Science.gov

Sample records for bio-inspired speed detection

  1. Compressive Sensing Based Bio-Inspired Shape Feature Detection CMOS Imager

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A. (Inventor)

    2015-01-01

    A CMOS imager integrated circuit using compressive sensing and bio-inspired detection is presented which integrates novel functions and algorithms within a novel hardware architecture enabling efficient on-chip implementation.

  2. Bio Inspired Swarm Algorithm for Tumor Detection in Digital Mammogram

    NASA Astrophysics Data System (ADS)

    Dheeba, J.; Selvi, Tamil

    Microcalcification clusters in mammograms is the significant early sign of breast cancer. Individual clusters are difficult to detect and hence an automatic computer aided mechanism will help the radiologist in detecting the microcalcification clusters in an easy and efficient way. This paper presents a new classification approach for detection of microcalcification in digital mammogram using particle swarm optimization algorithm (PSO) based clustering technique. Fuzzy C-means clustering technique, well defined for clustering data sets are used in combination with the PSO. We adopt the particle swarm optimization to search the cluster center in the arbitrary data set automatically. PSO can search the best solution from the probability option of the Social-only model and Cognition-only model. This method is quite simple and valid, and it can avoid the minimum local value. The proposed classification approach is applied to a database of 322 dense mammographic images, originating from the MIAS database. Results shows that the proposed PSO-FCM approach gives better detection performance compared to conventional approaches.

  3. Bio-inspired photon detection using chromophore/nanotube hybrids (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Léonard, François

    2017-05-01

    The human eye is an exquisite optical system with the ability to detect individual photons at room temperature. However, the complexity of this system, optimized over millions of years, has been difficult to reproduce using synthetic techniques. Here we discuss a bio-inspired approach for photon detection based on chromophore/nanotube hybrids, where the chromophore plays a similar role to the retinal molecule in the human eye, and the signal transduction is provided by electronic transport in the carbon nanotube. In this presentation, I will present the concept and discuss our progress in realizing this type of photodetection mechanism.

  4. LINEBACKER: LINE-speed Bio-inspired Analysis and Characterization for Event Recognition

    SciTech Connect

    Oehmen, Christopher S.; Bruillard, Paul J.; Matzke, Brett D.; Phillips, Aaron R.; Star, Keith T.; Jensen, Jeffrey L.; Nordwall, Douglas J.; Thompson, Seth R.; Peterson, Elena S.

    2016-08-04

    The cyber world is a complex domain, with digital systems mediating a wide spectrum of human and machine behaviors. While this is enabling a revolution in the way humans interact with each other and data, it also is exposing previously unreachable infrastructure to a worldwide set of actors. Existing solutions for intrusion detection and prevention that are signature-focused typically seek to detect anomalous and/or malicious activity for the sake of preventing or mitigating negative impacts. But a growing interest in behavior-based detection is driving new forms of analysis that move the emphasis from static indicators (e.g. rule-based alarms or tripwires) to behavioral indicators that accommodate a wider contextual perspective. Similar to cyber systems, biosystems have always existed in resource-constrained hostile environments where behaviors are tuned by context. So we look to biosystems as an inspiration for addressing behavior-based cyber challenges. In this paper, we introduce LINEBACKER, a behavior-model based approach to recognizing anomalous events in network traffic and present the design of this approach of bio-inspired and statistical models working in tandem to produce individualized alerting for a collection of systems. Preliminary results of these models operating on historic data are presented along with a plugin to support real-world cyber operations.

  5. Bio-inspired WSN architecture: event detection and loacalization in a fault tolerant WSN

    NASA Astrophysics Data System (ADS)

    Alayev, Yosef; Damarla, Thyagaraju

    2009-05-01

    One can think of human body as a sensory network. In particular, skin has several neurons that provide the sense of touch with different sensitivities, and neurons for communicating the sensory signals to the brain. Even though skin might occasionally experience some lacerations, it performs remarkably well (fault tolerant) with the failure of some sensors. One of the challenges in collaborative wireless sensor networks (WSN) is fault tolerant detection and localization of targets. In this paper we present a biologically inspired architecture model for WSN. Diagnosis of sensors in WSN model presented here is derived from the concept of the immune system. We present an architecture for WSN for detection and localization of multiple targets inspired by human nervous system. We show that the advantages of such bio-inspired networks are reduced data for communication, self-diagnosis to detect faulty sensors in real-time and the ability to localize events. We present the results of our algorithms on simulation data.

  6. Integration of bio-inspired, control-based visual and olfactory data for the detection of an elusive target

    NASA Astrophysics Data System (ADS)

    Duong, Tuan A.; Duong, Nghi; Le, Duong

    2017-01-01

    In this paper, we present an integration technique using a bio-inspired, control-based visual and olfactory receptor system to search for elusive targets in practical environments where the targets cannot be seen obviously by either sensory data. Bio-inspired Visual System is based on a modeling of extended visual pathway which consists of saccadic eye movements and visual pathway (vertebrate retina, lateral geniculate nucleus and visual cortex) to enable powerful target detections of noisy, partial, incomplete visual data. Olfactory receptor algorithm, namely spatial invariant independent component analysis, that was developed based on data of old factory receptor-electronic nose (enose) of Caltech, is adopted to enable the odorant target detection in an unknown environment. The integration of two systems is a vital approach and sets up a cornerstone for effective and low-cost of miniaturized UAVs or fly robots for future DOD and NASA missions, as well as for security systems in Internet of Things environments.

  7. Bio-inspired group modeling and analysis for intruder detection in mobile sensor/robotic networks.

    PubMed

    Fu, Bo; Xiao, Yang; Liang, Xiannuan; Philip Chen, C L

    2015-01-01

    Although previous bio-inspired models have concentrated on invertebrates (such as ants), mammals such as primates with higher cognitive function are valuable for modeling the increasingly complex problems in engineering. Understanding primates' social and communication systems, and applying what is learned from them to engineering domains is likely to inspire solutions to a number of problems. This paper presents a novel bio-inspired approach to determine group size by researching and simulating primate society. Group size does matter for both primate society and digital entities. It is difficult to determine how to group mobile sensors/robots that patrol in a large area when many factors are considered such as patrol efficiency, wireless interference, coverage, inter/intragroup communications, etc. This paper presents a simulation-based theoretical study on patrolling strategies for robot groups with the comparison of large and small groups through simulations and theoretical results.

  8. Towards a bio-inspired leg design for high-speed running.

    PubMed

    Ananthanarayanan, Arvind; Azadi, Mojtaba; Kim, Sangbae

    2012-12-01

    High-speed terrestrial locomotion inevitably involves high acceleration and extensive loadings on the legs. This imposes a challenging trade-off between weight and strength in leg design. This paper introduces a new design paradigm for a robotic leg inspired by musculoskeletal structures. The central hypothesis is that employing a tendon-bone co-location architecture not only provides compliance in the leg, but can also reduce bone stresses caused by bending on structures. This hypothesis is applied to a leg design, and verified by simulations and the experiments on a prototype. In addition, we also present an optimization scheme to maximize the strength to weight ratio. Using the tendon-bone co-location architecture, the stress on the bone during a stride is reduced by up to 59%. A new foam-core prototyping technique enables creating structural characteristics similar to mammalian bones in the robotic leg. This method allows us to use lighter polymeric structures that are cheaper and quicker to fabricate than conventional fabrication methods, and can eventually greatly shorten the design iteration cycle time.

  9. Bio-inspired vision

    NASA Astrophysics Data System (ADS)

    Posch, C.

    2012-01-01

    Nature still outperforms the most powerful computers in routine functions involving perception, sensing and actuation like vision, audition, and motion control, and is, most strikingly, orders of magnitude more energy-efficient than its artificial competitors. The reasons for the superior performance of biological systems are subject to diverse investigations, but it is clear that the form of hardware and the style of computation in nervous systems are fundamentally different from what is used in artificial synchronous information processing systems. Very generally speaking, biological neural systems rely on a large number of relatively simple, slow and unreliable processing elements and obtain performance and robustness from a massively parallel principle of operation and a high level of redundancy where the failure of single elements usually does not induce any observable system performance degradation. In the late 1980`s, Carver Mead demonstrated that silicon VLSI technology can be employed in implementing ``neuromorphic'' circuits that mimic neural functions and fabricating building blocks that work like their biological role models. Neuromorphic systems, as the biological systems they model, are adaptive, fault-tolerant and scalable, and process information using energy-efficient, asynchronous, event-driven methods. In this paper, some basics of neuromorphic electronic engineering and its impact on recent developments in optical sensing and artificial vision are presented. It is demonstrated that bio-inspired vision systems have the potential to outperform conventional, frame-based vision acquisition and processing systems in many application fields and to establish new benchmarks in terms of redundancy suppression/data compression, dynamic range, temporal resolution and power efficiency to realize advanced functionality like 3D vision, object tracking, motor control, visual feedback loops, etc. in real-time. It is argued that future artificial vision systems

  10. Bio-Inspired Dry Adhesives

    DTIC Science & Technology

    2013-02-01

    of mask respirators with bio -inspired adhesive integrated into their peripheral seals; and (2) assessment of the competitive position of the new bio -inspired adhesives in broader fields of application.

  11. Bio-inspired motion detection in an FPGA-based smart camera module.

    PubMed

    Köhler, T; Röchter, F; Lindemann, J P; Möller, R

    2009-03-01

    Flying insects, despite their relatively coarse vision and tiny nervous system, are capable of carrying out elegant and fast aerial manoeuvres. Studies of the fly visual system have shown that this is accomplished by the integration of signals from a large number of elementary motion detectors (EMDs) in just a few global flow detector cells. We developed an FPGA-based smart camera module with more than 10,000 single EMDs, which is closely modelled after insect motion-detection circuits with respect to overall architecture, resolution and inter-receptor spacing. Input to the EMD array is provided by a CMOS camera with a high frame rate. Designed as an adaptable solution for different engineering applications and as a testbed for biological models, the EMD detector type and parameters such as the EMD time constants, the motion-detection directions and the angle between correlated receptors are reconfigurable online. This allows a flexible and simultaneous detection of complex motion fields such as translation, rotation and looming, such that various tasks, e.g., obstacle avoidance, height/distance control or speed regulation can be performed by the same compact device.

  12. Simplified bionic solutions: a simple bio-inspired vehicle collision detection system.

    PubMed

    Hartbauer, Manfred

    2017-02-15

    Modern cars are equipped with both active and passive sensor systems that can detect potential collisions. In contrast, locusts avoid collisions solely by responding to certain visual cues that are associated with object looming. In neurophysiological experiments, I investigated the possibility that the 'collision-detector neurons' of locusts respond to impending collisions in films recorded with dashboard cameras of fast driving cars. In a complementary modelling approach, I developed a simple algorithm to reproduce the neuronal response that was recorded during object approach. Instead of applying elaborate algorithms that factored in object recognition and optic flow discrimination, I tested the hypothesis that motion detection restricted to a 'danger zone', in which frontal collisions on the motorways are most likely, is sufficient to estimate the risk of a collision. Furthermore, I investigated whether local motion vectors, obtained from the differential excitation of simulated direction-selective networks, could be used to predict evasive steering maneuvers and prevent undesired responses to motion artifacts. The results of the study demonstrate that the risk of impending collisions in real traffic scenes is mirrored in the excitation of the collision-detecting neuron (DCMD) of locusts. The modelling approach was able to reproduce this neuronal response even when the vehicle was driving at high speeds and image resolution was low (about 200  ×  100 pixels). Furthermore, evasive maneuvers that involved changing the steering direction and steering force could be planned by comparing the differences in the overall excitation levels of the simulated right and left direction-selective networks. Additionally, it was possible to suppress undesired responses of the algorithm to translatory movements, camera shake and ground shadows by evaluating local motion vectors. These estimated collision risk values and evasive steering vectors could be used as input

  13. Studying bio-inspired coalition formation of robots for detecting intrusions using game theory.

    PubMed

    Liang, Xiannuan; Xiao, Yang

    2010-06-01

    In this paper, inspired by the society of animals, we study the coalition formation of robots for detecting intrusions using game theory. We consider coalition formation in a group of three robots that detect and capture intrusions in a closed curve loop. In our analytical model, individuals seek alliances if they think that their detect regions are too short to gain an intrusion capturing probability larger than their own. We assume that coalition seeking has an investment cost and that the formation of a coalition determines the outcomes of parities, with the detect length of a coalition simply being the sum of those of separate coalition members. We derive that, for any cost, always detecting alone is an evolutionarily stable strategy (ESS), and that, if the cost is below a threshold, always trying to form a coalition is an ESS (thus a three-way coalition arises).

  14. Bio-inspired photonic-crystal microchip for fluorescent ultratrace detection.

    PubMed

    Hou, Jue; Zhang, Huacheng; Yang, Qiang; Li, Mingzhu; Song, Yanlin; Jiang, Lei

    2014-06-02

    Ultratrace detection attracts great interest because it is still a challenge to the early diagnosis and drug testing. Enriching the targets from highly diluted solutions to the sensitive area is a promising method. Inspired by the fog-collecting structure on Stenocara beetle's back, a photonic-crystal (PC) microchip with hydrophilic-hydrophobic micropattern was fabricated by inkjet printing. This device was used to realize high-sensitive ultratrace detection of fluorescence analytes and fluorophore-based assays. Coupled with the fluorescence enhancement effect of a PC, detection down to 10(-16) mol L(-1) was achieved. This design can be combined with biophotonic devices for the detection of drugs, diseases, and pollutions of the ecosystem.

  15. Light and colour as analytical detection tools: a journey into the periodic table using polyamines to bio-inspired systems as chemosensors.

    PubMed

    Lodeiro, Carlos; Capelo, José Luis; Mejuto, Juan Carlos; Oliveira, Elisabete; Santos, Hugo M; Pedras, Bruno; Nuñez, Cristina

    2010-08-01

    This critical review describes some developments on the chemistry of fluorescent and colorimetric molecular probes or chemosensors, based on polyamines and associated compounds having oxygen and/or sulfur as donor atoms. The reported systems are essentially based on some selected published work in this field in the last five years, and in the work developed by the authors from 2000 onwards. Some interesting properties beyond sensing molecules, ions or/and cations by fluorescence, colorimetry as well as by MALDI-TOF MS spectrometry can arise from these systems. A short brief on different examples activated by PET (photoinduced electron transfer), ICT (internal charge transfer) and EET (electronic energy transfer) phenomena will be provided. Finally the introduction of bio-inspired compounds derived from emissive amino acid or short peptide systems and nanoparticle devices to detect metal ions will be reviewed (202 references).

  16. Bio-Inspired Odor Source Localization

    DTIC Science & Technology

    2011-07-01

    1 Distribution A: Approved for Public Release; Distribution Unlimited Bio -Inspired Odor Source Localization Bio -Inspired Odor Source Localization...2011 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Bio -Inspired Odor Source Localization 5a. CONTRACT NUMBER 5b. GRANT...Distribution Unlimited Bio -Inspired Odor Source Localization Why study odor tracking? • Engineer odor tracking systems – Gas leaks – Hazardous waste

  17. Bio-inspired approach for intelligent unattended ground sensors

    NASA Astrophysics Data System (ADS)

    Hueber, Nicolas; Raymond, Pierre; Hennequin, Christophe; Pichler, Alexander; Perrot, Maxime; Voisin, Philippe; Moeglin, Jean-Pierre

    2015-05-01

    Improving the surveillance capacity over wide zones requires a set of smart battery-powered Unattended Ground Sensors capable of issuing an alarm to a decision-making center. Only high-level information has to be sent when a relevant suspicious situation occurs. In this paper we propose an innovative bio-inspired approach that mimics the human bi-modal vision mechanism and the parallel processing ability of the human brain. The designed prototype exploits two levels of analysis: a low-level panoramic motion analysis, the peripheral vision, and a high-level event-focused analysis, the foveal vision. By tracking moving objects and fusing multiple criteria (size, speed, trajectory, etc.), the peripheral vision module acts as a fast relevant event detector. The foveal vision module focuses on the detected events to extract more detailed features (texture, color, shape, etc.) in order to improve the recognition efficiency. The implemented recognition core is able to acquire human knowledge and to classify in real-time a huge amount of heterogeneous data thanks to its natively parallel hardware structure. This UGS prototype validates our system approach under laboratory tests. The peripheral analysis module demonstrates a low false alarm rate whereas the foveal vision correctly focuses on the detected events. A parallel FPGA implementation of the recognition core succeeds in fulfilling the embedded application requirements. These results are paving the way of future reconfigurable virtual field agents. By locally processing the data and sending only high-level information, their energy requirements and electromagnetic signature are optimized. Moreover, the embedded Artificial Intelligence core enables these bio-inspired systems to recognize and learn new significant events. By duplicating human expertise in potentially hazardous places, our miniature visual event detector will allow early warning and contribute to better human decision making.

  18. Bio-inspired photonic crystals with superwettability.

    PubMed

    Kuang, Minxuan; Wang, Jingxia; Jiang, Lei

    2016-12-21

    Photonic crystals (PCs) have attracted enormous research interest due to their unique light manipulation and potential applications in sensing, catalysts, detection, displays, solar cells and other fields. In particular, many novel applications of PCs are derived from their surface wettability. Generally, the wettability of PCs is determined by a combination of its surface geometrical structures and surface chemical compositions. This review focuses on the recent developments in the mechanism, fabrication and application of bio-inspired PCs with superwettability. It includes information on constructing superwetting PCs based on designing the topographical structure and regulating the surface chemical composition, and information on extending the practical applications of superwetting PCs in humidity/oil/solvent sensing, actuating, anti-fouling and liquid-impermeable surface, chemical detection, etc.

  19. Switchable bio-inspired adhesives

    NASA Astrophysics Data System (ADS)

    Kroner, Elmar

    2015-03-01

    Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.

  20. Bio-inspired variable structural color materials.

    PubMed

    Zhao, Yuanjin; Xie, Zhuoying; Gu, Hongcheng; Zhu, Cun; Gu, Zhongze

    2012-04-21

    Natural structural color materials, especially those that can undergo reversible changes, are attracting increasing interest in a wide variety of research fields. Inspired by the natural creatures, many elaborately nanostructured photonic materials with variable structural colors were developed. These materials have found important applications in switches, display devices, sensors, and so on. In this critical review, we will provide up-to-date research concerning the natural and bio-inspired photonic materials with variable structural colors. After introducing the variable structural colors in natural creatures, we will focus on the studies of artificial variable structural color photonic materials, including their bio-inspired designs, fabrications and applications. The prospects for the future development of these fantastic variable structural color materials will also be presented. We believe this review will promote the communications among biology, bionics, chemistry, optical physics, and material science (196 references).

  1. Bio-Inspired Ceramic/Carbon Composites

    DTIC Science & Technology

    2012-01-01

    be observed (Fig. 6). 3 µm Spark Plasma Sintering We have developed an approach for the SPS of the ceramic scaffolds filled with CNTs...with other C precursors such as pitch. Spark plasma sintering can be used to compress these infiltrated materials to create brick-and-mortar structures...objective to fabricate bio-inspired ceramic/CNT or ceramic/carbon composites with nacre-like structures by combining freeze casting with spark plasma

  2. Autonomous UAV persistent surveillance using bio-inspired strategies

    NASA Astrophysics Data System (ADS)

    Burman, Jerry; Hespanha, Joao; Madhow, Upamanyu; Isaacs, Jason; Venkateswaran, Sriram; Pham, Tien

    2012-06-01

    A team consisting of Teledyne Scientific Company, the University of California at Santa Barbara, the Army Research Laboratory, the Engineer Research and Development Center, and IBM UK is developing technologies in support of automated data exfiltration from heterogeneous battlefield sensor networks to enhance situational awareness for dismounts and command echelons. Unmanned aerial vehicles (UAV) provide an effective means to autonomously collect data from a sparse network of unattended ground sensors (UGSs) that cannot communicate with each other. UAVs are used to reduce the system reaction time by generating autonomous collection routes that are data-driven. Bioinspired techniques for autonomous search provide a novel strategy to detect, capture and fuse data from heterogeneous sensor networks. The bio-inspired algorithm is based on chemotaxis or the motion of bacteria seeking nutrients in their environment. Field tests of a bio-inspired system that routed UAVs were conducted in June 2011 at Camp Roberts, CA. The field test results showed that such a system can autonomously detect and locate the source of terrestrial events with very high accuracy and visually verify the event. In June 2011, field tests of the system were completed and include the use of multiple autonomously controlled UAVs, detection and disambiguation of multiple acoustic events occurring in short time frames, optimal sensor placement based on local phenomenology and the use of the International Technology Alliance (ITA) Sensor Network Fabric. The system demonstrated TRL 6 performance in the field at Camp Roberts.

  3. Heterogeneous sensor networks: a bio-inspired overlay architecture

    NASA Astrophysics Data System (ADS)

    Burman, Jerry; Hespanha, Joao; Madhow, Upamanyu; Klein, Daniel; Isaacs, Jason; Venkateswaran, Sriram; Pham, Tien

    2010-04-01

    Teledyne Scientific Company, the University of California at Santa Barbara (UCSB) and the Army Research Lab are developing technologies for automated data exfiltration from heterogeneous sensor networks through the Institute for Collaborative Biotechnologies (ICB). Unmanned air vehicles (UAV) provide an effective means to autonomously collect data from unattended ground sensors (UGSs) that cannot communicate with each other. UAVs are used to reduce the system reaction time by generating autonomous data-driven collection routes. Bio-inspired techniques for search provide a novel strategy to detect, capture and fuse data across heterogeneous sensors. A fast and accurate method has been developed for routing UAVs and localizing an event by fusing data from a sparse number of UGSs; it leverages a bio-inspired technique based on chemotaxis or the motion of bacteria seeking nutrients in their environment. The system was implemented and successfully tested using a high level simulation environment using a flight simulator to emulate a UAV. A field test was also conducted in November 2009 at Camp Roberts, CA using a UAV provided by AeroMech Engineering. The field test results showed that the system can detect and locate the source of an acoustic event with an accuracy of about 3 meters average circular error.

  4. Bio-inspired synthesis of metal nanomaterials and applications.

    PubMed

    Huang, Jiale; Lin, Liqin; Sun, Daohua; Chen, Huimei; Yang, Dapeng; Li, Qingbiao

    2015-10-07

    This critical review focuses on recent advances in the bio-inspired synthesis of metal nanomaterials (MNMs) using microorganisms, viruses, plants, proteins and DNA molecules as well as their applications in various fields. Prospects in the design of bio-inspired MNMs for novel applications are also discussed.

  5. Bio-inspired cell concentration and deformability monitoring chips.

    PubMed

    Cho, Young-Ho; Youn, Sechan; Lee, Dong Woo

    2007-11-01

    The paper presents a couple of biofluidic devices, whose functions are inspired from biological cell concentration and deformability monitoring functions. The cell concentration monitoring chip is inspired from RBC control mechanism in kidney, performing cell concentration monitoring functions. The cell deformability chip, inspired from selective RBC destruction mechanism in spleen, performs mechanical cell deformability monitoring functions. The structures and principles of the bio-inspired chips are presented and compared with those of the biological organs. The unique features and performance characteristics of the bio-inspired chips are analyzed and verified from experimental study. The bio-inspired cell concentration monitoring chips perform flow-rate insensitive concentration measurement, while the bio-inspired cell deformability monitoring chips achieve size-independent cell deformability measurement. Common advantages of the bio-inspired chips include simple structures, digital signals and high integrability, thus making them suitable for use in integrated digital biomedical systems.

  6. Bio-inspired networks for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Han, Bing; Huang, Yuanlin; Li, Ruopeng; Peng, Qiang; Luo, Junyi; Pei, Ke; Herczynski, Andrzej; Kempa, Krzysztof; Ren, Zhifeng; Gao, Jinwei

    2014-11-01

    Modern optoelectronics needs development of new materials characterized not only by high optical transparency and electrical conductivity, but also by mechanical strength, and flexibility. Recent advances employ grids of metallic micro- and nanowires, but the overall performance of the resulting material composites remains unsatisfactory. In this work, we propose a new strategy: application of natural scaffoldings perfected by evolution. In this context, we study two bio-inspired networks for two specific optoelectronic applications. The first network, intended for solar cells, light sources and similar devices, has a quasi-fractal structure and is derived directly from a chemically extracted leaf venation system. The second network is intended for touch screens and flexible displays, and is obtained by metalizing a spider’s silk web. We demonstrate that each of these networks attain an exceptional optoelectonic and mechanical performance for its intended purpose, providing a promising direction in the development of more efficient optoelectronic devices.

  7. Integrated bio-inspired fluidic imaging system

    NASA Astrophysics Data System (ADS)

    Tsai, Frank S.; Johnson, Daniel; Cho, Sung Hwan; Qiao, Wen; Arianpour, Ashkan; Francis, Cameron S.; Kim, Nam-Hyong; Lo, Yu-Hwa

    2010-02-01

    We developed a new type of optical lens device that can change its curvature like crystalline lens in human eye. The curvature changing capability of the lens allows for a tremendous tuning range in its optical power and subsequently enables miniaturized imaging systems that can perform autofocus, optical zoom, and other advanced functions. In this paper, we study the physical properties of bio-inspired fluidic lenses and demonstrate the optical functionality through miniaturized optical systems constructed with such lenses. We report an auto-focusing optical system that can turn from a camera to a microscope, and demonstrate more than 4X optical zoom with a very short total track length. Finally, we demonstrate the benefits of fluidic lens zoom camera through minimally invasive gallbladder removal surgery.

  8. Bio-inspired networks for optoelectronic applications.

    PubMed

    Han, Bing; Huang, Yuanlin; Li, Ruopeng; Peng, Qiang; Luo, Junyi; Pei, Ke; Herczynski, Andrzej; Kempa, Krzysztof; Ren, Zhifeng; Gao, Jinwei

    2014-11-28

    Modern optoelectronics needs development of new materials characterized not only by high optical transparency and electrical conductivity, but also by mechanical strength, and flexibility. Recent advances employ grids of metallic micro- and nanowires, but the overall performance of the resulting material composites remains unsatisfactory. In this work, we propose a new strategy: application of natural scaffoldings perfected by evolution. In this context, we study two bio-inspired networks for two specific optoelectronic applications. The first network, intended for solar cells, light sources and similar devices, has a quasi-fractal structure and is derived directly from a chemically extracted leaf venation system. The second network is intended for touch screens and flexible displays, and is obtained by metalizing a spider's silk web. We demonstrate that each of these networks attain an exceptional optoelectonic and mechanical performance for its intended purpose, providing a promising direction in the development of more efficient optoelectronic devices.

  9. Tough, bio-inspired hybrid materials.

    PubMed

    Munch, E; Launey, M E; Alsem, D H; Saiz, E; Tomsia, A P; Ritchie, R O

    2008-12-05

    The notion of mimicking natural structures in the synthesis of new structural materials has generated enormous interest but has yielded few practical advances. Natural composites achieve strength and toughness through complex hierarchical designs that are extremely difficult to replicate synthetically. We emulate nature's toughening mechanisms by combining two ordinary compounds, aluminum oxide and polymethyl methacrylate, into ice-templated structures whose toughness can be more than 300 times (in energy terms) that of their constituents. The final product is a bulk hybrid ceramic-based material whose high yield strength and fracture toughness [ approximately 200 megapascals (MPa) and approximately 30 MPa.m(1/2)] represent specific properties comparable to those of aluminum alloys. These model materials can be used to identify the key microstructural features that should guide the synthesis of bio-inspired ceramic-based composites with unique strength and toughness.

  10. Tough, Bio-Inspired Hybrid Materials

    NASA Astrophysics Data System (ADS)

    Munch, E.; Launey, M. E.; Alsem, D. H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O.

    2008-12-01

    The notion of mimicking natural structures in the synthesis of new structural materials has generated enormous interest but has yielded few practical advances. Natural composites achieve strength and toughness through complex hierarchical designs that are extremely difficult to replicate synthetically. We emulate nature’s toughening mechanisms by combining two ordinary compounds, aluminum oxide and polymethyl methacrylate, into ice-templated structures whose toughness can be more than 300 times (in energy terms) that of their constituents. The final product is a bulk hybrid ceramic-based material whose high yield strength and fracture toughness [~200 megapascals (MPa) and ~30 MPa·m1/2] represent specific properties comparable to those of aluminum alloys. These model materials can be used to identify the key microstructural features that should guide the synthesis of bio-inspired ceramic-based composites with unique strength and toughness.

  11. Aurelia aurita bio-inspired tilt sensor

    NASA Astrophysics Data System (ADS)

    Smith, Colin; Villanueva, Alex; Priya, Shashank

    2012-10-01

    The quickly expanding field of mobile robots, unmanned underwater vehicles, and micro-air vehicles urgently needs a cheap and effective means for measuring vehicle inclination. Commonly, tilt or inclination has been mathematically derived from accelerometers; however, there is inherent error in any indirect measurement. This paper reports a bio-inspired tilt sensor that mimics the natural balance organ of jellyfish, called the ‘statocyst’. Biological statocysts from the species Aurelia aurita were characterized by scanning electron microscopy to investigate the morphology and size of the natural sensor. An artificial tilt sensor was then developed by using printed electronics that incorporates a novel voltage divider concept in conjunction with small surface mount devices. This sensor was found to have minimum sensitivity of 4.21° with a standard deviation of 1.77°. These results open the possibility of developing elegant tilt sensor architecture for both air and water based platforms.

  12. Tough, bio-inspired hybrid materials

    SciTech Connect

    Munch, Etienne; Launey, Maximimilan E.; Alsem, Daan H.; Saiz, Eduardo; Tomsia, Antoni P.; Ritchie, Robert O.

    2008-10-06

    The notion of mimicking natural structures in the synthesis of new structural materials has generated enormous interest but has yielded few practical advances. Natural composites achieve strength and toughness through complex hierarchical designs extremely difficult to replicate synthetically. Here we emulate Nature's toughening mechanisms through the combination of two ordinary compounds, aluminum oxide and polymethylmethacrylate, into ice-templated structures whose toughness can be over 300 times (in energy terms) that of their constituents. The final product is a bulk hybrid ceramic material whose high yield strength and fracture toughness ({approx}200 MPa and {approx}30 MPa{radical}m) provide specific properties comparable to aluminum alloys. These model materials can be used to identify the key microstructural features that should guide the synthesis of bio-inspired ceramic-based composites with unique strength and toughness.

  13. Bio-inspired odor-based navigation

    NASA Astrophysics Data System (ADS)

    Porter, Maynard J., III; Vasquez, Juan R.

    2006-05-01

    The ability of many insects, especially moths, to locate either food or a member of the opposite sex is an amazing achievement. There are numerous scenarios where having this ability embedded into ground-based or aerial vehicles would be invaluable. This paper presents results from a 3-D computer simulation of an Unmanned Aerial Vehicle (UAV) autonomously tracking a chemical plume to its source. The simulation study includes a simulated dynamic chemical plume, 6-degree of freedom, nonlinear aircraft model, and a bio-inspired navigation algorithm. The emphasis of this paper is the development and analysis of the navigation algorithm. The foundation of this algorithm is a fuzzy controller designed to categorize where in the plume the aircraft is located: coming into the plume, in the plume, exiting the plume, or out of the plume.

  14. Bio-inspired accommodating fluidic intraocular lens.

    PubMed

    Qiao, Wen; Johnson, Daniel; Tsai, Frank S; Cho, Sung Hwan; Lo, Yu-Hwa

    2009-10-15

    The invention of intraocular lens (IOL), a substitute for crystalline lens, represents a major advancement in cataract surgery. After about sixty years of IOL development, one key remaining problem is its limited accommodation range compared with natural eyes. To overcome this performance limit, we explore bio-inspired fluidic IOL. By mimicking the working principle of natural eyes, a fluidic intraocular lens can achieve an exceedingly large accommodation range. An experiment on fluidic IOL demonstrated a very high tuning range of 12 D. This accommodation range was achieved with a modest amount of force (0.06 N) and equatorial radius change (0.286 mm), in conditions matching well with the characteristics of aged eyes.

  15. Bio-inspired self-shaping ceramics

    PubMed Central

    Bargardi, Fabio L.; Le Ferrand, Hortense; Libanori, Rafael; Studart, André R.

    2016-01-01

    Shaping ceramics into complex and intricate geometries using cost-effective processes is desirable in many applications but still remains an open challenge. Inspired by plant seed dispersal units that self-fold on differential swelling, we demonstrate that self-shaping can be implemented in ceramics by programming the material's microstructure to undergo local anisotropic shrinkage during heat treatment. Such microstructural design is achieved by magnetically aligning functionalized ceramic platelets in a liquid ceramic suspension, subsequently consolidated through an established enzyme-catalysed reaction. By fabricating alumina compacts exhibiting bio-inspired bilayer architectures, we achieve deliberate control over shape change during the sintering step. Bending, twisting or combinations of these two basic movements can be successfully programmed to obtain a myriad of complex shapes. The simplicity and the universality of such a bottom-up shaping method makes it attractive for applications that would benefit from low-waste ceramic fabrication, temperature-resistant interlocking structures or unusual geometries not accessible using conventional top–down manufacturing. PMID:28008930

  16. Bio-inspired self-shaping ceramics

    NASA Astrophysics Data System (ADS)

    Bargardi, Fabio L.; Le Ferrand, Hortense; Libanori, Rafael; Studart, André R.

    2016-12-01

    Shaping ceramics into complex and intricate geometries using cost-effective processes is desirable in many applications but still remains an open challenge. Inspired by plant seed dispersal units that self-fold on differential swelling, we demonstrate that self-shaping can be implemented in ceramics by programming the material's microstructure to undergo local anisotropic shrinkage during heat treatment. Such microstructural design is achieved by magnetically aligning functionalized ceramic platelets in a liquid ceramic suspension, subsequently consolidated through an established enzyme-catalysed reaction. By fabricating alumina compacts exhibiting bio-inspired bilayer architectures, we achieve deliberate control over shape change during the sintering step. Bending, twisting or combinations of these two basic movements can be successfully programmed to obtain a myriad of complex shapes. The simplicity and the universality of such a bottom-up shaping method makes it attractive for applications that would benefit from low-waste ceramic fabrication, temperature-resistant interlocking structures or unusual geometries not accessible using conventional top-down manufacturing.

  17. Bio-Inspired Self-Cleaning Surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Kesong; Jiang, Lei

    2012-08-01

    Self-cleaning surfaces have drawn a lot of interest for both fundamental research and practical applications. This review focuses on the recent progress in mechanism, preparation, and application of self-cleaning surfaces. To date, self-cleaning has been demonstrated by the following four conceptual approaches: (a) TiO2-based superhydrophilic self-cleaning, (b) lotus effect self-cleaning (superhydrophobicity with a small sliding angle), (c) gecko setae-inspired self-cleaning, and (d) underwater organisms-inspired antifouling self-cleaning. Although a number of self-cleaning products have been commercialized, the remaining challenges and future outlook of self-cleaning surfaces are also briefly addressed. Through evolution, nature, which has long been a source of inspiration for scientists and engineers, has arrived at what is optimal. We hope this review will stimulate interdisciplinary collaboration among material science, chemistry, biology, physics, nanoscience, engineering, etc., which is essential for the rational design and reproducible construction of bio-inspired multifunctional self-cleaning surfaces in practical applications.

  18. Bio-inspired self-shaping ceramics.

    PubMed

    Bargardi, Fabio L; Le Ferrand, Hortense; Libanori, Rafael; Studart, André R

    2016-12-23

    Shaping ceramics into complex and intricate geometries using cost-effective processes is desirable in many applications but still remains an open challenge. Inspired by plant seed dispersal units that self-fold on differential swelling, we demonstrate that self-shaping can be implemented in ceramics by programming the material's microstructure to undergo local anisotropic shrinkage during heat treatment. Such microstructural design is achieved by magnetically aligning functionalized ceramic platelets in a liquid ceramic suspension, subsequently consolidated through an established enzyme-catalysed reaction. By fabricating alumina compacts exhibiting bio-inspired bilayer architectures, we achieve deliberate control over shape change during the sintering step. Bending, twisting or combinations of these two basic movements can be successfully programmed to obtain a myriad of complex shapes. The simplicity and the universality of such a bottom-up shaping method makes it attractive for applications that would benefit from low-waste ceramic fabrication, temperature-resistant interlocking structures or unusual geometries not accessible using conventional top-down manufacturing.

  19. Bio-inspired Design Approached Antifouling Strategies

    NASA Astrophysics Data System (ADS)

    Fitzsimons, L.; Chapman, J.; Lawlor, A.; Regan, F.

    2012-04-01

    Biofouling exists as the undesirable accumulation of flora and fauna on a given substrate when immersed into an aquatic media. Its presence causes a range of deleterious effects for anyone faced in tackling the problem, which is more than often financially testing. Generally, the initial biofouling stage is stochastic and the attachment of microorganisms held fast in biofilm matrices is irreversible. Stability of the biofilm occurs when exopolymeric substances (EPS) are produced forming a protective surrounding, allowing the cohered microorganisms to colonise and thrive upon the surface. Therefore, if this initial stage of biofilm development can be prevented then it could be possible to prevent subsequent macro events that ensue. Environmental monitoring is one area that faces this challenge and forms the impetus of the work presented herein. In order to improve a monitoring device's lifetime, surface coatings with biocidal agents are applied to counteract these steps. This work shows the development of a range of novel materials, which demonstrate the ability to counteract and inhibit the initial stages of biofouling for monitoring devices. Natural bio-inspired surfaces have been developed using nano-functionalised coatings. All materials are tested in the field and positive results in reducing the biofouling challenge are demonstrated. The results from the deployment of antifouling materials, together with real-time, long-term water quality data from the test site are also shown.

  20. Bio-Inspired Solar Energy Conversion

    NASA Astrophysics Data System (ADS)

    Warncke, Kurt

    2009-11-01

    The areas of solar-powered catalysts for energy rich fuels formation and bio-inspired molecular assemblies for integrating photon-to-fuels pathways have been identified by the Office of Basic Energy Sciences of the U. S. Department of Energy as challenges for the next generation of sustainable, high-efficiency solar energy conversion systems [1]. The light-harvesting, energy-transducing and carbon compound-synthesizing (carbon dioxide-fixing) reactions that are encompassed by natural photosynthesis offer molecular paradigms for efficient free energy capture and storage. We seek to emulate these features in cell-free, protein-based systems. Our goal is to transform the robust (alpha,beta)8-barrel fold of an enzyme that naturally catalyzes radical reactions into a catalytic module for the reduction of carbon dioxide to formate, by using the cobalt-containing cobalamins and other organocobalt centers. The activation of the catalytic center will be driven by photo-reduction, by using soluble and attached organic or semiconductor architectures. Progress on the biochemical, chemical, physical, and molecular biological (including rational design of high binding affinity and reactivity towards carbon dioxide) approaches to the development of the photocatalytic system will be presented.[4pt] [1] Lewis, N.; Crabtree, G. In: Basic Research Needs for Solar Energy Utilization, Basic Energy Sciences Workshop on Solar Energy Utilization, Energy, U.S. Department of Energy, Office of Science: 2005.

  1. Bio-inspired Fillers for Mechanical Enhancement

    NASA Astrophysics Data System (ADS)

    Korley, Lashanda

    2012-02-01

    An examination of natural materials has offered a new perspective on the development of multi-functional materials with enhanced mechanical properties. One important lesson from nature is the utilization of composite structures to impart improved mechanical behavior and enhanced functionality using nanofillers. A relatively unexplored expansion of this bio-inspired, nanoscale filler approach to high performance materials is the incorporation of responsive, multi-functional reinforcing elements in polymeric composites with the goal of combining superior mechanical behavior that can be tuned with additional functionality, such as sensing and bioactivity. One approach is the use of self-assembling small molecules that form uniform, one-dimensional nanostructures as an emerging class of filler components. Another pathway toward mechanical enhancement is the incorporation of stimuli-responsive and high-modulus electrospun nanofibers. We have probed the utilization of high-aspect ratio, self-assembled small molecules and responsive electrospun nanofibers as all-organic nanofillers to achieve significant modulus changes within elastomeric matrices. The influence of matrix-filler interactions and the role of hierarchical organization in these nature-inspired composites will be discussed. Potential applications in barrier technology and drug delivery have also been explored.

  2. Learning from nature: building bio-inspired smart nanochannels.

    PubMed

    Hou, Xu; Jiang, Lei

    2009-11-24

    Learning from nature has inspired the fabrication of novel artificial materials that enable researchers to understand and to imitate biology. Bio-inspired research, in particular, owes much of its current development to advances in materials science and creative "smart" system design. The development and application of bio-inspired nanochannels is a burgeoning area in this field of research. Bio-inspired nanochannels enable many potential approaches to study various biomolecules in confined spaces and in real-time by current measurements. In this Perspective, we describe how these bio-inspired systems can be used to build novel, smart nanodevices with precisely controlled functions. Applications for these systems range from simulating the process of ion transport in living organisms by using biomimetic nanochannels to applying artificial nanochannel systems to investigate the chemistry, structure, size, and conformational states of biomolecules.

  3. Human Factors Issues for Interaction with Bio-Inspired Swarms

    DTIC Science & Technology

    2012-10-01

    subtle leaders of fish schools. Pheromone trails also suggest a way to support human interaction as has been explored to a limited extent... Human Factors issues for Interaction with Bio-Inspired Swarms Michael Lewis*, Michael Goodrich**, Katia Sycara+, Mark Steinberg++ * School of...Enabling a human to control such bio-inspired systems is a considerable challenge due to the limitations of each individual robot and the sheer

  4. A bio-inspired electrocommunication system for small underwater robots.

    PubMed

    Wang, Wei; Liu, Jindong; Xie, Guangming; Wen, Li; Zhang, Jianwei

    2017-03-29

    Weakly electric fishes (Gymnotid and Mormyrid) use an electric field to communicate efficiently (termed electrocommunication) in the turbid waters of confined spaces where other communication modalities fail. Inspired by this biological phenomenon, we design an artificial electrocommunication system for small underwater robots and explore the capabilities of such an underwater robotic communication system. An analytical model for electrocommunication is derived to predict the effect of the key parameters such as electrode distance and emitter current of the system on the communication performance. According to this model, a low-dissipation, and small-sized electrocommunication system is proposed and integrated into a small robotic fish. We characterize the communication performance of the robot in still water, flowing water, water with obstacles and natural water conditions. The results show that underwater robots are able to communicate electrically at a speed of around 1 k baud within about 3 m with a low power consumption (less than 1 W). In addition, we demonstrate that two leader-follower robots successfully achieve motion synchronization through electrocommunication in the three-dimensional underwater space, indicating that this bio-inspired electrocommunication system is a promising setup for the interaction of small underwater robots.

  5. Bio-Inspired Engineering of Exploration Systems

    NASA Technical Reports Server (NTRS)

    Thakoor, Sanita

    2003-01-01

    level of exploration mode (say, a large conventional lander/rover) in the vicinity. A widespread and affordable exploration of new/hazardous sites at lower cost and risk would thus become possible by utilizing a faster aerial flyer to cover long ranges and deploying a variety of function- specific, smaller biomorphic explorers for distributed sensing and local sample acquisition. Several conceptual biomorphic missions for planetary and terrestrial exploration applications have been illustrated in "Surface-Launched Explorers for Reconnaissance/ Scouting" (NPO-20871), NASA Tech Briefs, Vol. 26, No. 4 (April, 2002), page 69 and "Bio-Inspired Engineering of Exploration Systems," Journal of Space Mission Architecture, Issue 2, Fall 2000, pages 49-79.

  6. A Bio-Inspired AER Temporal Tri-Color Differentiator Pixel Array.

    PubMed

    Farian, Łukasz; Leñero-Bardallo, Juan Antonio; Häfliger, Philipp

    2015-10-01

    This article investigates the potential of a bio-inspired vision sensor with pixels that detect transients between three primary colors. The in-pixel color processing is inspired by the retinal color opponency that are found in mammalian retinas. Color transitions in a pixel are represented by voltage spikes, which are akin to a neuron's action potential. These spikes are conveyed off-chip by the Address Event Representation (AER) protocol. To achieve sensitivity to three different color spectra within the visual spectrum, each pixel has three stacked photodiodes at different depths in the silicon substrate. The sensor has been fabricated in the standard TSMC 90 nm CMOS technology. A post-processing method to decode events into color transitions has been proposed and implemented as a custom interface to display real-time color changes in the visual scene. Experimental results are provided. Color transitions can be detected at high speed (up to 2.7 kHz). The sensor has a dynamic range of 58 dB and a power consumption of 22.5 mW. This type of sensor can be of use in industrial, robotics, automotive and other applications where essential information is contained in transient emissions shifts within the visual spectrum.

  7. Bio-inspired color sketch for eco-friendly printing

    NASA Astrophysics Data System (ADS)

    Safonov, Ilia V.; Tolstaya, Ekaterina V.; Rychagov, Michael N.; Lee, Hokeun; Kim, Sang Ho; Choi, Donchul

    2012-01-01

    Saving of toner/ink consumption is an important task in modern printing devices. It has a positive ecological and social impact. We propose technique for converting print-job pictures to a recognizable and pleasant color sketches. Drawing a "pencil sketch" from a photo relates to a special area in image processing and computer graphics - non-photorealistic rendering. We describe a new approach for automatic sketch generation which allows to create well-recognizable sketches and to preserve partly colors of the initial picture. Our sketches contain significantly less color dots then initial images and this helps to save toner/ink. Our bio-inspired approach is based on sophisticated edge detection technique for a mask creation and multiplication of source image with increased contrast by this mask. To construct the mask we use DoG edge detection, which is a result of blending of initial image with its blurred copy through the alpha-channel, which is created from Saliency Map according to Pre-attentive Human Vision model. Measurement of percentage of saved toner and user study proves effectiveness of proposed technique for toner saving in eco-friendly printing mode.

  8. Performance characteristics of bio-inspired metal nanostructures as surface-enhanced Raman scattered (SERS) substrates

    SciTech Connect

    Areizaga-Martinez, Hector I.; Kravchenko, Ivan; Lavrik, Nickolay V.; Sepaniak, Michael J.; Hernandez-Rivera, Samuel P.; De Jesus, Marco A.

    2016-08-26

    The fabrication of high-performance plasmonic nanomaterials for bio-sensing and trace chemical detection is a field of intense theoretical and experimental research. The use of metal-silicon nanopillar arrays as analytical sensors has been reported with reasonable results in recent years. The use of bio-inspired nanocomposite structures that follow the Fibonacci numerical architecture offers the opportunity to develop nanostructures with theoretically higher and more reproducible plasmonic fields over extended areas. The work presented here describes the nanofabrication process for a series of 40 µm × 40 µm bio-inspired arrays classified as asymmetric fractals (sunflower seeds and romanesco broccoli), bilaterally symmetric (acacia leaves and honeycombs), and radially symmetric (such as orchids and lily flowers) using electron beam lithography. In addition, analytical capabilities were evaluated using surface-enhanced Raman scattering (SERS). Here, the substrate characterization and SERS performance of the developed substrates as the strategies to assess the design performance are presented and discussed.

  9. Performance characteristics of bio-inspired metal nanostructures as surface-enhanced Raman scattered (SERS) substrates

    SciTech Connect

    Areizaga-Martinez, Hector I.; Kravchenko, Ivan; Lavrik, Nickolay V.; Sepaniak, Michael J.; Hernandez-Rivera, Samuel P.; De Jesus, Marco A.

    2016-08-26

    The fabrication of high-performance plasmonic nanomaterials for bio-sensing and trace chemical detection is a field of intense theoretical and experimental research. The use of metal-silicon nanopillar arrays as analytical sensors has been reported with reasonable results in recent years. The use of bio-inspired nanocomposite structures that follow the Fibonacci numerical architecture offers the opportunity to develop nanostructures with theoretically higher and more reproducible plasmonic fields over extended areas. The work presented here describes the nanofabrication process for a series of 40 µm × 40 µm bio-inspired arrays classified as asymmetric fractals (sunflower seeds and romanesco broccoli), bilaterally symmetric (acacia leaves and honeycombs), and radially symmetric (such as orchids and lily flowers) using electron beam lithography. In addition, analytical capabilities were evaluated using surface-enhanced Raman scattering (SERS). Here, the substrate characterization and SERS performance of the developed substrates as the strategies to assess the design performance are presented and discussed.

  10. Entropic Phase Transitions with Stable Twisted Intermediates of Bio-Inspired Self-Assembly.

    PubMed

    Tao, Kai; Levin, Aviad; Jacoby, Guy; Beck, Roy; Gazit, Ehud

    2016-10-17

    Controlling the hierarchical process and capturing the intermediate stage underlying bio-inspired self-assembly are pivotal for understanding their aggregation mechanism and exploring possible applications. Here, the self-assembly of a designed minimal lipopeptide was characterized, showing it to initially self-assemble to narrow nanotwists, which then ripen to wide nanotwists, and finally transit to hollow nanotubes. The supramolecular phase transitions were revealed to be driven by entropic hydrophobic interactions, rather than by the common mechanism of enthalpy-related contributions. The transformation dynamics were sufficiently slow to enable detection and characterization of each stage, thus inducing the stable and extensive distributions of twisted intermediates. The findings allow an in-depth understanding of the hierarchical self-association of bio-inspired building blocks and provide a new approach for the preparation of superstructures of unique morphologies.

  11. Recent developments in bio-inspired special wettability.

    PubMed

    Liu, Kesong; Yao, Xi; Jiang, Lei

    2010-08-01

    Nature is a school for scientists and engineers. After four and a half billion years of stringent evolution, some creatures in nature exhibit fascinating surface wettability. Biomimetics, mimicking nature for engineering solutions, provides a model for the development of functional surfaces with special wettability. Recently, bio-inspired special wetting surfaces have attracted wide scientific attention for both fundamental research and practical applications, which has become an increasingly hot research topic. This Critical Review summarizes the recent work in bio-inspired special wettability, with a focus on lotus leaf inspired self-cleaning surfaces, plants and insects inspired anisotropic superhydrophobic surfaces, mosquito eyes inspired superhydrophobic antifogging coatings, insects inspired superhydrophobic antireflection coatings, rose petals and gecko feet inspired high adhesive superhydrophobic surfaces, bio-inspired water collecting surfaces, and superlyophobic surfaces, with particular focus on the last two years. The research prospects and directions of this rapidly developing field are also briefly addressed (159 references).

  12. SABRE: a bio-inspired fault-tolerant electronic architecture.

    PubMed

    Bremner, P; Liu, Y; Samie, M; Dragffy, G; Pipe, A G; Tempesti, G; Timmis, J; Tyrrell, A M

    2013-03-01

    As electronic devices become increasingly complex, ensuring their reliable, fault-free operation is becoming correspondingly more challenging. It can be observed that, in spite of their complexity, biological systems are highly reliable and fault tolerant. Hence, we are motivated to take inspiration for biological systems in the design of electronic ones. In SABRE (self-healing cellular architectures for biologically inspired highly reliable electronic systems), we have designed a bio-inspired fault-tolerant hierarchical architecture for this purpose. As in biology, the foundation for the whole system is cellular in nature, with each cell able to detect faults in its operation and trigger intra-cellular or extra-cellular repair as required. At the next level in the hierarchy, arrays of cells are configured and controlled as function units in a transport triggered architecture (TTA), which is able to perform partial-dynamic reconfiguration to rectify problems that cannot be solved at the cellular level. Each TTA is, in turn, part of a larger multi-processor system which employs coarser grain reconfiguration to tolerate faults that cause a processor to fail. In this paper, we describe the details of operation of each layer of the SABRE hierarchy, and how these layers interact to provide a high systemic level of fault tolerance.

  13. Bio-inspired aquatic robotics by untethered piezohydroelastic actuation.

    PubMed

    Cen, L; Erturk, A

    2013-03-01

    This paper investigates fish-like aquatic robotics using flexible bimorphs made of macro-fiber composite (MFC) piezoelectric laminates for carangiform locomotion. In addition to noiseless and efficient actuation over a range of frequencies, geometric scalability, and simple design, bimorph propulsors made of MFCs offer a balance between the actuation force and velocity response for performance enhancement in bio-inspired swimming. The experimental component of the presented work focuses on the characterization of an elastically constrained MFC bimorph propulsor for thrust generation in quiescent water as well as the development of a robotic fish prototype combining a microcontroller and a printed-circuit-board amplifier to generate high actuation voltage for untethered locomotion. From the theoretical standpoint, a distributed-parameter electroelastic model including the hydrodynamic effects and actuator dynamics is coupled with the elongated-body theory for predicting the mean thrust in quiescent water. In-air and underwater experiments are performed to verify the incorporation of hydrodynamic effects in the linear actuation regime. For electroelastically nonlinear actuation levels, experimentally obtained underwater vibration response is coupled with the elongated-body theory to predict the thrust output. The measured mean thrust levels in quiescent water (on the order of ∼10 mN) compare favorably with thrust levels of biological fish. An untethered robotic fish prototype that employs a single bimorph fin (caudal fin) for straight swimming and turning motions is developed and tested in free locomotion. A swimming speed of 0.3 body-length/second (7.5 cm s⁻¹ swimming speed for 24.3 cm body length) is achieved at 5 Hz for a non-optimized main body-propulsor bimorph combination under a moderate actuation voltage level.

