The resulting strain still required biotin for growth, but it could be replaced by exogenous pimelic acid, a source of the biotin precursor pimelate thioester linked to either coenzyme A (CoA) or acyl carrier protein (ACP). To bridge the gap between the pimelate thioester and its dedicated precursor acyl-CoA (or -ACP), the bioI gene of Bacillus subtilis, which encoded a P450 protein that cleaves a carbon-carbon bond of an acyl-ACP to generate pimeloyl-ACP, was further expressed in the engineered strain by using a plasmid system. This resulted in a biotin prototroph that is capable of the de novo synthesis of biotin. On the other hand, the bioY gene responsible for biotin uptake was disrupted in wild-type C. glutamicum. Whereas the wild-type strain required approximately 1 μg of biotin per liter for normal growth, the bioY disruptant (ΔbioY) required approximately 1 mg of biotin per liter, almost 3 orders of magnitude higher than the wild-type level. The ΔbioY strain showed a similar high requirement for the precursor dethiobiotin, a substrate for bioB-encoded biotin synthase. To eliminate the dependency on dethiobiotin, the bioB gene was further disrupted in both the wild-type strain and the ΔbioY strain. By selectively using the resulting two strains (ΔbioB and ΔbioBY) as indicator strains, we developed a practical biotin bioassay system that can quantify biotin in the seven-digit range, from approximately 0.1 μg to 1 g per liter. This bioassay proved that the engineered biotin prototroph of C. glutamicum produced biotin directly from glucose, albeit at a marginally detectable level (approximately 0.3 μg per liter).

  13. BioSIGHT: Interactive Visualization Modules for Science Education

    NASA Technical Reports Server (NTRS)

    Wong, Wee Ling

    1998-01-01

    Redefining science education to harness emerging integrated media technologies with innovative pedagogical goals represents a unique challenge. The Integrated Media Systems Center (IMSC) is the only engineering research center in the area of multimedia and creative technologies sponsored by the National Science Foundation. The research program at IMSC is focused on developing advanced technologies that address human-computer interfaces, database management, and high- speed network capabilities. The BioSIGHT project at IMSC is a demonstration technology project in the area of education that seeks to address how such emerging multimedia technologies can make an impact on science education. The scope of this project will help solidify NASA's commitment for the development of innovative educational resources that promotes science literacy for our students and the general population as well. These issues must be addressed as NASA marches towards the goal of enabling human space exploration that requires an understanding of life sciences in space. The IMSC BioSIGHT lab was established with the purpose of developing a novel methodology that will map a high school biology curriculum into a series of interactive visualization modules that can be easily incorporated into a space biology curriculum. Fundamental concepts in general biology must be mastered in order to allow a better understanding and application for space biology. Interactive visualization is a powerful component that can capture the students' imagination, facilitate their assimilation of complex ideas, and help them develop integrated views of biology. These modules will augment the role of the teacher and will establish the value of student-centered interactivity, both in an individual setting as well as in a collaborative learning environment. Students will be able to interact with the content material, explore new challenges, and perform virtual laboratory simulations. The BioSIGHT effort is truly cross-disciplinary in nature and requires expertise from many areas including Biology, Computer Science, Electrical Engineering, Education, and the Cognitive Sciences. The BioSIGHT team includes a scientific illustrator, educational software designer, computer programmers as well as IMSC graduate and undergraduate students. Our collaborators include TERC, a research and education organization with extensive k-12 math and science curricula development from Cambridge, MA.; SRI International of Menlo Park, CA.; teachers and students from local area high schools (Newbury Park High School, USC's Family of Five schools, Chadwick School, and Pasadena Polytechnic High School).

  14. Short term endurance results on a single cylinder diesel engine fueled with upgraded bio oil biodiesel emulsion

    NASA Astrophysics Data System (ADS)

    Prakash, R.; Murugan, S.

    2017-11-01

    This paper deliberates the endurance test outcomes obtained from a single cylinder, diesel engine fueled with an upgraded bio oil biodiesel emulsion. In this investigation a bio oil obtained by pyrolysis of woody biomass was upgraded with acid treatment. The resulted bio oil was emulsified with addition of biodiesel and suitable surfactant which is termed as ATJOE15. The main objective of the endurance test was to evaluate the wear characteristics of the engine components and lubrication oil properties, when the engine is fueled with the ATJOE15 emulsion. The photographic views taken before and after the end of 100 hrs endurance test, and visual inspection of the engine components, wear and carbon deposit results, are discussed in this paper.

  15. A Powerful Molecular Engineering Tool Provided Efficient Chlamydomonas Mutants as Bio-Sensing Elements for Herbicides Detection

    PubMed Central

    Lambreva, Maya D.; Giardi, Maria Teresa; Rambaldi, Irene; Antonacci, Amina; Pastorelli, Sandro; Bertalan, Ivo; Husu, Ivan; Johanningmeier, Udo; Rea, Giuseppina

    2013-01-01

    This study was prompted by increasing concerns about ecological damage and human health threats derived by persistent contamination of water and soil with herbicides, and emerging of bio-sensing technology as powerful, fast and efficient tool for the identification of such hazards. This work is aimed at overcoming principal limitations negatively affecting the whole-cell-based biosensors performance due to inadequate stability and sensitivity of the bio-recognition element. The novel bio-sensing elements for the detection of herbicides were generated exploiting the power of molecular engineering in order to improve the performance of photosynthetic complexes. The new phenotypes were produced by an in vitro directed evolution strategy targeted at the photosystem II (PSII) D1 protein of Chlamydomonas reinhardtii, using exposures to radical-generating ionizing radiation as selection pressure. These tools proved successful to identify D1 mutations conferring enhanced stability, tolerance to free-radical-associated stress and competence for herbicide perception. Long-term stability tests of PSII performance revealed the mutants capability to deal with oxidative stress-related conditions. Furthermore, dose-response experiments indicated the strains having increased sensitivity or resistance to triazine and urea type herbicides with I50 values ranging from 6×10−8 M to 2×10−6 M. Besides stressing the relevance of several amino acids for PSII photochemistry and herbicide sensing, the possibility to improve the specificity of whole-cell-based biosensors, via coupling herbicide-sensitive with herbicide-resistant strains, was verified. PMID:23613953

  16. 3D bio-printing technology for body tissues and organs regeneration.

    PubMed

    Biazar, Esmaeil; Najafi S, Masoumeh; Heidari K, Saeed; Yazdankhah, Meysam; Rafiei, Ataollah; Biazar, Dariush

    2018-04-01

    In the last decade, the use of new technologies in the reconstruction of body tissues has greatly developed. Utilising stem cell technology, nanotechnology and scaffolding design has created new opportunities in tissue regeneration. The use of accurate engineering design in the creation of scaffolds, including 3D printers, has been widely considered. Three-dimensional printers, especially high precision bio-printers, have opened up a new way in the design of 3D tissue engineering scaffolds. In this article, a review of the latest applications of this technology in this promising area has been addressed.

  17. Bio-Nanotechnology: Challenges for Trainees in a Multidisciplinary Research Program

    NASA Technical Reports Server (NTRS)

    Koehne, Jessica Erin

    2009-01-01

    The recent developments in the field of nanotechnology have provided scientists with a new set of nanoscale materials, tools and devices in which to investigate the biological science thus creating the mulitdisciplinary field of bio-nanotechnology. Bio-nanotechnology merges the biological sciences with other scientific disciplines ranging from chemistry to engineering. Todays students must have a working knowledge of a variety of scientific disciplines in order to be successful in this new field of study. This talk will provide insight into the issue of multidisciplinary education from the perspective of a graduate student working in the field of bio-nanotechnology. From the classes we take to the research we perform, how does the modern graduate student attain the training required to succeed in this field?

  18. 3D Bio-Printing Review

    NASA Astrophysics Data System (ADS)

    Du, Xianbin

    2018-01-01

    Ultimate goal of tissue engineering is to replace pathological or necrotic body tissue or organ by artificial tissue or organ and tissue engineering is a very promising research field. 3D bio-printing is a kind of emerging technologies and a branch of tissue engineering. It has made significant progress in the past decade. 3D bio-printing can realize tissue and organ construction in vitro and has wide application in basic research and pharmacy. This paper is to make an analysis and review on 3D bio-printing from the perspectives of bioink, printing technology and technology application.

  19. Hyperspectral monitoring of chemically sensitive plant sentinels

    NASA Astrophysics Data System (ADS)

    Simmons, Danielle A.; Kerekes, John P.; Raqueno, Nina G.

    2009-08-01

    Automated detection of chemical threats is essential for an early warning of a potential attack. Harnessing plants as bio-sensors allows for distributed sensing without a power supply. Monitoring the bio-sensors requires a specifically tailored hyperspectral system. Tobacco plants have been genetically engineered to de-green when a material of interest (e.g. zinc, TNT) is introduced to their immediate vicinity. The reflectance spectra of the bio-sensors must be accurately characterized during the de-greening process for them to play a role in an effective warning system. Hyperspectral data have been collected under laboratory conditions to determine the key regions in the reflectance spectra associated with the degreening phenomenon. Bio-sensor plants and control (nongenetically engineered) plants were exposed to TNT over the course of two days and their spectra were measured every six hours. Rochester Institute of Technologys Digital Imaging and Remote Sensing Image Generation Model (DIRSIG) was used to simulate detection of de-greened plants in the field. The simulated scene contains a brick school building, sidewalks, trees and the bio-sensors placed at the entrances to the buildings. Trade studies of the bio-sensor monitoring system were also conducted using DIRSIG simulations. System performance was studied as a function of field of view, pixel size, illumination conditions, radiometric noise, spectral waveband dependence and spectral resolution. Preliminary results show that the most significant change in reflectance during the degreening period occurs in the near infrared region.

  20. Gradient of the temperature function at the voxel (i, j, k) for heterogeneous bio-thermal model

    NASA Astrophysics Data System (ADS)

    Cen, Wei; Hoppe, Ralph; Sun, Aiwu; Gu, Ning; Lu, Rongbo

    2018-06-01

    Determination of the relationship between electromagnetic power absorption and temperature distributions inside highly heterogeneous biological samples based on numerical methods is essential in biomedical engineering (e.g. microwave thermal ablation in clinic). In this paper, the gradient expression is examined and analyzed in detail, as how the gradient operators can be discretized is the only real difficulty to the solution of bio-heat equation for highly inhomogeneous model utilizing implicit scheme.

  1. Bio-inspired band gap engineering of zinc oxide by intracrystalline incorporation of amino acids.

    PubMed

    Brif, Anastasia; Ankonina, Guy; Drathen, Christina; Pokroy, Boaz

    2014-01-22

    Bandgap engineering of zinc oxide semiconductors can be achieved using a bio-inspired method. During a bioInspired crystallization process, incorporation of amino acids into the crystal structure of ZnO induces lattice strain that leads to linear bandgap shifts. This allows for fine tuning of the bandgap in a bio-inspired route. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Analytical considerations and dimensionless analysis for a description of particle interactions in high pressure processes

    NASA Astrophysics Data System (ADS)

    Rauh, Cornelia; Delgado, Antonio

    2010-12-01

    High pressures of up to several hundreds of MPa are utilized in a wide range of applications in chemical, bio-, and food engineering, aiming at selective control of (bio-)chemical reactions. Non-uniformity of process conditions may threaten the safety and quality of the resulting products because processing conditions such as pressure, temperature, and treatment history are crucial for the course of (bio-)chemical reactions. Therefore, thermofluid-dynamical phenomena during the high pressure process have to be examined, and numerical tools to predict process uniformity and to optimize the processes have to be developed. Recently applied mathematical models and numerical simulations of laboratory and industrial scale high pressure processes investigating the mentioned crucial phenomena are based on continuum balancing models of thermofluid dynamics. Nevertheless, biological systems are complex fluids containing the relevant (bio-)chemical compounds (enzymes and microorganisms). These compounds are particles that interact with the surrounding medium and between each other. This contribution deals with thermofluid-dynamical interactions of the relevant particulate (bio-)chemical compounds (enzymes and microorganisms) with the surrounding fluid. By consideration of characteristic time and length scales and particle forces, the motion of the (bio-)chemical compounds is characterized.

  3. Chitosan: An undisputed bio-fabrication material for tissue engineering and bio-sensing applications.

    PubMed

    Baranwal, Anupriya; Kumar, Ashutosh; Priyadharshini, A; Oggu, Gopi Suresh; Bhatnagar, Ira; Srivastava, Ananya; Chandra, Pranjal

    2018-04-15

    Biopolymers have been serving the mankind in various ways since long. Over the last few years, these polymers have found great demand in various domains which includes bio medicine, tissue engineering, bio sensor fabrications etc. because of their excellent bio compatibility. In this context, chitosan has found global attention due to its environmentally benign nature, biocompatibility, biodegradability, and ease of availability. In last one decade or so, extensive research in active biomaterials, like chitosan has led to the development of novel delivery systems for drugs, genes, and biomolecules; and regenerative medicine. Additionally, chitosan has also witnessed its usage in functionalization of biocompatible materials, nanoparticle (NP) synthesis, and immobilization of various bio-recognition elements (BREs) to form active bio-surfaces with great ease. Keeping these aspects in mind, we have written a comprehensive review which aims to acquaint its readers with the exceptional properties of chitosan and its usage in the domain of biomedicine, tissue engineering, and biosensor fabrication. Herein, we have briefly explained various aspects of direct utilization of chitosan and then presented vivid strategies towards formulation of chitosan based nanocomposites for biomedicine, tissue engineering, and biosensing applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Restoration of badlands through applying bio-engineering techniques in active gully systems: Evidence from the Ecuadorian Andes

    NASA Astrophysics Data System (ADS)

    Borja, P.; Vanacker, V.; Alvarado, D.; Govers, G.

    2012-04-01

    A better insight in the processes controlling sediment generation, transport and deposition in badlands is necessary to enhance restoration of degraded soils through eco-engineering techniques. In this study, we evaluate the effect of different bio-engineering measures on soil and slope stability. Five micro-catchments (of 0.2 to 5 ha) were selected within a 3 km2 area in the lower part of the Loreto catchment (Southern Ecuadorian Andes). The micro-catchments differ only by land cover and degree of implementation of soil and water conservation measures. Bio-engineering techniques were used to construct dikes made of fascines of wooden sticks and earth-filled tires in active gully beds, where they are most efficient to reduce water and sediment transport. The experimental design consists of three micro-catchments within highly degraded lands: (DI) micro-catchment with bio-engineering measures concentrated in the active gully beds, (DF) with reforestation of Eucalyptus trees, and (DT) reference situation without any conservation measures. Two micro-catchments were monitored in agricultural lands with (AI) and without (AT) bio-engineering measures in the active gully beds. All catchments were equipped with San Dimas flumes to measure water flow, and sediment traps to monitor sediment export. In the (active) gully beds, various parameters related to gully stability (soil water content, bed elevation, vegetation cover, sedimentation/erosion) were monitored at weekly intervals. First results show that bio-engineering techniques are efficient to stabilize active gully beds through a reduction of the rapid concentration of excess rainfall and the sediment production and transfer. Fascines made of wooden sticks are far more efficient than earth-filled tires. Sediment deposition behind dikes is strongly dependent on precedent rainfall events, and the slope and vegetation cover of the gully floor. The sediment deposited facilitates colonization of the gully floor by native grass and shrub species. Analyses of soil samples indicates that the soil moisture is significantly higher (and the bulk density lower) in the deposition zones within restored gullies compared to the reference situation. During rainfall events, the infiltration in the deposition zones becomes important. The increase in water availability in the gully floor permits grass seeds to germinate and shoot rapidly, which strongly enhances gully stabilization.

  5. Self-organization, embodiment, and biologically inspired robotics.

    PubMed

    Pfeifer, Rolf; Lungarella, Max; Iida, Fumiya

    2007-11-16

    Robotics researchers increasingly agree that ideas from biology and self-organization can strongly benefit the design of autonomous robots. Biological organisms have evolved to perform and survive in a world characterized by rapid changes, high uncertainty, indefinite richness, and limited availability of information. Industrial robots, in contrast, operate in highly controlled environments with no or very little uncertainty. Although many challenges remain, concepts from biologically inspired (bio-inspired) robotics will eventually enable researchers to engineer machines for the real world that possess at least some of the desirable properties of biological organisms, such as adaptivity, robustness, versatility, and agility.

  6. From zero to hero - production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum.

    PubMed

    Kind, Stefanie; Neubauer, Steffi; Becker, Judith; Yamamoto, Motonori; Völkert, Martin; Abendroth, Gregory von; Zelder, Oskar; Wittmann, Christoph

    2014-09-01

    Polyamides are important industrial polymers. Currently, they are produced exclusively from petrochemical monomers. Herein, we report the production of a novel bio-nylon, PA5.10 through an integration of biological and chemical approaches. First, systems metabolic engineering of Corynebacterium glutamicum was used to create an effective microbial cell factory for the production of diaminopentane as the polymer building block. In this way, a hyper-producer, with a high diaminopentane yield of 41% in shake flask culture, was generated. Subsequent fed-batch production of C. glutamicum DAP-16 allowed a molar yield of 50%, a productivity of 2.2gL(-1)h(-1), and a final titer of 88gL(-1). The streamlined producer accumulated diaminopentane without generating any by-products. Solvent extraction from alkalized broth and two-step distillation provided highly pure diaminopentane (99.8%), which was then directly accessible for poly-condensation. Chemical polymerization with sebacic acid, a ten-carbon dicarboxylic acid derived from castor plant oil, yielded the bio-nylon, PA5.10. In pure form and reinforced with glass fibers, the novel 100% bio-polyamide achieved an excellent melting temperature and the mechanical strength of the well-established petrochemical polymers, PA6 and PA6.6. It even outperformed the oil-based products in terms of having a 6% lower density. It thus holds high promise for applications in energy-friendly transportation. The demonstration of a novel route for generation of bio-based nylon from renewable sources opens the way to production of sustainable bio-polymers with enhanced material properties and represents a milestone in industrial production. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Recycling used palm oil and used engine oil to produce white bio oil, bio petroleum diesel and heavy fuel

    NASA Astrophysics Data System (ADS)

    Al-abbas, Mustafa Hamid; Ibrahim, Wan Aini Wan; Sanagi, Mohd. Marsin

    2012-09-01

    Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil, bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry, cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil, bio petroleum fuel and diesel which can be an energy source.

  8. Bio-Nanotechnology Infrastructure and Technology Oriented Research

    DTIC Science & Technology

    2008-07-17

    4) dissemination of the accomplishments through filing patents, publishing refereed papers and presenting at international conferences and meetings...NUMBER 6. AUTHOR(S) Kinzy Jones 5d. PROJECT NUMBER Florida International University ADVANCED MATERIALS ENGINEERING RESERACH INSTITUTE 5e...University ADVANCED MATERIALS ENGINEERING RESERACH INSTITUTE 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES

  9. Numerical Simulation and Performance Optimization of a Magnetophoretic Bio-separation chip

    NASA Astrophysics Data System (ADS)

    Golozar, Matin; Darabi, Jeff; Molki, Majid

    Separation of micro/nanoparticles is important in biomedicine and biotechnology. This research presents the modeling and optimization of a magnetophoretic bio-separation chip for the isolation of biomaterials, such as circulating tumor cells (CTCs) from the peripheral blood. The chip consists of a continuous flow through microfluidic channels that contains locally engineered magnetic field gradients. The high gradient magnetic field produced by the magnets is spatially non-uniform and gives rise to an attractive force on magnetic particles that move through the flow channel. The computational model takes into account the magnetic and fluidic forces as well as the effect of the volume fraction of particles on the continuous phase. The model is used to investigate the effect of two-way particle-fluid coupling on both the capture efficiency and the flow pattern in the separation chip. The results show that the microfluidic device has the capability of separating CTCs from their native environment. Additionally, a parametric study is performed to investigate the effects of the channel height, substrate thickness, magnetic bead size, bioparticle size, and the number of beads per cell on the cell separation performance.

  10. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals.

    PubMed

    Jullesson, David; David, Florian; Pfleger, Brian; Nielsen, Jens

    2015-11-15

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Programmable bioelectronics in a stimuli-encoded 3D graphene interface.

    PubMed

    Parlak, Onur; Beyazit, Selim; Tse-Sum-Bui, Bernadette; Haupt, Karsten; Turner, Anthony P F; Tiwari, Ashutosh

    2016-05-21

    The ability to program and mimic the dynamic microenvironment of living organisms is a crucial step towards the engineering of advanced bioelectronics. Here, we report for the first time a design for programmable bioelectronics, with 'built-in' switchable and tunable bio-catalytic performance that responds simultaneously to appropriate stimuli. The designed bio-electrodes comprise light and temperature responsive compartments, which allow the building of Boolean logic gates (i.e."OR" and "AND") based on enzymatic communications to deliver logic operations.

  12. Bio-tribology.

    PubMed

    Dowson, Duncan

    2012-01-01

    It is now forty six years since the separate topics of friction, lubrication, wear and bearing design were integrated under the title 'Tribology' [Department of Education and Science, Lubrication (Tribology) Education and Research. A Report on the Present Position and Industry's Needs, HMSO, London, 1966]. Significant developments have been reported in many established and new aspects of tribology during this period. The subject has contributed to improved performance of much familiar equipment, such as reciprocating engines, where there have been vast improvements in engine reliability and efficiency. Nano-tribology has been central to remarkable advances in information processing and digital equipment. Shortly after widespread introduction of the term tribology, integration with biology and medicine prompted rapid and extensive interest in the fascinating sub-field now known as Bio-tribology [D. Dowson and V. Wright, Bio-tribology, in The Rheology of Lubricants, ed. T. C. Davenport, Applied Science Publishers, Barking, 1973, pp. 81-88]. An outline will be given of some of the developments in the latter field.

  13. Engineered bio-inspired coating for reduction of flow separation

    NASA Astrophysics Data System (ADS)

    Bocanegra Evans, Humberto; Hamed, Ali M.; Gorumlu, Serdar; Doosttalab, Ali; Aksak, Burak; Chamorro, Leonardo P.; Castillo, Luciano

    2017-11-01

    Flow control using passive strategies has received notable attention in the last decades as a way to increase mixing and reduce skin drag, among others. Here, we present a bio-inspired coating, composed by uniformly distributed pillars with diverging tips, that is able to reduce the recirculation region in highly separated flows. This is demonstrated with laboratory experiments in a refractive index-matching flume at Reynolds number Reθ 1200 . The flow over an expanding channel following a S835 wing section was characterized with the coating and with smooth walls. High-resolution, wall-normal particle image velocimetry show a significant reduction of the reversed flow with the coating, where the region with reverse flow was reduced by 60 % . The performance of the micro-scale coating is surprising since the size of the fibers are nearly coincident with the viscous length scale (k+ 1). Additionally, the flow control properties of the surface do not depend on hydrophobicity, giving the coating the capability to work in both air and water media.

  14. 2005 6th Annual Science and Engineering Technology Conference

    DTIC Science & Technology

    2005-04-21

    BioFAC VBAIDS Hybrid: PCR/Immuno Fast PCR Fast Immunoassay Mass Spec (Pyrolysis) SIBS UV -LIF IR Fluorochrome Charge Detect. BioCADS Trigger Advanced...Weights Beam forming Signal Processing mapped to GPU architecture Vector Processor STAP (STAP-BOY) GaN High Frequency Transistor (WBG-RF) UV Laser...Service anti- counterfeiting • Embedded security strips Technology Limitations and Barriers • Training and cost (training intensive) Land Borders North Land

  15. High-throughput fermentation screening for the yeast Yarrowia lipolytica with real-time monitoring of biomass and lipid production.

    PubMed

    Back, Alexandre; Rossignol, Tristan; Krier, François; Nicaud, Jean-Marc; Dhulster, Pascal

    2016-08-23

    Because the model yeast Yarrowia lipolytica can synthesize and store lipids in quantities up to 20 % of its dry weight, it is a promising microorganism for oil production at an industrial scale. Typically, optimization of the lipid production process is performed in the laboratory and later scaled up for industrial production. However, the scale-up process can be complicated by genetic modifications that are optimized for one set of growing conditions can confer a less-than-optimal phenotype in a different environment. To address this issue, small cultivation systems have been developed that mimic the conditions in benchtop bioreactors. In this work, we used one such microbioreactor system, the BioLector, to develop high-throughput fermentation procedures that optimize growth and lipid accumulation in Y. lipolytica. Using this system, we were able to monitor lipid and biomass production in real time throughout the culture duration. The BioLector can monitor the growth of Y. lipolytica in real time by evaluating scattered light; this produced accurate measurements until cultures reached an equivalent of OD600nm = 115 and a cell dry weight of 100 g L(-1). In addition, a lipid-specific fluorescent probe was applied which reliably monitored lipid production up to a concentration of 12 g L(-1). Through screening various growing conditions, we determined that a carbon/nitrogen ratio of 35 was the most efficient for lipid production. Further screening showed that ammonium chloride and glycerol were the most valuable nitrogen and carbon sources, respectively, for growth and lipid production. Moreover, a carbon concentration above 1 M appeared to impair growth and lipid accumulation. Finally, we used these optimized conditions to screen engineered strains of Y. lipolytica with high lipid-accumulation capability. The growth and lipid content of the strains cultivated in the BioLector were compared to those grown in benchtop bioreactors. To our knowledge, this is the first time that the BioLector has been used to track lipid production in real time and to monitor the growth of Y. lipolytica. The present study also showed the efficacy of the BioLector in screening growing conditions and engineered strains prior to scale-up. The method described here could be applied to other oleaginous microorganisms.

  16. Cell patterning by laser-assisted bioprinting.

    PubMed

    Devillard, Raphaël; Pagès, Emeline; Correa, Manuela Medina; Kériquel, Virginie; Rémy, Murielle; Kalisky, Jérôme; Ali, Muhammad; Guillotin, Bertrand; Guillemot, Fabien

    2014-01-01

    The aim of tissue engineering is to produce functional three-dimensional (3D) tissue substitutes. Regarding native organ and tissue complexity, cell density and cell spatial 3D organization, which influence cell behavior and fate, are key parameters in tissue engineering. Laser-Assisted Bioprinting (LAB) allows one to print cells and liquid materials with a cell- or picoliter-level resolution. Thus, LAB seems to be an emerging and promising technology to fabricate tissue-like structures that have the physiological functionality of their native counterparts. This technology has additional advantages such as automation, reproducibility, and high throughput. It makes LAB compatible with the (industrial) fabrication of 3D constructs of physiologically relevant sizes. Here we present exhaustively the numerous steps that allow printing of viable cells with a well-preserved micrometer pattern. To facilitate the understanding of the whole cell patterning experiment using LAB, it is discussed in two parts: (1) preprocessing: laser set-up, bio-ink cartridge and bio-paper preparation, and pattern design; and (2) processing: bio-ink printing on the bio-paper. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Revolutionary Design for Astronaut Exploration — Beyond the Bio-Suit System

    NASA Astrophysics Data System (ADS)

    Newman, Dava J.; Canina, Marita; Trotti, Guillermo L.

    2007-01-01

    The Bio-Suit System is designed to revolutionize human space exploration by providing enhanced astronaut extravehicular activity (EVA) locomotion and performance based on the concepts of a `second skin' capability. The novel Bio-Suit concept provides an overall exploration system realized through symbiotic relationships between a suite of advanced technologies, creative design, human modeling and analysis, and new mission operations techniques. By working at the intersection of engineering, design, life sciences and operations, new emergent capabilities and interrelationships result for applications to space missions, medical rehabilitation, and extreme sports activities. In many respects, the Bio-Suit System mimics Nature (biomimetics). For example, the second skin is capable of augmenting our biological skin by providing mechanical counter-pressure. We have designed and tested prototypes that prove mechanical counter-pressure feasibility. The `epidermis' of our second skin suit is patterned from 3D laser scans that incorporate human skin strain field maps for maximum mobility and natural movements, while requiring minimum energy expenditure for exploration tasks. We provide a technology roadmap for future design, pressure production and technology investments for the Bio-Suit System. Woven into the second skin are active materials to enhance human performance as well as to provide necessary performance metrics (i.e., energy expenditure). Wearable technologies will be embedded throughout the Bio-Suit System to place the explorer in an information-rich environment enabling real-time mission planning, prediction, and visualization. The Bio-Suit System concept augments human capabilities by coupling human and robotic abilities into a hybrid of the two, to the point where the explorer is hardly aware of the boundary between innate human performance and robotic activities.

  18. Alternative materials for sustainable transportation.

    DOT National Transportation Integrated Search

    2012-08-01

    A shortage of asphalt and polymers is creating opportunities for engineers to utilize alternative pavement materials. Three types of bio oil, untreated bio oil (UTB), treated bio oil (TB) and polymer-modified bio oil (PMB) were studied in this resear...

  19. Improvements in algal lipid production: a systems biology and gene editing approach.

    PubMed

    Banerjee, Avik; Banerjee, Chiranjib; Negi, Sangeeta; Chang, Jo-Shu; Shukla, Pratyoosh

    2018-05-01

    In the wake of rising energy demands, microalgae have emerged as potential sources of sustainable and renewable carbon-neutral fuels, such as bio-hydrogen and bio-oil. For rational metabolic engineering, the elucidation of metabolic pathways in fine detail and their manipulation according to requirements is the key to exploiting the use of microalgae. Emergence of site-specific nucleases have revolutionized applied research leading to biotechnological gains. Genome engineering as well as modulation of the endogenous genome with high precision using CRISPR systems is being gradually employed in microalgal research. Further, to optimize and produce better algal platforms, use of systems biology network analysis and integration of omics data is required. This review discusses two important approaches: systems biology and gene editing strategies used on microalgal systems with a focus on biofuel production and sustainable solutions. It also emphasizes that the integration of such systems would contribute and compliment applied research on microalgae. Recent advances in microalgae are discussed, including systems biology, gene editing approaches in lipid bio-synthesis, and antenna engineering. Lastly, it has been attempted here to showcase how CRISPR/Cas systems are a better editing tool than existing techniques that can be utilized for gene modulation and engineering during biofuel production.

  20. cis,cis-Muconic acid: separation and catalysis to bio-adipic acid for nylon-6,6 polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vardon, Derek R.; Rorrer, Nicholas A.; Salvachúa, Davinia

    cis,cis-Muconic acid is a polyunsaturated dicarboxylic acid that can be produced renewably via the biological conversion of sugars and lignin-derived aromatic compounds. Subsequently, muconic acid can be catalytically converted to adipic acid -- the most commercially significant dicarboxylic acid manufactured from petroleum. Nylon-6,6 is the major industrial application for adipic acid, consuming 85% of market demand; however, high purity adipic acid (99.8%) is required for polymer synthesis. As such, process technologies are needed to effectively separate and catalytically transform biologically derived muconic acid to adipic acid in high purity over stable catalytic materials. To that end, this study: (1) demonstratesmore » bioreactor production of muconate at 34.5 g L-1 in an engineered strain of Pseudomonas putida KT2440, (2) examines the staged recovery of muconic acid from culture media, (3) screens platinum group metals (e.g., Pd, Pt, Rh, Ru) for activity and leaching stability on activated carbon (AC) and silica supports, (4) evaluates the time-on-stream performance of Rh/AC in a trickle bed reactor, and (5) demonstrates the polymerization of bio-adipic acid to nylon-6,6. Separation experiments confirmed AC effectively removed broth color compounds, but subsequent pH/temperature shift crystallization resulted in significant levels of Na, P, K, S and N in the crystallized product. Ethanol dissolution of muconic acid precipitated bulk salts, achieving a purity of 99.8%. Batch catalysis screening reactions determined that Rh and Pd were both highly active compared to Pt and Ru, but Pd leached significantly (1-9%) from both AC and silica supports. Testing of Rh/AC in a continuous trickle bed reactor for 100 h confirmed stable performance after 24 h, although organic adsorption resulted in reduced steady-state activity. Lastly, polymerization of bio-adipic acid with hexamethyldiamine produced nylon-6,6 with comparable properties to its petrochemical counterpart, thereby demonstrating a path towards bio-based nylon production via muconic acid.« less

  1. Carbon mitigation with biomass: An engineering, economic and policy assessment of opportunities and implications

    NASA Astrophysics Data System (ADS)

    Rhodes, James S., III

    2007-12-01

    Industrial bio-energy systems provide diverse opportunities for abating anthropogenic greenhouse gas ("GHG") emissions and for advancing other important policy objectives. The confluence of potential contributions to important social, economic, and environmental policy objectives with very real challenges to deployment creates rich opportunities for study. In particular, the analyses developed in this thesis aim to increase understanding of how industrial bio-energy may be applied to abate GHG emissions in prospective energy markets, the relative merits of alternate bio-energy systems, the extent to which public support for developing such systems is justified, and the public policy instruments that may be capable of providing such support. This objective is advanced through analysis of specific industrial bio-energy technologies, in the form of bottom-up engineering-economic analyses, to determine their economic performance relative to other mitigation options. These bottom-up analyses are used to inform parameter definitions in two higher-level stochastic models that explicitly account for uncertainty in key model parameters, including capital costs, operating and maintenance costs, and fuel costs. One of these models is used to develop supply curves for electricity generation and carbon mitigation from biomass-coal cofire in the U.S. The other is used to characterize the performance of multiple bio-energy systems in the context of a competitive market for low-carbon energy products. The results indicate that industrial bio-energy systems are capable of making a variety of potentially important contributions under scenarios that value anthropogenic GHG emissions. In the near term, cofire of available biomass in existing coal fired power plants has the potential to provide substantial emissions reductions at reasonable costs. Carbon prices between 30 and 70 per ton carbon could induce reductions in U.S. carbon emissions by 100 to 225 megatons carbon ("MtC"), equivalent to roughly 3% of U.S. GHG emissions. In the medium or longer term, integration of carbon capture and storage technologies with advanced bio-energy conversion technologies ("biomass-CCS"), in both liquid fuels production and electric sector applications, will likely be feasible. These systems are capable of generating useful energy products with negative net atmospheric carbon emissions at carbon prices between 100 and 200 per tC. Negative emissions from biomass-CCS could be applied to offset emissions sources that are difficult or expensive to abate directly. Such indirect mitigation may prove cost competitive and provide important flexibility in achieving stabilization of atmospheric GHG concentrations at desirable levels. With increasing deployments, alternate bio-energy systems will eventually compete for limited biomass resources and inputs to agricultural production--particularly land. In this context, resource allocation decisions will likely turn on the relative economic performance of alternate bio-energy systems in their respective energy markets. The relatively large uncertainty in forecasts of energy futures confounds reliable prediction of economically efficient uses for available biomass resources. High oil prices or large valuation of energy security benefits will likely enable bio-fuels production to dominate electric-sector options. In contrast, low oil prices and low valuation of energy security benefits will likely enable electric-sector applications to dominate. In the latter scenario, indirect mitigation of transportation-sector emissions via emissions offsets from electric-sector biomass-CCS could prove more efficient than direct fuel substitution with biofuels, both economically and in terms of the transportation-sector mitigation of available biomass resources [tC tbiomass-1]. The policy environment surrounding industrial bio-energy development is systematically examined. Specifically, the policy objectives that may be advanced with bio-energy and the challenges constraining deployment are examined to understand the extent to which public policy support is justified to accelerate development. Policy frameworks and specific policy instruments that have been proposed or enacted to support industrial bio-energy are evaluated to understand their current and potential future roles in shaping bio-energy development. This analysis indicates that deployment of industrial bio-energy systems to advance specified policy objectives has been compromised by inefficient and inconsistent public policies. Amending existing policies could substantially accelerate bio-energy deployment. More generally, public policies that set even prices across the economy for advancing targeted policy objectives should be developed. Industrial bio-energy systems can be expected to compete favorably in the context of such policies, including those valuing deep reductions in anthropogenic GHG emissions.

  2. A glucose bio-battery prototype based on a GDH/poly(methylene blue) bioanode and a graphite cathode with an iodide/tri-iodide redox couple.

    PubMed

    Wang, Jen-Yuan; Nien, Po-Chin; Chen, Chien-Hsiao; Chen, Lin-Chi; Ho, Kuo-Chuan

    2012-07-01

    A glucose bio-battery prototype independent of oxygen is proposed based on a glucose dehydrogenase (GDH) bioanode and a graphite cathode with an iodide/tri-iodide redox couple. At the bioanode, a NADH electrocatalyst, poly(methylene blue) (PMB), which can be easily grown on the electrode (screen-printed carbon paste electrode, SPCE) by electrodeposition, is harnessed and engineered. We find that carboxylated multi-walled carbon nanotubes (MWCNTs) are capable of significantly increasing the deposition amount of PMB and thus enhancing the PMB's electrocatalysis of NADH oxidation and the glucose bio-battery's performance. The choice of the iodide/tri-iodide redox couple eliminates the dependence of oxygen for this bio-battery, thus enabling the bio-battery with a constant current-output feature similar to that of the solar cells. The present glucose bio-battery prototype can attain a maximum power density of 2.4 μW/cm(2) at 25 °C. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  3. Nanoengineered Plasmonic Hybrid Systems for Bio-nanotechnology

    NASA Astrophysics Data System (ADS)

    Leong, Kirsty

    Plasmonic hybrid systems are fabricated using a combination of lithography and layer-by-layer directed self-assembly approaches to serve as highly sensitive nanosensing devices. This layer-by-layer directed self-assembly approach is utilized as a hybrid methodology to control the organization of quantum dots (QDs), nanoparticles, and biomolecules onto inorganic nanostructures with site-specific attachment and functionality. Here, surface plasmon-enhanced nanoarrays are fabricated where the photoluminescence of quantum dots and conjugated polymer nanoarrays are studied. This study was performed by tuning the localized surface plasmon resonance and the distance between the emitter and the metal surface using genetically engineered polypeptides as binding agents and biotin-streptavidin binding as linker molecules. In addition, these nanoarrays were also chemically modified to support the immobilization and label-free detection of DNA using surface enhanced Raman scattering. The surface of the nanoarrays was chemically modified using an acridine containing molecule which can act as an intercalating agent for DNA. The self-assembled monolayer (SAM) showed the ability to immobilize and intercalate DNA onto the surface. This SAM system using surface enhanced Raman scattering (SERS) serves as a highly sensitive methodology for the immobilization and label-free detection of DNA applicable into a wide range of bio-diagnostic platforms. Other micropatterned arrays were also fabricated using a combination of soft lithography and surface engineering. Selective single cell patterning and adhesion was achieved through chemical modifications and surface engineering of poly(dimethylsiloxane) surface. The surface of each microwell was functionally engineered with a SAM which contained an aldehyde terminated fused-ring aromatic thiolated molecule. Cells were found to be attracted and adherent to the chemically modified microwells. By combining soft lithography and surface engineering, a simple methodology produced single cell arrays on biocompatible substrates. Thus the design of plasmonic devices relies heavily on the nature of the plasmonic interactions between nanoparticles in the devices which can potentially be fabricated into lab-on-a-chip devices for multiplex sensing capabilities.

  4. Soil bio-engineering for risk mitigation and environmental restoration in a humid tropical area

    NASA Astrophysics Data System (ADS)

    Petrone, A.; Preti, F.

    2009-07-01

    The use of soil bio-engineering techniques in developing countries is a relevant issue for disaster mitigation, environmental restoration and poverty reduction. Research on authochtonal plants suitable for this kind of works and on economic efficiency is essential for the divulgation of such techniques. The present paper is focused on this two issues related to the realization of various typologies of soil bio-engineering works in the humid tropic of Nicaragua. In the area of Río Blanco, located in the Department of Matagalpa, soil bio-engineering installations were built in several sites. The particular structures built were: drainages with live fascine mattress, a live palisade, a vegetated live crib wall for riverbank protection, a vegetative covering made of a metallic net and biotextile coupled with a live palisade made of bamboo. In order to evaluate the suitability of the various plants used in the works, monitorings were performed, one in the live palisade alongside an unpaved road and the other on the live crib wall along a riverbank, collecting survival rate and morphological parameters data. Concerning the economic efficiency we proceed to a financial analysis of the works and once the unit price was obtained, we converted the amount in EPP Dollars (Equal Purchasing Power) in order to compare the Nicaraguan context with the Italian one. Among the used species we found that Madero negro (Gliricidia sepium) and Roble macuelizo (Tabebuia rosea) are adequate for soil-bioengineering measure on slopes while Helequeme (Erythrina fusca) reported a successful behaviour only in the crib wall for riverbank protection. In the comparison of the costs in Nicaragua and in Italy, the unit price reduction for the Central American country ranges between 1.5 times (for the vegetative covering) and almost 4 times (for the fascine mattress) if it's used the EPP dollar exchange rate. Conclusions are reached with regard to hydrological-risk mitigating actions performed on a basin scale and through naturalistic (live) interventions: not only are they socially and technically attainable, even in hardship areas (by maximizing the contribution of the local labor force and minimizing the use of mechanical equipment), but they are also economically sustainable.

  5. A Self Sustaining Solar-Bio-Nano Based Wastewater Treatment System for Forward Operating Bases

    DTIC Science & Technology

    2017-06-21

    fouling problem and requires a relatively high operational pressure (more than 500 psi) [52]. It has also been reported that pulsed electric discharge as...large amount of working fluid to the targeted temperature. In addition, energy loss to the ambient environment is another problem that significantly...heat. Gas and steam turbines as engine units were compared to determine the most suitable for the studied solar–bio hybrid system. The net capacity

  6. NRL Fact Book

    DTIC Science & Technology

    1991-05-01

    Bio/Molecular Science & Engineering High Resolution Patterning Program Manager Archaebacteria Research Program Manager ONT Receptor Based Biosensor...CMC) in discharging their responsibilities on matters of general scientific and technical interest to the United States in the United Kingdom , Europe

  7. A multi-scale, multi-disciplinary approach for assessing the technological, economic and environmental performance of bio-based chemicals.

    PubMed

    Herrgård, Markus; Sukumara, Sumesh; Campodonico, Miguel; Zhuang, Kai

    2015-12-01

    In recent years, bio-based chemicals have gained interest as a renewable alternative to petrochemicals. However, there is a significant need to assess the technological, biological, economic and environmental feasibility of bio-based chemicals, particularly during the early research phase. Recently, the Multi-scale framework for Sustainable Industrial Chemicals (MuSIC) was introduced to address this issue by integrating modelling approaches at different scales ranging from cellular to ecological scales. This framework can be further extended by incorporating modelling of the petrochemical value chain and the de novo prediction of metabolic pathways connecting existing host metabolism to desirable chemical products. This multi-scale, multi-disciplinary framework for quantitative assessment of bio-based chemicals will play a vital role in supporting engineering, strategy and policy decisions as we progress towards a sustainable chemical industry. © 2015 Authors; published by Portland Press Limited.

  8. A versatile electrowetting-based digital microfluidic platform for quantitative homogeneous and heterogeneous bio-assays

    NASA Astrophysics Data System (ADS)

    Vergauwe, Nicolas; Witters, Daan; Ceyssens, Frederik; Vermeir, Steven; Verbruggen, Bert; Puers, Robert; Lammertyn, Jeroen

    2011-05-01

    Electrowetting-on-dielectric (EWOD) lab-on-a-chip systems have already proven their potential within a broad range of bio-assays. Nevertheless, research on the analytical performance of those systems is limited, yet crucial for a further breakthrough in the diagnostic field. Therefore, this paper presents the intrinsic possibilities of an EWOD lab-on-a-chip as a versatile platform for homogeneous and heterogeneous bio-assays with high analytical performance. Both droplet dispensing and splitting cause variations in droplet size, thereby directly influencing the assay's performance. The extent to which they influence the performance is assessed by a theoretical sensitivity analysis, which allows the definition of a basic framework for the reduction of droplet size variability. Taking advantage of the optimized droplet manipulations, both homogeneous and heterogeneous bio-assays are implemented in the EWOD lab-on-a-chip to demonstrate the analytical capabilities and versatility of the device. A fully on-chip enzymatic assay is realized with high analytical performance. It demonstrates the promising capabilities of an EWOD lab-on-a-chip in food-related and medical applications, such as nutritional and blood analyses. Further, a magnetic bio-assay for IgE detection using superparamagnetic nanoparticles is presented whereby the nanoparticles are used as solid carriers during the bio-assay. Crucial elements are the precise manipulation of the superparamagnetic nanoparticles with respect to dispensing and separation. Although the principle of using nano-carriers is demonstrated for protein detection, it can be easily extended to a broader range of bio-related applications like DNA sensing. In heterogeneous bio-assays the chip surface is actively involved during the execution of the bio-assay. Through immobilization of specific biological compounds like DNA, proteins and cells a reactive chip surface is realized, which enhances the bio-assay performance. To demonstrate this potential, on-chip adhesion islands are fabricated to immobilize MCF-7 human breast cancer cells. Viability studies are performed to assess the functionalization efficiency.

  9. Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben Hassen-Trabelsi, A., E-mail: aidabenhassen@yahoo.fr; Kraiem, T.; Département de Géologie, Université de Tunis, 2092, Tunis

    Highlights: • Produced bio-fuels (bio-oil and bio-char) from some animal fatty wastes. • Investigated the effects of main parameters on pyrolysis products distribution. • Determined the suitable conditions for the production of the maximum of bio-oil. • Characterized bio-oils and bio-chars obtained from several animal fatty wastes. - Abstract: Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. Themore » maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.« less

  10. Versatile bio-ink for covalent immobilization of chimeric avidin on sol-gel substrates.

    PubMed

    Heikkinen, Jarkko J; Kivimäki, Liisa; Määttä, Juha A E; Mäkelä, Inka; Hakalahti, Leena; Takkinen, Kristiina; Kulomaa, Markku S; Hytönen, Vesa P; Hormi, Osmo E O

    2011-10-15

    A bio-ink for covalent deposition of thermostable, high affinity biotin-binding chimeric avidin onto sol-gel substrates was developed. The bio-ink was prepared from heterobifunctional crosslinker 6-maleimidohexanoic acid N-hydroxysuccinimide which was first reacted either with 3-aminopropyltriethoxysilane or 3-aminopropyldimethylethoxysilane to form silane linkers 6-maleimide-N-(3-(triethoxysilyl)propyl)hexanamide or -(ethoxydimethylsilyl)propyl)-hexanamide. C-terminal cysteine genetically engineered to chimeric avidin was reacted with the maleimide group of silane linker in methanol/PBS solution to form a suspension, which was printed on sol-gel modified PMMA film. Different concentrations of chimeric avidin and ratios between silane linkers were tested to find the best properties for the bio-ink to enable gravure or inkjet printing. Bio-ink prepared from 3-aminopropyltriethoxysilane was found to provide the highest amount of active immobilized chimeric avidin. The developed bio-ink was shown to be valuable for automated fabrication of avidin-functionalized polymer films. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Optimization of Rice bran biodiesel blends on CI engine and investigating its effects

    NASA Astrophysics Data System (ADS)

    Jayaprabakar, J.; Dey, Biraj; Dey, Krishanu; Hareesh, Batchu; Anish, M.

    2017-05-01

    Bio-diesel can be produced from various plant oils like soybean, sunflower or rice bran. Here the focus is on converting the rice bran oil into bio-diesel which is produced by transesterifying the rice bran oil with a low molecular weight alcohol (methanol) and a non-conventional catalyst (lipase). Using a lipase based catalyst brings down the cost of bio diesel production significantly by reducing the number of washing cycles and its ability to be reused further. Four different blends of B10, B20, B30, B40 and straight diesel are tested in a single cylinder, fourstroke, vertical air cooled Kirloskar Diesel Engine having ignition timing of 23° before Top Dead Centre (TDC). As compared to straight diesel the Brake Thermal Efficiency (BTE) value for all the blends are higher. The Specific Fuel Consumption (BSFC) values for most of the blends are less as compared to diesel. Emissions of CO, CO2 and HC for all the blends decreased quite significantly. As a summary, the blend B20 records better performance as well as emission characteristics as compared to diesel.

  12. Performance and emission parameters of single cylinder diesel engine using castor oil bio-diesel blended fuels

    NASA Astrophysics Data System (ADS)

    Rahimi, A.; Ghobadian, B.; Najafi, G.; Jaliliantabar, F.; Mamat, R.

    2015-12-01

    The purpose of this study is to investigate the performance and emission parameters of a CI single cylinder diesel engine operating on biodiesel-diesel blends (B0, B5, B10, B15 and E20: 20% biodiesel and 80% diesel by volume). A reactor was designed, fabricated and evaluated for biodiesel production. The results showed that increasing the biodiesel content in the blend fuel will increase the performance parameters and decrease the emission parameters. Maximum power was detected for B0 at 2650 rpm and maximum torque was belonged to B20 at 1600 rpm. The experimental results revealed that using biodiesel-diesel blended fuels increased the power and torque output of the engine. For biodiesel blends it was found that the specific fuel consumption (sfc) was decreased. B10 had the minimum amount for sfc. The concentration of CO2 and HC emissions in the exhaust pipe were measured and found to be decreased when biodiesel blends were introduced. This was due to the high oxygen percentage in the biodiesel compared to the net diesel fuel. In contrast, the concentration of CO and NOx was found to be increased when biodiesel is introduced.

  13. Atomic Layer Deposition in Bio-Nanotechnology: A Brief Overview.

    PubMed

    Bishal, Arghya K; Butt, Arman; Selvaraj, Sathees K; Joshi, Bela; Patel, Sweetu B; Huang, Su; Yang, Bin; Shukohfar, Tolou; Sukotjo, Cortino; Takoudis, Christos G

    2015-01-01

    Atomic layer deposition (ALD) is a technique increasingly used in nanotechnology and ultrathin film deposition; it is ideal for films in the nanometer and Angstrom length scales. ALD can effectively be used to modify the surface chemistry and functionalization of engineering-related and biologically important surfaces. It can also be used to alter the mechanical, electrical, chemical, and other properties of materials that are increasingly used in biomedical engineering and biological sciences. ALD is a relatively new technique for optimizing materials for use in bio-nanotechnology. Here, after a brief review of the more widely used modes of ALD and a few of its applications in biotechnology, selected results that show the potential of ALD in bio-nanotechnology are presented. ALD seems to be a promising means for tuning the hydrophilicity/hydrophobicity characteristics of biomedical surfaces, forming conformal ultrathin coatings with desirable properties on biomedical substrates with a high aspect ratio, tuning the antibacterial properties of substrate surfaces of interest, and yielding multifunctional biomaterials for medical implants and other devices.

  14. Investigation of Mechanical, Microstructural and Corrosion behaviour of Titanium subjected to Laser Peening with and without Ablation

    NASA Astrophysics Data System (ADS)

    Ranjith Kumar, G.; Sowmya Joshi, K.; Rajyalakshmi, G.; Kalainathan, S.; Prabhakaran, S.

    2018-02-01

    Present competitive world is looking for Components with high strength and fatigue resistance finding their applications in aerospace, turbine parts and especially bio-medical devices with high bio-compatibility. Advanced surface engineering techniques are required to produce parts of higher complexities and desirable surface qualities. Laser peening stood first in a row of all various surface treatments of metallic component. This paper discusses about the mechanical properties like hardness and roughness then the surface morphology and the corrosion behaviour of the laser peened titanium samples with and without coating.

  15. Quantifying Barotrauma Risk to Juvenile Fish during Hydro-turbine Passage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond, Marshall C.; Serkowski, John A.; Ebner, Laurie L.

    2014-03-15

    We introduce a method for hydro turbine biological performance assessment (BioPA) to bridge the gap between field and laboratory studies on fish injury and turbine engineering design. Using this method, a suite of biological performance indicators is computed based on simulated data from a computational fluid dynamics (CFD) model of a proposed hydro turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. If the relationship between the dose of an injury mechanism (stressor) and frequency of injury (dose-response) is known from laboratory or field studies, the likelihood ofmore » fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from various turbine designs, engineers and biologists can identify the more-promising designs and operating conditions to minimize hydraulic conditions hazardous to passing fish. In this paper, the BioPA method is applied to estimate barotrauma induced mortal injury rates for Chinook salmon exposed to rapid pressure changes in Kaplan-type hydro turbines. Following the description of the general method, application of the BioPA to estimate the probability of mortal injury from exposure to rapid decompression is illustrated using a Kaplan hydro turbine at the John Day Dam on the Columbia River in the Pacific Northwest region of the USA. The estimated rates of mortal injury increased from 0.3% to 1.7% as discharge through the turbine increased from 334 to 564 m3/s for fish assumed to be acclimated to a depth of 5 m. The majority of pressure nadirs occurred immediately below the runner blades, with the lowest values in the gap at the blade tips and just below the leading edge of the blades. Such information can help engineers focus on problem areas when designing new turbine runners to be more fish-friendly than existing units.« less

  16. An ultrasensitive bio-surrogate for nanoporous filter membrane performance metrology directed towards contamination control in microlithography applications

    NASA Astrophysics Data System (ADS)

    Ahmad, Farhan; Mish, Barbara; Qiu, Jian; Singh, Amarnauth; Varanasi, Rao; Bedford, Eilidh; Smith, Martin

    2016-03-01

    Contamination tolerances in semiconductor manufacturing processes have changed dramatically in the past two decades, reaching below 20 nm according to the guidelines of the International Technology Roadmap for Semiconductors. The move to narrower line widths drives the need for innovative filtration technologies that can achieve higher particle/contaminant removal performance resulting in cleaner process fluids. Nanoporous filter membrane metrology tools that have been the workhorse over the past decade are also now reaching limits. For example, nanoparticle (NP) challenge testing is commonly applied for assessing particle retention performance of filter membranes. Factors such as high NP size dispersity, low NP detection sensitivity, and high NP particle-filter affinity impose challenges in characterizing the next generation of nanoporous filter membranes. We report a novel bio-surrogate, 5 nm DNA-dendrimer conjugate for evaluating particle retention performance of nanoporous filter membranes. A technique capable of single molecule detection is employed to detect sparse concentration of conjugate in filter permeate, providing >1000- fold higher detection sensitivity than any existing 5 nm-sized particle enumeration technique. This bio-surrogate also offers narrow size distribution, high stability and chemical tunability. This bio-surrogate can discriminate various sub-15 nm pore-rated nanoporous filter membranes based on their particle retention performance. Due to high bio-surrogate detection sensitivity, a lower challenge concentration of bio-surrogate (as compared to other NPs of this size) can be used for filter testing, providing a better representation of customer applications. This new method should provide better understanding of the next generation filter membranes for removing defect-causing contaminants from lithography processes.

  17. Biotactile Sensors: Self-Powered Electronic Skin with Biotactile Selectivity (Adv. Mater. 18/2016).

    PubMed

    Hu, Kesong; Xiong, Rui; Guo, Hengyu; Ma, Ruilong; Zhang, Shuaidi; Wang, Zhong Lin; Tsukruk, Vladimir V

    2016-05-01

    On page 3549, V. V. Tsukruk and co-workers develop self-powered ultrathin flexible films for bio-tactile detection. Graphene oxide materials are engineered for robust self-powered tactile sensing applications harnessing their electrochemical reactivity. The simple quadruple electronic skin sensor can recognize nine spatial bio-tactile positions with high sensitivity and selectivity-an approach that can be expanded towards large-area flexible skin arrays. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Tribological performance of ultra-low viscosity composite base fluid with bio-derived fluid

    USDA-ARS?s Scientific Manuscript database

    One obvious approach to increase efficiencies in many lubricated systems such as ICE and gearbox is the reduction in viscosity of oil lubricant. Indeed, ultra-low viscosity engine oils are now commercially available. One approach to the development of ultra-low viscosity lubricants without compromis...

  19. Advanced wood- and bio-composites : enhanced performance and sustainability

    Treesearch

    Jerrold E. Winandy

    2006-01-01

    Use of wood-based-composites technology to create value-added commodities and traditional construction materials is generally accepted worldwide. Engineered wood- and lignocellulosic-composite technologies allow users to add considerable value to a diverse number of wood- and lignocellulosic feedstocks including small-diameter timber, fast plantation-grown timber,...

  20. Development and Experimental Study of Education Through the Synergetic Training for the Engineering Enhanced Medicine “ESTEEM” in Tohoku University

    NASA Astrophysics Data System (ADS)

    Yamano, Masahiro; Matsuki, Noriaki; Numayama, Keiko; Takeda, Motohiro; Hayasaka, Tomoaki; Ishikawa, Takuji; Yamaguchi, Takami

    We developed new bio-medical engineering curriculum for industrial engineers, and we confirmed that the engineer's needs and the educative effects by holding a trail program. This study in Tohoku University was supported by the Ministry of Economy, Trade and Industry (METI) . We named the curriculum as “ESTEEM” which is acronym of project title “Education through the Synergetic Training for the Engineering Enhanced Medicine” . In Tohoku University, the “REDEEM” curriculum which is an entry level course of bio-medical engineering for engineers has been already held. The positioning of “ESTEEM” program is an advanced course to enhance knowledge and experience in clinical point of view. The program is consisted of the problem based learning (PBL) style lectures, practical training, and observation learning in hospital. It is a unique opportunity to have instruction by doctors, from diagnosis to surgical operation, from traditional technique to front-line medical equipment. In this paper, we report and discuss on the progress of the new bio-medical engineering curriculum.

  1. A Recombinant Platform for Prioritizing Aerolysin Molecular Grenades for Metastatic Prostate Cancer

    DTIC Science & Technology

    2016-12-01

    the extracellular microenvironment at cancer sites. The objective for this proposal is to use a bio -engineering approach to produce recombinant pro...ominous diagnosis. The objective for this project is to use a bio -engineering approach to produce recombinant pro-toxins designed for specific cleavage

  2. Bio-Engineering Services to the Developmentally Disabled Adolescent. Final Report.

    ERIC Educational Resources Information Center

    Mallik, Kalisankar; Yuspeh, Sheldon

    A 1-year demonstration project involving 24 developmentally disabled students (9- to 20-years-old) with severe physical limitations was conducted to increase their educational and vocational possibilities by using cost-effective bio-engineering techniques to modify their physical environment and develop improved adaptive devices. Phase I of the…

  3. [A novel tissue-engineered bone constructed by using human adipose-derived stem cells and biomimetic calcium phosphate scaffold coprecipitated with bone morphogenetic protein-2].

    PubMed

    Jiang, W R; Zhang, X; Liu, Y S; Wu, G; Ge, Y J; Zhou, Y S

    2017-02-18

    To construct a novel biomimetic calcium phosphate (BioCaP) scaffold loaded with bone morphogenetic protein-2 (BMP-2), and to investigate its role in the osteogenesis of human adipose-derived stem cells (hASCs) in vitro and in vivo. The BioCaP scaffold coprecipitated with BMP-2 (BMP-2-BioCaP) was constructed in this study. Field emission scanning electron microscopy (SEM) was used to analyze the morphology of the surfaces. The release kinetics was measured to evaluate the slow-release characteristics in vitro. BMP-2-BioCaP was immersed in proliferation medium (PM) or osteogenic medium (OM), respectively. The supernatants were collected and used to culture hASCs in vitro. Cell numbers were determined using the cell-counting kit-8 (CCK-8) to assess the cell proliferation. After 7 and 14 days, alkaline phosphatase (ALP) staining and quantification were performed to test the activity of ALP. After 14 and 21 days, the calcification deposition was determined by alizarin red S (ARS) staining and quantification. The expressions of the osteoblast-related genes were tested on day 4 and day 14. In the in vivo study, 6 nude mice were used and implanted subcutaneously into the back of the nude mice for 4 groups: (1) BioCaP scaffold only, (2) BioCaP scaffold+hASCs, (3) BMP-2-BioCaP scaffold, (4) BMP-2-BioCaP scaffold+hASCs (test group). After 4 weeks of implantation, hematoxylin-eosin (HE) staining was performed to evaluate the in vivo osteogenesis of hASCs. SEM observations showed that BioCaP and BMP-2-BioCaP scaffold were entirely composed of straight, plate-like and sharp-edged crystal units, and the length of the crystal units varied between 5 and 10 μm. Release kinetics analysis demonstrated that BMP-2 incorporated with BioCaP could be released at certain concentration and last for more than 21 days, and the accumulative protein release could reach 20%. CCK-8 assays showed that cell proliferation was not significantly affected by BMP-2-BioCaP. ALP activity was higher by the induction of OM+BMP-2-BioCaP than of the other groups (P<0.01). More mineralization deposition and more expressions of osteoblast-related genes such as Runt-related transcription factor 2 (RUNX2), ALP, osteopontin (OPN) and osteocalcin (OC) were determined in the OM+BMP-2-BioCaP group at different time points (P<0.01). HE staining showed that, in the test group and BMP-2-BioCaP scaffold group, the extracellular matrix (ECM) with eosinophilic staining were observed around hASCs, and newly-formed bone-like tissues could be found in ECM around the scaffold materials. Moreover, compared with the BMP-2-BioCaP scaffold group, more bone-like tissues could be observed in ECM with typical structure of bone tissue in the test groups. No obvious positive results were found in the other groups. BMP-2-BioCaP scaffold could achieve slow-release of BMP-2 and promote the osteogenic differentiation of hASCs in vitro and in vivo. The novel tissue-engineered bone composed of hASCs and BMP-2-BioCaPis promising for the repair of bone defect.

  4. Bio-Inspired Navigation of Chemical Plumes

    DTIC Science & Technology

    2006-07-01

    Bio-Inspired Navigation of Chemical Plumes Maynard J. Porter III, Captain, USAF Department of Electrical and Computer Engineering Air Force Institute...Li. " Chemical plume tracing via an autonomous underwater vehicle". IEEE Journal of Ocean Engineering , 30(2):428— 442, 2005. [6] G. A. Nevitt...Electrical and Computer Engineering Air Force Institute of Technology Dayton, OH 45433-7765, U.S.A. juan.vasquez@afit.edu May 31, 2006 Abstract - The

  5. Elsevier’s approach to the bioCADDIE 2016 Dataset Retrieval Challenge

    PubMed Central

    Scerri, Antony; Kuriakose, John; Deshmane, Amit Ajit; Stanger, Mark; Moore, Rebekah; Naik, Raj; de Waard, Anita

    2017-01-01

    Abstract We developed a two-stream, Apache Solr-based information retrieval system in response to the bioCADDIE 2016 Dataset Retrieval Challenge. One stream was based on the principle of word embeddings, the other was rooted in ontology based indexing. Despite encountering several issues in the data, the evaluation procedure and the technologies used, the system performed quite well. We provide some pointers towards future work: in particular, we suggest that more work in query expansion could benefit future biomedical search engines. Database URL: https://data.mendeley.com/datasets/zd9dxpyybg/1 PMID:29220454

  6. Alternative Bio-Derived JP-8 Class Fuel and JP-8 Fuel: Flame Tube Combustor Test Results Compared using a GE TAPS Injector Configuration

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Anderson, Robert; Tedder, Sarah

    2016-01-01

    This paper presents results from tests in a NASA Glenn Research Center (GRC) flame tube facility, where a bio-derived alternate fuel was compared with JP-8 for emissions and general combustion performance. A research version of General Electric Aviation (GE) TAPS injector was used for the tests. Results include 2D, planar laser-based imaging as well as basic flow visualization of the flame. Four conditions were selected that simulate various engine power conditions relevant to NASA Fundamental Aeronautics Supersonics and Environmentally Responsible Aviation Projects were tested.

  7. Experimental Investigations on Diesel engine using Methyl esters of Jatropha oil and fish oil

    NASA Astrophysics Data System (ADS)

    Karthikeyan, A.; Jayaprabakar, J.; Dude Williams, Richard

    2017-05-01

    The aim of the study is to use fish oil methyl ester (FME) and Jatropha oil methyl ester (JME) as a substitute for diesel in compression ignition engine. Experiments were conducted when the engine was fuelled with Diesel, Fish oil methyl ester and Jatropha oil methyl ester. The experiment covered a range of loads. An AVL smoke meter was used to measure the smoke density in HSU (Hatridge Smoke Unit). The exhaust emissions were measured using exhaust gas analyzer. High volume sampler was employed to measure the particulate matter in exhaust. The performance of the engine was evaluated in terms of brake specific fuel consumption, brake thermal efficiency. The combustion characteristics of the engine were studied in terms of cylinder pressure with respect to crank angle. The emissions of the engine were studied in terms of concentration of CO, NOx, particulate matter and smoke density. The results obtained for Fish oil methyl ester, Jatropha oil methyl ester, were compared with the results of diesel. Bio-diesel, which can be used as an alternate diesel fuel, is made from vegetable oil and animal fats. It is renewable, non-toxic and possesses low emission profiles.

  8. Graphene and its derivatives as biomedical materials: future prospects and challenges.

    PubMed

    Banerjee, Arghya Narayan

    2018-06-06

    Graphene and its derivatives possess some intriguing properties, which generates tremendous interests in various fields, including biomedicine. The biomedical applications of graphene-based nanomaterials have attracted great interests over the last decade, and several groups have started working on this field around the globe. Because of the excellent biocompatibility, solubility and selectivity, graphene and its derivatives have shown great potential as biosensing and bio-imaging materials. Also, due to some unique physico-chemical properties of graphene and its derivatives, such as large surface area, high purity, good bio-functionalizability, easy solubility, high drug loading capacity, capability of easy cell membrane penetration, etc., graphene-based nanomaterials become promising candidates for bio-delivery carriers. Besides, graphene and its derivatives have also shown interesting applications in the fields of cell-culture, cell-growth and tissue engineering. In this article, a comprehensive review on the applications of graphene and its derivatives as biomedical materials has been presented. The unique properties of graphene and its derivatives (such as graphene oxide, reduced graphene oxide, graphane, graphone, graphyne, graphdiyne, fluorographene and their doped versions) have been discussed, followed by discussions on the recent efforts on the applications of graphene and its derivatives in biosensing, bio-imaging, drug delivery and therapy, cell culture, tissue engineering and cell growth. Also, the challenges involved in the use of graphene and its derivatives as biomedical materials are discussed briefly, followed by the future perspectives of the use of graphene-based nanomaterials in bio-applications. The review will provide an outlook to the applications of graphene and its derivatives, and may open up new horizons to inspire broader interests across various disciplines.

  9. Character-level neural network for biomedical named entity recognition.

    PubMed

    Gridach, Mourad

    2017-06-01

    Biomedical named entity recognition (BNER), which extracts important named entities such as genes and proteins, is a challenging task in automated systems that mine knowledge in biomedical texts. The previous state-of-the-art systems required large amounts of task-specific knowledge in the form of feature engineering, lexicons and data pre-processing to achieve high performance. In this paper, we introduce a novel neural network architecture that benefits from both word- and character-level representations automatically, by using a combination of bidirectional long short-term memory (LSTM) and conditional random field (CRF) eliminating the need for most feature engineering tasks. We evaluate our system on two datasets: JNLPBA corpus and the BioCreAtIvE II Gene Mention (GM) corpus. We obtained state-of-the-art performance by outperforming the previous systems. To the best of our knowledge, we are the first to investigate the combination of deep neural networks, CRF, word embeddings and character-level representation in recognizing biomedical named entities. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Testing and preformance measurement of straight vegetable oils as an alternative fuel for diesel engines

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, Arunachalam

    Rising fuel prices, growing energy demand, concerns over domestic energy security and global warming from greenhouse gas emissions have triggered the global interest in bio-energy and bio-fuel crop development. Backlash from these concerns can result in supply shocks of traditional fossil fuels and create immense economic pressure. It is thus widely argued that bio-fuels would particularly benefit developing countries by off-setting their dependencies on imported petroleum. Domestically, the transportation sector accounts for almost 40% of liquid fuel consumption, while on-farm application like tractors and combines for agricultural purposes uses close to an additional 18%. It is estimated that 40% of the farm budget can be attributed to the fuel costs. With the cost of diesel continuously rising, farmers are now looking at using Straight Vegetable Oil (SVO) as an alternative fuel by producing their own fuel crops. This study evaluates conventional diesel compared to the use of SVO like Camelina, Canola and Juncea grown on local farms in Colorado for their performance and emissions on a John Deere 4045 Tier-II engine. Additionally, physical properties like density and viscosity, metal/mineral content, and cold flow properties like CFPP and CP of these oils were measured using ASTM standards and compared to diesel. It was found that SVOs did not show significant differences compared to diesel fuel with regards to engine emissions, but did show an increase in thermal efficiency. Therefore, this study supports the continued development of SVO production as a viable alternative to diesel fuels, particularly for on-farm applications. The need for providing and developing a sustainable, economic and environmental friendly fuel alternative has taken an aggressive push which will require a strong multidisciplinary education in the field of bio-energy. Commercial bio-energy development has the potential to not only alleviate the energy concerns, but also to give renewed impetus to the agricultural sector and rural development.

  11. Nano-Bio Engineered Carbon Dot-Peptide Functionalized Water Dispersible Hyperbranched Polyurethane for Bone Tissue Regeneration.

    PubMed

    Gogoi, Satyabrat; Maji, Somnath; Mishra, Debasish; Devi, K Sanjana P; Maiti, Tapas Kumar; Karak, Niranjan

    2017-03-01

    The present study delves into a combined bio-nano-macromolecular approach for bone tissue engineering. This approach relies on the properties of an ideal scaffold material imbued with all the chemical premises required for fostering cellular growth and differentiation. A tannic acid based water dispersible hyperbranched polyurethane is fabricated with bio-nanohybrids of carbon dot and four different peptides (viz. SVVYGLR, PRGDSGYRGDS, IPP, and CGGKVGKACCVPTKLSPISVLYK) to impart target specific in vivo bone healing ability. This polymeric bio-nanocomposite is blended with 10 wt% of gelatin and examined as a non-invasive delivery vehicle. In vitro assessment of the developed polymeric system reveals good osteoblast adhesion, proliferation, and differentiation. Aided by this panel of peptides, the polymeric bio-nanocomposite exhibits in vivo ectopic bone formation ability. The study on in vivo mineralization and vascularization reveals the occurrence of calcification and blood vessel formation. Thus, the study demonstrates carbon dot/peptide functionalized hyperbranched polyurethane gel for bone tissue engineering application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. [Polycyclic aromatic hydrocarbons in ultrafine particles of diesel exhaust fumes--the use of ultrafast liquid chromatography].

