Sample records for bio-inspired shape memory

  1. Bending continuous structures with SMAs: a novel robotic fish design.

    PubMed

    Rossi, C; Colorado, J; Coral, W; Barrientos, A

    2011-12-01

    In this paper, we describe our research on bio-inspired locomotion systems using deformable structures and smart materials, concretely shape memory alloys (SMAs). These types of materials allow us to explore the possibility of building motor-less and gear-less robots. A swimming underwater fish-like robot has been developed whose movements are generated using SMAs. These actuators are suitable for bending the continuous backbone of the fish, which in turn causes a change in the curvature of the body. This type of structural arrangement is inspired by fish red muscles, which are mainly recruited during steady swimming for the bending of a flexible but nearly incompressible structure such as the fishbone. This paper reviews the design process of these bio-inspired structures, from the motivations and physiological inspiration to the mechatronics design, control and simulations, leading to actual experimental trials and results. The focus of this work is to present the mechanisms by which standard swimming patterns can be reproduced with the proposed design. Moreover, the performance of the SMA-based actuators' control in terms of actuation speed and position accuracy is also addressed.

  2. Bio-inspired device: a novel smart MR spring featuring tendril structure

    NASA Astrophysics Data System (ADS)

    Kaluvan, Suresh; Park, Chun-Yong; Choi, Seung-Bok

    2016-01-01

    Smart materials such as piezoelectric patches, shape memory alloy, electro and magneto rheological fluid, magnetostrictive materials, etc are involved by far to design intelligent and high performance smart devices like injectors, dental braces, dampers, actuators and sensors. In this paper, an interesting smart device is proposed by inspiring on the structure of the bio climber plant. The key enabling concept of this proposed work is to design the smart spring damper as a helical shaped tendril structure using magneto-rheological (MR) fluid. The proposed smart spring consists of a hollow helical structure filled with MR fluid. The viscosity of the MR fluid decides the damping force of helical shaped smart spring, while the fluid intensity in the vine decides the strength of the tendril in the climber plant. Thus, the proposed smart spring can provide a new concept design of the damper which can be applicable to various damping system industries with tuneable damping force. The proposed smart spring damper has several advantageous such as cost effective, easy implementation compared with the conventional damper. In addition, the proposed spring damper can be easily designed to adapt different damping force levels without any alteration.

  3. Compressive Sensing Based Bio-Inspired Shape Feature Detection CMOS Imager

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A. (Inventor)

    2015-01-01

    A CMOS imager integrated circuit using compressive sensing and bio-inspired detection is presented which integrates novel functions and algorithms within a novel hardware architecture enabling efficient on-chip implementation.

  4. FE analysis of SMA-based bio-inspired bone-joint system

    NASA Astrophysics Data System (ADS)

    Yang, S.; Seelecke, S.

    2009-10-01

    This paper presents the finite element (FE) analysis of a bio-inspired bone-joint system. Motivated by the BATMAV project, which aims at the development of a micro-air-vehicle platform that implements bat-like flapping flight capabilities, we study the actuation of a typical elbow joint, using shape memory alloy (SMA) in a dual manner. Micro-scale martensitic SMA wires are used as 'metal muscles' to actuate a system of humerus, elbow joint and radius, in concert with austenitic wires, which operate as flexible joints due to their superelastic character. For the FE analysis, the humerus and radius are modeled as standard elastic beams, while the elbow joint and muscle wires use the Achenbach-Muller-Seelecke SMA model as beams and cable elements, respectively. The particular focus of the paper is on the implementation of the above SMA model in COMSOL.

  5. A Bio-Inspired Polymeric Gradient Refractive Index (GRIN) Human Eye Lens

    DTIC Science & Technology

    2012-11-19

    confirmation of the desired aspheric surface shape. Furthermore, the wavefronts of aspheric posterior GRIN and PMMA lenses were measured and...compared a homogenous PMMA lens of an identical geometry. Finally, the anterior and posterior GRIN lenses were assembled into a bio-inspired GRIN...topography and exhibited confirmation of the desired aspheric surface shape. Furthermore, the wavefronts of aspheric posterior GRIN and PMMA lenses were

  6. Shape and Color Features for Object Recognition Search

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.; Duong, Vu A.; Stubberud, Allen R.

    2012-01-01

    A bio-inspired shape feature of an object of interest emulates the integration of the saccadic eye movement and horizontal layer in vertebrate retina for object recognition search where a single object can be used one at a time. The optimal computational model for shape-extraction-based principal component analysis (PCA) was also developed to reduce processing time and enable the real-time adaptive system capability. A color feature of the object is employed as color segmentation to empower the shape feature recognition to solve the object recognition in the heterogeneous environment where a single technique - shape or color - may expose its difficulties. To enable the effective system, an adaptive architecture and autonomous mechanism were developed to recognize and adapt the shape and color feature of the moving object. The bio-inspired object recognition based on bio-inspired shape and color can be effective to recognize a person of interest in the heterogeneous environment where the single technique exposed its difficulties to perform effective recognition. Moreover, this work also demonstrates the mechanism and architecture of the autonomous adaptive system to enable the realistic system for the practical use in the future.

  7. Bio-inspired self-shaping ceramics

    PubMed Central

    Bargardi, Fabio L.; Le Ferrand, Hortense; Libanori, Rafael; Studart, André R.

    2016-01-01

    Shaping ceramics into complex and intricate geometries using cost-effective processes is desirable in many applications but still remains an open challenge. Inspired by plant seed dispersal units that self-fold on differential swelling, we demonstrate that self-shaping can be implemented in ceramics by programming the material's microstructure to undergo local anisotropic shrinkage during heat treatment. Such microstructural design is achieved by magnetically aligning functionalized ceramic platelets in a liquid ceramic suspension, subsequently consolidated through an established enzyme-catalysed reaction. By fabricating alumina compacts exhibiting bio-inspired bilayer architectures, we achieve deliberate control over shape change during the sintering step. Bending, twisting or combinations of these two basic movements can be successfully programmed to obtain a myriad of complex shapes. The simplicity and the universality of such a bottom-up shaping method makes it attractive for applications that would benefit from low-waste ceramic fabrication, temperature-resistant interlocking structures or unusual geometries not accessible using conventional top–down manufacturing. PMID:28008930

  8. Bio-inspired self-shaping ceramics

    NASA Astrophysics Data System (ADS)

    Bargardi, Fabio L.; Le Ferrand, Hortense; Libanori, Rafael; Studart, André R.

    2016-12-01

    Shaping ceramics into complex and intricate geometries using cost-effective processes is desirable in many applications but still remains an open challenge. Inspired by plant seed dispersal units that self-fold on differential swelling, we demonstrate that self-shaping can be implemented in ceramics by programming the material's microstructure to undergo local anisotropic shrinkage during heat treatment. Such microstructural design is achieved by magnetically aligning functionalized ceramic platelets in a liquid ceramic suspension, subsequently consolidated through an established enzyme-catalysed reaction. By fabricating alumina compacts exhibiting bio-inspired bilayer architectures, we achieve deliberate control over shape change during the sintering step. Bending, twisting or combinations of these two basic movements can be successfully programmed to obtain a myriad of complex shapes. The simplicity and the universality of such a bottom-up shaping method makes it attractive for applications that would benefit from low-waste ceramic fabrication, temperature-resistant interlocking structures or unusual geometries not accessible using conventional top-down manufacturing.

  9. Bio-inspired layered chitosan/graphene oxide nanocomposite hydrogels with high strength and pH-driven shape memory effect.

    PubMed

    Zhang, Yaqian; Zhang, Min; Jiang, Haoyang; Shi, Jinli; Li, Feibo; Xia, Yanhong; Zhang, Gongzheng; Li, Huanjun

    2017-12-01

    The layered nanocomposite hydrogel films containing chitosan (CS) and graphene oxide (GO) have been prepared by water evaporation induced self-assembly and subsequent physical cross-linking in alkaline solution. The layered CS/GO hydrogel films obtained have a nacre-like brick-and-mortar microstructure, which contributes to their excellent mechanical properties. The tensile strength and elongation at break of the hydrogel films with 5wt% GO are 5.35MPa and 193.5%, respectively, which are comparable to natural costal cartilage. Furthermore, the CS/GO hydrogel films exhibited pH-driven shape memory effect, and this unique phenomenon is mainly attributed to the reversible transition of partial physically cross-linking corresponding to hydrogen bondings and hydrophobic interactions between CS polymer chains due to pH changing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A bio-inspired memory model for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Zhu, Yong

    2009-04-01

    Long-term structural health monitoring (SHM) systems need intelligent management of the monitoring data. By analogy with the way the human brain processes memories, we present a bio-inspired memory model (BIMM) that does not require prior knowledge of the structure parameters. The model contains three time-domain areas: a sensory memory area, a short-term memory area and a long-term memory area. First, the initial parameters of the structural state are specified to establish safety criteria. Then the large amount of monitoring data that falls within the safety limits is filtered while the data outside the safety limits are captured instantly in the sensory memory area. Second, disturbance signals are distinguished from danger signals in the short-term memory area. Finally, the stable data of the structural balance state are preserved in the long-term memory area. A strategy for priority scheduling via fuzzy c-means for the proposed model is then introduced. An experiment on bridge tower deformation demonstrates that the proposed model can be applied for real-time acquisition, limited-space storage and intelligent mining of the monitoring data in a long-term SHM system.

  11. Bio-inspired smart single asymmetric hourglass nanochannels for continuous shape and ion transport control.

    PubMed

    Zhang, Huacheng; Hou, Xu; Yang, Zhe; Yan, Dadong; Li, Lin; Tian, Ye; Wang, Huanting; Jiang, Lei

    2015-02-18

    Inspired by biological asymmetric ion channels, new shape-tunable and pH-responsive asymmetric hourglass single nanochannel systems demonstrate unique ion-transport properties. It is found that the change in shape and pH cooperatively control the ion transport within the nanochannel ranging from asymmetric shape with asymmetric ion transport, to asymmetric shape with symmetric ion transport and symmetric shape with symmetric ion transport. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Creating a Bio-Inspired Solution to Prevent Erosion

    NASA Astrophysics Data System (ADS)

    Reher, R.; Martinez, A.; Cola, J.; Frost, D.

    2016-12-01

    Through the study of geophysical sciences, lessons can be developed which allow for the introduction of bio-inspired design and art concepts to K-5 elementary students. Students are placed into an engineering mindset in which they must apply the concepts of bio-geotechnics to observe how we can use nature to prevent and abate erosion. Problems are staged for students using realistic engineering scenarios such as erosion prevention through biomimicry and the study of anchorage characteristics of root structures in regard to stability of soil. Specifically, a lesson is introduced where students research, learn, and present information about bio-inspired designs to understand these concepts. They lean how plant roots differ in size and shape to stabilize soil. In addition, students perform a series of hands-on experiments which demonstrate how bio-cements and roots can slow erosion.

  13. Bio-based hyperbranched thermosetting polyurethane/triethanolamine functionalized multi-walled carbon nanotube nanocomposites as shape memory materials.

    PubMed

    Kalita, Hemjyoti; Karak, Niranjan

    2014-07-01

    Here, bio-based shape memory polymers have generated immense interest in recent times. Here, Bio-based hyperbranched polyurethane/triethanolamine functionalized multi-walled carbon nanotube (TEA-f-MWCNT) nanocomposites were prepared by in-situ pre-polymerization technique. The Fourier transform infrared spectroscopy and the transmission electron microscopic studies showed the strong interfacial adhesion and the homogeneous distribution of TEA-f-MWCNT in the polyurethane matrix. The prepared epoxy cured thermosetting nanocomposites exhibited enhanced tensile strength (6.5-34.5 MPa), scratch hardness (3.0-7.5 kg) and thermal stability (241-288 degrees C). The nanocomposites showed excellent shape fixity and shape recovery. The shape recovery time decreases (24-10 s) with the increase of TEA-f-MWCNT content in the nanocomposites. Thus the studied nanocomposites have potential to be used as advanced shape memory materials.

  14. [Synthesis and characterization of polylactide-based thermosetting polyurethanes with shape memory properties].

    PubMed

    Shi, Shuo; Gu, Lin; Yang, Yihu; Yu, Haibin; Chen, Rui; Xiao, Xianglian; Qiu, Jun

    2016-06-25

    A series of bio-based thermosetting polyurethanes (Bio-PUs) were synthesized by the crosslinking reaction of polylactide and its copolymers diols with hexamethylene diisocyanate (HDI) trimer. The obtained Bio-PUs were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Thermal Gravimetric Analysis (TGA), universal tensile testing machine and cytotoxicity test. Results indicate that the PLA copolymer (P(LA-co-CL)) diols reduced the glass transition temperature (Tg) of Bio-PUs and improved their thermal stability, compared with PLA diols. The Bio-PUs synthesized from P (LA-co-CL) diols exhibit better mechanical performance and shape memory properties. Especially, Young modulus and elongation at break of the obtained Bio-PUs were 277.7 MPa and 230% respectively; the shape recovery time of the obtained Bio-PUs at body temperature was only 93 s. Furthermore, alamar blue assay results showed that the obtained Bio-PUs had no cell toxicity.

  15. A two-way architectural actuator using NiTi SE wire and SME spring

    NASA Astrophysics Data System (ADS)

    Nematollahi, Mohammadreza; Mehrabi, Reza; Callejas, Miguel A.; Elahinia, Hedyeh; Elahinia, Mohammad

    2018-03-01

    This paper presents a bio-inspired continuously adapting architectural element, to enable a smart canopy that provides shade to buildings that need protection from sunlight. The smart actuator consists of two elements: one NiTi shape memory (SME) spring and one NiTi superelastic (SE) wire. The SE wire is deformed to a `U' shape and then the SME spring is attached to it. Due to the force of SE wire exerted on SME spring, the smart canopy is in its open position. When the environment's temperature increases, the actuator activates and shrinks the SME spring and hence it closes the canopy. In continues, when the temperature decreases at evening, the actuator inactive and SE wire will open the smart fabric. This unique activation provides different advantages like silent actuation, maintenance free, eco-friendly, and no or low energy consumption. Here, the conceptual design of the smart canopy actuator will be discussed. Then, a simulation study, using finite element method, is used to investigate components' behavior. The extracted material parameters are implemented in the subroutine, to simulate the behavior of the shape memory alloy elements. Simulation's results predict superelastic behavior for the SE wire and shape memory effect for the NiTi spring. For further studies, a prototype will be fabricated to confirm simulation's results, as well as performing some experimental tests.

  16. Bio-Inspired Methods for Producing Adaptive Beampatterns with Diffracting Baffle Shapes

    DTIC Science & Technology

    The diversity of local shape features and their role in shaping the functional/ultrasonic characteristics of the noseleaves and pinnae in bats have...have been used to recreate active deformations of the noseleaf shapes that some bat species show as part of their biosonar behaviors and put the

  17. Switchable bio-inspired adhesives

    NASA Astrophysics Data System (ADS)

    Kroner, Elmar

    2015-03-01

    Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.

  18. Star-shaped polymers of bio-inspired algae core and poly(acrylamide) and poly(acrylic acid) as arms in dissolution of silica/silicate.

    PubMed

    Chauhan, Kalpana; Patiyal, Priyanka; Chauhan, Ghanshyam S; Sharma, Praveen

    2014-06-01

    Silica, in natural waters (due to weathering of rocks) decreases system performance in water processing industry due to scaling. In view of that, the present work involves the synthesis of novel green star shaped additives of algae core (a bio-inspired material as diatom maintains silicic acid equilibrium in sea water) as silica polymerization inhibitors. Star shaped materials with bio-inspired core and poly(acrylamide) [poly(AAm)] and poly(acrylic acid) [poly(AAc)] arms were synthesized by economical green approach. The proficiency was evaluated in 'mini lab' scale for the synthesized APAAm (Algae-g-poly(AAm)) and APAAc (Algae-g-poly(AAc)) dendrimers (star shaped) in colloidal silica mitigation/inhibition at 35 °C and 55 °C. Synthesized dendrimers were equally proficient in silica inhibition at 12 h and maintains ≥450 ppm soluble silica. However, APAAm dendrimers of generation 0 confirmed better results (≈300 ppm) in contrast to APAAc dendrimers in silica inhibition at 55 °C. Additionally, dendrimers also worked as a nucleator for heterogeneous polymerization to inhibit silica homo-polymerization. APAAm dendrimer test set showed no silica deposit for more than 10 days of inhibition. EDX characterization results support nucleator mechanism with Si content of 6.97%-10.98% by weight in silica deposits (SiO2-APAAm dendrimer composites). Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Fast-Responding Bio-Based Shape Memory Thermoplastic Polyurethanes.

    PubMed

    Petrović, Zoran S; Milić, Jelena; Zhang, Fan; Ilavsky, Jan

    2017-07-14

    Novel fast response shape-memory polyurethanes were prepared from bio-based polyols, diphenyl methane diisocyanate and butane diol for the first time. The bio-based polyester polyols were synthesized from 9-hydroxynonanoic acid, a product obtained by ozonolysis of fatty acids extracted from soy oil and castor oil. The morphology of polyurethanes was investigated by synchrotron ultra-small angle X-ray scattering, which revealed the inter-domain spacing between the hard and soft phases, the degree of phase separation, and the level of intermixing between the hard and soft phases. We also conducted thorough investigations of the thermal, mechanical, and dielectric properties of the polyurethanes, and found that high crystallization rate of the soft segment gives these polyurethanes unique properties suitable for shape-memory applications, such as adjustable transition temperatures, high degree of elastic elongations, and good mechanical strength. These materials are also potentially biodegradable and biocompatible, therefore suitable for biomedical and environmental applications.

  20. Bio-inspired, large scale, highly-scattering films for nanoparticle-alternative white surfaces

    PubMed Central

    Syurik, Julia; Siddique, Radwanul Hasan; Dollmann, Antje; Gomard, Guillaume; Schneider, Marc; Worgull, Matthias; Wiegand, Gabriele; Hölscher, Hendrik

    2017-01-01

    Inspired by the white beetle of the genus Cyphochilus, we fabricate ultra-thin, porous PMMA films by foaming with CO2 saturation. Optimising pore diameter and fraction in terms of broad-band reflectance results in very thin films with exceptional whiteness. Already films with 60 µm-thick scattering layer feature a whiteness with a reflectance of 90%. Even 9 µm thin scattering layers appear white with a reflectance above 57%. The transport mean free path in the artificial films is between 3.5 µm and 4 µm being close to the evolutionary optimised natural prototype. The bio-inspired white films do not lose their whiteness during further shaping, allowing for various applications. PMID:28429805

  1. Bio-inspired, large scale, highly-scattering films for nanoparticle-alternative white surfaces

    NASA Astrophysics Data System (ADS)

    Syurik, Julia; Siddique, Radwanul Hasan; Dollmann, Antje; Gomard, Guillaume; Schneider, Marc; Worgull, Matthias; Wiegand, Gabriele; Hölscher, Hendrik

    2017-04-01

    Inspired by the white beetle of the genus Cyphochilus, we fabricate ultra-thin, porous PMMA films by foaming with CO2 saturation. Optimising pore diameter and fraction in terms of broad-band reflectance results in very thin films with exceptional whiteness. Already films with 60 µm-thick scattering layer feature a whiteness with a reflectance of 90%. Even 9 µm thin scattering layers appear white with a reflectance above 57%. The transport mean free path in the artificial films is between 3.5 µm and 4 µm being close to the evolutionary optimised natural prototype. The bio-inspired white films do not lose their whiteness during further shaping, allowing for various applications.

  2. A Communication Theoretical Modeling of Axonal Propagation in Hippocampal Pyramidal Neurons.

    PubMed

    Ramezani, Hamideh; Akan, Ozgur B

    2017-06-01

    Understanding the fundamentals of communication among neurons, known as neuro-spike communication, leads to reach bio-inspired nanoscale communication paradigms. In this paper, we focus on a part of neuro-spike communication, known as axonal transmission, and propose a realistic model for it. The shape of the spike during axonal transmission varies according to previously applied stimulations to the neuron, and these variations affect the amount of information communicated between neurons. Hence, to reach an accurate model for neuro-spike communication, the memory of axon and its effect on the axonal transmission should be considered, which are not studied in the existing literature. In this paper, we extract the important factors on the memory of axon and define memory states based on these factors. We also describe the transition among these states and the properties of axonal transmission in each of them. Finally, we demonstrate that the proposed model can follow changes in the axonal functionality properly by simulating the proposed model and reporting the root mean square error between simulation results and experimental data.

  3. Construction of RNA-Quantum Dot Chimera for Nanoscale Resistive Biomemory Application.

    PubMed

    Lee, Taek; Yagati, Ajay Kumar; Pi, Fengmei; Sharma, Ashwani; Choi, Jeong-Woo; Guo, Peixuan

    2015-07-28

    RNA nanotechnology offers advantages to construct thermally and chemically stable nanoparticles with well-defined shape and structure. Here we report the development of an RNA-QD (quantum dot) chimera for resistive biomolecular memory application. Each QD holds two copies of the pRNA three-way junction (pRNA-3WJ) of the bacteriophage phi29 DNA packaging motor. The fixed quantity of two RNAs per QD was achieved by immobilizing the pRNA-3WJ with a Sephadex aptamer for resin binding. Two thiolated pRNA-3WJ serve as two feet of the chimera that stand on the gold plate. The RNA nanostructure served as both an insulator and a mediator to provide defined distance between the QD and gold. Immobilization of the chimera nanoparticle was confirmed with scanning tunneling microscopy. As revealed by scanning tunneling spectroscopy, the conjugated pRNA-3WJ-QD chimera exhibited an excellent electrical bistability signal for biomolecular memory function, demonstrating great potential for the development of resistive biomolecular memory and a nano-bio-inspired electronic device for information processing and computing.

  4. Peristaltic Wave Locomotion and Shape Morphing with a Millipede Inspired System

    NASA Astrophysics Data System (ADS)

    Spinello, Davide; Fattahi, Javad S.

    2017-08-01

    We present the mechanical model of a bio-inspired deformable system, modeled as a Timoshenko beam, which is coupled to a substrate by a system of distributed elements. The locomotion action is inspired by the coordinated motion of coupling elements that mimic the legs of millipedes and centipedes, whose leg-to-ground contact can be described as a peristaltic displacement wave. The multi-legged structure is crucial in providing redundancy and robustness in the interaction with unstructured environments and terrains. A Lagrangian approach is used to derive the governing equations of the system that couple locomotion and shape morphing. Features and limitations of the model are illustrated with numerical simulations.

  5. EDITORIAL: Adaptive and Active Materials: Selected Papers from the ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS 08) (Maryland, USA, 28-30 October 2008) Adaptive and Active Materials: Selected Papers from the ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS 08) (Maryland, USA, 28-30 October 2008)

    NASA Astrophysics Data System (ADS)

    Lynch, Christopher

    2009-10-01

    The rapid development of the field of Smart Materials, Adaptive Structures, and Materials Systems led the Aerospace Division ASMS TC to launch the new annual SMASIS conference in 2008. The conference focuses on the multi-disciplinary challenges of developing new multifunctional materials and implementing them in advanced systems. The research spans length scales from nano-structured materials to civil, air, and space structures. The first conference consisted of six symposia, each focusing on a different research area. This special issue of Smart Materials and Structures summarizes some of the top research presented at the 2008 SMASIS conference in the materials-focused symposia. These symposia focused on the behavior and mechanics of active materials, on multifunctional materials, and on bio-inspired materials. The behavior and mechanics of active materials is an approach that combines observed material behavior with mechanism-based models that not only give insight into the observed behavior, but guide the development of new materials. This approach has been applied to shape memory metals and polymers, ferroelectrics, ferromagnetics, and recently to multiferroic materials, and has led to considerable improvements in our understanding of multi-field phenomena. Multifunctional materials are the next generation of active materials. These materials include structural, sensing, and actuation components integrated into a material system. A natural extension of multifunctional materials is a new class of bio-inspired materials. Bio-inspired materials range from detailed bio-mimicry of sensing and self healing materials to nano and microstructures that take advantage of features observed in biological systems. The Editors would like to express their sincere thanks to all of the authors for their contributions to this special issue on 'Adaptive and Active Materials' for Smart Materials and Structures. We convey our gratitude to all of the reviewers for their time and dedication. We thank IOP Publishing for their support and encouragement of this special issue and the staff for their special attention and timely response.

  6. A biopolymer-like metal enabled hybrid material with exceptional mechanical prowess

    PubMed Central

    Zhang, Junsong; Cui, Lishan; Jiang, Daqiang; Liu, Yinong; Hao, Shijie; Ren, Yang; Han, Xiaodong; Liu, Zhenyang; Wang, Yunzhi; Yu, Cun; Huan, Yong; Zhao, Xinqing; Zheng, Yanjun; Xu, Huibin; Ren, Xiaobing; Li, Xiaodong

    2015-01-01

    The design principles for naturally occurring biological materials have inspired us to develop next-generation engineering materials with remarkable performance. Nacre, commonly referred to as nature's armor, is renowned for its unusual combination of strength and toughness. Nature's wisdom in nacre resides in its elaborate structural design and the judicious placement of a unique organic biopolymer with intelligent deformation features. However, up to now, it is still a challenge to transcribe the biopolymer's deformation attributes into a stronger substitute in the design of new materials. In this study, we propose a new design strategy that employs shape memory alloy to transcribe the “J-curve” mechanical response and uniform molecular/atomic level deformation of the organic biopolymer in the design of high-performance hybrid materials. This design strategy is verified in a TiNi-Ti3Sn model material system. The model material demonstrates an exceptional combination of mechanical properties that are superior to other high-performance metal-based lamellar composites known to date. Our design strategy creates new opportunities for the development of high-performance bio-inspired materials. PMID:25665501

  7. A biopolymer-like metal enabled hybrid material with exceptional mechanical prowess.

    PubMed

    Zhang, Junsong; Cui, Lishan; Jiang, Daqiang; Liu, Yinong; Hao, Shijie; Ren, Yang; Han, Xiaodong; Liu, Zhenyang; Wang, Yunzhi; Yu, Cun; Huan, Yong; Zhao, Xinqing; Zheng, Yanjun; Xu, Huibin; Ren, Xiaobing; Li, Xiaodong

    2015-02-10

    The design principles for naturally occurring biological materials have inspired us to develop next-generation engineering materials with remarkable performance. Nacre, commonly referred to as nature's armor, is renowned for its unusual combination of strength and toughness. Nature's wisdom in nacre resides in its elaborate structural design and the judicious placement of a unique organic biopolymer with intelligent deformation features. However, up to now, it is still a challenge to transcribe the biopolymer's deformation attributes into a stronger substitute in the design of new materials. In this study, we propose a new design strategy that employs shape memory alloy to transcribe the "J-curve" mechanical response and uniform molecular/atomic level deformation of the organic biopolymer in the design of high-performance hybrid materials. This design strategy is verified in a TiNi-Ti3Sn model material system. The model material demonstrates an exceptional combination of mechanical properties that are superior to other high-performance metal-based lamellar composites known to date. Our design strategy creates new opportunities for the development of high-performance bio-inspired materials.

  8. The quintuple-shape memory effect in electrospun nanofiber membranes

    NASA Astrophysics Data System (ADS)

    Zhang, Fenghua; Zhang, Zhichun; Liu, Yanju; Lu, Haibao; Leng, Jinsong

    2013-08-01

    Shape memory fibrous membranes (SMFMs) are an emerging class of active polymers, which are capable of switching from a temporary shape to their permanent shape upon appropriate stimulation. Quintuple-shape memory membranes based on the thermoplastic polymer Nafion, with a stable fibrous structure, are achieved via electrospinning technology, and possess a broad transition temperature. The recovery of multiple temporary shapes of electrospun membranes can be triggered by heat in a single triple-, quadruple-, quintuple-shape memory cycle, respectively. The fiber morphology and nanometer size provide unprecedented design flexibility for the adjustable morphing effect. SMFMs enable complex deformations at need, having a wide potential application field including smart textiles, artificial intelligence robots, bio-medical engineering, aerospace technologies, etc in the future.

  9. A bio-inspired system for spatio-temporal recognition in static and video imagery

    NASA Astrophysics Data System (ADS)

    Khosla, Deepak; Moore, Christopher K.; Chelian, Suhas

    2007-04-01

    This paper presents a bio-inspired method for spatio-temporal recognition in static and video imagery. It builds upon and extends our previous work on a bio-inspired Visual Attention and object Recognition System (VARS). The VARS approach locates and recognizes objects in a single frame. This work presents two extensions of VARS. The first extension is a Scene Recognition Engine (SCE) that learns to recognize spatial relationships between objects that compose a particular scene category in static imagery. This could be used for recognizing the category of a scene, e.g., office vs. kitchen scene. The second extension is the Event Recognition Engine (ERE) that recognizes spatio-temporal sequences or events in sequences. This extension uses a working memory model to recognize events and behaviors in video imagery by maintaining and recognizing ordered spatio-temporal sequences. The working memory model is based on an ARTSTORE1 neural network that combines an ART-based neural network with a cascade of sustained temporal order recurrent (STORE)1 neural networks. A series of Default ARTMAP classifiers ascribes event labels to these sequences. Our preliminary studies have shown that this extension is robust to variations in an object's motion profile. We evaluated the performance of the SCE and ERE on real datasets. The SCE module was tested on a visual scene classification task using the LabelMe2 dataset. The ERE was tested on real world video footage of vehicles and pedestrians in a street scene. Our system is able to recognize the events in this footage involving vehicles and pedestrians.

  10. Miniaturized unified imaging system using bio-inspired fluidic lens

    NASA Astrophysics Data System (ADS)

    Tsai, Frank S.; Cho, Sung Hwan; Qiao, Wen; Kim, Nam-Hyong; Lo, Yu-Hwa

    2008-08-01

    Miniaturized imaging systems have become ubiquitous as they are found in an ever-increasing number of devices, such as cellular phones, personal digital assistants, and web cameras. Until now, the design and fabrication methodology of such systems have not been significantly different from conventional cameras. The only established method to achieve focusing is by varying the lens distance. On the other hand, the variable-shape crystalline lens found in animal eyes offers inspiration for a more natural way of achieving an optical system with high functionality. Learning from the working concepts of the optics in the animal kingdom, we developed bio-inspired fluidic lenses for a miniature universal imager with auto-focusing, macro, and super-macro capabilities. Because of the enormous dynamic range of fluidic lenses, the miniature camera can even function as a microscope. To compensate for the image quality difference between the central vision and peripheral vision and the shape difference between a solid-state image sensor and a curved retina, we adopted a hybrid design consisting of fluidic lenses for tunability and fixed lenses for aberration and color dispersion correction. A design of the world's smallest surgical camera with 3X optical zoom capabilities is also demonstrated using the approach of hybrid lenses.

  11. Interplay of multiple synaptic plasticity features in filamentary memristive devices for neuromorphic computing

    NASA Astrophysics Data System (ADS)

    La Barbera, Selina; Vincent, Adrien F.; Vuillaume, Dominique; Querlioz, Damien; Alibart, Fabien

    2016-12-01

    Bio-inspired computing represents today a major challenge at different levels ranging from material science for the design of innovative devices and circuits to computer science for the understanding of the key features required for processing of natural data. In this paper, we propose a detail analysis of resistive switching dynamics in electrochemical metallization cells for synaptic plasticity implementation. We show how filament stability associated to joule effect during switching can be used to emulate key synaptic features such as short term to long term plasticity transition and spike timing dependent plasticity. Furthermore, an interplay between these different synaptic features is demonstrated for object motion detection in a spike-based neuromorphic circuit. System level simulation presents robust learning and promising synaptic operation paving the way to complex bio-inspired computing systems composed of innovative memory devices.

  12. Stability of hard plates on soft substrates and application to the design of bioinspired segmented armor

    NASA Astrophysics Data System (ADS)

    Martini, R.; Barthelat, F.

    2016-07-01

    Flexible natural armors from fish, alligators or armadillo are attracting an increasing amount of attention from their unique and attractive combinations of hardness, flexibility and light weight. In particular, the extreme contrast of stiffness between hard plates and surrounding soft tissues give rise to unusual and attractive mechanisms, which now serve as model for the design of bio-inspired armors. Despite a growing interest in bio-inspired flexible protection, there is little guidelines as to the choice of materials, optimum thickness, size, shape and arrangement for the protective plates. In this work, we focus on a failure mode we recently observed on natural and bio-inspired scaled armors: the unstable tilting of individual scales subjected to off-centered point forces. We first present a series of experiments on this system, followed by a model based on contact mechanics and friction. We condense the result into a single stability diagram which capture the key parameters that govern the onset of plate tilting from a localized force. We found that the stability of individual plates is governed by the location of the point force on the plate, by the friction at the surface of the plate, by the size of the plate and by the stiffness of the substrate. We finally discuss how some of these parameters can be optimized at the design stage to produce bio-inspired protective systems with desired combination of surface hardness, stability and flexural compliance.

  13. Fabrication, testing and modeling of a new flexible armor inspired from natural fish scales and osteoderms.

    PubMed

    Chintapalli, Ravi Kiran; Mirkhalaf, Mohammad; Dastjerdi, Ahmad Khayer; Barthelat, Francois

    2014-09-01

    Crocodiles, armadillo, turtles, fish and many other animal species have evolved flexible armored skins in the form of hard scales or osteoderms, which can be described as hard plates of finite size embedded in softer tissues. The individual hard segments provide protection from predators, while the relative motion of these segments provides the flexibility required for efficient locomotion. In this work, we duplicated these broad concepts in a bio-inspired segmented armor. Hexagonal segments of well-defined size and shape were carved within a thin glass plate using laser engraving. The engraved plate was then placed on a soft substrate which simulated soft tissues, and then punctured with a sharp needle mounted on a miniature loading stage. The resistance of our segmented armor was significantly higher when smaller hexagons were used, and our bio-inspired segmented glass displayed an increase in puncture resistance of up to 70% compared to a continuous plate of glass of the same thickness. Detailed structural analyses aided by finite elements revealed that this extraordinary improvement is due to the reduced span of individual segments, which decreases flexural stresses and delays fracture. This effect can however only be achieved if the plates are at least 1000 stiffer than the underlying substrate, which is the case for natural armor systems. Our bio-inspired system also displayed many of the attributes of natural armors: flexible, robust with 'multi-hit' capabilities. This new segmented glass therefore suggests interesting bio-inspired strategies and mechanisms which could be systematically exploited in high-performance flexible armors. This study also provides new insights and a better understanding of the mechanics of natural armors such as scales and osteoderms.

  14. Training mechanical engineering students to utilize biological inspiration during product development.

    PubMed

    Bruck, Hugh A; Gershon, Alan L; Golden, Ira; Gupta, Satyandra K; Gyger, Lawrence S; Magrab, Edward B; Spranklin, Brent W

    2007-12-01

    The use of bio-inspiration for the development of new products and devices requires new educational tools for students consisting of appropriate design and manufacturing technologies, as well as curriculum. At the University of Maryland, new educational tools have been developed that introduce bio-inspired product realization to undergraduate mechanical engineering students. These tools include the development of a bio-inspired design repository, a concurrent fabrication and assembly manufacturing technology, a series of undergraduate curriculum modules and a new senior elective in the bio-inspired robotics area. This paper first presents an overview of the two new design and manufacturing technologies that enable students to realize bio-inspired products, and describes how these technologies are integrated into the undergraduate educational experience. Then, the undergraduate curriculum modules are presented, which provide students with the fundamental design and manufacturing principles needed to support bio-inspired product and device development. Finally, an elective bio-inspired robotics project course is present, which provides undergraduates with the opportunity to demonstrate the application of the knowledge acquired through the curriculum modules in their senior year using the new design and manufacturing technologies.

  15. Characterization of origami shape memory metamaterials (SMMM) made of bio-polymer blends

    NASA Astrophysics Data System (ADS)

    Kshad, Mohamed Ali E.; Naguib, Hani E.

    2016-04-01

    Shape memory materials (SMMs) are materials that can return to their virgin state and release mechanically induced strains by external stimuli. Shape memory polymers (SMPs) are a class of SMMs that show a high shape recoverability and which have attractive potential for structural applications. In this paper, we experimentally study the shape memory effect of origami based metamaterials. The main focus is on the Muira origami metamaterials. The fabrication technique used to produce origami structure is direct molding where all the geometrical features are molded from thermally virgin polymers without post folding of flat sheets. The study shows experimental investigations of shape memory metamaterials (SMMMs) made of SMPs that can be used in different applications such as medicine, robotics, and lightweight structures. The origami structure made from SMP blends, activated with uniform heating. The effect of blend composition on the shape memory behavior was studied. Also the influence of the thermomechanical and the viscoelastic properties of origami unit cell on the activation process have been discussed, and stress relaxation and shape recovery were investigated. Activation process of the unit cell has been demonstrated.

  16. Molecular simulations of self-assembling bio-inspired supramolecular systems and their connection to experiments

    PubMed Central

    Patmanidis, Ilias

    2018-01-01

    In bionanotechnology, the field of creating functional materials consisting of bio-inspired molecules, the function and shape of a nanostructure only appear through the assembly of many small molecules together. The large number of building blocks required to define a nanostructure combined with the many degrees of freedom in packing small molecules has long precluded molecular simulations, but recent advances in computational hardware as well as software have made classical simulations available to this strongly expanding field. Here, we review the state of the art in simulations of self-assembling bio-inspired supramolecular systems. We will first discuss progress in force fields, simulation protocols and enhanced sampling techniques using recent examples. Secondly, we will focus on efforts to enable the comparison of experimentally accessible observables and computational results. Experimental quantities that can be measured by microscopy, spectroscopy and scattering can be linked to simulation output either directly or indirectly, via quantum mechanical or semi-empirical techniques. Overall, we aim to provide an overview of the various computational approaches to understand not only the molecular architecture of nanostructures, but also the mechanism of their formation. PMID:29688238

  17. Fast-responding bio-based shape memory thermoplastic polyurethanes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrovic, Zoran S.; Milic, Jelena; Zhang, Fan

    Fast response shape-memory polyurethanes were prepared from bio-based polyols, diphenyl methane diisocyanate and butane diol. The bio-based polyester polyols were synthesized from 9-hydroxynonanoic acid, a product obtained by ozonolysis of fatty acids extracted from soy oil and castor oil. The morphology of polyurethanes was investigated by synchrotron ultra-small angle X-ray scattering, which revealed the inter-domain spacing between the hard and soft phases, the degree of phase separation, and the level of intermixing between the hard and soft phases. We also conducted thorough investigations of the thermal, mechanical, and dielectric properties of the polyurethanes, and found that high crystallization rate ofmore » the soft segment gives these polyurethanes unique properties suitable for shapememory applications, such as adjustable transition temperatures, high degree of elastic elongations, and good mechanical strength. In conclusion, these materials are also potentially biodegradable and biocompatible, therefore suitable for biomedical and environmental applications.« less

  18. Fast-responding bio-based shape memory thermoplastic polyurethanes

    DOE PAGES

    Petrovic, Zoran S.; Milic, Jelena; Zhang, Fan; ...

    2017-05-31

    Fast response shape-memory polyurethanes were prepared from bio-based polyols, diphenyl methane diisocyanate and butane diol. The bio-based polyester polyols were synthesized from 9-hydroxynonanoic acid, a product obtained by ozonolysis of fatty acids extracted from soy oil and castor oil. The morphology of polyurethanes was investigated by synchrotron ultra-small angle X-ray scattering, which revealed the inter-domain spacing between the hard and soft phases, the degree of phase separation, and the level of intermixing between the hard and soft phases. We also conducted thorough investigations of the thermal, mechanical, and dielectric properties of the polyurethanes, and found that high crystallization rate ofmore » the soft segment gives these polyurethanes unique properties suitable for shapememory applications, such as adjustable transition temperatures, high degree of elastic elongations, and good mechanical strength. In conclusion, these materials are also potentially biodegradable and biocompatible, therefore suitable for biomedical and environmental applications.« less

  19. Bio-inspired band gap engineering of zinc oxide by intracrystalline incorporation of amino acids.

    PubMed

    Brif, Anastasia; Ankonina, Guy; Drathen, Christina; Pokroy, Boaz

    2014-01-22

    Bandgap engineering of zinc oxide semiconductors can be achieved using a bio-inspired method. During a bioInspired crystallization process, incorporation of amino acids into the crystal structure of ZnO induces lattice strain that leads to linear bandgap shifts. This allows for fine tuning of the bandgap in a bio-inspired route. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. EAP artificial muscle actuators for bio-inspired intelligent social robotics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hanson, David F.

    2017-04-01

    Bio-inspired intelligent robots are coming of age in both research and industry, propelling market growth for robots and A.I. However, conventional motors limit bio-inspired robotics. EAP actuators and sensors could improve the simplicity, compliance, physical scaling, and offer bio-inspired advantages in robotic locomotion, grasping and manipulation, and social expressions. For EAP actuators to realize their transformative potential, further innovations are needed: the actuators must be robust, fast, powerful, manufacturable, and affordable. This presentation surveys progress, opportunities, and challenges in the author's latest work in social robots and EAP actuators, and proposes a roadmap for EAP actuators in bio-inspired intelligent robotics.

  1. Ultra Low Density and Highly Crosslinked Biocompatible Shape Memory Polyurethane Foams

    PubMed Central

    Singhal, Pooja; Rodriguez, Jennifer N.; Small, Ward; Eagleston, Scott; Van de Water, Judy; Maitland, Duncan J.; Wilson, Thomas S.

    2012-01-01

    We report the development of highly chemically crosslinked, ultra low density (~0.015 g/cc) polyurethane shape memory foams synthesized from symmetrical, low molecular weight and branched hydroxyl monomers. Sharp single glass transitions (Tg) customizable in the functional range of 45–70 °C were achieved. Thermomechanical testing confirmed shape memory behavior with 97–98% shape recovery over repeated cycles, a glassy storage modulus of 200–300 kPa and recovery stresses of 5–15 kPa. Shape holding tests under constrained storage above the Tg showed stable shape memory. A high volume expansion of up to 70 times was seen on actuation of these foams from a fully compressed state. Low in-vitro cell activation induced by the foam compared to controls demonstrates low acute bio-reactivity. We believe these porous polymeric scaffolds constitute an important class of novel smart biomaterials with multiple potential applications. PMID:22570509

  2. Wood as inspiration for new stimuli-responsive structures and materials

    Treesearch

    Joseph E. Jakes; Nayomi Plaza-Rodriguez; Samuel L. Zelinka; Donald S. Stone; Sophie-Charlotte Gleber; Stefan Vogt

    2014-01-01

    Nature has often provided inspiration for new smart structures and materials. Recently, we showed a bundle of a few wood cells are moisture-activated torsional actuators that can reversibly twist multiple revolutions per centimeter of length. The bundles produce specific torque higher than that produced by electric motors and possess shape memory twist capabilities....

  3. Effects of fiber pre-strain on the healing efficiency of thermoset polymers

    NASA Astrophysics Data System (ADS)

    Ajisafe, Oludayo

    One major challenge that has been facing material self healing is how to heal bigger macroscopic or structural scale damage autonomously, repeatedly, efficiently and at molecular length scale. Different approaches have been used to heal materials. However, none of them can heal macroscopic cracks. Our research group has proposed a novel shape-memory polymer (SMP) based, bio-inspired Close-Then-Heal (CTH) scheme to heal macroscopic cracks in SMP matrix. The most recent development in our group is to use SMP fibers to heal conventional thermosetting polymers according to the CTH scheme. The aim of this study is to further investigate the effect of pre-tension of SMP fibers during the cold-drawing programming on the self-healing efficiency of the conventional thermosetting polymer composites. This was done by fabricating a composite with thermoplastic particles (polycaprolactone) dispersed in a thermosetting polymer matrix (Epon 828). Shape memory fiber pre-tensioned into 3 different groups of 0%, 50% and 100% prestrain, was also embedded into the composite in the longitudinal direction. In this composite, the shape memory effect of the shape memory fibers is utilized for sealing (closing) the cracks and the thermoplastic particles are used for molecular-length scale healing. In this study, 7% by volume of thermoplastic particles was used. Beam specimens were prepared and controlled structural length scale damage was created prior to curing by inserting an aluminum foil of designed thickness in a perpendicular direction to the shape memory fibers before the matrix was allowed to cure. The aluminum sheet was removed post cure to leave a controlled damage. The specimen was healed by fixing the two ends of the beam and heating the sample above the Tg of the shape memory fiber. The recovery force of the sample was recorded and then the beam was tested again to fracture. This fracture healing cycle lasted 7 times. The healing efficiency was evaluated per the peak-tensile load. The Ultrasonic C-scan and SEM were used to examine the healed cracks. It was found that the beams with 100% pre-strained fiber were able to recover repeatedly about 50% of its peak tensile strength; the beams with 50% pre-strained fiber, 43%; and the beams with un-stretched fibers were able to recover about 21% of its original peak tensile strength. Also it was found that the higher the pre-tension the higher the recovery stress seen during the healing cycle.

  4. Bionic Manufacturing: Towards Cyborg Cells and Sentient Microbots.

    PubMed

    Srivastava, Sarvesh Kumar; Yadav, Vikramaditya G

    2018-05-01

    Bio-inspired engineering applies biological design principles towards developing engineering solutions but is not practical as a manufacturing paradigm. We advocate 'bionic manufacturing', a synergistic fusion of biotic and abiotic components, to transition away from bio-inspiration toward bio-augmentation to address current limitations in bio-inspired manufacturing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Bio-inspired passive actuator simulating an abalone shell mechanism for structural control

    NASA Astrophysics Data System (ADS)

    Yang, Henry T. Y.; Lin, Chun-Hung; Bridges, Daniel; Randall, Connor J.; Hansma, Paul K.

    2010-10-01

    An energy dispersion mechanism called 'sacrificial bonds and hidden length', which is found in some biological systems, such as abalone shells and bones, is the inspiration for new strategies for structural control. Sacrificial bonds and hidden length can substantially increase the stiffness and enhance energy dissipation in the constituent molecules of abalone shells and bone. Having been inspired by the usefulness and effectiveness of such a mechanism, which has evolved over millions of years and countless cycles of evolutions, the authors employ the conceptual underpinnings of this mechanism to develop a bio-inspired passive actuator. This paper presents a fundamental method for optimally designing such bio-inspired passive actuators for structural control. To optimize the bio-inspired passive actuator, a simple method utilizing the force-displacement-velocity (FDV) plots based on LQR control is proposed. A linear regression approach is adopted in this research to find the initial values of the desired parameters for the bio-inspired passive actuator. The illustrative examples, conducted by numerical simulation with experimental validation, suggest that the bio-inspired passive actuator based on sacrificial bonds and hidden length may be comparable in performance to state-of-the-art semi-active actuators.

  6. Bio-inspired Edible Superhydrophobic Interface for Reducing Residual Liquid Food.

    PubMed

    Li, Yao; Bi, Jingran; Wang, Siqi; Zhang, Tan; Xu, Xiaomeng; Wang, Haitao; Cheng, Shasha; Zhu, Bei-Wei; Tan, Mingqian

    2018-03-07

    Significant wastage of residual liquid food, such as milk, yogurt, and honey, in food containers has attracted great attention. In this work, a bio-inspired edible superhydrophobic interface was fabricated using U.S. Food and Drug Administration-approved and edible honeycomb wax, arabic gum, and gelatin by a simple and low-cost method. The bio-inspired edible superhydrophobic interface showed multiscale structures, which were similar to that of a lotus leaf surface. This bio-inspired edible superhydrophobic interface displayed high contact angles for a variety of liquid foods, and the residue of liquid foods could be effectively reduced using the bio-inspired interface. To improve the adhesive force of the superhydrophobic interface, a flexible edible elastic film was fabricated between the interface and substrate material. After repeated folding and flushing for a long time, the interface still maintained excellent superhydrophobic property. The bio-inspired edible superhydrophobic interface showed good biocompatibility, which may have potential applications as a functional packaging interface material.

  7. Hierarchical Chunking of Sequential Memory on Neuromorphic Architecture with Reduced Synaptic Plasticity

    PubMed Central

    Li, Guoqi; Deng, Lei; Wang, Dong; Wang, Wei; Zeng, Fei; Zhang, Ziyang; Li, Huanglong; Song, Sen; Pei, Jing; Shi, Luping

    2016-01-01

    Chunking refers to a phenomenon whereby individuals group items together when performing a memory task to improve the performance of sequential memory. In this work, we build a bio-plausible hierarchical chunking of sequential memory (HCSM) model to explain why such improvement happens. We address this issue by linking hierarchical chunking with synaptic plasticity and neuromorphic engineering. We uncover that a chunking mechanism reduces the requirements of synaptic plasticity since it allows applying synapses with narrow dynamic range and low precision to perform a memory task. We validate a hardware version of the model through simulation, based on measured memristor behavior with narrow dynamic range in neuromorphic circuits, which reveals how chunking works and what role it plays in encoding sequential memory. Our work deepens the understanding of sequential memory and enables incorporating it for the investigation of the brain-inspired computing on neuromorphic architecture. PMID:28066223

  8. Programmable snapping composites with bio-inspired architecture.

    PubMed

    Schmied, Jascha U; Le Ferrand, Hortense; Ermanni, Paolo; Studart, André R; Arrieta, Andres F

    2017-03-13

    The development of programmable self-shaping materials enables the onset of new and innovative functionalities in many application fields. Commonly, shape adaptation is achieved by exploiting diffusion-driven swelling or nano-scale phase transition, limiting the change of shape to slow motion predominantly determined by the environmental conditions and/or the materials specificity. To address these shortcomings, we report shape adaptable programmable shells that undergo morphing via a snap-through mechanism inspired by the Dionaea muscipula leaf, known as the Venus fly trap. The presented shells are composite materials made of epoxy reinforced by stiff anisotropic alumina micro-platelets oriented in specific directions. By tailoring the microstructure via magnetically-driven alignment of the platelets, we locally tune the pre-strain and stiffness anisotropy of the composite. This novel approach enables the fabrication of complex shapes showing non-orthotropic curvatures and stiffness gradients, radically extending the design space when compared to conventional long-fibre reinforced multi-stable composites. The rare combination of large stresses, short actuation times and complex shapes, results in hinge-free artificial shape adaptable systems with large design freedom for a variety of morphing applications.

  9. BATMAV: a 2-DOF bio-inspired flapping flight platform

    NASA Astrophysics Data System (ADS)

    Bunget, Gheorghe; Seelecke, Stefan

    2010-04-01

    Due to the availability of small sensors, Micro-Aerial Vehicles (MAVs) can be used for detection missions of biological, chemical and nuclear agents. Traditionally these devices used fixed or rotary wings, actuated with electric DC motortransmission, a system which brings the disadvantage of a heavier platform. The overall objective of the BATMAV project is to develop a biologically inspired bat-like MAV with flexible and foldable wings for flapping flight. This paper presents a flight platform that features bat-inspired wings which are able to actively fold their elbow joints. A previous analysis of the flight physics for small birds, bats and large insects, revealed that the mammalian flight anatomy represents a suitable flight platform that can be actuated efficiently using Shape Memory Alloy (SMA) artificial-muscles. A previous study of the flight styles in bats based on the data collected by Norberg [1] helped to identify the required joint angles as relevant degrees of freedom for wing actuation. Using the engineering theory of robotic manipulators, engineering kinematic models of wings with 2 and 3-DOFs were designed to mimic the wing trajectories of the natural flier Plecotus auritus. Solid models of the bat-like skeleton were designed based on the linear and angular dimensions resulted from the kinematic models. This structure of the flight platform was fabricated using rapid prototyping technologies and assembled to form a desktop prototype with 2-DOFs wings. Preliminary flapping test showed suitable trajectories for wrist and wingtip that mimic the flapping cycle of the natural flyer.

  10. Introducing Students to Bio-Inspiration and Biomimetic Design: A Workshop Experience

    ERIC Educational Resources Information Center

    Santulli, Carlo; Langella, Carla

    2011-01-01

    In recent years, bio-inspired approach to design has gained considerable interest between designers, engineers and end-users. However, there are difficulties in introducing bio-inspiration concepts in the university curriculum in that they involve multi-disciplinary work, which can only possibly be successfully delivered by a team with integrated…

  11. Super strong dopamine hydrogels with shape memory and bioinspired actuating behaviours modulated by solvent exchange.

    PubMed

    Huang, Jiahe; Liao, Jiexin; Wang, Tao; Sun, Weixiang; Tong, Zhen

    2018-03-28

    Dopamine-containing hydrogels were synthesized by copolymerization of dopamine methacrylamide (DMA), N,N-dimethylacrylamide (DMAA), and an N,N'-methylenebisacrylamide (BIS) crosslinker in a mixed solvent of water and DMSO. The association of DMA was formed by simply immersing in water to facilely reinforce the hydrogel due to the introduction of the second physical crosslinking. The tensile strength of the hydrogels was increased greatly and regulated in a wide range from 200 kPa to over 2 MPa. The association of DMA was destroyed upon immersing in DMSO. This reversible formation and dissociation of the association structure endowed the hydrogel with shape memory and actuating capabilities. Rapid shape fixing in water and complete shape recovery in DMSO was realized within several minutes. Bioinspired functional soft actuators were designed based on the reversible association and metal ion coordination of DMA, including fast responsive hydrogel tentacles, programable multiple shape change, reversible and versatile painting and writing "hydrogel paper". The facile preparation and strength regulation provide a new way to design novel soft actuators through solvent exchange, and will inspire more complex applications upon combining the association with other properties of mussel inspired dopamine derivatives.

  12. Electronic and optoelectronic materials and devices inspired by nature

    NASA Astrophysics Data System (ADS)

    Meredith, P.; Bettinger, C. J.; Irimia-Vladu, M.; Mostert, A. B.; Schwenn, P. E.

    2013-03-01

    Inorganic semiconductors permeate virtually every sphere of modern human existence. Micro-fabricated memory elements, processors, sensors, circuit elements, lasers, displays, detectors, etc are ubiquitous. However, the dawn of the 21st century has brought with it immense new challenges, and indeed opportunities—some of which require a paradigm shift in the way we think about resource use and disposal, which in turn directly impacts our ongoing relationship with inorganic semiconductors such as silicon and gallium arsenide. Furthermore, advances in fields such as nano-medicine and bioelectronics, and the impending revolution of the ‘ubiquitous sensor network’, all require new functional materials which are bio-compatible, cheap, have minimal embedded manufacturing energy plus extremely low power consumption, and are mechanically robust and flexible for integration with tissues, building structures, fabrics and all manner of hosts. In this short review article we summarize current progress in creating materials with such properties. We focus primarily on organic and bio-organic electronic and optoelectronic systems derived from or inspired by nature, and outline the complex charge transport and photo-physics which control their behaviour. We also introduce the concept of electrical devices based upon ion or proton flow (‘ionics and protonics’) and focus particularly on their role as a signal interface with biological systems. Finally, we highlight recent advances in creating working devices, some of which have bio-inspired architectures, and summarize the current issues, challenges and potential solutions. This is a rich new playground for the modern materials physicist.

  13. Multifunctional shape-memory polymers.

    PubMed

    Behl, Marc; Razzaq, Muhammad Yasar; Lendlein, Andreas

    2010-08-17

    The thermally-induced shape-memory effect (SME) is the capability of a material to change its shape in a predefined way in response to heat. In shape-memory polymers (SMP) this shape change is the entropy-driven recovery of a mechanical deformation, which was obtained before by application of external stress and was temporarily fixed by formation of physical crosslinks. The high technological significance of SMP becomes apparent in many established products (e.g., packaging materials, assembling devices, textiles, and membranes) and the broad SMP development activities in the field of biomedical as well as aerospace applications (e.g., medical devices or morphing structures for aerospace vehicles). Inspired by the complex and diverse requirements of these applications fundamental research is aiming at multifunctional SMP, in which SME is combined with additional functions and is proceeding rapidly. In this review different concepts for the creation of multifunctionality are derived from the various polymer network architectures of thermally-induced SMP. Multimaterial systems, such as nanocomposites, are described as well as one-component polymer systems, in which independent functions are integrated. Future challenges will be to transfer the concept of multifunctionality to other emerging shape-memory technologies like light-sensitive SMP, reversible shape changing effects or triple-shape polymers.

  14. A review on robotic fish enabled by ionic polymer-metal composite artificial muscles.

    PubMed

    Chen, Zheng

    2017-01-01

    A novel actuating material, which is lightweight, soft, and capable of generating large flapping motion under electrical stimuli, is highly desirable to build energy-efficient and maneuverable bio-inspired underwater robots. Ionic polymer-metal composites are important category of electroactive polymers, since they can generate large bending motions under low actuation voltages. IPMCs are ideal artificial muscles for small-scale and bio-inspired robots. This paper takes a system perspective to review the recent work on IPMC-enabled underwater robots, from modeling, fabrication, and bio-inspired design perspectives. First, a physics-based and control-oriented model of IPMC actuator will be reviewed. Second, a bio-inspired robotic fish propelled by IPMC caudal fin will be presented and a steady-state speed model of the fish will be demonstrated. Third, a novel fabrication process for 3D actuating membrane will be introduced and a bio-inspired robotic manta ray propelled by two IPMC pectoral fins will be demonstrated. Fourth, a 2D maneuverable robotic fish propelled by multiple IPMC fin will be presented. Last, advantages and challenges of using IPMC artificial muscles in bio-inspired robots will be concluded.

  15. Limited Bandwidth Recognition of Collective Behaviors in Bio-Inspired Swarms

    DTIC Science & Technology

    2014-05-01

    Nevai, K. M. Passino, and P. Srinivasan. Stability of choice in the honey bee nest-site selection processs. Journal of Theoretical Biology , 263(1):93...and N. Franks. Collective memory and spatial sorting in animal groups. Journal of Theoretical Biology , 218(1):1–11, 2002. [4] D. Cvetkovic, P...motion from local attraction. Journal of Theoretical Biology , 283(1):145–151, 2011. [18] G. Sukthankar and K. Sycara. Robust recognition of physical team

  16. Overview of the HFM-181 Symposium Programme, Medical Technology Repurposed to Enhance Human Performance

    DTIC Science & Technology

    2009-10-01

    BIO -INSPIRED HUMAN PERFORMANCE ENHANCEMENT 3.1 Biological performance currently outside of the bounds of the human species HPE opportunities may...strategies to preferentially burn fat in weight reduction (85). 3.2 Bio -inspired opportunities for human performance There are many interesting...solutions to assist human performance Nonmedical applications of bio -inspired engineering and computing technologies are a recognized priority in

  17. Methodology for Designing and Developing a New Ultra-Wideband Antenna Based on Bio-Inspired Optimization Techniques

    DTIC Science & Technology

    2017-11-01

    ARL-TR-8225 ● NOV 2017 US Army Research Laboratory Methodology for Designing and Developing a New Ultra-Wideband Antenna Based...Research Laboratory Methodology for Designing and Developing a New Ultra-Wideband Antenna Based on Bio-Inspired Optimization Techniques by...SUBTITLE Methodology for Designing and Developing a New Ultra-Wideband Antenna Based on Bio-Inspired Optimization Techniques 5a. CONTRACT NUMBER

  18. Physics-based Morphology Analysis and Adjoint Optimization of Flexible Flapping Wings

    DTIC Science & Technology

    2016-08-30

    understand the underlying physics of flexible wings in flying insects and birds towards the bio -inspired wing designs with superior aerodynamic...flapping flights have been developed to understand the underlying physics of flexible wings in flying insects and birds towards the bio -inspired wing...been developed to understand the underlying physics of flexible wings in flying insects and birds towards the bio -inspired wing designs with superior

  19. Design of a biomimetic self-healing superalloy composite

    NASA Astrophysics Data System (ADS)

    Files, Bradley Steven

    1997-10-01

    Use of systems engineering concepts to design technologically advanced materials has allowed ambitious goals of self-healing alloys to be realized. Shape memory alloy reinforcements are embedded in an alloy matrix to demonstrate concepts of stable crack growth and matrix crack closure. Computer methods are used to design thermodynamically compatible iron-based alloys using bio-inspired concepts of crack bridging and self-healing. Feasibility of crack closure and stable crack growth is shown in a prototype system with a Sn-Bi matrix and TiNi fibers. Design of Fe-Ni-Co-Ti-Al alloys using thermodynamic models to determine stabilities and phase equilibria allows for a methodical system designing compatible multicomponent alloys for composite systems. Final alloy computations for this project led to the alloy Fe-27.6Ni-18.2Co-4.1Ti-1.6Al as a compatible shape memory a with a 650sp°C 90 minute heat treatment leading to martensite and austenite start temperatures (Msbs and Asbs) near room temperature. Thin slices of this alloy were able to fully recover at least 5% strain upon unloading heating. Composites made from the designed shape memory alloy and a compatible Fe-based B2 matrix were used to test self-healing concepts in the superalloy system. Diffusion couple experiments verified thermodynamic compatibility between matrix and reinforcement alloys at the solution treatment temperature of 1100sp°C. Concepts of stable crack growth and crack bridging were demonstrated in the composite, leading to enhanced toughness of the brittle matrix. However, healing behavior in this system was limited by intergranular fracture of the reinforcement alloy. It is believed that use of rapidly solidified powders could eliminate intergranular fracture, leading to greatly enhanced properties of toughening and healing. Crack clamping and stable crack growth were achieved in a feasibility study using a Sn-Bi matrix reinforced with TiNi fibers. Tensile specimens with less than 1% fibers showed an ability upon heating to recover over 80% of the plastic deformation induced during a tensile test. Further straining proved that stable crack growth can be realized in this system due to crack bridging of the shape memory fibers. Macroscopic cracks were clamped shut after heating of the material above the TiNi reversion temperature.

  20. Design and development of a bio-inspired, under-actuated soft gripper.

    PubMed

    Hassan, Taimoor; Manti, Mariangela; Passetti, Giovanni; d'Elia, Nicolò; Cianchetti, Matteo; Laschi, Cecilia

    2015-08-01

    The development of robotic devices able to perform manipulation tasks mimicking the human hand has been assessed on large scale. This work stands in the challenging scenario where soft materials are combined with bio-inspired design in order to develop soft grippers with improved grasping and holding capabilities. We are going to show a low-cost, under-actuated and adaptable soft gripper, highlighting the design and the manufacturing process. In particular, a critical analysis is made among three versions of the gripper with same design and actuation mechanism, but based on different materials. A novel actuation principle has been implemented in both cases, in order to reduce the encumbrance of the entire system and improve its aesthetics. Grasping and holding capabilities have been tested for each device, with target objects varying in shape, size and material. Results highlight synergy between the geometry and the intrinsic properties of the soft material, showing the way to novel design principles for soft grippers.

  1. Bio-inspired 3D microenvironments: a new dimension in tissue engineering.

    PubMed

    Magin, Chelsea M; Alge, Daniel L; Anseth, Kristi S

    2016-03-04

    Biomaterial scaffolds have been a foundational element of the tissue engineering paradigm since the inception of the field. Over the years there has been a progressive move toward the rational design and fabrication of bio-inspired materials that mimic the composition as well as the architecture and 3D structure of tissues. In this review, we chronicle advances in the field that address key challenges in tissue engineering as well as some emerging applications. Specifically, a summary of the materials and chemistries used to engineer bio-inspired 3D matrices that mimic numerous aspects of the extracellular matrix is provided, along with an overview of bioprinting, an additive manufacturing approach, for the fabrication of engineered tissues with precisely controlled 3D structures and architectures. To emphasize the potential clinical impact of the bio-inspired paradigm in biomaterials engineering, some applications of bio-inspired matrices are discussed in the context of translational tissue engineering. However, focus is also given to recent advances in the use of engineered 3D cellular microenvironments for fundamental studies in cell biology, including photoresponsive systems that are shedding new light on how matrix properties influence cell phenotype and function. In an outlook for future work, the need for high-throughput methods both for screening and fabrication is highlighted. Finally, microscale organ-on-a-chip technologies are highlighted as a promising area for future investment in the application of bio-inspired microenvironments.

  2. MURI: Surface-Templated Bio-Inspired Synthesis and Fabrication of Functional Materials

    DTIC Science & Technology

    2006-06-21

    metallic nanowires were prepared by electro-deposition of gold into porous anodic aluminum oxide ( AAO ) as described by Martin and co- workers. A thin, 200...controlled by monitoring the charge passed through the membrane . The Ag support and aluminum membranes were subsequently dissolved with concentrated...featuring copper and iron- oxides . Appropriately designed cyclic D, L-α-peptides can assume flat ring-shaped geometry and stack via directed backbone

  3. Triple shape memory polymers by 4D printing

    NASA Astrophysics Data System (ADS)

    Bodaghi, M.; Damanpack, A. R.; Liao, W. H.

    2018-06-01

    This article aims at introducing triple shape memory polymers (SMPs) by four-dimensional (4D) printing technology and shaping adaptive structures for mechanical/bio-medical devices. The main approach is based on arranging hot–cold programming of SMPs with fused decomposition modeling technology to engineer adaptive structures with triple shape memory effect (SME). Experiments are conducted to characterize elasto-plastic and hyper-elastic thermo-mechanical material properties of SMPs in low and high temperatures at large deformation regime. The feasibility of the dual and triple SMPs with self-bending features is demonstrated experimentally. It is advantageous in situations either where it is desired to perform mechanical manipulations on the 4D printed objects for specific purposes or when they experience cold programming inevitably before activation. A phenomenological 3D constitutive model is developed for quantitative understanding of dual/triple SME of SMPs fabricated by 4D printing in the large deformation range. Governing equations of equilibrium are established for adaptive structures on the basis of the nonlinear Green–Lagrange strains. They are then solved by developing a finite element approach along with an elastic-predictor plastic-corrector return map procedure accomplished by the Newton–Raphson method. The computational tool is applied to simulate dual/triple SMP structures enabled by 4D printing and explore hot–cold programming mechanisms behind material tailoring. It is shown that the 4D printed dual/triple SMPs have great potential in mechanical/bio-medical applications such as self-bending gripers/stents and self-shrinking/tightening staples.