  14. Optic flow estimation on trajectories generated by bio-inspired closed-loop flight.

    PubMed

    Shoemaker, Patrick A; Hyslop, Andrew M; Humbert, J Sean

    2011-05-01

    We generated panoramic imagery by simulating a fly-like robot carrying an imaging sensor, moving in free flight through a virtual arena bounded by walls, and containing obstructions. Flight was conducted under closed-loop control by a bio-inspired algorithm for visual guidance with feedback signals corresponding to the true optic flow that would be induced on an imager (computed by known kinematics and position of the robot relative to the environment). The robot had dynamics representative of a housefly-sized organism, although simplified to two-degree-of-freedom flight to generate uniaxial (azimuthal) optic flow on the retina in the plane of travel. Surfaces in the environment contained images of natural and man-made scenes that were captured by the moving sensor. Two bio-inspired motion detection algorithms and two computational optic flow estimation algorithms were applied to sequences of image data, and their performance as optic flow estimators was evaluated by estimating the mutual information between outputs and true optic flow in an equatorial section of the visual field. Mutual information for individual estimators at particular locations within the visual field was surprisingly low (less than 1 bit in all cases) and considerably poorer for the bio-inspired algorithms that the man-made computational algorithms. However, mutual information between weighted sums of these signals and comparable sums of the true optic flow showed significant increases for the bio-inspired algorithms, whereas such improvement did not occur for the computational algorithms. Such summation is representative of the spatial integration performed by wide-field motion-sensitive neurons in the third optic ganglia of flies.

  15. Analysis and classification of broadband echoes using bio-inspired dolphin pulses.

    PubMed

    Pailhas, Yan; Capus, Chris; Brown, Keith; Moore, Patrick

    2010-06-01

    To date most sonars use narrow band pulses and often only the echo envelope is used for object detection and classification. This paper considers the advantages afforded by bio-inspired sonar for object identification and classification through the analysis and the understanding of the broadband echo structure. Using the biomimetic dolphin based sonar system in conjunction with bio-inspired pulses developed from observations of bottlenose dolphins performing object identification tasks, results are presented from experiments carried out in a wave tank and harbor. In these experiments responses of various targets to two different bio-inspired signals are measured and analyzed. The differences in response demonstrate the strong dependency between signal design and echo interpretation. In the simulations and empirical data, the resonance phenomena of these targets cause strong notches and peaks in the echo spectra. With precision in the localization of these peaks and dips of around 1 kHz, the locations are very stable for broadside insonification of the targets and they can be used as features for classification. This leads to the proposal of a broadband classifier which operates by extracting the notch positions in the target echo spectra.

  16. A bio-inspired sensor based on surfactant film and Pd nanoparticles.

    PubMed

    Zapp, Eduardo; Souza, Franciane D; Souza, Bruno S; Nome, Faruk; Neves, Ademir; Vieira, Iolanda C

    2013-01-21

    A bio-inspired complex, [(bpbpmp)Fe(III)(m-OAc)(2)Cu(II)](ClO(4)), was combined with a zwitterionic surfactant (ImS3-14) stabilizing pre-formed palladium nanoparticles and coated on a glassy carbon electrode (GCE). This bio-inspired surfactant film was capable of catalyzing redox reactions of dihydroxybenzenes, thus allowing the simultaneous electrochemical quantification of CC and HQ in cigarette residue samples by square-wave voltammetry (SWV). The best experimental conditions were obtained using phosphate buffer solution (0.1 mol L(-1), pH 7.0), with 1.3 nmol of the bio-inspired complex, 0.15 μmol of the surfactant and 1.08 nmol of Pd. The best voltammetric parameters were: frequency 100 Hz, pulse amplitude 40 mV and step potential 8 mV. The limits of detection calculated from simultaneous curves were found to be 2.2 × 10(-7) and 2.1 × 10(-7) mol L(-1) for HQ and CC respectively.

  17. Principle of bio-inspired insect wing rotational hinge design

    NASA Astrophysics Data System (ADS)

    Fei, Fan

    A principle for designing and fabricating bio-inspired miniature artificial insect flapping wing using flexure rotational hinge design is presented. A systematic approach of selecting rotational hinge stiffness value is proposed. Based on the understanding of flapping wing aerodynamics, a dynamic simulation is constructed using the established quasi-steady model and the wing design. Simulations were performed to gain insight on how different parameters affect the wing rotational response. Based on system resonance a model to predict the optimal rotational hinge stiffness based on given wing parameter and flapping wing kinematic is proposed. By varying different wing parameters, the proposed method is shown to be applicable to a wide range of wing designs with different sizes and shapes. With the selected hinge stiffness value, aspects of the rotational joint design is discussed and an integrated wing-hinge structure design using laminated carbon fiber and polymer film is presented. Manufacturing process of such composite structure is developed to achieve high accuracy and repeatability. The yielded hinge stiffness is verified by measurements. To validate the proposed model, flapping wing experiments were conducted. A flapping actuation set up is built using DC motor and a controller is implemented on a microcontroller to track desired wing stroke kinematic. Wing stroke and rotation kinematic were extracted using a high speed camera and the lift generation is evaluated. A total of 49 flapping experiments were presented, experimental data shows good correlation with the model's prediction. With the wing rotational hinge stiffness designed so that the rotational resonant frequency is twice as the stroke frequency, the resulting wing rotation generates near optimal lift. With further simulation, the proposed model shows low sensitivity to wing parameter variation. As a result, giving a design parameter of a flapping wing robot platform, the proposed principle can

  18. Heterogeneous Sensor Networks: A Bio-Inspired Overlay Architecture

    DTIC Science & Technology

    2008-12-01

    using bio-inspired technologies Figure 1A: Swimming behavior in Escherichia Coli. Fairly straight motion arises when the flagella rotate...counter clockwise. When the flagella rotate clockwise, the motion of the bacteria exhibits a random change in direction. Figure 1B: Stochastic

  19. Bio-Inspired Stretchable Network-Based Intelligent Composites

    DTIC Science & Technology

    2012-05-03

    single filament in Toray T800H carbon fiber is 5 mm in diam- eter.6 Additionally, this fabrication technique has an inverse relation between the...Toray Carbon Fibers America Inc. Toray T800H data sheet. Santa Ana, CA, Technical Data Sheet CFA-007, 2011. 7. Guo Z, et al. Bio-inspired smart skin

  20. Energy evaluation of a bio-inspired gait modulation method for quadrupedal locomotion.

    PubMed

    Fukuoka, Yasuhiro; Fukino, Kota; Habu, Yasushi; Mori, Yoshikazu

    2015-08-04

    We have proposed a bio-inspired gait modulation method, by means of which a simulated quadruped model can successfully perform smooth, autonomous gait transitions from a walk to a trot to a gallop, as observed in animals. The model is equipped with a rhythm generator called a central pattern generator (CPG) for each leg. The lateral neighbouring CPGs are mutually and inhibitorily coupled, and the CPG network is hardwired to produce a trot. Adding only the simple feedback of body tilt to each CPG, which was based on input from the postural reflex, led to the emergence of un-programmed walking and galloping at low and high speeds, respectively. Although this autonomous gait transition was a consequence of postural adaptation, it coincidentally also resulted in the minimization of energy consumption, as observed in real animals. In simulations at a variety of constant speeds the energy cost was lower for walking at low speeds and for galloping at high speeds than it was for trotting. Moreover, each gait transition occurred at the optimal speed, such that the model minimised its energy consumption. Thus, gait transitions in simulations that included the bio-inspired gait modulation method were similar to those observed in animals, even from the perspective of energy consumption. This method should therefore be a preferred choice for motion generation and control in biomimetic quadrupedal locomotion.

  1. Bio-inspired band gap engineering of zinc oxide by intracrystalline incorporation of amino acids.

    PubMed

    Brif, Anastasia; Ankonina, Guy; Drathen, Christina; Pokroy, Boaz

    2014-01-22

    Bandgap engineering of zinc oxide semiconductors can be achieved using a bio-inspired method. During a bioInspired crystallization process, incorporation of amino acids into the crystal structure of ZnO induces lattice strain that leads to linear bandgap shifts. This allows for fine tuning of the bandgap in a bio-inspired route.

  2. Quantum design of photosynthesis for bio-inspired solar-energy conversion

    NASA Astrophysics Data System (ADS)

    Romero, Elisabet; Novoderezhkin, Vladimir I.; van Grondelle, Rienk

    2017-03-01

    Photosynthesis is the natural process that converts solar photons into energy-rich products that are needed to drive the biochemistry of life. Two ultrafast processes form the basis of photosynthesis: excitation energy transfer and charge separation. Under optimal conditions, every photon that is absorbed is used by the photosynthetic organism. Fundamental quantum mechanics phenomena, including delocalization, underlie the speed, efficiency and directionality of the charge-separation process. At least four design principles are active in natural photosynthesis, and these can be applied practically to stimulate the development of bio-inspired, human-made energy conversion systems.

  3. Quantum design of photosynthesis for bio-inspired solar-energy conversion.

    PubMed

    Romero, Elisabet; Novoderezhkin, Vladimir I; van Grondelle, Rienk

    2017-03-15

    Photosynthesis is the natural process that converts solar photons into energy-rich products that are needed to drive the biochemistry of life. Two ultrafast processes form the basis of photosynthesis: excitation energy transfer and charge separation. Under optimal conditions, every photon that is absorbed is used by the photosynthetic organism. Fundamental quantum mechanics phenomena, including delocalization, underlie the speed, efficiency and directionality of the charge-separation process. At least four design principles are active in natural photosynthesis, and these can be applied practically to stimulate the development of bio-inspired, human-made energy conversion systems.

  4. Creating a Bio-Inspired Solution to Prevent Erosion

    NASA Astrophysics Data System (ADS)

    Reher, R.; Martinez, A.; Cola, J.; Frost, D.

    2016-12-01

    Through the study of geophysical sciences, lessons can be developed which allow for the introduction of bio-inspired design and art concepts to K-5 elementary students. Students are placed into an engineering mindset in which they must apply the concepts of bio-geotechnics to observe how we can use nature to prevent and abate erosion. Problems are staged for students using realistic engineering scenarios such as erosion prevention through biomimicry and the study of anchorage characteristics of root structures in regard to stability of soil. Specifically, a lesson is introduced where students research, learn, and present information about bio-inspired designs to understand these concepts. They lean how plant roots differ in size and shape to stabilize soil. In addition, students perform a series of hands-on experiments which demonstrate how bio-cements and roots can slow erosion.

  5. Eigen values in epidemic and other bio-inspired models

    NASA Astrophysics Data System (ADS)

    Supriatna, A. K.; Anggriani, N.; Carnia, E.; Raihan, A.

    2017-08-01

    Eigen values and the largest eigen value have special roles in many applications. In this paper we will discuss its role in determining the epidemic threshold in which we can determine if an epidemic will decease or blow out eventually. Some examples and their consequences to controling the epidemic are also discusses. Beside the application in epidemic model, the paper also discusses other example of appication in bio-inspired model, such as the backcross breeding for two age classes of local and exotic goats. Here we give some elaborative examples on the use of previous backcross breeding model. Some future direction on the exploration of the relationship between these eigenvalues to different epidemic models and other bio-inspired models are also presented.

  6. Vibration isolation by exploring bio-inspired structural nonlinearity.

    PubMed

    Wu, Zhijing; Jing, Xingjian; Bian, Jing; Li, Fengming; Allen, Robert

    2015-10-08

    Inspired by the limb structures of animals/insects in motion vibration control, a bio-inspired limb-like structure (LLS) is systematically studied for understanding and exploring its advantageous nonlinear function in passive vibration isolation. The bio-inspired system consists of asymmetric articulations (of different rod lengths) with inside vertical and horizontal springs (as animal muscle) of different linear stiffness. Mathematical modeling and analysis of the proposed LLS reveal that, (a) the system has very beneficial nonlinear stiffness which can provide flexible quasi-zero, zero and/or negative stiffness, and these nonlinear stiffness properties are adjustable or designable with structure parameters; (b) the asymmetric rod-length ratio and spring-stiffness ratio present very beneficial factors for tuning system equivalent stiffness; (c) the system loading capacity is also adjustable with the structure parameters which presents another flexible benefit in application. Experiments and comparisons with existing quasi-zero-stiffness isolators validate the advantageous features above, and some discussions are also given about how to select structural parameters for practical applications. The results would provide an innovative bio-inspired solution to passive vibration control in various engineering practice.

  7. Material requirements for bio-inspired sensing systems

    NASA Astrophysics Data System (ADS)

    Biggins, Peter; Lloyd, Peter; Salmond, David; Kusterbeck, Anne

    2008-10-01

    The aim of developing bio-inspired sensing systems is to try and emulate the amazing sensitivity and specificity observed in the natural world. These capabilities have evolved, often for specific tasks, which provide the organism with an advantage in its fight to survive and prosper. Capabilities cover a wide range of sensing functions including vision, temperature, hearing, touch, taste and smell. For some functions, the capabilities of natural systems are still greater than that achieved by traditional engineering solutions; a good example being a dog's sense of smell. Furthermore, attempting to emulate aspects of biological optics, processing and guidance may lead to more simple and effective devices. A bio-inspired sensing system is much more than the sensory mechanism. A system will need to collect samples, especially if pathogens or chemicals are of interest. Other functions could include the provision of power, surfaces and receptors, structure, locomotion and control. In fact it is possible to conceive of a complete bio-inspired system concept which is likely to be radically different from more conventional approaches. This concept will be described and individual component technologies considered.

  8. Bio-inspired UAV routing, source localization, and acoustic signature classification for persistent surveillance

    NASA Astrophysics Data System (ADS)

    Burman, Jerry; Hespanha, Joao; Madhow, Upamanyu; Pham, Tien

    2011-06-01

    A team consisting of Teledyne Scientific Company, the University of California at Santa Barbara and the Army Research Laboratory* is developing technologies in support of automated data exfiltration from heterogeneous battlefield sensor networks to enhance situational awareness for dismounts and command echelons. Unmanned aerial vehicles (UAV) provide an effective means to autonomously collect data from a sparse network of unattended ground sensors (UGSs) that cannot communicate with each other. UAVs are used to reduce the system reaction time by generating autonomous collection routes that are data-driven. Bio-inspired techniques for search provide a novel strategy to detect, capture and fuse data. A fast and accurate method has been developed to localize an event by fusing data from a sparse number of UGSs. This technique uses a bio-inspired algorithm based on chemotaxis or the motion of bacteria seeking nutrients in their environment. A unique acoustic event classification algorithm was also developed based on using swarm optimization. Additional studies addressed the problem of routing multiple UAVs, optimally placing sensors in the field and locating the source of gunfire at helicopters. A field test was conducted in November of 2009 at Camp Roberts, CA. The field test results showed that a system controlled by bio-inspired software algorithms can autonomously detect and locate the source of an acoustic event with very high accuracy and visually verify the event. In nine independent test runs of a UAV, the system autonomously located the position of an explosion nine times with an average accuracy of 3 meters. The time required to perform source localization using the UAV was on the order of a few minutes based on UAV flight times. In June 2011, additional field tests of the system will be performed and will include multiple acoustic events, optimal sensor placement based on acoustic phenomenology and the use of the International Technology Alliance (ITA

  9. Analytical development of a binuclear oxo-manganese complex bio-inspired on oxidase enzyme for doping control analysis of acetazolamide.

    PubMed

    Machini, Wesley B S; Teixeira, Marcos F S

    2016-05-15

    A bio-inspired electrochemical sensor using a binuclear oxo-manganese complex was evaluated and applied in the detection of a substance associated with doping in sports: acetazolamide (ACTZ). Investigation was made of the influence of different experimental variables on the electrocatalytic oxidation of ACTZ by the bio-inspired sensor, such as pH and interfering species. The bio-inspired sensor showed the best response in the range from 5.00×10(-9) to 7.00×10(-8) mol L(-1) ACTZ, with a linear range from 5.00×10(-9) to 2.50×10(-8) mol L(-1) and a detection limit of 4.76×10(-9) mol L(-1). The sensor exhibited characteristics similar to the Michaelis-Menten model of an enzymatic electrode, due to the use of a multinucleated complex of manganese with μ-oxo units, which was able to mimic the properties of enzymes with manganese as a cofactor in their composition, such as Mn-containing oxidase. The determination of ACTZ with the bio-inspired sensor was evaluated using three different synthetic biological fluids (plasma, saliva, and urine), demonstrating its viability for use with real samples. The analysis of ACTZ in real urine samples using the bio-inspired sensor, simulating the method adopted by the World Anti-Doping Agency, which revealed viable, suggesting a new and promising platform to be used in these analysis.

  10. Bio-Inspired Micromechanical Directional Acoustic Sensor

    NASA Astrophysics Data System (ADS)

    Swan, William; Alves, Fabio; Karunasiri, Gamani

    Conventional directional sound sensors employ an array of spatially separated microphones and the direction is determined using arrival times and amplitudes. In nature, insects such as the Ormia ochracea fly can determine the direction of sound using a hearing organ much smaller than the wavelength of sound it detects. The fly's eardrums are mechanically coupled, only separated by about 1 mm, and have remarkable directional sensitivity. A micromechanical sensor based on the fly's hearing system was designed and fabricated on a silicon on insulator (SOI) substrate using MEMS technology. The sensor consists of two 1 mm2 wings connected using a bridge and to the substrate using two torsional legs. The dimensions of the sensor and material stiffness determine the frequency response of the sensor. The vibration of the wings in response to incident sound at the bending resonance was measured using a laser vibrometer and found to be about 1 μm/Pa. The electronic response of the sensor to sound was measured using integrated comb finger capacitors and found to be about 25 V/Pa. The fabricated sensors showed good directional sensitivity. In this talk, the design, fabrication and characteristics of the directional sound sensor will be described. Supported by ONR and TDSI.

  11. Utilizing the cochlea as a bio-inspired compressive sensing technique

    NASA Astrophysics Data System (ADS)

    Peckens, C. A.; Lynch, J. P.

    2013-10-01

    Structural monitoring for civil infrastructure is a rapidly developing field that has made significant advancements over the last decade. However, a number of performance bottlenecks remain including challenges with cost-effectively scaling monitoring systems up to large nodal counts. Due to the many parallels between biological sensory systems and engineered sensing systems, the biological nervous system can offer potential solutions to the current deficiencies of structural monitoring systems. The nervous system is capable of real-time processing and data transmission of external stimuli through an extremely condensed format with very basic processing units. This study explores the mammalian auditory system for inspiration because it achieves efficient data acquisition processes that outperform existing engineered sensing systems. Specifically, the auditory system realizes this through three steps: (1) real-time decomposition of a convoluted time-based signal into frequency components, (2) information compression for each component, and (3) efficient high-speed data transmission to the auditory cortex. In this paper, these three main mechanisms are explored and a bio-inspired structural monitoring system is proposed. The functionality of the proposed system is compared to traditional data compression techniques (wavelet transforms and compressed sensing) on various vibratory signals. While the wavelet transform is able to outperform the proposed sensor by minimizing signal reconstruction errors, the proposed bio-inspired sensor achieves similar compression rates but, unlike the others, does so using real-time processing.

  12. Complex biological and bio-inspired systems

    SciTech Connect

    Ecke, Robert E

    2009-01-01

    The understanding and characterization ofthe fundamental processes of the function of biological systems underpins many of the important challenges facing American society, from the pathology of infectious disease and the efficacy ofvaccines, to the development of materials that mimic biological functionality and deliver exceptional and novel structural and dynamic properties. These problems are fundamentally complex, involving many interacting components and poorly understood bio-chemical kinetics. We use the basic science of statistical physics, kinetic theory, cellular bio-chemistry, soft-matter physics, and information science to develop cell level models and explore the use ofbiomimetic materials. This project seeks to determine how cell level processes, such as response to mechanical stresses, chemical constituents and related gradients, and other cell signaling mechanisms, integrate and combine to create a functioning organism. The research focuses on the basic physical processes that take place at different levels ofthe biological organism: the basic role of molecular and chemical interactions are investigated, the dynamics of the DNA-molecule and its phylogenetic role are examined and the regulatory networks of complex biochemical processes are modeled. These efforts may lead to early warning algorithms ofpathogen outbreaks, new bio-sensors to detect hazards from pathomic viruses to chemical contaminants. Other potential applications include the development of efficient bio-fuel alternative-energy processes and the exploration ofnovel materials for energy usages. Finally, we use the notion of 'coarse-graining,' which is a method for averaging over less important degrees of freedom to develop computational models to predict cell function and systems-level response to disease, chemical stress, or biological pathomic agents. This project supports Energy Security, Threat Reduction, and the missions of the DOE Office of Science through its efforts to accurately

  13. Bio-inspired method and system for actionable intelligence

    NASA Astrophysics Data System (ADS)

    Khosla, Deepak; Chelian, Suhas E.

    2009-05-01

    This paper describes a bio-inspired VISion based actionable INTelligence system (VISINT) that provides automated capabilities to (1) understand objects, patterns, events and behaviors in vision data; (2) translate this understanding into timely recognition of novel and anomalous entities; and (3) discover underlying hierarchies and relationships between disparate labels entered by multiple users to provide a consistent data representation. VISINT is both a system and a novel collection of novel bio-inspired algorithms/modules. These modules can be used independently for various aspects of the actionable intelligence problem or sequenced together for an end-to-end actionable intelligence system. The algorithms can be useful in many other applications such as scene understanding, behavioral analysis, automatic surveillance systems, etc. The bio-inspired algorithms are a novel combination of hierarchical spatial and temporal networks based on the Adaptive Resonance Theory (ART). The novel aspects of this work are that it is an end-to-end system for actionable intelligence that combines existing and novel implementations of various modules in innovative ways to develop a system concept for actionable intelligence. Although there are other algorithms/implementations of several of the modules in VISINT, they suffer from various limitations and often system integration is not considered. The overall VISINT system can be viewed an incremental learning system where no offline training is required and data from multiple sources and times can be seamlessly integrated. The user is in the loop, but due to the semi-supervised nature of the underlying algorithms, only significant variations of entities, not all false alarms, are shown to the user. It does not forget the past even with new learning. While VISINT is designed as a vision-based system, it could also work with other kinds of sensor data that can recognize and locate individual objects in the scene. Beyond that stage

  14. Bio-inspired synthetic receptor molecules towards mimicry of vancomycin.

    PubMed

    Monnee, M C; Brouwer, A J; Verbeek, L M; van Wageningen, A M; Liskamp, R M

    2001-06-18

    A 512-member library of bio-inspired synthetic receptor molecules was prepared featuring a triazacyclophane scaffold. The purpose of this scaffold was to orient three (identical) peptide 'binding arms' in order to mimic an antibiotic binding cavity as is present in the vancomycin antibiotics. The library was screened with D-Ala-D-Ala and D-Ala-D-Lac containing ligands, which are present in the cell wall precursors of pathogenic bacteria. Screening and validation led to identification of a synthetic receptor capable of binding these ligands.

  15. Bio-inspired self-organizing cellular systems.

    PubMed

    Stauffer, André; Mange, Daniel; Rossier, Joël; Vannel, Fabien

    2008-01-01

    Bio-inspiration borrows three properties characteristic of living organisms: multicellular architecture, cellular division, and cellular differentiation. Implemented in silicon according to these properties, our self-organizing systems are able to grow, to self-replicate, and to self-repair. The growth and branching processes, performed by the so-called Tom Thumb algorithm, lead thus to the configuration and cloning mechanisms of the systems. The repair processes allow its cicatrization and regeneration mechanisms. The cellular design and hardware implementation of these mechanisms constitute the core of this paper.

  16. Limited Bandwidth Recognition of Collective Behaviors in Bio-Inspired Swarms

    DTIC Science & Technology

    2014-05-01

    Limited Bandwidth Recognition of Collective Behaviors in Bio - Inspired Swarms Daniel S. Brown AFRL Information Directorate 26 Electronic Parkway Rome...that impedes scalable human interaction with large bio - inspired robot swarms, namely, how do you know what the swarm is doing if you can’t ob- serve...through limited samples from a small subset of agents. We present a novel framework for classifying the collective behavior of a bio - inspired robot

  17. EAP artificial muscle actuators for bio-inspired intelligent social robotics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hanson, David F.

    2017-04-01

    Bio-inspired intelligent robots are coming of age in both research and industry, propelling market growth for robots and A.I. However, conventional motors limit bio-inspired robotics. EAP actuators and sensors could improve the simplicity, compliance, physical scaling, and offer bio-inspired advantages in robotic locomotion, grasping and manipulation, and social expressions. For EAP actuators to realize their transformative potential, further innovations are needed: the actuators must be robust, fast, powerful, manufacturable, and affordable. This presentation surveys progress, opportunities, and challenges in the author's latest work in social robots and EAP actuators, and proposes a roadmap for EAP actuators in bio-inspired intelligent robotics.

  18. Performance Characteristics of Bio-Inspired Metal Nanostructures as Surface-Enhanced Raman Scattered (SERS) Substrates.

    PubMed

    Areizaga-Martinez, Hector I; Kravchenko, Ivan; Lavrik, Nickolay V; Sepaniak, Michael J; Hernández-Rivera, Samuel P; De Jesús, Marco A

    2016-09-01

    The fabrication of high-performance plasmonic nanomaterials for bio-sensing and trace chemical detection is a field of intense theoretical and experimental research. The use of metal-silicon nanopillar arrays as analytical sensors has been reported with reasonable results in recent years. The use of bio-inspired nanocomposite structures that follow the Fibonacci numerical architecture offers the opportunity to develop nanostructures with theoretically higher and more reproducible plasmonic fields over extended areas. The work presented here describes the nanofabrication process for a series of 40 µm × 40 µm bio-inspired arrays classified as asymmetric fractals (sunflower seeds and romanesco broccoli), bilaterally symmetric (acacia leaves and honeycombs), and radially symmetric (such as orchids and lily flowers) using electron beam lithography. In addition, analytical capabilities were evaluated using surface-enhanced Raman scattering (SERS). The substrate characterization and SERS performance of the developed substrates as the strategies to assess the design performance are presented and discussed. © The Author(s) 2016.

  19. Performance characteristics of bio-inspired metal nanostructures as surface-enhanced Raman scattered (SERS) substrates

    DOE PAGES

    Areizaga-Martinez, Hector I.; Kravchenko, Ivan; Lavrik, Nickolay V.; ...

    2016-08-26

    The fabrication of high-performance plasmonic nanomaterials for bio-sensing and trace chemical detection is a field of intense theoretical and experimental research. The use of metal-silicon nanopillar arrays as analytical sensors has been reported with reasonable results in recent years. The use of bio-inspired nanocomposite structures that follow the Fibonacci numerical architecture offers the opportunity to develop nanostructures with theoretically higher and more reproducible plasmonic fields over extended areas. The work presented here describes the nanofabrication process for a series of 40 µm × 40 µm bio-inspired arrays classified as asymmetric fractals (sunflower seeds and romanesco broccoli), bilaterally symmetric (acacia leavesmore » and honeycombs), and radially symmetric (such as orchids and lily flowers) using electron beam lithography. In addition, analytical capabilities were evaluated using surface-enhanced Raman scattering (SERS). Here, the substrate characterization and SERS performance of the developed substrates as the strategies to assess the design performance are presented and discussed.« less

  20. Bio-inspired solid phase extraction sorbent material for cocaine: a cross reactivity study.

    PubMed

    Montesano, Camilla; Sergi, Manuel; Perez, German; Curini, Roberta; Compagnone, Dario; Mascini, Marcello

    2014-12-01

    The binding specificity of a bio-inspired hexapeptide (QHWWDW) versus cocaine and four other drugs such as 3,4-methylenedioxy-N-methylamphetamine (MDMA), 3,4-methylenedioxy-N-ethylamphetamine (MDEA), phencyclidine and morphine was computationally studied and then experimentally confirmed in solid phase extraction (SPE) followed by liquid chromatography-mass spectrometry (LC/MS) detection. In simulation, the hexapeptide-drug complexes were docked with different scoring functions and considering pH chemical environment. In experimental, the cross reactivity of the selected hexapeptide was tested as SPE sorbent versus cocaine and other four drugs using buffer solutions at pH 4 and 7. Significant differences in specific retention were found between cocaine (97% of recovery) and both morphine (45% of recovery) and phencyclidine (60% of recovery), but less for ecstasies (average recovery 69%). In agreement with docking simulation, the hexapeptide showed the highest recovery with best specificity versus cocaine at pH 7 with an experimentally binding constant of 2.9 × 10(6)M(-1). The bio-inspired sorbent material analytical performances were compared with a commercial reversed phase cartridge confirming the hexapeptide specificity to cocaine and validating simulated data. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Bio-Inspired Cyber Security for Smart Grid Deployments

    SciTech Connect

    McKinnon, Archibald D.; Thompson, Seth R.; Doroshchuk, Ruslan A.; Fink, Glenn A.; Fulp, Errin W.

    2013-05-01

    mart grid technologies are transforming the electric power grid into a grid with bi-directional flows of both power and information. Operating millions of new smart meters and smart appliances will significantly impact electric distribution systems resulting in greater efficiency. However, the scale of the grid and the new types of information transmitted will potentially introduce several security risks that cannot be addressed by traditional, centralized security techniques. We propose a new bio-inspired cyber security approach. Social insects, such as ants and bees, have developed complex-adaptive systems that emerge from the collective application of simple, light-weight behaviors. The Digital Ants framework is a bio-inspired framework that uses mobile light-weight agents. Sensors within the framework use digital pheromones to communicate with each other and to alert each other of possible cyber security issues. All communication and coordination is both localized and decentralized thereby allowing the framework to scale across the large numbers of devices that will exist in the smart grid. Furthermore, the sensors are light-weight and therefore suitable for implementation on devices with limited computational resources. This paper will provide a brief overview of the Digital Ants framework and then present results from test bed-based demonstrations that show that Digital Ants can identify a cyber attack scenario against smart meter deployments.

  2. Bio-inspired fluidic lens surgical camera for MIS.

    PubMed

    Tsai, Frank S; Johnson, Daniel; Cho, Sung Hwan; Qiao, Wen; Arianpour, Ashkan; Lo, Yu-Hwa

    2009-01-01

    We report a new type of surgical camera that will greatly improve minimally invasive surgery (MIS). The key enabling technology for this camera is a unique type of lens-bio-inspired fluidic lens, which is a bio-mimetic lens that can change its curvature, just like the way human crystalline lens can accommodate. Because of its curvature changing capability, it is now possible to design a new regime of optical systems where auto-focusing and optical zoom can be performed without moving the lens positions, as is done in typical cameras. Hence, miniaturized imaging system with high functionality can be achieved with such technology. MIS is a surgical technique where small incisions are made on the abdominal wall as opposed to a large cut in open surgery. This type of surgery ensures faster patient recovery. The key tool for MIS is its surgical camera, or laparoscope. Traditional laparoscope is long and rigid and limits the field of view. To further advance MIS technology, we utilized bio-inspired fluidic lens to design a highly versatile imager that is small, can change its field of view or zoom optically, works in low light conditions, and varies the viewing angles. The surgical camera prototype is small (total track<17 mm), possesses 3X optical zoom, operates with light emitting diode (LED) lighting, among many other unique features.

  3. Spontaneous water filtration of bio-inspired membrane

    NASA Astrophysics Data System (ADS)

    Kim, Kiwoong; Kim, Hyejeong; Lee, Sang Joon

    2016-11-01

    Water is one of the most important elements for plants, because it is essential for various metabolic activities. Thus, water management systems of vascular plants, such as water collection and water filtration have been optimized through a long history. In this view point, bio-inspired technologies can be developed by mimicking the nature's strategies for the survival of the fittest. However, most of the underlying biophysical features of the optimized water management systems remain unsolved In this study, the biophysical characteristics of water filtration phenomena in the roots of mangrove are experimentally investigated. To understand water-filtration features of the mangrove, the morphological structures of its roots are analyzed. The electrokinetic properties of the root surface are also examined. Based on the quantitatively analyzed information, filtration of sodium ions in the roots are visualized. Motivated by this mechanism, spontaneous desalination mechanism in the root of mangrove is proposed by combining the electrokinetics and hydrodynamic transportation of ions. This study would be helpful for understanding the water-filtration mechanism of the roots of mangrove and developing a new bio-inspired desalination technology. This research was financially supported by the National Research Foundation (NRF) of Korea (Contract Grant Number: 2008-0061991).

  4. Confined swimming of bio-inspired microrobots in rectangular channels.

    PubMed

    Temel, Fatma Zeynep; Yesilyurt, Serhat

    2015-02-02

    Controlled swimming of bio-inspired microrobots in confined spaces needs to be understood well for potential use in medical applications in conduits and vessels inside the body. In this study, experimental and computational studies are performed for analysis of swimming modes of a bio-inspired microrobot in rectangular channels at low Reynolds number. Experiments are performed on smooth and rough surfaces using a magnetic helical swimmer (MHS), having 0.5 mm diameter and 2 mm length, with left-handed helical tail and radially polarized magnetic head within rotating magnetic field obtained by two electromagnetic coil pairs. Experiments indicate three motion modes of the MHS with respect to the rotation frequency: (i) lateral motion under the effect of a perpendicular force such as gravity and the surface traction at low frequencies, (ii) lateral motion under the effect of fluid forces and gravity at transition frequencies, and (iii) circular motion under the effect of fluid forces at high frequencies. Observed modes of motion for the MHS are investigated with computational fluid dynamics simulations by calculating translational and angular velocities and studying the induced flow fields for different radial positions inside the channel. Results indicate the importance of rotation frequency, surface roughness and flow field on the swimming modes and behaviour of the MHS inside the rectangular channel.

  5. Introducing Students to Bio-Inspiration and Biomimetic Design: A Workshop Experience

    ERIC Educational Resources Information Center

    Santulli, Carlo; Langella, Carla

    2011-01-01

    In recent years, bio-inspired approach to design has gained considerable interest between designers, engineers and end-users. However, there are difficulties in introducing bio-inspiration concepts in the university curriculum in that they involve multi-disciplinary work, which can only possibly be successfully delivered by a team with integrated…

  6. Introducing Students to Bio-Inspiration and Biomimetic Design: A Workshop Experience

    ERIC Educational Resources Information Center

    Santulli, Carlo; Langella, Carla

    2011-01-01

    In recent years, bio-inspired approach to design has gained considerable interest between designers, engineers and end-users. However, there are difficulties in introducing bio-inspiration concepts in the university curriculum in that they involve multi-disciplinary work, which can only possibly be successfully delivered by a team with integrated…

  7. Performance of a bio-inspired spider web

    NASA Astrophysics Data System (ADS)

    Zheng, Lingyue; Behrooz, Majid; Li, Rui; Wang, Xiaojie; Gordaninejad, Faramarz

    2014-04-01

    The goal of this study is to investigate dynamic properties and the total energy change of a bio-inspired spider web. To better understand performance, the effects of preload, radial and spiral string stiffness and damping ratio on the natural frequency and total energy of the web are theoretically examined. Different types of web materials and configurations, such as damaged webs are investigated. It is demonstrated that the pretension, stiffness and damping ratio of the web's strings can significantly affect the natural frequency and total energy of the full and damaged webs. In addition, it is shown that by increasing the pretension in the radial strings one can compensate for the damaged strings and increase the capability of the damaged web to reach that of the full web.

  8. Bio-inspired polarized skylight navigation: a review

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Wan, Yongqin; Li, Lijing

    2015-12-01

    The idea of using skylight polarization in navigation is learned from animals such as desert ants and honeybees. Various research groups have been working on the development of novel navigation systems inspired by polarized skylight. The research of background in polarized skylight navigation is introduced, and basic principle of the insects navigation is expatiated. Then, the research progress status at home and abroad in skylight polarization pattern, three bio-inspired polarized skylight navigation sensors and polarized skylight navigation are reviewed. Finally, the research focuses in the field of polarized skylight navigation are analyzed. At the same time, the trend of development and prospect in the future are predicted. It is believed that the review is helpful to people understand polarized skylight navigation and polarized skylight navigation sensors.

  9. An introduction to bio-inspired artificial neural network architectures.

    PubMed

    Fasel, B

    2003-03-01

    In this introduction to artificial neural networks we attempt to give an overview of the most important types of neural networks employed in engineering and explain shortly how they operate and also how they relate to biological neural networks. The focus will mainly be on bio-inspired artificial neural network architectures and specifically to neo-perceptions. The latter belong to the family of convolutional neural networks. Their topology is somewhat similar to the one of the human visual cortex and they are based on receptive fields that allow, in combination with sub-sampling layers, for an improved robustness with regard to local spatial distortions. We demonstrate the application of artificial neural networks to face analysis--a domain we human beings are particularly good at, yet which poses great difficulties for digital computers running deterministic software programs.

  10. Bio-inspired artificial iriodphores based on capillary origami

    NASA Astrophysics Data System (ADS)

    Manakasettharn, Supone; Taylor, J. Ashley; Krupenkin, Tom

    2011-03-01

    Many marine organisms have evolved complex optical mechanisms of dynamic skin color control that allow them to drastically change their visual appearance. In particular, cephalopods have developed especially effective dynamic color control mechanism based on the mechanical actuation of the micro-scale optical structures, which produce either variable degrees of area coverage by a given color (chromatophores) or variations in spatial orientation of the reflective and diffractive surfaces (iridophores). In this work we describe bio-inspired artificial iridophores based on electrowetting-controlled capillary origami. We describe the developed microfabrication approach, characterize mechanical and optical properties of the obtained microstructures and discuss their electrowetting-based actuation. The obtained experimental results are in good agreement with a simple theoretical model based on electrocapillarity and elasticity theory. The results of the work can enable a broad range of novel optical devices.

  11. Bio-Inspired Asynchronous Pixel Event Tricolor Vision Sensor.

    PubMed

    Lenero-Bardallo, Juan Antonio; Bryn, D H; Hafliger, Philipp

    2014-06-01

    This article investigates the potential of the first ever prototype of a vision sensor that combines tricolor stacked photo diodes with the bio-inspired asynchronous pixel event communication protocol known as Address Event Representation (AER). The stacked photo diodes are implemented in a 22 × 22 pixel array in a standard STM 90 nm CMOS process. Dynamic range is larger than 60 dB and pixels fill factor is 28%. The pixels employ either simple pulse frequency modulation (PFM) or a Time-to-First-Spike (TFS) mode. A heuristic linear combination of the chip's inherent pseudo colors serves to approximate RGB color representation. Furthermore, the sensor outputs can be processed to represent the radiation in the near infrared (NIR) band without employing external filters, and to color-encode direction of motion due to an asymmetry in the update rates of the different diode layers.

  12. Wetting-controlled strategies: from theories to bio-inspiration.

    PubMed

    Song, Cheng; Zheng, Yongmei

    2014-08-01

    Creatures have evolved the unique wetting-controlled strategies on their surfaces to collect water for the sake of survival, such as Beetle back, spider silk and plant leaf as well, which inspires us to open the area of novel researches. In this feature article, we review the theoretical basis of wetting-controlling regarding of wettability and highlight the biological wetting-controlled strategies in water transport, and water collection, and also introduce some bio-inspired materials with water collection properties. It is significant to design the novel materials that would be used in the fields of responsive, smart catalysis, filtration and sensing besides water collection. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  13. Wireless synapses in bio-inspired neural networks

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Forrester, Thomas; Degrood, Kevin

    2009-05-01

    Wireless (virtual) synapses represent a novel approach to bio-inspired neural networks that follow the infrastructure of the biological brain, except that biological (physical) synapses are replaced by virtual ones based on cellular telephony modeling. Such synapses are of two types: intracluster synapses are based on IR wireless ones, while intercluster synapses are based on RF wireless ones. Such synapses have three unique features, atypical of conventional artificial ones: very high parallelism (close to that of the human brain), very high reconfigurability (easy to kill and to create), and very high plasticity (easy to modify or upgrade). In this paper we analyze the general concept of wireless synapses with special emphasis on RF wireless synapses. Also, biological mammalian (vertebrate) neural models are discussed for comparison, and a novel neural lensing effect is discussed in detail.

  14. Bio-inspired Autonomic Structures: a middleware for Telecommunications Ecosystems

    NASA Astrophysics Data System (ADS)

    Manzalini, Antonio; Minerva, Roberto; Moiso, Corrado

    Today, people are making use of several devices for communications, for accessing multi-media content services, for data/information retrieving, for processing, computing, etc.: examples are laptops, PDAs, mobile phones, digital cameras, mp3 players, smart cards and smart appliances. One of the most attracting service scenarios for future Telecommunications and Internet is the one where people will be able to browse any object in the environment they live: communications, sensing and processing of data and services will be highly pervasive. In this vision, people, machines, artifacts and the surrounding space will create a kind of computational environment and, at the same time, the interfaces to the network resources. A challenging technological issue will be interconnection and management of heterogeneous systems and a huge amount of small devices tied together in networks of networks. Moreover, future network and service infrastructures should be able to provide Users and Application Developers (at different levels, e.g., residential Users but also SMEs, LEs, ASPs/Web2.0 Service roviders, ISPs, Content Providers, etc.) with the most appropriate "environment" according to their context and specific needs. Operators must be ready to manage such level of complication enabling their latforms with technological advanced allowing network and services self-supervision and self-adaptation capabilities. Autonomic software solutions, enhanced with innovative bio-inspired mechanisms and algorithms, are promising areas of long term research to face such challenges. This chapter proposes a bio-inspired autonomic middleware capable of leveraging the assets of the underlying network infrastructure whilst, at the same time, supporting the development of future Telecommunications and Internet Ecosystems.

  15. Development of a bio-inspired transformable robotic fin.

    PubMed

    Yang, Yikun; Xia, Yu; Qin, Fenghua; Xu, Min; Li, Weihua; Zhang, Shiwu

    2016-08-31

    Fish swim by oscillating their pectoral fins forwards and backwards in a cyclic motion such that their geometric parameters and aspect ratios change according to how fast or slow a fish wants to swim; these complex motions result in a complicated hydrodynamic response. This paper focuses on the dynamic change in the shape of a fin to improve the underwater propulsion of bio-inspired mechanism. To do this, a novel transformable robotic fin has been developed to investigate how this change in shape affects the hydrodynamic forces acting on the fin. This robotic fin has a multi-link frame and a flexible surface skin where changes in shape are activated by a purpose designed multi-link mechanism driven by a transformation motor. A drag platform has been designed to study the performance of this variable robotic fin. Numerous experiments were carried out to determine how various controlling modes affect the thrust capability of this fin. The kinematic parameters associated with this robotic fin include the oscillating frequency and amplitude, and the drag velocity. The fin has four modes to control the cyclic motion; these were also investigated in combination with the variable kinematic parameters. The results will help us understand the locomotion performance of this transformable robotic fin. Note that different controlling modes influence the propulsive performance of this robotic fin, which means its propulsive performance can be optimized in a changing environment by adapting its shape. This study facilitates the development of bio-inspired unmanned underwater vehicles with a very high swimming performance.

  16. Bioengineering the infarcted heart by applying bio-inspired materials.

    PubMed

    Ruvinov, Emil; Harel-Adar, Tamar; Cohen, Smadar

    2011-10-01

    Induction of cardiac muscle regeneration following myocardial infarction (MI) represents a major challenge in cardiovascular therapy, as the current clinical approaches are limited in their ability to regenerate a new muscle tissue and to replace infarcted myocardium. Here, we describe the conception of two strategies based on bio-inspired materials, aimed at myocardial repair after MI. In the first strategy, alginate biomaterial was designed with affinity-binding moieties, enabling the binding of heparin-binding proteins and their controlled presentation and release. The combined features of this unique alginate hydrogel, as a temporary extracellular matrix replacement and a depot for bio-molecules such as insulin-like growth factor-1 and hepatocyte growth factor, led to improvements in cardiac structure and function, as demonstrated by the biomaterial's abilities to thicken the scar and prevent left-ventricular remodeling and dilatation. Endogenous regeneration occurring at the infarct as manifested by the enhanced angiogenesis, cardiomyocyte proliferation, and appearance of cardiac-related stem cells is likely to have contributed to this. In the second strategy, phosphatidylserine (PS)-presenting liposomes were developed to mimic apoptotic cells bodies, specifically their capability of immunomodulating activated macrophages into anti-inflammatory state. In a rat model of acute MI, targeting of PS-presenting liposomes to infarct macrophages after injection via the femoral vein was demonstrated by magnetic resonance imaging. The treatment promoted angiogenesis, the preservation of small scars, and prevention of ventricular dilatation and remodeling. Collectively, the two bio-inspired material-based strategies presented herein represent unique and clinical accessible approaches for myocardial infarct repair.

  17. Towards a Bio-inspired Security Framework for Mission-Critical Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Ren, Wei; Song, Jun; Ma, Zhao; Huang, Shiyong

    Mission-critical wireless sensor networks (WSNs) have been found in numerous promising applications in civil and military fields. However, the functionality of WSNs extensively relies on its security capability for detecting and defending sophisticated adversaries, such as Sybil, worm hole and mobile adversaries. In this paper, we propose a bio-inspired security framework to provide intelligence-enabled security mechanisms. This scheme is composed of a middleware, multiple agents and mobile agents. The agents monitor the network packets, host activities, make decisions and launch corresponding responses. Middleware performs an infrastructure for the communication between various agents and corresponding mobility. Certain cognitive models and intelligent algorithms such as Layered Reference Model of Brain and Self-Organizing Neural Network with Competitive Learning are explored in the context of sensor networks that have resource constraints. The security framework and implementation are also described in details.

  18. An Approach of Bio-inspired Hybrid Model for Financial Markets

    NASA Astrophysics Data System (ADS)

    Simić, Dragan; Gajić, Vladeta; Simić, Svetlana

    Biological systems are inspiration for the design of optimisation and classification models. Applying various forms of bio-inspired algorithms may be a very high-complex system. Modelling of financial markets is challenging for several reasons, because many plausible factors impact on it. An automated trading on financial market is not a new phenomenon. The model of bio-inspired hybrid adaptive trading system based on technical indicators usage by grammatical evolution and moving window is presented in this paper. The proposed system is just one of possible bio-inspired system which can be used in financial forecast, corporate failure prediction or bond rating company.

  19. Bio-inspired routes for synthesizing efficient nanoscale platinum electrocatalysts

    SciTech Connect

    Cha, Jennifer N.; Wang, Joseph

    2014-08-31

    The overall objective of the proposed research is to use fundamental advances in bionanotechnology to design powerful platinum nanocrystal electrocatalysts for fuel cell applications. The new economically-viable, environmentally-friendly, bottom-up biochemical synthetic strategy will produce platinum nanocrystals with tailored size, shape and crystal orientation, hence leading to a maximum electrochemical reactivity. There are five specific aims to the proposed bio-inspired strategy for synthesizing efficient electrocatalytic platinum nanocrystals: (1) isolate peptides that both selectively bind particular crystal faces of platinum and promote the nucleation and growth of particular nanocrystal morphologies, (2) pattern nanoscale 2-dimensional arrays of platinum nucleating peptides from DNA scaffolds, (3) investigate the combined use of substrate patterned peptides and soluble peptides on nanocrystal morphology and growth (4) synthesize platinum crystals on planar and large-area carbon electrode supports, and (5) perform detailed characterization of the electrocatalytic behavior as a function of catalyst size, shape and morphology. Project Description and Impact: This bio-inspired collaborative research effort will address key challenges in designing powerful electrocatalysts for fuel cell applications by employing nucleic acid scaffolds in combination with peptides to perform specific, environmentally-friendly, simultaneous bottom-up biochemical synthesis and patterned assembly of highly uniform and efficient platinum nanocrystal catalysts. Bulk synthesis of nanoparticles usually produces a range of sizes, accessible catalytic sites, crystal morphologies, and orientations, all of which lead to inconsistent catalytic activities. In contrast, biological systems routinely demonstrate exquisite control over inorganic syntheses at neutral pH and ambient temperature and pressures. Because the orientation and arrangement of the templating biomolecules can be precisely

  20. Electrowetting-controlled bio-inspired artificial iridophores

    NASA Astrophysics Data System (ADS)

    Manakasettharn, Supone; Taylor, J. Ashley; Krupenkin, Tom

    2011-10-01

    Many marine organisms have evolved complex optical mechanisms of dynamic skin color control that allow them to drastically change their visual appearance. In particular, cephalopods have developed especially effective dynamic color control mechanism based on the mechanical actuation of the micro-scale optical structures, which produce either variable degrees of area coverage by a given color (chromatophores) or variations in spatial orientation of the reflective and diffractive surfaces (iridophores). In this work we describe the design, fabrication and characterization of electrowetting-controlled bio-inspired artificial iridophores. The developed iridophores geometrically resemble microflowers with flexible reflective petals. The microflowers are fabricated on a silicon substrate using surface micromachining techniques. After fabrication a small droplet of conductive liquid is deposited at the center of each microflower. This causes the flower petals to partially wrap around the droplet forming a structure similar to capillary origami. The dynamic control over the degree of wrapping is achieved by applying a voltage differential between the conductive core of the petals and the droplet. The applied voltage causes dynamic contact angle change between the droplet and each of the petals due to the electrowetting effect. We have characterized mechanical and optical properties of the microstructures and discuss their electrowetting-based actuation. These experimental results are in good agreement with a 3D theoretical model based on electrocapillarity and elasticity theory. This work forms the basis for a broad range of novel optical devices.

  1. Bio-inspired Fabrication of Complex Hierarchical Structure in Silicon.

    PubMed

    Gao, Yang; Peng, Zhengchun; Shi, Tielin; Tan, Xianhua; Zhang, Deqin; Huang, Qiang; Zou, Chuanping; Liao, Guanglan

    2015-08-01

    In this paper, we developed a top-down method to fabricate complex three dimensional silicon structure, which was inspired by the hierarchical micro/nanostructure of the Morpho butterfly scales. The fabrication procedure includes photolithography, metal masking, and both dry and wet etching techniques. First, microscale photoresist grating pattern was formed on the silicon (111) wafer. Trenches with controllable rippled structures on the sidewalls were etched by inductively coupled plasma reactive ion etching Bosch process. Then, Cr film was angled deposited on the bottom of the ripples by electron beam evaporation, followed by anisotropic wet etching of the silicon. The simple fabrication method results in large scale hierarchical structure on a silicon wafer. The fabricated Si structure has multiple layers with uniform thickness of hundreds nanometers. We conducted both light reflection and heat transfer experiments on this structure. They exhibited excellent antireflection performance for polarized ultraviolet, visible and near infrared wavelengths. And the heat flux of the structure was significantly enhanced. As such, we believe that these bio-inspired hierarchical silicon structure will have promising applications in photovoltaics, sensor technology and photonic crystal devices.

  2. Biomimetic and bio-inspired uses of mollusc shells.

    PubMed

    Morris, J P; Wang, Y; Backeljau, T; Chapelle, G

    2016-06-01

    Climate change and ocean acidification are likely to have a profound effect on marine molluscs, which are of great ecological and economic importance. One process particularly sensitive to climate change is the formation of biominerals in mollusc shells. Fundamental research is broadening our understanding of the biomineralization process, as well as providing more informed predictions on the effects of climate change on marine molluscs. Such studies are important in their own right, but their value also extends to applied sciences. Biominerals, organic/inorganic hybrid materials with many remarkable physical and chemical properties, have been studied for decades, and the possibilities for future improved use of such materials for society are widely recognised. This article highlights the potential use of our understanding of the shell biomineralization process in novel bio-inspired and biomimetic applications. It also highlights the potential for the valorisation of shells produced as a by-product of the aquaculture industry. Studying shells and the formation of biominerals will inspire novel functional hybrid materials. It may also provide sustainable, ecologically- and economically-viable solutions to some of the problems created by current human resource exploitation. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Bio-inspired surfactants capable of generating plant volatiles.

    PubMed

    Bhadani, Avinash; Rane, Jayant; Veresmortean, Cristina; Banerjee, Sanjoy; John, George

    2015-04-21

    Plants are able to synthesize, store and release lipophilic organic molecules known as plant volatiles (PVs) utilizing specific biological pathways and different enzymes which play vital roles in the plant's defence and in dealing with biotic and abiotic stress situations. The process of generation, storage and release of PVs by plants acquired during the course of evolution is a very complex phenomenon. Bio-inspired molecular design of farnesol-based surfactants facilitates similar production, storage and release of PVs. The designed molecules adsorb at air-water interface and self-aggregate into micelles in aqueous system. The structural design of the molecules allows them to self-activate in water via intramolecular cation-π interactions. The activated molecules undergo molecular rearrangements generating volatile organic molecules both at interface and inside the micelle core. The molecules adsorbed at the interface initially release the formed volatile molecules creating vacant space at interface, thus thermodynamically directing the micelle to release the manufactured volatile products.

  4. Bio-inspired Murray materials for mass transfer and activity

    NASA Astrophysics Data System (ADS)

    Zheng, Xianfeng; Shen, Guofang; Wang, Chao; Li, Yu; Dunphy, Darren; Hasan, Tawfique; Brinker, C. Jeffrey; Su, Bao-Lian

    2017-04-01

    Both plants and animals possess analogous tissues containing hierarchical networks of pores, with pore size ratios that have evolved to maximize mass transport and rates of reactions. The underlying physical principles of this optimized hierarchical design are embodied in Murray's law. However, we are yet to realize the benefit of mimicking nature's Murray networks in synthetic materials due to the challenges in fabricating vascularized structures. Here we emulate optimum natural systems following Murray's law using a bottom-up approach. Such bio-inspired materials, whose pore sizes decrease across multiple scales and finally terminate in size-invariant units like plant stems, leaf veins and vascular and respiratory systems provide hierarchical branching and precise diameter ratios for connecting multi-scale pores from macro to micro levels. Our Murray material mimics enable highly enhanced mass exchange and transfer in liquid-solid, gas-solid and electrochemical reactions and exhibit enhanced performance in photocatalysis, gas sensing and as Li-ion battery electrodes.