    PubMed

    Małgorzata Szewczyńska; Małgorzata Pośniak

    2014-01-01

    The article presents the results of the determination of polycyclic aromatic hydrocarbons (PAHs) in the fine par ticles fraction emitted from 3 types of diesel fuels using ultra-high pressure liquid chromatography. Samples of diesel Eco, Verwa and Bio exhaust combustion fumes were generated at the model station which consisted of a diesel engine from the 2007 Diesel TDI 2.0. Personal Cascade Sioutas Impactor (IPCSI) with Teflon filters was used to collect samples of exhaust fume ultrafine particles. PAHs adsorbed on particulate fractions were analyzed by ultra-high pressure liquid chromatography with fluorescence detection (UHPLC/FL). Phenanthrene, fluoranthene, pyrene and chrysene present the highest concentration in the particulate matter emitted by an engine. The total contents of fine particles collected during engine operation on fuels Eco, Verwa and Bio were 134.2 μg/g, 183.8 μg/g and 153.4 μg/g, respectively, which makes 75%, 90% and 83% of the total PAHs, respectively. The highest content of benzo(a)pyrene determined in particles emitted during the combustion of fuels Eco and Bio was 1.5 μg/g and 1 μg/g, respectively. The study of the PAH concentration in the particles of fine fraction below 0.25 μm emitted from different fuels designed for diesel engines indicate that the exhaust gas content of carcinogens, including PAHs deposited on particulates, is still significant, regardless of the fuel. Application of ultrahigh pressure liquid chromatography with fluorescence detection for the analysis ofPAHs in the particles emitted in the fine fraction of diesel exhaust allowed to shorten the analysis time from 35 min to 8 min.

  13. International Conference on Bio-Medical Instrumentation and related Engineering and Physical Sciences (BIOMEP 2015)

    NASA Astrophysics Data System (ADS)

    2015-09-01

    The International Conference on Bio-Medical Instrumentation and related Engineering and Physical Sciences (BIOMEP 2015) took place in the Technological Educational Institute (TEI) of Athens, Greece on June 18-20, 2015 and was organized by the Department of Biomedical Engineering. The scope of the conference was to provide a forum on the latest developments in Biomedical Instrumentation and related principles of Physical and Engineering sciences. Scientists and engineers from academic, industrial and health disciplines were invited to participate in the Conference and to contribute both in the promotion and dissemination of the scientific knowledge.

  14. Development of a commercial scale process for production of 1,4-butanediol from sugar.

    PubMed

    Burgard, Anthony; Burk, Mark J; Osterhout, Robin; Van Dien, Stephen; Yim, Harry

    2016-12-01

    A sustainable bioprocess for the production of 1,4-butanediol (BDO) from carbohydrate feedstocks was developed. BDO is a chemical intermediate that goes into a variety of products including automotive parts, electronics, and apparel, and is currently manufactured commercially through energy-intensive petrochemical processes using fossil raw materials. This review highlights the development of an Escherichia coli strain and an overall process that successfully performed at commercial scale for direct production of bio-BDO from dextrose. Achieving such high level performance required an integrated technology platform enabling detailed engineering of enzyme, pathway, metabolic network, and organism, as well as development of effective fermentation and downstream recovery processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Using sewage sludge pyrolytic gas to modify titanium alloy to obtain high-performance anodes in bio-electrochemical systems

    NASA Astrophysics Data System (ADS)

    Gu, Yuan; Ying, Kang; Shen, Dongsheng; Huang, Lijie; Ying, Xianbin; Huang, Haoqian; Cheng, Kun; Chen, Jiazheng; Zhou, Yuyang; Chen, Ting; Feng, Huajun

    2017-12-01

    Titanium is under consideration as a potential stable bio-anode because of its high conductivity, suitable mechanical properties, and electrochemical inertness in the operating potential window of bio-electrochemical systems; however, its application is limited by its poor electron-transfer capacity with electroactive bacteria and weak ability to form biofilms on its hydrophobic surface. This study reports an effective and low-cost way to convert a hydrophobic titanium alloy surface into a hydrophilic surface that can be used as a bio-electrode with higher electron-transfer rates. Pyrolytic gas of sewage sludge is used to modify the titanium alloy. The current generation, anodic biofilm formation surface, and hydrophobicity are systematically investigated by comparing bare electrodes with three modified electrodes. Maximum current density (15.80 A/m2), achieved using a modified electrode, is 316-fold higher than that of the bare titanium alloy electrode (0.05 A/m2) and that achieved by titanium alloy electrodes modified by other methods (12.70 A/m2). The pyrolytic gas-modified titanium alloy electrode can be used as a high-performance and scalable bio-anode for bio-electrochemical systems because of its high electron-transfer rates, hydrophilic nature, and ability to achieve high current density.

  16. Technologies for Energy from Biomass by Direct Combustion, Gasification, and Liquefaction.

    DTIC Science & Technology

    1981-05-01

    1980 1982 1984 Development Alberta Industrial Dev. X American Fyr. Feeder X Andco, Inc. X Applied Engineering Co., Inc. X Biomass Corp. X Bio-Solar x...Feeder ANDCO, Inc. Applied Engineering Company Biomass Corporation Bio-Solar Research and Development Corporation Combustion Power Company, Inc. Davy...Andco. Inc. X Applied Engineering Co., Inc. X Biomass Corp. X , Big-Solar .X I Combustion Power .. XI Davy Powergas X j Dekalb Acresearch, Inc.- x Duvant

  17. Enhanced degradation of 1-naphthol in landfill leachate using Arthrobacter sp.

    PubMed

    Hu, Wenyong; Min, Xiaobo; Li, Xinyu; Liu, Jingyi; Yu, Haibin; Yang, Yuan; Zhang, Jiachao; Luo, Lin; Chai, Liyuan; Zhou, Yaoyu

    2017-12-06

    Arthrobacter sp. named as JY5-1 isolated from contaminated soil of a coking plant can degrade 1-naphthol as the sole carbon source. Through identification of species, analysis of the optimal degradation condition and kinetic equation, the degradation characteristic of Arthrobacter sp. JY5-1 was obtained. Later, the acclimated strain was added into the bio-reactor to observe treatment performance of landfill leachate. The results showed that the optimal conditions for strain JY5-1 biodegradation in the study were pH 7.0 and 30 o C. The bio-reactor operation experiment declared that Arthrobacter sp. JY5-1 had a strengthened effect on COD removal of landfill leachate. Moreover, the efficiency of COD removal could be high and stable when JY5-1 was accumulated as a biofilm together with active sludge. These results demonstrate that adding 1-naphthol-degrading strain JY5-1 is a feasible technique for the enhanced treatment of sanitary landfill leachate, providing theoretical support for engineering utilization.

  18. Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of biorenewables.

    PubMed

    Tan, Zaigao; Yoon, Jong Moon; Nielsen, David R; Shanks, Jacqueline V; Jarboe, Laura R

    2016-05-01

    Constructing microbial biocatalysts that produce biorenewables at economically viable yields and titers is often hampered by product toxicity. For production of short chain fatty acids, membrane damage is considered the primary mechanism of toxicity, particularly in regards to membrane integrity. Previous engineering efforts in Escherichia coli to increase membrane integrity, with the goal of increasing fatty acid tolerance and production, have had mixed results. Herein, a novel approach was used to reconstruct the E. coli membrane by enabling production of a novel membrane component. Specifically, trans unsaturated fatty acids (TUFA) were produced and incorporated into the membrane of E. coli MG1655 by expression of cis-trans isomerase (Cti) from Pseudomonas aeruginosa. While the engineered strain was found to have no increase in membrane integrity, a significant decrease in membrane fluidity was observed, meaning that membrane polarization and rigidity were increased by TUFA incorporation. As a result, tolerance to exogenously added octanoic acid and production of octanoic acid were both increased relative to the wild-type strain. This membrane engineering strategy to improve octanoic acid tolerance was found to require fine-tuning of TUFA abundance. Besides improving tolerance and production of carboxylic acids, TUFA production also enabled increased tolerance in E. coli to other bio-products, e.g. alcohols, organic acids, aromatic compounds, a variety of adverse industrial conditions, e.g. low pH, high temperature, and also elevated styrene production, another versatile bio-chemical product. TUFA permitted enhanced growth due to alleviation of bio-product toxicity, demonstrating the general effectiveness of this membrane engineering strategy towards improving strain robustness. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  19. Mapping the Emergence of Synthetic Biology

    PubMed Central

    2016-01-01

    In this paper, we apply an original scientometric analyses to a corpus comprising synthetic biology (SynBio) publications in Thomson Reuters Web of Science to characterize the emergence of this new scientific field. Three results were drawn from this empirical investigation. First, despite the exponential growth of publications, the study of population level statistics (newcomers proportion, collaboration network structure) shows that SynBio has entered a stabilization process since 2010. Second, the mapping of textual and citational networks shows that SynBio is characterized by high heterogeneity and four different approaches: the central approach, where biobrick engineering is the most widespread; genome engineering; protocell creation; and metabolic engineering. We suggest that synthetic biology acts as an umbrella term allowing for the mobilization of resources, and also serves to relate scientific content and promises of applications. Third, we observed a strong intertwinement between epistemic and socio-economic dynamics. Measuring scientific production and impact and using structural analysis data, we identified a core set of mostly American scientists. Biographical analysis shows that these central and influential scientists act as “boundary spanners,” meaning that their importance to the field lies not only in their academic contributions, but also in their capacity to interact with other social spaces that are outside the academic sphere. PMID:27611324

  20. Disposable amperometric biosensor based on nanostructured bacteriophages for glucose detection

    NASA Astrophysics Data System (ADS)

    Kang, Yu Ri; Hwang, Kyung Hoon; Kim, Ju Hwan; Nam, Chang Hoon; Kim, Soo Won

    2010-10-01

    The selection of electrode material profoundly influences biosensor science and engineering, as it heavily influences biosensor sensitivity. Here we propose a novel electrochemical detection method using a working electrode consisting of bio-nanowires from genetically modified filamentous phages and nanoparticles. fd-tet p8MMM filamentous phages displaying a three-methionine (MMM) peptide on the major coat protein pVIII (designated p8MMM phages) were immobilized on the active area of an electrochemical sensor through physical adsorption and chemical bonding. Bio-nanowires composed of p8MMM phages and silver nanoparticles facilitated sensitive, rapid and selective detection of particular molecules. We explored whether the composite electrode with bio-nanowires was an effective platform to detect the glucose oxidase. The current response of the bio-nanowire sensor was high at various glucose concentrations (0.1 µm-0.1 mM). This method provides a considerable advantage to demonstrate analyte detection over low concentration ranges. Especially, phage-enabled bio-nanowires can serve as receptors with high affinity and specificity for the detection of particular biomolecules and provide a convenient platform for designing site-directed multifunctional scaffolds based on bacteriophages and may serve as a simple method for label-free detection.

  1. Balancing cellular redox metabolism in microbial electrosynthesis and electro fermentation - A chance for metabolic engineering.

    PubMed

    Kracke, Frauke; Lai, Bin; Yu, Shiqin; Krömer, Jens O

    2018-01-01

    More and more microbes are discovered that are capable of extracellular electron transfer, a process in which they use external electrodes as electron donors or acceptors for metabolic reactions. This feature can be used to overcome cellular redox limitations and thus optimizing microbial production. The technologies, termed microbial electrosynthesis and electro-fermentation, have the potential to open novel bio-electro production platforms from sustainable energy and carbon sources. However, the performance of reported systems is currently limited by low electron transport rates between microbes and electrodes and our limited ability for targeted engineering of these systems due to remaining knowledge gaps about the underlying fundamental processes. Metabolic engineering offers many opportunities to optimize these processes, for instance by genetic engineering of pathways for electron transfer on the one hand and target product synthesis on the other hand. With this review, we summarize the status quo of knowledge and engineering attempts around chemical production in bio-electrochemical systems from a microbe perspective. Challenges associated with the introduction or enhancement of extracellular electron transfer capabilities into production hosts versus the engineering of target compound synthesis pathways in natural exoelectrogens are discussed. Recent advances of the research community in both directions are examined critically. Further, systems biology approaches, for instance using metabolic modelling, are examined for their potential to provide insight into fundamental processes and to identify targets for metabolic engineering. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  2. Microengineered Conductive Elastomeric Electrodes for Long-Term Electrophysiological Measurements with Consistent Impedance under Stretch

    PubMed Central

    Hu, Dinglong; Cheng, Tin Kei; Xie, Kai; Lam, Raymond H. W.

    2015-01-01

    In this research, we develop a micro-engineered conductive elastomeric electrode for measurements of human bio-potentials with the absence of conductive pastes. Mixing the biocompatible polydimethylsiloxane (PDMS) silicone with other biocompatible conductive nano-particles further provides the material with an electrical conductivity. We apply micro-replica mold casting for the micro-structures, which are arrays of micro-pillars embedded between two bulk conductive-PDMS layers. These micro-structures can reduce the micro-structural deformations along the direction of signal transmission; therefore the corresponding electrical impedance under the physical stretch by the movement of the human body can be maintained. Additionally, we conduct experiments to compare the electrical properties between the bulk conductive-PDMS material and the microengineered electrodes under stretch. We also demonstrate the working performance of these micro-engineered electrodes in the acquisition of the 12-lead electrocardiographs (ECG) of a healthy subject. Together, the presented gel-less microengineered electrodes can provide a more convenient and stable bio-potential measurement platform, making tele-medical care more achievable with reduced technical barriers for instrument installation performed by patients/users themselves. PMID:26512662

  3. Replacing fossil based plastic performance products by bio-based plastic products-Technical feasibility.

    PubMed

    van den Oever, Martien; Molenveld, Karin

    2017-07-25

    Larger scale market introduction of new bio-based products requires a clear advantage regarding sustainability, as well as an adequate techno-economic positioning relative to fossil based products. In a previous paper [Broeren et al., 2016], LCA results per kg and per functionality equivalent of bio-based plastics were presented, together with economic considerations. The present paper discusses the mechanical and thermal properties of a range of commercially available bio-based plastics based on polylactic acid (PLA), cellulose esters, starch and polyamides, and the feasibility of replacing fossil-based counterparts based on performance. The evaluation is approached from an end user perspective. First, potentially suitable bio-based plastics are selected based on manufacturers' specifications in technical data sheets, then a first experimental evaluation is performed on injection moulded ISO specimens, and finally a further selection of plastics is tested on large 50×70cm panels. This technical feasibility study indicates that so far bio-based plastics do not completely match the properties of high performance materials like flame retardant V-0 PC/ABS blends used in electronic devices. The performance gap is being decreased by the development of stereocomplex PLA and hybrid PLA blends with polycarbonate, which offer clearly improved properties with respect to maximum usage temperature and toughness. In addition, several materials meet the V-0 flammability requirements needed in specific durable applications. On the other hand, improving these properties so far has negative consequences for the bio-based content. This study also shows that replacement of bulk polymers like PS is feasible using PLA compounds with a bio-based content as high as 85%. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Bio-Orthogonal Mediated Nucleic Acid Transfection of Cells via Cell Surface Engineering.

    PubMed

    O'Brien, Paul J; Elahipanah, Sina; Rogozhnikov, Dmitry; Yousaf, Muhammad N

    2017-05-24

    The efficient delivery of foreign nucleic acids (transfection) into cells is a critical tool for fundamental biomedical research and a pillar of several biotechnology industries. There are currently three main strategies for transfection including reagent, instrument, and viral based methods. Each technology has significantly advanced cell transfection; however, reagent based methods have captured the majority of the transfection market due to their relatively low cost and ease of use. This general method relies on the efficient packaging of a reagent with nucleic acids to form a stable complex that is subsequently associated and delivered to cells via nonspecific electrostatic targeting. Reagent transfection methods generally use various polyamine cationic type molecules to condense with negatively charged nucleic acids into a highly positively charged complex, which is subsequently delivered to negatively charged cells in culture for association, internalization, release, and expression. Although this appears to be a straightforward procedure, there are several major issues including toxicity, low efficiency, sorting of viable transfected from nontransfected cells, and limited scope of transfectable cell types. Herein, we report a new strategy (SnapFect) for nucleic acid transfection to cells that does not rely on electrostatic interactions but instead uses an integrated approach combining bio-orthogonal liposome fusion, click chemistry, and cell surface engineering. We show that a target cell population is rapidly and efficiently engineered to present a bio-orthogonal functional group on its cell surface through nanoparticle liposome delivery and fusion. A complementary bio-orthogonal nucleic acid complex is then formed and delivered to which chemoselective click chemistry induced transfection occurs to the primed cell. This new strategy requires minimal time, steps, and reagents and leads to superior transfection results for a broad range of cell types. Moreover the transfection is efficient with high cell viability and does not require a postsorting step to separate transfected from nontransfected cells in the cell population. We also show for the first time a precision transfection strategy where a single cell type in a coculture is target transfected via bio-orthogonal click chemistry.

  5. Mississippi State University Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mago, Pedro; Newell, LeLe

    2014-01-31

    Between 2008 and 2014, the U.S. Department of Energy funded the MSU Micro-CHP and Bio-Fuel Center located at Mississippi State University. The overall objective of this project was to enable micro-CHP (micro-combined heat and power) utilization, to facilitate and promote the use of CHP systems and to educate architects, engineers, and agricultural producers and scientists on the benefits of CHP systems. Therefore, the work of the Center focused on the three areas: CHP system modeling and optimization, outreach, and research. In general, the results obtained from this project demonstrated that CHP systems are attractive because they can provide energy, environmental,more » and economic benefits. Some of these benefits include the potential to reduce operational cost, carbon dioxide emissions, primary energy consumption, and power reliability during electric grid disruptions. The knowledge disseminated in numerous journal and conference papers from the outcomes of this project is beneficial to engineers, architects, agricultural producers, scientists and the public in general who are interested in CHP technology and applications. In addition, more than 48 graduate students and 23 undergraduate students, benefited from the training and research performed in the MSU Micro-CHP and Bio-Fuel Center.« less

  6. Ultraviolet light emitting diodes and bio-aerosol sensing

    NASA Astrophysics Data System (ADS)

    Davitt, Kristina M.

    Recent interest in compact ultraviolet (UV) light emitters has produced advances in material quality and device performance from aluminum-rich alloys of the nitride semiconductor system. The epitaxial growth of device structures from this material poses remarkable challenges, and state-of-the-art in semiconductor UV light sources at wavelengths shorter than 350 nm is currently limited to LEDs. A portion of the work presented in this thesis involves the design and characterization of UV LED structures, with particular focus on sub-300 nm LEDs which have only been demonstrated within the last four years. Emphasis has been placed on the integration of early devices with modest efficiencies and output powers into a practical, fluorescence-based bio-sensing instrument. The quality of AlGaInN and AlGaN-based materials is characterized by way of the performance of 340 nm and 290 nm LEDs respectively. A competitive level of device operation is achieved, although much room remains for improvement in the efficiency of light emission from this material system. A preliminary investigation of 300 nm LEDs grown on bulk AIN shows promising electrical and optical characteristics, and illustrates the numerous advantages that this native substrate offers to the epitaxy of wide bandgap nitride semiconductors. The application of UV LEDs to the field of bio-aerosol sensing is pursued by constructing an on-the-fly fluorescence detection system. A linear array of UV LEDs is designed and implemented, and the capability of test devices to excite native fluorescence from bacterial spores is established. In order to fully capitalize on the reduction in size afforded by LEDs, effort is invested in re-engineering the remaining sensor components. Operation of a prototype system for physically sorting bio-aerosols based on fluorescence spectra acquired in real-time from single airborne particles excited by a UV-LED array is demonstrated using the bio-fluorophores NADH and tryptophan. Sensor performance is shown to be ultimately linked to the material quality of high aluminum fraction nitrides, and is expected to show progress as this field matures.

  7. Biological and mechanical evaluation of a Bio-Hybrid scaffold for autologous valve tissue engineering.

    PubMed

    Jahnavi, S; Saravanan, U; Arthi, N; Bhuvaneshwar, G S; Kumary, T V; Rajan, S; Verma, R S

    2017-04-01

    Major challenge in heart valve tissue engineering for paediatric patients is the development of an autologous valve with regenerative capacity. Hybrid tissue engineering approach is recently gaining popularity to design scaffolds with desired biological and mechanical properties that can remodel post implantation. In this study, we fabricated aligned nanofibrous Bio-Hybrid scaffold made of decellularized bovine pericardium: polycaprolactone-chitosan with optimized polymer thickness to yield the desired biological and mechanical properties. CD44 + , αSMA + , Vimentin + and CD105 - human valve interstitial cells were isolated and seeded on these Bio-Hybrid scaffolds. Subsequent biological evaluation revealed interstitial cell proliferation with dense extra cellular matrix deposition that indicated the viability for growth and proliferation of seeded cells on the scaffolds. Uniaxial mechanical tests along axial direction showed that the Bio-Hybrid scaffolds has at least 20 times the strength of the native valves and its stiffness is nearly 3 times more than that of native valves. Biaxial and uniaxial mechanical studies on valve interstitial cells cultured Bio-Hybrid scaffolds revealed that the response along the axial and circumferential direction was different, similar to native valves. Overall, our findings suggest that Bio-Hybrid scaffold is a promising material for future development of regenerative heart valve constructs in children. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Negated bio-events: analysis and identification

    PubMed Central

    2013-01-01

    Background Negation occurs frequently in scientific literature, especially in biomedical literature. It has previously been reported that around 13% of sentences found in biomedical research articles contain negation. Historically, the main motivation for identifying negated events has been to ensure their exclusion from lists of extracted interactions. However, recently, there has been a growing interest in negative results, which has resulted in negation detection being identified as a key challenge in biomedical relation extraction. In this article, we focus on the problem of identifying negated bio-events, given gold standard event annotations. Results We have conducted a detailed analysis of three open access bio-event corpora containing negation information (i.e., GENIA Event, BioInfer and BioNLP’09 ST), and have identified the main types of negated bio-events. We have analysed the key aspects of a machine learning solution to the problem of detecting negated events, including selection of negation cues, feature engineering and the choice of learning algorithm. Combining the best solutions for each aspect of the problem, we propose a novel framework for the identification of negated bio-events. We have evaluated our system on each of the three open access corpora mentioned above. The performance of the system significantly surpasses the best results previously reported on the BioNLP’09 ST corpus, and achieves even better results on the GENIA Event and BioInfer corpora, both of which contain more varied and complex events. Conclusions Recently, in the field of biomedical text mining, the development and enhancement of event-based systems has received significant interest. The ability to identify negated events is a key performance element for these systems. We have conducted the first detailed study on the analysis and identification of negated bio-events. Our proposed framework can be integrated with state-of-the-art event extraction systems. The resulting systems will be able to extract bio-events with attached polarities from textual documents, which can serve as the foundation for more elaborate systems that are able to detect mutually contradicting bio-events. PMID:23323936

  9. Mosquito larvicidal effectiveness of EcoBio-Block S: a novel integrated water-purifying concrete block formulation containing insect growth regulator pyriproxyfen.

    PubMed

    Kawada, Hitoshi; Saita, Susumu; Shimabukuro, Kozue; Hirano, Masachika; Koga, Masayuki; Iwashita, Toshiaki; Takagi, Masahiro

    2006-09-01

    EcoBio-Block S, a novel controlled release system (CRS) for the insect growth regulator pyriproxyfen, uses a water-purifying concrete block system (EcoBio-Block) composed of a porous volcanic rock and cement, and it incorporates the aerobic bacterial groups of Bacillus subtilis natto. EcoBio-Block S showed high inhibitory activity against mosquito emergence as well as a water-purifying effect. Chemical analysis and bioassay showed that EcoBio-Block S provides a high-performance CRS that controls the release of pyriproxyfen at low levels according to "zero order kinetics".

  10. Overcoming the brittleness of glass through bio-inspiration and micro-architecture.

    PubMed

    Mirkhalaf, M; Dastjerdi, A Khayer; Barthelat, F

    2014-01-01

    Highly mineralized natural materials such as teeth or mollusk shells boast unusual combinations of stiffness, strength and toughness currently unmatched by engineering materials. While high mineral contents provide stiffness and hardness, these materials also contain weaker interfaces with intricate architectures, which can channel propagating cracks into toughening configurations. Here we report the implementation of these features into glass, using a laser engraving technique. Three-dimensional arrays of laser-generated microcracks can deflect and guide larger incoming cracks, following the concept of 'stamp holes'. Jigsaw-like interfaces, infiltrated with polyurethane, furthermore channel cracks into interlocking configurations and pullout mechanisms, significantly enhancing energy dissipation and toughness. Compared with standard glass, which has no microstructure and is brittle, our bio-inspired glass displays built-in mechanisms that make it more deformable and 200 times tougher. This bio-inspired approach, based on carefully architectured interfaces, provides a new pathway to toughening glasses, ceramics or other hard and brittle materials.

  11. Overcoming the brittleness of glass through bio-inspiration and micro-architecture

    NASA Astrophysics Data System (ADS)

    Mirkhalaf, M.; Dastjerdi, A. Khayer; Barthelat, F.

    2014-01-01

    Highly mineralized natural materials such as teeth or mollusk shells boast unusual combinations of stiffness, strength and toughness currently unmatched by engineering materials. While high mineral contents provide stiffness and hardness, these materials also contain weaker interfaces with intricate architectures, which can channel propagating cracks into toughening configurations. Here we report the implementation of these features into glass, using a laser engraving technique. Three-dimensional arrays of laser-generated microcracks can deflect and guide larger incoming cracks, following the concept of ‘stamp holes’. Jigsaw-like interfaces, infiltrated with polyurethane, furthermore channel cracks into interlocking configurations and pullout mechanisms, significantly enhancing energy dissipation and toughness. Compared with standard glass, which has no microstructure and is brittle, our bio-inspired glass displays built-in mechanisms that make it more deformable and 200 times tougher. This bio-inspired approach, based on carefully architectured interfaces, provides a new pathway to toughening glasses, ceramics or other hard and brittle materials.

  12. Training mechanical engineering students to utilize biological inspiration during product development.

    PubMed

    Bruck, Hugh A; Gershon, Alan L; Golden, Ira; Gupta, Satyandra K; Gyger, Lawrence S; Magrab, Edward B; Spranklin, Brent W

    2007-12-01

    The use of bio-inspiration for the development of new products and devices requires new educational tools for students consisting of appropriate design and manufacturing technologies, as well as curriculum. At the University of Maryland, new educational tools have been developed that introduce bio-inspired product realization to undergraduate mechanical engineering students. These tools include the development of a bio-inspired design repository, a concurrent fabrication and assembly manufacturing technology, a series of undergraduate curriculum modules and a new senior elective in the bio-inspired robotics area. This paper first presents an overview of the two new design and manufacturing technologies that enable students to realize bio-inspired products, and describes how these technologies are integrated into the undergraduate educational experience. Then, the undergraduate curriculum modules are presented, which provide students with the fundamental design and manufacturing principles needed to support bio-inspired product and device development. Finally, an elective bio-inspired robotics project course is present, which provides undergraduates with the opportunity to demonstrate the application of the knowledge acquired through the curriculum modules in their senior year using the new design and manufacturing technologies.

  13. Cyanobacteria: A Precious Bio-resource in Agriculture, Ecosystem, and Environmental Sustainability.

    PubMed

    Singh, Jay Shankar; Kumar, Arun; Rai, Amar N; Singh, Devendra P

    2016-01-01

    Keeping in view, the challenges concerning agro-ecosystem and environment, the recent developments in biotechnology offers a more reliable approach to address the food security for future generations and also resolve the complex environmental problems. Several unique features of cyanobacteria such as oxygenic photosynthesis, high biomass yield, growth on non-arable lands and a wide variety of water sources (contaminated and polluted waters), generation of useful by-products and bio-fuels, enhancing the soil fertility and reducing green house gas emissions, have collectively offered these bio-agents as the precious bio-resource for sustainable development. Cyanobacterial biomass is the effective bio-fertilizer source to improve soil physico-chemical characteristics such as water-holding capacity and mineral nutrient status of the degraded lands. The unique characteristics of cyanobacteria include their ubiquity presence, short generation time and capability to fix the atmospheric N2. Similar to other prokaryotic bacteria, the cyanobacteria are increasingly applied as bio-inoculants for improving soil fertility and environmental quality. Genetically engineered cyanobacteria have been devised with the novel genes for the production of a number of bio-fuels such as bio-diesel, bio-hydrogen, bio-methane, synga, and therefore, open new avenues for the generation of bio-fuels in the economically sustainable manner. This review is an effort to enlist the valuable information about the qualities of cyanobacteria and their potential role in solving the agricultural and environmental problems for the future welfare of the planet.

  14. Cyanobacteria: A Precious Bio-resource in Agriculture, Ecosystem, and Environmental Sustainability

    PubMed Central

    Singh, Jay Shankar; Kumar, Arun; Rai, Amar N.; Singh, Devendra P.

    2016-01-01

    Keeping in view, the challenges concerning agro-ecosystem and environment, the recent developments in biotechnology offers a more reliable approach to address the food security for future generations and also resolve the complex environmental problems. Several unique features of cyanobacteria such as oxygenic photosynthesis, high biomass yield, growth on non-arable lands and a wide variety of water sources (contaminated and polluted waters), generation of useful by-products and bio-fuels, enhancing the soil fertility and reducing green house gas emissions, have collectively offered these bio-agents as the precious bio-resource for sustainable development. Cyanobacterial biomass is the effective bio-fertilizer source to improve soil physico-chemical characteristics such as water-holding capacity and mineral nutrient status of the degraded lands. The unique characteristics of cyanobacteria include their ubiquity presence, short generation time and capability to fix the atmospheric N2. Similar to other prokaryotic bacteria, the cyanobacteria are increasingly applied as bio-inoculants for improving soil fertility and environmental quality. Genetically engineered cyanobacteria have been devised with the novel genes for the production of a number of bio-fuels such as bio-diesel, bio-hydrogen, bio-methane, synga, and therefore, open new avenues for the generation of bio-fuels in the economically sustainable manner. This review is an effort to enlist the valuable information about the qualities of cyanobacteria and their potential role in solving the agricultural and environmental problems for the future welfare of the planet. PMID:27148218

  15. Microvalve-based bioprinting - process, bio-inks and applications.

    PubMed

    Ng, Wei Long; Lee, Jia Min; Yeong, Wai Yee; Win Naing, May

    2017-03-28

    Bioprinting is an emerging research field that has attracted tremendous attention for various applications; it offers a highly automated, advanced manufacturing platform for the fabrication of complex bioengineered constructs. Different bio-inks comprising multiple types of printable biomaterials and cells are utilized during the bioprinting process to improve the homology to native tissues and/or organs in a highly reproducible manner. This paper, presenting a first-time comprehensive yet succinct review of microvalve-based bioprinting, provides an in-depth analysis and comparison of different drop-on-demand bioprinting systems and highlights the important considerations for microvalve-based bioprinting systems. This review paper reports a detailed analysis of its printing process, bio-ink properties and cellular components on the printing outcomes. Lastly, this review highlights the significance of drop-on-demand bioprinting for various applications such as high-throughput screening, fundamental cell biology research, in situ bioprinting and fabrication of in vitro tissue constructs and also presents future directions to transform the microvalve-based bioprinting technology into imperative tools for tissue engineering and regenerative medicine.

  16. Bio-mass utilization in high pressure cogeneration boiler

    NASA Astrophysics Data System (ADS)

    Koundinya, Sandeep; Maria Ambrose Raj, Y.; Sreeram, K.; Divakar Shetty A., S.

    2017-07-01

    Coal is widely used all over the world in almost all power plants. The dependence on coal has increased enormously as the demand for electricity has reached its peak. Coal being a non-renewable source is depleting fast. We being the engineers, it's our duty to conserve the natural resources and optimize the coal consumption. In this project, we have tried to optimize the bio-mass utilization in high pressure cogeneration boiler. The project was carried in Seshasayee Paper and Boards Limited, erode related to Boiler No:10 operating at steam pressure of 105 kscg and temperature of 510°C. Available bio-mass fuels in and around the mill premises are bagasse, bagasse pith, cane trash and chipper dust. In this project, we have found out the coal equivalent replacement by the above bio-mass fuel(s) to facilitate deciding on the optimized quantity of coal that can be replaced by biomass without modifying the existing design of the plant. The dominant fuel (coal) which could be displaced with the substitute biomass fuel had been individually (biomass) analyzed.

  17. A biopolymer-like metal enabled hybrid material with exceptional mechanical prowess

    DOE PAGES

    Zhang, Junsong; Cui, Lishan; Jiang, Daqiang; ...

    2015-02-10

    In this study, the design principles for naturally occurring biological materials have inspired us to develop next-generation engineering materials with remarkable performance. Nacre, commonly referred to as nature's armor, is renowned for its unusual combination of strength and toughness. Nature's wisdom in nacre resides in its elaborate structural design and the judicious placement of a unique organic biopolymer with intelligent deformation features. However, up to now, it is still a challenge to transcribe the biopolymer's deformation attributes into a stronger substitute in the design of new materials. In this study, we propose a new design strategy that employs shape memorymore » alloy to transcribe the "J-curve'' mechanical response and uniform molecular/atomic level deformation of the organic biopolymer in the design of high-performance hybrid materials. This design strategy is verified in a TiNi-Ti 3Sn model material system. The model material demonstrates an exceptional combination of mechanical properties that are superior to other high-performance metal-based lamellar composites known to date. Our design strategy creates new opportunities for the development of high-performance bio-inspired materials.« less

  18. A biopolymer-like metal enabled hybrid material with exceptional mechanical prowess

    PubMed Central

    Zhang, Junsong; Cui, Lishan; Jiang, Daqiang; Liu, Yinong; Hao, Shijie; Ren, Yang; Han, Xiaodong; Liu, Zhenyang; Wang, Yunzhi; Yu, Cun; Huan, Yong; Zhao, Xinqing; Zheng, Yanjun; Xu, Huibin; Ren, Xiaobing; Li, Xiaodong

    2015-01-01

    The design principles for naturally occurring biological materials have inspired us to develop next-generation engineering materials with remarkable performance. Nacre, commonly referred to as nature's armor, is renowned for its unusual combination of strength and toughness. Nature's wisdom in nacre resides in its elaborate structural design and the judicious placement of a unique organic biopolymer with intelligent deformation features. However, up to now, it is still a challenge to transcribe the biopolymer's deformation attributes into a stronger substitute in the design of new materials. In this study, we propose a new design strategy that employs shape memory alloy to transcribe the “J-curve” mechanical response and uniform molecular/atomic level deformation of the organic biopolymer in the design of high-performance hybrid materials. This design strategy is verified in a TiNi-Ti3Sn model material system. The model material demonstrates an exceptional combination of mechanical properties that are superior to other high-performance metal-based lamellar composites known to date. Our design strategy creates new opportunities for the development of high-performance bio-inspired materials. PMID:25665501

  19. A biopolymer-like metal enabled hybrid material with exceptional mechanical prowess.

    PubMed

    Zhang, Junsong; Cui, Lishan; Jiang, Daqiang; Liu, Yinong; Hao, Shijie; Ren, Yang; Han, Xiaodong; Liu, Zhenyang; Wang, Yunzhi; Yu, Cun; Huan, Yong; Zhao, Xinqing; Zheng, Yanjun; Xu, Huibin; Ren, Xiaobing; Li, Xiaodong

    2015-02-10

    The design principles for naturally occurring biological materials have inspired us to develop next-generation engineering materials with remarkable performance. Nacre, commonly referred to as nature's armor, is renowned for its unusual combination of strength and toughness. Nature's wisdom in nacre resides in its elaborate structural design and the judicious placement of a unique organic biopolymer with intelligent deformation features. However, up to now, it is still a challenge to transcribe the biopolymer's deformation attributes into a stronger substitute in the design of new materials. In this study, we propose a new design strategy that employs shape memory alloy to transcribe the "J-curve" mechanical response and uniform molecular/atomic level deformation of the organic biopolymer in the design of high-performance hybrid materials. This design strategy is verified in a TiNi-Ti3Sn model material system. The model material demonstrates an exceptional combination of mechanical properties that are superior to other high-performance metal-based lamellar composites known to date. Our design strategy creates new opportunities for the development of high-performance bio-inspired materials.

  20. Tao Dong | NREL

    Science.gov Websites

    , catalysis, and biodiesel Education Ph.D., Bio-Systems Engineering, Washington State University, 2008-2013 Using Acidic Catalyst Generated from Pyrolysis-Derived Bio-Char," Energy Conversion Management

  1. Design and optimization of smart grid system based on renewable energy in Nyamuk Island, Karimunjawa district, Central Java

    NASA Astrophysics Data System (ADS)

    Novitasari, D.; Indartono, Y. S.; Rachmidha, T. D.; Reksowardojo, I. K.; Irsyad, M.

    2017-03-01

    Nyamuk Island in Karimunjawa District is one of the regions in Java that has no access to electricity grid. The electricity in Nyamuk Island relies on diesel engine which is managed by local government and only operated for 6 hours per day. It occurs as a consequence of high fuel cost. A study on smart micro grid system based on renewable energy was conducted in Combustion Engine and Propulsion System Laboratory of Institut Teknologi Bandung by using 1 kWp solar panels and a 3 kW bio based diesel engine. The fuels used to run the bio based diesel engine were diesel, virgin coconut oil and pure palm oil. The results show that the smart grid system run well at varying load and also with different fuel. Based on the experiments, average inverter efficiency was about 87%. This experiments proved that the use of biofuels had no effects to the overall system performance. Based on the results of prototype experiments, this paper will focus on design and optimization of smart micro grid system using HOMER software for Nyamuk Island. The design consists of (1) a diesel engine existing in Nyamuk Island whose fuel was diesel, (2) a lister engine whose fuel was from vegetable oil from Callophyllum inophyllum, (3) solar panels, (4) batteries and (5) converter. In this simulation, the existing diesel engine was set to operate 2 hours per day, while operating time of the lister engine has been varied with several scenarios. In scenario I, the lister engine was operated 5 hours per day, in scenario II the lister engine was operated 24 hours per day and in scenario III the lister engine was operated 8 hours per week in the weekend. In addition, a design using a modified diesel engine was conducted as well with an assumption that the modified cost was about 10% of new diesel engine cost. By modifying the diesel engine, the system will not need a lister engine. Assessments has been done to evaluate the designs, and the result shows that the optimal value obtains by the lister engine being operated for 24 hours a day in which the capacity of each component was 27 kWp PV, 7 kW lister engine, 26 kVA existing diesel engine, 40 kW converter and 128 batteries. The result is based on the lowest value of Net Present Cost (NPC) of 542.682 and Cost Of Electricity (COE) of 0.49.

  2. The effect of bio-irrigation by the polychaete Lanice conchilega on active denitrifiers: Distribution, diversity and composition of nosZ gene

    PubMed Central

    Yazdani Foshtomi, Maryam; Leliaert, Frederik; Derycke, Sofie; Willems, Anne; Vincx, Magda

    2018-01-01

    The presence of large densities of the piston-pumping polychaete Lanice conchilega can have important consequences for the functioning of marine sediments. It is considered both an allogenic and an autogenic ecosystem engineer, affecting spatial and temporal biogeochemical gradients (oxygen concentrations, oxygen penetration depth and nutrient concentrations) and physical properties (grain size) of marine sediments, which could affect functional properties of sediment-inhabiting microbial communities. Here we investigated whether density-dependent effects of L. conchilega affected horizontal (m-scale) and vertical (cm-scale) patterns in the distribution, diversity and composition of the typical nosZ gene in the active denitrifying organisms. This gene plays a major role in N2O reduction in coastal ecosystems as the last step completing the denitrification pathway. We showed that both vertical and horizontal composition and richness of nosZ gene were indeed significantly affected when large densities of the bio-irrigator were present. This could be directly related to allogenic ecosystem engineering effects on the environment, reflected in increased oxygen penetration depth and oxygen concentrations in the upper cm of the sediment in high densities of L. conchilega. A higher diversity (Shannon diversity and inverse Simpson) of nosZ observed in patches with high L. conchilega densities (3,185–3,440 ind. m-2) at deeper sediment layers could suggest a downward transport of NO3− to deeper layers resulting from bio-irrigation as well. Hence, our results show the effect of L. conchilega bio-irrigation activity on denitrifying organisms in L. conchilega reefs. PMID:29408934

  3. Scaffold-free trachea regeneration by tissue engineering with bio-3D printing.

    PubMed

    Taniguchi, Daisuke; Matsumoto, Keitaro; Tsuchiya, Tomoshi; Machino, Ryusuke; Takeoka, Yosuke; Elgalad, Abdelmotagaly; Gunge, Kiyofumi; Takagi, Katsunori; Taura, Yasuaki; Hatachi, Go; Matsuo, Naoto; Yamasaki, Naoya; Nakayama, Koichi; Nagayasu, Takeshi

    2018-05-01

    Currently, most of the artificial airway organs still require scaffolds; however, such scaffolds exhibit several limitations. Alternatively, the use of an autologous artificial trachea without foreign materials and immunosuppressants may solve these issues and constitute a preferred tool. The rationale of this study was to develop a new scaffold-free approach for an artificial trachea using bio-3D printing technology. Here, we assessed the circumferential tracheal replacement using scaffold-free trachea-like grafts generated from isolated cells in an inbred animal model. Chondrocytes and mesenchymal stem cells were isolated from F344 rats. Rat lung microvessel endothelial cells were purchased. Our bio-3D printer generates spheroids consisting of several types of cells to create 3D structures. The bio-3D-printed artificial trachea from spheroids was matured in a bioreactor and transplanted into F344 rats as a tracheal graft under general anaesthesia. The mechanical strength of the artificial trachea was measured, and histological and immunohistochemical examinations were performed. Tracheal transplantation was performed in 9 rats, which were followed up postoperatively for 23 days. The average tensile strength of artificial tracheas before transplantation was 526.3 ± 125.7 mN. The bio-3D-printed scaffold-free artificial trachea had sufficient strength to transplant into the trachea with silicone stents that were used to prevent collapse of the artificial trachea and to support the graft until sufficient blood supply was obtained. Chondrogenesis and vasculogenesis were observed histologically. The scaffold-free isogenic artificial tracheas produced by a bio-3D printer could be utilized as tracheal grafts in rats.

  4. BrisSynBio: a BBSRC/EPSRC-funded Synthetic Biology Research Centre.

    PubMed

    Sedgley, Kathleen R; Race, Paul R; Woolfson, Derek N

    2016-06-15

    BrisSynBio is the Bristol-based Biotechnology and Biological Sciences Research Council (BBSRC)/Engineering and Physical Sciences Research Council (EPSRC)-funded Synthetic Biology Research Centre. It is one of six such Centres in the U.K. BrisSynBio's emphasis is on rational and predictive bimolecular modelling, design and engineering in the context of synthetic biology. It trains the next generation of synthetic biologists in these approaches, to facilitate translation of fundamental synthetic biology research to industry and the clinic, and to do this within an innovative and responsible research framework. © 2016 The Author(s).

  5. Pyrolysis of hornbeam (Carpinus betulus L.) sawdust: Characterization of bio-oil and bio-char.

    PubMed

    Moralı, Uğur; Yavuzel, Nazan; Şensöz, Sevgi

    2016-12-01

    Slow pyrolysis of hornbeam (Carpinus betulus L.) sawdust was performed to produce bio-oil and bio-char. The operational variables were as follows: pyrolysis temperature (400-600°C), heating rate (10-50°Cmin -1 ) and nitrogen flow rate (50-150cm 3 min -1 ). Physicochemical and thermogravimetric characterizations of hornbeam sawdust were performed. The characteristics of bio-oil and bio-char were analyzed on the basis of various spectroscopic and chromatographic techniques such as FTIR, GC-MS, 1H NMR, SEM, BET. Higher heating value, density and kinematic viscosity of the bio-oil with maximum yield of 35.28% were 23.22MJkg -1 , 1289kgm -3 and 0.6mm 2 s -1 , respectively. The bio-oil with relatively high fuel potential can be obtained from the pyrolysis of the hornbeam sawdust and the bio-char with a calorific value of 32.88MJkg -1 is a promising candidate for solid fuel applications that also contributes to the preservation of the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. D-Amino acid oxidase bio-functionalized platforms: Toward an enhanced enzymatic bio-activity

    NASA Astrophysics Data System (ADS)

    Herrera, Elisa; Valdez Taubas, Javier; Giacomelli, Carla E.

    2015-11-01

    The purpose of this work is to study the adsorption process and surface bio-activity of His-tagged D-amino acid oxidase (DAAO) from Rhodotorula gracilis (His6-RgDAAO) as the first step for the development of an electrochemical bio-functionalized platform. With such a purpose this work comprises: (a) the His6-RgDAAO bio-activity in solution determined by amperometry, (b) the adsorption mechanism of His6-RgDAAO on bare gold and carboxylated modified substrates in the absence (substrate/COO-) and presence of Ni(II) (substrate/COO- + Ni(II)) determined by reflectometry, and (c) the bio-activity of the His6-RgDAAO bio-functionalized platforms determined by amperometry. Comparing the adsorption behavior and bio-activity of His6-RgDAAO on these different solid substrates allows understanding the contribution of the diverse interactions responsible for the platform performance. His6-RgDAAO enzymatic performance in solution is highly improved when compared to the previously used pig kidney (pk) DAAO. His6-RgDAAO exhibits an amperometrically detectable bio-activity at concentrations as low as those expected on a bio-functional platform; hence, it is a viable bio-recognition element of D-amino acids to be coupled to electrochemical platforms. Moreover, His6-RgDAAO bio-functionalized platforms exhibit a higher surface activity than pkDAAO physically adsorbed on gold. The platform built on Ni(II) modified substrates present enhanced bio-activity because the surface complexes histidine-Ni(II) provide with site-oriented, native-like enzymes. The adsorption mechanism responsible of the excellent performance of the bio-functionalized platform takes place in two steps involving electrostatic and bio-affinity interactions whose prevalence depends on the degree of surface coverage.

  7. Effect of Co-Production of Renewable Biomaterials on the Performance of Asphalt Binder in Macro and Micro Perspectives.

    PubMed

    Qu, Xin; Liu, Quan; Wang, Chao; Wang, Dawei; Oeser, Markus

    2018-02-06

    Conventional asphalt binder derived from the petroleum refining process is widely used in pavement engineering. However, asphalt binder is a non-renewable material. Therefore, the use of a co-production of renewable bio-oil as a modifier for petroleum asphalt has recently been getting more attention in the pavement field due to its renewability and its optimization for conventional petroleum-based asphalt binder. Significant research efforts have been done that mainly focus on the mechanical properties of bio-asphalt binder. However, there is still a lack of studies describing the effects of the co-production on performance of asphalt binders from a micro-scale perspective to better understand the fundamental modification mechanism. In this study, a reasonable molecular structure for the co-production of renewable bio-oils is created based on previous research findings and the observed functional groups from Fourier-transform infrared spectroscopy tests, which are fundamental and critical for establishing the molecular model of bio-asphalt binder with various biomaterials contents. Molecular simulation shows that the increase of biomaterial content causes the decrease of cohesion energy density, which can be related to the observed decrease of dynamic modulus. Additionally, a parameter of Flexibility Index is employed to characterize the ability of asphalt binder to resist deformation under oscillatory loading accurately.

  8. Recent Developments on Genetic Engineering of Microalgae for Biofuels and Bio-Based Chemicals.

    PubMed

    Ng, I-Son; Tan, Shih-I; Kao, Pei-Hsun; Chang, Yu-Kaung; Chang, Jo-Shu

    2017-10-01

    Microalgae serve as a promising source for the production of biofuels and bio-based chemicals. They are superior to terrestrial plants as feedstock in many aspects and their biomass is naturally rich in lipids, carbohydrates, proteins, pigments, and other valuable compounds. Due to the relatively slow growth rate and high cultivation cost of microalgae, to screen efficient and robust microalgal strains as well as genetic modifications of the available strains for further improvement are of urgent demand in the development of microalgae-based biorefinery. In genetic engineering of microalgae, transformation and selection methods are the key steps to accomplish the target gene modification. However, determination of the preferable type and dosage of antibiotics used for transformant selection is usually time-consuming and microalgal-strain-dependent. Therefore, more powerful and efficient techniques should be developed to meet this need. In this review, the conventional and emerging genome-editing tools (e.g., CRISPR-Cas9, TALEN, and ZFN) used in editing the genomes of nuclear, mitochondria, and chloroplast of microalgae are thoroughly surveyed. Although all the techniques mentioned above demonstrate their abilities to perform gene editing and desired phenotype screening, there still need to overcome higher production cost and lower biomass productivity, to achieve efficient production of the desired products in microalgal biorefineries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Bio-Inspired Networking — Self-Organizing Networked Embedded Systems

    NASA Astrophysics Data System (ADS)

    Dressler, Falko

    The turn to nature has brought us many unforeseen great concepts and solutions. This course seems to hold on for many research domains. In this article, we study the applicability of biological mechanisms and techniques in the domain of communications. In particular, we study the behavior and the challenges in networked embedded systems that are meant to self-organize in large groups of nodes. Application examples include wireless sensor networks and sensor/actuator networks. Based on a review of the needs and requirements in such networks, we study selected bio-inspired networking approaches that claim to outperform other methods in specific domains. We study mechanisms in swarm intelligence, the artificial immune system, and approaches based on investigations on the cellular signaling pathways. As a major conclusion, we derive that bio-inspired networking techniques do have advantages compared to engineering methods. Nevertheless, selection and employment must be done carefully to achieve the desired performance gains.

  10. Toxicity assessment of chlorpyrifos-degrading fungal bio-composites and their environmental risks.

    PubMed

    Liu, Jie; Zhang, Xiaoying; Yang, Mengran; Hu, Meiying; Zhong, Guohua

    2018-02-01

    Bioremediation techniques coupling with functional microorganisms have emerged as the most promising approaches for in-situ elimination of pesticide residue. However, the environmental safety of bio-products based on microorganisms or engineered enzymes was rarely known. Here, we described the toxicity assessment of two previously fabricated fungal bio-composites which were used for the biodegradation of chlorpyrifos, to clarify their potential risks on the environment and non-target organisms. Firstly, the acute and chronic toxicity of prepared bio-composites were evaluated using mice and rabbits, indicating neither acute nor chronic effect was induced via short-term or continuous exposure. Then, the acute mortality on zebrafish was investigated, which implied the application of fungal bio-composites had no lethal risk on aquatic organisms. Meanwhile, the assessment on soil organic matters suggested that no threat was posed to soil quality. Finally, by monitoring, the germination of cabbage was not affected by the exposure to two bio-products. Therefore, the application of fungal bio-composites for chlorpyrifos elimination cannot induce toxic risk to the environment and non-target organisms, which insured the safety of these engineered bio-products for realistic management of pesticide residue, and provided new insights for further development of bioremediation techniques based on functional microorganisms.

  11. Enhancement of poly(3-hydroxybutyrate) thermal and processing stability using a bio-waste derived additive.

    PubMed

    Persico, Paola; Ambrogi, Veronica; Baroni, Antonio; Santagata, Gabriella; Carfagna, Cosimo; Malinconico, Mario; Cerruti, Pierfrancesco

    2012-12-01

    Poly(3-hydroxybutyrate) (PHB) is a biodegradable polymer, whose applicability is limited by its brittleness and narrow processing window. In this study a pomace extract (EP), from the bio-waste of winery industry, was used as thermal and processing stabilizer for PHB, aimed to engineer a totally bio-based system. The results showed that EP enhanced the thermal stability of PHB, which maintained high molecular weights after processing. This evidence was in agreement with the slower decrease in viscosity over time observed by rheological tests. EP also affected the melt crystallization kinetics and the overall crystallinity extent. Finally, dynamic mechanical and tensile tests showed that EP slightly improved the polymer ductility. The results are intriguing, in view of the development of sustainable alternatives to synthetic polymer additives, thus increasing the applicability of bio-based materials. Moreover, the reported results demonstrated the feasibility of the conversion of an agro-food by-product into a bio-resource in an environmentally friendly and cost-effective way. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Introducing Students to Bio-Inspiration and Biomimetic Design: A Workshop Experience

    ERIC Educational Resources Information Center

    Santulli, Carlo; Langella, Carla

    2011-01-01

    In recent years, bio-inspired approach to design has gained considerable interest between designers, engineers and end-users. However, there are difficulties in introducing bio-inspiration concepts in the university curriculum in that they involve multi-disciplinary work, which can only possibly be successfully delivered by a team with integrated…

  13. BioCarian: search engine for exploratory searches in heterogeneous biological databases.

    PubMed

    Zaki, Nazar; Tennakoon, Chandana

    2017-10-02

    There are a large number of biological databases publicly available for scientists in the web. Also, there are many private databases generated in the course of research projects. These databases are in a wide variety of formats. Web standards have evolved in the recent times and semantic web technologies are now available to interconnect diverse and heterogeneous sources of data. Therefore, integration and querying of biological databases can be facilitated by techniques used in semantic web. Heterogeneous databases can be converted into Resource Description Format (RDF) and queried using SPARQL language. Searching for exact queries in these databases is trivial. However, exploratory searches need customized solutions, especially when multiple databases are involved. This process is cumbersome and time consuming for those without a sufficient background in computer science. In this context, a search engine facilitating exploratory searches of databases would be of great help to the scientific community. We present BioCarian, an efficient and user-friendly search engine for performing exploratory searches on biological databases. The search engine is an interface for SPARQL queries over RDF databases. We note that many of the databases can be converted to tabular form. We first convert the tabular databases to RDF. The search engine provides a graphical interface based on facets to explore the converted databases. The facet interface is more advanced than conventional facets. It allows complex queries to be constructed, and have additional features like ranking of facet values based on several criteria, visually indicating the relevance of a facet value and presenting the most important facet values when a large number of choices are available. For the advanced users, SPARQL queries can be run directly on the databases. Using this feature, users will be able to incorporate federated searches of SPARQL endpoints. We used the search engine to do an exploratory search on previously published viral integration data and were able to deduce the main conclusions of the original publication. BioCarian is accessible via http://www.biocarian.com . We have developed a search engine to explore RDF databases that can be used by both novice and advanced users.

  14. Developing a hybrid dictionary-based bio-entity recognition technique.

    PubMed

    Song, Min; Yu, Hwanjo; Han, Wook-Shin

    2015-01-01

    Bio-entity extraction is a pivotal component for information extraction from biomedical literature. The dictionary-based bio-entity extraction is the first generation of Named Entity Recognition (NER) techniques. This paper presents a hybrid dictionary-based bio-entity extraction technique. The approach expands the bio-entity dictionary by combining different data sources and improves the recall rate through the shortest path edit distance algorithm. In addition, the proposed technique adopts text mining techniques in the merging stage of similar entities such as Part of Speech (POS) expansion, stemming, and the exploitation of the contextual cues to further improve the performance. The experimental results show that the proposed technique achieves the best or at least equivalent performance among compared techniques, GENIA, MESH, UMLS, and combinations of these three resources in F-measure. The results imply that the performance of dictionary-based extraction techniques is largely influenced by information resources used to build the dictionary. In addition, the edit distance algorithm shows steady performance with three different dictionaries in precision whereas the context-only technique achieves a high-end performance with three difference dictionaries in recall.

  15. Developing a hybrid dictionary-based bio-entity recognition technique

    PubMed Central

    2015-01-01

    Background Bio-entity extraction is a pivotal component for information extraction from biomedical literature. The dictionary-based bio-entity extraction is the first generation of Named Entity Recognition (NER) techniques. Methods This paper presents a hybrid dictionary-based bio-entity extraction technique. The approach expands the bio-entity dictionary by combining different data sources and improves the recall rate through the shortest path edit distance algorithm. In addition, the proposed technique adopts text mining techniques in the merging stage of similar entities such as Part of Speech (POS) expansion, stemming, and the exploitation of the contextual cues to further improve the performance. Results The experimental results show that the proposed technique achieves the best or at least equivalent performance among compared techniques, GENIA, MESH, UMLS, and combinations of these three resources in F-measure. Conclusions The results imply that the performance of dictionary-based extraction techniques is largely influenced by information resources used to build the dictionary. In addition, the edit distance algorithm shows steady performance with three different dictionaries in precision whereas the context-only technique achieves a high-end performance with three difference dictionaries in recall. PMID:26043907

  16. Dictionary-driven prokaryotic gene finding.

    PubMed

    Shibuya, Tetsuo; Rigoutsos, Isidore

    2002-06-15

    Gene identification, also known as gene finding or gene recognition, is among the important problems of molecular biology that have been receiving increasing attention with the advent of large scale sequencing projects. Previous strategies for solving this problem can be categorized into essentially two schools of thought: one school employs sequence composition statistics, whereas the other relies on database similarity searches. In this paper, we propose a new gene identification scheme that combines the best characteristics from each of these two schools. In particular, our method determines gene candidates among the ORFs that can be identified in a given DNA strand through the use of the Bio-Dictionary, a database of patterns that covers essentially all of the currently available sample of the natural protein sequence space. Our approach relies entirely on the use of redundant patterns as the agents on which the presence or absence of genes is predicated and does not employ any additional evidence, e.g. ribosome-binding site signals. The Bio-Dictionary Gene Finder (BDGF), the algorithm's implementation, is a single computational engine able to handle the gene identification task across distinct archaeal and bacterial genomes. The engine exhibits performance that is characterized by simultaneous very high values of sensitivity and specificity, and a high percentage of correctly predicted start sites. Using a collection of patterns derived from an old (June 2000) release of the Swiss-Prot/TrEMBL database that contained 451 602 proteins and fragments, we demonstrate our method's generality and capabilities through an extensive analysis of 17 complete archaeal and bacterial genomes. Examples of previously unreported genes are also shown and discussed in detail.

  17. Nano-mechanical properties and structural of a 3D-printed biodegradable biomimetic micro air vehicle wing

    NASA Astrophysics Data System (ADS)

    Salami, E.; Montazer, E.; Ward, T. A.; Ganesan, P. B.

    2017-06-01

    The biomimetic micro air vehicles (BMAV) are unmanned, micro-scaled aircraft that are bio-inspired from flying organisms to achieve the lift and thrust by flapping their wings. The main objectives of this study are to design a BMAV wing (inspired from the dragonfly) and analyse its nano-mechanical properties. In order to gain insights into the flight mechanics of dragonfly, reverse engineering methods were used to establish three-dimensional geometrical models of the dragonfly wings, so we can make a comparative analysis. Then mechanical test of the real dragonfly wings was performed to provide experimental parameter values for mechanical models in terms of nano-hardness and elastic modulus. The mechanical properties of wings were measured by nanoindentre. Finally, a simplified model was designed and the dragonfly-like wing frame structure was bio-mimicked and fabricated using a 3D printer. Then mechanical test of the BMAV wings was performed to analyse and compare the wings under a variety of simplified load regimes that are concentrated force, uniform line-load and a torque. This work opened up the possibility towards developing an engineering basis for the biomimetic design of BMAV wings.

  18. An attention-based BiLSTM-CRF approach to document-level chemical named entity recognition.

    PubMed

    Luo, Ling; Yang, Zhihao; Yang, Pei; Zhang, Yin; Wang, Lei; Lin, Hongfei; Wang, Jian

    2018-04-15

    In biomedical research, chemical is an important class of entities, and chemical named entity recognition (NER) is an important task in the field of biomedical information extraction. However, most popular chemical NER methods are based on traditional machine learning and their performances are heavily dependent on the feature engineering. Moreover, these methods are sentence-level ones which have the tagging inconsistency problem. In this paper, we propose a neural network approach, i.e. attention-based bidirectional Long Short-Term Memory with a conditional random field layer (Att-BiLSTM-CRF), to document-level chemical NER. The approach leverages document-level global information obtained by attention mechanism to enforce tagging consistency across multiple instances of the same token in a document. It achieves better performances with little feature engineering than other state-of-the-art methods on the BioCreative IV chemical compound and drug name recognition (CHEMDNER) corpus and the BioCreative V chemical-disease relation (CDR) task corpus (the F-scores of 91.14 and 92.57%, respectively). Data and code are available at https://github.com/lingluodlut/Att-ChemdNER. yangzh@dlut.edu.cn or wangleibihami@gmail.com. Supplementary data are available at Bioinformatics online.

  19. BioMEMS and Lab-on-a-Chip Course Education at West Virginia University

    PubMed Central

    Liu, Yuxin

    2011-01-01

    With the rapid growth of Biological/Biomedical MicroElectroMechanical Systems (BioMEMS) and microfluidic-based lab-on-a-chip (LOC) technology to biological and biomedical research and applications, demands for educated and trained researchers and technicians in these fields are rapidly expanding. Universities are expected to develop educational plans to address these specialized needs in BioMEMS, microfluidic and LOC science and technology. A course entitled BioMEMS and Lab-on-a-Chip was taught recently at the senior undergraduate and graduate levels in the Department of Computer Science and Electrical Engineering at West Virginia University (WVU). The course focused on the basic principles and applications of BioMEMS and LOC technology to the areas of biomedicine, biology, and biotechnology. The course was well received and the enrolled students had diverse backgrounds in electrical engineering, material science, biology, mechanical engineering, and chemistry. Student feedback and a review of the course evaluations indicated that the course was effective in achieving its objectives. Student presentations at the end of the course were a highlight and a valuable experience for all involved. The course proved successful and will continue to be offered regularly. This paper provides an overview of the course as well as some development and future improvements. PMID:25586697

  20. Viscous Flow Behaviour of Karanja Oil Based Bio-lubricant Base Oil.

    PubMed

    Sharma, Umesh Chandra; Sachan, Sadhana; Trivedi, Rakesh Kumar

    2018-01-01

    Karanja oil (KO) is widely used for synthesis of bio-fuel karanja oil methyl ester (KOME) due to its competitive price, good energy values and environmentally friendly combustion properties. Bio-lubricant is another value added product that can be synthesized from KO via chemical modification. In this work karanja oil trimethylolpropane ester (KOTMPE) bio-lubricant was synthesized and evaluated for its viscous flow behaviour. A comparison of viscous flow behaviours of natural KO and synthesized bio-fuel KOME and bio-lubricant KOTMPE was also made. The aim of this comparison was to validate the superiority of KOTMPE bio-lubricant over its precursors KO and KOME in terms of stable viscous flow at high temperature and high shear rate conditions usually encountered in engine operations and industrial processes. The free fatty acid (FFA) content of KO was 5.76%. KOME was synthesized from KO in a two-step, acid catalyzed esterification followed by base catalyzed transesterification, process at 65°C for 5 hours with oil-methanol ratio 1:6, catalysts H 2 SO 4 and KOH (1 and 1.25% w/w KO, respectively). In the final step, KOTMPE was prepared from KOME via transesterification with trimethylolpropane (TMP) at 150°C for 3 hours with KOME-TMP ratio 4:1 and H 2 SO 4 (2% w/w KOME) as catalyst. The viscosity versus temperature studies were made at 0-80°C temperatures in shear rate ranges of 10-1000 s -1 using a Discovery Hybrid Rheometer, model HR-3 (TA instruments, USA). The study found that viscosities of all three samples decreased with increase in temperature, though KOTMPE was able to maintain a good enough viscosity at elevated temperatures due to chemical modifications in its molecular structure. The viscosity index (VI) value for KOTMPE was 206.72. The study confirmed that the synthesized bio-lubricant KOTMPE can be used at high temperatures as a good lubricant, though some additives may be required to improve properties other than viscosity.

  1. Speciation and environmental risk assessment of heavy metal in bio-oil from liquefaction/pyrolysis of sewage sludge.

    PubMed

    Yuan, Xingzhong; Leng, Lijian; Huang, Huajun; Chen, Xiaohong; Wang, Hou; Xiao, Zhihua; Zhai, Yunbo; Chen, Hongmei; Zeng, Guangming

    2015-02-01

    Liquefaction bio-oil (LBO) produced with ethanol (or acetone) as the solvent and pyrolysis bio-oil (PBO) produced at 550°C (or 850°C) from sewage sludge (SS) were produced, and were characterized and evaluated in terms of their heavy metal (HM) composition. The total concentration, speciation and leaching characteristic of HMs (Cu, Cr, Pb, Zn, Cd, and Ni) in both LBO and PBO were investigated. The total concentration and exchangeable fraction of Zn and Ni in bio-oils were at surprisingly high levels. Quantitative risk assessment of HM in bio-oils was performed by the method of risk assessment code (RAC), potential ecological risk index (PERI) and geo-accumulation index (GAI). Ni in bio-oil produced by pyrolysis at 850°C (PBO850) and Zn in bio-oil by liquefaction at 360°C with ethanol as solvent (LBO-360E) were evaluated to possess very high risk to the environment according to RAC. Additionally, Cd in PBO850 and LBO-360E were evaluated by PERI to have very high risk and high risk, respectively, while Cd in all bio-oils was assessed moderately contaminated according to GAI. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Electrifying white biotechnology: engineering and economic potential of electricity-driven bio-production.

    PubMed

    Harnisch, Falk; Rosa, Luis F M; Kracke, Frauke; Virdis, Bernardino; Krömer, Jens O

    2015-03-01

    The production of fuels and chemicals by electricity-driven bio-production (i.e., using electric energy to drive biosynthesis) holds great promises. However, this electrification of white biotechnology is particularly challenging to achieve because of the different optimal operating conditions of electrochemical and biochemical reactions. In this article, we address the technical parameters and obstacles to be taken into account when engineering microbial bioelectrochemical systems (BES) for bio-production. In addition, BES-based bio-production processes reported in the literature are compared against industrial needs showing that a still large gap has to be closed. Finally, the feasibility of BES bio-production is analysed based on bulk electricity prices. Using the example of lysine production from sucrose, we demonstrate that there is a realistic market potential as cost savings of 8.4 % (in EU) and 18.0 % (in US) could be anticipated, if the necessary yields can be obtained. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Biologically templated assembly of hybrid semiconducting nanomesh for high performance field effect transistors and sensors

    NASA Astrophysics Data System (ADS)

    Byeon, Hye-Hyeon; Lee, Seung-Woo; Lee, Eun-Hee; Kim, Woong; Yi, Hyunjung

    2016-10-01

    Delicately assembled composites of semiconducting nanomaterials and biological materials provide an attractive interface for emerging applications, such as chemical/biological sensors, wearable health monitoring devices, and therapeutic agent releasing devices. The nanostructure of composites as a channel and a sensing material plays a critical role in the performance of field effect transistors (FETs). Therefore, it is highly desirable to prepare elaborate composite that can allow the fabrication of high performance FETs and also provide high sensitivity and selectivity in detecting specific chemical/biological targets. In this work, we demonstrate that high performance FETs can be fabricated with a hydrodynamically assembled composite, a semiconducting nanomesh, of semiconducting single-walled carbon nanotubes (S-SWNTs) and a genetically engineered M13 phage to show strong binding affinity toward SWNTs. The semiconducting nanomesh enables a high on/off ratio (~104) of FETs. We also show that the threshold voltage and the channel current of the nanomesh FETs are sensitive to the change of the M13 phage surface charge. This biological gate effect of the phage enables the detection of biologically important molecules such as dopamine and bisphenol A using nanomesh-based FETs. Our results provide a new insight for the preparation of composite material platform for highly controllable bio/electronics interfaces.

  4. Micro-7 BioCell Habitat Fixation Operations

    NASA Image and Video Library

    2014-04-25

    ISS039-E-015593 (25 April 2014) --- In the Harmony node of the Earth-orbiting International Space Station, NASA astronaut Rick Mastracchio, Expedition 39 flight engineer, works with the Micro-7 BioCell habitat.

  5. Micro-7 BioCell Habitat Fixation Operations

    NASA Image and Video Library

    2014-04-25

    ISS039-E-015646 (25 April 2014) --- In the Harmony node of the Earth-orbiting International Space Station, NASA astronaut Rick Mastracchio, Expedition 39 flight engineer, works with the Micro-7 BioCell habitat.

  6. Bio-inspired adaptive feedback error learning architecture for motor control.

    PubMed

    Tolu, Silvia; Vanegas, Mauricio; Luque, Niceto R; Garrido, Jesús A; Ros, Eduardo

    2012-10-01

    This study proposes an adaptive control architecture based on an accurate regression method called Locally Weighted Projection Regression (LWPR) and on a bio-inspired module, such as a cerebellar-like engine. This hybrid architecture takes full advantage of the machine learning module (LWPR kernel) to abstract an optimized representation of the sensorimotor space while the cerebellar component integrates this to generate corrective terms in the framework of a control task. Furthermore, we illustrate how the use of a simple adaptive error feedback term allows to use the proposed architecture even in the absence of an accurate analytic reference model. The presented approach achieves an accurate control with low gain corrective terms (for compliant control schemes). We evaluate the contribution of the different components of the proposed scheme comparing the obtained performance with alternative approaches. Then, we show that the presented architecture can be used for accurate manipulation of different objects when their physical properties are not directly known by the controller. We evaluate how the scheme scales for simulated plants of high Degrees of Freedom (7-DOFs).

  7. Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues.