  4. A comparative study of bio-inspired protective scales using 3D printing and mechanical testing.

    PubMed

    Martini, Roberto; Balit, Yanis; Barthelat, Francois

    2017-06-01

    Flexible natural armors from fish, alligators or armadillo are attracting an increasing amount of attention for their unique combinations of hardness, flexibility and light weight. The extreme contrast of stiffness between hard scales and surrounding soft tissues gives rise to unusual and attractive mechanisms, which now serve as models for the design of bio-inspired armors. Despite this growing interest, there is little guideline for the choice of materials, optimum thickness, size, shape and arrangement for the protective scales. In this work, we explore how the geometry and arrangement of hard scales can be tailored to promote scale-scale interactions. We use 3D printing to fabricate arrays of scales with increasingly complex geometries and arrangements, from simple squares with no overlap to complex ganoid-scales with overlaps and interlocking features. We performed puncture tests and flexural tests on each of the 3D printed materials, and we report the puncture resistance - compliance characteristics of each design on an Ashby chart. The interactions between the scales can significantly increase the resistance to puncture, and these interactions can be maximized by tuning the geometry and arrangement of the scales. Interestingly, the designs that offer the best combinations of puncture resistance and flexural compliance are similar to the geometry and arrangement of natural teleost and ganoid scales, which suggests that natural evolution has shaped these systems to maximize flexible protection. This study yields new insights into the mechanisms of natural dermal armor, and also suggests new designs for personal protective systems. Flexible natural armors from fishes, alligators or armadillos are attracting an increasing amount of attention for their unique and attractive combinations of hardness, flexibility and low weight. Despite a growing interest in bio-inspired flexible protection, there is still little guideline for the choice of materials, optimum thickness, size, shape and arrangement of the protective scales. In this work, we explore how the geometry and arrangement of hard scales affect puncture resistance and flexural compliance, using 3D printing and mechanical testing. Our main finding is that the performance of the scaled skin in terms of puncture resistance can be significantly improved by slight changes in their geometry and arrangement. Our results also suggest that natural evolution has shaped scaled skins to maximize flexible protection. This study yields new insights into the mechanics of natural dermal armors, and also suggests new designs for personal protective systems. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. A nonlinear mechanics model of bio-inspired hierarchical lattice materials consisting of horseshoe microstructures

    PubMed Central

    Ma, Qiang; Cheng, Huanyu; Jang, Kyung-In; Luan, Haiwen; Hwang, Keh-Chih; Rogers, John A.; Huang, Yonggang; Zhang, Yihui

    2016-01-01

    Development of advanced synthetic materials that can mimic the mechanical properties of non-mineralized soft biological materials has important implications in a wide range of technologies. Hierarchical lattice materials constructed with horseshoe microstructures belong to this class of bio-inspired synthetic materials, where the mechanical responses can be tailored to match the nonlinear J-shaped stress-strain curves of human skins. The underlying relations between the J-shaped stress-strain curves and their microstructure geometry are essential in designing such systems for targeted applications. Here, a theoretical model of this type of hierarchical lattice material is developed by combining a finite deformation constitutive relation of the building block (i.e., horseshoe microstructure), with the analyses of equilibrium and deformation compatibility in the periodical lattices. The nonlinear J-shaped stress-strain curves and Poisson ratios predicted by this model agree very well with results of finite element analyses (FEA) and experiment. Based on this model, analytic solutions were obtained for some key mechanical quantities, e.g., elastic modulus, Poisson ratio, peak modulus, and critical strain around which the tangent modulus increases rapidly. A negative Poisson effect is revealed in the hierarchical lattice with triangular topology, as opposed to a positive Poisson effect in hierarchical lattices with Kagome and honeycomb topologies. The lattice topology is also found to have a strong influence on the stress-strain curve. For the three isotropic lattice topologies (triangular, Kagome and honeycomb), the hierarchical triangular lattice material renders the sharpest transition in the stress-strain curve and relative high stretchability, given the same porosity and arc angle of horseshoe microstructure. Furthermore, a demonstrative example illustrates the utility of the developed model in the rapid optimization of hierarchical lattice materials for reproducing the desired stress-strain curves of human skins. This study provides theoretical guidelines for future designs of soft bio-mimetic materials with hierarchical lattice constructions. PMID:27087704

  6. A nonlinear mechanics model of bio-inspired hierarchical lattice materials consisting of horseshoe microstructures

    NASA Astrophysics Data System (ADS)

    Ma, Qiang; Cheng, Huanyu; Jang, Kyung-In; Luan, Haiwen; Hwang, Keh-Chih; Rogers, John A.; Huang, Yonggang; Zhang, Yihui

    2016-05-01

    Development of advanced synthetic materials that can mimic the mechanical properties of non-mineralized soft biological materials has important implications in a wide range of technologies. Hierarchical lattice materials constructed with horseshoe microstructures belong to this class of bio-inspired synthetic materials, where the mechanical responses can be tailored to match the nonlinear J-shaped stress-strain curves of human skins. The underlying relations between the J-shaped stress-strain curves and their microstructure geometry are essential in designing such systems for targeted applications. Here, a theoretical model of this type of hierarchical lattice material is developed by combining a finite deformation constitutive relation of the building block (i.e., horseshoe microstructure), with the analyses of equilibrium and deformation compatibility in the periodical lattices. The nonlinear J-shaped stress-strain curves and Poisson ratios predicted by this model agree very well with results of finite element analyses (FEA) and experiment. Based on this model, analytic solutions were obtained for some key mechanical quantities, e.g., elastic modulus, Poisson ratio, peak modulus, and critical strain around which the tangent modulus increases rapidly. A negative Poisson effect is revealed in the hierarchical lattice with triangular topology, as opposed to a positive Poisson effect in hierarchical lattices with Kagome and honeycomb topologies. The lattice topology is also found to have a strong influence on the stress-strain curve. For the three isotropic lattice topologies (triangular, Kagome and honeycomb), the hierarchical triangular lattice material renders the sharpest transition in the stress-strain curve and relative high stretchability, given the same porosity and arc angle of horseshoe microstructure. Furthermore, a demonstrative example illustrates the utility of the developed model in the rapid optimization of hierarchical lattice materials for reproducing the desired stress-strain curves of human skins. This study provides theoretical guidelines for future designs of soft bio-mimetic materials with hierarchical lattice constructions.

  7. A nonlinear mechanics model of bio-inspired hierarchical lattice materials consisting of horseshoe microstructures.

    PubMed

    Ma, Qiang; Cheng, Huanyu; Jang, Kyung-In; Luan, Haiwen; Hwang, Keh-Chih; Rogers, John A; Huang, Yonggang; Zhang, Yihui

    2016-05-01

    Development of advanced synthetic materials that can mimic the mechanical properties of non-mineralized soft biological materials has important implications in a wide range of technologies. Hierarchical lattice materials constructed with horseshoe microstructures belong to this class of bio-inspired synthetic materials, where the mechanical responses can be tailored to match the nonlinear J-shaped stress-strain curves of human skins. The underlying relations between the J-shaped stress-strain curves and their microstructure geometry are essential in designing such systems for targeted applications. Here, a theoretical model of this type of hierarchical lattice material is developed by combining a finite deformation constitutive relation of the building block (i.e., horseshoe microstructure), with the analyses of equilibrium and deformation compatibility in the periodical lattices. The nonlinear J-shaped stress-strain curves and Poisson ratios predicted by this model agree very well with results of finite element analyses (FEA) and experiment. Based on this model, analytic solutions were obtained for some key mechanical quantities, e.g., elastic modulus, Poisson ratio, peak modulus, and critical strain around which the tangent modulus increases rapidly. A negative Poisson effect is revealed in the hierarchical lattice with triangular topology, as opposed to a positive Poisson effect in hierarchical lattices with Kagome and honeycomb topologies. The lattice topology is also found to have a strong influence on the stress-strain curve. For the three isotropic lattice topologies (triangular, Kagome and honeycomb), the hierarchical triangular lattice material renders the sharpest transition in the stress-strain curve and relative high stretchability, given the same porosity and arc angle of horseshoe microstructure. Furthermore, a demonstrative example illustrates the utility of the developed model in the rapid optimization of hierarchical lattice materials for reproducing the desired stress-strain curves of human skins. This study provides theoretical guidelines for future designs of soft bio-mimetic materials with hierarchical lattice constructions.

  8. High-performance flexible strain sensor with bio-inspired crack arrays.

    PubMed

    Han, Zhiwu; Liu, Linpeng; Zhang, Junqiu; Han, Qigang; Wang, Kejun; Song, Honglie; Wang, Ze; Jiao, Zhibin; Niu, Shichao; Ren, Luquan

    2018-06-12

    Biomimetic sensor technology is always superior to existing human technologies. The scorpion, especially the forest scorpion, has a unique ability to detect subtle vibrations, which is attributed to the microcrack-shaped slit sensillum on its legs. Here, the biological sensing mechanism of the typical scorpion (Heterometrus petersii) was intensively studied in order to newly design and significantly improve the flexible strain sensors. Benefiting from the easy-crack property of polystyrene (PS) and using the solvent-induced swelling as well as double template transferring method, regular and controllable microcrack arrays were successfully fabricated on top of polydimethylsiloxane (PDMS). Using this method, any physical damage to PDMS could be effectively avoided. More fortunately, this bio-inspired crack arrays fabricated in this work also had a radial-like pattern similar to the slit sensillum of the scorpion, which was another unexpected imitation. The gauge factor (GF) of the sensor was conservatively evaluated at 5888.89 upon 2% strain and the response time was 297 ms. Afterward, it was demonstrated that the bio-inspired regular microcrack arrays could also significantly enhance the performance of traditional strain sensors, especially in terms of the sensitivity and response time. The practical applications, such as the detection of human motions and surface folding, were also tested in this work, with the results showing significant potential applications in numerous fields. This work changes the traditional waste cracks on some damaged products into valuable things for ultrasensitive mechanical sensors. Moreover, with this manufacturing technique, we could easily realize the simple, low cost and large-scale fabrication of advanced bioinpired sensors.

  9. Distributed flow estimation and closed-loop control of an underwater vehicle with a multi-modal artificial lateral line.

    PubMed

    DeVries, Levi; Lagor, Francis D; Lei, Hong; Tan, Xiaobo; Paley, Derek A

    2015-03-25

    Bio-inspired sensing modalities enhance the ability of autonomous vehicles to characterize and respond to their environment. This paper concerns the lateral line of cartilaginous and bony fish, which is sensitive to fluid motion and allows fish to sense oncoming flow and the presence of walls or obstacles. The lateral line consists of two types of sensing modalities: canal neuromasts measure approximate pressure gradients, whereas superficial neuromasts measure local flow velocities. By employing an artificial lateral line, the performance of underwater sensing and navigation strategies is improved in dark, cluttered, or murky environments where traditional sensing modalities may be hindered. This paper presents estimation and control strategies enabling an airfoil-shaped unmanned underwater vehicle to assimilate measurements from a bio-inspired, multi-modal artificial lateral line and estimate flow properties for feedback control. We utilize potential flow theory to model the fluid flow past a foil in a uniform flow and in the presence of an upstream obstacle. We derive theoretically justified nonlinear estimation strategies to estimate the free stream flowspeed, angle of attack, and the relative position of an upstream obstacle. The feedback control strategy uses the estimated flow properties to execute bio-inspired behaviors including rheotaxis (the tendency of fish to orient upstream) and station-holding (the tendency of fish to position behind an upstream obstacle). A robotic prototype outfitted with a multi-modal artificial lateral line composed of ionic polymer metal composite and embedded pressure sensors experimentally demonstrates the distributed flow sensing and closed-loop control strategies.

  10. Synthesis and characterization of shape-memory poly carbonate urethane microspheres for future vascular embolization.

    PubMed

    Liu, Rongrong; Dai, Honglian; Zhou, Qian; Zhang, Qian; Zhang, Ping

    2016-08-01

    Two types of shape memory poly carbonate urethanes (PCUs) microspheres were synthesized by pre-polymerization and suspension polymerization, based on Polycarbonate diol (PCDL) as the soft segment, Isophorone diisocyanate (IPDI) and 1,6-hexamethylene diisocyanate (HDI) as the hard segments and 1,4-butanediol (BDO) as the chain expanding agent. The structure, crystallinity, and thermal property of the two synthesized PCUs were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Differential scanning calorimetery (DSC), respectively. The results showed that the two types of PCUs exhibited high thermal stability with phase separation and semi-crystallinity. Also, the results of the compression test displayed that the shape fixity and the shape recovery of two PCUs were more than 90% compared to the originals, indicating their similar bio-applicability and shape-memory properties. The tensile strength, elongation at break was enhanced by introducing and increasing content of HDI. The water contact angles of PCUs decreased and their surface tension increased by surface modified with Bovine serum albumin (BSA). Furthermore, the biological study results of two types of PCUs from the platelet adhesion test and the cell proliferation inhibition test indicated they had some biocompatibilites. Hence, the PCU microspheres might represent a smart and shape-memory embolic agent for vascular embolization.

  11. Epoxy composites coating with Fe3O4 decorated graphene oxide: Modified bio-inspired surface chemistry, synergistic effect and improved anti-corrosion performance

    NASA Astrophysics Data System (ADS)

    Zhan, Yingqing; Zhang, Jieming; Wan, Xinyi; Long, Zhihang; He, Shuangjiang; He, Yi

    2018-04-01

    To obtain graphene or graphene derivatives based epoxy composite coatings with high anti-corrosion performance, the morphology of nanostructures, dispersion, and interfacial adhesion are key factors that need to be considered. We here demonstrated the bio-inspired co-modification of graphene oxide/Fe3O4 hybrid (GO-Fe3O4@ poly (DA+KH550)) and its synergistic effect on the anti-corrosion performance of epoxy coating. For this purpose, graphene oxide/Fe3O4 hybrid obtained from hydrothermal route was modified by self-polymerization between dopamine and secondary functional monomer (KH550), which led to the modified bio-inspired surface functionalization. This novel modified bio-inspired functionalization was quite distinct from conventional surface modification or decoration. Namely, abundant amino groups were introduced by modified bio-inspired functionalization, which allowed the graphene oxide/Fe3O4 hybrid to disperse well in epoxy resin and enhanced the interfacial adhesion between modified nanofiller and epoxy resin through chemical crosslinking reaction. The electrochemical impedance spectroscopy (EIS) test revealed that anti-corrosive performance of epoxy coatings was significantly enhanced by addition of 0.5 wt% modified bio-inspired functionalized GO-Fe3O4 hybrid compared with neat epoxy and other nanofillers/epoxy composite coatings. Moreover, the micro-hardness of epoxy coating was enhanced by 71.8% compared with pure epoxy coating at the same loading content. In addition, the anticorrosion mechanism of GO-Fe3O4@poly (DA+KH550) was tentatively discussed.

  12. Presynaptic learning and memory with a persistent firing neuron and a habituating synapse: a model of short term persistent habituation.

    PubMed

    Ramanathan, Kiruthika; Ning, Ning; Dhanasekar, Dhiviya; Li, Guoqi; Shi, Luping; Vadakkepat, Prahlad

    2012-08-01

    Our paper explores the interaction of persistent firing axonal and presynaptic processes in the generation of short term memory for habituation. We first propose a model of a sensory neuron whose axon is able to switch between passive conduction and persistent firing states, thereby triggering short term retention to the stimulus. Then we propose a model of a habituating synapse and explore all nine of the behavioral characteristics of short term habituation in a two neuron circuit. We couple the persistent firing neuron to the habituation synapse and investigate the behavior of short term retention of habituating response. Simulations show that, depending on the amount of synaptic resources, persistent firing either results in continued habituation or maintains the response, both leading to longer recovery times. The effectiveness of the model as an element in a bio-inspired memory system is discussed.

  13. How flexibility and dynamic ground effect could improve bio-inspired propulsion

    NASA Astrophysics Data System (ADS)

    Quinn, Daniel

    2016-11-01

    Swimming animals use complex fin motions to reach remarkable levels of efficiency, maneuverability, and stealth. Propulsion systems inspired by these motions could usher in a new generation of advanced underwater vehicles. Two aspects of bio-inspired propulsion are discussed here: flexibility and near-boundary swimming. Experimental work on flexible propulsors shows that swimming efficiency depends on wake vortex timing and boundary layer attachment, but also on fluid-structure resonance. As a result, flexible vehicles or animals could potentially improve their performance by tracking their resonance properties. Bio-inspired propulsors were also found to produce more thrust with no loss in efficiency when swimming near a solid boundary. Higher lift-to-drag ratios for near-ground fixed-wing gliders is commonly known as ground effect. This newly observed "dynamic ground effect" suggests that bio-inspired vehicles and animals could save energy by harnessing the performance gains associated with near-boundary swimming. This work was supported by the Office of Naval Research (MURI N00014-08-1-0642, Program Director Dr. Bob Brizzolara) and the National Science Foundation (DBI-1062052, PI Lisa Fauci; EFRI-0938043, PI George Lauder).

  14. Vibration isolation by exploring bio-inspired structural nonlinearity.

    PubMed

    Wu, Zhijing; Jing, Xingjian; Bian, Jing; Li, Fengming; Allen, Robert

    2015-10-08

    Inspired by the limb structures of animals/insects in motion vibration control, a bio-inspired limb-like structure (LLS) is systematically studied for understanding and exploring its advantageous nonlinear function in passive vibration isolation. The bio-inspired system consists of asymmetric articulations (of different rod lengths) with inside vertical and horizontal springs (as animal muscle) of different linear stiffness. Mathematical modeling and analysis of the proposed LLS reveal that, (a) the system has very beneficial nonlinear stiffness which can provide flexible quasi-zero, zero and/or negative stiffness, and these nonlinear stiffness properties are adjustable or designable with structure parameters; (b) the asymmetric rod-length ratio and spring-stiffness ratio present very beneficial factors for tuning system equivalent stiffness; (c) the system loading capacity is also adjustable with the structure parameters which presents another flexible benefit in application. Experiments and comparisons with existing quasi-zero-stiffness isolators validate the advantageous features above, and some discussions are also given about how to select structural parameters for practical applications. The results would provide an innovative bio-inspired solution to passive vibration control in various engineering practice.

  15. Artificial Roughness Encoding with a Bio-inspired MEMS- based Tactile Sensor Array

    PubMed Central

    Oddo, Calogero Maria; Beccai, Lucia; Felder, Martin; Giovacchini, Francesco; Carrozza, Maria Chiara

    2009-01-01

    A compliant 2×2 tactile sensor array was developed and investigated for roughness encoding. State of the art cross shape 3D MEMS sensors were integrated with polymeric packaging providing in total 16 sensitive elements to external mechanical stimuli in an area of about 20 mm2, similarly to the SA1 innervation density in humans. Experimental analysis of the bio-inspired tactile sensor array was performed by using ridged surfaces, with spatial periods from 2.6 mm to 4.1 mm, which were indented with regulated 1N normal force and stroked at constant sliding velocity from 15 mm/s to 48 mm/s. A repeatable and expected frequency shift of the sensor outputs depending on the applied stimulus and on its scanning velocity was observed between 3.66 Hz and 18.46 Hz with an overall maximum error of 1.7%. The tactile sensor could also perform contact imaging during static stimulus indentation. The experiments demonstrated the suitability of this approach for the design of a roughness encoding tactile sensor for an artificial fingerpad. PMID:22412304

  16. New bioactive bone-like microspheres with intrinsic magnetic properties obtained by bio-inspired mineralisation process.

    PubMed

    Fernandes Patrício, Tatiana Marisa; Panseri, Silvia; Sandri, Monica; Tampieri, Anna; Sprio, Simone

    2017-08-01

    A bio-inspired mineralisation process was investigated and applied to develop novel hybrid magnetic materials by heterogeneous nucleation of Fe 2+ /Fe 3+ -doped hydroxyapatite nanocrystals onto a biopolymeric matrix made of a Type I collagen-based recombinant peptide (RCP). The effect of the synthesis temperature on the phase composition, crystallinity and magnetic properties of the nucleated inorganic phase was studied. The as-obtained magnetic materials were then engineered, by using a water-in-oil emulsification process, into hybrid magnetic microspheres, which were stabilized by de-hydrothermal treatment yielding cross-linking of the macromolecular matrix. Thorough investigation of the physicochemical, morphological and biological properties of the new hybrid microspheres, as induced by the presence of the inorganic nanophase and controlled iron substitution into hydroxyapatite lattice, revealed bone-like composition, good cytocompatibility, designed shape and size, and tailored magnetization. Such features are interesting and promising for application as new biomaterials with ability of remote activation and control by using external magnetic fields, for smart and personalized applications in medicine, particularly in bone tissue regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Shape memory behavior of single and polycrystalline nickel rich nickel titanium alloys

    NASA Astrophysics Data System (ADS)

    Kaya, Irfan

    NiTi is the most commonly used shape memory alloy (SMA) and has been widely used for bio-medical, electrical and mechanical applications. Nickel rich NiTi shape memory alloys are coming into prominence due to their distinct superelasticity and shape memory properties as compared to near equi-atomic NiTi shape memory alloys. Besides, their lower density and higher work output than steels makes these alloys an excellent candidate for aerospace and automotive industry. Shape memory properties and phase transformation behavior of high Ni-rich Ni54Ti46 (at.%) polycrystals and Ni-rich Ni 51Ti49 (at.%) single-crystals are determined. Their properties are sensitive to heat treatments that affect the phase transformation behavior of these alloys. Phase transformation properties and microstructure were investigated in aged Ni54Ti46 alloys with differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) to reveal the precipitation characteristics and R-phase formation. It was found that Ni54Ti46 has the ability to exhibit perfect superelasticity under high stress levels (~2 GPa) with 4% total strain after 550°C-3h aging. Stress independent R-phase transformation was found to be responsible for the change in shape memory behavior with stress. The shape memory responses of [001], [011] and [111] oriented Ni 51Ti49 single-crystals alloy were reported under compression to reveal the orientation dependence of their shape memory behavior. It has been found that transformation strain, temperatures and hysteresis, Classius-Clapeyron slopes, critical stress for plastic deformation are highly orientation dependent. The effects of precipitation formation and compressive loading at selected temperatures on the two-way shape memory effect (TWSME) properties of a [111]- oriented Ni51Ti49 shape memory alloy were revealed. Additionally, aligned Ni4Ti3 precipitates were formed in a single crystal of Ni51Ti49 alloy by aging under applied compression stress along the [111] direction. Formation of a single family of Ni4Ti3 precipitates were exhibited significant TWSME without any training or deformation. When the homogenized and aged specimens were loaded in martensite, positive TWSME was observed. After loading at high temperature in austenite, the homogenized specimen did not show TWSME while the aged specimen revealed negative TWSME.

  18. Self-assembled hierarchically structured organic-inorganic composite systems.

    PubMed

    Tritschler, Ulrich; Cölfen, Helmut

    2016-05-13

    Designing bio-inspired, multifunctional organic-inorganic composite materials is one of the most popular current research objectives. Due to the high complexity of biocomposite structures found in nacre and bone, for example, a one-pot scalable and versatile synthesis approach addressing structural key features of biominerals and affording bio-inspired, multifunctional organic-inorganic composites with advanced physical properties is highly challenging. This article reviews recent progress in synthesizing organic-inorganic composite materials via various self-assembly techniques and in this context highlights a recently developed bio-inspired synthesis concept for the fabrication of hierarchically structured, organic-inorganic composite materials. This one-step self-organization concept based on simultaneous liquid crystal formation of anisotropic inorganic nanoparticles and a functional liquid crystalline polymer turned out to be simple, fast, scalable and versatile, leading to various (multi-)functional composite materials, which exhibit hierarchical structuring over several length scales. Consequently, this synthesis approach is relevant for further progress and scientific breakthrough in the research field of bio-inspired and biomimetic materials.

  19. System impairment compensation in coherent optical communications by using a bio-inspired detector based on artificial neural network and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Danshi; Zhang, Min; Li, Ze; Song, Chuang; Fu, Meixia; Li, Jin; Chen, Xue

    2017-09-01

    A bio-inspired detector based on the artificial neural network (ANN) and genetic algorithm is proposed in the context of a coherent optical transmission system. The ANN is designed to mitigate 16-quadrature amplitude modulation system impairments, including linear impairment: Gaussian white noise, laser phase noise, in-phase/quadrature component imbalance, and nonlinear impairment: nonlinear phase. Without prior information or heuristic assumptions, the ANN, functioning as a machine learning algorithm, can learn and capture the characteristics of impairments from observed data. Numerical simulations were performed, and dispersion-shifted, dispersion-managed, and dispersion-unmanaged fiber links were investigated. The launch power dynamic range and maximum transmission distance for the bio-inspired method were 2.7 dBm and 240 km greater, respectively, than those of the maximum likelihood estimation algorithm. Moreover, the linewidth tolerance of the bio-inspired technique was 170 kHz greater than that of the k-means method, demonstrating its usability for digital signal processing in coherent systems.

  20. Bio-inspired routes for synthesizing efficient nanoscale platinum electrocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cha, Jennifer N.; Wang, Joseph

    2014-08-31

    The overall objective of the proposed research is to use fundamental advances in bionanotechnology to design powerful platinum nanocrystal electrocatalysts for fuel cell applications. The new economically-viable, environmentally-friendly, bottom-up biochemical synthetic strategy will produce platinum nanocrystals with tailored size, shape and crystal orientation, hence leading to a maximum electrochemical reactivity. There are five specific aims to the proposed bio-inspired strategy for synthesizing efficient electrocatalytic platinum nanocrystals: (1) isolate peptides that both selectively bind particular crystal faces of platinum and promote the nucleation and growth of particular nanocrystal morphologies, (2) pattern nanoscale 2-dimensional arrays of platinum nucleating peptides from DNA scaffolds,more » (3) investigate the combined use of substrate patterned peptides and soluble peptides on nanocrystal morphology and growth (4) synthesize platinum crystals on planar and large-area carbon electrode supports, and (5) perform detailed characterization of the electrocatalytic behavior as a function of catalyst size, shape and morphology. Project Description and Impact: This bio-inspired collaborative research effort will address key challenges in designing powerful electrocatalysts for fuel cell applications by employing nucleic acid scaffolds in combination with peptides to perform specific, environmentally-friendly, simultaneous bottom-up biochemical synthesis and patterned assembly of highly uniform and efficient platinum nanocrystal catalysts. Bulk synthesis of nanoparticles usually produces a range of sizes, accessible catalytic sites, crystal morphologies, and orientations, all of which lead to inconsistent catalytic activities. In contrast, biological systems routinely demonstrate exquisite control over inorganic syntheses at neutral pH and ambient temperature and pressures. Because the orientation and arrangement of the templating biomolecules can be precisely controlled, the nanocrystals boast a defined shape, morphology, orientation and size and are synthesized at benign reaction conditions. Adapting the methods of biomineralization towards the synthesis of platinum nanocrystals will allow effective control at a molecular level of the synthesis of highly active metal electrocatalysts, with readily tailored properties, through tuning of the biochemical inputs. The proposed research will incorporate many facets of biomineralization by: (1) isolating peptides that selectively bind particular crystal faces of platinum (2) isolating peptides that promote the nucleation and growth of particular nanocrystal morphologies (3) using two-dimensional DNA scaffolds to control the spatial orientation and density of the platinum nucleating peptides, and (4) combining bio-templating and soluble peptides to control crystal nucleation, orientation, and morphology. The resulting platinum nanocrystals will be evaluated for their electrocatalytic behavior (on common carbon supports) to determine their optimal size, morphology and crystal structure. We expect that such rational biochemical design will lead to highly uniform and efficient platinum nanocrystal catalysts for fuel cell applications.« less

  1. Animal Hairs as Water-stimulated Shape Memory Materials: Mechanism and Structural Networks in Molecular Assemblies

    NASA Astrophysics Data System (ADS)

    Xiao, Xueliang; Hu, Jinlian

    2016-05-01

    Animal hairs consisting of α-keratin biopolymers existing broadly in nature may be responsive to water for recovery to the innate shape from their fixed deformation, thus possess smart behavior, namely shape memory effect (SME). In this article, three typical animal hair fibers were first time investigated for their water-stimulated SME, and therefrom to identify the corresponding net-points and switches in their molecular and morphological structures. Experimentally, the SME manifested a good stability of high shape fixation ratio and reasonable recovery rate after many cycles of deformation programming under water stimulation. The effects of hydration on hair lateral size, recovery kinetics, dynamic mechanical behaviors and structural components (crystal, disulfide and hydrogen bonds) were then systematically studied. SME mechanisms were explored based on the variations of structural components in molecular assemblies of such smart fibers. A hybrid structural network model with single-switch and twin-net-points was thereafter proposed to interpret the water-stimulated shape memory mechanism of animal hairs. This original work is expected to provide inspiration for exploring other natural materials to reveal their smart functions and natural laws in animals including human as well as making more remarkable synthetic smart materials.

  2. Animal Hairs as Water-stimulated Shape Memory Materials: Mechanism and Structural Networks in Molecular Assemblies

    PubMed Central

    Xiao, Xueliang; Hu, Jinlian

    2016-01-01

    Animal hairs consisting of α-keratin biopolymers existing broadly in nature may be responsive to water for recovery to the innate shape from their fixed deformation, thus possess smart behavior, namely shape memory effect (SME). In this article, three typical animal hair fibers were first time investigated for their water-stimulated SME, and therefrom to identify the corresponding net-points and switches in their molecular and morphological structures. Experimentally, the SME manifested a good stability of high shape fixation ratio and reasonable recovery rate after many cycles of deformation programming under water stimulation. The effects of hydration on hair lateral size, recovery kinetics, dynamic mechanical behaviors and structural components (crystal, disulfide and hydrogen bonds) were then systematically studied. SME mechanisms were explored based on the variations of structural components in molecular assemblies of such smart fibers. A hybrid structural network model with single-switch and twin-net-points was thereafter proposed to interpret the water-stimulated shape memory mechanism of animal hairs. This original work is expected to provide inspiration for exploring other natural materials to reveal their smart functions and natural laws in animals including human as well as making more remarkable synthetic smart materials. PMID:27230823

  3. Development of multifunctional materials exhibiting distributed sensing and actuation inspired by fish

    NASA Astrophysics Data System (ADS)

    Philen, Michael

    2011-04-01

    This manuscript is an overview of the research that is currently being performed as part of a 2009 NSF Office of Emerging Frontiers in Research and Innnovation (EFRI) grant on BioSensing and BioActuation (BSBA). The objectives of this multi-university collaborative research are to achieve a greater understanding of the hierarchical organization and structure of the sensory, muscular, and control systems of fish, and to develop advanced biologically-inspired material systems having distributed sensing, actuation, and intelligent control. New experimental apparatus have been developed for performing experiments involving live fish and robotic devices, and new bio-inspired haircell sensors and artificial muscles are being developed using carbonaceous nanomaterials, bio-derived molecules, and composite technology. Results demonstrating flow sensing and actuation are presented.

  4. Bio-Inspired Metal-Coordination Dynamics: A Unique Tool for Engineering Soft Matter Mechanics

    NASA Astrophysics Data System (ADS)

    Holten-Andersen, Niels

    Growing evidence supports a critical role of metal-coordination in soft biological material properties such as self-healing, underwater adhesion and autonomous wound plugging. Using bio-inspired metal-binding polymers, initial efforts to mimic these properties with metal-coordination crosslinked polymer materials have shown promise. In addition, with polymer network mechanics strongly coupled to coordinate crosslink dynamics material properties can be easily tuned from visco-elastic fluids to solids. Given their exploitation in desirable material applications in Nature, bio-inspired metal-coordinate complex crosslinking provides an opportunity to further advance synthetic polymer materials design. Early lessons from this pursuit are presented.

  5. Bio-inspired approach for intelligent unattended ground sensors

    NASA Astrophysics Data System (ADS)

    Hueber, Nicolas; Raymond, Pierre; Hennequin, Christophe; Pichler, Alexander; Perrot, Maxime; Voisin, Philippe; Moeglin, Jean-Pierre

    2015-05-01

    Improving the surveillance capacity over wide zones requires a set of smart battery-powered Unattended Ground Sensors capable of issuing an alarm to a decision-making center. Only high-level information has to be sent when a relevant suspicious situation occurs. In this paper we propose an innovative bio-inspired approach that mimics the human bi-modal vision mechanism and the parallel processing ability of the human brain. The designed prototype exploits two levels of analysis: a low-level panoramic motion analysis, the peripheral vision, and a high-level event-focused analysis, the foveal vision. By tracking moving objects and fusing multiple criteria (size, speed, trajectory, etc.), the peripheral vision module acts as a fast relevant event detector. The foveal vision module focuses on the detected events to extract more detailed features (texture, color, shape, etc.) in order to improve the recognition efficiency. The implemented recognition core is able to acquire human knowledge and to classify in real-time a huge amount of heterogeneous data thanks to its natively parallel hardware structure. This UGS prototype validates our system approach under laboratory tests. The peripheral analysis module demonstrates a low false alarm rate whereas the foveal vision correctly focuses on the detected events. A parallel FPGA implementation of the recognition core succeeds in fulfilling the embedded application requirements. These results are paving the way of future reconfigurable virtual field agents. By locally processing the data and sending only high-level information, their energy requirements and electromagnetic signature are optimized. Moreover, the embedded Artificial Intelligence core enables these bio-inspired systems to recognize and learn new significant events. By duplicating human expertise in potentially hazardous places, our miniature visual event detector will allow early warning and contribute to better human decision making.

  6. Bio-Inspired Controller on an FPGA Applied to Closed-Loop Diaphragmatic Stimulation

    PubMed Central

    Zbrzeski, Adeline; Bornat, Yannick; Hillen, Brian; Siu, Ricardo; Abbas, James; Jung, Ranu; Renaud, Sylvie

    2016-01-01

    Cervical spinal cord injury can disrupt connections between the brain respiratory network and the respiratory muscles which can lead to partial or complete loss of ventilatory control and require ventilatory assistance. Unlike current open-loop technology, a closed-loop diaphragmatic pacing system could overcome the drawbacks of manual titration as well as respond to changing ventilation requirements. We present an original bio-inspired assistive technology for real-time ventilation assistance, implemented in a digital configurable Field Programmable Gate Array (FPGA). The bio-inspired controller, which is a spiking neural network (SNN) inspired by the medullary respiratory network, is as robust as a classic controller while having a flexible, low-power and low-cost hardware design. The system was simulated in MATLAB with FPGA-specific constraints and tested with a computational model of rat breathing; the model reproduced experimentally collected respiratory data in eupneic animals. The open-loop version of the bio-inspired controller was implemented on the FPGA. Electrical test bench characterizations confirmed the system functionality. Open and closed-loop paradigm simulations were simulated to test the FPGA system real-time behavior using the rat computational model. The closed-loop system monitors breathing and changes in respiratory demands to drive diaphragmatic stimulation. The simulated results inform future acute animal experiments and constitute the first step toward the development of a neuromorphic, adaptive, compact, low-power, implantable device. The bio-inspired hardware design optimizes the FPGA resource and time costs while harnessing the computational power of spike-based neuromorphic hardware. Its real-time feature makes it suitable for in vivo applications. PMID:27378844

  7. Neuromorphic computing enabled by physics of electron spins: Prospects and perspectives

    NASA Astrophysics Data System (ADS)

    Sengupta, Abhronil; Roy, Kaushik

    2018-03-01

    “Spintronics” refers to the understanding of the physics of electron spin-related phenomena. While most of the significant advancements in this field has been driven primarily by memory, recent research has demonstrated that various facets of the underlying physics of spin transport and manipulation can directly mimic the functionalities of the computational primitives in neuromorphic computation, i.e., the neurons and synapses. Given the potential of these spintronic devices to implement bio-mimetic computations at very low terminal voltages, several spin-device structures have been proposed as the core building blocks of neuromorphic circuits and systems to implement brain-inspired computing. Such an approach is expected to play a key role in circumventing the problems of ever-increasing power dissipation and hardware requirements for implementing neuro-inspired algorithms in conventional digital CMOS technology. Perspectives on spin-enabled neuromorphic computing, its status, and challenges and future prospects are outlined in this review article.

  8. Multivariable bio-inspired photonic sensors for non-condensable gases

    NASA Astrophysics Data System (ADS)

    Potyrailo, Radislav A.; Karker, Nicholas; Carpenter, Michael A.; Minnick, Andrew

    2018-02-01

    Existing gas sensors often lose their measurement accuracy in practical field applications. To mitigate this significant problem, here, we report a demonstration of fabricated multivariable photonic sensors inspired by a known nanostructure of Morpho butterfly scales for detection of exemplary non-condensable gases such as H2, CO, and CO2. We fabricated bio-inspired nanostructures using conventional photolithography and chemical etching and detected individual gases that were difficult or unrealistic to detect using natural Morpho nanostructures. Such bio-inspired gas sensors are the critical step in the development of new sensors with improved accuracy for diverse operational scenarios. While this report is our initial demonstration of responses of fabricated multivariable sensors to individual gases in pristine laboratory conditions, it is a significant milestone in understanding the next steps toward field tests and practical applications of these sensors.

  9. Interactive Learning Environment for Bio-Inspired Optimization Algorithms for UAV Path Planning

    ERIC Educational Resources Information Center

    Duan, Haibin; Li, Pei; Shi, Yuhui; Zhang, Xiangyin; Sun, Changhao

    2015-01-01

    This paper describes the development of BOLE, a MATLAB-based interactive learning environment, that facilitates the process of learning bio-inspired optimization algorithms, and that is dedicated exclusively to unmanned aerial vehicle path planning. As a complement to conventional teaching methods, BOLE is designed to help students consolidate the…

  10. Material requirements for bio-inspired sensing systems

    NASA Astrophysics Data System (ADS)

    Biggins, Peter; Lloyd, Peter; Salmond, David; Kusterbeck, Anne

    2008-10-01

    The aim of developing bio-inspired sensing systems is to try and emulate the amazing sensitivity and specificity observed in the natural world. These capabilities have evolved, often for specific tasks, which provide the organism with an advantage in its fight to survive and prosper. Capabilities cover a wide range of sensing functions including vision, temperature, hearing, touch, taste and smell. For some functions, the capabilities of natural systems are still greater than that achieved by traditional engineering solutions; a good example being a dog's sense of smell. Furthermore, attempting to emulate aspects of biological optics, processing and guidance may lead to more simple and effective devices. A bio-inspired sensing system is much more than the sensory mechanism. A system will need to collect samples, especially if pathogens or chemicals are of interest. Other functions could include the provision of power, surfaces and receptors, structure, locomotion and control. In fact it is possible to conceive of a complete bio-inspired system concept which is likely to be radically different from more conventional approaches. This concept will be described and individual component technologies considered.

  11. A Case Study on Neural Inspired Dynamic Memory Management Strategies for High Performance Computing.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vineyard, Craig Michael; Verzi, Stephen Joseph

    As high performance computing architectures pursue more computational power there is a need for increased memory capacity and bandwidth as well. A multi-level memory (MLM) architecture addresses this need by combining multiple memory types with different characteristics as varying levels of the same architecture. How to efficiently utilize this memory infrastructure is an unknown challenge, and in this research we sought to investigate whether neural inspired approaches can meaningfully help with memory management. In particular we explored neurogenesis inspired re- source allocation, and were able to show a neural inspired mixed controller policy can beneficially impact how MLM architectures utilizemore » memory.« less

  12. Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface.

    PubMed

    Wang, Zhenhui; Liu, Yanming; Tao, Peng; Shen, Qingchen; Yi, Nan; Zhang, Fangyu; Liu, Quanlong; Song, Chengyi; Zhang, Di; Shang, Wen; Deng, Tao

    2014-08-27

    Plasmonic gold nanoparticles self-assembled at the air-water interface to produce an evaporative surface with local control inspired by skins and plant leaves. Fast and efficient evaporation is realized due to the instant and localized plasmonic heating at the evaporative surface. The bio-inspired evaporation process provides an alternative promising approach for evaporation, and has potential applications in sterilization, distillation, and heat transfer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Bio-inspired group modeling and analysis for intruder detection in mobile sensor/robotic networks.

    PubMed

    Fu, Bo; Xiao, Yang; Liang, Xiannuan; Philip Chen, C L

    2015-01-01

    Although previous bio-inspired models have concentrated on invertebrates (such as ants), mammals such as primates with higher cognitive function are valuable for modeling the increasingly complex problems in engineering. Understanding primates' social and communication systems, and applying what is learned from them to engineering domains is likely to inspire solutions to a number of problems. This paper presents a novel bio-inspired approach to determine group size by researching and simulating primate society. Group size does matter for both primate society and digital entities. It is difficult to determine how to group mobile sensors/robots that patrol in a large area when many factors are considered such as patrol efficiency, wireless interference, coverage, inter/intragroup communications, etc. This paper presents a simulation-based theoretical study on patrolling strategies for robot groups with the comparison of large and small groups through simulations and theoretical results.

  14. Neural networks for data compression and invariant image recognition

    NASA Technical Reports Server (NTRS)

    Gardner, Sheldon

    1989-01-01

    An approach to invariant image recognition (I2R), based upon a model of biological vision in the mammalian visual system (MVS), is described. The complete I2R model incorporates several biologically inspired features: exponential mapping of retinal images, Gabor spatial filtering, and a neural network associative memory. In the I2R model, exponentially mapped retinal images are filtered by a hierarchical set of Gabor spatial filters (GSF) which provide compression of the information contained within a pixel-based image. A neural network associative memory (AM) is used to process the GSF coded images. We describe a 1-D shape function method for coding of scale and rotationally invariant shape information. This method reduces image shape information to a periodic waveform suitable for coding as an input vector to a neural network AM. The shape function method is suitable for near term applications on conventional computing architectures equipped with VLSI FFT chips to provide a rapid image search capability.

  15. Influence of Structure and Microstructure on Deformation Localization and Crack Growth in NiTi Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Paul, Partha P.; Fortman, Margaret; Paranjape, Harshad M.; Anderson, Peter M.; Stebner, Aaron P.; Brinson, L. Catherine

    2018-04-01

    Porous NiTi shape memory alloys have applications in the biomedical and aerospace fields. Recent developments in metal additive manufacturing have made fabrication of near-net-shape porous products with complicated geometries feasible. There have also been developments in tailoring site-specific microstructures in metals using additive manufacturing. Inspired by these developments, we explore two related mechanistic phenomena in a simplified representation of porous shape memory alloys. First, we computationally elucidate the connection between pore geometry, stress concentration around pores, grain orientation, and strain-band formation during tensile loading of NiTi. Using this, we present a method to engineer local crystal orientations to mitigate the stress concentrations around the pores. Second, we experimentally document the growth of cracks around pores in a cyclically loaded superelastic NiTi specimen. In the areas of stress concentration around holes, cracks are seen to grow in large grains with [1 1 0] oriented along the tensile axis. This combined work shows the potential of local microstructural engineering in reducing stress concentration and increasing resistance to propagation of cracks in porous SMAs, potentially increasing the fatigue life of porous SMA components.

  16. Effects of bio-inspired microscale roughness on macroscale flow structures

    NASA Astrophysics Data System (ADS)

    Bocanegra Evans, Humberto; Hamed, Ali M.; Gorumlu, Serdar; Doosttalab, Ali; Aksak, Burak; Chamorro, Leonardo P.; Castillo, Luciano

    2016-11-01

    The interaction between rough surfaces and flows is a complex physical situation that produces rich flow phenomena. While random roughness typically increases drag, properly engineered roughness patterns may produce positive results, e.g. dimples in a golf ball. Here we present a set of PIV measurements in an index matched facility of the effect of a bio-inspired surface that consists of an array of mushroom-shaped micro-pillars. The experiments are carried out-under fully wetted conditions-in a flow with adverse pressure gradient, triggering flow separation. The introduction of the micro-pillars dramatically decreases the size of the recirculation bubble; the area with backflow is reduced by approximately 60%. This suggests a positive impact on the form drag generated by the fluid. Furthermore, a negligible effect is seen on the turbulence production terms. The micro-pillars affect the flow by generating low and high pressure perturbations at the interface between the bulk and roughness layer, in a fashion comparable to that of synthetic jets. The passive approach, however, facilitates the implementation of this coating. As the mechanism does not rely on surface hydrophobicity, it is well suited for underwater applications and its functionality should not degrade over time.

  17. Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos.

    PubMed

    Karimi, Mahdi; Mirshekari, Hamed; Moosavi Basri, Seyed Masoud; Bahrami, Sajad; Moghoofei, Mohsen; Hamblin, Michael R

    2016-11-15

    The main goal of drug delivery systems is to target therapeutic cargoes to desired cells and to ensure their efficient uptake. Recently a number of studies have focused on designing bio-inspired nanocarriers, such as bacteriophages, and synthetic carriers based on the bacteriophage structure. Bacteriophages are viruses that specifically recognize their bacterial hosts. They can replicate only inside their host cell and can act as natural gene carriers. Each type of phage has a particular shape, a different capacity for loading cargo, a specific production time, and their own mechanisms of supramolecular assembly, that have enabled them to act as tunable carriers. New phage-based technologies have led to the construction of different peptide libraries, and recognition abilities provided by novel targeting ligands. Phage hybridization with non-organic compounds introduces new properties to phages and could be a suitable strategy for construction of bio-inorganic carriers. In this review we try to cover the major phage species that have been used in drug and gene delivery systems, and the biological application of phages as novel targeting ligands and targeted therapeutics. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The application of artificial intelligence in the optimal design of mechanical systems

    NASA Astrophysics Data System (ADS)

    Poteralski, A.; Szczepanik, M.

    2016-11-01

    The paper is devoted to new computational techniques in mechanical optimization where one tries to study, model, analyze and optimize very complex phenomena, for which more precise scientific tools of the past were incapable of giving low cost and complete solution. Soft computing methods differ from conventional (hard) computing in that, unlike hard computing, they are tolerant of imprecision, uncertainty, partial truth and approximation. The paper deals with an application of the bio-inspired methods, like the evolutionary algorithms (EA), the artificial immune systems (AIS) and the particle swarm optimizers (PSO) to optimization problems. Structures considered in this work are analyzed by the finite element method (FEM), the boundary element method (BEM) and by the method of fundamental solutions (MFS). The bio-inspired methods are applied to optimize shape, topology and material properties of 2D, 3D and coupled 2D/3D structures, to optimize the termomechanical structures, to optimize parameters of composites structures modeled by the FEM, to optimize the elastic vibrating systems to identify the material constants for piezoelectric materials modeled by the BEM and to identify parameters in acoustics problem modeled by the MFS.

  19. Gliding locomotion of manta rays, killer whales and swordfish near the water surface.

    PubMed

    Zhan, Jie-Min; Gong, Ye-Jun; Li, Tian-Zeng

    2017-03-24

    The hydrodynamic performance of the locomotive near the water surface is impacted by its geometrical shape. For marine animals, their geometrical shape is naturally selective; thus, investigating gliding locomotion of marine animal under the water surface may be able to elucidate the influence of the geometrical shape. We investigate three marine animals with specific geometries: the killer whale is fusiform shaped; the manta ray is flat and broad-winged; and the swordfish is best streamlined. The numerical results are validated by the measured drag coefficients of the manta ray model in a towing tank. The friction drag of the three target models are very similar; the body shape affected form drag coefficient is order as swordfish < killer whale < manta ray; the induced wave breaking upon the body of the manta ray performs different to killer whale and swordfish. These bio-inspired observations provide a new and in-depth understanding of the shape effects on the hydrodynamic performances near the free surface.

  20. Holarchical Systems and Emotional Holons : Biologically-Inspired System Designs for Control of Autonomous Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Ippolito, Corey; Plice, Laura; Pisanich, Greg

    2003-01-01

    The BEES (Bio-inspired Engineering for Exploration Systems) for Mars project at NASA Ames Research Center has the goal of developing bio-inspired flight control strategies to enable aerial explorers for Mars scientific investigations. This paper presents a summary of our ongoing research into biologically inspired system designs for control of unmanned autonomous aerial vehicle communities for Mars exploration. First, we present cooperative design considerations for robotic explorers based on the holarchical nature of biological systems and communities. Second, an outline of an architecture for cognitive decision making and control of individual robotic explorers is presented, modeled after the emotional nervous system of cognitive biological systems. Keywords: Holarchy, Biologically Inspired, Emotional UAV Flight Control

  1. Leveraging University Creativity

    DTIC Science & Technology

    2012-04-01

    Distinctions include: UARCs must have a university affiliation, have education as part of their mission, and tend to have more flexibility to compete...research is within five key areas, (1) Biomolecular Sensors, (2) Bio-Inspired Materials, Lightweight Portable Energy, and Flexible Energy-Dispersive...Composites, (3) Biodiscovery Tools, (4) Bio- Inspired Network Science, and (5) Cognitive Neuroscience”.23 The Institute for Soldier

  2. Case study: Optimizing fault model input parameters using bio-inspired algorithms

    NASA Astrophysics Data System (ADS)

    Plucar, Jan; Grunt, Onřej; Zelinka, Ivan

    2017-07-01

    We present a case study that demonstrates a bio-inspired approach in the process of finding optimal parameters for GSM fault model. This model is constructed using Petri Nets approach it represents dynamic model of GSM network environment in the suburban areas of Ostrava city (Czech Republic). We have been faced with a task of finding optimal parameters for an application that requires high amount of data transfers between the application itself and secure servers located in datacenter. In order to find the optimal set of parameters we employ bio-inspired algorithms such as Differential Evolution (DE) or Self Organizing Migrating Algorithm (SOMA). In this paper we present use of these algorithms, compare results and judge their performance in fault probability mitigation.

  3. Eigen values in epidemic and other bio-inspired models

    NASA Astrophysics Data System (ADS)

    Supriatna, A. K.; Anggriani, N.; Carnia, E.; Raihan, A.

    2017-08-01

    Eigen values and the largest eigen value have special roles in many applications. In this paper we will discuss its role in determining the epidemic threshold in which we can determine if an epidemic will decease or blow out eventually. Some examples and their consequences to controling the epidemic are also discusses. Beside the application in epidemic model, the paper also discusses other example of appication in bio-inspired model, such as the backcross breeding for two age classes of local and exotic goats. Here we give some elaborative examples on the use of previous backcross breeding model. Some future direction on the exploration of the relationship between these eigenvalues to different epidemic models and other bio-inspired models are also presented.

  4. A novel soft biomimetic microrobot with two motion attitudes.

    PubMed

    Shi, Liwei; Guo, Shuxiang; Li, Maoxun; Mao, Shilian; Xiao, Nan; Gao, Baofeng; Song, Zhibin; Asaka, Kinji

    2012-12-06

     A variety of microrobots have commonly been used in the fields of biomedical engineering and underwater operations during the last few years. Thanks to their compact structure, low driving power, and simple control systems, microrobots can complete a variety of underwater tasks, even in limited spaces. To accomplish our objectives, we previously designed several bio-inspired underwater microrobots with compact structure, flexibility, and multi-functionality, using ionic polymer metal composite (IPMC) actuators. To implement high-position precision for IPMC legs, in the present research, we proposed an electromechanical model of an IPMC actuator and analysed the deformation and actuating force of an equivalent IPMC cantilever beam, which could be used to design biomimetic legs, fingers, or fins for an underwater microrobot. We then evaluated the tip displacement of an IPMC actuator experimentally. The experimental deflections fit the theoretical values very well when the driving frequency was larger than 1 Hz. To realise the necessary multi-functionality for adapting to complex underwater environments, we introduced a walking biomimetic microrobot with two kinds of motion attitudes: a lying state and a standing state. The microrobot uses eleven IPMC actuators to move and two shape memory alloy (SMA) actuators to change its motion attitude. In the lying state, the microrobot implements stick-insect-inspired walking/rotating motion, fish-like swimming motion, horizontal grasping motion, and floating motion. In the standing state, it implements inchworm-inspired crawling motion in two horizontal directions and grasping motion in the vertical direction. We constructed a prototype of this biomimetic microrobot and evaluated its walking, rotating, and floating speeds experimentally. The experimental results indicated that the robot could attain a maximum walking speed of 3.6 mm/s, a maximum rotational speed of 9°/s, and a maximum floating speed of 7.14 mm/s. Obstacle-avoidance and swimming experiments were also carried out to demonstrate its multi-functionality.

  5. Confabulation Based Sentence Completion for Machine Reading

    DTIC Science & Technology

    2010-11-01

    making sentence completion an indispensible component of machine reading. Cogent confabulation is a bio-inspired computational model that mimics the...thus making sentence completion an indispensible component of machine reading. Cogent confabulation is a bio-inspired computational model that mimics...University Press, 1992. [2] H. Motoda and K. Yoshida, “Machine learning techniques to make computers easier to use,” Proceedings of the Fifteenth

  6. Hierarchical biointerfaces assembled by leukocyte-inspired particles for specifically recognizing cancer cells.

    PubMed

    Meng, Jingxin; Liu, Hongliang; Liu, Xueli; Yang, Gao; Zhang, Pengchao; Wang, Shutao; Jiang, Lei

    2014-09-24

    By mimicking certain biochemical and physical attributes of biological cells, bio-inspired particles have attracted great attention for potential biomedical applications based on cell-like biological functions. Inspired by leukocytes, hierarchical biointerfaces are designed and prepared based on specific molecules-modified leukocyte-inspired particles. These biointerfaces can efficiently recognize cancer cells from whole blood samples through the synergistic effect of molecular recognition and topographical interaction. Compared to flat, mono-micro or nano-biointerfaces, these micro/nano hierarchical biointerfaces are better able to promote specific recognition interactions, resulting in an enhanced cell-capture efficiency. It is anticipated that this study may provide promising guidance to develop new bio-inspired hierarchical biointerfaces for biomedical applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A bio-inspired N-doped porous carbon electrocatalyst with hierarchical superstructure for efficient oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Miao, Yue-E.; Yan, Jiajie; Ouyang, Yue; Lu, Hengyi; Lai, Feili; Wu, Yue; Liu, Tianxi

    2018-06-01

    The bio-inspired hierarchical "grape cluster" superstructure provides an effective integration of one-dimensional carbon nanofibers (CNF) with isolated carbonaceous nanoparticles into three-dimensional (3D) conductive frameworks for efficient electron and mass transfer. Herein, a 3D N-doped porous carbon electrocatalyst consisting of carbon nanofibers with grape-like N-doped hollow carbon particles (CNF@NC) has been prepared through a simple electrospinning strategy combined with in-situ growth and carbonization processes. Such a bio-inspired hierarchically organized conductive network largely facilitates both the mass diffusion and electron transfer during the oxygen reduction reactions (ORR). Therefore, the metal-free CNF@NC catalyst demonstrates superior catalytic activity with an absolute four-electron transfer mechanism, strong methanol tolerance and good long-term stability towards ORR in alkaline media.

  8. Automatic disease diagnosis using optimised weightless neural networks for low-power wearable devices

    PubMed Central

    Edla, Damodar Reddy; Kuppili, Venkatanareshbabu; Dharavath, Ramesh; Beechu, Nareshkumar Reddy

    2017-01-01

    Low-power wearable devices for disease diagnosis are used at anytime and anywhere. These are non-invasive and pain-free for the better quality of life. However, these devices are resource constrained in terms of memory and processing capability. Memory constraint allows these devices to store a limited number of patterns and processing constraint provides delayed response. It is a challenging task to design a robust classification system under above constraints with high accuracy. In this Letter, to resolve this problem, a novel architecture for weightless neural networks (WNNs) has been proposed. It uses variable sized random access memories to optimise the memory usage and a modified binary TRIE data structure for reducing the test time. In addition, a bio-inspired-based genetic algorithm has been employed to improve the accuracy. The proposed architecture is experimented on various disease datasets using its software and hardware realisations. The experimental results prove that the proposed architecture achieves better performance in terms of accuracy, memory saving and test time as compared to standard WNNs. It also outperforms in terms of accuracy as compared to conventional neural network-based classifiers. The proposed architecture is a powerful part of most of the low-power wearable devices for the solution of memory, accuracy and time issues. PMID:28868148

  9. Performance characteristics of bio-inspired metal nanostructures as surface-enhanced Raman scattered (SERS) substrates

    DOE PAGES

    Areizaga-Martinez, Hector I.; Kravchenko, Ivan; Lavrik, Nickolay V.; ...

    2016-08-26

    The fabrication of high-performance plasmonic nanomaterials for bio-sensing and trace chemical detection is a field of intense theoretical and experimental research. The use of metal-silicon nanopillar arrays as analytical sensors has been reported with reasonable results in recent years. The use of bio-inspired nanocomposite structures that follow the Fibonacci numerical architecture offers the opportunity to develop nanostructures with theoretically higher and more reproducible plasmonic fields over extended areas. The work presented here describes the nanofabrication process for a series of 40 µm × 40 µm bio-inspired arrays classified as asymmetric fractals (sunflower seeds and romanesco broccoli), bilaterally symmetric (acacia leavesmore » and honeycombs), and radially symmetric (such as orchids and lily flowers) using electron beam lithography. In addition, analytical capabilities were evaluated using surface-enhanced Raman scattering (SERS). Here, the substrate characterization and SERS performance of the developed substrates as the strategies to assess the design performance are presented and discussed.« less

  10. Performance characteristics of bio-inspired metal nanostructures as surface-enhanced Raman scattered (SERS) substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Areizaga-Martinez, Hector I.; Kravchenko, Ivan; Lavrik, Nickolay V.

    The fabrication of high-performance plasmonic nanomaterials for bio-sensing and trace chemical detection is a field of intense theoretical and experimental research. The use of metal-silicon nanopillar arrays as analytical sensors has been reported with reasonable results in recent years. The use of bio-inspired nanocomposite structures that follow the Fibonacci numerical architecture offers the opportunity to develop nanostructures with theoretically higher and more reproducible plasmonic fields over extended areas. The work presented here describes the nanofabrication process for a series of 40 µm × 40 µm bio-inspired arrays classified as asymmetric fractals (sunflower seeds and romanesco broccoli), bilaterally symmetric (acacia leavesmore » and honeycombs), and radially symmetric (such as orchids and lily flowers) using electron beam lithography. In addition, analytical capabilities were evaluated using surface-enhanced Raman scattering (SERS). Here, the substrate characterization and SERS performance of the developed substrates as the strategies to assess the design performance are presented and discussed.« less

  11. Performance Characteristics of Bio-Inspired Metal Nanostructures as Surface-Enhanced Raman Scattered (SERS) Substrates.

    PubMed

    Areizaga-Martinez, Hector I; Kravchenko, Ivan; Lavrik, Nickolay V; Sepaniak, Michael J; Hernández-Rivera, Samuel P; De Jesús, Marco A

    2016-09-01

    The fabrication of high-performance plasmonic nanomaterials for bio-sensing and trace chemical detection is a field of intense theoretical and experimental research. The use of metal-silicon nanopillar arrays as analytical sensors has been reported with reasonable results in recent years. The use of bio-inspired nanocomposite structures that follow the Fibonacci numerical architecture offers the opportunity to develop nanostructures with theoretically higher and more reproducible plasmonic fields over extended areas. The work presented here describes the nanofabrication process for a series of 40 µm × 40 µm bio-inspired arrays classified as asymmetric fractals (sunflower seeds and romanesco broccoli), bilaterally symmetric (acacia leaves and honeycombs), and radially symmetric (such as orchids and lily flowers) using electron beam lithography. In addition, analytical capabilities were evaluated using surface-enhanced Raman scattering (SERS). The substrate characterization and SERS performance of the developed substrates as the strategies to assess the design performance are presented and discussed. © The Author(s) 2016.

  12. Bio-Inspired Human-Level Machine Learning

    DTIC Science & Technology

    2015-10-25

    extensions to high-level cognitive functions such as anagram solving problem. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...extensions to high-level cognitive functions such as anagram solving problem. We expect that the bio-inspired human-level machine learning combined with...numbers of 1011 neurons and 1014 synaptic connections in the human brain. In previous work, we experimentally demonstrated the feasibility of cognitive

  13. Bio-inspired synthesis and biological evaluation of a colchicine-related compound library.

    PubMed

    Nicolaou, K C; Valiulin, Roman A; Pokorski, Jonathan K; Chang, Vicki; Chen, Jason S

    2012-06-01

    A bio-inspired investigation of the reactions of substrates of type 1 with VOF(3) and PIFA [phenyliodine(III) bis(trifluoroacetate)] led to a collection of colchicine-like compounds 2-5 and related systems. Biological evaluation revealed that some of the synthesized products had significant cytotoxic properties against the colon cancer cell line HT-29. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. The public and private history of eugenics: an introduction.

    PubMed

    Burke, Chloe S; Castaneda, Christopher J

    2007-01-01

    Inspired by our experience addressing the legacy of eugenics at California State University, Sacramento, this special issue presents an array of articles representative of diverse approaches to the historical investigation of eugenics. This article provides an introduction to the history of eugenics and explores the ways in which public history is particularly well suited to shape the historical memory of eugenics and encourage dialogue about contemporary biotechnologies.

  15. A green and bio-inspired process to afford durable anti-biofilm properties to stainless steel.

    PubMed

    Faure, E; Vreuls, C; Falentin-Daudré, C; Zocchi, G; Van de Weerdt, C; Martial, J; Jérôme, C; Duwez, A-S; Detrembleur, C

    2012-01-01

    A bio-inspired durable anti-biofilm coating was developed for industrial stainless steel (SS) surfaces. Two polymers inspired from the adhesive and cross-linking properties of mussels were designed and assembled from aqueous solutions onto SS surfaces to afford durable coatings. Trypsin, a commercially available broad spectrum serine protease, was grafted as the final active layer of the coating. Its proteolytic activity after long immersion periods was demonstrated against several substrata, viz. a synthetic molecule, N-α-benzoyl-DL-arginine-p-nitroanilide hydrochloride (BAPNA), a protein, FTC-casein, and Gram-positive biofilm forming bacterium Staphylococcus epidermidis.

  16. Thermomechanical behavior of shape memory elastomeric composites

    NASA Astrophysics Data System (ADS)

    Ge, Qi; Luo, Xiaofan; Rodriguez, Erika D.; Zhang, Xiao; Mather, Patrick T.; Dunn, Martin L.; Qi, H. Jerry

    2012-01-01

    Shape memory polymers (SMPs) can fix a temporary shape and recover their permanent shape in response to environmental stimuli such as heat, electricity, or irradiation. Most thermally activated SMPs use the macromolecular chain mobility change around the glass transition temperature ( Tg) to achieve the shape memory (SM) effects. During this process, the stiffness of the material typically changes by three orders of magnitude. Recently, a composite materials approach was developed to achieve thermally activated shape memory effect where the material exhibits elastomeric response in both the temporary and the recovered configurations. These shape memory elastomeric composites (SMECs) consist of an elastomeric matrix reinforced by a semicrystalline polymer fiber network. The matrix provides background rubber elasticity while the fiber network can transform between solid crystals and melt phases over the operative temperature range. As such it serves as a reversible "switching phase" that enables shape fixing and recovery. Shape memory elastomeric composites provide a new paradigm for the development of a wide array of active polymer composites that utilize the melt-crystal transition to achieve the shape memory effect. This potentially allows for material systems with much simpler chemistries than most shape memory polymers and thus can facilitate more rapid material development and insertion. It is therefore important to understand the thermomechanical behavior and to develop corresponding material models. In this paper, a 3D finite-deformation constitutive modeling framework was developed to describe the thermomechanical behavior of SMEC. The model is phenomenological, although inspired by micromechanical considerations of load transfer between the matrix and fiber phases of a composite system. It treats the matrix as an elastomer and the fibers as a complex solid that itself is an aggregate of melt and crystal phases that evolve from one to the other during a temperature change. As such, the composite consists of an elastomer reinforced by a soft liquid at high temperature and a stiff solid at low temperature. The model includes a kinetic description of the non-isothermal crystallization and melting of the fibers during a temperature change. As the fibers transform from melt to crystal during cooling it is assumed that new crystals are formed in an undeformed state, which requires careful tracking of the kinematics of the evolving phases which comes at a significant computational cost. In order to improve the computational efficiency, an effective phase model (EPM) is adopted to treat the evolving crystal phases as an effective medium. A suite of careful thermomechanical experiments with a SMEC was carried out to calibrate various model parameters, and then to demonstrate the ability of the model to accurately capture the shape memory behavior of the SMEC system during complex thermomechanical loading scenarios. The model also identifies the effects of microstructural design parameters such as the fiber volume fraction.

  17. On-chip visual perception of motion: a bio-inspired connectionist model on FPGA.

    PubMed

    Torres-Huitzil, César; Girau, Bernard; Castellanos-Sánchez, Claudio

    2005-01-01

    Visual motion provides useful information to understand the dynamics of a scene to allow intelligent systems interact with their environment. Motion computation is usually restricted by real time requirements that need the design and implementation of specific hardware architectures. In this paper, the design of hardware architecture for a bio-inspired neural model for motion estimation is presented. The motion estimation is based on a strongly localized bio-inspired connectionist model with a particular adaptation of spatio-temporal Gabor-like filtering. The architecture is constituted by three main modules that perform spatial, temporal, and excitatory-inhibitory connectionist processing. The biomimetic architecture is modeled, simulated and validated in VHDL. The synthesis results on a Field Programmable Gate Array (FPGA) device show the potential achievement of real-time performance at an affordable silicon area.

  18. Long-term knowledge acquisition using contextual information in a memory-inspired robot architecture

    NASA Astrophysics Data System (ADS)

    Pratama, Ferdian; Mastrogiovanni, Fulvio; Lee, Soon Geul; Chong, Nak Young

    2017-03-01

    In this paper, we present a novel cognitive framework allowing a robot to form memories of relevant traits of its perceptions and to recall them when necessary. The framework is based on two main principles: on the one hand, we propose an architecture inspired by current knowledge in human memory organisation; on the other hand, we integrate such an architecture with the notion of context, which is used to modulate the knowledge acquisition process when consolidating memories and forming new ones, as well as with the notion of familiarity, which is employed to retrieve proper memories given relevant cues. Although much research has been carried out, which exploits Machine Learning approaches to provide robots with internal models of their environment (including objects and occurring events therein), we argue that such approaches may not be the right direction to follow if a long-term, continuous knowledge acquisition is to be achieved. As a case study scenario, we focus on both robot-environment and human-robot interaction processes. In case of robot-environment interaction, a robot performs pick and place movements using the objects in the workspace, at the same time observing their displacement on a table in front of it, and progressively forms memories defined as relevant cues (e.g. colour, shape or relative position) in a context-aware fashion. As far as human-robot interaction is concerned, the robot can recall specific snapshots representing past events using both sensory information and contextual cues upon request by humans.

  19. Bio-Inspired Navigation of Chemical Plumes

    DTIC Science & Technology

    2006-07-01

    Bio-Inspired Navigation of Chemical Plumes Maynard J. Porter III, Captain, USAF Department of Electrical and Computer Engineering Air Force Institute...Li. " Chemical plume tracing via an autonomous underwater vehicle". IEEE Journal of Ocean Engineering , 30(2):428— 442, 2005. [6] G. A. Nevitt...Electrical and Computer Engineering Air Force Institute of Technology Dayton, OH 45433-7765, U.S.A. juan.vasquez@afit.edu May 31, 2006 Abstract - The

  20. Robot Deception and Squirrel Behavior: A Case Study in Bio-inspired Robotics

    DTIC Science & Technology

    2014-08-01

    employed by doctors/ nurses among others. It is important to focus on this aspect when we consider a robot’s deceptive capabilities in human- robot ... Robot Deception and Squirrel Behavior: A Case Study in Bio-inspired Robotics Jaeeun Shim and Ronald C. Arkin Mobile Robot ...Abstract A common behavior in animals and human beings is deception. Deceptive behavior in robotics is potentially beneficial in several domains

  1. Novel Bio-inspired Aquatic Flow Sensors

    DTIC Science & Technology

    2012-06-18

    Novel Bio-inspired Aquatic Flow Sensors Preston Albert Pinto Thesis submitted to the Faculty of the Virginia Polytechnic Institute and...Leo, Chair Stephen A. Sarles Michael K. Philen Pavlos Vlachos June 18th, 2012 Blacksburg, Virginia Keywords: artificial hair cell, flow ...Aquatic Flow Sensors 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT

  2. Bio-inspired nacre-like composite films based on graphene with superior mechanical, electrical, and biocompatible properties.