  5. Copper removal using bio-inspired polydopamine coated natural zeolites.

    PubMed

    Yu, Yang; Shapter, Joseph G; Popelka-Filcoff, Rachel; Bennett, John W; Ellis, Amanda V

    2014-05-30

    Herein, for the first time, natural clinoptilolite-rich zeolite powders modified with a bio-inspired adhesive, polydopamine (PDA), have been systematically studied as an adsorbent for copper cations (Cu(II)) from aqueous solution. Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) revealed successful grafting of PDA onto the zeolite surface. The effects of pH (2-5.5), PDA treatment time (3-24h), contact time (0 to 24h) and initial Cu(II) ion concentrations (1 to 500mgdm(-3)) on the adsorption of Cu(II) ions were studied using atomic absorption spectroscopy (AAS) and neutron activation analysis (NAA). The adsorption behavior was fitted to a Langmuir isotherm and shown to follow a pseudo-second-order reaction model. The maximum adsorption capacities of Cu(II) were shown to be 14.93mgg(-1) for pristine natural zeolite and 28.58mgg(-1) for PDA treated zeolite powders. This impressive 91.4% increase in Cu(II) ion adsorption capacity is attributed to the chelating ability of the PDA on the zeolite surface. Furthermore studies of recyclability using NAA showed that over 50% of the adsorbed copper could be removed in mild concentrations (0.01M or 0.1M) of either acid or base.

  6. Bio-inspired Murray materials for mass transfer and activity

    PubMed Central

    Zheng, Xianfeng; Shen, Guofang; Wang, Chao; Li, Yu; Dunphy, Darren; Hasan, Tawfique; Brinker, C. Jeffrey; Su, Bao-Lian

    2017-01-01

    Both plants and animals possess analogous tissues containing hierarchical networks of pores, with pore size ratios that have evolved to maximize mass transport and rates of reactions. The underlying physical principles of this optimized hierarchical design are embodied in Murray's law. However, we are yet to realize the benefit of mimicking nature's Murray networks in synthetic materials due to the challenges in fabricating vascularized structures. Here we emulate optimum natural systems following Murray's law using a bottom-up approach. Such bio-inspired materials, whose pore sizes decrease across multiple scales and finally terminate in size-invariant units like plant stems, leaf veins and vascular and respiratory systems provide hierarchical branching and precise diameter ratios for connecting multi-scale pores from macro to micro levels. Our Murray material mimics enable highly enhanced mass exchange and transfer in liquid–solid, gas–solid and electrochemical reactions and exhibit enhanced performance in photocatalysis, gas sensing and as Li-ion battery electrodes. PMID:28382972

  7. Optimized bio-inspired stiffening design for an engine nacelle.

    PubMed

    Lazo, Neil; Vodenitcharova, Tania; Hoffman, Mark

    2015-11-04

    Structural efficiency is a common engineering goal in which an ideal solution provides a structure with optimized performance at minimized weight, with consideration of material mechanical properties, structural geometry, and manufacturability. This study aims to address this goal in developing high performance lightweight, stiff mechanical components by creating an optimized design from a biologically-inspired template. The approach is implemented on the optimization of rib stiffeners along an aircraft engine nacelle. The helical and angled arrangements of cellulose fibres in plants were chosen as the bio-inspired template. Optimization of total displacement and weight was carried out using a genetic algorithm (GA) coupled with finite element analysis. Iterations showed a gradual convergence in normalized fitness. Displacement was given higher emphasis in optimization, thus the GA optimization tended towards individual designs with weights near the mass constraint. Dominant features of the resulting designs were helical ribs with rectangular cross-sections having large height-to-width ratio. Displacement reduction was at 73% as compared to an unreinforced nacelle, and is attributed to the geometric features and layout of the stiffeners, while mass is maintained within the constraint.

  8. Miniaturized unified imaging system using bio-inspired fluidic lens

    NASA Astrophysics Data System (ADS)

    Tsai, Frank S.; Cho, Sung Hwan; Qiao, Wen; Kim, Nam-Hyong; Lo, Yu-Hwa

    2008-08-01

    Miniaturized imaging systems have become ubiquitous as they are found in an ever-increasing number of devices, such as cellular phones, personal digital assistants, and web cameras. Until now, the design and fabrication methodology of such systems have not been significantly different from conventional cameras. The only established method to achieve focusing is by varying the lens distance. On the other hand, the variable-shape crystalline lens found in animal eyes offers inspiration for a more natural way of achieving an optical system with high functionality. Learning from the working concepts of the optics in the animal kingdom, we developed bio-inspired fluidic lenses for a miniature universal imager with auto-focusing, macro, and super-macro capabilities. Because of the enormous dynamic range of fluidic lenses, the miniature camera can even function as a microscope. To compensate for the image quality difference between the central vision and peripheral vision and the shape difference between a solid-state image sensor and a curved retina, we adopted a hybrid design consisting of fluidic lenses for tunability and fixed lenses for aberration and color dispersion correction. A design of the world's smallest surgical camera with 3X optical zoom capabilities is also demonstrated using the approach of hybrid lenses.

  9. Bio-inspired Murray materials for mass transfer and activity.

    PubMed

    Zheng, Xianfeng; Shen, Guofang; Wang, Chao; Li, Yu; Dunphy, Darren; Hasan, Tawfique; Brinker, C Jeffrey; Su, Bao-Lian

    2017-04-06

    Both plants and animals possess analogous tissues containing hierarchical networks of pores, with pore size ratios that have evolved to maximize mass transport and rates of reactions. The underlying physical principles of this optimized hierarchical design are embodied in Murray's law. However, we are yet to realize the benefit of mimicking nature's Murray networks in synthetic materials due to the challenges in fabricating vascularized structures. Here we emulate optimum natural systems following Murray's law using a bottom-up approach. Such bio-inspired materials, whose pore sizes decrease across multiple scales and finally terminate in size-invariant units like plant stems, leaf veins and vascular and respiratory systems provide hierarchical branching and precise diameter ratios for connecting multi-scale pores from macro to micro levels. Our Murray material mimics enable highly enhanced mass exchange and transfer in liquid-solid, gas-solid and electrochemical reactions and exhibit enhanced performance in photocatalysis, gas sensing and as Li-ion battery electrodes.

  10. Bio-Inspired Stretchable Absolute Pressure Sensor Network

    PubMed Central

    Guo, Yue; Li, Yu-Hung; Guo, Zhiqiang; Kim, Kyunglok; Chang, Fu-Kuo; Wang, Shan X.

    2016-01-01

    A bio-inspired absolute pressure sensor network has been developed. Absolute pressure sensors, distributed on multiple silicon islands, are connected as a network by stretchable polyimide wires. This sensor network, made on a 4’’ wafer, has 77 nodes and can be mounted on various curved surfaces to cover an area up to 0.64 m × 0.64 m, which is 100 times larger than its original size. Due to Micro Electro-Mechanical system (MEMS) surface micromachining technology, ultrathin sensing nodes can be realized with thicknesses of less than 100 µm. Additionally, good linearity and high sensitivity (~14 mV/V/bar) have been achieved. Since the MEMS sensor process has also been well integrated with a flexible polymer substrate process, the entire sensor network can be fabricated in a time-efficient and cost-effective manner. Moreover, an accurate pressure contour can be obtained from the sensor network. Therefore, this absolute pressure sensor network holds significant promise for smart vehicle applications, especially for unmanned aerial vehicles. PMID:26729134

  11. Optical properties of bio-inspired peptide nanotubes

    NASA Astrophysics Data System (ADS)

    Handelman, Amir; Apter, Boris; Rosenman, Gil

    2016-04-01

    Supramolecular self-assembled bio-inspired peptide nanostructures are favorable to be implemented in diverse nanophotonics applications due to their superior physical properties such as wideband optical transparency, high second-order nonlinear response, waveguiding properties and more. Here, we focus on the optical properties found in di-phenylalanine peptide nano-architectures, with special emphasize on their linear and nonlinear optical waveguiding effects. Using both simulation and experiments, we show their ability to passively guide light at both fundamental and second-harmonic frequencies. In addition, we show that at elevated temperatures, 140-180°C, these native supramolecular structures undergo irreversible thermally induced transformation via re-assembling into completely new thermodynamically stable phase having nanofiber morphology similar to those of amyloid fibrils. In this new phase, the peptide nanofibers lose their second-order nonlinear response, while exhibit profound modification of optoelectronic properties followed by the appearance of visible (blue and green) photoluminescence (PL). Our study propose a new generation of multifunctional optical waveguides with variety of characteristics, which self-assembled into 1D-elongated nanostructures and could be used as building blocks of many integrated photonic devices.

  12. Bio-Inspired Stretchable Absolute Pressure Sensor Network.

    PubMed

    Guo, Yue; Li, Yu-Hung; Guo, Zhiqiang; Kim, Kyunglok; Chang, Fu-Kuo; Wang, Shan X

    2016-01-02

    A bio-inspired absolute pressure sensor network has been developed. Absolute pressure sensors, distributed on multiple silicon islands, are connected as a network by stretchable polyimide wires. This sensor network, made on a 4'' wafer, has 77 nodes and can be mounted on various curved surfaces to cover an area up to 0.64 m × 0.64 m, which is 100 times larger than its original size. Due to Micro Electro-Mechanical system (MEMS) surface micromachining technology, ultrathin sensing nodes can be realized with thicknesses of less than 100 µm. Additionally, good linearity and high sensitivity (~14 mV/V/bar) have been achieved. Since the MEMS sensor process has also been well integrated with a flexible polymer substrate process, the entire sensor network can be fabricated in a time-efficient and cost-effective manner. Moreover, an accurate pressure contour can be obtained from the sensor network. Therefore, this absolute pressure sensor network holds significant promise for smart vehicle applications, especially for unmanned aerial vehicles.

  13. Limited Bandwidth Recognition of Collective Behaviors in Bio-Inspired Swarms

    DTIC Science & Technology

    2014-05-09

    scalable human interaction with large bio-inspired robot swarms, namely, how do you know what the swarm is doing if you can’t observe every agent in the...uncertainty about the swarm’s actual behavior. Additionally, as robot swarms increase in size, bandwidth and time constraints limit the number of agents...limited samples of a small subset of agents. We present a novel framework for classifying the collective behavior of a bio-inspired robot swarm using

  14. A bio-inspired test system for bionic above-knee prosthetic knees

    NASA Astrophysics Data System (ADS)

    Wang, Dai-Hua; Xu, Lei; Fu, Qiang; Yuan, Gang

    2013-04-01

    Recently, prosthetic knees in the developing stage are usually tested by installing them on amputees' stumps directly or on above-knee prostheses (AKPs) test platforms. Although amputees can fully provide the actual motion state of the thigh, immature prosthetic knees may hurt amputees. For AKPs test platforms, it just can partly simulate the actual motion state of the thigh with limitation of the motion curve of the thigh, the merits or demerits of newly developed bionic above-knee prosthetic knees cannot be accessed thoroughly. Aiming at the defects of two testing methods, this paper presents a bio-inspired AKPs test system for bionic above-knee prosthetic knees. The proposed bio-inspired AKPs test system is composed of a AKPs test platform, a control system, and a bio-inspired system. The AKPs test platform generates the motion of the thigh simulation mechanism (TSM) via two screw pairs with servo motors. The bio-inspired system includes the tester and the bio-inspired sensor wore by the tester. The control system, which is inspired by the bio-inspired system, generates the control command signal to move the TSM of the AKPs test platform. The bio-inspired AKPs test system is developed and experimentally tested with a commercially available prosthetic knee. The research results show that the bio-inspired AKPs test system can not only ensure the safety of the testers, but also track all kinds of the actual motion state of the thigh of the testers in real time.

  15. A new bio-inspired decision chain for UAV sense-and-avoid applications

    NASA Astrophysics Data System (ADS)

    Fallavollita, P.; Cimini, F.; Balsi, M.; Esposito, S.; Jankowski, S.

    This work, after a preliminary feasibility study using a Matlab environment simulation, defines the design and the real hardware testing of a new bio-inspired decision chain for UAV sense-and-avoid applications. Relying on a single and cheap visible camera sensor, computer vision, bio-inspired and automatic decision algorithms have been adopted and implemented on a specific ARM embedded platform through C++/OpenCV coding. A first data set processing, really captured on flight, has been presented.

  16. Bio-inspired annelid robot: a dielectric elastomer actuated soft robot.

    PubMed

    Xu, Liang; Chen, Han-Qing; Zou, Jiang; Dong, Wan-Ting; Gu, Guo-Ying; Zhu, Li-Min; Zhu, Xiang-Yang

    2017-01-31

    Biologically inspired robots with inherent softness and body compliance increasingly attract attention in the field of robotics. Aimed at solving existing problems with soft robots, regarding actuation technology and biological principles, this paper presents a soft bio-inspired annelid robot driven by dielectric elastomer actuators (DEAs) that can advance on flat rigid surfaces. The DEA, a kind of soft functional actuator, is designed and fabricated to mimic the axial elongation and differential friction of a single annelid body segment. Several (at least three) DEAs are connected together into a movable multi-segment robot. Bristles are attached at the bottom of some DEAs to achieve differential friction for imitating the setae of annelids. The annelid robot is controlled by periodic square waves, propagating from the posterior to the anterior, which imitate the peristaltic waves of annelids. Controlled by these waves, each DEA, one-by-one from tail to head, anchors to the ground by circumferential distention and pushes the front DEAs forward by axial elongation, enabling the robot to advance. Preliminary tests demonstrate that a 3-segment robot can reach an average speed of 5.3 mm s(-1) (1.871 body lengths min(-1)) on flat rigid surfaces and can functionally mimic the locomotion of annelids. Compared to the existing robots that imitate terrestrial annelids our annelid robot shows advantages in terms of speed and bionics.

  17. Bio-Inspired Distributed Decision Algorithms for Anomaly Detection

    DTIC Science & Technology

    2017-03-01

    i.e. they connect to a larger number of nodes, e) the CAIDA Autonomous System graph for May 2004 [9], and f) the CAIDA Autonomous System graph for...built to specific network traces. We plan to obtain and support re-play of Witty Worm traces from CAIDA managed by UCSD. 3.3.2.7 DIAMoND...partially) scale-free networks with weak hubs is very low, and in most cases does not even exceed 50%. For systems with strong hubs, such as the real CAIDA

  18. Three-Dimensional-Printing of Bio-Inspired Composites

    PubMed Central

    Xiang Gu, Grace; Su, Isabelle; Sharma, Shruti; Voros, Jamie L.; Qin, Zhao; Buehler, Markus J.

    2016-01-01

    Optimized for millions of years, natural materials often outperform synthetic materials due to their hierarchical structures and multifunctional abilities. They usually feature a complex architecture that consists of simple building blocks. Indeed, many natural materials such as bone, nacre, hair, and spider silk, have outstanding material properties, making them applicable to engineering applications that may require both mechanical resilience and environmental compatibility. However, such natural materials are very difficult to harvest in bulk, and may be toxic in the way they occur naturally, and therefore, it is critical to use alternative methods to fabricate materials that have material functions similar to material function as their natural counterparts for large-scale applications. Recent progress in additive manufacturing, especially the ability to print multiple materials at upper micrometer resolution, has given researchers an excellent instrument to design and reconstruct natural-inspired materials. The most advanced 3D-printer can now be used to manufacture samples to emulate their geometry and material composition with high fidelity. Its capabilities, in combination with computational modeling, have provided us even more opportunities for designing, optimizing, and testing the function of composite materials, in order to achieve composites of high mechanical resilience and reliability. In this review article, we focus on the advanced material properties of several multifunctional biological materials and discuss how the advanced 3D-printing techniques can be used to mimic their architectures and functions. Lastly, we discuss the limitations of 3D-printing, suggest possible future developments, and discuss applications using bio-inspired materials as a tool in bioengineering and other fields. PMID:26747791

  19. Three-Dimensional-Printing of Bio-Inspired Composites.

    PubMed

    Xiang Gu, Grace; Su, Isabelle; Sharma, Shruti; Voros, Jamie L; Qin, Zhao; Buehler, Markus J

    2016-02-01

    Optimized for millions of years, natural materials often outperform synthetic materials due to their hierarchical structures and multifunctional abilities. They usually feature a complex architecture that consists of simple building blocks. Indeed, many natural materials such as bone, nacre, hair, and spider silk, have outstanding material properties, making them applicable to engineering applications that may require both mechanical resilience and environmental compatibility. However, such natural materials are very difficult to harvest in bulk, and may be toxic in the way they occur naturally, and therefore, it is critical to use alternative methods to fabricate materials that have material functions similar to material function as their natural counterparts for large-scale applications. Recent progress in additive manufacturing, especially the ability to print multiple materials at upper micrometer resolution, has given researchers an excellent instrument to design and reconstruct natural-inspired materials. The most advanced 3D-printer can now be used to manufacture samples to emulate their geometry and material composition with high fidelity. Its capabilities, in combination with computational modeling, have provided us even more opportunities for designing, optimizing, and testing the function of composite materials, in order to achieve composites of high mechanical resilience and reliability. In this review article, we focus on the advanced material properties of several multifunctional biological materials and discuss how the advanced 3D-printing techniques can be used to mimic their architectures and functions. Lastly, we discuss the limitations of 3D-printing, suggest possible future developments, and discuss applications using bio-inspired materials as a tool in bioengineering and other fields.

  20. Control of Flow Structure on Non-Slender Delta Wing: Bio-inspired Edge Modifications, Passive Bleeding, and Pulsed Blowing

    NASA Astrophysics Data System (ADS)

    Yavuz, Mehmet Metin; Celik, Alper; Cetin, Cenk

    2016-11-01

    In the present study, different flow control approaches including bio-inspired edge modifications, passive bleeding, and pulsed blowing are introduced and applied for the flow over non-slender delta wing. Experiments are conducted in a low speed wind tunnel for a 45 degree swept delta wing using qualitative and quantitative measurement techniques including laser illuminated smoke visualization, particle image velocimety (PIV), and surface pressure measurements. For the bio-inspired edge modifications, the edges of the wing are modified to dolphin fluke geometry. In addition, the concept of flexion ratio, a ratio depending on the flexible length of animal propulsors such as wings, is introduced. For passive bleeding, directing the free stream air from the pressure side of the planform to the suction side of the wing is applied. For pulsed blowing, periodic air injection through the leading edge of the wing is performed in a square waveform with 25% duty cycle at different excitation frequencies and compared with the steady and no blowing cases. The results indicate that each control approach is quite effective in terms of altering the overall flow structure on the planform. However, the success level, considering the elimination of stall or delaying the vortex breakdown, depends on the parameters in each method.

  1. Viscous-Inviscid Methods in Unsteady Aerodynamic Analysis of Bio-Inspired Morphing Wings

    NASA Astrophysics Data System (ADS)

    Dhruv, Akash V.

    Flight has been one of the greatest realizations of human imagination, revolutionizing communication and transportation over the years. This has greatly influenced the growth of technology itself, enabling researchers to communicate and share their ideas more effectively, extending the human potential to create more sophisticated systems. While the end product of a sophisticated technology makes our lives easier, its development process presents an array of challenges in itself. In last decade, scientists and engineers have turned towards bio-inspiration to design more efficient and robust aerodynamic systems to enhance the ability of Unmanned Aerial Vehicles (UAVs) to be operated in cluttered environments, where tight maneuverability and controllability are necessary. Effective use of UAVs in domestic airspace will mark the beginning of a new age in communication and transportation. The design of such complex systems necessitates the need for faster and more effective tools to perform preliminary investigations in design, thereby streamlining the design process. This thesis explores the implementation of numerical panel methods for aerodynamic analysis of bio-inspired morphing wings. Numerical panel methods have been one of the earliest forms of computational methods for aerodynamic analysis to be developed. Although the early editions of this method performed only inviscid analysis, the algorithm has matured over the years as a result of contributions made by prominent aerodynamicists. The method discussed in this thesis is influenced by recent advancements in panel methods and incorporates both viscous and inviscid analysis of multi-flap wings. The surface calculation of aerodynamic coefficients makes this method less computationally expensive than traditional Computational Fluid Dynamics (CFD) solvers available, and thus is effective when both speed and accuracy are desired. The morphing wing design, which consists of sequential feather-like flaps installed

  2. An Experimental Investigation on Bio-inspired Icephobic Coatings for Aircraft Icing Mitigation

    NASA Astrophysics Data System (ADS)

    Hu, Hui; Li, Haixing; Waldman, Rye

    2016-11-01

    By leveraging the Icing Research Tunnel available at Iowa State University (ISU-IRT), a series of experimental investigations were conducted to elucidate the underlying physics pertinent to aircraft icing phenomena. A suite of advanced flow diagnostic techniques, which include high-speed photographic imaging, digital image projection (DIP), and infrared (IR) imaging thermometry, were developed and applied to quantify the transient behavior of water droplet impingement, wind-driven surface water runback, unsteady heat transfer and dynamic ice accreting process over the surfaces of airfoil/wing models. The icephobic performance of various bio-inspired superhydrophobic coatings were evaluated quantitatively at different icing conditions. The findings derived from the icing physics studies can be used to improve current icing accretion models for more accurate prediction of ice formation and accretion on aircraft wings and to develop effective anti-/deicing strategies for safer and more efficient operation of aircraft in cold weather. The research work is partially supported by NASA with Grant Number NNX12AC21A and National Science Foundation under Award Numbers of CBET-1064196 and CBET-1435590.

  3. A bio-inspired flying robot sheds light on insect piloting abilities.

    PubMed

    Franceschini, Nicolas; Ruffier, Franck; Serres, Julien

    2007-02-20

    When insects are flying forward, the image of the ground sweeps backward across their ventral viewfield and forms an "optic flow," which depends on both the groundspeed and the groundheight. To explain how these animals manage to avoid the ground by using this visual motion cue, we suggest that insect navigation hinges on a visual-feedback loop we have called the optic-flow regulator, which controls the vertical lift. To test this idea, we built a micro-helicopter equipped with an optic-flow regulator and a bio-inspired optic-flow sensor. This fly-by-sight micro-robot can perform exacting tasks such as take-off, level flight, and landing. Our control scheme accounts for many hitherto unexplained findings published during the last 70 years on insects' visually guided performances; for example, it accounts for the fact that honeybees descend in a headwind, land with a constant slope, and drown when travelling over mirror-smooth water. Our control scheme explains how insects manage to fly safely without any of the instruments used onboard aircraft to measure the groundheight, groundspeed, and descent speed. An optic-flow regulator is quite simple in terms of its neural implementation and just as appropriate for insects as it would be for aircraft.

  4. Bio-inspired Nanomaterials for Biosensing and Cell Response

    NASA Astrophysics Data System (ADS)

    Stevens, Molly

    2012-02-01

    This talk will provide an overview of our recent developments in bio-inspired nanomaterials for tissue regeneration and sensing. Bio-responsive nanomaterials are of growing importance with potential applications including drug delivery, diagnostics and tissue engineering [1]. DNA-, protein- or peptide-functionalised nanoparticle (NP) aggregates are particularly useful systems since triggered changes in their aggregation states may be readily monitored. Our recent simple conceptually novel approaches to real-time monitoring of protease, lipase and kinase enzyme action using modular peptide functionalized NPs will be presented [2,3,4]. The highly interdisciplinary field of Tissue Engineering (TE) can also benefit from advances in the design of bio-responsive nanomaterials. TE involves the development of artificial scaffold structures on which new cells are encouraged to grow. The ability to control topography and chemistry at the nanoscale offers exciting possibilities for stimulating growth of new tissue through the development of novel nanostructured scaffolds that mimic the nanostructure of the tissues in the body [1,5,6]. Recent developments in this context will be discussed as well as novel approaches to in vivo tissue regeneration of large volumes of highly vascularised and hierarchically organized tissue [7,8,9]. [4pt] [1] MM Stevens, J George. Science 310:1135-1138 (2005)[0pt] [2] A Laromaine, L Koh, M Murugesan, RV Ulijn, MM Stevens. Journal of the American Chemical Society 129:4156-4157 (2007)[0pt] [3] J Ghadiali, MM Stevens. Advanced Materials 20: 4359-4363 (2008); J Ghadiali et al, ACS Nano 4:4915-4919 (2010)[0pt] [4] D Aili, M Mager, D Roche, MM Stevens. Nano Letters 11:1401-1405 (2011) [0pt] [5] E Place, ND Evans, MM Stevens. Nature Materials 8:457-470 (2009)[0pt] [6] MD Mager, V LaPointe, MM Stevens. Nature Chemistry 3:582-589 (2011)[0pt] [7] MM Stevens et. al. Proc. Natl. Acad. Sci. USA 102:11450-11455 (2005)[0pt] [8] E Gentleman et al. Nature

  5. Bio-Inspired Approaches to Crystals with Composite Structures

    NASA Astrophysics Data System (ADS)

    Meldrum, Fiona

    2013-03-01

    Advances in technology demand an ever-increasing degree of control over material structure, properties and function. As the properties of monolithic materials are necessary limited, one route to extending them is to create a composite by combining contrasting materials. The potential of this approach is beautifully illustrated by the formation of biominerals where organic macromolecules are combined with brittle minerals such as calcite to create crystals with considerable fracture toughness. This talk will discuss how bio-inspired approaches can be used to generate single crystals with composite crystals through a simple one-pot method. By precipitating calcite crystals in the presence of ``occlusion species'' ranging from latex particles, to organic and inorganic nanoparticles and finally small molecules we demonstrate that high amounts of foreign species can be incorporated through control over the additive surface chemistry, and that this can lead to an enhancement of the mechanical properties of the calcite. Occlusion of 20 nm anionic diblock copolymer micelles was achieved at levels of over 13 wt%, and the properties of the resuktant composite calcite crystals were measured using a range of techniques including IR spectroscopy, high resolution powder XRD and high resolution TEM. Incorporation of these macromolecules leads to crystals with structures and mechanical properties similar to those of biominerals. With sizes in the range of some intracrystalline proteins, the micelles act as ``pseudo-proteins'', thereby providing an excellent model system for investigation of the mechanism of macromolecule insertion within biominerals. Extension of these studies to the incorporation of small molecules (amino acids) again demonstrated high levels of incorporation without any change in the crystal morphology. Further, occlusion of these small molecules within the calcite lattice again resulted in a significant increase in the hardness of the calcite, a result which

  6. Bio-inspired 3D microenvironments: a new dimension in tissue engineering.

    PubMed

    Magin, Chelsea M; Alge, Daniel L; Anseth, Kristi S

    2016-03-04

    Biomaterial scaffolds have been a foundational element of the tissue engineering paradigm since the inception of the field. Over the years there has been a progressive move toward the rational design and fabrication of bio-inspired materials that mimic the composition as well as the architecture and 3D structure of tissues. In this review, we chronicle advances in the field that address key challenges in tissue engineering as well as some emerging applications. Specifically, a summary of the materials and chemistries used to engineer bio-inspired 3D matrices that mimic numerous aspects of the extracellular matrix is provided, along with an overview of bioprinting, an additive manufacturing approach, for the fabrication of engineered tissues with precisely controlled 3D structures and architectures. To emphasize the potential clinical impact of the bio-inspired paradigm in biomaterials engineering, some applications of bio-inspired matrices are discussed in the context of translational tissue engineering. However, focus is also given to recent advances in the use of engineered 3D cellular microenvironments for fundamental studies in cell biology, including photoresponsive systems that are shedding new light on how matrix properties influence cell phenotype and function. In an outlook for future work, the need for high-throughput methods both for screening and fabrication is highlighted. Finally, microscale organ-on-a-chip technologies are highlighted as a promising area for future investment in the application of bio-inspired microenvironments.

  7. Bio-inspired passive actuator simulating an abalone shell mechanism for structural control

    NASA Astrophysics Data System (ADS)

    Yang, Henry T. Y.; Lin, Chun-Hung; Bridges, Daniel; Randall, Connor J.; Hansma, Paul K.

    2010-10-01

    An energy dispersion mechanism called 'sacrificial bonds and hidden length', which is found in some biological systems, such as abalone shells and bones, is the inspiration for new strategies for structural control. Sacrificial bonds and hidden length can substantially increase the stiffness and enhance energy dissipation in the constituent molecules of abalone shells and bone. Having been inspired by the usefulness and effectiveness of such a mechanism, which has evolved over millions of years and countless cycles of evolutions, the authors employ the conceptual underpinnings of this mechanism to develop a bio-inspired passive actuator. This paper presents a fundamental method for optimally designing such bio-inspired passive actuators for structural control. To optimize the bio-inspired passive actuator, a simple method utilizing the force-displacement-velocity (FDV) plots based on LQR control is proposed. A linear regression approach is adopted in this research to find the initial values of the desired parameters for the bio-inspired passive actuator. The illustrative examples, conducted by numerical simulation with experimental validation, suggest that the bio-inspired passive actuator based on sacrificial bonds and hidden length may be comparable in performance to state-of-the-art semi-active actuators.

  8. Visually guided gait modifications for stepping over an obstacle: a bio-inspired approach.

    PubMed

    Silva, Pedro; Matos, Vitor; Santos, Cristina P

    2014-02-01

    There is an increasing interest in conceiving robotic systems that are able to move and act in an unstructured and not predefined environment, for which autonomy and adaptability are crucial features. In nature, animals are autonomous biological systems, which often serve as bio-inspiration models, not only for their physical and mechanical properties, but also their control structures that enable adaptability and autonomy-for which learning is (at least) partially responsible. This work proposes a system which seeks to enable a quadruped robot to online learn to detect and to avoid stumbling on an obstacle in its path. The detection relies in a forward internal model that estimates the robot's perceptive information by exploring the locomotion repetitive nature. The system adapts the locomotion in order to place the robot optimally before attempting to step over the obstacle, avoiding any stumbling. Locomotion adaptation is achieved by changing control parameters of a central pattern generator (CPG)-based locomotion controller. The mechanism learns the necessary alterations to the stride length in order to adapt the locomotion by changing the required CPG parameter. Both learning tasks occur online and together define a sensorimotor map, which enables the robot to learn to step over the obstacle in its path. Simulation results show the feasibility of the proposed approach.

  9. Fluorimetric Mercury Test Strips with Suppressed "Coffee Stains" by a Bio-inspired Fabrication Strategy.

    PubMed

    Qiao, Yuchun; Shang, Jizhen; Li, Shuying; Feng, Luping; Jiang, Yao; Duan, Zhiqiang; Lv, Xiaoxia; Zhang, Chunxian; Yao, Tiantian; Dong, Zhichao; Zhang, Yu; Wang, Hua

    2016-11-04

    A fluorimetric Hg(2+) test strip has been developed using a lotus-inspired fabrication method for suppressing the "coffee stains" toward the uniform distribution of probe materials through creating a hydrophobic drying pattern for fast solvent evaporation. The test strips were first loaded with the model probes of fluorescent gold-silver nanoclusters and then dried in vacuum on the hydrophobic pattern. On the one hand, here, the hydrophobic constraining forces from the lotus surface-like pattern could control the exterior transport of dispersed nanoclusters on strips leading to the minimized "coffee stains". On the other hand, the vacuum-aided fast solvent evaporation could boost the interior Marangoni flow of probe materials on strips to expect the further improved probe distribution on strips. High aqueous stability and enhanced fluorescence of probes on test strips were realized by the hydrophilic treatment with amine-derivatized silicane. A test strips-based fluorimetry has thereby been developed for probing Hg(2+) ions in wastewater, showing the detection performances comparable to the classic instrumental analysis ones. Such a facile and efficient fabrication route for the bio-inspired suppression of "coffee stains" on test strips may expand the scope of applications of test strips-based "point-of-care" analysis methods or detection devices in the biomedical and environmental fields.

  10. A bio-inspired stimulator to desynchronize epileptic cortical population models: A digital implementation framework.

    PubMed

    Piri, Mohsen; Amiri, Masoud; Amiri, Mahmood

    2015-07-01

    Pathophysiologic neural synchronization is a hallmark of several neurological disorders such as epilepsy. In addition, based on established neurophysiologic findings, astrocytes dynamically regulate the synaptic transmission and have key roles in stabilizing neural synchronization. Therefore, in the present study, based on the dynamic model of astrocyte, a digital bio-inspired stimulator is proposed to avoid the hyper-synchronous seizure-like activities in a cortical population model. The complete digital circuit of the close loop system that is the bio-inspired stimulator and the cortical population model are implemented in hardware on the ZedBoard development kit. Based on the results of MATLAB simulations, hardware synthesis and FPGA implementation, it is demonstrated that the digital bio-inspired stimulator can effectively prevent the occurrence of spontaneous paroxysmal episodes with a demand-controlled characteristic. In this way, the designed digital stimulator successfully maintains the normal ongoing activity.

  11. Bio-Inspired Pressure Sensing for Active Yaw Control of Underwater Vehicles

    NASA Astrophysics Data System (ADS)

    Gao, Amy; Triantafyllou, Michael

    2012-11-01

    A towed underwater vehicle equipped with a bio-inspired artificial lateral line was constructed and tested with the goal of active detection and correction of the vehicle's angle of attack. Preliminary experiments demonstrate that a low number of sensors are sufficient to enable the discrimination between different orientations, and that a basic proportional controller is capable of keeping the vehicle aligned with the direction of flow. We propose that a model based controller could be developed to improve system response. Toward this, we derive a vehicle model based on a first-order 3D Rankine Source Panel Method, which is shown to be competent in estimating the pressure field in the region of interest during motion at constant angles of attack, and during execution of dynamic maneuvers. To solve the inverse problem of estimating the vehicle orientation given specific pressure measurements, an Unscented Kalman Filter is developed around the model. It is shown to provide a close estimation of the vehicle state using experimentally collected pressure measurements. This demonstrates that an artificial lateral line is a promising technology for dynamically mediating the angle of a body relative to the oncoming flow.

  12. Bio-inspired patterned networks (BIPS) for development of wearable/disposable biosensors

    NASA Astrophysics Data System (ADS)

    McLamore, E. S.; Convertino, M.; Hondred, John; Das, Suprem; Claussen, J. C.; Vanegas, D. C.; Gomes, C.

    2016-05-01

    Here we demonstrate a novel approach for fabricating point of care (POC) wearable electrochemical biosensors based on 3D patterning of bionanocomposite networks. To create Bio-Inspired Patterned network (BIPS) electrodes, we first generate fractal network in silico models that optimize transport of network fluxes according to an energy function. Network patterns are then inkjet printed onto flexible substrate using conductive graphene ink. We then deposit fractal nanometal structures onto the graphene to create a 3D nanocomposite network. Finally, we biofunctionalize the surface with biorecognition agents using covalent bonding. In this paper, BIPS are used to develop high efficiency, low cost biosensors for measuring glucose as a proof of concept. Our results on the fundamental performance of BIPS sensors show that the biomimetic nanostructures significantly enhance biosensor sensitivity, accuracy, response time, limit of detection, and hysteresis compared to conventional POC non fractal electrodes (serpentine, interdigitated, and screen printed electrodes). BIPs, in particular Apollonian patterned BIPS, represent a new generation of POC biosensors based on nanoscale and microscale fractal networks that significantly improve electrical connectivity, leading to enhanced sensor performance.

  13. Architecture for persistent surveillance using mast and UAS-based autonomous sensing with bio-inspired technologies

    NASA Astrophysics Data System (ADS)

    Burman, Jerry

    2014-06-01

    A sophisticated real time architecture for capturing relevant battlefield information of personnel and terrestrial events from a network of mast based imaging and unmanned aerial systems (UAS) with target detection, tracking, classification and visualization is presented. Persistent surveillance of personnel and vehicles is achieved using a unique spatial and temporally invariant motion detection and tracking algorithm for mast based cameras in combination with aerial remote sensing to autonomously monitor unattended ground based sensor networks. UAS autonomous routing is achieved using bio-inspired algorithms that mimic how bacteria locate nutrients in their environment. Results include field test data, performance and lessons learned. The technology also has application to detecting and tracking low observables (manned and UAS), counter MANPADS, airport bird detection and search and rescue operations.

  14. Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle.

    PubMed

    Nakata, T; Liu, H; Tanaka, Y; Nishihashi, N; Wang, X; Sato, A

    2011-12-01

    MAVs (micro air vehicles) with a maximal dimension of 15 cm and nominal flight speeds of around 10 m s⁻¹, operate in a Reynolds number regime of 10⁵ or lower, in which most natural flyers including insects, bats and birds fly. Furthermore, due to their light weight and low flight speed, the MAVs' flight characteristics are substantially affected by environmental factors such as wind gust. Like natural flyers, the wing structures of MAVs are often flexible and tend to deform during flight. Consequently, the aero/fluid and structural dynamics of these flyers are closely linked to each other, making the entire flight vehicle difficult to analyze. We have recently developed a hummingbird-inspired, flapping flexible wing MAV with a weight of 2.4-3.0 g and a wingspan of 10-12 cm. In this study, we carry out an integrated study of the flexible wing aerodynamics of this flapping MAV by combining an in-house computational fluid dynamic (CFD) method and wind tunnel experiments. A CFD model that has a realistic wing planform and can mimic realistic flexible wing kinematics is established, which provides a quantitative prediction of unsteady aerodynamics of the four-winged MAV in terms of vortex and wake structures and their relationship with aerodynamic force generation. Wind tunnel experiments further confirm the effectiveness of the clap and fling mechanism employed in this bio-inspired MAV as well as the importance of the wing flexibility in designing small flapping-wing MAVs.

  15. Bio-Inspired Metal-Coordination Dynamics: A Unique Tool for Engineering Soft Matter Mechanics

    NASA Astrophysics Data System (ADS)

    Holten-Andersen, Niels

    Growing evidence supports a critical role of metal-coordination in soft biological material properties such as self-healing, underwater adhesion and autonomous wound plugging. Using bio-inspired metal-binding polymers, initial efforts to mimic these properties with metal-coordination crosslinked polymer materials have shown promise. In addition, with polymer network mechanics strongly coupled to coordinate crosslink dynamics material properties can be easily tuned from visco-elastic fluids to solids. Given their exploitation in desirable material applications in Nature, bio-inspired metal-coordinate complex crosslinking provides an opportunity to further advance synthetic polymer materials design. Early lessons from this pursuit are presented.

  16. Bio-inspired visual ego-rotation sensor for MAVs.

    PubMed

    Plett, Johannes; Bahl, Armin; Buss, Martin; Kühnlenz, Kolja; Borst, Alexander

    2012-01-01

    Flies are capable of extraordinary flight maneuvers at very high speeds largely due to their highly elaborate visual system. In this work we present a fly-inspired FPGA based sensor system able to visually sense rotations around different body axes, for use on board micro aerial vehicles (MAVs). Rotation sensing is performed analogously to the fly's VS cell network using zero-crossing detection. An additional key feature of our system is the ease of adding new functionalities akin to the different tasks attributed to the fly's lobula plate tangential cell network, such as object avoidance or collision detection. Our implementation consists of a modified eneo SC-MVC01 SmartCam module and a custom built circuit board, weighing less than 200 g and consuming less than 4 W while featuring 57,600 individual two-dimensional elementary motion detectors, a 185° field of view and a frame rate of 350 frames per second. This makes our sensor system compact in terms of size, weight and power requirements for easy incorporation into MAV platforms, while autonomously performing all sensing and processing on-board and in real time.

  17. A bio-inspired sensor coupled with a bio-bar code and hybridization chain reaction for Hg(2+) assay.

    PubMed

    Xu, Huifeng; Zhu, Xi; Ye, Hongzhi; Yu, Lishuang; Chen, Guonan; Chi, Yuwu; Liu, Xianxiang

    2015-10-18

    In this article, a bio-inspired DNA sensor is developed, which is coupled with a bio-bar code and hybridization chain reaction. This bio-inspired sensor has a high sensitivity toward Hg(2+), and has been used to assay Hg(2+) in the extraction of Bauhinia championi with good satisfaction.

  18. Development of a bio-inspired UAV perching system

    NASA Astrophysics Data System (ADS)

    Xie, Pu

    of animals and human arms approaching to a fixed or moving target for grasping or capturing. The autonomous flight control was also implemented through a PID controller. Autonomous flight performance was proved through simulation in SimMechanics. Finally, the prototyping of our designs were conducted in different generations of our bio-inspired UAV perching system, which include the leg prototype, gripper prototype, and system prototype. Both the machined prototype and 3D printed prototype were tried. The performance of these prototypes was tested through experiments.

  19. Interactive Learning Environment for Bio-Inspired Optimization Algorithms for UAV Path Planning

    ERIC Educational Resources Information Center

    Duan, Haibin; Li, Pei; Shi, Yuhui; Zhang, Xiangyin; Sun, Changhao

    2015-01-01

    This paper describes the development of BOLE, a MATLAB-based interactive learning environment, that facilitates the process of learning bio-inspired optimization algorithms, and that is dedicated exclusively to unmanned aerial vehicle path planning. As a complement to conventional teaching methods, BOLE is designed to help students consolidate the…

  20. A two-dimensional iterative panel method and boundary layer model for bio-inspired multi-body wings

    NASA Astrophysics Data System (ADS)

    Blower, Christopher J.; Dhruv, Akash; Wickenheiser, Adam M.

    2014-03-01

    The increased use of Unmanned Aerial Vehicles (UAVs) has created a continuous demand for improved flight capabilities and range of use. During the last decade, engineers have turned to bio-inspiration for new and innovative flow control methods for gust alleviation, maneuverability, and stability improvement using morphing aircraft wings. The bio-inspired wing design considered in this study mimics the flow manipulation techniques performed by birds to extend the operating envelope of UAVs through the installation of an array of feather-like panels across the airfoil's upper and lower surfaces while replacing the trailing edge flap. Each flap has the ability to deflect into both the airfoil and the inbound airflow using hinge points with a single degree-of-freedom, situated at 20%, 40%, 60% and 80% of the chord. The installation of the surface flaps offers configurations that enable advantageous maneuvers while alleviating gust disturbances. Due to the number of possible permutations available for the flap configurations, an iterative constant-strength doublet/source panel method has been developed with an integrated boundary layer model to calculate the pressure distribution and viscous drag over the wing's surface. As a result, the lift, drag and moment coefficients for each airfoil configuration can be calculated. The flight coefficients of this numerical method are validated using experimental data from a low speed suction wind tunnel operating at a Reynolds Number 300,000. This method enables the aerodynamic assessment of a morphing wing profile to be performed accurately and efficiently in comparison to Computational Fluid Dynamics methods and experiments as discussed herein.

  1. Bio-inspired robot design for viscous fluids

    NASA Astrophysics Data System (ADS)

    Ma, Grace; Lipman, Tyler; Jung, Sunghwan

    Many modern micro-robots are designed for biomedical applications to transport drugs to targets or to operate tests in the body for diagnosis. However, most micro-robots simply mimic the morphology and the propulsive mechanism of micro-organisms without understanding the underlying physics of low-Re swimming. Two types of swimming motions have been observed in micro-organisms; stresslet and source-dipole swimming. The stresslet swimmer (e.g. E. coli) uses a rotating helical appendage, whereas the source-dipole swimmer (e.g. Paramecium) creates surface velocity for propulsion. Using this principle, we designed a robot to swim in very viscous fluids either by rotating a helix or creating surface velocity, simply by changing the orientation of the appendage. Further, we will discuss the performance of this robot (swimming speed and rotation speed) with respect to the number, winding angle, and radius of helices in a very viscous fluid.

  2. Evaluation of bio-inspired morphing concepts with regard to aircraft dynamics and performance

    NASA Astrophysics Data System (ADS)

    Wickenheiser, Adam M.; Garcia, Ephrahim; Waszak, Martin

    2004-07-01

    This paper will discuss the application of various bio-inspired morphing concepts to unmanned aerial vehicle (UAV) designs. Several analysis tools will be introduced to calculate the aerodynamic benefits, dynamic response, and mission-level benefits of morphing shape changes. Empirical relations are employed to calculate the effects of various geometry changes on the aerodynamics of the vehicle. A six-degree-of-freedom simulation will evaluate the stability and dynamic response of each vehicle configuration as well as "snapshots" of the morphing change. Subsequently, an aircraft performance analysis will be conducted for various shape configurations. Specifically, the performance of a bio-inspired wing is compared to conventional designs. The aircraft dynamic improvements that morphing technologies introduce will be discussed.

  3. On-chip visual perception of motion: a bio-inspired connectionist model on FPGA.

    PubMed

    Torres-Huitzil, César; Girau, Bernard; Castellanos-Sánchez, Claudio

    2005-01-01

    Visual motion provides useful information to understand the dynamics of a scene to allow intelligent systems interact with their environment. Motion computation is usually restricted by real time requirements that need the design and implementation of specific hardware architectures. In this paper, the design of hardware architecture for a bio-inspired neural model for motion estimation is presented. The motion estimation is based on a strongly localized bio-inspired connectionist model with a particular adaptation of spatio-temporal Gabor-like filtering. The architecture is constituted by three main modules that perform spatial, temporal, and excitatory-inhibitory connectionist processing. The biomimetic architecture is modeled, simulated and validated in VHDL. The synthesis results on a Field Programmable Gate Array (FPGA) device show the potential achievement of real-time performance at an affordable silicon area.

  4. Bio-Inspired Networking — Self-Organizing Networked Embedded Systems

    NASA Astrophysics Data System (ADS)

    Dressler, Falko

    The turn to nature has brought us many unforeseen great concepts and solutions. This course seems to hold on for many research domains. In this article, we study the applicability of biological mechanisms and techniques in the domain of communications. In particular, we study the behavior and the challenges in networked embedded systems that are meant to self-organize in large groups of nodes. Application examples include wireless sensor networks and sensor/actuator networks. Based on a review of the needs and requirements in such networks, we study selected bio-inspired networking approaches that claim to outperform other methods in specific domains. We study mechanisms in swarm intelligence, the artificial immune system, and approaches based on investigations on the cellular signaling pathways. As a major conclusion, we derive that bio-inspired networking techniques do have advantages compared to engineering methods. Nevertheless, selection and employment must be done carefully to achieve the desired performance gains.

  5. Overcoming the brittleness of glass through bio-inspiration and micro-architecture

    NASA Astrophysics Data System (ADS)

    Mirkhalaf, M.; Dastjerdi, A. Khayer; Barthelat, F.

    2014-01-01

    Highly mineralized natural materials such as teeth or mollusk shells boast unusual combinations of stiffness, strength and toughness currently unmatched by engineering materials. While high mineral contents provide stiffness and hardness, these materials also contain weaker interfaces with intricate architectures, which can channel propagating cracks into toughening configurations. Here we report the implementation of these features into glass, using a laser engraving technique. Three-dimensional arrays of laser-generated microcracks can deflect and guide larger incoming cracks, following the concept of ‘stamp holes’. Jigsaw-like interfaces, infiltrated with polyurethane, furthermore channel cracks into interlocking configurations and pullout mechanisms, significantly enhancing energy dissipation and toughness. Compared with standard glass, which has no microstructure and is brittle, our bio-inspired glass displays built-in mechanisms that make it more deformable and 200 times tougher. This bio-inspired approach, based on carefully architectured interfaces, provides a new pathway to toughening glasses, ceramics or other hard and brittle materials.

  6. Overcoming the brittleness of glass through bio-inspiration and micro-architecture.

    PubMed

    Mirkhalaf, M; Dastjerdi, A Khayer; Barthelat, F

    2014-01-01

    Highly mineralized natural materials such as teeth or mollusk shells boast unusual combinations of stiffness, strength and toughness currently unmatched by engineering materials. While high mineral contents provide stiffness and hardness, these materials also contain weaker interfaces with intricate architectures, which can channel propagating cracks into toughening configurations. Here we report the implementation of these features into glass, using a laser engraving technique. Three-dimensional arrays of laser-generated microcracks can deflect and guide larger incoming cracks, following the concept of 'stamp holes'. Jigsaw-like interfaces, infiltrated with polyurethane, furthermore channel cracks into interlocking configurations and pullout mechanisms, significantly enhancing energy dissipation and toughness. Compared with standard glass, which has no microstructure and is brittle, our bio-inspired glass displays built-in mechanisms that make it more deformable and 200 times tougher. This bio-inspired approach, based on carefully architectured interfaces, provides a new pathway to toughening glasses, ceramics or other hard and brittle materials.

  7. A bio-inspired apposition compound eye machine vision sensor system.

    PubMed

    Davis, J D; Barrett, S F; Wright, C H G; Wilcox, M

    2009-12-01

    The Wyoming Information, Signal Processing, and Robotics Laboratory is developing a wide variety of bio-inspired vision sensors. We are interested in exploring the vision system of various insects and adapting some of their features toward the development of specialized vision sensors. We do not attempt to supplant traditional digital imaging techniques but rather develop sensor systems tailor made for the application at hand. We envision that many applications may require a hybrid approach using conventional digital imaging techniques enhanced with bio-inspired analogue sensors. In this specific project, we investigated the apposition compound eye and its characteristics commonly found in diurnal insects and certain species of arthropods. We developed and characterized an array of apposition compound eye-type sensors and tested them on an autonomous robotic vehicle. The robot exhibits the ability to follow a pre-defined target and avoid specified obstacles using a simple control algorithm.

  8. Multibody system dynamics for bio-inspired locomotion: from geometric structures to computational aspects.

    PubMed

    Boyer, Frédéric; Porez, Mathieu

    2015-03-26

    This article presents a set of generic tools for multibody system dynamics devoted to the study of bio-inspired locomotion in robotics. First, archetypal examples from the field of bio-inspired robot locomotion are presented to prepare the ground for further discussion. The general problem of locomotion is then stated. In considering this problem, we progressively draw a unified geometric picture of locomotion dynamics. For that purpose, we start from the model of discrete mobile multibody systems (MMSs) that we progressively extend to the case of continuous and finally soft systems. Beyond these theoretical aspects, we address the practical problem of the efficient computation of these models by proposing a Newton-Euler-based approach to efficient locomotion dynamics with a few illustrations of creeping, swimming, and flying.

  9. Bio-inspired solutions for locomotion in the gastrointestinal tract: background and perspectives.

    PubMed

    Menciassi, Arianna; Dario, Paolo

    2003-10-15

    This paper illustrates a bio-inspired approach to effective, smooth and safe navigation in the human body and, in particular, in the gastrointestinal tract. This idea originates from the medical need to develop more powerful tools for microendoscopy, which is one of the most challenging frontiers of modern medicine. Understanding motion and perception systems of lower animal forms, such as parasites, worms, insects and snakes, can help to design and fabricate bio-inspired robots able to navigate in tortuous, slippery and difficult-to-access cavities of the human body. A preliminary study of a biomimetic adhesion system for the human tissues is presented in this work and some technological implementations are illustrated and discussed. Finally, some issues concerning the goals of smart and reactive locomotion are considered and the most promising and relevant enabling technologies are discussed.

  10. Biophysics and Thermodynamics: The Scientific Building Blocks of Bio-inspired Drug Delivery Nano Systems.

    PubMed

    Demetzos, Costas

    2015-06-01

    Biophysics and thermodynamics are considered as the scientific milestones for investigating the properties of materials. The relationship between the changes of temperature with the biophysical variables of biomaterials is important in the process of the development of drug delivery systems. Biophysics is a challenge sector of physics and should be used complementary with the biochemistry in order to discover new and promising technological platforms (i.e., drug delivery systems) and to disclose the 'silence functionality' of bio-inspired biological and artificial membranes. Thermal analysis and biophysical approaches in pharmaceuticals present reliable and versatile tools for their characterization and for the successful development of pharmaceutical products. The metastable phases of self-assembled nanostructures such as liposomes should be taken into consideration because they represent the thermal events can affect the functionality of advanced drug delivery nano systems. In conclusion, biophysics and thermodynamics are characterized as the building blocks for design and development of bio-inspired drug delivery systems.

  11. Case study: Optimizing fault model input parameters using bio-inspired algorithms

    NASA Astrophysics Data System (ADS)

    Plucar, Jan; Grunt, Onřej; Zelinka, Ivan

    2017-07-01

    We present a case study that demonstrates a bio-inspired approach in the process of finding optimal parameters for GSM fault model. This model is constructed using Petri Nets approach it represents dynamic model of GSM network environment in the suburban areas of Ostrava city (Czech Republic). We have been faced with a task of finding optimal parameters for an application that requires high amount of data transfers between the application itself and secure servers located in datacenter. In order to find the optimal set of parameters we employ bio-inspired algorithms such as Differential Evolution (DE) or Self Organizing Migrating Algorithm (SOMA). In this paper we present use of these algorithms, compare results and judge their performance in fault probability mitigation.

  12. Bio-inspired microfluidics: The case of the velvet worm

    NASA Astrophysics Data System (ADS)

    Concha, Andres; Mellado, Paula; Morera-Brenes, Bernal; Sampaio-Costa, Cristiano; Mahadevan, L.; Monge-Najera, Julian

    The rapid squirt of a proteinaceous slime jet endow velvet worms (Onychophora) with a unique mechanism for defense from predators and for capturing prey by entangling them in a disordered web that immobilizes their target. However, to date neither qualitative nor quantitative descriptions have been provided for this unique adaptation. We have investigated the mechanism that allows velvet worms the fast oscillatory motion of their oral papillae and the exiting liquid jet that oscillates with frequencies f ~ 30 - 60 Hz. Using anatomical images and high speed videography, we show that even without fast muscular action of the papilla, a strong contraction of the slime reservoir and the geometry of the reservoir-papilla system suffices to accelerate the slime to speeds up to v ~ 5 m /s in about Δt ~ 60 ms. A theoretical analysis and a physical simulacrum allow us to infer that this fast oscillatory motion is the result of an elastohydrodynamic instability driven by the interplay between the elasticity of oral papillae and the fast unsteady flow during squirting. We propose several applications that can be implemented using this instability, ranging from high-throughput droplet production, printing, and micro-nanofiber production among others. A.C was partially supported by Fondecyt Grant 11130075.