    PubMed

    Ozturk, Mehmet S; Chen, Chao-Wei; Ji, Robin; Zhao, Lingling; Nguyen, Bao-Ngoc B; Fisher, John P; Chen, Yu; Intes, Xavier

    2016-03-01

    Optimization of regenerative medicine strategies includes the design of biomaterials, development of cell-seeding methods, and control of cell-biomaterial interactions within the engineered tissues. Among these steps, one paramount challenge is to non-destructively image the engineered tissues in their entirety to assess structure, function, and molecular expression. It is especially important to be able to enable cell phenotyping and monitor the distribution and migration of cells throughout the bulk scaffold. Advanced fluorescence microscopic techniques are commonly employed to perform such tasks; however, they are limited to superficial examination of tissue constructs. Therefore, the field of tissue engineering and regenerative medicine would greatly benefit from the development of molecular imaging techniques which are capable of non-destructive imaging of three-dimensional cellular distribution and maturation within a tissue-engineered scaffold beyond the limited depth of current microscopic techniques. In this review, we focus on an emerging depth-resolved optical mesoscopic imaging technique, termed laminar optical tomography (LOT) or mesoscopic fluorescence molecular tomography (MFMT), which enables longitudinal imaging of cellular distribution in thick tissue engineering constructs at depths of a few millimeters and with relatively high resolution. The physical principle, image formation, and instrumentation of LOT/MFMT systems are introduced. Representative applications in tissue engineering include imaging the distribution of human mesenchymal stem cells embedded in hydrogels, imaging of bio-printed tissues, and in vivo applications.

  8. BioImageXD: an open, general-purpose and high-throughput image-processing platform.

    PubMed

    Kankaanpää, Pasi; Paavolainen, Lassi; Tiitta, Silja; Karjalainen, Mikko; Päivärinne, Joacim; Nieminen, Jonna; Marjomäki, Varpu; Heino, Jyrki; White, Daniel J

    2012-06-28

    BioImageXD puts open-source computer science tools for three-dimensional visualization and analysis into the hands of all researchers, through a user-friendly graphical interface tuned to the needs of biologists. BioImageXD has no restrictive licenses or undisclosed algorithms and enables publication of precise, reproducible and modifiable workflows. It allows simple construction of processing pipelines and should enable biologists to perform challenging analyses of complex processes. We demonstrate its performance in a study of integrin clustering in response to selected inhibitors.

  9. NegBio: a high-performance tool for negation and uncertainty detection in radiology reports.

    PubMed

    Peng, Yifan; Wang, Xiaosong; Lu, Le; Bagheri, Mohammadhadi; Summers, Ronald; Lu, Zhiyong

    2018-01-01

    Negative and uncertain medical findings are frequent in radiology reports, but discriminating them from positive findings remains challenging for information extraction. Here, we propose a new algorithm, NegBio, to detect negative and uncertain findings in radiology reports. Unlike previous rule-based methods, NegBio utilizes patterns on universal dependencies to identify the scope of triggers that are indicative of negation or uncertainty. We evaluated NegBio on four datasets, including two public benchmarking corpora of radiology reports, a new radiology corpus that we annotated for this work, and a public corpus of general clinical texts. Evaluation on these datasets demonstrates that NegBio is highly accurate for detecting negative and uncertain findings and compares favorably to a widely-used state-of-the-art system NegEx (an average of 9.5% improvement in precision and 5.1% in F1-score). https://github.com/ncbi-nlp/NegBio.

  10. Bangalore India Bio 2010.

    PubMed

    Thammanabhatla, Pratibha; Pailla, Mamatha

    2010-08-01

    The Bangalore India Bio 2010 conference, held in Bangalore, India, included topics covering new developments in the biopharma industry. This conference report highlights selected presentations on novel therapeutics for the treatment of cancer, including identification of novel benzimidazole, N-subsituted isatin and azetidine derivatives, and an Wnt antagonist. In addition, presentations from several biopharma companies and universities are highlighted, including Proteomics International Pty Ltd, Oxford BioMedica plc, AnaptysBio Inc, SIOGEN Biotech, RV College of Engineering and Indian Institute of Science.

  11. Vacancy-Rich Monolayer BiO 2-x as a Highly Efficient UV, Visible, and Near-Infrared Responsive Photocatalyst

    DOE PAGES

    Li, Jun; Wu, Xiaoyong; Pan, Wenfeng; ...

    2017-09-08

    Here in this paper, a full-spectrum responsive vacancy-rich monolayer BiO 2-x has been synthesized. The increased density of states at the conduction band (CB) minimum in the monolayer BiO 2-x is responsible for the enhanced photon response and photo-absorption, which were confirmed by UV/Vis-NIR diffuse reflectance spectra (DRS) and photocurrent measurements. Compared to bulk BiO 2-x, monolayer BiO 2-x has exhibited enhanced photocatalytic performance for rhodamine B and phenol removal under UV, visible, and near-infrared light (NIR) irradiation, which can be attributed to the vacancy VBi-O"' as confirmed by the positron annihilation spectra. The presence of V Bi-O"' defects inmore » monolayer BiO 2-x promoted the separation of electrons and holes. This finding provides an atomic level understanding for developing highly efficient UV, visible, and NIR light responsive photocatalysts.« less

  12. Vacancy-Rich Monolayer BiO 2-x as a Highly Efficient UV, Visible, and Near-Infrared Responsive Photocatalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jun; Wu, Xiaoyong; Pan, Wenfeng

    Here in this paper, a full-spectrum responsive vacancy-rich monolayer BiO 2-x has been synthesized. The increased density of states at the conduction band (CB) minimum in the monolayer BiO 2-x is responsible for the enhanced photon response and photo-absorption, which were confirmed by UV/Vis-NIR diffuse reflectance spectra (DRS) and photocurrent measurements. Compared to bulk BiO 2-x, monolayer BiO 2-x has exhibited enhanced photocatalytic performance for rhodamine B and phenol removal under UV, visible, and near-infrared light (NIR) irradiation, which can be attributed to the vacancy VBi-O"' as confirmed by the positron annihilation spectra. The presence of V Bi-O"' defects inmore » monolayer BiO 2-x promoted the separation of electrons and holes. This finding provides an atomic level understanding for developing highly efficient UV, visible, and NIR light responsive photocatalysts.« less

  13. Three-dimensionally printed biological machines powered by skeletal muscle.

    PubMed

    Cvetkovic, Caroline; Raman, Ritu; Chan, Vincent; Williams, Brian J; Tolish, Madeline; Bajaj, Piyush; Sakar, Mahmut Selman; Asada, H Harry; Saif, M Taher A; Bashir, Rashid

    2014-07-15

    Combining biological components, such as cells and tissues, with soft robotics can enable the fabrication of biological machines with the ability to sense, process signals, and produce force. An intuitive demonstration of a biological machine is one that can produce motion in response to controllable external signaling. Whereas cardiac cell-driven biological actuators have been demonstrated, the requirements of these machines to respond to stimuli and exhibit controlled movement merit the use of skeletal muscle, the primary generator of actuation in animals, as a contractile power source. Here, we report the development of 3D printed hydrogel "bio-bots" with an asymmetric physical design and powered by the actuation of an engineered mammalian skeletal muscle strip to result in net locomotion of the bio-bot. Geometric design and material properties of the hydrogel bio-bots were optimized using stereolithographic 3D printing, and the effect of collagen I and fibrin extracellular matrix proteins and insulin-like growth factor 1 on the force production of engineered skeletal muscle was characterized. Electrical stimulation triggered contraction of cells in the muscle strip and net locomotion of the bio-bot with a maximum velocity of ∼ 156 μm s(-1), which is over 1.5 body lengths per min. Modeling and simulation were used to understand both the effect of different design parameters on the bio-bot and the mechanism of motion. This demonstration advances the goal of realizing forward-engineered integrated cellular machines and systems, which can have a myriad array of applications in drug screening, programmable tissue engineering, drug delivery, and biomimetic machine design.

  14. Biofuel by isomerizing metathesis of rapeseed oil esters with (bio)ethylene for use in contemporary diesel engines

    PubMed Central

    Pfister, Kai F.; Baader, Sabrina; Baader, Mathias; Berndt, Silvia; Goossen, Lukas J.

    2017-01-01

    Rapeseed oil methyl ester (RME) and (bio)ethylene are converted into biofuel with an evenly rising boiling point curve, which fulfills the strict boiling specifications prescribed by the fuel standard EN 590 for modern (petro)diesel engines. Catalyzed by a Pd/Ru system, RME undergoes isomerizing metathesis in a stream of ethylene gas, leading to a defined olefin, monoester, and diester blend. This innovative refining concept requires negligible energy input (60°C) and no solvents and does not produce waste. It demonstrates that the pressing challenge of increasing the fraction of renewables in engine fuel may be addressed purely chemically rather than by motor engineering. PMID:28630908

  15. Biofuel by isomerizing metathesis of rapeseed oil esters with (bio)ethylene for use in contemporary diesel engines.

    PubMed

    Pfister, Kai F; Baader, Sabrina; Baader, Mathias; Berndt, Silvia; Goossen, Lukas J

    2017-06-01

    Rapeseed oil methyl ester (RME) and (bio)ethylene are converted into biofuel with an evenly rising boiling point curve, which fulfills the strict boiling specifications prescribed by the fuel standard EN 590 for modern (petro)diesel engines. Catalyzed by a Pd/Ru system, RME undergoes isomerizing metathesis in a stream of ethylene gas, leading to a defined olefin, monoester, and diester blend. This innovative refining concept requires negligible energy input (60°C) and no solvents and does not produce waste. It demonstrates that the pressing challenge of increasing the fraction of renewables in engine fuel may be addressed purely chemically rather than by motor engineering.

  16. Hydrolase BioH knockout in E. coli enables efficient fatty acid methyl ester bioprocessing.

    PubMed

    Kadisch, Marvin; Schmid, Andreas; Bühler, Bruno

    2017-03-01

    Fatty acid methyl esters (FAMEs) originating from plant oils are most interesting renewable feedstocks for biofuels and bio-based materials. FAMEs can also be produced and/or functionalized by engineered microbes to give access to, e.g., polymer building blocks. Yet, they are often subject to hydrolysis yielding free fatty acids, which typically are degraded by microbes. We identified BioH as the key enzyme responsible for the hydrolysis of medium-chain length FAME derivatives in different E. coli K-12 strains. E. coli ΔbioH strains showed up to 22-fold reduced FAME hydrolysis rates in comparison with respective wild-type strains. Knockout strains showed, beside the expected biotin auxotrophy, unchanged growth behavior and biocatalytic activity. Thus, high specific rates (~80 U g CDW -1 ) for terminal FAME oxyfunctionalization catalyzed by a recombinant alkane monooxygenase could be combined with reduced hydrolysis. Biotransformations in process-relevant two-liquid phase systems profited from reduced fatty acid accumulation and/or reduced substrate loss via free fatty acid metabolization. The BioH knockout strategy was beneficial in all tested strains, although its effect was found to differ according to specific strain properties, such as FAME hydrolysis and FFA degradation activities. BioH or functional analogs can be found in virtually all microorganisms, making bioH deletion a broadly applicable strategy for efficient microbial bioprocessing involving FAMEs.

  17. Vacancy-Rich Monolayer BiO2-x as a Highly Efficient UV, Visible, and Near-Infrared Responsive Photocatalyst.

    PubMed

    Li, Jun; Wu, Xiaoyong; Pan, Wenfeng; Zhang, Gaoke; Chen, Hong

    2018-01-08

    Vacancy-rich layered materials with good electron-transfer property are of great interest. Herein, a full-spectrum responsive vacancy-rich monolayer BiO 2-x has been synthesized. The increased density of states at the conduction band (CB) minimum in the monolayer BiO 2-x is responsible for the enhanced photon response and photo-absorption, which were confirmed by UV/Vis-NIR diffuse reflectance spectra (DRS) and photocurrent measurements. Compared to bulk BiO 2-x , monolayer BiO 2-x has exhibited enhanced photocatalytic performance for rhodamine B and phenol removal under UV, visible, and near-infrared light (NIR) irradiation, which can be attributed to the vacancy V Bi-O ''' as confirmed by the positron annihilation spectra. The presence of V Bi-O ''' defects in monolayer BiO 2-x promoted the separation of electrons and holes. This finding provides an atomic level understanding for developing highly efficient UV, visible, and NIR light responsive photocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Improving tribological and anti-bacterial properties of titanium external fixation pins through surface ceramic conversion.

    PubMed

    Dong, Huan; Mukinay, Tatiana; Li, Maojun; Hood, Richard; Soo, Sein Leung; Cockshott, Simon; Sammons, Rachel; Li, Xiaoying

    2017-01-01

    In this study, an advanced ceramic conversion surface engineering technology has been applied for the first time to self-drilling Ti6Al4V external fixation pins to improve their performance in terms of biomechanical, bio-tribological and antibacterial properties. Systematic characterisation of the ceramic conversion treated Ti pins was carried out using Scanning electron microscope, X-ray diffraction, Glow-discharge optical emission spectroscopy, nano- and micro-indentation and scratching; the biomechanical and bio-tribological properties of the surface engineered Ti pins were evaluated by insertion into high density bone simulation material; and the antibacterial behaviour was assessed with Staphylococcus aureus NCTC 6571. The experimental results have demonstrated that the surfaces of Ti6Al4V external fixation pins were successfully converted into a TiO 2 rutile layer (~2 μm in thickness) supported by an oxygen hardened case (~15 μm in thickness) with very good bonding due to the in-situ conversion nature. The maximum insertion force and temperature were reduced from 192N and 31.2 °C when using the untreated pins to 182N and 26.1 °C when the ceramic conversion treated pins were tested. This is mainly due to the significantly increased hardness (more than three times) and the effectively enhanced wear resistance of the cutting edge of the self-drilling Ti pins following the ceramic conversion treatment. The antibacterial tests also revealed that there was a significantly reduced number of bacteria isolated from the ceramic conversion treated pins compared to the untreated pins of around 50 % after 20 h incubation, P < 0.01 (0.0024). The results reported are encouraging and could pave the way towards high-performance anti-bacterial titanium external fixation pins with reduced pin-track infection and pin loosing.

  19. Effect of Co-Production of Renewable Biomaterials on the Performance of Asphalt Binder in Macro and Micro Perspectives

    PubMed Central

    Qu, Xin; Liu, Quan; Wang, Chao; Oeser, Markus

    2018-01-01

    Conventional asphalt binder derived from the petroleum refining process is widely used in pavement engineering. However, asphalt binder is a non-renewable material. Therefore, the use of a co-production of renewable bio-oil as a modifier for petroleum asphalt has recently been getting more attention in the pavement field due to its renewability and its optimization for conventional petroleum-based asphalt binder. Significant research efforts have been done that mainly focus on the mechanical properties of bio-asphalt binder. However, there is still a lack of studies describing the effects of the co-production on performance of asphalt binders from a micro-scale perspective to better understand the fundamental modification mechanism. In this study, a reasonable molecular structure for the co-production of renewable bio-oils is created based on previous research findings and the observed functional groups from Fourier-transform infrared spectroscopy tests, which are fundamental and critical for establishing the molecular model of bio-asphalt binder with various biomaterials contents. Molecular simulation shows that the increase of biomaterial content causes the decrease of cohesion energy density, which can be related to the observed decrease of dynamic modulus. Additionally, a parameter of Flexibility Index is employed to characterize the ability of asphalt binder to resist deformation under oscillatory loading accurately. PMID:29415421

  20. Flash Pyrolysis and Fractional Pyrolysis of Oleaginous Biomass in a Fluidized-bed Reactor

    NASA Astrophysics Data System (ADS)

    Urban, Brook

    Thermochemical conversion methods such as pyrolysis have the potential for converting diverse biomass feedstocks into liquid fuels. In particular, bio-oil yields can be maximized by implementing flash pyrolysis to facilitate rapid heat transfer to the solids along with short vapor residence times to minimize secondary degradation of bio-oils. This study first focused on the design and construction of a fluidized-bed flash pyrolysis reactor with a high-efficiency bio-oil recovery unit. Subsequently, the reactor was used to perform flash pyrolysis of soybean pellets to assess the thermochemical conversion of oleaginous biomass feedstocks. The fluidized bed reactor design included a novel feed input mechanism through suction created by flow of carrier gas through a venturi which prevented plugging problems that occur with a more conventional screw feeders. In addition, the uniquely designed batch pyrolysis unit comprised of two tubes of dissimilar diameters. The bottom section consisted of a 1" tube and was connected to a larger 3" tube placed vertically above. At the carrier gas flow rates used in these studies, the feed particles remained fluidized in the smaller diameter tube, but a reduction in carrier gas velocity in the larger diameter "disengagement chamber" prevented the escape of particles into the condensers. The outlet of the reactor was connected to two Allihn condensers followed by an innovative packed-bed dry ice condenser. Due to the high carrier gas flow rates in fluidized bed reactors, bio-oil vapors form dilute aerosols upon cooling which that are difficult to coalesce and recover by traditional heat exchange condensers. The dry ice condenser provided high surface area for inertial impaction of these aerosols and also allowed easy recovery of bio-oils after natural evaporation of the dry ice at the end of the experiments. Single step pyrolysis was performed between 250-610°C with a vapor residence time between 0.3-0.6s. At 550°C or higher, 70% of the initial feed mass was recovered as bio-oil. However, the mass of high calorific lipid-derived components in the collected bio-oils remained nearly constant at reaction temperatures above 415°C; between 80-90% of the feedstock lipids were recovered in the bio-oil fraction. In addition, multi-step fractional flash pyrolysis experiments were performed to assess the possibility of producing higher quality bio-oils since a large fraction of protein and carbohydrates degrade at lower temperatures (320-400°C). A low temperature pyrolysis step was first performed and was followed by pyrolysis of the residues at higher temperature. This fractional pyrolysis approach which produced higher quality bio-oil with low water- and nitrogen- content from the higher temperature steps.

  1. Cellulose Nanocrystal Templated Graphene Nanoscrolls for High Performance Supercapacitors and Hydrogen Storage: An Experimental and Molecular Simulation Study.

    PubMed

    Dhar, Prodyut; Gaur, Surendra Singh; Kumar, Amit; Katiyar, Vimal

    2018-03-01

    Graphene nanoscrolls (GNS), due to their remarkably interesting properties, have attracted significant interest with applications in various engineering sectors. However, uncontrolled morphologies, poor yield and low quality GNS produced through traditional routes are major challenges associated. We demonstrate sustainable approach of utilizing bio-derived cellulose nanocrystals (CNCs) as template for fabrication of GNS with tunable morphological dimensions ranging from micron-to-nanoscale(controlled length < 1 μm or >1 μm), alongwith encapsulation of catalytically active metallic-species in scroll interlayers. The surface-modified magnetic CNCs acts as structural-directing agents which provides enough momentum to initiate self-scrolling phenomenon of graphene through van der Waals forces and π-π interactions, mechanism of which is demonstrated through experimental and molecular simulation studies. The proposed approach of GNS fabrication provides flexibility to tune physico-chemical properties of GNS by simply varying interlayer spacing, scrolling density and fraction of encapsulated metallic nanoparticles. The hybrid GNS with confined palladium or platinum nanoparticles (at lower loading ~1 wt.%) shows enhanced hydrogen storage capacity (~0.2 wt.% at~20 bar and ~273 K) and excellent supercapacitance behavior (~223-357 F/g) for prolonged cycles (retention ~93.5-96.4% at ~10000 cycles). The current strategy of utilizing bio-based templates can be further extended to incorporate complex architectures or nanomaterials in GNS core or inter-layers, which will potentially broaden its applications in fabrication of high-performance devices.

  2. A Study on Performance, Combustion and Emission Characteristics of Compression Ignition Engine Using Fish Oil Biodiesel Blends

    NASA Astrophysics Data System (ADS)

    Ramesha, D. K.; Thimmannachar, Rajiv K.; Simhasan, R.; Nagappa, Manjunath; Gowda, P. M.

    2012-07-01

    Bio-fuel is a clean burning fuel made from natural renewable energy resource; it operates in C. I. engine similar to the petroleum diesel. The rising cost of diesel and the danger caused to the environment has led to an intensive and desperate search for alternative fuels. Among them, animal fats like the fish oil have proven to be a promising substitute to diesel. In this experimental study, A computerized 4-stroke, single cylinder, constant speed, direct injection diesel engine was operated on fish oil-biodiesel of different blends. Three different blends of 10, 20, and 30 % by volume were used for this study. Various engine performance, combustion and emission parameters such as Brake Thermal Efficiency, Brake Specific Fuel Consumption, Heat Release Rate, Peak Pressure, Exhaust Gas Temperature, etc. were recorded from the acquired data. The data was recorded with the help of an engine analysis software. The recorded parameters were studied for varying loads and their corresponding graphs have been plotted for comparison purposes. Petroleum Diesel has been used as the reference. From the properties and engine test results it has been established that fish oil biodiesel is a better replacement for diesel without any engine modification.

  3. University of Maryland MRSEC - Research: Seed 1

    Science.gov Websites

    . University of Maryland Materials Research Science and Engineering Center Home About Us Leadership & Biochemistry Wolfgang Losert, Physics, IPST, IREAP Ben Shapiro, Bio-Engineering, Aerospace Engineering Edo Waks, Electrical & Computer Engineering, IREAP, JQI Creating specific functional patterns

  4. The Effects of the WNT-Signaling Modulators BIO and PKF118-310 on the Chondrogenic Differentiation of Human Mesenchymal Stem Cells.

    PubMed

    Huang, Xiaobin; Zhong, Leilei; Hendriks, Jan; Post, Janine N; Karperien, Marcel

    2018-02-13

    Mesenchymal stem cells (MSCs) are multipotent cells, mainly from bone marrow, and an ideal source of cells in bone and cartilage tissue engineering. A study of the chondrogenic differentiation of MSCs is of particular interest for MSCs-based cartilage regeneration. In this study, we aimed to optimize the conditions for the chrondogenic differentiation of MSCs by regulating WNT signaling using the small molecule WNT inhibitor PKF118-310 and activator BIO. Human mesenchymal stem cells (hMSCs) were isolated from bone marrow aspirates and cultured in hMSCs proliferation medium. Pellet culture was subsequently established for three-dimensional chondrogenic differentiation of 5 weeks. WNT signaling was increased by the small molecule glycogen synthase kinase-3 inhibitor 6-bromoindirubin-3-oxim (BIO) and decreased by the WNT inhibitor PKF118-310 (PKF). The effects of BIO and PKF on the chondrogenesis of hMSCs was examined by real-time PCR, histological methods, and ELISA. We found that activation of canonical WNT-signaling by BIO significantly downregulated the expression of cartilage-specific genes SOX9 , COL2A1, and ACAN , and matrix metalloproteinase genes MMP1/3/9/13, but increased ADAMTS 4/5 . Inhibition of WNT signaling by PKF increased the expression of SOX9 , COL2A1 , ACAN , and MMP9, but decreased MMP13 and ADAMTS4/5 . In addition, a high level of WNT signaling induced the expression of hypertrophic markers COL10A1, ALPL , and RUNX2, the dedifferentiation marker COL1A1 , and glycolysis genes GULT1 and PGK1 . Deposition of glycosaminoglycan (GAG) and collagen type II in the pellet matrix was significantly lost in the BIO-treated group and increased in the PKF-treated group. The protein level of COL10A1 was also highly induced in the BIO group. Interestingly, BIO decreased the number of apoptotic cells while PKF significantly induced apoptosis during chondrogenesis. The natural WNT antagonist DKK1 and the protein level of MMP1 in the pellet culture medium were decreased after PKF treatment. All of these chondrogenic effects appeared to be mediated through the canonical WNT signaling pathway, since the target gene Axin2 and other WNT members, such as TCF4 and β-catenin , were upregulated by BIO and downregulated by PKF, respectively, and BIO induced nuclear translocation of β-catenin while PKF inhibited β-catenin translocation into the nucleus. We concluded that addition of BIO to a chondrogenic medium of hMSCs resulted in a loss of cartilage formation, while PKF induced chondrogenic differentiation and cartilage matrix deposition and inhibited hypertrophic differentiation. However, BIO promoted cell survival by inhibiting apoptosis while PKF induced cell apoptosis. This result indicates that either an overexpression or overinhibition of WNT signaling to some extent causes harmful effects on chondrogenic differentiation. Cartilage tissue engineering could benefit from the adjustment of the critical level of WNT signaling during chondrogenesis of hMSC.

  5. Engineering the bioelectrochemical interface using functional nanomaterials and microchip technique toward sensitive and portable electrochemical biosensors.

    PubMed

    Jia, Xiaofang; Dong, Shaojun; Wang, Erkang

    2016-02-15

    Electrochemical biosensors have played active roles at the forefront of bioanalysis because they have the potential to achieve sensitive, specific and low-cost detection of biomolecules and many others. Engineering the electrochemical sensing interface with functional nanomaterials leads to novel electrochemical biosensors with improved performances in terms of sensitivity, selectivity, stability and simplicity. Functional nanomaterials possess good conductivity, catalytic activity, biocompatibility and high surface area. Coupled with bio-recognition elements, these features can amplify signal transduction and biorecognition events, resulting in highly sensitive biosensing. Additionally, microfluidic electrochemical biosensors have attracted considerable attention on account of their miniature, portable and low-cost systems as well as high fabrication throughput and ease of scaleup. For example, electrochemical enzymetic biosensors and aptamer biosensors (aptasensors) based on the integrated microchip can be used for portable point-of-care diagnostics and environmental monitoring. This review is a summary of our recent progress in the field of electrochemical biosensors, including aptasensors, cytosensors, enzymatic biosensors and self-powered biosensors based on biofuel cells. We presented the advantages that functional nanomaterials and microfluidic chip technology bring to the electrochemical biosensors, together with future prospects and possible challenges. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Transfer printing techniques for materials assembly and micro/nanodevice fabrication.

    PubMed

    Carlson, Andrew; Bowen, Audrey M; Huang, Yonggang; Nuzzo, Ralph G; Rogers, John A

    2012-10-09

    Transfer printing represents a set of techniques for deterministic assembly of micro-and nanomaterials into spatially organized, functional arrangements with two and three-dimensional layouts. Such processes provide versatile routes not only to test structures and vehicles for scientific studies but also to high-performance, heterogeneously integrated functional systems, including those in flexible electronics, three-dimensional and/or curvilinear optoelectronics, and bio-integrated sensing and therapeutic devices. This article summarizes recent advances in a variety of transfer printing techniques, ranging from the mechanics and materials aspects that govern their operation to engineering features of their use in systems with varying levels of complexity. A concluding section presents perspectives on opportunities for basic and applied research, and on emerging use of these methods in high throughput, industrial-scale manufacturing. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Microbial Consortia Engineering for Cellular Factories: in vitro to in silico systems

    PubMed Central

    Bernstein, Hans C; Carlson, Ross P

    2012-01-01

    This mini-review discusses the current state of experimental and computational microbial consortia engineering with a focus on cellular factories. A discussion of promising ecological theories central to community resource usage is presented to facilitate interpretation of consortial designs. Recent case studies exemplifying different resource usage motifs and consortial assembly templates are presented. The review also highlights in silico approaches to design and to analyze consortia with an emphasis on stoichiometric modeling methods. The discipline of microbial consortia engineering possesses a widely accepted potential to generate highly novel and effective bio-catalysts for applications from biofuels to specialty chemicals to enhanced mineral recovery. PMID:24688677

  8. BioSearch: a semantic search engine for Bio2RDF

    PubMed Central

    Qiu, Honglei; Huang, Jiacheng

    2017-01-01

    Abstract Biomedical data are growing at an incredible pace and require substantial expertise to organize data in a manner that makes them easily findable, accessible, interoperable and reusable. Massive effort has been devoted to using Semantic Web standards and technologies to create a network of Linked Data for the life sciences, among others. However, while these data are accessible through programmatic means, effective user interfaces for non-experts to SPARQL endpoints are few and far between. Contributing to user frustrations is that data are not necessarily described using common vocabularies, thereby making it difficult to aggregate results, especially when distributed across multiple SPARQL endpoints. We propose BioSearch — a semantic search engine that uses ontologies to enhance federated query construction and organize search results. BioSearch also features a simplified query interface that allows users to optionally filter their keywords according to classes, properties and datasets. User evaluation demonstrated that BioSearch is more effective and usable than two state of the art search and browsing solutions. Database URL: http://ws.nju.edu.cn/biosearch/ PMID:29220451

  9. BioBrick assembly standards and techniques and associated software tools.

    PubMed

    Røkke, Gunvor; Korvald, Eirin; Pahr, Jarle; Oyås, Ove; Lale, Rahmi

    2014-01-01

    The BioBrick idea was developed to introduce the engineering principles of abstraction and standardization into synthetic biology. BioBricks are DNA sequences that serve a defined biological function and can be readily assembled with any other BioBrick parts to create new BioBricks with novel properties. In order to achieve this, several assembly standards can be used. Which assembly standards a BioBrick is compatible with, depends on the prefix and suffix sequences surrounding the part. In this chapter, five of the most common assembly standards will be described, as well as some of the most used assembly techniques, cloning procedures, and a presentation of the available software tools that can be used for deciding on the best method for assembling of different BioBricks, and searching for BioBrick parts in the Registry of Standard Biological Parts database.

  10. Dictionary-driven prokaryotic gene finding

    PubMed Central

    Shibuya, Tetsuo; Rigoutsos, Isidore

    2002-01-01

    Gene identification, also known as gene finding or gene recognition, is among the important problems of molecular biology that have been receiving increasing attention with the advent of large scale sequencing projects. Previous strategies for solving this problem can be categorized into essentially two schools of thought: one school employs sequence composition statistics, whereas the other relies on database similarity searches. In this paper, we propose a new gene identification scheme that combines the best characteristics from each of these two schools. In particular, our method determines gene candidates among the ORFs that can be identified in a given DNA strand through the use of the Bio-Dictionary, a database of patterns that covers essentially all of the currently available sample of the natural protein sequence space. Our approach relies entirely on the use of redundant patterns as the agents on which the presence or absence of genes is predicated and does not employ any additional evidence, e.g. ribosome-binding site signals. The Bio-Dictionary Gene Finder (BDGF), the algorithm’s implementation, is a single computational engine able to handle the gene identification task across distinct archaeal and bacterial genomes. The engine exhibits performance that is characterized by simultaneous very high values of sensitivity and specificity, and a high percentage of correctly predicted start sites. Using a collection of patterns derived from an old (June 2000) release of the Swiss-Prot/TrEMBL database that contained 451 602 proteins and fragments, we demonstrate our method’s generality and capabilities through an extensive analysis of 17 complete archaeal and bacterial genomes. Examples of previously unreported genes are also shown and discussed in detail. PMID:12060689

  11. A Bio-Catalytic Approach to Aliphatic Ketones

    PubMed Central

    Xiong, Mingyong; Deng, Jin; Woodruff, Adam P.; Zhu, Minshan; Zhou, Jun; Park, Sun Wook; Li, Hui; Fu, Yao; Zhang, Kechun

    2012-01-01

    Depleting oil reserves and growing environmental concerns have necessitated the development of sustainable processes to fuels and chemicals. Here we have developed a general metabolic platform in E. coli to biosynthesize carboxylic acids. By engineering selectivity of 2-ketoacid decarboxylases and screening for promiscuous aldehyde dehydrogenases, synthetic pathways were constructed to produce both C5 and C6 acids. In particular, the production of isovaleric acid reached 32 g/L (0.22 g/g glucose yield), which is 58% of the theoretical yield. Furthermore, we have developed solid base catalysts to efficiently ketonize the bio-derived carboxylic acids such as isovaleric acid and isocaproic acid into high volume industrial ketones: methyl isobutyl ketone (MIBK, yield 84%), diisobutyl ketone (DIBK, yield 66%) and methyl isoamyl ketone (MIAK, yield 81%). This hybrid “Bio-Catalytic conversion” approach provides a general strategy to manufacture aliphatic ketones, and represents an alternate route to expanding the repertoire of renewable chemicals. PMID:22416247

  12. A bio-catalytic approach to aliphatic ketones.

    PubMed

    Xiong, Mingyong; Deng, Jin; Woodruff, Adam P; Zhu, Minshan; Zhou, Jun; Park, Sun Wook; Li, Hui; Fu, Yao; Zhang, Kechun

    2012-01-01

    Depleting oil reserves and growing environmental concerns have necessitated the development of sustainable processes to fuels and chemicals. Here we have developed a general metabolic platform in E. coli to biosynthesize carboxylic acids. By engineering selectivity of 2-ketoacid decarboxylases and screening for promiscuous aldehyde dehydrogenases, synthetic pathways were constructed to produce both C5 and C6 acids. In particular, the production of isovaleric acid reached 32 g/L (0.22 g/g glucose yield), which is 58% of the theoretical yield. Furthermore, we have developed solid base catalysts to efficiently ketonize the bio-derived carboxylic acids such as isovaleric acid and isocaproic acid into high volume industrial ketones: methyl isobutyl ketone (MIBK, yield 84%), diisobutyl ketone (DIBK, yield 66%) and methyl isoamyl ketone (MIAK, yield 81%). This hybrid "Bio-Catalytic conversion" approach provides a general strategy to manufacture aliphatic ketones, and represents an alternate route to expanding the repertoire of renewable chemicals.

  13. Synthesis, characterization and foaming of PHEA-PLLA, a new graft copolymer for biomedical engineering.

    PubMed

    Carfì Pavia, Francesco; La Carrubba, Vincenzo; Brucato, Valerio; Palumbo, Fabio Salvatore; Giammona, Gaetano

    2014-08-01

    In this study a chemical grafting procedure was set up in order to link high molecular weight poly L-lactic acid (PLLA) chains to the hydrophilic α,β-poly(N-2-hydroxyethyl)-DL-aspartamide (PHEA) backbone. A graft copolymer named PHEA-g-PLLA (or simply PHEA-PLLA) was obtained bearing a degree of derivatization of 1.0 mol.% of PLLA as grafted chain. This new hybrid derivative offers both the opportune crystallinity necessary for the production of scaffolds trough a thermally induced phase separation (TIPS) technique and the proper chemical reactivity to perform further functionalizations with bio-effectors and drugs. PHEA-PLLA porous scaffolds for tissue engineering applications were successfully obtained via TIPS and characterized. Structures with an open porosity and a good level of interconnection were detected. As the applicability of the scaffold is mainly dependent on its pore size, preliminary studies about the mechanisms governing scaffold's pore diameter were carried out. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Adsorption laboratory experiment for undergraduate chemical engineering: Introducing kinetic, equilibrium and thermodynamic concepts

    NASA Astrophysics Data System (ADS)

    Muryanto, S.; Djatmiko Hadi, S.

    2016-11-01

    Adsorption laboratory experiment for undergraduate chemical engineering program is discussed. The experiment demonstrated adsorption of copper ions commonly found in wastewater using bio-sorbent, i.e. agricultural wastes. The adsorption was performed in a batch mode under various parameters: adsorption time (up to 120 min), initial pH (2 to 6), adsorbent dose (2.0 to 12.0 g L-1), adsorbent size (50 to 170 mesh), initial Cu2+ concentration (25 to 100 ppm) and temperatures (room temp to 40°C). The equilibrium and kinetic data of the experiments were calculated using the two commonly used isotherms: Langmuir and Lagergren pseudo-first-order kinetics. The maximum adsorption capacity for Cu2+ was found as 94.34 mg g-1. Thermodynamically, the adsorption process was spontaneous and endothermic. The calculated activation energy for the adsorption was observed as high as 127.94 kJ mol-1. Pedagogically, the experiment was assumed to be important in increasing student understanding of kinetic, equilibrium and thermodynamic concepts.

  15. Liquid fuel generation from algal biomass via a two-step process: effect of feedstocks.

    PubMed

    Xu, Yu-Ping; Duan, Pei-Gao; Wang, Feng; Guan, Qing-Qing

    2018-01-01

    In this study, a two-step processing method (hydrothermal liquefaction followed by catalytic upgrading) was used to produce upgraded bio-oil. A comprehensive screening analysis of algal species, including four microalgae and four macroalgae, was conducted to bridge the gap between previous accounts of microalgae and macroalgae hydrothermal liquefaction and the upgrading process of the resulting crude bio-oils. Hydrothermal liquefaction using eight algal biomasses was performed at 350 °C for 1 h. The microalgae always produced a higher crude bio-oil yield than the macroalgae due to their high lipid content, among which Schizochytrium limacinum provided the maximum crude bio-oil yield of 54.42 wt%. For microalgae, higher amounts of N in the biomass resulted in higher amounts of N in the crude bio-oil; however, contrary results were observed for the macroalgae. The crude bio-oils generated from both the microalgae and macroalgae were characterized as having a high viscosity, total acid number, and heteroatom content, and they were influenced by the biochemical compositions of the feedstocks. Next, all eight-crude bio-oils were treated at 400 °C for 2 h with 10 wt% Ru/C using tetralin as the hydrogen donor. The hydrogen source was provided after tetralin was transformed to naphthalene. All the upgraded bio-oils had higher energy densities and significantly lower N, O, and S contents and viscosities than their corresponding crude bio-oils. However, the H/C molar ratio of the upgraded bio-oils decreased due to the absence of external hydrogen relative to the crude bio-oils. The S content of the upgraded bio-oil produced from upgrading the Schizochytrium limacinum crude bio-oil was even close to the 50 ppm requirement of China IV diesel. Microalgae are better feedstocks than macroalgae for liquid fuel production. Biochemical components have a significant impact on the yield and composition of crude bio-oil. Tetralin does not perform as well as external hydrogen for controlling coke formation. The S content of the upgraded bio-oil can be reduced to 76 ppm for the crude bio-oil produced from Schizochytrium limacinum . Upgraded bio-oils have similar properties to those of naphtha and jet fuel.

  16. Teaching Modules on Modeling and Control of Piezoactuators for System Dynamics, Controls, and Mechatronics Courses

    ERIC Educational Resources Information Center

    Leang, K. K.; Zou, Q.; Pannozzo, G.

    2010-01-01

    Piezoelectric actuators (or piezoactuators) are known for their nanoresolution and high-speed positioning capabilities. Therefore, they are used in scanning probe microscopes and in the design of innovative surgical tools and biomedical devices. The expected growth of engineering jobs in the nano- and bio-related fields, in which piezoactuators…

  17. Advancing metabolic engineering through systems biology of industrial microorganisms.

    PubMed

    Dai, Zongjie; Nielsen, Jens

    2015-12-01

    Development of sustainable processes to produce bio-based compounds is necessary due to the severe environmental problems caused by the use of fossil resources. Metabolic engineering can facilitate the development of highly efficient cell factories to produce these compounds from renewable resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Investigation of best practices for maintenance of concrete bridge railings : [tech summary].

    DOT National Transportation Integrated Search

    2015-01-01

    The development of bio lms on concrete structures has a negative impact on aesthetics as well as on the performance and integrity : of concrete structures. Bio lms develop and grow easily when the right conditions are present, such as high rela...

  19. Bio-nano interface and environment: A critical review.

    PubMed

    Pulido-Reyes, Gerardo; Leganes, Francisco; Fernández-Piñas, Francisca; Rosal, Roberto

    2017-12-01

    The bio-nano interface is the boundary where engineered nanomaterials (ENMs) meet the biological system, exerting the biological function for which they have been designed or inducing adverse effects on other cells or organisms when they reach nontarget scenarios (i.e., the natural environment). Research has been performed to determine the fate, transport, and toxic properties of ENMs, but much of it is focused on pristine or so-called as-manufactured ENMs, or else modifications of the materials were not assessed. We review the most recent progress regarding the bio-nano interface and the transformations that ENMs undergo in the environment, paying special attention to the adsorption of environmental biomolecules on the surface of ENMs. Whereas the protein corona has received considerable attention in the fields of biomedics and human toxicology, its environmental analogue (the eco-corona) has been much less studied. A section dedicated to the analytical methods for studying and characterizing the eco-corona is also presented. We conclude by presenting and discussing the key problems and knowledge gaps that need to be resolved in the near future regarding the bio-nano interface and the eco-corona. Environ Toxicol Chem 2017;36:3181-3193. © 2017 SETAC. © 2017 SETAC.

  20. Performance characteristics of bio-inspired metal nanostructures as surface-enhanced Raman scattered (SERS) substrates

    DOE PAGES

    Areizaga-Martinez, Hector I.; Kravchenko, Ivan; Lavrik, Nickolay V.; ...

    2016-08-26

    The fabrication of high-performance plasmonic nanomaterials for bio-sensing and trace chemical detection is a field of intense theoretical and experimental research. The use of metal-silicon nanopillar arrays as analytical sensors has been reported with reasonable results in recent years. The use of bio-inspired nanocomposite structures that follow the Fibonacci numerical architecture offers the opportunity to develop nanostructures with theoretically higher and more reproducible plasmonic fields over extended areas. The work presented here describes the nanofabrication process for a series of 40 µm × 40 µm bio-inspired arrays classified as asymmetric fractals (sunflower seeds and romanesco broccoli), bilaterally symmetric (acacia leavesmore » and honeycombs), and radially symmetric (such as orchids and lily flowers) using electron beam lithography. In addition, analytical capabilities were evaluated using surface-enhanced Raman scattering (SERS). Here, the substrate characterization and SERS performance of the developed substrates as the strategies to assess the design performance are presented and discussed.« less

  1. Performance characteristics of bio-inspired metal nanostructures as surface-enhanced Raman scattered (SERS) substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Areizaga-Martinez, Hector I.; Kravchenko, Ivan; Lavrik, Nickolay V.

    The fabrication of high-performance plasmonic nanomaterials for bio-sensing and trace chemical detection is a field of intense theoretical and experimental research. The use of metal-silicon nanopillar arrays as analytical sensors has been reported with reasonable results in recent years. The use of bio-inspired nanocomposite structures that follow the Fibonacci numerical architecture offers the opportunity to develop nanostructures with theoretically higher and more reproducible plasmonic fields over extended areas. The work presented here describes the nanofabrication process for a series of 40 µm × 40 µm bio-inspired arrays classified as asymmetric fractals (sunflower seeds and romanesco broccoli), bilaterally symmetric (acacia leavesmore » and honeycombs), and radially symmetric (such as orchids and lily flowers) using electron beam lithography. In addition, analytical capabilities were evaluated using surface-enhanced Raman scattering (SERS). Here, the substrate characterization and SERS performance of the developed substrates as the strategies to assess the design performance are presented and discussed.« less

  2. Performance Characteristics of Bio-Inspired Metal Nanostructures as Surface-Enhanced Raman Scattered (SERS) Substrates.

    PubMed

    Areizaga-Martinez, Hector I; Kravchenko, Ivan; Lavrik, Nickolay V; Sepaniak, Michael J; Hernández-Rivera, Samuel P; De Jesús, Marco A

    2016-09-01

    The fabrication of high-performance plasmonic nanomaterials for bio-sensing and trace chemical detection is a field of intense theoretical and experimental research. The use of metal-silicon nanopillar arrays as analytical sensors has been reported with reasonable results in recent years. The use of bio-inspired nanocomposite structures that follow the Fibonacci numerical architecture offers the opportunity to develop nanostructures with theoretically higher and more reproducible plasmonic fields over extended areas. The work presented here describes the nanofabrication process for a series of 40 µm × 40 µm bio-inspired arrays classified as asymmetric fractals (sunflower seeds and romanesco broccoli), bilaterally symmetric (acacia leaves and honeycombs), and radially symmetric (such as orchids and lily flowers) using electron beam lithography. In addition, analytical capabilities were evaluated using surface-enhanced Raman scattering (SERS). The substrate characterization and SERS performance of the developed substrates as the strategies to assess the design performance are presented and discussed. © The Author(s) 2016.

  3. Processing and characterization of bio-based composites

    NASA Astrophysics Data System (ADS)

    Lu, Hong

    Much research has focused on bio-based composites as a potential material to replace petroleum-based plastics. Considering the high price of Polyhydroxyalkanoates (PHAs), PHA/ Distiller's Dried Grains with Solubles (DDGS) composite is a promising economical and high-performance biodegradable material. In this paper, we discuss the effect of DDGS on PHA composites in balancing cost with material performance. Poly (lactic acid) PLA/DDGS composite is another excellent biodegradable composite, although as a bio-based polymer its degradation time is relatively long. The goal of this research is therefore to accelerate the degradation process for this material. Both bio-based composites were extruded through a twin-screw microcompounder, and the two materials were uniformly mixed. The morphology of the samples was examined using a Scanning Electron Microscope (SEM); thermal stability was determined with a Thermal Gravimetric Analyzer (TGA); other thermal properties were studied using Differential Scanning Calorimetry (DSC) and a Dynamic Mechanical Analyzer (DMA). Viscoelastic properties were also evaluated using a Rheometer.

  4. Studies on Experimental Ontology and Knowledge Service Development in Bio-Environmental Engineering

    NASA Astrophysics Data System (ADS)

    Zhang, Yunliang

    2018-01-01

    The existing domain-related ontology and information service patterns are analyzed, and the main problems faced by the experimental scheme knowledge service were clarified. The ontology framework model for knowledge service of Bio-environmental Engineering was proposed from the aspects of experimental materials, experimental conditions and experimental instruments, and this ontology will be combined with existing knowledge organization systems to organize scientific and technological literatures, data and experimental schemes. With the similarity and priority calculation, it can improve the related domain research.

  5. Influence of bio-additives on combustion of liquid fuels

    NASA Astrophysics Data System (ADS)

    Patsch, Marek; Durčanský, Peter

    2016-06-01

    In this contribution there are analyses of the course of the pressure curves, which were measured in the diesel engine MD UR IV, which is often used in cogeneration units. The results of the analyses confront the properties and quality of fuels. The measuring was realized with a constant rotation speed of the engine and by using different fuels. The fuels were pure diesel fuels and diesel fuel with bio-additives of hydrogenate RO (rape oil), FAME, and bioethanol.

  6. Bio-drying of municipal solid waste with high water content by aeration procedures regulation and inoculation.

    PubMed

    Zhang, Dong-Qing; He, Pin-Jing; Jin, Tai-Feng; Shao, Li-Ming

    2008-12-01

    To improve the water content reduction of municipal solid waste with high water content, the operations of supplementing a hydrolytic stage prior to aerobic degradation and inoculating the bio-drying products were conducted. A 'bio-drying index' was used to evaluate the bio-drying performance. For the aerobic processes, the inoculation accelerated organics degradation, enhanced the lignocelluloses degradation rate by 10.4%, and lowered water content by 7.0%. For the combined hydrolytic-aerobic processes, the inoculum addition had almost no positive effect on the bio-drying efficiency, but it enhanced the lignocelluloses degradation rate by 9.6% and strengthened the acidogenesis in the hydrolytic stage. Compared with the aerobic processes, the combined processes had a higher bio-drying index (4.20 for non-inoculated and 3.67 for the inoculated trials). Moreover, the lowest final water content occurred in the combined process without inoculation (50.5% decreased from an initial 72.0%).

  7. David Brandner | NREL

    Science.gov Websites

    chemical reaction engineering and transport phenomena Analytical analysis of complex bio-derived samples and Lignin Areas of Expertise Analytical analysis of complex samples Chemical reaction engineering and

  8. Bio-based production of organic acids with Corynebacterium glutamicum

    PubMed Central

    Wieschalka, Stefan; Blombach, Bastian; Bott, Michael; Eikmanns, Bernhard J

    2013-01-01

    The shortage of oil resources, the steadily rising oil prices and the impact of its use on the environment evokes an increasing political, industrial and technical interest for development of safe and efficient processes for the production of chemicals from renewable biomass. Thus, microbial fermentation of renewable feedstocks found its way in white biotechnology, complementing more and more traditional crude oil-based chemical processes. Rational strain design of appropriate microorganisms has become possible due to steadily increasing knowledge on metabolism and pathway regulation of industrially relevant organisms and, aside from process engineering and optimization, has an outstanding impact on improving the performance of such hosts. Corynebacterium glutamicum is well known as workhorse for the industrial production of numerous amino acids. However, recent studies also explored the usefulness of this organism for the production of several organic acids and great efforts have been made for improvement of the performance. This review summarizes the current knowledge and recent achievements on metabolic engineering approaches to tailor C. glutamicum for the bio-based production of organic acids. We focus here on the fermentative production of pyruvate, l-and d-lactate, 2-ketoisovalerate, 2-ketoglutarate, and succinate. These organic acids represent a class of compounds with manifold application ranges, e.g. in pharmaceutical and cosmetics industry, as food additives, and economically very interesting, as precursors for a variety of bulk chemicals and commercially important polymers. Funding Information Work in the laboratories of the authors was supported by the Fachagentur Nachwachsende Rohstoffe (FNR) of the Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV; FNR Grants 220-095-08A and 220-095-08D; Bio-ProChemBB project, ERA-IB programme), by the Deutsche Bundesstiftung Umwelt (DBU Grant AZ13040/05) and the Evonik Degussa AG. PMID:23199277

  9. Performance Assessment of the CapitalBio Mycobacterium Identification Array System for Identification of Mycobacteria

    PubMed Central

    Liu, Jingbo; Yan, Zihe; Han, Min; Han, Zhijun; Jin, Lingjie; Zhao, Yanlin

    2012-01-01

    The CapitalBio Mycobacterium identification microarray system is a rapid system for the detection of Mycobacterium tuberculosis. The performance of this system was assessed with 24 reference strains, 486 Mycobacterium tuberculosis clinical isolates, and 40 clinical samples and then compared to the “gold standard” of DNA sequencing. The CapitalBio Mycobacterium identification microarray system showed highly concordant identification results of 100% and 98.4% for Mycobacterium tuberculosis complex (MTC) and nontuberculous mycobacteria (NTM), respectively. The sensitivity and specificity of the CapitalBio Mycobacterium identification array for identification of Mycobacterium tuberculosis isolates were 99.6% and 100%, respectively, for direct detection and identification of clinical samples, and the overall sensitivity was 52.5%. It was 100% for sputum, 16.7% for pleural fluid, and 10% for bronchoalveolar lavage fluid, respectively. The total assay was completed in 6 h, including DNA extraction, PCR, and hybridization. The results of this study confirm the utility of this system for the rapid identification of mycobacteria and suggest that the CapitalBio Mycobacterium identification array is a molecular diagnostic technique with high sensitivity and specificity that has the capacity to quickly identify most mycobacteria. PMID:22090408

  10. Experimental investigation of performance and emissions of a VCR diesel engine fuelled with n-butanol diesel blends under varying engine parameters.

    PubMed

    Nayyar, Ashish; Sharma, Dilip; Soni, Shyam Lal; Mathur, Alok

    2017-09-01

    The continuous rise in the cost of fossil fuels as well as in environmental pollution has attracted research in the area of clean alternative fuels for improving the performance and emissions of internal combustion (IC) engines. In the present work, n-butanol is treated as a bio-fuel and investigations have been made to evaluate the feasibility of replacing diesel with a suitable n-butanol-diesel blend. In the current research, an experimental investigation was carried out on a variable compression ratio CI engine with n-butanol-diesel blends (10-25% by volume) to determine the optimum blending ratio and optimum operating parameters of the engine for reduced emissions. The best results of performance and emissions were observed for 20% n-butanol-diesel blend (B20) at a higher compression ratio as compared to diesel while keeping the other parameters unchanged. The observed deterioration in engine performance was within tolerable limits. The reductions in smoke, nitrogen oxides (NO x ), and carbon monoxide (CO) were observed up to 56.52, 17.19, and 30.43%, respectively, for B20 in comparison to diesel at rated power. However, carbon dioxide (CO 2 ) and hydrocarbons (HC) were found to be higher by 17.58 and 15.78%, respectively, for B20. It is concluded that n-butanol-diesel blend would be a potential fuel to control emissions from diesel engines. Graphical abstract ᅟ.

  11. Applying macromolecular crowding to 3D bioprinting: fabrication of 3D hierarchical porous collagen-based hydrogel constructs.

    PubMed

    Ng, Wei Long; Goh, Min Hao; Yeong, Wai Yee; Naing, May Win

    2018-02-27

    Native tissues and/or organs possess complex hierarchical porous structures that confer highly-specific cellular functions. Despite advances in fabrication processes, it is still very challenging to emulate the hierarchical porous collagen architecture found in most native tissues. Hence, the ability to recreate such hierarchical porous structures would result in biomimetic tissue-engineered constructs. Here, a single-step drop-on-demand (DOD) bioprinting strategy is proposed to fabricate hierarchical porous collagen-based hydrogels. Printable macromolecule-based bio-inks (polyvinylpyrrolidone, PVP) have been developed and printed in a DOD manner to manipulate the porosity within the multi-layered collagen-based hydrogels by altering the collagen fibrillogenesis process. The experimental results have indicated that hierarchical porous collagen structures could be achieved by controlling the number of macromolecule-based bio-ink droplets printed on each printed collagen layer. This facile single-step bioprinting process could be useful for the structural design of collagen-based hydrogels for various tissue engineering applications.

  12. Agreement between Medline searches using the Medline-CD-Rom and Internet Pubmed, BioMedNet, Medscape and Gateway search-engines.

    PubMed

    Caro-Rojas, Rosa Angela; Eslava-Schmalbach, Javier H

    2005-01-01

    To compare the information obtained from the Medline database using Internet commercial search engines with that obtained from a compact disc (Medline-CD). An agreement study was carried out based on 101 clinical scenarios provided by specialists in internal medicine, pharmacy, gynaecology-obstetrics, surgery and paediatrics. 175 search strategies were employed using the connector AND plus text within quotation marks. The search was limited to 1991-1999. Internet search-engines were selected by common criteria. Identical search strategies were independently applied to and masked from Internet search engines, as well as the Medline-CD. 3,488 articles were obtained using 129 search strategies. Agreement with the Medline-CD was 54% for PubMed, 57% for Gateway, 54% for Medscape and 65% for BioMedNet. The highest agreement rate for a given speciality (paediatrics) was 78.1% for BioMedNet, having greater -/- than +/+ agreement. Even though free access to Medline has encouraged the boom and growth of evidence-based medicine, these results must be considered within the context of which search engine was selected for doing the searches. The Internet search engines studied showed a poor agreement with the Medline-CD, the rate of agreement differing according to speciality, thus significantly affecting searches and their reproducibility. Software designed for conducting Medline database searches, including the Medline-CD, must be standardised and validated.

  13. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives.

    PubMed

    Navya, P N; Daima, Hemant Kumar

    2016-01-01

    Innovative engineered nanomaterials are at the leading edge of rapidly emerging fields of nanobiotechnology and nanomedicine. Meticulous synthesis, unique physicochemical properties, manifestation of chemical or biological moieties on the surface of materials make engineered nanostructures suitable for a variety of biomedical applications. Besides, tailored nanomaterials exhibit entirely novel therapeutic applications with better functionality, sensitivity, efficiency and specificity due to their customized unique physicochemical and surface properties. Additionally, such designer made nanomaterials has potential to generate series of interactions with various biological entities including DNA, proteins, membranes, cells and organelles at nano-bio interface. These nano-bio interactions are driven by colloidal forces and predominantly depend on the dynamic physicochemical and surface properties of nanomaterials. Nevertheless, recent development and atomic scale tailoring of various physical, chemical and surface properties of nanomaterials is promising to dictate their interaction in anticipated manner with biological entities for biomedical applications. As a result, rationally designed nanomaterials are in extensive demand for bio-molecular detection and diagnostics, therapeutics, drug and gene delivery, fluorescent labelling, tissue engineering, biochemical sensing and other pharmaceuticals applications. However, toxicity and risk associated with engineered nanomaterials is rather unclear or not well understood; which is gaining considerable attention and the field of nanotoxicology is evolving promptly. Therefore, this review explores current knowledge of articulate engineering of nanomaterials for biomedical applications with special attention on potential toxicological perspectives.

  14. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives

    NASA Astrophysics Data System (ADS)

    Navya, P. N.; Daima, Hemant Kumar

    2016-02-01

    Innovative engineered nanomaterials are at the leading edge of rapidly emerging fields of nanobiotechnology and nanomedicine. Meticulous synthesis, unique physicochemical properties, manifestation of chemical or biological moieties on the surface of materials make engineered nanostructures suitable for a variety of biomedical applications. Besides, tailored nanomaterials exhibit entirely novel therapeutic applications with better functionality, sensitivity, efficiency and specificity due to their customized unique physicochemical and surface properties. Additionally, such designer made nanomaterials has potential to generate series of interactions with various biological entities including DNA, proteins, membranes, cells and organelles at nano-bio interface. These nano-bio interactions are driven by colloidal forces and predominantly depend on the dynamic physicochemical and surface properties of nanomaterials. Nevertheless, recent development and atomic scale tailoring of various physical, chemical and surface properties of nanomaterials is promising to dictate their interaction in anticipated manner with biological entities for biomedical applications. As a result, rationally designed nanomaterials are in extensive demand for bio-molecular detection and diagnostics, therapeutics, drug and gene delivery, fluorescent labelling, tissue engineering, biochemical sensing and other pharmaceuticals applications. However, toxicity and risk associated with engineered nanomaterials is rather unclear or not well understood; which is gaining considerable attention and the field of nanotoxicology is evolving promptly. Therefore, this review explores current knowledge of articulate engineering of nanomaterials for biomedical applications with special attention on potential toxicological perspectives.

  15. Bio-derived Fuel Blend Dilution of Marine Engine Oil and Imapct on Friction and Wear Behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajayi, Oyelayo O.; Lorenzo-Martin, Cinta; Fenske, George R.

    To reduce the amount of petroleum-derived fuel used in vehicles and vessels powered by internal combustion engines, the addition of bio-derived fuel extenders is a common practice. Ethanol is perhaps the most common bio-derived fuel used for blending, and butanol is being evaluated as a promising alternative. The present study determined the fuel dilution rate of three lubricating oils (E0, E10, and i-B16) in a marine engine operating in on-water conditions with a start-and-stop cycle protocol. The level of fuel dilution increased with the number of cycles for all three fuels. The most dilution was observed with i-B16 fuel, andmore » the least with E10 fuel. In all cases, fuel dilution substantially reduced the oil viscosity. The impacts of fuel dilution and the consequent viscosity reduction on the lubricating capability of the engine oil in terms of friction, wear, and scuffing prevention were evaluated by four different tests protocols. Although the fuel dilution of the engine oil had minimal effect on friction, because the test conditions were under the boundary lubrication regime, significant effects were observed on wear in many cases. Fuel dilution also was observed to reduce the load-carrying capacity of the engine oils in terms of scuffing load reduction.« less

  16. Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery.

    PubMed

    Baritugo, Kei-Anne; Kim, Hee Taek; David, Yokimiko; Choi, Jong-Il; Hong, Soon Ho; Jeong, Ki Jun; Choi, Jong Hyun; Joo, Jeong Chan; Park, Si Jae

    2018-05-01

    Bio-based production of industrially important chemicals provides an eco-friendly alternative to current petrochemical-based processes. Because of the limited supply of fossil fuel reserves, various technologies utilizing microbial host strains for the sustainable production of platform chemicals from renewable biomass have been developed. Corynebacterium glutamicum is a non-pathogenic industrial microbial species traditionally used for L-glutamate and L-lysine production. It is a promising species for industrial production of bio-based chemicals because of its flexible metabolism that allows the utilization of a broad spectrum of carbon sources and the production of various amino acids. Classical breeding, systems, synthetic biology, and metabolic engineering approaches have been used to improve its applications, ranging from traditional amino-acid production to modern biorefinery systems for production of value-added platform chemicals. This review describes recent advances in the development of genetic engineering tools and techniques for the establishment and optimization of metabolic pathways for bio-based production of major C2-C6 platform chemicals using recombinant C. glutamicum.

  17. Recent advances in bio-based multi-products of agricultural Jerusalem artichoke resources.

    PubMed

    Qiu, Yibin; Lei, Peng; Zhang, Yatao; Sha, Yuanyuan; Zhan, Yijing; Xu, Zongqi; Li, Sha; Xu, Hong; Ouyang, Pingkai

    2018-01-01

    The Jerusalem artichoke is a perennial plant that belongs to the sunflower family. As a non-grain crop, Jerusalem artichoke possesses a number of desirable characteristics that make it a valuable feedstock for biorefinery, such as inulin content, rapid growth, strong adaptability, and high yields. This review provides a comprehensive introduction to renewable Jerusalem artichoke-based biomass resources and recent advances in bio-based product conversion. Furthermore, we discuss the latest in the development of inulinase-producing microorganisms and enhanced inulin hydrolysis capacity of microbes by genetic engineering, which lead to a more cost-effective Jerusalem artichoke biorefinery. The review is aimed at promoting Jerusalem artichoke industry and new prospects for higher value-added production.

  18. Study on EM-parameters and EM-wave absorption properties of materials with bio-flaky particles added

    NASA Astrophysics Data System (ADS)

    Zhang, Wenqiang; Zhang, Deyuan; Xu, Yonggang; McNaughton, Ryan

    2016-01-01

    Bio-flaky particles, fabricated through deposition of carbonyl iron on the surface of disk shaped diatomite, demonstrated beneficial performance on electromagnetic parameters. This paper will detail the improvements to the electromagnetic parameters and absorbing properties of traditional absorbing material generated by the addition of bio-flaky particles. Composites' electromagnetic parameters were measured using the transmission method. Calculated test results confirmed with bio-flaky particles were added, composites' permittivity increased due to the high permeability of bio-flaky particles. Secondly, the permeability of composites increased as a result of the increased volume content of iron particles. Composites with bio-flaky particles added exhibited superlative absorption properties at 0.5 mm thickness, with a maximum reflection loss of approximately -5.1 dB at 14.4 GHz.

  19. Highly Sensitive and Reusable Membraneless Field-Effect Transistor (FET)-Type Tungsten Diselenide (WSe2) Biosensors.

    PubMed

    Lee, Hae Won; Kang, Dong-Ho; Cho, Jeong Ho; Lee, Sungjoo; Jun, Dong-Hwan; Park, Jin-Hong

    2018-05-30

    In recent years when the demand for high-performance biosensors has been aroused, a field-effect transistor (FET)-type biosensor (BioFET) has attracted great interest because of its high sensitivity, label-free detection, fast detection speed, and miniaturization. However, the insulating membrane in the conventional BioFET, which is essential in preventing the surface dangling bonds of typical semiconductors from nonspecific bindings, has limited the sensitivity of biosensors. Here, we present a highly sensitive and reusable membraneless BioFET based on a defect-free van der Waals material, tungsten diselenide (WSe 2 ). We intentionally generated a few surface defects that serve as extra binding sites for the bioreceptor immobilization through weak oxygen plasma treatment, consequently magnifying the sensitivity values to 2.87 × 10 5 A/A for 10 mM glucose. The WSe 2 BioFET also maintained its high sensitivity even after several cycles of rinsing and glucose application were repeated.

  20. Cross-Discipline Bio-Nanostructured Enhanced Photonic Multimode-Sensor Science

    DTIC Science & Technology

    2017-05-23

    experimental study aimed to combine soft material science with nanotechnology and multi-physics modeling to produce adaptable bio-nanostructure based on...degradation through optical analysis and tracking programs Protein and DNA engineering . - The properties of proteins to be used in sensors were studies

  1. BioEnergy Science Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The BioEnergy Science Center, led by Oak Ridge National Laboratory, has been making advances in biofuels for over a decade. These achievements in plant genomics, microbial engineering, biochemistry, and plant physiology will carry over into the Center for Bioenergy Innovation, a new Department of Energy bioenergy research center.

  2. Application of Extrusion-Based Hydrogel Bioprinting for Cartilage Tissue Engineering.

    PubMed

    You, Fu; Eames, B Frank; Chen, Xiongbiao

    2017-07-23

    Extrusion-based bioprinting (EBB) is a rapidly developing technique that has made substantial progress in the fabrication of constructs for cartilage tissue engineering (CTE) over the past decade. With this technique, cell-laden hydrogels or bio-inks have been extruded onto printing stages, layer-by-layer, to form three-dimensional (3D) constructs with varying sizes, shapes, and resolutions. This paper reviews the cell sources and hydrogels that can be used for bio-ink formulations in CTE application. Additionally, this paper discusses the important properties of bio-inks to be applied in the EBB technique, including biocompatibility, printability, as well as mechanical properties. The printability of a bio-ink is associated with the formation of first layer, ink rheological properties, and crosslinking mechanisms. Further, this paper discusses two bioprinting approaches to build up cartilage constructs, i.e., self-supporting hydrogel bioprinting and hybrid bioprinting, along with their applications in fabricating chondral, osteochondral, and zonally organized cartilage regenerative constructs. Lastly, current limitations and future opportunities of EBB in printing cartilage regenerative constructs are reviewed.

  3. Recent advances in endocrine, metabolic and immune disorders: mesenchymal stem cells (MSCs) and engineered scaffolds.

    PubMed

    Cantore, Stefania; Crincoli, Vito; Boccaccio, Antonio; Uva, Antonio Emmanuele; Fiorentino, Michele; Monno, Giuseppe; Bollero, Patrizio; Derla, Chiara; Fabiano, Francesca; Ballini, Andrea; Santacroce, Luigi

    2018-04-22

    New sources of stem cells in adult organisms are constantly emerging. Postnatal Mesenchymal Stem Cells (MSCs), are the most promising support to perform an effective regenerative medicine: such cells have the ability to differentiate into several lineages, such as osteoblasts and chondroblasts, providing novel strategies to improve different complex treatments, during bone regeneration. 3D-printed biomaterials can be designed with geometry aimed to induce stem cells to differentiate towards specific lineage. The interaction between stem cells easy to isolate and engineered 3D-printed scaffolds can translate the tissue bio-engineering into bone regenerative surgery. For those reasons, to better identify the complexity represented by the activities and responses of MSCs requires the advance of new target therapies which are not current in endocrine, metabolic and immune disorders and yet to be developed. This topical review briefly focuses on the new approaches of translational medicine with the use of MSCs and scaffolds engineered with the aid of 3D-printing technology, highlights the osteogenic functions then addressing their applications across the breadth of regenerative medicine. The application of bone constructs consisting of engineered scaffold and MSCs as well as the aspects related to the optimal scaffold geometry that favours the best MSCs differentiation and the improvement of concepts as "sensing surface" were also discussed. Regenerative surgery is largely growing in the field of translational medicine. The use of new sources of MSCs and the improvement of new concepts of bio-engineered scaffolds will certainly be the next step of customized medicine. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Renewable energy technology from underpinning physics to engineering application

    NASA Astrophysics Data System (ADS)

    Infield, D. G.

    2008-03-01

    The UK Energy Research Centre (UKERC) in it's submission to the DTI's 2006 Energy Review reminded us that the ''UK has abundant wind, wave and tidal resources available; its mild climate lends itself to bio-energy production, and solar radiation levels are sufficient to sustain a viable solar industry''. These technologies are at different stages of development but they all draw on basic and applied Science and Engineering. The paper will briefly review the renewable energy technologies and their potential for contributing to a sustainable energy supply. Three research topics will be highlighted that bridge the gap between the physics underpinning the energy conversion, and the engineering aspects of development and deployment; all three are highly relevant to the Government's programme on micro-generation. Two are these are taken from field of thin film photovoltaics (PV), one related to novel device development and the other to a measurement technique for assessing the manufacturing quality of PV modules and their performance. The third topic concerns the development of small building integrated wind turbines and examines the complex flow associated with such applications. The paper will conclude by listing key research challenges that are central to the search for efficient and cost-effective renewable energy generation.

  5. Cell engineering: spearheading the next generation in healthcare.

    PubMed

    Jayasinghe, Suwan N

    2008-09-01

    Manipulating living mammalian cells present fascinating possibilities for a plethora of applications within our healthcare. These imply several possibilities in tissue engineering and regenerative medicine, to those of a therapeutic nature. The physical sciences are increasingly playing a pivotal role in this endeavour by both advancing existing cell engineering technology and pioneering new protocols for the creation of biologically viable structures. In this paper, the author introduces several direct needle/channel/orifice-based cell engineering protocols, currently undergoing intense investigation for a whole host of bio-applications. Hence, each protocol's advantages and disadvantages are clearly identified, whilst recognizing their future biological and engineering challenges. In conclusion, a few selected biotechnological applications present possibilities where these protocols could undergo focused exploration. Successful development of these bio-protocols sees the emergence of unique future strategies within a clinical environment having far-reaching consequences for our healthcare.

  6. Marykate O'Brien | NREL

    Science.gov Websites

    industry partners and NREL programmatic R&D. Sustainable energy/fuels research and development Catalyst Biological Engineering, University of Colorado, 2009 Professional Experience Bio-Process Engineer, NREL, 2013 Professional Research Assistant, University of Colorado, 2007-2012 Engineering Intern, Baxter Healthcare, 2007

  7. Multilayered silica-biopolymer nanocapsules with a hydrophobic core and a hydrophilic tunable shell thickness

    NASA Astrophysics Data System (ADS)

    Vecchione, Raffaele; Luciani, Giuseppina; Calcagno, Vincenzo; Jakhmola, Anshuman; Silvestri, Brigida; Guarnieri, Daniela; Belli, Valentina; Costantini, Aniello; Netti, Paolo A.