    PubMed

    Li, Yuan-Qing; Yu, Ting; Yang, Tian-Yi; Zheng, Lian-Xi; Liao, Kin

    2012-07-03

    Bio-inspired multifunctional composite films based on reduced poly(vinyl alcohol)/graphene oxide (R-PVA/GO) layers are prepared by a facile solution casting method followed by a reduction procedure. The resulting films with nacre-like, bricks-and-mortar microstructure have excellent mechanical properties, electrical conductivity, and biocompatibility. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Balancing Human and Inter-Agent Influences for Shared Control of Bio-Inspired Collectives

    DTIC Science & Technology

    2014-10-01

    the higher-level intelligence and ingenuity of a human operator as well as the collective intelligence and robustness of a bio-inspired collective...for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway...agents, or that receive information from, but are not directly controlled by, a human operator . Unlike, agents in the human-controlled partition, agents

  4. 3D-printing and mechanics of bio-inspired articulated and multi-material structures.

    PubMed

    Porter, Michael M; Ravikumar, Nakul; Barthelat, Francois; Martini, Roberto

    2017-09-01

    3D-printing technologies allow researchers to build simplified physical models of complex biological systems to more easily investigate their mechanics. In recent years, a number of 3D-printed structures inspired by the dermal armors of various fishes have been developed to study their multiple mechanical functionalities, including flexible protection, improved hydrodynamics, body support, or tail prehensility. Natural fish armors are generally classified according to their shape, material and structural properties as elasmoid scales, ganoid scales, placoid scales, carapace scutes, or bony plates. Each type of dermal armor forms distinct articulation patterns that facilitate different functional advantages. In this paper, we highlight recent studies that developed 3D-printed structures not only to inform the design and application of some articulated and multi-material structures, but also to explain the mechanics of the natural biological systems they mimic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Biomimetic Particles as Therapeutics

    PubMed Central

    Green, Jordan J.

    2015-01-01

    In recent years, there have been major advances in the development of novel nanoparticle and microparticle-based therapeutics. An emerging paradigm is the incorporation of biomimetic features into these synthetic therapeutic constructs to enable them to better interface with biological systems. Through the control of size, shape, and material consistency, particle cores have been generated that better mimic natural cells and viruses. In addition, there have been significant advances in biomimetic surface functionalization of particles through the integration of bio-inspired artificial cell membranes and naturally derived cell membranes. Biomimetic technologies enable therapeutic particles to have increased potency to benefit human health. PMID:26277289

  6. Bio-Inspired Self-Cleaning Surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Kesong; Jiang, Lei

    2012-08-01

    Self-cleaning surfaces have drawn a lot of interest for both fundamental research and practical applications. This review focuses on the recent progress in mechanism, preparation, and application of self-cleaning surfaces. To date, self-cleaning has been demonstrated by the following four conceptual approaches: (a) TiO2-based superhydrophilic self-cleaning, (b) lotus effect self-cleaning (superhydrophobicity with a small sliding angle), (c) gecko setae-inspired self-cleaning, and (d) underwater organisms-inspired antifouling self-cleaning. Although a number of self-cleaning products have been commercialized, the remaining challenges and future outlook of self-cleaning surfaces are also briefly addressed. Through evolution, nature, which has long been a source of inspiration for scientists and engineers, has arrived at what is optimal. We hope this review will stimulate interdisciplinary collaboration among material science, chemistry, biology, physics, nanoscience, engineering, etc., which is essential for the rational design and reproducible construction of bio-inspired multifunctional self-cleaning surfaces in practical applications.

  7. A Review of Natural Joint Systems and Numerical Investigation of Bio-Inspired GFRP-to-Steel Joints

    PubMed Central

    Avgoulas, Evangelos I.; Sutcliffe, Michael P. F.

    2016-01-01

    There are a great variety of joint types used in nature which can inspire engineering joints. In order to design such biomimetic joints, it is at first important to understand how biological joints work. A comprehensive literature review, considering natural joints from a mechanical point of view, was undertaken. This was used to develop a taxonomy based on the different methods/functions that nature successfully uses to attach dissimilar tissues. One of the key methods that nature uses to join dissimilar materials is a transitional zone of stiffness at the insertion site. This method was used to propose bio-inspired solutions with a transitional zone of stiffness at the joint site for several glass fibre reinforced plastic (GFRP) to steel adhesively bonded joint configurations. The transition zone was used to reduce the material stiffness mismatch of the joint parts. A numerical finite element model was used to identify the optimum variation in material stiffness that minimises potential failure of the joint. The best bio-inspired joints showed a 118% increase of joint strength compared to the standard joints. PMID:28773688

  8. A Review of Natural Joint Systems and Numerical Investigation of Bio-Inspired GFRP-to-Steel Joints.

    PubMed

    Avgoulas, Evangelos I; Sutcliffe, Michael P F

    2016-07-12

    There are a great variety of joint types used in nature which can inspire engineering joints. In order to design such biomimetic joints, it is at first important to understand how biological joints work. A comprehensive literature review, considering natural joints from a mechanical point of view, was undertaken. This was used to develop a taxonomy based on the different methods/functions that nature successfully uses to attach dissimilar tissues. One of the key methods that nature uses to join dissimilar materials is a transitional zone of stiffness at the insertion site. This method was used to propose bio-inspired solutions with a transitional zone of stiffness at the joint site for several glass fibre reinforced plastic (GFRP) to steel adhesively bonded joint configurations. The transition zone was used to reduce the material stiffness mismatch of the joint parts. A numerical finite element model was used to identify the optimum variation in material stiffness that minimises potential failure of the joint. The best bio-inspired joints showed a 118% increase of joint strength compared to the standard joints.

  9. Self-Replenishing Vascularized Fouling-Release Surfaces

    DTIC Science & Technology

    2014-01-01

    similar results. Surfaces submerged for 12 days in static cultures of B. braunii, a green microalga known for its potential in the algae biofuels...Technol. 2004, 32, 219−222. (12) Kirschner, C. M.; Brennan, A. B. Bio -Inspired Antifouling Strategies. Annu. Rev. Mater. Res. 2012, 42, 211−229. (13...Release from Fouling Release Coatings. Biofouling 2000, 15, 73−81. (25) Liu, K.; Jiang, L. Bio -Inspired Self-Cleaning Surfaces. Annu. Rev. Mater. Res

  10. Locomotion Dynamics for Bio-inspired Robots with Soft Appendages: Application to Flapping Flight and Passive Swimming

    NASA Astrophysics Data System (ADS)

    Boyer, Frédéric; Porez, Mathieu; Morsli, Ferhat; Morel, Yannick

    2017-08-01

    In animal locomotion, either in fish or flying insects, the use of flexible terminal organs or appendages greatly improves the performance of locomotion (thrust and lift). In this article, we propose a general unified framework for modeling and simulating the (bio-inspired) locomotion of robots using soft organs. The proposed approach is based on the model of Mobile Multibody Systems (MMS). The distributed flexibilities are modeled according to two major approaches: the Floating Frame Approach (FFA) and the Geometrically Exact Approach (GEA). Encompassing these two approaches in the Newton-Euler modeling formalism of robotics, this article proposes a unique modeling framework suited to the fast numerical integration of the dynamics of a MMS in both the FFA and the GEA. This general framework is applied on two illustrative examples drawn from bio-inspired locomotion: the passive swimming in von Karman Vortex Street, and the hovering flight with flexible flapping wings.

  11. Overcoming the brittleness of glass through bio-inspiration and micro-architecture.

    PubMed

    Mirkhalaf, M; Dastjerdi, A Khayer; Barthelat, F

    2014-01-01

    Highly mineralized natural materials such as teeth or mollusk shells boast unusual combinations of stiffness, strength and toughness currently unmatched by engineering materials. While high mineral contents provide stiffness and hardness, these materials also contain weaker interfaces with intricate architectures, which can channel propagating cracks into toughening configurations. Here we report the implementation of these features into glass, using a laser engraving technique. Three-dimensional arrays of laser-generated microcracks can deflect and guide larger incoming cracks, following the concept of 'stamp holes'. Jigsaw-like interfaces, infiltrated with polyurethane, furthermore channel cracks into interlocking configurations and pullout mechanisms, significantly enhancing energy dissipation and toughness. Compared with standard glass, which has no microstructure and is brittle, our bio-inspired glass displays built-in mechanisms that make it more deformable and 200 times tougher. This bio-inspired approach, based on carefully architectured interfaces, provides a new pathway to toughening glasses, ceramics or other hard and brittle materials.

  12. Overcoming the brittleness of glass through bio-inspiration and micro-architecture

    NASA Astrophysics Data System (ADS)

    Mirkhalaf, M.; Dastjerdi, A. Khayer; Barthelat, F.

    2014-01-01

    Highly mineralized natural materials such as teeth or mollusk shells boast unusual combinations of stiffness, strength and toughness currently unmatched by engineering materials. While high mineral contents provide stiffness and hardness, these materials also contain weaker interfaces with intricate architectures, which can channel propagating cracks into toughening configurations. Here we report the implementation of these features into glass, using a laser engraving technique. Three-dimensional arrays of laser-generated microcracks can deflect and guide larger incoming cracks, following the concept of ‘stamp holes’. Jigsaw-like interfaces, infiltrated with polyurethane, furthermore channel cracks into interlocking configurations and pullout mechanisms, significantly enhancing energy dissipation and toughness. Compared with standard glass, which has no microstructure and is brittle, our bio-inspired glass displays built-in mechanisms that make it more deformable and 200 times tougher. This bio-inspired approach, based on carefully architectured interfaces, provides a new pathway to toughening glasses, ceramics or other hard and brittle materials.

  13. Bio-Inspired Networking — Self-Organizing Networked Embedded Systems

    NASA Astrophysics Data System (ADS)

    Dressler, Falko

    The turn to nature has brought us many unforeseen great concepts and solutions. This course seems to hold on for many research domains. In this article, we study the applicability of biological mechanisms and techniques in the domain of communications. In particular, we study the behavior and the challenges in networked embedded systems that are meant to self-organize in large groups of nodes. Application examples include wireless sensor networks and sensor/actuator networks. Based on a review of the needs and requirements in such networks, we study selected bio-inspired networking approaches that claim to outperform other methods in specific domains. We study mechanisms in swarm intelligence, the artificial immune system, and approaches based on investigations on the cellular signaling pathways. As a major conclusion, we derive that bio-inspired networking techniques do have advantages compared to engineering methods. Nevertheless, selection and employment must be done carefully to achieve the desired performance gains.

  14. Plant-Based, Shape-Memory Material Could Replace Today’s Conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    A novel approach that creates a renewable, leathery material—programmed to remember its shape—may offer a low-cost alternative to conventional conductors for applications in sensors and robotics. To make the bio-based, shape-memory material, Oak Ridge National Laboratory scientists streamlined a solvent-free process that mixes rubber with lignin—the by-product of woody plants used to make biofuels. They fashioned the leathery material into small strips and brushed on a thin layer of silver nanoparticles to activate electrical conductivity. The strips were stretched or curled and then frozen as part of the process to program the material to return to its intended shape, whichmore » occurs after the application of low heat. “The performance of this polymer can be tuned further,” said ORNL’s Amit Naskar. “Variant lignins can be used at different ratios, which determines the material’s pliability.” This research was sponsored by the Department of Energy’s Bioenergy Technologies Office.« less

  15. Metal-coordination: Using one of nature’s tricks to control soft material mechanics

    PubMed Central

    Holten-Andersen, Niels; Jaishankar, Aditya; Harrington, Matthew; Fullenkamp, Dominic E.; DiMarco, Genevieve; He, Lihong; McKinley, Gareth H.; Messersmith, Phillip B.; Lee, Ka Yee C.

    2015-01-01

    Growing evidence supports a critical role of dynamic metal-coordination crosslinking in soft biological material properties such as self-healing and underwater adhesion1. Using bio-inspired metal-coordinating polymers, initial efforts to mimic these properties have shown promise2. Here we demonstrate how bio-inspired aqueous polymer network mechanics can be easily controlled via metal-coordination crosslink dynamics; metal ion-based crosslink stability control allows aqueous polymer network relaxation times to be finely tuned over several orders of magnitude. In addition to further biological material insights, our demonstration of this compositional scaling mechanism should provide inspiration for new polymer material property-control designs. PMID:26413297

  16. Bio-inspired hemispherical compound eye camera

    NASA Astrophysics Data System (ADS)

    Xiao, Jianliang; Song, Young Min; Xie, Yizhu; Malyarchuk, Viktor; Jung, Inhwa; Choi, Ki-Joong; Liu, Zhuangjian; Park, Hyunsung; Lu, Chaofeng; Kim, Rak-Hwan; Li, Rui; Crozier, Kenneth B.; Huang, Yonggang; Rogers, John A.

    2014-03-01

    Compound eyes in arthropods demonstrate distinct imaging characteristics from human eyes, with wide angle field of view, low aberrations, high acuity to motion and infinite depth of field. Artificial imaging systems with similar geometries and properties are of great interest for many applications. However, the challenges in building such systems with hemispherical, compound apposition layouts cannot be met through established planar sensor technologies and conventional optics. We present our recent progress in combining optics, materials, mechanics and integration schemes to build fully functional artificial compound eye cameras. Nearly full hemispherical shapes (about 160 degrees) with densely packed artificial ommatidia were realized. The number of ommatidia (180) is comparable to those of the eyes of fire ants and bark beetles. The devices combine elastomeric compound optical elements with deformable arrays of thin silicon photodetectors, which were fabricated in the planar geometries and then integrated and elastically transformed to hemispherical shapes. Imaging results and quantitative ray-tracing-based simulations illustrate key features of operation. These general strategies seem to be applicable to other compound eye devices, such as those inspired by moths and lacewings (refracting superposition eyes), lobster and shrimp (reflecting superposition eyes), and houseflies (neural superposition eyes).

  17. Design and fabrication of a three-finger prosthetic hand using SMA muscle wires

    NASA Astrophysics Data System (ADS)

    Simone, Filomena; York, Alexander; Seelecke, Stefan

    2015-03-01

    Bio-inspired hand-like gripper systems based on shape memory alloy (SMA) wire actuation have the potential to enable a number of useful applications in, e.g., the biomedical field or industrial assembly systems. The inherent high energy density makes SMA solutions a natural choice for systems with lightweight, low noise and high force requirements, such as hand prostheses or robotic systems in a human/machine environment. The focus of this research is the development, design and realization of a SMA-actuated prosthetic hand prototype with three fingers. The use of thin wires (100 μm diameter) allows for high cooling rates and therefore fast movement of each finger. Grouping several small wires mechanically in parallel allows for high force actuation. To save space and to allow for a direct transmission of the motion to each finger, the SMA wires are attached directly within each finger, across each phalanx. In this way, the contraction of the wires will allow the movement of the fingers without the use of any additional gears. Within each finger, two different bundles of wires are mounted: protagonist ones that create bending movement and the antagonist ones that enable stretching of each phalanx. The resistance change in the SMA wires is measured during actuation, which allows for monitoring of the wire stroke and potentially the gripping force without the use of additional sensors. The hand is built with modern 3D-printing technologies and its performance while grasping objects of different size and shape is experimentally investigated illustrating the usefulness of the actuator concept.

  18. Morphogenesis and mechanostabilization of complex natural and 3D printed shapes

    PubMed Central

    Tiwary, Chandra Sekhar; Kishore, Sharan; Sarkar, Suman; Mahapatra, Debiprosad Roy; Ajayan, Pulickel M.; Chattopadhyay, Kamanio

    2015-01-01

    The natural selection and the evolutionary optimization of complex shapes in nature are closely related to their functions. Mechanostabilization of shape of biological structure via morphogenesis has several beautiful examples. With the help of simple mechanics-based modeling and experiments, we show an important causality between natural shape selection as evolutionary outcome and the mechanostabilization of seashells. The effect of biological growth on the mechanostabilization process is identified with examples of two natural shapes of seashells, one having a diametrically converging localization of stresses and the other having a helicoidally concentric localization of stresses. We demonstrate how the evolved shape enables predictable protection of soft body parts of the species. The effect of bioavailability of natural material is found to be a secondary factor compared to shape selectivity, where material microstructure only acts as a constraint to evolutionary optimization. This is confirmed by comparing the mechanostabilization behavior of three-dimensionally printed synthetic polymer structural shapes with that of natural seashells consisting of ceramic and protein. This study also highlights interesting possibilities in achieving a new design of structures made of ordinary materials which have bio-inspired optimization objectives. PMID:26601170

  19. Optical Properties of a Bio-Inspired Gradient Refractive Index Polymer Lens

    DTIC Science & Technology

    2008-07-21

    Optical properties of a bio-inspired gradient refractive index polymer lens G. Beadie,1,* James S. Shirk,1 A. Rosenberg,1 Paul A. Lane,1 E. Fleet,1...of magnitude less than the homogeneous glass lens. ©2008 Optical Society of America OCIS codes: (110.2760) Gradient-index lenses; (160.5470...H. von Helmholtz, A. Gullstrand, J. von Kries, and W. Nagel, Helmholtz’s Treatise on Physiological Optics (The Optical Society of America, Rochester

  20. Self-Healing Composite of Thermoset Polymer and Programmed Super Contraction Fibers

    NASA Technical Reports Server (NTRS)

    Li, Guoqiang (Inventor); Meng, Harper (Inventor)

    2016-01-01

    A composition comprising thermoset polymer, shape memory polymer to facilitate macro scale damage closure, and a thermoplastic polymer for molecular scale healing is disclosed; the composition has the ability to resolve structural defects by a bio-mimetic close-then heal process. In use, the shape memory polymer serves to bring surfaces of a structural defect into approximation, whereafter use of the thermoplastic polymer for molecular scale healing allowed for movement of the thermoplastic polymer into the defect and thus obtain molecular scale healing. The thermoplastic can be fibers, particles or spheres which are used by heating to a level at or above the thermoplastic's melting point, then cooling of the composition below the melting temperature of the thermoplastic. Compositions of the invention have the ability to not only close macroscopic defects, but also to do so repeatedly even if another wound/damage occurs in a previously healed/repaired area.

  1. NASA Tech Briefs, May 2003

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Topics covered include: Using Diffusion Bonding in Making Piezoelectric Actuators; Wireless Temperature-Monitoring System; Analog Binaural Circuits for Detecting and Locating Leaks; Mirrors Containing Biomimetic Shape-Control Actuators; Surface-Micromachined Planar Arrays of Thermopiles; Cascade Back-Propagation Learning in Neural Networks; Perovskite Superlattices as Tunable Microwave Devices; Rollable Thin-Shell Nanolaminate Mirrors; Flight Tests of a Ministick Controller in an F/A-18 Airplane; Piezoelectrically Actuated Shutter for High Vacuum; Bio-Inspired Engineering of Exploration Systems; Microscope Cells Containing Multiple Micromachined Wells; Electrophoretic Deposition for Fabricating Microbatteries; Integrated Arrays of Ion-Sensitive Electrodes; Model of Fluidized Bed Containing Reacting Solids and Gases; Membrane Mirrors With Bimorph Shape Actuators; Using Fractional Clock-Period Delays in Telemetry Arraying; Developing Generic Software for Spacecraft Avionics; Numerical Study of Pyrolysis of Biomass in Fluidized Beds; and Assessment of Models of Chemically Reacting Granular Flows.

  2. Bio-inspired synthetic receptor molecules towards mimicry of vancomycin.

    PubMed

    Monnee, M C; Brouwer, A J; Verbeek, L M; van Wageningen, A M; Liskamp, R M

    2001-06-18

    A 512-member library of bio-inspired synthetic receptor molecules was prepared featuring a triazacyclophane scaffold. The purpose of this scaffold was to orient three (identical) peptide 'binding arms' in order to mimic an antibiotic binding cavity as is present in the vancomycin antibiotics. The library was screened with D-Ala-D-Ala and D-Ala-D-Lac containing ligands, which are present in the cell wall precursors of pathogenic bacteria. Screening and validation led to identification of a synthetic receptor capable of binding these ligands.

  3. Evolution from MEMS-based Linear Drives to Bio-based Nano Drives

    NASA Astrophysics Data System (ADS)

    Fujita, Hiroyuki

    The successful extension of semiconductor technology to fabricate mechanical parts of the sizes from 10 to 100 micrometers opened wide ranges of possibilities for micromechanical devices and systems. The fabrication technique is called micromachining. Micromachining processes are based on silicon integrated circuits (IC) technology and used to build three-dimensional structures and movable parts by the combination of lithography, etching, film deposition, and wafer bonding. Microactuators are the key devices allowing MEMS to perform physical functions. Some of them are driven by electric, magnetic, and fluidic forces. Some others utilize actuator materials including piezoelectric (PZT, ZnO, quartz) and magnetostrictive materials (TbFe), shape memory alloy (TiNi) and bio molecular motors. This paper deals with the development of MEMS based microactuators, especially linear drives, following my own research experience. They include an electrostatic actuator, a superconductive levitated actuator, arrayed actuators, and a bio-motor-driven actuator.

  4. Advances and prospects on biomolecules functionalized carbon nanotubes.

    PubMed

    Cui, Daxiang

    2007-01-01

    In recent years, functionalization of carbon nanotubes (CNTs) with biomolecules such as nucleotide acids, proteins, and polymers as well as cells have emerged as a new exciting field. Theoretical and experimental studies of structure and function of bio-inspired CNT composites have made great advances. The importance of nucleic acids, proteins, and polymers to the fundamental developments in CNT-based bio-nano-composites or devices has been recognized. In particular, biomechanics, biochemistry, thermodynamics, electronic, optical, and magnetic properties of the bio-inspired CNT composites have become a new interdisciplinary frontier in life science and nanomaterial science. Here we review some of the main advances in this field over the past few years, explore the application prospects, and discuss the issues, approaches, and challenges, with the aim of stimulating a broader interest in developing CNT-based bio-nanotechnology.

  5. Bio-inspired scale-like surface textures and their tribological properties.

    PubMed

    Greiner, Christian; Schäfer, Michael

    2015-06-30

    Friction, wear and the associated energy dissipation are major challenges in all systems containing moving parts. Examples range from nanoelectromechanical systems over hip prosthesis to off-shore wind turbines. Bionic approaches have proven to be very successful in many engineering problems, while investigating the potential of a bio-inspired approach in creating morphological surface textures is a relatively new field of research. Here, we developed laser-created textures inspired by the scales found on the skin of snakes and certain lizards. We show that this bio-inspired surface morphology reduced dry sliding friction forces by more than 40%. In lubricated contacts the same morphology increased friction by a factor of three. Two different kinds of morphologies, one with completely overlapping scales and one with the scales arranged in individual rows, were chosen. In lubricated as well as unlubricated contacts, the surface texture with the scales in rows showed lower friction forces than the completely overlapping ones. We anticipate that these results could have significant impact in all dry sliding contacts, ranging from nanoelectromechanical and micro-positioning systems up to large-scale tribological contacts which cannot be lubricated, e.g. because they are employed in a vacuum environment.

  6. Simultaneous size control and surface functionalization of titania nanoparticles through bioadhesion-assisted bio-inspired mineralization

    NASA Astrophysics Data System (ADS)

    Shi, Jiafu; Yang, Dong; Jiang, Zhongyi; Jiang, Yanjun; Liang, Yanpeng; Zhu, Yuanyuan; Wang, Xiaoli; Wang, Huihui

    2012-09-01

    Simultaneous size control and surface functionalization of inorganic nanoparticles (NPs) are often desired for their efficient applications in (bio)catalysis, drug and/or DNA delivery, and photonics, etc. In this study, a novel strategy "bioadhesion-assisted bio-inspired mineralization (BABM)" was put forward to prepare titania nanoparticles (TiNPs) with tunable particle size and multiple surface functionality. Specifically, the initial formation and subsequent growth of TiNPs were enabled by arginine via bio-inspired mineralization, while the mineralization process was terminated through the addition of the pre-polymerized dopa (oligodopa). By adjusting the addition time of oligodopa, the size of TiNPs could be facilely tailored from ca. 30-350 nm; meanwhile, the surface of TiNPs could be functionalized by oligodopa through metal-catechol coordination interaction (a typical bioadhesion phenomenon). In other words, oligodopa coating could not only exquisitely control the size of TiNPs, but also render TiNPs surface multifunctional groups for secondary treatment such as conjugating proteins through amine-catechol adduct formation. Hopefully, this BABM approach will construct a versatile platform for green and facile synthesis of inorganic NPs, in particular transition metal oxide NPs.

  7. Post-capture vibration suppression of spacecraft via a bio-inspired isolation system

    NASA Astrophysics Data System (ADS)

    Dai, Honghua; Jing, Xingjian; Wang, Yu; Yue, Xiaokui; Yuan, Jianping

    2018-05-01

    Inspired by the smooth motions of a running kangaroo, a bio-inspired quadrilateral shape (BIQS) structure is proposed to suppress the vibrations of a free-floating spacecraft subject to periodic or impulsive forces, which may be encountered during on-orbit servicing missions. In particular, the BIQS structure is installed between the satellite platform and the capture mechanism. The dynamical model of the BIQS isolation system, i.e. a BIQS structure connecting the platform and the capture mechanism at each side, is established by Lagrange's equations to simulate the post-capture dynamical responses. The BIQS system suffering an impulsive force is dealt with by means of a modified version of Lagrange's equations. Furthermore, the classical harmonic balance method is used to solve the nonlinear dynamical system subject to periodic forces, while for the case under impulsive forces the numerical integration method is adopted. Due to the weightless environment in space, the present BIQS system is essentially an under-constrained dynamical system with one of its natural frequencies being identical to zero. The effects of system parameters, such as the number of layers in BIQS, stiffness, assembly angle, rod length, damping coefficient, masses of satellite platform and capture mechanism, on the isolation performance of the present system are thoroughly investigated. In addition, comparisons between the isolation performances of the presently proposed BIQS isolator and the conventional spring-mass-damper (SMD) isolator are conducted to demonstrate the advantages of the present isolator. Numerical simulations show that the BIQS system has a much better performance than the SMD system under either periodic or impulsive forces. Overall, the present BIQS isolator offers a highly efficient passive way for vibration suppressions of free-floating spacecraft.

  8. Communication analysis for feedback control of civil infrastructure using cochlea-inspired sensing nodes

    NASA Astrophysics Data System (ADS)

    Peckens, Courtney A.; Cook, Ireana; Lynch, Jerome P.

    2016-04-01

    Wireless sensor networks (WSNs) have emerged as a reliable, low-cost alternative to the traditional wired sensing paradigm. While such networks have made significant progress in the field of structural monitoring, significantly less development has occurred for feedback control applications. Previous work in WSNs for feedback control has highlighted many of the challenges of using this technology including latency in the wireless communication channel and computational inundation at the individual sensing nodes. This work seeks to overcome some of those challenges by drawing inspiration from the real-time sensing and control techniques employed by the biological central nervous system and in particular the mammalian cochlea. A novel bio-inspired wireless sensor node was developed that employs analog filtering techniques to perform time-frequency decomposition of a sensor signal, thus encompassing the functionality of the cochlea. The node then utilizes asynchronous sampling of the filtered signal to compress the signal prior to communication. This bio-inspired sensing architecture is extended to a feedback control application in order to overcome the traditional challenges currently faced by wireless control. In doing this, however, the network experiences high bandwidths of low-significance information exchange between nodes, resulting in some lost data. This study considers the impact of this lost data on the control capabilities of the bio-inspired control architecture and finds that it does not significantly impact the effectiveness of control.

  9. Biophysics and Thermodynamics: The Scientific Building Blocks of Bio-inspired Drug Delivery Nano Systems.

    PubMed

    Demetzos, Costas

    2015-06-01

    Biophysics and thermodynamics are considered as the scientific milestones for investigating the properties of materials. The relationship between the changes of temperature with the biophysical variables of biomaterials is important in the process of the development of drug delivery systems. Biophysics is a challenge sector of physics and should be used complementary with the biochemistry in order to discover new and promising technological platforms (i.e., drug delivery systems) and to disclose the 'silence functionality' of bio-inspired biological and artificial membranes. Thermal analysis and biophysical approaches in pharmaceuticals present reliable and versatile tools for their characterization and for the successful development of pharmaceutical products. The metastable phases of self-assembled nanostructures such as liposomes should be taken into consideration because they represent the thermal events can affect the functionality of advanced drug delivery nano systems. In conclusion, biophysics and thermodynamics are characterized as the building blocks for design and development of bio-inspired drug delivery systems.

  10. Bio-inspired hydrophobic modification of cellulose nanocrystals with castor oil.

    PubMed

    Shang, Qianqian; Liu, Chengguo; Hu, Yun; Jia, Puyou; Hu, Lihong; Zhou, Yonghong

    2018-07-01

    This work presents an efficient and environmentally friendly approach to generate hydrophobic cellulose nanocrystals (CNC) using thiol-containing castor oil (CO-SH) as a renewable hydrophobe with the assist of bio-inspired dopamine at room temperature. The modification process included the formation of the polydopamine (PDA) buffer layer on CNC surfaces and the Michael addition reaction between the catechol moieties of PDA coating and thiol groups of CO-SH. The morphology, crystalline structure, surface chemistry, thermal stability and hydrophobicity of the modified CNC were charactered by TEM, XRD, FT-IR, solid-state 13 C NMR, XPS, TGA and contact angle analysis. The modified CNC preserved cellulose crystallinity, displayed higher thermal stability than unmodified CNC, and was highly hydrophobic with a water contact angle of 95.6°. The simplicity and versatility of the surface modification strategy inspired by adhesive protein of mussel may promote rapid development of hydrophobic bio-based nanomaterials for various applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Integration of bio-inspired, control-based visual and olfactory data for the detection of an elusive target

    NASA Astrophysics Data System (ADS)

    Duong, Tuan A.; Duong, Nghi; Le, Duong

    2017-01-01

    In this paper, we present an integration technique using a bio-inspired, control-based visual and olfactory receptor system to search for elusive targets in practical environments where the targets cannot be seen obviously by either sensory data. Bio-inspired Visual System is based on a modeling of extended visual pathway which consists of saccadic eye movements and visual pathway (vertebrate retina, lateral geniculate nucleus and visual cortex) to enable powerful target detections of noisy, partial, incomplete visual data. Olfactory receptor algorithm, namely spatial invariant independent component analysis, that was developed based on data of old factory receptor-electronic nose (enose) of Caltech, is adopted to enable the odorant target detection in an unknown environment. The integration of two systems is a vital approach and sets up a cornerstone for effective and low-cost of miniaturized UAVs or fly robots for future DOD and NASA missions, as well as for security systems in Internet of Things environments.

  12. A bio-molecular inspired electronic architecture: bio-based device concepts for enhanced sensing (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Woolard, Dwight L.; Luo, Ying; Gelmont, Boris L.; Globus, Tatiana; Jensen, James O.

    2005-05-01

    A biological(bio)-molecular inspired electronic architecture is presented that offers the potential for defining nanoscale sensor platforms with enhanced capabilities for sensing terahertz (THz) frequency bio-signatures. This architecture makes strategic use of integrated biological elements to enable communication and high-level function within densely-packed nanoelectronic systems. In particular, this architecture introduces a new paradigm for establishing hybrid Electro-THz-Optical (ETO) communication channels where the THz-frequency spectral characteristics that are uniquely associated with the embedded bio-molecules are utilized directly. Since the functionality of this architecture is built upon the spectral characteristics of bio-molecules, this immediately allows for defining new methods for enhanced sensing of THz bio-signatures. First, this integrated sensor concept greatly facilitates the collection of THz bio-signatures associated with embedded bio-molecules via interactions with the time-dependent signals propagating through the nanoelectronic circuit. Second, it leads to a new Multi-State Spectral Sensing (MS3) approach where bio-signature information can be collected from multiple metastable state conformations. This paper will also introduce a new class of prototype devices that utilize THz-sensitive bio-molecules to achieve molecular-level sensing and functionality. Here, new simulation results are presented for a class of bio-molecular components that exhibit the prescribed type of ETO characteristics required for realizing integrated sensor platforms. Most noteworthy, this research derives THz spectral bio-signatures for organic molecules that are amenable to photo-induced metastable-state conformations and establishes an initial scientific foundation and design blueprint for an enhanced THz bio-signature sensing capability.

  13. Bio-inspired polarized skylight navigation: a review

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Wan, Yongqin; Li, Lijing

    2015-12-01

    The idea of using skylight polarization in navigation is learned from animals such as desert ants and honeybees. Various research groups have been working on the development of novel navigation systems inspired by polarized skylight. The research of background in polarized skylight navigation is introduced, and basic principle of the insects navigation is expatiated. Then, the research progress status at home and abroad in skylight polarization pattern, three bio-inspired polarized skylight navigation sensors and polarized skylight navigation are reviewed. Finally, the research focuses in the field of polarized skylight navigation are analyzed. At the same time, the trend of development and prospect in the future are predicted. It is believed that the review is helpful to people understand polarized skylight navigation and polarized skylight navigation sensors.

  14. Performance Analysis of the Enhanced Bio-Inspired Planning Algorithm for Rapid Situation Awareness Response

    DTIC Science & Technology

    2013-10-18

    low cost robot testbed. 15. SUBJECT TERMS Bio-inspired trajectory generation, in-situ obstacle avoidance, low-cost LEGO robots, vision- based...will not affect the solution optimality and thus will be regarded as zero. Following the LP motion strategy Eq. (1), the position vector of the Lego ...Lobatto (LGL) method [14], the position of Lego robot can be further represented as ’ 1 ,( )j p jD   ζ ζ (6) in which ,0 ,,..., T j j j

  15. Bio-inspired optimization algorithms for optical parameter extraction of dielectric materials: A comparative study

    NASA Astrophysics Data System (ADS)

    Ghulam Saber, Md; Arif Shahriar, Kh; Ahmed, Ashik; Hasan Sagor, Rakibul

    2016-10-01

    Particle swarm optimization (PSO) and invasive weed optimization (IWO) algorithms are used for extracting the modeling parameters of materials useful for optics and photonics research community. These two bio-inspired algorithms are used here for the first time in this particular field to the best of our knowledge. The algorithms are used for modeling graphene oxide and the performances of the two are compared. Two objective functions are used for different boundary values. Root mean square (RMS) deviation is determined and compared.

  16. A Review on Development and Applications of Bio-Inspired Superhydrophobic Textiles

    PubMed Central

    Ahmad, Ishaq; Kan, Chi-wai

    2016-01-01

    Bio-inspired engineering has been envisioned in a wide array of applications. All living bodies on Earth, including animals and plants, have well organized functional systems developed by nature. These naturally designed functional systems inspire scientists and engineers worldwide to mimic the system for practical applications by human beings. Researchers in the academic world and industries have been trying, for hundreds of years, to demonstrate how these natural phenomena could be translated into the real world to save lives, money and time. One of the most fascinating natural phenomena is the resistance of living bodies to contamination by dust and other pollutants, thus termed as self-cleaning phenomenon. This phenomenon has been observed in many plants, animals and insects and is termed as the Lotus Effect. With advancement in research and technology, attention has been given to the exploration of the underlying mechanisms of water repellency and self-cleaning. As a result, various concepts have been developed including Young’s equation, and Wenzel and Cassie–Baxter theories. The more we unravel this process, the more we get access to its implications and applications. A similar pursuit is emphasized in this review to explain the fundamental principles, mechanisms, past experimental approaches and ongoing research in the development of bio-inspired superhydrophobic textiles. PMID:28774012

  17. Quantum-Inspired Multidirectional Associative Memory With a Self-Convergent Iterative Learning.

    PubMed

    Masuyama, Naoki; Loo, Chu Kiong; Seera, Manjeevan; Kubota, Naoyuki

    2018-04-01

    Quantum-inspired computing is an emerging research area, which has significantly improved the capabilities of conventional algorithms. In general, quantum-inspired hopfield associative memory (QHAM) has demonstrated quantum information processing in neural structures. This has resulted in an exponential increase in storage capacity while explaining the extensive memory, and it has the potential to illustrate the dynamics of neurons in the human brain when viewed from quantum mechanics perspective although the application of QHAM is limited as an autoassociation. We introduce a quantum-inspired multidirectional associative memory (QMAM) with a one-shot learning model, and QMAM with a self-convergent iterative learning model (IQMAM) based on QHAM in this paper. The self-convergent iterative learning enables the network to progressively develop a resonance state, from inputs to outputs. The simulation experiments demonstrate the advantages of QMAM and IQMAM, especially the stability to recall reliability.

  18. Molecular Imprinting Technology in Quartz Crystal Microbalance (QCM) Sensors.

    PubMed

    Emir Diltemiz, Sibel; Keçili, Rüstem; Ersöz, Arzu; Say, Rıdvan

    2017-02-24

    Molecularly imprinted polymers (MIPs) as artificial antibodies have received considerable scientific attention in the past years in the field of (bio)sensors since they have unique features that distinguish them from natural antibodies such as robustness, multiple binding sites, low cost, facile preparation and high stability under extreme operation conditions (higher pH and temperature values, etc.). On the other hand, the Quartz Crystal Microbalance (QCM) is an analytical tool based on the measurement of small mass changes on the sensor surface. QCM sensors are practical and convenient monitoring tools because of their specificity, sensitivity, high accuracy, stability and reproducibility. QCM devices are highly suitable for converting the recognition process achieved using MIP-based memories into a sensor signal. Therefore, the combination of a QCM and MIPs as synthetic receptors enhances the sensitivity through MIP process-based multiplexed binding sites using size, 3D-shape and chemical function having molecular memories of the prepared sensor system toward the target compound to be detected. This review aims to highlight and summarize the recent progress and studies in the field of (bio)sensor systems based on QCMs combined with molecular imprinting technology.

  19. BATMAV - A Bio-Inspired Micro-Aerial Vehicle for Flapping Flight

    NASA Astrophysics Data System (ADS)

    Bunget, Gheorghe

    The main objective of the BATMAV project is the development of a biologically-inspired Micro Aerial Vehicle (MAV) with flexible and foldable wings for flapping flight. While flapping flight in MAV has been previously studied and a number of models were realized they usually had unfoldable wings actuated with DC motors and mechanical transmission to achieve flapping motion. This approach limits the system to a rather small number of degrees of freedom with little flexibility and introduces an additional disadvantage of a heavy flight platform. The BATMAV project aims at the development of a flight platform that features bat-inspired wings with smart materials-based flexible joints and artificial muscles, which has the potential to closely mimic the kinematics of the real mammalian flyer. The bat-like flight platform was selected after an extensive analysis of morphological and aerodynamic flight parameters of small birds, bats and large insects characterized by a superior maneuverability and wind gust rejection. Morphological and aerodynamic parameters were collected from existing literature and compared concluding that bat wing present a suitable platform that can be actuated efficiently using artificial muscles. Due to their wing camber variation, the bat species can operate effectively at a large range of speeds and exhibit a remarkably maneuverable and agile flight. Although numerous studies were recently investigated the flapping flight, flexible and foldable wings that reproduce the natural intricate and efficient flapping motion were not designed yet. A comprehensive analysis of flight styles in bats based on the data collected by Norberg (Norberg, 1976) and the engineering theory of robotic manipulators resulted in a 2 and 3-DOF models which managed to mimic the wingbeat cycle of the natural flyer. The flexible joints of the 2 and 2-DOF models were replicated using smart materials like superelastic Shape Memory Alloys (SMA). The results of these kinematic models can be used to optimize the lengths and the attachment locations of the actuator muscle-wires such that enough lift, thrust and wing stroke are obtained. Bat skeleton measurements were taken from real bats and modeled in SolidWorks to accurately reproduce bones and body via rapid prototyping methods. Much attention was paid specifically to achieving the comparable strength, elasticity, and range of motion of a naturally occurring bat. The wing joints of the BATMAV platform were fabricated using superelastic Shape Memory Alloys (SMA), a key technology for the development of an engineering skeleton structure. This has enabled a simple and straightforward connection between different bones while at the same time has preserved the full range of functionality of the natural role model. Therefore, several desktop models were designed, fabricated and assembled in order to study various materials used in design phase. As a whole, the BATMAV project consists of four major stages of development: the current phase -- design and fabrication of the skeletal structure of the flight platform, selection and testing different materials for the design of a compliant bat-like membrane, analysis of the kinematics and kinetics of bat flight in order to design a biomechanical muscle system for actuation, and design of the electrical control architecture to coordinate the platform flight.

  20. Spring-like electroactive actuators based on paper/ionogel/metal nanocomposites

    NASA Astrophysics Data System (ADS)

    Santaniello, Tommaso; Migliorini, Lorenzo; Borghi, Francesca; Yan, Yunsong; Rondinini, Sandra; Lenardi, Cristina; Milani, Paolo

    2018-06-01

    We report about a novel class of electroactive nanocomposites designed to perform spring-like actuation at low applied voltages. These systems are based on the impregnation of plain paper with a highly conductive ionogel, interpenetrating nanostructured conducting electrodes are printed on the paper/ionogel substrate by supersonic cluster beam deposition. Due to the structure and mechanical properties of the paper substrates, helix-shaped actuators can be obtained by coiling strips of the nanocomposites, thus enabling the production of electroactive components exhibiting motion up to two millimeters with a polarization of 5 V. Our approach constitutes a promising solution for the development of adaptive soft robotic architectures and smart flexible systems with bio-inspired motility.

  1. Self-healing nanocomposite using shape memory polymer and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Liu, Yingtao; Rajadas, Abhishek; Chattopadhyay, Aditi

    2013-04-01

    Carbon fiber reinforced composites are used in a wide range of applications in aerospace, mechanical, and civil structures. Due to the nature of material, most damage in composites, such as delaminations, are always barely visible to the naked eye, which makes it difficult to detect and repair. The investigation of biological systems has inspired the development and characterization of self-healing composites. This paper presents the development of a new type of self-healing material in order to impede damage progression and conduct in-situ damage repair in composite structures. Carbon nanotubes, which are highly conductive materials, are mixed with shape memory polymer to develop self-healing capability. The developed polymeric material is applied to carbon fiber reinforced composites to automatically heal the delamination between different layers. The carbon fiber reinforced composite laminates are manufactured using high pressure molding techniques. Tensile loading is applied to double cantilever beam specimens using an MTS hydraulic test frame. A direct current power source is used to generate heat within the damaged area. The application of thermal energy leads to re-crosslinking in shape memory polymers. Experimental results showed that the developed composite materials are capable of healing the matrix cracks and delaminations in the bonded areas of the test specimens. The developed self-healing material has the potential to be used as a novel structural material in mechanical, civil, aerospace applications.

  2. Towards a Coupled Vortex Particle and Acoustic Boundary Element Solver to Predict the Noise Production of Bio-Inspired Propulsion

    NASA Astrophysics Data System (ADS)

    Wagenhoffer, Nathan; Moored, Keith; Jaworski, Justin

    2016-11-01

    The design of quiet and efficient bio-inspired propulsive concepts requires a rapid, unified computational framework that integrates the coupled fluid dynamics with the noise generation. Such a framework is developed where the fluid motion is modeled with a two-dimensional unsteady boundary element method that includes a vortex-particle wake. The unsteady surface forces from the potential flow solver are then passed to an acoustic boundary element solver to predict the radiated sound in low-Mach-number flows. The use of the boundary element method for both the hydrodynamic and acoustic solvers permits dramatic computational acceleration by application of the fast multiple method. The reduced order of calculations due to the fast multipole method allows for greater spatial resolution of the vortical wake per unit of computational time. The coupled flow-acoustic solver is validated against canonical vortex-sound problems. The capability of the coupled solver is demonstrated by analyzing the performance and noise production of an isolated bio-inspired swimmer and of tandem swimmers.

  3. Design of Superhydrophobic Ultraoleophobic NyCo (POSTPRINT)

    DTIC Science & Technology

    2010-03-01

    angles [3, 4]. Recently, the wetting behavior of soft mate- rials has been studied intensively using nanotechnology and bio - mimicry . This interest...extends beyond the bio -inspired, lotus leaf property of superhydrophobicity to materials that exhibit similar properties to oils, thus dubbed ultraoleo

  4. Biomimetic Sniffing Improves the Detection Performance of a 3D Printed Nose of a Dog and a Commercial Trace Vapor Detector

    NASA Astrophysics Data System (ADS)

    Staymates, Matthew E.; Maccrehan, William A.; Staymates, Jessica L.; Kunz, Roderick R.; Mendum, Thomas; Ong, Ta-Hsuan; Geurtsen, Geoffrey; Gillen, Greg J.; Craven, Brent A.

    2016-12-01

    Unlike current chemical trace detection technology, dogs actively sniff to acquire an odor sample. Flow visualization experiments with an anatomically-similar 3D printed dog’s nose revealed the external aerodynamics during canine sniffing, where ventral-laterally expired air jets entrain odorant-laden air toward the nose, thereby extending the “aerodynamic reach” for inspiration of otherwise inaccessible odors. Chemical sampling and detection experiments quantified two modes of operation with the artificial nose-active sniffing and continuous inspiration-and demonstrated an increase in odorant detection by a factor of up to 18 for active sniffing. A 16-fold improvement in detection was demonstrated with a commercially-available explosives detector by applying this bio-inspired design principle and making the device “sniff” like a dog. These lessons learned from the dog may benefit the next-generation of vapor samplers for explosives, narcotics, pathogens, or even cancer, and could inform future bio-inspired designs for optimized sampling of odor plumes.

  5. Biomimetic Sniffing Improves the Detection Performance of a 3D Printed Nose of a Dog and a Commercial Trace Vapor Detector

    PubMed Central

    Staymates, Matthew E.; MacCrehan, William A.; Staymates, Jessica L.; Kunz, Roderick R.; Mendum, Thomas; Ong, Ta-Hsuan; Geurtsen, Geoffrey; Gillen, Greg J.; Craven, Brent A.

    2016-01-01

    Unlike current chemical trace detection technology, dogs actively sniff to acquire an odor sample. Flow visualization experiments with an anatomically-similar 3D printed dog’s nose revealed the external aerodynamics during canine sniffing, where ventral-laterally expired air jets entrain odorant-laden air toward the nose, thereby extending the “aerodynamic reach” for inspiration of otherwise inaccessible odors. Chemical sampling and detection experiments quantified two modes of operation with the artificial nose-active sniffing and continuous inspiration-and demonstrated an increase in odorant detection by a factor of up to 18 for active sniffing. A 16-fold improvement in detection was demonstrated with a commercially-available explosives detector by applying this bio-inspired design principle and making the device “sniff” like a dog. These lessons learned from the dog may benefit the next-generation of vapor samplers for explosives, narcotics, pathogens, or even cancer, and could inform future bio-inspired designs for optimized sampling of odor plumes. PMID:27906156

  6. Bio-inspired photon detection using chromophore/nanotube hybrids (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Léonard, François

    2017-05-01

    The human eye is an exquisite optical system with the ability to detect individual photons at room temperature. However, the complexity of this system, optimized over millions of years, has been difficult to reproduce using synthetic techniques. Here we discuss a bio-inspired approach for photon detection based on chromophore/nanotube hybrids, where the chromophore plays a similar role to the retinal molecule in the human eye, and the signal transduction is provided by electronic transport in the carbon nanotube. In this presentation, I will present the concept and discuss our progress in realizing this type of photodetection mechanism.

  7. Constrained VPH+: a local path planning algorithm for a bio-inspired crawling robot with customized ultrasonic scanning sensor.

    PubMed

    Rao, Akshay; Elara, Mohan Rajesh; Elangovan, Karthikeyan

    This paper aims to develop a local path planning algorithm for a bio-inspired, reconfigurable crawling robot. A detailed description of the robotic platform is first provided, and the suitability for deployment of each of the current state-of-the-art local path planners is analyzed after an extensive literature review. The Enhanced Vector Polar Histogram algorithm is described and reformulated to better fit the requirements of the platform. The algorithm is deployed on the robotic platform in crawling configuration and favorably compared with other state-of-the-art local path planning algorithms.

  8. The neuroscience of vision-based grasping: a functional review for computational modeling and bio-inspired robotics.

    PubMed

    Chinellato, Eris; Del Pobil, Angel P

    2009-06-01

    The topic of vision-based grasping is being widely studied in humans and in other primates using various techniques and with different goals. The fundamental related findings are reviewed in this paper, with the aim of providing researchers from different fields, including intelligent robotics and neural computation, a comprehensive but accessible view on the subject. A detailed description of the principal sensorimotor processes and the brain areas involved is provided following a functional perspective, in order to make this survey especially useful for computational modeling and bio-inspired robotic applications.

  9. Quantum design of photosynthesis for bio-inspired solar-energy conversion.

    PubMed

    Romero, Elisabet; Novoderezhkin, Vladimir I; van Grondelle, Rienk

    2017-03-15

    Photosynthesis is the natural process that converts solar photons into energy-rich products that are needed to drive the biochemistry of life. Two ultrafast processes form the basis of photosynthesis: excitation energy transfer and charge separation. Under optimal conditions, every photon that is absorbed is used by the photosynthetic organism. Fundamental quantum mechanics phenomena, including delocalization, underlie the speed, efficiency and directionality of the charge-separation process. At least four design principles are active in natural photosynthesis, and these can be applied practically to stimulate the development of bio-inspired, human-made energy conversion systems.

  10. Fog computing job scheduling optimization based on bees swarm

    NASA Astrophysics Data System (ADS)

    Bitam, Salim; Zeadally, Sherali; Mellouk, Abdelhamid

    2018-04-01

    Fog computing is a new computing architecture, composed of a set of near-user edge devices called fog nodes, which collaborate together in order to perform computational services such as running applications, storing an important amount of data, and transmitting messages. Fog computing extends cloud computing by deploying digital resources at the premise of mobile users. In this new paradigm, management and operating functions, such as job scheduling aim at providing high-performance, cost-effective services requested by mobile users and executed by fog nodes. We propose a new bio-inspired optimization approach called Bees Life Algorithm (BLA) aimed at addressing the job scheduling problem in the fog computing environment. Our proposed approach is based on the optimized distribution of a set of tasks among all the fog computing nodes. The objective is to find an optimal tradeoff between CPU execution time and allocated memory required by fog computing services established by mobile users. Our empirical performance evaluation results demonstrate that the proposal outperforms the traditional particle swarm optimization and genetic algorithm in terms of CPU execution time and allocated memory.

  11. Design of gecko-inspired fibrillar surfaces with strong attachment and easy-removal properties: a numerical analysis of peel-zone

    PubMed Central

    Zhou, Ming; Pesika, Noshir; Zeng, Hongbo; Wan, Jin; Zhang, Xiangjun; Meng, Yonggang; Wen, Shizhu; Tian, Yu

    2012-01-01

    Despite successful fabrication of gecko-inspired fibrillar surfaces with strong adhesion forces, how to achieve an easy-removal property becomes a major concern that may restrict the wide applications of these bio-inspired surfaces. Research on how geckos detach rapidly has inspired the design of novel adhesive surfaces with strong and reversible adhesion capabilities, which relies on further fundamental understanding of the peeling mechanisms. Recent studies showed that the peel-zone plays an important role in the peeling off of adhesive tapes or fibrillar surfaces. In this study, a numerical method was developed to evaluate peel-zone deformation and the resulting mechanical behaviour due to the deformations of fibrillar surfaces detaching from a smooth rigid substrate. The effect of the geometrical parameters of pillars and the stiffness of backing layer on the peel-zone and peel strength, and the strong attachment and easy-removal properties have been analysed to establish a design map for bio-inspired fibrillar surfaces, which shows that the optimized strong attachment and easy-removal properties can vary by over three orders of magnitude. The adhesion and peeling design map established provides new insights into the design and development of novel gecko-inspired fibrillar surfaces. PMID:22572030

  12. Implementing Signature Neural Networks with Spiking Neurons

    PubMed Central

    Carrillo-Medina, José Luis; Latorre, Roberto

    2016-01-01

    Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm—i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data—to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the absence of inhibitory connections. These parameters also modulate the memory capabilities of the network. The dynamical modes observed in the different informational dimensions in a given moment are independent and they only depend on the parameters shaping the information processing in this dimension. In view of these results, we argue that plasticity mechanisms inside individual cells and multicoding strategies can provide additional computational properties to spiking neural networks, which could enhance their capacity and performance in a wide variety of real-world tasks. PMID:28066221

  13. Implementing Signature Neural Networks with Spiking Neurons.

    PubMed

    Carrillo-Medina, José Luis; Latorre, Roberto

    2016-01-01

    Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm-i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data-to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the absence of inhibitory connections. These parameters also modulate the memory capabilities of the network. The dynamical modes observed in the different informational dimensions in a given moment are independent and they only depend on the parameters shaping the information processing in this dimension. In view of these results, we argue that plasticity mechanisms inside individual cells and multicoding strategies can provide additional computational properties to spiking neural networks, which could enhance their capacity and performance in a wide variety of real-world tasks.

  14. Reverse engineering the euglenoid movement: from unicellular swimmers to bio-inspired robots

    NASA Astrophysics Data System (ADS)

    Desimone, Antonio; Noselli, Giovanni; Arroyo, Marino

    Euglenids are unicelluar organisms living in freshwater, which are capable of moving either by beating a flagellum, or by executing dramatic shape changes. These are accomplished thanks to a complex structure made of interlocking pellicle strips, microtubules, and motor proteins. Relative sliding of the pellicle strips, suitably orchestrated, can cause the propagation of a bulge along the body, hence generating a propulsive force. We study the mechanisms by which the sliding of pellicle strips leads to shape control and locomotion, by means of both theory (through the mechanics of active surfaces and its coupling to computational fluid dynamics for the surrounding fluid) and experimental observations. Moreover, we implement them into a new concept of a surface with programmable shape, obtained by asssembling 3d-printed strips in a construct mimicking the biological template. We explore the range of possible geometries achievable by actuating these surfaces, to assess their potential in soft robotics applications. The subtle balance between constraints and flexibility leads to a wide variety of shapes that can be obtained with relatively simple controls, similar to the notion of morphological computation in biological systems. ERC Advanced Grant 340685 (MicroMotility).

  15. BioAir: Bio-Inspired Airborne Infrastructure Reconfiguration

    DTIC Science & Technology

    2016-01-01

    PI minicomputer powered by a different supply. The ODROID and Raspberry PI communicate via an Ethernet connection through a software interface named...HardKernel, an Atheros Wi-Fi card connected to it, and a dedicated power pack developed by RavPower. The hexarotor’s autopilot runs on a separate Raspberry

  16. Self-adaptive Bioinspired Hummingbird-wing Stimulated Triboelectric Nanogenerators.

    PubMed

    Ahmed, Abdelsalam; Hassan, Islam; Song, Peiyi; Gamaleldin, Mohamed; Radhi, Ali; Panwar, Nishtha; Tjin, Swee Chuan; Desoky, Ahmed Y; Sinton, David; Yong, Ken-Tye; Zu, Jean

    2017-12-07

    Bio-inspired technologies have remarkable potential for energy harvesting from clean and sustainable energy sources. Inspired by the hummingbird-wing structure, we propose a shape-adaptive, lightweight triboelectric nanogenerator (TENG) designed to exploit the unique flutter mechanics of the hummingbird for small-scale wind energy harvesting. The flutter is confined between two surfaces for contact electrification upon oscillation. We investigate the flutter mechanics on multiple contact surfaces with several free-standing and lightweight electrification designs. The flutter driven-TENGs are deposited on simplified wing designs to match the electrical performance with variations in wind speed. The hummingbird TENG (H-TENG) device weighed 10 g, making it one of the lightest TENG harvesters in the literature. With a six TENG network, the hybrid design attained a 1.5 W m -2 peak electrical output at 7.5 m/s wind speed with an approximately linear increase in charge rate with the increased number of TENG harvesters. We demonstrate the ability of the H-TENG networks to operate Internet of Things (IoT) devices from sustainable and renewable energy sources.

  17. A biopolymer-like metal enabled hybrid material with exceptional mechanical prowess

    DOE PAGES

    Zhang, Junsong; Cui, Lishan; Jiang, Daqiang; ...

    2015-02-10

    In this study, the design principles for naturally occurring biological materials have inspired us to develop next-generation engineering materials with remarkable performance. Nacre, commonly referred to as nature's armor, is renowned for its unusual combination of strength and toughness. Nature's wisdom in nacre resides in its elaborate structural design and the judicious placement of a unique organic biopolymer with intelligent deformation features. However, up to now, it is still a challenge to transcribe the biopolymer's deformation attributes into a stronger substitute in the design of new materials. In this study, we propose a new design strategy that employs shape memorymore » alloy to transcribe the "J-curve'' mechanical response and uniform molecular/atomic level deformation of the organic biopolymer in the design of high-performance hybrid materials. This design strategy is verified in a TiNi-Ti 3Sn model material system. The model material demonstrates an exceptional combination of mechanical properties that are superior to other high-performance metal-based lamellar composites known to date. Our design strategy creates new opportunities for the development of high-performance bio-inspired materials.« less

  18. Bio-inspired secure data mules for medical sensor network

    NASA Astrophysics Data System (ADS)

    Muraleedharan, Rajani; Gao, Weihua; Osadciw, Lisa A.

    2010-04-01

    Medical sensor network consist of heterogeneous nodes, wireless, mobile and wired with varied functionality. The resources at each sensor require to be exploited minimally while sensitive information is sensed and communicated to its access points using secure data mules. In this paper, we analyze the flat architecture, where different functionality and priority information require varied resources forms a non-deterministic polynomial-time hard problem. Hence, a bio-inspired data mule that helps to obtain dynamic multi-objective solution with minimal resource and secure path is applied. The performance of the proposed approach is based on reduced latency, data delivery rate and resource cost.

  19. RAIN: A Bio-Inspired Communication and Data Storage Infrastructure.

    PubMed

    Monti, Matteo; Rasmussen, Steen

    2017-01-01

    We summarize the results and perspectives from a companion article, where we presented and evaluated an alternative architecture for data storage in distributed networks. We name the bio-inspired architecture RAIN, and it offers file storage service that, in contrast with current centralized cloud storage, has privacy by design, is open source, is more secure, is scalable, is more sustainable, has community ownership, is inexpensive, and is potentially faster, more efficient, and more reliable. We propose that a RAIN-style architecture could form the backbone of the Internet of Things that likely will integrate multiple current and future infrastructures ranging from online services and cryptocurrency to parts of government administration.

  20. Operant conditioning: a minimal components requirement in artificial spiking neurons designed for bio-inspired robot's controller

    PubMed Central

    Cyr, André; Boukadoum, Mounir; Thériault, Frédéric

    2014-01-01

    In this paper, we investigate the operant conditioning (OC) learning process within a bio-inspired paradigm, using artificial spiking neural networks (ASNN) to act as robot brain controllers. In biological agents, OC results in behavioral changes learned from the consequences of previous actions, based on progressive prediction adjustment from rewarding or punishing signals. In a neurorobotics context, virtual and physical autonomous robots may benefit from a similar learning skill when facing unknown and unsupervised environments. In this work, we demonstrate that a simple invariant micro-circuit can sustain OC in multiple learning scenarios. The motivation for this new OC implementation model stems from the relatively complex alternatives that have been described in the computational literature and recent advances in neurobiology. Our elementary kernel includes only a few crucial neurons, synaptic links and originally from the integration of habituation and spike-timing dependent plasticity as learning rules. Using several tasks of incremental complexity, our results show that a minimal neural component set is sufficient to realize many OC procedures. Hence, with the proposed OC module, designing learning tasks with an ASNN and a bio-inspired robot context leads to simpler neural architectures for achieving complex behaviors. PMID:25120464

  1. Gas barrier properties of bio-inspired Laponite-LC polymer hybrid films.

    PubMed

    Tritschler, Ulrich; Zlotnikov, Igor; Fratzl, Peter; Schlaad, Helmut; Grüner, Simon; Cölfen, Helmut

    2016-05-26

    Bio-inspired Laponite (clay)-liquid crystal (LC) polymer composite materials with high clay fractions (>80%) and a high level of orientation of the clay platelets, i.e. with structural features similar to the ones found in natural nacre, have been shown to exhibit a promising behavior in the context of reduced oxygen transmission. Key characteristics of these bio-inspired composite materials are their high inorganic content, high level of exfoliation and orientation of the clay platelets, and the use of a LC polymer forming the organic matrix in between the Laponite particles. Each single feature may be beneficial to increase the materials gas barrier property rendering this composite a promising system with advantageous barrier capacities. In this detailed study, Laponite/LC polymer composite coatings with different clay loadings were investigated regarding their oxygen transmission rate. The obtained gas barrier performance was linked to the quality, respective Laponite content and the underlying composite micro- and nanostructure of the coatings. Most efficient oxygen barrier properties were observed for composite coatings with 83% Laponite loading that exhibit a structure similar to sheet-like nacre. Further on, advantageous mechanical properties of these Laponite/LC polymer composites reported previously give rise to a multifunctional composite system.

  2. Operant conditioning: a minimal components requirement in artificial spiking neurons designed for bio-inspired robot's controller.

    PubMed

    Cyr, André; Boukadoum, Mounir; Thériault, Frédéric

    2014-01-01

    In this paper, we investigate the operant conditioning (OC) learning process within a bio-inspired paradigm, using artificial spiking neural networks (ASNN) to act as robot brain controllers. In biological agents, OC results in behavioral changes learned from the consequences of previous actions, based on progressive prediction adjustment from rewarding or punishing signals. In a neurorobotics context, virtual and physical autonomous robots may benefit from a similar learning skill when facing unknown and unsupervised environments. In this work, we demonstrate that a simple invariant micro-circuit can sustain OC in multiple learning scenarios. The motivation for this new OC implementation model stems from the relatively complex alternatives that have been described in the computational literature and recent advances in neurobiology. Our elementary kernel includes only a few crucial neurons, synaptic links and originally from the integration of habituation and spike-timing dependent plasticity as learning rules. Using several tasks of incremental complexity, our results show that a minimal neural component set is sufficient to realize many OC procedures. Hence, with the proposed OC module, designing learning tasks with an ASNN and a bio-inspired robot context leads to simpler neural architectures for achieving complex behaviors.

  3. Spontaneous water filtration of bio-inspired membrane

    NASA Astrophysics Data System (ADS)

    Kim, Kiwoong; Kim, Hyejeong; Lee, Sang Joon

    2016-11-01

    Water is one of the most important elements for plants, because it is essential for various metabolic activities. Thus, water management systems of vascular plants, such as water collection and water filtration have been optimized through a long history. In this view point, bio-inspired technologies can be developed by mimicking the nature's strategies for the survival of the fittest. However, most of the underlying biophysical features of the optimized water management systems remain unsolved In this study, the biophysical characteristics of water filtration phenomena in the roots of mangrove are experimentally investigated. To understand water-filtration features of the mangrove, the morphological structures of its roots are analyzed. The electrokinetic properties of the root surface are also examined. Based on the quantitatively analyzed information, filtration of sodium ions in the roots are visualized. Motivated by this mechanism, spontaneous desalination mechanism in the root of mangrove is proposed by combining the electrokinetics and hydrodynamic transportation of ions. This study would be helpful for understanding the water-filtration mechanism of the roots of mangrove and developing a new bio-inspired desalination technology. This research was financially supported by the National Research Foundation (NRF) of Korea (Contract Grant Number: 2008-0061991).

  4. Metal muscles and nerves—a self-sensing SMA-actuated hand concept

    NASA Astrophysics Data System (ADS)

    Simone, F.; Rizzello, G.; Seelecke, S.

    2017-09-01

    Bio-inspired hand-like grippers actuated by Shape Memory Alloy (SMA) wires represent an emerging new technology with potential applications in many different fields, ranging from industrial assembly processes to biomedical systems. The inherently high energy density makes SMAs a natural choice for compact, lightweight, and silent actuator systems capable of producing a high amount of work, such as hand prostheses or robotic systems in industrial human/machine environments. In this work, a concept for a compact and versatile gripping system is developed, in which SMA wires are implemented as antagonistic muscles actuating an artificial hand with three fingers. In order to combine high gripping force with sufficient actuation speed, the muscle implementation pursues a multi-wire concept with several 0.1 mm diameter NiTi wires connected in parallel, in order to increase the surface-to-volume ratio for accelerated cooling. The paper starts with an illustration of the design concept of an individual 3-phalanx-finger, along with kinematic considerations for optimal placement of SMA wires. Three identical fingers are subsequently fabricated via 3D printing and assembled into a hand-like gripper. The maximum displacement of each finger phalanx is measured, and an average phalanxes dynamic responsiveness is evaluated. SMA self-sensing is documented by experiments relating the wires change in resistance to the finger motion. Several finger force measurements are also performed. The versatility of the gripper is finally documented by displaying a variety of achievable grasping configurations.

  5. Mechanical Properties and Tensile Failure Analysis of Novel Bio-absorbable Mg-Zn-Cu and Mg-Zn-Se Alloys for Endovascular Applications

    PubMed Central

    Persaud-Sharma, Dharam; Budiansky, Noah; McGoron, Anthony J.

    2013-01-01

    In this paper, the mechanical properties and tensile failure mechanism of two novel bio-absorbable as-cast Mg-Zn-Se and Mg-Zn-Cu alloys for endovascular medical applications are characterized. Alloys were manufactured using an ARC melting process and tested as-cast with compositions of Mg-Zn-Se and Mg-Zn-Cu, being 98/1/1 wt.% respectively. Nanoindentation testing conducted at room temperature was used to characterize the elastic modulus (E) and surface hardness (H) for both the bare alloys and the air formed oxide layer. As compared to currently available shape memory alloys and degradable as-cast alloys, these experimental alloys possess superior as-cast mechanical properties that can increase their biocompatibility, degradation kinetics, and the potential for medical device creation. PMID:23543822

  6. Clues for biomimetics from natural composite materials

    PubMed Central

    Lapidot, Shaul; Meirovitch, Sigal; Sharon, Sigal; Heyman, Arnon; Kaplan, David L; Shoseyov, Oded

    2013-01-01

    Bio-inspired material systems are derived from different living organisms such as plants, arthropods, mammals and marine organisms. These biomaterial systems from nature are always present in the form of composites, with molecular-scale interactions optimized to direct functional features. With interest in replacing synthetic materials with natural materials due to biocompatibility, sustainability and green chemistry issues, it is important to understand the molecular structure and chemistry of the raw component materials to also learn from their natural engineering, interfaces and interactions leading to durable and highly functional material architectures. This review will focus on applications of biomaterials in single material forms, as well as biomimetic composites inspired by natural organizational features. Examples of different natural composite systems will be described, followed by implementation of the principles underlying their composite organization into artificial bio-inspired systems for materials with new functional features for future medicine. PMID:22994958

  7. Clues for biomimetics from natural composite materials.

    PubMed

    Lapidot, Shaul; Meirovitch, Sigal; Sharon, Sigal; Heyman, Arnon; Kaplan, David L; Shoseyov, Oded

    2012-09-01

    Bio-inspired material systems are derived from different living organisms such as plants, arthropods, mammals and marine organisms. These biomaterial systems from nature are always present in the form of composites, with molecular-scale interactions optimized to direct functional features. With interest in replacing synthetic materials with natural materials due to biocompatibility, sustainability and green chemistry issues, it is important to understand the molecular structure and chemistry of the raw component materials to also learn from their natural engineering, interfaces and interactions leading to durable and highly functional material architectures. This review will focus on applications of biomaterials in single material forms, as well as biomimetic composites inspired by natural organizational features. Examples of different natural composite systems will be described, followed by implementation of the principles underlying their composite organization into artificial bio-inspired systems for materials with new functional features for future medicine.

  8. A survey on bio inspired meta heuristic based clustering protocols for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Datta, A.; Nandakumar, S.