  13. Bio-inspired optimization algorithms for optical parameter extraction of dielectric materials: A comparative study

    NASA Astrophysics Data System (ADS)

    Ghulam Saber, Md; Arif Shahriar, Kh; Ahmed, Ashik; Hasan Sagor, Rakibul

    2016-10-01

    Particle swarm optimization (PSO) and invasive weed optimization (IWO) algorithms are used for extracting the modeling parameters of materials useful for optics and photonics research community. These two bio-inspired algorithms are used here for the first time in this particular field to the best of our knowledge. The algorithms are used for modeling graphene oxide and the performances of the two are compared. Two objective functions are used for different boundary values. Root mean square (RMS) deviation is determined and compared.

  14. Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface.

    PubMed

    Wang, Zhenhui; Liu, Yanming; Tao, Peng; Shen, Qingchen; Yi, Nan; Zhang, Fangyu; Liu, Quanlong; Song, Chengyi; Zhang, Di; Shang, Wen; Deng, Tao

    2014-08-27

    Plasmonic gold nanoparticles self-assembled at the air-water interface to produce an evaporative surface with local control inspired by skins and plant leaves. Fast and efficient evaporation is realized due to the instant and localized plasmonic heating at the evaporative surface. The bio-inspired evaporation process provides an alternative promising approach for evaporation, and has potential applications in sterilization, distillation, and heat transfer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Performance Analysis of the Enhanced Bio-Inspired Planning Algorithm for Rapid Situation Awareness Response

    DTIC Science & Technology

    2013-10-18

    AFRL-RV- PS - AFRL-RV- PS - TR-2013-0106 TR-2013-0106 PERFORMANCE ANALYSIS OF THE ENHANCED BIO-INSPIRED PLANNING ALGORITHM FOR RAPID SITUATION...Qualified requestors may obtain copies of this report from the Defense Technical Information Center (DTIC) (http://www.dtic.mil). AFRL-RV- PS -TR...SPONSOR/MONITOR’S REPORT Kirtland AFB, NM 87117-5776 NUMBER(S) AFRL-RV- PS -TR-2013-0106 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved

  16. Hierarchical Bio-Inspired Cooperative Control for Nonlinear Dynamical Systems and Hardware Demonstration

    DTIC Science & Technology

    2013-04-03

    AFRL-RV- PS - AFRL-RV- PS - TR-2012-0248 TR-2012-0248 HIERARCHICAL BIO-INSPIRED COOPERATIVE CONTROL FOR NONLINEAR DYNAMICAL SYSTEMS AND HARDWARE...Center (DTIC) (http://www.dtic.mil). AFRL-RV- PS -TR-2012-0248 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN ACCORDANCE WITH ASSIGNED...REPORT Kirtland AFB, NM 87117-5776 NUMBER(S) AFRL-RV- PS -TR-2012-0248 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release

  17. An improved bio-inspired algorithm for the directed shortest path problem.

    PubMed

    Zhang, Xiaoge; Zhang, Yajuan; Deng, Yong

    2014-11-18

    Because most networks are intrinsically directed, the directed shortest path problem has been one of the fundamental issues in network optimization. In this paper, a novel algorithm for finding the shortest path in directed networks is proposed. It extends a bio-inspired path finding model of Physarum polycephalum, which is designed only for undirected networks, by adopting analog circuit analysis. Illustrative examples are given to show the effectiveness of the proposed algorithm in finding the directed shortest path.

  18. Bio-Inspired Controller on an FPGA Applied to Closed-Loop Diaphragmatic Stimulation

    PubMed Central

    Zbrzeski, Adeline; Bornat, Yannick; Hillen, Brian; Siu, Ricardo; Abbas, James; Jung, Ranu; Renaud, Sylvie

    2016-01-01

    Cervical spinal cord injury can disrupt connections between the brain respiratory network and the respiratory muscles which can lead to partial or complete loss of ventilatory control and require ventilatory assistance. Unlike current open-loop technology, a closed-loop diaphragmatic pacing system could overcome the drawbacks of manual titration as well as respond to changing ventilation requirements. We present an original bio-inspired assistive technology for real-time ventilation assistance, implemented in a digital configurable Field Programmable Gate Array (FPGA). The bio-inspired controller, which is a spiking neural network (SNN) inspired by the medullary respiratory network, is as robust as a classic controller while having a flexible, low-power and low-cost hardware design. The system was simulated in MATLAB with FPGA-specific constraints and tested with a computational model of rat breathing; the model reproduced experimentally collected respiratory data in eupneic animals. The open-loop version of the bio-inspired controller was implemented on the FPGA. Electrical test bench characterizations confirmed the system functionality. Open and closed-loop paradigm simulations were simulated to test the FPGA system real-time behavior using the rat computational model. The closed-loop system monitors breathing and changes in respiratory demands to drive diaphragmatic stimulation. The simulated results inform future acute animal experiments and constitute the first step toward the development of a neuromorphic, adaptive, compact, low-power, implantable device. The bio-inspired hardware design optimizes the FPGA resource and time costs while harnessing the computational power of spike-based neuromorphic hardware. Its real-time feature makes it suitable for in vivo applications. PMID:27378844

  19. Bio-Inspired Controller on an FPGA Applied to Closed-Loop Diaphragmatic Stimulation.

    PubMed

    Zbrzeski, Adeline; Bornat, Yannick; Hillen, Brian; Siu, Ricardo; Abbas, James; Jung, Ranu; Renaud, Sylvie

    2016-01-01

    Cervical spinal cord injury can disrupt connections between the brain respiratory network and the respiratory muscles which can lead to partial or complete loss of ventilatory control and require ventilatory assistance. Unlike current open-loop technology, a closed-loop diaphragmatic pacing system could overcome the drawbacks of manual titration as well as respond to changing ventilation requirements. We present an original bio-inspired assistive technology for real-time ventilation assistance, implemented in a digital configurable Field Programmable Gate Array (FPGA). The bio-inspired controller, which is a spiking neural network (SNN) inspired by the medullary respiratory network, is as robust as a classic controller while having a flexible, low-power and low-cost hardware design. The system was simulated in MATLAB with FPGA-specific constraints and tested with a computational model of rat breathing; the model reproduced experimentally collected respiratory data in eupneic animals. The open-loop version of the bio-inspired controller was implemented on the FPGA. Electrical test bench characterizations confirmed the system functionality. Open and closed-loop paradigm simulations were simulated to test the FPGA system real-time behavior using the rat computational model. The closed-loop system monitors breathing and changes in respiratory demands to drive diaphragmatic stimulation. The simulated results inform future acute animal experiments and constitute the first step toward the development of a neuromorphic, adaptive, compact, low-power, implantable device. The bio-inspired hardware design optimizes the FPGA resource and time costs while harnessing the computational power of spike-based neuromorphic hardware. Its real-time feature makes it suitable for in vivo applications.

  20. High Speed Edge Detection

    NASA Technical Reports Server (NTRS)

    Prokop, Norman F (Inventor)

    2015-01-01

    Analog circuits for detecting edges in pixel arrays are disclosed. A comparator may be configured to receive an all pass signal and a low pass signal for a pixel intensity in an array of pixels. A latch may be configured to receive a counter signal and a latching signal from the comparator. The comparator may be configured to send the latching signal to the latch when the all pass signal is below the low pass signal minus an offset. The latch may be configured to hold a last negative edge location when the latching signal is received from the comparator.

  1. High Speed Edge Detection

    NASA Technical Reports Server (NTRS)

    Prokop, Norman F (Inventor)

    2016-01-01

    Analog circuits for detecting edges in pixel arrays are disclosed. A comparator may be configured to receive an all pass signal and a low pass signal for a pixel intensity in an array of pixels. A latch may be configured to receive a counter signal and a latching signal from the comparator. The comparator may be configured to send the latching signal to the latch when the all pass signal is below the low pass signal minus an offset. The latch may be configured to hold a last negative edge location when the latching signal is received from the comparator.

  2. Correction: Synergism between genome sequencing, tandem mass spectrometry and bio-inspired synthesis reveals insights into nocardioazine B biogenesis.

    PubMed

    Alqahtani, Norah; Porwal, Suheel K; James, Elle D; Bis, Dana M; Karty, Jonathan A; Lane, Amy L; Viswanathan, Rajesh

    2015-09-21

    Correction for 'Synergism between genome sequencing, tandem mass spectrometry and bio-inspired synthesis reveals insights into nocardioazine B biogenesis' by Norah Alqahtani et al., Org. Biomol. Chem., 2015, 13, 7177-7192.

  3. Bio-inspired approaches to sensing for defence and security applications.

    PubMed

    Biggins, Peter D E; Kusterbeck, Anne; Hiltz, John A

    2008-05-01

    Interdisciplinary research in biotechnology and related scientific areas has increased tremendously over the past decade. This rapid pace, in conjunction with advances in microfabricated systems, computer hardware, bioengineering and the availability of low-powered miniature components, has now made it feasible to design bio-inspired materials, sensors and systems with tremendous potential for defence and security applications. To realize the full potential of biotechnology and bio-inspiration, there is a need to define specific requirements to meet the challenges of the changing world and its threats. One approach to assisting the defence and security communities in defining their requirements is through the use of a conceptual model. The distributed or intelligent autonomous sensing (DIAS) system is one such model. The DIAS model is not necessarily aimed at a single component, for instance a sensor, but can include a system, or even a system of systems in the same way that a single organism, a multi-cellular organism or group of organisms is configured. This paper provides an overview of the challenges to and opportunities for bio-inspired sensors and systems together with examples of how they are being implemented. Examples focus on both learning new things from biological organisms that have application to the defence and security forces and adapting known discoveries in biology and biochemistry for practical use by these communities.

  4. Bio-inspired dental multilayers: effects of layer architecture on the contact-induced deformation.

    PubMed

    Du, J; Niu, X; Rahbar, N; Soboyejo, W

    2013-02-01

    The ceramic crown structures under occlusal contact are idealized as flat multilayered structures that are deformed under Hertzian contact loading. Those multilayers consist of a crown-like ceramic top layer, an adhesive layer and the dentin-like substrate. Bio-inspired design of the adhesive layer proposed functionally graded multilayers (FGM) that mimic the dentin-enamel junction in natural teeth. This paper examines the effects of FGM layer architecture on the contact-induced deformation of bio-inspired dental multilayers. Finite element modeling was used to explore the effects of thickness and architecture on the contact-induced stresses that are induced in bio-inspired dental multilayers. A layered nanocomposite structure was then fabricated by the sequential rolling of micro-scale nanocomposite materials with local moduli that increase from the side near the soft dentin-like polymer composite foundation to the side near the top ceramic layer. The loading rate dependence of the critical failure loads is shown to be well predicted by a slow crack growth model, which integrates the actual mechanical properties that are obtained from nanoindentation experiments.

  5. How flexibility and dynamic ground effect could improve bio-inspired propulsion

    NASA Astrophysics Data System (ADS)

    Quinn, Daniel

    2016-11-01

    Swimming animals use complex fin motions to reach remarkable levels of efficiency, maneuverability, and stealth. Propulsion systems inspired by these motions could usher in a new generation of advanced underwater vehicles. Two aspects of bio-inspired propulsion are discussed here: flexibility and near-boundary swimming. Experimental work on flexible propulsors shows that swimming efficiency depends on wake vortex timing and boundary layer attachment, but also on fluid-structure resonance. As a result, flexible vehicles or animals could potentially improve their performance by tracking their resonance properties. Bio-inspired propulsors were also found to produce more thrust with no loss in efficiency when swimming near a solid boundary. Higher lift-to-drag ratios for near-ground fixed-wing gliders is commonly known as ground effect. This newly observed "dynamic ground effect" suggests that bio-inspired vehicles and animals could save energy by harnessing the performance gains associated with near-boundary swimming. This work was supported by the Office of Naval Research (MURI N00014-08-1-0642, Program Director Dr. Bob Brizzolara) and the National Science Foundation (DBI-1062052, PI Lisa Fauci; EFRI-0938043, PI George Lauder).

  6. Cochlear outer hair cell bio-inspired metamaterial with negative effective parameters

    NASA Astrophysics Data System (ADS)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng; Zhang, Siwen

    2016-05-01

    Inspired by periodical outer hair cells (OHCs) and stereocilia clusters of mammalian cochlear, a type of bio-inspired metamaterial with negative effective parameters based on the OHC structure is proposed. With the structural parameters modified and some common engineering materials adopted, the bio-inspired structure design with length scales of millimeter and lightweight is presented, and then, a bending wave bandgap in a favorable low-frequency with width of 55 Hz during the interval 21-76 or 116 Hz during the interval 57-173 Hz is obtained, i.e., the excellent low-frequency acoustic performance turns up. Compared with the local resonance unit in previous literatures, both the size and weight are greatly reduced in our bio-inspired structure. In addition, the lower edge of low-frequency bandgap is reduced by an order of magnitude, almost to the lower limit frequency of the hearing threshold as well, which achieves an important breakthrough on the aspect of low-frequency and great significance on the noise and vibration reduction in low-frequency range.

  7. Parameter estimation with bio-inspired meta-heuristic optimization: modeling the dynamics of endocytosis.

    PubMed

    Tashkova, Katerina; Korošec, Peter; Silc, Jurij; Todorovski, Ljupčo; Džeroski, Sašo

    2011-10-11

    artificial data, for all observability scenarios considered, and for all amounts of noise added to the artificial data. In sum, the meta-heuristic methods considered are suitable for estimating the parameters in the ODE model of the dynamics of endocytosis under a range of conditions: With the model and conditions being representative of parameter estimation tasks in ODE models of biochemical systems, our results clearly highlight the promise of bio-inspired meta-heuristic methods for parameter estimation in dynamic system models within system biology.

  8. Parameter estimation with bio-inspired meta-heuristic optimization: modeling the dynamics of endocytosis

    PubMed Central

    2011-01-01

    results hold for both real and artificial data, for all observability scenarios considered, and for all amounts of noise added to the artificial data. In sum, the meta-heuristic methods considered are suitable for estimating the parameters in the ODE model of the dynamics of endocytosis under a range of conditions: With the model and conditions being representative of parameter estimation tasks in ODE models of biochemical systems, our results clearly highlight the promise of bio-inspired meta-heuristic methods for parameter estimation in dynamic system models within system biology. PMID:21989196

  9. AER synthetic generation in hardware for bio-inspired spiking systems

    NASA Astrophysics Data System (ADS)

    Linares-Barranco, Alejandro; Linares-Barranco, Bernabe; Jimenez-Moreno, Gabriel; Civit-Balcells, Anton

    2005-06-01

    Address Event Representation (AER) is an emergent neuromorphic interchip communication protocol that allows for real-time virtual massive connectivity between huge number neurons located on different chips. By exploiting high speed digital communication circuits (with nano-seconds timings), synaptic neural connections can be time multiplexed, while neural activity signals (with mili-seconds timings) are sampled at low frequencies. Also, neurons generate 'events' according to their activity levels. More active neurons generate more events per unit time, and access the interchip communication channel more frequently, while neurons with low activity consume less communication bandwidth. When building multi-chip muti-layered AER systems it is absolutely necessary to have a computer interface that allows (a) to read AER interchip traffic into the computer and visualize it on screen, and (b) convert conventional frame-based video stream in the computer into AER and inject it at some point of the AER structure. This is necessary for test and debugging of complex AER systems. This paper addresses the problem of converting, in a computer, a conventional frame-based video stream into the spike event based representation AER. There exist several proposed software methods for synthetic generation of AER for bio-inspired systems. This paper presents a hardware implementation for one method, which is based on Linear-Feedback-Shift-Register (LFSR) pseudo-random number generation. The sequence of events generated by this hardware, which follows a Poisson distribution like a biological neuron, has been reconstructed using two AER integrator cells. The error of reconstruction for a set of images that produces different traffic loads of event in the AER bus is used as evaluation criteria. A VHDL description of the method, that includes the Xilinx PCI Core, has been implemented and tested using a general purpose PCI-AER board. This PCI-AER board has been developed by authors, and uses

  10. Bio-Inspired Neural Model for Learning Dynamic Models

    NASA Technical Reports Server (NTRS)

    Duong, Tuan; Duong, Vu; Suri, Ronald

    2009-01-01

    A neural-network mathematical model that, relative to prior such models, places greater emphasis on some of the temporal aspects of real neural physical processes, has been proposed as a basis for massively parallel, distributed algorithms that learn dynamic models of possibly complex external processes by means of learning rules that are local in space and time. The algorithms could be made to perform such functions as recognition and prediction of words in speech and of objects depicted in video images. The approach embodied in this model is said to be "hardware-friendly" in the following sense: The algorithms would be amenable to execution by special-purpose computers implemented as very-large-scale integrated (VLSI) circuits that would operate at relatively high speeds and low power demands.

  11. Bio-inspired nanocomposite assemblies as smart skin components.

    SciTech Connect

    Montano, Gabriel A.; Xiao, Xiaoyin; Achyuthan, Komandoor E.; Allen, Amy; Brozik, Susan Marie; Edwards, Thayne L.; Frischknecht, Amalie Lucile; Wheeler, David Roger

    2011-09-01

    There is national interest in the development of sophisticated materials that can automatically detect and respond to chemical and biological threats without the need for human intervention. In living systems, cell membranes perform such functions on a routine basis, detecting threats, communicating with the cell, and triggering automatic responses such as the opening and closing of ion channels. The purpose of this project was to learn how to replicate simple threat detection and response functions within artificial membrane systems. The original goals toward developing 'smart skin' assemblies included: (1) synthesizing functionalized nanoparticles to produce electrochemically responsive systems within a lipid bilayer host matrices, (2) calculating the energetics of nanoparticle-lipid interactions and pore formation, and (3) determining the mechanism of insertion of nanoparticles in lipid bilayers via imaging and electrochemistry. There are a few reports of the use of programmable materials to open and close pores in rigid hosts such as mesoporous materials using either heat or light activation. However, none of these materials can regulate themselves in response to the detection of threats. The strategies we investigated in this project involve learning how to use programmable nanomaterials to automatically eliminate open channels within a lipid bilayer host when 'threats' are detected. We generated and characterized functionalized nanoparticles that can be used to create synthetic pores through the membrane and investigated methods of eliminating the pores either through electrochemistry, change in pH, etc. We also focused on characterizing the behavior of functionalized gold NPs in different lipid membranes and lipid vesicles and coupled these results to modeling efforts designed to gain an understanding of the interaction of nanoparticles within lipid assemblies.

  12. A bio-inspired bell kinematics design of a jellyfish robot using ionic polymer metal composites actuators

    NASA Astrophysics Data System (ADS)

    Najem, Joseph; Leo, Donald J.

    2012-04-01

    This paper presents the re-creation of the bell deformation cycle of the Aequorea victoria jellyfish. It focuses on the design, fabrication, and characterization of the bio-inspired bell kinematics of an IPMC actuated robotic jellyfish. The shape and bell kinematics of this underwater vehicle are based on the Aequorea victoria jellyfish. This medusa is chosen as a model system based on a comparative bell kinematics study that is conducted among different jellyfish species. Aequorea victoria is known by its low swimming frequency, small bell deformation, and high Froude efficiency (95%). Different methods of implementing the actuators underneath the bell with smaller IPMC actuators are investigated to replicate the natural jellyfish's bell deformation. Results demonstrates that proper placement of the IPMC actuators results in bell configuration that more accurately represents the deformation properties of the natural jellyfish. Smaller IPMC actuators are used to achieve the desired deformation and thus the power consumption is reduced by 70% compared to previous generations. A biomimetic jellyfish robot prototype is built, and its ability to swim and produce thrust with smaller IPMC actuators is shown. The robot swam with four actuators swam at an average speed 0.77 mm/s and consumed 0.7 W. When eight actuators were used the average speed increased to 1.5 mm/s with a power consumption of 1.14 W.

  13. Bio-Inspired Green Nanoparticles: Synthesis, Mechanism, and Antibacterial Application

    PubMed Central

    Velusamy, Palaniyandi; Kumar, Govindarajan Venkat; Jeyanthi, Venkadapathi; Das, Jayabrata; Pachaiappan, Raman

    2016-01-01

    In the recent years, noble nanoparticles have attracted and emerged in the field of biology, medicine and electronics due to their incredible applications. There were several methods have been used for synthesis of nanoparticles such as toxic chemicals and high energy physical procedures. To overcome these, biological method has been used for the synthesis of various metal nanoparticles. Among the nanoparticles, silver nanoparticles (AgNPs) have received much attention in various fields, such as antimicrobial activity, therapeutics, bio-molecular detection, silver nanocoated medical devices and optical receptor. Moreover, the biological approach, in particular the usage of natural organisms has offered a reliable, simple, nontoxic and environmental friendly method. Hence, the current article is focused on the biological synthesis of silver nanoparticles and their application in the biomedical field. PMID:27123159

  14. Bio-inspired nano-sensor-enhanced CNN visual computer.

    PubMed

    Porod, Wolfgang; Werblin, Frank; Chua, Leon O; Roska, Tamas; Rodriguez-Vazquez, Angel; Roska, Botond; Fay, Patrick; Bernstein, Gary H; Huang, Yih-Fang; Csurgay, Arpad I

    2004-05-01

    Nanotechnology opens new ways to utilize recent discoveries in biological image processing by translating the underlying functional concepts into the design of CNN (cellular neural/nonlinear network)-based systems incorporating nanoelectronic devices. There is a natural intersection joining studies of retinal processing, spatio-temporal nonlinear dynamics embodied in CNN, and the possibility of miniaturizing the technology through nanotechnology. This intersection serves as the springboard for our multidisciplinary project. Biological feature and motion detectors map directly into the spatio-temporal dynamics of CNN for target recognition, image stabilization, and tracking. The neural interactions underlying color processing will drive the development of nanoscale multispectral sensor arrays for image fusion. Implementing such nanoscale sensors on a CNN platform will allow the implementation of device feedback control, a hallmark of biological sensory systems. These biologically inspired CNN subroutines are incorporated into the new world of analog-and-logic algorithms and software, containing also many other active-wave computing mechanisms, including nature-inspired (physics and chemistry) as well as PDE-based sophisticated spatio-temporal algorithms. Our goal is to design and develop several miniature prototype devices for target detection, navigation, tracking, and robotics. This paper presents an example illustrating the synergies emerging from the convergence of nanotechnology, biotechnology, and information and cognitive science.

  15. Biomimetic and bio-inspired robotics in electric fish research.

    PubMed

    Neveln, Izaak D; Bai, Yang; Snyder, James B; Solberg, James R; Curet, Oscar M; Lynch, Kevin M; MacIver, Malcolm A

    2013-07-01

    Weakly electric knifefish have intrigued both biologists and engineers for decades with their unique electrosensory system and agile swimming mechanics. Study of these fish has resulted in models that illuminate the principles behind their electrosensory system and unique swimming abilities. These models have uncovered the mechanisms by which knifefish generate thrust for swimming forward and backward, hovering, and heaving dorsally using a ventral elongated median fin. Engineered active electrosensory models inspired by electric fish allow for close-range sensing in turbid waters where other sensing modalities fail. Artificial electrosense is capable of aiding navigation, detection and discrimination of objects, and mapping the environment, all tasks for which the fish use electrosense extensively. While robotic ribbon fin and artificial electrosense research has been pursued separately to reduce complications that arise when they are combined, electric fish have succeeded in their ecological niche through close coupling of their sensing and mechanical systems. Future integration of electrosense and ribbon fin technology into a knifefish robot should likewise result in a vehicle capable of navigating complex 3D geometries unreachable with current underwater vehicles, as well as provide insights into how to design mobile robots that integrate high bandwidth sensing with highly responsive multidirectional movement.

  16. Bio-inspired step-climbing in a hexapod robot.

    PubMed

    Chou, Ya-Cheng; Yu, Wei-Shun; Huang, Ke-Jung; Lin, Pei-Chun

    2012-09-01

    Inspired by the observation that the cockroach changes from a tripod gait to a different gait for climbing high steps, we report on the design and implementation of a novel, fully autonomous step-climbing maneuver, which enables a RHex-style hexapod robot to reliably climb a step up to 230% higher than the length of its leg. Similar to the climbing strategy most used by cockroaches, the proposed maneuver is composed of two stages. The first stage is the 'rearing stage,' inclining the body so the front side of the body is raised and it is easier for the front legs to catch the top of the step, followed by the 'rising stage,' maneuvering the body's center of mass to the top of the step. Two infrared range sensors are installed on the front of the robot to detect the presence of the step and its orientation relative to the robot's heading, so that the robot can perform automatic gait transition, from walking to step-climbing, as well as correct its initial tilt approaching posture. An inclinometer is utilized to measure body inclination and to compute step height, thus enabling the robot to adjust its gait automatically, in real time, and to climb steps of different heights and depths successfully. The algorithm is applicable for the robot to climb various rectangular obstacles, including a narrow bar, a bar and a step (i.e. a bar of infinite width). The performance of the algorithm is evaluated experimentally, and the comparison of climbing strategies and climbing behaviors in biological and robotic systems is discussed.

  17. BATMAV: a 2-DOF bio-inspired flapping flight platform

    NASA Astrophysics Data System (ADS)

    Bunget, Gheorghe; Seelecke, Stefan

    2010-04-01

    Due to the availability of small sensors, Micro-Aerial Vehicles (MAVs) can be used for detection missions of biological, chemical and nuclear agents. Traditionally these devices used fixed or rotary wings, actuated with electric DC motortransmission, a system which brings the disadvantage of a heavier platform. The overall objective of the BATMAV project is to develop a biologically inspired bat-like MAV with flexible and foldable wings for flapping flight. This paper presents a flight platform that features bat-inspired wings which are able to actively fold their elbow joints. A previous analysis of the flight physics for small birds, bats and large insects, revealed that the mammalian flight anatomy represents a suitable flight platform that can be actuated efficiently using Shape Memory Alloy (SMA) artificial-muscles. A previous study of the flight styles in bats based on the data collected by Norberg [1] helped to identify the required joint angles as relevant degrees of freedom for wing actuation. Using the engineering theory of robotic manipulators, engineering kinematic models of wings with 2 and 3-DOFs were designed to mimic the wing trajectories of the natural flier Plecotus auritus. Solid models of the bat-like skeleton were designed based on the linear and angular dimensions resulted from the kinematic models. This structure of the flight platform was fabricated using rapid prototyping technologies and assembled to form a desktop prototype with 2-DOFs wings. Preliminary flapping test showed suitable trajectories for wrist and wingtip that mimic the flapping cycle of the natural flyer.

  18. Bio-inspired piezoelectric linear motor driven by a single-phase harmonic wave with an asymmetric stator

    NASA Astrophysics Data System (ADS)

    Pan, Qiaosheng; Miao, Enming; Wu, Bingxuan; Chen, Weikang; Lei, Xiujun; He, Liangguo

    2017-07-01

    A novel, bio-inspired, single-phase driven piezoelectric linear motor (PLM) using an asymmetric stator was designed, fabricated, and tested to avoid mode degeneracy and to simplify the drive mechanism of a piezoelectric motor. A piezoelectric transducer composed of two piezoelectric stacks and a displacement amplifier was used as the driving element of the PLM. Two simple and specially designed claws performed elliptical motion. A numerical simulation was performed to design the stator and determine the feasibility of the design mechanism of the PLM. Moreover, an experimental setup was built to validate the working principles, as well as to evaluate the performance, of the PLM. The prototype motor outputs a no-load speed of 233.7 mm/s at a voltage of 180 Vp-p and a maximum thrust force of 2.3 N under a preload of 10 N. This study verified the feasibility of the proposed design and provided a method to simplify the driving harmonic signal and structure of PLMs.

  19. [Total synthesis of biologically active alkaloids using bio-inspired indole oxidation].

    PubMed

    Ishikawa, Hayato

    2015-01-01

    Many tryptophan-based dimeric diketopiperazine (DKP) alkaloids including WIN 64821 and ditryptophenaline, which exhibit fascinating biological activities, have been isolated from fungi. These alkaloids possess a unique architecture; therefore several total syntheses of these compounds have been accomplished via bio-inspired reactions. Despite these elegant strategies, we were convinced that a more direct bio-inspired solution for the preparation of tryptophan-based DKP alkaloids was possible because in a true biosynthesis, direct dimerization of tryptophan occurs in aqueous media without incorporation of a protecting group on the substrates. Thus we developed direct bio-inspired dimerization reactions in aqueous, acidic media, along with a novel biomimetic pathway, to provide C2-symmetric and non-symmetric dimeric compounds from commercially available amine-free tryptophan derivatives using Mn(OAc)3, VOF3, and V2O5 as one-electron oxidants. In addition, concise two-pot or three-step syntheses of the naturally occurring dimeric DKP alkaloids (+)-WIN 64821, (-)-ditryptophenaline, and (+)-naseseazine B were accomplished with total yields of 20%, 13%, and 20%, respectively. The present synthesis has several noteworthy features: 1) the tryptophan-based C2-symmetric and non-symmetric dimeric key intermediates can be prepared on a multigram scale in one step; 2) the developed oxidation reaction was carried out in aqueous, acidic solution without deactivation of the metal oxidants; 3) protection of the primary amine can be avoided by salt formation in aqueous acid; 4) for the total two-pot operation, the reaction media are environmentally friendly water and ethanol; 5) satisfactory total yields are obtained compared with previously reported syntheses.

  20. A bio-inspired high-authority actuator for shape morphing structures

    NASA Astrophysics Data System (ADS)

    Elzey, Dana M.; Sofla, Aarash Y. N.; Wadley, Haydn N. G.

    2003-08-01

    Lightweight structures capable of changing their shape on demand are of interest for a number of applications, including aerospace, power generation, and undersea vehicles. This paper describes a bio-inspired cellular metal vertebrate structure which relies on shape memory alloy (SMA) faces to achieve fully reversing shape change. The resulting vertebrate actuators can be combined with flexible face sheets to create a load-bearing, shape morphing panel. Performance of the vertebrate actuator in terms of maximum curvature and moment is analyzed and discussed. A recently constructed, prototype shape morphing airfoil is used to illustrate the concept.

  1. Bio-Inspired Fragmentations: Rapid Assembly of Indolones, 2-Quinolinones, and (-)-Goniomitine.

    PubMed

    Li, Haokun; Cheng, Peng; Jiang, Long; Yang, Jin-Liang; Zu, Liansuo

    2017-03-01

    Inspired by the biogenetic origin of goniomitine, new synthetic bio-inspired fragmentation strategies for the synthesis of functionalized 2-quinolinones and indolones have been developed. Remarkable synthetic efficiency was achieved by telescoping several transformations into one-pot reactions, allowing for the direct coupling of 2-alkynyl-anilines and diazo ketones. The synthetic utility was demonstrated by the 5-step asymmetric total synthesis of (-)-goniomitine from 2-ethyl-cyclopentanone. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A porphyrin-polyoxometallate bio-inspired mimic for artificial photosynthesis.

    PubMed

    Elliott, Kristopher J; Harriman, Anthony; Le Pleux, Loïc; Pellegrin, Yann; Blart, Errol; Mayer, Cédric R; Odobel, Fabrice

    2009-10-21

    A multi-porphyrin cluster has been covalently attached to a polyoxometallate (POM) catalyst so as to form an advanced model for the photosynthetic reaction complex. This bio-inspired mimic displays efficient energy transfer from the peripheral zinc porphyrins (ZnP) to the central free-base porphyrin (FbP). The latter species participates in a light-induced electron transfer with the POM. Charge recombination is hindered by hole transfer from the FbP to one of the ZnPs. Charge accumulation occurs at the POM under illumination in the presence of a sacrificial electron donor.

  3. Bio-inspired tactile sensor with arrayed structures based on electroactive polymers

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Sato, Hiroshi; Taya, Minoru

    2009-03-01

    We reported some work on flexible tactile sensors based on Flemion ionic polymer metal composites previously. In this work, we compared the signals in both voltage and current with the signals obtained from a giant nerve fiber reported previously by other researchers. We found some similarities between the artificial tactile sensor and the nerve fiber, in both of which ionic movement play a very important role. This bio-inspired Flemion based ionic polymer metal composites would be a good candidate for bio-related sensors especially for prosthetic limb socket interface applications.

  4. A new bio-inspired route to metal-nanoparticle-based heterogeneous catalysts.

    PubMed

    Debecker, Damien P; Faure, Chrystel; Meyre, Marie-Edith; Derré, Alain; Gaigneaux, Eric M

    2008-10-01

    Onion-type multilamellar vesicles are made of concentric bilayers of organic surfactant and are mainly known for their potential applications in biotechnology. They can be used as microreactors for the spontaneous and controlled production of metal nanoparticles. This process does not require any thermal treatment and, hence, it is also attractive for material sciences such as heterogeneous catalysis. In this paper, silver-nanoparticle-based catalysts are prepared by transferring onion-grown silver nanoparticles onto inorganic supports. The resulting materials are active in the total oxidation of benzene, attesting that this novel bio-inspired concept is promising in inorganic catalysis.

  5. The search for antifungals from Amazonian trees: a bio-inspired screening.

    PubMed

    Basseta, Charlie; Eparvier, Véronique; Espindolab, Laila S

    2015-04-01

    The anti-fungal activity of 60 extracts from 15 tree species in the French Guiana rainforest against human and wood-rotting fungi was studied. In this way (+)-mopanol (1) was isolated from the ethyl acetate extract of Peltogyne sp. (Caesalpiniaceae) wood. This work demonstrated that (1) the natural durability of wood can indeed guide the search for antifungal agents, (2) that extracts selected in this bio-inspired process exhibit a broad spectrum of antifungal activity and (3) that the method allows for the isolation of strongly active antifungals.

  6. Bio-inspired artificial iridophores based on capillary origami: Fabrication and device characterization

    NASA Astrophysics Data System (ADS)

    Manakasettharn, Supone; Ashley Taylor, J.; Krupenkin, Tom N.

    2011-10-01

    Cephalopods have evolved complex optical mechanisms of dynamic skin color control based on mechanical actuation of micro-scale optical structures such as iridophores and chromatophores. In this work, we describe the design, fabrication, and characterization of bio-inspired artificial iridophores, which resemble microflowers with flexible reflective petals, based on capillary origami microstructures. Two methods of petal actuation have been demonstrated—one based on the electrowetting process and the other by volume change of the liquid droplet. These results were in good agreement with a model derived to characterize the actuation dynamics.

  7. Facile creation of bio-inspired superhydrophobic Ce-based metallic glass surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Kesong; Li, Zhou; Wang, Weihua; Jiang, Lei

    2011-12-01

    A bio-inspired synthesis strategy was conducted to fabricate superhydrophobic Ce-based bulk metallic glass (BMG) surfaces with self-cleaning properties. Micro-nanoscale hierarchical structures were first constructed on BMG surfaces and then modified with the low surface energy coating. Surface structures, surface chemical compositions, and wettability were characterized by combining scanning electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, and contact angle measurements. Research indicated that both surface multiscale structures and the low surface free energy coating result in the final formation of superhydrophobicity.

  8. Facile creation of bio-inspired superhydrophobic Ce-based metallic glass surfaces

    SciTech Connect

    Liu Kesong; Li Zhou; Wang Weihua; Jiang Lei

    2011-12-26

    A bio-inspired synthesis strategy was conducted to fabricate superhydrophobic Ce-based bulk metallic glass (BMG) surfaces with self-cleaning properties. Micro-nanoscale hierarchical structures were first constructed on BMG surfaces and then modified with the low surface energy coating. Surface structures, surface chemical compositions, and wettability were characterized by combining scanning electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, and contact angle measurements. Research indicated that both surface multiscale structures and the low surface free energy coating result in the final formation of superhydrophobicity.

  9. A bio-inspired approach for in situ synthesis of tunable adhesive.

    PubMed

    Sun, Leming; Yi, Sijia; Wang, Yongzhong; Pan, Kang; Zhong, Qixin; Zhang, Mingjun

    2014-03-01

    Inspired by the strong adhesive produced by English ivy, this paper proposes an in situ synthesis approach for fabricating tunable nanoparticle enhanced adhesives. Special attention was given to tunable features of the adhesive produced by the biological process. Parameters that may be used to tune properties of the adhesive will be proposed. To illustrate and validate the proposed approach, an experimental platform was presented for fabricating tunable chitosan adhesive enhanced by Au nanoparticles synthesized in situ. This study contributes to a bio-inspired approach for in situ synthesis of tunable nanocomposite adhesives by mimicking the natural biological processes of ivy adhesive synthesis.

  10. Fluorimetric Mercury Test Strips with Suppressed “Coffee Stains” by a Bio-inspired Fabrication Strategy

    PubMed Central

    Qiao, Yuchun; Shang, Jizhen; Li, Shuying; Feng, Luping; Jiang, Yao; Duan, Zhiqiang; Lv, Xiaoxia; Zhang, Chunxian; Yao, Tiantian; Dong, Zhichao; Zhang, Yu; Wang, Hua

    2016-01-01

    A fluorimetric Hg2+ test strip has been developed using a lotus-inspired fabrication method for suppressing the “coffee stains” toward the uniform distribution of probe materials through creating a hydrophobic drying pattern for fast solvent evaporation. The test strips were first loaded with the model probes of fluorescent gold-silver nanoclusters and then dried in vacuum on the hydrophobic pattern. On the one hand, here, the hydrophobic constraining forces from the lotus surface-like pattern could control the exterior transport of dispersed nanoclusters on strips leading to the minimized “coffee stains”. On the other hand, the vacuum-aided fast solvent evaporation could boost the interior Marangoni flow of probe materials on strips to expect the further improved probe distribution on strips. High aqueous stability and enhanced fluorescence of probes on test strips were realized by the hydrophilic treatment with amine-derivatized silicane. A test strips-based fluorimetry has thereby been developed for probing Hg2+ ions in wastewater, showing the detection performances comparable to the classic instrumental analysis ones. Such a facile and efficient fabrication route for the bio-inspired suppression of “coffee stains” on test strips may expand the scope of applications of test strips-based “point-of-care” analysis methods or detection devices in the biomedical and environmental fields. PMID:27812040

  11. Fluorimetric Mercury Test Strips with Suppressed “Coffee Stains” by a Bio-inspired Fabrication Strategy

    NASA Astrophysics Data System (ADS)

    Qiao, Yuchun; Shang, Jizhen; Li, Shuying; Feng, Luping; Jiang, Yao; Duan, Zhiqiang; Lv, Xiaoxia; Zhang, Chunxian; Yao, Tiantian; Dong, Zhichao; Zhang, Yu; Wang, Hua

    2016-11-01

    A fluorimetric Hg2+ test strip has been developed using a lotus-inspired fabrication method for suppressing the “coffee stains” toward the uniform distribution of probe materials through creating a hydrophobic drying pattern for fast solvent evaporation. The test strips were first loaded with the model probes of fluorescent gold-silver nanoclusters and then dried in vacuum on the hydrophobic pattern. On the one hand, here, the hydrophobic constraining forces from the lotus surface-like pattern could control the exterior transport of dispersed nanoclusters on strips leading to the minimized “coffee stains”. On the other hand, the vacuum-aided fast solvent evaporation could boost the interior Marangoni flow of probe materials on strips to expect the further improved probe distribution on strips. High aqueous stability and enhanced fluorescence of probes on test strips were realized by the hydrophilic treatment with amine-derivatized silicane. A test strips-based fluorimetry has thereby been developed for probing Hg2+ ions in wastewater, showing the detection performances comparable to the classic instrumental analysis ones. Such a facile and efficient fabrication route for the bio-inspired suppression of “coffee stains” on test strips may expand the scope of applications of test strips-based “point-of-care” analysis methods or detection devices in the biomedical and environmental fields.

  12. Bio-Inspired Liposomal Thrombomodulin Conjugate through Bio-Orthogonal Chemistry

    PubMed Central

    Zhang, Hailong; Weingart, Jacob; Jiang, Rui; Peng, Jianhao; Wu, Qingyu

    2013-01-01

    We report the synthesis of bio-inspired liposomal thrombomodulin (TM) conjugates by chemoselective and site-specific liposomal conjugation of recombinant TM at C-terminus. TM is an endothelial cell membrane protein that acts as a major cofactor in the protein C anticoagulant pathway. To closely mimic membrane protein structural features of TM, we proposed membrane-mimetic re-expression of recombinant TM onto liposome. A recombinant TM containing the EGF-like 456 domains and an azidohomoalanine at C-terminus was expressed in E. coli.. Conjugation of the recombinant TM onto liposome via Staudinger ligation and copper-free click chemistry were investigated as an optimal platform for exploring membrane protein TM's activity, respectively. The bio-inspired liposomal TM conjugates were confirmed with Western blotting and protein C activation activity. The recombinant TM-liposome conjugates showed a 2-fold higher kcat/Km value for protein C activation than that of the recombinant TM alone, which indicated that the lipid membrane has a beneficiary effect on the recombinant TM's activity. The reported liposomal protein conjugate approach provides a rationale design strategy for both studying membrane protein TM's functions and generating a membrane protein TM-based anticoagulant agent. PMID:23458546

  13. A Review on Development and Applications of Bio-Inspired Superhydrophobic Textiles

    PubMed Central

    Ahmad, Ishaq; Kan, Chi-wai

    2016-01-01

    Bio-inspired engineering has been envisioned in a wide array of applications. All living bodies on Earth, including animals and plants, have well organized functional systems developed by nature. These naturally designed functional systems inspire scientists and engineers worldwide to mimic the system for practical applications by human beings. Researchers in the academic world and industries have been trying, for hundreds of years, to demonstrate how these natural phenomena could be translated into the real world to save lives, money and time. One of the most fascinating natural phenomena is the resistance of living bodies to contamination by dust and other pollutants, thus termed as self-cleaning phenomenon. This phenomenon has been observed in many plants, animals and insects and is termed as the Lotus Effect. With advancement in research and technology, attention has been given to the exploration of the underlying mechanisms of water repellency and self-cleaning. As a result, various concepts have been developed including Young’s equation, and Wenzel and Cassie–Baxter theories. The more we unravel this process, the more we get access to its implications and applications. A similar pursuit is emphasized in this review to explain the fundamental principles, mechanisms, past experimental approaches and ongoing research in the development of bio-inspired superhydrophobic textiles. PMID:28774012

  14. Final Report for Bio-Inspired Approaches to Moving-Target Defense Strategies

    SciTech Connect

    Fink, Glenn A.; Oehmen, Christopher S.

    2012-09-01

    This report records the work and contributions of the NITRD-funded Bio-Inspired Approaches to Moving-Target Defense Strategies project performed by Pacific Northwest National Laboratory under the technical guidance of the National Security Agency’s R6 division. The project has incorporated a number of bio-inspired cyber defensive technologies within an elastic framework provided by the Digital Ants. This project has created the first scalable, real-world prototype of the Digital Ants Framework (DAF)[11] and integrated five technologies into this flexible, decentralized framework: (1) Ant-Based Cyber Defense (ABCD), (2) Behavioral Indicators, (3) Bioinformatic Clas- sification, (4) Moving-Target Reconfiguration, and (5) Ambient Collaboration. The DAF can be used operationally to decentralize many such data intensive applications that normally rely on collection of large amounts of data in a central repository. In this work, we have shown how these component applications may be decentralized and may perform analysis at the edge. Operationally, this will enable analytics to scale far beyond current limitations while not suffering from the bandwidth or computational limitations of centralized analysis. This effort has advanced the R6 Cyber Security research program to secure digital infrastructures by developing a dynamic means to adaptively defend complex cyber systems. We hope that this work will benefit both our client’s efforts in system behavior modeling and cyber security to the overall benefit of the nation.

  15. A Review on Development and Applications of Bio-Inspired Superhydrophobic Textiles.

    PubMed

    Ahmad, Ishaq; Kan, Chi-Wai

    2016-11-03

    Bio-inspired engineering has been envisioned in a wide array of applications. All living bodies on Earth, including animals and plants, have well organized functional systems developed by nature. These naturally designed functional systems inspire scientists and engineers worldwide to mimic the system for practical applications by human beings. Researchers in the academic world and industries have been trying, for hundreds of years, to demonstrate how these natural phenomena could be translated into the real world to save lives, money and time. One of the most fascinating natural phenomena is the resistance of living bodies to contamination by dust and other pollutants, thus termed as self-cleaning phenomenon. This phenomenon has been observed in many plants, animals and insects and is termed as the Lotus Effect. With advancement in research and technology, attention has been given to the exploration of the underlying mechanisms of water repellency and self-cleaning. As a result, various concepts have been developed including Young's equation, and Wenzel and Cassie-Baxter theories. The more we unravel this process, the more we get access to its implications and applications. A similar pursuit is emphasized in this review to explain the fundamental principles, mechanisms, past experimental approaches and ongoing research in the development of bio-inspired superhydrophobic textiles.

  16. A bio-inspired force control for cyclic manipulation of prosthetic hands.

    PubMed

    Ciancio, A L; Barone, R; Zollo, L; Carpino, G; Davalli, A; Sacchetti, R; Guglielmelli, E

    2015-01-01

    The human hand is considered as the highest example of dexterous system capable of interacting with different objects and adapting its manipulation abilities to them. The control of poliarticulated prosthetic hands represents one important research challenge, typically aiming at replicating the manipulation capabilities of the natural hand. For this reason, this paper wants to propose a bio-inspired learning architecture based on parallel force/position control for prosthetic hands, capable of learning cyclic manipulation capabilities. To this purpose, it is focused on the control of a commercial biomechatronic hand (the IH2 hand) including the main features of recent poliarticulated prosthetic hands. The training phase of the hand was carried out in simulation, the parallel force/position control was tested in simulation whereas preliminary tests were performed on the real IH2 hand. The results obtained in simulation and on the real hand provide an important evidence of the applicability of the bio-inspired neural control to real biomechatronic hand with the typical features of a hand prosthesis.

  17. Nature as an engineer: one simple concept of a bio-inspired functional artificial muscle.

    PubMed

    Schmitt, S; Haeufle, D F B; Blickhan, R; Günther, M

    2012-09-01

    The biological muscle is a powerful, flexible and versatile actuator. Its intrinsic characteristics determine the way how movements are generated and controlled. Robotic and prosthetic applications expect to profit from relying on bio-inspired actuators which exhibit natural (muscle-like) characteristics. As of today, when constructing a technical actuator, it is not possible to copy the exact molecular structure of a biological muscle. Alternatively, the question may be put how its characteristics can be realized with known mechanical components. Recently, a mechanical construct for an artificial muscle was proposed, which exhibits hyperbolic force-velocity characteristics. In this paper, we promote the constructing concept which is made by substantiating the mechanical design of biological muscle by a simple model, proving the feasibility of its real-world implementation, and checking their output both for mutual consistency and agreement with biological measurements. In particular, the relations of force, enthalpy rate and mechanical efficiency versus contraction velocity of both the construct's technical implementation and its numerical model were determined in quick-release experiments. All model predictions for these relations and the hardware results are now in good agreement with the biological literature. We conclude that the construct represents a mechanical concept of natural actuation, which is suitable for laying down some useful suggestions when designing bio-inspired actuators.

  18. Confined Swimming of Bio-Inspired Magnetic Microswimmers in Rectangular Channels

    NASA Astrophysics Data System (ADS)

    Temel, Fatma Zeynep; Yesilyurt, Serhat

    2014-11-01

    Bio-inspired microswimmers have great potential for medical procedures in conduits and vessels inside the body; hence, controlled swimming in confined spaces needs to be well understood. In this study, analysis of swimming modes of a bio-inspired microswimmer in a rectangular channel at low Reynolds number is performed with experimental and computational studies. A left-handed magnetic helical swimmer (MHS), having 0.5 mm diameter and 2 mm length, is used in experiments by utilizing rotating magnetic field actuation obtained by electromagnetic coil pairs. Three motion modes are observed in experiments depending on the rotation frequency: (i) lateral motion under the effect of gravity and surface traction at low frequencies, (ii) lateral motion under the effect of gravity and fluid forces at transition frequencies, and (iii) circular motion under the effect of fluid forces at high frequencies. Translational and angular velocities of the MHS are calculated using CFD simulations to investigate the motion modes. In addition, induced flow fields for different radial positions of the MHS are studied. Results demonstrate the significance of rotation frequency, flow fields and pressure distribution on swimming modes and behaviour of the MHS inside rectangular channels.

  19. Bio-inspired scale-like surface textures and their tribological properties.

    PubMed

    Greiner, Christian; Schäfer, Michael

    2015-06-30

    Friction, wear and the associated energy dissipation are major challenges in all systems containing moving parts. Examples range from nanoelectromechanical systems over hip prosthesis to off-shore wind turbines. Bionic approaches have proven to be very successful in many engineering problems, while investigating the potential of a bio-inspired approach in creating morphological surface textures is a relatively new field of research. Here, we developed laser-created textures inspired by the scales found on the skin of snakes and certain lizards. We show that this bio-inspired surface morphology reduced dry sliding friction forces by more than 40%. In lubricated contacts the same morphology increased friction by a factor of three. Two different kinds of morphologies, one with completely overlapping scales and one with the scales arranged in individual rows, were chosen. In lubricated as well as unlubricated contacts, the surface texture with the scales in rows showed lower friction forces than the completely overlapping ones. We anticipate that these results could have significant impact in all dry sliding contacts, ranging from nanoelectromechanical and micro-positioning systems up to large-scale tribological contacts which cannot be lubricated, e.g. because they are employed in a vacuum environment.

  20. Tissue-Engineered Fibrin-Based Heart Valve with Bio-Inspired Textile Reinforcement.

    PubMed

    Moreira, Ricardo; Neusser, Christine; Kruse, Magnus; Mulderrig, Shane; Wolf, Frederic; Spillner, Jan; Schmitz-Rode, Thomas; Jockenhoevel, Stefan; Mela, Petra

    2016-08-01

    The mechanical properties of tissue-engineered heart valves still need to be improved to enable their implantation in the systemic circulation. The aim of this study is to develop a tissue-engineered valve for the aortic position - the BioTexValve - by exploiting a bio-inspired composite textile scaffold to confer native-like mechanical strength and anisotropy to the leaflets. This is achieved by multifilament fibers arranged similarly to the collagen bundles in the native aortic leaflet, fixed by a thin electrospun layer directly deposited on the pattern. The textile-based leaflets are positioned into a 3D mould where the components to form a fibrin gel containing human vascular smooth muscle cells are introduced. Upon fibrin polymerization, a complete valve is obtained. After 21 d of maturation by static and dynamic stimulation in a custom-made bioreactor, the valve shows excellent functionality under aortic pressure and flow conditions, as demonstrated by hydrodynamic tests performed according to ISO standards in a mock circulation system. The leaflets possess remarkable burst strength (1086 mmHg) while remaining pliable; pronounced extracellular matrix production is revealed by immunohistochemistry and biochemical assay. This study demonstrates the potential of bio-inspired textile-reinforcement for the fabrication of functional tissue-engineered heart valves for the aortic position.

  1. Gas barrier properties of bio-inspired Laponite-LC polymer hybrid films.

    PubMed

    Tritschler, Ulrich; Zlotnikov, Igor; Fratzl, Peter; Schlaad, Helmut; Grüner, Simon; Cölfen, Helmut

    2016-05-26

    Bio-inspired Laponite (clay)-liquid crystal (LC) polymer composite materials with high clay fractions (>80%) and a high level of orientation of the clay platelets, i.e. with structural features similar to the ones found in natural nacre, have been shown to exhibit a promising behavior in the context of reduced oxygen transmission. Key characteristics of these bio-inspired composite materials are their high inorganic content, high level of exfoliation and orientation of the clay platelets, and the use of a LC polymer forming the organic matrix in between the Laponite particles. Each single feature may be beneficial to increase the materials gas barrier property rendering this composite a promising system with advantageous barrier capacities. In this detailed study, Laponite/LC polymer composite coatings with different clay loadings were investigated regarding their oxygen transmission rate. The obtained gas barrier performance was linked to the quality, respective Laponite content and the underlying composite micro- and nanostructure of the coatings. Most efficient oxygen barrier properties were observed for composite coatings with 83% Laponite loading that exhibit a structure similar to sheet-like nacre. Further on, advantageous mechanical properties of these Laponite/LC polymer composites reported previously give rise to a multifunctional composite system.

  2. Progressive macromolecular self-assembly: from biomimetic chemistry to bio-inspired materials.

    PubMed

    Zhao, Yu; Sakai, Fuji; Su, Lu; Liu, Yijiang; Wei, Kongchang; Chen, Guosong; Jiang, Ming

    2013-10-04

    Macromolecular self-assembly (MSA) has been an active and fruitful research field since the 1980s, especially in this new century, which is promoted by the remarkable developments in controlled radical polymerization in polymer chemistry, etc. and driven by the demands in bio-related investigations and applications. In this review, we try to summarize the trends and recent progress in MSA in relation to biomimetic chemistry and bio-inspired materials. Our paper covers representative achievements in the fabrication of artificial building blocks for life, cell-inspired biomimetic materials, and macromolecular assemblies mimicking the functions of natural materials and their applications. It is true that the current status of the deliberately designed and obtained nano-objects based on MSA including a variety of micelles, multicompartment vesicles, and some hybrid and complex nano-objects is at their very first stage to mimic nature, but significant and encouraging progress has been made in achieving a certain similarity in morphologies or properties to that of natural ones. Such achievements also demonstrate that MSA has played an important and irreplaceable role in the grand and long-standing research of biomimetic and bio-inspired materials, the future success of which depends on mutual and persistent efforts in polymer science, material science, supramolecular chemistry, and biology.