    2016-04-01

    Stable, biocompatible, multifunctional and multicompartment nanocarriers are much needed in the field of nanomedicine. Here, we report a simple, novel strategy to design an engineered nanocarrier system featuring an oil-core/hybrid polymer/silica-shell. Silica shells with a tunable thickness were grown in situ, directly around a highly mono-disperse and stable oil-in-water emulsion system, stabilized by a double bio-functional polyelectrolyte heparin/chitosan layer. Such silica showed a complete degradation in a physiological medium (SBF) in a time frame of three days. Moreover, the outer silica shell was coated with polyethyleneglycol (PEG) in order to confer antifouling properties to the final nanocapsule. The outer silica layer combined its properties (it is an optimal bio-interface for bio-conjugations and for the embedding of hydrophilic drugs in the porous structure) with the capability to stabilize the oil core for the confinement of high payloads of lipophilic tracers (e.g. CdSe quantum dots, Nile Red) and drugs. In addition, polymer layers - besides conferring stability to the emulsion while building the silica shell - can be independently exploited if suitably functionalized, as demonstrated by conjugating chitosan with fluorescein isothiocyanate. Such numerous features in a single nanocarrier system make it very intriguing as a multifunctional platform for smart diagnosis and therapy.Stable, biocompatible, multifunctional and multicompartment nanocarriers are much needed in the field of nanomedicine. Here, we report a simple, novel strategy to design an engineered nanocarrier system featuring an oil-core/hybrid polymer/silica-shell. Silica shells with a tunable thickness were grown in situ, directly around a highly mono-disperse and stable oil-in-water emulsion system, stabilized by a double bio-functional polyelectrolyte heparin/chitosan layer. Such silica showed a complete degradation in a physiological medium (SBF) in a time frame of three days. Moreover, the outer silica shell was coated with polyethyleneglycol (PEG) in order to confer antifouling properties to the final nanocapsule. The outer silica layer combined its properties (it is an optimal bio-interface for bio-conjugations and for the embedding of hydrophilic drugs in the porous structure) with the capability to stabilize the oil core for the confinement of high payloads of lipophilic tracers (e.g. CdSe quantum dots, Nile Red) and drugs. In addition, polymer layers - besides conferring stability to the emulsion while building the silica shell - can be independently exploited if suitably functionalized, as demonstrated by conjugating chitosan with fluorescein isothiocyanate. Such numerous features in a single nanocarrier system make it very intriguing as a multifunctional platform for smart diagnosis and therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01192f

  8. Design, Optimization and Application of Small Molecule Biosensor in Metabolic Engineering.

    PubMed

    Liu, Yang; Liu, Ye; Wang, Meng

    2017-01-01

    The development of synthetic biology and metabolic engineering has painted a great future for the bio-based economy, including fuels, chemicals, and drugs produced from renewable feedstocks. With the rapid advance of genome-scale modeling, pathway assembling and genome engineering/editing, our ability to design and generate microbial cell factories with various phenotype becomes almost limitless. However, our lack of ability to measure and exert precise control over metabolite concentration related phenotypes becomes a bottleneck in metabolic engineering. Genetically encoded small molecule biosensors, which provide the means to couple metabolite concentration to measurable or actionable outputs, are highly promising solutions to the bottleneck. Here we review recent advances in the design, optimization and application of small molecule biosensor in metabolic engineering, with particular focus on optimization strategies for transcription factor (TF) based biosensors.

  9. Design, Optimization and Application of Small Molecule Biosensor in Metabolic Engineering

    PubMed Central

    Liu, Yang; Liu, Ye; Wang, Meng

    2017-01-01

    The development of synthetic biology and metabolic engineering has painted a great future for the bio-based economy, including fuels, chemicals, and drugs produced from renewable feedstocks. With the rapid advance of genome-scale modeling, pathway assembling and genome engineering/editing, our ability to design and generate microbial cell factories with various phenotype becomes almost limitless. However, our lack of ability to measure and exert precise control over metabolite concentration related phenotypes becomes a bottleneck in metabolic engineering. Genetically encoded small molecule biosensors, which provide the means to couple metabolite concentration to measurable or actionable outputs, are highly promising solutions to the bottleneck. Here we review recent advances in the design, optimization and application of small molecule biosensor in metabolic engineering, with particular focus on optimization strategies for transcription factor (TF) based biosensors. PMID:29089935

  10. Surface protection in bio-shields via a functional soft skin layer: Lessons from the turtle shell.

    PubMed

    Shelef, Yaniv; Bar-On, Benny

    2017-09-01

    The turtle shell is a functional bio-shielding element, which has evolved naturally to provide protection against predator attacks that involve biting and clawing. The near-surface architecture of the turtle shell includes a soft bi-layer skin coating - rather than a hard exterior - which functions as a first line of defense against surface damage. This architecture represents a novel type of bio-shielding configuration, namely, an inverse structural-mechanical design, rather than the hard-coated bio-shielding elements identified so far. In the current study, we used experimentally based structural modeling and FE simulations to analyze the mechanical significance of this unconventional protection architecture in terms of resistance to surface damage upon extensive indentations. We found that the functional bi-layer skin of the turtle shell, which provides graded (soft-softer-hard) mechanical characteristics to the bio-shield exterior, serves as a bumper-buffer mechanism. This material-level adaptation protects the inner core from the highly localized indentation loads via stress delocalization and extensive near-surface plasticity. The newly revealed functional bi-layer coating architecture can potentially be adapted, using synthetic materials, to considerably enhance the surface load-bearing capabilities of various engineering configurations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. FE-1 Suraev prepares a new version of the BIO-5 Rasteniya-2 Experiment

    NASA Image and Video Library

    2009-10-29

    ISS021-E-016211 (29 Oct. 2009) --- Russian cosmonaut Maxim Suraev, Expedition 21 flight engineer, works with a new growth experiment on the BIO-5 Rasteniya-2 (Plants-2) payload in the Zvezda Service Module of the International Space Station.

  12. FE-1 Suraev prepares a new version of the BIO-5 Rasteniya-2 Experiment

    NASA Image and Video Library

    2009-10-29

    ISS021-E-016204 (29 Oct. 2009) --- Russian cosmonaut Maxim Suraev, Expedition 21 flight engineer, works with a new growth experiment on the BIO-5 Rasteniya-2 (Plants-2) payload in the Zvezda Service Module of the International Space Station.

  13. BIO-5 Rasteniya-2 (Plants-2) Experiment in the LADA-16 Greenhouse

    NASA Image and Video Library

    2009-10-26

    ISS021-E-012522 (26 Oct. 2009) --- Russian cosmonaut Roman Romanenko, Expedition 21 flight engineer, poses for a photo with the current growth experiment on the BIO-5 Rasteniya-2 (Plants-2) payload in the Zvezda Service Module of the International Space Station.

  14. 3D printed porous polycaprolactone/oyster shell powder (PCL/OSP) scaffolds for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Luo, Wenfeng; Zhang, Shuangying; Lan, Yuewei; Huang, Chen; Wang, Chao; Lai, Xuexu; Chen, Hanwei; Ao, Ningjian

    2018-04-01

    In this work, oyster shell powder (OSP) was used as the bio-filler and combined with polycaprolactone (PCL) through melt blending methodology. The PCL and PCL/OSP scaffolds were prepared using additive manufacturing process. All the 3D printed scaffolds hold a highly porosity and interconnected pore structures. OSP particles are dispersed in the polymer matrix, which helped to improve the degree of crystallinity and mineralization ability of the scaffolds. There was no significant cytotoxicity of the prepared scaffolds towards MG-63 cells, and all the scaffolds showed a well ALP activity. Therefore, PCL/OSP scaffolds had a high potential to be employed in the bone tissue engineering.

  15. Utilization of waste glycerin to fuelling of spark ignition engines

    NASA Astrophysics Data System (ADS)

    Stelmasiak, Z.; Pietras, D.

    2016-09-01

    The paper discusses a possibilities of usage a simple alcohols to fuelling of spark ignition engines. Methanol and blends of methanol with glycerin, being a waste product from production of bio-components to fuels based on rapeseed oil, have been used in course of the investigations. The main objective of the research was to determine possibilities of utilization of glycerin to blending of engine fuels. The investigations have been performed using the Fiat 1100 MPI engine. Parameters obtained with the engine powered by pure methanol and by methanol- glycerin mixtures with 10÷30%vol content of glycerin were compared to parameters of the engine fuelled conventionally with the E95 gasoline. The investigations have shown increase of overall efficiency of the engine run on pure methanol with 2.5÷5.0%, and run on the mixture having 10% addition of glycerin with 2.0÷7.8%. Simultaneously, fuelling of the engine with the investigated alcohols results in reduced concentration of toxic components in exhaust gases like: CO, THC and NOx, as well as the greenhouse gas CO2.

  16. High performance catalytic distillation using CNTs-based holistic catalyst for production of high quality biodiesel

    PubMed Central

    Zhang, Dongdong; Wei, Dali; Li, Qi; Ge, Xin; Guo, Xuefeng; Xie, Zaiku; Ding, Weiping

    2014-01-01

    For production of biodiesel from bio oils by heterogeneous catalysis, high performance catalysts of transesterification and the further utilization of glycerol have been the two points of research. The process seemed easy, however, has never been well established. Here we report a novel design of catalytic distillation using hierachically integrated CNTs-based holistic catalyst to figure out the two points in one process, which shows high performance both for the conversion of bio oils to biodiesel and, unexpectedly, for the conversion of glycerol to more valuable chemicals at the same time. The method, with integration of nano, meso to macro reactor, has overwhelming advantages over common technologies using liquid acids or bases to catalyze the reactions, which suffer from the high cost of separation and unsolved utilization of glycerol. PMID:24503897

  17. High performance catalytic distillation using CNTs-based holistic catalyst for production of high quality biodiesel

    NASA Astrophysics Data System (ADS)

    Zhang, Dongdong; Wei, Dali; Li, Qi; Ge, Xin; Guo, Xuefeng; Xie, Zaiku; Ding, Weiping

    2014-02-01

    For production of biodiesel from bio oils by heterogeneous catalysis, high performance catalysts of transesterification and the further utilization of glycerol have been the two points of research. The process seemed easy, however, has never been well established. Here we report a novel design of catalytic distillation using hierachically integrated CNTs-based holistic catalyst to figure out the two points in one process, which shows high performance both for the conversion of bio oils to biodiesel and, unexpectedly, for the conversion of glycerol to more valuable chemicals at the same time. The method, with integration of nano, meso to macro reactor, has overwhelming advantages over common technologies using liquid acids or bases to catalyze the reactions, which suffer from the high cost of separation and unsolved utilization of glycerol.

  18. Combined effect of fuel-design and after-treatment system on reduction of local and global emissions from CI engine.

    PubMed

    Thiyagarajan, S; Geo, V Edwin; Martin, Leenus Jesu; Nagalingam, B

    2018-03-22

    This experimental study aims to mitigate harmful emissions from a CI engine using bio-energy with carbon capture and storage (BECCS) approach. The engine used for this experimental work is a single cylinder CI engine with a rated power of 5.2 kW at a constant speed of 1500 rpm. The BECCS approach is a combination of plant-based biofuels and carbon capture and storage (CCS) system. The whole investigation was done in four phases: (1) Substituting diesel with Karanja oil methyl ester (KOME) (2) Equal volume blending of Orange oil (ORG) with KOME (3) 20% blending of n-butanol (B) with KOME-ORG blend (4) CCS system with zeolite based non-selective catalytic reduction (NSCR) and mono ethanolamine (MEA) based selective non-catalytic reduction (SNCR) system with KOME-ORG + B20 blend. The experimental results show that substitution of diesel with KOME reduces smoke emission, but increases NO and CO 2 emission. KOME-ORG blend reduces CO 2 and smoke emissions with high NO emission due to combustion improvement. In comparison with the sole combustion of KOME at full load condition, the combination of KOME-ORG + B20 as bio-fuel with zeolite based post-combustion treatment system resulted in a maximum reduction of NO, smoke and CO 2 emission by 41%, 19% and 15% respectively.

  19. Ethanol-diesel fuel blends -- a review.

    PubMed

    Hansen, Alan C; Zhang, Qin; Lyne, Peter W L

    2005-02-01

    Ethanol is an attractive alternative fuel because it is a renewable bio-based resource and it is oxygenated, thereby providing the potential to reduce particulate emissions in compression-ignition engines. In this review the properties and specifications of ethanol blended with diesel fuel are discussed. Special emphasis is placed on the factors critical to the potential commercial use of these blends. These factors include blend properties such as stability, viscosity and lubricity, safety and materials compatibility. The effect of the fuel on engine performance, durability and emissions is also considered. The formulation of additives to correct certain key properties and maintain blend stability is suggested as a critical factor in ensuring fuel compatibility with engines. However, maintaining vehicle safety with these blends may entail fuel tank modifications. Further work is required in specifying acceptable fuel characteristics, confirming the long-term effects on engine durability, and ensuring safety in handling and storing ethanol-diesel blends.

  20. Hydrodeoxygenation of Pyrolysis Bio-Oil Over Ni Impregnated Mesoporous Materials.

    PubMed

    Lee, In-Gu; Lee, Heejin; Kang, Bo Sung; Kim, Young-Min; Kim, Sang Chai; Jung, Sang-Chul; Ko, Chang Hyun; Park, Young-Kwon

    2018-02-01

    The catalytic hydrodeoxygenation (HDO) of bio-oil over Ni-supported mesoporous materials was performed using a high pressure autoclave reactor. The actual pyrolysis oil of cork oak wood was used as a sample, and Ni/Al-SBA-15 and Ni/Al-MSU-F were used as catalysts. In addition, supercritical ethanol was added as solvent. Both Ni-supported mesoporous catalysts showed efficient HDO reaction ability. A higher heating value and pH of bio-oil were achieved by the HDO reaction over both catalysts and upgraded bio-oil had a lower viscosity. Compared to Ni/Al-MSU-F, Ni/Al- SBA-15 produced more upgraded bio-oil with a lower oxygen content and higher heating value via a catalytic HDO process.

  1. Selecting and designing with the right thermoplastic polymer for your microfluidic chip: a close look into cyclo-olefin polymer

    NASA Astrophysics Data System (ADS)

    Nevitt, Mark

    2013-03-01

    Engineers who are developing microfluidic devices and bioMEMs for life science applications have many aspects to consider when selecting the proper base materials for constructing a device. While glass and polydimethylsiloxane (PDMS) are the staple materials for proof-of-concept and prototype chip fabrication, they are not a feasible solution for commercial production due to their slow, labor-intensive production rate. Alternatively, a molded or extruded thermoplastic solution can deliver the precision, consistency, and high volume capability required for commercial scale production. Traditional thermoplastics, such as polymethylmethacrylate (PMMA), polycarbonate (PC), and polystyrene (PS), are well known by development engineers in the bioscience community; however, cyclo-olefin polymer (COP), a relative newcomer in the world of plastics, is gaining increasing attention for use in microfluidic devices due to its unique balance of key properties compared to conventional thermoplastics. In this paper, we provide a comprehensive look at the properties which make COP an excellent candidate for providing the flow cell support and reagent storage functions in microfluidic assays. We also explore the processing attributes and capabilities of COP resin and film which are crucial for manufacturing high-performance microfluidic devices.

  2. BioMEMS to bionanotechnology: state of the art in integrated biochips and future prospects

    NASA Astrophysics Data System (ADS)

    Gupta, Amit; Li, H.; Gomez, Rafael; Chang, W.-J.; Koo, Y. M.; Chang, H.; Andreadakis, G.; Akin, Demir; Bashir, Rashid

    2004-12-01

    Biomedical or Biological Micro-Electro-Mechanical- Systems (BioMEMS) have in recent years become increasingly prevalent and have found widespread use in a wide variety of applications such as diagnostics, therapeutics and tissue engineering. This paper reviews the interdisciplinary work performed in our group in recent years to develop micro-integrated devices to characterize biological entities. We present the use of electrical and mechanically based phenomena to perform characterization and various functions needed for integrated biochips. One sub-system takes advantage of the dielectrophoretic effect to sort and concentrate bacterial cells and viruses within a micro-fluidic biochip. Another sub-system measures impedance changes produced by the metabolic activity of bacterial cells to determine their viability. A third sub-system is used to detect the mass of viruses as they bind to micro-mechanical sensors. The last sub-system described has been used to detect the charge on DNA molecules as it translocates through nanopore channels. These devices with an electronic or mechanical signal output can be very useful in producing practical systems for rapid detection and characterization of cells for a wide variety of applications in the food safety and health diagnostics industries. The paper will also briefly discuss future prospects of BioMEMS and its possible impact and on bionanotechnology.

  3. [Bio-nanoscience and bio-nanotechnology: social and ethical aspects].

    PubMed

    Martín-Lomas, Manuel

    2006-01-01

    This article is an abstract of a conference with the same title presented at the XIII Jornadas sobre Derecho y Genoma Humano and is basically centred in a report for the Royal Society and the Royal Academy of Engineering entitled Nanoscience and Nanotechnology made publicly available July 2004.

  4. Influence of biochemical composition during hydrothermal liquefaction of algae on product yields and fuel properties.

    PubMed

    Shakya, Rajdeep; Adhikari, Sushil; Mahadevan, Ravishankar; Shanmugam, Saravanan R; Nam, Hyungseok; Hassan, El Barbary; Dempster, Thomas A

    2017-11-01

    Hydrothermal liquefaction (HTL) of nine algae species were performed at two reaction temperatures (280 and 320°C) to compare the effect of their biomass composition on product yields and properties. Results obtained after HTL indicate large variations in terms of bio-oil yields and its properties. The maximum bio-oil yield (66wt%) was obtained at 320°C with a high lipid containing algae Nannochloropsis. The higher heating value of bio-oils ranged from 31 to 36MJ/kg and around 50% of the bio-oils was in the vacuum gas oil range while high lipid containing algae Nannochloropsis contained a significant portion (33-42%) in the diesel range. A predictive relationship between bio-oil yields and biochemical compositions was developed and showed a broad agreement between predictive and experimental yields. The aqueous phases obtained had high amount of TOC (12-43g/L), COD (35-160g/L), TN (1-18g/L), ammonium (0.34-12g/L) and phosphate (0.7-12g/L). Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A top-down approach for fabricating free-standing bio-carbon supercapacitor electrodes with a hierarchical structure.

    PubMed

    Li, Yingzhi; Zhang, Qinghua; Zhang, Junxian; Jin, Lei; Zhao, Xin; Xu, Ting

    2015-09-23

    Biomass has delicate hierarchical structures, which inspired us to develop a cost-effective route to prepare electrode materials with rational nanostructures for use in high-performance storage devices. Here, we demonstrate a novel top-down approach for fabricating bio-carbon materials with stable structures and excellent diffusion pathways; this approach is based on carbonization with controlled chemical activation. The developed free-standing bio-carbon electrode exhibits a high specific capacitance of 204 F g(-1) at 1 A g(-1); good rate capability, as indicated by the residual initial capacitance of 85.5% at 10 A g(-1); and a long cycle life. These performance characteristics are attributed to the outstanding hierarchical structures of the electrode material. Appropriate carbonization conditions enable the bio-carbon materials to inherit the inherent hierarchical texture of the original biomass, thereby facilitating effective channels for fast ion transfer. The macropores and mesopores that result from chemical activation significantly increase the specific surface area and also play the role of temporary ion-buffering reservoirs, further shortening the ionic diffusion distance.

  6. Development of tissue-engineered self-expandable aortic stent grafts (Bio stent grafts) using in-body tissue architecture technology in beagles.

    PubMed

    Kawajiri, Hidetake; Mizuno, Takeshi; Moriwaki, Takeshi; Ishibashi-Ueda, Hatsue; Yamanami, Masashi; Kanda, Keiichi; Yaku, Hitoshi; Nakayama, Yasuhide

    2015-02-01

    In this study, we aimed to describe the development of tissue-engineered self-expandable aortic stent grafts (Bio stent graft) using in-body tissue architecture technology in beagles and to determine its mechanical and histological properties. The preparation mold was assembled by insertion of an acryl rod (outer diameter, 8.6 mm; length, 40 mm) into a self-expanding nitinol stent (internal diameter, 9.0 mm; length, 35 mm). The molds (n = 6) were embedded into the subcutaneous pouches of three beagles for 4 weeks. After harvesting and removing each rod, the excessive fragile tissue connected around the molds was trimmed, and thus tubular autologous connective tissues with the stent were obtained for use as Bio stent grafts (outer diameter, approximately 9.3 mm in all molds). The stent strut was completely surrounded by the dense collagenous membrane (thickness, ∼150 µm). The Bio stent graft luminal surface was extremely flat and smooth. The graft wall of the Bio stent graft possessed an elastic modulus that was almost two times higher than that of the native beagle abdominal aorta. This Bio stent graft is expected to exhibit excellent biocompatibility after being implanted in the aorta, which may reduce the risk of type 1 endoleaks or migration. © 2014 Wiley Periodicals, Inc.

  7. A Course in Medicine for Engineers

    ERIC Educational Resources Information Center

    Pimmel, Russell; Weed, H. R.

    1974-01-01

    Describes a course planned for bio-medical engineering students. Intended outcomes of the course include an understanding of medical problems, their courses, diagnosis and treatment, and an awareness of the physician's philosophy and approach. (GS)

  8. Bio-engineering for land stabilization : final report.

    DOT National Transportation Integrated Search

    2010-06-01

    As part of the Ohio Department of Transportations (ODOTs) ongoing effort to solve engineering problems for the Ohio : transportation system through research, The Ohio State University has undertaken a study entitled Bioengineering for : Land...

  9. Soil bioengineering measures for disaster mitigation and environmental restoration in Central America: authochtonal cuttings suitability and economic efficiency

    NASA Astrophysics Data System (ADS)

    Petrone, A.; Preti, F.

    2009-04-01

    The use of Soil Bio-Engineering techniques in Developing countries is a relevant issue for Disaster mitigation, environmental restoration and poverty reduction. Research on authochtonal plants suitable for this kind of works and on economic efficiency is essential for the divulgation of this Discipline. The present paper is focused on this two issues related to the realization of various typologies of Soil Bio-engineering works in the Humid tropic of Nicaragua. In the area of Río Blanco, located in the Department of Matagalpa, Soil bio-engineering installations were built in several sites. The particular structures built were: drainages with live fascine mattress, a live palisade, a vegetated live crib wall for riverbank protection, a vegetative covering made of a metallic net and biotextile coupled with a live palisade made of bamboo. In order to evaluate the suitability of the various plants used in the works, monitorings were performed, one in the live palisade alongside an unpaved road and the other on the live crib wall along a riverbank, collecting survival rate and morphological parameters data. Concerning the economic efficiency we proceed to a financial analysis of the works and once the unit price was obtained, we converted the amount in EPP Dollars (Equal Purchasing Power) in order to compare the Nicaraguan context with the Italian one. Among the used species we found that Madero negro (Gliricidia sepium) and Roble macuelizo (Tabebuia rosea) are adequate for Soil-bioengineering measure on slopes while Helequeme (Erythrina fusca) reported a successful behaviour only in the crib wall for riverbank protection. In the comparison of the costs in Nicaragua and in Italy, the unit price reduction for the central American country ranges between 1.5 times (for the vegetative covering) and almost 4 times (for the fascine mattress) if it's used the EPP dollar exchange rate. Thus, a conclusion can be reached with regard to hydrological-risk mitigating actions performed on a basin scale and through naturalistic techniques: not only are they technically attainable, even in hardship areas (by maximizing the contribution of the local labor force and minimizing the use of mechanical equipment), but they are also economically sustainable.

  10. Bio-oil Analysis Using Negative Electrospray Ionization: Comparative Study of High-Resolution Mass Spectrometers and Phenolic versus Sugaric Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Erica A.; Park, Soojin; Klein, Adam T.

    2012-05-16

    We have previously demonstrated that a petroleomic analysis could be performed for bio-oils and revealed the complex nature of bio-oils for the nonvolatile phenolic compounds (Smith, E.; Lee, Y. J. Energy Fuels 2010, 24, 5190−5198). As a subsequent study, we have adapted electrospray ionization in negative-ion mode to characterize a wide variety of bio-oil compounds. A comparative study of three common high-resolution mass spectrometers was performed to validate the methodology and to investigate the differences in mass discrimination and resolution. The mass spectrum is dominated by low mass compounds with m/z of 100–250, with some compounds being analyzable by gasmore » chromatography–mass spectrometry (GC–MS). We could characterize over 800 chemical compositions, with only about 40 of them being previously known in GC–MS. This unveiled a much more complex nature of bio-oils than typically shown by GC–MS. The pyrolysis products of cellulose and hemicellulose, particularly polyhydroxy cyclic hydrocarbons (or what we call “sugaric” compounds), such as levoglucosan, could be effectively characterized with this approach. Phenolic compounds from lignin pyrolysis could be clearly distinguished in a contour map of double bond equivalent (DBE) versus the number of carbons from these sugaric compounds.« less

  11. A bioprintable form of chitosan hydrogel for bone tissue engineering.

    PubMed

    Demirtaş, Tuğrul Tolga; Irmak, Gülseren; Gümüşderelioğlu, Menemşe

    2017-07-13

    Bioprinting can be defined as 3D patterning of living cells and other biologics by filling and assembling them using a computer-aided layer-by-layer deposition approach to fabricate living tissue and organ analogs for tissue engineering. The presence of cells within the ink to use a 'bio-ink' presents the potential to print 3D structures that can be implanted or printed into damaged/diseased bone tissue to promote highly controlled cell-based regeneration and remineralization of bone. In this study, it was shown for the first time that chitosan solution and its composite with nanostructured bone-like hydroxyapatite (HA) can be mixed with cells and printed successfully. MC3T3-E1 pre-osteoblast cell laden chitosan and chitosan-HA hydrogels, which were printed with the use of an extruder-based bioprinter, were characterized by comparing these hydrogels to alginate and alginate-HA hydrogels. Rheological analysis showed that all groups had viscoelastic properties. It was also shown that under simulated physiological conditions, chitosan and chitosan-HA hydrogels were stable. Also, the viscosity values of the bio-solutions were in an applicable range to be used in 3D bio-printers. Cell viability and proliferation analyses documented that after printing with bio-solutions, cells continued to be viable in all groups. It was observed that cells printed within chitosan-HA composite hydrogel had peak expression levels for early and late stages osteogenic markers. It was concluded that cells within chitosan and chitosan-HA hydrogels had mineralized and differentiated osteogenically after 21 days of culture. It was also discovered that chitosan is superior to alginate, which is the most widely used solution preferred in bioprinting systems, in terms of cell proliferation and differentiation. Thus, applicability and printability of chitosan as a bio-printing solution were clearly demonstrated. Furthermore, it was proven that the presence of bone-like nanostructured HA in alginate and chitosan hydrogels improved cell viability, proliferation and osteogenic differentiation.

  12. Saikrishna Mukkamala | NREL

    Science.gov Websites

    Saikrishna Mukkamala Saikrishna Mukkamala Researcher IV-Chemical Engineering Saikrishna.Mukkamala thermochemical, biochemical pathways Bio product and fuel characterization Education M.S. Chemical Engineering , University of Maine B.S. Chemical Engineering, JNTU-India Featured Publications S. Mukkamala, M.C. Wheeler

  13. Hydrotreatment of bio-oil distillates produced from pyrolysis and hydrothermal liquefaction of duckweed: A comparison study.

    PubMed

    Wang, Feng; Tian, Ye; Zhang, Cai-Cai; Xu, Yu-Ping; Duan, Pei-Gao

    2018-09-15

    A comprehensive comparison of hydrothermal liquefaction (HTL) to the pyrolysis of duckweed was conducted to determine the yields and components of the crude bio-oils and their distillates. The upgrading behaviors of the distillates were thoroughly investigated with the use of used engine oil as a solvent. With all other variables fixed, HTL produced crude bio-oil with a lower H/C ratio (1.28 ± 0.03) than pyrolysis did (1.45 ± 0.04). However, its distillates had a higher H/C ratio (1.60 ± 0.05) and total yield (66.1 ± 2.0 wt%) than pyrolysis (1.46 ± 0.04 and 47.2 ± 1.4 wt%, respectively). Phenolics and nitrogenous heterocycles constituted relatively major proportions of the two crude bio-oils and most of their distillates. Obvious differences in molecular composition between the two crude bio-oils and their distillates were ascribed to the distinct impacts of HTL and pyrolysis and were affected by the distillate temperature. Co-hydrotreating with used engine oil (UEO) provided the upgraded bio-oils much higher H/C ratios (~1.78 ± 0.05) and higher heating values (~45.5 ± 1.4 MJ·kg -1 ), as well as much lower contents of N, O and S compared to their initial distillates. Aromatics and alkanes constituted a large proportion in most of upgraded bio-oils. N removal from the pyrolysis distillates was easier than from the HTL distillates. Distinct differences in yields and molecular compositions for the upgraded bio-oils were also attributed to the different influences associated with the two conversion routes. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. pH Neutralization of Aqueous Bio-Oil from Switchgrass Intermediate Pyrolysis Using Process Intensification Devices

    DOE PAGES

    Park, Lydia Kyoung-Eun; Ren, Shoujie; Yiacoumi, Sotira; ...

    2017-07-20

    Despite the potential carbon-neutrality of switchgrass bio-oil, its high acidity and diverse chemical composition limit its utilization. The objectives of this research are to investigate pH neutralization of bio-oil by adding various alkali solutions in a batch system and then perform neutralization using process intensification devices, including a static mixer and a centrifugal contactor. The results indicate that sodium hydroxide and potassium hydroxide are more appropriate bases for pH neutralization of bio-oil than calcium hydroxide due to the limited solubility of calcium hydroxide in aqueous bio-oil. Mass and total acid number (TAN) balances were performed for both batch and continuous-flowmore » systems. Upon pH neutralization of bio-oil, the TAN values of the system increased after accounting the addition of alkali solution. A bio-oil heating experiment showed that the heat generated during pH neutralization did not cause a significant increase in the acidity of bio-oil. The formation of phenolic compounds during neutralization was initially suspected of increasing the system’s overall TAN value because some of these compounds (e.g., vanillic acid) act as polyprotic acids and have a stronger influence on the TAN value than monoprotic acids (e.g., acetic acid). The amount of phenolics in separated bio-oil phases, however, did not change significantly after pH neutralization. In conclusion, process intensification devices provided sufficient mixing and separation of the organic and aqueous phases, suggesting a scale-up route for the bio-oil pH neutralization process.« less

  15. pH Neutralization of Aqueous Bio-Oil from Switchgrass Intermediate Pyrolysis Using Process Intensification Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Lydia Kyoung-Eun; Ren, Shoujie; Yiacoumi, Sotira

    Despite the potential carbon-neutrality of switchgrass bio-oil, its high acidity and diverse chemical composition limit its utilization. The objectives of this research are to investigate pH neutralization of bio-oil by adding various alkali solutions in a batch system and then perform neutralization using process intensification devices, including a static mixer and a centrifugal contactor. The results indicate that sodium hydroxide and potassium hydroxide are more appropriate bases for pH neutralization of bio-oil than calcium hydroxide due to the limited solubility of calcium hydroxide in aqueous bio-oil. Mass and total acid number (TAN) balances were performed for both batch and continuous-flowmore » systems. Upon pH neutralization of bio-oil, the TAN values of the system increased after accounting the addition of alkali solution. A bio-oil heating experiment showed that the heat generated during pH neutralization did not cause a significant increase in the acidity of bio-oil. The formation of phenolic compounds during neutralization was initially suspected of increasing the system’s overall TAN value because some of these compounds (e.g., vanillic acid) act as polyprotic acids and have a stronger influence on the TAN value than monoprotic acids (e.g., acetic acid). The amount of phenolics in separated bio-oil phases, however, did not change significantly after pH neutralization. In conclusion, process intensification devices provided sufficient mixing and separation of the organic and aqueous phases, suggesting a scale-up route for the bio-oil pH neutralization process.« less

  16. 5th Bionanotox and Applications International Research Conference, Peabody, Little Rock, Arkansas, USA

    NASA Astrophysics Data System (ADS)

    Sabb, Taneicie; Chowdhury, Parimal

    2011-06-01

    "BioNanoTox and Toxicity: using Technology to Advance Discovery" was this year's theme at the 5th BioNanoTox and Applications International Research Conference held at the Peabody Hotel, Little Rock, Arkansas on November 4-5th, 2010. This year, the international participation in this conference increased to 25 countries spanning the globe. The conference began with opening remarks by Paul Howard, Associate Director of the National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, United States. Two keynote speakers, Dr. Ananth V. Annapragada and Dr. Merle G. Paule presented lectures on "Toxicity of Novel Nanoparticles for CT imaging" and "The Biology of Neurotoxicity: using Technology to Advance Discovery", respectively. Teachers, students, faculty, and scientists presented oral and poster presentations on fundamental and translational research related to BioNanoTox and related fields of science. Six presentation sessions were held over the two-day conference. There were 31 presentations and 39 posters from disciplines ranging from biology to chemistry, toxicology, nanotechnology, computational sciences, mathematics, engineering, plant science, and biotechnology. Poster presentation awards were presented to three high school students, three high school teachers, and three college students. In addition to poster awards a memorial, travel, and BioNanoTox award were presented. This year's meeting paved the way for a more outstanding meeting for the future.

  17. Security Engineering Pilot

    DTIC Science & Technology

    2013-02-28

    needed to detect and isolate the compromised component • Prevent a cyber attack exploit from reading enough information to form a coherent data set...Analysis Signal Copy Selected Sub-Bands • Gimbaled, Stabilized EO/IR Camera Ball • High Precision GPS & INS (eventual swarm capable inter-UAV coherent ... LIDAR , HSI, Chem-Bio • Multi-Platform Distributed Sensor Experiments (eg, MIMO) • Autonomous & Collaborative Multi-Platform Control • Space for

  18. Streamlining recombination-mediated genetic engineering by validating three neutral integration sites in Synechococcus sp. PCC 7002.

    PubMed

    Vogel, Anne Ilse Maria; Lale, Rahmi; Hohmann-Marriott, Martin Frank

    2017-01-01

    Synechococcus sp. PCC 7002 (henceforth Synechococcus ) is developing into a powerful synthetic biology chassis. In order to streamline the integration of genes into the Synechococcus chromosome, validation of neutral integration sites with optimization of the DNA transformation protocol parameters is necessary. Availability of BioBrick-compatible integration modules is desirable to further simplifying chromosomal integrations. We designed three BioBrick-compatible genetic modules, each targeting a separate neutral integration site, A2842, A0935, and A0159, with varying length of homologous region, spanning from 100 to 800 nt. The performance of the different modules for achieving DNA integration were tested. Our results demonstrate that 100 nt homologous regions are sufficient for inserting a 1 kb DNA fragment into the Synechococcus chromosome. By adapting a transformation protocol from a related cyanobacterium, we shortened the transformation procedure for Synechococcus significantly. The optimized transformation protocol reported in this study provides an efficient way to perform genetic engineering in Synechococcus . We demonstrated that homologous regions of 100 nt are sufficient for inserting a 1 kb DNA fragment into the three tested neutral integration sites. Integration at A2842, A0935 and A0159 results in only a minimal fitness cost for the chassis. This study contributes to developing Synechococcus as the prominent chassis for future synthetic biology applications.

  19. Photo-oxidation of tyrosine in a bio-engineered bacterioferritin 'reaction centre'-a protein model for artificial photosynthesis.

    PubMed

    Hingorani, Kastoori; Pace, Ron; Whitney, Spencer; Murray, James W; Smith, Paul; Cheah, Mun Hon; Wydrzynski, Tom; Hillier, Warwick

    2014-10-01

    The photosynthetic reaction centre (RC) is central to the conversion of solar energy into chemical energy and is a model for bio-mimetic engineering approaches to this end. We describe bio-engineering of a Photosystem II (PSII) RC inspired peptide model, building on our earlier studies. A non-photosynthetic haem containing bacterioferritin (BFR) from Escherichia coli that expresses as a homodimer was used as a protein scaffold, incorporating redox-active cofactors mimicking those of PSII. Desirable properties include: a di-nuclear metal binding site which provides ligands for bivalent metals, a hydrophobic pocket at the dimer interface which can bind a photosensitive porphyrin and presence of tyrosine residues proximal to the bound cofactors, which can be utilised as efficient electron-tunnelling intermediates. Light-induced electron transfer from proximal tyrosine residues to the photo-oxidised ZnCe6(•+), in the modified BFR reconstituted with both ZnCe6 and Mn(II), is presented. Three site-specific tyrosine variants (Y25F, Y58F and Y45F) were made to localise the redox-active tyrosine in the engineered system. The results indicate that: presence of bound Mn(II) is necessary to observe tyrosine oxidation in all BFR variants; Y45 the most important tyrosine as an immediate electron donor to the oxidised ZnCe6(•+) and that Y25 and Y58 are both redox-active in this system, but appear to function interchangebaly. High-resolution (2.1Å) crystal structures of the tyrosine variants show that there are no mutation-induced effects on the overall 3-D structure of the protein. Small effects are observed in the Y45F variant. Here, the BFR-RC represents a protein model for artificial photosynthesis. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  20. Synthetic biology in the German press: how implications of metaphors shape representations of morality and responsibility.

    PubMed

    Döring, Martin

    2018-06-24

    Synthetic biology (SynBio) represents a relatively young field of research which has developed into an important scientific endeavour. Characterised by a high degree of interdisciplinary work crossing disciplinary boundaries, such as biology, mathematics and engineering, SynBio has been, since its beginning, devoted to creating new biological functions, metabolic pathways or even minimal organisms. Although its often-articulated aim of developing new forms of life has so far not been archived, SynBio nowadays represents a well-established biotechnological approach and it has also attracted public concern, especially since Craig Venter's work on Mycoplasma Mycoides JCVI-syn1.0. Taking these developments as a starting point, the paper empirically investigates the metaphorical representations of SynBio in two leading German media publications, the daily newspaper Die Frankfurter Allgemeine Zeitung and the weekly magazine Der Spiegel between 2000 and 2010. Using a novel combination of metaphor and co-occurrence analysis, the paper engages in a systematic examination of implicit moral implications inherent in linguistic images permeating this news coverage. It demonstrates a method of how media-metaphorical representations and their moral implications of SynBio could analytically be revealed and analysed. In doing so, it aims at contributing to empirical ethical analyses of the news coverage on SynBio in particular and offers an approach that methodologically adds to literature on responsible language use, which is emerging in science and technology studies and ethical analyses of new technologies.

  1. Performance of the BioPlex 2200 HIV Ag-Ab assay for identifying acute HIV infection.

    PubMed

    Eshleman, Susan H; Piwowar-Manning, Estelle; Sivay, Mariya V; Debevec, Barbara; Veater, Stephanie; McKinstry, Laura; Bekker, Linda-Gail; Mannheimer, Sharon; Grant, Robert M; Chesney, Margaret A; Coates, Thomas J; Koblin, Beryl A; Fogel, Jessica M

    Assays that detect HIV antigen (Ag) and antibody (Ab) can be used to screen for HIV infection. To compare the performance of the BioPlex 2200 HIV Ag-Ab assay and two other Ag/Ab combination assays for detection of acute HIV infection. Samples were obtained from 24 individuals (18 from the US, 6 from South Africa); these individuals were classified as having acute infection based on the following criteria: positive qualitative RNA assay; two negative rapid tests; negative discriminatory test. The samples were tested with the BioPlex assay, the ARCHITECT HIV Ag/Ab Combo test, the Bio-Rad GS HIV Combo Ag-Ab EIA test, and a viral load assay. Twelve (50.0%) of 24 samples had RNA detected only ( > 40 to 13,476 copies/mL). Ten (43.5%) samples had reactive results with all three Ag/Ab assays, one sample was reactive with the ARCHITECT and Bio-Rad assays, and one sample was reactive with the Bio-Rad and BioPlex assays. The 11 samples that were reactive with the BioPlex assay had viral loads from 83,010 to >750,000 copies/mL; 9/11 samples were classified as Ag positive/Ab negative by the BioPlex assay. Detection of acute HIV infection was similar for the BioPlex assay and two other Ag/Ab assays. All three tests were less sensitive than a qualitative RNA assay and only detected HIV Ag when the viral load was high. The BioPlex assay detected acute infection in about half of the cases, and identified most of those infections as Ag positive/Ab negative. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Zymomonas mobilis: a novel platform for future biorefineries.

    PubMed

    He, Ming Xiong; Wu, Bo; Qin, Han; Ruan, Zhi Yong; Tan, Fu Rong; Wang, Jing Li; Shui, Zong Xia; Dai, Li Chun; Zhu, Qi Li; Pan, Ke; Tang, Xiao Yu; Wang, Wen Guo; Hu, Qi Chun

    2014-01-01

    Biosynthesis of liquid fuels and biomass-based building block chemicals from microorganisms have been regarded as a competitive alternative route to traditional. Zymomonas mobilis possesses a number of desirable characteristics for its special Entner-Doudoroff pathway, which makes it an ideal platform for both metabolic engineering and commercial-scale production of desirable bio-products as the same as Escherichia coli and Saccharomyces cerevisiae based on consideration of future biomass biorefinery. Z. mobilis has been studied extensively on both fundamental and applied level, which will provide a basis for industrial biotechnology in the future. Furthermore, metabolic engineering of Z. mobilis for enhancing bio-ethanol production from biomass resources has been significantly promoted by different methods (i.e. mutagenesis, adaptive laboratory evolution, specific gene knock-out, and metabolic engineering). In addition, the feasibility of representative metabolites, i.e. sorbitol, bionic acid, levan, succinic acid, isobutanol, and isobutanol produced by Z. mobilis and the strategies for strain improvements are also discussed or highlighted in this paper. Moreover, this review will present some guidelines for future developments in the bio-based chemical production using Z. mobilis as a novel industrial platform for future biofineries.

  3. BioSigPlot: an opensource tool for the visualization of multi-channel biomedical signals with Matlab.

    PubMed

    Boudet, Samuel; Peyrodie, Laurent; Gallois, Philippe; de l'Aulnoit, Denis Houzé; Cao, Hua; Forzy, Gérard

    2013-01-01

    This paper presents a Matlab-based software (MathWorks inc.) called BioSigPlot for the visualization of multi-channel biomedical signals, particularly for the EEG. This tool is designed for researchers on both engineering and medicine who have to collaborate to visualize and analyze signals. It aims to provide a highly customizable interface for signal processing experimentation in order to plot several kinds of signals while integrating the common tools for physician. The main advantages compared to other existing programs are the multi-dataset displaying, the synchronization with video and the online processing. On top of that, this program uses object oriented programming, so that the interface can be controlled by both graphic controls and command lines. It can be used as EEGlab plug-in but, since it is not limited to EEG, it would be distributed separately. BioSigPlot is distributed free of charge (http://biosigplot.sourceforge.net), under the terms of GNU Public License for non-commercial use and open source development.

  4. A novel route in bone tissue engineering: magnetic biomimetic scaffolds.

    PubMed

    Bock, N; Riminucci, A; Dionigi, C; Russo, A; Tampieri, A; Landi, E; Goranov, V A; Marcacci, M; Dediu, V

    2010-03-01

    In recent years, interest in tissue engineering and its solutions has increased considerably. In particular, scaffolds have become fundamental tools in bone graft substitution and are used in combination with a variety of bio-agents. However, a long-standing problem in the use of these conventional scaffolds lies in the impossibility of re-loading the scaffold with the bio-agents after implantation. This work introduces the magnetic scaffold as a conceptually new solution. The magnetic scaffold is able, via magnetic driving, to attract and take up in vivo growth factors, stem cells or other bio-agents bound to magnetic particles. The authors succeeded in developing a simple and inexpensive technique able to transform standard commercial scaffolds made of hydroxyapatite and collagen in magnetic scaffolds. This innovative process involves dip-coating of the scaffolds in aqueous ferrofluids containing iron oxide nanoparticles coated with various biopolymers. After dip-coating, the nanoparticles are integrated into the structure of the scaffolds, providing the latter with magnetization values as high as 15 emu g(-)(1) at 10 kOe. These values are suitable for generating magnetic gradients, enabling magnetic guiding in the vicinity and inside the scaffold. The magnetic scaffolds do not suffer from any structural damage during the process, maintaining their specific porosity and shape. Moreover, they do not release magnetic particles under a constant flow of simulated body fluids over a period of 8 days. Finally, preliminary studies indicate the ability of the magnetic scaffolds to support adhesion and proliferation of human bone marrow stem cells in vitro. Hence, this new type of scaffold is a valuable candidate for tissue engineering applications, featuring a novel magnetic guiding option. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. SIMULATION OF ION CONDUCTION IN α-HEMOLYSIN NANOPORES WITH COVALENTLY ATTACHED β-CYCLODEXTRIN BASED ON BOLTZMANN TRANSPORT MONTE CARLO MODEL

    PubMed Central

    Toghraee, Reza; Lee, Kyu-Il; Papke, David; Chiu, See-Wing; Jakobsson, Eric; Ravaioli, Umberto

    2009-01-01

    Ion channels, as natures’ solution to regulating biological environments, are particularly interesting to device engineers seeking to understand how natural molecular systems realize device-like functions, such as stochastic sensing of organic analytes. What’s more, attaching molecular adaptors in desired orientations inside genetically engineered ion channels, enhances the system functionality as a biosensor. In general, a hierarchy of simulation methodologies is needed to study different aspects of a biological system like ion channels. Biology Monte Carlo (BioMOCA), a three-dimensional coarse-grained particle ion channel simulator, offers a powerful and general approach to study ion channel permeation. BioMOCA is based on the Boltzmann Transport Monte Carlo (BTMC) and Particle-Particle-Particle-Mesh (P3M) methodologies developed at the University of Illinois at Urbana-Champaign. In this paper, we have employed BioMOCA to study two engineered mutations of α-HL, namely (M113F)6(M113C-D8RL2)1-β-CD and (M113N)6(T117C-D8RL3)1-β-CD. The channel conductance calculated by BioMOCA is slightly higher than experimental values. Permanent charge distributions and the geometrical shape of the channels gives rise to selectivity towards anions and also an asymmetry in I-V curves, promoting a rectification largely for cations. PMID:20938493

  6. Application of Extrusion-Based Hydrogel Bioprinting for Cartilage Tissue Engineering

    PubMed Central

    You, Fu; Eames, B. Frank; Chen, Xiongbiao

    2017-01-01

    Extrusion-based bioprinting (EBB) is a rapidly developing technique that has made substantial progress in the fabrication of constructs for cartilage tissue engineering (CTE) over the past decade. With this technique, cell-laden hydrogels or bio-inks have been extruded onto printing stages, layer-by-layer, to form three-dimensional (3D) constructs with varying sizes, shapes, and resolutions. This paper reviews the cell sources and hydrogels that can be used for bio-ink formulations in CTE application. Additionally, this paper discusses the important properties of bio-inks to be applied in the EBB technique, including biocompatibility, printability, as well as mechanical properties. The printability of a bio-ink is associated with the formation of first layer, ink rheological properties, and crosslinking mechanisms. Further, this paper discusses two bioprinting approaches to build up cartilage constructs, i.e., self-supporting hydrogel bioprinting and hybrid bioprinting, along with their applications in fabricating chondral, osteochondral, and zonally organized cartilage regenerative constructs. Lastly, current limitations and future opportunities of EBB in printing cartilage regenerative constructs are reviewed. PMID:28737701

  7. Are agricultural and natural sources of bio-products important for modern regenerative medicine? A review.

    PubMed

    Nowacki, Maciej; Nowacka, Katarzyna; Kloskowski, Tomasz; Pokrywczyńska, Marta; Tyloch, Dominik; Rasmus, Marta; Warda, Karolina; Drewa, Tomasz

    2017-05-11

    [b] Abstract Introduction and objectives[/b]. As tissue engineering and regenerative medicine have continued to evolve within the field of biomedicine, the fundamental importance of bio-products has become increasingly apparent. This true not only in cases where they are derived directly from the natural environment, but also when animals and plants are specially bred and cultivated for their production. [b]Objective.[/b] The study aims to present and assess the global influence and importance of selected bio-products in current regenerative medicine via a broad review of the existing literature. In particular, attention is paid to the matrices, substances and grafts created from plants and animals which could potentially be used in experimental and clinical regeneration, or in reconstructive procedures. [b]Summary.[/b] Evolving trends in agriculture are likely to play a key role in the future development of a number of systemic and local medical procedures within tissue engineering and regenerative medicine. This is in addition to the use of bio-products derived from the natural environment which are found to deliver positive results in the treatment of prospective patients.

  8. Development of anion-exchange/reversed-phase high performance liquid chromatography-inductively coupled plasma-mass spectrometry methods for the speciation of bio-available iodine and bromine from edible seaweed.

    PubMed

    Romarís-Hortas, Vanessa; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2012-05-04

    Anion exchange high performance liquid chromatography hyphenated with inductively coupled plasma-mass spectrometry has been novelly applied to assess inorganic (iodide and iodate) and organic (3-iodotyrosine - MIT, and 3,5-diiodotyrosine - DIT) iodine species in a single chromatographic run. The optimized operating conditions (Dionex IonPac AS7, gradient elution with 175 mM ammonium nitrate plus 15% (v/v) methanol, pH 3.8, as a mobile phase and flow rates within the 0.5-1.5 mL min(-1) range) have also been used to perform inorganic bromine speciation analysis (bromide and bromate). The developed method has been applied for determining the bio-available contents of iodine and bromine species in dialyzates from edible seaweed. Reverse phase high performance liquid chromatography (Zorbax Eclipse XDB-C8, gradient elution with 0.2% (m/m) acetic acid, and 0.2% (m/m) acetic acid in methanol, as mobile phases, and a constant flow rate of 0.75 mL min(-1)) also hyphenated with inductively coupled plasma-mass spectrometry was used to confirm the presence of organic iodine species (MIT and DIT) in the dialyzates. The verification of the presence of iodinated amino acids (MIT and DIT) in the extracts was also performed by reverse phase high performance liquid chromatography-electrospray ionization-mass spectrometry (LTQ Orbitrap). The developed methods have provided good repeatability (RSD values lower than 10% for both anion exchange and reverse phase separations) and analytical recoveries within the 90-105% range for all cases. The in vitro bio-availability method consisted of a simulated gastric and an intestinal digestion/dialysis (10 kDa molecular weight cut-off - MWCO) two-stage procedure. Iodide and MIT were the main bio-available species quantified, whereas bromide was the major bromine species found in the extracts. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Engineering Halomonas spp. as A Low-Cost Production Host for Production of Bio-surfactant Protein PhaP.

    PubMed

    Lan, Lu-Hong; Zhao, Han; Chen, Jin-Chun; Chen, Guo-Qiang

    2016-12-01

    Halomonas spp. have been studied as a low cost production host for producing bulk materials such as polyhydroxyalkanoates (PHA) bioplastics, since they are able to grow at high pH and high NaCl concentration under unsterile and continuous conditions without microbial contamination. In this paper, Halomonas strain TD is used as a host to produce a protein named PHA phasin or PhaP which has a potential to be developed into a bio-surfactant. Four Halomonas TD expression strains are constructed based on a strong T7-family expression system. Of these, the strain with phaC deletion and chromosomal expression system resulted in the highest production of PhaP in soluble form, reaching 19% of total cellular soluble proteins and with a yield of 1.86 g/L in an open fed-batch fermentation process. A simple "heat lysis and salt precipitation" method is applied to allow rapid PhaP purification from a mixture of cellular proteins with a PhaP recovery rate of 63%. It clearly demonstrated that Halomonas TD could be used for high yield expression of a bio-surfactant protein PhaP for industrial application in an economical way. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Novel method for measuring a dense 3D strain map of robotic flapping wings

    NASA Astrophysics Data System (ADS)

    Li, Beiwen; Zhang, Song

    2018-04-01

    Measuring dense 3D strain maps of the inextensible membranous flapping wings of robots is of vital importance to the field of bio-inspired engineering. Conventional high-speed 3D videography methods typically reconstruct the wing geometries through measuring sparse points with fiducial markers, and thus cannot obtain the full-field mechanics of the wings in detail. In this research, we propose a novel system to measure a dense strain map of inextensible membranous flapping wings by developing a superfast 3D imaging system and a computational framework for strain analysis. Specifically, first we developed a 5000 Hz 3D imaging system based on the digital fringe projection technique using the defocused binary patterns to precisely measure the dynamic 3D geometries of rapidly flapping wings. Then, we developed a geometry-based algorithm to perform point tracking on the precisely measured 3D surface data. Finally, we developed a dense strain computational method using the Kirchhoff-Love shell theory. Experiments demonstrate that our method can effectively perform point tracking and measure a highly dense strain map of the wings without many fiducial markers.

  11. Characterization and control of fungal morphology for improved production performance in biotechnology.

    PubMed

    Krull, Rainer; Wucherpfennig, Thomas; Esfandabadi, Manely Eslahpazir; Walisko, Robert; Melzer, Guido; Hempel, Dietmar C; Kampen, Ingo; Kwade, Arno; Wittmann, Christoph

    2013-01-20

    Filamentous fungi have been widely applied in industrial biotechnology for many decades. In submerged culture processes, they typically exhibit a complex morphological life cycle that is related to production performance--a link that is of high interest for process optimization. The fungal forms can vary from dense spherical pellets to viscous mycelia. The resulting morphology has been shown to be influenced strongly by process parameters, including power input through stirring and aeration, mass transfer characteristics, pH value, osmolality and the presence of solid micro-particles. The surface properties of fungal spores and hyphae also play a role. Due to their high industrial relevance, the past years have seen a substantial development of tools and techniques to characterize the growth of fungi and obtain quantitative estimates on their morphological properties. Based on the novel insights available from such studies, more recent studies have been aimed at the precise control of morphology, i.e., morphology engineering, to produce superior bio-processes with filamentous fungi. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products.

    PubMed

    Becker, Judith; Wittmann, Christoph

    2015-03-09

    Corynebacterium glutamicum, Escherichia coli, and Saccharomyces cerevisiae in particular, have become established as important industrial workhorses in biotechnology. Recent years have seen tremendous progress in their advance into tailor-made producers, driven by the upcoming demand for sustainable processes and renewable raw materials. Here, the diversity and complexity of nature is simultaneously a challenge and a benefit. Harnessing biodiversity in the right manner through synergistic progress in systems metabolic engineering and chemical synthesis promises a future innovative bio-economy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Gelatin-Based Materials in Ocular Tissue Engineering.

    PubMed

    Rose, James B; Pacelli, Settimio; Haj, Alicia J El; Dua, Harminder S; Hopkinson, Andrew; White, Lisa J; Rose, Felicity R A J

    2014-04-17

    Gelatin has been used for many years in pharmaceutical formulation, cell culture and tissue engineering on account of its excellent biocompatibility, ease of processing and availability at low cost. Over the last decade gelatin has been extensively evaluated for numerous ocular applications serving as cell-sheet carriers, bio-adhesives and bio-artificial grafts. These different applications naturally have diverse physical, chemical and biological requirements and this has prompted research into the modification of gelatin and its derivatives. The crosslinking of gelatin alone or in combination with natural or synthetic biopolymers has produced a variety of scaffolds that could be suitable for ocular applications. This review focuses on methods to crosslink gelatin-based materials and how the resulting materials have been applied in ocular tissue engineering. Critical discussion of recent innovations in tissue engineering and regenerative medicine will highlight future opportunities for gelatin-based materials in ophthalmology.

  14. Gelatin-Based Materials in Ocular Tissue Engineering

    PubMed Central

    Rose, James B.; Pacelli, Settimio; El Haj, Alicia J.; Dua, Harminder S.; Hopkinson, Andrew; White, Lisa J.; Rose, Felicity R. A. J.

    2014-01-01

    Gelatin has been used for many years in pharmaceutical formulation, cell culture and tissue engineering on account of its excellent biocompatibility, ease of processing and availability at low cost. Over the last decade gelatin has been extensively evaluated for numerous ocular applications serving as cell-sheet carriers, bio-adhesives and bio-artificial grafts. These different applications naturally have diverse physical, chemical and biological requirements and this has prompted research into the modification of gelatin and its derivatives. The crosslinking of gelatin alone or in combination with natural or synthetic biopolymers has produced a variety of scaffolds that could be suitable for ocular applications. This review focuses on methods to crosslink gelatin-based materials and how the resulting materials have been applied in ocular tissue engineering. Critical discussion of recent innovations in tissue engineering and regenerative medicine will highlight future opportunities for gelatin-based materials in ophthalmology. PMID:28788609

  15. Photonics Applications and Web Engineering: WILGA 2017

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2017-08-01

    XLth Wilga Summer 2017 Symposium on Photonics Applications and Web Engineering was held on 28 May-4 June 2017. The Symposium gathered over 350 participants, mainly young researchers active in optics, optoelectronics, photonics, modern optics, mechatronics, applied physics, electronics technologies and applications. There were presented around 300 oral and poster papers in a few main topical tracks, which are traditional for Wilga, including: bio-photonics, optical sensory networks, photonics-electronics-mechatronics co-design and integration, large functional system design and maintenance, Internet of Things, measurement systems for astronomy, high energy physics experiments, and other. The paper is a traditional introduction to the 2017 WILGA Summer Symposium Proceedings, and digests some of the Symposium chosen key presentations. This year Symposium was divided to the following topical sessions/conferences: Optics, Optoelectronics and Photonics, Computational and Artificial Intelligence, Biomedical Applications, Astronomical and High Energy Physics Experiments Applications, Material Research and Engineering, and Advanced Photonics and Electronics Applications in Research and Industry.

  16. A wireless fatigue monitoring system utilizing a bio-inspired tree ring data tracking technique.

    PubMed

    Bai, Shi; Li, Xuan; Xie, Zhaohui; Zhou, Zhi; Ou, Jinping

    2014-03-05

    Fatigue, a hot scientific research topic for centuries, can trigger sudden failure of critical structures such as aircraft and railway systems, resulting in enormous casualties as well as economic losses. The fatigue life of certain structures is intrinsically random and few monitoring techniques are capable of tracking the full life-cycle fatigue damage. In this paper, a novel in-situ wireless real-time fatigue monitoring system using a bio-inspired tree ring data tracking technique is proposed. The general framework, methodology, and verification of this intelligent system are discussed in details. The rain-flow counting (RFC) method is adopted as the core algorithm which quantifies fatigue damages, and Digital Signal Processing (DSP) is introduced as the core module for data collection and analysis. Laboratory test results based on strain gauges and polyvinylidene fluoride (PVDF) sensors have shown that the developed intelligent system can provide a reliable quick feedback and early warning of fatigue failure. With the merits of low cost, high accuracy and great reliability, the developed wireless fatigue sensing system can be further applied to mechanical engineering, civil infrastructures, transportation systems, aerospace engineering, etc.

  17. Controlling Self-Assembly of Engineered Peptides on Graphite by Rational Mutation

    PubMed Central

    So, Christopher R.; Hayamizu, Yuhei; Yazici, Hilal; Gresswell, Carolyn; Khatayevich, Dmitriy; Tamerler, Candan; Sarikaya, Mehmet

    2012-01-01

    Self-assembly of proteins on surfaces is utilized in many fields to integrate intricate biological structures and diverse functions with engineered materials. Controlling proteins at bio-solid interfaces relies on establishing key correlations between their primary sequences and resulting spatial organizations on substrates. Protein self-assembly, however, remains an engineering challenge. As a novel approach, we demonstrate here that short dodecapeptides selected by phage display are capable of self-assembly on graphite and form long-range ordered biomolecular nanostructures. Using atomic force microscopy and contact angle studies, we identify three amino-acid domains along the primary sequence that steer peptide ordering and lead to nanostructures with uniformly displayed residues. The peptides are further engineered via simple mutations to control fundamental interfacial processes, including initial binding, surface aggregation and growth kinetics, and intermolecular interactions. Tailoring short peptides via their primary sequence offers versatile control over molecular self-assembly, resulting in well-defined surface properties essential in building engineered, chemically rich, bio-solid interfaces. PMID:22233341

  18. Catalytically active polymers obtained by molecular imprinting and their application in chemical reaction engineering.

    PubMed

    Brüggemann, O

    2001-08-01

    Molecular imprinting is a way of creating polymers bearing artificial receptors. It allows the fabrication of highly selective plastics by polymerizing monomers in the presence of a template. This technique primarily had been developed for the generation of biomimetic materials to be used in chromatographic separation, in extraction approaches and in sensors and assays. Beyond these applications, in the past few years molecular imprinting has become a tool for producing new kinds of catalysts. For catalytic applications, the template must be chosen, so that it is structurally comparable with the transition state (a transition state analogue, TSA) of a reaction, or with the product or substrate. The advantage of using these polymeric catalysts is obvious: the backbone withstands more aggressive conditions than a bio material could ever survive. Results are presented showing the applicability of a molecularly imprinted catalyst in different kinds of chemical reactors. It is demonstrated that the catalysts can be utilized not only in batch but also in continuously driven reactors and that their performance can be improved by means of chemical reaction engineering.

  19. Dynamic Model of the BIO-Plex Air Revitalization System

    NASA Technical Reports Server (NTRS)

    Finn, Cory; Meyers, Karen; Duffield, Bruce; Luna, Bernadette (Technical Monitor)

    2000-01-01

    The BIO-Plex facility will need to support a variety of life support system designs and operation strategies. These systems will be tested and evaluated in the BIO-Plex facility. An important goal of the life support program is to identify designs that best meet all size and performance constraints for a variety of possible future missions. Integrated human testing is a necessary step in reaching this goal. System modeling and analysis will also play an important role in this endeavor. Currently, simulation studies are being used to estimate air revitalization buffer and storage requirements in order to develop the infrastructure requirements of the BIO-Plex facility. Simulation studies are also being used to verify that the envisioned operation strategy will be able to meet all performance criteria. In this paper, a simulation study is presented for a nominal BIO-Plex scenario with a high-level of crop growth. A general description of the dynamic mass flow model is provided, along with some simulation results. The paper also discusses sizing and operations issues and describes plans for future simulation studies.

  20. Cardiovascular Bio-Engineering: Current State of the Art.

    PubMed

    Simon-Yarza, Teresa; Bataille, Isabelle; Letourneur, Didier

    2017-04-01

    Despite the introduction of new drugs and innovative devices contributing in the last years to improve patients' quality of life, morbidity and mortality from cardiovascular diseases remain high. There is an urgent need for addressing the underlying problem of the loss of cardiac or vascular tissues and therefore developing new therapies. Autologous vascular transplants are often limited by poor quality of donor sites and heart organ transplantation by donor shortage. Vascular and cardiac tissue engineering, whose aim is to repair or replace cardiovascular tissues by the use of cells, engineering and materials, as well as biochemical and physicochemical factors, appears in this scenario as a promising tool to repair the damaged hearts and vessels. We will present a general overview on the fundamentals in the area of cardiac and vascular tissue engineering as well as on the latest progresses and challenges.

  1. Environmental engineering education at Ghent University, Flanders (Belgium).

    PubMed

    Demeestere, K; Dewulf, J; Janssen, C; Van Langenhove, H

    2004-01-01

    Since the 1980s, environmental engineering education has been a rapidly growing discipline in many universities. This paper discusses the history, the current status and the near future of environmental engineering education at Ghent University. This university, with about 50% of the Flemish university environmental engineering students, can be considered as representative for the situation in Flanders, Belgium. In contrast to many other universities, environmental engineering education at Ghent University does not have its historical roots in civil engineering, but has been developed from the curricula organized by the former Faculty of Agricultural Sciences. As part of a reorganisation of the education and research activities at this faculty, a curriculum leading to the degree of "bio-engineer in environmental technology" was established in 1991. This curriculum covers a 5-year study and is constructed around 8 main components. Exchange of students with other European universities, e.g. within the Socrates framework, has become a prominent aspect of student life and education. This paper also briefly describes the employment opportunities of graduated bio-engineers in environmental technology. Finally, the current implementation of the bachelor's-master's structure, leading to a "master of science in environmental technology" degree is summarized.

  2. Recent approaches in food bio-preservation - a review

    PubMed Central

    Singh, Veer Pal

    2018-01-01

    Bio-preservation is a technique of extending the shelf life of food by using natural or controlled microbiota or antimicrobials. The fermentation products as well as beneficial bacteria are generally selected in this process to control spoilage and render pathogen inactive. The special interest organism or central organism used for this purpose is lactic acid bacteria (LAB) and their metabolites. They are capable to exhibit antimicrobial properties and helpful in imparting unique flavour and texture to the food products. The major compounds produced by LAB are bacteriocin, organic acids and hydrogen peroxide. Bacteriocin is peptides or proteins with antimicrobial activity. On the basis of size, structure and post-translational modification, bacteriocin is divided into four different classes. Due to non-toxic, non-immunogenic, thermo-resistance characteristics and broad bactericidal activity, LAB bacteriocins are considered good bio-preservative agents. The most common LAB bactriocin is nisin which has wider applications in food industry and has been Food and Drug Administration (FDA) approved. Nisin and other bacteriocin are being used in vegetables products, dairy and meat industries. Apart from LAB metabolites, bacteriophages and endolysins has promising role in food processing, preservation and safety. Bacteriocins and endolysins are more suitable for DNA shuffling and protein engineering to generate highly potent variants with expanded activity spectrum. Genetically modified bacteriophages may also be helpful in bio-preservation, however; their safety issues must be addressed properly before selection as bio-preservative agent. PMID:29721439

  3. Thin polymeric films for building biohybrid microrobots.

    PubMed

    Ricotti, Leonardo; Fujie, Toshinori

    2017-03-06

    This paper aims to describe the disruptive potential that polymeric thin films have in the field of biohybrid devices and to review the recent efforts in this area. Thin (thickness  <  1 mm) and ultra-thin (thickness  <  1 µm) matrices possess a series of intriguing features, such as large surface area/volume ratio, high flexibility, chemical and physical surface tailorability, etc. This enables the fabrication of advanced bio/non-bio interfaces able to efficiently drive cell-material interactions, which are the key for optimizing biohybrid device performances. Thin films can thus represent suitable platforms on which living and artificial elements are coupled, with the aim of exploiting the unique features of living cells/tissues. This may allow to carry out certain tasks, not achievable with fully artificial technologies. In the paper, after a description of the desirable chemical/physical cues to be targeted and of the fabrication, functionalization and characterization procedures to be used for thin and ultra-thin films, the state-of-the-art of biohybrid microrobots based on micro/nano-membranes are described and discussed. The research efforts in this field are rather recent and they focus on: (1) self-beating cells (such as cardiomyocytes) able to induce a relatively large deformation of the underlying substrates, but affected by a limited controllability by external users; (2) skeletal muscle cells, more difficult to engineer in mature and functional contractile tissues, but featured by a higher controllability. In this context, the different materials used and the performances achieved are analyzed. Despite recent interesting advancements and signs of maturity of this research field, important scientific and technological steps are still needed. In the paper some possible future perspectives are described, mainly concerning thin film manipulation and assembly in multilayer 3D systems, new advanced materials to be used for the fabrication of thin films, cell engineering opportunities and modelling/computational efforts.

  4. [Research progress on the technique and materials for three-dimensional bio-printing].

    PubMed

    Yang, Runhuai; Chen, Yueming; Ma, Changwang; Wang, Huiqin; Wang, Shuyue

    2017-04-01

    Three-dimensional (3D) bio-printing is a novel engineering technique by which the cells and support materials can be manufactured to a complex 3D structure. Compared with other 3D printing methods, 3D bio-printing should pay more attention to the biocompatible environment of the printing methods and the materials. Aimed at studying the feature of the 3D bio-printing, this paper mainly focuses on the current research state of 3D bio-printing, with the techniques and materials of the bio-printing especially emphasized. To introduce current printing methods, the inkjet method, extrusion method, stereolithography skill and laser-assisted technique are described. The printing precision, process, requirements and influence of all the techniques on cell status are compared. For introduction of the printing materials, the cross-link, biocompatibility and applications of common bio-printing materials are reviewed and compared. Most of the 3D bio-printing studies are being remained at the experimental stage up to now, so the review of 3D bio-printing could improve this technique for practical use, and it could also contribute to the further development of 3D bio-printing.

  5. Metabolic Engineering for Substrate Co-utilization

    NASA Astrophysics Data System (ADS)

    Gawand, Pratish

    Production of biofuels and bio-based chemicals is being increasingly pursued by chemical industry to reduce its dependence on petroleum. Lignocellulosic biomass (LCB) is an abundant source of sugars that can be used for producing biofuels and bio-based chemicals using fermentation. Hydrolysis of LCB results in a mixture of sugars mainly composed of glucose and xylose. Fermentation of such a sugar mixture presents multiple technical challenges at industrial scale. Most industrial microorganisms utilize sugars in a sequential manner due to the regulatory phenomenon of carbon catabolite repression (CCR). Due to sequential utilization of sugars, the LCB-based fermentation processes suffer low productivities and complicated operation. Performance of fermentation processes can be improved by metabolic engineering of microorganisms to obtain superior characteristics such as high product yield. With increased computational power and availability of complete genomes of microorganisms, use of model-based metabolic engineering is now a common practice. The problem of sequential sugar utilization, however, is a regulatory problem, and metabolic models have never been used to solve such regulatory problems. The focus of this thesis is to use model-guided metabolic engineering to construct industrial strains capable of co-utilizing sugars. First, we develop a novel bilevel optimization algorithm SimUp, that uses metabolic models to identify reaction deletion strategies to force co-utilization of two sugars. We then use SimUp to identify reaction deletion strategies to force glucose-xylose co-utilization in Escherichia coli. To validate SimUp predictions, we construct three mutants with multiple gene knockouts and test them for glucose-xylose utilization characteristics. Two mutants, designated as LMSE2 and LMSE5, are shown to co-utilize glucose and xylose in agreement with SimUp predictions. To understand the molecular mechanism involved in glucose-xylose co-utilization of the mutant LMSE2, the mutant is subjected to targeted and whole genome sequencing. Finally, we use the mutant LMSE2 to produce D-ribose from a mixture of glucose and xylose by overexpressing an endogenous phosphatase. The methods developed in this thesis are anticipated to provide a novel approach to solve sugar co-utilization problem in industrial microorganisms, and provide insights into microbial response to forced co-utilization of sugars.

  6. Combining metabolic engineering and electrocatalysis: Application to the production of polyamides from sugar

    DOE PAGES

    Suastegui, Miguel; Matthiesen, John E.; Carraher, Jack M.; ...