    2017-11-01

    Recent studies have shown that utilizing a mobile sink to harvest and carry data from a Wireless Sensor Network (WSN) can improve network operational efficiency as well as maintain uniform energy consumption by the sensor nodes in the network. Due to Sink mobility, the path between two sensor nodes continuously changes and this has a profound effect on the operational longevity of the network and a need arises for a protocol which utilizes minimal resources in maintaining routes between the mobile sink and the sensor nodes. Swarm Intelligence based techniques inspired by the foraging behavior of ants, termites and honey bees can be artificially simulated and utilized to solve real wireless network problems. The author presents a brief survey on various bio inspired swarm intelligence based protocols used in routing data in wireless sensor networks while outlining their general principle and operation.

  9. Bio-inspired grasp control in a robotic hand with massive sensorial input.

    PubMed

    Ascari, Luca; Bertocchi, Ulisse; Corradi, Paolo; Laschi, Cecilia; Dario, Paolo

    2009-02-01

    The capability of grasping and lifting an object in a suitable, stable and controlled way is an outstanding feature for a robot, and thus far, one of the major problems to be solved in robotics. No robotic tools able to perform an advanced control of the grasp as, for instance, the human hand does, have been demonstrated to date. Due to its capital importance in science and in many applications, namely from biomedics to manufacturing, the issue has been matter of deep scientific investigations in both the field of neurophysiology and robotics. While the former is contributing with a profound understanding of the dynamics of real-time control of the slippage and grasp force in the human hand, the latter tries more and more to reproduce, or take inspiration by, the nature's approach, by means of hardware and software technology. On this regard, one of the major constraints robotics has to overcome is the real-time processing of a large amounts of data generated by the tactile sensors while grasping, which poses serious problems to the available computational power. In this paper a bio-inspired approach to tactile data processing has been followed in order to design and test a hardware-software robotic architecture that works on the parallel processing of a large amount of tactile sensing signals. The working principle of the architecture bases on the cellular nonlinear/neural network (CNN) paradigm, while using both hand shape and spatial-temporal features obtained from an array of microfabricated force sensors, in order to control the sensory-motor coordination of the robotic system. Prototypical grasping tasks were selected to measure the system performances applied to a computer-interfaced robotic hand. Successful grasps of several objects, completely unknown to the robot, e.g. soft and deformable objects like plastic bottles, soft balls, and Japanese tofu, have been demonstrated.

  10. Mechanism study of biopolymer hair as a coupled thermo-water responsive smart material

    NASA Astrophysics Data System (ADS)

    Xiao, Xueliang; Zhou, Hongtao; Qian, Kun

    2017-03-01

    Animal hairs existing broadly in nature are found to be effectively responsive to stimuli of heat and water in sequence for shape deformation and recovery, namely, coupled shape memory function (CSMF). In the paper, the ability of thermo-water sensitive CSMF was first time investigated for animal hairs, the structural and molecular networks for net-points and switches were therefrom identified. Experimentally, animal hair manifested a high ability of shape fixation in thermal processing and good shape recovery by water stimulus. Characterizations of two stimuli (heating and hydration) were performed systematically on hair’s deformation, recovery, viscoelasticity and chemical components (crystalline phase, key bonds inamorphous area). The variations of related chemical components in molecular networks were also explored. A hybrid structural network model was thereafter proposed to interpret the thermo-water sensitive CSMF of hair. This study of two-sequential-stimuli CSMF is original and inspired to explore more complex functions of other smart natural materials and expected to make much smarter synthetic polymers.

  11. Flytrap-inspired robot using structurally integrated actuation based on bistability and a developable surface.

    PubMed

    Kim, Seung-Won; Koh, Je-Sung; Lee, Jong-Gu; Ryu, Junghyun; Cho, Maenghyo; Cho, Kyu-Jin

    2014-09-01

    The Venus flytrap uses bistability, the structural characteristic of its leaf, to actuate the leaf's rapid closing motion for catching its prey. This paper presents a flytrap-inspired robot and novel actuation mechanism that exploits the structural characteristics of this structure and a developable surface. We focus on the concept of exploiting structural characteristics for actuation. Using shape memory alloy (SMA), the robot actuates artificial leaves made from asymmetrically laminated carbon fiber reinforced prepregs. We exploit two distinct structural characteristics of the leaves. First, the bistability acts as an implicit actuator enabling rapid morphing motion. Second, the developable surface has a kinematic constraint that constrains the curvature of the artificial leaf. Due to this constraint, the curved artificial leaf can be unbent by bending the straight edge orthogonal to the curve. The bending propagates from one edge to the entire surface and eventually generates an overall shape change. The curvature change of the artificial leaf is 18 m(-1) within 100 ms when closing. Experiments show that these actuation mechanisms facilitate the generation of a rapid and large morphing motion of the flytrap robot by one-way actuation of the SMA actuators at a local position.

  12. Drawing inspiration from biological optical systems

    NASA Astrophysics Data System (ADS)

    Wolpert, H. D.

    2009-08-01

    Bio-Mimicking/Bio-Inspiration: How can we not be inspired by Nature? Life has evolved on earth over the last 3.5 to 4 billion years. Materials formed during this time were not toxic; they were created at low temperatures and low pressures unlike many of the materials developed today. The natural materials formed are self-assembled, multifunctional, nonlinear, complex, adaptive, self-repairing and biodegradable. The designs that failed are fossils. Those that survived are the success stories. Natural materials are mostly formed from organics, inorganic crystals and amorphous phases. The materials make economic sense by optimizing the design of the structures or systems to meet multiple needs. We constantly "see" many similar strategies in approaches, between man and nature, but we seldom look at the details of natures approaches. The power of image processing, in many of natures creatures, is a detail that is often overlooked. Seldon does the engineer interact with the biologist and learn what nature has to teach us. The variety and complexity of biological materials and the optical systems formed should inspire us.

  13. Natural and bio-inspired underwater adhesives: Current progress and new perspectives

    NASA Astrophysics Data System (ADS)

    Cui, Mengkui; Ren, Susu; Wei, Shicao; Sun, Chengjun; Zhong, Chao

    2017-11-01

    Many marine organisms harness diverse protein molecules as underwater adhesives to achieve strong and robust interfacial adhesion under dynamic and turbulent environments. Natural underwater adhesion phenomena thus provide inspiration for engineering adhesive materials that can perform in water or high-moisture settings for biomedical and industrial applications. Here we review examples of biological adhesives to show the molecular features of natural adhesives and discuss how such knowledge serves as a heuristic guideline for the rational design of biologically inspired underwater adhesives. In view of future bio-inspired research, we propose several potential opportunities, either in improving upon current L-3, 4-dihydroxyphenylalanine-based and coacervates-enabled adhesives with new features or engineering conceptually new types of adhesives that recapitulate important characteristics of biological adhesives. We underline the importance of viewing natural adhesives as dynamic materials, which owe their outstanding performance to the cellular coordination of protein expression, delivery, deposition, assembly, and curing of corresponding components with spatiotemporal control. We envision that the emerging synthetic biology techniques will provide great opportunities for advancing both fundamental and application aspects of underwater adhesives.

  14. Molecular Imprinting Technology in Quartz Crystal Microbalance (QCM) Sensors

    PubMed Central

    Emir Diltemiz, Sibel; Keçili, Rüstem; Ersöz, Arzu; Say, Rıdvan

    2017-01-01

    Molecularly imprinted polymers (MIPs) as artificial antibodies have received considerable scientific attention in the past years in the field of (bio)sensors since they have unique features that distinguish them from natural antibodies such as robustness, multiple binding sites, low cost, facile preparation and high stability under extreme operation conditions (higher pH and temperature values, etc.). On the other hand, the Quartz Crystal Microbalance (QCM) is an analytical tool based on the measurement of small mass changes on the sensor surface. QCM sensors are practical and convenient monitoring tools because of their specificity, sensitivity, high accuracy, stability and reproducibility. QCM devices are highly suitable for converting the recognition process achieved using MIP-based memories into a sensor signal. Therefore, the combination of a QCM and MIPs as synthetic receptors enhances the sensitivity through MIP process-based multiplexed binding sites using size, 3D-shape and chemical function having molecular memories of the prepared sensor system toward the target compound to be detected. This review aims to highlight and summarize the recent progress and studies in the field of (bio)sensor systems based on QCMs combined with molecular imprinting technology. PMID:28245588

  15. Comparison between Frame-Constrained Fix-Pixel-Value and Frame-Free Spiking-Dynamic-Pixel ConvNets for Visual Processing

    PubMed Central

    Farabet, Clément; Paz, Rafael; Pérez-Carrasco, Jose; Zamarreño-Ramos, Carlos; Linares-Barranco, Alejandro; LeCun, Yann; Culurciello, Eugenio; Serrano-Gotarredona, Teresa; Linares-Barranco, Bernabe

    2012-01-01

    Most scene segmentation and categorization architectures for the extraction of features in images and patches make exhaustive use of 2D convolution operations for template matching, template search, and denoising. Convolutional Neural Networks (ConvNets) are one example of such architectures that can implement general-purpose bio-inspired vision systems. In standard digital computers 2D convolutions are usually expensive in terms of resource consumption and impose severe limitations for efficient real-time applications. Nevertheless, neuro-cortex inspired solutions, like dedicated Frame-Based or Frame-Free Spiking ConvNet Convolution Processors, are advancing real-time visual processing. These two approaches share the neural inspiration, but each of them solves the problem in different ways. Frame-Based ConvNets process frame by frame video information in a very robust and fast way that requires to use and share the available hardware resources (such as: multipliers, adders). Hardware resources are fixed- and time-multiplexed by fetching data in and out. Thus memory bandwidth and size is important for good performance. On the other hand, spike-based convolution processors are a frame-free alternative that is able to perform convolution of a spike-based source of visual information with very low latency, which makes ideal for very high-speed applications. However, hardware resources need to be available all the time and cannot be time-multiplexed. Thus, hardware should be modular, reconfigurable, and expansible. Hardware implementations in both VLSI custom integrated circuits (digital and analog) and FPGA have been already used to demonstrate the performance of these systems. In this paper we present a comparison study of these two neuro-inspired solutions. A brief description of both systems is presented and also discussions about their differences, pros and cons. PMID:22518097

  16. Comparison between Frame-Constrained Fix-Pixel-Value and Frame-Free Spiking-Dynamic-Pixel ConvNets for Visual Processing.

    PubMed

    Farabet, Clément; Paz, Rafael; Pérez-Carrasco, Jose; Zamarreño-Ramos, Carlos; Linares-Barranco, Alejandro; Lecun, Yann; Culurciello, Eugenio; Serrano-Gotarredona, Teresa; Linares-Barranco, Bernabe

    2012-01-01

    Most scene segmentation and categorization architectures for the extraction of features in images and patches make exhaustive use of 2D convolution operations for template matching, template search, and denoising. Convolutional Neural Networks (ConvNets) are one example of such architectures that can implement general-purpose bio-inspired vision systems. In standard digital computers 2D convolutions are usually expensive in terms of resource consumption and impose severe limitations for efficient real-time applications. Nevertheless, neuro-cortex inspired solutions, like dedicated Frame-Based or Frame-Free Spiking ConvNet Convolution Processors, are advancing real-time visual processing. These two approaches share the neural inspiration, but each of them solves the problem in different ways. Frame-Based ConvNets process frame by frame video information in a very robust and fast way that requires to use and share the available hardware resources (such as: multipliers, adders). Hardware resources are fixed- and time-multiplexed by fetching data in and out. Thus memory bandwidth and size is important for good performance. On the other hand, spike-based convolution processors are a frame-free alternative that is able to perform convolution of a spike-based source of visual information with very low latency, which makes ideal for very high-speed applications. However, hardware resources need to be available all the time and cannot be time-multiplexed. Thus, hardware should be modular, reconfigurable, and expansible. Hardware implementations in both VLSI custom integrated circuits (digital and analog) and FPGA have been already used to demonstrate the performance of these systems. In this paper we present a comparison study of these two neuro-inspired solutions. A brief description of both systems is presented and also discussions about their differences, pros and cons.

  17. Synthesis of nanobelt-like 1-dimensional silver/nanocarbon hybrid materials for flexible and wearable electroncs.

    PubMed

    Han, Joong Tark; Jang, Jeong In; Cho, Joon Young; Hwang, Jun Yeon; Woo, Jong Seok; Jeong, Hee Jin; Jeong, Seung Yol; Seo, Seon Hee; Lee, Geon-Woong

    2017-07-10

    Most synthetic processes of metallic nanostructures were assisted by organic/inorganic or polymeric materials to control their shapes to one-dimension or two-dimension. However, these additives have to be removed after synthesis of metal nanostructures for applications. Here we report a straightforward method for the low-temperature and additive-free synthesis of nanobelt-like silver nanostructures templated by nanocarbon (NC) materials via bio-inspired shape control by introducing supramolecular 2-ureido-4[1H]pyrimidinone (UPy) groups into the NC surface. The growth of the Ag nanobelt structure was found to be induced by these UPy groups through observation of the selective formation of Ag nanobelts on UPy-modified carbon nanotubes and graphene surfaces. The synthesized NC/Ag nanobelt hybrid materials were subsequently used to fabricate the highly conductive fibres (>1000S/cm) that can function as a conformable electrode and highly tolerant strain sensor, as well as a highly conductive and robust paper (>10000S/cm after thermal treatment).

  18. Bio-inspired display of polarization information using selected visual cues

    NASA Astrophysics Data System (ADS)

    Yemelyanov, Konstantin M.; Lin, Shih-Schon; Luis, William Q.; Pugh, Edward N., Jr.; Engheta, Nader

    2003-12-01

    For imaging systems the polarization of electromagnetic waves carries much potentially useful information about such features of the world as the surface shape, material contents, local curvature of objects, as well as about the relative locations of the source, object and imaging system. The imaging system of the human eye however, is "polarization-blind", and cannot utilize the polarization of light without the aid of an artificial, polarization-sensitive instrument. Therefore, polarization information captured by a man-made polarimetric imaging system must be displayed to a human observer in the form of visual cues that are naturally processed by the human visual system, while essentially preserving the other important non-polarization information (such as spectral and intensity information) in an image. In other words, some forms of sensory substitution are needed for representing polarization "signals" without affecting other visual information such as color and brightness. We are investigating several bio-inspired representational methodologies for mapping polarization information into visual cues readily perceived by the human visual system, and determining which mappings are most suitable for specific applications such as object detection, navigation, sensing, scene classifications, and surface deformation. The visual cues and strategies we are exploring are the use of coherently moving dots superimposed on image to represent various range of polarization signals, overlaying textures with spatial and/or temporal signatures to segregate regions of image with differing polarization, modulating luminance and/or color contrast of scenes in terms of certain aspects of polarization values, and fusing polarization images into intensity-only images. In this talk, we will present samples of our findings in this area.

  19. Recent progress in tungsten oxides based memristors and their neuromorphological applications

    NASA Astrophysics Data System (ADS)

    Qu, Bo; Younis, Adnan; Chu, Dewei

    2016-09-01

    The advance in conventional silicon based semiconductor industry is now becoming indeterminacy as it still along the road of Moore's Law and concomitant problems associated with it are the emergence of a number of practical issues such as short channel effect. In terms of memory applications, it is generally believed that transistors based memory devices will approach to their scaling limits up to 2018. Therefore, one of the most prominent challenges today in semiconductor industry is the need of a new memory technology which is able to combine the best characterises of current devices. The resistive switching memories which are regarded as "memristors" thus gain great attentions thanks to their specific nonlinear electrical properties. More importantly, their behaviour resembles with the transmission characteristic of synapse in biology. Therefore, the research of synapses biomimetic devices based on memristor will certainly bring a great research prospect in studying synapse emulation as well as building artificial neural networks. Tungsten oxides (WO x ) exhibits many essential characteristics as a great candidate for memristive devices including: accredited endurance (over 105 cycles), stoichiometric flexibility, complimentary metal-oxide-semiconductor (CMOS) process compatibility and configurable properties including non-volatile rectification, memorization and learning functions. Herein, recent progress on Tungsten oxide based materials and its associating memory devices had been reviewed. The possible implementation of this material as a bio-inspired artificial synapse is also highlighted. The penultimate section summaries the current research progress for tungsten oxide based biological synapses and end up with several proposals that have been suggested for possible future developments.

  20. Bio-inspired surfactant assisted nano-catalyst impregnation of Solid-Oxide Fuel Cell (SOFC) electrodes

    DOE PAGES

    Ozmen, Ozcan; Zondlo, John W.; Lee, Shiwoo; ...

    2015-11-02

    A bio-inspired surfactant was utilized to assist in the efficient impregnation of a nano-CeO₂ catalyst throughout both porous Solid Oxide Fuel Cells (SOFC’s) electrodes simultaneously. The process included the initial modification of electrode pore walls with a polydopamine film. The cell was then submersed into a cerium salt solution. The amount of nano-CeO₂ deposited per impregnation step increased by 3.5 times by utilizing this two-step protocol in comparison to a conventional drip impregnation method. The impregnated cells exhibited a 20% higher power density than a baseline cell without the nano-catalyst at 750°C (using humid H₂ fuel).

  1. Formation Control for Water-Jet USV Based on Bio-Inspired Method

    NASA Astrophysics Data System (ADS)

    Fu, Ming-yu; Wang, Duan-song; Wang, Cheng-long

    2018-03-01

    The formation control problem for underactuated unmanned surface vehicles (USVs) is addressed by a distributed strategy based on virtual leader strategy. The control system takes account of disturbance induced by external environment. With the coordinate transformation, the advantage of the proposed scheme is that the control point can be any point of the ship instead of the center of gravity. By introducing bio-inspired model, the formation control problem is addressed with backstepping method. This avoids complicated computation, simplifies the control law, and smoothes the input signals. The system uniform ultimate boundness is proven by Lyapunov stability theory with Young inequality. Simulation results are presented to verify the effectiveness and robust of the proposed controller.

  2. Bio-inspired computational design of iron catalysts for the hydrogenation of carbon dioxide.

    PubMed

    Yang, Xinzheng

    2015-08-25

    Inspired by the active site structure of monoiron hydrogenase, a series of iron complexes are built using experimentally ready-made acylmethylpyridinol and aliphatic PNP pincer ligands. Density functional theory calculations indicate that the newly designed iron complexes are very promising to catalyze the formation of formic acid from H2 and CO2.

  3. Parametric analysis of a shape memory alloy actuated arm

    NASA Astrophysics Data System (ADS)

    Wright, Cody; Bilgen, Onur

    2016-04-01

    Using a pair of antagonistic Shape Memory Allow (SMA) wires, it may be possible to produce a mechanism that replicates human musculoskeletal movement. The movement of interest is the articulation of the elbow joint actuated by the biceps brachii muscle. In an effort to understand the bio-mechanics of the arm, a single degree of freedom crankslider mechanism is used to model the movement of the arm induced by the biceps brachii muscle. First, a purely kinematical analysis is performed on a rigid body crank-slider. Force analysis is also done modeling the muscle as a simple linear spring. Torque, rocking angle, and energy are calculated for a range of crank-slider geometries. The SMA wire characteristics are experimentally determined for the martensite detwinned and full austenite phases. Using the experimental data, an idealized actuator characteristic curve is produced for the SMA wire. Kinematic and force analyses are performed on the nonlinear wire characteristic curve and a linearized wire curve; both cases are applied to the crankslider mechanism. Performance metrics for both cases are compared, followed by discussion.

  4. Biomimetic vibrissal sensing for robots

    PubMed Central

    Pearson, Martin J.; Mitchinson, Ben; Sullivan, J. Charles; Pipe, Anthony G.; Prescott, Tony J.

    2011-01-01

    Active vibrissal touch can be used to replace or to supplement sensory systems such as computer vision and, therefore, improve the sensory capacity of mobile robots. This paper describes how arrays of whisker-like touch sensors have been incorporated onto mobile robot platforms taking inspiration from biology for their morphology and control. There were two motivations for this work: first, to build a physical platform on which to model, and therefore test, recent neuroethological hypotheses about vibrissal touch; second, to exploit the control strategies and morphology observed in the biological analogue to maximize the quality and quantity of tactile sensory information derived from the artificial whisker array. We describe the design of a new whiskered robot, Shrewbot, endowed with a biomimetic array of individually controlled whiskers and a neuroethologically inspired whisking pattern generation mechanism. We then present results showing how the morphology of the whisker array shapes the sensory surface surrounding the robot's head, and demonstrate the impact of active touch control on the sensory information that can be acquired by the robot. We show that adopting bio-inspired, low latency motor control of the rhythmic motion of the whiskers in response to contact-induced stimuli usefully constrains the sensory range, while also maximizing the number of whisker contacts. The robot experiments also demonstrate that the sensory consequences of active touch control can be usefully investigated in biomimetic robots. PMID:21969690

  5. Biomimetic vibrissal sensing for robots.

    PubMed

    Pearson, Martin J; Mitchinson, Ben; Sullivan, J Charles; Pipe, Anthony G; Prescott, Tony J

    2011-11-12

    Active vibrissal touch can be used to replace or to supplement sensory systems such as computer vision and, therefore, improve the sensory capacity of mobile robots. This paper describes how arrays of whisker-like touch sensors have been incorporated onto mobile robot platforms taking inspiration from biology for their morphology and control. There were two motivations for this work: first, to build a physical platform on which to model, and therefore test, recent neuroethological hypotheses about vibrissal touch; second, to exploit the control strategies and morphology observed in the biological analogue to maximize the quality and quantity of tactile sensory information derived from the artificial whisker array. We describe the design of a new whiskered robot, Shrewbot, endowed with a biomimetic array of individually controlled whiskers and a neuroethologically inspired whisking pattern generation mechanism. We then present results showing how the morphology of the whisker array shapes the sensory surface surrounding the robot's head, and demonstrate the impact of active touch control on the sensory information that can be acquired by the robot. We show that adopting bio-inspired, low latency motor control of the rhythmic motion of the whiskers in response to contact-induced stimuli usefully constrains the sensory range, while also maximizing the number of whisker contacts. The robot experiments also demonstrate that the sensory consequences of active touch control can be usefully investigated in biomimetic robots.

  6. Recent Advances in Skin-Inspired Sensors Enabled by Nanotechnology

    NASA Astrophysics Data System (ADS)

    Loh, Kenneth J.; Azhari, Faezeh

    2012-07-01

    The highly optimized performance of nature's creations and biological assemblies has inspired the development of their bio-inspired artificial counterparts that can potentially outperform conventional systems. In particular, the skin of humans, animals, and insects exhibits unique functionalities and properties and has subsequently led to active research in developing skin-inspired sensors. This paper presents a summary of selected work related to skin-inspired tactile, distributed strain, and artificial hair cell flow sensors, with a particular focus on technologies enabled by recent advancements in the nanotechnology domain. The purpose is not to present a comprehensive review on this broad subject matter but rather to use selected work to outline the diversity of current research activities.

  7. Aerodynamic Performance and Particle Image Velocimetery of Piezo Actuated Biomimetic Manduca Sexta Engineered Wings Towards the Design and Application of a Flapping Wing Flight Vehicle

    DTIC Science & Technology

    2013-12-01

    95 3.3. Displacement sensor ... Bio vs. engineered wing modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.1. High speed camera specifications...expanding and evolving mission areas, especially in the arena of bio -inspired Flap- ping Wing Micro Air Vehicles (FWMAV). This chapter will introduce the

  8. Control of Flow Structure on Non-Slender Delta Wing: Bio-inspired Edge Modifications, Passive Bleeding, and Pulsed Blowing

    NASA Astrophysics Data System (ADS)

    Yavuz, Mehmet Metin; Celik, Alper; Cetin, Cenk

    2016-11-01

    In the present study, different flow control approaches including bio-inspired edge modifications, passive bleeding, and pulsed blowing are introduced and applied for the flow over non-slender delta wing. Experiments are conducted in a low speed wind tunnel for a 45 degree swept delta wing using qualitative and quantitative measurement techniques including laser illuminated smoke visualization, particle image velocimety (PIV), and surface pressure measurements. For the bio-inspired edge modifications, the edges of the wing are modified to dolphin fluke geometry. In addition, the concept of flexion ratio, a ratio depending on the flexible length of animal propulsors such as wings, is introduced. For passive bleeding, directing the free stream air from the pressure side of the planform to the suction side of the wing is applied. For pulsed blowing, periodic air injection through the leading edge of the wing is performed in a square waveform with 25% duty cycle at different excitation frequencies and compared with the steady and no blowing cases. The results indicate that each control approach is quite effective in terms of altering the overall flow structure on the planform. However, the success level, considering the elimination of stall or delaying the vortex breakdown, depends on the parameters in each method.

  9. Nature as an engineer: one simple concept of a bio-inspired functional artificial muscle.

    PubMed

    Schmitt, S; Haeufle, D F B; Blickhan, R; Günther, M

    2012-09-01

    The biological muscle is a powerful, flexible and versatile actuator. Its intrinsic characteristics determine the way how movements are generated and controlled. Robotic and prosthetic applications expect to profit from relying on bio-inspired actuators which exhibit natural (muscle-like) characteristics. As of today, when constructing a technical actuator, it is not possible to copy the exact molecular structure of a biological muscle. Alternatively, the question may be put how its characteristics can be realized with known mechanical components. Recently, a mechanical construct for an artificial muscle was proposed, which exhibits hyperbolic force-velocity characteristics. In this paper, we promote the constructing concept which is made by substantiating the mechanical design of biological muscle by a simple model, proving the feasibility of its real-world implementation, and checking their output both for mutual consistency and agreement with biological measurements. In particular, the relations of force, enthalpy rate and mechanical efficiency versus contraction velocity of both the construct's technical implementation and its numerical model were determined in quick-release experiments. All model predictions for these relations and the hardware results are now in good agreement with the biological literature. We conclude that the construct represents a mechanical concept of natural actuation, which is suitable for laying down some useful suggestions when designing bio-inspired actuators.

  10. Memristive and neuromorphic behavior in a LixCoO2 nanobattery

    NASA Astrophysics Data System (ADS)

    Mai, V. H.; Moradpour, A.; Senzier, P. Auban; Pasquier, C.; Wang, K.; Rozenberg, M. J.; Giapintzakis, J.; Mihailescu, C. N.; Orfanidou, C. M.; Svoukis, E.; Breza, A.; Lioutas, Ch B.; Franger, S.; Revcolevschi, A.; Maroutian, T.; Lecoeur, P.; Aubert, P.; Agnus, G.; Salot, R.; Albouy, P. A.; Weil, R.; Alamarguy, D.; March, K.; Jomard, F.; Chrétien, P.; Schneegans, O.

    2015-01-01

    The phenomenon of resistive switching (RS), which was initially linked to non-volatile resistive memory applications, has recently also been associated with the concept of memristors, whose adjustable multilevel resistance characteristics open up unforeseen perspectives in cognitive computing. Herein, we demonstrate that the resistance states of LixCoO2 thin film-based metal-insulator-metal (MIM) solid-state cells can be tuned by sequential programming voltage pulses, and that these resistance states are dramatically dependent on the pulses input rate, hence emulating biological synapse plasticity. In addition, we identify the underlying electrochemical processes of RS in our MIM cells, which also reveal a nanobattery-like behavior, leading to the generation of electrical signals that bring an unprecedented new dimension to the connection between memristors and neuromorphic systems. Therefore, these LixCoO2-based MIM devices allow for a combination of possibilities, offering new perspectives of usage in nanoelectronics and bio-inspired neuromorphic circuits.

  11. Bio-inspired UAV routing, source localization, and acoustic signature classification for persistent surveillance

    NASA Astrophysics Data System (ADS)

    Burman, Jerry; Hespanha, Joao; Madhow, Upamanyu; Pham, Tien

    2011-06-01

    A team consisting of Teledyne Scientific Company, the University of California at Santa Barbara and the Army Research Laboratory* is developing technologies in support of automated data exfiltration from heterogeneous battlefield sensor networks to enhance situational awareness for dismounts and command echelons. Unmanned aerial vehicles (UAV) provide an effective means to autonomously collect data from a sparse network of unattended ground sensors (UGSs) that cannot communicate with each other. UAVs are used to reduce the system reaction time by generating autonomous collection routes that are data-driven. Bio-inspired techniques for search provide a novel strategy to detect, capture and fuse data. A fast and accurate method has been developed to localize an event by fusing data from a sparse number of UGSs. This technique uses a bio-inspired algorithm based on chemotaxis or the motion of bacteria seeking nutrients in their environment. A unique acoustic event classification algorithm was also developed based on using swarm optimization. Additional studies addressed the problem of routing multiple UAVs, optimally placing sensors in the field and locating the source of gunfire at helicopters. A field test was conducted in November of 2009 at Camp Roberts, CA. The field test results showed that a system controlled by bio-inspired software algorithms can autonomously detect and locate the source of an acoustic event with very high accuracy and visually verify the event. In nine independent test runs of a UAV, the system autonomously located the position of an explosion nine times with an average accuracy of 3 meters. The time required to perform source localization using the UAV was on the order of a few minutes based on UAV flight times. In June 2011, additional field tests of the system will be performed and will include multiple acoustic events, optimal sensor placement based on acoustic phenomenology and the use of the International Technology Alliance (ITA) Sensor Network Fabric (IBM).

  12. Rapid fabrication of microneedles using magnetorheological drawing lithography.

    PubMed

    Chen, Zhipeng; Ren, Lei; Li, Jiyu; Yao, Lebin; Chen, Yan; Liu, Bin; Jiang, Lelun

    2018-01-01

    Microneedles are micron-sized needles that are widely applied in biomedical fields owing to their painless, minimally invasive, and convenient operation. However, most microneedle fabrication approaches are costly, time consuming, involve multiple steps, and require expensive equipment. In this study, we present a novel magnetorheological drawing lithography (MRDL) method to efficiently fabricate microneedle, bio-inspired microneedle, and molding-free microneedle array. With the assistance of an external magnetic field, the 3D structure of a microneedle can be directly drawn from a droplet of curable magnetorheological fluid. The formation process of a microneedle consists of two key stages, elasto-capillary self-thinning and magneto-capillary self-shrinking, which greatly affect the microneedle height and tip radius. Penetration and fracture tests demonstrated that the microneedle had sufficient strength and toughness for skin penetration. Microneedle arrays and a bio-inspired microneedle were also fabricated, which further demonstrated the versatility and flexibility of the MRDL method. Microneedles have been widely applied in biomedical fields owing to their painless, minimally invasive, and convenient operation. However, most microneedle fabrication approaches are costly, time consuming, involve multiple steps, and require expensive equipment. Furthermore, most researchers have focused on the biomedical applications of microneedles but have given little attention to the optimization of the fabrication process. This research presents a novel magnetorheological drawing lithography (MRDL) method to fabricate microneedle, bio-inspired microneedle, and molding-free microneedle array. In this proposed technique, a droplet of curable magnetorheological fluid (CMRF) is drawn directly from almost any substrate to produce a 3D microneedle under an external magnetic field. This method not only inherits the advantages of thermal drawing approach without the need for a mask and light irradiation but also eliminates the requirement for drawing temperature adjustment. The MRDL method is extremely simple and can even produce the complex and multiscale structure of bio-inspired microneedle. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Multicellular regulation of entropy, spatial order, and information

    NASA Astrophysics Data System (ADS)

    Youk, Hyun

    Many multicellular systems such as tissues and microbial biofilms consist of cells that secrete and sense signalling molecules. Understanding how collective behaviours of secrete-and-sense cells is an important challenge. We combined experimental and theoretical approaches to understand multicellular coordination of gene expression and spatial pattern formation among secrete-and-sense cells. We engineered secrete-and-sense yeast cells to show that cells can collectively and permanently remember a past event by reminding each other with their secreted signalling molecule. If one cell ``forgets'' then another cell can remind it. Cell-cell communication ensures a long-term (permanent) memory by overcoming common limitations of intracellular memory. We also established a new theoretical framework inspired by statistical mechanics to understand how fields of secrete-and-sense cells form spatial patterns. We introduce new metrics - cellular entropy, cellular Hamiltonian, and spatial order index - for dynamics of cellular automata that form spatial patterns. Our theory predicts how fast any spatial patterns form, how ordered they are, and establishes cellular Hamiltonian that, like energy for non-living systems, monotonically decreases towards a minimum over time. ERC Starting Grant (MultiCellSysBio), NWO VIDI, NWO NanoFront.

  14. Bio-inspired multistructured conical copper wires for highly efficient liquid manipulation.

    PubMed

    Wang, Qianbin; Meng, Qingan; Chen, Ming; Liu, Huan; Jiang, Lei

    2014-09-23

    Animal hairs are typical structured conical fibers ubiquitous in natural system that enable the manipulation of low viscosity liquid in a well-controlled manner, which serves as the fundamental structure in Chinese brush for ink delivery in a controllable manner. Here, drawing inspiration from these structure, we developed a dynamic electrochemical method that enables fabricating the anisotropic multiscale structured conical copper wire (SCCW) with controllable conicity and surface morphology. The as-prepared SCCW exhibits a unique ability for manipulating liquid with significantly high efficiency, and over 428 times greater than its own volume of liquid could be therefore operated. We propose that the boundary condition of the dynamic liquid balance behavior on conical fibers, namely, steady holding of liquid droplet at the tip region of the SCCW, makes it an excellent fibrous medium to manipulate liquid. Moreover, we demonstrate that the titling angle of the SCCW can also affect its efficiency of liquid manipulation by virtue of its mechanical rigidity, which is hardly realized by flexible natural hairs. We envision that the bio-inspired SCCW could give inspiration in designing materials and devices to manipulate liquid in a more controllable way and with high efficiency.

  15. Soft network composite materials with deterministic and bio-inspired designs

    PubMed Central

    Jang, Kyung-In; Chung, Ha Uk; Xu, Sheng; Lee, Chi Hwan; Luan, Haiwen; Jeong, Jaewoong; Cheng, Huanyu; Kim, Gwang-Tae; Han, Sang Youn; Lee, Jung Woo; Kim, Jeonghyun; Cho, Moongee; Miao, Fuxing; Yang, Yiyuan; Jung, Han Na; Flavin, Matthew; Liu, Howard; Kong, Gil Woo; Yu, Ki Jun; Rhee, Sang Il; Chung, Jeahoon; Kim, Byunggik; Kwak, Jean Won; Yun, Myoung Hee; Kim, Jin Young; Song, Young Min; Paik, Ungyu; Zhang, Yihui; Huang, Yonggang; Rogers, John A.

    2015-01-01

    Hard and soft structural composites found in biology provide inspiration for the design of advanced synthetic materials. Many examples of bio-inspired hard materials can be found in the literature; far less attention has been devoted to soft systems. Here we introduce deterministic routes to low-modulus thin film materials with stress/strain responses that can be tailored precisely to match the non-linear properties of biological tissues, with application opportunities that range from soft biomedical devices to constructs for tissue engineering. The approach combines a low-modulus matrix with an open, stretchable network as a structural reinforcement that can yield classes of composites with a wide range of desired mechanical responses, including anisotropic, spatially heterogeneous, hierarchical and self-similar designs. Demonstrative application examples in thin, skin-mounted electrophysiological sensors with mechanics precisely matched to the human epidermis and in soft, hydrogel-based vehicles for triggered drug release suggest their broad potential uses in biomedical devices. PMID:25782446

  16. Bistable flapping of flexible flyers in oscillatory flow

    NASA Astrophysics Data System (ADS)

    Huang, Yangyang; Kanso, Eva

    2016-11-01

    Biological and bio-inspired flyers move by shape actuation. The direct control of shape variables for locomotory purposes is well studied. Less is known about indirect shape actuation via the fluid medium. Here, we consider a flexible Λ-flyer in oscillatory flow that is free to flap and rotate around its fixed apex. We study its motion in the context of the inviscid vortex sheet model. We first analyze symmetric flapping about the vertical axis of gravity. We find that there is a finite value of the flexibility that maximizes both the flapping amplitude and elastic energy storage. Our results show that rather than resonance, the flyer relies on fluidic effects to optimize these two quantities. We then perturb the flyer away from the vertical and analyze its stability. Four distinct types of rolling behavior are identified: mono-stable, bistable, bistable oscillatory rotations and chaotic dynamics. We categorize these types of behavior in terms of the flyer's and flow parameters. In particular, the transition from mono-stable to bistable behavior occurs at a constant value of the product of the flow amplitude and acceleration. This product can be interpreted as the ratio of fluidic drag to gravity, confirming the fluid role in this transition.

  17. A bio-inspired, active morphing skin for camber morphing structures

    NASA Astrophysics Data System (ADS)

    Feng, Ning; Liu, Liwu; Liu, Yanju; Leng, Jinson

    2015-03-01

    In this study, one kind of developed morphing skin embedded with pneumatic muscle fibers (PMFs) was manufactured and was employed for camber morphing structures. The output force and contraction of PMF as well as the morphing skin were experimentally characterized at a series of discrete actuator pressures varying from 0.15 to 0.35 MPa. The active morphing skin test results show that the output force is 73.59 N and the contraction is 0.097 (9.7%) at 0.35 MPa. Due to these properties, this active morphing skin could be easily used for the morphing structures. Then the proper airfoil profile was chosen to manufacture the adaptive airfoil in this study. The chord-wise bending airfoil structure was achieved by employing this kind of active morphing skin. Finally the deformed shapes of this chord-wise bending airfoil structure were obtained by 3-dimensions scanning measurement. Meanwhile the camber morphing structures were analyzed through the finite element method (FEM) and the deformed shapes of the upper surface skins were obtained. The experimental result and FEM analysis result of deformed shapes of the upper surface skins were compared in this paper.

  18. Annika Eberle | NREL

    Science.gov Websites

    analysis Life cycle assessment Fluid-structure interaction Bio-inspired materials and design Education and . Daniel. "Fluid-structure interaction in compliant insect wings." Bioinspiration and Biomimetics

  19. A new bio-inspired optimisation algorithm: Bird Swarm Algorithm

    NASA Astrophysics Data System (ADS)

    Meng, Xian-Bing; Gao, X. Z.; Lu, Lihua; Liu, Yu; Zhang, Hengzhen

    2016-07-01

    A new bio-inspired algorithm, namely Bird Swarm Algorithm (BSA), is proposed for solving optimisation applications. BSA is based on the swarm intelligence extracted from the social behaviours and social interactions in bird swarms. Birds mainly have three kinds of behaviours: foraging behaviour, vigilance behaviour and flight behaviour. Birds may forage for food and escape from the predators by the social interactions to obtain a high chance of survival. By modelling these social behaviours, social interactions and the related swarm intelligence, four search strategies associated with five simplified rules are formulated in BSA. Simulations and comparisons based on eighteen benchmark problems demonstrate the effectiveness, superiority and stability of BSA. Some proposals for future research about BSA are also discussed.

  20. Design and development of bio-inspired framework for reservoir operation optimization

    NASA Astrophysics Data System (ADS)

    Asvini, M. Sakthi; Amudha, T.

    2017-12-01

    Frameworks for optimal reservoir operation play an important role in the management of water resources and delivery of economic benefits. Effective utilization and conservation of water from reservoirs helps to manage water deficit periods. The main challenge in reservoir optimization is to design operating rules that can be used to inform real-time decisions on reservoir release. We develop a bio-inspired framework for the optimization of reservoir release to satisfy the diverse needs of various stakeholders. In this work, single-objective optimization and multiobjective optimization problems are formulated using an algorithm known as "strawberry optimization" and tested with actual reservoir data. Results indicate that well planned reservoir operations lead to efficient deployment of the reservoir water with the help of optimal release patterns.

  1. Plectranthus amboinicus-mediated silver, gold, and silver-gold nanoparticles: phyto-synthetic, catalytic, and antibacterial studies

    NASA Astrophysics Data System (ADS)

    Purusottam Reddy, B.; Mallikarjuna, K.; Narasimha, G.; Park, Si-Hyun

    2017-08-01

    Bio-based green nanotechnology aims to characterize compounds from natural sources and establish efficient routes for the preparation of nontoxic materials that have applicability in biodegradable and biocompatible devices. The present study has investigated the use of Plectranthus amboinicus leaf extracts as reducing and capping materials for the green fabrication of silver, gold, and silver-gold (Ag, Au, and Ag/Au) metal and bimetallic nanoparticles. The catalytic behavior of these phyto-inspired nanoparticles was then assessed in terms of the reduction of 4-nitrophenol. Transmission electron microscopy was used to investigate the shape, morphology, distribution, and diameter of the phytomolecules capped with Ag, Au, and Ag/Au metal nanoparticles. The nature of the crystallinity of the nanoparticles was studied by small area electron diffraction (SAED) and x-ray diffraction analysis (XRD), and Fourier transform infrared (FTIR) spectroscopy was used to study the reduction and stabilizing involvement of the phyto-organic moieties in aqueous medium. The phyto-inspired Ag and Ag/Au nanoparticles demonstrated good antibacterial properties toward Gram-negative Escherichia coli and Pseudomonas spp. and Gram-positive Bacillus spp. and Staphylococcus spp. microorganisms using the well diffusion method. Notably, the Ag nanoparticles were shown to possess effective antibacterial properties.

  2. Bio-inspired heterogeneous composites for broadband vibration mitigation.

    PubMed

    Chen, Yanyu; Wang, Lifeng

    2015-12-08

    Structural biological materials have developed heterogeneous and hierarchical architectures that are responsible for the outstanding performance to provide protection against environmental threats including static and dynamic loading. Inspired by this observation, this research aims to develop new material and structural concepts for broadband vibration mitigation. The proposed composite materials possess a two-layered heterogeneous architecture where both layers consist of high-volume platelet-shape reinforcements and low-volume matrix, similar to the well-known "brick and mortar" microstructure of biological composites. Using finite element method, we numerically demonstrated that broadband wave attenuation zones can be achieved by tailoring the geometric features of the heterogeneous architecture. We reveal that the resulting broadband attenuation zones are gained by directly superimposing the attenuation zones in each constituent layer. This mechanism is further confirmed by the investigation into the phonon dispersion relation of each layer. Importantly, the broadband wave attenuation capability will be maintained when the mineral platelet orientation is locally manipulated, yet a contrast between the mineral platelet concentrations of the two constituent layers is essential. The findings of this work will provide new opportunities to design heterogeneous composites for broadband vibration mitigation and impact resistance under mechanically challenging environmental conditions.

  3. Bio-inspired heterogeneous composites for broadband vibration mitigation

    NASA Astrophysics Data System (ADS)

    Chen, Yanyu; Wang, Lifeng

    2015-12-01

    Structural biological materials have developed heterogeneous and hierarchical architectures that are responsible for the outstanding performance to provide protection against environmental threats including static and dynamic loading. Inspired by this observation, this research aims to develop new material and structural concepts for broadband vibration mitigation. The proposed composite materials possess a two-layered heterogeneous architecture where both layers consist of high-volume platelet-shape reinforcements and low-volume matrix, similar to the well-known “brick and mortar” microstructure of biological composites. Using finite element method, we numerically demonstrated that broadband wave attenuation zones can be achieved by tailoring the geometric features of the heterogeneous architecture. We reveal that the resulting broadband attenuation zones are gained by directly superimposing the attenuation zones in each constituent layer. This mechanism is further confirmed by the investigation into the phonon dispersion relation of each layer. Importantly, the broadband wave attenuation capability will be maintained when the mineral platelet orientation is locally manipulated, yet a contrast between the mineral platelet concentrations of the two constituent layers is essential. The findings of this work will provide new opportunities to design heterogeneous composites for broadband vibration mitigation and impact resistance under mechanically challenging environmental conditions.

  4. An IPMC-enabled bio-inspired bending/twisting fin for underwater applications

    NASA Astrophysics Data System (ADS)

    Palmre, Viljar; Hubbard, Joel J.; Fleming, Maxwell; Pugal, David; Kim, Sungjun; Kim, Kwang J.; Leang, Kam K.

    2013-01-01

    This paper discusses the design, fabrication, and characterization of an ionic polymer-metal composite (IPMC) actuator-based bio-inspired active fin capable of bending and twisting motion. It is pointed out that IPMC strip actuators are used in the simple cantilever configuration to create simple bending (flapping-like) motion for propulsion in underwater autonomous systems. However, the resulting motion is a simple 1D bending and performance is rather limited. To enable more complex deformation, such as the flapping (pitch and heaving) motion of real pectoral and caudal fish fins, a new approach which involves molding or integrating IPMC actuators into a soft boot material to create an active control surface (called a ‘fin’) is presented. The fin can be used to realize complex deformation depending on the orientation and placement of the actuators. In contrast to previously created IPMCs with patterned electrodes for the same purpose, the proposed design avoids (1) the more expensive process of electroless plating platinum all throughout the surface of the actuator and (2) the need for specially patterning the electrodes. Therefore, standard shaped IPMC actuators such as those with rectangular dimensions with varying thicknesses can be used. One unique advantage of the proposed structural design is that custom shaped fins and control surfaces can be easily created without special materials processing. The molding process is cost effective and does not require functionalizing or ‘activating’ the boot material similar to creating IPMCs. For a prototype fin (90 mm wide × 60 mm long × 1.5 mm thick), the measured maximum tip displacement was approximately 44 mm and the twist angle of the fin exceeded 10°. Lift and drag measurements in water where the prototype fin with an airfoil profile was dragged through water at a velocity of 21 cm s-1 showed that the lift and drag forces can be affected by controlling the IPMCs embedded into the fin structure. These results suggest that such IPMC-enabled fin designs can be used for developing active propeller blades or control surfaces on underwater vehicles.

  5. Shape memory system with integrated actuation using embedded particles

    DOEpatents

    Buckley, Patrick R [New York, NY; Maitland, Duncan J [Pleasant Hill, CA

    2009-09-22

    A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.

  6. Shape memory system with integrated actuation using embedded particles

    DOEpatents

    Buckley, Patrick R [New York, NY; Maitland, Duncan J [Pleasant Hill, CA

    2012-05-29

    A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.

  7. Shape memory system with integrated actuation using embedded particles

    DOEpatents

    Buckley, Patrick R.; Maitland, Duncan J.

    2014-04-01

    A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.

  8. Biologically-Inspired Deceptive Behavior for a Robot

    DTIC Science & Technology

    2012-01-01

    by sending false signals either intentionally or unintentionally, are essential for animals’ survival. For example, camouflage and mimicry are well...detection by both predators and their prey. While camouflage or mimicry are examples of unknowingly deceiving, a deceptive behavior can include...face this situation, where it is important to discourage an adversary from discovering a protected site, so the application of these bio -inspired

  9. Finite Dimensional Approximations for Continuum Multiscale Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berlyand, Leonid

    2017-01-24

    The completed research project concerns the development of novel computational techniques for modeling nonlinear multiscale physical and biological phenomena. Specifically, it addresses the theoretical development and applications of the homogenization theory (coarse graining) approach to calculation of the effective properties of highly heterogenous biological and bio-inspired materials with many spatial scales and nonlinear behavior. This theory studies properties of strongly heterogeneous media in problems arising in materials science, geoscience, biology, etc. Modeling of such media raises fundamental mathematical questions, primarily in partial differential equations (PDEs) and calculus of variations, the subject of the PI’s research. The focus of completed researchmore » was on mathematical models of biological and bio-inspired materials with the common theme of multiscale analysis and coarse grain computational techniques. Biological and bio-inspired materials offer the unique ability to create environmentally clean functional materials used for energy conversion and storage. These materials are intrinsically complex, with hierarchical organization occurring on many nested length and time scales. The potential to rationally design and tailor the properties of these materials for broad energy applications has been hampered by the lack of computational techniques, which are able to bridge from the molecular to the macroscopic scale. The project addressed the challenge of computational treatments of such complex materials by the development of a synergistic approach that combines innovative multiscale modeling/analysis techniques with high performance computing.« less

  10. Final Report for Bio-Inspired Approaches to Moving-Target Defense Strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fink, Glenn A.; Oehmen, Christopher S.

    This report records the work and contributions of the NITRD-funded Bio-Inspired Approaches to Moving-Target Defense Strategies project performed by Pacific Northwest National Laboratory under the technical guidance of the National Security Agency’s R6 division. The project has incorporated a number of bio-inspired cyber defensive technologies within an elastic framework provided by the Digital Ants. This project has created the first scalable, real-world prototype of the Digital Ants Framework (DAF)[11] and integrated five technologies into this flexible, decentralized framework: (1) Ant-Based Cyber Defense (ABCD), (2) Behavioral Indicators, (3) Bioinformatic Clas- sification, (4) Moving-Target Reconfiguration, and (5) Ambient Collaboration. The DAF canmore » be used operationally to decentralize many such data intensive applications that normally rely on collection of large amounts of data in a central repository. In this work, we have shown how these component applications may be decentralized and may perform analysis at the edge. Operationally, this will enable analytics to scale far beyond current limitations while not suffering from the bandwidth or computational limitations of centralized analysis. This effort has advanced the R6 Cyber Security research program to secure digital infrastructures by developing a dynamic means to adaptively defend complex cyber systems. We hope that this work will benefit both our client’s efforts in system behavior modeling and cyber security to the overall benefit of the nation.« less

  11. Bio-inspired Cryo-ink Preserves Red Blood Cell Phenotype and Function during Nanoliter Vitrification

    PubMed Central

    Assal, Rami El; Guven, Sinan; Gurkan, Umut Atakan; Gozen, Irep; Shafiee, Hadi; Dalbeyber, Sedef; Abdalla, Noor; Thomas, Gawain; Fuld, Wendy; Illigens, Ben M.W.; Estanislau, Jessica; Khoory, Joseph; Kaufman, Richard; Zylberberg, Claudia; Lindeman, Neal; Wen, Qi; Ghiran, Ionita; Demirci, Utkan

    2014-01-01

    Current red blood cell cryopreservation methods utilize bulk volumes, causing cryo-injury of cells, which results in irreversible disruption of cell morphology, mechanics, and function. An innovative approach to preserve human red blood cell morphology, mechanics, and function following vitrification in nanoliter volumes is developed using a novel cryo-ink integrated with a bio-printing approach. PMID:25047246

  12. Caterpillar locomotion-inspired valveless pneumatic micropump using a single teardrop-shaped elastomeric membrane.

    PubMed

    So, Hongyun; Pisano, Albert P; Seo, Young Ho

    2014-07-07

    This paper presents a microfluidic pump operated by an asymmetrically deformed membrane, which was inspired by caterpillar locomotion. Almost all mechanical micropumps consist of two major components of fluid halting and fluid pushing parts, whereas the proposed caterpillar locomotion-inspired micropump has only a single, bilaterally symmetric membrane-like teardrop shape. A teardrop-shaped elastomeric membrane was asymmetrically deformed and then consecutively touched down to the bottom of the chamber in response to pneumatic pressure, thus achieving fluid pushing. Consecutive touchdown motions of the teardrop-shaped membrane mimicked the propagation of a caterpillar's hump during its locomotory gait. The initial touchdown motion of the teardrop-shaped membrane at the centroid worked as a valve that blocked the inlet channel, and then, the consecutive touchdown motions pushed fluid in the chamber toward the tail of the chamber connected to the outlet channel. The propagation of the touchdown motion of the teardrop-shaped membrane was investigated using computational analysis as well as experimental studies. This caterpillar locomotion-inspired micropump composed of only a single membrane can provide new opportunities for simple integration of microfluidic systems.

  13. Construction of RNA-Quantum Dot Chimera for Nanoscale Resistive Biomemory Application

    PubMed Central

    Lee, Taek; Yagati, Ajay Kumar; Pi, Fengmei; Sharma, Ashwani; Choi, Jeong-Woo; Guo, Peixuan

    2015-01-01

    RNA nanotechnology offer advantages to construct thermally and chemically stable nanoparticles with well-defined shape and structure. Here we report the development of an RNA-Qd (quantum dot) chimera for resistive biomolecular memory application. Each Qd holds two copies of the pRNA three-way junction (pRNA-3WJ) of bacteriophage phi29 DNA-packaging motor. The fixed quantity of two RNA per Qd was achieved by immobilizing pRNA-3WJ harboring Sephadex aptamer for resin binding. Two thiolated pRNA-3WJ serves as two feet of the chimera to stand on the gold plate. The RNA nanostructure served as both an insulator and a mediator to provide defined distance between Qd and gold. Immobilization of chimera nanoparticle was confirmed through scanning tunneling microscopy (STM). As revealed by scanning tunneling spectroscopy (STS), the conjugated pRNA-3WJ-Qd chimera exhibited excellent electrical bi-stability signal for biomolecular memory function, demonstrating great potential for the development of resistive biomolecular memory and nanobio-inspired electronic device for information processing and computing. PMID:26135474

  14. Image sensor system with bio-inspired efficient coding and adaptation.

    PubMed

    Okuno, Hirotsugu; Yagi, Tetsuya

    2012-08-01

    We designed and implemented an image sensor system equipped with three bio-inspired coding and adaptation strategies: logarithmic transform, local average subtraction, and feedback gain control. The system comprises a field-programmable gate array (FPGA), a resistive network, and active pixel sensors (APS), whose light intensity-voltage characteristics are controllable. The system employs multiple time-varying reset voltage signals for APS in order to realize multiple logarithmic intensity-voltage characteristics, which are controlled so that the entropy of the output image is maximized. The system also employs local average subtraction and gain control in order to obtain images with an appropriate contrast. The local average is calculated by the resistive network instantaneously. The designed system was successfully used to obtain appropriate images of objects that were subjected to large changes in illumination.

  15. From ice-binding proteins to bio-inspired antifreeze materials.

    PubMed

    Voets, I K

    2017-07-19

    Ice-binding proteins (IBP) facilitate survival under extreme conditions in diverse life forms. IBPs in polar fishes block further growth of internalized environmental ice and inhibit ice recrystallization of accumulated internal crystals. Algae use IBPs to structure ice, while ice adhesion is critical for the Antarctic bacterium Marinomonas primoryensis. Successful translation of this natural cryoprotective ability into man-made materials holds great promise but is still in its infancy. This review covers recent advances in the field of ice-binding proteins and their synthetic analogues, highlighting fundamental insights into IBP functioning as a foundation for the knowledge-based development of cheap, bio-inspired mimics through scalable production routes. Recent advances in the utilisation of IBPs and their analogues to e.g. improve cryopreservation, ice-templating strategies, gas hydrate inhibition and other technologies are presented.

  16. Design, synthesis and characterization of a hexapeptide bio-inspired by acetylcholinesterase and its interaction with pesticide dichlorvos.

    PubMed

    dos Santos, Glauco Pilon; da Silva, Bianca Ferreira; Garrido, Saulo Santesso; Mascini, Marcello; Yamanaka, Hideko

    2014-01-07

    This paper describes the molecular modeling design, synthesis and characterization of a new bio-inspired hexapeptide of acetylcholinesterase enzyme and its interaction with the organophosphate pesticide dichlorvos monitored by UV-Vis spectroscopy and mass spectrometry. This strategy can contribute to the development of synthetic receptors to be coupled to biosensor transducers, avoiding the issues associated with proteins such as low stability under different pH and temperature conditions and high production cost. The resulting data of this work indicate a strong interaction between the pesticide dichlorvos and the hexapeptide (NH3(+)-Glu-His-Gly-Gly-Pro-Ser-COO(-)) with a binding constant of 4.10 × 10(5) M(-1) and the formation of an adduct by covalent binding on the serine residue from the hexapeptide.

  17. Water repellent/wetting characteristics of various bio-inspired morphologies and fluid drag reduction testing research.

    PubMed

    Luo, Yuehao; Song, Wen; Wang, Xudong

    2016-03-01

    It is well-known that the bio-inspired sharkskin covering the original pattern has the apparent drag reduction function in the turbulent flowing stations, which can be regarded as "sharkskin effect", and it has progressively been put application into the fluid engineering with obtaining great profits. In this paper, the anisotropic wetting phenomena on sharkskin are discovered, the contact angles and rolling angles on different orientations are not the same. In addition, the hydrodynamic experiments on different sharkskin surfaces are conducted, and the experimental results illustrate that the super-hydrophobic and drag-reducing properties on deformed biological surfaces are improved to some extent compared to the original morphology, which has important significance to expand its practical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. On the Ni-Ion release rate from surfaces of binary NiTi shape memory alloys

    NASA Astrophysics Data System (ADS)

    Ševčíková, Jana; Bártková, Denisa; Goldbergová, Monika; Kuběnová, Monika; Čermák, Jiří; Frenzel, Jan; Weiser, Adam; Dlouhý, Antonín

    2018-01-01

    The study is focused on Ni-ion release rates from NiTi surfaces exposed in the cell culture media and human vascular endothelial cell (HUVEC) culture environments. The NiTi surface layers situated in the depth of 70 μm below a NiTi oxide scale are affected by interactions between the NiTi alloys and the bio-environments. The finding was proved with use of inductively coupled plasma mass spectrometry and electron microscopy experiments. As the exclusive factor controlling the Ni-ion release rates was not only thicknesses of the oxide scale, but also the passivation depth, which was two-fold larger. Our experimental data strongly suggested that some other factors, in addition to the Ni concentration in the oxide scale, admittedly hydrogen soaking deep below the oxide scale, must be taken into account in order to rationalize the concentrations of Ni-ions released into the bio-environments. The suggested role of hydrogen as the surface passivation agent is also in line with the fact that the Ni-ion release rates considerably decrease in NiTi samples that were annealed in controlled hydrogen atmospheres prior to bio-environmental exposures.

  19. Triangular node for Transmission-Line Modeling (TLM) applied to bio-heat transfer.

    PubMed

    Milan, Hugo F M; Gebremedhin, Kifle G

    2016-12-01

    Transmission-Line Modeling (TLM) is a numerical method used to solve complex and time-domain bio-heat transfer problems. In TLM, rectangles are used to discretize two-dimensional problems. The drawback in using rectangular shapes is that instead of refining only the domain of interest, a large additional domain will also be refined in the x and y axes, which results in increased computational time and memory space. In this paper, we developed a triangular node for TLM applied to bio-heat transfer that does not have the drawback associated with the rectangular nodes. The model includes heat source, blood perfusion (advection), boundary conditions and initial conditions. The boundary conditions could be adiabatic, temperature, heat flux, or convection. A matrix equation for TLM, which simplifies the solution of time-domain problems or solves steady-state problems, was also developed. The predicted results were compared against results obtained from the solution of a simplified two-dimensional problem, and they agreed within 1% for a mesh length of triangular faces of 59µm±9µm (mean±standard deviation) and a time step of 1ms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A fish-like robot: Mechanics of swimming due to constraints

    NASA Astrophysics Data System (ADS)

    Tallapragada, Phanindra; Malla, Rijan

    2014-11-01

    It is well known that due to reasons of symmetry, a body with one degree of actuation cannot swim in an ideal fluid. However certain velocity constraints arising in fluid-body interactions, such as the Kutta condition classically applied at the trailing cusp of a Joukowski hydrofoil break this symmetry through vortex shedding. Thus Joukowski foils that vary shape periodically can be shown to be able to swim through vortex shedding. In general it can be shown that vortex shedding due to the Kutta condition is equivalent to nonintegrable constraints arising in the mechanics of finite-dimensional mechanical systems. This equivalence allows hydrodynamic problems involving vortex shedding, especially those pertaining to swimming and related phenomena to be framed in the context of geometric mechanics on manifolds. This formal equivalence also allows the design of bio inspired robots that swim not due to shape change but due to internal moving masses and rotors. Such robots lacking articulated joints are easy to design, build and control. We present such a fish-like robot that swims due to the rotation of internal rotors.

  1. Magnetic Field Triggered Multicycle Damage Sensing and Self Healing.

    PubMed

    Ahmed, Anansa S; Ramanujan, R V

    2015-09-08

    Multifunctional materials inspired by biological structures have attracted great interest, e.g. for wearable/ flexible "skin" and smart coatings. A current challenge in this area is to develop an artificial material which mimics biological skin by simultaneously displaying color change on damage as well as self healing of the damaged region. Here we report, for the first time, the development of a damage sensing and self healing magnet-polymer composite (Magpol), which actively responds to an external magnetic field. We incorporated reversible sensing using mechanochromic molecules in a shape memory thermoplastic matrix. Exposure to an alternating magnetic field (AMF) triggers shape recovery and facilitates damage repair. Magpol exhibited a linear strain response upto 150% strain and complete recovery after healing. We have demonstrated the use of this concept in a reusable biomedical device i.e., coated guidewires. Our findings offer a new synergistic method to bestow multifunctionality for applications ranging from medical device coatings to adaptive wing structures.

  2. SABRE: a bio-inspired fault-tolerant electronic architecture.

    PubMed

    Bremner, P; Liu, Y; Samie, M; Dragffy, G; Pipe, A G; Tempesti, G; Timmis, J; Tyrrell, A M

    2013-03-01

    As electronic devices become increasingly complex, ensuring their reliable, fault-free operation is becoming correspondingly more challenging. It can be observed that, in spite of their complexity, biological systems are highly reliable and fault tolerant. Hence, we are motivated to take inspiration for biological systems in the design of electronic ones. In SABRE (self-healing cellular architectures for biologically inspired highly reliable electronic systems), we have designed a bio-inspired fault-tolerant hierarchical architecture for this purpose. As in biology, the foundation for the whole system is cellular in nature, with each cell able to detect faults in its operation and trigger intra-cellular or extra-cellular repair as required. At the next level in the hierarchy, arrays of cells are configured and controlled as function units in a transport triggered architecture (TTA), which is able to perform partial-dynamic reconfiguration to rectify problems that cannot be solved at the cellular level. Each TTA is, in turn, part of a larger multi-processor system which employs coarser grain reconfiguration to tolerate faults that cause a processor to fail. In this paper, we describe the details of operation of each layer of the SABRE hierarchy, and how these layers interact to provide a high systemic level of fault tolerance.

  3. Thermal responses of shape memory alloy artificial anal sphincters

    NASA Astrophysics Data System (ADS)

    Luo, Yun; Takagi, Toshiyuki; Matsuzawa, Kenichi

    2003-08-01

    This paper presents a numerical investigation of the thermal behavior of an artificial anal sphincter using shape memory alloys (SMAs) proposed by the authors. The SMA artificial anal sphincter has the function of occlusion at body temperature and can be opened with a thermal transformation induced deformation of SMAs to solve the problem of severe fecal incontinence. The investigation of its thermal behavior is of great importance in terms of practical use in living bodies as a prosthesis. In this work, a previously proposed phenomenological model was applied to simulate the thermal responses of SMA plates that had undergone thermally induced transformation. The numerical approach for considering the thermal interaction between the prosthesis and surrounding tissues was discussed based on the classical bio-heat equation. Numerical predictions on both in vitro and in vivo cases were verified by experiments with acceptable agreements. The thermal responses of the SMA artificial anal sphincter were discussed based on the simulation results, with the values of the applied power and the geometric configuration of thermal insulation as parameters. The results obtained in the present work provided a framework for the further design of SMA artificial sphincters to meet demands from the viewpoint of thermal compatibility as prostheses.

  4. Self-organization, embodiment, and biologically inspired robotics.

    PubMed

    Pfeifer, Rolf; Lungarella, Max; Iida, Fumiya

    2007-11-16

    Robotics researchers increasingly agree that ideas from biology and self-organization can strongly benefit the design of autonomous robots. Biological organisms have evolved to perform and survive in a world characterized by rapid changes, high uncertainty, indefinite richness, and limited availability of information. Industrial robots, in contrast, operate in highly controlled environments with no or very little uncertainty. Although many challenges remain, concepts from biologically inspired (bio-inspired) robotics will eventually enable researchers to engineer machines for the real world that possess at least some of the desirable properties of biological organisms, such as adaptivity, robustness, versatility, and agility.

  5. Bio-robots automatic navigation with graded electric reward stimulation based on Reinforcement Learning.

    PubMed

    Zhang, Chen; Sun, Chao; Gao, Liqiang; Zheng, Nenggan; Chen, Weidong; Zheng, Xiaoxiang

    2013-01-01

    Bio-robots based on brain computer interface (BCI) suffer from the lack of considering the characteristic of the animals in navigation. This paper proposed a new method for bio-robots' automatic navigation combining the reward generating algorithm base on Reinforcement Learning (RL) with the learning intelligence of animals together. Given the graded electrical reward, the animal e.g. the rat, intends to seek the maximum reward while exploring an unknown environment. Since the rat has excellent spatial recognition, the rat-robot and the RL algorithm can convergent to an optimal route by co-learning. This work has significant inspiration for the practical development of bio-robots' navigation with hybrid intelligence.

  6. Geomagnetic Navigation of Autonomous Underwater Vehicle Based on Multi-objective Evolutionary Algorithm.

    PubMed

    Li, Hong; Liu, Mingyong; Zhang, Feihu

    2017-01-01

    This paper presents a multi-objective evolutionary algorithm of bio-inspired geomagnetic navigation for Autonomous Underwater Vehicle (AUV). Inspired by the biological navigation behavior, the solution was proposed without using a priori information, simply by magnetotaxis searching. However, the existence of the geomagnetic anomalies has significant influence on the geomagnetic navigation system, which often disrupts the distribution of the geomagnetic field. An extreme value region may easily appear in abnormal regions, which makes AUV lost in the navigation phase. This paper proposes an improved bio-inspired algorithm with behavior constraints, for sake of making AUV escape from the abnormal region. First, the navigation problem is considered as the optimization problem. Second, the environmental monitoring operator is introduced, to determine whether the algorithm falls into the geomagnetic anomaly region. Then, the behavior constraint operator is employed to get out of the abnormal region. Finally, the termination condition is triggered. Compared to the state-of- the-art, the proposed approach effectively overcomes the disturbance of the geomagnetic abnormal. The simulation result demonstrates the reliability and feasibility of the proposed approach in complex environments.

  7. Design and Characterization of a Novel Bio-inspired Hair Flow Sensor Based on Resonant Sensing

    NASA Astrophysics Data System (ADS)

    Guo, X.; Yang, B.; Wang, Q. H.; Lu, C. F.; Hu, D.

    2018-03-01

    Flow sensors inspired by the natural hair sensing mechanism have great prospect in the research of micro-autonomous system and technology (MAST) for the three-dimensional structure characteristics with high spatial and quality utilization. A novel bio-inspired hair flow sensor (BHFS) based on resonant sensing with a unique asymmetric design is presented in this paper. A hair transducer and a signal detector which is constituted of a two-stage micro-leverage mechanism and two symmetrical resonators (double ended tuning fork, DETF) are adopted to realize the high sensitivity to air flow. The sensitivity of the proposed BHFS is improved significantly than the published ones due to the high sensitivity of resonators and the higher amplification factor possessed by the two-stage micro-leverage mechanism. The standard deep dry silicon on glass (DDSOG) process is chosen to fabricate the proposed BHFS. The experiment result demonstrates that the fabricated BHFS has a mechanical sensitivity of 5.26 Hz/(m/s)2 at a resonant frequency of 22 kHz with the hair height of 6 mm.