  3. Bio-inspired Biomaterials and their Drug Delivery Perspectives - A Review.

    PubMed

    Villalba-Rodríguez, Angel M; Parra-Saldivar, Roberto; Ahmed, Ishtiaq; Karthik, K; Malik, Yashpal S; Dhama, Kuldeep; Iqbal, Hafiz M N

    2017-09-24

    A number of disease conditions require controlled or sustained drug release to achieve complete recovery. In recent years, there has been a considerable research interest in bio-inspired biomaterials due to their potential as an alternative to the in-use traditional synthetic counterparts. Research is underway worldwide on the development of 'greener' technologies with an aim to engineer novel drug delivery systems (DDS). Bio-based constructs are being engineered for target applications in different bio- and non-bio sectors of the modern world and to address growing concerns about a global dependence on non-renewable petroleum-based resources. Therefore, in recent years, bio-inspired biomaterials have gained a considerable attention with high-value biomedical and pharmaceutical potentials. Moreover, owing to their novel characteristics like non-toxicity, biocompatibility, together with the adjustable thermo-mechanical and controllable properties, collagen, poly (lactic acid) (PLA), and chitosan-based novel constructs have raised interesting applications in many sectors of the medical world. So far, many of such bio-constructs have been implicated in DDS, tissue repair, nutritional and therapeutic uses. In this subject matter review, we included an overview of different bio-based novel materials (collagen, PLA, and chitosan), their valorization for DDS, summary on various geometries (microspheres, composites, and nano-films) and information on their future perspectives. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. A Fluid-solid Numerical Model for the Analysis of Bio-inspired UUV

    NASA Astrophysics Data System (ADS)

    Mitra, Santanu; Krishnamurthy, Nagendra; Tafti, Danesh; Priya, Shashank

    2012-11-01

    This research will describe how a biology-inspired approach to engineering has placed jellyfish at the center of efforts to build next-generation underwater vehicles. In order to swim, jellyfish contract the circular muscles that line the undersurface of their bell. The motion of the bell from the relaxed position to the fully contracted position results in the mesoglea interacting with the surrounding water in such a way that causes the jellyfish to move forward. The present method uses two-dimensional fluid elements and plain strain hyperelastic structural elements for the numerical simulation of the problem. The equations of motion of the fluid are expressed as full N-S equation. A new type of bio-inspired boundary condition has been proposed. A prototype of the jellyfish setup has been developed for the experimental validation of the simulation results. The solution of the coupled system is accomplished by solving the two systems separately with the interaction effects using immersed boundary method. This study will be useful in accurate calculation of pressure distribution, maximum blocking stress, strain rate and actuator system for submerged autonomous vehicle. This study will also help in designing efficient propulsion and thruster mechanism for unmanned underwater vehicle. It is believed that the research presented in this paper advances the understanding of the dynamic behavior of bio-inspired UUV.

  5. Study on the deformation of endothelial cells using a bio-inspired in vitro disease model.

    PubMed

    Seo, Eunseok; Seo, Kyung Won; Park, Ji-Won; Lee, Tae Geol; Lee, Sang Joon

    2015-03-01

    A bio-inspired in vitro disease model was developed to investigate the basic biophysics of atherosclerotic diseases. In vivo study was conducted in advance using zebrafish fed with a normal diet and a cholesterol-enriched diet. The endothelial cells (ECs) of the zebrafishes fed with a normal diet are tightly attached and aligned. Their collagen has a fiber-like structure. By contrast, the endothelial cells of the zebrafish on high cholesterol diet are disorganized and their collagen has broken structures. In vitro models of human umbilical vein endothelial cells (HUVECs) were established on collagen films to mimic such in vivo experimental results. The normal collagen film simulates the extracellular matrix (ECM) in the blood vessels of a normal zebrafish, and the collagenase-treated collagen film mimics the ECM in blood vessels of an abnormal zebrafish. The HUVECs cultured on the normal collagen film are tightly attached, similar to those of a normal zebrafish. However, the cells cultured on the collagenase-treated collagen film are aggregated and biomarkers of endothelial dysfunction are expressed on the surface of the abnormal endothelial cells established on the denatured collagen film. The present in vitro model using a bio-inspired collagen film has a great potential for the design of novel therapies for clinical treatments of atherosclerosis through better understanding on the outbreak mechanism of atherosclerosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Distinct failure modes in bio-inspired 3D-printed staggered composites under non-aligned loadings

    NASA Astrophysics Data System (ADS)

    Slesarenko, Viacheslav; Kazarinov, Nikita; Rudykh, Stephan

    2017-03-01

    The superior mechanical properties of biological materials originate in their complex hierarchical microstructures, combining stiff and soft constituents at different length scales. In this work, we employ a three-dimensional multi-materials printing to fabricate the bio-inspired staggered composites, and study their mechanical properties and failure mechanisms. We observe that bio-inspired staggered composites with inclined stiff tablets are able to undergo two different failure modes, depending on the inclination angle. We find that such artificial structure demonstrates high toughness only under loading applied at relatively small angle to the tablets stacking direction, while for higher angles the composites fail catastrophically. This aspect of the failure behavior was captured experimentally as well as by means of the finite element analysis. We show that even a relatively simple failure model with a strain energy limiter, can be utilized to qualitatively distinguish these two different modes of failure, occurring in the artificial bio-inspired composites.

  7. Boronic Acid: A Bio-Inspired Strategy To Increase the Sensitivity and Selectivity of Fluorescent NADH Probe.

    PubMed

    Wang, Lu; Zhang, Jingye; Kim, Beomsue; Peng, Juanjuan; Berry, Stuart N; Ni, Yong; Su, Dongdong; Lee, Jungyeol; Yuan, Lin; Chang, Young-Tae

    2016-08-24

    Fluorescent probes have emerged as an essential tool in the molecular recognition events in biological systems; however, due to the complex structures of certain biomolecules, it remains a challenge to design small-molecule fluorescent probes with high sensitivity and selectivity. Inspired by the enzyme-catalyzed reaction between biomolecule and probe, we present a novel combination-reaction two-step sensing strategy to improve sensitivity and selectivity. Based on this strategy, we successfully prepared a turn-on fluorescent reduced nicotinamide adenine dinucleotide (NADH) probe, in which boronic acid was introduced to bind with NADH and subsequently accelerate the sensing process. This probe shows remarkably improved sensitivity (detection limit: 0.084 μM) and selectivity to NADH in the absence of any enzymes. In order to improve the practicality, the boronic acid was further modified to change the measurement conditions from alkalescent (pH 9.5) to physiological environment (pH 7.4). Utilizing these probes, we not only accurately quantified the NADH weight in a health care product but also evaluated intracellular NADH levels in live cell imaging. Thus, these bio-inspired fluorescent probes offer excellent tools for elucidating the roles of NADH in biological systems as well as a practical strategy to develop future sensitive and selective probes for complicated biomolecules.

  8. A novel angle computation and calibration algorithm of bio-inspired sky-light polarization navigation sensor.

    PubMed

    Xian, Zhiwen; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Cao, Juliang; Wang, Yujie; Ma, Tao

    2014-09-15

    Navigation plays a vital role in our daily life. As traditional and commonly used navigation technologies, Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS) can provide accurate location information, but suffer from the accumulative error of inertial sensors and cannot be used in a satellite denied environment. The remarkable navigation ability of animals shows that the pattern of the polarization sky can be used for navigation. A bio-inspired POLarization Navigation Sensor (POLNS) is constructed to detect the polarization of skylight. Contrary to the previous approach, we utilize all the outputs of POLNS to compute input polarization angle, based on Least Squares, which provides optimal angle estimation. In addition, a new sensor calibration algorithm is presented, in which the installation angle errors and sensor biases are taken into consideration. Derivation and implementation of our calibration algorithm are discussed in detail. To evaluate the performance of our algorithms, simulation and real data test are done to compare our algorithms with several exiting algorithms. Comparison results indicate that our algorithms are superior to the others and are more feasible and effective in practice.

  9. A Novel Angle Computation and Calibration Algorithm of Bio-Inspired Sky-Light Polarization Navigation Sensor

    PubMed Central

    Xian, Zhiwen; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Cao, Juliang; Wang, Yujie; Ma, Tao

    2014-01-01

    Navigation plays a vital role in our daily life. As traditional and commonly used navigation technologies, Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS) can provide accurate location information, but suffer from the accumulative error of inertial sensors and cannot be used in a satellite denied environment. The remarkable navigation ability of animals shows that the pattern of the polarization sky can be used for navigation. A bio-inspired POLarization Navigation Sensor (POLNS) is constructed to detect the polarization of skylight. Contrary to the previous approach, we utilize all the outputs of POLNS to compute input polarization angle, based on Least Squares, which provides optimal angle estimation. In addition, a new sensor calibration algorithm is presented, in which the installation angle errors and sensor biases are taken into consideration. Derivation and implementation of our calibration algorithm are discussed in detail. To evaluate the performance of our algorithms, simulation and real data test are done to compare our algorithms with several exiting algorithms. Comparison results indicate that our algorithms are superior to the others and are more feasible and effective in practice. PMID:25225872

  10. Bio-inspired, large scale, highly-scattering films for nanoparticle-alternative white surfaces

    NASA Astrophysics Data System (ADS)

    Syurik, Julia; Siddique, Radwanul Hasan; Dollmann, Antje; Gomard, Guillaume; Schneider, Marc; Worgull, Matthias; Wiegand, Gabriele; Hölscher, Hendrik

    2017-04-01

    Inspired by the white beetle of the genus Cyphochilus, we fabricate ultra-thin, porous PMMA films by foaming with CO2 saturation. Optimising pore diameter and fraction in terms of broad-band reflectance results in very thin films with exceptional whiteness. Already films with 60 µm-thick scattering layer feature a whiteness with a reflectance of 90%. Even 9 µm thin scattering layers appear white with a reflectance above 57%. The transport mean free path in the artificial films is between 3.5 µm and 4 µm being close to the evolutionary optimised natural prototype. The bio-inspired white films do not lose their whiteness during further shaping, allowing for various applications.

  11. Bio-inspired superhydrophobic polyphenylene sulfide/polytetrafluoroethylene coatings with high performance.

    PubMed

    Sun, Na; Qin, Shan; Wu, Juntao; Cong, Chuanbo; Qiao, Yucong; Zhou, Qiong

    2012-09-01

    Bio-inspired superhydrophobic Polyphenylene sulfide/Polytetrafluoroethylene (PPS/PTFE) coatings were prepared by a simple curing process. The surface morphology characterization by SEM shows that these superhydrophobic coatings have the similar macro-nano-structures to that of lotus leaf. Effect of the content of PTFE as well as the curing condition on the water contact angle of the superhydrophobic coating surface was then systematically studied. A series of tests show that the superhydrophobic coatings exhibit high cohesional strength, excellent impact resistance and high thermal stability. Moreover, we studied the stability of chemical resistance of the as-prepared superhydrophobic PPS/PTFE coatings, and the electrochemical impedance values kept on a high level even after 8 days. The superhydrophobic PPS/PTFE coatings with high performance have potential applications in some specific fields.

  12. A Bio-Inspired Method for the Constrained Shortest Path Problem

    PubMed Central

    Wang, Hongping; Lu, Xi; Wang, Qing

    2014-01-01

    The constrained shortest path (CSP) problem has been widely used in transportation optimization, crew scheduling, network routing and so on. It is an open issue since it is a NP-hard problem. In this paper, we propose an innovative method which is based on the internal mechanism of the adaptive amoeba algorithm. The proposed method is divided into two parts. In the first part, we employ the original amoeba algorithm to solve the shortest path problem in directed networks. In the second part, we combine the Physarum algorithm with a bio-inspired rule to deal with the CSP. Finally, by comparing the results with other method using an examples in DCLC problem, we demonstrate the accuracy of the proposed method. PMID:24959603

  13. Bio-inspired photoresponse of porphyrin-attached gold nanoparticles on a field-effect transistor.

    PubMed

    Miyachi, Mariko; Yamanoi, Yoshinori; Nakazato, Kazuo; Nishihara, Hiroshi

    2014-09-01

    A bio-inspired photoresponse was engineered in porphyrin-attached Au nanoparticles (AuNPs) on a field-effect transistor (FET). The system mimics photosynthetic electron transfer, using porphyrin derivatives as photosensitizers and AuNPs as photoelectron counting devices. Porphyrin-protected AuNPs were immobilized onto the gate of an FET via the formation of self-assembled monolayers. Photoinduced electron transfer from the porphyrin led to single electron transfer at the Au nanoparticles, which was monitored via a changing gate voltage on the FET in the presence of organic electrolyte. The further attachment of other functional molecules to this system should enable various other potential functionalities. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Tunable ionic transport control inside a bio-inspired constructive bi-channel nanofluidic device.

    PubMed

    Zeng, Lu; Yang, Zhe; Zhang, Huacheng; Hou, Xu; Tian, Ye; Yang, Fu; Zhou, Jianjun; Li, Lin; Jiang, Lei

    2014-02-26

    Inspired by the cooperative functions of the asymmetrical ion channels in living cells, a constructive bi-channel nanofluidic device that demonstrates the enhanced capability of multiple regulations over both the ion flux amount and the ionic rectification property is prepared. In this bi-channel system, the construction routes of the two asymmetric conical nanochannels provide a way to efficiently transform the nanodevice into four different functional working modes. In addition, the variation of external pH conditions leads the nanodevice to the uncharged, semi-charged and charged states, where the multistory ionic regulating function property is enhanced by the charged degree. This intelligent integration of the single functional nanochannels demonstrates a promising future for building more functional multi-channel integrated nanodevices as well as expands the functionalities of the bio-inspired smart nanochannels.

  15. Distributed Synchronization Technique for OFDMA-Based Wireless Mesh Networks Using a Bio-Inspired Algorithm

    PubMed Central

    Kim, Mi Jeong; Maeng, Sung Joon; Cho, Yong Soo

    2015-01-01

    In this paper, a distributed synchronization technique based on a bio-inspired algorithm is proposed for an orthogonal frequency division multiple access (OFDMA)-based wireless mesh network (WMN) with a time difference of arrival. The proposed time- and frequency-synchronization technique uses only the signals received from the neighbor nodes, by considering the effect of the propagation delay between the nodes. It achieves a fast synchronization with a relatively low computational complexity because it is operated in a distributed manner, not requiring any feedback channel for the compensation of the propagation delays. In addition, a self-organization scheme that can be effectively used to construct 1-hop neighbor nodes is proposed for an OFDMA-based WMN with a large number of nodes. The performance of the proposed technique is evaluated with regard to the convergence property and synchronization success probability using a computer simulation. PMID:26225974

  16. Distributed Synchronization Technique for OFDMA-Based Wireless Mesh Networks Using a Bio-Inspired Algorithm.

    PubMed

    Kim, Mi Jeong; Maeng, Sung Joon; Cho, Yong Soo

    2015-07-28

    In this paper, a distributed synchronization technique based on a bio-inspired algorithm is proposed for an orthogonal frequency division multiple access (OFDMA)-based wireless mesh network (WMN) with a time difference of arrival. The proposed time- and frequency-synchronization technique uses only the signals received from the neighbor nodes, by considering the effect of the propagation delay between the nodes. It achieves a fast synchronization with a relatively low computational complexity because it is operated in a distributed manner, not requiring any feedback channel for the compensation of the propagation delays. In addition, a self-organization scheme that can be effectively used to construct 1-hop neighbor nodes is proposed for an OFDMA-based WMN with a large number of nodes. The performance of the proposed technique is evaluated with regard to the convergence property and synchronization success probability using a computer simulation.

  17. Segmentation algorithm via Cellular Neural/Nonlinear Network: implementation on Bio-inspired hardware platform

    NASA Astrophysics Data System (ADS)

    Karabiber, Fethullah; Vecchio, Pietro; Grassi, Giuseppe

    2011-12-01

    The Bio-inspired (Bi-i) Cellular Vision System is a computing platform consisting of sensing, array sensing-processing, and digital signal processing. The platform is based on the Cellular Neural/Nonlinear Network (CNN) paradigm. This article presents the implementation of a novel CNN-based segmentation algorithm onto the Bi-i system. Each part of the algorithm, along with the corresponding implementation on the hardware platform, is carefully described through the article. The experimental results, carried out for Foreman and Car-phone video sequences, highlight the feasibility of the approach, which provides a frame rate of about 26 frames/s. Comparisons with existing CNN-based methods show that the conceived approach is more accurate, thus representing a good trade-off between real-time requirements and accuracy.

  18. Bio-inspired, efficient, artificial lung employing air as the ventilating gas.

    PubMed

    Potkay, Joseph A; Magnetta, Michael; Vinson, Abigail; Cmolik, Brian

    2011-09-07

    Artificial lungs have recently been utilized to rehabilitate patients suffering from lung diseases. However, significant advances in gas exchange, biocompatibility, and portability are required to realize their full clinical potential. Here, we have focused on the issues of gas exchange and portability and report a small-scale, microfabricated artificial lung that uses new mathematical modeling and a bio-inspired design to achieve oxygen exchange efficiencies much larger than current devices, thereby enabling air to be utilized as the ventilating gas. This advancement eliminates the need for pure oxygen required by conventional artificial lung systems and is achieved through a device with feature sizes and structure similar to that in the natural lung. This advancement represents a significant step towards creating the first truly portable and implantable artificial lung systems for the ambulatory care of patients suffering from lung diseases.

  19. Bio-inspired design strategies for central pattern generator control in modular robotics.

    PubMed

    Herrero-Carrón, F; Rodríguez, F B; Varona, P

    2011-03-01

    New findings in the nervous system of invertebrates have shown how a number of features of central pattern generator (CPG) circuits contribute to the generation of robust flexible rhythms. In this paper we consider recently revealed strategies that living CPGs follow to design CPG control paradigms for modular robots. To illustrate them, we divide the task of designing an example CPG for a modular robot into independent problems. We formulate each problem in a general way and provide a bio-inspired solution for each of them: locomotion information coding, individual module control and inter-module coordination. We analyse the stability of the CPG numerically, and then test it on a real robot. We analyse steady state locomotion and recovery after perturbations. In both cases, the robot is able to autonomously find a stable effective locomotion state. Finally, we discuss how these strategies can result in a more general design approach for CPG-based locomotion.

  20. Tunable band gaps in bio-inspired periodic composites with nacre-like microstructure

    NASA Astrophysics Data System (ADS)

    Chen, Yanyu; Wang, Lifeng

    2014-08-01

    Periodic composite materials have many promising applications due to their unique ability to control the propagation of waves. Here, we report the existence and frequency tunability of complete elastic wave band gaps in bio-inspired periodic composites with nacre-like, brick-and-mortar microstructure. Numerical results show that complete band gaps in these periodic composites derive from local resonances or Bragg scattering, depending on the lattice angle and the volume fraction of each phase in the composites. The investigation of elastic wave propagation in finite periodic composites validates the simulated complete band gaps and further reveals the mechanisms leading to complete band gaps. Moreover, our results indicate that the topological arrangement of the mineral platelets and changes of material properties can be utilized to tune the evolution of complete band gaps. Our finding provides new opportunities to design mechanically robust periodic composite materials for wave absorption under hostile environments, such as for deep water applications.

  1. Fusion of nacre, mussel, and lotus leaf: bio-inspired graphene composite paper with multifunctional integration.

    PubMed

    Zhong, Da; Yang, Qinglin; Guo, Lin; Dou, Shixue; Liu, Kesong; Jiang, Lei

    2013-07-07

    Multifunctional integration is an inherent characteristic for biological materials with multiscale structures. Learning from nature is an effective approach for scientists and engineers to construct multifunctional materials. In nature, mollusks (abalone), mussels, and the lotus have evolved different and optimized solutions to survive. Here, bio-inspired multifunctional graphene composite paper was fabricated in situ through the fusion of the different biological solutions from nacre (brick-and-mortar structure), mussel adhesive protein (adhesive property and reducing character), and the lotus leaf (self-cleaning effect). Owing to the special properties (self-polymerization, reduction, and adhesion), dopamine could be simultaneously used as a reducing agent for graphene oxide and as an adhesive, similar to the mortar in nacre, to crosslink the adjacent graphene. The resultant nacre-like graphene paper exhibited stable superhydrophobicity, self-cleaning, anti-corrosion, and remarkable mechanical properties underwater.

  2. A Bio-Inspired Memory Model Embedded with a Causality Reasoning Function for Structural Fault Location

    PubMed Central

    Zheng, Wei; Wu, Chunxian

    2015-01-01

    Structural health monitoring (SHM) is challenged by massive data storage pressure and structural fault location. In response to these issues, a bio-inspired memory model that is embedded with a causality reasoning function is proposed for fault location. First, the SHM data for processing are divided into three temporal memory areas to control data volume reasonably. Second, the inherent potential of the causal relationships in structural state monitoring is mined. Causality and dependence indices are also proposed to establish the mechanism of quantitative description of the reason and result events. Third, a mechanism of causality reasoning is developed for the reason and result events to locate faults in a SHM system. Finally, a deformation experiment conducted on a steel spring plate demonstrates that the proposed model can be applied to real-time acquisition, compact data storage, and system fault location in a SHM system. Moreover, the model is compared with some typical methods based on an experimental benchmark dataset. PMID:25798991

  3. Flexibility and protection by design: imbricated hybrid microstructures of bio-inspired armor.

    PubMed

    Rudykh, Stephan; Ortiz, Christine; Boyce, Mary C

    2015-04-07

    Inspired by the imbricated scale-tissue flexible armor of elasmoid fish, we design hybrid stiff plate/soft matrix material architectures and reveal their ability to provide protection against penetration while preserving flexibility. Indentation and bending tests on bio-inspired 3D-printed prototype materials show that both protection and flexibility are highly tunable by geometrical parameters of the microstructure (plate inclination angle and volume fraction). We show that penetration resistance can be amplified by a factor of 40, while flexibility decreases in less than 5 times. Different deformation resistance mechanisms are found to govern flexibility (inter-plate matrix shear) versus penetration resistance (localized plate bending) for this microstructural architecture which, in turn, enables separation of these functional requirements in the material design. These experiments identify the tradeoffs between these typically conflicting properties as well as the ability to design the most protective material architecture for a required flexibility, providing new design guidelines for enhanced flexible armor systems.

  4. An adaptive, self-organizing dynamical system for hierarchical control of bio-inspired locomotion.

    PubMed

    Arena, Paolo; Fortuna, Luigi; Frasca, Mattia; Sicurella, Giovanni

    2004-08-01

    In this paper, dynamical systems made up of locally coupled nonlinear units are used to control the locomotion of bio-inspired robots and, in particular, a simulation of an insect-like hexapod robot. These controllers are inspired by the biological paradigm of central pattern generators and are responsible for generating a locomotion gait. A general structure, which is able to change the locomotion gait according to environmental conditions, is introduced. This structure is based on an adaptive system, implemented by motor maps, and is able to learn the correct locomotion gait on the basis of a reward function. The proposed control system is validated by a large number of simulations carried out in a dynamic environment for simulating legged robots.

  5. Image sensor system with bio-inspired efficient coding and adaptation.

    PubMed

    Okuno, Hirotsugu; Yagi, Tetsuya

    2012-08-01

    We designed and implemented an image sensor system equipped with three bio-inspired coding and adaptation strategies: logarithmic transform, local average subtraction, and feedback gain control. The system comprises a field-programmable gate array (FPGA), a resistive network, and active pixel sensors (APS), whose light intensity-voltage characteristics are controllable. The system employs multiple time-varying reset voltage signals for APS in order to realize multiple logarithmic intensity-voltage characteristics, which are controlled so that the entropy of the output image is maximized. The system also employs local average subtraction and gain control in order to obtain images with an appropriate contrast. The local average is calculated by the resistive network instantaneously. The designed system was successfully used to obtain appropriate images of objects that were subjected to large changes in illumination.

  6. A bio-inspired approach for the reduction of left ventricular workload.

    PubMed

    Pahlevan, Niema M; Gharib, Morteza

    2014-01-01

    Previous studies have demonstrated the existence of optimization criteria in the design and development of mammalians cardiovascular systems. Similarities in mammalian arterial wave reflection suggest there are certain design criteria for the optimization of arterial wave dynamics. Inspired by these natural optimization criteria, we investigated the feasibility of optimizing the aortic waves by modifying wave reflection sites. A hydraulic model that has physical and dynamical properties similar to a human aorta and left ventricle was used for a series of in-vitro experiments. The results indicate that placing an artificial reflection site (a ring) at a specific location along the aorta may create a constructive wave dynamic that could reduce LV pulsatile workload. This simple bio-inspired approach may have important implications for the future of treatment strategies for diseased aorta.

  7. A bio-inspired method for the constrained shortest path problem.

    PubMed

    Wang, Hongping; Lu, Xi; Zhang, Xiaoge; Wang, Qing; Deng, Yong

    2014-01-01

    The constrained shortest path (CSP) problem has been widely used in transportation optimization, crew scheduling, network routing and so on. It is an open issue since it is a NP-hard problem. In this paper, we propose an innovative method which is based on the internal mechanism of the adaptive amoeba algorithm. The proposed method is divided into two parts. In the first part, we employ the original amoeba algorithm to solve the shortest path problem in directed networks. In the second part, we combine the Physarum algorithm with a bio-inspired rule to deal with the CSP. Finally, by comparing the results with other method using an examples in DCLC problem, we demonstrate the accuracy of the proposed method.

  8. A bio-inspired methodology of identifying influential nodes in complex networks.

    PubMed

    Gao, Cai; Lan, Xin; Zhang, Xiaoge; Deng, Yong

    2013-01-01

    How to identify influential nodes is a key issue in complex networks. The degree centrality is simple, but is incapable to reflect the global characteristics of networks. Betweenness centrality and closeness centrality do not consider the location of nodes in the networks, and semi-local centrality, leaderRank and pageRank approaches can be only applied in unweighted networks. In this paper, a bio-inspired centrality measure model is proposed, which combines the Physarum centrality with the K-shell index obtained by K-shell decomposition analysis, to identify influential nodes in weighted networks. Then, we use the Susceptible-Infected (SI) model to evaluate the performance. Examples and applications are given to demonstrate the adaptivity and efficiency of the proposed method. In addition, the results are compared with existing methods.

  9. Microneedle, bio-microneedle and bio-inspired microneedle: A review.

    PubMed

    Ma, Guojun; Wu, Chengwei

    2017-02-16

    Microneedles (MNs) are micro-scale needles used for drug delivery and other targets. Micro-scale size endows them with many advantages over hypodermic needles, including painlessness, minimal invasiveness and convenient operation, but it may also lead to risk of mechanical failures, which should be prevented in the clinical applications of MNs. The objective of this review is mainly to introduce studies on the mechanics problems with respect to MNs. Firstly, the basic knowledge of MNs is introduced in brief, so that readers can understand the basic characteristics of MNs. Secondly, researches on inserting behavior and mechanical performances of MNs are discussed. Thirdly, literatures on the drug delivery and the pain resulted from the insertion of MNs are overviewed. Finally, some bio-microneedles and bio-inspired MNs are introduced.

  10. Systematic numerical investigation of the role of hierarchy in heterogeneous bio-inspired materials.

    PubMed

    Bosia, Federico; Della Croce, Federico; Pugno, Nicola M

    2013-03-01

    It is well known that hierarchical structure is an important feature in biological materials to optimise various properties, including mechanical ones. It is however still unclear how these hierarchical architectures can improve material characteristics, for example strength. Also, the transposition of these structures from natural to artificial bioinspired materials remains to be perfected. In this paper, we introduce a numerical method to evaluate the strength of fibre-based heterogeneous biological materials and systematically investigate the role of hierarchy. Results show that hierarchy indeed plays an important role and that it is possible to "tune" the strength of bio-inspired materials in a wide range of values, in some cases improving the strength of non-hierarchical structures considerably.

  11. Hierarchical assembly of micro-/nano-building blocks: bio-inspired rigid structural functional materials.

    PubMed

    Yao, Hong-Bin; Fang, Hai-Yu; Wang, Xiao-Han; Yu, Shu-Hong

    2011-07-01

    The huge diversity of hierarchical micro-/nano-rigid structures existing in biological systems is increasingly becoming a source of inspiration of materials scientists and engineers to create next-generation advanced functional materials. In the past decades, these multiscale hierarchical structures have been intensively investigated to show their contributions to high performance in mechanical properties. Recently, accompanied with the development of nanotechnology, some biologically hierarchical rigid structures have been duplicated and mimicked in artificial materials through hierarchical organization of micro-/nano-building blocks. In this critical review, we will present biological rigid structural models, functional micro-/nano-building blocks, and hierarchical assembly techniques for the manufacture of bio-inspired rigid structural functional materials (177 references).

  12. Role of cellulose functionality in bio-inspired synthesis of nano bioactive glass.

    PubMed

    Gupta, Nidhi; Santhiya, Deenan

    2017-06-01

    In search of abundant cheaper natural polymer for bio-inspired bioactive glass nanoparticles synthesis, cellulose and its derivatives have been considered as a template. Different templates explored in the present studies are pure cellulose, methyl cellulose and amine grafted cellulose. To the best of our knowledge, for the first time of the considered templates, pure cellulose and amine grafted cellulose results in in situ nano particulate composite formation while interestingly methyl cellulose proves to be an excellent sacrificial template for the synthesis of uniform bioglass nanoparticles of diameter in the range of 55nm. Further, viscoelastic measurements were carried out using dynamic mechanical analyzer. Herein, an attempt has been made to establish structure-mechanical relationship based on the templates. Moreover, in vitro bioactivity is also observed to be affected by the nature of the template molecule used for the synthesis of bioactive glass. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A Bio-Inspired Approach for the Reduction of Left Ventricular Workload

    PubMed Central

    Pahlevan, Niema M.; Gharib, Morteza

    2014-01-01

    Previous studies have demonstrated the existence of optimization criteria in the design and development of mammalians cardiovascular systems. Similarities in mammalian arterial wave reflection suggest there are certain design criteria for the optimization of arterial wave dynamics. Inspired by these natural optimization criteria, we investigated the feasibility of optimizing the aortic waves by modifying wave reflection sites. A hydraulic model that has physical and dynamical properties similar to a human aorta and left ventricle was used for a series of in-vitro experiments. The results indicate that placing an artificial reflection site (a ring) at a specific location along the aorta may create a constructive wave dynamic that could reduce LV pulsatile workload. This simple bio-inspired approach may have important implications for the future of treatment strategies for diseased aorta. PMID:24475239

  14. Bio-inspired mechanics of highly sensitive stretchable graphene strain sensors

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Yang, Tingting; Zhu, Hongwei; Zheng, Quanshui

    2015-04-01

    Graphene woven fabrics (GWFs) can sense large strain up to 10% with the highest gauge factors (105) thus far reported. This result promises key applications particularly in sensing strains of soft materials such as biological tissues, but the mechanism of such super gauge factor (SGF) property was not very clear. Through a bio-inspired Voronoi polycrystalline micromechanics model together with experimental validations, we show that the successive cracking, the "fish-scale" like network structure of GWFs, and the superlubricity between overlapped graphene flakes play crucial roles resulting in the SGF property. We also reveal the influences of overlapping width, graphene strip size, Poisson's ratio of the substrate material, size effect, interfacial resistance, and network size to the SGF property. These results can guide the design of GWFs with desired sensing performance.

  15. Biophysiochemical properties of endothelial cells cultured on bio-inspired collagen films

    PubMed Central

    2014-01-01

    Background In this study, we investigated the effect of the extracellular matrix on endothelial dysfunction by careful observation of human umbilical vein endothelial cells (HUVECs) cultured on denatured collagen film. Results HUVECs on denatured collagen film showed relatively high surface roughness compared with normal HUVECs. The expression levels of MMP-1, MMP-2 and CD146 increased in the ECs on denatured collagen film. In addition, we examined the accumulation of fluorescent beads on HUVEC layers subjected to circulatory flow. The number of accumulated fluorescent beads increased on the disorganized HUVEC layers. Conclusions The proposed in vitro study using bio-inspired collagen films could potentially be used in the size- and ligand-based design of drugs to treat endothelial dysfunction caused by circulatory vascular diseases. PMID:24984812

  16. Hydrogels from Amorphous Calcium Carbonate and Polyacrylic Acid: Bio-Inspired Materials for "Mineral Plastics".

    PubMed

    Sun, Shengtong; Mao, Li-Bo; Lei, Zhouyue; Yu, Shu-Hong; Cölfen, Helmut

    2016-09-19

    Given increasing environmental issues due to the large usage of non-biodegradable plastics based on petroleum, new plastic materials, which are economic, environmentally friendly, and recyclable are in high demand. One feasible strategy is the bio-inspired synthesis of mineral-based hybrid materials. Herein we report a facile route for an amorphous CaCO3 (ACC)-based hydrogel consisting of very small ACC nanoparticles physically cross-linked by poly(acrylic acid). The hydrogel is shapeable, stretchable, and self-healable. Upon drying, the hydrogel forms free-standing, rigid, and transparent objects with remarkable mechanical performance. By swelling in water, the material can completely recover the initial hydrogel state. As a matrix, thermochromism can also be easily introduced. The present hybrid hydrogel may represent a new class of plastic materials, the "mineral plastics". © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A bio-inspired glucose controller based on pancreatic β-cell physiology.

    PubMed

    Herrero, Pau; Georgiou, Pantelis; Oliver, Nick; Johnston, Desmond G; Toumazou, Christofer

    2012-05-01

    Control algorithms for closed-loop insulin delivery in type 1 diabetes have been mainly based on control engineering or artificial intelligence techniques. These, however, are not based on the physiology of the pancreas but seek to implement engineering solutions to biology. Developments in mathematical models of the β-cell physiology of the pancreas have described the glucose-induced insulin release from pancreatic β cells at a molecular level. This has facilitated development of a new class of bio-inspired glucose control algorithms that replicate the functionality of the biological pancreas. However, technologies for sensing glucose levels and delivering insulin use the subcutaneous route, which is nonphysiological and introduces some challenges. In this article, a novel glucose controller is presented as part of a bio-inspired artificial pancreas. A mathematical model of β-cell physiology was used as the core of the proposed controller. In order to deal with delays and lack of accuracy introduced by the subcutaneous route, insulin feedback and a gain scheduling strategy were employed. A United States Food and Drug Administration-accepted type 1 diabetes mellitus virtual population was used to validate the presented controller. Premeal and postmeal mean ± standard deviation blood glucose levels for the adult and adolescent populations were well within the target range set for the controller [(70, 180) mg/dl], with a percent time in range of 92.8 ± 7.3% for the adults and 83.5 ± 14% for the adolescents. This article shows for the first time very good glucose control in a virtual population with type 1 diabetes mellitus using a controller based on a subcellular β-cell model. © 2012 Diabetes Technology Society.

  18. A bio-inspired system for spatio-temporal recognition in static and video imagery

    NASA Astrophysics Data System (ADS)

    Khosla, Deepak; Moore, Christopher K.; Chelian, Suhas

    2007-04-01

    This paper presents a bio-inspired method for spatio-temporal recognition in static and video imagery. It builds upon and extends our previous work on a bio-inspired Visual Attention and object Recognition System (VARS). The VARS approach locates and recognizes objects in a single frame. This work presents two extensions of VARS. The first extension is a Scene Recognition Engine (SCE) that learns to recognize spatial relationships between objects that compose a particular scene category in static imagery. This could be used for recognizing the category of a scene, e.g., office vs. kitchen scene. The second extension is the Event Recognition Engine (ERE) that recognizes spatio-temporal sequences or events in sequences. This extension uses a working memory model to recognize events and behaviors in video imagery by maintaining and recognizing ordered spatio-temporal sequences. The working memory model is based on an ARTSTORE1 neural network that combines an ART-based neural network with a cascade of sustained temporal order recurrent (STORE)1 neural networks. A series of Default ARTMAP classifiers ascribes event labels to these sequences. Our preliminary studies have shown that this extension is robust to variations in an object's motion profile. We evaluated the performance of the SCE and ERE on real datasets. The SCE module was tested on a visual scene classification task using the LabelMe2 dataset. The ERE was tested on real world video footage of vehicles and pedestrians in a street scene. Our system is able to recognize the events in this footage involving vehicles and pedestrians.

  19. A Bio-Inspired Glucose Controller Based on Pancreatic β-Cell Physiology

    PubMed Central

    Herrero, Pau; Georgiou, Pantelis; Oliver, Nick; Johnston, Desmond G; Toumazou, Christofer

    2012-01-01

    Introduction Control algorithms for closed-loop insulin delivery in type 1 diabetes have been mainly based on control engineering or artificial intelligence techniques. These, however, are not based on the physiology of the pancreas but seek to implement engineering solutions to biology. Developments in mathematical models of the β-cell physiology of the pancreas have described the glucose-induced insulin release from pancreatic β cells at a molecular level. This has facilitated development of a new class of bio-inspired glucose control algorithms that replicate the functionality of the biological pancreas. However, technologies for sensing glucose levels and delivering insulin use the subcutaneous route, which is nonphysiological and introduces some challenges. In this article, a novel glucose controller is presented as part of a bio-inspired artificial pancreas. Methods A mathematical model of β-cell physiology was used as the core of the proposed controller. In order to deal with delays and lack of accuracy introduced by the subcutaneous route, insulin feedback and a gain scheduling strategy were employed. A United States Food and Drug Administration-accepted type 1 diabetes mellitus virtual population was used to validate the presented controller. Results Premeal and postmeal mean ± standard deviation blood glucose levels for the adult and adolescent populations were well within the target range set for the controller [(70, 180) mg/dl], with a percent time in range of 92.8 ± 7.3% for the adults and 83.5 ± 14% for the adolescents. Conclusions This article shows for the first time very good glucose control in a virtual population with type 1 diabetes mellitus using a controller based on a subcellular β-cell model. PMID:22768892

  20. Fusion of nacre, mussel, and lotus leaf: bio-inspired graphene composite paper with multifunctional integration

    NASA Astrophysics Data System (ADS)

    Zhong, Da; Yang, Qinglin; Guo, Lin; Dou, Shixue; Liu, Kesong; Jiang, Lei

    2013-06-01

    Multifunctional integration is an inherent characteristic for biological materials with multiscale structures. Learning from nature is an effective approach for scientists and engineers to construct multifunctional materials. In nature, mollusks (abalone), mussels, and the lotus have evolved different and optimized solutions to survive. Here, bio-inspired multifunctional graphene composite paper was fabricated in situ through the fusion of the different biological solutions from nacre (brick-and-mortar structure), mussel adhesive protein (adhesive property and reducing character), and the lotus leaf (self-cleaning effect). Owing to the special properties (self-polymerization, reduction, and adhesion), dopamine could be simultaneously used as a reducing agent for graphene oxide and as an adhesive, similar to the mortar in nacre, to crosslink the adjacent graphene. The resultant nacre-like graphene paper exhibited stable superhydrophobicity, self-cleaning, anti-corrosion, and remarkable mechanical properties underwater.Multifunctional integration is an inherent characteristic for biological materials with multiscale structures. Learning from nature is an effective approach for scientists and engineers to construct multifunctional materials. In nature, mollusks (abalone), mussels, and the lotus have evolved different and optimized solutions to survive. Here, bio-inspired multifunctional graphene composite paper was fabricated in situ through the fusion of the different biological solutions from nacre (brick-and-mortar structure), mussel adhesive protein (adhesive property and reducing character), and the lotus leaf (self-cleaning effect). Owing to the special properties (self-polymerization, reduction, and adhesion), dopamine could be simultaneously used as a reducing agent for graphene oxide and as an adhesive, similar to the mortar in nacre, to crosslink the adjacent graphene. The resultant nacre-like graphene paper exhibited stable superhydrophobicity, self

  1. Optimizing the design of bio-inspired functionally graded material (FGM) layer in all-ceramic dental restorations.

    PubMed

    Cui, Chang; Sun, Jian

    2014-01-01

    Due to elastic modulus mismatch between the different layers in all-ceramic dental restorations, high tensile stress concentrates at the interface between the ceramic core and cement. In natural tooth structure, stress concentration is reduced by the functionally graded structure of dentin-enamel junction (DEJ) which interconnects enamel and dentin. Inspired by DEJ, the aim of this study was to explore the optimum design of a bio-inspired functionally graded material (FGM) layer in all-ceramic dental restorations to achieve excellent stress reduction and distribution. Three-dimensional finite element model of a multi-layer structure was developed, which comprised bilayered ceramic, bio-inspired FGM layer, cement, and dentin. Finite element method and first-order optimization technique were used to realize the optimal bio-inspired FGM layer design. The bio-inspired FGM layer significantly reduced stress concentration at the interface between the crown and cement, and stresses were evenly distributed in FGM layer. With the optimal design, an elastic modulus distribution similar to that in DEJ occurred in the FGM layer.

  2. A three dimensional unsteady iterative panel method with vortex particle wakes and boundary layer model for bio-inspired multi-body wings

    NASA Astrophysics Data System (ADS)

    Dhruv, Akash; Blower, Christopher; Wickenheiser, Adam M.

    2015-03-01

    The ability of UAVs to operate in complex and hostile environments makes them useful in military and civil operations concerning surveillance and reconnaissance. However, limitations in size of UAVs and communication delays prohibit their operation close to the ground and in cluttered environments, which increase risks associated with turbulence and wind gusts that cause trajectory deviations and potential loss of the vehicle. In the last decade, scientists and engineers have turned towards bio-inspiration to solve these issues by developing innovative flow control methods that offer better stability, controllability, and maneuverability. This paper presents an aerodynamic load solver for bio-inspired wings that consist of an array of feather-like flaps installed across the upper and lower surfaces in both the chord- and span-wise directions, mimicking the feathers of an avian wing. Each flap has the ability to rotate into both the wing body and the inbound airflow, generating complex flap configurations unobtainable by traditional wings that offer improved aerodynamic stability against gusting flows and turbulence. The solver discussed is an unsteady three-dimensional iterative doublet panel method with vortex particle wakes. This panel method models the wake-body interactions between multiple flaps effectively without the need to define specific wake geometries, thereby eliminating the need to manually model the wake for each configuration. To incorporate viscous flow characteristics, an iterative boundary layer theory is employed, modeling laminar, transitional and turbulent regions over the wing's surfaces, in addition to flow separation and reattachment locations. This technique enables the boundary layer to influence the wake strength and geometry both within the wing and aft of the trailing edge. The results obtained from this solver are validated using experimental data from a low-speed suction wind tunnel operating at Reynolds Number 300,000. This method

  3. A bio-inspired two-layer sensing structure of polypeptide and multiple-walled carbon nanotube to sense small molecular gases.

    PubMed

    Wang, Li-Chun; Su, Tseng-Hsiung; Ho, Cheng-Long; Yang, Shang-Ren; Chiu, Shih-Wen; Kuo, Han-Wen; Tang, Kea-Tiong

    2015-03-05

    In this paper, we propose a bio-inspired, two-layer, multiple-walled carbon nanotube (MWCNT)-polypeptide composite sensing device. The MWCNT serves as a responsive and conductive layer, and the nonselective polypeptide (40 mer) coating the top of the MWCNT acts as a filter into which small molecular gases pass. Instead of using selective peptides to sense specific odorants, we propose using nonselective, peptide-based sensors to monitor various types of volatile organic compounds. In this study, depending on gas interaction and molecular sizes, the randomly selected polypeptide enabled the recognition of certain polar volatile chemical vapors, such as amines, and the improved discernment of low-concentration gases. The results of our investigation demonstrated that the polypeptide-coated sensors can detect ammonia at a level of several hundred ppm and barely responded to triethylamine.

  4. Bio-inspired design of hierarchical PDMS microstructures with tunable adhesive superhydrophobicity

    NASA Astrophysics Data System (ADS)

    Zhang, Enshuang; Wang, Youshan; Lv, Tong; Li, Li; Cheng, Zhongjun; Liu, Yuyan

    2015-03-01

    In this paper, bio-inspired PDMS films with different hierarchical microstructures were designed and tunable adhesive super-hydrophobicity was achieved on these films. The adhesive forces between a water droplet and the PDMS film can be adjusted from extremely low (about 8.3 μN) to very high (about 57 μN), and the tunable effect can be ascribed to different wetting states for the water droplets that result from different microstructures on the films. Noticeably, the obtained super-hydrophobic surfaces are acid/alkali-resisting, and water droplets with different pH values have similar contact angles and adhesive forces on the same surface. Finally, the application of the obtained surfaces for microdroplet transportation and self-cleaning are also discussed. The results reported herein provide a new method to obtain super-hydrophobic surfaces with controlled adhesion, and significantly improve our understanding of the relationship between surface adhesion, surface microstructures and the fabrication principle of tunable adhesive super-hydrophobic surfaces.In this paper, bio-inspired PDMS films with different hierarchical microstructures were designed and tunable adhesive super-hydrophobicity was achieved on these films. The adhesive forces between a water droplet and the PDMS film can be adjusted from extremely low (about 8.3 μN) to very high (about 57 μN), and the tunable effect can be ascribed to different wetting states for the water droplets that result from different microstructures on the films. Noticeably, the obtained super-hydrophobic surfaces are acid/alkali-resisting, and water droplets with different pH values have similar contact angles and adhesive forces on the same surface. Finally, the application of the obtained surfaces for microdroplet transportation and self-cleaning are also discussed. The results reported herein provide a new method to obtain super-hydrophobic surfaces with controlled adhesion, and significantly improve our understanding of

  5. Bio-Inspired Molecular Catalysts for Hydrogen Oxidation and Hydrogen Production

    SciTech Connect

    Ho, Ming-Hsun; Chen, Shentan; Rousseau, Roger J.; Dupuis, Michel; Bullock, R. Morris; Raugei, Simone

    2013-06-03

    Recent advances in Ni-based bio-inspired catalysts obtained in the Center for Molecular Electrocatalysis, an Energy Frontier Research Center (EFRC) at the Pacific Northwest National Laboratory, demonstrated the possibility of cleaving H2 or generating H2 heterolytically with turnover frequencies comparable or superior to those of hydrogenase enzymes. In these catalysts the transformation between H2 and protons proceeds via an interplay between proton, hydride and electron transfer steps and involves the interaction of a dihydrogen molecule with both a Ni(II) center and with pendant amine bases incorporated in a six-membered ring, which act as proton relays. These catalytic platforms are well designed in that when protons are correctly positioned (endo) toward the Raugei-ACS-Books.docxPrinted 12/18/12 2 metal center, catalysis proceeds at very high rates. We will show that the proton removal (for H2 oxidation) and proton delivery (for H2 production) are often the rate determining steps. Furthermore, the presence of multiple protonation sites gives rise to reaction intermediates with protons not correctly positioned (exo relative to the metal center). These isomers are easily accessible kinetically and are detrimental to catalysis because of the slow isomerization processes necessary to convert them to the catalytically competent endo isomers. In this chapter we will review the major findings of our computational investigation on the role of proton relays for H2 chemistry and provide guidelines for the design of new catalysts. This research was carried out in the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle. Computational resources were provided at W. R. Wiley Environmental Molecular Science Laboratory (EMSL), a Raugei-Bio-Inspired Molecular-Catalysts-for-Hydrogen- Oxidation

  6. Locomotion Dynamics for Bio-inspired Robots with Soft Appendages: Application to Flapping Flight and Passive Swimming

    NASA Astrophysics Data System (ADS)

    Boyer, Frédéric; Porez, Mathieu; Morsli, Ferhat; Morel, Yannick

    2016-10-01

    In animal locomotion, either in fish or flying insects, the use of flexible terminal organs or appendages greatly improves the performance of locomotion (thrust and lift). In this article, we propose a general unified framework for modeling and simulating the (bio-inspired) locomotion of robots using soft organs. The proposed approach is based on the model of Mobile Multibody Systems (MMS). The distributed flexibilities are modeled according to two major approaches: the Floating Frame Approach (FFA) and the Geometrically Exact Approach (GEA). Encompassing these two approaches in the Newton-Euler modeling formalism of robotics, this article proposes a unique modeling framework suited to the fast numerical integration of the dynamics of a MMS in both the FFA and the GEA. This general framework is applied on two illustrative examples drawn from bio-inspired locomotion: the passive swimming in von Karman Vortex Street, and the hovering flight with flexible flapping wings.

  7. Locomotion Dynamics for Bio-inspired Robots with Soft Appendages: Application to Flapping Flight and Passive Swimming

    NASA Astrophysics Data System (ADS)

    Boyer, Frédéric; Porez, Mathieu; Morsli, Ferhat; Morel, Yannick

    2017-08-01

    In animal locomotion, either in fish or flying insects, the use of flexible terminal organs or appendages greatly improves the performance of locomotion (thrust and lift). In this article, we propose a general unified framework for modeling and simulating the (bio-inspired) locomotion of robots using soft organs. The proposed approach is based on the model of Mobile Multibody Systems (MMS). The distributed flexibilities are modeled according to two major approaches: the Floating Frame Approach (FFA) and the Geometrically Exact Approach (GEA). Encompassing these two approaches in the Newton-Euler modeling formalism of robotics, this article proposes a unique modeling framework suited to the fast numerical integration of the dynamics of a MMS in both the FFA and the GEA. This general framework is applied on two illustrative examples drawn from bio-inspired locomotion: the passive swimming in von Karman Vortex Street, and the hovering flight with flexible flapping wings.

  8. A Wireless Fatigue Monitoring System Utilizing a Bio-Inspired Tree Ring Data Tracking Technique

    PubMed Central

    Bai, Shi; Li, Xuan; Xie, Zhaohui; Zhou, Zhi; Ou, Jinping

    2014-01-01

    Fatigue, a hot scientific research topic for centuries, can trigger sudden failure of critical structures such as aircraft and railway systems, resulting in enormous casualties as well as economic losses. The fatigue life of certain structures is intrinsically random and few monitoring techniques are capable of tracking the full life-cycle fatigue damage. In this paper, a novel in-situ wireless real-time fatigue monitoring system using a bio-inspired tree ring data tracking technique is proposed. The general framework, methodology, and verification of this intelligent system are discussed in details. The rain-flow counting (RFC) method is adopted as the core algorithm which quantifies fatigue damages, and Digital Signal Processing (DSP) is introduced as the core module for data collection and analysis. Laboratory test results based on strain gauges and polyvinylidene fluoride (PVDF) sensors have shown that the developed intelligent system can provide a reliable quick feedback and early warning of fatigue failure. With the merits of low cost, high accuracy and great reliability, the developed wireless fatigue sensing system can be further applied to mechanical engineering, civil infrastructures, transportation systems, aerospace engineering, etc. PMID:24603635

  9. A compact bio-inspired visible/NIR imager for image-guided surgery (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gao, Shengkui; Garcia, Missael; Edmiston, Chris; York, Timothy; Marinov, Radoslav; Mondal, Suman B.; Zhu, Nan; Sudlow, Gail P.; Akers, Walter J.; Margenthaler, Julie A.; Liang, Rongguang; Pepino, Marta; Achilefu, Samuel; Gruev, Viktor

    2016-03-01

    Inspired by the visual system of the morpho butterfly, we have designed, fabricated, tested and clinically translated an ultra-sensitive, light weight and compact imaging sensor capable of simultaneously capturing near infrared (NIR) and visible spectrum information. The visual system of the morpho butterfly combines photosensitive cells with spectral filters at the receptor level. The spectral filters are realized by alternating layers of high and low dielectric constant, such as air and cytoplasm. We have successfully mimicked this concept by integrating pixelated spectral filters, realized by alternating silicon dioxide and silicon nitrate layers, with an array of CCD detectors. There are four different types of pixelated spectral filters in the imaging plane: red, green, blue and NIR. The high optical density (OD) of all spectral filters (OD>4) allow for efficient rejections of photons from unwanted bands. The single imaging chip weighs 20 grams with form factor of 5mm by 5mm. The imaging camera is integrated with a goggle display system. A tumor targeted agent, LS301, is used to identify all spontaneous tumors in a transgenic PyMT murine model of breast cancer. The imaging system achieved sensitivity of 98% and selectivity of 95%. We also used our imaging sensor to locate sentinel lymph nodes (SLNs) in patients with breast cancer using indocyanine green tracer. The surgeon was able to identify 100% of SLNs when using our bio-inspired imaging system, compared to 93% when using information from the lymphotropic dye and 96% when using information from the radioactive tracer.

  10. Directed assembly of bio-inspired hierarchical materials with controlled nanofibrillar architectures

    NASA Astrophysics Data System (ADS)

    Tseng, Peter; Napier, Bradley; Zhao, Siwei; Mitropoulos, Alexander N.; Applegate, Matthew B.; Marelli, Benedetto; Kaplan, David L.; Omenetto, Fiorenzo G.