    2016-01-14

    Here, biorefineries aim to convert biomass into a spectrum of products ranging from biofuels to specialty chemicals. To achieve economically sustainable conversion, it is crucial to streamline the catalytic and downstream processing steps. In this work, a route that combines bio- and electrocatalysis to convert glucose into bio-based unsaturated nylon-6,6 is reported. An engineered strain of Saccharomyces cerevisiae was used as the initial biocatalyst for the conversion of glucose into muconic acid, with the highest reported muconic acid titer of 559.5 mg L –1 in yeast. Without any separation, muconic acid was further electrocatalytically hydrogenated to 3-hexenedioic acid in 94more » % yield despite the presence of biogenic impurities. Bio-based unsaturated nylon-6,6 (unsaturated polyamide-6,6) was finally obtained by polymerization of 3-hexenedioic acid with hexamethylenediamine.« less

  7. Bio-inspired group modeling and analysis for intruder detection in mobile sensor/robotic networks.

    PubMed

    Fu, Bo; Xiao, Yang; Liang, Xiannuan; Philip Chen, C L

    2015-01-01

    Although previous bio-inspired models have concentrated on invertebrates (such as ants), mammals such as primates with higher cognitive function are valuable for modeling the increasingly complex problems in engineering. Understanding primates' social and communication systems, and applying what is learned from them to engineering domains is likely to inspire solutions to a number of problems. This paper presents a novel bio-inspired approach to determine group size by researching and simulating primate society. Group size does matter for both primate society and digital entities. It is difficult to determine how to group mobile sensors/robots that patrol in a large area when many factors are considered such as patrol efficiency, wireless interference, coverage, inter/intragroup communications, etc. This paper presents a simulation-based theoretical study on patrolling strategies for robot groups with the comparison of large and small groups through simulations and theoretical results.

  8. Assessment of bio-fuel options for solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Lin, Jiefeng

    Rising concerns of inadequate petroleum supply, volatile crude oil price, and adverse environmental impacts from using fossil fuels have spurred the United States to promote bio-fuel domestic production and develop advanced energy systems such as fuel cells. The present dissertation analyzed the bio-fuel applications in a solid oxide fuel cell-based auxiliary power unit from environmental, economic, and technological perspectives. Life cycle assessment integrated with thermodynamics was applied to evaluate the environmental impacts (e.g., greenhouse gas emission, fossil energy consumption) of producing bio-fuels from waste biomass. Landfill gas from municipal solid wastes and biodiesel from waste cooking oil are both suggested as the promising bio-fuel options. A nonlinear optimization model was developed with a multi-objective optimization technique to analyze the economic aspect of biodiesel-ethanol-diesel ternary blends used in transportation sectors and capture the dynamic variables affecting bio-fuel productions and applications (e.g., market disturbances, bio-fuel tax credit, policy changes, fuel specification, and technological innovation). A single-tube catalytic reformer with rhodium/ceria-zirconia catalyst was used for autothermal reformation of various heavy hydrocarbon fuels (e.g., diesel, biodiesel, biodiesel-diesel, and biodiesel-ethanol-diesel) to produce a hydrogen-rich stream reformates suitable for use in solid oxide fuel cell systems. A customized mixing chamber was designed and integrated with the reformer to overcome the technical challenges of heavy hydrocarbon reformation. A thermodynamic analysis, based on total Gibbs free energy minimization, was implemented to optimize the operating environment for the reformations of various fuels. This was complimented by experimental investigations of fuel autothermal reformation. 25% biodiesel blended with 10% ethanol and 65% diesel was determined to be viable fuel for use on a truck travelling with diesel engine and truck idling with fuel cell auxiliary power unit system. The customized nozzle used for fuel vaporization and mixing achieved homogenous atomization of input hydrocarbon fuels (e.g., diesel, biodiesel, diesel-biodiesel blend, and biodiesel-ethanol-diesel), and improved the performance of fuel catalytic reformation. Given the same operating condition (reforming temperature, total oxygen content, water input flow, and gas hourly space velocity), the hydrocarbon reforming performance follows the trend of diesel > biodiesel-ethanol-diesel > diesel-biodiesel blend > biodiesel (i.e., diesel catalytic reformation has the highest hydrogen production, lowest risk of carbon formation, and least possibility of hot spot occurrence). These results provide important new insight into the use of bio-fuels and bio-fuel blends as a primary fuel source for solid oxide fuel cell applications.

  9. Epoxy composites coating with Fe3O4 decorated graphene oxide: Modified bio-inspired surface chemistry, synergistic effect and improved anti-corrosion performance

    NASA Astrophysics Data System (ADS)

    Zhan, Yingqing; Zhang, Jieming; Wan, Xinyi; Long, Zhihang; He, Shuangjiang; He, Yi

    2018-04-01

    To obtain graphene or graphene derivatives based epoxy composite coatings with high anti-corrosion performance, the morphology of nanostructures, dispersion, and interfacial adhesion are key factors that need to be considered. We here demonstrated the bio-inspired co-modification of graphene oxide/Fe3O4 hybrid (GO-Fe3O4@ poly (DA+KH550)) and its synergistic effect on the anti-corrosion performance of epoxy coating. For this purpose, graphene oxide/Fe3O4 hybrid obtained from hydrothermal route was modified by self-polymerization between dopamine and secondary functional monomer (KH550), which led to the modified bio-inspired surface functionalization. This novel modified bio-inspired functionalization was quite distinct from conventional surface modification or decoration. Namely, abundant amino groups were introduced by modified bio-inspired functionalization, which allowed the graphene oxide/Fe3O4 hybrid to disperse well in epoxy resin and enhanced the interfacial adhesion between modified nanofiller and epoxy resin through chemical crosslinking reaction. The electrochemical impedance spectroscopy (EIS) test revealed that anti-corrosive performance of epoxy coatings was significantly enhanced by addition of 0.5 wt% modified bio-inspired functionalized GO-Fe3O4 hybrid compared with neat epoxy and other nanofillers/epoxy composite coatings. Moreover, the micro-hardness of epoxy coating was enhanced by 71.8% compared with pure epoxy coating at the same loading content. In addition, the anticorrosion mechanism of GO-Fe3O4@poly (DA+KH550) was tentatively discussed.

  10. Protein bio-corona: critical issue in immune nanotoxicology.

    PubMed

    Neagu, Monica; Piperigkou, Zoi; Karamanou, Konstantina; Engin, Ayse Basak; Docea, Anca Oana; Constantin, Carolina; Negrei, Carolina; Nikitovic, Dragana; Tsatsakis, Aristidis

    2017-03-01

    With the expansion of the nanomedicine field, the knowledge focusing on the behavior of nanoparticles in the biological milieu has rapidly escalated. Upon introduction to a complex biological system, nanomaterials dynamically interact with all the encountered biomolecules and form the protein "bio-corona." The decoration with these surface biomolecules endows nanoparticles with new properties. The present review will address updates of the protein bio-corona characteristics as influenced by nanoparticle's physicochemical properties and by the particularities of the encountered biological milieu. Undeniably, bio-corona generation influences the efficacy of the nanodrug and guides the actions of innate and adaptive immunity. Exploiting the dynamic process of protein bio-corona development in combination with the new engineered horizons of drugs linked to nanoparticles could lead to innovative functional nanotherapies. Therefore, bio-medical nanotechnologies should focus on the interactions of nanoparticles with the immune system for both safety and efficacy reasons.

  11. Space Science

    NASA Image and Video Library

    2003-06-01

    NASA’s Virtual Glovebox (VGX) was developed to allow astronauts on Earth to train for complex biology research tasks in space. The astronauts may reach into the virtual environment, naturally manipulating specimens, tools, equipment, and accessories in a simulated microgravity environment as they would do in space. Such virtual reality technology also provides engineers and space operations staff with rapid prototyping, planning, and human performance modeling capabilities. Other Earth based applications being explored for this technology include biomedical procedural training and training for disarming bio-terrorism weapons.

  12. Microparticle based morphology engineering of filamentous microorganisms for industrial bio-production.

    PubMed

    Walisko, Robert; Krull, Rainer; Schrader, Jens; Wittmann, Christoph

    2012-11-01

    Filamentous microorganisms are important work horses in industrial biotechnology and supply enzymes, antibiotics, pharmaceuticals, bulk and fine chemicals. Here we highlight recent findings on the use of microparticles in the cultivation of filamentous bacteria and fungi, with the aim of enabling a more precise control of their morphology towards better production performance. First examples reveal a broad application range of microparticle based processes, since multiple filamentous organisms are controllable in their growth characteristics and respond by enhanced product formation.

  13. Virtual Glovebox (VGX) Aids Astronauts in Pre-Flight Training

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA's Virtual Glovebox (VGX) was developed to allow astronauts on Earth to train for complex biology research tasks in space. The astronauts may reach into the virtual environment, naturally manipulating specimens, tools, equipment, and accessories in a simulated microgravity environment as they would do in space. Such virtual reality technology also provides engineers and space operations staff with rapid prototyping, planning, and human performance modeling capabilities. Other Earth based applications being explored for this technology include biomedical procedural training and training for disarming bio-terrorism weapons.

  14. Bioinformatics education in high school: implications for promoting science, technology, engineering, and mathematics careers.

    PubMed

    Kovarik, Dina N; Patterson, Davis G; Cohen, Carolyn; Sanders, Elizabeth A; Peterson, Karen A; Porter, Sandra G; Chowning, Jeanne Ting

    2013-01-01

    We investigated the effects of our Bio-ITEST teacher professional development model and bioinformatics curricula on cognitive traits (awareness, engagement, self-efficacy, and relevance) in high school teachers and students that are known to accompany a developing interest in science, technology, engineering, and mathematics (STEM) careers. The program included best practices in adult education and diverse resources to empower teachers to integrate STEM career information into their classrooms. The introductory unit, Using Bioinformatics: Genetic Testing, uses bioinformatics to teach basic concepts in genetics and molecular biology, and the advanced unit, Using Bioinformatics: Genetic Research, utilizes bioinformatics to study evolution and support student research with DNA barcoding. Pre-post surveys demonstrated significant growth (n = 24) among teachers in their preparation to teach the curricula and infuse career awareness into their classes, and these gains were sustained through the end of the academic year. Introductory unit students (n = 289) showed significant gains in awareness, relevance, and self-efficacy. While these students did not show significant gains in engagement, advanced unit students (n = 41) showed gains in all four cognitive areas. Lessons learned during Bio-ITEST are explored in the context of recommendations for other programs that wish to increase student interest in STEM careers.

  15. Bioinformatics Education in High School: Implications for Promoting Science, Technology, Engineering, and Mathematics Careers

    PubMed Central

    Kovarik, Dina N.; Patterson, Davis G.; Cohen, Carolyn; Sanders, Elizabeth A.; Peterson, Karen A.; Porter, Sandra G.; Chowning, Jeanne Ting

    2013-01-01

    We investigated the effects of our Bio-ITEST teacher professional development model and bioinformatics curricula on cognitive traits (awareness, engagement, self-efficacy, and relevance) in high school teachers and students that are known to accompany a developing interest in science, technology, engineering, and mathematics (STEM) careers. The program included best practices in adult education and diverse resources to empower teachers to integrate STEM career information into their classrooms. The introductory unit, Using Bioinformatics: Genetic Testing, uses bioinformatics to teach basic concepts in genetics and molecular biology, and the advanced unit, Using Bioinformatics: Genetic Research, utilizes bioinformatics to study evolution and support student research with DNA barcoding. Pre–post surveys demonstrated significant growth (n = 24) among teachers in their preparation to teach the curricula and infuse career awareness into their classes, and these gains were sustained through the end of the academic year. Introductory unit students (n = 289) showed significant gains in awareness, relevance, and self-efficacy. While these students did not show significant gains in engagement, advanced unit students (n = 41) showed gains in all four cognitive areas. Lessons learned during Bio-ITEST are explored in the context of recommendations for other programs that wish to increase student interest in STEM careers. PMID:24006393

  16. Flux analysis and metabolomics for systematic metabolic engineering of microorganisms.

    PubMed

    Toya, Yoshihiro; Shimizu, Hiroshi

    2013-11-01

    Rational engineering of metabolism is important for bio-production using microorganisms. Metabolic design based on in silico simulations and experimental validation of the metabolic state in the engineered strain helps in accomplishing systematic metabolic engineering. Flux balance analysis (FBA) is a method for the prediction of metabolic phenotype, and many applications have been developed using FBA to design metabolic networks. Elementary mode analysis (EMA) and ensemble modeling techniques are also useful tools for in silico strain design. The metabolome and flux distribution of the metabolic pathways enable us to evaluate the metabolic state and provide useful clues to improve target productivity. Here, we reviewed several computational applications for metabolic engineering by using genome-scale metabolic models of microorganisms. We also discussed the recent progress made in the field of metabolomics and (13)C-metabolic flux analysis techniques, and reviewed these applications pertaining to bio-production development. Because these in silico or experimental approaches have their respective advantages and disadvantages, the combined usage of these methods is complementary and effective for metabolic engineering. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Permeation Tests on Polypropylene Fiber Materials

    DTIC Science & Technology

    2018-03-16

    Engineering at the Naval Research Laboratory (NRL) evaluated polypropylene nanofiber materials for their potential in air filtration to remove toxic......The Center for Bio/Molecular Science and Engineering at the Naval Research Laboratory (NRL) evaluated polypropylene nanofiber materials provided by

  18. Special Delivery | The UCSB Current

    Science.gov Websites

    Mitragotri inflammation bioengineering Center for BioEngineering engineering Categories Alumni Business Sciences Staff International Affairs Medicine + Health Students Theater + Dance Environment Archives Topics Arts + Culture Science + Technology Alumni Campus About News@UCSB Public Affairs &

  19. Fifth German-American Frontiers of Engineering Symposium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2002-05-01

    The agenda book for the Fifth German-American Frontiers of Engineering Symposium contains abstracts of the 16 presentations as well as information on the program, bios of the speakers, contact information for all attendees, and background on the activity.

  20. Factorial analysis of diesel engine performance using different types of biofuels.

    PubMed

    Tashtoush, Ghassan M; Al-Widyan, Mohamad I; Albatayneh, Aiman M

    2007-09-01

    In this study, several bio-source-fuels like fresh and waste vegetable oil and waste animal fat were tested at different injector pressures (120, 140, 190, 210 bar) in a direct-injection, naturally aspirated, single-cylinder diesel engine with a design injection pressure of 190 bar. Using 2k factorial analysis, the effect of injection pressure (Pi) and fuel type on three engine parameters, namely, combustion efficiency (etac), mass fuel consumption (mf), and engine speed (N) was examined. It was found that Pi and fuel type significantly affected both etac and mf while they had a slight effect on engine speed. Moreover, with diesel and biodiesels, the etac increased to a maximum at 190 bar but declined at the higher Pi value. In contrast, higher Pi had a favorable effect on etac over the whole Pi range with all the other more viscous fuels tested. In addition, the mass fuel consumption consistently decreased with an increase in Pi for all the fuels including the baseline diesel fuel, with which the engine consistently attained higher etac and higher rpm compared to all the other fuels tested.

  1. Preparation and characterization of bio-oils from internally circulating fluidized-bed pyrolyses of municipal, livestock, and wood waste.

    PubMed

    Cao, Jing-Pei; Xiao, Xian-Bin; Zhang, Shou-Yu; Zhao, Xiao-Yan; Sato, Kazuyoshi; Ogawa, Yukiko; Wei, Xian-Yong; Takarada, Takayuki

    2011-01-01

    Fast pyrolyses of sewage sludge (SS), pig compost (PC), and wood chip (WC) were investigated in an internally circulating fluidized-bed to evaluate bio-oil production. The pyrolyses were performed at 500 °C and the bio-oil yields from SS, PC, and WC were 45.2%, 44.4%, and 39.7% (dried and ash-free basis), respectively. The bio-oils were analyzed with an elemental analyzer, Karl-Fischer moisture titrator, bomb calorimeter, Fourier transformation infrared spectrometer, gel permeation chromatograph, and gas chromatography/mass spectrometry. The results show that the bio-oil from SS is rich in aliphatic and organonitrogen species, while the bio-oil from PC exhibits higher caloric value due to its higher carbon content and lower oxygen content in comparison with that from SS. The bio-oils from SS and PC have similar chemical composition of organonitrogen species. Most of the compounds detected in the bio-oil from WC are organooxygen species. Because of its high oxygen content, low H/C ratio, and caloric value, the bio-oil from WC is unfeasible for use as fuel feedstock, but possible for use as chemical feedstock. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Phosphoketolase pathway engineering for carbon-efficient biocatalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henard, Calvin Andrew; Freed, Emily Frances; Guarnieri, Michael Thomas

    2015-12-01

    Recent advances in metabolic engineering have facilitated the development of microbial biocatalysts capable of producing an array of bio-products, ranging from fuels to drug molecules. These bio-products are commonly generated through an acetyl-CoA intermediate, which serves as a key precursor in the biological conversion of carbon substrates. Moreover, conventional biocatalytic upgrading strategies proceeding through this route are limited by low carbon efficiencies, in large part due to carbon losses associated with pyruvate decarboxylation to acetyl-CoA. Bypass of pyruvate decarboxylation offers a means to dramatically enhance carbon yields and, in turn, bioprocess economics. Here, we discuss recent advances and prospects formore » employing the phosphoketolase pathway for direct biosynthesis of acetyl-CoA from carbon substrates, and phosphoketolase-based metabolic engineering strategies for carbon efficient biocatalysis.« less

  3. Biomimetics for next generation materials.

    PubMed

    Barthelat, Francois

    2007-12-15

    Billions of years of evolution have produced extremely efficient natural materials, which are increasingly becoming a source of inspiration for engineers. Biomimetics-the science of imitating nature-is a growing multidisciplinary field which is now leading to the fabrication of novel materials with remarkable mechanical properties. This article discusses the mechanics of hard biological materials, and more specifically of nacre and bone. These high-performance natural composites are made up of relatively weak components (brittle minerals and soft proteins) arranged in intricate ways to achieve specific combinations of stiffness, strength and toughness (resistance to cracking). Determining which features control the performance of these materials is the first step in biomimetics. These 'key features' can then be implemented into artificial bio-inspired synthetic materials, using innovative techniques such as layer-by-layer assembly or ice-templated crystallization. The most promising approaches, however, are self-assembly and biomineralization because they will enable tight control of structures at the nanoscale. In this 'bottom-up' fabrication, also inspired from nature, molecular structures and crystals are assembled with a little or no external intervention. The resulting materials will offer new combinations of low weight, stiffness and toughness, with added functionalities such as self-healing. Only tight collaborations between engineers, chemists, materials scientists and biologists will make these 'next-generation' materials a reality.

  4. Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd-Mo catalyst.

    PubMed

    Duan, Haohong; Dong, Juncai; Gu, Xianrui; Peng, Yung-Kang; Chen, Wenxing; Issariyakul, Titipong; Myers, William K; Li, Meng-Jung; Yi, Ni; Kilpatrick, Alexander F R; Wang, Yu; Zheng, Xusheng; Ji, Shufang; Wang, Qian; Feng, Junting; Chen, Dongliang; Li, Yadong; Buffet, Jean-Charles; Liu, Haichao; Tsang, Shik Chi Edman; O'Hare, Dermot

    2017-09-19

    Bio-oil, produced by the destructive distillation of cheap and renewable lignocellulosic biomass, contains high energy density oligomers in the water-insoluble fraction that can be utilized for diesel and valuable fine chemicals productions. Here, we show an efficient hydrodeoxygenation catalyst that combines highly dispersed palladium and ultrafine molybdenum phosphate nanoparticles on silica. Using phenol as a model substrate this catalyst is 100% effective and 97.5% selective for hydrodeoxygenation to cyclohexane under mild conditions in a batch reaction; this catalyst also demonstrates regeneration ability in long-term continuous flow tests. Detailed investigations into the nature of the catalyst show that it combines hydrogenation activity of Pd and high density of both Brønsted and Lewis acid sites; we believe these are key features for efficient catalytic hydrodeoxygenation behavior. Using a wood and bark-derived feedstock, this catalyst performs hydrodeoxygenation of lignin, cellulose, and hemicellulose-derived oligomers into liquid alkanes with high efficiency and yield.Bio-oil is a potential major source of renewable fuels and chemicals. Here, the authors report a palladium-molybdenum mixed catalyst for the selective hydrodeoxygenation of water-insoluble bio-oil to mixtures of alkanes with high carbon yield.

  5. High-performance glucose biosensor based on chitosan-glucose oxidase immobilized polypyrrole/Nafion/functionalized multi-walled carbon nanotubes bio-nanohybrid film.

    PubMed

    Shrestha, Bishnu Kumar; Ahmad, Rafiq; Mousa, Hamouda M; Kim, In-Gi; Kim, Jeong In; Neupane, Madhav Prasad; Park, Chan Hee; Kim, Cheol Sang

    2016-11-15

    A highly electroactive bio-nanohybrid film of polypyrrole (PPy)-Nafion (Nf)-functionalized multi-walled carbon nanotubes (fMWCNTs) nanocomposite was prepared on the glassy carbon electrode (GCE) by a facile one-step electrochemical polymerization technique followed by chitosan-glucose oxidase (CH-GOx) immobilization on its surface to achieve a high-performance glucose biosensor. The as-fabricated nanohybrid composite provides high surface area for GOx immobilization and thus enhances the enzyme-loading efficiency. The structural characterization revealed that the PPy-Nf-fMWCNTs nanocomposite films were uniformly formed on GCE and after GOx immobilization, the surface porosities of the film were decreased due to enzyme encapsulation inside the bio-nanohybrid composite materials. The electrochemical behavior of the fabricated biosensor was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and amperometry measurements. The results indicated an excellent catalytic property of bio-nanohybrid film for glucose detection with improved sensitivity of 2860.3μAmM(-1)cm(-2), the linear range up to 4.7mM (R(2)=0.9992), and a low detection limit of 5μM under a signal/noise (S/N) ratio of 3. Furthermore, the resulting biosensor presented reliable selectivity, better long-term stability, good repeatability, reproducibility, and acceptable measurement of glucose concentration in real serum samples. Thus, this fabricated biosensor provides an efficient and highly sensitive platform for glucose sensing and can open up new avenues for clinical applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Nanostructure characteristics of ferroics and bio-ferroics in relation to the design consideration of nano-sensing elements

    NASA Astrophysics Data System (ADS)

    Pal, Madhuparna

    The shift of the epicenter in the field of science and technology to the nano-world has become evident over the past couple of decades with the emergence of areas likes nanoscience, nanotechnology, nano-biotechnology, etc. Though the size of the devices has decreased, the capability of devices has increased rendering it as 'multifunctional/smart' devices. However the design of smart devices using a single phase material has reached to its limit, hence to make further progress "smart materials" are required. Sensors/actuators are mostly fabricated with popular ferroic materials (ferroelectric/ ferromagnetic/ ferroelastic) or multiferroics (having more than one ferroic property). Multifunctionality can be the outcome of heterogeneous systems with cross-coupled properties, intrinsic as well as extrinsic, and hence modeling of smart materials with high figure of merit is also needed. Most ideas in smart sensing and actuation have been borrowed from the biological systems thus a step further is indeed to combine the engineering with the fundamental biological activities. Not only can we use multiferroic materials in artificial transplants, but we should also investigate ferroic activities in the biological samples. These fundamental issues, their possible solutions and their wide impact underlie the motivation of the current work in this thesis report. To achieve the ultimate goal, the steps outlined were followed: i. understanding the properties of sensing elements of inorganic and biomaterials at nanoscale level, ii. investigation of the multiferroicity, iii. modeling engineered material with better sensing capabilities iv. Finally exploiting the new concepts for device and biomedical applications. The findings of this thesis reports multiferroic behavior in a selected class of single crystals, thin films and bulk materials. Human nails and hair samples have been investigated for ferroelectricity and a comprehensive study concludes the presence of bio-ferroelectricity. Bio-ceramic for potential bone replacement has been characterized for its electrical properties and evidence has been given for its suitability. Initiation of modeling of material with high figure of merit for pyroelectric applications has been done which provides a platform to tailor its boundary conditions, interplay of interfaces to obtain meta-property. A broader impact of this thesis was to come forth with ideas to medical diagnostics and health monitoring combining and enhancing the understanding of multiferroics at macro to nano level, modeling of efficient heterogeneous material system, science of bio-materials and applications of bio-ceramics.

  7. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.

    PubMed

    Kildegaard, Kanchana R; Jensen, Niels B; Schneider, Konstantin; Czarnotta, Eik; Özdemir, Emre; Klein, Tobias; Maury, Jérôme; Ebert, Birgitta E; Christensen, Hanne B; Chen, Yun; Kim, Il-Kwon; Herrgård, Markus J; Blank, Lars M; Forster, Jochen; Nielsen, Jens; Borodina, Irina

    2016-03-15

    In the future, oil- and gas-derived polymers may be replaced with bio-based polymers, produced from renewable feedstocks using engineered cell factories. Acrylic acid and acrylic esters with an estimated world annual production of approximately 6 million tons by 2017 can be derived from 3-hydroxypropionic acid (3HP), which can be produced by microbial fermentation. For an economically viable process 3HP must be produced at high titer, rate and yield and preferably at low pH to minimize downstream processing costs. Here we describe the metabolic engineering of baker's yeast Saccharomyces cerevisiae for biosynthesis of 3HP via a malonyl-CoA reductase (MCR)-dependent pathway. Integration of multiple copies of MCR from Chloroflexus aurantiacus and of phosphorylation-deficient acetyl-CoA carboxylase ACC1 genes into the genome of yeast increased 3HP titer fivefold in comparison with single integration. Furthermore we optimized the supply of acetyl-CoA by overexpressing native pyruvate decarboxylase PDC1, aldehyde dehydrogenase ALD6, and acetyl-CoA synthase from Salmonella enterica SEacs (L641P). Finally we engineered the cofactor specificity of the glyceraldehyde-3-phosphate dehydrogenase to increase the intracellular production of NADPH at the expense of NADH and thus improve 3HP production and reduce formation of glycerol as by-product. The final strain produced 9.8 ± 0.4 g L(-1) 3HP with a yield of 13% C-mol C-mol(-1) glucose after 100 h in carbon-limited fed-batch cultivation at pH 5. The 3HP-producing strain was characterized by (13)C metabolic flux analysis and by transcriptome analysis, which revealed some unexpected consequences of the undertaken metabolic engineering strategy, and based on this data, future metabolic engineering directions are proposed. In this study, S. cerevisiae was engineered for high-level production of 3HP by increasing the copy numbers of biosynthetic genes and improving flux towards precursors and redox cofactors. This strain represents a good platform for further optimization of 3HP production and hence an important step towards potential commercial bio-based production of 3HP.

  8. Nitrifying bio-cord reactor: performance optimization and effects of substratum and air scouring.

    PubMed

    Tian, Xin; Ahmed, Warsama; Delatolla, Robert

    2017-11-20

    Ammonia removal kinetics and solids' production performance of the bio-cord technology are studied in this research. Three nitrifying reactors housing different bio-cord substratum were operated at five different ammonia loading rates. All of the bio-cord substrata demonstrated stable and high ammonia-nitrogen removal efficiencies of 96.8 ± 0.9%, 97.0 ± 0.6% and 92.0 ± 0.4% at loading rates of 0.8, 1.6 and 1.8 g [Formula: see text]-N/m 2  d, respectively. At these same loading rates, the bio-cord reactors housing the three substrata also showed low solids' production rates of 0.19 ± 0.03, 0.23 ± 0.02, 0.25 ± 0.03 g total suspended solids/d. A reduction of system stability, identified via fluctuating ammonia removal rates, was however observed for all substrata at loading rates of 2.1 and 2.4 g [Formula: see text]-N/m 2  d. Further, the solids' production rates at these higher loading conditions were also observed to fluctuate for all substrata, likely indicating intermediate sloughing events. The effects of enhancing the air scouring of the bio-cord on the ammonia removal rate was shown to be dependent upon the substratum, while enhanced air scouring of the bio-cord was shown to stabilize the production of solids for all substrata. This study represents the first performance and optimization study of the bio-cord technology for low-carbon nitrification and shows that air scouring of the substratum reduces sloughing events at elevated loading and that the bio-cord technology achieves stable kinetics above conventional rates of 1 g [Formula: see text]-N/m 2  d to values of 1.8 g [Formula: see text]-N/m 2  d.

  9. Sulfur-Tolerant Molybdenum Carbide Catalysts Enabling Low-Temperature Stabilization of Fast Pyrolysis Bio-oil

    DOE PAGES

    Li, Zhenglong; Choi, Jae-Soon; Wang, Huamin; ...

    2017-08-18

    Low-temperature hydrogenation of carbonyl fractions can greatly improve the thermal stability of fast pyrolysis bio-oil which is crucial to achieve long-term operation of high-temperature upgrading reactors. The current state of the art, precious metals such as ruthenium, although highly effective in carbonyl hydrogenation, rapidly loses performance due to sulfur sensitivity. The present work showed that molybdenum carbides were active and sulfur-tolerant in low-temperature conversion carbonyl compounds. Furthermore, due to surface bifunctionality (presence of both metallic and acid sites), carbides catalyzed both C=O bond hydrogenation and C-C coupling reactions retaining most of carbon atoms in liquid products as more stable andmore » higher molecular weight oligomeric compounds while consuming less hydrogen than ruthenium. The carbides proved to be resistant to other deactivation mechanisms including hydrothermal aging, oxidation, coking and leaching. These properties enabled carbides to achieve and maintain good catalytic performance in both aqueous-phase furfural conversion and real bio-oil stabilization with sulfur present. This finding strongly suggests that molybdenum carbides can provide a catalyst solution necessary for the development of commercially viable bio-oil stabilization technology.« less

  10. Sulfur-Tolerant Molybdenum Carbide Catalysts Enabling Low-Temperature Stabilization of Fast Pyrolysis Bio-oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhenglong; Choi, Jae-Soon; Wang, Huamin

    Low-temperature hydrogenation of carbonyl fractions can greatly improve the thermal stability of fast pyrolysis bio-oil which is crucial to achieve long-term operation of high-temperature upgrading reactors. The current state of the art, precious metals such as ruthenium, although highly effective in carbonyl hydrogenation, rapidly loses performance due to sulfur sensitivity. The present work showed that molybdenum carbides were active and sulfur-tolerant in low-temperature conversion carbonyl compounds. Furthermore, due to surface bifunctionality (presence of both metallic and acid sites), carbides catalyzed both C=O bond hydrogenation and C-C coupling reactions retaining most of carbon atoms in liquid products as more stable andmore » higher molecular weight oligomeric compounds while consuming less hydrogen than ruthenium. The carbides proved to be resistant to other deactivation mechanisms including hydrothermal aging, oxidation, coking and leaching. These properties enabled carbides to achieve and maintain good catalytic performance in both aqueous-phase furfural conversion and real bio-oil stabilization with sulfur present. This finding strongly suggests that molybdenum carbides can provide a catalyst solution necessary for the development of commercially viable bio-oil stabilization technology.« less

  11. Biosentinel: Developing a Space Radiation Biosensor

    NASA Technical Reports Server (NTRS)

    Santa Maria, Sergio R.; Marina, Diana B.; Parra, Macarena P.; Boone, Travis D.; Tan, Ming; Ricco, Antonio J.; Straume, Tore N.; Lusby, Terry C.; Harkness, T.; Reiss-Bubenheim, Debra; hide

    2014-01-01

    Ionizing radiation presents a major challenge to human exploration and long-term residence in space. The deep-space radiation spectrum includes highly energetic particles that generate double strand breaks (DSBs), deleterious DNA lesions that are usually repaired without errors via homologous recombination (HR), a conserved pathway in all eukaryotes. While progress identifying and characterizing biological radiation effects using Earth-based facilities has been significant, no terrestrial source duplicates the unique space radiation environment.We are developing a biosensor-based nanosatellite to fly aboard NASAs Space Launch System Exploration Mission 1, expected to launch in 2017 and reach a 1AU (astronomic unit) heliocentric orbit. Our biosensor (called BioSentinel) uses the yeast S. cerevisiae to measure DSBs in response to ambient space radiation. The BioSentinel strain contains engineered genetic defects that prevent growth until and unless a radiation-induced DSB near a reporter gene activates the yeasts HR repair mechanisms. Thus, culture growth and metabolic activity directly indicate a successful DSB-and-repair event. In parallel, HR-defective and wild type strains will provide survival data. Desiccated cells will be carried within independent culture microwells, built into 96-well microfluidic cards. Each microwell set will be activated by media addition at different time points over 18 months, and cell growth will be tracked continuously via optical density. One reserve set will be activated only in the occurrence of a solar particle event. Biological measurements will be compared to data provided by onboard physical dosimeters and to Earth-based experiments.BioSentinel will conduct the first study of biological response to space radiation outside Low Earth Orbit in over 40 years. BioSentinel will thus address strategic knowledge gaps related to the biological effects of space radiation and will provide an adaptable platform to perform human-relevant measurements in multiple space environments. We hope that it can therefore be used on the ISS, on and around other planetary bodies as well as other exploration platforms as a self-contained system that will allow us to compare and calibrate different radiation environments.BioSentinels results will be critical for improving interpretation of the effects of space radiation exposure, and for reducing the risk associated with long-term human exploration.

  12. Deriving a probabilistic syntacto-semantic grammar for biomedicine based on domain-specific terminologies

    PubMed Central

    Fan, Jung-Wei; Friedman, Carol

    2011-01-01

    Biomedical natural language processing (BioNLP) is a useful technique that unlocks valuable information stored in textual data for practice and/or research. Syntactic parsing is a critical component of BioNLP applications that rely on correctly determining the sentence and phrase structure of free text. In addition to dealing with the vast amount of domain-specific terms, a robust biomedical parser needs to model the semantic grammar to obtain viable syntactic structures. With either a rule-based or corpus-based approach, the grammar engineering process requires substantial time and knowledge from experts, and does not always yield a semantically transferable grammar. To reduce the human effort and to promote semantic transferability, we propose an automated method for deriving a probabilistic grammar based on a training corpus consisting of concept strings and semantic classes from the Unified Medical Language System (UMLS), a comprehensive terminology resource widely used by the community. The grammar is designed to specify noun phrases only due to the nominal nature of the majority of biomedical terminological concepts. Evaluated on manually parsed clinical notes, the derived grammar achieved a recall of 0.644, precision of 0.737, and average cross-bracketing of 0.61, which demonstrated better performance than a control grammar with the semantic information removed. Error analysis revealed shortcomings that could be addressed to improve performance. The results indicated the feasibility of an approach which automatically incorporates terminology semantics in the building of an operational grammar. Although the current performance of the unsupervised solution does not adequately replace manual engineering, we believe once the performance issues are addressed, it could serve as an aide in a semi-supervised solution. PMID:21549857

  13. A bio-inspired system for spatio-temporal recognition in static and video imagery

    NASA Astrophysics Data System (ADS)

    Khosla, Deepak; Moore, Christopher K.; Chelian, Suhas

    2007-04-01

    This paper presents a bio-inspired method for spatio-temporal recognition in static and video imagery. It builds upon and extends our previous work on a bio-inspired Visual Attention and object Recognition System (VARS). The VARS approach locates and recognizes objects in a single frame. This work presents two extensions of VARS. The first extension is a Scene Recognition Engine (SCE) that learns to recognize spatial relationships between objects that compose a particular scene category in static imagery. This could be used for recognizing the category of a scene, e.g., office vs. kitchen scene. The second extension is the Event Recognition Engine (ERE) that recognizes spatio-temporal sequences or events in sequences. This extension uses a working memory model to recognize events and behaviors in video imagery by maintaining and recognizing ordered spatio-temporal sequences. The working memory model is based on an ARTSTORE1 neural network that combines an ART-based neural network with a cascade of sustained temporal order recurrent (STORE)1 neural networks. A series of Default ARTMAP classifiers ascribes event labels to these sequences. Our preliminary studies have shown that this extension is robust to variations in an object's motion profile. We evaluated the performance of the SCE and ERE on real datasets. The SCE module was tested on a visual scene classification task using the LabelMe2 dataset. The ERE was tested on real world video footage of vehicles and pedestrians in a street scene. Our system is able to recognize the events in this footage involving vehicles and pedestrians.

  14. Substrate stiffness influences high resolution printing of living cells with an ink-jet system.

    PubMed

    Tirella, Annalisa; Vozzi, Federico; De Maria, Carmelo; Vozzi, Giovanni; Sandri, Tazio; Sassano, Duccio; Cognolato, Livio; Ahluwalia, Arti

    2011-07-01

    The adaptation of inkjet printing technology for the realisation of controlled micro- and nano-scaled biological structures is of great potential in tissue and biomaterial engineering. In this paper we present the Olivetti BioJet system and its applications in tissue engineering and cell printing. BioJet, which employs a thermal inkjet cartridge, was used to print biomolecules and living cells. It is well known that high stresses and forces are developed during the inkjet printing process. When printing living particles (i.e., cell suspensions) the mechanical loading profile can dramatically damage the processed cells. Therefore computational models were developed to predict the velocity profile and the mechanical load acting on a droplet during the printing process. The model was used to investigate the role of the stiffness of the deposition substrate during droplet impact and compared with experimental investigations on cell viability after printing on different materials. The computational model and the experimental results confirm that impact forces are highly dependent on the deposition substrate and that soft and viscous surfaces can reduce the forces acting on the droplet, preventing cell damage. These results have high relevance for cell bioprinting; substrates should be designed to have a good compromise between substrate stiffness to conserve spatial patterning without droplet coalescence but soft enough to absorb the kinetic energy of droplets in order to maintain cell viability. Copyright © 2011. Published by Elsevier B.V.

  15. The BioStent: novel concept for a viable stent structure.

    PubMed

    Weinandy, Stefan; Rongen, Lisanne; Schreiber, Fabian; Cornelissen, Christian; Flanagan, Thomas Cormac; Mahnken, Andreas; Gries, Thomas; Schmitz-Rode, Thomas; Jockenhoevel, Stefan

    2012-09-01

    Percutaneous stenting of occluded peripheral vessels is a well-established technique in clinical practice. Unfortunately, the patency rates of small-caliber vessels after stenting remain unsatisfactory. The aim of the BioStent concept is to overcome in-stent restenosis by excluding the diseased vessel segment entirely from the blood stream, in addition to providing an intact endothelial cell layer. The concept combines the principles of vascular tissue engineering with a self-expanding stent: casting of the stent within a cellularized fibrin gel structure, followed by bioreactor conditioning, allows complete integration of the stent within engineered tissue. Small-caliber BioStents (Ø=6 mm; n=4) were produced by casting a nitinol stent within a thin fibrin/vascular smooth muscle cell (vSMC) mixture, followed by luminal endothelial cell seeding, and conditioning of the BioStent within a bioreactor system. The potential remodeling of the fibrin component into tissue was analyzed using routine histological methods. Scanning electron microscopy was used to assess the luminal endothelial cell coverage following the conditioning phase and crimping of the stent. The BioStent was shown to be noncytotoxic, with no significant effect on cell proliferation. Gross and microscopic analysis revealed complete integration of the nitinol component within a viable tissue structure. Hematoxylin and eosin staining revealed a homogenous distribution of vSMCs throughout the thickness of the BioStent, while a smooth, confluent luminal endothelial cell lining was evident and not significantly affected by the crimping/release process. The BioStent concept is a platform technology offering a novel opportunity to generate a viable, self-expanding stent structure with a functional endothelial cell lining. This platform technology can be transferred to different applications depending on the luminal cell lining required.

  16. Molybdenum carbides, active and in situ regenerable catalysts in hydroprocessing of fast pyrolysis bio-oil

    DOE PAGES

    Choi, Jae -Soon; Zacher, Alan; Wang, Huamin; ...

    2016-05-19

    This paper describes properties of molybdenum carbides as a potential catalyst for fast pyrolysis bio-oil hydroprocessing. Currently, high catalyst cost, short catalyst lifetime, and lack of effective regeneration methods are hampering the development of this otherwise attractive renewable hydrocarbon technology. A series of metal-doped bulk Mo carbides were synthesized, characterized, and evaluated in sequential low-temperature stabilization and high-temperature deoxygenation of a pine-derived bio-oil. During a typical 60 h run, Mo carbides were capable of upgrading raw bio-oil to a level suitable for direct insertion into the current hydrocarbon infrastructure with residual oxygen content and total acid number of upgraded oilsmore » below 2 wt % and 0.01 mg KOH g –1, respectively. The performance was shown to be sensitive to the type of metal dopant, Ni-doped Mo carbides outperforming Co-, Cu-, or Ca-doped counterparts; a higher Ni loading led to a superior catalytic performance. No bulk oxidation or other significant structural changes were observed. Besides the structural robustness, another attractive property of Mo carbides was in situ regenerability. The effectiveness of regeneration was demonstrated by successfully carrying out four consecutive 60 h runs with a reductive decoking between two adjacent runs. These results strongly suggest that Mo carbides are a good catalyst candidate which could lead to a significant cost reduction in hydroprocessing bio-oils. Furthermore, we highlight areas for future research which will be needed to further understand carbide structure–function relationships and help design practical bio-oil upgrading catalysts based on Mo carbides.« less

  17. Molybdenum Carbides, Active and In Situ Regenerable Catalysts in Hydroprocessing of Fast Pyrolysis Bio-Oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jae-Soon; Zacher, Alan H.; Wang, Huamin

    We assessed molybdenum carbides as a potential catalyst for fast pyrolysis bio-oil hydroprocessing. Currently, high catalyst cost, short catalyst lifetime, and lack of effective regeneration methods are hampering the development of this otherwise attractive renewable hydrocarbon technology. A series of metal-doped bulk Mo carbides were synthesized, characterized and evaluated in sequential low-temperature stabilization and high-temperature deoxygenation of a pine-derived bio-oil. During a typical 60-h run, Mo carbides were capable of upgrading raw bio-oil to a level suitable for direct insertion into the current hydrocarbon infrastructure with residual oxygen content and total acid number of upgraded oils below 2 wt% andmore » 0.01 mg KOH g-1, respectively. The performance was shown to be sensitive to the type of metal dopant, Ni-doped Mo carbides outperforming Co-, Cu-, or Ca-doped counterparts; a higher Ni loading led to a superior catalytic performance. No bulk oxidation or other significant structural changes were observed. Besides the structural robustness, another attractive property of Mo carbides was in situ regenerability. The effectiveness of regeneration was demonstrated by successfully carrying out four consecutive 60-h runs with a reductive decoking between two adjacent runs. These results strongly suggest that Mo carbides are promising catalytic materials which could lead to a significant cost reduction in hydroprocessing bio-oils. This paper highlights areas for future research which will be needed to further understand carbide structure-function relationships and help design practical bio-oil upgrading catalysts based on Mo carbides.« less

  18. Molybdenum carbides, active and in situ regenerable catalysts in hydroprocessing of fast pyrolysis bio-oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jae -Soon; Zacher, Alan; Wang, Huamin

    This paper describes properties of molybdenum carbides as a potential catalyst for fast pyrolysis bio-oil hydroprocessing. Currently, high catalyst cost, short catalyst lifetime, and lack of effective regeneration methods are hampering the development of this otherwise attractive renewable hydrocarbon technology. A series of metal-doped bulk Mo carbides were synthesized, characterized, and evaluated in sequential low-temperature stabilization and high-temperature deoxygenation of a pine-derived bio-oil. During a typical 60 h run, Mo carbides were capable of upgrading raw bio-oil to a level suitable for direct insertion into the current hydrocarbon infrastructure with residual oxygen content and total acid number of upgraded oilsmore » below 2 wt % and 0.01 mg KOH g –1, respectively. The performance was shown to be sensitive to the type of metal dopant, Ni-doped Mo carbides outperforming Co-, Cu-, or Ca-doped counterparts; a higher Ni loading led to a superior catalytic performance. No bulk oxidation or other significant structural changes were observed. Besides the structural robustness, another attractive property of Mo carbides was in situ regenerability. The effectiveness of regeneration was demonstrated by successfully carrying out four consecutive 60 h runs with a reductive decoking between two adjacent runs. These results strongly suggest that Mo carbides are a good catalyst candidate which could lead to a significant cost reduction in hydroprocessing bio-oils. Furthermore, we highlight areas for future research which will be needed to further understand carbide structure–function relationships and help design practical bio-oil upgrading catalysts based on Mo carbides.« less

  19. Alternative Bio-Derived JP-8 Class Fuel and JP-8 Fuel: Flame Tube Combustor Test Results Compared using a GE TAPS Injector Configuration

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Tedder, Sarah A.; Anderson, Robert C.

    2016-01-01

    This paper presents results from tests in a flame tube facility, where a bio-derived alternate fuel was compared with JP-8 for emissions and general combustion performance. A research version of General Electric Aviation (GE) TAPS injector was used for the tests. Results include combustion efficiency from gaseous emission measurements, 2D planar laser-based imaging as well as basic flow visualization of the flame. Four inlet test conditions were selected that simulate various engine power conditions relevant to NASA Fundamental Aeronautics Supersonics Project and Environmentally Responsible Aviation Program. One inlet condition was a pilot-only test point. The other three inlet conditions incorporated fuel staging via a split between the pilot and main circuits of either 10%/90% or 20%/80%. For each engine power condition, three fuel mixes were used: 100% JP-8; 100% alternative; and a blend of the two, containing 75% alternative. Results for the inlet cases that have fuel split between pilot and main, indicate that fuel from the pilot appears to be evaporated by the time it reaches the dome exit. Main circuit liquid evaporates within a downstream distance equal to annulus height, no matter the fuel. Some fuel fluorescence images for a 10%/90% fuel staging case show a distinct difference between JP-8 and bio-derived fuel. OH PLIF results indicate that OH forms in a region more centrally-located for the JP-8 case downstream of the pilot, in its central recirculation region (CRZ). For the bio-derived Hydrotreated Renewable Jet (HRJ) fuel, however, we do not see much OH in the CRZ. The OH image structure near the dome exit is similar for the two fuels, but farther downstream the OH in the CRZ is much more apparent for the JP-8 than for the alternate fuel. For all conditions, there was no discernable difference between fuel types in combustion efficiency or emissions.

  20. Origin of multiple band gap values in single width nanoribbons

    PubMed Central

    Goyal, Deepika; Kumar, Shailesh; Shukla, Alok; Kumar, Rakesh

    2016-01-01

    Deterministic band gap in quasi-one-dimensional nanoribbons is prerequisite for their integrated functionalities in high performance molecular-electronics based devices. However, multiple band gaps commonly observed in graphene nanoribbons of the same width, fabricated in same slot of experiments, remain unresolved, and raise a critical concern over scalable production of pristine and/or hetero-structure nanoribbons with deterministic properties and functionalities for plethora of applications. Here, we show that a modification in the depth of potential wells in the periodic direction of a supercell on relative shifting of passivating atoms at the edges is the origin of multiple band gap values in nanoribbons of the same width in a crystallographic orientation, although they carry practically the same ground state energy. The results are similar when calculations are extended from planar graphene to buckled silicene nanoribbons. Thus, the findings facilitate tuning of the electronic properties of quasi-one-dimensional materials such as bio-molecular chains, organic and inorganic nanoribbons by performing edge engineering. PMID:27808172

  1. Characterizing the impact of pressure on virus filtration processes and establishing design spaces to ensure effective parvovirus removal.

    PubMed

    Strauss, Daniel; Goldstein, Joshua; Hongo-Hirasaki, Tomoko; Yokoyama, Yoshiro; Hirotomi, Naokatsu; Miyabayashi, Tomoyuki; Vacante, Dominick

    2017-09-01

    Virus filtration provides robust removal of potential viral contaminants and is a critical step during the manufacture of biotherapeutic products. However, recent studies have shown that small virus removal can be impacted by low operating pressure and depressurization. To better understand the impact of these conditions and to define robust virus filtration design spaces, we conducted multivariate analyses to evaluate parvovirus removal over wide ranges of operating pressure, solution pH, and conductivity for three mAb products on Planova™ BioEX and 20N filters. Pressure ranges from 0.69 to 3.43 bar (10.0-49.7 psi) for Planova BioEX filters and from 0.50 to 1.10 bar (7.3 to 16.0 psi) for Planova 20N filters were identified as ranges over which effective removal of parvovirus is achieved for different products over wide ranges of pH and conductivity. Viral clearance at operating pressure below the robust pressure range suggests that effective parvovirus removal can be achieved at low pressure but that Minute virus of mice (MVM) logarithmic reduction value (LRV) results may be impacted by product and solution conditions. These results establish robust design spaces for Planova BioEX and 20N filters where high parvovirus clearance can be expected for most antibody products and provide further understanding of viral clearance mechanisms. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1294-1302, 2017. © 2017 American Institute of Chemical Engineers.

  2. Engineering of a Bacillus subtilis strain with adjustable levels of intracellular biotin for secretory production of functional streptavidin.

    PubMed

    Wu, Sau-Ching; Wong, Sui-Lam

    2002-03-01

    Streptavidin is a biotin-binding protein which has been widely used in many in vitro and in vivo applications. Because of the ease of protein recovery and availability of protease-deficient strains, the Bacillus subtilis expression-secretion system is an attractive system for streptavidin production. However, attempts to produce streptavidin using B. subtilis face the problem that cells overproducing large amounts of streptavidin suffer poor growth, presumably because of biotin deficiency. This problem cannot be solved by supplementing biotin to the culture medium, as this will saturate the biotin binding sites in streptavidin. We addressed this dilemma by engineering a B. subtilis strain (WB800BIO) which overproduces intracellular biotin. The strategy involves replacing the natural regulatory region of the B. subtilis chromosomal biotin biosynthetic operon (bioWAFDBIorf2) with an engineered one consisting of the B. subtilis groE promoter and gluconate operator. Biotin production in WB800BIO is induced by gluconate, and the level of biotin produced can be adjusted by varying the gluconate dosage. A level of gluconate was selected to allow enhanced intracellular production of biotin without getting it released into the culture medium. WB800BIO, when used as a host for streptavidin production, grows healthily in a biotin-limited medium and produces large amounts (35 to 50 mg/liter) of streptavidin, with over 80% of its biotin binding sites available for future applications.

  3. Disposable pen-shaped capillary gel electrophoresis cartridge for fluorescence detection of bio-molecules

    NASA Astrophysics Data System (ADS)

    Amirkhanian, Varoujan; Tsai, Shou-Kuan

    2014-03-01

    We introduce a novel and cost-effective capillary gel electrophoresis (CGE) system utilizing disposable pen-shaped gelcartridges for highly efficient, high speed, high throughput fluorescence detection of bio-molecules. The CGE system has been integrated with dual excitation and emission optical-fibers with micro-ball end design for fluorescence detection of bio-molecules separated and detected in a disposable pen-shaped capillary gel electrophoresis cartridge. The high-performance capillary gel electrophoresis (CGE) analyzer has been optimized for glycoprotein analysis type applications. Using commercially available labeling agent such as ANTS (8-aminonapthalene-1,3,6- trisulfonate) as an indicator, the capillary gel electrophoresis-based glycan analyzer provides high detection sensitivity and high resolving power in 2-5 minutes of separations. The system can hold total of 96 samples, which can be automatically analyzed within 4-5 hours. This affordable fiber optic based fluorescence detection system provides fast run times (4 minutes vs. 20 minutes with other CE systems), provides improved peak resolution, good linear dynamic range and reproducible migration times, that can be used in laboratories for high speed glycan (N-glycan) profiling applications. The CGE-based glycan analyzer will significantly increase the pace at which glycoprotein research is performed in the labs, saving hours of preparation time and assuring accurate, consistent and economical results.

  4. Antibiotic-Free Selection in Biotherapeutics: Now and Forever

    PubMed Central

    Mignon, Charlotte; Sodoyer, Régis; Werle, Bettina

    2015-01-01

    The continuously improving sophistication of molecular engineering techniques gives access to novel classes of bio-therapeutics and new challenges for their production in full respect of the strengthening regulations. Among these biologic agents are DNA based vaccines or gene therapy products and to a lesser extent genetically engineered live vaccines or delivery vehicles. The use of antibiotic-based selection, frequently associated with genetic manipulation of microorganism is currently undergoing a profound metamorphosis with the implementation and diversification of alternative selection means. This short review will present examples of alternatives to antibiotic selection and their context of application to highlight their ineluctable invasion of the bio-therapeutic world. PMID:25854922

  5. Zymomonas mobilis: a novel platform for future biorefineries

    PubMed Central

    2014-01-01

    Biosynthesis of liquid fuels and biomass-based building block chemicals from microorganisms have been regarded as a competitive alternative route to traditional. Zymomonas mobilis possesses a number of desirable characteristics for its special Entner-Doudoroff pathway, which makes it an ideal platform for both metabolic engineering and commercial-scale production of desirable bio-products as the same as Escherichia coli and Saccharomyces cerevisiae based on consideration of future biomass biorefinery. Z. mobilis has been studied extensively on both fundamental and applied level, which will provide a basis for industrial biotechnology in the future. Furthermore, metabolic engineering of Z. mobilis for enhancing bio-ethanol production from biomass resources has been significantly promoted by different methods (i.e. mutagenesis, adaptive laboratory evolution, specific gene knock-out, and metabolic engineering). In addition, the feasibility of representative metabolites, i.e. sorbitol, bionic acid, levan, succinic acid, isobutanol, and isobutanol produced by Z. mobilis and the strategies for strain improvements are also discussed or highlighted in this paper. Moreover, this review will present some guidelines for future developments in the bio-based chemical production using Z. mobilis as a novel industrial platform for future biofineries. PMID:25024744

  6. Lincoln Advanced Science and Engineering Reinforcement

    DTIC Science & Technology

    1989-01-01

    Chamblee Physics Lincoln University Kelvin Clark Physics Lincoln University Dwayne Cole Mechanical Engineering Howard University Francis Countiss Physics...Mathematics Lincoln University Spencer Lane Mechanical Engineering Howard University Edward Lawerence Physics Lincoln University Cyd Hall Actuarial Science...Pittsburgh Lloyd Hammond Ph.D., Bio-Chemistry Purdue University Timothy Moore M.S., Psychology Howard University * completedI During 1988, three (3

  7. Attrition-free pyrolysis to produce bio-oil and char.

    PubMed

    Mauviel, Guillain; Guillain, Mauviel; Kies, Fairouz; Fairouz, Kies; René, Mar Sans; Mar, Sans Rene; Ferrer, Monique; Monique, Ferrer; Lédé, Jacques; Jacques, Lédé

    2009-12-01

    Experiments are performed on a laboratory scale setup where beech wood chips are heated by gas convection and walls radiation. This study shows that it is possible to obtain high bio-oil and char yields with relatively low external heat transfer coefficients. The main advantage of this convection/radiation heat transfer mode compared to solid-solid collisions, applied in fluidized bed or twin screw reactors, is the reduction of solid attrition (char and sand). Thus tricky gas-solid separation through hot cyclones and/or hot filters could be avoided or reduced. It should be possible to recover directly bio-oil with less char particles and char free of sand dust. These qualities would allow easier use of these bio-products in different applications.

  8. Synthetic alienation of microbial organisms by using genetic code engineering: Why and how?

    PubMed

    Kubyshkin, Vladimir; Budisa, Nediljko

    2017-08-01

    The main goal of synthetic biology (SB) is the creation of biodiversity applicable for biotechnological needs, while xenobiology (XB) aims to expand the framework of natural chemistries with the non-natural building blocks in living cells to accomplish artificial biodiversity. Protein and proteome engineering, which overcome limitation of the canonical amino acid repertoire of 20 (+2) prescribed by the genetic code by using non-canonic amino acids (ncAAs), is one of the main focuses of XB research. Ideally, estranging the genetic code from its current form via systematic introduction of ncAAs should enable the development of bio-containment mechanisms in synthetic cells potentially endowing them with a "genetic firewall" i.e. orthogonality which prevents genetic information transfer to natural systems. Despite rapid progress over the past two decades, it is not yet possible to completely alienate an organism that would use and maintain different genetic code associations permanently. In order to engineer robust bio-contained life forms, the chemical logic behind the amino acid repertoire establishment should be considered. Starting from recent proposal of Hartman and Smith about the genetic code establishment in the RNA world, here the authors mapped possible biotechnological invasion points for engineering of bio-contained synthetic cells equipped with non-canonical functionalities. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. New tailor-made bio-organoclays for the remediation of olive mill waste water

    NASA Astrophysics Data System (ADS)

    Calabrese, Ilaria; Gelardi, Giulia; Merli, Marcello; Rytwo, Giora; Sciascia, Luciana; Liria Turco Liveri, Maria

    2013-12-01

    A systematic study aimed at obtaining new organoclays for the treatment of Olive Mill Waste water (OMW) has been performed. Several organoclays have been prepared by loading different amounts of the biocompatible surfactant Tween20 onto the K10 montmorillonite (MMT). Complementary kinetic and equilibrium studies on the adsorption of the Tween20 onto the MMT have been carried out and the characterization of the new tailor-made bio-materials has been performed by means of the XRD and FT-IR measurements. Finally the prepared bio-organoclays have been successfully applied for the OMW remediation and they proved to be highly effective in decreasing the organic content (OC) to an extent that depends on both the amount of loaded surfactant and the experimental protocols applied.

  10. Performance of the fourth-generation Bio-Rad GS HIV Combo Ag/Ab enzyme immunoassay for diagnosis of HIV infection in Southern Africa

    PubMed Central

    Piwowar-Manning, Estelle; Fogel, Jessica M.; Richardson, Paul; Wolf, Shauna; Clarke, William; Marzinke, Mark A.; Fiamma, Agnès; Donnell, Deborah; Kulich, Michal; Mbwambo, Jessie K.K.; Richter, Linda; Gray, Glenda; Sweat, Michael; Coates, Thomas J.; Eshleman, Susan H.

    2015-01-01

    Background Fourth-generation HIV assays detect both antigen and antibody, facilitating detection of acute/early HIV infection. The Bio-Rad GS HIV Combo Ag/Ab assay (Bio-Rad Combo) is an enzyme immunoassay that simultaneously detects HIV p24 antigen and antibodies to HIV-1 and HIV-2 in serum or plasma. Objective To evaluate the performance of the Bio-Rad Combo assay for detection of HIV infection in adults from Southern Africa. Study design Samples were obtained from adults in Soweto and Vulindlela, South Africa and Dar es Salaam, Tanzania (300 HIV-positive samples; 300 HIV-negative samples; 12 samples from individuals previously classified as having acute/early HIV infection). The samples were tested with the Bio-Rad Combo assay. Additional testing was performed to characterize the 12 acute/early samples. Results All 300 HIV-positive samples were reactive using the Bio-Rad Combo assay; false positive test results were obtained for 10 (3.3%) of the HIV-negative samples (sensitivity: 100%, 95% confidence interval [CI]: 98.8–100%); specificity: 96.7%, 95% CI: 94.0–98.4%). The assay detected 10 of the 12 infections classified as acute/early. The two infections that were not detected had viral loads < 400 copies/mL; one of those samples contained antiretroviral drugs consistent with antiretroviral therapy. Conclusions The Bio-Rad Combo assay correctly classified the majority of study specimens. The specificity reported here may be higher than that seen in other settings, since HIV-negative samples were pre-screened using a different fourth-generation test. The assay also had high sensitivity for detection of acute/early infection. False-negative test results may be obtained in individuals who are virally suppressed. PMID:25542477

  11. SYNBIOCHEM-a SynBio foundry for the biosynthesis and sustainable production of fine and speciality chemicals.

    PubMed

    Carbonell, Pablo; Currin, Andrew; Dunstan, Mark; Fellows, Donal; Jervis, Adrian; Rattray, Nicholas J W; Robinson, Christopher J; Swainston, Neil; Vinaixa, Maria; Williams, Alan; Yan, Cunyu; Barran, Perdita; Breitling, Rainer; Chen, George Guo-Qiang; Faulon, Jean-Loup; Goble, Carole; Goodacre, Royston; Kell, Douglas B; Feuvre, Rosalind Le; Micklefield, Jason; Scrutton, Nigel S; Shapira, Philip; Takano, Eriko; Turner, Nicholas J

    2016-06-15

    The Manchester Synthetic Biology Research Centre (SYNBIOCHEM) is a foundry for the biosynthesis and sustainable production of fine and speciality chemicals. The Centre's integrated technology platforms provide a unique capability to facilitate predictable engineering of microbial bio-factories for chemicals production. An overview of these capabilities is described. © 2016 The Author(s).

  12. bioA mutant of Mycobacterium tuberculosis shows severe growth defect and imparts protection against tuberculosis in guinea pigs

    PubMed Central

    Kar, Ritika; Nangpal, Prachi; Mathur, Shubhita; Singh, Swati

    2017-01-01

    Owing to the devastation caused by tuberculosis along with the unsatisfactory performance of the Bacillus Calmette–Guérin (BCG) vaccine, a more efficient vaccine than BCG is required for the global control of tuberculosis. A number of studies have demonstrated an essential role of biotin biosynthesis in the growth and survival of several microorganisms, including mycobacteria, through deletion of the genes involved in de novo biotin biosynthesis. In this study, we demonstrate that a bioA mutant of Mycobacterium tuberculosis (MtbΔbioA) is highly attenuated in the guinea pig model of tuberculosis when administered aerogenically as well as intradermally. Immunization with MtbΔbioA conferred significant protection in guinea pigs against an aerosol challenge with virulent M. tuberculosis, when compared with the unvaccinated animals. Booster immunization with MtbΔbioA offered no advantage over a single immunization. These experiments demonstrate the vaccinogenic potential of the attenuated M. tuberculosis bioA mutant against tuberculosis. PMID:28658275

  13. [Wet oxidation of toxic industrial waste with oxygenated water].

    PubMed

    Alfieri, M; Colombo, G; Velotti, R

    1991-01-01

    The industrial toxic waste streams hot treatment technology with hydrogen peroxide and catalysts, developed by the research laboratories of Montefluos in Bollate, allows the abatement of many organic and bio-toxic pollutants. Some treatment examples are here reported. The examples, performed on a laboratory scale, relate to industrial waste streams with a high COD (100000-200000 mg/l) in which it was possible to obtain an abatement over the 90% of pollutants like phenols, formaldehyde, dimethylformamide and phenyl acetate. The application range of this technology is similar to that of oxygen or air wet oxidation, but it has remarkable advantages due to the lower plant, maintenance and energy costs, because the treatment is performed using much more bland conditions (atmospheric pressure and 90-100 degrees C of temperature). The aim of the bio-toxic pollutants abatement and COD reduction (70-80%) is to allow the final bio-digestion waste streams with high organic content, but too diluted to be directly incenerated at a suitable cost.

  14. Effect of high-pressure on pine sawdust pyrolysis: Products distribution and characteristics

    NASA Astrophysics Data System (ADS)

    Xu, Baiqing; Li, Aimin

    2017-08-01

    In this work, the pressurized pyrolysis of pine sawdust was performed with a self-made pressurized pyrolysis reactor to investigatethe influence of pyrolysis pressure in the range of 0-5 MPa on products distribution and characteristics. The combustion feature and microstructure of bio-char had analyzed by thermogravimetric (TG) and scanning electron microscopy (SEM), respectively. Elemental analyzer and Fourier transform infrared spectroscopy (FTIR) were used to confirm the identities of bio-oil. The results indicated the pressure had a notable impact on the biomass pyrolysis, which promoted the secondary cracking of bio-oil to produce more gaseous products and bio-char. The minimum bio-oil yield of 20.24% was obtained at the pressure of 5 MPa. Furthermore, the pressure improved the products characteristics. The increasing of pressure was favour to the deoxygenation and dehydrogenation reactions of bio-oil, which led to the increase of CH4, H2 and CO2 in gas. At the same time, under the influence of pressure, the surface structure and compactedness of the bio-char were obviously improved.

  15. Biorefining of precious metals from wastes: an answer to manufacturing of cheap nanocatalysts for fuel cells and power generation via an integrated biorefinery?

    PubMed

    Yong, Ping; Mikheenko, Iryna P; Deplanche, Kevin; Redwood, Mark D; Macaskie, Lynne E

    2010-12-01

    Bio-manufacturing of nano-scale palladium was achieved via enzymatically-mediated deposition of Pd from solution using Desulfovibrio desulfuricans, Escherichia coli and Cupriavidus metallidurans. Dried 'Bio-Pd' materials were sintered, applied onto carbon papers and tested as anodes in a proton exchange membrane (PEM) fuel cell for power production. At a Pd(0) loading of 25% by mass the fuel cell power using Bio-Pd( D. desulfuricans ) (positive control) and Bio-Pd( E. coli ) (negative control) was ~140 and ~30 mW respectively. Bio-Pd( C. metallidurans ) was intermediate between these with a power output of ~60 mW. An engineered strain of E. coli (IC007) was previously reported to give a Bio-Pd that was >3-fold more active than Bio-Pd of the parent E. coli MC4100 (i.e. a power output of >110 mW). Using this strain, a mixed metallic catalyst was manufactured from an industrial processing waste. This 'Bio-precious metal' ('Bio-PM') gave ~68% of the power output as commercial Pd(0) and ~50% of that of Bio-Pd( D. desulfuricans ) when used as fuel cell anodic material. The results are discussed in relation to integrated bioprocessing for clean energy.

  16. Using binary classification to prioritize and curate articles for the Comparative Toxicogenomics Database.

    PubMed

    Vishnyakova, Dina; Pasche, Emilie; Ruch, Patrick

    2012-01-01

    We report on the original integration of an automatic text categorization pipeline, so-called ToxiCat (Toxicogenomic Categorizer), that we developed to perform biomedical documents classification and prioritization in order to speed up the curation of the Comparative Toxicogenomics Database (CTD). The task can be basically described as a binary classification task, where a scoring function is used to rank a selected set of articles. Then components of a question-answering system are used to extract CTD-specific annotations from the ranked list of articles. The ranking function is generated using a Support Vector Machine, which combines three main modules: an information retrieval engine for MEDLINE (EAGLi), a gene normalization service (NormaGene) developed for a previous BioCreative campaign and finally, a set of answering components and entity recognizer for diseases and chemicals. The main components of the pipeline are publicly available both as web application and web services. The specific integration performed for the BioCreative competition is available via a web user interface at http://pingu.unige.ch:8080/Toxicat.

  17. Direct transfer of subwavelength plasmonic nanostructures on bioactive silk films.

    PubMed

    Lin, Dianmin; Tao, Hu; Trevino, Jacob; Mondia, Jessica P; Kaplan, David L; Omenetto, Fiorenzo G; Dal Negro, Luca

    2012-11-27

    By a reusable transfer fabrication technique, we demonstrate high-fidelity fabrication of metal nanoparticles, optical nanoantennas, and nanohole arrays directly on a functional silk biopolymer. The ability to reproducibly pattern silk biopolymers with arbitrarily complex plasmonic arrays is of importance for a variety of applications in optical biosensing, tissue engineering, cell biology, and the development of novel bio-optoelectronic medical devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Granulated bog iron ores as sorbents in passive (bio)remediation systems for arsenic removal

    NASA Astrophysics Data System (ADS)

    Debiec, Klaudia; Rzepa, Grzegorz; Bajda, Tomasz; Uhrynowski, Witold; Sklodowska, Aleksandra; Krzysztoforski, Jan; Drewniak, Lukasz

    2018-03-01

    The main element of PbRS (passive (bio)remediation systems) are sorbents, which act as natural filters retaining heavy metals and carriers of microorganisms involved in water treatment. Thus, the effectiveness of PbRS is determined by the quality of the (ad)sorbents, which should be stable under various environmental conditions, have a wide range of applications and be non-toxic to (micro)organisms used in these systems. Our previous studies showed that bog iron ores (BIOs) meet these requirements. However, further investigation of the physical and chemical parameters of BIOs under environmental conditions is required before their large-scale application in PbRS. The aim of this study was (i) to investigate the ability of granulated BIOs (gBIOs) to remove arsenic from various types of contaminated waters, and (ii) to estimate the application potential of gBIOs in technologies dedicated to water treatment. These studies were conducted on synthetic solutions of arsenic and environmental samples of arsenic contaminated water using a set of adsorption columns filled with gBIOs. The experiments performed in a static system revealed that gBIOs are appropriate arsenic and zinc adsorbent. Dynamic adsorption studies confirmed these results and showed that the actual sorption efficiency of gBIOs depends on the adsorbate concentration and is directly proportional to them. Desorption analysis showed that As-loaded gBIOs are characterized by high chemical stability and they may be reused for the (ad)sorption of other elements, i.e. zinc. It was also shown that gBIOs may be used for remediation of both highly oxygenated waters and groundwater or settling ponds, where the oxygen level is low, as both forms of inorganic arsenic (arsenate and arsenite) were effectively removed. Arsenic concentration after treatment was <100 µg/L, which is below the limit for industrial water.