  8. Geomagnetic Navigation of Autonomous Underwater Vehicle Based on Multi-objective Evolutionary Algorithm

    PubMed Central

    Li, Hong; Liu, Mingyong; Zhang, Feihu

    2017-01-01

    This paper presents a multi-objective evolutionary algorithm of bio-inspired geomagnetic navigation for Autonomous Underwater Vehicle (AUV). Inspired by the biological navigation behavior, the solution was proposed without using a priori information, simply by magnetotaxis searching. However, the existence of the geomagnetic anomalies has significant influence on the geomagnetic navigation system, which often disrupts the distribution of the geomagnetic field. An extreme value region may easily appear in abnormal regions, which makes AUV lost in the navigation phase. This paper proposes an improved bio-inspired algorithm with behavior constraints, for sake of making AUV escape from the abnormal region. First, the navigation problem is considered as the optimization problem. Second, the environmental monitoring operator is introduced, to determine whether the algorithm falls into the geomagnetic anomaly region. Then, the behavior constraint operator is employed to get out of the abnormal region. Finally, the termination condition is triggered. Compared to the state-of- the-art, the proposed approach effectively overcomes the disturbance of the geomagnetic abnormal. The simulation result demonstrates the reliability and feasibility of the proposed approach in complex environments. PMID:28747884

  9. Novel bio-inspired smart control for hazard mitigation of civil structures

    NASA Astrophysics Data System (ADS)

    Kim, Yeesock; Kim, Changwon; Langari, Reza

    2010-11-01

    In this paper, a new bio-inspired controller is proposed for vibration mitigation of smart structures subjected to ground disturbances (i.e. earthquakes). The control system is developed through the integration of a brain emotional learning (BEL) algorithm with a proportional-integral-derivative (PID) controller and a semiactive inversion (Inv) algorithm. The BEL algorithm is based on the neurologically inspired computational model of the amygdala and the orbitofrontal cortex. To demonstrate the effectiveness of the proposed hybrid BEL-PID-Inv control algorithm, a seismically excited building structure equipped with a magnetorheological (MR) damper is investigated. The performance of the proposed hybrid BEL-PID-Inv control algorithm is compared with that of passive, PID, linear quadratic Gaussian (LQG), and BEL control systems. In the simulation, the robustness of the hybrid BEL-PID-Inv control algorithm in the presence of modeling uncertainties as well as external disturbances is investigated. It is shown that the proposed hybrid BEL-PID-Inv control algorithm is effective in improving the dynamic responses of seismically excited building structure-MR damper systems.

  10. Bio-inspired direct patterning functional nanothin microlines: controllable liquid transfer.

    PubMed

    Wang, Qianbin; Meng, Qingan; Wang, Pengwei; Liu, Huan; Jiang, Lei

    2015-04-28

    Developing a general and low-cost strategy that enables direct patterning of microlines with nanometer thickness from versatile liquid-phase functional materials and precise positioning of them on various substrates remains a challenge. Herein, with inspiration from the oriental wisdom to control ink transfer by Chinese brushes, we developed a facile and general writing strategy to directly pattern various functional microlines with homogeneous distribution and nanometer-scale thickness. It is demonstrated that the width and thickness of the microlines could be well-controlled by tuning the writing method, providing guidance for the adaptation of this technique to various systems. It is also shown that various functional liquid-phase materials, such as quantum dots, small molecules, polymers, and suspensions of nanoparticles, could directly write on the substrates with intrinsic physicochemical properties well-preserved. Moreover, this technique enabled direct patterning of liquid-phase materials on certain microdomains, even in multiple layered style, thus a microdomain localized chemical reaction and the patterned surface chemical modification were enabled. This bio-inspired direct writing device will shed light on the template-free printing of various functional micropatterns, as well as the integrated functional microdevices.

  11. Bio-inspired Fabrication of Complex Hierarchical Structure in Silicon.

    PubMed

    Gao, Yang; Peng, Zhengchun; Shi, Tielin; Tan, Xianhua; Zhang, Deqin; Huang, Qiang; Zou, Chuanping; Liao, Guanglan

    2015-08-01

    In this paper, we developed a top-down method to fabricate complex three dimensional silicon structure, which was inspired by the hierarchical micro/nanostructure of the Morpho butterfly scales. The fabrication procedure includes photolithography, metal masking, and both dry and wet etching techniques. First, microscale photoresist grating pattern was formed on the silicon (111) wafer. Trenches with controllable rippled structures on the sidewalls were etched by inductively coupled plasma reactive ion etching Bosch process. Then, Cr film was angled deposited on the bottom of the ripples by electron beam evaporation, followed by anisotropic wet etching of the silicon. The simple fabrication method results in large scale hierarchical structure on a silicon wafer. The fabricated Si structure has multiple layers with uniform thickness of hundreds nanometers. We conducted both light reflection and heat transfer experiments on this structure. They exhibited excellent antireflection performance for polarized ultraviolet, visible and near infrared wavelengths. And the heat flux of the structure was significantly enhanced. As such, we believe that these bio-inspired hierarchical silicon structure will have promising applications in photovoltaics, sensor technology and photonic crystal devices.

  12. Optimized bio-inspired stiffening design for an engine nacelle.

    PubMed

    Lazo, Neil; Vodenitcharova, Tania; Hoffman, Mark

    2015-11-04

    Structural efficiency is a common engineering goal in which an ideal solution provides a structure with optimized performance at minimized weight, with consideration of material mechanical properties, structural geometry, and manufacturability. This study aims to address this goal in developing high performance lightweight, stiff mechanical components by creating an optimized design from a biologically-inspired template. The approach is implemented on the optimization of rib stiffeners along an aircraft engine nacelle. The helical and angled arrangements of cellulose fibres in plants were chosen as the bio-inspired template. Optimization of total displacement and weight was carried out using a genetic algorithm (GA) coupled with finite element analysis. Iterations showed a gradual convergence in normalized fitness. Displacement was given higher emphasis in optimization, thus the GA optimization tended towards individual designs with weights near the mass constraint. Dominant features of the resulting designs were helical ribs with rectangular cross-sections having large height-to-width ratio. Displacement reduction was at 73% as compared to an unreinforced nacelle, and is attributed to the geometric features and layout of the stiffeners, while mass is maintained within the constraint.

  13. Direct comparison of the performance of a bio-inspired synthetic nickel catalyst and a [NiFe]-hydrogenase, both covalently attached to electrodes.

    PubMed

    Rodriguez-Maciá, Patricia; Dutta, Arnab; Lubitz, Wolfgang; Shaw, Wendy J; Rüdiger, Olaf

    2015-10-12

    The active site of hydrogenases has been a source of inspiration for the development of molecular catalysts. However, direct comparisons between molecular catalysts and enzymes have not been possible because different techniques are used to evaluate both types of catalysts, minimizing our ability to determine how far we have come in mimicking the enzymatic performance. The catalytic properties of the [Ni(P(Cy) 2 N(Gly) 2 )2 ](2+) complex with the [NiFe]-hydrogenase from Desulfovibrio vulgaris immobilized on a functionalized electrode were compared under identical conditions. At pH 7, the enzyme shows higher activity and lower overpotential with better stability, while at low pH, the molecular catalyst outperforms the enzyme in all respects. This is the first direct comparison of enzymes and molecular complexes, enabling a unique understanding of the benefits and detriments of both systems, and advancing our understanding of the utilization of these bio-inspired complexes in fuel cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The Difference Se Makes: A Bio-Inspired Dppf-Supported Nickel Selenolate Complex Boosts Dihydrogen Evolution with High Oxygen Tolerance.

    PubMed

    Pan, Zhong-Hua; Tao, Yun-Wen; He, Quan-Feng; Wu, Qiao-Yu; Cheng, Li-Ping; Wei, Zhan-Hua; Wu, Ji-Huai; Lin, Jin-Qing; Sun, Di; Zhang, Qi-Chun; Tian, Dan; Luo, Geng-Geng

    2018-06-12

    Inspired by the metal active sites of [NiFeSe]-hydrogenases, a dppf-supported nickel(II) selenolate complex (dppf=1,1'-bis(diphenylphosphino)ferrocene) shows high catalytic activity for electrochemical proton reduction with a remarkable enzyme-like H 2 evolution turnover frequency (TOF) of 7838 s -1 under an Ar atmosphere, which markedly surpasses the activity of a dppf-supported nickel(II) thiolate analogue with a low TOF of 600 s -1 . A combined study of electrochemical experiments and DFT calculations shed light on the catalytic process, suggesting that selenium atom as a bio-inspired proton relay plays a key role in proton exchange and enhancing catalytic activity of H 2 production. For the first time, this type of Ni selenolate-containing electrocatalyst displays a high degree of O 2 and H 2 tolerance. Our results should encourage the development of the design of highly efficient oxygen-tolerant Ni selenolate molecular catalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A tracked robot with novel bio-inspired passive "legs".

    PubMed

    Sun, Bo; Jing, Xingjian

    2017-01-01

    For track-based robots, an important aspect is the suppression design, which determines the trafficability and comfort of the whole system. The trafficability limits the robot's working capability, and the riding comfort limits the robot's working effectiveness, especially with some sensitive instruments mounted on or operated. To these aims, a track-based robot equipped with a novel passive bio-inspired suspension is designed and studied systematically in this paper. Animal or insects have very special leg or limb structures which are good for motion control and adaptable to different environments. Inspired by this, a new track-based robot is designed with novel "legs" for connecting the loading wheels to the robot body. Each leg is designed with passive structures and can achieve very high loading capacity but low dynamic stiffness such that the robot can move on rough ground similar to a multi-leg animal or insect. Therefore, the trafficability and riding comfort can be significantly improved without losing loading capacity. The new track-based robot can be well applied to various engineering tasks for providing a stable moving platform of high mobility, better trafficability and excellent loading capacity.

  16. Algal antifouling and fouling-release properties of metal surfaces coated with a polymer inspired by marine mussels.

    PubMed

    Statz, Andrea; Finlay, John; Dalsin, Jeffrey; Callow, Maureen; Callow, James A; Messersmith, Phillip B

    2006-01-01

    The marine antifouling and fouling-release performance of titanium surfaces coated with a bio-inspired polymer was investigated. The polymer consisted of methoxy-terminated poly(ethylene glycol) (mPEG) conjugated to the adhesive amino acid l-3,4-dihydroxyphenylalanine (DOPA) and was chosen based on its successful resistance to protein and mammalian cell fouling. Biofouling assays for the settlement and release of the diatom Navicula perminuta and settlement, growth and release of zoospores and sporelings (young plants) of the green alga Ulva linza were carried out. Results were compared to glass, a poly(dimethylsiloxane) elastomer (Silastic T2) and uncoated Ti. The mPEG-DOPA3 modified Ti surfaces exhibited a substantial decrease in attachment of both cells of N. perminuta and zoospores of U. linza as well as the highest detachment of attached cells under flow compared to control surfaces. The superior performance of this polymer over a standard silicone fouling-release coating in diatom assays and approximately equivalent performance in zoospore assays suggests that this bio-inspired polymer may be effective in marine antifouling and fouling-release applications.

  17. Bio-inspired Ni2+-polyphenol hydrophilic network to achieve unconventional high-flux nanofiltration membranes for environmental remediation.

    PubMed

    You, Fangjie; Xu, Yanchao; Yang, Xiaobin; Zhang, Yanqiu; Shao, Lu

    2017-06-01

    A novel Ni 2+ -polyphenol network was designed as an excellent bio-coating by a one-step strategy to obtain nanofiltration membranes, possessing unconventional high water flux up to 56.1 L m -2 h -1 bar -1 with rose bengal (RB) rejection above 95%. This study provides a facile approach to prepare highly-efficient nanofiltration membranes for wastewater remediation.

  18. A new biarticular actuator design facilitates control of leg function in BioBiped3.

    PubMed

    Sharbafi, Maziar Ahmad; Rode, Christian; Kurowski, Stefan; Scholz, Dorian; Möckel, Rico; Radkhah, Katayon; Zhao, Guoping; Rashty, Aida Mohammadinejad; Stryk, Oskar von; Seyfarth, Andre

    2016-07-01

    Bioinspired legged locomotion comprises different aspects, such as (i) benefiting from reduced complexity control approaches as observed in humans/animals, (ii) combining embodiment with the controllers and (iii) reflecting neural control mechanisms. One of the most important lessons learned from nature is the significant role of compliance in simplifying control, enhancing energy efficiency and robustness against perturbations for legged locomotion. In this research, we investigate how body morphology in combination with actuator design may facilitate motor control of leg function. Inspired by the human leg muscular system, we show that biarticular muscles have a key role in balancing the upper body, joint coordination and swing leg control. Appropriate adjustment of biarticular spring rest length and stiffness can simplify the control and also reduce energy consumption. In order to test these findings, the BioBiped3 robot was developed as a new version of BioBiped series of biologically inspired, compliant musculoskeletal robots. In this robot, three-segmented legs actuated by mono- and biarticular series elastic actuators mimic the nine major human leg muscle groups. With the new biarticular actuators in BioBiped3, novel simplified control concepts for postural balance and for joint coordination in rebounding movements (drop jumps) were demonstrated and approved.

  19. Novel features and enhancements in BioBin, a tool for the biologically inspired binning and association analysis of rare variants

    PubMed Central

    Byrska-Bishop, Marta; Wallace, John; Frase, Alexander T; Ritchie, Marylyn D

    2018-01-01

    Abstract Motivation BioBin is an automated bioinformatics tool for the multi-level biological binning of sequence variants. Herein, we present a significant update to BioBin which expands the software to facilitate a comprehensive rare variant analysis and incorporates novel features and analysis enhancements. Results In BioBin 2.3, we extend our software tool by implementing statistical association testing, updating the binning algorithm, as well as incorporating novel analysis features providing for a robust, highly customizable, and unified rare variant analysis tool. Availability and implementation The BioBin software package is open source and freely available to users at http://www.ritchielab.com/software/biobin-download Contact mdritchie@geisinger.edu Supplementary information Supplementary data are available at Bioinformatics online. PMID:28968757

  20. A Bio-Inspired, Heavy-Metal-Free, Dual-Electrolyte Liquid Battery towards Sustainable Energy Storage.

    PubMed

    Ding, Yu; Yu, Guihua

    2016-04-04

    Wide-scale exploitation of renewable energy requires low-cost efficient energy storage devices. The use of metal-free, inexpensive redox-active organic materials represents a promising direction for environmental-friendly, cost-effective sustainable energy storage. To this end, a liquid battery is designed using hydroquinone (H2BQ) aqueous solution as catholyte and graphite in aprotic electrolyte as anode. The working potential can reach 3.4 V, with specific capacity of 395 mA h g(-1) and stable capacity retention about 99.7% per cycle. Such high potential and capacity is achieved using only C, H and O atoms as building blocks for redox species, and the replacement of Li metal with graphite anode can circumvent potential safety issues. As H2BQ can be extracted from biomass directly and its redox reaction mimics the bio-electrochemical process of quinones in nature, using such a bio-inspired organic compound in batteries enables access to greener and more sustainable energy-storage technology. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Carbon-Nanotube-Supported Bio-Inspired Nickel Catalyst and Its Integration in Hybrid Hydrogen/Air Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gentil, Solène; Lalaoui, Noémie; Dutta, Arnab

    A biomimetic nickel bis-diphosphine complex incorporating the amino-acid arginine in the outer coordination sphere, was immobilized on modified single-wall carbon nanotubes (SWCNTs) through electrostatic interactions. The sur-face-confined catalyst is characterized by a reversible 2-electron/2-proton redox process at potentials close to the equibrium potential of the H+/H2 couple. Consequently, the functionalized redox nanomaterial exhibits reversible electrocatalytic activity for the H2/2H+ interconversion over a broad range of pH. This system exhibits catalytic bias, analogous to hydrogenases, resulting in high turnover frequencies at low overpotentials for electrocatalytic H2 oxida-tion between pH 0 and 7. This allowed integrating such bio-inspired nanomaterial together with amore » multicopper oxi-dase at the cathode side in a hybrid bioinspired/enzymatic hydrogen fuel cell. This device delivers ~2 mW cm–2 with an open-circuit voltage of 1.0 V at room temperature and pH 5, which sets a new efficiency record for a bio-related hydrogen fuel cell with base metal catalysts.« less

  2. Porous NiTi for bone implants: a review.

    PubMed

    Bansiddhi, A; Sargeant, T D; Stupp, S I; Dunand, D C

    2008-07-01

    NiTi foams are unique among biocompatible porous metals because of their high recovery strain (due to the shape-memory or superelastic effects) and their low stiffness facilitating integration with bone structures. To optimize NiTi foams for bone implant applications, two key areas are under active study: synthesis of foams with optimal architectures, microstructure and mechanical properties; and tailoring of biological interactions through modifications of pore surfaces. This article reviews recent research on NiTi foams for bone replacement, focusing on three specific topics: (i) surface modifications designed to create bio-inert porous NiTi surfaces with low Ni release and corrosion, as well as bioactive surfaces to enhance and accelerate biological activity; (ii) in vitro and in vivo biocompatibility studies to confirm the long-term safety of porous NiTi implants; and (iii) biological evaluations for specific applications, such as in intervertebral fusion devices and bone tissue scaffolds. Possible future directions for bio-performance and processing studies are discussed that could lead to optimized porous NiTi implants.

  3. Porous NiTi for bone implants: A review

    PubMed Central

    Bansiddhi, A.; Sargeant, T.D.; Stupp, S.I.; Dunand, D.C.

    2011-01-01

    NiTi foams are unique among biocompatible porous metals because of their high recovery strain (due to the shape-memory or superelastic effects) and their low stiffness facilitating integration with bone structures. To optimize NiTi foams for bone implant applications, two key areas are under active study: synthesis of foams with optimal architectures, microstructure and mechanical properties; and tailoring of biological interactions through modifications of pore surfaces. This article reviews recent research on NiTi foams for bone replacement, focusing on three specific topics: (i) surface modifications designed to create bio-inert porous NiTi surfaces with low Ni release and corrosion, as well as bioactive surfaces to enhance and accelerate biological activity; (ii) In vitro and in vivo biocompatibility studies to confirm the long-term safety of porous NiTi implants; and (iii) biological evaluations for specific applications, such as in intervertebral fusion devices and bone tissue scaffolds. Possible future directions for bio-performance and processing studies are discussed that could lead to optimized porous NiTi implants. PMID:18348912

  4. Biologically Inspired Technology Using Electroactive Polymers (EAP)

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    2006-01-01

    Evolution allowed nature to introduce highly effective biological mechanisms that are incredible inspiration for innovation. Humans have always made efforts to imitate nature's inventions and we are increasingly making advances that it becomes significantly easier to imitate, copy, and adapt biological methods, processes and systems. This brought us to the ability to create technology that is far beyond the simple mimicking of nature. Having better tools to understand and to implement nature's principles we are now equipped like never before to be inspired by nature and to employ our tools in far superior ways. Effectively, by bio-inspiration we can have a better view and value of nature capability while studying its models to learn what can be extracted, copied or adapted. Using electroactive polymers (EAP) as artificial muscles is adding an important element to the development of biologically inspired technologies.

  5. Investigating the Effects of Robot-Assisted Therapy among Children with Autism Spectrum Disorder using Bio-markers

    NASA Astrophysics Data System (ADS)

    Bharatharaj, Jaishankar; Huang, Loulin; Al-Jumaily, Ahmed; Elara, Mohan Rajesh; Krägeloh, Chris

    2017-09-01

    Therapeutic pet robots designed to help humans with various medical conditions could play a vital role in physiological, psychological and social-interaction interventions for children with autism spectrum disorder (ASD). In this paper, we report our findings from a robot-assisted therapeutic study conducted over seven weeks to investigate the changes in stress levels of children with ASD. For this study, we used the parrot-inspired therapeutic robot, KiliRo, we developed and investigated urinary and salivary samples of participating children to report changes in stress levels before and after interacting with the robot. This is a pioneering human-robot interaction study to investigate the effects of robot-assisted therapy using salivary samples. The results show that the bio-inspired robot-assisted therapy can significantly help reduce the stress levels of children with ASD.

  6. A bio-inspired design of live cell biosensors

    NASA Astrophysics Data System (ADS)

    Marcek Chorvatova, A.; Teplicky, T.; Pavlinska, Z.; Kronekova, Z.; Trelova, D.; Razga, F.; Nemethova, V.; Uhelska, L.; Lacik, I.; Chorvat, D.

    2018-02-01

    The last decade has witnessed a rapid growth of nanoscale-oriented biosensors that becomes one of the most promising and rapidly growing areas of modern research. Despite significant advancements in conception of such biosensors, most are based at evaluation of molecular, or protein interactions. It is however becoming increasingly evident that functionality of a living system does not reside in genome or in individual proteins, as no real biological functionality is expressed at these levels. Instead, to comprehend the true functioning of a biological system, it is essential to understand the integrative physiological behavior of the complex molecular interactions in their natural environment and precise spatio-temporal topology. In this contribution we therefore present a new concept for creation of biosensors, bio-inspired from true functioning of living cells, while monitoring their endogenous fluorescence, or autofluorescence.

  7. From ice-binding proteins to bio-inspired antifreeze materials

    PubMed Central

    Voets, I. K.

    2017-01-01

    Ice-binding proteins (IBP) facilitate survival under extreme conditions in diverse life forms. IBPs in polar fishes block further growth of internalized environmental ice and inhibit ice recrystallization of accumulated internal crystals. Algae use IBPs to structure ice, while ice adhesion is critical for the Antarctic bacterium Marinomonas primoryensis. Successful translation of this natural cryoprotective ability into man-made materials holds great promise but is still in its infancy. This review covers recent advances in the field of ice-binding proteins and their synthetic analogues, highlighting fundamental insights into IBP functioning as a foundation for the knowledge-based development of cheap, bio-inspired mimics through scalable production routes. Recent advances in the utilisation of IBPs and their analogues to e.g. improve cryopreservation, ice-templating strategies, gas hydrate inhibition and other technologies are presented. PMID:28657626

  8. The local strength of individual alumina particles

    NASA Astrophysics Data System (ADS)

    Pejchal, Václav; Fornabaio, Marta; Žagar, Goran; Mortensen, Andreas

    2017-12-01

    We implement the C-shaped sample test method and micro-cantilever beam testing to measure the local strength of microscopic, low-aspect-ratio ceramic particles, namely high-purity vapor grown α-alumina Sumicorundum® particles 15-30 μm in diameter, known to be attractive reinforcing particles for aluminum. Individual particles are shaped by focused ion beam micromachining so as to probe in tension a portion of the particle surface that is left unaffected by ion-milling. Mechanical testing of C-shaped specimens is done ex-situ using a nanoindentation apparatus, and in the SEM using an in-situ nanomechanical testing system for micro-cantilever beams. The strength is evaluated for each individual specimen using bespoke finite element simulation. Results show that, provided the particle surface is free of readily observable defects such as pores, twins or grain boundaries and their associated grooves, the particles can achieve local strength values that approach those of high-perfection single-crystal alumina whiskers, on the order of 10 GPa, outperforming high-strength nanocrystalline alumina fibers and nano-thick alumina platelets used in bio-inspired composites. It is also shown that by far the most harmful defects are grain boundaries, leading to the general conclusion that alumina particles must be single-crystalline or alternatively nanocrystalline to fully develop their potential as a strong reinforcing phase in composite materials.

  9. The contribution of trait negative affect and stress to recall for bodily states.

    PubMed

    Ma-Kellams, Christine; Lai, Lei; Taylor, Shelley E; Lerner, Jennifer S

    2016-12-01

    How does trait negative affect shape somatic memory of stressful events? We hypothesized that negative affect would impair accurate recall of one's own heart rate during stressful situations. Two bio-behavioral studies used a new paradigm to test retrospective visceral perception and assessed whether negative affective states experienced during aversive events (i.e., the Trier Stress Task-Time 1) would retrospectively shape recall of past heart rate (Time 2), even when accounting for actual heart rate at the time of each stressful event (Time 1). Results across both studies showed that individual differences in negative affect in response to a stressful task predicted visceral recollections, and those who experienced more negative affect were more inaccurate. Negative affect was associated with a tendency to remember visceral reactions as worse than they actually were. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Shape-Memory Hydrogels: Evolution of Structural Principles To Enable Shape Switching of Hydrophilic Polymer Networks.

    PubMed

    Löwenberg, Candy; Balk, Maria; Wischke, Christian; Behl, Marc; Lendlein, Andreas

    2017-04-18

    The ability of hydrophilic chain segments in polymer networks to strongly interact with water allows the volumetric expansion of the material and formation of a hydrogel. When polymer chain segments undergo reversible hydration depending on environmental conditions, smart hydrogels can be realized, which are able to shrink/swell and thus alter their volume on demand. In contrast, implementing the capacity of hydrogels to switch their shape rather than volume demands more sophisticated chemical approaches and structural concepts. In this Account, the principles of hydrogel network design, incorporation of molecular switches, and hydrogel microstructures are summarized that enable a spatially directed actuation of hydrogels by a shape-memory effect (SME) without major volume alteration. The SME involves an elastic deformation (programming) of samples, which are temporarily fixed by reversible covalent or physical cross-links resulting in a temporary shape. The material can reverse to the original shape when these molecular switches are affected by application of a suitable stimulus. Hydrophobic shape-memory polymers (SMPs), which are established with complex functions including multiple or reversible shape-switching, may provide inspiration for the molecular architecture of shape-memory hydrogels (SMHs), but cannot be identically copied in the world of hydrophilic soft materials. For instance, fixation of the temporary shape requires cross-links to be formed also in an aqueous environment, which may not be realized, for example, by crystalline domains from the hydrophilic main chains as these may dissolve in presence of water. Accordingly, dual-shape hydrogels have evolved, where, for example, hydrophobic crystallizable side chains have been linked into hydrophilic polymer networks to act as temperature-sensitive temporary cross-links. By incorporating a second type of such side chains, triple-shape hydrogels can be realized. Considering the typically given light permeability of hydrogels and the fully hydrated state with easy permeation by small molecules, other types of stimuli like light, pH, or ions can be employed that may not be easily used in hydrophobic SMPs. In some cases, those molecular switches can respond to more than one stimulus, thus increasing the number of opportunities to induce actuation of these synthetic hydrogels. Beyond this, biopolymer-based hydrogels can be equipped with a shape switching function when facilitating, for example, triple helix formation in proteins or ionic interactions in polysaccharides. Eventually, microstructured SMHs such as hybrid or porous structures can combine the shape-switching function with an improved performance by helping to overcome frequent shortcomings of hydrogels such as low mechanical strength or volume change upon temporary cross-link cleavage. Specifically, shape switching without major volume alteration is possible in porous SMHs by decoupling small volume changes of pore walls on the microscale and the macroscopic sample size. Furthermore, oligomeric rather than short aliphatic side chains as molecular switches allow stabilization of the sample volumes. Based on those structural principles and switching functionalities, SMHs have already entered into applications as soft actuators and are considered, for example, for cell manipulation in biomedicine. In the context of those applications, switching kinetics, switching forces, and reversibility of switching are aspects to be further explored.

  11. Filtering Data Based on Human-Inspired Forgetting.

    PubMed

    Freedman, S T; Adams, J A

    2011-12-01

    Robots are frequently presented with vast arrays of diverse data. Unfortunately, perfect memory and recall provides a mixed blessing. While flawless recollection of episodic data allows increased reasoning, photographic memory can hinder a robot's ability to operate in real-time dynamic environments. Human-inspired forgetting methods may enable robotic systems to rid themselves of out-dated, irrelevant, and erroneous data. This paper presents the use of human-inspired forgetting to act as a filter, removing unnecessary, erroneous, and out-of-date information. The novel ActSimple forgetting algorithm has been developed specifically to provide effective forgetting capabilities to robotic systems. This paper presents the ActSimple algorithm and how it was optimized and tested in a WiFi signal strength estimation task. The results generated by real-world testing suggest that human-inspired forgetting is an effective means of improving the ability of mobile robots to move and operate within complex and dynamic environments.

  12. Shape memory polymer medical device

    DOEpatents

    Maitland, Duncan [Pleasant Hill, CA; Benett, William J [Livermore, CA; Bearinger, Jane P [Livermore, CA; Wilson, Thomas S [San Leandro, CA; Small, IV, Ward; Schumann, Daniel L [Concord, CA; Jensen, Wayne A [Livermore, CA; Ortega, Jason M [Pacifica, CA; Marion, III, John E.; Loge, Jeffrey M [Stockton, CA

    2010-06-29

    A system for removing matter from a conduit. The system includes the steps of passing a transport vehicle and a shape memory polymer material through the conduit, transmitting energy to the shape memory polymer material for moving the shape memory polymer material from a first shape to a second and different shape, and withdrawing the transport vehicle and the shape memory polymer material through the conduit carrying the matter.

  13. Shape memory polymers

    DOEpatents

    Wilson, Thomas S.; Bearinger, Jane P.

    2017-08-29

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  14. Shape memory polymers

    DOEpatents

    Wilson, Thomas S.; Bearinger, Jane P.

    2015-06-09

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  15. Achieving Superior Two-Way Actuation by the Stress-Coupling of Nanoribbons and Nanocrystalline Shape Memory Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Shijie; Liu, Yinong; Ren, Yang

    2016-06-08

    Inspired by the driving principle of traditional bias-type two-way actuators, we developed a novel two-way actuation nanocomposite wire in which a massive number of Nb nanoribbons with ultra-large elastic strains are loaded inside a shape memory alloy (SMA) matrix to form a continuous array of nano bias actuation pairs for two-way actuation. The composite exhibits a two-way actuation strain of 3.2% during a thermal cycle and an actuation stress of 934 MPa upon heating, which is about twice higher than that (~500 MPa) found in reported two-way SMAs. Upon cooling, the composite shows an actuation stress of 134 MPa andmore » a mechanical work output of 1.08*106 J/ m3, which are about three and five times higher than that of reported two-way SMAs, respectively. It is revealed that the massive number of Nb nanoribbons in compressive state provides the high actuation stress and high work output upon cooling and the SMA matrix with high yield strength offers the high actuation stress upon heating. Compared to traditional bias-type two-way actuators, the two-way actuation composite with small volume and simple construct is in favour of the miniaturization and simplification of actuators.« less

  16. Increasing dimension of structures by 4D printing shape memory polymers via fused deposition modeling

    NASA Astrophysics Data System (ADS)

    Hu, G. F.; Damanpack, A. R.; Bodaghi, M.; Liao, W. H.

    2017-12-01

    The main objective of this paper is to introduce a 4D printing method to program shape memory polymers (SMPs) during fabrication process. Fused deposition modeling (FDM) as a filament-based printing method is employed to program SMPs during depositing the material. This method is implemented to fabricate complicated polymeric structures by self-bending features without need of any post-programming. Experiments are conducted to demonstrate feasibility of one-dimensional (1D)-to 2D and 2D-to-3D self-bending. It is shown that 3D printed plate structures can transform into masonry-inspired 3D curved shell structures by simply heating. Good reliability of SMP programming during printing process is also demonstrated. A 3D macroscopic constitutive model is established to simulate thermo-mechanical features of the printed SMPs. Governing equations are also derived to simulate programming mechanism during printing process and shape change of self-bending structures. In this respect, a finite element formulation is developed considering von-Kármán geometric nonlinearity and solved by implementing iterative Newton-Raphson scheme. The accuracy of the computational approach is checked with experimental results. It is demonstrated that the theoretical model is able to replicate the main characteristics observed in the experiments. This research is likely to advance the state of the art FDM 4D printing, and provide pertinent results and computational tool that are instrumental in design of smart materials and structures with self-bending features.

  17. Bio-inspired algorithms applied to molecular docking simulations.

    PubMed

    Heberlé, G; de Azevedo, W F

    2011-01-01

    Nature as a source of inspiration has been shown to have a great beneficial impact on the development of new computational methodologies. In this scenario, analyses of the interactions between a protein target and a ligand can be simulated by biologically inspired algorithms (BIAs). These algorithms mimic biological systems to create new paradigms for computation, such as neural networks, evolutionary computing, and swarm intelligence. This review provides a description of the main concepts behind BIAs applied to molecular docking simulations. Special attention is devoted to evolutionary algorithms, guided-directed evolutionary algorithms, and Lamarckian genetic algorithms. Recent applications of these methodologies to protein targets identified in the Mycobacterium tuberculosis genome are described.

  18. Hierarchical organization of butterfly gyroid nanostructures provide a time-frozen glimpse of intracellular membrane development

    NASA Astrophysics Data System (ADS)

    Wilts, Bodo; Winter, Benjamin; Klatt, Michael; Butz, Benjamin; Fischer, Michael; Kelly, Stephen; Spieker, Erdmann; Steiner, Ullrich; Schroeder-Turk, Gerd

    The formation of the biophotonic gyroid material in butterfly wing scales is an exceptional feat of evolutionary engineering of functional nanostructures. Previous work hypothesized that this nanostructure forms by chitin polymerization inside a convoluted membrane of corresponding shape in the endoplasmic reticulum. In vivo imaging however cannot yet elucidate this dynamic formation process, including whether membrane folding and chitin expression are simultaneous or subsequent processes. Here we show an unusual hierarchical ultrastructure in a Hairstreak butterfly that allows high-resolution 3D microscopy. Rather than the conventional polycrystalline space-filling arrangement, the gyroid occurs in isolated facetted crystallites with a pronounced size-gradient. This arrangement is interpreted as a sequence of time-frozen snapshots of the morphogenesis. This provides insight into the formation mechanisms of the nanoporous gyroid material, especially when compared among other butterflies with different arrangements. Financially supported through DFG, the NCCR Bio-inspired Mateirals and the SNF Ambizione programme.

  19. Spontaneous bending of pre-stretched bilayers.

    PubMed

    DeSimone, Antonio

    2018-01-01

    We discuss spontaneously bent configurations of pre-stretched bilayer sheets that can be obtained by tuning the pre-stretches in the two layers. The two-dimensional nonlinear plate model we use for this purpose is an adaptation of the one recently obtained for thin sheets of nematic elastomers, by means of a rigorous dimensional reduction argument based on the theory of Gamma-convergence (Agostiniani and DeSimone in Meccanica. doi:10.1007/s11012-017-0630-4, 2017, Math Mech Solids. doi:10.1177/1081286517699991, arXiv:1509.07003, 2017). We argue that pre-stretched bilayer sheets provide us with an interesting model system to study shape programming and morphing of surfaces in other, more complex systems, where spontaneous deformations are induced by swelling due to the absorption of a liquid, phase transformations, thermal or electro-magnetic stimuli. These include bio-mimetic structures inspired by biological systems from both the plant and the animal kingdoms.

  20. Obstacle traversal and self-righting of bio-inspired robots reveal the physics of multi-modal locomotion

    NASA Astrophysics Data System (ADS)

    Li, Chen; Fearing, Ronald; Full, Robert

    Most animals move in nature in a variety of locomotor modes. For example, to traverse obstacles like dense vegetation, cockroaches can climb over, push across, reorient their bodies to maneuver through slits, or even transition among these modes forming diverse locomotor pathways; if flipped over, they can also self-right using wings or legs to generate body pitch or roll. By contrast, most locomotion studies have focused on a single mode such as running, walking, or jumping, and robots are still far from capable of life-like, robust, multi-modal locomotion in the real world. Here, we present two recent studies using bio-inspired robots, together with new locomotion energy landscapes derived from locomotor-environment interaction physics, to begin to understand the physics of multi-modal locomotion. (1) Our experiment of a cockroach-inspired legged robot traversing grass-like beam obstacles reveals that, with a terradynamically ``streamlined'' rounded body like that of the insect, robot traversal becomes more probable by accessing locomotor pathways that overcome lower potential energy barriers. (2) Our experiment of a cockroach-inspired self-righting robot further suggests that body vibrations are crucial for exploring locomotion energy landscapes and reaching lower barrier pathways. Finally, we posit that our new framework of locomotion energy landscapes holds promise to better understand and predict multi-modal biological and robotic movement.

  1. A smart magnetic nanoplatform for synergistic anticancer therapy: manoeuvring mussel-inspired functional magnetic nanoparticles for pH responsive anticancer drug delivery and hyperthermia.

    PubMed

    Sasikala, Arathyram Ramachandra Kurup; GhavamiNejad, Amin; Unnithan, Afeesh Rajan; Thomas, Reju George; Moon, Myeongju; Jeong, Yong Yeon; Park, Chan Hee; Kim, Cheol Sang

    2015-11-21

    We report the versatile design of a smart nanoplatform for thermo-chemotherapy treatment of cancer. For the first time in the literature, our design takes advantage of the outstanding properties of mussel-inspired multiple catecholic groups - presenting a unique copolymer poly(2-hydroxyethyl methacrylate-co-dopamine methacrylamide) p(HEMA-co-DMA) to surface functionalize the superparamagnetic iron oxide nanoparticles as well as to conjugate borate containing anticancer drug bortezomib (BTZ) in a pH-dependent manner for the synergistic anticancer treatment. The unique multiple anchoring groups can be used to substantially improve the affinity of the ligands to the surfaces of the nanoparticles to form ultrastable iron oxide nanoparticles with control over their hydrodynamic diameter and interfacial chemistry. Thus the BTZ-incorporated-bio-inspired-smart magnetic nanoplatform will act as a hyperthermic agent that delivers heat when an alternating magnetic field is applied while the BTZ-bound catechol moieties act as chemotherapeutic agents in a cancer environment by providing pH-dependent drug release for the synergistic thermo-chemotherapy application. The anticancer efficacy of these bio-inspired multifunctional smart magnetic nanoparticles was tested both in vitro and in vivo and found that these unique magnetic nanoplatforms can be established to endow for the next generation of nanomedicine for efficient and safe cancer therapy.

  2. Demonstrations of bio-inspired perching landing gear for UAVs

    NASA Astrophysics Data System (ADS)

    Tieu, Mindy; Michael, Duncan M.; Pflueger, Jeffery B.; Sethi, Manik S.; Shimazu, Kelli N.; Anthony, Tatiana M.; Lee, Christopher L.

    2016-04-01

    Results are presented which demonstrate the feasibility and performance of two concepts of biologically-inspired landing-gear systems that enable bird-sized, unmanned aerial vehicles (UAV's) to land, perch, and take-off from branchlike structures and/or ledges. The first concept follows the anatomy of birds that can grasp ahold of a branch and perch as tendons in their legs are tensioned. This design involves a gravity-activated, cable-driven, underactuated, graspingfoot mechanism. As the UAV lands, its weight collapses a four-bar linkage pulling a cable which curls two opposing, multi-segmented feet to grasp the landing target. Each foot is a single, compliant mechanism fabricated by simultaneouly 3D-printing a flexible thermo-plastic and a stiffer ABS plastic. The design is optimized to grasp structures over a range of shapes and sizes. Quasi-static and flight tests of this landing gear affixed to RC rotorcraft (24 cm to 550 cm in diameter) demonstrate that the aircraft can land, perch, and take-off from a tree branch, rectangular wood board, PVC pipe, metal hand rail, chair armrest, and in addition, a stone wall ledge. Stability tests show that perching is maintained under base and wind disturbances. The second design concept, inspired by roosting bats, is a two-material, 3D-printed hooking mechanism that enables the UAV to stably suspend itself from a wire or small-diameter branch. The design balances structural stiffness for support and flexibility for the perching process. A flight-test demonstrates the attaching and dis-engaging of a small, RC quadcopter from a suspended line.

  3. Locomotion of inchworm-inspired robot made of smart soft composite (SSC).

    PubMed

    Wang, Wei; Lee, Jang-Yeob; Rodrigue, Hugo; Song, Sung-Hyuk; Chu, Won-Shik; Ahn, Sung-Hoon

    2014-10-07

    A soft-bodied robot made of smart soft composite with inchworm-inspired locomotion capable of both two-way linear and turning movement has been proposed, developed, and tested. The robot was divided into three functional parts based on the different functions of the inchworm: the body, the back foot, and the front foot. Shape memory alloy wires were embedded longitudinally in a soft polymer to imitate the longitudinal muscle fibers that control the abdominal contractions of the inchworm during locomotion. Each foot of the robot has three segments with different friction coefficients to implement the anchor and sliding movement. Then, utilizing actuation patterns between the body and feet based on the looping gait, the robot achieves a biomimetic inchworm gait. Experiments were conducted to evaluate the robot's locomotive performance for both linear locomotion and turning movement. Results show that the proposed robot's stride length was nearly one third of its body length, with a maximum linear speed of 3.6 mm s(-1), a linear locomotion efficiency of 96.4%, a maximum turning capability of 4.3 degrees per stride, and a turning locomotion efficiency of 39.7%.

  4. On-chip phase-change photonic memory and computing

    NASA Astrophysics Data System (ADS)

    Cheng, Zengguang; Ríos, Carlos; Youngblood, Nathan; Wright, C. David; Pernice, Wolfram H. P.; Bhaskaran, Harish

    2017-08-01

    The use of photonics in computing is a hot topic of interest, driven by the need for ever-increasing speed along with reduced power consumption. In existing computing architectures, photonic data storage would dramatically improve the performance by reducing latencies associated with electrical memories. At the same time, the rise of `big data' and `deep learning' is driving the quest for non-von Neumann and brain-inspired computing paradigms. To succeed in both aspects, we have demonstrated non-volatile multi-level photonic memory avoiding the von Neumann bottleneck in the existing computing paradigm and a photonic synapse resembling the biological synapses for brain-inspired computing using phase-change materials (Ge2Sb2Te5).

  5. A light-powered bio-capacitor with nanochannel modulation.

    PubMed

    Rao, Siyuan; Lu, Shanfu; Guo, Zhibin; Li, Yuan; Chen, Deliang; Xiang, Yan

    2014-09-03

    An artificial bio-capacitor system is established, consisting of the proton-pump protein proteorhodopsin and a modified alumina nanochannel, inspired by the capacitor-like behavior of plasma membranes realized through the cooperation of ion-pump and ion-channel proteins. Capacitor-like features of this simplified system are realized and identified, and the photocurrent duration time can be modulated by nanochannel modification to obtain favorable square-wave currents. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Accumulation of nanoparticles in “jellyfish” mucus: a bio-inspired route to decontamination of nano-waste

    NASA Astrophysics Data System (ADS)

    Patwa, Amit; Thiéry, Alain; Lombard, Fabien; Lilley, Martin K. S.; Boisset, Claire; Bramard, Jean-François; Bottero, Jean-Yves; Barthélémy, Philippe

    2015-06-01

    The economic and societal impacts of nano-materials are enormous. However, releasing such materials in the environment could be detrimental to human health and the ecological biosphere. Here we demonstrate that gold and quantum dots nanoparticles bio-accumulate into mucus materials coming from natural species such as jellyfish. One strategy that emerges from this finding would be to take advantage of these trapping properties to remove nanoparticles from contaminated water.

  7. Azurin/CdSe-ZnS-Based Bio-Nano Hybrid Structure for Nanoscale Resistive Memory Device.

    PubMed

    Yagati, Ajay Kumar; Lee, Taek; Choi, Jeong-Woo

    2017-07-15

    In the present study, we propose a method for bio-nano hybrid formation by coupling a redox metalloprotein, Azurin, with CdSe-ZnS quantum dot for the development of a nanoscale resistive memory device. The covalent interaction between the two nanomaterials enables a strong and effective binding to form an azurin/CdSe-ZnS hybrid, and also enabled better controllability to couple with electrodes to examine the memory function properties. Morphological and optical properties were performed to confirm both hybrid formations and also their individual components. Current-Voltage (I-V) measurements on the hybrid nanostructures exhibited bistable current levels towards the memory function device, that and those characteristics were unnoticeable on individual nanomaterials. The hybrids showed good retention characteristics with high stability and durability, which is a promising feature for future nanoscale memory devices.

  8. Aurelia aurita bio-inspired tilt sensor

    NASA Astrophysics Data System (ADS)

    Smith, Colin; Villanueva, Alex; Priya, Shashank

    2012-10-01

    The quickly expanding field of mobile robots, unmanned underwater vehicles, and micro-air vehicles urgently needs a cheap and effective means for measuring vehicle inclination. Commonly, tilt or inclination has been mathematically derived from accelerometers; however, there is inherent error in any indirect measurement. This paper reports a bio-inspired tilt sensor that mimics the natural balance organ of jellyfish, called the ‘statocyst’. Biological statocysts from the species Aurelia aurita were characterized by scanning electron microscopy to investigate the morphology and size of the natural sensor. An artificial tilt sensor was then developed by using printed electronics that incorporates a novel voltage divider concept in conjunction with small surface mount devices. This sensor was found to have minimum sensitivity of 4.21° with a standard deviation of 1.77°. These results open the possibility of developing elegant tilt sensor architecture for both air and water based platforms.

  9. Fusion of nacre, mussel, and lotus leaf: bio-inspired graphene composite paper with multifunctional integration.

    PubMed

    Zhong, Da; Yang, Qinglin; Guo, Lin; Dou, Shixue; Liu, Kesong; Jiang, Lei

    2013-07-07

    Multifunctional integration is an inherent characteristic for biological materials with multiscale structures. Learning from nature is an effective approach for scientists and engineers to construct multifunctional materials. In nature, mollusks (abalone), mussels, and the lotus have evolved different and optimized solutions to survive. Here, bio-inspired multifunctional graphene composite paper was fabricated in situ through the fusion of the different biological solutions from nacre (brick-and-mortar structure), mussel adhesive protein (adhesive property and reducing character), and the lotus leaf (self-cleaning effect). Owing to the special properties (self-polymerization, reduction, and adhesion), dopamine could be simultaneously used as a reducing agent for graphene oxide and as an adhesive, similar to the mortar in nacre, to crosslink the adjacent graphene. The resultant nacre-like graphene paper exhibited stable superhydrophobicity, self-cleaning, anti-corrosion, and remarkable mechanical properties underwater.

  10. Tunable band gaps in bio-inspired periodic composites with nacre-like microstructure

    NASA Astrophysics Data System (ADS)

    Chen, Yanyu; Wang, Lifeng

    2014-08-01

    Periodic composite materials have many promising applications due to their unique ability to control the propagation of waves. Here, we report the existence and frequency tunability of complete elastic wave band gaps in bio-inspired periodic composites with nacre-like, brick-and-mortar microstructure. Numerical results show that complete band gaps in these periodic composites derive from local resonances or Bragg scattering, depending on the lattice angle and the volume fraction of each phase in the composites. The investigation of elastic wave propagation in finite periodic composites validates the simulated complete band gaps and further reveals the mechanisms leading to complete band gaps. Moreover, our results indicate that the topological arrangement of the mineral platelets and changes of material properties can be utilized to tune the evolution of complete band gaps. Our finding provides new opportunities to design mechanically robust periodic composite materials for wave absorption under hostile environments, such as for deep water applications.

  11. Learning from Bees: An Approach for Influence Maximization on Viral Campaigns

    PubMed Central

    Sankar, C. Prem; S., Asharaf

    2016-01-01

    Maximisation of influence propagation is a key ingredient to any viral marketing or socio-political campaigns. However, it is an NP-hard problem, and various approximate algorithms have been suggested to address the issue, though not largely successful. In this paper, we propose a bio-inspired approach to select the initial set of nodes which is significant in rapid convergence towards a sub-optimal solution in minimal runtime. The performance of the algorithm is evaluated using the re-tweet network of the hashtag #KissofLove on Twitter associated with the non-violent protest against the moral policing spread to many parts of India. Comparison with existing centrality based node ranking process the proposed method significant improvement on influence propagation. The proposed algorithm is one of the hardly few bio-inspired algorithms in network theory. We also report the results of the exploratory analysis of the network kiss of love campaign. PMID:27992472

  12. Light and colour as analytical detection tools: a journey into the periodic table using polyamines to bio-inspired systems as chemosensors.

    PubMed

    Lodeiro, Carlos; Capelo, José Luis; Mejuto, Juan Carlos; Oliveira, Elisabete; Santos, Hugo M; Pedras, Bruno; Nuñez, Cristina

    2010-08-01

    This critical review describes some developments on the chemistry of fluorescent and colorimetric molecular probes or chemosensors, based on polyamines and associated compounds having oxygen and/or sulfur as donor atoms. The reported systems are essentially based on some selected published work in this field in the last five years, and in the work developed by the authors from 2000 onwards. Some interesting properties beyond sensing molecules, ions or/and cations by fluorescence, colorimetry as well as by MALDI-TOF MS spectrometry can arise from these systems. A short brief on different examples activated by PET (photoinduced electron transfer), ICT (internal charge transfer) and EET (electronic energy transfer) phenomena will be provided. Finally the introduction of bio-inspired compounds derived from emissive amino acid or short peptide systems and nanoparticle devices to detect metal ions will be reviewed (202 references).

  13. Distributed Synchronization Technique for OFDMA-Based Wireless Mesh Networks Using a Bio-Inspired Algorithm

    PubMed Central

    Kim, Mi Jeong; Maeng, Sung Joon; Cho, Yong Soo

    2015-01-01

    In this paper, a distributed synchronization technique based on a bio-inspired algorithm is proposed for an orthogonal frequency division multiple access (OFDMA)-based wireless mesh network (WMN) with a time difference of arrival. The proposed time- and frequency-synchronization technique uses only the signals received from the neighbor nodes, by considering the effect of the propagation delay between the nodes. It achieves a fast synchronization with a relatively low computational complexity because it is operated in a distributed manner, not requiring any feedback channel for the compensation of the propagation delays. In addition, a self-organization scheme that can be effectively used to construct 1-hop neighbor nodes is proposed for an OFDMA-based WMN with a large number of nodes. The performance of the proposed technique is evaluated with regard to the convergence property and synchronization success probability using a computer simulation. PMID:26225974

  14. Distributed Synchronization Technique for OFDMA-Based Wireless Mesh Networks Using a Bio-Inspired Algorithm.

    PubMed

    Kim, Mi Jeong; Maeng, Sung Joon; Cho, Yong Soo

    2015-07-28

    In this paper, a distributed synchronization technique based on a bio-inspired algorithm is proposed for an orthogonal frequency division multiple access (OFDMA)-based wireless mesh network (WMN) with a time difference of arrival. The proposed time- and frequency-synchronization technique uses only the signals received from the neighbor nodes, by considering the effect of the propagation delay between the nodes. It achieves a fast synchronization with a relatively low computational complexity because it is operated in a distributed manner, not requiring any feedback channel for the compensation of the propagation delays. In addition, a self-organization scheme that can be effectively used to construct 1-hop neighbor nodes is proposed for an OFDMA-based WMN with a large number of nodes. The performance of the proposed technique is evaluated with regard to the convergence property and synchronization success probability using a computer simulation.

  15. A Bio-Inspired Two-Layer Sensing Structure of Polypeptide and Multiple-Walled Carbon Nanotube to Sense Small Molecular Gases

    PubMed Central

    Wang, Li-Chun; Su, Tseng-Hsiung; Ho, Cheng-Long; Yang, Shang-Ren; Chiu, Shih-Wen; Kuo, Han-Wen; Tang, Kea-Tiong

    2015-01-01

    In this paper, we propose a bio-inspired, two-layer, multiple-walled carbon nanotube (MWCNT)-polypeptide composite sensing device. The MWCNT serves as a responsive and conductive layer, and the nonselective polypeptide (40 mer) coating the top of the MWCNT acts as a filter into which small molecular gases pass. Instead of using selective peptides to sense specific odorants, we propose using nonselective, peptide-based sensors to monitor various types of volatile organic compounds. In this study, depending on gas interaction and molecular sizes, the randomly selected polypeptide enabled the recognition of certain polar volatile chemical vapors, such as amines, and the improved discernment of low-concentration gases. The results of our investigation demonstrated that the polypeptide-coated sensors can detect ammonia at a level of several hundred ppm and barely responded to triethylamine. PMID:25751078

  16. Armours for soft bodies: how far can bioinspiration take us?

    PubMed

    White, Zachary W; Vernerey, Franck J

    2018-05-15

    The development of armour is as old as the dawn of civilization. Early man looked to natural structures to harvest or replicate for protection, leaning on millennia of evolutionary developments in natural protection. Since the advent of more modern weaponry, Armor development has seemingly been driven more by materials research than bio-inspiration. However, parallels can still be drawn between modern bullet-protective armours and natural defensive structures. Soft armour for handgun and fragmentation threats can be likened to mammalian skin, and similarly, hard armour can be compared with exoskeletons and turtle shells. Via bio-inspiration, it may be possible to develop structures previously un-researched for ballistic protection. This review will cover current modern ballistic protective structures focusing on energy dissipation and absorption methods, and their natural analogues. As all armour is a compromise between weight, flexibility and protection, the imbricated structure of scaled skin will be presented as a better balance between these factors.

  17. Towards a Bio-inspired Security Framework for Mission-Critical Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Ren, Wei; Song, Jun; Ma, Zhao; Huang, Shiyong

    Mission-critical wireless sensor networks (WSNs) have been found in numerous promising applications in civil and military fields. However, the functionality of WSNs extensively relies on its security capability for detecting and defending sophisticated adversaries, such as Sybil, worm hole and mobile adversaries. In this paper, we propose a bio-inspired security framework to provide intelligence-enabled security mechanisms. This scheme is composed of a middleware, multiple agents and mobile agents. The agents monitor the network packets, host activities, make decisions and launch corresponding responses. Middleware performs an infrastructure for the communication between various agents and corresponding mobility. Certain cognitive models and intelligent algorithms such as Layered Reference Model of Brain and Self-Organizing Neural Network with Competitive Learning are explored in the context of sensor networks that have resource constraints. The security framework and implementation are also described in details.

  18. Bio-inspired, colorful, flexible, defrostable light-scattering hybrid films for the effective distribution of LED light.

    PubMed

    An, Seongpil; Jo, Hong Seok; Kim, Yong Il; Song, Kyo Yong; Kim, Min-Woo; Lee, Kyu Bum; Yarin, Alexander L; Yoon, Sam S

    2017-07-06

    Bioluminescent jellyfish has a unique structure derived from fiber/polymer interfaces that is advantageous for effective light scattering in the dark, deep sea water. Herein, we demonstrate the fabrication of bio-inspired hybrid films by mimicry of the jellyfish's structure, leading to excellent light-scattering performance and defrosting capability. A haze value reaching 59.3% and a heating temperature of up to 292 °C were achieved with the films. Accordingly, the developed surface constitutes an attractive optical device for lighting applications, especially for street or vehicle luminaries for freezing Arctic-climate countries. The morphological details of the hybrid films were revealed by scanning electron microscopy. The light-scattering properties of these films were examined by ultraviolet-visible-infrared spectrophotometry and anti-glare effect analyses. The defrosting performance of the hybrid films was evaluated via heating tests and infra-red observations.

  19. A new bio-inspired stimulator to suppress hyper-synchronized neural firing in a cortical network.

    PubMed

    Amiri, Masoud; Amiri, Mahmood; Nazari, Soheila; Faez, Karim

    2016-12-07

    Hyper-synchronous neural oscillations are the character of several neurological diseases such as epilepsy. On the other hand, glial cells and particularly astrocytes can influence neural synchronization. Therefore, based on the recent researches, a new bio-inspired stimulator is proposed which basically is a dynamical model of the astrocyte biophysical model. The performance of the new stimulator is investigated on a large-scale, cortical network. Both excitatory and inhibitory synapses are also considered in the simulated spiking neural network. The simulation results show that the new stimulator has a good performance and is able to reduce recurrent abnormal excitability which in turn avoids the hyper-synchronous neural firing in the spiking neural network. In this way, the proposed stimulator has a demand controlled characteristic and is a good candidate for deep brain stimulation (DBS) technique to successfully suppress the neural hyper-synchronization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Bio-Inspired Asynchronous Pixel Event Tricolor Vision Sensor.

    PubMed

    Lenero-Bardallo, Juan Antonio; Bryn, D H; Hafliger, Philipp

    2014-06-01

    This article investigates the potential of the first ever prototype of a vision sensor that combines tricolor stacked photo diodes with the bio-inspired asynchronous pixel event communication protocol known as Address Event Representation (AER). The stacked photo diodes are implemented in a 22 × 22 pixel array in a standard STM 90 nm CMOS process. Dynamic range is larger than 60 dB and pixels fill factor is 28%. The pixels employ either simple pulse frequency modulation (PFM) or a Time-to-First-Spike (TFS) mode. A heuristic linear combination of the chip's inherent pseudo colors serves to approximate RGB color representation. Furthermore, the sensor outputs can be processed to represent the radiation in the near infrared (NIR) band without employing external filters, and to color-encode direction of motion due to an asymmetry in the update rates of the different diode layers.

  1. Bio-inspired Murray materials for mass transfer and activity

    NASA Astrophysics Data System (ADS)

    Zheng, Xianfeng; Shen, Guofang; Wang, Chao; Li, Yu; Dunphy, Darren; Hasan, Tawfique; Brinker, C. Jeffrey; Su, Bao-Lian

    2017-04-01

    Both plants and animals possess analogous tissues containing hierarchical networks of pores, with pore size ratios that have evolved to maximize mass transport and rates of reactions. The underlying physical principles of this optimized hierarchical design are embodied in Murray's law. However, we are yet to realize the benefit of mimicking nature's Murray networks in synthetic materials due to the challenges in fabricating vascularized structures. Here we emulate optimum natural systems following Murray's law using a bottom-up approach. Such bio-inspired materials, whose pore sizes decrease across multiple scales and finally terminate in size-invariant units like plant stems, leaf veins and vascular and respiratory systems provide hierarchical branching and precise diameter ratios for connecting multi-scale pores from macro to micro levels. Our Murray material mimics enable highly enhanced mass exchange and transfer in liquid-solid, gas-solid and electrochemical reactions and exhibit enhanced performance in photocatalysis, gas sensing and as Li-ion battery electrodes.

  2. Dynamic analysis of a bio-inspired climbing robot using ADAMS-Simulink co-simulation

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, P.; Dikshit, H.; Majumder, A.; Ghoshal, S.; Maity, A.

    2018-04-01

    Climbing robot has been an area of interest since the demand of inspection of pipeline, nuclear power plant, and various big structure is growing up rapidly. This paper represents the development of a bio-inspired modular robot which mimics inchworm locomotion during climbing. In the present paper, the climbing motion is achieved only on a flat vertical plane by magnetic adhesion principle. The robot is modelled as a 4-link planar mechanism with three revolute joints actuated by DC servo motors. Sinusoidal gait pattern is used to approximate the motion of an inchworm. The dynamics of the robot is presented by using ADAMS/MATLAB co-simulation methodology. The simulation result gives the maximum value of joint torque during one complete cycle of motion. This torque value is used for the selection of servo motor specifications required to build the prototype.

  3. Hydrogels from Amorphous Calcium Carbonate and Polyacrylic Acid: Bio-Inspired Materials for "Mineral Plastics".

    PubMed

    Sun, Shengtong; Mao, Li-Bo; Lei, Zhouyue; Yu, Shu-Hong; Cölfen, Helmut

    2016-09-19

    Given increasing environmental issues due to the large usage of non-biodegradable plastics based on petroleum, new plastic materials, which are economic, environmentally friendly, and recyclable are in high demand. One feasible strategy is the bio-inspired synthesis of mineral-based hybrid materials. Herein we report a facile route for an amorphous CaCO3 (ACC)-based hydrogel consisting of very small ACC nanoparticles physically cross-linked by poly(acrylic acid). The hydrogel is shapeable, stretchable, and self-healable. Upon drying, the hydrogel forms free-standing, rigid, and transparent objects with remarkable mechanical performance. By swelling in water, the material can completely recover the initial hydrogel state. As a matrix, thermochromism can also be easily introduced. The present hybrid hydrogel may represent a new class of plastic materials, the "mineral plastics". © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Tetrahedral node for Transmission-Line Modeling (TLM) applied to Bio-heat Transfer.

    PubMed

    Milan, Hugo F M; Gebremedhin, Kifle G

    2016-12-01

    Transmission-Line Modeling (TLM) is a numerical method used to solve complex and time-domain bio-heat transfer problems. In TLM, parallelepipeds are used to discretize three-dimensional problems. The drawback in using parallelepiped shapes is that instead of refining only the domain of interest, a large additional domain would also have to be refined, which results in increased computational time and memory space. In this paper, we developed a tetrahedral node for TLM applied to bio-heat transfer that does not have the drawback associated with the parallelepiped node. The model includes heat source, blood perfusion, boundary conditions and initial conditions. The boundary conditions could be adiabatic, temperature, heat flux, or convection. The predicted temperature and heat flux were compared against results from an analytical solution and the results agreed within 2% for a mesh size of 69,941 nodes and a time step of 5ms. The method was further validated against published results of maximum skin-surface temperature difference in a breast with and without tumor and the results agreed within 6%. The published results were obtained from a model that used parallelepiped TLM node. An open source software, TLMBHT, was written using the theory developed herein and is available for download free-of-charge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A bio-inspired electrocommunication system for small underwater robots.

    PubMed

    Wang, Wei; Liu, Jindong; Xie, Guangming; Wen, Li; Zhang, Jianwei

    2017-03-29

    Weakly electric fishes (Gymnotid and Mormyrid) use an electric field to communicate efficiently (termed electrocommunication) in the turbid waters of confined spaces where other communication modalities fail. Inspired by this biological phenomenon, we design an artificial electrocommunication system for small underwater robots and explore the capabilities of such an underwater robotic communication system. An analytical model for electrocommunication is derived to predict the effect of the key parameters such as electrode distance and emitter current of the system on the communication performance. According to this model, a low-dissipation, and small-sized electrocommunication system is proposed and integrated into a small robotic fish. We characterize the communication performance of the robot in still water, flowing water, water with obstacles and natural water conditions. The results show that underwater robots are able to communicate electrically at a speed of around 1 k baud within about 3 m with a low power consumption (less than 1 W). In addition, we demonstrate that two leader-follower robots successfully achieve motion synchronization through electrocommunication in the three-dimensional underwater space, indicating that this bio-inspired electrocommunication system is a promising setup for the interaction of small underwater robots.

  6. Biomimetic and bio-inspired uses of mollusc shells.

    PubMed

    Morris, J P; Wang, Y; Backeljau, T; Chapelle, G

    2016-06-01

    Climate change and ocean acidification are likely to have a profound effect on marine molluscs, which are of great ecological and economic importance. One process particularly sensitive to climate change is the formation of biominerals in mollusc shells. Fundamental research is broadening our understanding of the biomineralization process, as well as providing more informed predictions on the effects of climate change on marine molluscs. Such studies are important in their own right, but their value also extends to applied sciences. Biominerals, organic/inorganic hybrid materials with many remarkable physical and chemical properties, have been studied for decades, and the possibilities for future improved use of such materials for society are widely recognised. This article highlights the potential use of our understanding of the shell biomineralization process in novel bio-inspired and biomimetic applications. It also highlights the potential for the valorisation of shells produced as a by-product of the aquaculture industry. Studying shells and the formation of biominerals will inspire novel functional hybrid materials. It may also provide sustainable, ecologically- and economically-viable solutions to some of the problems created by current human resource exploitation. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Recent advancements in prosthetic hand technology.

    PubMed

    Saikia, Angana; Mazumdar, Sushmi; Sahai, Nitin; Paul, Sudip; Bhatia, Dinesh; Verma, Suresh; Rohilla, Punit Kumar

    2016-07-01

    Recently, significant advances over the past decade have been made in robotics, artificial intelligence and other cognitive related fields, allowing development of highly sophisticated bio-mimetic robotics systems. In addition, enormous number of robots have been designed and assembled by explicitly realising their biological oriented behaviours. To enhance skill behaviours and adequate grasping abilities in these devices, a new phase of dexterous hands has been developed recently with bio-mimetically oriented and bio-inspired functionalities. The aim in writing this review paper is to present a detailed insight towards the development of the bio-mimetic based dexterous robotic multi-fingered artificial hand. An "ideal" upper limb prosthesis should be perceived as a part of their natural body by the amputee and should replicate sensory-motor capabilities of the amputated limb. Upper-limb amputations are most often the result of sudden trauma to the body, although they also can be caused by malignancy, congenital deficiencies and vascular diseases. This paper discusses the different bio-mimetic approaches using a framework that permits for a common description of biological and technical based hand manipulation behaviour. In particular, the review focuses on a number of developments in the inspired robotic systems. In conclusion, the study found that a huge amount of research efforts in terms of kinematics, dynamics, modelling and control methodologies are being put in to improve the present hand technology, thereby providing more functionality to the prosthetic limb of the amputee. This would improve their quality-of-life and help in performing activities of daily living (ADL) tasks with comparative ease in the near future.

  8. A smart magnetic nanoplatform for synergistic anticancer therapy: manoeuvring mussel-inspired functional magnetic nanoparticles for pH responsive anticancer drug delivery and hyperthermia

    NASA Astrophysics Data System (ADS)

    Sasikala, Arathyram Ramachandra Kurup; Ghavaminejad, Amin; Unnithan, Afeesh Rajan; Thomas, Reju George; Moon, Myeongju; Jeong, Yong Yeon; Park, Chan Hee; Kim, Cheol Sang

    2015-10-01

    We report the versatile design of a smart nanoplatform for thermo-chemotherapy treatment of cancer. For the first time in the literature, our design takes advantage of the outstanding properties of mussel-inspired multiple catecholic groups - presenting a unique copolymer poly(2-hydroxyethyl methacrylate-co-dopamine methacrylamide) p(HEMA-co-DMA) to surface functionalize the superparamagnetic iron oxide nanoparticles as well as to conjugate borate containing anticancer drug bortezomib (BTZ) in a pH-dependent manner for the synergistic anticancer treatment. The unique multiple anchoring groups can be used to substantially improve the affinity of the ligands to the surfaces of the nanoparticles to form ultrastable iron oxide nanoparticles with control over their hydrodynamic diameter and interfacial chemistry. Thus the BTZ-incorporated-bio-inspired-smart magnetic nanoplatform will act as a hyperthermic agent that delivers heat when an alternating magnetic field is applied while the BTZ-bound catechol moieties act as chemotherapeutic agents in a cancer environment by providing pH-dependent drug release for the synergistic thermo-chemotherapy application. The anticancer efficacy of these bio-inspired multifunctional smart magnetic nanoparticles was tested both in vitro and in vivo and found that these unique magnetic nanoplatforms can be established to endow for the next generation of nanomedicine for efficient and safe cancer therapy.We report the versatile design of a smart nanoplatform for thermo-chemotherapy treatment of cancer. For the first time in the literature, our design takes advantage of the outstanding properties of mussel-inspired multiple catecholic groups - presenting a unique copolymer poly(2-hydroxyethyl methacrylate-co-dopamine methacrylamide) p(HEMA-co-DMA) to surface functionalize the superparamagnetic iron oxide nanoparticles as well as to conjugate borate containing anticancer drug bortezomib (BTZ) in a pH-dependent manner for the synergistic anticancer treatment. The unique multiple anchoring groups can be used to substantially improve the affinity of the ligands to the surfaces of the nanoparticles to form ultrastable iron oxide nanoparticles with control over their hydrodynamic diameter and interfacial chemistry. Thus the BTZ-incorporated-bio-inspired-smart magnetic nanoplatform will act as a hyperthermic agent that delivers heat when an alternating magnetic field is applied while the BTZ-bound catechol moieties act as chemotherapeutic agents in a cancer environment by providing pH-dependent drug release for the synergistic thermo-chemotherapy application. The anticancer efficacy of these bio-inspired multifunctional smart magnetic nanoparticles was tested both in vitro and in vivo and found that these unique magnetic nanoplatforms can be established to endow for the next generation of nanomedicine for efficient and safe cancer therapy. Electronic supplementary information (ESI) available: Characterization of p(HEMA-co-DMA) abbreviated as (HEDO), XRD spectra of Fe3O4 & HEDO-Fe3O4, DLS of Fe3O4 & HEDO-Fe3O4, UV-VIS photospectroscopy of HEDO, BTZ and HEDO-BTZ. See DOI: 10.1039/C5NR05844A

  9. Shape memory polymer foams for endovascular therapies

    DOEpatents

    Wilson, Thomas S.; Maitland, Duncan J.