    2017-05-01

    In natural systems, directed self-assembly of structural proteins produces complex, hierarchical materials that exhibit a unique combination of mechanical, chemical and transport properties. This controlled process covers dimensions ranging from the nano- to the macroscale. Such materials are desirable to synthesize integrated and adaptive materials and systems. We describe a bio-inspired process to generate hierarchically defined structures with multiscale morphology by using regenerated silk fibroin. The combination of protein self-assembly and microscale mechanical constraints is used to form oriented, porous nanofibrillar networks within predesigned macroscopic structures. This approach allows us to predefine the mechanical and physical properties of these materials, achieved by the definition of gradients in nano- to macroscale order. We fabricate centimetre-scale material geometries including anchors, cables, lattices and webs, as well as functional materials with structure-dependent strength and anisotropic thermal transport. Finally, multiple three-dimensional geometries and doped nanofibrillar constructs are presented to illustrate the facile integration of synthetic and natural additives to form functional, interactive, hierarchical networks.

  11. Soft network composite materials with deterministic and bio-inspired designs

    PubMed Central

    Jang, Kyung-In; Chung, Ha Uk; Xu, Sheng; Lee, Chi Hwan; Luan, Haiwen; Jeong, Jaewoong; Cheng, Huanyu; Kim, Gwang-Tae; Han, Sang Youn; Lee, Jung Woo; Kim, Jeonghyun; Cho, Moongee; Miao, Fuxing; Yang, Yiyuan; Jung, Han Na; Flavin, Matthew; Liu, Howard; Kong, Gil Woo; Yu, Ki Jun; Rhee, Sang Il; Chung, Jeahoon; Kim, Byunggik; Kwak, Jean Won; Yun, Myoung Hee; Kim, Jin Young; Song, Young Min; Paik, Ungyu; Zhang, Yihui; Huang, Yonggang; Rogers, John A.

    2015-01-01

    Hard and soft structural composites found in biology provide inspiration for the design of advanced synthetic materials. Many examples of bio-inspired hard materials can be found in the literature; far less attention has been devoted to soft systems. Here we introduce deterministic routes to low-modulus thin film materials with stress/strain responses that can be tailored precisely to match the non-linear properties of biological tissues, with application opportunities that range from soft biomedical devices to constructs for tissue engineering. The approach combines a low-modulus matrix with an open, stretchable network as a structural reinforcement that can yield classes of composites with a wide range of desired mechanical responses, including anisotropic, spatially heterogeneous, hierarchical and self-similar designs. Demonstrative application examples in thin, skin-mounted electrophysiological sensors with mechanics precisely matched to the human epidermis and in soft, hydrogel-based vehicles for triggered drug release suggest their broad potential uses in biomedical devices. PMID:25782446

  12. Creep-assisted slow crack growth in bio-inspired dental multilayers.

    PubMed

    Du, Jing; Niu, Xinrui; Soboyejo, Wole

    2015-06-01

    Ceramic crown structures under occlusal contact are often idealized as flat multilayered structures that are deformed under Hertzian contact loading. Previous models treated each layer as linear elastic materials and resulted in differences between the measured and predicted critical loads. This paper examines the combined effects of creep (in the adhesive and substrate layers) and creep-assisted slow crack growth (in the ceramic layer) on the contact-induced deformation of bio-inspired, functionally graded multilayer (FGM) structures and the conventional tri-layers. The time-dependent moduli of each of the layers were determined from constant load creep tests. The resulting modulus-time characteristics were modeled using Prony series. These were then incorporated into a finite element model for the computation of stress distributions in the sub-surface regions of the top ceramic layer, in which sub-surface radial cracks, are observed as the clinical failure mode. The time-dependent stresses are incorporated into a slow crack growth (SCG) model that is used to predict the critical loads of the dental multilayers under Hertzian contact loading. The predicted loading rate dependence of the critical loads is shown to be consistent with experimental results. The implications of the results are then discussed for the design of robust dental multilayers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Pushing the lipid envelope: using bio-inspired nanocomposites to understand and exploit lipid membrane limitations

    NASA Astrophysics Data System (ADS)

    Montano, Gabriel

    Lipids serve as the organizing matrix material for biological membranes, the site of interaction of cells with the external environment. . As such, lipids play a critical role in structure/function relationships of an extraordinary number of critical biological processes. In this talk, we will look at bio-inspired membrane assemblies to better understand the roles of lipids in biological systems as well as attempt to generate materials that can mimic and potentially advance upon biological membrane processes. First, we will investigate the response of lipids to adverse conditions. In particular, I will present data that demonstrates the response of lipids to harsh conditions and how such responses can be exploited to generate nanocomposite rearrangements. I will also show the effect of adding the endotoxin lipopolysaccharide (LPS) to lipid bilayer assemblies and describe implications on our understanding of LPS organization in biological systems as well as describe induced lipid modifications that can be exploited to organize membrane composites with precise, two-dimensional geometric control. Lastly, I will describe the use of amphiphilic block copolymers to create membrane nanocomposites capable of mimicking biological systems. In particular, I will describe the use of our polymer-based membranes in creating artificial photosynthetic assemblies that rival biological systems in function in a more flexible, dynamic matrix.

  14. Bio-inspired design of hierarchical PDMS microstructures with tunable adhesive superhydrophobicity.

    PubMed

    Zhang, Enshuang; Wang, Youshan; Lv, Tong; Li, Li; Cheng, Zhongjun; Liu, Yuyan

    2015-04-14

    In this paper, bio-inspired PDMS films with different hierarchical microstructures were designed and tunable adhesive super-hydrophobicity was achieved on these films. The adhesive forces between a water droplet and the PDMS film can be adjusted from extremely low (about 8.3 μN) to very high (about 57 μN), and the tunable effect can be ascribed to different wetting states for the water droplets that result from different microstructures on the films. Noticeably, the obtained super-hydrophobic surfaces are acid/alkali-resisting, and water droplets with different pH values have similar contact angles and adhesive forces on the same surface. Finally, the application of the obtained surfaces for microdroplet transportation and self-cleaning are also discussed. The results reported herein provide a new method to obtain super-hydrophobic surfaces with controlled adhesion, and significantly improve our understanding of the relationship between surface adhesion, surface microstructures and the fabrication principle of tunable adhesive super-hydrophobic surfaces.

  15. Bio-inspired bending actuator for controlling conical nose shape using piezoelectric patches.

    PubMed

    Na, Tae-Won; Jung, Jin-Young; Oh, Ii-Kwon

    2014-10-01

    In this paper, a bio-inspired bending actuator was designed and fabricated using piezoelectric patches and cantilever-shaped beam for controlling nose shape. The aim of this study is to investigate the use of the bending actuator. PZT and single crystal PMN-PT actuators were used to generate translational strain and shear stress. The piezoelectric patches were attached on the clamped cantilever beam to convert their translational strains to bending motion of the beam. First, finite element analysis was performed to identify and to make an accurate estimate of the feasibility on the bending actuation by applying various voltages and frequencies. Based on the results of the FEM analysis, the experiments were also performed. Static voltages and dynamic voltages with various frequencies were applied to the bending actuators with PZTs and PMN-PTs, and the rotation angles of the nose connected to the top of bending actuators were measured, respectively. As the results, the bending actuator using PMN-PT patches showed better performances in all cases. With the increases of signal frequency and input voltage, the rotation angle also found to be increased. Especially at the frequency of 5 Hz and input voltage of 600 V, the nose generated the maximum rotation angle of 3.15 degree.

  16. Bio-inspired multistructured conical copper wires for highly efficient liquid manipulation.

    PubMed

    Wang, Qianbin; Meng, Qingan; Chen, Ming; Liu, Huan; Jiang, Lei

    2014-09-23

    Animal hairs are typical structured conical fibers ubiquitous in natural system that enable the manipulation of low viscosity liquid in a well-controlled manner, which serves as the fundamental structure in Chinese brush for ink delivery in a controllable manner. Here, drawing inspiration from these structure, we developed a dynamic electrochemical method that enables fabricating the anisotropic multiscale structured conical copper wire (SCCW) with controllable conicity and surface morphology. The as-prepared SCCW exhibits a unique ability for manipulating liquid with significantly high efficiency, and over 428 times greater than its own volume of liquid could be therefore operated. We propose that the boundary condition of the dynamic liquid balance behavior on conical fibers, namely, steady holding of liquid droplet at the tip region of the SCCW, makes it an excellent fibrous medium to manipulate liquid. Moreover, we demonstrate that the titling angle of the SCCW can also affect its efficiency of liquid manipulation by virtue of its mechanical rigidity, which is hardly realized by flexible natural hairs. We envision that the bio-inspired SCCW could give inspiration in designing materials and devices to manipulate liquid in a more controllable way and with high efficiency.

  17. Bio-inspired artificial muscle structure for integrated sensing and actuation

    NASA Astrophysics Data System (ADS)

    Ye, Zhihang; Faisal, Md. Shahnewaz Sabit; Asmatulu, Ramazan; Chen, Zheng

    2015-04-01

    In this paper, a novel artificial muscle/tendon structure is developed for achieving bio-inspired actuation and self-sensing. The hybrid structure consists of a dielectric elastomer (DE) material connected with carbon fibers, which incorporates the built-in sensing and actuation capability of DE and mechanical, electrical interfacing capability of carbon fibers. DEs are light weight artificial muscles that can generate compliant actuation with low power consumption. Carbon fibers act as artificial tendon due to their high electro-conductivity and mechanical strength. PDMS material is used to electrically and mechanically connect the carbon fibers with the DE material. A strip actuator was fabricated to verify the structure design and characterize its actuation and sensing capabilities. A 3M VHB 4905 tape was used as the DE material. To make compliant electrodes on the VHB tape, carbon black was sprayed on the surface of VHB tape. To join the carbon fibers to the VHB tape, PDMS was used as bonding material. Experiments have been conducted to characterize the actuation and sensing capabilities. The actuation tests have shown that the energy efficiency of artificial muscle can reach up to 0.7% and the strain can reach up to 1%. The sensing tests have verified that the structure is capable of self-sensing through the electrical impedance measurement.

  18. Bio-inspired benchmark generator for extracellular multi-unit recordings

    PubMed Central

    Mondragón-González, Sirenia Lizbeth; Burguière, Eric

    2017-01-01

    The analysis of multi-unit extracellular recordings of brain activity has led to the development of numerous tools, ranging from signal processing algorithms to electronic devices and applications. Currently, the evaluation and optimisation of these tools are hampered by the lack of ground-truth databases of neural signals. These databases must be parameterisable, easy to generate and bio-inspired, i.e. containing features encountered in real electrophysiological recording sessions. Towards that end, this article introduces an original computational approach to create fully annotated and parameterised benchmark datasets, generated from the summation of three components: neural signals from compartmental models and recorded extracellular spikes, non-stationary slow oscillations, and a variety of different types of artefacts. We present three application examples. (1) We reproduced in-vivo extracellular hippocampal multi-unit recordings from either tetrode or polytrode designs. (2) We simulated recordings in two different experimental conditions: anaesthetised and awake subjects. (3) Last, we also conducted a series of simulations to study the impact of different level of artefacts on extracellular recordings and their influence in the frequency domain. Beyond the results presented here, such a benchmark dataset generator has many applications such as calibration, evaluation and development of both hardware and software architectures. PMID:28233819

  19. Bio-inspired surface modification of PET for cardiovascular applications: Case study of gelatin.

    PubMed

    Giol, E Diana; Schaubroeck, David; Kersemans, Ken; De Vos, Filip; Van Vlierberghe, Sandra; Dubruel, Peter

    2015-10-01

    An aqueous-based bio-inspired approach was applied to chemically bind a bio compatible and cell-interactive gelatin layer on poly(ethylene terephthalate) (PET) for cardiovascular applications. The protein layer was immobilized after an initial surface activation via a dopamine coating. The individual and synergetic effect of the dopamine deposition procedure and the substrate nature (pristine versus plasma-treated) was investigated via XPS, AFM, SEM and contact angle measurements. Dependent on the applied parameters, the post dopamine coating presented various surface roughnesses ranging between 96 nm and 210 nm. Subsequent gelatin immobilization mostly induced a smoothening effect, but the synergetic influence of the deposition protocol and plasma treatment resulted in different gelatin conformations. In addition, a comprehensive comparative study between chemically-modified (via dopamine) and physically-modified (physisorption) PET with gelatin was developed within the present study. All investigated samples were submitted to preliminary haemocompatibility tests, which clearly indicated the direct link between blood platelet behaviour and final protein arrangement.

  20. Effects of bio-inspired microscale roughness on macroscale flow structures

    NASA Astrophysics Data System (ADS)

    Bocanegra Evans, Humberto; Hamed, Ali M.; Gorumlu, Serdar; Doosttalab, Ali; Aksak, Burak; Chamorro, Leonardo P.; Castillo, Luciano

    2016-11-01

    The interaction between rough surfaces and flows is a complex physical situation that produces rich flow phenomena. While random roughness typically increases drag, properly engineered roughness patterns may produce positive results, e.g. dimples in a golf ball. Here we present a set of PIV measurements in an index matched facility of the effect of a bio-inspired surface that consists of an array of mushroom-shaped micro-pillars. The experiments are carried out-under fully wetted conditions-in a flow with adverse pressure gradient, triggering flow separation. The introduction of the micro-pillars dramatically decreases the size of the recirculation bubble; the area with backflow is reduced by approximately 60%. This suggests a positive impact on the form drag generated by the fluid. Furthermore, a negligible effect is seen on the turbulence production terms. The micro-pillars affect the flow by generating low and high pressure perturbations at the interface between the bulk and roughness layer, in a fashion comparable to that of synthetic jets. The passive approach, however, facilitates the implementation of this coating. As the mechanism does not rely on surface hydrophobicity, it is well suited for underwater applications and its functionality should not degrade over time.

  1. Converging the capabilities of EAP artificial muscles and the requirements of bio-inspired robotics

    NASA Astrophysics Data System (ADS)

    Hanson, David F.; White, Victor

    2004-07-01

    The characteristics of Electro-actuated polymers (EAP) are typically considered inadequate for applications in robotics. But in recent years, there has been both dramatic increases in EAP technological capbilities and reductions in power requirements for actuating bio-inspired robotics. As the two trends continue to converge, one may anticipate that dramatic breakthroughs in biologically inspired robotic actuation will result due to the marraige of these technologies. This talk will provide a snapshot of how EAP actuator scientists and roboticists may work together on a common platform to accelerate the growth of both technologies. To demonstrate this concept of a platform to accelerate this convergence, the authors will discuss their work in the niche application of robotic facial expression. In particular, expressive robots appear to be within the range of EAP actuation, thanks to their low force requirements. Several robots will be shown that demonstrate realistic expressions with dramatically decreased force requirements. Also, detailed descriptions will be given of the engineering innovations that have enabled these robotics advancements-most notably, Structured-Porosity Elastomer Materials (SPEMs). SPEM manufacturing techniques create delicate cell-structures in a variety of elastomers that maintain the high elongation characteristics of the mother material, but because of the porisity, behave as sponge-materials, thus lower the force required to emulate facial expressions to levels output by several extant EAP actuators.

  2. Bio-inspired liquid transport via elastocapillary interaction of a thin membrane with a liquid meniscus.

    PubMed

    Samy, R A; George, D; Sen, A K

    2017-08-22

    We report bio-inspired (from a hummingbird's tongue) liquid transport via elastocapillary interaction of a thin membrane with a liquid meniscus. A soft wedge-thin rectangular membrane forming a wedge with a rigid substrate and a flat thin rectangular membrane undergo large deformation while interacting with liquid menisci. The membrane deformation leads to the formation of confinement which in turn results in elastocapillary flow along the membrane length. A simple theoretical model based on the Euler Bernoulli law is used to predict the membrane deformation profiles, which compare well with that obtained from experiments. In the wedge case, the membrane surface and liquid are selected such that the Concus-Finn criterion is not satisfied to contrast the present case of elastocapillary flow from the typical corner flow reported in the literature. The meniscus location versus time studies indicated that the flow exhibits the typical Washburn regime with , except for a sudden increase in velocity at the end of the membrane length. The effects of membrane thickness and width, liquids and substrates were studied to determine the expression for the modified Washburn constant Wm in both the wedge and flat membranes. It was found that gravity plays a role for Bo > 0.94 and for Bo = 1.9, the effect of inclination angle on the flow was studied. The elastocapillary flow with thin membranes could open up an opportunity for a new area, namely "membrane microfluidics" or "lab on a membrane", for diagnostics and other applications.

  3. Soft network composite materials with deterministic and bio-inspired designs.

    PubMed

    Jang, Kyung-In; Chung, Ha Uk; Xu, Sheng; Lee, Chi Hwan; Luan, Haiwen; Jeong, Jaewoong; Cheng, Huanyu; Kim, Gwang-Tae; Han, Sang Youn; Lee, Jung Woo; Kim, Jeonghyun; Cho, Moongee; Miao, Fuxing; Yang, Yiyuan; Jung, Han Na; Flavin, Matthew; Liu, Howard; Kong, Gil Woo; Yu, Ki Jun; Rhee, Sang Il; Chung, Jeahoon; Kim, Byunggik; Kwak, Jean Won; Yun, Myoung Hee; Kim, Jin Young; Song, Young Min; Paik, Ungyu; Zhang, Yihui; Huang, Yonggang; Rogers, John A

    2015-03-18

    Hard and soft structural composites found in biology provide inspiration for the design of advanced synthetic materials. Many examples of bio-inspired hard materials can be found in the literature; far less attention has been devoted to soft systems. Here we introduce deterministic routes to low-modulus thin film materials with stress/strain responses that can be tailored precisely to match the non-linear properties of biological tissues, with application opportunities that range from soft biomedical devices to constructs for tissue engineering. The approach combines a low-modulus matrix with an open, stretchable network as a structural reinforcement that can yield classes of composites with a wide range of desired mechanical responses, including anisotropic, spatially heterogeneous, hierarchical and self-similar designs. Demonstrative application examples in thin, skin-mounted electrophysiological sensors with mechanics precisely matched to the human epidermis and in soft, hydrogel-based vehicles for triggered drug release suggest their broad potential uses in biomedical devices.

  4. A bio-inspired micropump based on stomatal transpiration in plants.

    PubMed

    Li, Jing-min; Liu, Chong; Xu, Zheng; Zhang, Kai-ping; Ke, Xue; Li, Chun-yu; Wang, Li-ding

    2011-08-21

    Stomatal transpiration, which is an efficient way to carry water from the roots up to the leaves, can be described by "diameter-law". According to the law, the flow rate induced by micropore transpiration far exceeded that induced by macroscale evaporation, and it can be controlled by opening (or closing) some micropores. In this research, a bio-inspired micropump based on stomatal transpiration is presented. The micropump is composed of three layers: the top layer is a 93 μm-thick PVC (polyvinylchloride) film with a group of slit-like micropores; the second layer is a PMMA sheet with adhesives to join the other two layers together; the third layer is a microporous membrane. Using this pump, controllable flow rates of 0.13-3.74 μl min(-1) can be obtained. This micropump features high and adjustable flow-rates, simple structure and low fabrication cost. It can be used as a "plug and play" fluid-driven unit without any external power sources and equipment. This journal is © The Royal Society of Chemistry 2011

  5. Computational analysis of a tip vortex structure shed from a bio-inspired blade

    NASA Astrophysics Data System (ADS)

    Gomez, Sebastian; Gilkey, Lindsay N.; Kaiser, Bryan E.; Poroseva, Svetlana V.

    2013-11-01

    Understanding and predicting a tip vortex structure and its dynamics is of significant importance for all branches of aerodynamics. A particular focus of our research is the rotorcraft performance which is substantially influenced by a tip vortex. A tip vortex also is a major source of energy losses and acoustic noise. In the present study, an impact of a blade shape on a tip vortex structure is analyzed. Simulations are conducted of flows around a rectangular blade and a bio-inspired blade of the same area. An insect wing is chosen as a blade prototype. Indeed, insects developed physical characteristics that reduce energy consumption while permitting sustained and controlled flight at low level of noise. Analysis has been done to determine what insect poses flight characteristics closest to the small rotorcraft design goals. Commercial CFD software STAR-CCM + is used for conducting computations on structured and unstructured grids and for data post-processing. The authors acknowledge support from UNM CARC in a form of access to HPC and from CD-Adapco for providing Star-CCM+ for academic purposes. The first author's work was supported by the New Mexico Space Grant Consortium.

  6. Synthesis of bio-inspired multilayer polarizers and their application to anti-counterfeiting.

    PubMed

    Poncelet, O; Tallier, G; Simonis, P; Cornet, A; Francis, L A

    2015-02-26

    Some insects, such as Papilio blumei and Suneve coronata, are known for exhibiting polarization effects on light such as color contrast or geometrical polarization rotation by reflection on their wing scales. The photonic structures found on these species that show these properties are multilayered spherical cavities or triangular grooves which polarize the light due to multiple inner reflections. These polarization effects, in addition to the intrinsic color-mixing properties of these photonic structures, are of interest in the anti-counterfeiting field due to their invisibility to the naked eye. In this paper, we report micro-fabrication techniques to produce bio-inspired cylindrical grooves (C-grooves) and triangular grooves (V-grooves) that demonstrate the same properties. Theoretical analyses were carried out by using multi-scale simulation (MS) as well as by finite-difference time-domain (FDTD) in order to compare the polarization capability of both structures. The V-grooves show greater polarization contrast than the C-grooves, but the spectrum is specular. The C-grooves exhibit lower polarization effects but have a dispersive spectrum. In both cases, the structures show additional optical properties, such as diffraction, macroscopic color contrast under a polarizer, and contrast inversion due to geometries which contribute to their uniqueness.

  7. A bio-inspired aquatic flow sensor using an artificial cell membrane

    NASA Astrophysics Data System (ADS)

    Pinto, Preston A.; Garrison, Kevin; Leo, Donald J.; Sarles, Stephen A.

    2012-04-01

    Receptors known as hair cells give many animals this ability to sense a wide range of stimuli, such as sound, orientation, vibration, and flow. Previous researchers have mimicked natural hair cells by building electromechanical sensor systems that produce an electric response due to the bending of artificial hairs. Inspired by the roles of sensory hairs in fish, this work builds on previous research by investigating the flow dependent electrical response of a 'skin'-encapsulated artificial hair cell in an aqueous flow. This study presents the design, fabrication, and characterization of a flow sensor that will help close the loop between the sensing mechanisms and control strategies that aquatic organisms employ for functions such as locomotion regulation, prey capture, and particulate capture. The system is fabricated with a durable, artificial bilayer that forms at the interface between lipid-encased aqueous volumes contained in a flexible encapsulated polyurethane substrate. Flow experiments are conducted by placing the bio-inspired sensor in a flow chamber and subjecting it to pulse-like flows. Specifically, through temporal responses of the measured current and power spectral density (PSD) analysis, our results show that the amplitude and frequency of the current response are related to the flow over the hair. This preliminary study demonstrates that the encapsulated artificial hair cell flow sensor is capable of sensing changes in flow through a mechanoelectrical response and that its sensing capabilities may be altered by varying its surface morphology.

  8. Soft network composite materials with deterministic and bio-inspired designs

    NASA Astrophysics Data System (ADS)

    Jang, Kyung-In; Chung, Ha Uk; Xu, Sheng; Lee, Chi Hwan; Luan, Haiwen; Jeong, Jaewoong; Cheng, Huanyu; Kim, Gwang-Tae; Han, Sang Youn; Lee, Jung Woo; Kim, Jeonghyun; Cho, Moongee; Miao, Fuxing; Yang, Yiyuan; Jung, Han Na; Flavin, Matthew; Liu, Howard; Kong, Gil Woo; Yu, Ki Jun; Rhee, Sang Il; Chung, Jeahoon; Kim, Byunggik; Kwak, Jean Won; Yun, Myoung Hee; Kim, Jin Young; Song, Young Min; Paik, Ungyu; Zhang, Yihui; Huang, Yonggang; Rogers, John A.

    2015-03-01

    Hard and soft structural composites found in biology provide inspiration for the design of advanced synthetic materials. Many examples of bio-inspired hard materials can be found in the literature; far less attention has been devoted to soft systems. Here we introduce deterministic routes to low-modulus thin film materials with stress/strain responses that can be tailored precisely to match the non-linear properties of biological tissues, with application opportunities that range from soft biomedical devices to constructs for tissue engineering. The approach combines a low-modulus matrix with an open, stretchable network as a structural reinforcement that can yield classes of composites with a wide range of desired mechanical responses, including anisotropic, spatially heterogeneous, hierarchical and self-similar designs. Demonstrative application examples in thin, skin-mounted electrophysiological sensors with mechanics precisely matched to the human epidermis and in soft, hydrogel-based vehicles for triggered drug release suggest their broad potential uses in biomedical devices.

  9. Bio-inspired classifier for road extraction from remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Xu, Jiawei; Wang, Ruisheng; Yue, Shigang

    2014-01-01

    An adaptive approach for road extraction inspired by the mechanism of primary visual cortex (V1) is proposed. The motivation is originated by the characteristics in the receptive field from V1. It has been proved that human or primate visual systems can distinguish useful cues from real scenes effortlessly while traditional computer vision techniques cannot accomplish this task easily. This idea motivates us to design a bio-inspired model for road extraction from remote sensing imagery. The proposed approach is an improved support vector machine (SVM) based on the pooling of feature vectors, using an improved Gaussian radial basis function (RBF) kernel with tuning on synaptic gains. The synaptic gains comprise the feature vectors through an iterative optimization process representing the strength and width of Gaussian RBF kernel. The synaptic gains integrate the excitation and inhibition stimuli based on internal connections from V1. The summation of synaptic gains contributes to pooling of feature vectors. The experimental results verify the correlation between the synaptic gain and classification rules, and then show better performance in comparison with hidden Markov model, SVM, and fuzzy classification approaches. Our contribution is an automatic approach to road extraction without prelabeling and postprocessing work. Another apparent advantage is that our method is robust for images taken even under complex weather conditions such as snowy and foggy weather.

  10. Bio-inspired adaptive feedback error learning architecture for motor control.

    PubMed

    Tolu, Silvia; Vanegas, Mauricio; Luque, Niceto R; Garrido, Jesús A; Ros, Eduardo

    2012-10-01

    This study proposes an adaptive control architecture based on an accurate regression method called Locally Weighted Projection Regression (LWPR) and on a bio-inspired module, such as a cerebellar-like engine. This hybrid architecture takes full advantage of the machine learning module (LWPR kernel) to abstract an optimized representation of the sensorimotor space while the cerebellar component integrates this to generate corrective terms in the framework of a control task. Furthermore, we illustrate how the use of a simple adaptive error feedback term allows to use the proposed architecture even in the absence of an accurate analytic reference model. The presented approach achieves an accurate control with low gain corrective terms (for compliant control schemes). We evaluate the contribution of the different components of the proposed scheme comparing the obtained performance with alternative approaches. Then, we show that the presented architecture can be used for accurate manipulation of different objects when their physical properties are not directly known by the controller. We evaluate how the scheme scales for simulated plants of high Degrees of Freedom (7-DOFs).

  11. Bio-inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering.

    PubMed

    Dhand, Chetna; Ong, Seow Theng; Dwivedi, Neeraj; Diaz, Silvia Marrero; Venugopal, Jayarama Reddy; Navaneethan, Balchandar; Fazil, Mobashar H U T; Liu, Shouping; Seitz, Vera; Wintermantel, Erich; Beuerman, Roger W; Ramakrishna, Seeram; Verma, Navin K; Lakshminarayanan, Rajamani

    2016-10-01

    Bone disorders are the most common cause of severe long term pain and physical disability, and affect millions of people around the world. In the present study, we report bio-inspired preparation of bone-like composite structures by electrospinning of collagen containing catecholamines and Ca(2+). The presence of divalent cation induces simultaneous partial oxidative polymerization of catecholamines and crosslinking of collagen nanofibers, thus producing mats that are mechanically robust and confer photoluminescence properties. Subsequent mineralization of the mats by ammonium carbonate leads to complete oxidative polymerization of catecholamines and precipitation of amorphous CaCO3. The collagen composite scaffolds display outstanding mechanical properties with Young's modulus approaching the limits of cancellous bone. Biological studies demonstrate that human fetal osteoblasts seeded on to the composite scaffolds display enhanced cell adhesion, penetration, proliferation, differentiation and osteogenic expression of osteocalcin, osteopontin and bone matrix protein when compared to pristine collagen or tissue culture plates. Among the two catecholamines, mats containing norepinephrine displayed superior mechanical, photoluminescence and biological properties than mats loaded with dopamine. These smart multifunctional scaffolds could potentially be utilized to repair and regenerate bone defects and injuries.

  12. Atomistic simulation on the plastic deformation and fracture of bio-inspired graphene/Ni nanocomposites

    NASA Astrophysics Data System (ADS)

    Yang, Zhenyu; Wang, Dandan; Lu, Zixing; Hu, Wenjun

    2016-11-01

    Molecular dynamics simulations were performed to investigate the plastic deformation and fracture behaviors of bio-inspired graphene/metal nanocomposites, which have a "brick-and-mortar" nanostructure, consisting of hard graphene single-layers embedded in a soft Ni matrix. The plastic deformation mechanisms of the nanocomposites were analyzed as well as their effects on the mechanical properties with various geometrical variations. It was found that the strength and ductility of the metal matrix can be highly enhanced with the addition of the staggered graphene layers, and the plastic deformation can be attributed to the interfacial sliding, dislocation nucleation, and cracks' combination. The strength of the nanocomposites strongly depends on the length scale of the nanostructure and the interlayer distance as well. In addition, slip at the interface releases the stress in graphene layers, leading to the stress distribution on the graphene more uniform. The present results are expected to contribute to the design of the nanolayered graphene/metal composites with high performance.

  13. Numerical analysis of bio-inspired corrugated airfoil at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Mondal, Partha Protim; Rahman, Md. Masudur; Hasan, A. B. M. Toufique

    2016-07-01

    A numerical study was conducted to investigate the aerodynamic performance of a bio-inspired corrugated airfoil at the chord Reynolds number of Rec=80,000 to explore the potential advantages of such airfoils at low Reynolds numbers. This study represents the transient nature of corrugated airfoils at low Reynolds number where flow is assumed to be laminar, unsteady, incompressible and two dimensional. The simulations include a sharp interface Cartesian grid based meshing employed with laminar viscous model. The flow field surrounding the corrugated airfoil has been analyzed using structured grid Finite Volume Method (FVM) based on Navier-Stokes equation. All parameters used in flow simulation are expressed in non-dimensional quantities for better understanding of flow behavior, regardless of dimensions or the fluid that is used. The simulated results revealed that the corrugated airfoil provides high lift with moderate drag and prevents large scale flow separation at higher angles of attack. This happens due to the negative shear drag produced by the recirculation zones which occurs in the valleys of the corrugated airfoils. The existence of small circulation bubbles sitting in the valleys prevents large scale flow separation thus increasing the aerodynamic performance of the corrugated airfoil.

  14. Boundary layer drag reduction research hypotheses derived from bio-inspired surface and recent advanced applications.

    PubMed

    Luo, Yuehao; Yuan, Lu; Li, Jianhua; Wang, Jianshe

    2015-12-01

    Nature has supplied the inexhaustible resources for mankind, and at the same time, it has also progressively developed into the school for scientists and engineers. Through more than four billions years of rigorous and stringent evolution, different creatures in nature gradually exhibit their own special and fascinating biological functional surfaces. For example, sharkskin has the potential drag-reducing effect in turbulence, lotus leaf possesses the self-cleaning and anti-foiling function, gecko feet have the controllable super-adhesion surfaces, the flexible skin of dolphin can accelerate its swimming velocity. Great profits of applying biological functional surfaces in daily life, industry, transportation and agriculture have been achieved so far, and much attention from all over the world has been attracted and focused on this field. In this overview, the bio-inspired drag-reducing mechanism derived from sharkskin is explained and explored comprehensively from different aspects, and then the main applications in different fluid engineering are demonstrated in brief. This overview will inevitably improve the comprehension of the drag reduction mechanism of sharkskin surface and better understand the recent applications in fluid engineering.

  15. A comparative study of bio-inspired protective scales using 3D printing and mechanical testing.

    PubMed

    Martini, Roberto; Balit, Yanis; Barthelat, Francois

    2017-03-16

    Flexible natural armors from fish, alligators or armadillo are attracting an increasing amount of attention for their unique combinations of hardness, flexibility and light weight. The extreme contrast of stiffness between hard scales and surrounding soft tissues gives rise to unusual and attractive mechanisms, which now serve as models for the design of bio-inspired armors. Despite this growing interest, there is little guideline for the choice of materials, optimum thickness, size, shape and arrangement for the protective scales. In this work, we explore how the geometry and arrangement of hard scales can be tailored to promote scale-scale interactions. We use 3D printing to fabricate arrays of scales with increasingly complex geometries and arrangements, from simple squares with no overlap to complex ganoid-scales with overlaps and interlocking features. We performed puncture tests and flexural tests on each of the 3D printed materials, and we report the puncture resistance - compliance characteristics of each design on an Ashby chart. The interactions between the scales can significantly increase the resistance to puncture, and these interactions can be maximized by tuning the geometry and arrangement of the scales. Interestingly, the designs that offer the best combinations of puncture resistance and flexural compliance are similar to the geometry and arrangement of natural teleost and ganoid scales, which suggests that natural evolution has shaped these systems to maximize flexible protection. This study yields new insights into the mechanisms of natural dermal armor, and also suggests new designs for personal protective systems.

  16. Bio-inspired direct patterning functional nanothin microlines: controllable liquid transfer.

    PubMed

    Wang, Qianbin; Meng, Qingan; Wang, Pengwei; Liu, Huan; Jiang, Lei

    2015-04-28

    Developing a general and low-cost strategy that enables direct patterning of microlines with nanometer thickness from versatile liquid-phase functional materials and precise positioning of them on various substrates remains a challenge. Herein, with inspiration from the oriental wisdom to control ink transfer by Chinese brushes, we developed a facile and general writing strategy to directly pattern various functional microlines with homogeneous distribution and nanometer-scale thickness. It is demonstrated that the width and thickness of the microlines could be well-controlled by tuning the writing method, providing guidance for the adaptation of this technique to various systems. It is also shown that various functional liquid-phase materials, such as quantum dots, small molecules, polymers, and suspensions of nanoparticles, could directly write on the substrates with intrinsic physicochemical properties well-preserved. Moreover, this technique enabled direct patterning of liquid-phase materials on certain microdomains, even in multiple layered style, thus a microdomain localized chemical reaction and the patterned surface chemical modification were enabled. This bio-inspired direct writing device will shed light on the template-free printing of various functional micropatterns, as well as the integrated functional microdevices.

  17. Bio-inspired benchmark generator for extracellular multi-unit recordings.

    PubMed

    Mondragón-González, Sirenia Lizbeth; Burguière, Eric

    2017-02-24

    The analysis of multi-unit extracellular recordings of brain activity has led to the development of numerous tools, ranging from signal processing algorithms to electronic devices and applications. Currently, the evaluation and optimisation of these tools are hampered by the lack of ground-truth databases of neural signals. These databases must be parameterisable, easy to generate and bio-inspired, i.e. containing features encountered in real electrophysiological recording sessions. Towards that end, this article introduces an original computational approach to create fully annotated and parameterised benchmark datasets, generated from the summation of three components: neural signals from compartmental models and recorded extracellular spikes, non-stationary slow oscillations, and a variety of different types of artefacts. We present three application examples. (1) We reproduced in-vivo extracellular hippocampal multi-unit recordings from either tetrode or polytrode designs. (2) We simulated recordings in two different experimental conditions: anaesthetised and awake subjects. (3) Last, we also conducted a series of simulations to study the impact of different level of artefacts on extracellular recordings and their influence in the frequency domain. Beyond the results presented here, such a benchmark dataset generator has many applications such as calibration, evaluation and development of both hardware and software architectures.

  18. Bio-inspired Dynamic Gradients Regulated by Supramolecular Bindings in Receptor-Embedded Hydrogel Matrices.

    PubMed

    Luan, Xinglong; Zhang, Yihe; Wu, Jing; Jonkheijm, Pascal; Li, Guangtao; Jiang, Lei; Huskens, Jurriaan; An, Qi

    2016-08-01

    The kinetics of supramolecular bindings are fundamentally important for molecular motions and spatial-temporal distributions in biological systems, but have rarely been employed in preparing artificial materials. This report proposes a bio-inspired concept to regulate dynamic gradients through the coupled supramolecular binding and diffusion process in receptor-embedded hydrogel matrices. A new type of hydrogel that uses cyclodextrin (CD) as both the gelling moiety and the receptors is prepared as the diffusion matrices. The diffusible guest, 4-aminoazobenzene, quickly and reversibly binds to matrices-bound CD during diffusion and generates steeper gradients than regular diffusion. Weakened bindings induced through UV irradiation extend the gradients. Combined with numerical simulation, these results indicate that the coupled binding-diffusion could be viewed as slowed diffusion, regulated jointly by the binding constant and the equilibrium receptor concentrations, and gradients within a bio-relevant extent of 4 mm are preserved up to 90 h. This report should inspire design strategies of biomedical or cell-culturing materials.

  19. Bio-Inspired Nano-Featured Substrates: Suitable Environment for Bone Regeneration.

    PubMed

    Rammal, Hassan; Dubus, Marie; Aubert, Léa; Reffuveille, Fany; Laurent Maquin, Dominique; Terryn, Christine; Schaaf, Pierre; Alem, Halima; Francius, Grégory; Quilès, Fabienne; Gangloff, Sophie C; Boulmedais, Fouzia; Kerdjoudj, Halima

    2017-03-16

    Bone mimicking coatings provide a complex microenvironment in which material, through its inherent properties (such as nanostructure and composition), affects the commitment of stem cells into bone lineage and the production of bone tissue regulating factors, required for bone healing and regeneration. Herein, a bioactive mineral/biopolymers composite made of calcium phosphate/chitosan and hyaluronic acid (CaP-CHI-HA) was elaborated using a versatile simultaneous spray coating of interacting species. The resulting CaP-CHI-HA coating was mainly constituted of bioactive, carbonated and crystalline hydroxyapatite, with 277 ± 98 nm of roughness, 1 μm of thickness and 2.3 ± 1 GPa of stiffness. After five days of culture, CaP-CHI-HA suggested a synergistic effect of intrinsic biophysical features and biopolymers on stem cells mechanobiology and nuclear organization, leading to the expression of an early osteoblast-like phenotype and the production of bone tissue regulating factors such as osteoprotegerin and vascular endothelial growth factor. More interestingly, amalgamation with biopolymers, conferred to mineral a bacterial anti-adhesive property. These significant data shed light on the potential regenerative application of CaP-CHI-HA bio-inspired coating in providing a suitable environment for stem cells bone regeneration and an ideal strategy to prevent implant-associated infections.

  20. Targeting the finite-deformation response of wavy biological tissues with bio-inspired material architectures.

    PubMed

    Tu, Wenqiong; Pindera, Marek-Jerzy

    2013-12-01

    The Particle Swarm Optimization algorithm driven by a homogenized-based model is employed to target the response of three types of heart-valve chordae tendineae with different stiffening characteristics due to different degrees of waviness of collagen fibril/fiber bundles. First, geometric and material parameters are identified through an extensive parametric study that produce excellent agreement of the simulated response based on simplified unit cell architectures with the actual response of the complex biological tissue. These include amplitude and wavelength of the crimped chordae microstructure, elastic moduli of the constituent phases, and degree of microstructural refinement of the stiff phase at fixed volume fraction whose role in the stiffening response is elucidated. The study also reveals potential non-uniqueness of bio-inspired wavy microstructures in attaining the targeted response of certain chordae tendineae crimp configurations. The homogenization-based Particle Swarm Optimization algorithm, whose predictions are validated through the parametric study, is then shown to be an excellent tool in identifying optimal unit cell architectures in the design space that exhibits very steep gradients. Finally, defect criticality of optimal unit cell architectures is investigated in order to assess their feasibility in replacing actual biological tendons with stiffening characteristics.

  1. Novel bio-inspired smart control for hazard mitigation of civil structures

    NASA Astrophysics Data System (ADS)

    Kim, Yeesock; Kim, Changwon; Langari, Reza

    2010-11-01

    In this paper, a new bio-inspired controller is proposed for vibration mitigation of smart structures subjected to ground disturbances (i.e. earthquakes). The control system is developed through the integration of a brain emotional learning (BEL) algorithm with a proportional-integral-derivative (PID) controller and a semiactive inversion (Inv) algorithm. The BEL algorithm is based on the neurologically inspired computational model of the amygdala and the orbitofrontal cortex. To demonstrate the effectiveness of the proposed hybrid BEL-PID-Inv control algorithm, a seismically excited building structure equipped with a magnetorheological (MR) damper is investigated. The performance of the proposed hybrid BEL-PID-Inv control algorithm is compared with that of passive, PID, linear quadratic Gaussian (LQG), and BEL control systems. In the simulation, the robustness of the hybrid BEL-PID-Inv control algorithm in the presence of modeling uncertainties as well as external disturbances is investigated. It is shown that the proposed hybrid BEL-PID-Inv control algorithm is effective in improving the dynamic responses of seismically excited building structure-MR damper systems.

  2. Directed assembly of bio-inspired hierarchical materials with controlled nanofibrillar architectures.

    PubMed

    Tseng, Peter; Napier, Bradley; Zhao, Siwei; Mitropoulos, Alexander N; Applegate, Matthew B; Marelli, Benedetto; Kaplan, David L; Omenetto, Fiorenzo G

    2017-02-27

    In natural systems, directed self-assembly of structural proteins produces complex, hierarchical materials that exhibit a unique combination of mechanical, chemical and transport properties. This controlled process covers dimensions ranging from the nano- to the macroscale. Such materials are desirable to synthesize integrated and adaptive materials and systems. We describe a bio-inspired process to generate hierarchically defined structures with multiscale morphology by using regenerated silk fibroin. The combination of protein self-assembly and microscale mechanical constraints is used to form oriented, porous nanofibrillar networks within predesigned macroscopic structures. This approach allows us to predefine the mechanical and physical properties of these materials, achieved by the definition of gradients in nano- to macroscale order. We fabricate centimetre-scale material geometries including anchors, cables, lattices and webs, as well as functional materials with structure-dependent strength and anisotropic thermal transport. Finally, multiple three-dimensional geometries and doped nanofibrillar constructs are presented to illustrate the facile integration of synthetic and natural additives to form functional, interactive, hierarchical networks.

  3. On the mechanical behavior of bio-inspired materials with non-self-similar hierarchy.

    PubMed

    An, Bingbing; Zhao, Xinluo; Zhang, Dongsheng

    2014-06-01

    Biological materials exhibiting non-self-similar hierarchical structures possess desirable mechanical properties. Motivated by their penetration resistance and fracture toughness, the mechanical performance of model materials with non-self-similar hierarchical structures was explored and the distinct advantages were identified. A numerical model was developed, based on microscopic observation of enamel prisms. Computational simulations showed that the systems with non-self-similar hierarchy displayed lateral expansion when subjected to longitudinal tensile loading, which reflected negative Poisson׳s ratio and potential for greater volume strain energies when compared with conventional materials with positive Poisson׳s ratio. Employing the non-self-similar hierarchical design, the capability of resilience can be improved. Additionally, the non-self-similar hierarchical structure exhibited larger toughness, resulting from the large pull-out work of the reinforcements. The findings of this study not only elucidate the deformation mechanisms of biological materials with non-self-similar hierarchical structure, but also provide a new path for bio-inspired materials design.

  4. Mechanical properties of a bio-inspired robotic knifefish with an undulatory propulsor.

    PubMed

    Curet, Oscar M; Patankar, Neelesh A; Lauder, George V; MacIver, Malcolm A

    2011-06-01

    South American electric knifefish are a leading model system within neurobiology. Recent efforts have focused on understanding their biomechanics and relating this to their neural processing strategies. Knifefish swim by means of an undulatory fin that runs most of the length of their body, affixed to the belly. Propelling themselves with this fin enables them to keep their body relatively straight while swimming, enabling straightforward robotic implementation with a rigid hull. In this study, we examined the basic properties of undulatory swimming through use of a robot that was similar in some key respects to the knifefish. As we varied critical fin kinematic variables such as frequency, amplitude, and wavelength of sinusoidal traveling waves, we measured the force generated by the robot when it swam against a stationary sensor, and its velocity while swimming freely within a flow tunnel system. Our results show that there is an optimal operational region in the fin's kinematic parameter space. The optimal actuation parameters found for the robotic knifefish are similar to previously observed parameters for the black ghost knifefish, Apteronotus albifrons. Finally, we used our experimental results to show how the force generated by the robotic fin can be decomposed into thrust and drag terms. Our findings are useful for future bio-inspired underwater vehicles as well as for understanding the mechanics of knifefish swimming.

  5. Artificial Roughness Encoding with a Bio-inspired MEMS- based Tactile Sensor Array

    PubMed Central

    Oddo, Calogero Maria; Beccai, Lucia; Felder, Martin; Giovacchini, Francesco; Carrozza, Maria Chiara

    2009-01-01

    A compliant 2×2 tactile sensor array was developed and investigated for roughness encoding. State of the art cross shape 3D MEMS sensors were integrated with polymeric packaging providing in total 16 sensitive elements to external mechanical stimuli in an area of about 20 mm2, similarly to the SA1 innervation density in humans. Experimental analysis of the bio-inspired tactile sensor array was performed by using ridged surfaces, with spatial periods from 2.6 mm to 4.1 mm, which were indented with regulated 1N normal force and stroked at constant sliding velocity from 15 mm/s to 48 mm/s. A repeatable and expected frequency shift of the sensor outputs depending on the applied stimulus and on its scanning velocity was observed between 3.66 Hz and 18.46 Hz with an overall maximum error of 1.7%. The tactile sensor could also perform contact imaging during static stimulus indentation. The experiments demonstrated the suitability of this approach for the design of a roughness encoding tactile sensor for an artificial fingerpad. PMID:22412304

  6. Morphological self stabilization of locomotion gaits: illustration on a few examples from bio-inspired locomotion.

    PubMed

    Chevallereau, Christine; Boyer, Frédéric; Porez, Mathieu; Mauny, Johan; Aoustin, Yannick

    2017-06-20

    To a large extent, robotics locomotion can be viewed as cyclic motions, named gaits. Due to the high complexity of the locomotion dynamics, to find the control laws that ensure an expected gait and its stability with respect to external perturbations, is a challenging issue for feedback control. To address this issue, a promising way is to take inspiration from animals that intensively exploit the interactions of the passive degrees of freedom of their body with their physical surroundings, to outsource the high-level exteroceptive feedback control to low-level proprioceptive ones. In this case, passive interactions can ensure most of the expected control goals. In this article, we propose a methodological framework to study the role of morphology in the design of locomotion gaits and their stability. This framework ranges from modelling to control aspects, and is illustrated through three examples from bio-inspired locomotion: a three-dimensional micro air vehicle in hovering flight, a pendular planar climber and a bipedal planar walker. In these three cases, we will see how simple considerations based on the morphology of the body can ensure the existence of passive stable gaits without requiring any high-level control.

  7. Photo-crosslinking, bio-inspired terpolymer adhesives intended for medical applications

    NASA Astrophysics Data System (ADS)

    Harper, Tristan

    A bio-inspired, modular terpolymer adhesive has been synthesized containing three different functionalities: a photocrosslinking segment, wet adhesion segment, and a water soluble segment. Wet adhesion is brought on by an amino acid from mussel byssal plaques called 3,4-dihydroxyphenyl--L-alanine, which has been known to generate strong bonding under wet conditions. The photocrosslinking segment consists of an anthracene based monomer used for mechanical fortification of polymer chains. The water soluble segment consists of poly(acrylic acid), which has been known to increase water solubility of polymers and increase adhesion strength of adhesives. The terpolymer was designed to easily applicable using biologically friendly solvents including water and ethanol. Structural design was confirmed by NMR and UV-Vis spectroscopy. Reversible cycloaddition reactions were executed using a handheld UV lamp along with a photoreactor. Molecular weight increases were seen from 4.120 x 104 Da to 7.429 x 104 Da. Lap shear strength testing showed effects of UV exposure through increases in adhesion energy above 450%. Multiple application variables were tested to determine optimal conditions, such as solvent, concentration, and substrate. Currently, optimal conditions show a 1:1 weight ratio of polymer:solvent in water for all surfaces.

  8. Bio-inspired hard-to-soft interface for implant integration to bone

    PubMed Central

    Zhou, Yan; Snead, Malcolm L.; Tamerler, Candan

    2014-01-01

    Accomplishing full, functional integration at the host-to-biomaterial interface has been a critical roadblock in engineering implants with performance similar to biological materials. Molecular recognition-based self-assembly, coupled with biochemical signaling, may lead to controllable and predictable cellular differentiation at the implant interface. Here, we engineer a bio-inspired interface built upon a chimeric peptide. Binding to the biomaterial interface is achieved using a molecular recognition domain specific for the titanium/titanium alloy implant surface and a biochemical signal guiding stem cells to differentiate by activating the Wnt signaling pathway for bone formation. During a critical period of host cell growth and determination, the bioactive implant interface signals mouse, as well as human, stem cells to differentiate along osteogenic lineages. The Wnt-induced cells show enhanced mineral deposition in an extracellular matrix of their creation and an enhanced gene expression profile consistent with osteogenesis, thereby providing a bone-to-implant interface that promotes bone regeneration. PMID:25461292

  9. The tubercles on humpback whales' flippers: application of bio-inspired technology.

    PubMed

    Fish, Frank E; Weber, Paul W; Murray, Mark M; Howle, Laurens E

    2011-07-01

    The humpback whale (Megaptera novaeangliae) is exceptional among the large baleen whales in its ability to undertake aquabatic maneuvers to catch prey. Humpback whales utilize extremely mobile, wing-like flippers for banking and turning. Large rounded tubercles along the leading edge of the flipper are morphological structures that are unique in nature. The tubercles on the leading edge act as passive-flow control devices that improve performance and maneuverability of the flipper. Experimental analysis of finite wing models has demonstrated that the presence of tubercles produces a delay in the angle of attack until stall, thereby increasing maximum lift and decreasing drag. Possible fluid-dynamic mechanisms for improved performance include delay of stall through generation of a vortex and modification of the boundary layer, and increase in effective span by reduction of both spanwise flow and strength of the tip vortex. The tubercles provide a bio-inspired design that has commercial viability for wing-like structures. Control of passive flow has the advantages of eliminating complex, costly, high-maintenance, and heavy control mechanisms, while improving performance for lifting bodies in air and water. The tubercles on the leading edge can be applied to the design of watercraft, aircraft, ventilation fans, and windmills.

  10. Bio-Inspired Aggregation Control of Carbon Nanotubes for Ultra-Strong Composites

    PubMed Central

    Han, Yue; Zhang, Xiaohua; Yu, Xueping; Zhao, Jingna; Li, Shan; Liu, Feng; Gao, Peng; Zhang, Yongyi; Zhao, Tong; Li, Qingwen

    2015-01-01

    High performance nanocomposites require well dispersion and high alignment of the nanometer-sized components, at a high mass or volume fraction as well. However, the road towards such composite structure is severely hindered due to the easy aggregation of these nanometer-sized components. Here we demonstrate a big step to approach the ideal composite structure for carbon nanotube (CNT) where all the CNTs were highly packed, aligned, and unaggregated, with the impregnated polymers acting as interfacial adhesions and mortars to build up the composite structure. The strategy was based on a bio-inspired aggregation control to limit the CNT aggregation to be sub 20–50 nm, a dimension determined by the CNT growth. After being stretched with full structural relaxation in a multi-step way, the CNT/polymer (bismaleimide) composite yielded super-high tensile strengths up to 6.27–6.94 GPa, more than 100% higher than those of carbon fiber/epoxy composites, and toughnesses up to 117–192 MPa. We anticipate that the present study can be generalized for developing multifunctional and smart nanocomposites where all the surfaces of nanometer-sized components can take part in shear transfer of mechanical, thermal, and electrical signals. PMID:26098627

  11. Light Manipulation for Organic Optoelectronics Using Bio-inspired Moth's Eye Nanostructures

    PubMed Central

    Zhou, Lei; Ou, Qing-Dong; Chen, Jing-De; Shen, Su; Tang, Jian-Xin; Li, Yan-Qing; Lee, Shuit-Tong

    2014-01-01

    Organic-based optoelectronic devices, including light-emitting diodes (OLEDs) and solar cells (OSCs) hold great promise as low-cost and large-area electro-optical devices and renewable energy sources. However, further improvement in efficiency remains a daunting challenge due to limited light extraction or absorption in conventional device architectures. Here we report a universal method of optical manipulation of light by integrating a dual-side bio-inspired moth's eye nanostructure with broadband anti-reflective and quasi-omnidirectional properties. Light out-coupling efficiency of OLEDs with stacked triple emission units is over 2 times that of a conventional device, resulting in drastic increase in external quantum efficiency and current efficiency to 119.7% and 366 cd A−1 without introducing spectral distortion and directionality. Similarly, the light in-coupling efficiency of OSCs is increased 20%, yielding an enhanced power conversion efficiency of 9.33%. We anticipate this method would offer a convenient and scalable way for inexpensive and high-efficiency organic optoelectronic designs. PMID:24509524

  12. A wireless fatigue monitoring system utilizing a bio-inspired tree ring data tracking technique.

    PubMed

    Bai, Shi; Li, Xuan; Xie, Zhaohui; Zhou, Zhi; Ou, Jinping

    2014-03-05

    Fatigue, a hot scientific research topic for centuries, can trigger sudden failure of critical structures such as aircraft and railway systems, resulting in enormous casualties as well as economic losses. The fatigue life of certain structures is intrinsically random and few monitoring techniques are capable of tracking the full life-cycle fatigue damage. In this paper, a novel in-situ wireless real-time fatigue monitoring system using a bio-inspired tree ring data tracking technique is proposed. The general framework, methodology, and verification of this intelligent system are discussed in details. The rain-flow counting (RFC) method is adopted as the core algorithm which quantifies fatigue damages, and Digital Signal Processing (DSP) is introduced as the core module for data collection and analysis. Laboratory test results based on strain gauges and polyvinylidene fluoride (PVDF) sensors have shown that the developed intelligent system can provide a reliable quick feedback and early warning of fatigue failure. With the merits of low cost, high accuracy and great reliability, the developed wireless fatigue sensing system can be further applied to mechanical engineering, civil infrastructures, transportation systems, aerospace engineering, etc.