  19. Granulated Bog Iron Ores as Sorbents in Passive (Bio)Remediation Systems for Arsenic Removal

    PubMed Central

    Debiec, Klaudia; Rzepa, Grzegorz; Bajda, Tomasz; Uhrynowski, Witold; Sklodowska, Aleksandra; Krzysztoforski, Jan; Drewniak, Lukasz

    2018-01-01

    The main element of PbRS (passive (bio)remediation systems) are sorbents, which act as natural filters retaining heavy metals and carriers of microorganisms involved in water treatment. Thus, the effectiveness of PbRS is determined by the quality of the (ad)sorbents, which should be stable under various environmental conditions, have a wide range of applications and be non-toxic to (micro)organisms used in these systems. Our previous studies showed that bog iron ores (BIOs) meet these requirements. However, further investigation of the physical and chemical parameters of BIOs under environmental conditions is required before their large-scale application in PbRS. The aim of this study was (i) to investigate the ability of granulated BIOs (gBIOs) to remove arsenic from various types of contaminated waters, and (ii) to estimate the application potential of gBIOs in technologies dedicated to water treatment. These studies were conducted on synthetic solutions of arsenic and environmental samples of arsenic contaminated water using a set of adsorption columns filled with gBIOs. The experiments performed in a static system revealed that gBIOs are appropriate arsenic and zinc adsorbent. Dynamic adsorption studies confirmed these results and showed, that the actual sorption efficiency of gBIOs depends on the adsorbate concentration and is directly proportional to them. Desorption analysis showed that As-loaded gBIOs are characterized by high chemical stability and they may be reused for the (ad)sorption of other elements, i.e., zinc. It was also shown that gBIOs may be used for remediation of both highly oxygenated waters and groundwater or settling ponds, where the oxygen level is low, as both forms of inorganic arsenic (arsenate and arsenite) were effectively removed. Arsenic concentration after treatment was <100 μg/L, which is below the limit for industrial water. PMID:29616211

  20. Granulated Bog Iron Ores as Sorbents in Passive (Bio)Remediation Systems for Arsenic Removal.

    PubMed

    Debiec, Klaudia; Rzepa, Grzegorz; Bajda, Tomasz; Uhrynowski, Witold; Sklodowska, Aleksandra; Krzysztoforski, Jan; Drewniak, Lukasz

    2018-01-01

    The main element of PbRS (passive (bio)remediation systems) are sorbents, which act as natural filters retaining heavy metals and carriers of microorganisms involved in water treatment. Thus, the effectiveness of PbRS is determined by the quality of the (ad)sorbents, which should be stable under various environmental conditions, have a wide range of applications and be non-toxic to (micro)organisms used in these systems. Our previous studies showed that bog iron ores (BIOs) meet these requirements. However, further investigation of the physical and chemical parameters of BIOs under environmental conditions is required before their large-scale application in PbRS. The aim of this study was (i) to investigate the ability of granulated BIOs (gBIOs) to remove arsenic from various types of contaminated waters, and (ii) to estimate the application potential of gBIOs in technologies dedicated to water treatment. These studies were conducted on synthetic solutions of arsenic and environmental samples of arsenic contaminated water using a set of adsorption columns filled with gBIOs. The experiments performed in a static system revealed that gBIOs are appropriate arsenic and zinc adsorbent. Dynamic adsorption studies confirmed these results and showed, that the actual sorption efficiency of gBIOs depends on the adsorbate concentration and is directly proportional to them. Desorption analysis showed that As-loaded gBIOs are characterized by high chemical stability and they may be reused for the (ad)sorption of other elements, i.e., zinc. It was also shown that gBIOs may be used for remediation of both highly oxygenated waters and groundwater or settling ponds, where the oxygen level is low, as both forms of inorganic arsenic (arsenate and arsenite) were effectively removed. Arsenic concentration after treatment was <100 μg/L, which is below the limit for industrial water.

  1. Suitability of soil bioengineering techniques in Central America: a case study in Nicaragua

    NASA Astrophysics Data System (ADS)

    Petrone, A.; Preti, F.

    2008-02-01

    In the last few years "D. I. A. F." (Department of Agriculture and Forestry Engineering of Florence University), has been testing the effectiveness of Soil Bio-Engineering techniques in Central America. The focus of the present study was to find out which native plants were most suited for soil bio-engineering purposes, particularly in the realization of riverbank protection. Furthermore, we have also been aiming at economic efficiency. In the context of sustainable watershed management, these techniques seem to be appropriate, especially in underdeveloped countries. Concerning the plants to be used, we considered three native species, Gliricidia Sepium, Cordia dentata and Jatropha curcas, to be appropriate for this type of work. Economically speaking, the low cost of such interventions in underdeveloped countries, has been shown by the construction of riverbank protection using vegetated crib-walls in Nicaragua.

  2. Effects of Nano Additives in engine emission Characteristics using Blends of Lemon Balm oil with Diesel

    NASA Astrophysics Data System (ADS)

    Senthil kumar, J.; Ganesan, S.; Sivasaravanan, S.; Padmanabhan, S.; Krishnan, L.; Aniruthan, V. C.

    2017-05-01

    Economic growth in developing countries has led to enormous increase in energy demand. In India the energy demand is increasing at a rate of 6.5% every year. The crude oil demand of country is meet by bring in of about 70%. Thus the energy safety measures have become key issue for our country. Bio diesel an eco-friendly and renewable fuel alternate for diesel has been getting the consideration of researcher’s entire world. The main aim of this paper is to evaluate the engine parameters using blend of pure lemon balm oil with diesel. Also nano Additives is used as a catalyst with blends of bio fuel to enhance the Emission Characteristics of various effective gases like CO2, NOx, CO and UHC with various levels of engine process parameters.

  3. A case for biofuels in aviation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-31

    In the last 15 years, the technical and the economic feasibility of biomass based fuels for general aviation piston engines has been proven. Exhaustive ground and flight tests performed at the Renewable Aviation Fuels Development Center (RAFDC) using ethanol, ethanol/methanol blends, and ETBE have proven these fuels to be superior to aviation gasoline (avgas) in all aspects of performance except range. Two series of Lycoming engines have been certified. Record flights, including a transatlantic flight on pure ethanol, were made to demonstrate the reliability of the fuel. Aerobatic demonstrations with aircraft powered by ethanol, ethanol/methanol, and ETBE were flown atmore » major airshows around the world. the use of bio-based fuels for aviation will benefit energy security, improve the balance of trade, domestic economy, and environmental quality. The United States has the resources to supply the aviation community`s needs with a domestically produced fuel using current available technology. The adoption of a renewable fuel in place of conventional petroleum-based fuels for aviation piston and turbine engines is long overdue.« less

  4. Comparison of Knee and Ankle Dynamometry between NASA's X1 Exoskeleton and Biodex System 4

    NASA Technical Reports Server (NTRS)

    English, K. L.; Newby, N. J.; Hackney, K. J.; DeWitt, J. K.; Beck, C. E.; Rovekamp, R. N.; Rea, R. L.; Ploutz-Snyder, L. L.

    2014-01-01

    Pre- and post-flight dynamometry is performed on International Space Station crewmembers to characterize microgravity-induced strength changes. Strength is not assessed in flight due to hardware limitations and there is poor understanding of the time course of in-flight changes. PURPOSE: To assess the reliability of a prototype dynamometer, the X1 Exoskeleton (EXO) and its agreement with a Biodex System 4 (BIO). METHODS: Eight subjects (4 M/4 F) completed 2 counterbalanced testing sessions of knee extension/flexion (KE/KF), 1 with BIO and 1 with EXO, with repeated measures within each session in normal gravity. Test-retest reliability (test 1 and 2) and device agreement (BIO vs. EXO) were evaluated. Later, to assess device agreement for ankle plantarflexion (PF), 10 subjects (4 M/6 F) completed 3 test conditions (BIO, EXO, and BIOEXO); BIOEXO was a hybrid condition comprised of the Biodex dynamometer motor and the X1 footplate and ankle frame. Ankle comparisons were: BIO vs. BIOEXO (footplate differences), BIOEXO vs. EXO (motor differences), and BIO vs. EXO (all differences). Reliability for KE/KF was determined by intraclass correlation (ICC). Device agreement was assessed with: 1) repeated measures ANOVA, 2) a measure of concordance (rho), and 3) average difference. RESULTS: ICCs for KE/KF were 0.99 for BIO and 0.96 to 0.99 for EXO. Agreement was high for KE (concordance: 0.86 to 0.95; average differences: -7 to +9 Nm) and low to moderate for KF (concordance: 0.64 to 0.78; average differences: -4 to -29 Nm, P<0.05). BIO vs. BIOEXO PF concordance ranged from 0.89 to 0.92 and mean differences ranged from -9 to +3 Nm (BIO < BIOEXO). BIOEXO vs. EXO PF concordance ranged from 0.73 to 0.80 while mean differences were -18 to -36 Nm (BIOEXO < EXO, P<0.05). PF concordance for BIO vs. EXO was slightly lower (0.61 to 0.84) and mean differences were greater (-27 to -33 Nm; BIO < EXO, P<0.05). CONCLUSION: BIO and EXO were similarly reliable for KE and KF. KE measures produced high agreement between devices; KF did not. For ankle PF, torque differences due to the two footplates were small. However, the X1 motor reports greater torques than the Biodex motor during PF. This first prototype provides proof of concept for a reliable, robotic-based exoskeleton to perform portable dynamometry for large muscle groups of the lower body.

  5. Photosynthetic conversion of CO2 to farnesyl diphosphate-derived phytochemicals (amorpha-4,11-diene and squalene) by engineered cyanobacteria.

    PubMed

    Choi, Sun Young; Lee, Hyun Jeong; Choi, Jaeyeon; Kim, Jiye; Sim, Sang Jun; Um, Youngsoon; Kim, Yunje; Lee, Taek Soon; Keasling, Jay D; Woo, Han Min

    2016-01-01

    Metabolic engineering of cyanobacteria has enabled photosynthetic conversion of CO2 to value-added chemicals as bio-solar cell factories. However, the production levels of isoprenoids in engineered cyanobacteria were quite low, compared to other microbial hosts. Therefore, modular optimization of multiple gene expressions for metabolic engineering of cyanobacteria is required for the production of farnesyl diphosphate-derived isoprenoids from CO2. Here, we engineered Synechococcus elongatus PCC 7942 with modular metabolic pathways consisting of the methylerythritol phosphate pathway enzymes and the amorphadiene synthase for production of amorpha-4,11-diene, resulting in significantly increased levels (23-fold) of amorpha-4,11-diene (19.8 mg/L) in the best strain relative to a parental strain. Replacing amorphadiene synthase with squalene synthase led to the synthesis of a high amount of squalene (4.98 mg/L/OD730). Overexpression of farnesyl diphosphate synthase is the most critical factor for the significant production, whereas overexpression of 1-deoxy-d-xylulose 5-phosphate reductase is detrimental to the cell growth and the production. Additionally, the cyanobacterial growth inhibition was alleviated by expressing a terpene synthase in S. elongatus PCC 7942 strain with the optimized MEP pathway only (SeHL33). This is the first demonstration of photosynthetic production of amorpha-4,11-diene from CO2 in cyanobacteria and production of squalene in S. elongatus PCC 7942. Our optimized modular OverMEP strain (SeHL33) with either co-expression of ADS or SQS demonstrated the highest production levels of amorpha-4,11-diene and squalene, which could expand the list of farnesyl diphosphate-derived isoprenoids from CO2 as bio-solar cell factories.

  6. Computational Tools to Assess Turbine Biological Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond, Marshall C.; Serkowski, John A.; Rakowski, Cynthia L.

    2014-07-24

    Public Utility District No. 2 of Grant County (GCPUD) operates the Priest Rapids Dam (PRD), a hydroelectric facility on the Columbia River in Washington State. The dam contains 10 Kaplan-type turbine units that are now more than 50 years old. Plans are underway to refit these aging turbines with new runners. The Columbia River at PRD is a migratory pathway for several species of juvenile and adult salmonids, so passage of fish through the dam is a major consideration when upgrading the turbines. In this paper, a method for turbine biological performance assessment (BioPA) is demonstrated. Using this method, amore » suite of biological performance indicators is computed based on simulated data from a CFD model of a proposed turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. Using known relationships between the dose of an injury mechanism and frequency of injury (dose–response) from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from proposed designs, the engineer can identify the more-promising alternatives. We present an application of the BioPA method for baseline risk assessment calculations for the existing Kaplan turbines at PRD that will be used as the minimum biological performance that a proposed new design must achieve.« less

  7. Towards a sustainable bio-based economy: Redirecting primary metabolism to new products with plant synthetic biology.

    PubMed

    Shih, Patrick M

    2018-08-01

    Humans have domesticated many plant species as indispensable sources of food, materials, and medicines. The dawning era of synthetic biology represents a means to further refine, redesign, and engineer crops to meet various societal and industrial needs. Current and future endeavors will utilize plants as the foundation of a bio-based economy through the photosynthetic production of carbohydrate feedstocks for the microbial fermentation of biofuels and bioproducts, with the end goal of decreasing our dependence on petrochemicals. As our technological capabilities improve, metabolic engineering efforts may expand the utility of plants beyond sugar feedstocks through the direct production of target compounds, including pharmaceuticals, renewable fuels, and commodity chemicals. However, relatively little work has been done to fully realize the potential in redirecting central carbon metabolism in plants for the engineering of novel bioproducts. Although our ability to rationally engineer and manipulate plant metabolism is in its infancy, I highlight some of the opportunities and challenges in applying synthetic biology towards engineering plant primary metabolism. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. A brief review of extrusion-based tissue scaffold bio-printing.

    PubMed

    Ning, Liqun; Chen, Xiongbiao

    2017-08-01

    Extrusion-based bio-printing has great potential as a technique for manipulating biomaterials and living cells to create three-dimensional (3D) scaffolds for damaged tissue repair and function restoration. Over the last two decades, advances in both engineering techniques and life sciences have evolved extrusion-based bio-printing from a simple technique to one able to create diverse tissue scaffolds from a wide range of biomaterials and cell types. However, the complexities associated with synthesis of materials for bio-printing and manipulation of multiple materials and cells in bio-printing pose many challenges for scaffold fabrication. This paper presents an overview of extrusion-based bio-printing for scaffold fabrication, focusing on the prior-printing considerations (such as scaffold design and materials/cell synthesis), working principles, comparison to other techniques, and to-date achievements. This paper also briefly reviews the recent development of strategies with regard to hydrogel synthesis, multi-materials/cells manipulation, and process-induced cell damage in extrusion-based bio-printing. The key issue and challenges for extrusion-based bio-printing are also identified and discussed along with recommendations for future, aimed at developing novel biomaterials and bio-printing systems, creating patterned vascular networks within scaffolds, and preserving the cell viability and functions in scaffold bio-printing. The address of these challenges will significantly enhance the capability of extrusion-based bio-printing. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Field-effect sensors - from pH sensing to biosensing: sensitivity enhancement using streptavidin-biotin as a model system.

    PubMed

    Lowe, Benjamin M; Sun, Kai; Zeimpekis, Ioannis; Skylaris, Chris-Kriton; Green, Nicolas G

    2017-11-06

    Field-Effect Transistor sensors (FET-sensors) have been receiving increasing attention for biomolecular sensing over the last two decades due to their potential for ultra-high sensitivity sensing, label-free operation, cost reduction and miniaturisation. Whilst the commercial application of FET-sensors in pH sensing has been realised, their commercial application in biomolecular sensing (termed BioFETs) is hindered by poor understanding of how to optimise device design for highly reproducible operation and high sensitivity. In part, these problems stem from the highly interdisciplinary nature of the problems encountered in this field, in which knowledge of biomolecular-binding kinetics, surface chemistry, electrical double layer physics and electrical engineering is required. In this work, a quantitative analysis and critical review has been performed comparing literature FET-sensor data for pH-sensing with data for sensing of biomolecular streptavidin binding to surface-bound biotin systems. The aim is to provide the first systematic, quantitative comparison of BioFET results for a single biomolecular analyte, specifically streptavidin, which is the most commonly used model protein in biosensing experiments, and often used as an initial proof-of-concept for new biosensor designs. This novel quantitative and comparative analysis of the surface potential behaviour of a range of devices demonstrated a strong contrast between the trends observed in pH-sensing and those in biomolecule-sensing. Potential explanations are discussed in detail and surface-chemistry optimisation is shown to be a vital component in sensitivity-enhancement. Factors which can influence the response, yet which have not always been fully appreciated, are explored and practical suggestions are provided on how to improve experimental design.

  10. Engineering biotin prototrophic Corynebacterium glutamicum strains for amino acid, diamine and carotenoid production.

    PubMed

    Peters-Wendisch, P; Götker, S; Heider, S A E; Komati Reddy, G; Nguyen, A Q; Stansen, K C; Wendisch, V F

    2014-12-20

    The Gram-positive Corynebacterium glutamicum is auxotrophic for biotin. Besides the biotin uptake system BioYMN and the transcriptional regulator BioQ, this bacterium possesses functional enzymes for the last three reactions of biotin synthesis starting from pimeloyl-CoA. Heterologous expression of bioF from the Gram-negative Escherichia coli enabled biotin synthesis from pimelic acid added to the medium, but expression of bioF together with bioC and bioH from E. coli did not entail biotin prototrophy. Heterologous expression of bioWAFDBI from Bacillus subtilis encoding another biotin synthesis pathway in C. glutamicum allowed for growth in biotin-depleted media. Stable growth of the recombinant was observed without biotin addition for eight transfers to biotin-depleted medium while the empty vector control stopped growth after the first transfer. Expression of bioWAFDBI from B. subtilis in C. glutamicum strains overproducing the amino acids l-lysine and l-arginine, the diamine putrescine, and the carotenoid lycopene, respectively, enabled formation of these products under biotin-depleted conditions. Thus, biotin-prototrophic growth and production by recombinant C. glutamicum were achieved. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. BioSPICE: access to the most current computational tools for biologists.

    PubMed

    Garvey, Thomas D; Lincoln, Patrick; Pedersen, Charles John; Martin, David; Johnson, Mark

    2003-01-01

    The goal of the BioSPICE program is to create a framework that provides biologists access to the most current computational tools. At the program midpoint, the BioSPICE member community has produced a software system that comprises contributions from approximately 20 participating laboratories integrated under the BioSPICE Dashboard and a methodology for continued software integration. These contributed software modules are the BioSPICE Dashboard, a graphical environment that combines Open Agent Architecture and NetBeans software technologies in a coherent, biologist-friendly user interface. The current Dashboard permits data sources, models, simulation engines, and output displays provided by different investigators and running on different machines to work together across a distributed, heterogeneous network. Among several other features, the Dashboard enables users to create graphical workflows by configuring and connecting available BioSPICE components. Anticipated future enhancements to BioSPICE include a notebook capability that will permit researchers to browse and compile data to support model building, a biological model repository, and tools to support the development, control, and data reduction of wet-lab experiments. In addition to the BioSPICE software products, a project website supports information exchange and community building.

  12. The employment of Support Vector Machine to classify high and low performance archers based on bio-physiological variables

    NASA Astrophysics Data System (ADS)

    Taha, Zahari; Muazu Musa, Rabiu; Majeed, Anwar P. P. Abdul; Razali Abdullah, Mohamad; Amirul Abdullah, Muhammad; Hasnun Arif Hassan, Mohd; Khalil, Zubair

    2018-04-01

    The present study employs a machine learning algorithm namely support vector machine (SVM) to classify high and low potential archers from a collection of bio-physiological variables trained on different SVMs. 50 youth archers with the average age and standard deviation of (17.0 ±.056) gathered from various archery programmes completed a one end shooting score test. The bio-physiological variables namely resting heart rate, resting respiratory rate, resting diastolic blood pressure, resting systolic blood pressure, as well as calories intake, were measured prior to their shooting tests. k-means cluster analysis was applied to cluster the archers based on their scores on variables assessed. SVM models i.e. linear, quadratic and cubic kernel functions, were trained on the aforementioned variables. The k-means clustered the archers into high (HPA) and low potential archers (LPA), respectively. It was demonstrated that the linear SVM exhibited good accuracy with a classification accuracy of 94% in comparison the other tested models. The findings of this investigation can be valuable to coaches and sports managers to recognise high potential athletes from the selected bio-physiological variables examined.

  13. Comparing the performance plateau in adult cochlear implant patients using HINT and AzBio.

    PubMed

    Massa, Sean T; Ruckenstein, Michael J

    2014-04-01

    This study aims to characterize the performance plateau in adult cochlear implant recipients after the initial postimplantation increase by using word recognition testing and an explicit definition of performance plateau. Retrospective review. Urban, tertiary referral center. One hundred twenty-five patients with 138 devices tested with AzBio were matched to 130 patients with 138 devices tested with HINT based on performed on CNC monosyllable tests. Patient's performance was measured overtime using AzBio and HINT tests to determine when and at what score their performance reached a plateau. Time from implantation to reach a performance plateau and plateau score with each test. Thirty-four devices reached a HINT plateau and 30 devices reached an AzBio plateau. Patients reached plateaus at similar times postoperatively using HINT and AzBio, 18.8 and 16.5 weeks, respectively (p = 0.476). Five patients tested with HINT plateaued at scores of 99% to 100%, whereas no patients plateaued above 92% with AzBio. Patients reached a plateau in performance at similar median times using AzBio and HINT, despite the ceiling effect of HINT in some patients. Most patients who reach a plateau did so within 4 months, but exactly when and if a patient's performance plateaus varies significantly among individuals. Further study is required to determine which test best reflects when a patient reaches his or her maximal performance in natural listening conditions.

  14. [Ecological characteristics of phytoplankton in Suining tributary under bio-remediation].

    PubMed

    Liu, Dongyan; Zhao, Jianfu; Zhang, Yalei; Ma, Limin

    2005-04-01

    Based on the analyses of phytoplankton community in the treated and untreated reaches of Suining tributary of Suzhou River, this paper studied the effects of bio-remediation on phytoplankton. As the result of the remediation, the density and Chl-a content of phytoplankton in treated reach were greatly declined, while the species number and Shannon-Wiener diversity index ascended obviously. The percentage of Chlorophyta and Baeillariophyta ascended, and some species indicating medium-and oligo-pollution were found. All of these illustrated that bio-remediation engineering might significantly benefit to the improvement of phytoplankton community structure and water quality.

  15. Functionally graded bio-ceramic reinforced PVA hydrogel composites for knee joint artificial cartilages

    NASA Astrophysics Data System (ADS)

    Kumar, G. C. Mohan

    2018-04-01

    Research progress in materials science for bio-based materials for cartilage repair or supportive to host tissue has become a fashionable, worldwide. Few efforts in biomedical engineering has attempted in the development of newer biomaterials successfully. Bio ceramics, a class of materials been used in particulate form as a reinforcement with polymers those ensure its biocompatibility. Every artificial biomedical system has to meet the minimum in Vitro requirements for successful application. Equally the biological behavior of normal and diseased tissues is also essential to understand the artificial systems to human body.

  16. The concept of bio-corona in modulating the toxicity of engineered nanomaterials (ENM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westmeier, Dana; Stauber, Roland H.; Docter, Dominic, E-mail: docter@uni-mainz.de

    Besides the wide use of engineered nanomaterials (ENM) in technical products, their application spectrum in biotechnology and biomedicine is steadily increasing. In complex physiological environments the physico-chemical properties and the behavior of nanoparticles (NPs) are challenging to characterize. Biomolecules rapidly adsorb to the nanomaterial, leading to the formation of the protein/biomolecule corona, which critically affects the nanomaterials' (patho)biological and technical identities. This formation can trigger an immune response and affect nanoparticles' toxicity and targeting capabilities. In this review, we provide a survey of recent findings on the (protein)corona-nanoparticle interaction and discuss how the corona modulates both cytotoxicity and the immunemore » response as well as to improve the efficacy of targeted delivery of nanocarriers. - Highlights: • “Nanotoxicology” has emerged an autonomous field with an explosive growth. • Nanomaterials adsorb (bio)molecules forming the so-called (bio)molecule corona. • (Fine-)tune of the corona composition could enable new possibilities in nanomedicine.« less

  17. Positive dermal hypersensitivity and specific antibodies in workers exposed to bio-engineered enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biagini, R.E.; Henningsen, G.M.; Driscoll, R.

    1991-03-15

    Thirty-six employees who produced industrial enzymes from bio-engineered strains of bacteria and fungi were evaluated by skin prick testing and enzyme linked immunosorbent assays for specific IgE and IgG antibodies. The workers complained of asthma- and flu-like' symptoms which generally lessened away from work. The enzymes evaluated were {alpha}-amylase from A. niger (ind-AAN), B. licheniformis (ind-AAL) and B. subtilis (ind-AAS); purified {alpha}-amylase from B. subtilis (AAS) and A. niger (AAN); alkaline protease from B. licheniformis (ind-APL) and purified alkaline protease (APL); amylase glucosidase from A. niger (ind-AGN) and purified amylase glucosidase (AGN). Significantly positive skin tests were found for APL,more » AGN and ind-AAN. Significantly elevated specific IgE results were observed for AAN, AGN, and ind-AAN; elevated specific IgGs were observed for AAN, ind-AAN, ind-AAS, ind-AAL and ind-AGN. Radioimmunoassays of air filter samples (using sera with high Ab titers) for 4 of the ind-enzymes showed only ind-AAN at extremely high environmental levels. These results indicate that occupational exposure to some ind-enzymes causes immediate onset dermal hypersensitivity reactions. The results are equivocal as to whether these reactions are IgE mediated, as IgE titers were low. Contrary to this, IgG titers were extremely high and suggest that these biomarkers can be used as indicators of both individual exposure and environmental analyses.« less

  18. Engineered soy oils for new value added applications

    NASA Astrophysics Data System (ADS)

    Tran, Phuong T.

    Soybean oil is an abundant annually renewable resource. It is composed of triglycerides with long chain saturated and unsaturated fatty acids. The presence of unsaturated fatty acids allows for chemical modification to introduce new functionalities to soybean oil. A portfolio of chemically modified soy oil with suitable functional groups has been designed and engineered to serve as the starting material in applications such as polyamides, polyesters, polyurethanes, composites, and lubricants. Anhydride, hydroxyl, and silicone functionalities were introduced to soy oil. Anhydride functionality was introduced using a single-step free radical initiated process, and the chemically modified soy oils were evaluated for potential applications as a composite and lubricant. Hydroxyl functionalities were introduced in a single-step catalytic ozonolysis process recently developed in our labs, which proceeds rapidly and efficiently at room temperature without solvent. The transformed soy oil was used to successfully prepare bio-lubricants with good thermal/oxidative stability and bio-plastics such as polyamides, polyesters, and polyurethanes. A new class of organic-inorganic hybrid materials was prepared by curing vinyltrimethoxysilane functionalized soy oil. This hybrid material could have potential as biobased sealant through a moisture initiated room temperature cure. These new classes of soy-based materials are competitive both in cost and performance to petroleum based materials, but offer the advantage of being biobased.

  19. Recirculation: A New Concept to Drive Innovation in Sustainable Product Design for Bio-Based Products.

    PubMed

    Sherwood, James; Clark, James H; Farmer, Thomas J; Herrero-Davila, Lorenzo; Moity, Laurianne

    2016-12-29

    Bio-based products are made from renewable materials, offering a promising basis for the production of sustainable chemicals, materials, and more complex articles. However, biomass is not a limitless resource or one without environmental and social impacts. Therefore, while it is important to use biomass and grow a bio-based economy, displacing the unsustainable petroleum basis of energy and chemical production, any resource must be used effectively to reduce waste. Standards have been developed to support the bio-based product market in order to achieve this aim. However, the design of bio-based products has not received the same level of attention. Reported here are the first steps towards the development of a framework of understanding which connects product design to resource efficiency. Research and development scientists and engineers are encouraged to think beyond simple functionality and associate value to the potential of materials in their primary use and beyond.

  20. Numerical modeling of gas mixing and bio-chemical transformations during underground hydrogen storage within the project H2STORE

    NASA Astrophysics Data System (ADS)

    Hagemann, B.; Feldmann, F.; Panfilov, M.; Ganzer, L.

    2015-12-01

    The change from fossil to renewable energy sources is demanding an increasing amount of storage capacities for electrical energy. A promising technological solution is the storage of hydrogen in the subsurface. Hydrogen can be produced by electrolysis using excessive electrical energy and subsequently converted back into electricity by fuel cells or engine generators. The development of this technology starts with adding small amounts of hydrogen to the high pressure natural gas grid and continues with the creation of pure underground hydrogen storages. The feasibility of hydrogen storage in depleted gas reservoirs is investigated in the lighthouse project H2STORE financed by the German Ministry for Education and Research. The joint research project has project members from the University of Jena, the Clausthal University of Technology, the GFZ Potsdam and the French National Center for Scientic Research in Nancy. The six sub projects are based on laboratory experiments, numerical simulations and analytical work which cover the investigation of mineralogical, geochemical, physio-chemical, sedimentological, microbiological and gas mixing processes in reservoir and cap rocks. The focus in this presentation is on the numerical modeling of underground hydrogen storage. A mathematical model was developed which describes the involved coupled hydrodynamic and microbiological effects. Thereby, the bio-chemical reaction rates depend on the kinetics of microbial growth which is induced by the injection of hydrogen. The model has been numerically implemented on the basis of the open source code DuMuX. A field case study based on a real German gas reservoir was performed to investigate the mixing of hydrogen with residual gases and to discover the consequences of bio-chemical reactions.

  1. Converting solid wastes into liquid fuel using a novel methanolysis process.

    PubMed

    Xiao, Ye; He, Peng; Cheng, Wei; Liu, Jacqueline; Shan, Wenpo; Song, Hua

    2016-03-01

    Biomass fast pyrolysis followed by hydrodeoxygenation upgrading is the most popular way to produce upgraded bio-oil from biomass. This process requires large quantities of expensive hydrogen and operates under high pressure condition (70-140 atm). Therefore, a novel methanolysis (i.e., biomass pyrolysis under methane environment) process is developed in this study, which is effective in upgraded bio-oil formation at atmospheric pressure and at about 400-600°C. Instead of using pure methane, simulated biogas (60% CH4+40% CO2) was used to test the feasibility of this novel methanolysis process for the conversion of different solid wastes. The bio-oil obtained from canola straw is slightly less than that from sawdust in term of quantity, but the oil quality from canola straw is better in terms of lower acidity, lower Bromine Number, higher H/C atomic ratio and lower O/C atomic ratio. The municipal solid waste and newspaper can also obtain relatively high oil yields, but the oil qualities of them are both lower than those from sawdust and canola straw. Compared with catalysts of 5%Zn/ZSM-5 and 1%Ag/ZSM-5, the 5%Zn-1%Ag/ZSM-5 catalyst performed much better in terms of upgraded bio-oil yield as well as oil quality. During the methanolysis process, the metal silver may be used to reduce the total acid number of the oil while the metal zinc might act to decrease the bromine number of the oil. The highly dispersed Zn and Ag species on/in the catalyst benefit the achievement of better upgrading performance and make it be a very promising catalyst for bio-oil upgrading by biogas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Periodontal ligament versus bone marrow mesenchymal stem cells in combination with Bio-Oss scaffolds for ectopic and in situ bone formation: A comparative study in the rat.

    PubMed

    Yu, Bo-Han; Zhou, Qian; Wang, Zuo-Lin

    2014-08-01

    The aim of this study was to compare the osteogenic effects of periodontal ligament stem cells (PDLSCs) versus bone marrow mesenchymal stem cells (BMMSCs) in combination with Bio-Oss scaffolds on subcutaneous and critical-size defects in the immunodeficient rat calvarium. PDLSCs and BMMSCs were obtained from the same canine donor. Twenty-four rats were randomly assigned to one of four experimental groups (n = 6 each): group A (no-graft negative control), group B (Bio-Oss positive control), group C (BMMSC/Bio-Oss test group), and group D (PDLSC/Bio-Oss test group). Eight weeks post-transplantation, ectopic and in situ bone regeneration was evaluated by micro-computed tomography (µ-CT), histology, histomorphometry, and immunohistochemistry. The stem cell/Bio-Oss constructs were significantly superior to the controls in terms of their ability to promote osteogenesis (p < 0.01), while the PDLSC/Bio-Oss construct tended to be superior to the BMMSC/Bio-Oss construct. Thus, engineered stem cell/Bio-Oss complexes can successfully reconstruct critical-size defects in rats, and PDLSCs and BMMSCs are both suitable as seed cells. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  3. BioNetCAD: design, simulation and experimental validation of synthetic biochemical networks

    PubMed Central

    Rialle, Stéphanie; Felicori, Liza; Dias-Lopes, Camila; Pérès, Sabine; El Atia, Sanaâ; Thierry, Alain R.; Amar, Patrick; Molina, Franck

    2010-01-01

    Motivation: Synthetic biology studies how to design and construct biological systems with functions that do not exist in nature. Biochemical networks, although easier to control, have been used less frequently than genetic networks as a base to build a synthetic system. To date, no clear engineering principles exist to design such cell-free biochemical networks. Results: We describe a methodology for the construction of synthetic biochemical networks based on three main steps: design, simulation and experimental validation. We developed BioNetCAD to help users to go through these steps. BioNetCAD allows designing abstract networks that can be implemented thanks to CompuBioTicDB, a database of parts for synthetic biology. BioNetCAD enables also simulations with the HSim software and the classical Ordinary Differential Equations (ODE). We demonstrate with a case study that BioNetCAD can rationalize and reduce further experimental validation during the construction of a biochemical network. Availability and implementation: BioNetCAD is freely available at http://www.sysdiag.cnrs.fr/BioNetCAD. It is implemented in Java and supported on MS Windows. CompuBioTicDB is freely accessible at http://compubiotic.sysdiag.cnrs.fr/ Contact: stephanie.rialle@sysdiag.cnrs.fr; franck.molina@sysdiag.cnrs.fr Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20628073

  4. Flipping Engineering Courses: A School Wide Initiative

    ERIC Educational Resources Information Center

    Clark, Renee M.; Besterfield-Sacre, Mary; Budny, Daniel; Bursic, Karen M.; Clark, William W.; Norman, Bryan A.; Parker, Robert S.; Patzer, John F., II; Slaughter, William S.

    2016-01-01

    In the 2013-2014 school year, we implemented the "flipped classroom" as part of an initiative to drive active learning, student engagement and enhanced learning in our school. The flipped courses consisted of freshman through senior engineering classes in introductory programming, statics/mechanics, mechanical design, bio-thermodynamics,…

  5. Methane-Oxidizing Enzymes: An Upstream Problem in Biological Gas-to-Liquids Conversion

    PubMed Central

    Lawton, Thomas J.; Rosenzweig, Amy C.

    2017-01-01

    Biological conversion of natural gas to liquids (Bio-GTL) represents an immense economic opportunity. In nature, aerobic methanotrophic bacteria and anaerobic archaea are able to selectively oxidize methane using methane monooxygenase (MMO) and methyl coenzyme M reductase (MCR) enzymes. Although significant progress has been made toward genetically manipulating these organisms for biotechnological applications, the enzymes themselves are slow, complex, and not recombinantly tractable in traditional industrial hosts. With turnover numbers of 0.16–13 s−1, these enzymes pose a considerable upstream problem in the biological production of fuels or chemicals from methane. Methane oxidation enzymes will need to be engineered to be faster to enable high volumetric productivities; however, efforts to do so and to engineer simpler enzymes have been minimally successful. Moreover, known methane-oxidizing enzymes have different expression levels, carbon and energy efficiencies, require auxiliary systems for biosynthesis and function, and vary considerably in terms of complexity and reductant requirements. The pros and cons of using each methane-oxidizing enzyme for Bio-GTL are considered in detail. The future for these enzymes is bright, but a renewed focus on studying them will be critical to the successful development of biological processes that utilize methane as a feedstock. PMID:27366961

  6. Methane-Oxidizing Enzymes: An Upstream Problem in Biological Gas-to-Liquids Conversion.

    PubMed

    Lawton, Thomas J; Rosenzweig, Amy C

    2016-08-03

    Biological conversion of natural gas to liquids (Bio-GTL) represents an immense economic opportunity. In nature, aerobic methanotrophic bacteria and anaerobic archaea are able to selectively oxidize methane using methane monooxygenase (MMO) and methyl coenzyme M reductase (MCR) enzymes. Although significant progress has been made toward genetically manipulating these organisms for biotechnological applications, the enzymes themselves are slow, complex, and not recombinantly tractable in traditional industrial hosts. With turnover numbers of 0.16-13 s(-1), these enzymes pose a considerable upstream problem in the biological production of fuels or chemicals from methane. Methane oxidation enzymes will need to be engineered to be faster to enable high volumetric productivities; however, efforts to do so and to engineer simpler enzymes have been minimally successful. Moreover, known methane-oxidizing enzymes have different expression levels, carbon and energy efficiencies, require auxiliary systems for biosynthesis and function, and vary considerably in terms of complexity and reductant requirements. The pros and cons of using each methane-oxidizing enzyme for Bio-GTL are considered in detail. The future for these enzymes is bright, but a renewed focus on studying them will be critical to the successful development of biological processes that utilize methane as a feedstock.

  7. A Wireless Fatigue Monitoring System Utilizing a Bio-Inspired Tree Ring Data Tracking Technique

    PubMed Central

    Bai, Shi; Li, Xuan; Xie, Zhaohui; Zhou, Zhi; Ou, Jinping

    2014-01-01

    Fatigue, a hot scientific research topic for centuries, can trigger sudden failure of critical structures such as aircraft and railway systems, resulting in enormous casualties as well as economic losses. The fatigue life of certain structures is intrinsically random and few monitoring techniques are capable of tracking the full life-cycle fatigue damage. In this paper, a novel in-situ wireless real-time fatigue monitoring system using a bio-inspired tree ring data tracking technique is proposed. The general framework, methodology, and verification of this intelligent system are discussed in details. The rain-flow counting (RFC) method is adopted as the core algorithm which quantifies fatigue damages, and Digital Signal Processing (DSP) is introduced as the core module for data collection and analysis. Laboratory test results based on strain gauges and polyvinylidene fluoride (PVDF) sensors have shown that the developed intelligent system can provide a reliable quick feedback and early warning of fatigue failure. With the merits of low cost, high accuracy and great reliability, the developed wireless fatigue sensing system can be further applied to mechanical engineering, civil infrastructures, transportation systems, aerospace engineering, etc. PMID:24603635

  8. Air Force Center of Excellence on Bio-nano-enabled Inorganic/Organic Nanostructures and Improved Cognition (BIONIC)

    DTIC Science & Technology

    2015-01-09

    IRG #3)  Mostafa A. El-Sayed, School of Chemistry & Biochemistry (IRG #2)  Andrei Fedorov, School of Mechanical Engineering (IRG #2)  Michael A...Engineering, U.S. Citizen)  *David Anderson (Ph.D. student, School of Mechanical Engineering, U.S. Citizen)  Luke A. Beardslee (Ph.D. student, School...Songkil Kim (PhD student, School of Mechanical Engineering)  Philip Kwon (Ph.D. student, School of Mechanical Engineering, U.S. Citizen)  Erin Lightman

  9. Cell Culture on MEMS Platforms: A Review

    PubMed Central

    Ni, Ming; Tong, Wen Hao; Choudhury, Deepak; Rahim, Nur Aida Abdul; Iliescu, Ciprian; Yu, Hanry

    2009-01-01

    Microfabricated systems provide an excellent platform for the culture of cells, and are an extremely useful tool for the investigation of cellular responses to various stimuli. Advantages offered over traditional methods include cost-effectiveness, controllability, low volume, high resolution, and sensitivity. Both biocompatible and bio-incompatible materials have been developed for use in these applications. Biocompatible materials such as PMMA or PLGA can be used directly for cell culture. However, for bio-incompatible materials such as silicon or PDMS, additional steps need to be taken to render these materials more suitable for cell adhesion and maintenance. This review describes multiple surface modification strategies to improve the biocompatibility of MEMS materials. Basic concepts of cell-biomaterial interactions, such as protein adsorption and cell adhesion are covered. Finally, the applications of these MEMS materials in Tissue Engineering are presented. PMID:20054478

  10. Surface engineering of nanoparticles in suspension for particle based bio-sensing

    PubMed Central

    Sen, Tapas; Bruce, Ian J.

    2012-01-01

    Surface activation of nanoparticles in suspension using amino organosilane has been carried out via strict control of a particle surface ad-layer of water using a simple but efficient protocol ‘Tri-phasic Reverse Emulsion’ (TPRE). This approach produced thin and ordered layers of particle surface functional groups which allowed the efficient conjugation of biomolecules. When used in bio-sensing applications, the resultant conjugates were highly efficient in the hybrid capture of complementary oligonucleotides and the detection of food borne microorganism. TPRE overcomes a number of fundamental problems associated with the surface modification of particles in aqueous suspension viz. particle aggregation, density and organization of resultant surface functional groups by controlling surface condensation of the aminosilane. The approach has potential for application in areas as diverse as nanomedicine, to food technology and industrial catalysis. PMID:22872809

  11. High-throughput strategies for the discovery and engineering of enzymes for biocatalysis.

    PubMed

    Jacques, Philippe; Béchet, Max; Bigan, Muriel; Caly, Delphine; Chataigné, Gabrielle; Coutte, François; Flahaut, Christophe; Heuson, Egon; Leclère, Valérie; Lecouturier, Didier; Phalip, Vincent; Ravallec, Rozenn; Dhulster, Pascal; Froidevaux, Rénato

    2017-02-01

    Innovations in novel enzyme discoveries impact upon a wide range of industries for which biocatalysis and biotransformations represent a great challenge, i.e., food industry, polymers and chemical industry. Key tools and technologies, such as bioinformatics tools to guide mutant library design, molecular biology tools to create mutants library, microfluidics/microplates, parallel miniscale bioreactors and mass spectrometry technologies to create high-throughput screening methods and experimental design tools for screening and optimization, allow to evolve the discovery, development and implementation of enzymes and whole cells in (bio)processes. These technological innovations are also accompanied by the development and implementation of clean and sustainable integrated processes to meet the growing needs of chemical, pharmaceutical, environmental and biorefinery industries. This review gives an overview of the benefits of high-throughput screening approach from the discovery and engineering of biocatalysts to cell culture for optimizing their production in integrated processes and their extraction/purification.

  12. MSU-Northern Bio-Energy Center of Excellence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kegel, Greg; Windy Boy, Jessica; Maglinao, Randy Latayan

    The goal of this project was to establish the Bio-Energy Center (the Center) of Montana State University Northern (MSUN) as a Regional Research Center of Excellence in research, product development, and commercialization of non-food biomass for the bio-energy industry. A three-step approach, namely, (1) enhance the Center’s research and testing capabilities, (2) develop advanced biofuels from locally grown agricultural crops, and (3) educate the community through outreach programs for public understanding and acceptance of new technologies was identified to achieve this goal. The research activities aimed to address the obstacles concerning the production of biofuels and other bio-based fuel additivesmore » considering feedstock quality, conversion process, economic viability, and public awareness. First and foremost in enhancing the capabilities of the Center is the improvement of its laboratories and other physical facilities for investigating new biomass conversion technologies and the development of its manpower complement with expertise in chemistry, engineering, biology, and energy. MSUN renovated its Auto Diagnostics building and updated its mechanical and electrical systems necessary to house the state-of-the-art 525kW (704 hp) A/C Dynamometer. The newly renovated building was designated as the Advanced Fuels Building. Two laboratories, namely Biomass Conversion lab and Wet Chemistry lab were also added to the Center’s facilities. The Biomass Conversion lab was for research on the production of advanced biofuels including bio-jet fuel and bio-based fuel additives while the Wet Chemistry lab was used to conduct catalyst research. Necessary equipment and machines, such as gas chromatograph-mass spectrometry, were purchased and installed to help in research and testing. With the enhanced capabilities of the Center, research and testing activities were very much facilitated and more precise. New biofuels derived from Camelina sativa (camelina), a locally-grown oilseed crop was developed through a chemical process for converting the oil extracted into jet fuel. Promising methods of synthesizing heterogeneous metal complex catalyst that support the chemical conversion process were likewise developed. Breaking-down lignin to valuable chemicals using a metal complex catalyst was also investigated. Lignin is an organic polymer that binds around cellulose and hemicellulose fibers which strengthen cell walls in woody biomass. Test results showed promise and could lead to further exploration of using lignin for fuels and fuel additives. These findings could create another value-added product from lignin that can be sourced from beetle kill trees and product residues from cellulose ethanol plants. Coupled with these research discoveries was the provision of technical support to businesses in terms of product development and commercialization of bio-based products. This in turn opened new avenues for advancing the bio-energy industry in the region and helped support the regional agricultural-based economy through developing biofuels derived from feedstock that are grown locally. It assisted in developing biofuels that reduce exhaust emissions and improve engine performance.« less

  13. [Histomorphometric evaluation of ridge preservation after molar tooth extraction].

    PubMed

    Zhan, Y L; Hu, W J; Xu, T; Zhen, M; Lu, R F

    2017-02-18

    To evaluate bone formation in human extraction sockets with absorbed surrounding walls augmented with Bio-Oss and Bio-Gide after a 6-month healing period by histologic and histomorphometric analyses. Six fresh molar tooth extraction sockets in 6 patients who required periodontally compromised moral tooth extraction were included in this study. The six fresh extraction sockets were grafted with Bio-Oss particle covered with Bio-Gide. The 2.8 mm×6.0 mm cylindric bone specimens were taken from the graft sites with aid of stent 6 months after the surgery. Histologic and histomorphometric analyses were performed. The histological results showed Bio-Oss particles were easily distinguished from the newly formed bone, small amounts of new bone were formed among the Bio-Oss particles, large amounts of connective tissue were found. Intimate contact between the newly formed bone and the small part of Bio-Oss particles was present. All the biopsy cylinders measurement demonstrated a high inter-individual variability in the percentage of the bone, connective tissues and Bio-Oss particles. The new bone occupied 11.54% (0-28.40%) of the total area; the connective tissues were 53.42% (34.08%-74.59%) and the Bio-Oss particles were 35.04% (13.92%-50.87%). The percentage of the particles, which were in contact with bone tissues, amounted to 20.13% (0-48.50%). Sites grafted with Bio-Oss particles covered with Bio-Gide were comprised of connective tissues and small amounts of newly formed bone surrounding the graft particles.

  14. Ultrasonic Vibration Assisted Grinding of Bio-ceramic Materials: Modeling, Simulation, and Experimental Investigations on Edge Chipping

    NASA Astrophysics Data System (ADS)

    Tesfay, Hayelom D.

    Bio-ceramics are those engineered materials that find their applications in the field of biomedical engineering or medicine. They have been widely used in dental restorations, repairing bones, joint replacements, pacemakers, kidney dialysis machines, and respirators. etc. due to their physico-chemical properties, such as excellent corrosion resistance, good biocompatibility, high strength and high wear resistance. Because of their inherent brittleness and hardness nature they are difficult to machine to exact sizes and dimensions. Abrasive machining processes such as grinding is one of the most widely used manufacturing processes for bioceramics. However, the principal technical challenge resulted from these machining is edge chipping. Edge chipping is a common edge failure commonly observed during the machining of bio-ceramic materials. The presence of edge chipping on bio-ceramic products affects dimensional accuracy, increases manufacturing cost, hider their industrial applications and causes potential failure during service. To overcome these technological challenges, a new ultrasonic vibration-assisted grinding (UVAG) manufacturing method has been developed and employed in this research. The ultimate aim of this study is to develop a new cost-effective manufacturing process relevant to eliminate edge chippings in grinding of bio-ceramic materials. In this dissertation, comprehensive investigations will be carried out using experimental, theoretical, and numerical approaches to evaluate the effect of ultrasonic vibrations on edge chipping of bioceramics. Moreover, effects of nine input variables (static load, vibration frequency, grinding depth, spindle speed, grinding distance, tool speed, grain size, grain number, and vibration amplitude) on edge chipping will be studied based on the developed models. Following a description of previous research and existing approaches, a series of experimental tests on three bio-ceramic materials (Lava, partially fired Lava, and Alumina) were conducted. Based on the experimental results, analytical models for UVAG and CG (conventional grinding without ultrasonic vibration) processes were developed. As for the numerical study, an extended finite element method (XFEM) based on Virtual Crack Closure Technique (VCCT) in ABAQUS was used to model the formation of edge chippings both for UVAG and CG processes. The experimental results are compared against the numerical FEA and the analytical models. The experimental, theoretical, and computational simulation results revealed that the edge chipping size of bioceramics can be significantly reduced with the assistance of ultrasonic vibration. The investigation procedures and the results obtained in this dissertation would be used as a reference and practical guidance for choosing reasonable process variables as well as designing mathematical (analytical and numerical) models in manufacturing industries and academic institutions when the edge chippings of brittle materials are expected to be controlled.

  15. An ex situ evaluation of TBA- and MTBE-baited bio-traps.

    PubMed

    North, Katharine P; Mackay, Douglas M; Annable, Michael D; Sublette, Kerry L; Davis, Greg; Holland, Reef B; Petersen, Daniel; Scow, Kate M

    2012-08-01

    Aquifer microbial communities can be investigated using Bio-traps(®) ("bio-traps"), passive samplers containing Bio-Sep(®) beads ("bio-beads") that are deployed in monitoring wells to be colonized by bacteria delivered via groundwater flow through the well. When bio-beads are "baited" with organic contaminants enriched in (13)C, stable isotope probing allows assessment of the composition and activity of the microbial community. This study used an ex situ system fed by groundwater continuously extracted from an adjacent monitoring well within an experimentally-created aerobic zone treating a tert-butyl alcohol (TBA) plume. The goal was to evaluate aspects of bio-trap performance that cannot be studied quantitatively in situ. The measured groundwater flow through a bio-trap housing suggests that such traps might typically "sample" about 1.8 L per month. The desorption of TBA or methyl tert-butyl ether (MTBE) bait from bio-traps during a typical deployment duration of 6 weeks was approximately 90% and 45%, respectively, of the total initial bait load, with initially high rate of mass loss that decreased markedly after a few days. The concentration of TBA in groundwater flowing by the TBA-baited bio-beads was estimated to be as high as 3400 mg/L during the first few days, which would be expected to inhibit growth of TBA-degrading microbes. Initial inhibition was also implied for the MTBE-baited bio-trap, but at lower concentrations and for a shorter time. After a few days, concentrations in groundwater flowing through the bio-traps dropped below inhibitory concentrations but remained 4-5 orders of magnitude higher than TBA or MTBE concentrations within the aquifer at the experimental site. Desorption from the bio-beads during ex situ deployment occurred at first as predicted by prior sorption analyses of bio-beads but with apparent hysteresis thereafter, possibly due to mass transfer limitations caused by colonizing microbes. These results suggest that TBA- or MTBE-baited bio-traps could be baited at lower initial total mass loading with no detriment to trapping ability. The bio-traps were able to collect detectable amounts of microbial DNA and thus allow some insight into the sparse microbial community present in the aquifer during remediation of the low concentration plume. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. An ex situ evaluation of TBA- and MTBE-baited bio-traps

    PubMed Central

    North, Katharine P.; Mackay, Douglas M.; Annable, Michael D.; Sublette, Kerry L.; Davis, Greg; Holland, Reef B.; Petersen, Daniel; Scow, Kate M.

    2013-01-01

    Aquifer microbial communities can be investigated using Bio-traps® (“bio-traps”), passive samplers containing Bio-Sep® beads (“bio-beads”) that are deployed in monitoring wells to be colonized by bacteria delivered via groundwater flow through the well. When bio-beads are “baited” with organic contaminants enriched in 13C, stable isotope probing allows assessment of the composition and activity of the microbial community. This study used an ex situ system fed by groundwater continuously extracted from an adjacent monitoring well within an experimentally-created aerobic zone treating a tert-butyl alcohol (TBA) plume. The goal was to evaluate aspects of bio-trap performance that cannot be studied quantitatively in situ. The measured groundwater flow through a bio-trap housing suggests that such traps might typically “sample” about 1.8 L per month. The desorption of TBA or methyl tert-butyl ether (MTBE) bait from bio-traps during a typical deployment duration of 6 weeks was approximately 90% and 45%, respectively, of the total initial bait load, with initially high rate of mass loss that decreased markedly after a few days. The concentration of TBA in groundwater flowing by the TBA-baited bio-beads was estimated to be as high as 3400 mg/L during the first few days, which would be expected to inhibit growth of TBA-degrading microbes. Initial inhibition was also implied for the MTBE-baited bio-trap, but at lower concentrations and for a shorter time. After a few days, concentrations in groundwater flowing through the bio-traps dropped below inhibitory concentrations but remained 4–5 orders of magnitude higher than TBA or MTBE concentrations within the aquifer at the experimental site. Desorption from the bio-beads during ex situ deployment occurred at first as predicted by prior sorption analyses of bio-beads but with apparent hysteresis thereafter, possibly due to mass transfer limitations caused by colonizing microbes. These results suggest that TBA- or MTBE-baited bio-traps could be baited at lower initial total mass loading with no detriment to trapping ability. The bio-traps were able to collect detectable amounts of microbial DNA and thus allow some insight into the sparse microbial community present in the aquifer during remediation of the low concentration plume. PMID:22621895

  17. Enzyme as catalytic wheel powered by a Markovian engine: conformational coupling and barrier surfing models

    NASA Astrophysics Data System (ADS)

    Tsong, Tian Yow; Chang, Cheng-Hung

    2005-05-01

    We examine a typical Michaelis-Menten Enzyme (MME) and redress it to form a transducer of free energy, and electric, acoustic, or other types of energy. This amendment and extension is necessary in lieu of recent experiments in which enzymes are shown to perform pump, motor, and locomotion functions resembling their macroscopic counterparts. Classical textbook depicts enzyme, or an MME, as biocatalyst which can enhance the rate of a chemical reaction by lowering the activation barrier but cannot shift the thermodynamic equilibrium of the biochemical reaction. An energy transducer, on the other hand, must also be able to harvest, store, or divert energy and in doing so alter the chemical equilibrium, change the energy form, fuel an energy consuming process, or perform all these functions stepwise in one catalytic turnover. The catalytic wheel presented in this communication is both a catalyst and an energy transducer and can perform all these tasks with ease. A Conformational Coupling Model for the rotary motors and a Barrier Surfing Model for the track-guided stepping motors and transporters, are presented and compared. It is shown that the core engine of the catalytic wheel, or a Brownian motor, is a Markovian engine. It remains to be seen if this core engine is the basic mechanism for a wide variety of bio-molecular energy transducers, as well as certain other dynamic systems, for example, the Parrondo's Games.

  18. The impact of fabrication parameters and substrate stiffness in direct writing of living constructs.

    PubMed

    Tirella, Annalisa; Ahluwalia, Arti

    2012-01-01

    Biomolecules and living cells can be printed in high-resolution patterns to fabricate living constructs for tissue engineering. To evaluate the impact of processing cells with rapid prototyping (RP) methods, we modeled the printing phase of two RP systems that use biomaterial inks containing living cells: a high-resolution inkjet system (BioJet) and a lower-resolution nozzle-based contact printing system (PAM(2)). In the first fabrication method, we reasoned that cell damage occurs principally during drop collision on the printing surface, in the second we hypothesize that shear stresses act on cells during extrusion (within the printing nozzle). The two cases were modeled changing the printing conditions: biomaterial substrate stiffness and volumetric flow rate, respectively, in BioJet and PAM(2). Results show that during inkjet printing impact energies of about 10(-8) J are transmitted to cells, whereas extrusion energies of the order of 10(-11) J are exerted in direct printing. Viability tests of printed cells can be related to those numerical simulations, suggesting a threshold energy of 10(-9) J to avoid permanent cell damage. To obtain well-defined living constructs, a combination of these methods is proposed for the fabrication of scaffolds with controlled 3D architecture and spatial distribution of biomolecules and cells. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  19. Microbial Routes to (2R,3R)-2,3-Butanediol: Recent Advances and Future Prospects.

    PubMed

    Xie, Neng-Zhong; Chen, Xian-Rui; Wang, Qing-Yan; Chen, Dong; Du, Qi-Shi; Zhou, Guo-Ping; Huang, Ri-Bo

    2017-01-01

    (2R,3R)-2,3-Butanediol has many industrial applications, such as it is used as an antifreeze agent and low freezing point fuel. In addition, it is particularly important to provide chiral groups in drugs. In recent years, this valuable bio-based chemical has attracted increasing attention, and significant progress has been made in the development of microbial cell factories for (2R,3R)-2,3-butanediol production. This article reviews recent advances and challenges in microbial routes to (2R,3R)-2,3- butanediol production, and highlights the metabolic engineering and synthetic biological approaches used to improve titers, yields, productivities, and optical purities. Finally, a systematic and integrative strategy for developing high-performance microbial cell factories is proposed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Next generation industrial biotechnology based on extremophilic bacteria.

    PubMed

    Chen, Guo-Qiang; Jiang, Xiao-Ran

    2018-04-01

    Industrial biotechnology aims to produce bulk chemicals including polymeric materials and biofuels based on bioprocessing sustainable agriculture products such as starch, fatty acids and/or cellulose. However, traditional bioprocesses require bioreactors made of stainless steel, complicated sterilization, difficult and expensive separation procedures as well as well-trained engineers that are able to conduct bioprocessing under sterile conditions, reducing the competitiveness of the bio-products. Amid the continuous low petroleum price, next generation industrial biotechnology (NGIB) allows bioprocessing to be conducted under unsterile (open) conditions using ceramic, cement or plastic bioreactors in a continuous way, it should be an energy, water and substrate saving technology with convenient operation procedure. NGIB also requires less capital investment and reduces demand on highly trained engineers. The foundation for the simplified NGIB is microorganisms that resist contaminations by other microbes, one of the examples is rapid growing halophilic bacteria inoculated under high salt concentration and alkali pH. They have been engineered to produce multiple products in various scales. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Systems metabolic engineering of Corynebacterium glutamicum for the production of the carbon-5 platform chemicals 5-aminovalerate and glutarate.

    PubMed

    Rohles, Christina Maria; Gießelmann, Gideon; Kohlstedt, Michael; Wittmann, Christoph; Becker, Judith

    2016-09-13

    The steadily growing world population and our ever luxurious life style, along with the simultaneously decreasing fossil resources has confronted modern society with the issue and need of finding renewable routes to accommodate for our demands. Shifting the production pipeline from raw oil to biomass requires efficient processes for numerous platform chemicals being produced with high yield, high titer and high productivity. In the present work, we established a de novo bio-based production process for the two carbon-5 platform chemicals 5-aminovalerate and glutarate on basis of the lysine-hyperproducing strain Corynebacterium glutamicum LYS-12. Upon heterologous implementation of the Pseudomonas putida genes davA, encoding 5-aminovaleramidase and davB, encoding lysine monooxygenase, 5-aminovalerate production was established. Related to the presence of endogenous genes coding for 5-aminovalerate transaminase (gabT) and glutarate semialdehyde dehydrogenase, 5-aminovalerate was partially converted to glutarate. Moreover, residual L-lysine was secreted as by-product. The issue of by-product formation was then addressed by deletion of the lysE gene, encoding the L-lysine exporter. Additionally, a putative gabT gene was deleted to enhance 5-aminovalerate production. To fully exploit the performance of the optimized strain, fed-batch fermentation was carried out producing 28 g L(-1) 5-aminovalerate with a maximal space-time yield of 0.9 g L(-1) h(-1). The present study describes the construction of a recombinant microbial cell factory for the production of carbon-5 platform chemicals. Beyond a basic proof-of-concept, we were able to specifically increase the production flux of 5-aminovalerate thereby generating a strain with excellent production performance. Additional improvement can be expected by removal of remaining by-product formation and bottlenecks, associated to the terminal pathway, to generate a strain being applicable as centerpiece for a bio-based production of 5-aminovalerate.

  2. A versatile method for fabricating ion-exchange hydrogel nanofibrous membranes with superb biomolecule adsorption and separation properties.

    PubMed

    Lv, Huan; Wang, Xueqin; Fu, Qiuxia; Si, Yang; Yin, Xia; Li, Xiaoran; Sun, Gang; Yu, Jianyong; Ding, Bin

    2017-11-15

    Construction ion-exchange membranes with superb biomolecules adsorption and purification performance plays a greatly important role in the fields of biotechnological and biopharmaceutical industry, yet still remains an extremely challenging. Herein, we in situ synthesized the cis-butenedioic anhydride grafted poly(vinyl alcohol) hydrogel nanofibrous membranes (CBA-g-PVA HNFM) by combining electrospinning technique with the grafting-copolymerization crosslinking. Taking advantages of the large specific surface area which could provide numerous sites available for functional groups and biomolecules binding, highly tortuous and interconnected porous channel for biomolecules transfer, and enhanced mechanical strength, the resultant CBA-g-PVA HNFM exhibited relatively high binding amount of 170mgg -1 , rapid equilibrium time of 8h towards the biomolecule template of lysozyme, and the performance could be tailored by regulating the buffer properties and protein concentrations. Additionally, the resultant functional HNFM also possessed superior acid resistance property, excellent reversibility and regeneration performance. More importantly, the obtained CBA-g-PVA HNFM could directly extract lysozyme from fresh chicken eggs with capacity of 125mgg -1 , exhibiting excellent practical application properties. The fabrication of proposed CBA-g-PVA HNFM offers a feasible alternative for construction of ion-exchange chromatograph column for bio-separation and purification engineering. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Engineering of filamentous bacteriophage for protein sensing

    NASA Astrophysics Data System (ADS)

    Brasino, Michael

    Methods of high throughput, sensitive and cost effective quantification of proteins enables personalized medicine by allowing healthcare professionals to better monitor patient condition and response to treatment. My doctoral research has attempted to advance these methods through the use of filamentous bacteriophage (phage). These bacterial viruses are particularly amenable to both genetic and chemical engineering and can be produced efficiently in large amounts. Here, I discuss several strategies for modifying phage for use in protein sensing assays. These include the expression of bio-orthogonal conjugation handles on the phage coat, the incorporation of specific recognition sequences within the phage genome, and the creation of antibody-phage conjugates via a photo-crosslinking non-canonical amino acid. The physical and chemical characterization of these engineered phage and the results of their use in modified protein sensing assays will be presented.

  4. High porous bio-nanocarbons prepared by carbonization and NaOH activation of polysaccharides for electrode material of EDLC

    NASA Astrophysics Data System (ADS)

    Takeuchi, Kenji; Fujishige, Masatsugu; Ishida, Nobuaki; Kunieda, Yoshihiro; Kato, Yosuke; Tanaka, Yusuke; Ochi, Toshiyuki; Shirotori, Hisashi; Uzuhashi, Yuji; Ito, Suguru; Oshida, Kyo-ichi; Endo, Morinobu

    2018-07-01

    Carbonization and post-activation of polysaccharides (utilized as food residue) created new bio-nanocarbons for the electrode of electric double layer capacitors (EDLC). Large specific capacitance (46.1 F/g, 26.4 F/cm3) and high rate performance was confirmed under optimized conditions of carbonization temperature (600 °C) and supplied amount of sodium hydroxide in NaOH-activation process (250 wt %). The capacitance and rate performance were larger than the reported values, 42.9 F/g, 19.7 F/cm3 of currently used activated carbon MSP-20. The feature that NaOH is usable as the activation agent, instead of KOH, is advantageous for reducing the cost of EDLC.

  5. Cracking vegetable oil from Callophylluminnophyllum L. seeds to bio-gasoline by Ni-Mo/Al2O3 and Ni-Mo/Zeolite as micro-porous catalysts

    NASA Astrophysics Data System (ADS)

    Savitri, Effendi, R.; Tursiloadi, S.

    2016-02-01

    Natural minerals such as zeolite are local natural resources in the various regions in Indonesia. Studies on the application of natural mineral currently carried out by national research institutions, among others, as a filler, bleaching agent, or dehydration agent. However, not many studies that utilize these natural minerals as green catalysts material which has high performance for biomass conversion processes and ready to be applied directly by the bio-fuel industry. The trend movement of green and sustainable chemistry research that designing environmentally friendly chemical processes from renewable raw materials to produce innovative products derived biomass for bio-fuel. Callophylluminnophyllum L. seeds can be used as raw material for bio-energy because of its high oil content. Fatty acid and triglyceride compounds from this oil can be cracked into bio-gasoline, which does not contain oxygen in the hydrocarbon structure. Bio-gasoline commonly is referred to as drop-in biofuel because it can be directly used as a substitute fuel. This paper focused on the preparation and formulation of the catalyst NiMo/H-Zeolite and Ni-Mo/Al2O3 which were used in hydro-cracking process of oil from Callophylluminnophyllum L. seeds to produce bio-gasoline. The catalysts were analyzed using XRD, BET and IR-adsorbed pyridine method. The results of hydro-cracking products mostly were paraffin (C10-C19) straight chain, with 59.5 % peak area based on GC-MS analysis.

  6. A novel bio-safe phase separation process for preparing open-pore biodegradable polycaprolactone microparticles.

    PubMed

    Salerno, Aurelio; Domingo, Concepción

    2014-09-01

    Open-pore biodegradable microparticles are object of considerable interest for biomedical applications, particularly as cell and drug delivery carriers in tissue engineering and health care treatments. Furthermore, the engineering of microparticles with well definite size distribution and pore architecture by bio-safe fabrication routes is crucial to avoid the use of toxic compounds potentially harmful to cells and biological tissues. To achieve this important issue, in the present study a straightforward and bio-safe approach for fabricating porous biodegradable microparticles with controlled morphological and structural features down to the nanometer scale is developed. In particular, ethyl lactate is used as a non-toxic solvent for polycaprolactone particles fabrication via a thermal induced phase separation technique. The used approach allows achieving open-pore particles with mean particle size in the 150-250 μm range and a 3.5-7.9 m(2)/g specific surface area. Finally, the combination of thermal induced phase separation and porogen leaching techniques is employed for the first time to obtain multi-scaled porous microparticles with large external and internal pore sizes and potential improved characteristics for cell culture and tissue engineering. Samples were characterized to assess their thermal properties, morphology and crystalline structure features and textural properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Bioinspired engineering of exploration systems for NASA and DoD: from bees to BEES

    NASA Technical Reports Server (NTRS)

    Thakoor, S.; Zornetzer, S.; Hine, B.; Chahl, J.; Werblin, F.; Srinivasan, M. V.; Young, L.

    2003-01-01

    The intent of Bio-inspired Engineering of Exploration Systems (BEES) is to distill the principles found in successful, nature-tested mechanisms of specific crucial functions that are hard to accomplish by conventional methods, but accomplished rather deftly in nature by biological organisms.

  8. 76 FR 74040 - Emerging Technology and Research Advisory Committee (ETRAC): Notice of Recruitment of Private...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-30

    ...-manufacturing activity in biological sciences (particularly bio electronics and synthetic biology), chemical engineering, directed energy, materials, space technologies (including satellite systems). The purpose of this... science and engineering to conduct a ``zero- based'' annual review of the list of technologies on the CCL...

  9. Synthesis and Characterization of Bio-Oil Phenol Formaldehyde Resin Used to Fabricate Phenolic Based Materials.

    PubMed

    Cui, Yong; Hou, Xiaopeng; Wang, Wenliang; Chang, Jianmin

    2017-06-18

    In this study, bio-oil from the fast pyrolysis of renewable biomass was used as the raw material to synthesize bio-oil phenol formaldehyde (BPF) resin-a desirable resin for fabricating phenolic-based material. During the synthesis process, paraformaldehyde was used to achieve the requirement of high solid content and low viscosity. The properties of BPF resins were tested. Results indicated that BPF resin with the bio-oil addition of 20% had good performance on oxygen index and bending strength, indicating that adding bio-oil could modify the fire resistance and brittleness of PF resin. The thermal curing behavior and heat resistance of BPF resins were investigated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Results showed that adding bio-oil had an impact on curing characteristics and thermal degradation process of PF resin, but the influence was insignificant when the addition was relatively low. The chemical structure and surface characteristics of BPF resins were determined by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The analysis demonstrated that adding bio-oil in the amount of 20% was able to improve the crosslinking degree and form more hydrocarbon chains in PF resin.

  10. Modeling, Control, and Estimation of Flexible, Aerodynamic Structures

    NASA Astrophysics Data System (ADS)

    Ray, Cody W.

    Engineers have long been inspired by nature’s flyers. Such animals navigate complex environments gracefully and efficiently by using a variety of evolutionary adaptations for high-performance flight. Biologists have discovered a variety of sensory adaptations that provide flow state feedback and allow flying animals to feel their way through flight. A specialized skeletal wing structure and plethora of robust, adaptable sensory systems together allow nature’s flyers to adapt to myriad flight conditions and regimes. In this work, motivated by biology and the successes of bio-inspired, engineered aerial vehicles, linear quadratic control of a flexible, morphing wing design is investigated, helping to pave the way for truly autonomous, mission-adaptive craft. The proposed control algorithm is demonstrated to morph a wing into desired positions. Furthermore, motivated specifically by the sensory adaptations organisms possess, this work transitions to an investigation of aircraft wing load identification using structural response as measured by distributed sensors. A novel, recursive estimation algorithm is utilized to recursively solve the inverse problem of load identification, providing both wing structural and aerodynamic states for use in a feedback control, mission-adaptive framework. The recursive load identification algorithm is demonstrated to provide accurate load estimate in both simulation and experiment.

  11. Optimizing Clinical Drug Product Performance: Applying Biopharmaceutics Risk Assessment Roadmap (BioRAM) and the BioRAM Scoring Grid.

    PubMed

    Dickinson, Paul A; Kesisoglou, Filippos; Flanagan, Talia; Martinez, Marilyn N; Mistry, Hitesh B; Crison, John R; Polli, James E; Cruañes, Maria T; Serajuddin, Abu T M; Müllertz, Anette; Cook, Jack A; Selen, Arzu

    2016-11-01

    The aim of Biopharmaceutics Risk Assessment Roadmap (BioRAM) and the BioRAM Scoring Grid is to facilitate optimization of clinical performance of drug products. BioRAM strategy relies on therapy-driven drug delivery and follows an integrated systems approach for formulating and addressing critical questions and decision-making (J Pharm Sci. 2014,103(11): 3777-97). In BioRAM, risk is defined as not achieving the intended in vivo drug product performance, and success is assessed by time to decision-making and action. Emphasis on time to decision-making and time to action highlights the value of well-formulated critical questions and well-designed and conducted integrated studies. This commentary describes and illustrates application of the BioRAM Scoring Grid, a companion to the BioRAM strategy, which guides implementation of such an integrated strategy encompassing 12 critical areas and 6 assessment stages. Application of the BioRAM Scoring Grid is illustrated using published literature. Organizational considerations for implementing BioRAM strategy, including the interactions, function, and skillsets of the BioRAM group members, are also reviewed. As a creative and innovative systems approach, we believe that BioRAM is going to have a broad-reaching impact, influencing drug development and leading to unique collaborations influencing how we learn, and leverage and share knowledge. Published by Elsevier Inc.