    2017-03-21

    A system for occluding a physical anomaly. One embodiment comprises a shape memory material body wherein the shape memory material body fits within the physical anomaly occluding the physical anomaly. The shape memory material body has a primary shape for occluding the physical anomaly and a secondary shape for being positioned in the physical anomaly.

  10. Shape memory polymer foams for endovascular therapies

    DOEpatents

    Wilson, Thomas S [Castro Valley, CA; Maitland, Duncan J [Pleasant Hill, CA

    2012-03-13

    A system for occluding a physical anomaly. One embodiment comprises a shape memory material body wherein the shape memory material body fits within the physical anomaly occluding the physical anomaly. The shape memory material body has a primary shape for occluding the physical anomaly and a secondary shape for being positioned in the physical anomaly.

  11. Shape memory polymer foams for endovascular therapies

    DOEpatents

    Wilson, Thomas S.; Maitland, Duncan J.

    2015-05-26

    A system for occluding a physical anomaly. One embodiment comprises a shape memory material body wherein the shape memory material body fits within the physical anomaly occluding the physical anomaly. The shape memory material body has a primary shape for occluding the physical anomaly and a secondary shape for being positioned in the physical anomaly.

  12. Deformation rate-, hold time-, and cycle-dependent shape-memory performance of Veriflex-E resin

    NASA Astrophysics Data System (ADS)

    McClung, Amber J. W.; Tandon, Gyaneshwar P.; Baur, Jeffery W.

    2013-02-01

    Shape-memory polymers have attracted great interest in recent years for application in reconfigurable structures (for instance morphing aircraft, micro air vehicles, and deployable space structures). However, before such applications can be attempted, the mechanical behavior of the shape-memory polymers must be thoroughly understood. The present study represents an assessment of viscous effects during multiple shape-memory cycles of Veriflex-E, an epoxy-based, thermally triggered shape-memory polymer resin. The experimental program is designed to explore the influence of multiple thermomechanical cycles on the shape-memory performance of Veriflex-E. The effects of the deformation rate and hold times at elevated temperature on the shape-memory behavior are also investigated.

  13. Biomimetic cellular metals-using hierarchical structuring for energy absorption.

    PubMed

    Bührig-Polaczek, A; Fleck, C; Speck, T; Schüler, P; Fischer, S F; Caliaro, M; Thielen, M

    2016-07-19

    Fruit walls as well as nut and seed shells typically perform a multitude of functions. One of the biologically most important functions consists in the direct or indirect protection of the seeds from mechanical damage or other negative environmental influences. This qualifies such biological structures as role models for the development of new materials and components that protect commodities and/or persons from damage caused for example by impacts due to rough handling or crashes. We were able to show how the mechanical properties of metal foam based components can be improved by altering their structure on various hierarchical levels inspired by features and principles important for the impact and/or puncture resistance of the biological role models, rather than by tuning the properties of the bulk material. For this various investigation methods have been established which combine mechanical testing with different imaging methods, as well as with in situ and ex situ mechanical testing methods. Different structural hierarchies especially important for the mechanical deformation and failure behaviour of the biological role models, pomelo fruit (Citrus maxima) and Macadamia integrifolia, were identified. They were abstracted and transferred into corresponding structural principles and thus hierarchically structured bio-inspired metal foams have been designed. A production route for metal based bio-inspired structures by investment casting was successfully established. This allows the production of complex and reliable structures, by implementing and combining different hierarchical structural elements found in the biological concept generators, such as strut design and integration of fibres, as well as by minimising casting defects. To evaluate the structural effects, similar investigation methods and mechanical tests were applied to both the biological role models and the metallic foams. As a result an even deeper quantitative understanding of the form-structure-function relationship of the biological concept generators as well as the bio-inspired metal foams was achieved, on deeper hierarchical levels and overarching different levels.

  14. High-strain slide-ring shape-memory polycaprolactone-based polyurethane.

    PubMed

    Wu, Ruiqing; Lai, Jingjuan; Pan, Yi; Zheng, Zhaohui; Ding, Xiaobin

    2018-06-06

    To enable shape-memory polymer networks to achieve recoverable high deformability with a simultaneous high shape-fixity ratio and shape-recovery ratio, novel semi-crystalline slide-ring shape-memory polycaprolactone-based polyurethane (SR-SMPCLU) with movable net-points constructed by a topologically interlocked slide-ring structure was designed and fabricated. The SR-SMPCLU not only exhibited good shape fixity, almost complete shape recovery, and a fast shape-recovery speed, it also showed an outstanding recoverable high-strain capacity with 95.83% Rr under a deformation strain of 1410% due to the pulley effect of the topological slide-ring structure. Furthermore, the SR-SMPCLU system maintained excellent shape-memory performance with increasing the training cycle numbers at 45% and even 280% deformation strain. The effects of the slide-ring cross-linker content, deformation strain, and successive shape-memory cycles on the shape-memory performance were investigated. A possible mechanism for the shape-memory effect of the SR-SMPCLU system is proposed.

  15. Mimosa-inspired design of a flexible pressure sensor with touch sensitivity.

    PubMed

    Su, Bin; Gong, Shu; Ma, Zheng; Yap, Lim Wei; Cheng, Wenlong

    2015-04-24

    A bio-inspired flexible pressure sensor is generated with high sensitivity (50.17 kPa(-1)), quick responding time (<20 ms), and durable stability (negligible loading-unloading signal changes over 10 000 cycles). Notably, the key resource of surface microstructures upon sensor substrates results from the direct molding of natural mimosa leaves, presenting a simple, environment-friendly and easy scale-up fabrication process for these flexible pressure sensors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Towards sustainable and renewable systems for electrochemical energy storage.

    PubMed

    Tarascon, Jean-Marie

    2008-01-01

    Renewable energy sources and electric automotive transportation are popular topics in our belated energy-conscious society, placing electrochemical energy management as one of the major technological developments for this new century. Besides efficiency, any new storage technologies will have to provide advantages in terms of cost and environmental footprint and thus rely on sustainable materials that can be processed at low temperature. To meet such challenges future devices will require inspiration from living organisms and rely on either bio-inspired or biomimetic approaches.

  17. Effect of Deformation Mode on the Wear Behavior of NiTi Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Yan, Lina; Liu, Yong

    2016-06-01

    Owing to good biocompatibility, good fatigue resistance, and excellent superelasticity, various types of bio-medical devices based on NiTi shape memory alloy (SMA) have been developed. Due to the complexity in deformation mode in service, for example NiTi implants, accurate assessment/prediction of the surface wear process is difficult. This study aims at providing a further insight into the effect of deformation mode on the wear behavior of NiTi SMA. In the present study, two types of wear testing modes were used, namely sliding wear mode and reciprocating wear mode, to investigate the effect of deformation mode on the wear behavior of NiTi SMA in both martensitic and austenitic states. It was found that, when in martensitic state and under high applied loads, sliding wear mode resulted in more surface damage as compared to that under reciprocating wear mode. When in austenitic state, although similar trends in the coefficient of friction were observed, the coefficient of friction and surface damage in general is less under reciprocating mode than under sliding mode. These observations were further discussed in terms of different deformation mechanisms involved in the wear tests, in particular, the reversibility of martensite variant reorientation and stress-induced phase transformation, respectively.

  18. Powder Metallurgy Fabrication of Porous 51(at.%)Ni-Ti Shape Memory Alloys for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mustafa K.; Hamzah, E.; Saud, Safaa N.; Nazim, E. M.

    2018-05-01

    The effect of time and temperature on the microwave sintering of 51(at.%)Ni-Ti shape memory alloys (SMAs) was investigated in the current research. Furthermore, the microstructure, mechanical properties, and bio-corrosion properties were analyzed based on the sintering conditions. The results revealed that the sintering condition of 700 °C for 15 min produced a part with coherent surface survey that does not exhibit gross defects. Increasing the sintering time and temperature created defects on the outer surface, while reducing the temperature to 550 °C severely affected the mechanical properties. The microstructure of these samples showed two regions of Ni-rich region and Ti-rich region between them Ti2Ni, NiTi, and Ni3Ti phases. The differential scanning calorimeter (DSC) curves of Ni-Ti samples exhibited a multi-step phase transformation B19'-R-B2 during heating and cooling. An increase in the sintering temperature from 550 to 700 °C was found to increase the fracture strength significantly and decreased the fracture strain slightly. Reducing the sintering temperature from 700 to 550 °C severely affected the corrosion behaviors of 51%Ni-Ti SMAs. This research aims to select the optimum parameters to produce Ni-Ti alloys with desired microstructure, mechanical properties, and corrosion behaviors for biomedical applications.

  19. A two-dimensional iterative panel method and boundary layer model for bio-inspired multi-body wings

    NASA Astrophysics Data System (ADS)

    Blower, Christopher J.; Dhruv, Akash; Wickenheiser, Adam M.

    2014-03-01

    The increased use of Unmanned Aerial Vehicles (UAVs) has created a continuous demand for improved flight capabilities and range of use. During the last decade, engineers have turned to bio-inspiration for new and innovative flow control methods for gust alleviation, maneuverability, and stability improvement using morphing aircraft wings. The bio-inspired wing design considered in this study mimics the flow manipulation techniques performed by birds to extend the operating envelope of UAVs through the installation of an array of feather-like panels across the airfoil's upper and lower surfaces while replacing the trailing edge flap. Each flap has the ability to deflect into both the airfoil and the inbound airflow using hinge points with a single degree-of-freedom, situated at 20%, 40%, 60% and 80% of the chord. The installation of the surface flaps offers configurations that enable advantageous maneuvers while alleviating gust disturbances. Due to the number of possible permutations available for the flap configurations, an iterative constant-strength doublet/source panel method has been developed with an integrated boundary layer model to calculate the pressure distribution and viscous drag over the wing's surface. As a result, the lift, drag and moment coefficients for each airfoil configuration can be calculated. The flight coefficients of this numerical method are validated using experimental data from a low speed suction wind tunnel operating at a Reynolds Number 300,000. This method enables the aerodynamic assessment of a morphing wing profile to be performed accurately and efficiently in comparison to Computational Fluid Dynamics methods and experiments as discussed herein.

  20. Bio-inspired Autonomic Structures: a middleware for Telecommunications Ecosystems

    NASA Astrophysics Data System (ADS)

    Manzalini, Antonio; Minerva, Roberto; Moiso, Corrado

    Today, people are making use of several devices for communications, for accessing multi-media content services, for data/information retrieving, for processing, computing, etc.: examples are laptops, PDAs, mobile phones, digital cameras, mp3 players, smart cards and smart appliances. One of the most attracting service scenarios for future Telecommunications and Internet is the one where people will be able to browse any object in the environment they live: communications, sensing and processing of data and services will be highly pervasive. In this vision, people, machines, artifacts and the surrounding space will create a kind of computational environment and, at the same time, the interfaces to the network resources. A challenging technological issue will be interconnection and management of heterogeneous systems and a huge amount of small devices tied together in networks of networks. Moreover, future network and service infrastructures should be able to provide Users and Application Developers (at different levels, e.g., residential Users but also SMEs, LEs, ASPs/Web2.0 Service roviders, ISPs, Content Providers, etc.) with the most appropriate "environment" according to their context and specific needs. Operators must be ready to manage such level of complication enabling their latforms with technological advanced allowing network and services self-supervision and self-adaptation capabilities. Autonomic software solutions, enhanced with innovative bio-inspired mechanisms and algorithms, are promising areas of long term research to face such challenges. This chapter proposes a bio-inspired autonomic middleware capable of leveraging the assets of the underlying network infrastructure whilst, at the same time, supporting the development of future Telecommunications and Internet Ecosystems.

  1. A Facile and General Approach to Recoverable High-Strain Multishape Shape Memory Polymers.

    PubMed

    Li, Xingjian; Pan, Yi; Zheng, Zhaohui; Ding, Xiaobin

    2018-03-01

    Fabricating a single polymer network with no need to design complex structures to achieve an ideal combination of tunable high-strain multiple-shape memory effects and highly recoverable shape memory property is a great challenge for the real applications of advanced shape memory devices. Here, a facile and general approach to recoverable high-strain multishape shape memory polymers is presented via a random copolymerization of acrylate monomers and a chain-extended multiblock copolymer crosslinker. As-prepared shape memory networks show a large width at the half-peak height of the glass transition, far wider than current classical multishape shape memory polymers. A combination of tunable high-strain multishape memory effect and as high as 1000% recoverable strain in a single chemical-crosslinking network can be obtained. To the best of our knowledge, this is the first thermosetting material with a combination of highly recoverable strain and tunable high-strain multiple-shape memory effects. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Thermo-mechanical behavior and structure of melt blown shape-memory polyurethane nonwovens.

    PubMed

    Safranski, David L; Boothby, Jennifer M; Kelly, Cambre N; Beatty, Kyle; Lakhera, Nishant; Frick, Carl P; Lin, Angela; Guldberg, Robert E; Griffis, Jack C

    2016-09-01

    New processing methods for shape-memory polymers allow for tailoring material properties for numerous applications. Shape-memory nonwovens have been previously electrospun, but melt blow processing has yet to be evaluated. In order to determine the process parameters affecting shape-memory behavior, this study examined the effect of air pressure and collector speed on the mechanical behavior and shape-recovery of shape-memory polyurethane nonwovens. Mechanical behavior was measured by dynamic mechanical analysis and tensile testing, and shape-recovery was measured by unconstrained and constrained recovery. Microstructure changes throughout the shape-memory cycle were also investigated by micro-computed tomography. It was found that increasing collector speed increases elastic modulus, ultimate strength and recovery stress of the nonwoven, but collector speed does not affect the failure strain or unconstrained recovery. Increasing air pressure decreases the failure strain and increases rubbery modulus and unconstrained recovery, but air pressure does not influence recovery stress. It was also found that during the shape-memory cycle, the connectivity density of the fibers upon recovery does not fully return to the initial values, accounting for the incomplete shape-recovery seen in shape-memory nonwovens. With these parameter to property relationships identified, shape-memory nonwovens can be more easily manufactured and tailored for specific applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Hypersonic Transition Along Curved Surfaces in the Presence of Vortices and Their Control by Using Microtextured Surfaces

    DTIC Science & Technology

    2015-05-13

    Bhagwandin, Pierre N. Floriano, Nico- laos Christodoulides, and John T. McDevitt, “Programmable nano- bio -chip sensors : Analytical meets clinical”, Analytical...superhydrophobic surfaces can be used in many technologies such as self-cleaning coatings for satellite dishes, solar energy panels, photovoltaics and...Design of hydrophobic surfaces for liquid droplet control”, NPG Asia Mater. 3, pp. 49–56 (2011). [15] K. Liu and L. Jiang, “ Bio -inspired self-cleaning

  4. Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers

    PubMed Central

    Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Taylor, Curtis; Basile, Vito; Jiang, Peng

    2015-01-01

    Smart shape-memory polymers can memorize and recover their permanent shape in response to an external stimulus (for example, heat). They have been extensively exploited for a wide spectrum of applications ranging from biomedical devices to aerospace morphing structures. However, most of the existing shape-memory polymers are thermoresponsive and their performance is hindered by heat-demanding programming and recovery steps. Although pressure is an easily adjustable process variable such as temperature, pressure-responsive shape-memory polymers are largely unexplored. Here we report a series of shape-memory polymers that enable unusual ‘cold' programming and instantaneous shape recovery triggered by applying a contact pressure at ambient conditions. Moreover, the interdisciplinary integration of scientific principles drawn from two disparate fields—the fast-growing photonic crystal and shape-memory polymer technologies—enables fabrication of reconfigurable photonic crystals and simultaneously provides a simple and sensitive optical technique for investigating the intriguing shape-memory effects at nanoscale. PMID:26074349

  5. Les nanostructures pour créer de la couleur, un art inspiré par la nature

    NASA Astrophysics Data System (ADS)

    Ball, Philip

    2018-02-01

    Les reflets changeants des plumes de la queue du paon ont captivé plus d'un esprit curieux. Le scientifique anglais Robert Hooke les qualifiait en 1665 de « surnaturelles » en constatant que, mouillées, elles perdaient leurs couleurs. À l'aide du microscope inventé depuis peu, il observa ces plumes, et découvrit qu'elles étaient couvertes de stries - qu'il suspecta d'être à l'origine des couleurs. Aujourd'hui, la recherche tente de s'inspirer de ces phénomènes : des applications « bio-inspirées » sont en voie de concrétisation. ARRAY(0x29ad218)

  6. Tumor-Targeting Anti-CD20 Antibodies Mediate In Vitro Expansion of Memory Natural Killer Cells: Impact of CD16 Affinity Ligation Conditions and In Vivo Priming.

    PubMed

    Capuano, Cristina; Battella, Simone; Pighi, Chiara; Franchitti, Lavinia; Turriziani, Ombretta; Morrone, Stefania; Santoni, Angela; Galandrini, Ricciarda; Palmieri, Gabriella

    2018-01-01

    Natural killer (NK) cells represent a pivotal player of innate anti-tumor immune responses. The impact of environmental factors in shaping the representativity of different NK cell subsets is increasingly appreciated. Human cytomegalovirus (HCMV) infection profoundly affects NK cell compartment, as documented by the presence of a CD94/NKG2C + FcεRIγ - long-lived "memory" NK cell subset, endowed with enhanced CD16-dependent functional capabilities, in a fraction of HCMV-seropositive subjects. However, the requirements for memory NK cell pool establishment/maintenance and activation have not been fully characterized yet. Here, we describe the capability of anti-CD20 tumor-targeting therapeutic monoclonal antibodies (mAbs) to drive the selective in vitro expansion of memory NK cells and we show the impact of donor' HCMV serostatus and CD16 affinity ligation conditions on this event. In vitro expanded memory NK cells maintain the phenotypic and functional signature of their freshly isolated counterpart; furthermore, our data demonstrate that CD16 affinity ligation conditions differently affect memory NK cell proliferation and functional activation, as rituximab-mediated low-affinity ligation represents a superior proliferative stimulus, while high-affinity aggregation mediated by glycoengineered obinutuzumab results in improved multifunctional responses. Our work also expands the molecular and functional characterization of memory NK cells, and investigates the possible impact of CD16 functional allelic variants on their in vivo and in vitro expansions. These results reveal new insights in Ab-driven memory NK cell responses in a therapeutic setting and may ultimately inspire new NK cell-based intervention strategies against cancer, in which the enhanced responsiveness to mAb-bound target could significantly impact therapeutic efficacy.

  7. Magnetic Field Triggered Multicycle Damage Sensing and Self Healing

    NASA Astrophysics Data System (ADS)

    Ahmed, Anansa S.; Ramanujan, R. V.

    2015-09-01

    Multifunctional materials inspired by biological structures have attracted great interest, e.g. for wearable/ flexible “skin” and smart coatings. A current challenge in this area is to develop an artificial material which mimics biological skin by simultaneously displaying color change on damage as well as self healing of the damaged region. Here we report, for the first time, the development of a damage sensing and self healing magnet-polymer composite (Magpol), which actively responds to an external magnetic field. We incorporated reversible sensing using mechanochromic molecules in a shape memory thermoplastic matrix. Exposure to an alternating magnetic field (AMF) triggers shape recovery and facilitates damage repair. Magpol exhibited a linear strain response upto 150% strain and complete recovery after healing. We have demonstrated the use of this concept in a reusable biomedical device i.e., coated guidewires. Our findings offer a new synergistic method to bestow multifunctionality for applications ranging from medical device coatings to adaptive wing structures.

  8. Biology-Inspired Explorers for Space Systems

    NASA Astrophysics Data System (ADS)

    Ramohalli, Kumar; Lozano, Peter; Furfaro, Roberto

    2002-01-01

    Building upon three innovative technologies, each of which received a NTR award from NASA, a specific explorer is described. This "robot" does away with conventional gears, levers, pulleys,.... And uses "Muscle Materials" instead; these shape-memory materials, formerly in the Nickel-Titanium family, but now in the much wider class of ElectroActivePolymers(EAP), have the ability to precisely respond to pre"programmed" shape changes upon application of an electrical input. Of course, the pre"programs" are at the molecular level, much like in biological systems. Another important feature is the distributed power. That is, the power use in the "limbs" is distributed, so that if one "limb" should fail, the others can still function. The robot has been built and demonstrated to the media (newspapers and television). The fundamental control aspects are currently being worked upon, and we expect to have a more complete mathematical description of its operation. Future plans, and specific applications for reliable planetary exploration will be outlined.

  9. Magnetic Field Triggered Multicycle Damage Sensing and Self Healing

    PubMed Central

    Ahmed, Anansa S.; Ramanujan, R. V.

    2015-01-01

    Multifunctional materials inspired by biological structures have attracted great interest, e.g. for wearable/ flexible “skin” and smart coatings. A current challenge in this area is to develop an artificial material which mimics biological skin by simultaneously displaying color change on damage as well as self healing of the damaged region. Here we report, for the first time, the development of a damage sensing and self healing magnet-polymer composite (Magpol), which actively responds to an external magnetic field. We incorporated reversible sensing using mechanochromic molecules in a shape memory thermoplastic matrix. Exposure to an alternating magnetic field (AMF) triggers shape recovery and facilitates damage repair. Magpol exhibited a linear strain response upto 150% strain and complete recovery after healing. We have demonstrated the use of this concept in a reusable biomedical device i.e., coated guidewires. Our findings offer a new synergistic method to bestow multifunctionality for applications ranging from medical device coatings to adaptive wing structures. PMID:26348284

  10. Beyond memory problems: multiple obstacles to health and quality of life in older people seeking help for subjective memory complaints.

    PubMed

    Rotenberg Shpigelman, Shlomit; Sternberg, Shelley; Maeir, Adina

    2017-08-29

    Preliminary evidence suggests that older people who seek medical help for subjective memory complaints (SMC) may be at risk for depression, poor quality of life (QoL), and functional limitations. This study aims to: (1) further investigate bio-psycho-social characteristics, participation in personally meaningful activities and QoL of help-seekers; and (2) examine the relationship of these characteristics to QoL, and explore the unique contribution of participation to QoL. Cognitive, meta-cognitive, emotional, social, participation, and QoL measures were used to compare 51 help-seekers referred from geriatric clinics to 40 age-matched controls who did not seek help for memory problems. Help-seekers exhibited lower participation and QoL, had lower mean cognitive scores, reported more memory mistakes and negative memory-beliefs, more depression, worse self-efficacy, and less positive social interaction than non-help-seekers. Quality of life in help-seekers was significantly correlated with most variables. Participation contributed to the explained variance of QoL in help-seekers, beyond that accounted for by cognition and emotional status. Help-seekers with SMC exhibited a complex health condition that includes not only SMC, but also objective memory impairment, depression, functional restrictions, negative memory beliefs, low perception of memory abilities, reduced self-efficacy and insufficient social interactions, all associated with lower QoL. This multi-faceted condition should be considered in the treatment of help-seekers. Implications for Rehabilitation Older people who seek help for subjective memory complaints may be facing a larger problem involving bio-psycho-social factors, affecting participation in meaningful activities and quality of life. Quality of life may be improved via treatment of depression, functional restrictions, memory beliefs, self-efficacy, and positive social interactions. Participation in meaningful activities is an especially important target for improving health and quality of life in this population. Interventions for older adults seeking help for subjective memory complaints will benefit from adopting a bio-psycho-social rehabilitation perspective.

  11. Bio-inspired nanocatalysts for the oxygen reduction reaction.

    PubMed

    Grumelli, Doris; Wurster, Benjamin; Stepanow, Sebastian; Kern, Klaus

    2013-01-01

    Electrochemical conversions at fuel cell electrodes are complex processes. In particular, the oxygen reduction reaction has substantial overpotential limiting the electrical power output efficiency. Effective and inexpensive catalytic interfaces are therefore essential for increased performance. Taking inspiration from enzymes, earth-abundant metal centres embedded in organic environments present remarkable catalytic active sites. Here we show that these enzyme-inspired centres can be effectively mimicked in two-dimensional metal-organic coordination networks self-assembled on electrode surfaces. Networks consisting of trimesic acid and bis-pyridyl-bispyrimidine coordinating to single iron and manganese atoms on Au(111) effectively catalyse the oxygen reduction and reveal distinctive catalytic activity in alkaline media. These results demonstrate the potential of surface-engineered metal-organic networks for electrocatalytic conversions. Specifically designed coordination complexes at surfaces inspired by enzyme cofactors represent a new class of nanocatalysts with promising applications in electrocatalysis.

  12. Mobile robots for localizing gas emission sources on landfill sites: is bio-inspiration the way to go?

    PubMed

    Hernandez Bennetts, Victor; Lilienthal, Achim J; Neumann, Patrick P; Trincavelli, Marco

    2011-01-01

    Roboticists often take inspiration from animals for designing sensors, actuators, or algorithms that control the behavior of robots. Bio-inspiration is motivated with the uncanny ability of animals to solve complex tasks like recognizing and manipulating objects, walking on uneven terrains, or navigating to the source of an odor plume. In particular the task of tracking an odor plume up to its source has nearly exclusively been addressed using biologically inspired algorithms and robots have been developed, for example, to mimic the behavior of moths, dung beetles, or lobsters. In this paper we argue that biomimetic approaches to gas source localization are of limited use, primarily because animals differ fundamentally in their sensing and actuation capabilities from state-of-the-art gas-sensitive mobile robots. To support our claim, we compare actuation and chemical sensing available to mobile robots to the corresponding capabilities of moths. We further characterize airflow and chemosensor measurements obtained with three different robot platforms (two wheeled robots and one flying micro-drone) in four prototypical environments and show that the assumption of a constant and unidirectional airflow, which is the basis of many gas source localization approaches, is usually far from being valid. This analysis should help to identify how underlying principles, which govern the gas source tracking behavior of animals, can be usefully "translated" into gas source localization approaches that fully take into account the capabilities of mobile robots. We also describe the requirements for a reference application, monitoring of gas emissions at landfill sites with mobile robots, and discuss an engineered gas source localization approach based on statistics as an alternative to biologically inspired algorithms.

  13. Mobile Robots for Localizing Gas Emission Sources on Landfill Sites: Is Bio-Inspiration the Way to Go?

    PubMed Central

    Hernandez Bennetts, Victor; Lilienthal, Achim J.; Neumann, Patrick P.; Trincavelli, Marco

    2011-01-01

    Roboticists often take inspiration from animals for designing sensors, actuators, or algorithms that control the behavior of robots. Bio-inspiration is motivated with the uncanny ability of animals to solve complex tasks like recognizing and manipulating objects, walking on uneven terrains, or navigating to the source of an odor plume. In particular the task of tracking an odor plume up to its source has nearly exclusively been addressed using biologically inspired algorithms and robots have been developed, for example, to mimic the behavior of moths, dung beetles, or lobsters. In this paper we argue that biomimetic approaches to gas source localization are of limited use, primarily because animals differ fundamentally in their sensing and actuation capabilities from state-of-the-art gas-sensitive mobile robots. To support our claim, we compare actuation and chemical sensing available to mobile robots to the corresponding capabilities of moths. We further characterize airflow and chemosensor measurements obtained with three different robot platforms (two wheeled robots and one flying micro-drone) in four prototypical environments and show that the assumption of a constant and unidirectional airflow, which is the basis of many gas source localization approaches, is usually far from being valid. This analysis should help to identify how underlying principles, which govern the gas source tracking behavior of animals, can be usefully “translated” into gas source localization approaches that fully take into account the capabilities of mobile robots. We also describe the requirements for a reference application, monitoring of gas emissions at landfill sites with mobile robots, and discuss an engineered gas source localization approach based on statistics as an alternative to biologically inspired algorithms. PMID:22319493

  14. Multimodal Bio-Inspired Tactile Sensing Module for Surface Characterization †

    PubMed Central

    Alves de Oliveira, Thiago Eustaquio; Cretu, Ana-Maria; Petriu, Emil M.

    2017-01-01

    Robots are expected to recognize the properties of objects in order to handle them safely and efficiently in a variety of applications, such as health and elder care, manufacturing, or high-risk environments. This paper explores the issue of surface characterization by monitoring the signals acquired by a novel bio-inspired tactile probe in contact with ridged surfaces. The tactile module comprises a nine Degree of Freedom Microelectromechanical Magnetic, Angular Rate, and Gravity system (9-DOF MEMS MARG) and a deep MEMS pressure sensor embedded in a compliant structure that mimics the function and the organization of mechanoreceptors in human skin as well as the hardness of the human skin. When the modules tip slides over a surface, the MARG unit vibrates and the deep pressure sensor captures the overall normal force exerted. The module is evaluated in two experiments. The first experiment compares the frequency content of the data collected in two setups: one when the module is mounted over a linear motion carriage that slides four grating patterns at constant velocities; the second when the module is carried by a robotic finger in contact with the same grating patterns while performing a sliding motion, similar to the exploratory motion employed by humans to detect object roughness. As expected, in the linear setup, the magnitude spectrum of the sensors’ output shows that the module can detect the applied stimuli with frequencies ranging from 3.66 Hz to 11.54 Hz with an overall maximum error of ±0.1 Hz. The second experiment shows how localized features extracted from the data collected by the robotic finger setup over seven synthetic shapes can be used to classify them. The classification method consists on applying multiscale principal components analysis prior to the classification with a multilayer neural network. Achieved accuracies from 85.1% to 98.9% for the various sensor types demonstrate the usefulness of traditional MEMS as tactile sensors embedded into flexible substrates. PMID:28545245

  15. Collaging Memories

    ERIC Educational Resources Information Center

    Wallach, Michele

    2011-01-01

    Even middle school students can have memories of their childhoods, of an earlier time. The art of Romare Bearden and the writings of Paul Auster can be used to introduce ideas about time and memory to students and inspire works of their own. Bearden is an exceptional role model for young artists, not only because of his astounding art, but also…

  16. Experimental characterization and computational modeling of unimorph shape memory polymer actuators incorporating transverse curvature in the substrate

    NASA Astrophysics Data System (ADS)

    Cantrell, Jason T.

    This document outlines in detail the research performed by applying shape memory polymers in a generic unimorph actuator configuration. A set of experiments designed to investigate the influence of transverse curvature, the relative widths of shape memory polymer and composite substrates, and shape memory polymer thickness on actuator recoverability after multiple thermo-mechanical cycles is presented in detail. A theoretical model of the moment required to maintain shape fixity with minimal shape retention loss was developed and experimentally validated for unimorph composite actuators of varying cross-sectional areas. Theoretical models were also developed and evaluated to determine the relationship between the materials neutral axes and thermal stability during a thermo-mechanical cycle. Research was conducted on the incorporation of shape memory polymers on micro air vehicle wings to maximize shape fixity and shape recoverability while minimizing the volume of shape memory polymer on the wing surface. Applications based research also included experimentally evaluating the feasibility of shape memory polymers on deployable satellite antenna ribs both with and without resistance heaters which could be utilized to assist in antenna deployment.

  17. Bio-inspired energy-harvesting mechanisms and patterns of dynamic soaring.

    PubMed

    Liu, Duo-Neng; Hou, Zhong-Xi; Guo, Zheng; Yang, Xi-Xiang; Gao, Xian-Zhong

    2017-01-30

    Albatrosses can make use of the dynamic soaring technique extracting energy from the wind field to achieve large-scale movement without a flap, which stimulates interest in effortless flight with small unmanned aerial vehicles (UAVs). However, mechanisms of energy harvesting in terms of the energy transfer from the wind to the flyer (albatross or UAV) are still indeterminate and controversial when using different reference frames in previous studies. In this paper, the classical four-phase Rayleigh cycle, includes sequentially upwind climb, downwind turn, downwind dive and upwind turn, is introduced in analyses of energy gain with the albatross's equation of motions and the simulated trajectory in dynamic soaring. Analytical and numerical results indicate that the energy gain in the air-relative frame mostly originates from large wind gradients at lower part of the climb and dive, while the energy gain in the inertial frame comes from the lift vector inclined to the wind speed direction during the climb, dive and downwind turn at higher altitude. These two energy-gain mechanisms are not equivalent in terms of energy sources and reference frames but have to be simultaneously satisfied in terms of the energy-neutral dynamic soaring cycle. For each reference frame, energy-loss phases are necessary to connect energy-gain ones. Based on these four essential phases in dynamic soaring and the albatrosses' flight trajectory, different dynamic soaring patterns are schematically depicted and corresponding optimal trajectories are computed. The optimal dynamic soaring trajectories are classified into two closed patterns including 'O' shape and '8' shape, and four travelling patterns including 'Ω' shape, 'α' shape, 'C' shape and 'S' shape. The correlation among these patterns are analysed and discussed. The completeness of the classification for different patterns is confirmed by listing and summarising dynamic soaring trajectories shown in studies over the past decades.

  18. AC Electric Field Activated Shape Memory Polymer Composite

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho; Siochi, Emilie J.; Penner, Ronald K.; Turner, Travis L.

    2011-01-01

    Shape memory materials have drawn interest for applications like intelligent medical devices, deployable space structures and morphing structures. Compared to other shape memory materials like shape memory alloys (SMAs) or shape memory ceramics (SMCs), shape memory polymers (SMPs) have high elastic deformation that is amenable to tailored of mechanical properties, have lower density, and are easily processed. However, SMPs have low recovery stress and long response times. A new shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive fillers to enhance its thermo-mechanical characteristics. A new composition of shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive functionalized graphene sheets (FGS) to enhance its thermo-mechanical characteristics. The elastic modulus of LaRC-SMPC is approximately 2.7 GPa at room temperature and 4.3 MPa above its glass transition temperature. Conductive FGSs-doped LaRC-SMPC exhibited higher conductivity compared to pristine LaRC SMP. Applying an electric field at between 0.1 Hz and 1 kHz induced faster heating to activate the LaRC-SMPC s shape memory effect relative to applying DC electric field or AC electric field at frequencies exceeding1 kHz.

  19. Art Works ... when Students Find Inspiration

    ERIC Educational Resources Information Center

    Herberholz, Barbara

    2011-01-01

    Artworks are not produced in a vacuum, but by the interaction of experiences, and interrelationships of ideas, perceptions and feelings acknowledged and expressed in some form. Students, like mature artists, may be inspired and motivated by their memories and observations of their surroundings. Like adult artists, students may find that their own…

  20. Self-erecting shapes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reading, Matthew W.

    Technologies for making self-erecting structures are described herein. An exemplary self-erecting structure comprises a plurality of shape-memory members that connect two or more hub components. When forces are applied to the self-erecting structure, the shape-memory members can deform, and when the forces are removed the shape-memory members can return to their original pre-deformation shape, allowing the self-erecting structure to return to its own original shape under its own power. A shape of the self-erecting structure depends on a spatial orientation of the hub components, and a relative orientation of the shape-memory members, which in turn depends on an orientation ofmore » joining of the shape-memory members with the hub components.« less

  1. Residual stresses in injection molded shape memory polymer parts

    NASA Astrophysics Data System (ADS)

    Katmer, Sukran; Esen, Huseyin; Karatas, Cetin

    2016-03-01

    Shape memory polymers (SMPs) are materials which have shape memory effect (SME). SME is a property which has the ability to change shape when induced by a stimulator such as temperature, moisture, pH, electric current, magnetic field, light, etc. A process, known as programming, is applied to SMP parts in order to alter them from their permanent shape to their temporary shape. In this study we investigated effects of injection molding and programming processes on residual stresses in molded thermoplastic polyurethane shape memory polymer, experimentally. The residual stresses were measured by layer removal method. The study shows that injection molding and programming process conditions have significantly influence on residual stresses in molded shape memory polyurethane parts.

  2. Memory color of natural familiar objects: effects of surface texture and 3-D shape.

    PubMed

    Vurro, Milena; Ling, Yazhu; Hurlbert, Anya C

    2013-06-28

    Natural objects typically possess characteristic contours, chromatic surface textures, and three-dimensional shapes. These diagnostic features aid object recognition, as does memory color, the color most associated in memory with a particular object. Here we aim to determine whether polychromatic surface texture, 3-D shape, and contour diagnosticity improve memory color for familiar objects, separately and in combination. We use solid three-dimensional familiar objects rendered with their natural texture, which participants adjust in real time to match their memory color for the object. We analyze mean, accuracy, and precision of the memory color settings relative to the natural color of the objects under the same conditions. We find that in all conditions, memory colors deviate slightly but significantly in the same direction from the natural color. Surface polychromaticity, shape diagnosticity, and three dimensionality each improve memory color accuracy, relative to uniformly colored, generic, or two-dimensional shapes, respectively. Shape diagnosticity improves the precision of memory color also, and there is a trend for polychromaticity to do so as well. Differently from other studies, we find that the object contour alone also improves memory color. Thus, enhancing the naturalness of the stimulus, in terms of either surface or shape properties, enhances the accuracy and precision of memory color. The results support the hypothesis that memory color representations are polychromatic and are synergistically linked with diagnostic shape representations.

  3. 76 FR 52328 - Single Source Cooperative Agreement Award for the Gorgas Memorial Institute of Health Studies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-22

    ... infectious disease threats including select bio-terrorism agents and novel influenza viruses. The amount of... or actual spread of bio-terrorism agents or a pandemic to the United States, thereby enhancing the...

  4. PVDF-based semicrystalline-amorphous blends: Phase behavior and thermomechanical properties

    NASA Astrophysics Data System (ADS)

    Campo, Cheryl Josephine

    Poly(vinylidene fluoride) [PVDF]-based semicrystalline-amorphous blends were studied to better understand the degree to which transition temperatures and mechanical properties could be varied as a function of composition. Changes in the amorphous component, processing parameters, MW, and filler content were used to manipulate blend properties. Compositional and MW series of PVDF:poly(vinyl acetate) [PVAc] blends were prepared and characterized. Varying PVDF content led to appreciable changes in crystallinity. In contrast, the effect of composition on blend glass transition temperature, Tg, was manifested only at low PVDF contents. The effect of MWPVA, on the 30:70 PVDF:PVAc composition was manifested primarily in the materials' viscoelastic response to deformation. Ternary blends of PVDF, PVAc, and poly(methyl methacrylate) [PMMA] showed limited miscibility with both a PVAc- and PMMA-rich amorphous phase apparent in all the compositions tested. PVDF:PMMA blends on the other hand exhibited good miscibility characterized by tunable Tg values which were further exploited by varying the processing conditions in order to obtain thermomechanical properties ideal for bio-related shape memory applications. PVDF:poly(ethyl methacrylate) [PEMA] blends, despite having very broad transitions, similarly exhibited desirable transition temperatures for in vivo actuation. The effect of boron nitride (BN), short carbon fibers (SCF), and clay on blend properties was also assessed. SCF filler in 50:50 PVDF:PMMA led mainly to the formation of PVDF crystals in the alpha form, clay was observed to promote growth of the beta crystal form, and BN led to a mixture of crystal forms. BN also exhibited interesting effects in the creep behavior of this system as well as the crystallization behavior of the 50:50 PVDF:PEMA blend, suppressed kinetic crystallization competing with enhanced nucleation effect under isothermal conditions observed in the latter. Depending on the processing conditions used, SCF was found to have similar nucleation effects in the 50:50 PVDF:PMMA blend but diminished degrees of crystallinity overall. Finally, shape memory behavior of PVDF:PVAc blends as well as SCF-filled 50:50 PVDF:PMMA was characterized using single and multiple shape memory cycles. Increasing PVDF content had a negative impact on PVDF:PVAc shape memory properties while increasing stress was found to have an enhancing effect as did low SCF filler content in 50:50 PVDF:PMMA.

  5. Bio-Inspired Multi-Functional Drug Transport Design Concept and Simulations.

    PubMed

    Pidaparti, Ramana M; Cartin, Charles; Su, Guoguang

    2017-04-25

    In this study, we developed a microdevice concept for drug/fluidic transport taking an inspiration from supramolecular motor found in biological cells. Specifically, idealized multi-functional design geometry (nozzle/diffuser/nozzle) was developed for (i) fluidic/particle transport; (ii) particle separation; and (iii) droplet generation. Several design simulations were conducted to demonstrate the working principles of the multi-functional device. The design simulations illustrate that the proposed design concept is feasible for multi-functionality. However, further experimentation and optimization studies are needed to fully evaluate the multifunctional device concept for multiple applications.

  6. Biometry, biometrics, biostatistics, bioinformatics,..., bio-X.

    PubMed

    Molenberghs, Geert

    2005-03-01

    Recent scientific evolutions force us to rethink our profession's position on the scientific map, in relation to our neighboring professions, the ones with which we traditionally have strong collaborative links as well as the newly emerging fields, but also within our own, diverse professional group. We will show that great inspiration can be drawn from our own history, in fact from the early days of the Society. A recent inspiring example has been set by the late Rob Kempton, who died suddenly just months before he was to become President of the International Biometric Society.

  7. Towards Development of Innovative Bio-Inspired Materials by Analyzing the Hydrodynamic Properties of Polyondon Spathula (Paddlefish) Rostrum

    DTIC Science & Technology

    2013-09-01

    Factors Multiply By To Obtain cubic inches 1.6387064 E -05 cubic meters inches 0.0254 meters pounds (force) 4.448222 newtons pounds (force) per...0.45359237 kilograms pounds (mass) per cubic foot 16.01846 kilograms per cubic meter pounds (mass) per cubic inch 2.757990 E +04 kilograms per cubic...14.59390 kilograms square inches 6.4516 E -04 square meters ERDC/ITL TR-13-4 1 1 Introduction 1.1 Bio–inspiration Nature has evolved from a

  8. Memory, Reality, and Ethnography in a Colombian War Zone: Towards a Social Phenomenology of Collective Remembrance

    ERIC Educational Resources Information Center

    Haymes, Stephen Nathan

    2012-01-01

    This paper considers phenomenology as a philosophical framework from which to understand the moral experience of collective memory. As a philosophical approach to human reality, phenomenology contributes insight into the connection between the experiential grounding of collective memory and the reality of the social world. The inspiration for…

  9. LINEBACKER: LINE-speed Bio-inspired Analysis and Characterization for Event Recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oehmen, Christopher S.; Bruillard, Paul J.; Matzke, Brett D.

    2016-08-04

    The cyber world is a complex domain, with digital systems mediating a wide spectrum of human and machine behaviors. While this is enabling a revolution in the way humans interact with each other and data, it also is exposing previously unreachable infrastructure to a worldwide set of actors. Existing solutions for intrusion detection and prevention that are signature-focused typically seek to detect anomalous and/or malicious activity for the sake of preventing or mitigating negative impacts. But a growing interest in behavior-based detection is driving new forms of analysis that move the emphasis from static indicators (e.g. rule-based alarms or tripwires)more » to behavioral indicators that accommodate a wider contextual perspective. Similar to cyber systems, biosystems have always existed in resource-constrained hostile environments where behaviors are tuned by context. So we look to biosystems as an inspiration for addressing behavior-based cyber challenges. In this paper, we introduce LINEBACKER, a behavior-model based approach to recognizing anomalous events in network traffic and present the design of this approach of bio-inspired and statistical models working in tandem to produce individualized alerting for a collection of systems. Preliminary results of these models operating on historic data are presented along with a plugin to support real-world cyber operations.« less

  10. Fluorimetric Mercury Test Strips with Suppressed "Coffee Stains" by a Bio-inspired Fabrication Strategy.

    PubMed

    Qiao, Yuchun; Shang, Jizhen; Li, Shuying; Feng, Luping; Jiang, Yao; Duan, Zhiqiang; Lv, Xiaoxia; Zhang, Chunxian; Yao, Tiantian; Dong, Zhichao; Zhang, Yu; Wang, Hua

    2016-11-04

    A fluorimetric Hg 2+ test strip has been developed using a lotus-inspired fabrication method for suppressing the "coffee stains" toward the uniform distribution of probe materials through creating a hydrophobic drying pattern for fast solvent evaporation. The test strips were first loaded with the model probes of fluorescent gold-silver nanoclusters and then dried in vacuum on the hydrophobic pattern. On the one hand, here, the hydrophobic constraining forces from the lotus surface-like pattern could control the exterior transport of dispersed nanoclusters on strips leading to the minimized "coffee stains". On the other hand, the vacuum-aided fast solvent evaporation could boost the interior Marangoni flow of probe materials on strips to expect the further improved probe distribution on strips. High aqueous stability and enhanced fluorescence of probes on test strips were realized by the hydrophilic treatment with amine-derivatized silicane. A test strips-based fluorimetry has thereby been developed for probing Hg 2+ ions in wastewater, showing the detection performances comparable to the classic instrumental analysis ones. Such a facile and efficient fabrication route for the bio-inspired suppression of "coffee stains" on test strips may expand the scope of applications of test strips-based "point-of-care" analysis methods or detection devices in the biomedical and environmental fields.

  11. Fusion of nacre, mussel, and lotus leaf: bio-inspired graphene composite paper with multifunctional integration

    NASA Astrophysics Data System (ADS)

    Zhong, Da; Yang, Qinglin; Guo, Lin; Dou, Shixue; Liu, Kesong; Jiang, Lei

    2013-06-01

    Multifunctional integration is an inherent characteristic for biological materials with multiscale structures. Learning from nature is an effective approach for scientists and engineers to construct multifunctional materials. In nature, mollusks (abalone), mussels, and the lotus have evolved different and optimized solutions to survive. Here, bio-inspired multifunctional graphene composite paper was fabricated in situ through the fusion of the different biological solutions from nacre (brick-and-mortar structure), mussel adhesive protein (adhesive property and reducing character), and the lotus leaf (self-cleaning effect). Owing to the special properties (self-polymerization, reduction, and adhesion), dopamine could be simultaneously used as a reducing agent for graphene oxide and as an adhesive, similar to the mortar in nacre, to crosslink the adjacent graphene. The resultant nacre-like graphene paper exhibited stable superhydrophobicity, self-cleaning, anti-corrosion, and remarkable mechanical properties underwater.Multifunctional integration is an inherent characteristic for biological materials with multiscale structures. Learning from nature is an effective approach for scientists and engineers to construct multifunctional materials. In nature, mollusks (abalone), mussels, and the lotus have evolved different and optimized solutions to survive. Here, bio-inspired multifunctional graphene composite paper was fabricated in situ through the fusion of the different biological solutions from nacre (brick-and-mortar structure), mussel adhesive protein (adhesive property and reducing character), and the lotus leaf (self-cleaning effect). Owing to the special properties (self-polymerization, reduction, and adhesion), dopamine could be simultaneously used as a reducing agent for graphene oxide and as an adhesive, similar to the mortar in nacre, to crosslink the adjacent graphene. The resultant nacre-like graphene paper exhibited stable superhydrophobicity, self-cleaning, anti-corrosion, and remarkable mechanical properties underwater. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr33632h

  12. A bio-inspired glucose controller based on pancreatic β-cell physiology.

    PubMed

    Herrero, Pau; Georgiou, Pantelis; Oliver, Nick; Johnston, Desmond G; Toumazou, Christofer

    2012-05-01

    Control algorithms for closed-loop insulin delivery in type 1 diabetes have been mainly based on control engineering or artificial intelligence techniques. These, however, are not based on the physiology of the pancreas but seek to implement engineering solutions to biology. Developments in mathematical models of the β-cell physiology of the pancreas have described the glucose-induced insulin release from pancreatic β cells at a molecular level. This has facilitated development of a new class of bio-inspired glucose control algorithms that replicate the functionality of the biological pancreas. However, technologies for sensing glucose levels and delivering insulin use the subcutaneous route, which is nonphysiological and introduces some challenges. In this article, a novel glucose controller is presented as part of a bio-inspired artificial pancreas. A mathematical model of β-cell physiology was used as the core of the proposed controller. In order to deal with delays and lack of accuracy introduced by the subcutaneous route, insulin feedback and a gain scheduling strategy were employed. A United States Food and Drug Administration-accepted type 1 diabetes mellitus virtual population was used to validate the presented controller. Premeal and postmeal mean ± standard deviation blood glucose levels for the adult and adolescent populations were well within the target range set for the controller [(70, 180) mg/dl], with a percent time in range of 92.8 ± 7.3% for the adults and 83.5 ± 14% for the adolescents. This article shows for the first time very good glucose control in a virtual population with type 1 diabetes mellitus using a controller based on a subcellular β-cell model. © 2012 Diabetes Technology Society.

  13. A Bio-Inspired Glucose Controller Based on Pancreatic β-Cell Physiology

    PubMed Central

    Herrero, Pau; Georgiou, Pantelis; Oliver, Nick; Johnston, Desmond G; Toumazou, Christofer

    2012-01-01

    Introduction Control algorithms for closed-loop insulin delivery in type 1 diabetes have been mainly based on control engineering or artificial intelligence techniques. These, however, are not based on the physiology of the pancreas but seek to implement engineering solutions to biology. Developments in mathematical models of the β-cell physiology of the pancreas have described the glucose-induced insulin release from pancreatic β cells at a molecular level. This has facilitated development of a new class of bio-inspired glucose control algorithms that replicate the functionality of the biological pancreas. However, technologies for sensing glucose levels and delivering insulin use the subcutaneous route, which is nonphysiological and introduces some challenges. In this article, a novel glucose controller is presented as part of a bio-inspired artificial pancreas. Methods A mathematical model of β-cell physiology was used as the core of the proposed controller. In order to deal with delays and lack of accuracy introduced by the subcutaneous route, insulin feedback and a gain scheduling strategy were employed. A United States Food and Drug Administration-accepted type 1 diabetes mellitus virtual population was used to validate the presented controller. Results Premeal and postmeal mean ± standard deviation blood glucose levels for the adult and adolescent populations were well within the target range set for the controller [(70, 180) mg/dl], with a percent time in range of 92.8 ± 7.3% for the adults and 83.5 ± 14% for the adolescents. Conclusions This article shows for the first time very good glucose control in a virtual population with type 1 diabetes mellitus using a controller based on a subcellular β-cell model. PMID:22768892

  14. Microfluidic electronics.

    PubMed

    Cheng, Shi; Wu, Zhigang

    2012-08-21

    Microfluidics, a field that has been well-established for several decades, has seen extensive applications in the areas of biology, chemistry, and medicine. However, it might be very hard to imagine how such soft microfluidic devices would be used in other areas, such as electronics, in which stiff, solid metals, insulators, and semiconductors have previously dominated. Very recently, things have radically changed. Taking advantage of native properties of microfluidics, advances in microfluidics-based electronics have shown great potential in numerous new appealing applications, e.g. bio-inspired devices, body-worn healthcare and medical sensing systems, and ergonomic units, in which conventional rigid, bulky electronics are facing insurmountable obstacles to fulfil the demand on comfortable user experience. Not only would the birth of microfluidic electronics contribute to both the microfluidics and electronics fields, but it may also shape the future of our daily life. Nevertheless, microfluidic electronics are still at a very early stage, and significant efforts in research and development are needed to advance this emerging field. The intention of this article is to review recent research outcomes in the field of microfluidic electronics, and address current technical challenges and issues. The outlook of future development in microfluidic electronic devices and systems, as well as new fabrication techniques, is also discussed. Moreover, the authors would like to inspire both the microfluidics and electronics communities to further exploit this newly-established field.

  15. Guide wire extension for shape memory polymer occlusion removal devices

    DOEpatents

    Maitland, Duncan J [Pleasant Hill, CA; Small, IV, Ward; Hartman, Jonathan [Sacramento, CA

    2009-11-03

    A flexible extension for a shape memory polymer occlusion removal device. A shape memory polymer instrument is transported through a vessel via a catheter. A flexible elongated unit is operatively connected to the distal end of the shape memory polymer instrument to enhance maneuverability through tortuous paths en route to the occlusion.

  16. Biodegradable Shape Memory Polymers in Medicine.

    PubMed

    Peterson, Gregory I; Dobrynin, Andrey V; Becker, Matthew L

    2017-11-01

    Shape memory materials have emerged as an important class of materials in medicine due to their ability to change shape in response to a specific stimulus, enabling the simplification of medical procedures, use of minimally invasive techniques, and access to new treatment modalities. Shape memory polymers, in particular, are well suited for such applications given their excellent shape memory performance, tunable materials properties, minimal toxicity, and potential for biodegradation and resorption. This review provides an overview of biodegradable shape memory polymers that have been used in medical applications. The majority of biodegradable shape memory polymers are based on thermally responsive polyesters or polymers that contain hydrolyzable ester linkages. These materials have been targeted for use in applications pertaining to embolization, drug delivery, stents, tissue engineering, and wound closure. The development of biodegradable shape memory polymers with unique properties or responsiveness to novel stimuli has the potential to facilitate the optimization and development of new medical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fabrication of bio-inspired nitinol alloy surface with tunable anisotropic wetting and high adhesive ability.

    PubMed

    Tian, Yan L; Zhao, Yue C; Yang, Cheng J; Wang, Fu J; Liu, Xian P; Jing, Xiu B

    2018-10-01

    In this paper, micro/nano-scale structures were fabricated on nitinol alloy (NiTi) to realize tunable anisotropic wetting and high adhesive capability. Laser texturing and silanization process are utilized to change the morphological and chemical properties of substrates. It is noted that these treated substrates exhibit the joint characteristics of anisotropic wetting and high adhesive capability. In order to investigate the influences of laser-texturing and silanization processes on NiTi, these surfaces were evaluated using scanning electron microscope (SEM), a white light confocal microscope, X-ray photoelectron spectroscopy (XPS) and goniometer. The relationship between water volume and anisotropic wetting was also established. From the experimental testing, we can obtain the following conclusions: (1) the anisotropic wetting characterized by the difference between the water contact angles (WCAs) in the vertical and parallel directions ranges from 0° to 20.3°, which is far more than the value of natural rice leaves. (2) the water sliding angles (WSAs) kept stable at 180°, successfully mimicking the adhesive ability of rose petals. (3) the silanization process could strengthen the hydrophobicity but weaken anisotropic wetting. These bio-inspired NiTi surfaces have a tremendous potential applications such as microfluidic devices, bio-mimetic materials fabrication and lab on chip. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Bio-inspired engineering of cell- and virus-like nanoparticles for drug delivery.

    PubMed

    Parodi, Alessandro; Molinaro, Roberto; Sushnitha, Manuela; Evangelopoulos, Michael; Martinez, Jonathan O; Arrighetti, Noemi; Corbo, Claudia; Tasciotti, Ennio

    2017-12-01

    The engineering of future generations of nanodelivery systems aims at the creation of multifunctional vectors endowed with improved circulation, enhanced targeting and responsiveness to the biological environment. Moving past purely bio-inert systems, researchers have begun to create nanoparticles capable of proactively interacting with the biology of the body. Nature offers a wide-range of sources of inspiration for the synthesis of more effective drug delivery platforms. Because the nano-bio-interface is the key driver of nanoparticle behavior and function, the modification of nanoparticles' surfaces allows the transfer of biological properties to synthetic carriers by imparting them with a biological identity. Modulation of these surface characteristics governs nanoparticle interactions with the biological barriers they encounter. Building off these observations, we provide here an overview of virus- and cell-derived biomimetic delivery systems that combine the intrinsic hallmarks of biological membranes with the delivery capabilities of synthetic carriers. We describe the features and properties of biomimetic delivery systems, recapitulating the distinctive traits and functions of viruses, exosomes, platelets, red and white blood cells. By mimicking these biological entities, we will learn how to more efficiently interact with the human body and refine our ability to negotiate with the biological barriers that impair the therapeutic efficacy of nanoparticles. Copyright © 2017. Published by Elsevier Ltd.

  19. Shape-Memory-Alloy Actuator For Flight Controls

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    1995-01-01

    Report proposes use of shape-memory-alloy actuators, instead of hydraulic actuators, for aerodynamic flight-control surfaces. Actuator made of shape-memory alloy converts thermal energy into mechanical work by changing shape as it makes transitions between martensitic and austenitic crystalline phase states of alloy. Because both hot exhaust gases and cryogenic propellant liquids available aboard launch rockets, shape-memory-alloy actuators exceptionally suited for use aboard such rockets.

  20. Light manipulation for organic optoelectronics using bio-inspired moth's eye nanostructures.

    PubMed

    Zhou, Lei; Ou, Qing-Dong; Chen, Jing-De; Shen, Su; Tang, Jian-Xin; Li, Yan-Qing; Lee, Shuit-Tong

    2014-02-10

    Organic-based optoelectronic devices, including light-emitting diodes (OLEDs) and solar cells (OSCs) hold great promise as low-cost and large-area electro-optical devices and renewable energy sources. However, further improvement in efficiency remains a daunting challenge due to limited light extraction or absorption in conventional device architectures. Here we report a universal method of optical manipulation of light by integrating a dual-side bio-inspired moth's eye nanostructure with broadband anti-reflective and quasi-omnidirectional properties. Light out-coupling efficiency of OLEDs with stacked triple emission units is over 2 times that of a conventional device, resulting in drastic increase in external quantum efficiency and current efficiency to 119.7% and 366 cd A(-1) without introducing spectral distortion and directionality. Similarly, the light in-coupling efficiency of OSCs is increased 20%, yielding an enhanced power conversion efficiency of 9.33%. We anticipate this method would offer a convenient and scalable way for inexpensive and high-efficiency organic optoelectronic designs.

  1. Bio-Inspired Stretchable Absolute Pressure Sensor Network

    PubMed Central

    Guo, Yue; Li, Yu-Hung; Guo, Zhiqiang; Kim, Kyunglok; Chang, Fu-Kuo; Wang, Shan X.

    2016-01-01

    A bio-inspired absolute pressure sensor network has been developed. Absolute pressure sensors, distributed on multiple silicon islands, are connected as a network by stretchable polyimide wires. This sensor network, made on a 4’’ wafer, has 77 nodes and can be mounted on various curved surfaces to cover an area up to 0.64 m × 0.64 m, which is 100 times larger than its original size. Due to Micro Electro-Mechanical system (MEMS) surface micromachining technology, ultrathin sensing nodes can be realized with thicknesses of less than 100 µm. Additionally, good linearity and high sensitivity (~14 mV/V/bar) have been achieved. Since the MEMS sensor process has also been well integrated with a flexible polymer substrate process, the entire sensor network can be fabricated in a time-efficient and cost-effective manner. Moreover, an accurate pressure contour can be obtained from the sensor network. Therefore, this absolute pressure sensor network holds significant promise for smart vehicle applications, especially for unmanned aerial vehicles. PMID:26729134

  2. Folic acid bio-inspired route for facile synthesis of AuPt nanodendrites as enhanced electrocatalysts for methanol and ethanol oxidation reactions

    NASA Astrophysics Data System (ADS)

    Wang, Ai-Jun; Ju, Ke-Jian; Zhang, Qian-Li; Song, Pei; Wei, Jie; Feng, Jiu-Ju

    2016-09-01

    Folic acid (FA), as an important biomolecule in cell division and growth, is firstly employed as the structure director and stabilizing agent for controlled synthesis of uniform Au65Pt35 nanodendrites (NDs) by a one-pot wet-chemical bio-inspired route at room temperature. No pre-seed, template, organic solvent, polymer, surfactant or complex instrument is involved. The products are mainly characterized by transmission electron microscopy (TEM), high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), X-ray diffraction (XRD), and X-Ray photoelectron spectroscopy (XPS). The architectures have enlarged electrochemically active surface area (60.6 m2 gPt-1), enhanced catalytic activity and durability for methanol and ethanol oxidation in contrast with commercial Pt black and the other AuPt alloys by tuning the molar ratios of Au to Pt (e.g., Au31Pt69 and Au82Pt18 nanoparticles). This strategy would be applied to fabricate other bimetallic nanocatalysts in fuel cells.

  3. In-plane crashworthiness of bio-inspired hierarchical honeycombs

    DOE PAGES

    Yin, Hanfeng; Huang, Xiaofei; Scarpa, Fabrizio; ...

    2018-03-13

    Biological tissues like bone, wood, and sponge possess hierarchical cellular topologies, which are lightweight and feature an excellent energy absorption capability. Here we present a system of bio-inspired hierarchical honeycomb structures based on hexagonal, Kagome, and triangular tessellations. The hierarchical designs and a reference regular honeycomb configuration are subjected to simulated in-plane impact using the nonlinear finite element code LS-DYNA. The numerical simulation results show that the triangular hierarchical honeycomb provides the best performance compared to the other two hierarchical honeycombs, and features more than twice the energy absorbed by the regular honeycomb under similar loading conditions. We also proposemore » a parametric study correlating the microstructure parameters (hierarchical length ratio r and the number of sub cells N) to the energy absorption capacity of these hierarchical honeycombs. The triangular hierarchical honeycomb with N = 2 and r = 1/8 shows the highest energy absorption capacity among all the investigated cases, and this configuration could be employed as a benchmark for the design of future safety protective systems.« less

  4. Atomistic simulation on the plastic deformation and fracture of bio-inspired graphene/Ni nanocomposites

    NASA Astrophysics Data System (ADS)

    Yang, Zhenyu; Wang, Dandan; Lu, Zixing; Hu, Wenjun

    2016-11-01

    Molecular dynamics simulations were performed to investigate the plastic deformation and fracture behaviors of bio-inspired graphene/metal nanocomposites, which have a "brick-and-mortar" nanostructure, consisting of hard graphene single-layers embedded in a soft Ni matrix. The plastic deformation mechanisms of the nanocomposites were analyzed as well as their effects on the mechanical properties with various geometrical variations. It was found that the strength and ductility of the metal matrix can be highly enhanced with the addition of the staggered graphene layers, and the plastic deformation can be attributed to the interfacial sliding, dislocation nucleation, and cracks' combination. The strength of the nanocomposites strongly depends on the length scale of the nanostructure and the interlayer distance as well. In addition, slip at the interface releases the stress in graphene layers, leading to the stress distribution on the graphene more uniform. The present results are expected to contribute to the design of the nanolayered graphene/metal composites with high performance.

  5. Biologically inspired flexible quasi-single-mode random laser: an integration of Pieris canidia butterfly wing and semiconductors.

    PubMed

    Wang, Cih-Su; Chang, Tsung-Yuan; Lin, Tai-Yuan; Chen, Yang-Fang

    2014-10-23

    Quasi-periodic structures of natural biomaterial membranes have great potentials to serve as resonance cavities to generate ecological friendly optoelectronic devices with low cost. To achieve the first attempt for the illustration of the underlying principle, the Pieris canidia butterfly wing was embedded with ZnO nanoparticles. Quite interestingly, it is found that the bio-inspired quasi-single-mode random laser can be achieved by the assistance of the skeleton of the membrane, in which ZnO nanoparticles act as emitting gain media. Such unique characteristics can be interpreted well by the Fabry-Perot resonance existing in the window-like quasi-periodic structure of butterfly wing. Due to the inherently promising flexibility of butterfly wing membrane, the laser action can still be maintained during the bending process. Our demonstrated approach not only indicates that the natural biological structures can provide effective scattering feedbacks but also pave a new avenue towards designing bio-controlled photonic devices.

  6. Biologically inspired flexible quasi-single-mode random laser: An integration of Pieris canidia butterfly wing and semiconductors

    PubMed Central

    Wang, Cih-Su; Chang, Tsung-Yuan; Lin, Tai-Yuan; Chen, Yang-Fang

    2014-01-01

    Quasi-periodic structures of natural biomaterial membranes have great potentials to serve as resonance cavities to generate ecological friendly optoelectronic devices with low cost. To achieve the first attempt for the illustration of the underlying principle, the Pieris canidia butterfly wing was embedded with ZnO nanoparticles. Quite interestingly, it is found that the bio-inspired quasi-single-mode random laser can be achieved by the assistance of the skeleton of the membrane, in which ZnO nanoparticles act as emitting gain media. Such unique characteristics can be interpreted well by the Fabry-Perot resonance existing in the window-like quasi-periodic structure of butterfly wing. Due to the inherently promising flexibility of butterfly wing membrane, the laser action can still be maintained during the bending process. Our demonstrated approach not only indicates that the natural biological structures can provide effective scattering feedbacks but also pave a new avenue towards designing bio-controlled photonic devices. PMID:25338507

  7. Directed assembly of bio-inspired hierarchical materials with controlled nanofibrillar architectures

    NASA Astrophysics Data System (ADS)

    Tseng, Peter; Napier, Bradley; Zhao, Siwei; Mitropoulos, Alexander N.; Applegate, Matthew B.; Marelli, Benedetto; Kaplan, David L.; Omenetto, Fiorenzo G.

    2017-05-01

    In natural systems, directed self-assembly of structural proteins produces complex, hierarchical materials that exhibit a unique combination of mechanical, chemical and transport properties. This controlled process covers dimensions ranging from the nano- to the macroscale. Such materials are desirable to synthesize integrated and adaptive materials and systems. We describe a bio-inspired process to generate hierarchically defined structures with multiscale morphology by using regenerated silk fibroin. The combination of protein self-assembly and microscale mechanical constraints is used to form oriented, porous nanofibrillar networks within predesigned macroscopic structures. This approach allows us to predefine the mechanical and physical properties of these materials, achieved by the definition of gradients in nano- to macroscale order. We fabricate centimetre-scale material geometries including anchors, cables, lattices and webs, as well as functional materials with structure-dependent strength and anisotropic thermal transport. Finally, multiple three-dimensional geometries and doped nanofibrillar constructs are presented to illustrate the facile integration of synthetic and natural additives to form functional, interactive, hierarchical networks.

  8. Tubular structured hierarchical mesoporous titania material derived from natural cellulosic substances and application as photocatalyst for degradation of methylene blue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Haiqing; Liu, Xiaoyan; Huang, Jianguo, E-mail: jghuang@zju.edu.cn

    Graphical abstract: Bio-inspired, tubular structured hierarchical mesoporous titania material with high photocatalytic activity under UV light was fabricated employing natural cellulosic substance (cotton) as hard template and cetyltrimethylammonium bromide (CTAB) surfactant as soft template using a one-pot sol-gel method. Highlights: {yields} Tubular structured mesoporous titania material was fabricated by sol-gel method. {yields} The titania material faithfully recorded the hierarchical structure of the template substrate (cotton). {yields} The titania material exhibited high photocatalytic activity in decomposition of methylene blue. -- Abstract: Bio-inspired, tubular structured hierarchical mesoporous titania material was designed and fabricated employing natural cellulosic substance (cotton) as hard template andmore » cetyltrimethylammonium bromide (CTAB) surfactant as soft template by one-pot sol-gel method. The tubular structured hierarchical mesoporous titania material processes large specific surface area (40.23 m{sup 2}/g) and shows high photocatalytic activity in the photodegradation of methylene blue under UV light irradiation.« less

  9. Bio-inspired metal-coordinate hydrogels with programmable viscoelastic material functions controlled by longwave UV light.

    PubMed

    Grindy, Scott C; Holten-Andersen, Niels

    2017-06-07

    Control over the viscoelastic mechanical properties of hydrogels intended for use as biomedical materials has long been a goal of soft matter scientists. Recent research has shown that materials made from polymers with reversibly associating transient crosslinks are a promising strategy for controlling viscoelasticity in hydrogels, for example leading to systems with precisely tunable mechanical energy-dissipation. We and others have shown that bio-inspired histidine:transition metal ion complexes allow highly precise and tunable control over the viscoelastic properties of transient network hydrogels. In this paper, we extend the design of these hydrogels such that their viscoelastic properties respond to longwave UV radiation. We show that careful selection of the histidine:transition metal ion crosslink mixtures allows unique control over pre- and post-UV viscoelastic properties. We anticipate that our strategy for controlling stimuli-responsive viscoelastic properties will aid biomedical materials scientists in the development of soft materials with specific stress-relaxing or energy-dissipating properties.