  13. Light Manipulation for Organic Optoelectronics Using Bio-inspired Moth's Eye Nanostructures

    NASA Astrophysics Data System (ADS)

    Zhou, Lei; Ou, Qing-Dong; Chen, Jing-De; Shen, Su; Tang, Jian-Xin; Li, Yan-Qing; Lee, Shuit-Tong

    2014-02-01

    Organic-based optoelectronic devices, including light-emitting diodes (OLEDs) and solar cells (OSCs) hold great promise as low-cost and large-area electro-optical devices and renewable energy sources. However, further improvement in efficiency remains a daunting challenge due to limited light extraction or absorption in conventional device architectures. Here we report a universal method of optical manipulation of light by integrating a dual-side bio-inspired moth's eye nanostructure with broadband anti-reflective and quasi-omnidirectional properties. Light out-coupling efficiency of OLEDs with stacked triple emission units is over 2 times that of a conventional device, resulting in drastic increase in external quantum efficiency and current efficiency to 119.7% and 366 cd A-1 without introducing spectral distortion and directionality. Similarly, the light in-coupling efficiency of OSCs is increased 20%, yielding an enhanced power conversion efficiency of 9.33%. We anticipate this method would offer a convenient and scalable way for inexpensive and high-efficiency organic optoelectronic designs.

  14. Bio-inspired online variable recruitment control of fluidic artificial muscles

    NASA Astrophysics Data System (ADS)

    Jenkins, Tyler E.; Chapman, Edward M.; Bryant, Matthew

    2016-12-01

    This paper details the creation of a hybrid variable recruitment control scheme for fluidic artificial muscle (FAM) actuators with an emphasis on maximizing system efficiency and switching control performance. Variable recruitment is the process of altering a system’s active number of actuators, allowing operation in distinct force regimes. Previously, FAM variable recruitment was only quantified with offline, manual valve switching; this study addresses the creation and characterization of novel, on-line FAM switching control algorithms. The bio-inspired algorithms are implemented in conjunction with a PID and model-based controller, and applied to a simulated plant model. Variable recruitment transition effects and chatter rejection are explored via a sensitivity analysis, allowing a system designer to weigh tradeoffs in actuator modeling, algorithm choice, and necessary hardware. Variable recruitment is further developed through simulation of a robotic arm tracking a variety of spline position inputs, requiring several levels of actuator recruitment. Switching controller performance is quantified and compared with baseline systems lacking variable recruitment. The work extends current variable recruitment knowledge by creating novel online variable recruitment control schemes, and exploring how online actuator recruitment affects system efficiency and control performance. Key topics associated with implementing a variable recruitment scheme, including the effects of modeling inaccuracies, hardware considerations, and switching transition concerns are also addressed.

  15. Enhanced photoactivities of TiO2 particles induced by bio-inspired micro-nanoscale substrate.

    PubMed

    Gao, Liguo; Wang, Yawei; Yan, Yang; Li, Qun; Hao, Ce; Ma, Tingli

    2016-05-15

    A silicon substrate with bio-inspired micro-nanoscale structure has been fabricated by wet etching, which is used as TiO2 particles supporting substrate and makes them recovery more easily. It has been shown that the structure facilitates TiO2 with large surface area and suppresses light reflection more effectively, which results in a high photocatalytic performance. The photocatalytic and stable performance has been applied on degrading methyl orange (MO).

  16. Functional architectures based on self-assembly of bio-inspired dipeptides: Structure modulation and its photoelectronic applications.

    PubMed

    Chen, Chengjun; Liu, Kai; Li, Junbai; Yan, Xuehai

    2015-11-01

    Getting inspiration from nature and further developing functional architectures provides an effective way to design innovative materials and systems. Among bio-inspired materials, dipeptides and its self-assembled architectures with functionalities have recently been the subject of intensive studies. However, there is still a great challenge to explore its applications likely due to the lack of effective adaptation of their self-assembled structures as well as a lack of understanding of the self-assembly mechanisms. In this context, taking diphenylalanine (FF, a core recognition motif for molecular self-assembly of the Alzheimer's β-amyloid polypeptides) as a model of bio-inspired dipeptides, recent strategies on modulation of dipeptide-based architectures were introduced with regard to both covalent (architectures modulation by coupling functional groups) and non-covalent ways (controlled architectures by different assembly pathways). Then, applications are highlighted in some newly emerging fields of innovative photoelectronic devices and materials, such as artificial photosynthetic systems for renewable solar energy storage and renewable optical waveguiding materials for optoelectronic devices. At last, the challenges and future perspectives of these bio-inspired dipeptides are also addressed.

  17. Application of quercetin and its bio-inspired nanoparticles as anti-adhesive agents against Bacillus subtilis attachment to surface.

    PubMed

    Raie, Diana S; Mhatre, Eisha; Thiele, Matthias; Labena, A; El-Ghannam, Gamal; Farahat, Laila A; Youssef, Tareq; Fritzsche, Wolfgang; Kovács, Ákos T

    2017-01-01

    The aim of this study was directed to reveal the repulsive effect of coated glass slides by quercetin and its bio-inspired titanium oxide and tungsten oxide nanoparticles on physical surface attachment of Bacillus subtilis as an ab-initio step of biofilm formation. Nanoparticles were successfully synthesized using sol-gel and acid precipitation methods for titanium oxide and tungsten oxide, respectively (in the absence or presence of quercetin). The anti-adhesive impact of the coated-slides was tested through the physical attachment of B. subtilis after 24h using Confocal Laser Scanning Microscopy (CLSM). Here, quercetin was presented as a bio-route for the synthesis of tungsten mixed oxides nano-plates at room temperature. In addition, quercetin had an impact on zeta potential and adsorption capacity of both bio-inspired amorphous titanium oxide and tungsten oxide nano-plates. Interestingly, our experiments indicated a contrary effect of quercetin as an anti-adhesive agent than previously reported. However, its bio-inspired metal oxide proved their repulsive efficiency. In addition, quercetin-mediated nano-tungsten and quercetin-mediated amorphous titanium showed anti-adhesive activity against B. subtilis biofilm. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Design of a variable-stiffness flapping mechanism for maximizing the thrust of a bio-inspired underwater robot.

    PubMed

    Park, Yong-Jai; Huh, Tae Myung; Park, Daegeun; Cho, Kyu-Jin

    2014-09-01

    Compliance can increase the thrust generated by the fin of a bio-inspired underwater vehicle. To improve the performance of a compliant fin, the compliance should change with the operating conditions; a fin should become stiffer as the oscillating frequency increases. This paper presents a novel variable-stiffness flapping (VaSF) mechanism that can change its stiffness to maximize the thrust of a bio-inspired underwater robot. The mechanism is designed on the basis of an endoskeleton structure, composed of compliant and rigid segments alternately connected in series. To determine the attachment point of tendons, the anatomy of a dolphin's fluke is considered. Two tendons run through the mechanism to adjust the stiffness. The fluke becomes stiffer when the tendons are pulled to compress the structure. The thrust generated by a prototype mechanism is measured under different conditions to show that the thrust can be maximized by changing the stiffness. The thrust of the VaSF device can approximately triple at a certain frequency just by changing the stiffness. This VaSF mechanism can be used to improve the efficiency of a bio-inspired underwater robot that uses compliance.

  19. A nonlinear mechanics model of bio-inspired hierarchical lattice materials consisting of horseshoe microstructures

    NASA Astrophysics Data System (ADS)

    Ma, Qiang; Cheng, Huanyu; Jang, Kyung-In; Luan, Haiwen; Hwang, Keh-Chih; Rogers, John A.; Huang, Yonggang; Zhang, Yihui

    2016-05-01

    Development of advanced synthetic materials that can mimic the mechanical properties of non-mineralized soft biological materials has important implications in a wide range of technologies. Hierarchical lattice materials constructed with horseshoe microstructures belong to this class of bio-inspired synthetic materials, where the mechanical responses can be tailored to match the nonlinear J-shaped stress-strain curves of human skins. The underlying relations between the J-shaped stress-strain curves and their microstructure geometry are essential in designing such systems for targeted applications. Here, a theoretical model of this type of hierarchical lattice material is developed by combining a finite deformation constitutive relation of the building block (i.e., horseshoe microstructure), with the analyses of equilibrium and deformation compatibility in the periodical lattices. The nonlinear J-shaped stress-strain curves and Poisson ratios predicted by this model agree very well with results of finite element analyses (FEA) and experiment. Based on this model, analytic solutions were obtained for some key mechanical quantities, e.g., elastic modulus, Poisson ratio, peak modulus, and critical strain around which the tangent modulus increases rapidly. A negative Poisson effect is revealed in the hierarchical lattice with triangular topology, as opposed to a positive Poisson effect in hierarchical lattices with Kagome and honeycomb topologies. The lattice topology is also found to have a strong influence on the stress-strain curve. For the three isotropic lattice topologies (triangular, Kagome and honeycomb), the hierarchical triangular lattice material renders the sharpest transition in the stress-strain curve and relative high stretchability, given the same porosity and arc angle of horseshoe microstructure. Furthermore, a demonstrative example illustrates the utility of the developed model in the rapid optimization of hierarchical lattice materials for

  20. Transportation Network with Fluctuating Input/Output Designed by the Bio-Inspired Physarum Algorithm

    PubMed Central

    Watanabe, Shin; Takamatsu, Atsuko

    2014-01-01

    In this paper, we propose designing transportation network topology and traffic distribution under fluctuating conditions using a bio-inspired algorithm. The algorithm is inspired by the adaptive behavior observed in an amoeba-like organism, plasmodial slime mold, more formally known as plasmodium of Physarum plycephalum. This organism forms a transportation network to distribute its protoplasm, the fluidic contents of its cell, throughout its large cell body. In this process, the diameter of the transportation tubes adapts to the flux of the protoplasm. The Physarum algorithm, which mimics this adaptive behavior, has been widely applied to complex problems, such as maze solving and designing the topology of railroad grids, under static conditions. However, in most situations, environmental conditions fluctuate; for example, in power grids, the consumption of electric power shows daily, weekly, and annual periodicity depending on the lifestyles or the business needs of the individual consumers. This paper studies the design of network topology and traffic distribution with oscillatory input and output traffic flows. The network topology proposed by the Physarum algorithm is controlled by a parameter of the adaptation process of the tubes. We observe various rich topologies such as complete mesh, partial mesh, Y-shaped, and V-shaped networks depending on this adaptation parameter and evaluate them on the basis of three performance functions: loss, cost, and vulnerability. Our results indicate that consideration of the oscillatory conditions and the phase-lags in the multiple outputs of the network is important: The building and/or maintenance cost of the network can be reduced by introducing the oscillating condition, and when the phase-lag among the outputs is large, the transportation loss can also be reduced. We use stability analysis to reveal how the system exhibits various topologies depending on the parameter. PMID:24586616

  1. Superhydro-oleophobic bio-inspired polydimethylsiloxane micropillared surface via FDTS coating/blending approaches

    NASA Astrophysics Data System (ADS)

    Pan, Zihe; Shahsavan, Hamed; Zhang, Wei; Yang, Fut K.; Zhao, Boxin

    2015-01-01

    In this work we render superhydro-oleophobic properties to the surface of polydimethylsiloxane (PDMS) elastomer through bio-inspired micropillar surface and chemical modification with a fluorosilane polymer, trichloro(1H,1H,2H,2H-perfluorooctyl)silane (FDTS). Two different chemical modification approaches were applied on both flat and micropillar PDMS: (1) vapor deposition of FDTS on cured PDMS surface, and (2) blending FDTS with the liquid PDMS precursor before curing. Comparative studies of the water and oil contact angles on the neat and FDTS-modified PDMS (both flat and micropillar) indicated that superhydro-oleophobicity was delivered by a combination of FDTS chemistry and micropillar geometry. FDTS-blended PDMS micropillar displayed better oleophobicity with an oil contact angle of ∼141° than FDTS-coated PDMS micropillar (∼115°). In contrast to the smooth surface of FDTS-blended PDMS micropillar, rough surface with some structure defects were found on the FDTS-coated micropillar surface caused by the vapor deposition process; the surface defects might be responsible for the observed low oleophobicity of FDTS-coated PDMS micropillar. Superhydrophobicity of FDTS-blended PDMS micropillar in terms of water contact angles was found to be independent of the quantity of FDTS. However, the oleophobicity of FDTS-blended PDMS micropillar was found to be dependent of the quantity of FDTS; with the increased weight concentration of FDTS in PDMS, the oils contact angle first increased and then leveled out at a finite concentration. FTIR and XPS were applied to analyze surface chemistry information suggesting the blended FDTS segregated from bulk PDMS and enriched at the surface to reduce surface tension so as to make surface super-oleophobic.

  2. A bio-inspired real-time capable artificial lateral line system for freestream flow measurements.

    PubMed

    Abels, C; Qualtieri, A; De Vittorio, M; Megill, W M; Rizzi, F

    2016-06-03

    To enhance today's artificial flow sensing capabilities in aerial and underwater robotics, future robots could be equipped with a large number of miniaturized sensors distributed over the surface to provide high resolution measurement of the surrounding fluid flow. In this work we show a linear array of closely separated bio-inspired micro-electro-mechanical flow sensors whose sensing mechanism is based on a piezoresistive strain-gauge along a stress-driven cantilever beam, mimicking the biological superficial neuromasts found in the lateral line organ of fishes. Aiming to improve state-of-the-art flow sensing capability in autonomously flying and swimming robots, our artificial lateral line system was designed and developed to feature multi-parameter freestream flow measurements which provide information about (1) local flow velocities as measured by the signal amplitudes from the individual cantilevers as well as (2) propagation velocity, (3) linear forward/backward direction along the cantilever beam orientation and (4) periodicity of pulses or pulse trains determined by cross-correlating sensor signals. A real-time capable cross-correlation procedure was developed which makes it possible to extract freestream flow direction and velocity information from flow fluctuations. The computed flow velocities deviate from a commercial system by 0.09 m s(-1) at 0.5 m s(-1) and 0.15 m s(-1) at 1.0 m s(-1) flow velocity for a sampling rate of 240 Hz and a sensor distance of 38 mm. Although experiments were performed in air, the presented flow sensing system can be applied to underwater vehicles as well, once the sensors are embedded in a waterproof micro-electro-mechanical systems package.

  3. Interconversion of CO2 and formic acid by bio-inspired Ir complexes with pendent bases.

    PubMed

    Fujita, Etsuko; Muckerman, James T; Himeda, Yuichiro

    2013-01-01

    Recent investigations of the interconversion of CO2 and formic acid using Ru, Ir and Fe complexes are summarized in this review. During the past several years, both the reaction rates and catalyst stabilities have been significantly improved. Remarkably, the interconversion (i.e., reversibility) has also been achieved under mild conditions in environmentally benign water solvent by slightly changing the pH of the aqueous solution. Only a few catalysts seem to reflect a bio-inspired design such as the use of proton responsive ligands, ligands with pendent bases or acids for a second-coordination-sphere interaction, electroresponsive ligands, and/or ligands having a hydrogen bonding function with a solvent molecule or an added reagent. The most successful of these is an iridium dinuclear complex catalyst that at least has the first three of these characteristics associated with its bridging ligand. By utilizing an acid/base equilibrium for proton removal, the ligand becomes a strong electron donor, resulting in Ir(I) character with a vacant coordination site at each metal center in slightly basic solution. Complemented by DFT calculations, kinetic studies of the rates of formate production using a related family of Ir complexes with and without such functions on the ligand reveal that the rate-determining step for the CO2 hydrogenation is likely to be H2 addition through heterolytic cleavage involving a "proton relay" through the pendent base. The dehydrogenation of formic acid, owing to the proton responsive ligands changing character under slightly acidic pH conditions, is likely to occur by a mechanism with a different rate-determining step. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Transportation network with fluctuating input/output designed by the bio-inspired Physarum algorithm.

    PubMed

    Watanabe, Shin; Takamatsu, Atsuko

    2014-01-01

    In this paper, we propose designing transportation network topology and traffic distribution under fluctuating conditions using a bio-inspired algorithm. The algorithm is inspired by the adaptive behavior observed in an amoeba-like organism, plasmodial slime mold, more formally known as plasmodium of Physarum plycephalum. This organism forms a transportation network to distribute its protoplasm, the fluidic contents of its cell, throughout its large cell body. In this process, the diameter of the transportation tubes adapts to the flux of the protoplasm. The Physarum algorithm, which mimics this adaptive behavior, has been widely applied to complex problems, such as maze solving and designing the topology of railroad grids, under static conditions. However, in most situations, environmental conditions fluctuate; for example, in power grids, the consumption of electric power shows daily, weekly, and annual periodicity depending on the lifestyles or the business needs of the individual consumers. This paper studies the design of network topology and traffic distribution with oscillatory input and output traffic flows. The network topology proposed by the Physarum algorithm is controlled by a parameter of the adaptation process of the tubes. We observe various rich topologies such as complete mesh, partial mesh, Y-shaped, and V-shaped networks depending on this adaptation parameter and evaluate them on the basis of three performance functions: loss, cost, and vulnerability. Our results indicate that consideration of the oscillatory conditions and the phase-lags in the multiple outputs of the network is important: The building and/or maintenance cost of the network can be reduced by introducing the oscillating condition, and when the phase-lag among the outputs is large, the transportation loss can also be reduced. We use stability analysis to reveal how the system exhibits various topologies depending on the parameter.

  5. Bio-inspired evolutionary oral tract shape modeling for physical modeling vocal synthesis.

    PubMed

    Howard, David M; Tyrrell, Andy M; Murphy, Damian T; Cooper, Crispin; Mullen, Jack

    2009-01-01

    Physical modeling using digital waveguide mesh (DWM) models is an audio synthesis method that has been shown to produce an acoustic output in music synthesis applications that is often described as being "organic," "warm," or "intimate." This paper describes work that takes its inspiration from physical modeling music synthesis and applies it to speech synthesis through a physical modeling mesh model of the human oral tract. Oral tract shapes are found using a computational technique based on the principles of biological evolution. Essential to successful speech synthesis using this method is accurate measurements of the cross-sectional area of the human oral tract, and these are usually derived from magnetic resonance imaging (MRI). However, such images are nonideal, because of the lengthy exposure time (relative to the time of articulation of speech sounds) required, the local ambient acoustic noise associated with the MRI machine itself and the required supine position for the subject. An alternative method is described where a bio-inspired computing technique that simulates the process of evolution is used to evolve oral tract shapes. This technique is able to produce appropriate oral tract shapes for open vowels using acoustic and excitation data from two adult males and two adult females, but shapes for close vowels that are less appropriate. This technique has none of the drawbacks associated with MRI, because all it requires from the subject is an acoustic and electrolaryngograph (or electroglottograph) recording. Appropriate oral tract shapes do enable the model to produce excellent quality synthetic speech for vowel sounds, and sounds that involve dynamic oral tract shape changes, such as diphthongs, can also be synthesized using an impedance mapped technique. Efforts to improve performance by reducing mesh quantization for close vowels had little effect, and further work is required.

  6. Bio-inspired grasp control in a robotic hand with massive sensorial input.

    PubMed

    Ascari, Luca; Bertocchi, Ulisse; Corradi, Paolo; Laschi, Cecilia; Dario, Paolo

    2009-02-01

    The capability of grasping and lifting an object in a suitable, stable and controlled way is an outstanding feature for a robot, and thus far, one of the major problems to be solved in robotics. No robotic tools able to perform an advanced control of the grasp as, for instance, the human hand does, have been demonstrated to date. Due to its capital importance in science and in many applications, namely from biomedics to manufacturing, the issue has been matter of deep scientific investigations in both the field of neurophysiology and robotics. While the former is contributing with a profound understanding of the dynamics of real-time control of the slippage and grasp force in the human hand, the latter tries more and more to reproduce, or take inspiration by, the nature's approach, by means of hardware and software technology. On this regard, one of the major constraints robotics has to overcome is the real-time processing of a large amounts of data generated by the tactile sensors while grasping, which poses serious problems to the available computational power. In this paper a bio-inspired approach to tactile data processing has been followed in order to design and test a hardware-software robotic architecture that works on the parallel processing of a large amount of tactile sensing signals. The working principle of the architecture bases on the cellular nonlinear/neural network (CNN) paradigm, while using both hand shape and spatial-temporal features obtained from an array of microfabricated force sensors, in order to control the sensory-motor coordination of the robotic system. Prototypical grasping tasks were selected to measure the system performances applied to a computer-interfaced robotic hand. Successful grasps of several objects, completely unknown to the robot, e.g. soft and deformable objects like plastic bottles, soft balls, and Japanese tofu, have been demonstrated.

  7. A nonlinear mechanics model of bio-inspired hierarchical lattice materials consisting of horseshoe microstructures.

    PubMed

    Ma, Qiang; Cheng, Huanyu; Jang, Kyung-In; Luan, Haiwen; Hwang, Keh-Chih; Rogers, John A; Huang, Yonggang; Zhang, Yihui

    2016-05-01

    Development of advanced synthetic materials that can mimic the mechanical properties of non-mineralized soft biological materials has important implications in a wide range of technologies. Hierarchical lattice materials constructed with horseshoe microstructures belong to this class of bio-inspired synthetic materials, where the mechanical responses can be tailored to match the nonlinear J-shaped stress-strain curves of human skins. The underlying relations between the J-shaped stress-strain curves and their microstructure geometry are essential in designing such systems for targeted applications. Here, a theoretical model of this type of hierarchical lattice material is developed by combining a finite deformation constitutive relation of the building block (i.e., horseshoe microstructure), with the analyses of equilibrium and deformation compatibility in the periodical lattices. The nonlinear J-shaped stress-strain curves and Poisson ratios predicted by this model agree very well with results of finite element analyses (FEA) and experiment. Based on this model, analytic solutions were obtained for some key mechanical quantities, e.g., elastic modulus, Poisson ratio, peak modulus, and critical strain around which the tangent modulus increases rapidly. A negative Poisson effect is revealed in the hierarchical lattice with triangular topology, as opposed to a positive Poisson effect in hierarchical lattices with Kagome and honeycomb topologies. The lattice topology is also found to have a strong influence on the stress-strain curve. For the three isotropic lattice topologies (triangular, Kagome and honeycomb), the hierarchical triangular lattice material renders the sharpest transition in the stress-strain curve and relative high stretchability, given the same porosity and arc angle of horseshoe microstructure. Furthermore, a demonstrative example illustrates the utility of the developed model in the rapid optimization of hierarchical lattice materials for

  8. A nonlinear mechanics model of bio-inspired hierarchical lattice materials consisting of horseshoe microstructures

    PubMed Central

    Ma, Qiang; Cheng, Huanyu; Jang, Kyung-In; Luan, Haiwen; Hwang, Keh-Chih; Rogers, John A.; Huang, Yonggang; Zhang, Yihui

    2016-01-01

    Development of advanced synthetic materials that can mimic the mechanical properties of non-mineralized soft biological materials has important implications in a wide range of technologies. Hierarchical lattice materials constructed with horseshoe microstructures belong to this class of bio-inspired synthetic materials, where the mechanical responses can be tailored to match the nonlinear J-shaped stress-strain curves of human skins. The underlying relations between the J-shaped stress-strain curves and their microstructure geometry are essential in designing such systems for targeted applications. Here, a theoretical model of this type of hierarchical lattice material is developed by combining a finite deformation constitutive relation of the building block (i.e., horseshoe microstructure), with the analyses of equilibrium and deformation compatibility in the periodical lattices. The nonlinear J-shaped stress-strain curves and Poisson ratios predicted by this model agree very well with results of finite element analyses (FEA) and experiment. Based on this model, analytic solutions were obtained for some key mechanical quantities, e.g., elastic modulus, Poisson ratio, peak modulus, and critical strain around which the tangent modulus increases rapidly. A negative Poisson effect is revealed in the hierarchical lattice with triangular topology, as opposed to a positive Poisson effect in hierarchical lattices with Kagome and honeycomb topologies. The lattice topology is also found to have a strong influence on the stress-strain curve. For the three isotropic lattice topologies (triangular, Kagome and honeycomb), the hierarchical triangular lattice material renders the sharpest transition in the stress-strain curve and relative high stretchability, given the same porosity and arc angle of horseshoe microstructure. Furthermore, a demonstrative example illustrates the utility of the developed model in the rapid optimization of hierarchical lattice materials for

  9. Classifying continuous, real-time e-nose sensor data using a bio-inspired spiking network modelled on the insect olfactory system.

    PubMed

    Diamond, A; Schmuker, M; Berna, A Z; Trowell, S; Nowotny, Thomas

    2016-02-18

    In many application domains, conventional e-noses are frequently outperformed in both speed and accuracy by their biological counterparts. Exploring potential bio-inspired improvements, we note a number of neuronal network models have demonstrated some success in classifying static datasets by abstracting the insect olfactory system. However, these designs remain largely unproven in practical settings, where sensor data is real-time, continuous, potentially noisy, lacks a precise onset signal and accurate classification requires the inclusion of temporal aspects into the feature set. This investigation therefore seeks to inform and develop the potential and suitability of biomimetic classifiers for use with typical real-world sensor data. Taking a generic classifier design inspired by the inhibition and competition in the insect antennal lobe, we apply it to identifying 20 individual chemical odours from the timeseries of responses of metal oxide sensors. We show that four out of twelve available sensors and the first 30 s (10%) of the sensors' continuous response are sufficient to deliver 92% accurate classification without access to an odour onset signal. In contrast to previous approaches, once training is complete, sensor signals can be fed continuously into the classifier without requiring discretization. We conclude that for continuous data there may be a conceptual advantage in using spiking networks, in particular where time is an essential component of computation. Classification was achieved in real time using a GPU-accelerated spiking neural network simulator developed in our group.

  10. Bio-inspired Supramolecular Assemblies and Porous Materials for the Degradation of Organophosphate Nerve Agents

    NASA Astrophysics Data System (ADS)

    Totten, Ryan K.

    This thesis reports the synthesis of bio-inspired supramolecular assemblies and porous materials that are catalytically active in the degradation of organophosphate nerve agents. The first catalysts described are a series of cofacial metalloporphyrin dimers modeled after the active site of phosphotriesterase that were modularly prepared from a single porphyrin building block and shown to catalyze the methanolysis of p-nitrophenyl diphenyl phosphate (PNPDPP), a simulant for nerve agents. Notably, tuning the active sites inside the cavities of these dimers, from ZnII metal centers to Al-OMe moieties, affords an enhanced nucleophilic environment where a high concentration of methoxy ligands becomes available for reaction with encapsulated phosphate triesters. Up to a 1300-fold rate acceleration over the uncatalyzed reaction can be achieved via a combination of cavity-localized Lewis-acid activation and methoxide-induced methanolysis. Based on the design principles learned from the aforementioned solution-phase Al(porphyrin) dimers, a heterogeneous porous organic polymer (POP) catalyst was synthesized by incorporating an Al(porphyrin) functionalized with a large axial ligand into a POP using a cobalt-catalyzed acetylene trimerization strategy. Removal of the axial ligand afforded a microporous material that is capable of encapsulating and solvolytically degrading PNPDPP. Supercritical CO 2 processing of the Al(porphyrin)-based POP dramatically increased the pore size and volume, allowing for significantly higher catalytic activities. The syntheses of porphyrin-based POPs with tunable pore diameters and volumes have also been attempted. SnIV(porphyrins) functionalized with bulky trans-diaxial ligands can be incorporated into POPs. Post-synthesis removal of the ligands reveal POPs with a tunable range of micro- and mesopores as well as tunable pore volumes. Expanding upon the idea that active sites that can both bind substrates and deliver nucleophiles should be active

  11. Bio-Inspired electro-photonic structure for organic and dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lopez, Rene

    2011-03-01

    A major challenge in solar cell technology dwells in achieving an efficient absorption of photons with an effective carrier extraction. In all cases, light absorption considerations call for thicker modules while carrier transport would benefit from thinner ones. This dichotomy is a fundamental problem limiting the efficiencies of most photovoltaics. One pathway to overcome this problem is to decouple light absorption from carrier collection. We present solutions to this problem applying bio-inspired nanostructures to two different types of systems: organic photovoltaic (OPV) and dye sensitized solar cells (DSSC). For OPV devices based on poly-3-hexylthiophene:[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM), we describe a 2-D photonic crystal geometry that enhances the absorption of polymer-fullerene photonic cells ~ 20 % relative to conventional planar cells. Remarkably, the photonic crystal cell offers the possibility to increase photocurrents by improvements in optical absorption and carrier extraction simultaneously, and particularly through the excitation of photonic resonant modes near the band edge of organic PV materials. We also present an optical method to extract charge transport lengths from device photoactive layers. For DSSCs we introduce a new structural motif for the photoanode in which the traditional random nanoparticle oxide network is replaced by vertically aligned bundles of oxide nanocrystals. We have used a pulsed laser deposition system to ablate titanium oxide targets to obtain the porous and vertically aligned structures for enhanced photoelectrochemical performance. Absorption studies show that in optimized structures for titanium oxide, there is a 1.4 times enhancement of surface area compared to the best sol-gel films, Incident-Photon-Conversion-Efficiency values are better than 3 times thicker sol-gel films, and ~ 92 % Absorbed-Photon-Conversion-Efficiency values have been observed when sensitizing with the N3 dye (Ru(dcbpyH)2

  12. Metabolic Control With the Bio-inspired Artificial Pancreas in Adults With Type 1 Diabetes

    PubMed Central

    Reddy, Monika; Herrero, Pau; Sharkawy, Mohamed El; Pesl, Peter; Jugnee, Narvada; Pavitt, Darrell; Godsland, Ian F.; Alberti, George; Toumazou, Christofer; Johnston, Desmond G.; Georgiou, Pantelis; Oliver, Nick S.

    2015-01-01

    Background: The Bio-inspired Artificial Pancreas (BiAP) is a closed-loop insulin delivery system based on a mathematical model of beta-cell physiology and implemented in a microchip within a low-powered handheld device. We aimed to evaluate the safety and efficacy of the BiAP over 24 hours, followed by a substudy assessing the safety of the algorithm without and with partial meal announcement. Changes in lactate and 3-hydroxybutyrate concentrations were investigated for the first time during closed-loop. Methods: This is a prospective randomized controlled open-label crossover study. Participants were randomly assigned to attend either a 24-hour closed-loop visit connected to the BiAP system or a 24-hour open-loop visit (standard insulin pump therapy). The primary outcome was percentage time spent in target range (3.9-10 mmol/l) measured by sensor glucose. Secondary outcomes included percentage time in hypoglycemia (<3.9 mmol/l) and hyperglycemia (>10 mmol/l). Participants were invited to attend for an additional visit to assess the BiAP without and with partial meal announcements. Results: A total of 12 adults with type 1 diabetes completed the study (58% female, mean [SD] age 45 [10] years, BMI 25 [4] kg/m2, duration of diabetes 22 [12] years and HbA1c 7.4 [0.7]% [58 (8) mmol/mol]). The median (IQR) percentage time in target did not differ between closed-loop and open-loop (71% vs 66.9%, P = .9). Closed-loop reduced time spent in hypoglycemia from 17.9% to 3.0% (P < .01), but increased time was spent in hyperglycemia (10% vs 28.9%, P = .01). The percentage time in target was higher when all meals were announced during closed-loop compared to no or partial meal announcement (65.7% [53.6-80.5] vs 45.5% [38.2-68.3], P = .12). Conclusions: The BiAP is safe and achieved equivalent time in target as measured by sensor glucose, with improvement in hypoglycemia, when compared to standard pump therapy. PMID:26581881

  13. Bio-Inspired Photon Absorption and Energy Transfer for Next Generation Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Magsi, Komal

    Nature's solar energy harvesting system, photosynthesis, serves as a model for photon absorption, spectra broadening, and energy transfer. Photosynthesis harvests light far differently than photovoltaic cells. These differences offer both engineering opportunity and scientific challenges since not all of the natural photon absorption mechanisms have been understood. In return, solar cells can be a very sensitive probe for the absorption characteristics of molecules capable of transferring charge to a conductive interface. The objective of this scientific work is the advancement of next generation photovoltaics through the development and application of natural photo-energy transfer processes. Two scientific methods were used in the development and application of enhancing photon absorption and transfer. First, a detailed analysis of photovoltaic front surface fluorescent spectral modification and light scattering by hetero-structure was conducted. Phosphor based spectral down-conversion is a well-known laser technology. The theoretical calculations presented here indicate that parasitic losses and light scattering within the spectral range are large enough to offset any expected gains. The second approach for enhancing photon absorption is based on bio-inspired mechanisms. Key to the utilization of these natural processes is the development of a detailed scientific understanding and the application of these processes to cost effective systems and devices. In this work both aspects are investigated. Dye type solar cells were prepared and tested as a function of Chlorophyll (or Sodium-Copper Chlorophyllin) and accessory dyes. Forster has shown that the fluorescence ratio of Chlorophyll is modified and broadened by separate photon absorption (sensitized absorption) through interaction with nearby accessory pigments. This work used the dye type solar cell as a diagnostic tool by which to investigate photon absorption and photon energy transfer. These experiments shed

  14. Electrowetting-Controlled and Electrically-Tunable Bio-Inspired Micro/Nanostructures and Optofluidic Devices

    NASA Astrophysics Data System (ADS)

    Manakasettharn, Supone

    Many man-made structures and devices have been inspired by the ingenious structures, mechanisms, properties, and functions of plants and animals. This work has been inspired by a number of unique properties, which biological organisms possess such as dynamic tunable iridescence, self-cleaning properties, and brilliant structural color. The objective of this work is to model, design, fabricate, and characterize novel bio-inspired micro-/nanostructures and optofluidic devices. To conceptually mimic the iridescence of cephalopods, microflowers have been modeled and designed based on elasto-capillary bending, which is the interplay between the elastic energy of petals and the capillary energy of a liquid droplet, which is used to actuate petal movement. After microfabrication of the polycrystalline Si microflowers, two methods of petal actuation have been demonstrated---one by volume change of the water droplet and the other by change of water contact angle on the petals using the electrowetting process. The experimental results are in good agreement with a theoretical model. By taking into account the self-cleaning properties of lotus leaves, transparent Ta2O5 nanostructured thin films have been fabricated using a multi-step anodization process of sputter-deposited Al-Ta bilayers on a quartz substrate. The films then have been made superhydrophobic by using a combination of nanostructures, called nanograss, along with the deposition of hydrophobic coatings. The films also have been characterized by measuring water contact angles and by obtaining optical transmittance spectra and SEM micrographs. The measured contact angles and transmittance spectra are in good agreement with theoretical calculations. Inspired by biological nanostructured surfaces possessing structural color and wettability control, reflective Ta2O5 nanostructured thin films have been fabricated using the multi-step anodization process of sputter-deposited Al-Ta bilayers on a Si substrate. The films

  15. Investigation of Bio-Inspired Hybrid Materials through Polymer Infiltration of Thermal Spray Formed Ceramic Templates

    NASA Astrophysics Data System (ADS)

    Flynn, Katherine Claire

    certain degree of porosity (up to approximately 20%). Often, porosity is interconnected and is controlled by varying processing parameters. Through the introduction of an appropriate polymer at the porosity interface, it may be possible to achieve synergistic benefits in terms of both strength and toughness of the sprayed material. This dissertation will focus on the fabrication and evaluation of property enhancements of bio-inspired materials based on ceramic thermally sprayed scaffolds through post deposition polymer impregnation.

  16. Issues in Applying Bio-Inspiration, Cognitive Critical Mass and Developmental-Inspired Principles to Advanced Intelligent Systems

    NASA Astrophysics Data System (ADS)

    Berg-Cross, Gary; Samsonovich, Alexei V.

    This Chapter summarizes ideas presented at the special PerMIS 2008 session on Biological Inspiration for Intelligent Systems. Bio-inspired principles of development and evolution are a special part of the bio-models and principles that can be used to improve intelligent systems and related artifacts. Such principles are not always explicit. They represent an alternative to incremental engineering expansion using new technology to replicate human intelligent capabilities. They are more evident in efforts to replicate and produce a “critical mass” of higher cognitive functions of the human mind or their emergence through cognitive developmental robotics (DR) and self-regulated learning (SRL). DR approaches takes inspiration from natural processes, so that intelligently engineered systems may create solutions to problems in ways similar to what we hypothesize is occurring with biologics in their natural environment. This Chapter discusses how an SRL-based approach to bootstrap a “critical mass” can be assessed by a set of cognitive tests. It also uses a three-level bio-inspired framework to illustrate methodological issues in DR research. The approach stresses the importance of using bio-realistic developmental principles to guide and constrain research. Of particular importance is keeping models and implementation separate to avoid the possible of falling into a Ptolemaic paradigm that may lead to endless tweaking of models. Several of Lungarella's design principles [36] for developmental robotics are discussed as constraints on intelligence as it emerges from an ecologically balanced, three-way interaction between an agents' control systems, physical embodiment, and the external environment. The direction proposed herein is to explore such principles to avoid slavish following of superficial bio-inspiration. Rather we should proceed with a mature and informed developmental approach using developmental principles based on our incremental understanding of how

  17. A green and bio-inspired process to afford durable anti-biofilm properties to stainless steel.

    PubMed

    Faure, E; Vreuls, C; Falentin-Daudré, C; Zocchi, G; Van de Weerdt, C; Martial, J; Jérôme, C; Duwez, A-S; Detrembleur, C

    2012-01-01

    A bio-inspired durable anti-biofilm coating was developed for industrial stainless steel (SS) surfaces. Two polymers inspired from the adhesive and cross-linking properties of mussels were designed and assembled from aqueous solutions onto SS surfaces to afford durable coatings. Trypsin, a commercially available broad spectrum serine protease, was grafted as the final active layer of the coating. Its proteolytic activity after long immersion periods was demonstrated against several substrata, viz. a synthetic molecule, N-α-benzoyl-DL-arginine-p-nitroanilide hydrochloride (BAPNA), a protein, FTC-casein, and Gram-positive biofilm forming bacterium Staphylococcus epidermidis.

  18. Constrained VPH+: a local path planning algorithm for a bio-inspired crawling robot with customized ultrasonic scanning sensor.

    PubMed

    Rao, Akshay; Elara, Mohan Rajesh; Elangovan, Karthikeyan

    This paper aims to develop a local path planning algorithm for a bio-inspired, reconfigurable crawling robot. A detailed description of the robotic platform is first provided, and the suitability for deployment of each of the current state-of-the-art local path planners is analyzed after an extensive literature review. The Enhanced Vector Polar Histogram algorithm is described and reformulated to better fit the requirements of the platform. The algorithm is deployed on the robotic platform in crawling configuration and favorably compared with other state-of-the-art local path planning algorithms.

  19. The neuroscience of vision-based grasping: a functional review for computational modeling and bio-inspired robotics.

    PubMed

    Chinellato, Eris; Del Pobil, Angel P

    2009-06-01

    The topic of vision-based grasping is being widely studied in humans and in other primates using various techniques and with different goals. The fundamental related findings are reviewed in this paper, with the aim of providing researchers from different fields, including intelligent robotics and neural computation, a comprehensive but accessible view on the subject. A detailed description of the principal sensorimotor processes and the brain areas involved is provided following a functional perspective, in order to make this survey especially useful for computational modeling and bio-inspired robotic applications.

  20. Simultaneous size control and surface functionalization of titania nanoparticles through bioadhesion-assisted bio-inspired mineralization

    NASA Astrophysics Data System (ADS)

    Shi, Jiafu; Yang, Dong; Jiang, Zhongyi; Jiang, Yanjun; Liang, Yanpeng; Zhu, Yuanyuan; Wang, Xiaoli; Wang, Huihui

    2012-09-01

    Simultaneous size control and surface functionalization of inorganic nanoparticles (NPs) are often desired for their efficient applications in (bio)catalysis, drug and/or DNA delivery, and photonics, etc. In this study, a novel strategy "bioadhesion-assisted bio-inspired mineralization (BABM)" was put forward to prepare titania nanoparticles (TiNPs) with tunable particle size and multiple surface functionality. Specifically, the initial formation and subsequent growth of TiNPs were enabled by arginine via bio-inspired mineralization, while the mineralization process was terminated through the addition of the pre-polymerized dopa (oligodopa). By adjusting the addition time of oligodopa, the size of TiNPs could be facilely tailored from ca. 30-350 nm; meanwhile, the surface of TiNPs could be functionalized by oligodopa through metal-catechol coordination interaction (a typical bioadhesion phenomenon). In other words, oligodopa coating could not only exquisitely control the size of TiNPs, but also render TiNPs surface multifunctional groups for secondary treatment such as conjugating proteins through amine-catechol adduct formation. Hopefully, this BABM approach will construct a versatile platform for green and facile synthesis of inorganic NPs, in particular transition metal oxide NPs.

  1. Operant conditioning: a minimal components requirement in artificial spiking neurons designed for bio-inspired robot's controller

    PubMed Central

    Cyr, André; Boukadoum, Mounir; Thériault, Frédéric

    2014-01-01

    In this paper, we investigate the operant conditioning (OC) learning process within a bio-inspired paradigm, using artificial spiking neural networks (ASNN) to act as robot brain controllers. In biological agents, OC results in behavioral changes learned from the consequences of previous actions, based on progressive prediction adjustment from rewarding or punishing signals. In a neurorobotics context, virtual and physical autonomous robots may benefit from a similar learning skill when facing unknown and unsupervised environments. In this work, we demonstrate that a simple invariant micro-circuit can sustain OC in multiple learning scenarios. The motivation for this new OC implementation model stems from the relatively complex alternatives that have been described in the computational literature and recent advances in neurobiology. Our elementary kernel includes only a few crucial neurons, synaptic links and originally from the integration of habituation and spike-timing dependent plasticity as learning rules. Using several tasks of incremental complexity, our results show that a minimal neural component set is sufficient to realize many OC procedures. Hence, with the proposed OC module, designing learning tasks with an ASNN and a bio-inspired robot context leads to simpler neural architectures for achieving complex behaviors. PMID:25120464

  2. Towards a Coupled Vortex Particle and Acoustic Boundary Element Solver to Predict the Noise Production of Bio-Inspired Propulsion

    NASA Astrophysics Data System (ADS)

    Wagenhoffer, Nathan; Moored, Keith; Jaworski, Justin

    2016-11-01

    The design of quiet and efficient bio-inspired propulsive concepts requires a rapid, unified computational framework that integrates the coupled fluid dynamics with the noise generation. Such a framework is developed where the fluid motion is modeled with a two-dimensional unsteady boundary element method that includes a vortex-particle wake. The unsteady surface forces from the potential flow solver are then passed to an acoustic boundary element solver to predict the radiated sound in low-Mach-number flows. The use of the boundary element method for both the hydrodynamic and acoustic solvers permits dramatic computational acceleration by application of the fast multiple method. The reduced order of calculations due to the fast multipole method allows for greater spatial resolution of the vortical wake per unit of computational time. The coupled flow-acoustic solver is validated against canonical vortex-sound problems. The capability of the coupled solver is demonstrated by analyzing the performance and noise production of an isolated bio-inspired swimmer and of tandem swimmers.

  3. Operant conditioning: a minimal components requirement in artificial spiking neurons designed for bio-inspired robot's controller.

    PubMed

    Cyr, André; Boukadoum, Mounir; Thériault, Frédéric

    2014-01-01

    In this paper, we investigate the operant conditioning (OC) learning process within a bio-inspired paradigm, using artificial spiking neural networks (ASNN) to act as robot brain controllers. In biological agents, OC results in behavioral changes learned from the consequences of previous actions, based on progressive prediction adjustment from rewarding or punishing signals. In a neurorobotics context, virtual and physical autonomous robots may benefit from a similar learning skill when facing unknown and unsupervised environments. In this work, we demonstrate that a simple invariant micro-circuit can sustain OC in multiple learning scenarios. The motivation for this new OC implementation model stems from the relatively complex alternatives that have been described in the computational literature and recent advances in neurobiology. Our elementary kernel includes only a few crucial neurons, synaptic links and originally from the integration of habituation and spike-timing dependent plasticity as learning rules. Using several tasks of incremental complexity, our results show that a minimal neural component set is sufficient to realize many OC procedures. Hence, with the proposed OC module, designing learning tasks with an ASNN and a bio-inspired robot context leads to simpler neural architectures for achieving complex behaviors.

  4. A Review of Natural Joint Systems and Numerical Investigation of Bio-Inspired GFRP-to-Steel Joints

    PubMed Central

    Avgoulas, Evangelos I.; Sutcliffe, Michael P. F.

    2016-01-01

    There are a great variety of joint types used in nature which can inspire engineering joints. In order to design such biomimetic joints, it is at first important to understand how biological joints work. A comprehensive literature review, considering natural joints from a mechanical point of view, was undertaken. This was used to develop a taxonomy based on the different methods/functions that nature successfully uses to attach dissimilar tissues. One of the key methods that nature uses to join dissimilar materials is a transitional zone of stiffness at the insertion site. This method was used to propose bio-inspired solutions with a transitional zone of stiffness at the joint site for several glass fibre reinforced plastic (GFRP) to steel adhesively bonded joint configurations. The transition zone was used to reduce the material stiffness mismatch of the joint parts. A numerical finite element model was used to identify the optimum variation in material stiffness that minimises potential failure of the joint. The best bio-inspired joints showed a 118% increase of joint strength compared to the standard joints. PMID:28773688

  5. A Review of Natural Joint Systems and Numerical Investigation of Bio-Inspired GFRP-to-Steel Joints.

    PubMed

    Avgoulas, Evangelos I; Sutcliffe, Michael P F

    2016-07-12

    There are a great variety of joint types used in nature which can inspire engineering joints. In order to design such biomimetic joints, it is at first important to understand how biological joints work. A comprehensive literature review, considering natural joints from a mechanical point of view, was undertaken. This was used to develop a taxonomy based on the different methods/functions that nature successfully uses to attach dissimilar tissues. One of the key methods that nature uses to join dissimilar materials is a transitional zone of stiffness at the insertion site. This method was used to propose bio-inspired solutions with a transitional zone of stiffness at the joint site for several glass fibre reinforced plastic (GFRP) to steel adhesively bonded joint configurations. The transition zone was used to reduce the material stiffness mismatch of the joint parts. A numerical finite element model was used to identify the optimum variation in material stiffness that minimises potential failure of the joint. The best bio-inspired joints showed a 118% increase of joint strength compared to the standard joints.

  6. Bio-inspired, subwavelength surface structures to control reflectivity, transmission, and scattering in the infrared

    NASA Astrophysics Data System (ADS)

    Lora Gonzalez, Federico

    Controlling the reflection of visible and infrared (IR) light at interfaces is extremely important to increase the power efficiency and performance of optics, electro-optical and (thermo)photovoltaic systems. The eye of the moth has evolved subwavelength protuberances that increase light transmission into the eye tissue and prevent reflection. The subwavelength protuberances effectively grade the refractive index from that of air (n=1) to that of the tissue (n=1.4), making the interface gradual, suppressing reflection. In theory, the moth-eye (ME) structures can be implemented with any material platform to achieve an antireflectance effect by scaling the pitch and size of protuberances for the wavelength range of interest. In this work, a bio-inspired, scalable and substrate-independent surface modification protocol was developed to realize broadband antireflective structures based on the moth-eye principle. Quasi-ordered ME arrays were fabricated in IR relevant materials using a colloidal lithography method to achieve highly efficient, omni-directional transmission of mid and far infrared (IR) radiation. The effect of structure height and aspect ratio on transmittance and scattering is explored, with discussion on experimental techniques and effective medium theory (EMT). The highest aspect ratio structures (AR = 9.4) achieved peak single-side transmittance of 98%, with >85% transmission for lambda = 7--30 microns. A detailed photon balance constructed by transmission, forward scattering, specular reflection and diffuse reflection measurements to quantify optical losses due to near-field effects will be discussed. In addition, angle-dependent transmission measurements showed that moth-eye structures provide superior antireflective properties compared to unstructured interfaces over a wide angular range (0--60° incidence). Finally, subwavelength ME structures are incorporated on a Si substrate to enhance the absorption of near infrared (NIR) light in PtSi films to

  7. LINEBACkER: Bio-inspired Data Reduction Toward Real Time Network Traffic Analysis

    SciTech Connect

    Teuton, Jeremy R.; Peterson, Elena S.; Nordwall, Douglas J.; Akyol, Bora A.; Oehmen, Christopher S.

    2013-09-28

    Abstract—One essential component of resilient cyber applications is the ability to detect adversaries and protect systems with the same flexibility adversaries will use to achieve their goals. Current detection techniques do not enable this degree of flexibility because most existing applications are built using exact or regular-expression matching to libraries of rule sets. Further, network traffic defies traditional cyber security approaches that focus on limiting access based on the use of passwords and examination of lists of installed or downloaded programs. These approaches do not readily apply to network traffic occurring beyond the access control point, and when the data in question are combined control and payload data of ever increasing speed and volume. Manual analysis of network traffic is not normally possible because of the magnitude of the data that is being exchanged and the length of time that this analysis takes. At the same time, using an exact matching scheme to identify malicious traffic in real time often fails because the lists against which such searches must operate grow too large. In this work, we introduce an alternative method for cyber network detection based on similarity-measuring algorithms for gene sequence analysis. These methods are ideal because they were designed to identify similar but nonidentical sequences. We demonstrate that our method is generally applicable to the problem of network traffic analysis by illustrating its use in two different areas both based on different attributes of network traffic. Our approach provides a logical framework for organizing large collections of network data, prioritizing traffic of interest to human analysts, and makes it possible to discover traffic signatures without the bias introduced by expert-directed signature generation. Pattern recognition on reduced representations of network traffic offers a fast, efficient, and more robust way to detect anomalies.

  8. Fmoc-modified amino acids and short peptides: simple bio-inspired building blocks for the fabrication of functional materials.

    PubMed

    Tao, Kai; Levin, Aviad; Adler-Abramovich, Lihi; Gazit, Ehud

    2016-07-11

    Amino acids and short peptides modified with the 9-fluorenylmethyloxycarbonyl (Fmoc) group possess eminent self-assembly features and show distinct potential for applications due to the inherent hydrophobicity and aromaticity of the Fmoc moiety which can promote the association of building blocks. Given the extensive study and numerous publications in this field, it is necessary to summarize the recent progress concerning these important bio-inspired building blocks. Therefore, in this review, we explore the self-organization of this class of functional molecules from three aspects, i.e., Fmoc-modified individual amino acids, Fmoc-modified di- and tripeptides, and Fmoc-modified tetra- and pentapeptides. The relevant properties and applications related to cell cultivation, bio-templating, optical, drug delivery, catalytic, therapeutic and antibiotic properties are subsequently summarized. Finally, some existing questions impeding the development of Fmoc-modified simple biomolecules are discussed, and corresponding strategies and outlooks are suggested.

  9. Supramolecular self-assembly of biopolymers with carbon nanotubes for biomimetic and bio-inspired sensing and actuation.

    PubMed

    Lu, Luhua; Chen, Wei

    2011-06-01

    Biopolymers are important natural multifunctional macromolecules for biomimetic and bio-inspired advanced functional material design. They are not only simple dispersants for carbon nanotube stabilization as they have been found to have specific interactions with carbon nanotubes. Their molecular activity, orientation and crystallization are influenced by the CNTs, which endow their composites with a variety of novel sensing and actuation performances. This review focuses on the progress in supramolecular self-assembly of biopolymers with carbon nanotubes, and their advances in sensing and actuation. To promote the development of advanced biopolymer/CNT functional materials, new electromechanical characteristics of biopolymer/CNT composites are discussed in detail based on the relationship between the microscopic biopolymer structures and the macroscopic composite properties.

  10. Implementation of a cellular neural network-based segmentation algorithm on the bio-inspired vision system

    NASA Astrophysics Data System (ADS)

    Karabiber, Fethullah; Grassi, Giuseppe; Vecchio, Pietro; Arik, Sabri; Yalcin, M. Erhan

    2011-01-01

    Based on the cellular neural network (CNN) paradigm, the bio-inspired (bi-i) cellular vision system is a computing platform consisting of state-of-the-art sensing, cellular sensing-processing and digital signal processing. This paper presents the implementation of a novel CNN-based segmentation algorithm onto the bi-i system. The experimental results, carried out for different benchmark video sequences, highlight the feasibility of the approach, which provides a frame rate of about 26 frame/sec. Comparisons with existing CNN-based methods show that, even though these methods are from two to six times faster than the proposed one, the conceived approach is more accurate and, consequently, represents a satisfying trade-off between real-time requirements and accuracy.

  11. Bio-inspired, colorful, flexible, defrostable light-scattering hybrid films for the effective distribution of LED light.