  12. Bio-nano interactions detected by nanochannel electrophoresis.

    PubMed

    Luan, Binquan

    2016-08-01

    Engineered nanoparticles have been widely used in industry and are present in many consumer products. However, their bio-safeties especially in a long term are largely unknown. Here, a nanochannel-electrophoresis-based method is proposed for detecting the potential bio-nano interactions that may further lead to damages to human health and/or biological environment. Through proof-of-concept molecular dynamics simulations, it was demonstrated that the transport of a protein-nanoparticle complex is very different from that of a protein along. By monitoring the change of ionic currents induced by a transported analyte as well as the transport velocities of the analyte, the complex (with bio-nano interaction) can be clearly distinguished from the protein alone (with no interaction with tested nanoparticles). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effect of fast pyrolysis bio-oil from palm oil empty fruit bunch on bitumen properties

    NASA Astrophysics Data System (ADS)

    Poh, Chia Chin; Hassan, Norhidayah Abdul; Raman, Noor Azah Abdul; Shukry, Nurul Athma Mohd; Warid, Muhammad Naqiuddin Mohd; Satar, Mohd Khairul Idham Mohd; Ros Ismail, Che; Asmah Hassan, Sitti; Mashros, Nordiana

    2018-04-01

    Bitumen shortage has triggered the exploration of another alternative waste material that can be blended with conventional bitumen. This study presents the performance of pyrolysis bio-oil from palm oil empty fruit bunch (EFB) as an alternative binder in modified bitumen mixtures. The palm oil EFB was first pyrolyzed using auger pyrolyzer to extract the bio-oil. Conventional bitumen 80/100 penetration grade was used as a control sample and compared with samples that were modified with different percentages, i.e., 5% and 10%, of pyrolysis EFB bio-oil. The physical and rheological properties of the control and modified bitumen samples were investigated using penetration, softening point, viscosity and dynamic shear rheometer (DSR) tests. Results showed that the addition of EFB bio-oil softened the bitumen with high penetration and a reduction in softening point, penetration index, and viscosity. However, the DSR results showed a comparable rutting resistance between the bitumen samples containing EFB bio-oil and virgin bitumen with a failure temperature achieved greater than 64°C.

  14. Biomass fast pyrolysis for bio-oil production in a fluidized bed reactor under hot flue atmosphere.

    PubMed

    Li, Ning; Wang, Xiang; Bai, Xueyuan; Li, Zhihe; Zhang, Ying

    2015-10-01

    Fast pyrolysis experiments of corn stalk were performed to investigate the optimal pyrolysis conditions of temperature and bed material for maximum bio-oil production under flue gas atmosphere. Under the optimized pyrolysis conditions, furfural residue, xylose residue and kelp seaweed were pyrolyzed to examine their yield distributions of products, and the physical characteristics of bio-oil were studied. The best flow rate of the flue gas at selected temperature is obtained, and the pyrolysis temperature at 500 degrees C and dolomite as bed material could give a maximum bio-oil yield. The highest bio-oil yield of 43.3% (W/W) was achieved from corn stalk under the optimal conditions. Two main fractions were recovered from the stratified bio-oils: light oils and heavy oils. The physical properties of heavy oils from all feedstocks varied little. The calorific values of heavy oils were much higher than that of light oils. The pyrolysis gas could be used as a gaseous fuel due to a relatively high calorific value of 6.5-8.5 MJ/m3.

  15. Restoration of active gully systems following the implementation of bioengineering techniques.

    NASA Astrophysics Data System (ADS)

    Borja, Pablo; Vanacker, Veerle; Govers, Gerard

    2015-04-01

    Intensive land use in the central parts of the Andean basin has led to widespread land degradation. The formation of badlands dates back from the 1950s and 1960s. Several studies indicate that human activities have accelerated mountain erosion rates by up to 100 times. In this study, we have evaluated the effects of bio-engineering works aiming to stabilize degraded catchments. Five micro-catchments (0.2 up to 5 ha) have been selected within a 3 km2 area in the lower part of the Loreto catchment (Southern Ecuadorian Andes). The five micro-catchments differ in vegetation cover and implementation of bio-engineering works. The experimental design consisted of three micro-catchments: (1) DI with conservation works, (2) DF with reforestation by Eucalyptus sp and (3) DT with no conservation works. Two micro-catchments have been monitored in an agricultural area: with (AI) and without (AT) bio-engineering works in the active gullies. Small checkdams were constructed in the gully floors of two of the micro-catchments in the badland area (DI) and the agricultural area (AI). The checkdams are made of wood and tires. Water flow has been measured in every micro-catchment, while sediment traps were constructed to monitor sediment transport. Results show that bio-engineering techniques are effective to stabilize active gullies. Deposition of sediments in manmade dams is strongly dependent on previous rainfall events, as well as gully channel slope, and its vegetation cover. From the experimental data, an I30 max threshold value was determined. Above this threshold value, all micro-catchments are actively contributing sediment to the main river system. The checkdams built with wood and tires have an efficiency of 70%, and were shown to be very effective to stabilize active gullies in bad lands through significant reduction (about 62%) of the amount of sediment exported from the micro-catchments. Key words: degraded soils, erosion, sediment, restoration, reforestation

  16. Synthesis and properties of a bio-based epoxy resin with high epoxy value and low viscosity.

    PubMed

    Ma, Songqi; Liu, Xiaoqing; Fan, Libo; Jiang, Yanhua; Cao, Lijun; Tang, Zhaobin; Zhu, Jin

    2014-02-01

    A bio-based epoxy resin (denoted TEIA) with high epoxy value (1.16) and low viscosity (0.92 Pa s, 258C) was synthesized from itaconic acid and its chemical structure was confirmed by 1H NMR and 13C NMR spectroscopy. Its curing reaction with poly(propylene glycol) bis(2-aminopropyl ether) (D230) and methyl hexahydrophthalic anhydride (MHHPA) was investigated. For comparison, the commonly used diglycidyl ether of bisphenol A (DGEBA) was also cured with the same curing agents. The results demonstrated that TEIA showed higher curing reactivity towards D230/MHHPA and lower viscosity compared with DGEBA, resulting in the better processability. Owing to its high epoxy value and unique structure, comparable or better glass transition temperature as well as mechanical properties could be obtained for the TEIA-based network relative to the DGEBA-based network. The results indicated that itaconic acid is a promising renewable feedstock for the synthesis of bio-based epoxy resin with high performance.

  17. K-Channel: A Multifunctional Architecture for Dynamically Reconfigurable Sample Processing in Droplet Microfluidics.

    PubMed

    Doonan, Steven R; Bailey, Ryan C

    2017-04-04

    By rapidly creating libraries of thousands of unique, miniaturized reactors, droplet microfluidics provides a powerful method for automating high-throughput chemical analysis. In order to engineer in-droplet assays, microfluidic devices must add reagents into droplets, remove fluid from droplets, and perform other necessary operations, each typically provided by a unique, specialized geometry. Unfortunately, modifying device performance or changing operations usually requires re-engineering the device among these specialized geometries, a time-consuming and costly process when optimizing in-droplet assays. To address this challenge in implementing droplet chemistry, we have developed the "K-channel," which couples a cross-channel flow to the segmented droplet flow to enable a range of operations on passing droplets. K-channels perform reagent injection (0-100% of droplet volume), fluid extraction (0-50% of droplet volume), and droplet splitting (1:1-1:5 daughter droplet ratio). Instead of modifying device dimensions or channel configuration, adjusting external conditions, such as applied pressure and electric field, selects the K-channel process and tunes its magnitude. Finally, interfacing a device-embedded magnet allows selective capture of 96% of droplet-encapsulated superparamagnetic beads during 1:1 droplet splitting events at ∼400 Hz. Addition of a second K-channel for injection (after the droplet splitting K-channel) enables integrated washing of magnetic beads within rapidly moving droplets. Ultimately, the K-channel provides an exciting opportunity to perform many useful droplet operations across a range of magnitudes without requiring architectural modifications. Therefore, we envision the K-channel as a versatile, easy to use microfluidic component enabling diverse, in-droplet (bio)chemical manipulations.

  18. Effective hydrogen generator testing for on-site small engine

    NASA Astrophysics Data System (ADS)

    Chaiwongsa, Praitoon; Pornsuwancharoen, Nithiroth; Yupapin, Preecha P.

    2009-07-01

    We propose a new concept of hydrogen generator testing for on-site small engine. In general, there is a trade-off between simpler vehicle design and infrastructure issues, for instance, liquid fuels such as gasoline and methanol for small engine use. In this article we compare the hydrogen gases combination the gasoline between normal systems (gasoline only) for small engine. The advantage of the hydrogen combines gasoline for small engine saving the gasoline 25%. Furthermore, the new concept of hydrogen combination for diesel engine, bio-diesel engine, liquid petroleum gas (LPG), natural gas vehicle (NGV), which is discussed in details.

  19. Ecological engineering helps maximize function in algal oil production.

    PubMed

    Jackrel, Sara L; Narwani, Anita; Bentlage, Bastian; Levine, Robert B; Hietala, David C; Savage, Phillip E; Oakley, Todd H; Denef, Vincent J; Cardinale, Bradley J

    2018-05-18

    Algal biofuels have the potential to curb emissions of greenhouse gases from fossil fuels, but current growing methods fail to produce fuels that meet the multiple standards necessary for economical industrial use. For example, algae grown as monocultures for biofuel production have not simultaneously and economically achieved high yields of the high-quality, lipid-rich biomass desired for the industrial-scale production of bio-oil. Decades of study in the field of ecology have demonstrated that simultaneous increases in multiple functions, such as the quantity and quality of biomass, can occur in natural ecosystems by increasing biological diversity. Here we show that species consortia of algae can improve the production of bio-oil, which benefits from both high biomass yield and high quality of biomass rich in fatty acids. We explain the underlying causes of increased quantity and quality of algal biomass among species consortia by showing that, relative to monocultures, species consortia can differentially regulate lipid metabolism genes while growing to higher levels of biomass, in part due to greater utilization of nutrient resources. We identify multiple genes involved in lipid biosynthesis that are frequently upregulated in bicultures, and further show that these elevated levels of gene expression are highly predictive of the elevated levels in biculture relative to monoculture of multiple quality metrics of algal biomass. These results show that interactions between species can alter the expression of lipid metabolism genes, and further demonstrate that our understanding of diversity-function relationships from natural ecosystems can be harnessed to improve production of bio-oil. Importance section: Algal biofuels are one of the more promising forms of renewable energy. In our study, we investigate whether ecological interactions between species of microalgae regulate two important factors in cultivation - the biomass of the crop produced and quality of the biomass that is produced. We find that species interactions often improved production yields, especially the fatty acid content of the algal biomass, and that differentially expressed genes involved in fatty acid metabolism are predictive of improved quality metrics of bio-oil. Other studies have found that diversity often improves productivity and stability in agricultural and natural ecosystems. Our results provide further evidence that growing multi-species crops of microalgae may improve the production of high-quality biomass for bio-oil. Copyright © 2018 American Society for Microbiology.

  20. Leveraging knowledge engineering and machine learning for microbial bio-manufacturing.

    PubMed

    Oyetunde, Tolutola; Bao, Forrest Sheng; Chen, Jiung-Wen; Martin, Hector Garcia; Tang, Yinjie J

    2018-05-03

    Genome scale modeling (GSM) predicts the performance of microbial workhorses and helps identify beneficial gene targets. GSM integrated with intracellular flux dynamics, omics, and thermodynamics have shown remarkable progress in both elucidating complex cellular phenomena and computational strain design (CSD). Nonetheless, these models still show high uncertainty due to a poor understanding of innate pathway regulations, metabolic burdens, and other factors (such as stress tolerance and metabolite channeling). Besides, the engineered hosts may have genetic mutations or non-genetic variations in bioreactor conditions and thus CSD rarely foresees fermentation rate and titer. Metabolic models play important role in design-build-test-learn cycles for strain improvement, and machine learning (ML) may provide a viable complementary approach for driving strain design and deciphering cellular processes. In order to develop quality ML models, knowledge engineering leverages and standardizes the wealth of information in literature (e.g., genomic/phenomic data, synthetic biology strategies, and bioprocess variables). Data driven frameworks can offer new constraints for mechanistic models to describe cellular regulations, to design pathways, to search gene targets, and to estimate fermentation titer/rate/yield under specified growth conditions (e.g., mixing, nutrients, and O 2 ). This review highlights the scope of information collections, database constructions, and machine learning techniques (such as deep learning and transfer learning), which may facilitate "Learn and Design" for strain development. Copyright © 2018. Published by Elsevier Inc.

  1. Diesel reformulation using bio-derived propanol to control toxic emissions from a light-duty agricultural diesel engine.

    PubMed

    Thillainayagam, Muthukkumar; Venkatesan, Krishnamoorthy; Dipak, Rana; Subramani, Saravanan; Sethuramasamyraja, Balaji; Babu, Rajesh Kumar

    2017-07-01

    In the Indian agricultural sector, millions of diesel-driven pump-sets were used for irrigation purposes. These engines produce carcinogenic diesel particulates, toxic nitrogen oxides (NOx), and carbon monoxide (CO) emissions which threaten the livelihood of large population of farmers in India. The present study investigates the use of n-propanol, a less-explored high carbon bio-alcohol that can be produced by sustainable pathways from industrial and crop wastes that has an attractive opportunity for powering stationary diesel engines meant for irrigation and rural electrification. This study evaluates the use of n-propanol addition in fossil diesel by up to 30% by vol. and concurrently reports the effects of exhaust gas recirculation (EGR) on emissions of an agricultural DI diesel engine. Three blends PR10, PR20, and PR30 were prepared by mixing 10, 20, and 30% by vol. of n-propanol with fossil diesel. Results when compared to baseline diesel case indicated that smoke density reduced with increasing n-propanol fraction in the blends. PR10, PR20, and PR30 reduced smoke density by 13.33, 33.33, and 60%, respectively. NOx emissions increased with increasing n-propanol fraction in the blends. Later, three EGR rates (10, 20, and 30%) were employed. At any particular EGR rate, smoke density remained lower with increasing n-propanol content in the blends under increasing EGR rates. NOx reduced gradually with EGR. At 30% EGR, the blends PR10, PR20, and PR30 reduced NOx emissions by 43.04, 37.98, and 34.86%, respectively when compared to baseline diesel. CO emissions remained low but hydrocarbon (HC) emissions were high for n-propanol/diesel blends under EGR. Study confirmed that n-propanol could be used by up to 30% by vol. with diesel and the blends delivered lower soot density, NOx, and CO emissions under EGR.

  2. The influence of different concentrations of bio-organic fertilizer on cucumber Fusarium wilt and soil microflora alterations

    PubMed Central

    Huang, Nan; Wang, Weiwei; Yao, Yanlai; Zhu, Fengxiang; Wang, Weiping; Chang, Xiaojuan

    2017-01-01

    Fusarium wilt is one of the main diseases of cucumber, and bio-organic fertilizer has been used to control Fusarium wilt. In this study, a pot experiment was conducted to evaluate the effects of bio-organic fertilizer applied at four levels on the suppression of Fusarium wilt disease in cucumber, the soil physico-chemical properties and the microbial communities. In comparison with the control (CK), low concentrations of bio-organic fertilizer (BIO2.5 and BIO5) did not effectively reduce the disease incidence and had little effect on soil microorganisms. High concentrations of bio-organic fertilizer (BIO10 and BIO20) significantly reduced the disease incidence by 33.3%-66.7% and the production was significantly improved by 83.8%-100.3%. The soil population of F. oxysporum f. sp. cucumerinum was significantly lower in bio-organic fertilizer treatments, especially in BIO10 and BIO20. The microorganism activity increased with the bio-organic fertilizer concentration. High-throughput sequencing demonstrated that, at the order level, Sphingomonadales, Bacillales, Solibacterales and Xylariales were significantly abundant in BIO10 and BIO20 soils. At the genus level, the abundance and composition of bacterial and fungal communities in BIO10 and BIO20 were similar, illustrating that high concentrations of bio-organic fertilizer activated diverse groups of microorganisms. Redundancy analysis (RDA) showed that Xanthomonadales, Sphingomonadales, Bacillales, Orbiliales, Sordariales, and Mucorales occurred predominantly in the BIO10 and BIO20. These microorganisms were related to the organic matter, available potassium and available phosphorus contents. In conclusion, a high concentration of bio-organic fertilizer application suppressed the Fusarium wilt disease and increased cucumber production after continuous cropping might through improving soil chemical condition and manipulating the composition of soil microbial community. PMID:28166302

  3. The influence of different concentrations of bio-organic fertilizer on cucumber Fusarium wilt and soil microflora alterations.

    PubMed

    Huang, Nan; Wang, Weiwei; Yao, Yanlai; Zhu, Fengxiang; Wang, Weiping; Chang, Xiaojuan

    2017-01-01

    Fusarium wilt is one of the main diseases of cucumber, and bio-organic fertilizer has been used to control Fusarium wilt. In this study, a pot experiment was conducted to evaluate the effects of bio-organic fertilizer applied at four levels on the suppression of Fusarium wilt disease in cucumber, the soil physico-chemical properties and the microbial communities. In comparison with the control (CK), low concentrations of bio-organic fertilizer (BIO2.5 and BIO5) did not effectively reduce the disease incidence and had little effect on soil microorganisms. High concentrations of bio-organic fertilizer (BIO10 and BIO20) significantly reduced the disease incidence by 33.3%-66.7% and the production was significantly improved by 83.8%-100.3%. The soil population of F. oxysporum f. sp. cucumerinum was significantly lower in bio-organic fertilizer treatments, especially in BIO10 and BIO20. The microorganism activity increased with the bio-organic fertilizer concentration. High-throughput sequencing demonstrated that, at the order level, Sphingomonadales, Bacillales, Solibacterales and Xylariales were significantly abundant in BIO10 and BIO20 soils. At the genus level, the abundance and composition of bacterial and fungal communities in BIO10 and BIO20 were similar, illustrating that high concentrations of bio-organic fertilizer activated diverse groups of microorganisms. Redundancy analysis (RDA) showed that Xanthomonadales, Sphingomonadales, Bacillales, Orbiliales, Sordariales, and Mucorales occurred predominantly in the BIO10 and BIO20. These microorganisms were related to the organic matter, available potassium and available phosphorus contents. In conclusion, a high concentration of bio-organic fertilizer application suppressed the Fusarium wilt disease and increased cucumber production after continuous cropping might through improving soil chemical condition and manipulating the composition of soil microbial community.

  4. Bio-active molecules modified surfaces enhanced mesenchymal stem cell adhesion and proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mobasseri, Rezvan; Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 117576; Tian, Lingling

    Surface modification of the substrate as a component of in vitro cell culture and tissue engineering, using bio-active molecules including extracellular matrix (ECM) proteins or peptides derived ECM proteins can modulate the surface properties and thereby induce the desired signaling pathways in cells. The aim of this study was to evaluate the behavior of human bone marrow mesenchymal stem cells (hBM-MSCs) on glass substrates modified with fibronectin (Fn), collagen (Coll), RGD peptides (RGD) and designed peptide (R-pept) as bio-active molecules. The glass coverslips were coated with fibronectin, collagen, RGD peptide and R-peptide. Bone marrow mesenchymal stem cells were cultured on differentmore » substrates and the adhesion behavior in early incubation times was investigated using scanning electron microscopy (SEM) and confocal microscopy. The MTT assay was performed to evaluate the effect of different bio-active molecules on MSCs proliferation rate during 24 and 72 h. Formation of filopodia and focal adhesion (FA) complexes, two steps of cell adhesion process, were observed in MSCs cultured on bio-active molecules modified coverslips, specifically in Fn coated and R-pept coated groups. SEM image showed well adhesion pattern for MSCs cultured on Fn and R-pept after 2 h incubation, while the shape of cells cultured on Coll and RGD substrates indicated that they might experience stress condition in early hours of culture. Investigation of adhesion behavior, as well as proliferation pattern, suggests R-peptide as a promising bio-active molecule to be used for surface modification of substrate in supporting and inducing cell adhesion and proliferation. - Highlights: • Bioactive molecules modified surface is a strategy to design biomimicry scaffold. • Bi-functional Tat-derived peptide (R-pept) enhanced MSCs adhesion and proliferation. • R-pept showed similar influences to fibronectin on FA formation and attachment.« less

  5. Characterization of un-hydrated and hydrated BioAggregate™ and MTA Angelus™.

    PubMed

    Camilleri, J; Sorrentino, F; Damidot, D

    2015-04-01

    BioAggregate™ is a novel material introduced for use as a root-end filling material. It is tricalcium silicate-based, free of aluminium and uses tantalum oxide as radiopacifier. BioAggregate contains additives to enhance the material performance. The purpose of this research was to characterize the un-hydrated and hydrated forms of BioAggregate using a combination of techniques, verify whether the additives if present affect the properties of the set material and compare these properties to those of MTA Angelus™. Un-hydrated and hydrated BioAggregate and MTA Angelus were assessed. Un-hydrated cement was tested for chemical composition, specific surface area, mineralogy and kinetics of hydration. The set material was investigated for mineralogy, microstructure and bioactivity. Scanning electron microscopy, X-ray energy dispersive spectroscopic analysis, X-ray fluorescence spectroscopy, X-ray diffraction and isothermal calorimetry were employed. The specific surface area was investigated using a gas adsorption method with nitrogen as the probe. BioAggregate was composed of tricalcium silicate, tantalum oxide, calcium phosphate and silicon dioxide and was free of aluminium. On hydration, the tricalcium silicate produced calcium silicate hydrate and calcium hydroxide. The former was deposited around the cement grains, while the latter reacted with the silicon dioxide to form additional calcium silicate hydrate. This resulted in reduction of calcium hydroxide in the aged cement. MTA Angelus reacted in a similar fashion; however, since it contained no additives, the calcium hydroxide was still present in the aged cement. Bioactivity was demonstrated by deposition of hydroxyapatite. BioAggregate exhibited a high specific surface area. Nevertheless, the reactivity determined by isothermal calorimetry appeared to be slow compared to MTA Angelus. The tantalum oxide as opposed to bismuth oxide was inert, and tantalum was not leached in solution. BioAggregate exhibited high calcium ion release early, which was maintained over the 28-day period as opposed to MTA Angelus, which demonstrated low early calcium ion release which increased as the material aged. The mineralogical composition of BioAggregate was different to MTA Angelus. As opposed to MTA Angelus, BioAggregate did not contain aluminium and contained additives such as calcium phosphate and silicon dioxide. As a consequence, BioAggregate reacted more slowly and formation of calcium hydroxide and leaching of calcium ions in solution were not evident as the material aged. The additives in BioAggregate modify the kinetics and the end products of hydration. Although newer generation tricalcium silicate-based materials contain similar constituents to MTA, they do not undergo the same setting reactions, and thus, their clinical performance will not be comparable to that of MTA.

  6. Bio-Inspired Metal-Coordination Dynamics: A Unique Tool for Engineering Soft Matter Mechanics

    NASA Astrophysics Data System (ADS)

    Holten-Andersen, Niels

    Growing evidence supports a critical role of metal-coordination in soft biological material properties such as self-healing, underwater adhesion and autonomous wound plugging. Using bio-inspired metal-binding polymers, initial efforts to mimic these properties with metal-coordination crosslinked polymer materials have shown promise. In addition, with polymer network mechanics strongly coupled to coordinate crosslink dynamics material properties can be easily tuned from visco-elastic fluids to solids. Given their exploitation in desirable material applications in Nature, bio-inspired metal-coordinate complex crosslinking provides an opportunity to further advance synthetic polymer materials design. Early lessons from this pursuit are presented.

  7. Fabrication of Glass Fiber Reinforced Composites Based on Bio-Oil Phenol Formaldehyde Resin

    PubMed Central

    Cui, Yong; Chang, Jianmin; Wang, Wenliang

    2016-01-01

    In this study, bio-oil from fast pyrolysis of renewable biomass was added by the mass of phenol to synthesize bio-oil phenol formaldehyde (BPF) resins, which were used to fabricate glass fiber (GF) reinforced BPF resin (GF/BPF) composites. The properties of the BPF resin and the GF/BPF composites prepared were tested. The functional groups and thermal property of BPF resin were thoroughly investigated by Fourier transform infrared (FTIR) spectra and dynamic thermomechanical analysis (DMA). Results indicated that the addition of 20% bio-oil exhibited favorable adaptability for enhancing the stiffness and heat resistance of phenol formaldehyde (PF) resin. Besides, high-performance GF/BPF composites could be successfully prepared with the BPF resin based on hand lay-up process. The interface characteristics of GF/BPF composites were determined by the analysis of dynamic wettability (DW) and scanning electron microscopy (SEM). It exhibited that GF could be well wetted and embedded in the BPF resin with the bio-oil addition of 20%. PMID:28774009

  8. Effect of air-flow on biodrying method of municipal solid waste in Indonesia

    NASA Astrophysics Data System (ADS)

    Kristanto, Gabriel Andari; Hanany, Ismi

    2017-11-01

    The process of bio-drying could be an interesting solution for municipal solid waste management and energy demand in Indonesia. By using the heat from bio-degradation process consists in bio-drying, moisture content in a solid waste can be reduced. Solid wastes with a low moisture content, could be used as a fuel with a good energy content. In this study, 85% of garden wastes and 15% of food waste from Indonesia's municipal solid waste were bio-dried in aerobic condition using 3 variations of air flow-rates, which were 8 L/min.kg; 10 L/min.kg; and 12 L/min.kg. The experiment performs with three different reactors with known volume 75cm × 50cm × 40cm and using Styrofoam as an insulation. The process of bio-drying lasted 21 days. In the end, the experiment with 10 L/min.kg aeration, has the lowest moisture contents about 23% with high temperature and NHV about 3595.29 kcal/kg.

  9. Performance and enhanced mechanism of a novel bio-diatomite biofilm pretreatment process treating polluted raw water.

    PubMed

    Yang, Guang-feng; Feng, Li-juan; Wang, Sha-fei; Yang, Qi; Xu, Xiang-yang; Zhu, Liang

    2015-09-01

    A lab-scale novel bio-diatomite biofilm process (BDBP) was established for the polluted raw water pretreatment in this study. Results showed that a shorter startup period of BDBP system was achieved under the completely circulated operation mode, and the removal efficiencies of nitrogen and disinfection by-product precursor were effective at low hydraulic retention time of 2-4 h due to high biomass attached to the carrier and diatomite. A maximum NH4(+)-N oxidation potential predicted by modified Stover-Kincannon model was 333.3 mg L(-1) d(-1) in the BDBP system, which was 4.7 times of that in the control reactor. Results demonstrated that the present of bio-diatomite favors the accumulation of functional microbes in the oligotrophic niche, and the pollutants removal performance of this novel process was enhanced for polluted raw water pretreatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Bio-layer management in anaerobic membrane bioreactors for wastewater treatment.

    PubMed

    Jeison, D; van Lier, J B

    2006-01-01

    Membrane separation technology represents an alternative way to achieve biomass retention in anaerobic bioreactors for wastewater treatment. Due to high biomass concentrations of anaerobic reactors, cake formation is likely to represent a major cause of flux decline. In the presented research, experiments are performed on the effect of biomass concentration and level of gas sparging on the hydraulic capacity of a submerged anaerobic membrane bioreactor. Both parameters significantly affected the hydraulic capacity, with biomass exerting the most pronounced effect. After 50 days of continuous operation the critical flux remained virtually unchanged, despite an increase in membrane resistance, suggesting that biomass characteristics and hydraulic conditions determine the bio-layer formation rather than the membrane's fouling level. The concept of bio-layer management is introduced to describe the programmed combination of actions performed in order to control the formation of biomass layer over membranes.

  11. Surface structure and tribology of legless squamate reptiles.

    PubMed

    Abdel-Aal, Hisham A

    2018-03-01

    Squamate reptiles (around 10,000 species of snakes and lizards) comprise a myriad of distinct terrestrial vertebrates. The diversity within this biological group offers a great opportunity for customized bio-inspired solutions that address a variety of current technological problems especially within the realm of surface engineering and tribology. One subgroup within squamata is of interest in that context, namely the legless reptiles (mainly snakes and few lizards). The promise of that group lies within their functional adaptation as manifested in optimized surface designs and locomotion that is distinguished by economy of effort even when functioning within hostile tribological environments. Legless reptiles are spread over a wide range in the planet, this geographical diversity demands customized response to local habitats. Customization, in turn, is facilitated through specialized surface design features. In legless reptiles, micro elements of texture, their geometry and topological layout advance mitigation of frictional effects both in locomotion and in general function. Lately, the synergy between functional traits and intrinsic surface features has emerged as focus of research across disciplines. Many investigations have sought to characterize the structural as well as the tribological response of legless species from an engineering point of view. Despite the sizable amount of data that have accumulated in the literature over the past two decades or so, no effort to review the available information, whence this review. This manuscript, therefore, endeavors to assess available data on surface metrology and tribological behavior of legless reptiles and to define aspects of that performance necessary to formulate an advanced paradigm for bio-inspired surface engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Implementation of Alternative Test Strategies for the Safety Assessment of Engineered Nanomaterials

    PubMed Central

    Nel, Andre

    2014-01-01

    Nanotechnology introduces a new field that requires novel approaches and methods for hazard and risk assessment. For an appropriate scientific platform for safety assessment, nanoscale properties and functions of engineered nanomaterials (ENMs), including how the physicochemical properties of the materials related to mechanisms of injury at the nano-bio interface, must be considered. Moreover, this rapidly advancing new field requires novel test strategies that allow multiple toxicants to be screened in robust, mechanism-based assays in which the bulk of the investigation can be carried out at the cellular and biomolecular level whilst maintaining limited animal use and is based on the contribution of toxicological pathways to the pathophysiology of disease. First, a predictive toxicological approach for the safety assessment of ENMs will be discussed against the background of a ‘21st-century vision’ for using alternative test strategies (ATSs) to perform toxicological assessment of large numbers of untested chemicals, thereby reducing a backlog that could otherwise become a problem for nanotechnology. An ATS is defined here as an alternative/reduction alternative to traditional animal testing. Secondly, the approach of selecting pathways of toxicity to screen for the pulmonary hazard potential of carbon nanotubes and metal oxides will be discussed, as well as how to use these pathways to perform high-content or high-throughput testing and how the data can be used for hazard ranking, risk assessment, regulatory decision-making and ‘safer-by-design’ strategies. Finally, the utility and disadvantages of this predictive toxicological approach to ENM safety assessment, and how it can assist the 21st- century vision, will be addressed PMID:23879741

  13. BioCartilage Improves Cartilage Repair Compared With Microfracture Alone in an Equine Model of Full-Thickness Cartilage Loss.

    PubMed

    Fortier, Lisa A; Chapman, Hannah S; Pownder, Sarah L; Roller, Brandon L; Cross, Jessica A; Cook, James L; Cole, Brian J

    2016-09-01

    Microfracture (MFx) remains a dominant treatment strategy for symptomatic articular cartilage defects. Biologic scaffold adjuncts, such as particulated allograft articular cartilage (BioCartilage) combined with platelet-rich plasma (PRP), offer promise in improving clinical outcomes as an adjunct to MFx. To evaluate the safety, biocompatibility, and efficacy of BioCartilage and PRP for cartilage repair in a preclinical equine model of full-thickness articular cartilage loss. Controlled laboratory study. Two 10-mm-diameter full-thickness cartilage defects were created in 5 horses in the trochlear ridge of both knees: one proximal (high load) and another distal (low load). Complete blood counts were performed on each peripheral blood and resultant PRP sample. In each horse, one knee received MFx with BioCartilage + PRP, and the other knee received MFx alone. Horses were euthanized at 13 months. Outcomes were assessed with serial arthroscopy, magnetic resonance imaging (MRI), micro-computed tomography (micro-CT), and histology. Statistics were performed using a mixed-effects model with response variable contrasts. No complications occurred. PRP generated in all subjects yielded an increase in platelet fold of 3.8 ± 4.7. Leukocyte concentration decreased in PRP samples by an average fold change of 5 ± 0.1. The overall International Cartilage Repair Society repair score in both the proximal and distal defects was significantly higher (better) in the BioCartilage group compared with MFx (proximal BioCartilage: 7.4 ± 0.51, MFx 4.8 ± 0.1, P = .041; distal BioCartilage: 5.6 ± 0.98, MFx 2.6 ± 1.5, P = .022). BioCartilage-treated proximal defects demonstrated improved histologic scores for repair-host integration (BioCartilage, 96 ± 9; MFx, 68 ± 18; P = .02), base integration (BioCartilage, 100 ± 0; MFx, 70 ± 37; P = .04), and formation of collagen type II (BioCartilage, 82 ± 8; MFx, 58 ± 11; P = .05) compared with the positive control. On MRI, T2 relaxation time was significantly shorter (better) in the superficial region of BioCartilage-treated distal defects compared with MFx (P = .05). There were no significant differences between BioCartilage and MFx on micro-CT analysis. BioCartilage with PRP safely improved cartilage repair compared with MFx alone in an equine model of articular cartilage defects up to 13 months after implantation. The 1-year results of BioCartilage + PRP suggest that homologous allograft tissue provides a safe and effective augmentation of traditional MFx. © 2016 The Author(s).

  14. Microbiological removal of hydrogen sulfide from biogas by means of a separate biofilter system: experience with technical operation.

    PubMed

    Schieder, D; Quicker, P; Schneider, R; Winter, H; Prechtl, S; Faulstich, M

    2003-01-01

    The "BIO-Sulfex" biofilter of ATZ-EVUS removes hydrogen sulfide from biogas in a biological way. Hydrogen sulfide causes massive problems during power generation from biogas in a power plant, e.g. corrosion of engines and heat exchangers, and thus causes frequent and therefore expensive engine oil changes. The BIO-Sulfex module is placed between the digester and the power-plant and warrants a cost-effective, reliable and fully biological desulfurization. In the cleaned gas concentrations of less than 100 ppm can be achieved. Power-plant manufacturers usually demand less than 500 or less than 200 ppm. At present, several plants with biogas flow rates between 20 and 350 m3/h are in operation.

  15. [Particle emission characteristics of diesel bus fueled with bio-diesel].

    PubMed

    Lou, Di-Ming; Chen, Feng; Hu, Zhi-Yuan; Tan, Pi-Qiang; Hu, Wei

    2013-10-01

    With the use of the Engine Exhaust Particle Sizer (EEPS), a study on the characteristics of particle emissions was carried out on a China-IV diesel bus fueled with blends of 5% , 10% , 20% , 50% bio-diesel transformed from restaurant waste oil and China-IV diesel (marked separately by BD5, BD10, BD20, BD50), pure bio-diesel (BD100) and pure diesel (BD0). The results indicated that particulate number (PN) and mass (PM) emissions of bio-diesel blends increased with the increase in bus speed and acceleration; with increasing bio-diesel content, particulate emissions displayed a relevant declining trend. In different speed ranges, the size distribution of particulate number emissions (PNSD) was bimodal; in different acceleration ranges, PNSD showed a gradual transition from bimodal shape to unimodal when bus operation was switched from decelerating to accelerating status. Bio-diesel blends with higher mixture ratios showed significant reduction in PN emissions for accumulated modes, and the particulate number emission peaks moved towards smaller sizes; but little change was obtained in PN emissions for nuclei modes; reduction also occurred in particle geometric diameter (Dg).

  16. BioModels Database: a repository of mathematical models of biological processes.

    PubMed

    Chelliah, Vijayalakshmi; Laibe, Camille; Le Novère, Nicolas

    2013-01-01

    BioModels Database is a public online resource that allows storing and sharing of published, peer-reviewed quantitative, dynamic models of biological processes. The model components and behaviour are thoroughly checked to correspond the original publication and manually curated to ensure reliability. Furthermore, the model elements are annotated with terms from controlled vocabularies as well as linked to relevant external data resources. This greatly helps in model interpretation and reuse. Models are stored in SBML format, accepted in SBML and CellML formats, and are available for download in various other common formats such as BioPAX, Octave, SciLab, VCML, XPP and PDF, in addition to SBML. The reaction network diagram of the models is also available in several formats. BioModels Database features a search engine, which provides simple and more advanced searches. Features such as online simulation and creation of smaller models (submodels) from the selected model elements of a larger one are provided. BioModels Database can be accessed both via a web interface and programmatically via web services. New models are available in BioModels Database at regular releases, about every 4 months.

  17. Scholarly Information Extraction Is Going to Make a Quantum Leap with PubMed Central (PMC).

    PubMed

    Matthies, Franz; Hahn, Udo

    2017-01-01

    With the increasing availability of complete full texts (journal articles), rather than their surrogates (titles, abstracts), as resources for text analytics, entirely new opportunities arise for information extraction and text mining from scholarly publications. Yet, we gathered evidence that a range of problems are encountered for full-text processing when biomedical text analytics simply reuse existing NLP pipelines which were developed on the basis of abstracts (rather than full texts). We conducted experiments with four different relation extraction engines all of which were top performers in previous BioNLP Event Extraction Challenges. We found that abstract-trained engines loose up to 6.6% F-score points when run on full-text data. Hence, the reuse of existing abstract-based NLP software in a full-text scenario is considered harmful because of heavy performance losses. Given the current lack of annotated full-text resources to train on, our study quantifies the price paid for this short cut.

  18. Effect of Variable Compression Ratio on Performance of a Diesel Engine Fueled with Karanja Biodiesel and its Blends

    NASA Astrophysics Data System (ADS)

    Mishra, Rahul Kumar; soota, Tarun, Dr.; singh, Ranjeet

    2017-08-01

    Rapid exploration and lavish consumption of underground petroleum resources have led to the scarcity of underground fossil fuels moreover the toxic emissions from such fuels are pernicious which have increased the health hazards around the world. So the aim was to find an alternative fuel which would meet the requirements of petroleum or fossil fuels. Biodiesel is a clean, renewable and bio-degradable fuel having several advantages, one of the most important of which is being its eco-friendly and better knocking characteristics than diesel fuel. In this work the performance of Karanja oil was analyzed on a four stroke, single cylinder, water cooled, variable compression ratio diesel engine. The fuel used was 5% - 25% karanja oil methyl ester by volume in diesel. The results such obtained are compared with standard diesel fuel. Several properties i.e. Brake Thermal Efficiency, Brake Specific Fuel Consumptions, Exhaust Gas Temperature are determined at all operating conditions & at variable compression ratio 17 and 17.5.

  19. Development of Rapid Diagnostic Kit for Identification of Hanwoo (Korean Native Cattle) Brand Meat by Detecting BIO-TAG

    PubMed Central

    Park, Sung Kwon; Lee, Myung Hoon; Cho, Soo Hyun

    2014-01-01

    This study was performed to develop a rapid immuno-assay kit, by using a specific antigen to detect Hanwoo brand meat. We selected a synthetic antigen specific to our target antibody, named BIO-TAG (Tyr-D-Ala-Phe), by utilizing a computer-based analysis and literature review. BIO-TAG tagged with adjuvant was subcutaneously injected in sheep and Hanwoo. The serum and meat juice of the immunized or non-immunized animal were then analyzed, to measure the titer of antibody by ELISA and Western blot. The amount of antibodies against the BIO-TAG increased (p<0.05) in serum by vaccination. Furthermore, meat juice from the immunized Hanwoo showed greater (p<0.05) antibody titer, compared with those from non-immunized groups. To optimze the dilution factor, we performed dot-ELISA, with various combination levels of BIO-TAG. Results from dot-ELISA showed that 2 mg/mL BIO-TAG was sufficient to distinguish the immunized meat from non-immunized groups. These results support our hypothesis that simple immunization of Hanwoo generates a sufficient amount of antibodies to be detectable in the meat juice by means of the immune-assay. Therefore, specific Hanwoo brand meat can be more precisely identified by our rapid diagnostic kit. This technology can deter possible fraud of counterfeit meat brands in the Korean domestic market with ease and rapidity; and offers a new tool that guarantees consumers high quality Hanwoo brand beef. PMID:26761175

  20. Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer.

    PubMed

    Gregor, Aleš; Filová, Eva; Novák, Martin; Kronek, Jakub; Chlup, Hynek; Buzgo, Matěj; Blahnová, Veronika; Lukášová, Věra; Bartoš, Martin; Nečas, Alois; Hošek, Jan

    2017-01-01

    The primary objective of Tissue engineering is a regeneration or replacement of tissues or organs damaged by disease, injury, or congenital anomalies. At present, Tissue engineering repairs damaged tissues and organs with artificial supporting structures called scaffolds. These are used for attachment and subsequent growth of appropriate cells. During the cell growth gradual biodegradation of the scaffold occurs and the final product is a new tissue with the desired shape and properties. In recent years, research workplaces are focused on developing scaffold by bio-fabrication techniques to achieve fast, precise and cheap automatic manufacturing of these structures. Most promising techniques seem to be Rapid prototyping due to its high level of precision and controlling. However, this technique is still to solve various issues before it is easily used for scaffold fabrication. In this article we tested printing of clinically applicable scaffolds with use of commercially available devices and materials. Research presented in this article is in general focused on "scaffolding" on a field of bone tissue replacement. Commercially available 3D printer and Polylactic acid were used to create originally designed and possibly suitable scaffold structures for bone tissue engineering. We tested printing of scaffolds with different geometrical structures. Based on the osteosarcoma cells proliferation experiment and mechanical testing of designed scaffold samples, it will be stated that it is likely not necessary to keep the recommended porosity of the scaffold for bone tissue replacement at about 90%, and it will also be clarified why this fact eliminates mechanical properties issue. Moreover, it is demonstrated that the size of an individual pore could be double the size of the recommended range between 0.2-0.35 mm without affecting the cell proliferation. Rapid prototyping technique based on Fused deposition modelling was used for the fabrication of designed scaffold structures. All the experiments were performed in order to show how to possibly solve certain limitations and issues that are currently reported by research workplaces on the field of scaffold bio-fabrication. These results should provide new valuable knowledge for further research.

  1. Bioinspired engineering of exploration systems: a horizon sensor/attitude reference system based on the dragonfly Ocelli for Mars exploration applications

    NASA Technical Reports Server (NTRS)

    Thakoor, S.; Zornetzer, S.; Hine, B.; Chahl, J.; Stange, G.

    2002-01-01

    The intent of Bio-inspired Engineering of Exploration Systems (BEES) is to distill the principles found in successful, nature-tested mechanisms of specific crucial functions that are hard to accomplish by conventional methods, but accomplished rather deftly in nature by biological oganisms.

  2. Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production.

    PubMed

    Chen, Xianzhong; Zhou, Li; Tian, Kangming; Kumar, Ashwani; Singh, Suren; Prior, Bernard A; Wang, Zhengxiang

    2013-12-01

    In order to decrease carbon emissions and negative environmental impacts of various pollutants, more bulk and/or fine chemicals are produced by bioprocesses, replacing the traditional energy and fossil based intensive route. The Gram-negative rod-shaped bacterium, Escherichia coli has been studied extensively on a fundamental and applied level and has become a predominant host microorganism for industrial applications. Furthermore, metabolic engineering of E. coli for the enhanced biochemical production has been significantly promoted by the integrated use of recent developments in systems biology, synthetic biology and evolutionary engineering. In this review, we focus on recent efforts devoted to the use of genetically engineered E. coli as a sustainable platform for the production of industrially important biochemicals such as biofuels, organic acids, amino acids, sugar alcohols and biopolymers. In addition, representative secondary metabolites produced by E. coli will be systematically discussed and the successful strategies for strain improvements will be highlighted. Moreover, this review presents guidelines for future developments in the bio-based chemical production using E. coli as an industrial platform. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Clues for biomimetics from natural composite materials

    PubMed Central

    Lapidot, Shaul; Meirovitch, Sigal; Sharon, Sigal; Heyman, Arnon; Kaplan, David L; Shoseyov, Oded

    2013-01-01

    Bio-inspired material systems are derived from different living organisms such as plants, arthropods, mammals and marine organisms. These biomaterial systems from nature are always present in the form of composites, with molecular-scale interactions optimized to direct functional features. With interest in replacing synthetic materials with natural materials due to biocompatibility, sustainability and green chemistry issues, it is important to understand the molecular structure and chemistry of the raw component materials to also learn from their natural engineering, interfaces and interactions leading to durable and highly functional material architectures. This review will focus on applications of biomaterials in single material forms, as well as biomimetic composites inspired by natural organizational features. Examples of different natural composite systems will be described, followed by implementation of the principles underlying their composite organization into artificial bio-inspired systems for materials with new functional features for future medicine. PMID:22994958

  4. Clues for biomimetics from natural composite materials.

    PubMed

    Lapidot, Shaul; Meirovitch, Sigal; Sharon, Sigal; Heyman, Arnon; Kaplan, David L; Shoseyov, Oded

    2012-09-01

    Bio-inspired material systems are derived from different living organisms such as plants, arthropods, mammals and marine organisms. These biomaterial systems from nature are always present in the form of composites, with molecular-scale interactions optimized to direct functional features. With interest in replacing synthetic materials with natural materials due to biocompatibility, sustainability and green chemistry issues, it is important to understand the molecular structure and chemistry of the raw component materials to also learn from their natural engineering, interfaces and interactions leading to durable and highly functional material architectures. This review will focus on applications of biomaterials in single material forms, as well as biomimetic composites inspired by natural organizational features. Examples of different natural composite systems will be described, followed by implementation of the principles underlying their composite organization into artificial bio-inspired systems for materials with new functional features for future medicine.

  5. SemMat: Federated Semantic Services Platform for Open materials Science and Engineering

    DTIC Science & Technology

    2017-01-01

    identified the following two important tasks to remedy the data heterogeneity challenge to promote data integration: (1) creating the semantic...sourced from the structural and bio -materials domains. For structural materials data, we reviewed and used MIL-HDBK-5J [11] and MIL-HDBK-17. Furthermore...documents about composite materials provided by our domain expert. Based on the suggestions given by domain experts in bio -materials, the following

  6. FE Garan servicing the FCF in the US Lab

    NASA Image and Video Library

    2011-05-26

    ISS028-E-005602 (26 May 2011) --- NASA astronaut Ron Garan, Expedition 28 flight engineer, services the Fluids Combustion Facility in the Fluids Integrated Rack on the Destiny lab aboard the International Space Station by changing out the Bio sample on the Bio Base. Garan and two Russian cosmonaut crewmates for Expedition 28 will be joined by three more crew members on the station in about one and a half weeks.

  7. High Performance Computing and Enabling Technologies for Nano and Bio Systems and Interfaces

    DTIC Science & Technology

    2014-12-12

    data analysis of protein – aptamer interaction systems were developed. All research investigations contributed to the research education , and training...achieved a 3.5 GPA to 4.0 (4.0 max scale): Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for Education , Research...Research, education and training of future US work force in such nano- bio systems have significant potential for advancement in medical and health

  8. Silicon nanowire based biosensing platform for electrochemical sensing of Mebendazole drug activity on breast cancer cells.

    PubMed

    Shashaani, Hani; Faramarzpour, Mahsa; Hassanpour, Morteza; Namdar, Nasser; Alikhani, Alireza; Abdolahad, Mohammad

    2016-11-15

    Electrochemical approaches have played crucial roles in bio sensing because of their Potential in achieving sensitive, specific and low-cost detection of biomolecules and other bio evidences. Engineering the electrochemical sensing interface with nanomaterials tends to new generations of label-free biosensors with improved performances in terms of sensitive area and response signals. Here we applied Silicon Nanowire (SiNW) array electrodes (in an integrated architecture of working, counter and reference electrodes) grown by low pressure chemical vapor deposition (LPCVD) system with VLS procedure to electrochemically diagnose the presence of breast cancer cells as well as their response to anticancer drugs. Mebendazole (MBZ), has been used as antitubulin drug. It perturbs the anodic/cathodic response of the cell covered biosensor by releasing Cytochrome C in cytoplasm. Reduction of cytochrome C would change the ionic state of the cells monitored by SiNW biosensor. By applying well direct bioelectrical contacts with cancer cells, SiNWs can detect minor signal transduction and bio recognition events, resulting in precise biosensing. Our device detected the trace of MBZ drugs (with the concentration of 2nM) on electrochemical activity MCF-7 cells. Also, experimented biological analysis such as confocal and Flowcytometry assays confirmed the electrochemical results. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Biorefineries for the production of top building block chemicals and their derivatives.

    PubMed

    Choi, Sol; Song, Chan Woo; Shin, Jae Ho; Lee, Sang Yup

    2015-03-01

    Due to the growing concerns on the climate change and sustainability on petrochemical resources, DOE selected and announced the bio-based top 12 building blocks and discussed the needs for developing biorefinery technologies to replace the current petroleum based industry in 2004. Over the last 10 years after its announcement, many studies have been performed for the development of efficient technologies for the bio-based production of these chemicals and derivatives. Now, ten chemicals among these top 12 chemicals, excluding the l-aspartic acid and 3-hydroxybutyrolactone, have already been commercialized or are close to commercialization. In this paper, we review the current status of biorefinery development for the production of these platform chemicals and their derivatives. In addition, current technological advances on industrial strain development for the production of platform chemicals using micro-organisms will be covered in detail with case studies on succinic acid and 3-hydroxypropionic acid as examples. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  10. Low-cost synchronization of high-speed audio and video recordings in bio-acoustic experiments.

    PubMed

    Laurijssen, Dennis; Verreycken, Erik; Geipel, Inga; Daems, Walter; Peremans, Herbert; Steckel, Jan

    2018-02-27

    In this paper, we present a method for synchronizing high-speed audio and video recordings of bio-acoustic experiments. By embedding a random signal into the recorded video and audio data, robust synchronization of a diverse set of sensor streams can be performed without the need to keep detailed records. The synchronization can be performed using recording devices without dedicated synchronization inputs. We demonstrate the efficacy of the approach in two sets of experiments: behavioral experiments on different species of echolocating bats and the recordings of field crickets. We present the general operating principle of the synchronization method, discuss its synchronization strength and provide insights into how to construct such a device using off-the-shelf components. © 2018. Published by The Company of Biologists Ltd.

  11. RTD fluxgate performance for application in magnetic label-based bioassay: preliminary results.

    PubMed

    Ando, B; Ascia, A; Baglio, S; Bulsara, A R; Trigona, C; In, V

    2006-01-01

    Magnetic bioassay is becoming of great interest in several application including magnetic separation, drug delivery, hyperthermia treatments, magnetic resonance imaging (MRI) and magnetic labelling. The latter can be used to localize bio-entities (e.g. cancer tissues) by using magnetic markers and high sensitive detectors. To this aim SQUIDs can be adopted, however this result in a quite sophisticated and complex method involving high cost and complex set-up. In this paper, the possibility to adopt RTD fluxgate magnetometers as alternative low cost solution to perform magnetic bio-sensing is investigated. Some experimental results are shown that encourage to pursue this approach in order to obtain simple devices that can detect a certain number of magnetic particles accumulated onto a small surface such to be useful for diagnosis purposes.

  12. The Role of Hydroxide and Metal Concentration on the Viscoelastic Properties of Metal Coordinated Gels

    NASA Astrophysics Data System (ADS)

    Cazzell, Seth; Holten-Andersen, Niels

    Nature uses metal binding amino acids to engineer mechanical properties. An example of this engineering can be found in the mussel byssal thread. This acellular thread contains reversible intermolecular protein-metal bonds, which allows the mussel to robustly anchor to rocks, while withstanding the mechanically demanding intertidal environment. Inspired by this metal-binding material, we present a synthetic hydrogel designed to mimic this bonding behavior. The mechanical properties of this hydrogel can be controlled independently by manipulating the amount of metal relative to the metal binding ligand, and the gel's pH. Here we report how high metal to ligand ratios and low pH can be used to induce the formation of a strong, slow relaxing gels. This gel has potential applications as an energy dissipating material, and furthers our understanding of the bio-inspired engineering techniques that are used to design viscoelastic soft materials. I was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  13. R&D in micro-nano-bio systems and contribution to pHealth.

    PubMed

    Lymberis, Andreas

    2012-01-01

    The capacity to research, develop and manufacture systems that employ components based on nano- and microstructures with biological functionality, and are capable to share, ubiquitously, information is at the forefront of worldwide competition. A new generation of advanced materials, processes and emerging technologies is building up enabling highly integrated, miniaturized and smart micro-nano-bio-systems to be engineered. These fast technology developments are also stimulating the explosive growth in life sciences, which is leading to an ever increasing understanding of life at the sub-cellular and molecular level. By bringing these parallel developments to biomedicine and health, ultrafast and sensitive systems can be developed to prevent illness, to support lifestyle, to make early diagnosis or treat diseases with high accuracy and less invasiveness, and to support body functions or to replace lost functionality. Such systems will enable the delivery of individualized health services with better access and outcomes at lower costs than previously deemed possible, making a substantial contribution to bringing healthcare expenditures under control and increase its productivity. The MNBS (Micro-Nano-Bio Systems) group of EU funded projects aims at speeding up the convergence of micro- and nanotechnology with the life sciences and accelerating the development of highly integrated diagnostic, monitoring and therapeutics devices. This paper presents R&D activities supported through the MNBS group that are relevant to pHealth and discusses directions to be taken in order to overcome the current problems. Finally, it addresses future challenges to build highly integrated and reliable systems including innovation and usability issues.

  14. Merging high doxorubicin loading with pronounced magnetic response and bio-repellent properties in hybrid drug nanocarriers.

    PubMed

    Bakandritsos, Aristides; Papagiannopoulos, Aristeidis; Anagnostou, Eleni N; Avgoustakis, Konstantinos; Zboril, Radek; Pispas, Stergios; Tucek, Jiri; Ryukhtin, Vasyl; Bouropoulos, Nikolaos; Kolokithas-Ntoukas, Argiris; Steriotis, Theodore A; Keiderling, Uwe; Winnefeld, Frank

    2012-08-06

    Hybrid magnetic drug nanocarriers are prepared via a self-assembly process of poly(methacrylic acid)-graft-poly(ethyleneglycol methacrylate) (p(MAA-g-EGMA)) on growing iron oxide nanocrystallites. The nanocarriers successfully merge together bio-repellent properties, pronounced magnetic response, and high loading capacity for the potent anticancer drug doxorubicin (adriamicin), in a manner not observed before in such hybrid colloids. High magnetic responses are accomplished by engineering the size of the magnetic nanocrystallites (∼13.5 nm) following an aqueous single-ferrous precursor route, and through adjustment of the number of cores in each colloidal assembly. Complementing conventional magnetometry, the magnetic response of the nanocarriers is evaluated by magnetophoretic experiments providing insight into their internal organization and on their response to magnetic manipulation. The structural organization of the graft-copolymer, locked on the surface of the nanocrystallites, is further probed by small-angle neutron scattering on single-core colloids. Analysis showed that the MAA segments selectively populate the area around the magnetic nanocrystallites, while the poly(ethylene glycol)-grafted chains are arranged as protrusions, pointing towards the aqueous environment. These nanocarriers are screened at various pHs and in highly salted media by light scattering and electrokinetic measurements. According to the results, their stability is dramatically enhanced, as compared to uncoated nanocrystallites, owing to the presence of the external protective PEG canopy. The nanocarriers are also endowed with bio-repellent properties, as evidenced by stability assays using human blood plasma as the medium. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Investigation of the Optimum Farming Temperature for Grifola frondosa and Growth Promotion using the Bio-Electric Potential as an Index

    NASA Astrophysics Data System (ADS)

    Yanagibashi, Hideyuki; Hirama, Junji; Matsuda, Masato; Miyamoto, Toshio

    The purpose of this study was to investigate the optimum farming conditions for mushrooms from the view point of engineering field. As the bio-electric potential of mushrooms is considered to be closely related to the activation of mushroom cells, this relationship has been used to analyze the dependence of the morphogenetic characteristics of Grifola frondosa on farming temperatures (from 16 to 22 degree C). The experimental results indicated that a maximum response was exhibited, with correspondingly favorable morphogenesis obtained at 18 degree C. Based on the experimental results, including those in a previous study, it was assumed that the larger the bio-electric potential becomes, the higher the growth yield reaches. In order to support this assumption, growth promotion was conducted by intentionally activating the bio-electric potential within the mushrooms by stimulating them with short bursts of illumination. The resulting observation of growth promotion permitted the conclusion that the bio-electric potential can, indeed, be regarded as an index of growth.

  16. Biotechnology as the engine for the Knowledge-Based Bio-Economy.

    PubMed

    Aguilar, Alfredo; Bochereau, Laurent; Matthiessen, Line

    2010-01-01

    The European Commission has defined the Knowledge-Based Bio-Economy (KBBE) as the process of transforming life science knowledge into new, sustainable, eco-efficient and competitive products. The term "Bio-Economy" encompasses all industries and economic sectors that produce, manage and otherwise exploit biological resources and related services. Over the last decades biotechnologies have led to innovations in many agricultural, industrial, medical sectors and societal activities. Biotechnology will continue to be a major contributor to the Bio-Economy, playing an essential role in support of economic growth, employment, energy supply and a new generation of bio-products, and to maintain the standard of living. The paper reviews some of the main biotechnology-related research activities at European level. Beyond the 7th Framework Program for Research and Technological Development (FP7), several initiatives have been launched to better integrate FP7 with European national research activities, promote public-private partnerships and create better market and regulatory environments for stimulating innovation.

  17. Design and development of synthetic microbial platform cells for bioenergy

    PubMed Central

    Lee, Sang Jun; Lee, Sang-Jae; Lee, Dong-Woo

    2013-01-01

    The finite reservation of fossil fuels accelerates the necessity of development of renewable energy sources. Recent advances in synthetic biology encompassing systems biology and metabolic engineering enable us to engineer and/or create tailor made microorganisms to produce alternative biofuels for the future bio-era. For the efficient transformation of biomass to bioenergy, microbial cells need to be designed and engineered to maximize the performance of cellular metabolisms for the production of biofuels during energy flow. Toward this end, two different conceptual approaches have been applied for the development of platform cell factories: forward minimization and reverse engineering. From the context of naturally minimized genomes,non-essential energy-consuming pathways and/or related gene clusters could be progressively deleted to optimize cellular energy status for bioenergy production. Alternatively, incorporation of non-indigenous parts and/or modules including biomass-degrading enzymes, carbon uptake transporters, photosynthesis, CO2 fixation, and etc. into chassis microorganisms allows the platform cells to gain novel metabolic functions for bioenergy. This review focuses on the current progress in synthetic biology-aided pathway engineering in microbial cells and discusses its impact on the production of sustainable bioenergy. PMID:23626588

  18. Refuse derived soluble bio-organics enhancing tomato plant growth and productivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sortino, Orazio; Dipasquale, Mauro; Montoneri, Enzo, E-mail: enzo.montoneri@unito.it

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Municipal bio-wastes are a sustainable source of bio-based products. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics promote chlorophyll synthesis. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics enhance plant growth and fruit ripening rate. Black-Right-Pointing-Pointer Sustainable chemistry exploiting urban refuse allows sustainable development. Black-Right-Pointing-Pointer Chemistry, agriculture and the environment benefit from biowaste technology. - Abstract: Municipal bio-refuse (CVD), containing kitchen wastes, home gardening residues and public park trimmings, was treated with alkali to yield a soluble bio-organic fraction (SBO) and an insoluble residue. These materials were characterized using elemental analysis, potentiometric titration, and 13C NMR spectroscopy, and then applied as organic fertilizers tomore » soil for tomato greenhouse cultivation. Their performance was compared with a commercial product obtained from animal residues. Plant growth, fruit yield and quality, and soil and leaf chemical composition were the selected performance indicators. The SBO exhibited the best performance by enhancing leaf chlorophyll content, improving plant growth and fruit ripening rate and yield. No product performance-chemical composition relationship could be assessed. Solubility could be one reason for the superior performance of SBO as a tomato growth promoter. The enhancement of leaf chlorophyll content is discussed to identify a possible link with the SBO photosensitizing properties that have been demonstrated in other work, and thus with photosynthetic performance.« less

  19. Metabolic engineering of industrial platform microorganisms for biorefinery applications--optimization of substrate spectrum and process robustness by rational and evolutive strategies.

    PubMed

    Buschke, Nele; Schäfer, Rudolf; Becker, Judith; Wittmann, Christoph

    2013-05-01

    Bio-based production promises a sustainable route to myriads of chemicals, materials and fuels. With regard to eco-efficiency, its future success strongly depends on a next level of bio-processes using raw materials beyond glucose. Such renewables, i.e., polymers, complex substrate mixtures and diluted waste streams, often cannot be metabolized naturally by the producing organisms. This particularly holds for well-known microorganisms from the traditional sugar-based biotechnology, including Escherichia coli, Corynebacterium glutamicum and Saccharomyces cerevisiae which have been engineered successfully to produce a broad range of products from glucose. In order to make full use of their production potential within the bio-refinery value chain, they have to be adapted to various feed-stocks of interest. This review focuses on the strategies to be applied for this purpose which combine rational and evolutive approaches. Hereby, the three industrial platform microorganisms, E. coli, C. glutamicum and S. cerevisiae are highlighted due to their particular importance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Toxicological evaluation of Cd-based fluorescent nanoprobes by means of in vivo studies

    NASA Astrophysics Data System (ADS)

    Farias, Patricia M. A.; Ma-Hock, Lan; Landsiedel, Robert; van Ravenzwaay, Bennard

    2018-02-01

    Cadmium still represents a stigma for many research- and/or industrial applications. Some deleterious effects are attributed to Cadmium. In the present work, highly fluorescent Cadmium sulfide quantum dots are investigated by e.g. physical-chemical characterization. Most important however is their application as fluorescent probes for bio-imaging in living cells and tissues. This work presents their toxicological evaluation by means of in vivo studies. Bio-imaging experiments are performed without any pre-treatment. The toxicological studies performed, strongly indicate that the use of Cadmium based nanoparticles as fluorescent probes may be nonhazardous and not induce side effects for cells/tissues.

  1. Engineering paradigms and anthropogenic global change

    NASA Astrophysics Data System (ADS)

    Bohle, Martin

    2016-04-01

    This essay discusses 'paradigms' as means to conceive anthropogenic global change. Humankind alters earth-systems because of the number of people, the patterns of consumption of resources, and the alterations of environments. This process of anthropogenic global change is a composite consisting of societal (in the 'noosphere') and natural (in the 'bio-geosphere') features. Engineering intercedes these features; e.g. observing stratospheric ozone depletion has led to understanding it as a collateral artefact of a particular set of engineering choices. Beyond any specific use-case, engineering works have a common function; e.g. civil-engineering intersects economic activity and geosphere. People conceive their actions in the noosphere including giving purpose to their engineering. The 'noosphere' is the ensemble of social, cultural or political concepts ('shared subjective mental insights') of people. Among people's concepts are the paradigms how to shape environments, production systems and consumption patterns given their societal preferences. In that context, engineering is a means to implement a given development path. Four paradigms currently are distinguishable how to make anthropogenic global change happening. Among the 'engineering paradigms' for anthropogenic global change, 'adaptation' is a paradigm for a business-as-usual scenario and steady development paths of societies. Applying this paradigm implies to forecast the change to come, to appropriately design engineering works, and to maintain as far as possible the current production and consumption patterns. An alternative would be to adjust incrementally development paths of societies, namely to 'dovetail' anthropogenic and natural fluxes of matter and energy. To apply that paradigm research has to identify 'natural boundaries', how to modify production and consumption patterns, and how to tackle process in the noosphere to render alterations of common development paths acceptable. A further alternative, the paradigm of 'ecomodernism' implies to accentuate some of the current development paths of societies with the goal to 'decouple' anthropogenic and natural fluxes of matter and energy. Applying the paradigm 'geoengineering', engineering works shall 'modulate' natural fluxes of matter to counter the effect of anthropogenic fluxes of matter instead to alter the development paths of societies. Thus, anthropogenic global change is a composite process in which engineering intercedes the 'noosphere' and in the 'bio-geosphere'. Paradigms 'how to engineering earth systems' reflect different concepts ('shared subjective insights') how to combine knowledge with use, function and purpose. Currently, four paradigms are distinguishable how to engineer anthropogenic global change. They convene recipes human activity and bio-geosphere should intersect.

  2. Multi-scale exploration of the technical, economic, and environmental dimensions of bio-based chemical production.

    PubMed

    Zhuang, Kai H; Herrgård, Markus J

    2015-09-01

    In recent years, bio-based chemicals have gained traction as a sustainable alternative to petrochemicals. However, despite rapid advances in metabolic engineering and synthetic biology, there remain significant economic and environmental challenges. In order to maximize the impact of research investment in a new bio-based chemical industry, there is a need for assessing the technological, economic, and environmental potentials of combinations of biomass feedstocks, biochemical products, bioprocess technologies, and metabolic engineering approaches in the early phase of development of cell factories. To address this issue, we have developed a comprehensive Multi-scale framework for modeling Sustainable Industrial Chemicals production (MuSIC), which integrates modeling approaches for cellular metabolism, bioreactor design, upstream/downstream processes and economic impact assessment. We demonstrate the use of the MuSIC framework in a case study where two major polymer precursors (1,3-propanediol and 3-hydroxypropionic acid) are produced from two biomass feedstocks (corn-based glucose and soy-based glycerol) through 66 proposed biosynthetic pathways in two host organisms (Escherichia coli and Saccharomyces cerevisiae). The MuSIC framework allows exploration of tradeoffs and interactions between economy-scale objectives (e.g. profit maximization, emission minimization), constraints (e.g. land-use constraints) and process- and cell-scale technology choices (e.g. strain design or oxygenation conditions). We demonstrate that economy-scale assessment can be used to guide specific strain design decisions in metabolic engineering, and that these design decisions can be affected by non-intuitive dependencies across multiple scales. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  3. Construction of combustion models for rapeseed methyl ester bio-diesel fuel for internal combustion engine applications.

    PubMed

    Golovitchev, Valeri I; Yang, Junfeng

    2009-01-01

    Bio-diesel fuels are non-petroleum-based diesel fuels consisting of long chain alkyl esters produced by the transesterification of vegetable oils, that are intended for use (neat or blended with conventional fuels) in unmodified diesel engines. There have been few reports of studies proposing theoretical models for bio-diesel combustion simulations. In this study, we developed combustion models based on ones developed previously. We compiled the liquid fuel properties, and the existing detailed mechanism of methyl butanoate ester (MB, C(5)H(10)O(2)) oxidation was supplemented by sub-mechanisms for two proposed fuel constituent components, C(7)H(16) and C(7)H(8)O (and then, by mp2d, C(4)H(6)O(2) and propyne, C(3)H(4)) to represent the combustion model for rapeseed methyl ester described by the chemical formula, C(19)H(34)O(2) (or C(19)H(36)O(2)). The main fuel vapor thermal properties were taken as those of methyl palmitate C(19)H(36)O(2) in the NASA polynomial form of the Burcat database. The special global reaction was introduced to "crack" the main fuel into its constituent components. This general reaction included 309 species and 1472 reactions, including soot and NO(x) formation processes. The detailed combustion mechanism was validated using shock-tube ignition-delay data under diesel engine conditions. For constant volume and diesel engine (Volvo D12C) combustion modeling, this mechanism could be reduced to 88 species participating in 363 reactions.

  4. Design and Implementation of High-Performance GIS Dynamic Objects Rendering Engine

    NASA Astrophysics Data System (ADS)

    Zhong, Y.; Wang, S.; Li, R.; Yun, W.; Song, G.

    2017-12-01

    Spatio-temporal dynamic visualization is more vivid than static visualization. It important to use dynamic visualization techniques to reveal the variation process and trend vividly and comprehensively for the geographical phenomenon. To deal with challenges caused by dynamic visualization of both 2D and 3D spatial dynamic targets, especially for different spatial data types require high-performance GIS dynamic objects rendering engine. The main approach for improving the rendering engine with vast dynamic targets relies on key technologies of high-performance GIS, including memory computing, parallel computing, GPU computing and high-performance algorisms. In this study, high-performance GIS dynamic objects rendering engine is designed and implemented for solving the problem based on hybrid accelerative techniques. The high-performance GIS rendering engine contains GPU computing, OpenGL technology, and high-performance algorism with the advantage of 64-bit memory computing. It processes 2D, 3D dynamic target data efficiently and runs smoothly with vast dynamic target data. The prototype system of high-performance GIS dynamic objects rendering engine is developed based SuperMap GIS iObjects. The experiments are designed for large-scale spatial data visualization, the results showed that the high-performance GIS dynamic objects rendering engine have the advantage of high performance. Rendering two-dimensional and three-dimensional dynamic objects achieve 20 times faster on GPU than on CPU.

  5. A computational continuum model of poroelastic beds

    PubMed Central

    Zampogna, G. A.

    2017-01-01

    Despite the ubiquity of fluid flows interacting with porous and elastic materials, we lack a validated non-empirical macroscale method for characterizing the flow over and through a poroelastic medium. We propose a computational tool to describe such configurations by deriving and validating a continuum model for the poroelastic bed and its interface with the above free fluid. We show that, using stress continuity condition and slip velocity condition at the interface, the effective model captures the effects of small changes in the microstructure anisotropy correctly and predicts the overall behaviour in a physically consistent and controllable manner. Moreover, we show that the performance of the effective model is accurate by validating with fully microscopic resolved simulations. The proposed computational tool can be used in investigations in a wide range of fields, including mechanical engineering, bio-engineering and geophysics. PMID:28413355

  6. Microalgal bioengineering for sustainable energy development: Recent transgenesis and metabolic engineering strategies.