  10. Novel High Integrity Bio-Inspired Systems with On-Line Self-Test and Self-Repair Properties

    NASA Astrophysics Data System (ADS)

    Samie, Mohammad; Dragffy, Gabriel; Pipe, Tony

    2011-08-01

    Since the beginning of life nature has been developing some remarkable solutions to the problem of creating reliable systems that can operate under difficult environmental and fault conditions. Yet, no matter how sophisticated our systems are, we are still unable to match the high degree of reliability that biological organisms posses. Since the early '90s attempts have been made to adapt biological properties and processes to the design of electronic systems but the results have always been unduly complex.This paper, proposes a novel model using a radically new approach to construct highly reliable electronic systems with online fault repair properties. It uses the characteristics and behaviour of unicellular bacteria and bacterial communities to achieve this. The result is a configurable bio-inspired cellular array architecture that, with built-in self-diagnostic and self-repair properties, can implement any application specific electronic system but is particularly suited for safety critical environments, such as space.

  11. In-plane crashworthiness of bio-inspired hierarchical honeycombs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Hanfeng; Huang, Xiaofei; Scarpa, Fabrizio

    Biological tissues like bone, wood, and sponge possess hierarchical cellular topologies, which are lightweight and feature an excellent energy absorption capability. Here we present a system of bio-inspired hierarchical honeycomb structures based on hexagonal, Kagome, and triangular tessellations. The hierarchical designs and a reference regular honeycomb configuration are subjected to simulated in-plane impact using the nonlinear finite element code LS-DYNA. The numerical simulation results show that the triangular hierarchical honeycomb provides the best performance compared to the other two hierarchical honeycombs, and features more than twice the energy absorbed by the regular honeycomb under similar loading conditions. We also proposemore » a parametric study correlating the microstructure parameters (hierarchical length ratio r and the number of sub cells N) to the energy absorption capacity of these hierarchical honeycombs. The triangular hierarchical honeycomb with N = 2 and r = 1/8 shows the highest energy absorption capacity among all the investigated cases, and this configuration could be employed as a benchmark for the design of future safety protective systems.« less

  12. Bio-inspired Murray materials for mass transfer and activity

    PubMed Central

    Zheng, Xianfeng; Shen, Guofang; Wang, Chao; Li, Yu; Dunphy, Darren; Hasan, Tawfique; Brinker, C. Jeffrey; Su, Bao-Lian

    2017-01-01

    Both plants and animals possess analogous tissues containing hierarchical networks of pores, with pore size ratios that have evolved to maximize mass transport and rates of reactions. The underlying physical principles of this optimized hierarchical design are embodied in Murray's law. However, we are yet to realize the benefit of mimicking nature's Murray networks in synthetic materials due to the challenges in fabricating vascularized structures. Here we emulate optimum natural systems following Murray's law using a bottom-up approach. Such bio-inspired materials, whose pore sizes decrease across multiple scales and finally terminate in size-invariant units like plant stems, leaf veins and vascular and respiratory systems provide hierarchical branching and precise diameter ratios for connecting multi-scale pores from macro to micro levels. Our Murray material mimics enable highly enhanced mass exchange and transfer in liquid–solid, gas–solid and electrochemical reactions and exhibit enhanced performance in photocatalysis, gas sensing and as Li-ion battery electrodes. PMID:28382972

  13. Graphene--nanotube--iron hierarchical nanostructure as lithium ion battery anode.

    PubMed

    Lee, Si-Hwa; Sridhar, Vadahanambi; Jung, Jung-Hwan; Karthikeyan, Kaliyappan; Lee, Yun-Sung; Mukherjee, Rahul; Koratkar, Nikhil; Oh, Il-Kwon

    2013-05-28

    In this study, we report a novel route via microwave irradiation to synthesize a bio-inspired hierarchical graphene--nanotube--iron three-dimensional nanostructure as an anode material in lithium-ion batteries. The nanostructure comprises vertically aligned carbon nanotubes grown directly on graphene sheets along with shorter branches of carbon nanotubes stemming out from both the graphene sheets and the vertically aligned carbon nanotubes. This bio-inspired hierarchical structure provides a three-dimensional conductive network for efficient charge-transfer and prevents the agglomeration and restacking of the graphene sheets enabling Li-ions to have greater access to the electrode material. In addition, functional iron-oxide nanoparticles decorated within the three-dimensional hierarchical structure provides outstanding lithium storage characteristics, resulting in very high specific capacities. The anode material delivers a reversible capacity of ~1024 mA · h · g(-1) even after prolonged cycling along with a Coulombic efficiency in excess of 99%, which reflects the ability of the hierarchical network to prevent agglomeration of the iron-oxide nanoparticles.

  14. Biologically inspired flexible quasi-single-mode random laser: An integration of Pieris canidia butterfly wing and semiconductors

    NASA Astrophysics Data System (ADS)

    Wang, Cih-Su; Chang, Tsung-Yuan; Lin, Tai-Yuan; Chen, Yang-Fang

    2014-10-01

    Quasi-periodic structures of natural biomaterial membranes have great potentials to serve as resonance cavities to generate ecological friendly optoelectronic devices with low cost. To achieve the first attempt for the illustration of the underlying principle, the Pieris canidia butterfly wing was embedded with ZnO nanoparticles. Quite interestingly, it is found that the bio-inspired quasi-single-mode random laser can be achieved by the assistance of the skeleton of the membrane, in which ZnO nanoparticles act as emitting gain media. Such unique characteristics can be interpreted well by the Fabry-Perot resonance existing in the window-like quasi-periodic structure of butterfly wing. Due to the inherently promising flexibility of butterfly wing membrane, the laser action can still be maintained during the bending process. Our demonstrated approach not only indicates that the natural biological structures can provide effective scattering feedbacks but also pave a new avenue towards designing bio-controlled photonic devices.

  15. One-Pot Evolution of Ageladine A through a Bio-Inspired Cascade towards Selective Modulators of Neuronal Differentiation.

    PubMed

    Iwata, Takayuki; Otsuka, Satoshi; Tsubokura, Kazuki; Kurbangalieva, Almira; Arai, Daisuke; Fukase, Koichi; Nakao, Yoichi; Tanaka, Katsunori

    2016-10-04

    A bio-inspired cascade reaction has been developed for the construction of the marine natural product ageladine A and a de novo array of its N1-substituted derivatives. This cascade features a 2-aminoimidazole formation that is modeled after an arginine post-translational modification and an aza-electrocyclization. It can be effectively carried out in a one-pot procedure from simple anilines or guanidines, leading to structural analogues of ageladine A that had been otherwise synthetically inaccessible. We found that some compounds out of this structurally novel library show a significant activity in modulating the neural differentiation. Namely, these compounds selectively activate or inhibit the differentiation of neural stem cells to neurons, while being negligible in the differentiation to astrocytes. This study represents a successful case in which the native biofunction of a natural product could be altered by structural modifications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Bio-inspired piezoelectric linear motor driven by a single-phase harmonic wave with an asymmetric stator.

    PubMed

    Pan, Qiaosheng; Miao, Enming; Wu, Bingxuan; Chen, Weikang; Lei, Xiujun; He, Liangguo

    2017-07-01

    A novel, bio-inspired, single-phase driven piezoelectric linear motor (PLM) using an asymmetric stator was designed, fabricated, and tested to avoid mode degeneracy and to simplify the drive mechanism of a piezoelectric motor. A piezoelectric transducer composed of two piezoelectric stacks and a displacement amplifier was used as the driving element of the PLM. Two simple and specially designed claws performed elliptical motion. A numerical simulation was performed to design the stator and determine the feasibility of the design mechanism of the PLM. Moreover, an experimental setup was built to validate the working principles, as well as to evaluate the performance, of the PLM. The prototype motor outputs a no-load speed of 233.7 mm/s at a voltage of 180 V p-p and a maximum thrust force of 2.3 N under a preload of 10 N. This study verified the feasibility of the proposed design and provided a method to simplify the driving harmonic signal and structure of PLMs.

  17. Engineered bio-inspired coating for reduction of flow separation

    NASA Astrophysics Data System (ADS)

    Bocanegra Evans, Humberto; Hamed, Ali M.; Gorumlu, Serdar; Doosttalab, Ali; Aksak, Burak; Chamorro, Leonardo P.; Castillo, Luciano

    2017-11-01

    Flow control using passive strategies has received notable attention in the last decades as a way to increase mixing and reduce skin drag, among others. Here, we present a bio-inspired coating, composed by uniformly distributed pillars with diverging tips, that is able to reduce the recirculation region in highly separated flows. This is demonstrated with laboratory experiments in a refractive index-matching flume at Reynolds number Reθ 1200 . The flow over an expanding channel following a S835 wing section was characterized with the coating and with smooth walls. High-resolution, wall-normal particle image velocimetry show a significant reduction of the reversed flow with the coating, where the region with reverse flow was reduced by 60 % . The performance of the micro-scale coating is surprising since the size of the fibers are nearly coincident with the viscous length scale (k+ 1). Additionally, the flow control properties of the surface do not depend on hydrophobicity, giving the coating the capability to work in both air and water media.

  18. Polymer Self-Assembled Nanostructures as Innovative Drug Nanocarrier Platforms.

    PubMed

    Pippa, Natassa; Pispas, Stergios; Demetzos, Costas

    2016-01-01

    Polymer self-assembled nanostructures are used in pharmaceutical sciences as bioactive molecules' delivery systems for therapeutic and diagnostic purposes. Micelles, polyelectrolyte complexes, polymersomes, polymeric nanoparticles, nanogels and polymer grafted liposomes represent delivery vehicles that are marketed and/or under clinical development, as drug formulations. In this mini-review, these, recently appeared in the literature, innovative polymer drug nanocarrier platforms are discussed, starting from their technological development in the laboratory to their potential clinical use, through studies of their biophysics, thermodynamics, physical behavior, morphology, bio-mimicry, therapeutic efficacy and safety. The properties of an ideal drug delivery system are the structural control over size and shape of drug or imaging agent cargo/domain, biocompatibility, nontoxic polymer/ pendant functionality and the precise, nanoscale container and/or scaffolding properties with high drug or imaging agent capacity features. Self-assembled polymer nanostructures exhibit all these properties and could be considered as ideal drug nanocarriers through control of their size, structure and morphology, with the aid of a large variety of parameters, in vitro and in vivo. These modern trends reside at the interface of soft matter self-assembly and pharmaceutical sciences and the technologies for health. Great advantages related to basic science and applications are expected by understanding the self-assembly behavior of these polymeric nanotechnological drug delivery systems, created through bio-inspiration and biomimicry and have potential utilization into clinical applications.

  19. Robust Vacuum-/Air-Dried Graphene Aerogels and Fast Recoverable Shape-Memory Hybrid Foams.

    PubMed

    Li, Chenwei; Qiu, Ling; Zhang, Baoqing; Li, Dan; Liu, Chen-Yang

    2016-02-17

    New graphene aerogels can be fabricated by vacuum/air drying, and because of the mechanical robustness of the graphene aerogels, shape-memory polymer/graphene hybrid foams can be fabricated by a simple infiltration-air-drying-crosslinking method. Due to the superelasticity, high strength, and good electrical conductivity of the as-prepared graphene aerogels, the shape-memory hybrid foams exhibit excellent thermotropical and electrical shape-memory properties, outperforming previously reported shape-memory polymer foams. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Dissolvable tattoo sensors: from science fiction to a viable technology

    NASA Astrophysics Data System (ADS)

    Cheng, Huanyu; Yi, Ning

    2017-01-01

    Early surrealistic painting and science fiction movies have envisioned dissolvable tattoo electronic devices. In this paper, we will review the recent advances that transform that vision into a viable technology, with extended capabilities even beyond the early vision. Specifically, we focus on the discussion of a stretchable design for tattoo sensors and degradable materials for dissolvable sensors, in the form of inorganic devices with a performance comparable to modern electronics. Integration of these two technologies as well as the future developments of bio-integrated devices is also discussed. Many of the appealing ideas behind developments of these devices are drawn from nature and especially biological systems. Thus, bio-inspiration is believed to continue playing a key role in future devices for bio-integration and beyond.

  1. Mechanical analysis of carbon fiber reinforced shape memory polymer composite for self-deployable structure in space environment

    NASA Astrophysics Data System (ADS)

    Hong, Seok Bin; Ahn, Yong San; Jang, Joon Hyeok; Kim, Jin-Gyun; Goo, Nam Seo; Yu, Woong-Ryeol

    2016-04-01

    Shape memory polymer (SMP) is one of smart polymers which exhibit shape memory effect upon external stimuli. Reinforcements as carbon fiber had been used for making shape memory polymer composite (CF-SMPC). This study investigated a possibility of designing self-deployable structures in harsh space condition using CF-SMPCs and analyzed their shape memory behaviors with constitutive equation model.CF-SMPCs were prepared using woven carbon fabrics and a thermoset epoxy based SMP to obtain their basic mechanical properties including actuation in harsh environment. The mechanical and shape memory properties of SMP and CF-SMPCs were characterized using dynamic mechanical analysis (DMA) and universal tensile machine (UTM) with an environmental chamber. The mechanical properties such as flexural strength and tensile strength of SMP and CF-SMPC were measured with simple tensile/bending test and time dependent shape memory behavior was characterized with designed shape memory bending test. For mechanical analysis of CF-SMPCs, a 3D constitutive equation of SMP, which had been developed using multiplicative decomposition of the deformation gradient and shape memory strains, was used with material parameters determined from CF-SMPCs. Carbon fibers in composites reinforced tensile and flexural strength of SMP and acted as strong elastic springs in rheology based equation models. The actuation behavior of SMP matrix and CF-SMPCs was then simulated as 3D shape memory bending cases. Fiber bundle property was imbued with shell model for more precise analysis and it would be used for prediction of deploying behavior in self-deployable hinge structure.

  2. Biaxial Fatigue Behavior of Niti Shape Memory Alloy

    DTIC Science & Technology

    2005-03-01

    BIAXIAL FATIGUE BEHAVIOR OF NiTi SHAPE MEMORY ALLOY THESIS Daniel M. Jensen, 1st Lieutenant...BIAXIAL FATIGUE BEHAVIOR OF NiTi SHAPE MEMORY ALLOY THESIS Presented to the Faculty Department of Aeronautics and Astronautics Graduate School of...FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT/GA/ENY/05-M06 BIAXIAL FATIGUE BEHAVIOR OF NiTi SHAPE MEMORY ALLOY Daniel M. Jensen

  3. My Experience with Ti-Ni-Based and Ti-Based Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Miyazaki, Shuichi

    2017-12-01

    The present author has been studying shape memory alloys including Cu-Al-Ni, Ti-Ni-based, and Ni-free Ti-based alloys since 1979. This paper reviews the present author's research results for the latter two materials since 1981. The topics on the Ti-Ni-based alloys include the achievement of superelasticity in Ti-Ni alloys through understanding of the role of microstructures consisting of dislocations and precipitates, followed by the contribution to the development of application market of shape memory effect and superelasticity, characterization of the R-phase and monoclinic martensitic transformations, clarification of the basic characteristics of fatigue properties, development of sputter-deposited shape memory thin films and fabrication of prototypes of microactuators utilizing thin films, development of high temperature shape memory alloys, and so on. The topics of Ni-free Ti-based shape memory alloys include the characterization of the orthorhombic phase martensitic transformation and related shape memory effect and superelasticity, the effects of texture, omega phase and adding elements on the martensitic transformation and shape memory properties, clarification of the unique effects of oxygen addition to induce non-linear large elasticity, Invar effect and heating-induced martensitic transformation, and so on.

  4. Materials for Stretchable Electronics - Electronic Eyeballs, Brain Monitors and Other Applications

    ScienceCinema

    Rogers, John A. [University of Illinois, Urbana Champaign, Illinois, United States

    2017-12-09

    Electronic circuits that involve transistors and related components on thin plastic sheets or rubber slabs offer mechanical properties (e.g. bendability, stretchability) and other features (e.g. lightweight, rugged construction) which cannot be easily achieved with technologies that use rigid, fragile semiconductor wafer or glass substrates.  Device examples include personal or structural health monitors and electronic eye imagers, in which the electronics must conform to complex curvilinear shapes or flex/stretch during use.  Our recent work accomplishes these technology outcomes by use of single crystal inorganic nanomaterials in ‘wavy’ buckled configurations on elastomeric supports.  This talk will describe key fundamental materials and mechanics aspects of these approaches, as well as engineering features of their use in individual transistors, photodiodes and integrated circuits.  Cardiac and brain monitoring devices provide examples of application in biomedicine; hemispherical electronic eye cameras illustrate new capacities for bio-inspired device design.

  5. Analyzing nature's protective design: The glyptodont body armor.

    PubMed

    du Plessis, Anton; Broeckhoven, Chris; Yadroitsev, Igor; Yadroitsava, Ina; le Roux, Stephan Gerhard

    2018-06-01

    Many animal species evolved some form of body armor, such as scales of fish and bony plates or osteoderms of reptiles. Although a protective function is often taken for granted, recent studies show that body armor might comprise multiple functionalities and is shaped by trade-offs among these functionalities. Hence, despite the fact that natural body armor might serve as bio-inspiration for the development of artificial protective materials, focussing on model systems in which body armor serves a solely protective function might be pivotal. In this study, we investigate the osteoderms of Glyptotherium arizonae, an extinct armadillo-like mammal in which body armor evolved as protection against predators and/or tail club blows of conspecifics. By using a combination of micro-computed tomography, reverse-engineering, stress simulations and mechanical testing of 3D printed models, we show that the combination of dense compact layers and porous lattice core might provide an optimized combination of strength and high energy absorption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Introducing memory and association mechanism into a biologically inspired visual model.

    PubMed

    Qiao, Hong; Li, Yinlin; Tang, Tang; Wang, Peng

    2014-09-01

    A famous biologically inspired hierarchical model (HMAX model), which was proposed recently and corresponds to V1 to V4 of the ventral pathway in primate visual cortex, has been successfully applied to multiple visual recognition tasks. The model is able to achieve a set of position- and scale-tolerant recognition, which is a central problem in pattern recognition. In this paper, based on some other biological experimental evidence, we introduce the memory and association mechanism into the HMAX model. The main contributions of the work are: 1) mimicking the active memory and association mechanism and adding the top down adjustment to the HMAX model, which is the first try to add the active adjustment to this famous model and 2) from the perspective of information, algorithms based on the new model can reduce the computation storage and have a good recognition performance. The new model is also applied to object recognition processes. The primary experimental results show that our method is efficient with a much lower memory requirement.

  7. Strain-Detecting Composite Materials

    NASA Technical Reports Server (NTRS)

    Wallace, Terryl A. (Inventor); Smith, Stephen W. (Inventor); Piascik, Robert S. (Inventor); Horne, Michael R. (Inventor); Messick, Peter L. (Inventor); Alexa, Joel A. (Inventor); Glaessgen, Edward H. (Inventor); Hailer, Benjamin T. (Inventor)

    2016-01-01

    A composite material includes a structural material and a shape-memory alloy embedded in the structural material. The shape-memory alloy changes crystallographic phase from austenite to martensite in response to a predefined critical macroscopic average strain of the composite material. In a second embodiment, the composite material includes a plurality of particles of a ferromagnetic shape-memory alloy embedded in the structural material. The ferromagnetic shape-memory alloy changes crystallographic phase from austenite to martensite and changes magnetic phase in response to the predefined critical macroscopic average strain of the composite material. A method of forming a composite material for sensing the predefined critical macroscopic average strain includes providing the shape-memory alloy having an austenite crystallographic phase, changing a size and shape of the shape-memory alloy to thereby form a plurality of particles, and combining the structural material and the particles at a temperature of from about 100-700.degree. C. to form the composite material.

  8. An Acrylonitrile–Butadiene–Lignin Renewable Skin with Programmable and Switchable Electrical Conductivity for Stress/Strain-Sensing Applications

    DOE PAGES

    Nguyen, Ngoc A.; Meek, Kelly M.; Bowland, Christopher C.; ...

    2017-12-28

    We report an approach for programming electrical conductivity of a bio-based leathery skin devised with a layer of 60 nm metallic nanoparticles. Lignin-based renewable shape-memory materials were made, for the first time, to program and restore the materials’ electrical conductivity after repeated deformation up to 100% strain amplitude, at a temperature 60–115 °C above the glass transition temperature (T g) of the rubbery matrix. We cross-linked lignin macromolecules with an acrylonitrile–butadiene rubbery melt in high quantities ranging from 40 to 60 wt % and processed the resulting thermoplastics into thin films. Chemical and physical networks within the polymeric materials significantlymore » enhanced key characteristics such as mechanical stiffness, strain fixity, and temperature-stimulated recovery of shape. The branched structures of the guaiacylpropane-dominant softwood lignin significantly improve the rubber’s T g and produced a film with stored and recoverable elastic work density that was an order of magnitude greater than those of the neat rubber and of samples made with syringylpropane-rich hardwood lignin. The devices could exhibit switching of conductivity before and after shape recovery.« less

  9. An Acrylonitrile–Butadiene–Lignin Renewable Skin with Programmable and Switchable Electrical Conductivity for Stress/Strain-Sensing Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ngoc A.; Meek, Kelly M.; Bowland, Christopher C.

    We report an approach for programming electrical conductivity of a bio-based leathery skin devised with a layer of 60 nm metallic nanoparticles. Lignin-based renewable shape-memory materials were made, for the first time, to program and restore the materials’ electrical conductivity after repeated deformation up to 100% strain amplitude, at a temperature 60–115 °C above the glass transition temperature (T g) of the rubbery matrix. We cross-linked lignin macromolecules with an acrylonitrile–butadiene rubbery melt in high quantities ranging from 40 to 60 wt % and processed the resulting thermoplastics into thin films. Chemical and physical networks within the polymeric materials significantlymore » enhanced key characteristics such as mechanical stiffness, strain fixity, and temperature-stimulated recovery of shape. The branched structures of the guaiacylpropane-dominant softwood lignin significantly improve the rubber’s T g and produced a film with stored and recoverable elastic work density that was an order of magnitude greater than those of the neat rubber and of samples made with syringylpropane-rich hardwood lignin. The devices could exhibit switching of conductivity before and after shape recovery.« less

  10. Thermomechanical behavior of a two-way shape memory composite actuator

    NASA Astrophysics Data System (ADS)

    Ge, Qi; Westbrook, Kristofer K.; Mather, Patrick T.; Dunn, Martin L.; Qi, H. Jerry

    2013-05-01

    Shape memory polymers (SMPs) are a class of smart materials that can fix a temporary shape and recover to their permanent (original) shape in response to an environmental stimulus such as heat, electricity, or irradiation, among others. Most SMPs developed in the past can only demonstrate the so-called one-way shape memory effect; i.e., one programming step can only yield one shape memory cycle. Recently, one of the authors (Mather) developed a SMP that exhibits both one-way shape memory (1W-SM) and two-way shape memory (2W-SM) effects (with the assistance of an external load). This SMP was further used to develop a free-standing composite actuator with a nonlinear reversible actuation under thermal cycling. In this paper, a theoretical model for the PCO SMP based composite actuator was developed to investigate its thermomechanical behavior and the mechanisms for the observed phenomena during the actuation cycles, and to provide insight into how to improve the design.

  11. Mussel-inspired tough hydrogels with self-repairing and tissue adhesion

    NASA Astrophysics Data System (ADS)

    Gao, Zijian; Duan, Lijie; Yang, Yongqi; Hu, Wei; Gao, Guanghui

    2018-01-01

    The mussel-inspired polymeric hydrogels have been attractively explored owing to their self-repairing or adhesive property when the catechol groups of dopamine could chelate metal ions. However, it was a challenge for self-repairing hydrogels owning high mechanical properties. Herein, a synergistic strategy was proposed by combining catechol-Fe3+ complexes and hydrophobic association. The resulting hydrogels exhibited seamless self-repairing behavior, tissue adhesion and high mechanical property. Moreover, the pH-dependent stoichiometry of catechol-Fe3+ and temperature-sensitive hydrophobic association endue hydrogels with pH/thermo responsive characteristics. Subsequently, the self-repairing rate and mechanical property of hydrogels were investigated at different pH and temperature. This bio-inspired strategy would build an avenue for designing and constructing a new generation of self-repairing, tissue-adhesive and tough hydrogel.

  12. Shape memory polymer actuator and catheter

    DOEpatents

    Maitland, Duncan J.; Lee, Abraham P.; Schumann, Daniel L.; Matthews, Dennis L.; Decker, Derek E.; Jungreis, Charles A.

    2004-05-25

    An actuator system is provided for acting upon a material in a vessel. The system includes an optical fiber and a shape memory polymer material operatively connected to the optical fiber. The shape memory polymer material is adapted to move from a first shape for moving through said vessel to a second shape where it can act upon said material.

  13. Shape memory polymer actuator and catheter

    DOEpatents

    Maitland, Duncan J.; Lee, Abraham P.; Schumann, Daniel L.; Matthews, Dennis L.; Decker, Derek E.; Jungreis, Charles A.

    2007-11-06

    An actuator system is provided for acting upon a material in a vessel. The system includes an optical fiber and a shape memory polymer material operatively connected to the optical fiber. The shape memory polymer material is adapted to move from a first shape for moving through said vessel to a second shape where it can act upon said material.

  14. The Cognitive Neuroscience of Human Memory Since H.M

    PubMed Central

    Squire, Larry R.; Wixted, John T.

    2011-01-01

    Work with patient H.M., beginning in the 1950s, established key principles about the organization of memory that inspired decades of experimental work. Since H.M., the study of human memory and its disorders has continued to yield new insights and to improve understanding of the structure and organization of memory. Here we review this work with emphasis on the neuroanatomy of medial temporal lobe and diencephalic structures important for memory, multiple memory systems, visual perception, immediate memory, memory consolidation, the locus of long-term memory storage, the concepts of recollection and familiarity, and the question of how different medial temporal lobe structures may contribute differently to memory functions. PMID:21456960

  15. Design and Printing Strategies in 3D Bioprinting of Cell-Hydrogels: A Review.

    PubMed

    Lee, Jia Min; Yeong, Wai Yee

    2016-11-01

    Bioprinting is an emerging technology that allows the assembling of both living and non-living biological materials into an ideal complex layout for further tissue maturation. Bioprinting aims to produce engineered tissue or organ in a mechanized, organized, and optimized manner. Various biomaterials and techniques have been utilized to bioprint biological constructs in different shapes, sizes and resolutions. There is a need to systematically discuss and analyze the reported strategies employed to fabricate these constructs. We identified and discussed important design factors in bioprinting, namely shape and resolution, material heterogeneity, and cellular-material remodeling dynamism. Each design factors are represented by the corresponding process capabilities and printing parameters. The process-design map will inspire future biomaterials research in these aspects. Design considerations such as data processing, bio-ink formulation and process selection are discussed. Various printing and crosslinking strategies, with relevant applications, are also systematically reviewed. We categorized them into 5 general bioprinting strategies, including direct bioprinting, in-process crosslinking, post-process crosslinking, indirect bioprinting and hybrid bioprinting. The opportunities and outlook in 3D bioprinting are highlighted. This review article will serve as a framework to advance computer-aided design in bioprinting technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Characterization of mechanical properties of pseudoelastic shape memory alloys under harmonic excitation

    NASA Astrophysics Data System (ADS)

    Böttcher, J.; Jahn, M.; Tatzko, S.

    2017-12-01

    Pseudoelastic shape memory alloys exhibit a stress-induced phase transformation which leads to high strains during deformation of the material. The stress-strain characteristic during this thermomechanical process is hysteretic and results in the conversion of mechanical energy into thermal energy. This energy conversion allows for the use of shape memory alloys in vibration reduction. For the application of shape memory alloys as vibration damping devices a dynamic modeling of the material behavior is necessary. In this context experimentally determined material parameters which accurately represent the material behavior are essential for a reliable material model. Subject of this publication is the declaration of suitable material parameters for pseudoelastic shape memory alloys and the methodology of their identification from experimental investigations. The used test rig was specifically designed for the characterization of pseudoelastic shape memory alloys.

  17. Hippocampal atrophy in people with memory deficits: results from the population-based IPREA study.

    PubMed

    Ferrarini, Luca; van Lew, Baldur; Reiber, Johan H C; Gandin, Claudia; Galluzzo, Lucia; Scafato, Emanuele; Frisoni, Giovanni B; Milles, Julien; Pievani, Michela

    2014-07-01

    Clinical studies have shown that hippocampal atrophy is present before dementia in people with memory deficits and can predict dementia development. The question remains whether this association holds in the general population. This is of interest for the possible use of hippocampal atrophy to screen population for preventive interventions. The aim of this study was to assess hippocampal volume and shape abnormalities in elderly adults with memory deficits in a cross-sectional population-based study. We included individuals participating in the Italian Project on the Epidemiology of Alzheimer Disease (IPREA) study: 75 cognitively normal individuals (HC), 31 individuals with memory deficits (MEM), and 31 individuals with memory deficits not otherwise specified (MEMnos). Hippocampal volumes and shape were extracted through manual tracing and the growing and adaptive meshes (GAMEs) shape-modeling algorithm. We investigated between-group differences in hippocampal volume and shape, and correlations with memory deficits. In MEM participants, hippocampal volumes were significantly smaller than in HC and were mildly associated with worse memory scores. Memory-associated shape changes mapped to the anterior hippocampus. Shape-based analysis detected no significant difference between MEM and HC, while MEMnos showed shape changes in the posterior hippocampus compared with HC and MEM groups. These findings support the discriminant validity of hippocampal volumetry as a biomarker of memory impairment in the general population. The detection of shape changes in MEMnos but not in MEM participants suggests that shape-based biomarkers might lack sensitivity to detect Alzheimer's-like pathology in the general population.

  18. Characterizing Effects of Nitric Oxide Sterilization on tert-Butyl Acrylate Shape Memory Polymers

    NASA Astrophysics Data System (ADS)

    Phillippi, Ben

    As research into the potential uses of shape memory polymers (SMPs) as implantable medical devices continues to grow and expand, so does the need for an accurate and reliable sterilization mechanism. The ability of an SMP to precisely undergo a programmed shape change will define its ability to accomplish a therapeutic task. To ensure proper execution of the in vivo shape change, the sterilization process must not negatively affect the shape memory behavior of the material. To address this need, this thesis investigates the effectiveness of a benchtop nitric oxide (NOx) sterilization process and the extent to which the process affects the shape memory behavior of a well-studied tert-Butyl Acrylate (tBA) SMP. Quantifying the effects on shape memory behavior was performed using a two-tiered analysis. A two-tiered study design was used to determine if the sterilization process induced any premature shape recovery and to identify any effects that NOx has on the overall shape memory behavior of the foams. Determining the effectiveness of the NOx system--specially, whether the treated samples are more sterile/less contaminated than untreated--was also performed with a two-tiered analysis. In this case, the two-tiered analysis was employed to have a secondary check for contamination. To elaborate, all of the samples that were deemed not contaminated from the initial test were put through a second sterility test to check for contamination a second time. The results of these tests indicated the NOx system is an effective sterilization mechanism and the current protocol does not negatively impact the shape memory behavior of the tBA SMP. The samples held their compressed shape throughout the entirety of the sterilization process. Additionally, there were no observable impacts on the shape memory behavior induced by NOx. Lastly, the treated samples demonstrated lower contamination than the untreated. This thesis demonstrates the effectiveness of NOx as a laboratory scale sterilization mechanism for heat triggered shape memory polymers. The shape memory analysis indicated that the magnitude of the length changes induced by NOx is small enough that it does not make a statistically significant impact on the shape memory behavior of the foams. Additionally, there were no observable effects on the shape memory behavior induced by NOx. The results further indicated the NOx system is effective at sterilizing porous scaffolds, as none of the sterilized samples showed contamination. Testing methods proved to be effective because the initial sterility test was able to identify all of the contaminated samples and preliminary results indicated that NOx sterilization improves the sterility of the foams.

  19. Bio-Inspired Distributed Decision Algorithms for Anomaly Detection

    DTIC Science & Technology

    2017-03-01

    TERMS DIAMoND, Local Anomaly Detector, Total Impact Estimation, Threat Level Estimator 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU...21 4.2 Performance of the DIAMoND Algorithm as a DNS-Server Level Attack Detection and Mitigation...with 6 Nodes ........................................................................................ 13 8 Hierarchical 2- Level Topology

  20. Bioinspired engineering of exploration systems for NASA and DoD: from bees to BEES

    NASA Technical Reports Server (NTRS)

    Thakoor, S.; Zornetzer, S.; Hine, B.; Chahl, J.; Werblin, F.; Srinivasan, M. V.; Young, L.

    2003-01-01

    The intent of Bio-inspired Engineering of Exploration Systems (BEES) is to distill the principles found in successful, nature-tested mechanisms of specific crucial functions that are hard to accomplish by conventional methods, but accomplished rather deftly in nature by biological organisms.

  1. Development of Microbial and Enzymatic Fuel Cells for Bio-Inspired Power Sources

    DTIC Science & Technology

    2009-03-01

    that of the oxidation of NADH as possible.[30] A variety of organic mediators have been studied for the anode, including phenazines ,[38] dyes,[39,40...glucose-6-phosphate dehydrogenase on the rotating graphite disc electrode modified with phenazine methosulfate. Enzyme Microb. Technol. 1993, 15 (6), 525

  2. On the ability of plant life-history strategies to shape bio-geomorphologic interactions

    NASA Astrophysics Data System (ADS)

    Schwarz, Christian; van Belzen, Jim; Zhu, ZhenChang; Bouma, Tjeerd; van de Koppel, Johan; Gourgue, Olivier; Temmerman, Stijn

    2017-04-01

    Previous work studying bio-geomorphologic interactions in intertidal habitats underlined the importance of wetland vegetation shaping their environment (e.g. tidal channel networks). Up to this point the potential of wetland vegetation to shape their environment was linked to their physical plant properties, such as stiffness, stem diameter or stem density. However the effect of life-history strategies, i.e. the mode of plant proliferation such as sexual reproduction from seeds, non-sexual lateral expansion or a combination of the former two was hitherto ignored. We present numerical experiments based on a wetland ecosystem present in the Western Scheldt Estuary (SW, the Netherlands) showing the importance of life-history strategies shaping bio-geomorphologic interactions. We specifically compare two extremes in life-history strategies, (1) one species solely establishing from seeds and relying on their mass recruitment (Salicornia europea); And a second species (Spartina anglica) which relies on a mixed establishment strategy consisting of seed dispersal and asexual lateral expansion through tillering, with a very low seed recruitment success per year. Based on conducted numerical experiments using TELEMAC2D we show that the Spartina-case facilitates relative low channel densities with pronounced channel networks, whereas the Salicornia-case favors high channel densities with less pronounced intertidal channels. The conducted numerical experiments are the first indication showing that plant proliferation strategies exert a major control on emerging patterns in bio-geomorphologic systems. This provides a deeper understanding in the constraining factors and dynamics shaping the emergence and resilience of bio-geomorphologic systems.

  3. Bio-Inspired Multi-Functional Drug Transport Design Concept and Simulations †

    PubMed Central

    Pidaparti, Ramana M.; Cartin, Charles; Su, Guoguang

    2017-01-01

    In this study, we developed a microdevice concept for drug/fluidic transport taking an inspiration from supramolecular motor found in biological cells. Specifically, idealized multi-functional design geometry (nozzle/diffuser/nozzle) was developed for (i) fluidic/particle transport; (ii) particle separation; and (iii) droplet generation. Several design simulations were conducted to demonstrate the working principles of the multi-functional device. The design simulations illustrate that the proposed design concept is feasible for multi-functionality. However, further experimentation and optimization studies are needed to fully evaluate the multifunctional device concept for multiple applications. PMID:28952516

  4. Shape memory effect and super elasticity. Its dental applications.

    PubMed

    Kotian, R

    2001-01-01

    The shape memory alloys are quite fascinating materials characterized by a shape memory effect and super elasticity which ordinary metals do not have. This unique behaviour was first found in a Au-47.5 at % Cd alloy in 1951, and was published in 1963 by the discovery of Ti-Ni alloy. Shape memory alloys now being practically used as new functional alloys for various dental and medical applications.

  5. Self-cleaning antimicrobial surfaces by bio-enabled growth of SnO2 coatings on glass

    NASA Astrophysics Data System (ADS)

    André, Rute; Natalio, Filipe; Tahir, Muhammad Nawaz; Berger, Rüdiger; Tremel, Wolfgang

    2013-03-01

    Conventional vapor-deposition techniques for coatings require sophisticated equipment and/or high-temperature resistant substrates. Therefore bio-inspired techniques for the fabrication of inorganic coatings have been developed in recent years. Inspired by the biology behind the formation of the intricate skeletons of diatoms orchestrated by a class of cationic polyamines (silaffins) we have used surface-bound spermine, a naturally occurring polyamine, to promote the fast deposition of homogeneous, thin and transparent biomimetic SnO2 coatings on glass surfaces. The bio-enabled SnO2 film is highly photoactive, i.e. it generates superoxide radicals (O2&z.rad;-) upon sunlight exposure resulting in a strong degradation of organic contaminants and a strong antimicrobial activity. Upon illumination the biomimetic SnO2 coating exhibits a switchable amphiphilic behavior, which - in combination with its photoactivity - creates a self-cleaning surface. The intrinsic self-cleaning properties could lead to the development of new protective, antifouling coatings on various substrates.Conventional vapor-deposition techniques for coatings require sophisticated equipment and/or high-temperature resistant substrates. Therefore bio-inspired techniques for the fabrication of inorganic coatings have been developed in recent years. Inspired by the biology behind the formation of the intricate skeletons of diatoms orchestrated by a class of cationic polyamines (silaffins) we have used surface-bound spermine, a naturally occurring polyamine, to promote the fast deposition of homogeneous, thin and transparent biomimetic SnO2 coatings on glass surfaces. The bio-enabled SnO2 film is highly photoactive, i.e. it generates superoxide radicals (O2&z.rad;-) upon sunlight exposure resulting in a strong degradation of organic contaminants and a strong antimicrobial activity. Upon illumination the biomimetic SnO2 coating exhibits a switchable amphiphilic behavior, which - in combination with its photoactivity - creates a self-cleaning surface. The intrinsic self-cleaning properties could lead to the development of new protective, antifouling coatings on various substrates. Electronic supplementary information (ESI) available: (1) QCM measurement of SnO2 deposition on spermine functionalized silica-based sensors, (2) scheme of the surface functionalization procedure, (3) FTIR-ATR analysis of polyamine (spermine) functionalized glass surfaces, (4) FITC staining of amine groups on glass surfaces, (5) AFM height analysis of bare, spermine coated and SnO2 coated glass slides, (6) SEM micrograph of a spermine functionalized SnO2 coated glass slide, (7) XPS analysis of SnO2 coated surfaces, (8) kinetic profile of rhodamine B degradation with spermine/SnO2, (9) control experiments for the photodegradation of rhodamine B, (10) comparison with commercial SnO2 catalyst, (11) incubation of non-functionalized glass surfaces with E. coli, and (12) incubation of SnO2 coated glass surfaces with E. coli. See DOI: 10.1039/c3nr00007a

  6. Reconfigurable and Reprocessable Thermoset Shape Memory Polymer with Synergetic Triple Dynamic Covalent Bonds.

    PubMed

    Wang, Yongwei; Pan, Yi; Zheng, Zhaohui; Ding, Xiaobin

    2018-04-20

    Degradable shape memory polymers (SMPs), especially for polyurethane-based SMPs, have shown great potential for biomedical applications. How to reasonably fabricate SMPs with the ideal combination of degradability, shape reconfigurability, and reprocessability is a critical issue and remains a challenge for medical disposable materials. Herein, a shape memory poly(urethane-urea) with synergetic triple dynamic covalent bonds is reported via embedding polycaprolactone unit into poly(urethane-urea) with the hindered urea dynamic bond. The single polymer network is biodegradable, thermadapt, and reprocessable, without sacrificing the outstanding shape memory performance. Such a shape memory network with plasticity and reprocessability is expected to have significant and positive impact on the medical device industry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Shape memory alloy thaw sensors

    DOEpatents

    Shahinpoor, M.; Martinez, D.R.

    1998-04-07

    A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states. 16 figs.

  8. Shape memory alloy thaw sensors

    DOEpatents

    Shahinpoor, Mohsen; Martinez, David R.

    1998-01-01

    A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the Austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states.

  9. Fluorimetric Mercury Test Strips with Suppressed “Coffee Stains” by a Bio-inspired Fabrication Strategy

    PubMed Central

    Qiao, Yuchun; Shang, Jizhen; Li, Shuying; Feng, Luping; Jiang, Yao; Duan, Zhiqiang; Lv, Xiaoxia; Zhang, Chunxian; Yao, Tiantian; Dong, Zhichao; Zhang, Yu; Wang, Hua

    2016-01-01

    A fluorimetric Hg2+ test strip has been developed using a lotus-inspired fabrication method for suppressing the “coffee stains” toward the uniform distribution of probe materials through creating a hydrophobic drying pattern for fast solvent evaporation. The test strips were first loaded with the model probes of fluorescent gold-silver nanoclusters and then dried in vacuum on the hydrophobic pattern. On the one hand, here, the hydrophobic constraining forces from the lotus surface-like pattern could control the exterior transport of dispersed nanoclusters on strips leading to the minimized “coffee stains”. On the other hand, the vacuum-aided fast solvent evaporation could boost the interior Marangoni flow of probe materials on strips to expect the further improved probe distribution on strips. High aqueous stability and enhanced fluorescence of probes on test strips were realized by the hydrophilic treatment with amine-derivatized silicane. A test strips-based fluorimetry has thereby been developed for probing Hg2+ ions in wastewater, showing the detection performances comparable to the classic instrumental analysis ones. Such a facile and efficient fabrication route for the bio-inspired suppression of “coffee stains” on test strips may expand the scope of applications of test strips-based “point-of-care” analysis methods or detection devices in the biomedical and environmental fields. PMID:27812040

  10. Converging the capabilities of EAP artificial muscles and the requirements of bio-inspired robotics

    NASA Astrophysics Data System (ADS)

    Hanson, David F.; White, Victor

    2004-07-01

    The characteristics of Electro-actuated polymers (EAP) are typically considered inadequate for applications in robotics. But in recent years, there has been both dramatic increases in EAP technological capbilities and reductions in power requirements for actuating bio-inspired robotics. As the two trends continue to converge, one may anticipate that dramatic breakthroughs in biologically inspired robotic actuation will result due to the marraige of these technologies. This talk will provide a snapshot of how EAP actuator scientists and roboticists may work together on a common platform to accelerate the growth of both technologies. To demonstrate this concept of a platform to accelerate this convergence, the authors will discuss their work in the niche application of robotic facial expression. In particular, expressive robots appear to be within the range of EAP actuation, thanks to their low force requirements. Several robots will be shown that demonstrate realistic expressions with dramatically decreased force requirements. Also, detailed descriptions will be given of the engineering innovations that have enabled these robotics advancements-most notably, Structured-Porosity Elastomer Materials (SPEMs). SPEM manufacturing techniques create delicate cell-structures in a variety of elastomers that maintain the high elongation characteristics of the mother material, but because of the porisity, behave as sponge-materials, thus lower the force required to emulate facial expressions to levels output by several extant EAP actuators.

  11. Weather prediction using a genetic memory

    NASA Technical Reports Server (NTRS)

    Rogers, David

    1990-01-01

    Kanaerva's sparse distributed memory (SDM) is an associative memory model based on the mathematical properties of high dimensional binary address spaces. Holland's genetic algorithms are a search technique for high dimensional spaces inspired by evolutional processes of DNA. Genetic Memory is a hybrid of the above two systems, in which the memory uses a genetic algorithm to dynamically reconfigure its physical storage locations to reflect correlations between the stored addresses and data. This architecture is designed to maximize the ability of the system to scale-up to handle real world problems.

  12. Potential High-Temperature Shape-Memory-Alloy Actuator Material Identified

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Gaydosh, Darrell J.; Biles, Tiffany A.; Garg, Anita

    2005-01-01

    Shape-memory alloys are unique "smart materials" that can be used in a wide variety of adaptive or "intelligent" components. Because of a martensitic solid-state phase transformation in these materials, they can display rather unusual mechanical properties including shape-memory behavior. This phenomenon occurs when the material is deformed at low temperatures (below the martensite finish temperature, Mf) and then heated through the martensite-to-austenite phase transformation. As the material is heated to the austenite finish temperature Af, it is able to recover its predeformed shape. If a bias is applied to the material as it tries to recover its original shape, work can be extracted from the shape-memory alloy as it transforms. Therefore, shape-memory alloys are being considered for compact solid-state actuation devices to replace hydraulic, pneumatic, or motor-driven systems.

  13. Mechanical properties and shape memory effect of thermal-responsive polymer based on PVA

    NASA Astrophysics Data System (ADS)

    Lin, Liulan; Zhang, Lingfeng; Guo, Yanwei

    2018-01-01

    In this study, the effect of content of glutaraldehyde (GA) on the shape memory behavior of a shape memory polymer based on polyvinyl alcohol chemically cross-linked with GA was investigated. Thermal-responsive shape memory composites with three different GA levels, GA-PVA (3 wt%, 5 wt%, 7 wt%), were prepared by particle melting, mold forming and freeze-drying technique. The mechanical properties, thermal properties and shape memory behavior were measured by differential scanning calorimeter, physical bending test and cyclic thermo-mechanical test. The addition of GA to PVA led to a steady shape memory transition temperature and an improved mechanical compressive strength. The composite with 5 wt% of GA exhibited the best shape recoverability. Further increase in the crosslinking agent content of GA would reduce the recovery force and prolong the recovery time due to restriction in the movement of the soft PVA chain segments. These results provide important information for the study on materials in 4D printing.

  14. Strategic design and fabrication of acrylic shape memory polymers

    NASA Astrophysics Data System (ADS)

    Park, Ju Hyuk; Kim, Hansu; Ryoun Youn, Jae; Song, Young Seok

    2017-08-01

    Modulation of thermomechanics nature is a critical issue for an optimized use of shape memory polymers (SMPs). In this study, a strategic approach was proposed to control the transition temperature of SMPs. Free radical vinyl polymerization was employed for tailoring and preparing acrylic SMPs. Transition temperatures of the shape memory tri-copolymers were tuned by changing the composition of monomers. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analyses were carried out to evaluate the chemical structures and compositions of the synthesized SMPs. The thermomechanical properties and shape memory performance of the SMPs were also examined by performing dynamic mechanical thermal analysis. Numerical simulation based on a finite element method provided consistent results with experimental cyclic shape memory tests of the specimens. Transient shape recovery tests were conducted and optical transparence of the samples was identified. We envision that the materials proposed in this study can help develop a new type of shape-memory devices in biomedical and aerospace engineering applications.

  15. Constitutive modeling of glassy shape memory polymers

    NASA Astrophysics Data System (ADS)

    Khanolkar, Mahesh

    The aim of this research is to develop constitutive models for non-linear materials. Here, issues related for developing constitutive model for glassy shape memory polymers are addressed in detail. Shape memory polymers are novel material that can be easily formed into complex shapes, retaining memory of their original shape even after undergoing large deformations. The temporary shape is stable and return to the original shape is triggered by a suitable mechanism such heating the polymer above a transition temperature. Glassy shape memory polymers are called glassy because the temporary shape is fixed by the formation of a glassy solid, while return to the original shape is due to the melting of this glassy phase. The constitutive model has been developed to capture the thermo-mechanical behavior of glassy shape memory polymers using elements of nonlinear mechanics and polymer physics. The key feature of this framework is that a body can exist stress free in numerous natural configurations, the underlying natural configuration of the body changing during the process, with the response of the body being elastic from these evolving natural configurations. The aim of this research is to formulate a constitutive model for glassy shape memory polymers (GSMP) which takes in to account the fact that the stress-strain response depends on thermal expansion of polymers. The model developed is for the original amorphous phase, the temporary glassy phase and transition between these phases. The glass transition process has been modeled using a framework that was developed recently for studying crystallization in polymers and is based on the theory of multiple natural configurations. Using the same frame work, the melting of the glassy phase to capture the return of the polymer to its original shape is also modeled. The effect of nanoreinforcement on the response of shape memory polymers (GSMP) is studied and a model is developed. In addition to modeling and solving boundary value problems for GSMP's, problems of importance for CSMP, specifically a shape memory cycle (Torsion of a Cylinder) is solved using the developed crystallizable shape memory polymer model. To solve complex boundary value problems in realistic geometries a user material subroutine (UMAT) for GSMP model has been developed for use in conjunction with the commercial finite element software ABAQUS. The accuracy of the UMAT has been verified by testing it against problems for which the results are known.

  16. Characterization of a Poly(styrene-block-methylacrylate-random-octadecylacrylate-block-styrene) Shape Memory ABA Triblock Copolymer

    NASA Astrophysics Data System (ADS)

    Fei, Pengzhan; Cavicchi, Kevin

    2011-03-01

    A new ABA triblock copolymer of poly(styrene-block- methylacrylate-random-octadecylacrylate-block-styrene) (PS-b- PMA-r-PODA-b-PS) was synthesized by reversible addition fragmentation chain transfer polymerization. The triblock copolymer can generate a three-dimensional, physically crosslinked network by self-assembly, where the glassy PS domains physically crosslink the midblock chains. The side chain crystallization of the polyoctadecylacrylare (PODA) side chain generates a second reversible network enabling shape memory properties. Shape memory tests by uniaxial deformation and recovery of molded dog-bone shape samples demonstrate that shape fixities above 96% and shape recoveries above 98% were obtained for extensional strains up to 300%. An outstanding advantage of this shape memory material is that it can be very easily shaped and remolded by elevating the temperature to 140circ; C, and after remolding the initial shape memory properties are totally recovered by eliminating the defects introduced by the previous deformation cycling.

  17. Potential High-Temperature Shape-Memory Alloys Identified in the Ti(Ni,Pt) System

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Biles, Tiffany A.; Garg, Anita; Nathal, Michael V.

    2004-01-01

    "Shape memory" is a unique property of certain alloys that, when deformed (within certain strain limits) at low temperatures, will remember and recover to their original predeformed shape upon heating. It occurs when an alloy is deformed in the low-temperature martensitic phase and is then heated above its transformation temperature back to an austenitic state. As the material passes through this solid-state phase transformation on heating, it also recovers its original shape. This behavior is widely exploited, near room temperature, in commercially available NiTi alloys for connectors, couplings, valves, actuators, stents, and other medical and dental devices. In addition, there are limitless applications in the aerospace, automotive, chemical processing, and many other industries for materials that exhibit this type of shape-memory behavior at higher temperatures. But for high temperatures, there are currently no commercial shape-memory alloys. Although there are significant challenges to the development of high-temperature shape-memory alloys, at the NASA Glenn Research Center we have identified a series of alloy compositions in the Ti-Ni-Pt system that show great promise as potential high-temperature shape-memory materials.

  18. The roles of the amygdala in the affective regulation of body, brain, and behaviour

    NASA Astrophysics Data System (ADS)

    Mirolli, Marco; Mannella, Francesco; Baldassarre, Gianluca

    2010-09-01

    Despite the great amount of knowledge produced by the neuroscientific literature on affective phenomena, current models tackling non-cognitive aspects of behaviour are often bio-inspired but rarely bio-constrained. This paper presents a theoretical account of affective systems centred on the amygdala (Amg). This account aims to furnish a general framework and specific pathways to implement models that are more closely related to biological evidence. The Amg, which receives input from brain areas encoding internal states, innately relevant stimuli, and innately neutral stimuli, plays a fundamental role in the motivational and emotional processes of organisms. This role is based on the fact that Amg implements the two associative processes at the core of Pavlovian learning (conditioned stimulus (CS)-unconditioned stimulus (US) and CS-unconditioned response (UR) associations), and that it has the capacity of modulating these associations on the basis of internal states. These functionalities allow the Amg to play an important role in the regulation of the three fundamental classes of affective responses (namely, the regulation of body states, the regulation of brain states via neuromodulators, and the triggering of a number of basic behaviours fundamental for adaptation) and in the regulation of three high-level cognitive processes (namely, the affective labelling of memories, the production of goal-directed behaviours, and the performance of planning and complex decision-making). Our analysis is conducted within a methodological approach that stresses the importance of understanding the brain within an evolutionary/adaptive framework and with the aim of isolating general principles that can potentially account for the wider possible empirical evidence in a coherent fashion.

  19. Method for fabricating uranium alloy articles without shape memory effects

    DOEpatents

    Banker, John G.

    1985-01-01

    Uranium-rich niobium and niobium-zirconium alloys possess a characteristic known as shape memory effect wherein shaped articles of these alloys recover their original shape when heated. The present invention circumvents this memory behavior by forming the alloys into the desired configuration at elevated temperatures with "cold" matched dies and maintaining the shaped articles between the dies until the articles cool to ambient temperature.

  20. Method for fabricating uranium alloy articles without shape memory effects

    DOEpatents

    Banker, J.G.

    1980-05-21

    Uranium-rich niobium and niobium-zirconium alloys possess a characteristic known as shape memory effect wherein shaped articles of these alloys recover their original shape when heated. The present invention circumvents this memory behavior by forming the alloys into the desired configuration at elevated temperatures with cold matched dies and maintaining the shaped articles between the dies until the articles cool to ambient temperature.

  1. Three-Dimensional Path Planning for Uninhabited Combat Aerial Vehicle Based on Predator-Prey Pigeon-Inspired Optimization in Dynamic Environment.

    PubMed

    Zhang, Bo; Duan, Haibin

    2017-01-01

    Three-dimension path planning of uninhabited combat aerial vehicle (UCAV) is a complicated optimal problem, which mainly focused on optimizing the flight route considering the different types of constrains under complex combating environment. A novel predator-prey pigeon-inspired optimization (PPPIO) is proposed to solve the UCAV three-dimension path planning problem in dynamic environment. Pigeon-inspired optimization (PIO) is a new bio-inspired optimization algorithm. In this algorithm, map and compass operator model and landmark operator model are used to search the best result of a function. The prey-predator concept is adopted to improve global best properties and enhance the convergence speed. The characteristics of the optimal path are presented in the form of a cost function. The comparative simulation results show that our proposed PPPIO algorithm is more efficient than the basic PIO, particle swarm optimization (PSO), and different evolution (DE) in solving UCAV three-dimensional path planning problems.

  2. Finite element analysis of Al 2024/Cu-Al-Ni shape memory alloy composites with defects/cracks

    NASA Astrophysics Data System (ADS)

    Kotresh, M.; Benal, M. M., Dr; Siddalinga Swamy, N. H., Dr

    2018-02-01

    In this work, a numerical approach to predict the stress field behaviour of defect/crack in shape memory alloy (SMA) particles reinforced composite known as the adaptive composite is presented. Simulation is based on the finite element method. The critical stress field approach was used to determine the stresses around defect/crack. Thereby stress amplification issue is being resolved. In this paper, the effect volume % of shape memory alloy and shape memory effect of reinforcement for as-cast and SME trained composites are examined and discussed. Shape memory effect known as training is achieved by pre-straining of reinforcement particles by equivalent changes in their expansion coefficients.

  3. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator.

    PubMed

    Schrade, Stefan O; Nager, Yannik; Wu, Amy R; Gassert, Roger; Ijspeert, Auke

    2017-07-01

    Robotic lower limb exoskeletons are becoming increasingly popular in therapy and recreational use. However, most exoskeletons are still rather limited in their locomotion speed and the activities of daily live they can perform. Furthermore, they typically do not allow for a dynamic adaptation to the environment, as they are often controlled with predefined reference trajectories. Inspired by human leg stiffness modulation during walking, variable stiffness actuators increase flexibility without the need for more complex controllers. Actuation with adaptable stiffness is inspired by the human leg stiffness modulation during walking. However, this actuation principle also introduces the stiffness setpoint as an additional degree of freedom that needs to be coordinated with the joint trajectories. As a potential solution to this issue a bio-inspired controller based on a central pattern generator (CPG) is presented in this work. It generates coordinated joint torques and knee stiffness modulations to produce flexible and dynamic gait patterns for an exoskeleton with variable knee stiffness actuation. The CPG controller is evaluated and optimized in simulation using a model of the exoskeleton. The CPG controller produced stable and smooth gait for walking speeds from 0.4 m/s up to 1.57 m/s with a torso stabilizing force that simulated the use of crutches, which are commonly needed by exoskeleton users. Through the CPG, the knee stiffness intrinsically adapted to the frequency and phase of the gait, when the speed was changed. Additionally, it adjusted to changes in the environment in the form of uneven terrain by reacting to ground contact forces. This could allow future exoskeletons to be more adaptive to various environments, thus making ambulation more robust.

  4. Reversible Shape Memory Polymers and Composites: Synthesis, Modeling and Design

    DTIC Science & Technology

    2013-03-01

    Polymer; and (iii) Development of a Shape Memory Assisted Self - Healing Polymer. Page 3 of 19 Mather/FA9550-09-1-0195 IV(i) Modeling and Model...0195 IV(iii) Development of a Shape Memory Assisted Self - Healing Polymer Erika D. Rodriguez, X. Luo, and P.T. Mather, “Linear and Crosslinked...Poly (ε- Caprolactone) Polymers for Shape Memory Assisted Self - Healing (SMASH),” ACS Applied Materials and Interfaces 3 152-161 (2011). Self

  5. High Performance Computing (HPC)-Enabled Computational Study on the Feasibility of using Shape Memory Alloys for Gas Turbine Blade Actuation

    DTIC Science & Technology

    2016-11-01

    Feasibility of using Shape Memory Alloys for Gas Turbine Blade Actuation by Kathryn Esham, Luis Bravo, Anindya Ghoshal, Muthuvel Murugan, and Michael...Computational Study on the Feasibility of using Shape Memory Alloys for Gas Turbine Blade Actuation by Luis Bravo, Anindya Ghoshal, Muthuvel...High Performance Computing (HPC)-Enabled Computational Study on the Feasibility of using Shape Memory Alloys for Gas Turbine Blade Actuation 5a

  6. Artificial heart for humanoid robot

    NASA Astrophysics Data System (ADS)

    Potnuru, Akshay; Wu, Lianjun; Tadesse, Yonas

    2014-03-01

    A soft robotic device inspired by the pumping action of a biological heart is presented in this study. Developing artificial heart to a humanoid robot enables us to make a better biomedical device for ultimate use in humans. As technology continues to become more advanced, the methods in which we implement high performance and biomimetic artificial organs is getting nearer each day. In this paper, we present the design and development of a soft artificial heart that can be used in a humanoid robot and simulate the functions of a human heart using shape memory alloy technology. The robotic heart is designed to pump a blood-like fluid to parts of the robot such as the face to simulate someone blushing or when someone is angry by the use of elastomeric substrates and certain features for the transport of fluids.

  7. Development of functionalised polyelectrolyte capsules using filamentous Escherichia coli cells.

    PubMed

    Lederer, Franziska L; Günther, Tobias J; Weinert, Ulrike; Raff, Johannes; Pollmann, Katrin

    2012-12-23

    Escherichia coli is one of the best studied microorganisms and finds multiple applications especially as tool in the heterologous production of interesting proteins of other organisms. The heterologous expression of special surface (S-) layer proteins caused the formation of extremely long E. coli cells which leave transparent tubes when they divide into single E. coli cells. Such natural structures are of high value as bio-templates for the development of bio-inorganic composites for many applications. In this study we used genetically modified filamentous Escherichia coli cells as template for the design of polyelectrolyte tubes that can be used as carrier for functional molecules or particles. Diversity of structures of biogenic materials has the potential to be used to construct inorganic or polymeric superior hybrid materials that reflect the form of the bio-template. Such bio-inspired materials are of great interest in diverse scientific fields like Biology, Chemistry and Material Science and can find application for the construction of functional materials or the bio-inspired synthesis of inorganic nanoparticles. Genetically modified filamentous E. coli cells were fixed in 2% glutaraldehyde and coated with alternating six layers of the polyanion polyelectrolyte poly(sodium-4styrenesulfonate) (PSS) and polycation polyelectrolyte poly(allylamine-hydrochloride) (PAH). Afterwards we dissolved the E. coli cells with 1.2% sodium hypochlorite, thus obtaining hollow polyelectrolyte tubes of 0.7 μm in diameter and 5-50 μm in length. For functionalisation the polyelectrolyte tubes were coated with S-layer protein polymers followed by metallisation with Pd(0) particles. These assemblies were analysed with light microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and transmission electron microscopy. The thus constructed new material offers possibilities for diverse applications like novel catalysts or metal nanowires for electrical devices. The novelty of this work is the use of filamentous E. coli templates and the use of S-layer proteins in a new material construct.

  8. Analysis of intelligent hinged shell structures: deployable deformation and shape memory effect

    NASA Astrophysics Data System (ADS)

    Shi, Guang-Hui; Yang, Qing-Sheng; He, X. Q.

    2013-12-01

    Shape memory polymers (SMPs) are a class of intelligent materials with the ability to recover their initial shape from a temporarily fixable state when subjected to external stimuli. In this work, the thermo-mechanical behavior of a deployable SMP-based hinged structure is modeled by the finite element method using a 3D constitutive model with shape memory effect. The influences of hinge structure parameters on the nonlinear loading process are investigated. The total shape memory of the processes the hinged structure goes through, including loading at high temperature, decreasing temperature with load carrying, unloading at low temperature and recovering the initial shape with increasing temperature, are illustrated. Numerical results show that the present constitutive theory and the finite element method can effectively predict the complicated thermo-mechanical deformation behavior and shape memory effect of SMP-based hinged shell structures.

  9. Poly(Dopamine)-Assisted Immobilization of Xu Duan on 3D Printed Poly(Lactic Acid) Scaffolds to Up-Regulate Osteogenic and Angiogenic Markers of Bone Marrow Stem Cells.

    PubMed

    Yeh, Chia-Hung; Chen, Yi-Wen; Shie, Ming-You; Fang, Hsin-Yuan

    2015-07-14

    Three-dimensional printing is a versatile technique to generate large quantities of a wide variety of shapes and sizes of polymer. The aim of this study is to develop functionalized 3D printed poly(lactic acid) (PLA) scaffolds and use a mussel-inspired surface coating and Xu Duan (XD) immobilization to regulate cell adhesion, proliferation and differentiation of human bone-marrow mesenchymal stem cells (hBMSCs). We prepared PLA scaffolds and coated with polydopamine (PDA). The chemical composition and surface properties of PLA/PDA/XD were characterized by XPS. PLA/PDA/XD controlled hBMSCs' responses in several ways. Firstly, adhesion and proliferation of hBMSCs cultured on PLA/PDA/XD were significantly enhanced relative to those on PLA. In addition, the focal adhesion kinase (FAK) expression of cells was increased and promoted cell attachment depended on the XD content. In osteogenesis assay, the osteogenesis markers of hBMSCs cultured on PLA/PDA/XD were significantly higher than seen in those cultured on a pure PLA/PDA scaffolds. Moreover, hBMSCs cultured on PLA/PDA/XD showed up-regulation of the ang-1 and vWF proteins associated with angiogenic differentiation. Our results demonstrate that the bio-inspired coating synthetic PLA polymer can be used as a simple technique to render the surfaces of synthetic scaffolds active, thus enabling them to direct the specific responses of hBMSCs.

  10. Poly(Dopamine)-Assisted Immobilization of Xu Duan on 3D Printed Poly(Lactic Acid) Scaffolds to Up-Regulate Osteogenic and Angiogenic Markers of Bone Marrow Stem Cells

    PubMed Central

    Yeh, Chia-Hung; Chen, Yi-Wen; Shie, Ming-You; Fang, Hsin-Yuan

    2015-01-01

    Three-dimensional printing is a versatile technique to generate large quantities of a wide variety of shapes and sizes of polymer. The aim of this study is to develop functionalized 3D printed poly(lactic acid) (PLA) scaffolds and use a mussel-inspired surface coating and Xu Duan (XD) immobilization to regulate cell adhesion, proliferation and differentiation of human bone-marrow mesenchymal stem cells (hBMSCs). We prepared PLA scaffolds and coated with polydopamine (PDA). The chemical composition and surface properties of PLA/PDA/XD were characterized by XPS. PLA/PDA/XD controlled hBMSCs’ responses in several ways. Firstly, adhesion and proliferation of hBMSCs cultured on PLA/PDA/XD were significantly enhanced relative to those on PLA. In addition, the focal adhesion kinase (FAK) expression of cells was increased and promoted cell attachment depended on the XD content. In osteogenesis assay, the osteogenesis markers of hBMSCs cultured on PLA/PDA/XD were significantly higher than seen in those cultured on a pure PLA/PDA scaffolds. Moreover, hBMSCs cultured on PLA/PDA/XD showed up-regulation of the ang-1 and vWF proteins associated with angiogenic differentiation. Our results demonstrate that the bio-inspired coating synthetic PLA polymer can be used as a simple technique to render the surfaces of synthetic scaffolds active, thus enabling them to direct the specific responses of hBMSCs. PMID:28793441

  11. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering.

    PubMed

    Kao, Chia-Tze; Lin, Chi-Chang; Chen, Yi-Wen; Yeh, Chia-Hung; Fang, Hsin-Yuan; Shie, Ming-You

    2015-11-01

    3D printing is a versatile technique to generate large quantities of a wide variety of shapes and sizes of polymer. The aim of this study is to develop functionalized 3D printed poly(lactic acid) (PLA) scaffolds and use a mussel-inspired surface coating to regulate cell adhesion, proliferation and differentiation of human adipose-derived stem cells (hADSCs). We prepared PLA 3D scaffolds coated with polydopamine (PDA). The chemical composition and surface properties of PDA/PLA were characterized by XPS. PDA/PLA modulated hADSCs' responses in several ways. Firstly, adhesion and proliferation, and cell cycle of hADSCs cultured on PDA/PLA were significantly enhanced relative to those on PLA. In addition, the collagen I secreted from cells was increased and promoted cell attachment and cell cycle progression were depended on the PDA content. In osteogenesis assay, the ALP activity and osteocalcin of hADSCs cultured on PDA/PLA were significantly higher than seen in those cultured on pure PLA scaffolds. Moreover, hADSCs cultured on PDA/PLA showed up-regulation of the ang-1 and vWF proteins associated with angiogenic differentiation. Our results demonstrate that the bio-inspired coating synthetic PLA polymer can be used as a simple technique to render the surfaces of synthetic scaffolds active, thus enabling them to direct the specific responses of hADSCs. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. High-performance mussel-inspired adhesives of reduced complexity.

    PubMed

    Ahn, B Kollbe; Das, Saurabh; Linstadt, Roscoe; Kaufman, Yair; Martinez-Rodriguez, Nadine R; Mirshafian, Razieh; Kesselman, Ellina; Talmon, Yeshayahu; Lipshutz, Bruce H; Israelachvili, Jacob N; Waite, J Herbert

    2015-10-19

    Despite the recent progress in and demand for wet adhesives, practical underwater adhesion remains limited or non-existent for diverse applications. Translation of mussel-inspired wet adhesion typically entails catechol functionalization of polymers and/or polyelectrolytes, and solution processing of many complex components and steps that require optimization and stabilization. Here we reduced the complexity of a wet adhesive primer to synthetic low-molecular-weight catecholic zwitterionic surfactants that show very strong adhesion (∼50 mJ m(-2)) and retain the ability to coacervate. This catecholic zwitterion adheres to diverse surfaces and self-assembles into a molecularly smooth, thin (<4 nm) and strong glue layer. The catecholic zwitterion holds particular promise as an adhesive for nanofabrication. This study significantly simplifies bio-inspired themes for wet adhesion by combining catechol with hydrophobic and electrostatic functional groups in a small molecule.

  13. Bioinspired engineering of exploration systems: a horizon sensor/attitude reference system based on the dragonfly Ocelli for Mars exploration applications

    NASA Technical Reports Server (NTRS)

    Thakoor, S.; Zornetzer, S.; Hine, B.; Chahl, J.; Stange, G.

    2002-01-01

    The intent of Bio-inspired Engineering of Exploration Systems (BEES) is to distill the principles found in successful, nature-tested mechanisms of specific crucial functions that are hard to accomplish by conventional methods, but accomplished rather deftly in nature by biological oganisms.

  14. Hierarchical Bio-Inspired Cooperative Control for Nonlinear Dynamical Systems and Hardware Demonstration

    DTIC Science & Technology

    2013-04-03

    cooperative control, LEGO robotic testbed, non-linear dynamics 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES...testbed The architecture of the LEGO robots (® LEGO is a trademark and/or copyright of the LEGO Group) used in tests were based off the quick-start

  15. Solar Hydrogen Fuel Cell Projects at Brooklyn Tech

    ERIC Educational Resources Information Center

    Fedotov, Alex; Farah, Shadia; Farley, Daithi; Ghani, Naureen; Kuo, Emmy; Aponte, Cecielo; Abrescia, Leo; Kwan, Laiyee; Khan, Ussamah; Khizner, Felix; Yam, Anthony; Sakeeb, Khan; Grey, Daniel; Anika, Zarin; Issa, Fouad; Boussayoud, Chayama; Abdeldayem, Mahmoud; Zhang, Alvin; Chen, Kelin; Chan, Kameron Chuen; Roytman, Viktor; Yee, Michael

    2010-01-01

    This article describes the projects on solar hydrogen powered vehicles using water as fuel conducted by teams at Brooklyn Technical High School. Their investigations into the pure and applied chemical thermodynamics of hydrogen fuel cells and bio-inspired devices have been consolidated in a new and emerging sub-discipline that they define as solar…

  16. Piezoelectric Templates - New Views on Biomineralization and Biomimetics.

    PubMed

    Stitz, Nina; Eiben, Sabine; Atanasova, Petia; Domingo, Neus; Leineweber, Andreas; Burghard, Zaklina; Bill, Joachim

    2016-05-23

    Biomineralization in general is based on electrostatic interactions and molecular recognition of organic and inorganic phases. These principles of biomineralization have also been utilized and transferred to bio-inspired synthesis of functional materials during the past decades. Proteins involved in both, biomineralization and bio-inspired processes, are often piezoelectric due to their dipolar character hinting to the impact of a template's piezoelectricity on mineralization processes. However, the piezoelectric contribution on the mineralization process and especially the interaction of organic and inorganic phases is hardly considered so far. We herein report the successful use of the intrinsic piezoelectric properties of tobacco mosaic virus (TMV) to synthesize piezoelectric ZnO. Such films show a two-fold increase of the piezoelectric coefficient up to 7.2 pm V(-1) compared to films synthesized on non-piezoelectric templates. By utilizing the intrinsic piezoelectricity of a biotemplate, we thus established a novel synthesis pathway towards functional materials, which sheds light on the whole field of biomimetics. The obtained results are of even broader and general interest since they are providing a new, more comprehensive insight into the mechanisms involved into biomineralization in living nature.

  17. Piezoelectric Templates - New Views on Biomineralization and Biomimetics

    NASA Astrophysics Data System (ADS)

    Stitz, Nina; Eiben, Sabine; Atanasova, Petia; Domingo, Neus; Leineweber, Andreas; Burghard, Zaklina; Bill, Joachim

    2016-05-01

    Biomineralization in general is based on electrostatic interactions and molecular recognition of organic and inorganic phases. These principles of biomineralization have also been utilized and transferred to bio-inspired synthesis of functional materials during the past decades. Proteins involved in both, biomineralization and bio-inspired processes, are often piezoelectric due to their dipolar character hinting to the impact of a template’s piezoelectricity on mineralization processes. However, the piezoelectric contribution on the mineralization process and especially the interaction of organic and inorganic phases is hardly considered so far. We herein report the successful use of the intrinsic piezoelectric properties of tobacco mosaic virus (TMV) to synthesize piezoelectric ZnO. Such films show a two-fold increase of the piezoelectric coefficient up to 7.2 pm V-1 compared to films synthesized on non-piezoelectric templates. By utilizing the intrinsic piezoelectricity of a biotemplate, we thus established a novel synthesis pathway towards functional materials, which sheds light on the whole field of biomimetics. The obtained results are of even broader and general interest since they are providing a new, more comprehensive insight into the mechanisms involved into biomineralization in living nature.

  18. A novel angle computation and calibration algorithm of bio-inspired sky-light polarization navigation sensor.

    PubMed

    Xian, Zhiwen; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Cao, Juliang; Wang, Yujie; Ma, Tao

    2014-09-15

    Navigation plays a vital role in our daily life. As traditional and commonly used navigation technologies, Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS) can provide accurate location information, but suffer from the accumulative error of inertial sensors and cannot be used in a satellite denied environment. The remarkable navigation ability of animals shows that the pattern of the polarization sky can be used for navigation. A bio-inspired POLarization Navigation Sensor (POLNS) is constructed to detect the polarization of skylight. Contrary to the previous approach, we utilize all the outputs of POLNS to compute input polarization angle, based on Least Squares, which provides optimal angle estimation. In addition, a new sensor calibration algorithm is presented, in which the installation angle errors and sensor biases are taken into consideration. Derivation and implementation of our calibration algorithm are discussed in detail. To evaluate the performance of our algorithms, simulation and real data test are done to compare our algorithms with several exiting algorithms. Comparison results indicate that our algorithms are superior to the others and are more feasible and effective in practice.

  19. Experimental study of surface pattern effects on the propulsive performance and wake of a bio-inspired pitching panel

    NASA Astrophysics Data System (ADS)

    King, Justin; Kumar, Rajeev; Green, Melissa

    2016-11-01

    Force measurements and stereoscopic particle image velocimetry (PIV) were used to characterize the propulsive performance and wake structure of rigid, bio-inspired trapezoidal pitching panels. In the literature, it has been demonstrated that quantities such as thrust coefficient and propulsive efficiency are affected by changes in the surface characteristics of a pitching panel or foil. More specifically, the variation of surface pattern produces significant changes in wake structure and dynamics, especially in the distribution of vorticity in the wake. Force measurements and PIV data were collected for multiple surface patterns chosen to mimic fish surface morphology over a Strouhal number range of 0.17 to 0.56. Performance quantities are compared with the three-dimensional vortex wake structure for both the patterned and smooth panels to determine the nature and magnitude of surface pattern effects in terms of thrust produced, drag reduced, and wake vortices reshaped and reorganized. This work was supported by the Office of Naval Research under ONR Award No. N00014-14-1-0418.

  20. Bio-inspired adaptive feedback error learning architecture for motor control.

    PubMed

    Tolu, Silvia; Vanegas, Mauricio; Luque, Niceto R; Garrido, Jesús A; Ros, Eduardo

    2012-10-01

    This study proposes an adaptive control architecture based on an accurate regression method called Locally Weighted Projection Regression (LWPR) and on a bio-inspired module, such as a cerebellar-like engine. This hybrid architecture takes full advantage of the machine learning module (LWPR kernel) to abstract an optimized representation of the sensorimotor space while the cerebellar component integrates this to generate corrective terms in the framework of a control task. Furthermore, we illustrate how the use of a simple adaptive error feedback term allows to use the proposed architecture even in the absence of an accurate analytic reference model. The presented approach achieves an accurate control with low gain corrective terms (for compliant control schemes). We evaluate the contribution of the different components of the proposed scheme comparing the obtained performance with alternative approaches. Then, we show that the presented architecture can be used for accurate manipulation of different objects when their physical properties are not directly known by the controller. We evaluate how the scheme scales for simulated plants of high Degrees of Freedom (7-DOFs).

  1. Sensitive and selective cataluminescence-based sensor system for acetone and diethyl ether determination.

    PubMed

    Wang, Qihui; Li, Bo; Wang, Yuhuai; Shou, Zhouxiang; Shi, Guolong

    2015-05-01

    A three-dimensional hierarchical CdO nanostructure with a novel bio-inspired morphology is reported. The field emission scanning electronic microscopy, transmission electron microscopy and X-ray diffractometer were employed to characterize the as-prepared samples. In gas-sensing measurements, acetone and diethyl ether were employed as target gases to investigate cataluminescence (CTL) sensing properties of the CdO nanostructure. The results show that the as-fabricated CdO nanostructure exhibited outstanding CTL properties such as stable intensity, high signal/noise values, short response and recovery time. The limit of detection of acetone and diethyl ether was ca. 6.5 ppm and 6.7 ppm, respectively, which was below the standard permitted concentrations. Additionally, a principal components analysis method was used to investigate the recognizable ability of the CTL sensor, and it was found that acetone and diethyl ether can be distinguished clearly. The performance of the bio-inspired CdO nanostructure-based sensor system suggested the promising application of the CdO nanostructure as a novel highly efficient CTL sensing material. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Emergent adaptive behaviour of GRN-controlled simulated robots in a changing environment.

    PubMed

    Yao, Yao; Storme, Veronique; Marchal, Kathleen; Van de Peer, Yves

    2016-01-01

    We developed a bio-inspired robot controller combining an artificial genome with an agent-based control system. The genome encodes a gene regulatory network (GRN) that is switched on by environmental cues and, following the rules of transcriptional regulation, provides output signals to actuators. Whereas the genome represents the full encoding of the transcriptional network, the agent-based system mimics the active regulatory network and signal transduction system also present in naturally occurring biological systems. Using such a design that separates the static from the conditionally active part of the gene regulatory network contributes to a better general adaptive behaviour. Here, we have explored the potential of our platform with respect to the evolution of adaptive behaviour, such as preying when food becomes scarce, in a complex and changing environment and show through simulations of swarm robots in an A-life environment that evolution of collective behaviour likely can be attributed to bio-inspired evolutionary processes acting at different levels, from the gene and the genome to the individual robot and robot population.

  3. Carbon-Nanotube-Supported Bio-Inspired Nickel Catalyst and Its Integration in Hybrid Hydrogen/Air Fuel Cells.

    PubMed

    Gentil, Solène; Lalaoui, Noémie; Dutta, Arnab; Nedellec, Yannig; Cosnier, Serge; Shaw, Wendy J; Artero, Vincent; Le Goff, Alan

    2017-02-06

    A biomimetic nickel bis-diphosphine complex incorporating the amino acid arginine in the outer coordination sphere was immobilized on modified carbon nanotubes (CNTs) through electrostatic interactions. The functionalized redox nanomaterial exhibits reversible electrocatalytic activity for the H 2 /2 H + interconversion from pH 0 to 9, with catalytic preference for H 2 oxidation at all pH values. The high activity of the complex over a wide pH range allows us to integrate this bio-inspired nanomaterial either in an enzymatic fuel cell together with a multicopper oxidase at the cathode, or in a proton exchange membrane fuel cell (PEMFC) using Pt/C at the cathode. The Ni-based PEMFC reaches 14 mW cm -2 , only six-times-less as compared to full-Pt conventional PEMFC. The Pt-free enzyme-based fuel cell delivers ≈2 mW cm -2 , a new efficiency record for a hydrogen biofuel cell with base metal catalysts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A wireless fatigue monitoring system utilizing a bio-inspired tree ring data tracking technique.

    PubMed

    Bai, Shi; Li, Xuan; Xie, Zhaohui; Zhou, Zhi; Ou, Jinping

    2014-03-05

    Fatigue, a hot scientific research topic for centuries, can trigger sudden failure of critical structures such as aircraft and railway systems, resulting in enormous casualties as well as economic losses. The fatigue life of certain structures is intrinsically random and few monitoring techniques are capable of tracking the full life-cycle fatigue damage. In this paper, a novel in-situ wireless real-time fatigue monitoring system using a bio-inspired tree ring data tracking technique is proposed. The general framework, methodology, and verification of this intelligent system are discussed in details. The rain-flow counting (RFC) method is adopted as the core algorithm which quantifies fatigue damages, and Digital Signal Processing (DSP) is introduced as the core module for data collection and analysis. Laboratory test results based on strain gauges and polyvinylidene fluoride (PVDF) sensors have shown that the developed intelligent system can provide a reliable quick feedback and early warning of fatigue failure. With the merits of low cost, high accuracy and great reliability, the developed wireless fatigue sensing system can be further applied to mechanical engineering, civil infrastructures, transportation systems, aerospace engineering, etc.

  5. Biologically inspired band-edge laser action from semiconductor with dipole-forbidden band-gap transition.

    PubMed

    Wang, Cih-Su; Liau, Chi-Shung; Sun, Tzu-Ming; Chen, Yu-Chia; Lin, Tai-Yuan; Chen, Yang-Fang

    2015-03-11

    A new approach is proposed to light up band-edge stimulated emission arising from a semiconductor with dipole-forbidden band-gap transition. To illustrate our working principle, here we demonstrate the feasibility on the composite of SnO2 nanowires (NWs) and chicken albumen. SnO2 NWs, which merely emit visible defect emission, are observed to generate a strong ultraviolet fluorescence centered at 387 nm assisted by chicken albumen at room temperature. In addition, a stunning laser action is further discovered in the albumen/SnO2 NWs composite system. The underlying mechanism is interpreted in terms of the fluorescence resonance energy transfer (FRET) from the chicken albumen protein to SnO2 NWs. More importantly, the giant oscillator strength of shallow defect states, which is served orders of magnitude larger than that of the free exciton, plays a decisive role. Our approach therefore shows that bio-materials exhibit a great potential in applications for novel light emitters, which may open up a new avenue for the development of bio-inspired optoelectronic devices.

  6. Emergent adaptive behaviour of GRN-controlled simulated robots in a changing environment

    PubMed Central

    Yao, Yao; Storme, Veronique; Marchal, Kathleen

    2016-01-01

    We developed a bio-inspired robot controller combining an artificial genome with an agent-based control system. The genome encodes a gene regulatory network (GRN) that is switched on by environmental cues and, following the rules of transcriptional regulation, provides output signals to actuators. Whereas the genome represents the full encoding of the transcriptional network, the agent-based system mimics the active regulatory network and signal transduction system also present in naturally occurring biological systems. Using such a design that separates the static from the conditionally active part of the gene regulatory network contributes to a better general adaptive behaviour. Here, we have explored the potential of our platform with respect to the evolution of adaptive behaviour, such as preying when food becomes scarce, in a complex and changing environment and show through simulations of swarm robots in an A-life environment that evolution of collective behaviour likely can be attributed to bio-inspired evolutionary processes acting at different levels, from the gene and the genome to the individual robot and robot population. PMID:28028477

  7. Bio-inspired color sketch for eco-friendly printing

    NASA Astrophysics Data System (ADS)

    Safonov, Ilia V.; Tolstaya, Ekaterina V.; Rychagov, Michael N.; Lee, Hokeun; Kim, Sang Ho; Choi, Donchul

    2012-01-01

    Saving of toner/ink consumption is an important task in modern printing devices. It has a positive ecological and social impact. We propose technique for converting print-job pictures to a recognizable and pleasant color sketches. Drawing a "pencil sketch" from a photo relates to a special area in image processing and computer graphics - non-photorealistic rendering. We describe a new approach for automatic sketch generation which allows to create well-recognizable sketches and to preserve partly colors of the initial picture. Our sketches contain significantly less color dots then initial images and this helps to save toner/ink. Our bio-inspired approach is based on sophisticated edge detection technique for a mask creation and multiplication of source image with increased contrast by this mask. To construct the mask we use DoG edge detection, which is a result of blending of initial image with its blurred copy through the alpha-channel, which is created from Saliency Map according to Pre-attentive Human Vision model. Measurement of percentage of saved toner and user study proves effectiveness of proposed technique for toner saving in eco-friendly printing mode.

  8. A noble metal-free proton-exchange membrane fuel cell based on bio-inspired molecular catalysts.

    PubMed

    Tran, P D; Morozan, A; Archambault, S; Heidkamp, J; Chenevier, P; Dau, H; Fontecave, M; Martinent, A; Jousselme, B; Artero, V

    2015-03-01

    Hydrogen is a promising energy vector for storing renewable energies: obtained from water-splitting, in electrolysers or photoelectrochemical cells, it can be turned back to electricity on demand in fuel cells (FCs). Proton exchange membrane (PEM) devices with low internal resistance, high compactness and stability are an attractive technology optimized over decades, affording fast start-up times and low operating temperatures. However, they rely on the powerful catalytic properties of noble metals such as platinum, while lower cost, more abundant materials would be needed for economic viability. Replacing these noble metals at both electrodes has long proven to be a difficult task, so far incompatible with PEM technologies. Here we take advantage of newly developed bio-inspired molecular H 2 oxidation catalysts and noble metal-free O 2 -reducing materials, to fabricate a noble metal-free PEMFC, with an 0.74 V open circuit voltage and a 23 μW cm -2 output power under technologically relevant conditions. X-ray absorption spectroscopy measurements confirm that the catalysts are stable and retain their structure during turnover.

  9. An Experimental Investigation on Bio-inspired Icephobic Coatings for Aircraft Icing Mitigation

    NASA Astrophysics Data System (ADS)

    Hu, Hui; Li, Haixing; Waldman, Rye

    2016-11-01

    By leveraging the Icing Research Tunnel available at Iowa State University (ISU-IRT), a series of experimental investigations were conducted to elucidate the underlying physics pertinent to aircraft icing phenomena. A suite of advanced flow diagnostic techniques, which include high-speed photographic imaging, digital image projection (DIP), and infrared (IR) imaging thermometry, were developed and applied to quantify the transient behavior of water droplet impingement, wind-driven surface water runback, unsteady heat transfer and dynamic ice accreting process over the surfaces of airfoil/wing models. The icephobic performance of various bio-inspired superhydrophobic coatings were evaluated quantitatively at different icing conditions. The findings derived from the icing physics studies can be used to improve current icing accretion models for more accurate prediction of ice formation and accretion on aircraft wings and to develop effective anti-/deicing strategies for safer and more efficient operation of aircraft in cold weather. The research work is partially supported by NASA with Grant Number NNX12AC21A and National Science Foundation under Award Numbers of CBET-1064196 and CBET-1435590.

  10. Bio-inspired patterned networks (BIPS) for development of wearable/disposable biosensors

    NASA Astrophysics Data System (ADS)

    McLamore, E. S.; Convertino, M.; Hondred, John; Das, Suprem; Claussen, J. C.; Vanegas, D. C.; Gomes, C.

    2016-05-01

    Here we demonstrate a novel approach for fabricating point of care (POC) wearable electrochemical biosensors based on 3D patterning of bionanocomposite networks. To create Bio-Inspired Patterned network (BIPS) electrodes, we first generate fractal network in silico models that optimize transport of network fluxes according to an energy function. Network patterns are then inkjet printed onto flexible substrate using conductive graphene ink. We then deposit fractal nanometal structures onto the graphene to create a 3D nanocomposite network. Finally, we biofunctionalize the surface with biorecognition agents using covalent bonding. In this paper, BIPS are used to develop high efficiency, low cost biosensors for measuring glucose as a proof of concept. Our results on the fundamental performance of BIPS sensors show that the biomimetic nanostructures significantly enhance biosensor sensitivity, accuracy, response time, limit of detection, and hysteresis compared to conventional POC non fractal electrodes (serpentine, interdigitated, and screen printed electrodes). BIPs, in particular Apollonian patterned BIPS, represent a new generation of POC biosensors based on nanoscale and microscale fractal networks that significantly improve electrical connectivity, leading to enhanced sensor performance.

  11. Transparent and flexible resistive switching memory devices with a very high ON/OFF ratio using gold nanoparticles embedded in a silk protein matrix

    NASA Astrophysics Data System (ADS)

    Gogurla, Narendar; Mondal, Suvra P.; Sinha, Arun K.; Katiyar, Ajit K.; Banerjee, Writam; Kundu, Subhas C.; Ray, Samit K.

    2013-08-01

    The growing demand for biomaterials for electrical and optical devices is motivated by the need to make building blocks for the next generation of printable bio-electronic devices. In this study, transparent and flexible resistive memory devices with a very high ON/OFF ratio incorporating gold nanoparticles into the Bombyx mori silk protein fibroin biopolymer are demonstrated. The novel electronic memory effect is based on filamentary switching, which leads to the occurrence of bistable states with an ON/OFF ratio larger than six orders of magnitude. The mechanism of this process is attributed to the formation of conductive filaments through silk fibroin and gold nanoparticles in the nanocomposite. The proposed hybrid bio-inorganic devices show promise for use in future flexible and transparent nanoelectronic systems.

  12. Incorporation of Fiber Bragg Sensors for Shape Memory Polyurethanes Characterization.

    PubMed

    Alberto, Nélia; Fonseca, Maria A; Neto, Victor; Nogueira, Rogério; Oliveira, Mónica; Moreira, Rui

    2017-11-11

    Shape memory polyurethanes (SMPUs) are thermally activated shape memory materials, which can be used as actuators or sensors in applications including aerospace, aeronautics, automobiles or the biomedical industry. The accurate characterization of the memory effect of these materials is therefore mandatory for the technology's success. The shape memory characterization is normally accomplished using mechanical testing coupled with a heat source, where a detailed knowledge of the heat cycle and its influence on the material properties is paramount but difficult to monitor. In this work, fiber Bragg grating (FBG) sensors were embedded into SMPU samples aiming to study and characterize its shape memory effect. The samples were obtained by injection molding, and the entire processing cycle was successfully monitored, providing a process global quality signature. Moreover, the integrity and functionality of the FBG sensors were maintained during and after the embedding process, demonstrating the feasibility of the technology chosen for the purpose envisaged. The results of the shape memory effect characterization demonstrate a good correlation between the reflected FBG peak with the temperature and induced strain, proving that this technology is suitable for this particular application.

  13. Incorporation of Fiber Bragg Sensors for Shape Memory Polyurethanes Characterization

    PubMed Central

    Nogueira, Rogério; Moreira, Rui

    2017-01-01

    Shape memory polyurethanes (SMPUs) are thermally activated shape memory materials, which can be used as actuators or sensors in applications including aerospace, aeronautics, automobiles or the biomedical industry. The accurate characterization of the memory effect of these materials is therefore mandatory for the technology’s success. The shape memory characterization is normally accomplished using mechanical testing coupled with a heat source, where a detailed knowledge of the heat cycle and its influence on the material properties is paramount but difficult to monitor. In this work, fiber Bragg grating (FBG) sensors were embedded into SMPU samples aiming to study and characterize its shape memory effect. The samples were obtained by injection molding, and the entire processing cycle was successfully monitored, providing a process global quality signature. Moreover, the integrity and functionality of the FBG sensors were maintained during and after the embedding process, demonstrating the feasibility of the technology chosen for the purpose envisaged. The results of the shape memory effect characterization demonstrate a good correlation between the reflected FBG peak with the temperature and induced strain, proving that this technology is suitable for this particular application. PMID:29137136

  14. Biomaterial-based Memory Device Development by Conducting Metallic DNA

    DTIC Science & Technology

    2013-05-28

    time. Therefore, we have created a multiple-states memory system . This is the first multi-states resistance memory device by using bio-nanowire of the...world. Based on this achievement, logic device and application will be developed in the near future, too. Moreover, by using Ni-DNA detection system ...ions in DNA can change the resistance of Ni-DNA by applying different polar bias and time. Therefore, we have created a multiple-states memory system

  15. BioQueue: a novel pipeline framework to accelerate bioinformatics analysis.

    PubMed

    Yao, Li; Wang, Heming; Song, Yuanyuan; Sui, Guangchao

    2017-10-15

    With the rapid development of Next-Generation Sequencing, a large amount of data is now available for bioinformatics research. Meanwhile, the presence of many pipeline frameworks makes it possible to analyse these data. However, these tools concentrate mainly on their syntax and design paradigms, and dispatch jobs based on users' experience about the resources needed by the execution of a certain step in a protocol. As a result, it is difficult for these tools to maximize the potential of computing resources, and avoid errors caused by overload, such as memory overflow. Here, we have developed BioQueue, a web-based framework that contains a checkpoint before each step to automatically estimate the system resources (CPU, memory and disk) needed by the step and then dispatch jobs accordingly. BioQueue possesses a shell command-like syntax instead of implementing a new script language, which means most biologists without computer programming background can access the efficient queue system with ease. BioQueue is freely available at https://github.com/liyao001/BioQueue. The extensive documentation can be found at http://bioqueue.readthedocs.io. li_yao@outlook.com or gcsui@nefu.edu.cn. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  16. Reverse Shape Memory Effect Related to α → γ Transformation in a Fe-Mn-Al-Ni Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Peng, Huabei; Huang, Pan; Zhou, Tiannan; Wang, Shanling; Wen, Yuhua

    2017-05-01

    In this study, we investigated the shape memory behavior and phase transformations of solution-treated Fe43.61Mn34.74Al13.38Ni8.27 alloy between room temperature and 1173 K (900 °C). This alloy exhibits the reverse shape memory effect resulting from the phase transformation of α (bcc) → γ (fcc) between 673 K and 1073 K (400 °C and 800 °C) in addition to the shape memory effect resulting from the martensitic reverse transformation of γ' (fcc) → α (bcc) below 673 K (400 °C). There is a high density of hairpin-shaped dislocations in the α phase undergoing the martensitic reverse transformation of γ' → α. The lath γ phase, which preferentially nucleates and grows in the reversed α phase, has the same crystal orientation with the reverse-transformed γ' martensite. However, the vermiculate γ phase, which is precipitated in the α phase between lath γ phase, has different crystal orientations. The lath γ phase is beneficial to attaining better reverse shape memory effect than the vermiculate γ phase.

  17. Synthesis and functionalization of gold nanorods for probing plasmonic enhancement mechanisms in organic photovoltaic active layers

    NASA Astrophysics Data System (ADS)

    Wadams, Robert Christopher

    DNA nanotechnology is one of the most flourishing interdisciplinary research fields. Through the features of programmability and predictability, DNA nanostructures can be designed to self-assemble into a variety of periodic or aperiodic patterns of different shapes and length scales, and more importantly, they can be used as scaffolds for organizing other nanoparticles, proteins and chemical groups. By leveraging these molecules, DNA nanostructures can be used to direct the organization of complex bio-inspired materials that may serve as smart drug delivery systems and in vitro or in vivo bio-molecular computing and diagnostic devices. In this dissertation I describe a systematic study of the thermodynamic properties of complex DNA nanostructures, including 2D and 3D DNA origami, in order to understand their assembly, stability and functionality and inform future design endeavors. It is conceivable that a more thorough understanding of DNA self-assembly can be used to guide the structural design process and optimize the conditions for assembly, manipulation, and functionalization, thus benefiting both upstream design and downstream applications. As a biocompatible nanoscale motif, the successful integration, stabilization and separation of DNA nanostructures from cells/cell lysate suggests its potential to serve as a diagnostic platform at the cellular level. Here, DNA origami was used to capture and identify multiple T cell receptor mRNA species from single cells within a mixed cell population. This demonstrates the potential of DNA nanostructure as an ideal nano scale tool for biological applications.

  18. Variation of the characteristics of biofilm on the semi-suspended bio-carrier produced by a 3D printing technique: Investigation of a whole growing cycle.

    PubMed

    Tang, Bing; Zhao, Yiliang; Bin, Liying; Huang, Shaosong; Fu, Fenglian

    2017-11-01

    The presented investigation focused on exploring the characteristics of the biofilm formed on a novel semi-suspended bio-carrier and revealing their variation during the whole growing cycle. This used semi-suspended bio-carrier was designed to be a spindle shape, and then fabricated by using a 3D printing technique. Results indicated the bio-carrier provided a suitable environment for the attachment of diverse microorganisms. During the experimental period lasted for 45days, the biofilm quickly attached on the surface of the bio-carrier and grew to maturity, but its characteristics, including the chemical compositions, adhesion force, surface roughness, structure of microbial communities, varied continuously along with the operational time, which greatly influenced the performance of the bioreactor. The shape and structure of bio-carrier, and the shearing force caused by the aeration are important factors that influence the microbial community and its structure, and also heavily affect the formation and growth of biofilm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Shape memory alloys: metallurgy, biocompatibility, and biomechanics for neurosurgical applications.

    PubMed

    Hoh, Daniel J; Hoh, Brian L; Amar, Arun P; Wang, Michael Y

    2009-05-01

    SHAPE MEMORY ALLOYS possess distinct dynamic properties with particular applications in neurosurgery. Because of their unique physical characteristics, these materials are finding increasing application where resiliency, conformation, and actuation are needed. Nitinol, the most frequently manufactured shape memory alloy, responds to thermal and mechanical stimuli with remarkable mechanical properties such as shape memory effect, super-elasticity, and high damping capacity. Nitinol has found particular use in the biomedical community because of its excellent fatigue resistance and biocompatibility, with special interest in neurosurgical applications. The properties of nitinol and its diffusionless phase transformations contribute to these unique mechanical capabilities. The features of nitinol, particularly its shape memory effect, super-elasticity, damping capacity, as well as its biocompatibility and biomechanics are discussed herein. Current and future applications of nitinol and other shape memory alloys in endovascular, spinal, and minimally invasive neurosurgery are introduced. An understanding of the metallurgic properties of nitinol provides a foundation for further exploration of its use in neurosurgical implant design.

  20. Methods of Making and Using Shape Memory Polymer Composite Patches

    NASA Technical Reports Server (NTRS)

    Hood, Patrick J.

    2011-01-01

    A method of repairing a composite component having a damaged area including: laying a composite patch over the damaged area: activating the shape memory polymer resin to easily and quickly mold said patch to said damaged area; deactivating said shape memory polymer so that said composite patch retains the molded shape; and bonding said composite patch to said damaged part.

  1. Biomechanical model of batoid (skates and rays) pectoral fins predicts the influence of skeletal structure on fin kinematics: implications for bio-inspired design.

    PubMed

    Russo, R S; Blemker, S S; Fish, F E; Bart-Smith, H

    2015-06-16

    Growing interest in the development of bio-inspired autonomous underwater vehicles (AUVs) has motivated research in understanding the mechanisms behind the propulsion systems of marine animals. For example, the locomotive behavior of rays (Batoidea) by movement of the pectoral fins is of particular interest due to their superior performance characteristics over contemporary AUV propulsion systems. To better understand the mechanics of pectoral fin propulsion, this paper introduces a biomechanical model that simulates how batoid skeletal structures function to achieve the swimming locomotion observed in nature. Two rays were studied, Dasyatis sabina (Atlantic ray), and Rhinoptera bonasus (cownose ray). These species were selected because they exhibit very different swimming styles (undulation versus oscillation), but all use primarily their pectoral fins for propulsion (unlike electric rays or guitarfishes). Computerized tomography scans of each species were taken to image the underlying structure, which reveal a complex system of cartilaginous joints and linkages. Data collected from these images were used to quantify the complete skeletal morphometry of each batoid fin. Morphological differences were identified in the internal cartilage arrangement between each species including variations in the orientation of the skeletal elements, or radials, and the joint patterns between them, called the inter-radial joint pattern. These data were used as the primary input into the biomechanical model to couple a given ray skeletal structure with various swimming motions. A key output of the model is an estimation of the uniaxial strain that develops in the skeletal connective tissue in order for the structure to achieve motions observed during swimming. Tensile load tests of this connective tissue were conducted to further investigate the implications of the material strain predictions. The model also demonstrates that changes in the skeletal architecture (e.g., joint positioning) will effect fin deformation characteristics. Ultimately, the results of this study can be used to guide the design of optimally performing bio-inspired AUVs.

  2. A three dimensional unsteady iterative panel method with vortex particle wakes and boundary layer model for bio-inspired multi-body wings

    NASA Astrophysics Data System (ADS)

    Dhruv, Akash; Blower, Christopher; Wickenheiser, Adam M.

    2015-03-01

    The ability of UAVs to operate in complex and hostile environments makes them useful in military and civil operations concerning surveillance and reconnaissance. However, limitations in size of UAVs and communication delays prohibit their operation close to the ground and in cluttered environments, which increase risks associated with turbulence and wind gusts that cause trajectory deviations and potential loss of the vehicle. In the last decade, scientists and engineers have turned towards bio-inspiration to solve these issues by developing innovative flow control methods that offer better stability, controllability, and maneuverability. This paper presents an aerodynamic load solver for bio-inspired wings that consist of an array of feather-like flaps installed across the upper and lower surfaces in both the chord- and span-wise directions, mimicking the feathers of an avian wing. Each flap has the ability to rotate into both the wing body and the inbound airflow, generating complex flap configurations unobtainable by traditional wings that offer improved aerodynamic stability against gusting flows and turbulence. The solver discussed is an unsteady three-dimensional iterative doublet panel method with vortex particle wakes. This panel method models the wake-body interactions between multiple flaps effectively without the need to define specific wake geometries, thereby eliminating the need to manually model the wake for each configuration. To incorporate viscous flow characteristics, an iterative boundary layer theory is employed, modeling laminar, transitional and turbulent regions over the wing's surfaces, in addition to flow separation and reattachment locations. This technique enables the boundary layer to influence the wake strength and geometry both within the wing and aft of the trailing edge. The results obtained from this solver are validated using experimental data from a low-speed suction wind tunnel operating at Reynolds Number 300,000. This method enables fast and accurate assessment of aerodynamic loads for initial design of complex wing configurations compared to other methods available.

  3. Effect of Graphene Addition on Shape Memory Behavior of Epoxy Resins

    NASA Technical Reports Server (NTRS)

    Williams, Tiffany; Meador, Michael; Miller, Sandi; Scheiman, Daniel

    2011-01-01

    Shape memory polymers (SMPs) and composites are a special class of smart materials known for their ability to change size and shape upon exposure to an external stimulus (e.g. light, heat, pH, or magnetic field). These materials are commonly used for biomedical applications; however, recent attempts have been made towards developing SMPs and composites for use in aircraft and space applications. Implementing SMPs and composites to create a shape change effect in some aircraft structures could potentially reduce drag, decrease fuel consumption, and improve engine performance. This paper discusses the development of suitable materials to use in morphing aircraft structures. Thermally responsive epoxy SMPs and nanocomposites were developed and the shape memory behavior and thermo-mechanical properties were studied. Overall, preliminary results from dynamic mechanical analysis (DMA) showed that thermally actuated shape memory epoxies and nanocomposites possessed Tgs near approximately 168 C. When graphene nanofiller was added, the storage modulus and crosslinking density decreased. On the other hand, the addition of graphene enhanced the recovery behavior of the shape memory nanocomposites. It was assumed that the addition of graphene improved shape memory recovery by reducing the crosslinking density and increasing the elasticity of the nanocomposites.

  4. Epoxy/Polycaprolactone Systems with Triple-Shape Memory Effect: Electrospun Nanoweb with and without Graphene Versus Co-Continuous Morphology

    PubMed Central

    Fejős, Márta; Molnár, Kolos; Karger-Kocsis, József

    2013-01-01

    Triple-shape memory epoxy (EP)/polycaprolactone (PCL) systems (PCL content: 23 wt %) with different structures (PCL nanoweb embedded in EP matrix and EP/PCL with co-continuous phase structure) were produced. To set the two temporary shapes, the glass transition temperature (Tg) of the EP and the melting temperature (Tm) of PCL served during the shape memory cycle. An attempt was made to reinforce the PCL nanoweb by graphene nanoplatelets prior to infiltrating the nanoweb with EP through vacuum assisted resin transfer molding. Morphology was analyzed by scanning electron microscopy and Raman spectrometry. Triple-shape memory characteristics were determined by dynamic mechanical analysis in tension mode. Graphene was supposed to act also as spacer between the nanofibers, improving the quality of impregnation with EP. The EP phase related shape memory properties were similar for all systems, while those belonging to PCL phase depended on the structure. Shape fixity of PCL was better without than with graphene reinforcement. The best shape memory performance was shown by the EP/PCL with co-continuous structure. Based on Raman spectrometry results, the characteristic dimension of the related co-continuous network was below 900 nm. PMID:28788342

  5. Experimental study of thermo-mechanical behavior of a thermosetting shape-memory polymer

    NASA Astrophysics Data System (ADS)

    Liu, Ruoxuan; Li, Yunxin; Liu, Zishun

    2018-01-01

    The thermo-mechanical behavior of shape-memory polymers (SMPs) serves for the engineering applications of SMPs. Therefore the understanding of thermo-mechanical behavior of SMPs is of great importance. This paper investigates the influence of loading rate and loading level on the thermo-mechanical behavior of a thermosetting shape-memory polymer through experimental study. A series of cyclic tension tests and shape recovery tests at different loading conditions are performed to study the strain level and strain rate effect. The results of tension tests show that the thermosetting shape-memory polymer will behave as rubber material at temperature lower than the glass transition temperature (Tg) and it can obtain a large shape fix ratio at cyclic loading condition. The shape recovery tests exhibit that loading rate and loading level have little effect on the beginning and ending of shape recovery process of the thermosetting shape-memory polymer. Compared with the material which is deformed at temperature higher than Tg, the material deformed at temperature lower than Tg behaves a bigger recovery speed.

  6. Trends in biomedical engineering: focus on Smart Bio-Materials and Drug Delivery.

    PubMed

    Tanzi, Maria Cristina; Bozzini, Sabrina; Candiani, Gabriele; Cigada, Alberto; De Nardo, Luigi; Farè, Silvia; Ganazzoli, Fabio; Gastaldi, Dario; Levi, Marinella; Metrangolo, Pierangelo; Migliavacca, Francesco; Osellame, Roberto; Petrini, Paola; Raffaini, Giuseppina; Resnati, Giuseppe; Vena, Pasquale; Vesentini, Simone; Zunino, Paolo

    2011-01-01

    The present article reviews on different research lines, namely: drug and gene delivery, surface modification/modeling, design of advanced materials (shape memory polymers and biodegradable stents), presently developed at Politecnico di Milano, Italy. For gene delivery, non-viral polycationic-branched polyethylenimine (b-PEI) polyplexes are coated with pectin, an anionic polysaccharide, to enhance the polyplex stability and decrease b-PEI cytotoxicity. Perfluorinated materials, specifically perfluoroether, and perfluoro-polyether fluids are proposed as ultrasound contrast agents and smart agents for drug delivery. Non-fouling, self-assembled PEG-based monolayers are developed on titanium surfaces with the aim of drastically reducing cariogenic bacteria adhesion on dental implants. Femtosecond laser microfabrication is used for selectively and spatially tuning the wettability of polymeric biomaterials and the effects of femtosecond laser ablation on the surface properties of polymethylmethacrylate are studied. Innovative functionally graded Alumina-Ti coatings for wear resistant articulating surfaces are deposited with PLD and characterized by means of a combined experimental and computational approach. Protein adsorption on biomaterials surfaces with an unlike wettability and surface-modification induced by pre-adsorbed proteins are studied by atomistic computer simulations. A study was performed on the fabrication of porous Shape Memory Polymeric structures and on the assessment of their potential application in minimally invasive surgical procedures. A model of magnesium (alloys) degradation, in a finite element framework analysis, and a bottom-up multiscale analysis for modeling the degradation mechanism of PLA matrices was developed, with the aim of providing valuable tools for the design of bioresorbable stents.

  7. Design of a bio-inspired controller for dynamic soaring in a simulated unmanned aerial vehicle.

    PubMed

    Barate, Renaud; Doncieux, Stéphane; Meyer, Jean-Arcady

    2006-09-01

    This paper is inspired by the way birds such as albatrosses are able to exploit wind gradients at the surface of the ocean for staying aloft for very long periods while minimizing their energy expenditure. The corresponding behaviour has been partially reproduced here via a set of Takagi-Sugeno-Kang fuzzy rules controlling a simulated glider. First, the rules were hand-designed. Then, they were optimized with an evolutionary algorithm that improved their efficiency at coping with challenging conditions. Finally, the robustness properties of the controller generated were assessed with a view to its applicability to a real platform.

  8. Product and technology innovation: what can biomimicry inspire?

    PubMed

    Lurie-Luke, Elena

    2014-12-01

    Biomimicry (bio- meaning life in Greek, and -mimesis, meaning to copy) is a growing field that seeks to interpolate natural biological mechanisms and structures into a wide range of applications. The rise of interest in biomimicry in recent years has provided a fertile ground for innovation. This review provides an eco-system based analysis of biomimicry inspired technology and product innovation. A multi-disciplinary framework has been developed to accomplish this analysis and the findings focus on the areas that have been most strikingly affected by the application of biomimicry and also highlight the emerging trends and opportunity areas. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. A bio-inspired design of a hand robotic exoskeleton for rehabilitation

    NASA Astrophysics Data System (ADS)

    Ong, Aira Patrice R.; Bugtai, Nilo T.

    2018-02-01

    This paper presents the methodology for the design of a five-degree of freedom wearable robotic exoskeleton for hand rehabilitation. The design is inspired by the biological structure and mechanism of the human hand. One of the distinct features of the device is the cable-driven actuation, which provides the flexion and extension motion. A prototype of the orthotic device has been developed to prove the model of the system and has been tested in a 3D printed mechanical hand. The result showed that the proposed device was consistent with the requirements of bionics and was able to demonstrate the flexion and extension of the system.

  10. Development and Verification of Sputtered Thin-Film Nickel-Titanium (NiTi) Shape Memory Alloy (SMA)

    DTIC Science & Technology

    2015-08-01

    Shape Memory Alloy (SMA) by Cory R Knick and Christopher J Morris Approved for public release; distribution unlimited...Laboratory Development and Verification of Sputtered Thin-Film Nickel-Titanium (NiTi) Shape Memory Alloy (SMA) by Cory R Knick and Christopher

  11. Mechanical and shape memory properties of porous Ni50.1Ti49.9 alloys manufactured by selective laser melting.

    PubMed

    Taheri Andani, Mohsen; Saedi, Soheil; Turabi, Ali Sadi; Karamooz, M R; Haberland, Christoph; Karaca, Haluk Ersin; Elahinia, Mohammad

    2017-04-01

    Near equiatomic NiTi shape memory alloys were fabricated in dense and designed porous forms by Selective Laser Melting (SLM) and their mechanical and shape memory properties were systematically characterized. Particularly, the effects of pore morphology on their mechanical responses were investigated. Dense and porous NiTi alloys exhibited good shape memory effect with a recoverable strain of about 5% and functional stability after eight cycles of compression. The stiffness and residual plastic strain of porous NiTi were found to depend highly on the pore shape and the level of porosity. Since porous NiTi structures have lower elastic modulus and density than dense NiTi with still good shape memory properties, they are promising materials for lightweight structures, energy absorbers, and biomedical implants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Shape Memory Properties and Enzymatic Degradability of Poly(ε-caprolactone)-Based Polyurethane Urea Containing Phenylalanine-Derived Chain Extender.

    PubMed

    Wang, Rong; Zhang, Fanjun; Lin, Weiwei; Liu, Wenkai; Li, Jiehua; Luo, Feng; Wang, Yaning; Tan, Hong

    2018-06-01

    Biodegradable shape memory polymers are promising biomaterials for minimally invasive surgical procedures. Herein, a series of linear biodegradable shape memory poly(ε-caprolactone) (PCL)-based polyurethane ureas (PUUs) containing a novel phenylalanine-derived chain extender is synthesized. The phenylalanine-derived chain extender, phenylalanine-hexamethylenediamine-phenylalanine (PHP), contains two chymotrypsin cleaving sites to enhance the enzymatic degradation of PUUs. The degradation rate, the crystallinity, and mechanical properties of PUUs are tailored by the content of PHP. Meanwhile, semicrystalline PCL is not only hydrolytically degradable but also vital for shape memory. Good shape memory ability under body temperature is achieved for PUUs due to the strong interactions in hard segments for permanent crosslinking and the crystallization-melt transition of PCL to switch temporary shape. The PUUs would have a great potential in application as implanting stent. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. BioSmalltalk: a pure object system and library for bioinformatics.

    PubMed

    Morales, Hernán F; Giovambattista, Guillermo

    2013-09-15

    We have developed BioSmalltalk, a new environment system for pure object-oriented bioinformatics programming. Adaptive end-user programming systems tend to become more important for discovering biological knowledge, as is demonstrated by the emergence of open-source programming toolkits for bioinformatics in the past years. Our software is intended to bridge the gap between bioscientists and rapid software prototyping while preserving the possibility of scaling to whole-system biology applications. BioSmalltalk performs better in terms of execution time and memory usage than Biopython and BioPerl for some classical situations. BioSmalltalk is cross-platform and freely available (MIT license) through the Google Project Hosting at http://code.google.com/p/biosmalltalk hernan.morales@gmail.com Supplementary data are available at Bioinformatics online.

  14. Post polymerization cure shape memory polymers

    DOEpatents

    Wilson, Thomas S.; Hearon, II, Michael Keith; Bearinger, Jane P.

    2017-01-10

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  15. Post polymerization cure shape memory polymers

    DOEpatents

    Wilson, Thomas S; Hearon, Michael Keith; Bearinger, Jane P

    2014-11-11

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  16. Medical applications of shape memory polymers

    NASA Technical Reports Server (NTRS)

    Sokolowski, Witold M.

    2005-01-01

    Shape memory polymers are described here and major advantages in some applications are identified over other medical materials such as shape memory alloys (SMA). A number of medical applications are anticipated for shape memory polymers. Some simple applications are already utilized in medical world, others are in examination process. Lately, several important applications are being considered for CHEM foams for self-deployable vascular and coronary devices. One of these potential applications, the endovascular treatment of aneurysm was experimentally investigated with encouraging results and is described in this paper as well.

  17. Biomedical applications of thermally activated shape memory polymers†

    PubMed Central

    Small, Ward; Singhal, Pooja; Wilson, Thomas S.

    2011-01-01

    Shape memory polymers (SMPs) are smart materials that can remember a primary shape and can return to this primary shape from a deformed secondary shape when given an appropriate stimulus. This property allows them to be delivered in a compact form via minimally invasive surgeries in humans, and deployed to achieve complex final shapes. Here we review the various biomedical applications of SMPs and the challenges they face with respect to actuation and biocompatibility. While shape memory behavior has been demonstrated with heat, light and chemical environment, here we focus our discussion on thermally stimulated SMPs. PMID:21258605

  18. Biomedical Applications of Thermally Activated Shape Memory Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Small IV, W; Singhal, P; Wilson, T S

    2009-04-10

    Shape memory polymers (SMPs) are smart materials that can remember a primary shape and can return to this primary shape from a deformed secondary shape when given an appropriate stimulus. This property allows them to be delivered in a compact form via minimally invasive surgeries in humans, and deployed to achieve complex final shapes. Here we review the various biomedical applications of SMPs and the challenges they face with respect to actuation and biocompatibility. While shape memory behavior has been demonstrated with heat, light and chemical environment, here we focus our discussion on thermally stimulated SMPs.

  19. Bistable Microvalve For Use With Microcatheter System

    DOEpatents

    Seward, Kirk Patrick

    2003-12-16

    A bistable microvalve of shape memory material is operatively connected to a microcatheter. The bistable microvalve includes a tip that can be closed off until it is in the desired position. Once it is in position it can be opened and closed. The system uses heat and pressure to open and close the microvalve. The shape memory material will change stiffness and shape when heated above a transition temperature. The shape memory material is adapted to move from a first shape to a second shape, either open or closed, where it can perform a desired function.

  20. Bistable microvalve and microcatheter system

    DOEpatents

    Seward, Kirk Patrick

    2003-05-20

    A bistable microvalve of shape memory material is operatively connected to a microcatheter. The bistable microvalve includes a tip that can be closed off until it is in the desired position. Once it is in position it can opened and closed. The system uses heat and pressure to open and close the microvalve. The shape memory material will change stiffness and shape when heated above a transition temperature. The shape memory material is adapted to move from a first shape to a second shape, either open or closed, where it can perform a desired function.

  1. Periodic Cellular Structure Technology for Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Chen, Edward Y.

    2015-01-01

    Shape memory alloys are being considered for a wide variety of adaptive components for engine and airframe applications because they can undergo large amounts of strain and then revert to their original shape upon heating or unloading. Transition45 Technologies, Inc., has developed an innovative periodic cellular structure (PCS) technology for shape memory alloys that enables fabrication of complex bulk configurations, such as lattice block structures. These innovative structures are manufactured using an advanced reactive metal casting technology that offers a relatively low cost and established approach for constructing near-net shape aerospace components. Transition45 is continuing to characterize these structures to determine how best to design a PCS to better exploit the use of shape memory alloys in aerospace applications.

  2. Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle.

    PubMed

    Nakata, T; Liu, H; Tanaka, Y; Nishihashi, N; Wang, X; Sato, A

    2011-12-01

    MAVs (micro air vehicles) with a maximal dimension of 15 cm and nominal flight speeds of around 10 m s⁻¹, operate in a Reynolds number regime of 10⁵ or lower, in which most natural flyers including insects, bats and birds fly. Furthermore, due to their light weight and low flight speed, the MAVs' flight characteristics are substantially affected by environmental factors such as wind gust. Like natural flyers, the wing structures of MAVs are often flexible and tend to deform during flight. Consequently, the aero/fluid and structural dynamics of these flyers are closely linked to each other, making the entire flight vehicle difficult to analyze. We have recently developed a hummingbird-inspired, flapping flexible wing MAV with a weight of 2.4-3.0 g and a wingspan of 10-12 cm. In this study, we carry out an integrated study of the flexible wing aerodynamics of this flapping MAV by combining an in-house computational fluid dynamic (CFD) method and wind tunnel experiments. A CFD model that has a realistic wing planform and can mimic realistic flexible wing kinematics is established, which provides a quantitative prediction of unsteady aerodynamics of the four-winged MAV in terms of vortex and wake structures and their relationship with aerodynamic force generation. Wind tunnel experiments further confirm the effectiveness of the clap and fling mechanism employed in this bio-inspired MAV as well as the importance of the wing flexibility in designing small flapping-wing MAVs.

  3. Direct fabrication of bio-inspired gecko-like geometries with vat polymerization additive manufacturing method

    NASA Astrophysics Data System (ADS)

    Davoudinejad, A.; Ribo, M. M.; Pedersen, D. B.; Islam, A.; Tosello, G.

    2018-08-01

    Functional surfaces have proven their potential to solve many engineering problems, attracting great interest among the scientific community. Bio-inspired multi-hierarchical micro-structures grant the surfaces with new properties, such as hydrophobicity, adhesion, unique optical properties and so on. The geometry and fabrication of these surfaces are still under research. In this study, the feasibility of using direct fabrication of microscale features by additive manufacturing (AM) processes was investigated. The investigation was carried out using a specifically designed vat photopolymerization AM machine-tool suitable for precision manufacturing at the micro dimensional scale which has previously been developed, built and validated at the Technical University of Denmark. It was shown that it was possible to replicate a simplified surface inspired by the Tokay gecko, the geometry was previously designed and replicated by a complex multi-step micromanufacturing method extracted from the literature and used as benchmark. Ultimately, the smallest printed features were analyzed by conducting a sensitivity analysis to obtain the righteous parameters in terms of layer thickness and exposure time. Moreover, two more intricate designs were fabricated with the same parameters to assess the surfaces functionality by its wettability. The surface with increased density and decreased feature size showed a water contact angle (CA) of 124°  ±  0.10°, agreeing with the Cassie–Baxter model. These results indicate the possibility of using precision AM for a rapid, easy and reliable fabrication method for functional surfaces.

  4. Anti-icing property of bio-inspired micro-structure superhydrophobic surfaces and heat transfer model

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Li, Xinlin; Jin, Jingfu; Liu, Jiaan; Yan, Yuying; Han, Zhiwu; Ren, Luquan

    2017-04-01

    Ice accumulation is a thorny problem which may inflict serious damage even disasters in many areas, such as aircraft, power line maintenance, offshore oil platform and locators of ships. Recent researches have shed light on some promising bio-inspired anti-icing strategies to solve this problem. Inspired by typical plant surfaces with super-hydrophobic character such as lotus leaves and rose petals, structured superhydrophobic surface are prepared to discuss the anti-icing property. 7075 Al alloy, an extensively used materials in aircrafts and marine vessels, is employed as the substrates. As-prepared surfaces are acquired by laser processing after being modified by stearic acid for 1 h at room temperature. The surface morphology, chemical composition and wettability are characterized by means of SEM, XPS, Fourier transform infrared (FTIR) spectroscopy and contact angle measurements. The morphologies of structured as-prepared samples include round hump, square protuberance and mountain-range-like structure, and that the as-prepared structured surfaces shows an excellent superhydrophobic property with a WCA as high as 166 ± 2°. Furthermore, the anti-icing property of as-prepared surfaces was tested by a self-established apparatus, and the crystallization process of a cooling water on the sample was recorded. More importantly, we introduced a model to analyze heat transfer process between the droplet and the structured surfaces. This study offers an insight into understanding the heat transfer process of the superhydrophobic surface, so as to further research about its unique property against ice accumulation.

  5. If it walks like a duck: nanosensor threat assessment

    NASA Astrophysics Data System (ADS)

    Chachis, George C.

    2003-09-01

    A convergence of technologies is making deployment of unattended ground nanosensors operationally feasible in terms of energy, communications for both arbitrated and self-organizing distributed, collective behaviors. A number of nano communications technologies are already making network-centric systems possible for MicroElectrical Mechanical (MEM) sensor devices today. Similar technologies may make NanoElectrical Mechanical (NEM) sensor devices operationally feasible a few years from now. Just as organizational behaviors of large numbers of nanodevices can derive strategies from social insects and other group-oriented animals, bio-inspired heuristics for threat assessment provide a conceptual approach for successful integration of nanosensors into unattended smart sensor networks. Biological models such as the organization of social insects or the dynamics of immune systems show promise as biologically-inspired paradigms for protecting nanosensor networks for security scene analysis and battlespace awareness. The paradox of nanosensors is that the smaller the device is the more useful it is but the smaller it is the more vulnerable it is to a variety of threats. In other words simpler means networked nanosensors are more likely to fall prey to a wide-range of attacks including jamming, spoofing, Janisserian recruitment, Pied-Piper distraction, as well as typical attacks computer network security. Thus, unattended sensor technologies call for network architectures that include security and countermeasures to provide reliable scene analysis or battlespace awareness information. Such network centric architectures may well draw upon a variety of bio-inspired approaches to safeguard, validate and make sense of large quantities of information.

  6. The effect of the shape and size of gold seeds irradiated with ultrasound on the bio-heat transfer in tissue.

    PubMed

    Gkigkitzis, Ioannis; Austerlitz, Carlos; Haranas, Ioannis; Campos, Diana

    2015-01-01

    The aim of this report is to propose a new methodology to treat prostate cancer with macro-rod-shaped gold seeds irradiated with ultrasound and develop a new computational method for temperature and thermal dose control of hyperthermia therapy induced by the proposed procedure. A computer code representation, based on the bio-heat diffusion equation, was developed to calculate the heat deposition and temperature elevation patterns in a gold rod and in the tissue surrounding it as a result of different therapy durations and ultrasound power simulations. The numerical results computed provide quantitative information on the interaction between high-energy ultrasound, gold seeds and biological tissues and can replicate the pattern observed in experimental studies. The effect of differences in shapes and sizes of gold rod targets irradiated with ultrasound is calculated and the heat enhancement and the bio-heat transfer in tissue are analyzed.

  7. Bioinspired architecture approach for a one-billion transistor smart CMOS camera chip

    NASA Astrophysics Data System (ADS)

    Fey, Dietmar; Komann, Marcus

    2007-05-01

    In the paper we present a massively parallel VLSI architecture for future smart CMOS camera chips with up to one billion transistors. To exploit efficiently the potential offered by future micro- or nanoelectronic devices traditional on central structures oriented parallel architectures based on MIMD or SIMD approaches will fail. They require too long and too many global interconnects for the distribution of code or the access to common memory. On the other hand nature developed self-organising and emergent principles to manage successfully complex structures based on lots of interacting simple elements. Therefore we developed a new as Marching Pixels denoted emergent computing paradigm based on a mixture of bio-inspired computing models like cellular automaton and artificial ants. In the paper we present different Marching Pixels algorithms and the corresponding VLSI array architecture. A detailed synthesis result for a 0.18 μm CMOS process shows that a 256×256 pixel image is processed in less than 10 ms assuming a moderate 100 MHz clock rate for the processor array. Future higher integration densities and a 3D chip stacking technology will allow the integration and processing of Mega pixels within the same time since our architecture is fully scalable.

  8. Bio-Inspired Nanomaterials: Protein Cage Nano-Architectures

    DTIC Science & Technology

    2008-04-01

    chemical modification of protein cage materials and controlled chemical synthesis under mild biological conditions. High- resolution structural...properties based on a combination of controlled mobility and metal ligand interactions. Using the exterior surface of the CCMV viral cage we have chemically ...follows: Patterning by microplotter was achieved by depositing a preselected antibody solution directly onto chemically activated silicon or gold

  9. Foundations of Neuromorphic Computing

    DTIC Science & Technology

    2013-05-01

    make informed decisions quicker than our adversaries. 2.0 INTRODUCTION The increasing resolution and speed of today’s advanced sensor ...limited information about the location, access to global positioning satellite information (GPS) to aid in navigation is impeded, and communications...more autonomous capability. This is where neuromorphic computing and other bio -inspired technologies for SWaP constrained environments can play a

  10. The Wright Brothers and the Future of Bio-Inspired Flight: 1899 through to the Future

    NASA Technical Reports Server (NTRS)

    Bowers, Albion

    2007-01-01

    This viewgraph presentation reviews the experiments that the Wright Brothers conducted prior to their first powered flight in 1903 to developing the first practical aircraft in 1905. Many pictures of the gliders and other devices are used to illustrate the gradual development and experimentation that proceeded the first powered flight.

  11. Selfies, Relfies and Phallic Tagging: Posthuman Part-icipations in Teen Digital Sexuality Assemblages

    ERIC Educational Resources Information Center

    Renold, Emma; Ringrose, Jessica

    2017-01-01

    Inspired by posthuman feminist theory, this paper explores young people's entanglement with the bio-technological landscape of image creation and exchange in young networked peer cultures. We suggest that we are seeing new formations of sexual objectification when the more-than-human is foregrounded and the blurry ontological divide between human…

  12. Bio-inspired CO2 conversion by iron sulfide catalysts under sustainable conditions.

    PubMed

    Roldan, A; Hollingsworth, N; Roffey, A; Islam, H-U; Goodall, J B M; Catlow, C R A; Darr, J A; Bras, W; Sankar, G; Holt, K B; Hogarth, G; de Leeuw, N H

    2015-05-01

    The mineral greigite presents similar surface structures to the active sites found in many modern-day enzymes. We show that particles of greigite can reduce CO2 under ambient conditions into chemicals such as methanol, formic, acetic and pyruvic acid. Our results also lend support to the Origin of Life theory on alkaline hydrothermal vents.

  13. Feasibility study of a real-time operating system for a multichannel MPEG-4 encoder

    NASA Astrophysics Data System (ADS)

    Lehtoranta, Olli; Hamalainen, Timo D.

    2005-03-01

    Feasibility of DSP/BIOS real-time operating system for a multi-channel MPEG-4 encoder is studied. Performances of two MPEG-4 encoder implementations with and without the operating system are compared in terms of encoding frame rate and memory requirements. The effects of task switching frequency and number of parallel video channels to the encoding frame rate are measured. The research is carried out on a 200 MHz TMS320C6201 fixed point DSP using QCIF (176x144 pixels) video format. Compared to a traditional DSP implementation without an operating system, inclusion of DSP/BIOS reduces total system throughput only by 1 QCIF frames/s. The operating system has 6 KB data memory overhead and program memory requirement of 15.7 KB. Hence, the overhead is considered low enough for resource critical mobile video applications.

  14. Delayed Match Retrieval: A Novel Anticipation-Based Visual Working Memory Paradigm

    ERIC Educational Resources Information Center

    Kaldy, Zsuzsa; Guillory, Sylvia B.; Blaser, Erik

    2016-01-01

    We tested 8- and 10-month-old infants' visual working memory (VWM) for object-location bindings--"what is where"--with a novel paradigm, Delayed Match Retrieval, that measured infants' anticipatory gaze responses (using a Tobii T120 eye tracker). In an inversion of Delayed-Match-to-Sample tasks and with inspiration from the game…

  15. Geometric mechanics for modelling bioinspired robots locomotion: from rigid to continuous (soft) systems

    NASA Astrophysics Data System (ADS)

    Boyer, Frederic; Porez, Mathieu; Renda, Federico

    This talk presents recent geometric tools developed to model the locomotion dynamics of bio-inspired robots. Starting from the model of discrete rigid multibody systems we will rapidly shift to the case of continuous systems inspired from snakes and fish. To that end, we will build on the model of Cosserat media. This extended picture of geometric locomotion dynamics (inspired from fields' theory) will allow us to introduce models of swimming recently used in biorobotics. We will show how modeling a fish as a one-dimensional Cosserat medium allows to recover and extend the Large Amplitude Elongated Body theory of J. Lighthill and to apply it to an eel-like robot. In the same vein, modeling the mantle of cephalopods as a two dimensional Cosserat medium will build a basis for studying the jet propelling of a soft octopus like robot.

  16. Function through bio-inspired, synthesis-informed design: step-economical syntheses of designed kinase inhibitors†Dedicated to Max Malacria, a friend and scholar whose science and creative contributions to step-economical synthesis have inspired us all and moved the field closer to the ideal.‡Electronic supplementary information (ESI) available: Synthetic procedures and spectral data. See DOI: 10.1039/c4qo00228hClick here for additional data file.

    PubMed

    Wender, Paul A; Axtman, Alison D; Golden, Jennifer E; Kee, Jung-Min; Sirois, Lauren E; Quiroz, Ryan V; Stevens, Matthew C

    2014-12-29

    The human kinome comprises over 500 protein kinases. When mutated or over-expressed, many play critical roles in abnormal cellular functions associated with cancer, cardiovascular disease and neurological disorders. Here we report a step-economical approach to designed kinase inhibitors inspired by the potent, but non-selective, natural product staurosporine, and synthetically enabled by a novel, complexity-increasing, serialized [5 + 2]/[4 + 2] cycloaddition strategy. This function-oriented synthesis approach rapidly affords tunable scaffolds, and produced a low nanomolar inhibitor of protein kinase C.

  17. High-performance mussel-inspired adhesives of reduced complexity

    PubMed Central

    Ahn, B. Kollbe; Das, Saurabh; Linstadt, Roscoe; Kaufman, Yair; Martinez-Rodriguez, Nadine R.; Mirshafian, Razieh; Kesselman, Ellina; Talmon, Yeshayahu; Lipshutz, Bruce H.; Israelachvili, Jacob N.; Waite, J. Herbert

    2015-01-01

    Despite the recent progress in and demand for wet adhesives, practical underwater adhesion remains limited or non-existent for diverse applications. Translation of mussel-inspired wet adhesion typically entails catechol functionalization of polymers and/or polyelectrolytes, and solution processing of many complex components and steps that require optimization and stabilization. Here we reduced the complexity of a wet adhesive primer to synthetic low-molecular-weight catecholic zwitterionic surfactants that show very strong adhesion (∼50 mJ m−2) and retain the ability to coacervate. This catecholic zwitterion adheres to diverse surfaces and self-assembles into a molecularly smooth, thin (<4 nm) and strong glue layer. The catecholic zwitterion holds particular promise as an adhesive for nanofabrication. This study significantly simplifies bio-inspired themes for wet adhesion by combining catechol with hydrophobic and electrostatic functional groups in a small molecule. PMID:26478273

  18. Planar maneuvering control of underwater snake robots using virtual holonomic constraints.

    PubMed

    Kohl, Anna M; Kelasidi, Eleni; Mohammadi, Alireza; Maggiore, Manfredi; Pettersen, Kristin Y

    2016-11-24

    This paper investigates the problem of planar maneuvering control for bio-inspired underwater snake robots that are exposed to unknown ocean currents. The control objective is to make a neutrally buoyant snake robot which is subject to hydrodynamic forces and ocean currents converge to a desired planar path and traverse the path with a desired velocity. The proposed feedback control strategy enforces virtual constraints which encode biologically inspired gaits on the snake robot configuration. The virtual constraints, parametrized by states of dynamic compensators, are used to regulate the orientation and forward speed of the snake robot. A two-state ocean current observer based on relative velocity sensors is proposed. It enables the robot to follow the path in the presence of unknown constant ocean currents. The efficacy of the proposed control algorithm for several biologically inspired gaits is verified both in simulations for different path geometries and in experiments.

  19. Self-* properties through gossiping.

    PubMed

    Babaoglu, Ozalp; Jelasity, Márk

    2008-10-28

    As computer systems have become more complex, numerous competing approaches have been proposed for these systems to self-configure, self-manage, self-repair, etc. such that human intervention in their operation can be minimized. In ubiquitous systems, this has always been a central issue as well. In this paper, we overview techniques to implement self-* properties in large-scale, decentralized networks through bio-inspired techniques in general, and gossip-based algorithms in particular. We believe that gossip-based algorithms could be an important inspiration for solving problems in ubiquitous computing as well. As an example, we outline a novel approach to arrange large numbers of mobile agents (e.g. vehicles, rescue teams carrying mobile devices) into different formations in a totally decentralized manner. The approach is inspired by the biological mechanism of cell sorting via differential adhesion, as well as by our earlier work in self-organizing peer-to-peer overlay networks.

  20. Improving of Mechanical and Shape-Memory Properties in Hyperbranched Epoxy Shape-Memory Polymers

    NASA Astrophysics Data System (ADS)

    Santiago, David; Fabregat-Sanjuan, Albert; Ferrando, Francesc; De la Flor, Silvia

    2016-09-01

    A series of shape-memory epoxy polymers were synthesized using an aliphatic amine and two different commercial hyperbranched poly(ethyleneimine)s with different molecular weights as crosslinking agents. Thermal, mechanical, and shape-memory properties in materials modified with different hyperbranched polymers were analyzed and compared in order to establish the effect of the structure and the molecular weight of the hyperbranched polymers used. The presence of hyperbranched polymers led to more heterogeneous networks, and the crosslinking densities of which increase as the hyperbranched polymer content increases. The transition temperatures can be tailored from 56 to 117 °C depending on the molecular weight and content of the hyperbranched polymer. The mechanical properties showed excellent values in all formulations at room temperature and, specially, at T_{{g}}^{{E^' with stress at break as high as 15 MPa and strain at break as high as 60 %. The shape-memory performances revealed recovery ratios around 95 %, fixity ratios around 97 %, and shape-recovery velocities as high as 22 %/min. The results obtained in this study reveal that hyperbranched polymers with different molecular weights can be used to enhance the thermal and mechanical properties of epoxy-based SMPs while keeping excellent shape-memory properties.

Top