    PubMed

    Banerjee, Chiranjib; Singh, Puneet Kumar; Shukla, Pratyoosh

    2016-03-01

    Exploring the efficiency of algae to produce remarkable products can be directly benefitted by studying its mechanism at systems level. Recent advents in biotechnology like flux balance analysis (FBA), genomics and in silico proteomics minimize the wet lab exertion. It is understood that FBA predicts the metabolic products, metabolic pathways and alternative pathway to maximize the desired product, and these are key components for microalgae bio-engineering. This review encompasses recent transgenesis techniques and metabolic engineering strategies applied to different microalgae for improving different traits. Further it also throws light on RNAi and riboswitch engineering based methods which may be advantageous for high throughput microalgal research. A valid and optimally designed microalga can be developed where every engineering strategies meet each other successfully and will definitely fulfill the market needs. It is also to be noted that Omics (viz. genetic and metabolic manipulation with bioinformatics) should be integrated to develop a strain which could prove to be a futuristic solution for sustainable development for energy. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Comparative study of remediation of Cr(VI)-contaminated soil using electrokinetics combined with bioremediation.

    PubMed

    He, Jiaying; He, Chiquan; Chen, Xueping; Liang, Xia; Huang, Tongli; Yang, Xuecheng; Shang, Hai

    2018-06-01

    The purpose of this research is to design a new bioremediation-electrokinetic (Bio-EK) remediation process to increase treatment efficiency of chromium contamination in soil. Upon residual chromium analysis, it is shown that traditional electrokinetic-PRB system (control) does not have high efficiency (80.26%) to remove Cr(VI). Bio-electrokinetics of exogenous add with reduction bacteria Microbacterium sp. Y2 and electrokinetics can enhance treatment efficiency Cr(VI) to 90.67% after 8 days' remediation. To optimize the overall performance, integrated bio-electrokinetics were designed by synergy with 200 g humic substances (HS) into the systems. According to our results, Cr(VI) (98.33%) was effectively removed via electrokinetics. Moreover, bacteria and humic substances are natural, sustainable, and economical enhancement agents. The research results indicated that the use of integrated bio-electrokinetics is an effective method to remediate chromium-contaminated soils.

  8. Engineering improved bio-jet fuel tolerance in Escherichia coli using a transgenic library from the hydrocarbon-degrader Marinobacter aquaeolei.

    PubMed

    Tomko, Timothy A; Dunlop, Mary J

    2015-01-01

    Recent metabolic engineering efforts have generated microorganisms that can produce biofuels, including bio-jet fuels, however these fuels are often toxic to cells, limiting production yields. There are natural examples of microorganisms that have evolved mechanisms for tolerating hydrocarbon-rich environments, such as those that thrive near natural oil seeps and in oil-polluted waters. Using genomic DNA from the hydrocarbon-degrading microbe Marinobacter aquaeolei, we constructed a transgenic library that we expressed in Escherichia coli. We exposed cells to inhibitory levels of pinene, a monoterpene that can serve as a jet fuel precursor with chemical properties similar to existing tactical fuels. Using a sequential strategy with a fosmid library followed by a plasmid library, we were able to isolate a region of DNA from the M. aquaeolei genome that conferred pinene tolerance when expressed in E. coli. We determined that a single gene, yceI, was responsible for the tolerance improvements. Overexpression of this gene placed no additional burden on the host. We also tested tolerance to other monoterpenes and showed that yceI selectively improves tolerance. The genomes of hydrocarbon-tolerant microbes represent a rich resource for tolerance engineering. Using a transgenic library, we were able to identify a single gene that improves E. coli's tolerance to the bio-jet fuel precursor pinene.

  9. Toxicological properties of emission particles from heavy duty engines powered by conventional and bio-based diesel fuels and compressed natural gas.

    PubMed

    Jalava, Pasi I; Aakko-Saksa, Päivi; Murtonen, Timo; Happo, Mikko S; Markkanen, Ari; Yli-Pirilä, Pasi; Hakulinen, Pasi; Hillamo, Risto; Mäki-Paakkanen, Jorma; Salonen, Raimo O; Jokiniemi, Jorma; Hirvonen, Maija-Riitta

    2012-09-29

    One of the major areas for increasing the use of renewable energy is in traffic fuels e.g. bio-based fuels in diesel engines especially in commuter traffic. Exhaust emissions from fossil diesel fuelled engines are known to cause adverse effects on human health, but there is very limited information available on how the new renewable fuels may change the harmfulness of the emissions, especially particles (PM). We evaluated the PM emissions from a heavy-duty EURO IV diesel engine powered by three different fuels; the toxicological properties of the emitted PM were investigated. Conventional diesel fuel (EN590) and two biodiesels were used - rapeseed methyl ester (RME, EN14214) and hydrotreated vegetable oil (HVO) either as such or as 30% blends with EN590. EN590 and 100% HVO were also operated with or without an oxidative catalyst (DOC + POC). A bus powered by compressed natural gas (CNG) was included for comparison with the liquid fuels. However, the results from CNG powered bus cannot be directly compared to the other situations in this study. High volume PM samples were collected on PTFE filters from a constant volume dilution tunnel. The PM mass emission with HVO was smaller and with RME larger than that with EN590, but both biofuels produced lower PAH contents in emission PM. The DOC + POC catalyst greatly reduced the PM emission and PAH content in PM with both HVO and EN590. Dose-dependent TNFα and MIP-2 responses to all PM samples were mostly at the low or moderate level after 24-hour exposure in a mouse macrophage cell line RAW 264.7. Emission PM from situations with the smallest mass emissions (HVO + cat and CNG) displayed the strongest potency in MIP-2 production. The catalyst slightly decreased the PM-induced TNFα responses and somewhat increased the MIP-2 responses with HVO fuel. Emission PM with EN590 and with 30% HVO blended in EN590 induced the strongest genotoxic responses, which were significantly greater than those with EN590 + cat or 100% HVO. The emission PM sample from the CNG bus possessed the weakest genotoxic potency but had the strongest oxidative potency of all the fuel and catalyst combinations. The use of 100% HVO fuel had slightly weaker and 100% RME somewhat stronger emission PM induced ROS production, when compared to EN590. The harmfulness of the exhaust emissions from vehicle engines cannot be determined merely on basis of the emitted PM mass. The study conditions and the engine type significantly affect the toxicity of the emitted particles. The selected fuels and DOC + POC catalyst affected the PM emission from the heavy EURO IV engine both qualitative and quantitative ways, which influenced their toxicological characteristics. The plain HVO fuel performed very well in emission reduction and in lowering the overall toxicity of emitted PM, but the 30% blend of HVO in EN590 was no better in this respect than the plain EN590. The HVO with a DOC + POC catalyst in the EURO IV engine, performed best with regard to changes in exhaust emissions. However some of the toxicological parameters were significantly increased even with these low emissions.

  10. Toxicological properties of emission particles from heavy duty engines powered by conventional and bio-based diesel fuels and compressed natural gas

    PubMed Central

    2012-01-01

    Background One of the major areas for increasing the use of renewable energy is in traffic fuels e.g. bio-based fuels in diesel engines especially in commuter traffic. Exhaust emissions from fossil diesel fuelled engines are known to cause adverse effects on human health, but there is very limited information available on how the new renewable fuels may change the harmfulness of the emissions, especially particles (PM). We evaluated the PM emissions from a heavy-duty EURO IV diesel engine powered by three different fuels; the toxicological properties of the emitted PM were investigated. Conventional diesel fuel (EN590) and two biodiesels were used − rapeseed methyl ester (RME, EN14214) and hydrotreated vegetable oil (HVO) either as such or as 30% blends with EN590. EN590 and 100% HVO were also operated with or without an oxidative catalyst (DOC + POC). A bus powered by compressed natural gas (CNG) was included for comparison with the liquid fuels. However, the results from CNG powered bus cannot be directly compared to the other situations in this study. Results High volume PM samples were collected on PTFE filters from a constant volume dilution tunnel. The PM mass emission with HVO was smaller and with RME larger than that with EN590, but both biofuels produced lower PAH contents in emission PM. The DOC + POC catalyst greatly reduced the PM emission and PAH content in PM with both HVO and EN590. Dose-dependent TNFα and MIP-2 responses to all PM samples were mostly at the low or moderate level after 24-hour exposure in a mouse macrophage cell line RAW 264.7. Emission PM from situations with the smallest mass emissions (HVO + cat and CNG) displayed the strongest potency in MIP-2 production. The catalyst slightly decreased the PM-induced TNFα responses and somewhat increased the MIP-2 responses with HVO fuel. Emission PM with EN590 and with 30% HVO blended in EN590 induced the strongest genotoxic responses, which were significantly greater than those with EN590 + cat or 100% HVO. The emission PM sample from the CNG bus possessed the weakest genotoxic potency but had the strongest oxidative potency of all the fuel and catalyst combinations. The use of 100% HVO fuel had slightly weaker and 100% RME somewhat stronger emission PM induced ROS production, when compared to EN590. Conclusions The harmfulness of the exhaust emissions from vehicle engines cannot be determined merely on basis of the emitted PM mass. The study conditions and the engine type significantly affect the toxicity of the emitted particles. The selected fuels and DOC + POC catalyst affected the PM emission from the heavy EURO IV engine both qualitative and quantitative ways, which influenced their toxicological characteristics. The plain HVO fuel performed very well in emission reduction and in lowering the overall toxicity of emitted PM, but the 30% blend of HVO in EN590 was no better in this respect than the plain EN590. The HVO with a DOC + POC catalyst in the EURO IV engine, performed best with regard to changes in exhaust emissions. However some of the toxicological parameters were significantly increased even with these low emissions. PMID:23021308

  11. Atomic Force Microscopy: A Powerful Tool to Address Scaffold Design in Tissue Engineering.

    PubMed

    Marrese, Marica; Guarino, Vincenzo; Ambrosio, Luigi

    2017-02-13

    Functional polymers currently represent a basic component of a large range of biological and biomedical applications including molecular release, tissue engineering, bio-sensing and medical imaging. Advancements in these fields are driven by the use of a wide set of biodegradable polymers with controlled physical and bio-interactive properties. In this context, microscopy techniques such as Atomic Force Microscopy (AFM) are emerging as fundamental tools to deeply investigate morphology and structural properties at micro and sub-micrometric scale, in order to evaluate the in time relationship between physicochemical properties of biomaterials and biological response. In particular, AFM is not only a mere tool for screening surface topography, but may offer a significant contribution to understand surface and interface properties, thus concurring to the optimization of biomaterials performance, processes, physical and chemical properties at the micro and nanoscale. This is possible by capitalizing the recent discoveries in nanotechnologies applied to soft matter such as atomic force spectroscopy to measure surface forces through force curves. By tip-sample local interactions, several information can be collected such as elasticity, viscoelasticity, surface charge densities and wettability. This paper overviews recent developments in AFM technology and imaging techniques by remarking differences in operational modes, the implementation of advanced tools and their current application in biomaterials science, in terms of characterization of polymeric devices in different forms (i.e., fibres, films or particles).

  12. Promotion of hydrogen-rich gas and phenolic-rich bio-oil production from green macroalgae Cladophora glomerata via pyrolysis over its bio-char.

    PubMed

    Norouzi, Omid; Jafarian, Sajedeh; Safari, Farid; Tavasoli, Ahmad; Nejati, Behnam

    2016-11-01

    Conversion of Cladophora glomerata (C. glomerata) as a Caspian Sea's green macroalgae into gaseous, liquid and solid products was carried out via pyrolysis at different temperatures to determine its potential for bio-oil and hydrogen-rich gas production for further industrial utilization. Non-catalytic tests were performed to determine the optimum condition for bio-oil production. The highest portion of bio-oil was retrieved at 500°C. The catalytic test was performed using the bio-char derived at 500°C as a catalyst. Effect of the addition of the algal bio-char on the composition of the bio-oil and also gaseous products was investigated. Pyrolysis derived bio-char was characterized by BET, FESEM and ICP method to show its surface area, porosity, and presence of inorganic metals on its surface, respectively. Phenols were increased from 8.5 to 20.76area% by the addition of bio-char. Moreover, the hydrogen concentration and hydrogen selectivity were also enhanced by the factors of 1.37, 1.59 respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Chemical addressability of potato virus X for its applications in bio/nanotechnology.

    PubMed

    Le, Duc H T; Hu, He; Commandeur, Ulrich; Steinmetz, Nicole F

    2017-12-01

    Potato virus X (PVX), a type member of the plant virus potexvirus group, offers a unique nanotechnology platform based on its high aspect ratio and flexible filamentous shape. The PVX platform has already been engineered and studied for its uses in imaging, drug delivery, and immunotherapies. While genetic engineering procedures are well established for PVX, there is limited information about chemical conjugation strategies for functionalizing PVX, partly due to the lack of structural information of PVX at high resolution. To overcome these challenges, we built a structural model of the PVX particle based on the available structures from pepino mosaic virus (PepMV), a close cousin of PVX. Using the model and a series of chemical conjugation experiments, we identified and probed the addressability of cysteine side chains. Chemical reactivity of cysteines was confirmed using Michael-addition and thiol-selective probes, including fluorescent dyes and biotin tags. LC/MS/MS was used to map Cys 121 as having the highest selectivity for modification. Finally, building on the availability of two reactive groups, the newly identified Cys and previously established Lys side chains, we prepared multifunctional PVX nanoparticles by conjugating Gd-DOTA for magnetic resonance imaging (MRI) to lysines and fluorescent dyes for optical imaging to cysteines. The resulting functionalized nanofilament could have applications in dual-modal optical-MRI imaging applications. These results further extend the understanding of the chemical properties of PVX and enable development of novel multifunctional platforms in bio/nanotechnology. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Effect of filter media size, mass flow rate and filtration stage number in a moving-bed granular filter on the yield and properties of bio-oil from fast pyrolysis of biomass.

    PubMed

    Paenpong, Chaturong; Inthidech, Sudsakorn; Pattiya, Adisak

    2013-07-01

    Fast pyrolysis of cassava rhizome was performed in a bench-scale fluidised-bed reactor unit incorporated with a cross-flow moving-bed granular filter. The objective of this research was to examine several process parameters including the granular size (425-1160 μm) and mass flow rate (0-12 g/min) as well as the number of the filtration stages (1-2 stages) on yields and properties of bio-oil. The results showed that the bio-oil yield decreased from 57.7 wt.% to 42.0-49.2 wt.% when increasing the filter media size, the mass flow rate and the filtration stage number. The effect of the process parameters on various properties of bio-oil is thoroughly discussed. In general, the bio-oil quality in terms of the solids content, ash content, initial viscosity, viscosity change and ageing rate could be enhanced by the hot vapour granular filtration. Therefore, bio-oil of high stability could be produced by the pyrolysis reactor configuration designed in this work. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. 3D-engineering of Cellularized Conduits for Peripheral Nerve Regeneration

    NASA Astrophysics Data System (ADS)

    Hu, Yu; Wu, Yao; Gou, Zhiyuan; Tao, Jie; Zhang, Jiumeng; Liu, Qianqi; Kang, Tianyi; Jiang, Shu; Huang, Siqing; He, Jiankang; Chen, Shaochen; Du, Yanan; Gou, Maling

    2016-08-01

    Tissue engineered conduits have great promise for bridging peripheral nerve defects by providing physical guiding and biological cues. A flexible method for integrating support cells into a conduit with desired architectures is wanted. Here, a 3D-printing technology is adopted to prepare a bio-conduit with designer structures for peripheral nerve regeneration. This bio-conduit is consisted of a cryopolymerized gelatin methacryloyl (cryoGelMA) gel cellularized with adipose-derived stem cells (ASCs). By modeling using 3D-printed “lock and key” moulds, the cryoGelMA gel is structured into conduits with different geometries, such as the designed multichannel or bifurcating and the personalized structures. The cryoGelMA conduit is degradable and could be completely degraded in 2-4 months in vivo. The cryoGelMA scaffold supports the attachment, proliferation and survival of the seeded ASCs, and up-regulates the expression of their neurotrophic factors mRNA in vitro. After implanted in a rat model, the bio-conduit is capable of supporting the re-innervation across a 10 mm sciatic nerve gap, with results close to that of the autografts in terms of functional and histological assessments. The study describes an indirect 3D-printing technology for fabricating cellularized designer conduits for peripheral nerve regeneration, and could lead to the development of future nerve bio-conduits for clinical use.

  16. High-energy green supercapacitor driven by ionic liquid electrolytes as an ultra-high stable next-generation energy storage device

    NASA Astrophysics Data System (ADS)

    Thangavel, Ranjith; Kannan, Aravindaraj G.; Ponraj, Rubha; Thangavel, Vigneysh; Kim, Dong-Won; Lee, Yun-Sung

    2018-04-01

    Development of supercapacitors with high energy density and long cycle life using sustainable materials for next-generation applications is of paramount importance. The ongoing challenge is to elevate the energy density of supercapacitors on par with batteries, while upholding the power and cyclability. In addition, attaining such superior performance with green and sustainable bio-mass derived compounds is very crucial to address the rising environmental concerns. Herein, we demonstrate the use of watermelon rind, a bio-waste from watermelons, towards high energy, and ultra-stable high temperature green supercapacitors with a high-voltage ionic liquid electrolyte. Supercapacitors assembled with ultra-high surface area, hierarchically porous carbon exhibits a remarkable performance both at room temperature and at high temperature (60 °C) with maximum energy densities of ∼174 Wh kg-1 (25 °C), and 177 Wh kg-1 (60 °C) - based on active mass of both electrodes. Furthermore, an ultra-high specific power of ∼20 kW kg-1 along with an ultra-stable cycling performance with 90% retention over 150,000 cycles has been achieved even at 60 °C, outperforming supercapacitors assembled with other carbon based materials. These results demonstrate the potential to develop high-performing, green energy storage devices using eco-friendly materials for next generation electric vehicles and other advanced energy storage systems.

  17. Ultra-bright emission from hexagonal boron nitride defects as a new platform for bio-imaging and bio-labelling

    NASA Astrophysics Data System (ADS)

    Elbadawi, Christopher; Tran, Trong Toan; Shimoni, Olga; Totonjian, Daniel; Lobo, Charlene J.; Grosso, Gabriele; Moon, Hyowan; Englund, Dirk R.; Ford, Michael J.; Aharonovich, Igor; Toth, Milos

    2016-12-01

    Bio-imaging requires robust ultra-bright probes without causing any toxicity to the cellular environment, maintain their stability and are chemically inert. In this work we present hexagonal boron nitride (hBN) nanoflakes which exhibit narrowband ultra-bright single photon emitters1. The emitters are optically stable at room temperature and under ambient environment. hBN has also been noted to be noncytotoxic and seen significant advances in functionalization with biomolecules2,3. We further demonstrate two methods of engineering this new range of extremely robust multicolour emitters across the visible and near infrared spectral ranges for large scale sensing and biolabeling applications.

  18. Research Team Engineers a Better Plastic-Degrading Enzyme | News | NREL

    Science.gov Websites

    polyethylene terephthalate, or PET. While working to solve the crystal structure of PETase-a recently determine its structure to aid in protein engineering, but we ended up going a step further and accidentally discovery that PETase can also degrade polyethylene furandicarboxylate, or PEF, a bio-based substitute for

  19. Fungicidal values of bio-oils and their lignin-rich fractions obtained from wood/bark fast pyrolysis.

    PubMed

    Mohan, Dinesh; Shi, Jenny; Nicholas, Darrel D; Pittman, Charles U; Steele, Philip H; Cooper, Jerome E

    2008-03-01

    Pine wood, pine bark, oak wood and oak bark were pyrolyzed in an auger reactor. A total of 16 bio-oils or pyrolytic oils were generated at different temperatures and residence times. Two additional pine bio-oils were produced at the National Renewable Energy Laboratory in a fluidized-bed reactor at different temperatures. All these bio-oils were fractionated to obtain lignin-rich fractions which consist mainly of phenols and neutrals. The pyrolytic lignin-rich fractions were obtained by liquid-liquid extraction. Whole bio-oils and their lignin-rich fractions were studied as potential environmentally benign wood preservatives to replace metal-based CCA and copper systems that have raised environmental concerns. Each bio-oil and several lignin-rich fractions were tested for antifungal properties. Soil block tests were conducted using one brown-rot fungus (Gloeophyllum trabeum) and one white-rot fungus (Trametes versicolor). The lignin-rich fractions showed greater fungal inhibition than whole bio-oils for a impregnation solution 10% concentration level. Water repellence tests were also performed to study wood wafer swelling behavior before and after bio-oil and lignin-rich fraction treatments. In this case, bio-oil fractions did not exhibit higher water repellency than whole bio-oils. Comparison of raw bio-oils in soil block tests, with unleached wafers, at 10% and 25% bio-oil impregnation solution concentration levels showed excellent wood preservation properties at the 25% level. The good performance of raw bio-oils at higher loading levels suggests that fractionation to generate lignin-rich fractions is unnecessary. At this more effective 25% loading level in general, the raw bio-oils performed similarly. Prevention of leaching is critically important for both raw bio-oils and their fractions to provide decay resistance. Initial tests of a polymerization chemical to prevent leaching showed some success.

  20. Electro-Quasistatic Simulations in Bio-Systems Engineering and Medical Engineering

    NASA Astrophysics Data System (ADS)

    van Rienen, U.; Flehr, J.; Schreiber, U.; Schulze, S.; Gimsa, U.; Baumann, W.; Weiss, D. G.; Gimsa, J.; Benecke, R.; Pau, H.-W.

    2005-05-01

    Slowly varying electromagnetic fields play a key role in various applications in bio-systems and medical engineering. Examples are the electric activity of neurons on neurochips used as biosensors, the stimulating electric fields of implanted electrodes used for deep brain stimulation in patients with Morbus Parkinson and the stimulation of the auditory nerves in deaf patients, respectively. In order to simulate the neuronal activity on a chip it is necessary to couple Maxwell's and Hodgkin-Huxley's equations. First numerical results for a neuron coupling to a single electrode are presented. They show a promising qualitative agreement with the experimentally recorded signals. Further, simulations are presented on electrodes for deep brain stimulation in animal experiments where the question of electrode ageing and energy deposition in the surrounding tissue are of major interest. As a last example, electric simulations for a simple cochlea model are presented comparing the field in the skull bones for different electrode types and stimulations in different positions.

  1. A two-dimensional iterative panel method and boundary layer model for bio-inspired multi-body wings

    NASA Astrophysics Data System (ADS)

    Blower, Christopher J.; Dhruv, Akash; Wickenheiser, Adam M.

    2014-03-01

    The increased use of Unmanned Aerial Vehicles (UAVs) has created a continuous demand for improved flight capabilities and range of use. During the last decade, engineers have turned to bio-inspiration for new and innovative flow control methods for gust alleviation, maneuverability, and stability improvement using morphing aircraft wings. The bio-inspired wing design considered in this study mimics the flow manipulation techniques performed by birds to extend the operating envelope of UAVs through the installation of an array of feather-like panels across the airfoil's upper and lower surfaces while replacing the trailing edge flap. Each flap has the ability to deflect into both the airfoil and the inbound airflow using hinge points with a single degree-of-freedom, situated at 20%, 40%, 60% and 80% of the chord. The installation of the surface flaps offers configurations that enable advantageous maneuvers while alleviating gust disturbances. Due to the number of possible permutations available for the flap configurations, an iterative constant-strength doublet/source panel method has been developed with an integrated boundary layer model to calculate the pressure distribution and viscous drag over the wing's surface. As a result, the lift, drag and moment coefficients for each airfoil configuration can be calculated. The flight coefficients of this numerical method are validated using experimental data from a low speed suction wind tunnel operating at a Reynolds Number 300,000. This method enables the aerodynamic assessment of a morphing wing profile to be performed accurately and efficiently in comparison to Computational Fluid Dynamics methods and experiments as discussed herein.

  2. EmptyHeaded: A Relational Engine for Graph Processing

    PubMed Central

    Aberger, Christopher R.; Tu, Susan; Olukotun, Kunle; Ré, Christopher

    2016-01-01

    There are two types of high-performance graph processing engines: low- and high-level engines. Low-level engines (Galois, PowerGraph, Snap) provide optimized data structures and computation models but require users to write low-level imperative code, hence ensuring that efficiency is the burden of the user. In high-level engines, users write in query languages like datalog (SociaLite) or SQL (Grail). High-level engines are easier to use but are orders of magnitude slower than the low-level graph engines. We present EmptyHeaded, a high-level engine that supports a rich datalog-like query language and achieves performance comparable to that of low-level engines. At the core of EmptyHeaded’s design is a new class of join algorithms that satisfy strong theoretical guarantees but have thus far not achieved performance comparable to that of specialized graph processing engines. To achieve high performance, EmptyHeaded introduces a new join engine architecture, including a novel query optimizer and data layouts that leverage single-instruction multiple data (SIMD) parallelism. With this architecture, EmptyHeaded outperforms high-level approaches by up to three orders of magnitude on graph pattern queries, PageRank, and Single-Source Shortest Paths (SSSP) and is an order of magnitude faster than many low-level baselines. We validate that EmptyHeaded competes with the best-of-breed low-level engine (Galois), achieving comparable performance on PageRank and at most 3× worse performance on SSSP. PMID:28077912

  3. Bio-based production of monomers and polymers by metabolically engineered microorganisms.

    PubMed

    Chung, Hannah; Yang, Jung Eun; Ha, Ji Yeon; Chae, Tong Un; Shin, Jae Ho; Gustavsson, Martin; Lee, Sang Yup

    2015-12-01

    Recent metabolic engineering strategies for bio-based production of monomers and polymers are reviewed. In the case of monomers, we describe strategies for producing polyamide precursors, namely diamines (putrescine, cadaverine, 1,6-diaminohexane), dicarboxylic acids (succinic, glutaric, adipic, and sebacic acids), and ω-amino acids (γ-aminobutyric, 5-aminovaleric, and 6-aminocaproic acids). Also, strategies for producing diols (monoethylene glycol, 1,3-propanediol, and 1,4-butanediol) and hydroxy acids (3-hydroxypropionic and 4-hydroxybutyric acids) used for polyesters are reviewed. Furthermore, we review strategies for producing aromatic monomers, including styrene, p-hydroxystyrene, p-hydroxybenzoic acid, and phenol, and propose pathways to aromatic polyurethane precursors. Finally, in vivo production of polyhydroxyalkanoates and recombinant structural proteins having interesting applications are showcased. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Microbial alkane production for jet fuel industry: motivation, state of the art and perspectives.

    PubMed

    Jiménez-Díaz, Lorena; Caballero, Antonio; Pérez-Hernández, Natalia; Segura, Ana

    2017-01-01

    Bio-jet fuel has attracted a lot of interest in recent years and has become a focus for aircraft and engine manufacturers, oil companies, governments and researchers. Given the global concern about environmental issues and the instability of oil market, bio-jet fuel has been identified as a promising way to reduce the greenhouse gas emissions from the aviation industry, while also promoting energy security. Although a number of bio-jet fuel sources have been approved for manufacture, their commercialization and entry into the market is still a far way away. In this review, we provide an overview of the drivers for intensified research into bio-jet fuel technologies, the type of chemical compounds found in bio-jet fuel preparations and the current state of related pre-commercial technologies. The biosynthesis of hydrocarbons is one of the most promising approaches for bio-jet fuel production, and thus we provide a detailed analysis of recent advances in the microbial biosynthesis of hydrocarbons (with a focus on alkanes). Finally, we explore the latest developments and their implications for the future of research into bio-jet fuel technologies. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  5. [Current status and prospects of biobutanol manufacturing technology].

    PubMed

    Gu, Yang; Jiang, Yu; Wu, Hui; Liu, Xudong; Li, Zhilin; Li, Jian; Xiao, Han; Shen, Zhaobing; Zhao, Jingbo; Yang, Yunliu; Jiang, Weihong; Yang, Sheng

    2010-07-01

    Butanol is not only an important chemical feedstock but also expected to become a new generation biofuel. Thus, biological butanol production using renewable feedstocks has attracted renewed attention due to the worries of global oil supply and its impact on social and economic development. However, compared with petrochemical-derived butanol, biological butanol production is still not economically competition, because of its major drawbacks: high cost of the feedstocks, low butanol concentration in the fermentation broth and the co-production of low-value byproducts acetone and ethanol. Recently, Shanghai cooperative bio-butanol group (SCBG) developed a simple-to-complex technical route to improve bio-butanol production with a focus on: increasing butanol ratio in the solvent through metabolic engineering of Clostridia spp.; introducing and optimizing the butanol synthetic pathway in the species with high butanol tolerance; overcoming the glucose repression effect to utilize low-cost non-grain based feedstocks. SCBG believes that, through extensive domestic and international industry-university-research cooperation, a sustainable and economically viable process for biological butanol production can be established in the near future.

  6. A tracked robot with novel bio-inspired passive "legs".

    PubMed

    Sun, Bo; Jing, Xingjian

    2017-01-01

    For track-based robots, an important aspect is the suppression design, which determines the trafficability and comfort of the whole system. The trafficability limits the robot's working capability, and the riding comfort limits the robot's working effectiveness, especially with some sensitive instruments mounted on or operated. To these aims, a track-based robot equipped with a novel passive bio-inspired suspension is designed and studied systematically in this paper. Animal or insects have very special leg or limb structures which are good for motion control and adaptable to different environments. Inspired by this, a new track-based robot is designed with novel "legs" for connecting the loading wheels to the robot body. Each leg is designed with passive structures and can achieve very high loading capacity but low dynamic stiffness such that the robot can move on rough ground similar to a multi-leg animal or insect. Therefore, the trafficability and riding comfort can be significantly improved without losing loading capacity. The new track-based robot can be well applied to various engineering tasks for providing a stable moving platform of high mobility, better trafficability and excellent loading capacity.

  7. Combination of microbial oxidation and biogenic schwertmannite immobilization: A potential remediation for highly arsenic-contaminated soil.

    PubMed

    Yang, Zhihui; Wu, Zijian; Liao, Yingping; Liao, Qi; Yang, Weichun; Chai, Liyuan

    2017-08-01

    Here, a novel strategy that combines microbial oxidation by As(III)-oxidizing bacterium and biogenic schwertmannite (Bio-SCH) immobilization was first proposed and applied for treating the highly arsenic-contaminated soil. Brevibacterium sp. YZ-1 isolated from a highly As-contaminated soil was used to oxidize As(III) in contaminated soils. Under optimum culture condition for microbial oxidation, 92.3% of water-soluble As(III) and 84.4% of NaHCO 3 -extractable As(III) in soils were removed. Bio-SCH synthesized through the oxidation of ferrous sulfate by Acidithiobacillus ferrooxidans immobilize As(V) in the contaminated soil effectively. Consequently, the combination of microbial oxidation and Bio-SCH immobilization performed better in treating the highly As-contaminated soil with immobilization efficiencies of 99.3% and 82.6% for water-soluble and NaHCO 3 -extractable total As, respectively. Thus, the combination can be considered as a green remediation strategy for developing a novel and valuable solution for As-contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Design of nanostructured-based glucose biosensors

    NASA Astrophysics Data System (ADS)

    Komirisetty, Archana; Williams, Frances; Pradhan, Aswini; Konda, Rajini B.; Dondapati, Hareesh; Samantaray, Diptirani

    2012-04-01

    This paper presents the design of glucose sensors that will be integrated with advanced nano-materials, bio-coatings and electronics to create novel devices that are highly sensitive, inexpensive, accurate, and reliable. In the work presented, a glucose biosensor and its fabrication process flow have been designed. The device is based on electrochemical sensing using a working electrode with bio-functionalized zinc oxide (ZnO) nano-rods. Among all metal oxide nanostructures, ZnO nano-materials play a significant role as a sensing element in biosensors due to their properties such as high isoelectric point (IEP), fast electron transfer, non-toxicity, biocompatibility, and chemical stability which are very crucial parameters to achieve high sensitivity. Amperometric enzyme electrodes based on glucose oxidase (GOx) are used due to their stability and high selectivity to glucose. The device also consists of silicon dioxide and titanium layers as well as platinum working and counter electrodes and a silver/silver chloride reference electrode. Currently, the biosensors are being fabricated using the process flow developed. Once completed, the sensors will be bio-functionalized and tested to characterize their performance, including their sensitivity and stability.

  9. A novel use of bio-based natural fibers, polymers, and rubbers for composite materials

    NASA Astrophysics Data System (ADS)

    Modi, Sunny Jitendra

    The composites, materials, and packaging industries are searching for alternative materials to attain environmental sustainability. Bio-plastics are highly desired and current microbially-derived bio-plastics, such as PHA (poly-(hydroxy alkanoate)), PHB (poly-(hydroxybutyrate)), and PHBV (poly-(beta-hydroxy butyrate-co-valerate)) could be engineered to have similar properties to conventional thermoplastics. Poly-(hydroxybutyrate) (PHB) is a bio-degradable aliphatic polyester that is produced by a wide range of microorganisms. Basic PHB has relatively high glass transition and melting temperatures. To improve flexibility for potential packaging applications, PHB is synthesized with various co-polymers such as Poly-(3-hydroxyvalerate) (HV) to decrease the glass and melting temperatures and, since there is improved melt stability at lower processing temperatures, broaden the processing window. However, previous work has shown that this polymer is too brittle, temperature-sensitive, and hydrophilic to meet packaging material physical requirements. Therefore, the proposed work focuses on addressing the needs for bio-derived and bio-degradable materials by creating a range of composite materials using natural fibers as reinforcement agents in bio-polymers and bio- plastic-rubber matrices. The new materials should possess properties lacking in PHBV and broaden the processing capabilities, elasticity, and improve the mechanical properties. The first approach was to create novel composites using poly-(beta-hydroxy butyrate-co-valerate) (PHBV) combined with fibers from invasive plants such as common reed (Phragmites australis), reed canary grass (Phalaris arundinacea), and water celery ( Vallisneria americana). The composites were manufactured using traditional processing techniques of extrusion compounding followed by injection molding of ASTM type I parts. The effects of each bio-fiber at 2, 5, and 10% loading on the mechanical, morphological, rheological, and thermal properties of PHBV were investigated. Many of the composites showed miscible blends between the fibers and PHBV. The SEM analysis showed finely dispersed water celery bio-fibers into the PHBV matrix indicating compatibility between this fiber and the PHBV matrix. The finely ground water celery fibers increased the fiber-matrix interactions without the use of additives or compatibilizers. When the mechanical properties of the composites were compared to pure PHBV, the composites showed improvements in the tensile modulus, while limited changes were observed in the tensile strength and elongation at break. Also, improvements in the viscosity at 170¨¬C over pure PHBV were observed with the addition of 10% by weight bio-fibers due to fiber-fiber and fiber-matrix interactions. With these improvements in the melt stability, the composites can be processed above the melting temperature of 165-170°C, a marked benefit over pure PHBV. The brittle nature of PHBV and its relatively high water transmission rates making it unsuitable for packaging applications. New blends of PHBV with high molecular weight natural rubber of matched viscosity were developed. The mechanical, rheological, and thermal properties of the blends with 5, 10, 15, and 25% by weight high molecular weight natural rubber (HMW-NR) were characterized; in addition, the water vapor transmission rates of these blends was determined. The results showed increased thermal stability and more uniform melting peaks for the blends compared to pure PHBV. The water permeation decreased with the addition of HMW-NR, and the permeation rates were similar to that of traditional thermoplastics. The addition of rubber increased the elongation at break without adversely affecting the Young's modulus for the blends. The complex viscosity of the blends was improved by one log over pure PHBV at 170ºC suggesting improved thermal stability of the blends. During creep and recovery testing, higher compliance values of the blends suggest increased entanglements network of PHBV and rubber micro-fibrils preventing the blends from developing permanent deformation. Therefore, these blends can potentially be used in-place of transitional thermoplastics in casting sheets and thermoforming.

  10. Novel technologies to improve the performance of biomass pyrolsis systems

    NASA Astrophysics Data System (ADS)

    Liaw, Shi-Shen

    Biomass pyrolysis is a thermochemical conversion process to convert lignocellosic materials into bio-oil, gas, and char. The bio-oil can be further refined to produce transportation fuels, high-value chemicals and heat. Although fast pyrolysis is a very promising technology for high bio-oil production yield, the reactors used have several technological problems that limit their future techno-economic viability. Current fast pyrolysis reactors use large quantities of carrier gas that reduce their thermal efficiency. The use of sand to accelerate heating rates results in serious attrition problems responsible for sand contamination of the bio-char produced. Most of the fast pyrolysis reactors currently used need to process very small particles which consume large quantities of energy in grinding. The bio-oil produced is also highly acidic and corrosive mainly due to the presence of acetic acid. The lack of a viable technology to use the acetic acid contained in these oils is a major challenge for the development of viable bio-oil refineries. The objective of this dissertation is to evaluate several technologies to improve the techno-economic viability of biomass pyrolysis systems. The main hypotheses of this dissertation are: (1) high yields of bio-oils could also be obtained by using auger pyrolysis reactors using very low volumes of carried gas and no sand as a heat carrier if the system is fed with very small particles (2) The grinding energy can be reduced if the biomass is torrefied. There are torrefaction conditions that will not affect the overall yield of pyrolysis products (3) Acetic acid produced during pyrolysis can be removed with the use of a fractional condensation system (4) The acids produced during the torrefaction and pyrolysis with the use of the fractional condensation system can be anaerobically digested to produce methane. In this dissertation, it was proved through Py-GC/MS studies that yield of most of the pyrolytic products can be explained by grouping them in five groups or families. The C1 family is formed by products of cellulose fragmentation reactions (glycoaldehyde, acetol, 1,2-ethanediol, monoacetate, butanedial). The products grouped in the C2 family (levoglucosan, levoglucosenone, 1,4:3,6-dianhydro-alpha-D-glucopyranose) are derived from cellulose depolymerization reactions. The molecules derived from hemicellulose (Acetic acid, furfural, 2-furanmethanol) were grouped in the H family. The products derived from lignin were grouped in two families L1 (derived from p-hydroxyl phenol (H) and guaiacyl (G) structures) and L2 (derived from syringyl (S) structures). The yield and properties of bio-oil obtained from an auger pyrolysis reactor is comparable with other existing fluidized bed reactors in the similar pyrolysis condition. The system proposed required much lower volumes of carrier gas and result in the production of a sand-free bio-char. It was also found that the reactions leadings to the formation of bio-char products and the yield of bio-oil are not affected if the pretreatment (torrefaction) temperature is maintained below 290 °C. Torrefaction at higher temperatures results in a dramatic reduction of the bio-oil yield and an increase in the bio-char yield. A condensation system coupled with the auger pyrolysis reactor was constructed and studied for the separation of crude bio-oil produced from Douglas Fir wood. As the first condenser temperature increases up to 80 °C, the content of light oxygenated organic compounds (chiefly the acetic acid and water) in the first condenser decreased significantly. For the first time, this dissertation reports the anaerobic digestion of the aqueous phase obtained in the thermal pretreatment (torrefaction) step and in the second condenser during biomass pyrolysis to produce bio-methane. Acid washing was studied to minimize the inhibitors (hydroxyacetaldehyde and monophenols) in aqueous phase for higher bio-methane production. The results of this dissertation confirm that with the implementation of the new technologies studied it is possible to improve the performance of existing fast pyrolysis systems.

  11. Integrated Bio-Entity Network: A System for Biological Knowledge Discovery

    PubMed Central

    Bell, Lindsey; Chowdhary, Rajesh; Liu, Jun S.; Niu, Xufeng; Zhang, Jinfeng

    2011-01-01

    A significant part of our biological knowledge is centered on relationships between biological entities (bio-entities) such as proteins, genes, small molecules, pathways, gene ontology (GO) terms and diseases. Accumulated at an increasing speed, the information on bio-entity relationships is archived in different forms at scattered places. Most of such information is buried in scientific literature as unstructured text. Organizing heterogeneous information in a structured form not only facilitates study of biological systems using integrative approaches, but also allows discovery of new knowledge in an automatic and systematic way. In this study, we performed a large scale integration of bio-entity relationship information from both databases containing manually annotated, structured information and automatic information extraction of unstructured text in scientific literature. The relationship information we integrated in this study includes protein–protein interactions, protein/gene regulations, protein–small molecule interactions, protein–GO relationships, protein–pathway relationships, and pathway–disease relationships. The relationship information is organized in a graph data structure, named integrated bio-entity network (IBN), where the vertices are the bio-entities and edges represent their relationships. Under this framework, graph theoretic algorithms can be designed to perform various knowledge discovery tasks. We designed breadth-first search with pruning (BFSP) and most probable path (MPP) algorithms to automatically generate hypotheses—the indirect relationships with high probabilities in the network. We show that IBN can be used to generate plausible hypotheses, which not only help to better understand the complex interactions in biological systems, but also provide guidance for experimental designs. PMID:21738677

  12. Introducing bio- and micro-technology into undergraduate thermal-fluids courses: investigating pipe pressure loss via atomic force microscopy.

    PubMed

    Müller, Marcus; Traum, Matthew J

    2012-01-01

    To introduce bio- and micro-technologies into general undergraduate thermal-fluids classes, a hands-on interdisciplinary in-class demonstration is described that juxtaposes classical pressure loss pipe flow experiments against a modern micro-characterization technique, AFM profilometry. Both approaches measure surface roughness and can segue into classroom discussions related to material selection and design of bio-medical devices to handle biological fluids such as blood. Appealing to the range of engineering students populating a general thermal-fluids course, a variety of pipe/hose/tube materials representing a spectrum of disciplines can be tested using both techniques. This in-class demonstration relies on technical content already available in standard thermal-fluids textbooks, provides experimental juxtaposition between classical and micro-technology-enabled approaches to the same experiment, and can be taught by personnel with no specialized micro- or bio-technology expertise.

  13. Engineering carbon nanomaterials for future applications: energy and bio-sensor

    NASA Astrophysics Data System (ADS)

    Das, Santanu; Lahiri, Indranil; Kang, Chiwon; Choi, Wonbong

    2011-06-01

    This paper presents our recent results on carbon nanomaterials for applications in energy storage and bio-sensor. More specifically: (i) A novel binder-free carbon nanotubes (CNTs) structure as anode in Li-ion batteries. The interfacecontrolled CNT structure, synthesized through a two-step chemical vapor deposition (CVD) and directly grown on copper current collector, showed very high specific capacity - almost three times as that of graphite, excellent rate capability. (ii) A large scale graphene film was grown on Cu foil by thermal chemical vapor deposition and transferred to various substrates including PET, glass and silicon by using hot press lamination and etching process. The graphene/PET film shows high quality, flexible transparent conductive structure with unique electrical-mechanical properties; ~88.80 % light transmittance and ~ 100 Ω/sq sheet resistance. We demonstrate application of graphene/PET film as flexible and transparent electrode for field emission displays. (iii) Application of individual carbon nanotube as nanoelectrode for high sensitivity electrochemical sensor and device miniaturization. An individual CNT is split into a pair of nanoelectrodes with a gap between them. Single molecular-level detection of DNA hybridization was studied. Hybridization of the probe with its complementary strand results in an appreciable change in the electrical output signal.

  14. Case study: Optimizing fault model input parameters using bio-inspired algorithms

    NASA Astrophysics Data System (ADS)

    Plucar, Jan; Grunt, Onřej; Zelinka, Ivan

    2017-07-01

    We present a case study that demonstrates a bio-inspired approach in the process of finding optimal parameters for GSM fault model. This model is constructed using Petri Nets approach it represents dynamic model of GSM network environment in the suburban areas of Ostrava city (Czech Republic). We have been faced with a task of finding optimal parameters for an application that requires high amount of data transfers between the application itself and secure servers located in datacenter. In order to find the optimal set of parameters we employ bio-inspired algorithms such as Differential Evolution (DE) or Self Organizing Migrating Algorithm (SOMA). In this paper we present use of these algorithms, compare results and judge their performance in fault probability mitigation.

  15. Utilisation of Used Palm Oil as an Alternative Fuel in Thailand

    NASA Astrophysics Data System (ADS)

    Permchart, W.; Tanatvanit, S.

    2007-10-01

    This paper summarises the overview of the current situation of alternative energies in Thailand. The utilisation of bio-diesel as an alternative energy in two economic sectors (i.e. transport and industrial sectors), which have the largest energy consumption in the country, is mainly presented because it has seemed to be the most promising project among various energy conservation projects of the Thai government. Actually, there is another bio-fuel project, namely, the ethanol project for blending with gasoline to produce gasohol (E10) used in gasoline engines, which has been developed and already become to an important policy for energy conservation of the country. Due to much more large number of diesel has been utilised, the bio-diesel project has been the first priority one to solve the petroleum crisis problems. However, it is remarked that the utilisation of bio-diesel as an alternative fuel seems to be unsatisfactory because of various reasons. Some issues in terms of both government policies and technical problems have not been clearly addressed. Therefore, this paper not only presents the utilisation of bio-diesel in these two sectors but also discusses the production processes, characterisations and some experimental testing results of bio-diesel.

  16. Current perspectives of bio-ceramic technology in endodontics: calcium enriched mixture cement - review of its composition, properties and applications

    PubMed Central

    Nawal, Ruchika Roongta; Talwar, Sangeeta; Verma, Mahesh

    2015-01-01

    Advancements in bio-ceramic technology has revolutionised endodontic material science by enhancing the treatment outcome for patients. This class of dental materials conciliates excellent biocompatibility with high osseoconductivity that render them ideal for endodontic care. Few recently introduced bio-ceramic materials have shown considerable clinical success over their early generations in terms of good handling characteristics. Calcium enriched mixture (CEM) cement, Endosequence sealer, and root repair materials, Biodentine and BioAggregate are the new classes of bio-ceramic materials. The aim of this literature review is to present investigations regarding properties and applications of CEM cement in endodontics. A review of the existing literature was performed by using electronic and hand searching methods for CEM cement from January 2006 to December 2013. CEM cement has a different chemical composition from that of mineral trioxide aggregate (MTA) but has similar clinical applications. It combines the biocompatibility of MTA with more efficient characteristics, such as significantly shorter setting time, good handling characteristics, no staining of tooth and effective seal against bacterial leakage. PMID:25671207

  17. Characteristics of products from fast pyrolysis of fractions of waste square timber and ordinary plywood using a fluidized bed reactor.

    PubMed

    Jung, Su-Hwa; Kim, Seon-Jin; Kim, Joo-Sik

    2012-06-01

    Fractions of waste square timber and waste ordinary plywood were pyrolyzed in a pyrolysis plant equipped with a fluidized bed reactor and a dual char separation system. The maximum bio-oil yield of about 65 wt.% was obtained at reaction temperatures of 450-500 °C for both feed materials. For quantitative analysis of bio-oil, the relative response factor (RRF) of each component was calculated using an effective carbon number (ECN) that was multiplied by the peak area of each component detected by a GC-FID. The predominant compounds in the bio-oils were methyl acetate, acids, hydroxyacetone, furfural, non-aromatic ketones, levoglucosan and phenolic compounds. The WOP-derived bio-oil showed it to have relatively high nitrogen content. Increasing the reaction temperature was shown to have little effect on nitrogen removal. The ash and solid contents of both bio-oils were below 0.1 wt.% due to the excellent performance of the char separation system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Advanced control for airbreathing engines, volume 2: General Electric aircraft engines

    NASA Technical Reports Server (NTRS)

    Bansal, Indar

    1993-01-01

    The application of advanced control concepts to air breathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for air breathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 2 of these reports describes the studies performed by GE Aircraft Engines.

  19. Water Mass Bio-optical Properties in the Monterey Bay Region: Fluorescence-based Inference of Shifts in Phytoplankton Photophysiology

    DTIC Science & Technology

    2012-07-26

    bottle rosette. Macronutrient and chlorophyll assays were performed using methods detailed in Pennington and Chavez [2000]. High Performance Liquid...S = 33.28) Niskin bottle sample contained 10.6 /<M nitrate. Other macronutrients (phosphate, silicilic acid) were detected and generally abundant

  20. Growth performance and immunological and antioxidant status of Chinese shrimp, Fennerpenaeus chinensis reared in bio-floc culture system using probiotics.

    PubMed

    Kim, Min-Su; Min, EunYoung; Kim, Jun-Hwan; Koo, Ja-Keun; Kang, Ju-Chan

    2015-11-01

    Chinese shrimp Fennerpenaeus chinensis (mean length 1.86 ± 0.15 cm, and weight 137.4 ± 12.7 mg) were reared in the different concentrations of bio-floc (control, 60, 80, 100, 120, and 140%) for 90 days. The growth rate was significantly increased over 100% bio-floc concentrations. In the immunological parameters, the gene expression of proPO and lysozyme was considerably increased over 120% bio-floc concentrations. The gene expression of SP was notably elevated at 140% bio-floc concentration. In the antioxidant enzymes, the activity of SOD was considerably decreased over 80% bio-floc concentrations. A notable decline in the activity of CAT was observed over 120% bio-floc concentrations. The results indicate that rearing of Chinese shrimp in bio-floc system can induce the increase of growth performance, enhancement of immune responses, and reduction of oxidative stress. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Noguchi conducts BioLab WAICO-2 Experiment

    NASA Image and Video Library

    2010-05-10

    ISS023-E-042460 (10 May 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi, Expedition 23 flight engineer, uses a computer in the Columbus laboratory of the International Space Station.

  2. Quantification of Confocal Images Using LabVIEW for Tissue Engineering Applications

    PubMed Central

    Sfakis, Lauren; Kamaldinov, Tim; Larsen, Melinda; Castracane, James

    2016-01-01

    Quantifying confocal images to enable location of specific proteins of interest in three-dimensional (3D) is important for many tissue engineering (TE) applications. Quantification of protein localization is essential for evaluation of specific scaffold constructs for cell growth and differentiation for application in TE and tissue regeneration strategies. Although obtaining information regarding protein expression levels is important, the location of proteins within cells grown on scaffolds is often the key to evaluating scaffold efficacy. Functional epithelial cell monolayers must be organized with apicobasal polarity with proteins specifically localized to the apical or basolateral regions of cells in many organs. In this work, a customized program was developed using the LabVIEW platform to quantify protein positions in Z-stacks of confocal images of epithelial cell monolayers. The program's functionality is demonstrated through salivary gland TE, since functional salivary epithelial cells must correctly orient many proteins on the apical and basolateral membranes. Bio-LabVIEW Image Matrix Evaluation (Bio-LIME) takes 3D information collected from confocal Z-stack images and processes the fluorescence at each pixel to determine cell heights, nuclei heights, nuclei widths, protein localization, and cell count. As a demonstration of its utility, Bio-LIME was used to quantify the 3D location of the Zonula occludens-1 protein contained within tight junctions and its change in 3D position in response to chemical modification of the scaffold with laminin. Additionally, Bio-LIME was used to demonstrate that there is no advantage of sub-100 nm poly lactic-co-glycolic acid nanofibers over 250 nm fibers for epithelial apicobasal polarization. Bio-LIME will be broadly applicable for quantification of proteins in 3D that are grown in many different contexts. PMID:27758134

  3. Quantification of Confocal Images Using LabVIEW for Tissue Engineering Applications.

    PubMed

    Sfakis, Lauren; Kamaldinov, Tim; Larsen, Melinda; Castracane, James; Khmaladze, Alexander

    2016-11-01

    Quantifying confocal images to enable location of specific proteins of interest in three-dimensional (3D) is important for many tissue engineering (TE) applications. Quantification of protein localization is essential for evaluation of specific scaffold constructs for cell growth and differentiation for application in TE and tissue regeneration strategies. Although obtaining information regarding protein expression levels is important, the location of proteins within cells grown on scaffolds is often the key to evaluating scaffold efficacy. Functional epithelial cell monolayers must be organized with apicobasal polarity with proteins specifically localized to the apical or basolateral regions of cells in many organs. In this work, a customized program was developed using the LabVIEW platform to quantify protein positions in Z-stacks of confocal images of epithelial cell monolayers. The program's functionality is demonstrated through salivary gland TE, since functional salivary epithelial cells must correctly orient many proteins on the apical and basolateral membranes. Bio-LabVIEW Image Matrix Evaluation (Bio-LIME) takes 3D information collected from confocal Z-stack images and processes the fluorescence at each pixel to determine cell heights, nuclei heights, nuclei widths, protein localization, and cell count. As a demonstration of its utility, Bio-LIME was used to quantify the 3D location of the Zonula occludens-1 protein contained within tight junctions and its change in 3D position in response to chemical modification of the scaffold with laminin. Additionally, Bio-LIME was used to demonstrate that there is no advantage of sub-100 nm poly lactic-co-glycolic acid nanofibers over 250 nm fibers for epithelial apicobasal polarization. Bio-LIME will be broadly applicable for quantification of proteins in 3D that are grown in many different contexts.

  4. Combination of bioremediation and electrokinetics for the in-situ treatment of diesel polluted soil: A comparison of strategies.

    PubMed

    Mena Ramírez, Esperanza; Villaseñor Camacho, José; Rodrigo, Manuel A; Cañizares, Pablo

    2015-11-15

    The aim of this work is to compare different strategies based on electrokinetic soil flushing and bioremediation for the remediation of diesel-polluted soil. Four options were tested at the laboratory scale: single bioremediation (Bio), performed as a control test; a direct combination of electrokinetic soil flushing and biological technologies (EKSF-Bio); EKSF-Bio with daily polarity reversal of the electric field (PR-EKSF-Bio); and a combination of electrokinetic soil flushing and a permeable reactive biological barrier (EKSF-BioPRB). Four batch experiments of 14 days duration were carried out for comparing technologies at room temperature with an electric field of 1.0 V cm(-1) (in EKSF). A diesel degrading microbial consortium was used. The experimental procedure and some specific details, such as the flushing fluids used, varied depending on the strategy. When using the EKSF-Bio option, a high buffer concentration was required to control the pH, causing soil heating, which negatively affected the biological growth and thus the diesel removal. The PR-EKSF-Bio and the EKSF-BioPRB options attained suitable operating conditions and improved the transport processes for biological growth. Polarity reversal was an efficient option for pH, moisture and temperature control. Homogeneous microbial growth was observed, and approximately 20% of the diesel was removed. The BioPRB option was not as efficient as PR-EKSF-Bio in controlling the operating conditions, but the central biobarrier protected the biological activity. Microbial growth was observed not only in the biobarrier but also in a large portion of the soil, and 29% of the diesel was removed in the short remediation test. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil.

    PubMed

    Zheng, Ji-Lu; Zhu, Ming-Qiang; Wu, Hai-tang

    2015-09-01

    It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, the effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2wt% bio-oil, having a high heating value of 32.35MJ/kg and a viscosity of 305cp, and 22wt% solid residue were realized at a liquefaction temperature of 250°C, a reaction time of 60min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Improvement of the in vivo cellular repopulation of decellularized cardiovascular tissues by a detergent-free, non-proteolytic, actin-disassembling regimen.

    PubMed

    Assmann, Alexander; Struß, Marc; Schiffer, Franziska; Heidelberg, Friederike; Munakata, Hiroshi; Timchenko, Elena V; Timchenko, Pavel E; Kaufmann, Tim; Huynh, Khon; Sugimura, Yukiharu; Leidl, Quentin; Pinto, Antonio; Stoldt, Volker R; Lichtenberg, Artur; Akhyari, Payam

    2017-12-01

    Low immunogenicity and high repopulation capacity are crucial determinants for the functional and structural performance of acellular cardiovascular implants. The present study evaluates a detergent-free, non-proteolytic, actin-disassembling regimen (BIO) for decellularization of heart valve and vessel grafts, particularly focusing on their bio-functionality. Rat aortic conduits (rAoC; n = 89) and porcine aortic valve samples (n = 106) are decellularized using detergents (group DET) or the BIO regimen. BIO decellularization results in effective elimination of cellular proteins and significantly improves removal of DNA as compared with group DET, while the extracellular matrix (ECM) structure as well as mechanical properties are preserved. The architecture of rAoC in group BIO allows for improved bio-functionalization with fibronectin (FN) in a standardized rat implantation model: BIO treatment significantly increases speed and amount of autologous medial cellular repopulation in vivo (p < 0.001) and decreases the formation of hyperplastic intima (p < 0.001) as compared with FN-coated DET-decellularized grafts. Moreover, there are no signs of infiltration with inflammatory cells. The present biological, detergent-free, non-proteolytic regimen balances effective decellularization and ECM preservation in cardiovascular grafts, and provides optimized bio-functionality. Additionally, this study implies that the actin-disassembling regimen may be a promising approach for bioengineering of acellular scaffolds from other muscular tissues, as for example myocardium or intestine. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Lateral ridge augmentation with Bio-Oss alone or Bio-Oss mixed with particulate autogenous bone graft: a systematic review.

    PubMed

    Aludden, H C; Mordenfeld, A; Hallman, M; Dahlin, C; Jensen, T

    2017-08-01

    The objective of this systematic review was to test the hypothesis of no difference in implant treatment outcomes when using Bio-Oss alone or Bio-Oss mixed with particulate autogenous bone grafts for lateral ridge augmentation. A search of the MEDLINE, Cochrane Library, and Embase databases in combination with a hand-search of relevant journals was conducted. Human studies published in English from 1 January 1990 to 1 May 2016 were included. The search provided 337 titles and six studies fulfilled the inclusion criteria. Considerable variation prevented a meta-analysis from being performed. The two treatment modalities have never been compared within the same study. Non-comparative studies demonstrated a 3-year implant survival of 96% with 50% Bio-Oss mixed with 50% autogenous bone graft. Moreover, Bio-Oss alone or Bio-Oss mixed with autogenous bone graft seems to increase the amount of newly formed bone as well as the width of the alveolar process. Within the limitations of this systematic review, lateral ridge augmentation with Bio-Oss alone or in combination with autogenous bone graft seems to induce newly formed bone and increase the width of the alveolar process, with high short-term implant survival. However, long-term studies comparing the two treatment modalities are needed before final conclusions can be drawn. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  8. A versatile bio-based material for efficiently removing toxic dyes, heavy metal ions and emulsified oil droplets from water simultaneously.

    PubMed

    Li, Daikun; Li, Qing; Mao, Daoyong; Bai, Ningning; Dong, Hongzhou

    2017-12-01

    Developing versatile materials for effective water purification is significant for environment and water source protection. Herein, a versatile bio-based material (CH-PAA-T) was reported by simple thermal cross-linking chitosan and polyacrylic acid which exhibits excellent performances for removing insoluble oil, soluble toxic dyes and heavy metal ions from water, simultaneously. The adsorption capacities are 990.1mgg -1 for methylene blue (MB) and 135.9mgg -1 for Cu 2+ , which are higher than most of present advanced absorbents. The adsorption towards organic dyes possesses high selectivity which makes CH-PAA-T be able to efficiently separate dye mixtures. The stable superoleophobicity under water endows CH-PAA-T good performance to separate toluene-in-water emulsion stabilized by Tween 80. Moreover, CH-PAA-T can be recycled for 10 times with negligible reduction of efficiency. Such versatile bio-based material is a potential candidate for water purification. Copyright © 2017. Published by Elsevier Ltd.

  9. Application of cigarette filter rods as biofilm carrier in an integrated fixed-film activated sludge reactor.

    PubMed

    Sabzali, Ahmad; Nikaeen, Mahnaz; Bina, Bijan

    2013-01-01

    Bio-carriers are an important component of integrated fixed-film activated sludge (IFAS) processes. In this study, the capability of cigarette filter rods (CFRs) as a bio-carrier in IFAS processes was evaluated. Two similar laboratory-scale IFAS systems were operated over a 4-month period using Kaldnes-K3 and CFRs as IFAS media. The process performance was studied by using chemical oxygen demand (COD). The organic loading rate was in the range 0.5-2.8 kgCOD/(m(3)·d). The COD average removal efficiencies were 89.3 and 93.9% for Kaldnes-K3 (reactor A) and cigarette filters (reactor B), respectively. The results demonstrate that the performance of the IFAS reactor containing CFRs was comparable to the reactor using Kaldnes. The CFRs, which have a high porous surface area and entrapment ability for microbial cells, could be successfully used in biofilm reactors as a bio-carrier.

  10. Hydrolysates of lignocellulosic materials for biohydrogen production

    PubMed Central

    Chen, Rong; Wang, Yong-Zhong; Liao, Qiang; Zhu, Xun; Xu, Teng-Fei

    2013-01-01

    Lignocellulosic materials are commonly used in bio-H2 production for the sustainable energy resource development as they are abundant, cheap, renewable and highly biodegradable. In the process of the bio-H2 production, the pretreated lignocellulosic materials are firstly converted to monosaccharides by enzymolysis and then to H2 by fermentation. Since the structures of lignocellulosic materials are rather complex, the hydrolysates vary with the used materials. Even using the same lignocellulosic materials, the hydrolysates also change with different pretreatment methods. It has been shown that the appropriate hydrolysate compositions can dramatically improve the biological activities and bio-H2 production performances. Over the past decades, hydrolysis with respect to different lignocellulosic materials and pretreatments has been widely investigated. Besides, effects of the hydrolysates on the biohydrogen yields have also been examined. In this review, recent studies on hydrolysis as well as their effects on the biohydrogen production performance are summarized. [BMB Reports 2013; 46(5): 244-251] PMID:23710634

  11. $500 Crude Oil and Its Repressions on Marine Corps TACAIR And the USMC - The Most Energy Dependent Service

    DTIC Science & Technology

    2008-01-01

    130, etc), the option to re-engine or place winglets on the wings of TACAIR aircraft does not exist. Bio-fuel is not an option for aviation35 and...TACAIR aircraft can not use alternative fuels, re-engine their aircraft, install winglets , or adjust their sortie lengths in an effort to reduce jet

  12. Influence of Social Cognitive and Ethnic Variables on Academic Goals of Underrepresented Students in Science and Engineering: A Multiple-Groups Analysis

    ERIC Educational Resources Information Center

    Byars-Winston, Angela; Estrada, Yannine; Howard, Christina; Davis, Dalelia; Zalapa, Juan

    2010-01-01

    In this study we investigated the academic interests and goals of 223 African American, Latino/a, Southeast Asian, and Native American undergraduate students in 2 groups: biological science (BIO) and engineering (ENG) majors. Using social cognitive career theory (Lent, Brown, & Hackett, 1994), we examined the relationships of social cognitive…

  13. Propulsion and Power Rapid Response Research and Development (R&D) Support. Task Order 0004: Advanced Propulsion Fuels R&D, Subtask: Optimization of Lipid Production and Processing of Microalgae for the Development of Biofuels

    DTIC Science & Technology

    2013-02-01

    Purified cultures are tested for optimized production under heterotrophic conditions with several organic carbon sources like beet and sorghum juice using ...Moreover, AFRL support sponsored the Master’s in Chemical Engineering project titled “Cost Analysis Of Local Bio- Products Processing Plant Using ...unlimited. 2.5 Screening for High Lipid Production Mutants Procedure: A selection of 84 single colony cultures was analyzed in this phase using the

  14. Enhanced d-lactic acid production by recombinant Saccharomyces cerevisiae following optimization of the global metabolic pathway.

    PubMed

    Yamada, Ryosuke; Wakita, Kazuki; Mitsui, Ryosuke; Ogino, Hiroyasu

    2017-09-01

    Utilization of renewable feedstocks for the production of bio-based chemicals such as d-lactic acid by engineering metabolic pathways in the yeast Saccharomyces cerevisiae has recently become an attractive option. In this study, to realize efficient d-lactic acid production by S. cerevisiae, the expression of 12 glycolysis-related genes and the Leuconostoc mesenteroides d-LDH gene was optimized using a previously developed global metabolic engineering strategy, and repeated batch fermentation was carried out using the resultant strain YPH499/dPdA3-34/DLDH/1-18. Stable d-lactic acid production through 10 repeated batch fermentations was achieved using YPH499/dPdA3-34/DLDH/1-18. The average d-lactic acid production, productivity, and yield with 10 repeated batch fermentations were 60.3 g/L, 2.80 g/L/h, and 0.646, respectively. The present study is the first report of the application of a global metabolic engineering strategy for bio-based chemical production, and it shows the potential for efficient production of such chemicals by global metabolic engineering of the yeast S. cerevisiae. Biotechnol. Bioeng. 2017;114: 2075-2084. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Engine Performance Improvement for the 378-Foot High Endurance Cutter

    DOT National Transportation Integrated Search

    1978-06-01

    Methods for improving the performance of the main diesel engines : of the 378-foot Coast Guard High Endurance Cutter have been investgated. : These engines are models FM3W8-l-/8 rated for 3600hp at : 90QrDM. Present engine performance was evaluated t...

  16. Bio-Inspired Extreme Wetting Surfaces for Biomedical Applications

    PubMed Central

    Shin, Sera; Seo, Jungmok; Han, Heetak; Kang, Subin; Kim, Hyunchul; Lee, Taeyoon

    2016-01-01

    Biological creatures with unique surface wettability have long served as a source of inspiration for scientists and engineers. More specifically, materials exhibiting extreme wetting properties, such as superhydrophilic and superhydrophobic surfaces, have attracted considerable attention because of their potential use in various applications, such as self-cleaning fabrics, anti-fog windows, anti-corrosive coatings, drag-reduction systems, and efficient water transportation. In particular, the engineering of surface wettability by manipulating chemical properties and structure opens emerging biomedical applications ranging from high-throughput cell culture platforms to biomedical devices. This review describes design and fabrication methods for artificial extreme wetting surfaces. Next, we introduce some of the newer and emerging biomedical applications using extreme wetting surfaces. Current challenges and future prospects of the surfaces for potential biomedical applications are also addressed. PMID:28787916

  17. One-step production of phage-silicon nanoparticles by PLAL as fluorescent nanoprobes for cell identification

    NASA Astrophysics Data System (ADS)

    De Plano, Laura M.; Scibilia, Santi; Rizzo, Maria Giovanna; Crea, Sara; Franco, Domenico; Mezzasalma, Angela M.; Guglielmino, Salvatore P. P.

    2018-03-01

    Silicon nanoparticles (SiNPs) are widely used as promising nanoplatform owing to their high specific surface area, optical properties and biocompatibility. Silicon nanoparticles find possible application in biomedical environment for their potential quantum effects and the functionalization with biomaterials, too. In this work, we propose a new approach for bio-functionalization of SiNPs and M13-engineered bacteriophage, displaying specific peptides that selectively recognize peripheral blood mononuclear cells (PBMC). The "one-step" functionalization is conducted during the laser ablation of silicon plate in buffer solution with engineered bacteriophages, to obtain SiNPs binding bacteriophages (phage-SiNPs). The interaction between SiNPs and bacteriophage is investigated. Particularly, the optical and morphological characterizations of phage-SiNPs are performed by UV-Vis spectroscopy, scanning electron microscopy operating in transmission mode (STEM) and X-ray spectroscopy (EDX). The functionality of phage-SiNPs is investigated through the photoemissive properties in recognition test on PBMC. Our results showed that phage-SiNPs maintain the capability and the activity to bind PBMC within 30 min. The fluorescence of phage-SiNPs allowed to obtain an optical signal on cell type targets. Finally, the proposed strategy demonstrated its potential use in in vitro applications and could be exploited to realize an optical biosensor to detect a specific target.

  18. Activation and characterization of waste coffee grounds as bio-sorbent

    NASA Astrophysics Data System (ADS)

    Mariana; Marwan; Mulana, F.; Yunardi; Ismail, T. A.; Hafdiansyah, M. F.

    2018-03-01

    As the city well known for its culture of coffee drinkers, modern and traditional coffee shops are found everywhere in Banda Aceh, Indonesia. High number of coffee shops in the city generates large quantities of spent coffee grounds as waste without any effort to convert them as other valuable products. In an attempt to reduce environmental problems caused by used coffee grounds, this research was conducted to utilize waste coffee grounds as an activated carbon bio-sorbent. The specific purpose of this research is to improve the performance of coffee grounds bio-sorbent through chemical and physical activation, and to characterize the produced bio-sorbent. Following physical activation by carbonization, a chemical activation was achieved by soaking the carbonized waste coffee grounds in HCl solvent and carbonization process. The activated bio-sorbent was characterized for its morphological properties using Scanning Electron Microscopy (SEM), its functional groups by Fourier Transform Infra-Red Spectrophotometer (FTIR), and its material characteristics using X-Ray Diffraction (XRD). Characterization of the activated carbon prepared from waste coffee grounds shows that it meets standard quality requirement in accordance with Indonesian National Standard, SNI 06-3730-1995. Activation process has modified the functional groups of the waste coffee grounds. Comparing to natural waste coffee grounds, the resulted bio-sorbent demonstrated a more porous surface morphology following activation process. Consequently, such bio-sorbent is a potential source to be used as an adsorbent for various applications.

  19. NASA Tech Briefs, January 2000. Volume 24, No. 1

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Topics include: Data Acquisition; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Bio-Medical; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Information Sciences; Books and reports.

  20. Non-contact multi-frequency magnetic induction spectroscopy system for industrial-scale bio-impedance measurement

    NASA Astrophysics Data System (ADS)

    O'Toole, M. D.; Marsh, L. A.; Davidson, J. L.; Tan, Y. M.; Armitage, D. W.; Peyton, A. J.

    2015-03-01

    Biological tissues have a complex impedance, or bio-impedance, profile which changes with respect to frequency. This is caused by dispersion mechanisms which govern how the electromagnetic field interacts with the tissue at the cellular and molecular level. Measuring the bio-impedance spectra of a biological sample can potentially provide insight into the sample’s properties and its cellular structure. This has obvious applications in the medical, pharmaceutical and food-based industrial domains. However, measuring the bio-impedance spectra non-destructively and in a way which is practical at an industrial scale presents substantial challenges. The low conductivity of the sample requires a highly sensitive instrument, while the demands of industrial-scale operation require a fast high-throughput sensor of rugged design. In this paper, we describe a multi-frequency magnetic induction spectroscopy (MIS) system suitable for industrial-scale, non-contact, spectroscopic bio-impedance measurement over a bandwidth of 156 kHz-2.5 MHz. The system sensitivity and performance are investigated using calibration and known reference samples. It is shown to yield rapid and consistently sensitive results with good long-term stability. The system is then used to obtain conductivity spectra of a number of biological test samples, including yeast suspensions of varying concentration and a range of agricultural produce, such as apples, pears, nectarines, kiwis, potatoes, oranges and tomatoes.

Top