    PubMed

    An, Seongpil; Jo, Hong Seok; Kim, Yong Il; Song, Kyo Yong; Kim, Min-Woo; Lee, Kyu Bum; Yarin, Alexander L; Yoon, Sam S

    2017-07-06

    Bioluminescent jellyfish has a unique structure derived from fiber/polymer interfaces that is advantageous for effective light scattering in the dark, deep sea water. Herein, we demonstrate the fabrication of bio-inspired hybrid films by mimicry of the jellyfish's structure, leading to excellent light-scattering performance and defrosting capability. A haze value reaching 59.3% and a heating temperature of up to 292 °C were achieved with the films. Accordingly, the developed surface constitutes an attractive optical device for lighting applications, especially for street or vehicle luminaries for freezing Arctic-climate countries. The morphological details of the hybrid films were revealed by scanning electron microscopy. The light-scattering properties of these films were examined by ultraviolet-visible-infrared spectrophotometry and anti-glare effect analyses. The defrosting performance of the hybrid films was evaluated via heating tests and infra-red observations.

  12. Bio-inspired surfactant assisted nano-catalyst impregnation of Solid-Oxide Fuel Cell (SOFC) electrodes

    DOE PAGES

    Ozmen, Ozcan; Zondlo, John W.; Lee, Shiwoo; ...

    2015-11-02

    A bio-inspired surfactant was utilized to assist in the efficient impregnation of a nano-CeO₂ catalyst throughout both porous Solid Oxide Fuel Cells (SOFC’s) electrodes simultaneously. The process included the initial modification of electrode pore walls with a polydopamine film. The cell was then submersed into a cerium salt solution. The amount of nano-CeO₂ deposited per impregnation step increased by 3.5 times by utilizing this two-step protocol in comparison to a conventional drip impregnation method. The impregnated cells exhibited a 20% higher power density than a baseline cell without the nano-catalyst at 750°C (using humid H₂ fuel).

  13. One-Pot Evolution of Ageladine A through a Bio-Inspired Cascade towards Selective Modulators of Neuronal Differentiation.

    PubMed

    Iwata, Takayuki; Otsuka, Satoshi; Tsubokura, Kazuki; Kurbangalieva, Almira; Arai, Daisuke; Fukase, Koichi; Nakao, Yoichi; Tanaka, Katsunori

    2016-10-04

    A bio-inspired cascade reaction has been developed for the construction of the marine natural product ageladine A and a de novo array of its N1-substituted derivatives. This cascade features a 2-aminoimidazole formation that is modeled after an arginine post-translational modification and an aza-electrocyclization. It can be effectively carried out in a one-pot procedure from simple anilines or guanidines, leading to structural analogues of ageladine A that had been otherwise synthetically inaccessible. We found that some compounds out of this structurally novel library show a significant activity in modulating the neural differentiation. Namely, these compounds selectively activate or inhibit the differentiation of neural stem cells to neurons, while being negligible in the differentiation to astrocytes. This study represents a successful case in which the native biofunction of a natural product could be altered by structural modifications.

  14. Bio-inspired green synthesis of Fe3O4 spherical magnetic nanoparticles using Syzygium cumini seed extract

    NASA Astrophysics Data System (ADS)

    Venkateswarlu, Sada; Natesh Kumar, B.; Prasad, C. H.; Venkateswarlu, P.; Jyothi, N. V. V.

    2014-09-01

    A novel and bio-inspired Fe3O4 spherical magnetic nanoparticles (SMNPs) were synthesized using Syzygium cumini (S. cumini) seed extract, which is a non-toxic ecofriendly fruit waste material. S. cumini seed extract acts as a green solvent, reducing and capping agent in which sodium acetate acts as electrostatic stabilizing agent. The green synthesized nanoparticles were characterized with the help of various techniques such as X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), Energy-dispersive spectroscopy (EDS), Vibrating sample magnetometer (VSM), FTIR spectroscopy and nitrogen adsorption and desorption analysis techniques. The XRD study divulged that the synthesized SMNPs have inverse spinel cubic structure. The hysteresis loop of Fe3O4 nanoparticles shows an excellent ferromagnetic behavior with saturation magnetization value of 13.6 emu/g.

  15. A new bio-inspired stimulator to suppress hyper-synchronized neural firing in a cortical network.

    PubMed

    Amiri, Masoud; Amiri, Mahmood; Nazari, Soheila; Faez, Karim

    2016-12-07

    Hyper-synchronous neural oscillations are the character of several neurological diseases such as epilepsy. On the other hand, glial cells and particularly astrocytes can influence neural synchronization. Therefore, based on the recent researches, a new bio-inspired stimulator is proposed which basically is a dynamical model of the astrocyte biophysical model. The performance of the new stimulator is investigated on a large-scale, cortical network. Both excitatory and inhibitory synapses are also considered in the simulated spiking neural network. The simulation results show that the new stimulator has a good performance and is able to reduce recurrent abnormal excitability which in turn avoids the hyper-synchronous neural firing in the spiking neural network. In this way, the proposed stimulator has a demand controlled characteristic and is a good candidate for deep brain stimulation (DBS) technique to successfully suppress the neural hyper-synchronization.

  16. Bio-inspired metal-coordination dynamics: A unique tool for engineering novel properties in soft matter systems

    NASA Astrophysics Data System (ADS)

    Grindy, Scott; Li, Qiaochu; Halim, Abigail; Learsch, Robert; Holten-Andersen, Niels

    2015-03-01

    In soft material systems, materials properties are generally governed by transient, dynamic interactions of many types over many hierarchal length- and time-scales. However, explicit control over these dynamics is not always possible, leaving open questions into how transient interactions can be exploited to design soft materials with unique and exceptional properties. Inspired by the adhesive chemistry and tough character of mussel byssal threads, we present several studies on both the mechanical properties of soft materials and templated crystallization kinetics to show the diverse array of materials properties that can be generated using bio-inspired metal-coordination. By studying our model systems, we can determine the explicit effects of metal-coordination dynamics on various bulk properties, further adding to the set of tools we can use to design soft material systems.

  17. Bio-inspired surfactant assisted nano-catalyst impregnation of Solid-Oxide Fuel Cell (SOFC) electrodes

    SciTech Connect

    Ozmen, Ozcan; Zondlo, John W.; Lee, Shiwoo; Sabolsky, Edward M.

    2015-11-02

    A bio-inspired surfactant was utilized to assist in the efficient impregnation of a nano-CeO₂ catalyst throughout both porous Solid Oxide Fuel Cells (SOFC’s) electrodes simultaneously. The process included the initial modification of electrode pore walls with a polydopamine film. The cell was then submersed into a cerium salt solution. The amount of nano-CeO₂ deposited per impregnation step increased by 3.5 times by utilizing this two-step protocol in comparison to a conventional drip impregnation method. The impregnated cells exhibited a 20% higher power density than a baseline cell without the nano-catalyst at 750°C (using humid H₂ fuel).

  18. Water repellent/wetting characteristics of various bio-inspired morphologies and fluid drag reduction testing research.

    PubMed

    Luo, Yuehao; Song, Wen; Wang, Xudong

    2016-03-01

    It is well-known that the bio-inspired sharkskin covering the original pattern has the apparent drag reduction function in the turbulent flowing stations, which can be regarded as "sharkskin effect", and it has progressively been put application into the fluid engineering with obtaining great profits. In this paper, the anisotropic wetting phenomena on sharkskin are discovered, the contact angles and rolling angles on different orientations are not the same. In addition, the hydrodynamic experiments on different sharkskin surfaces are conducted, and the experimental results illustrate that the super-hydrophobic and drag-reducing properties on deformed biological surfaces are improved to some extent compared to the original morphology, which has important significance to expand its practical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Effects of the relative humidity and water droplet on adhesion of a bio-inspired nano-film.

    PubMed

    Peng, Zhilong; Chen, Shaohua

    2011-12-01

    Inspired by geckos' adhesion, the effect of water membrane forming due to the environmental humidity, on the adhesion between a bio-inspired nano-film and a substrate is investigated first. The disjoining pressure is considered, which results in an enhancing adhesion between the nano-film and substrate. When the thickness of water membrane increases, water droplets will form and a repulsive capillary force between the nano-film and substrate is produced. The total adhesion force decreases with an increasing volume of water droplets. The two opposite results in the two different models are consistent well with two seemingly inconsistent experimental observations by Huber et al. (2005) [4] and Sun et al. (2005) [5], respectively, and may be significant for the development of artificial biomimetic attachment systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Bio-inspired synthesis and laser processing of nanostructured barium titanate thin films: implications for uncooled IR sensor development

    NASA Astrophysics Data System (ADS)

    Livingston, F. E.; Sarney, W. L.; Niesz, K.; Ould-Ely, T.; Tao, A. R.; Morse, D. E.

    2009-05-01

    The Army requires passive uncooled IR sensors for use in numerous vehicle and weapons platforms, including driver vision enhancement (DVE), rifle sights, seeker munitions, and unattended ground sensors (UGSs) and unattended aerial vehicles (UAVs). Recent advances in bio-inspired/biomimetic nanomaterials synthesis, laser material processing, and sensor design and performance testing, offer the opportunity to create uncooled IR detector focal-plane arrays with improved sensitivity, low thermal mass, and fast response times, along with amenability to low-cost, rapid prototype manufacture. We are exploring the use of genotype-inspired, digitally-scripted laser direct-write techniques, in conjunction with the kinetically controlled catalytic process for the growth of nanostructured multimetallic perovskites, to develop a novel approach to the fabrication of precision patterned 2-D focal-plane arrays of pyroelectric perovskite-based materials. The bio-inspired growth of nanostructured, multimetallic perovskite thin-films corresponds to the use of kinetically controlled vapor diffusion for the slow growth of pure, highly crystalline 6-nm barium titanate (BaTiO3) nanoparticles. This unique vapor-diffusion sol-gel route enables the formation of stoichiometric cubic-phase nanoparticles at room temperature and ambient pressure in the absence of a structure-directing template. Novel laser direct-write processing and synchronized electro-optic pulse modulation techniques have been utilized to induce site-selective, patterned phase transformation of microscale aggregates of the BaTiO3 nanoparticles from the non-pyroelectric cubic polymorph to the pyroelectric tetragonal polymorph. This paper reports on our initial collaborative investigations, including comprehensive structural characterization (XRD, TEM, and SEM) of the BaTiO3 nanoparticles and thin-films, along with preliminary laser-induced phase transformation results.

  1. Bio-inspired supramolecular hybrid dendrimers self-assembled from low-generation peptide dendrons for highly efficient gene delivery and biological tracking.

    PubMed

    Xu, Xianghui; Jian, Yeting; Li, Yunkun; Zhang, Xiao; Tu, Zhaoxu; Gu, Zhongwei

    2014-09-23

    Currently, supramolecular self-assembly of dendrons and dendrimers emerges as a powerful and challenging strategy for developing sophisticated nanostructures with excellent performances. Here we report a supramolecular hybrid strategy to fabricate a bio-inspired dendritic system as a versatile delivery nanoplatform. With a rational design, dual-functionalized low-generation peptide dendrons (PDs) self-assemble onto inorganic nanoparticles via coordination interactions to generate multifunctional supramolecular hybrid dendrimers (SHDs). These SHDs exhibit well-defined nanostructure, arginine-rich peptide corona, and fluorescent signaling properties. As expected, our bio-inspired supramolecular hybrid strategy largely enhances the gene transfection efficiency of SHDs approximately 50 000-fold as compared to single PDs at the same R/P ratio. Meanwhile the bio-inspired SHDs also (i) provide low cytotoxicity and serum resistance in gene delivery; (ii) provide inherent fluorescence for tracking intracellular pathways including cellular uptake, endosomal escape, and gene release; and (iii) work as an alternative reference for monitoring desired protein expression. More importantly, in vivo animal experiments demonstrate that SHDs offer considerable gene transfection efficiency (in muscular tissue and in HepG2 tumor xenografts) and real-time bioimaging capabilities. These SHDs will likely stimulate studies on bio-inspired supramolecular hybrid dendritic systems for biomedical applications both in vitro and in vivo.

  2. PEO-b-PCL grafted DPPC liposomes: physicochemical characterization and stability studies of novel bio-inspired advanced Drug Delivery nano Systems (aDDnSs).

    PubMed

    Pippa, Natassa; Deli, Eleni; Mentzali, Evangelia; Pispas, Stergios; Demetzos, Costas

    2014-08-01

    Amphiphilic block copolymers and lipids have attracted major scientific interest in recent years due to their intriguing self-assembly behavior, which results in a plethora of nanoassemblies and their potential applications in Pharmaceutical Nanotechnology, as bio-inspired chimeric or hybrid advanced Drug Delivery nano Systems (aDDns). In this work, we report on stability studies of chimeric systems consisted of DPPC (dipalmitoylphosphatidylcholine) and poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL) block copolymer in Phosphate Buffer Saline (PBS) and Fetal Bovine Serum (FBS). The incorporation of PEO-b-PCL leads to bio-inspired nanovectors of smaller size, in comparison to DPPC neat liposomes. All the prepared chimeric liposomal formulations were found to retain their original physicochemical characteristics for at least five days. These nanocarriers could be characterized as stealth liposomes due to their biological stability. The composition of the bio-inspired aDDnSs play a key role on their physicochemical and structural properties, as well as on their biological response, which could be a road map for designing aDDnSs based on the bio-inspiration.

  3. Effect of pre-tension on the peeling behavior of a bio-inspired nano-film and a hierarchical adhesive structure

    NASA Astrophysics Data System (ADS)

    Peng, Zhilong; Chen, Shaohua

    2012-10-01

    Inspired by the reversible adhesion behaviors of geckos, the effects of pre-tension in a bio-inspired nano-film and a hierarchical structure on adhesion are studied theoretically. In the case with a uniformly distributing pre-tension in a spatula-like nano-film under peeling, a closed-form solution to a critical peeling angle is derived, below or above which the peel-off force is enhanced or reduced, respectively, compared with the case without pre-tension. The effects of a non-uniformly distributing pre-tension on adhesion are further investigated for both a spatula-like nano-film and a hierarchical structure-like gecko's seta. Compared with the case without pre-tension, the pre-tension, no matter uniform or non-uniform, can increase the adhesion force not only for the spatula-like nano-film but also for the hierarchical structure at a small peeling angle, while decrease it at a relatively large peeling angle. Furthermore, if the pre-tension is large enough, the effective adhesion energy of a hierarchical structure tends to vanish at a critical peeling angle, which results in spontaneous detachment of the hierarchical structure from the substrate. The present theoretical predictions can not only give some explanations on the existing experimental observation that gecko's seta always detaches at a specific angle and no apparent adhesion force can be detected above the critical angle but also provide a deep understanding for the reversible adhesion mechanism of geckos and be helpful to the design of biomimetic reversible adhesives.

  4. Posterror speeding after threat-detection failure.

    PubMed

    Caudek, Corrado; Ceccarini, Francesco; Sica, Claudio

    2015-04-01

    Cognitive control enables individuals to rapidly adapt to changing task demands. To investigate error-driven adjustments in cognitive control, we considered performance changes in posterror trials, when participants performed a visual search task requiring detection of angry, happy, or neutral facial expressions in crowds of faces. We hypothesized that the failure to detect a potential threat (angry face) would prompt a different posterror adjustment than the failure to detect a nonthreatening target (happy or neutral face). Indeed, in 3 sets of experiments, we found evidence of posterror speeding, in the first case, and of posterror slowing, in the second case. Previous results indicate that a threatening stimulus can improve the efficiency of visual search. The results of the present study show that a similar effect can also be observed when participants fail to detect a threat. The impact of threat-detection failure on cognitive control, as revealed by the present study, suggests that posterror adjustments should be understood as the product of domain-specific mechanisms that are strongly influenced by affective information, rather than as the effect of a general-purpose error-monitoring system.

  5. Bio-inspired Optimal Locomotion Reconfigurability of Quadruped Rovers using Central Pattern Generators

    NASA Astrophysics Data System (ADS)

    Bohra, Murtaza

    Legged rovers are often considered as viable solutions for traversing unknown terrain. This work addresses the optimal locomotion reconfigurability of quadruped rovers, which consists of obtaining optimal locomotion modes, and transitioning between them. A 2D sagittal plane rover model is considered based on a domestic cat. Using a Genetic Algorithm, the gait, pose and control variables that minimize torque or maximize speed are found separately. The optimization approach takes into account the elimination of leg impact, while considering the entire variable spectrum. The optimal solutions are consistent with other works on gait optimization, and are similar to gaits found in quadruped animals as well. An online model-free gait planning framework is also implemented, that is based on Central Pattern Generators is implemented. It is used to generate joint and control trajectories for any arbitrarily varying speed profile, and shown to regulate locomotion transition and speed modulation, both endogenously and continuously.

  6. Comparing Neuromorphic Solutions in Action: Implementing a Bio-Inspired Solution to a Benchmark Classification Task on Three Parallel-Computing Platforms

    PubMed Central

    Diamond, Alan; Nowotny, Thomas; Schmuker, Michael

    2016-01-01

    Neuromorphic computing employs models of neuronal circuits to solve computing problems. Neuromorphic hardware systems are now becoming more widely available and “neuromorphic algorithms” are being developed. As they are maturing toward deployment in general research environments, it becomes important to assess and compare them in the context of the applications they are meant to solve. This should encompass not just task performance, but also ease of implementation, speed of processing, scalability, and power efficiency. Here, we report our practical experience of implementing a bio-inspired, spiking network for multivariate classification on three different platforms: the hybrid digital/analog Spikey system, the digital spike-based SpiNNaker system, and GeNN, a meta-compiler for parallel GPU hardware. We assess performance using a standard hand-written digit classification task. We found that whilst a different implementation approach was required for each platform, classification performances remained in line. This suggests that all three implementations were able to exercise the model's ability to solve the task rather than exposing inherent platform limits, although differences emerged when capacity was approached. With respect to execution speed and power consumption, we found that for each platform a large fraction of the computing time was spent outside of the neuromorphic device, on the host machine. Time was spent in a range of combinations of preparing the model, encoding suitable input spiking data, shifting data, and decoding spike-encoded results. This is also where a large proportion of the total power was consumed, most markedly for the SpiNNaker and Spikey systems. We conclude that the simulation efficiency advantage of the assessed specialized hardware systems is easily lost in excessive host-device communication, or non-neuronal parts of the computation. These results emphasize the need to optimize the host-device communication architecture

  7. Comparing Neuromorphic Solutions in Action: Implementing a Bio-Inspired Solution to a Benchmark Classification Task on Three Parallel-Computing Platforms.

    PubMed

    Diamond, Alan; Nowotny, Thomas; Schmuker, Michael

    2015-01-01

    Neuromorphic computing employs models of neuronal circuits to solve computing problems. Neuromorphic hardware systems are now becoming more widely available and "neuromorphic algorithms" are being developed. As they are maturing toward deployment in general research environments, it becomes important to assess and compare them in the context of the applications they are meant to solve. This should encompass not just task performance, but also ease of implementation, speed of processing, scalability, and power efficiency. Here, we report our practical experience of implementing a bio-inspired, spiking network for multivariate classification on three different platforms: the hybrid digital/analog Spikey system, the digital spike-based SpiNNaker system, and GeNN, a meta-compiler for parallel GPU hardware. We assess performance using a standard hand-written digit classification task. We found that whilst a different implementation approach was required for each platform, classification performances remained in line. This suggests that all three implementations were able to exercise the model's ability to solve the task rather than exposing inherent platform limits, although differences emerged when capacity was approached. With respect to execution speed and power consumption, we found that for each platform a large fraction of the computing time was spent outside of the neuromorphic device, on the host machine. Time was spent in a range of combinations of preparing the model, encoding suitable input spiking data, shifting data, and decoding spike-encoded results. This is also where a large proportion of the total power was consumed, most markedly for the SpiNNaker and Spikey systems. We conclude that the simulation efficiency advantage of the assessed specialized hardware systems is easily lost in excessive host-device communication, or non-neuronal parts of the computation. These results emphasize the need to optimize the host-device communication architecture for

  8. Structure property relations and finite element analysis of ram horns: A pathway to energy absorbent bio-inspired designs

    NASA Astrophysics Data System (ADS)

    Trim, Michael Wesley

    2011-12-01

    A recently emerging engineering design approach entails studying the brilliant design solutions found in nature with an aim to develop design strategies that mimic the remarkable efficiency found in biological systems. This novel engineering approach is referred to as bio-inspired design. In this context, the present study quantifies the structure-property relations in bighorn sheep (Ovis canadensis) horn keratin, qualitatively characterizes the effects of a tapered spiral geometry (the same form as in a ram's horn) on pressure wave and impulse mitigation, describes the stress attenuation capabilities and features of a ram's head, and compares the structures and mechanical properties of some energy absorbent natural materials. The results and ideas presented herein can be used in the development of lightweight, energy absorbent, bio-inspired material designs. Among the most notable conclusions garnered from this research include: (1) Horn keratin behaves in an anisotropic manner similar to a long fiber composite. (2) Moisture content dominates the material behavior of horn keratin more than anisotropy, age, and stress-state. This makes moisture content the most influential parameter on the mechanical behavior of horn keratin. (3) Tapered geometries mitigate the impulse generated by a stress wave due to the convergent boundary and a continually decreasing cross sectional area such that greater uniaxial stresses and subsequent axial deformation arises. Furthermore, the tapered geometry introduces small shear stresses that further decrease the impulse. (4) Spiral geometries attenuate the impulse generated by a stress wave by the introduction of shear stresses along the length of the spiral. These shear stresses introduce transverse displacements that function to lessen the impulse. (5) When both a taper and spiral geometry are used in a design, their synergistic effects multiplicatively reduce the impulse (6) Tough natural materials have a high porosity, which makes

  9. Error Analysis of Reaction Wheel Speed Detection Methods

    NASA Astrophysics Data System (ADS)

    Oh, Shi-Hwan; Lee, Hye-Jin; Lee, Seon-Ho; Yong, Ki-Lyuk

    2008-12-01

    Reaction wheel is one of the actuators for spacecraft attitude control, which generates torque by changing an inertial rotor speed inside of the wheel. In order to generate required torque accurately and estimate an accurate angular momentum, wheel speed should be measured as close to the actual speed as possible. In this study, two conventional speed detection methods for high speed motor with digital tacho pulse (Elapsed-time method and Pulse-count method) and their resolutions are analyzed. For satellite attitude maneuvering and control, reaction wheel shall be operated in bi-directional and low speed operation is sometimes needed for emergency case. Thus the bias error at low speed with constant acceleration (or deceleration) is also analysed. As a result, the speed detection error of elapsed-time method is largely influenced upon the high-speed clock frequency at high speed and largely effected on the number of tacho pulses used in elapsed time calculation at low speed, respectively.

  10. Development of a Four-Fin Bio-Inspired UUV: CFD Studies

    DTIC Science & Technology

    2012-09-04

    curvature of the robotic pectoral fins was necessary to achieve precise low-speed maneuverability of UUVs in highly time-varying external force... Robotic Pectoral Fin ,” 2007 IEEE Int. Conf. on Robotics and Automation, Roma, Italy. 9. Geder, J., Ramamurti, R., Palmisano, J., Pruessner, M...UUV) with four actively controlled curvature flapping fins is described. Three dimensional unsteady flow computations past several configuration of

  11. Bio-inspired Plasmonic Nanoarchitectured Hybrid System Towards Enhanced Far Red-to-Near Infrared Solar Photocatalysis

    PubMed Central

    Yan, Runyu; Chen, Min; Zhou, Han; Liu, Tian; Tang, Xingwei; Zhang, Ke; Zhu, Hanxing; Ye, Jinhua; Zhang, Di; Fan, Tongxiang

    2016-01-01

    Solar conversion to fuels or to electricity in semiconductors using far red-to-near infrared (NIR) light, which accounts for about 40% of solar energy, is highly significant. One main challenge is the development of novel strategies for activity promotion and new basic mechanisms for NIR response. Mother Nature has evolved to smartly capture far red-to-NIR light via their intelligent systems due to unique micro/nanoarchitectures, thus motivating us for biomimetic design. Here we report the first demonstration of a new strategy, based on adopting nature’s far red-to-NIR responsive architectures for an efficient bio-inspired photocatalytic system. The system is constructed by controlled assembly of light-harvesting plasmonic nanoantennas onto a typical photocatalytic unit with butterfly wings’ 3D micro/nanoarchitectures. Experiments and finite-difference time-domain (FDTD) simulations demonstrate the structural effects on obvious far red-to-NIR photocatalysis enhancement, which originates from (1) Enhancing far red-to-NIR (700~1200 nm) harvesting, up to 25%. (2) Enhancing electric-field amplitude of localized surface plasmon (LSPs) to more than 3.5 times than that of the non-structured one, which promotes the rate of electron-hole pair formation, thus substantially reinforcing photocatalysis. This proof-of-concept study provides a new methodology for NIR photocatalysis and would potentially guide future conceptually new NIR responsive system designs. PMID:26818680

  12. Tension-induced tunable corrugation in bio-inspired two-phase soft composite materials: mechanisms and implications

    NASA Astrophysics Data System (ADS)

    Elbanna, Ahmed; Chen, Qianli

    We numerically investigate the elastic deformation response of a two-phase bio-inspired soft composite material under externally applied concentric tension using the finite element method. We show that by carefully designing the inclusion pattern it is possible to induce corrugations normal to the direction of stretch. By stacking 1D composite fibers to form 2D membranes, these corrugations collectively lead to the formation of membrane channels with shapes and sizes that are tunable by the level of stretch. Furthermore, we show that by using specific inclusion patterns in laminated plates, it is possible to create pop-ups and troughs enabling the development of complex 3D geometries from planar construction. We have found that the corrugation amplitude increases with the stiffness of inclusion and its eccentricity from the tension axis. We discuss the mechanisms leading to the development of corrugations as well as its different implications. We discuss applications for this design in a variety of fields including tunable band gap formation, surface roughness controllability, auxetic materials and toughness enhancement via programmable evolving geometrical effects..

  13. Carbon-Nanotube-Supported Bio-Inspired Nickel Catalyst and Its Integration in Hybrid Hydrogen/Air Fuel Cells.

    PubMed

    Gentil, Solène; Lalaoui, Noémie; Dutta, Arnab; Nedellec, Yannig; Cosnier, Serge; Shaw, Wendy J; Artero, Vincent; Le Goff, Alan

    2017-02-06

    A biomimetic nickel bis-diphosphine complex incorporating the amino acid arginine in the outer coordination sphere was immobilized on modified carbon nanotubes (CNTs) through electrostatic interactions. The functionalized redox nanomaterial exhibits reversible electrocatalytic activity for the H2 /2 H(+) interconversion from pH 0 to 9, with catalytic preference for H2 oxidation at all pH values. The high activity of the complex over a wide pH range allows us to integrate this bio-inspired nanomaterial either in an enzymatic fuel cell together with a multicopper oxidase at the cathode, or in a proton exchange membrane fuel cell (PEMFC) using Pt/C at the cathode. The Ni-based PEMFC reaches 14 mW cm(-2) , only six-times-less as compared to full-Pt conventional PEMFC. The Pt-free enzyme-based fuel cell delivers ≈2 mW cm(-2) , a new efficiency record for a hydrogen biofuel cell with base metal catalysts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Bio-inspired fabrication of hierarchical Ni-Fe-P coated skin collagen fibers for high-performance microwave absorption.

    PubMed

    Wang, Xiaoling; Liao, Xuepin; Zhang, Wenhua; Shi, Bi

    2015-01-21

    In the present investigation, skin collagen fiber (CF) with a well defined hierarchical 3D fibrous structure was employed for the bio-inspired fabrication of high-performance microwave absorption materials. The hierarchical 3D structure of the CF was retained in the CF@Ni-Fe-P composites, and the formation of the Ni-Fe-P coating on the CF surface was identified by XRD and XPS analysis. Based on the electromagnetism parameter measurements, the maximum reflection loss (RL) of the CF@Ni-Fe-P composites reached -31.0 dB, and the width of the absorption band where reflection loss values exceeded -10.0 dB covered the whole Ku-band and some parts of the X-band (9.5-18.0 GHz). The complex permittivity and complex permeability measurements indicated that electronic loss and magnetic loss were involved in the CF@Ni-Fe-P composites for microwave absorption. In addition, due to the magnetic properties of the Ni-Fe-P coating, these CF@Ni-Fe-P composites exhibited excellent magnetic characteristics with high saturation magnetization and low coercivity values. The present investigation indicates a new possibility for the bio-matrix-based fabrication of high-performance microwave absorbing materials with lightweight and efficient absorption properties.

  15. A Bio-Inspired Model-Based Approach for Context-Aware Post-WIMP Tele-Rehabilitation †

    PubMed Central

    López-Jaquero, Víctor; Rodríguez, Arturo C.; Teruel, Miguel A.; Montero, Francisco; Navarro, Elena; Gonzalez, Pascual

    2016-01-01

    Tele-rehabilitation is one of the main domains where Information and Communication Technologies (ICT) have been proven useful to move healthcare from care centers to patients’ home. Moreover, patients, especially those carrying out a physical therapy, cannot use a traditional Window, Icon, Menu, Pointer (WIMP) system, but they need to interact in a natural way, that is, there is a need to move from WIMP systems to Post-WIMP ones. Moreover, tele-rehabilitation systems should be developed following the context-aware approach, so that they are able to adapt to the patients’ context to provide them with usable and effective therapies. In this work a model-based approach is presented to assist stakeholders in the development of context-aware Post-WIMP tele-rehabilitation systems. It entails three different models: (i) a task model for designing the rehabilitation tasks; (ii) a context model to facilitate the adaptation of these tasks to the context; and (iii) a bio-inspired presentation model to specify thoroughly how such tasks should be performed by the patients. Our proposal overcomes one of the limitations of the model-based approach for the development of context-aware systems supporting the specification of non-functional requirements. Finally, a case study is used to illustrate how this proposal can be put into practice to design a real world rehabilitation task. PMID:27754371

  16. Obstacle traversal and self-righting of bio-inspired robots reveal the physics of multi-modal locomotion

    NASA Astrophysics Data System (ADS)

    Li, Chen; Fearing, Ronald; Full, Robert

    Most animals move in nature in a variety of locomotor modes. For example, to traverse obstacles like dense vegetation, cockroaches can climb over, push across, reorient their bodies to maneuver through slits, or even transition among these modes forming diverse locomotor pathways; if flipped over, they can also self-right using wings or legs to generate body pitch or roll. By contrast, most locomotion studies have focused on a single mode such as running, walking, or jumping, and robots are still far from capable of life-like, robust, multi-modal locomotion in the real world. Here, we present two recent studies using bio-inspired robots, together with new locomotion energy landscapes derived from locomotor-environment interaction physics, to begin to understand the physics of multi-modal locomotion. (1) Our experiment of a cockroach-inspired legged robot traversing grass-like beam obstacles reveals that, with a terradynamically ``streamlined'' rounded body like that of the insect, robot traversal becomes more probable by accessing locomotor pathways that overcome lower potential energy barriers. (2) Our experiment of a cockroach-inspired self-righting robot further suggests that body vibrations are crucial for exploring locomotion energy landscapes and reaching lower barrier pathways. Finally, we posit that our new framework of locomotion energy landscapes holds promise to better understand and predict multi-modal biological and robotic movement.

  17. Bio-inspired green synthesis of Fe3O4 magnetic nanoparticles using watermelon rinds and their catalytic activity

    NASA Astrophysics Data System (ADS)

    Prasad, Ch.; Gangadhara, S.; Venkateswarlu, P.

    2016-08-01

    Novel and bio-inspired magnetic nanoparticles were synthesized using watermelon rinds (WR) which are nontoxic and biodegradable. Watermelon rind extract was used as a solvent and capping and reducing agent in the synthesis. The Fe3o4 MNPs were characterized by using transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometer techniques (VSM). XRD studies revealed a high degree of crystalline and monophasic Fe nanoparticles of face-centered cubic stricture. FTIR analysis proved that particles are reduced and stabilized in solution by the capping agent that is likely to be proteins secreted by the biomass. The present process in an excellent candidate for the synthesis of iron nanoparticles that is simple, easy to execute, pollutant free and inexpensive. A practical and convenient method for the synthesis of highly stable and small-sized iron nanoparticles with a narrow distribution from 2 to 20 nm is reported. Also, the MNPs present in higher saturation magnetization (Ms) of 14.2 emu/g demonstrate tremendous magnetic response behavior. However, the synthesized iron nanoparticles were used as a catalyst for the preparation of biologically interesting 2-oxo-1,2,3,4-tetrahydropyrimidine derivatives in high yields. These results exhibited that the synthesized Fe3O4 MNPs could be used as a catalyst in organic synthesis.

  18. Bio-inspired micro-nano structured surface with structural color and anisotropic wettability on Cu substrate

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Li, Shuyi; Niu, Shichao; Cao, Xiaowen; Han, Zhiwu; Ren, Luquan

    2016-08-01

    Inspired by the unique creatures in the nature, the femtosecond laser technology has been usually used to fabricate the periodic microstructures due to its advantages of rapidness, simplicity, ease of large-area fabrication, and simultaneously offering dual micro/nano-scale structures simply via one-step process for a wide variety of materials. By changing the experimental conditions, multi-functional surfaces which possess superhydrophobicity and structural colors could be achieved on copper substrate. In addition, the apparent contact angle can reach 144.3° without any further modification, which also exhibits the anisotropic wettability. Moreover, it can be inferred that higher laser fluence can lead to a larger CA within a certain range. At the same time, due to the change of laser processing parameters, the obtained surfaces present different structural colors. This study may expand the applications of bio-inspired functional materials because multiple colors and hydrophobicity are both important features in the real life and industrial applications, such as display, decoration, and anti-counterfeiting technology etc.

  19. Novel emissive bio-inspired non-proteinogenic coumarin-alanine amino acid: fluorescent probe for polyfunctional systems.

    PubMed

    Oliveira, Elisabete; Capelo, José Luis; Lima, João Carlos; Lodeiro, Carlos

    2012-10-01

    Two new bio-inspired non-proteinogenic compounds L1 and L2, containing coumarin and/or acridine chromophores and bearing as spacer an alanine amino acid were successfully synthesized and fully characterized by elemental analysis, (1)H and (13)C NMR, infrared spectroscopy (KBr discs), melting point, ESI-TOF (electrospray ionization-time of flight-mass), UV-vis absorption and emission spectroscopy, fluorescence quantum yields and lifetime measurements. A relative fluorescence quantum yield of 0.02 was determined for both compounds. In L2 the presence of an intramolecular energy transfer from the coumarin to the acridine unit was observed. L1 and L2 are quite sensitive to the basicity of the environment. At alkaline values both compounds show a strong quenching in the fluorescence emission, attributed to the photoinduced electron transfer (PET). However, both deprotonated forms recover the emission with the addition of Zn(2+), Cd(2+) and Al(3+) metal ions. As multifunctional emissive probes, the titration of L1 and L2 with lanthanides (III), Eu(3+) and Tb(3+) was also explored as new visible bio-probes in the absence and in the presence of liposomes. In a liposomal environment a lower energy transfer was observed.

  20. Bio-Inspired Leaf-Mimicking Nanosheet/Nanotube Heterostructure as a Highly Efficient Oxygen Evolution Catalyst.

    PubMed

    Wang, Yongcheng; Jiang, Kun; Zhang, Hui; Zhou, Tong; Wang, Jiwei; Wei, Wei; Yang, Zhongqin; Sun, Xuhui; Cai, Wen-Bin; Zheng, Gengfeng

    2015-04-01

    Plant leaves represent a unique 2D/1D heterostructure for enhanced surface reaction and efficient mass transport. Inspired by plant leaves, a 2D/1D CoO x heterostructure is developed that is composed of ultrathin CoO x nanosheets further assembled into a nanotube structure. This bio-inspired architecture allows a highly active Co(2+) electronic structure for an efficient oxygen evolution reaction (OER) at the atomic scale, ultrahigh surface area (371 m(2) g(-1)) for interfacial electrochemical reaction at the nanoscale, and enhanced transport of charge and electrolyte over CoO x nanotube building blocks at the microscale. Consequently, this CoO x nanosheet/nanotube heterostructure demonstrates a record-high OER performance based on cobalt compounds reported so far, with an onset potential of ≈1.46 V versus reversible hydrogen electrode (RHE), a current density of 51.2 mA cm(-2) at 1.65 V versus RHE, and a Tafel slope of 75 mV dec(-1). Using the CoO x nanosheet/nanotube catalyst and a Pt-mesh, a full water splitting cell with a 1.5-V battery is also demonstrated.

  1. The Tipping Point of Robotic Surgery In Healthcare: From Master-Slave to Flexible Access Bio-Inspired Platforms.

    PubMed

    Athanasiou, Thanos; Ashrafian, Hutan; Rao, Christopher; Yang, Guang-Zhong; Darzi, Ara

    2011-12-01

    Surgical robots were introduced to overcome the technical issues of limited operative dexterity and inadequate visualization in complex body areas. Current surgical robotic systems are based on a master-slave relationship in which the master-surgeon provides operative guidance for the slave-robot to perform operative tasks. Robotic operations are most frequently applied in urology (primarily focusing on prostatectomy) and cardiac surgery. The evolution of surgical robotics has made significant strides in the past decade. There are, however, some limitatio0The future of robotic surgery promises several augmentations to provide improvements in surgical visualization, somatosensory perception, and enhanced robot-surgeon interactions. These can be achieved through advances in robotic research and academic healthcare leadership to develop the next generation of surgical robots such as the novel flexible access bio-inspired (FAB) platforms. The drive to move toward ever less-invasive and safer procedures while maintaining high-quality treatment outcomes has maintained the momentum of progress since the initial birth of minimally invasive surgery, so that robotic surgery can be increasingly applied in a wider range of healthcare settings.

  2. Controlled RAFT Polymerization of 2-Vinyl-4,4-Dimethylazlactone (VDMA): A Facile Route to Bio-Inspired Polymer Surfaces

    SciTech Connect

    Lokitz, Bradley S; Messman, Jamie M; Hinestrosa Salazar, Juan Pablo; Alonzo Calderon, Jose E; Verduzco, Rafael; Brown, Rebecca H; Osa, Masashi; Ankner, John Francis; Kilbey, II, S Michael

    2009-01-01

    We report the controlled radical polymerization of 2-vinyl-4,4-dimethyl azlactone (VDMA), a 2-alkenyl-2-oxazolin-5-one monomer that contains a polymerizable vinyl moiety as well as a highly reactive, pendant azlactone as well as solution characterizations and surface attachment and functionaliztion. Reversible addition fragmentation chain transfer (RAFT) was used to polymerize of VDMA in benzene at 65 C using either 2-(2-cyanopropyl) dithiobenzoate (CPDB) or 2-dodecylsulfanylthiocarbonyl-sulfanyl-2-methylpropionic acid (DMP) as RAFT chain transfer agents (CTAs). The pseudo first order kinetics and resultant well-defined polymers of low polydispersity indicate that both CTAs afford control over the RAFT polymerization of VDMA. Dynamic and static light scattering and small angle neutron scattering were performed to determine the dn/dc, weight-average molecular weight, radius of gyration, and second virial coefficient of VDMA homopolymers in THF. Additionally, well-defined polymers of VDMA containing carboxyl end groups were covalently attached to epoxy modified silicon wafers via esterification to produce polymeric scaffolds that could be subsequently functionalized for various bio-inspired applications.

  3. Improvement of water-repellent and hydrodynamic drag reduction properties on bio-inspired surface and exploring sharkskin effect mechanism

    NASA Astrophysics Data System (ADS)

    Luo, Yuehao; Liu, Yufei; Anderson, James; Li, Xiang; Li, Yuanyue

    2015-07-01

    Bio-inspired/biomimetic surface technologies focusing on sharkskin, lotus leaf, gecko feet, and others have attracted so lots of attentions from all over the world; meanwhile, they have also brought great advantages and profits for mankind. Sharkskin drag-reducing/low-resistance surface is the imperative consequence of nature selection and self-evolution in the long history, which can enable itself accommodate the living environments perfectly. Generally speaking, sharkskin effect can become transparent only in some certain velocity scope. How to expand its application range and enhance the drag reduction function further has developed into the urgent issue. In this article, the water-repellent and hydrodynamic drag-reducing effects are improved by adjusting sharkskin texture. The experimental results show that contact angle of more than 150° is achieved, and drag-reducing property is improved to some extent. In addition, the drag-reducing mechanism is explored and generalized from different aspects adopting the numerical simulation, which has important significance to comprehend sharkskin effect.

  4. Lightweight mechanical amplifiers for rolled dielectric elastomer actuators and their integration with bio-inspired wing flappers

    NASA Astrophysics Data System (ADS)

    Lau, Gih-Keong; Lim, Hoong-Ta; Teo, Jing-Ying; Chin, Yao-Wei

    2014-02-01

    Dielectric elastomer actuators (DEAs) are attractive for use in bio-inspired flapping-wing robots because they have high work density (specific energy) and can produce a large actuation strain. Although the active membrane of a dielectric elastomer is lightweight, the support structure that pre-tensions the elastomeric membrane is massive and it lowers the overall work density. If the DEA is to be used successfully to drive flapping-wing robots, its support structure must be as lightweight as possible. In this work, we designed, analysed, and developed a lightweight shell using a cross-ply laminate of carbon fibre reinforced polymer (CFRP) to pre-strain a rolled DEA. The CFRP shell was shown to weigh 24.3% of the total mass for the whole DEA assembly, while providing up to 35.0% axial pre-strain to a rolled DEA (BJB-5005 silicone rubber). This DEA assembly using the CFRP shell achieved 30.9% of the theoretical work density for a BJB-TC5005 membrane at 33.5 MV m-1. In comparison, spring rolls with a massive spring core were reported with overall work density merely 10-20% of the maximum value. Furthermore, this CFRP shell can amplify an axial DEA stroke into a larger transverse shell deformation. With these deformation characteristics, this CFRP shell and a rolled DEA were successfully integrated with an insect-inspired thoracic mechanism and they were shown to be feasible to drive it for a flapping wing.

  5. Righting and turning in mid-air using appendage inertia: reptile tails, analytical models and bio-inspired robots.

    PubMed

    Jusufi, A; Kawano, D T; Libby, T; Full, R J

    2010-12-01

    Unlike the falling cat, lizards can right themselves in mid-air by a swing of their large tails in one direction causing the body to rotate in the other. Here, we developed a new three-dimensional analytical model to investigate the effectiveness of tails as inertial appendages that change body orientation. We anchored our model using the morphological parameters of the flat-tailed house gecko Hemidactylus platyurus. The degree of roll in air righting and the amount of yaw in mid-air turning directly measured in house geckos matched the model's results. Our model predicted an increase in body roll and turning as tails increase in length relative to the body. Tails that swung from a near orthogonal plane relative to the body (i.e. 0-30° from vertical) were the most effective at generating body roll, whereas tails operating at steeper angles (i.e. 45-60°) produced only half the rotation. To further test our analytical model's predictions, we built a bio-inspired robot prototype. The robot reinforced how effective attitude control can be attained with simple movements of an inertial appendage.

  6. Rapid fabrication of bio-inspired nanostructure with hydrophobicity and antireflectivity on polystyrene surface replicating from cicada wings.

    PubMed

    Xie, Heng; Huang, Han-Xiong; Peng, Yu-Jiang

    2017-08-24

    The fine nanostructure on the cicada wing of Cryptotympana atrata fabricius, which exhibits hydrophobicity and antireflectivity, is carefully examined. A promising strategy is proposed for facilely and successively replicating the natural functional nanostructure of the cicada wing onto polystyrene (PS) surfaces. First, a nickel replica with tapered nanopores is fabricated by combining electroless plating and subsequent electroplating with the natural cicada wing as an original template. Then, using microinjection compression molding, with the nickel replica as a template, the tapered nanopores are transcribed onto the PS surface, resulting in orderly and densely arranged nanopillars with a mean diameter of about 156 nm and a mean pitch of about 180 nm. The natural cicada wing and fabricated nickel replica are reusable. Interestingly, the PS replica surface exhibits a water contact angle of 143° ± 2° and a reflectance of about 4% in the wavelength range of 400-1000 nm. These results mean that the bionic PS replica not only inherits the nanostructure of the natural wing, but also its hydrophobic and antireflective properties. The mechanisms for the hydrophobic and antireflective properties are revealed via composite wetting interface and effective medium layer on the replica surface, respectively. The proposed fast and efficient replication strategy can be an excellent candidate for mimicking bio-inspired functional micro/nanostructures without complicated procedures and expensive materials.

  7. Mimicking the cell membrane: bio-inspired simultaneous functions with monovalent anion selectivity and antifouling properties of anion exchange membrane

    PubMed Central

    Zhao, Yan; Liu, Huimin; Tang, Kaini; Jin, Yali; Pan, Jiefeng; der Bruggen, Bart Van; Shen, Jiangnan; Gao, Congjie

    2016-01-01

    A new bio-inspired method was applied in this study to simultaneously improve the monovalent anion selectivity and antifouling properties of anion exchange membranes (AEMs). Three-layer architecture was developed by deposition of polydopamine (PDA) and electro-deposition of N-O-sulfonic acid benzyl chitosan (NSBC). The innermost and outermost layers were PDA with different deposition time. The middle layer was prepared by NSBC. Fourier transform infrared spectroscopy and scanning electron microscopy confirmed that PDA and NSBC were successfully modified on the surfaces of AEMs. The contact angle of the membranes indicated an improved hydrophilicity of the modified membranes. A series of electrodialysis experiments in which Cl−/SO42− separation was studied, demonstrating the monovalent anion selectivity of the samples. The Cl−/SO42− permselectivity of the modified membranes can reach up to 2.20, higher than that of the commercial membrane (only 0.78) during 90 minutes in electrodialysis (ED). The increase value of the resistance of the membranes was also measured to evaluate the antifouling properties. Sodium dodecyl benzene sulfonate (SDBS) was used as the fouling material in the ED process and the membrane area resistance of modified membrane increase value of was only 0.08 Ωcm2 30 minutes later. PMID:27853255

  8. Experimental study of surface pattern effects on the propulsive performance and wake of a bio-inspired pitching panel

    NASA Astrophysics Data System (ADS)

    King, Justin; Kumar, Rajeev; Green, Melissa

    2016-11-01

    Force measurements and stereoscopic particle image velocimetry (PIV) were used to characterize the propulsive performance and wake structure of rigid, bio-inspired trapezoidal pitching panels. In the literature, it has been demonstrated that quantities such as thrust coefficient and propulsive efficiency are affected by changes in the surface characteristics of a pitching panel or foil. More specifically, the variation of surface pattern produces significant changes in wake structure and dynamics, especially in the distribution of vorticity in the wake. Force measurements and PIV data were collected for multiple surface patterns chosen to mimic fish surface morphology over a Strouhal number range of 0.17 to 0.56. Performance quantities are compared with the three-dimensional vortex wake structure for both the patterned and smooth panels to determine the nature and magnitude of surface pattern effects in terms of thrust produced, drag reduced, and wake vortices reshaped and reorganized. This work was supported by the Office of Naval Research under ONR Award No. N00014-14-1-0418.

  9. A low-cost bio-inspired integrated carbon counter electrode for high conversion efficiency dye-sensitized solar cells.

    PubMed

    Wang, Chunlei; Meng, Fanning; Wu, Mingxing; Lin, Xiao; Wang, Tonghua; Qiu, Jieshan; Ma, Tingli

    2013-09-14

    A novel bio-inspired Pt- and FTO-free integrated pure carbon counter electrode (CE) for dye-sensitized solar cells (DSSCs) has been designed and fabricated using a porous carbon sheet as a conducting substrate and ordered mesoporous carbon (OMC) as the catalytic layer. A rigid, crustose lichen-like, integrated carbon-carbon composite architecture with a catalytic layer rooted in a porous conducting substrate was formed by a process of polymer precursor spin coating, infiltration and pyrolysis. The integrated pure carbon CE shows very low series resistance (R(s)), owing to the high conductivity of the carbon sheet (sheet resistance of 488 mΩ □(-1)) and low charge-transfer resistance (R(ct)), due to the large specific surface area of the OMC layer that is accessible to the redox couple. The values of R(s) and R(ct) are much lower than those of a platinized fluorine-doped thin oxide glass (Pt/FTO) electrode. Cells with this CE show high solar-to-electricity conversion efficiencies (8.11%), comparable to that of Pt/FTO based devices (8.16%).

  10. Mimicking the cell membrane: bio-inspired simultaneous functions with monovalent anion selectivity and antifouling properties of anion exchange membrane.

    PubMed

    Zhao, Yan; Liu, Huimin; Tang, Kaini; Jin, Yali; Pan, Jiefeng; der Bruggen, Bart Van; Shen, Jiangnan; Gao, Congjie

    2016-11-17

    A new bio-inspired method was applied in this study to simultaneously improve the monovalent anion selectivity and antifouling properties of anion exchange membranes (AEMs). Three-layer architecture was developed by deposition of polydopamine (PDA) and electro-deposition of N-O-sulfonic acid benzyl chitosan (NSBC). The innermost and outermost layers were PDA with different deposition time. The middle layer was prepared by NSBC. Fourier transform infrared spectroscopy and scanning electron microscopy confirmed that PDA and NSBC were successfully modified on the surfaces of AEMs. The contact angle of the membranes indicated an improved hydrophilicity of the modified membranes. A series of electrodialysis experiments in which Cl(-)/SO4(2-) separation was studied, demonstrating the monovalent anion selectivity of the samples. The Cl(-)/SO4(2-) permselectivity of the modified membranes can reach up to 2.20, higher than that of the commercial membrane (only 0.78) during 90 minutes in electrodialysis (ED). The increase value of the resistance of the membranes was also measured to evaluate the antifouling properties. Sodium dodecyl benzene sulfonate (SDBS) was used as the fouling material in the ED process and the membrane area resistance of modified membrane increase value of was only 0.08 Ωcm(2) 30 minutes later.

  11. Mimicking the cell membrane: bio-inspired simultaneous functions with monovalent anion selectivity and antifouling properties of anion exchange membrane

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Liu, Huimin; Tang, Kaini; Jin, Yali; Pan, Jiefeng; der Bruggen, Bart Van; Shen, Jiangnan; Gao, Congjie

    2016-11-01

    A new bio-inspired method was applied in this study to simultaneously improve the monovalent anion selectivity and antifouling properties of anion exchange membranes (AEMs). Three-layer architecture was developed by deposition of polydopamine (PDA) and electro-deposition of N-O-sulfonic acid benzyl chitosan (NSBC). The innermost and outermost layers were PDA with different deposition time. The middle layer was prepared by NSBC. Fourier transform infrared spectroscopy and scanning electron microscopy confirmed that PDA and NSBC were successfully modified on the surfaces of AEMs. The contact angle of the membranes indicated an improved hydrophilicity of the modified membranes. A series of electrodialysis experiments in which Cl-/SO42- separation was studied, demonstrating the monovalent anion selectivity of the samples. The Cl-/SO42- permselectivity of the modified membranes can reach up to 2.20, higher than that of the commercial membrane (only 0.78) during 90 minutes in electrodialysis (ED). The increase value of the resistance of the membranes was also measured to evaluate the antifouling properties. Sodium dodecyl benzene sulfonate (SDBS) was used as the fouling material in the ED process and the membrane area resistance of modified membrane increase value of was only 0.08 Ωcm2 30 minutes later.

  12. Bio-inspired Plasmonic Nanoarchitectured Hybrid System Towards Enhanced Far Red-to-Near Infrared Solar Photocatalysis

    NASA Astrophysics Data System (ADS)

    Yan, Runyu; Chen, Min; Zhou, Han; Liu, Tian; Tang, Xingwei; Zhang, Ke; Zhu, Hanxing; Ye, Jinhua; Zhang, Di; Fan, Tongxiang

    2016-01-01

    Solar conversion to fuels or to electricity in semiconductors using far red-to-near infrared (NIR) light, which accounts for about 40% of solar energy, is highly significant. One main challenge is the development of novel strategies for activity promotion and new basic mechanisms for NIR response. Mother Nature has evolved to smartly capture far red-to-NIR light via their intelligent systems due to unique micro/nanoarchitectures, thus motivating us for biomimetic design. Here we report the first demonstration of a new strategy, based on adopting nature’s far red-to-NIR responsive architectures for an efficient bio-inspired photocatalytic system. The system is constructed by controlled assembly of light-harvesting plasmonic nanoantennas onto a typical photocatalytic unit with butterfly wings’ 3D micro/nanoarchitectures. Experiments and finite-difference time-domain (FDTD) simulations demonstrate the structural effects on obvious far red-to-NIR photocatalysis enhancement, which originates from (1) Enhancing far red-to-NIR (700~1200 nm) harvesting, up to 25%. (2) Enhancing electric-field amplitude of localized surface plasmon (LSPs) to more than 3.5 times than that of the non-structured one, which promotes the rate of electron-hole pair formation, thus substantially reinforcing photocatalysis. This proof-of-concept study provides a new methodology for NIR photocatalysis and would potentially guide future conceptually new NIR responsive system designs.

  13. Toward a three-dimensional viscous vortex particle method for numerical investigations of bio-inspired locomotion

    NASA Astrophysics Data System (ADS)

    Eldredge, Jeff

    2008-11-01

    Biological mechanics of aerial and aquatic locomotion are characterized by the reaction force generated by the fluid against highly deforming structures and the resultant vortical wake produced by this interaction. These two features should be central to a high-fidelity computational tool devoted to exploration of bio-inspired mechanics. Motivated by such problems, we present the development of a viscous vortex particle method with coupled body dynamics. The previously developed and validated tool for two-dimensional problems is briefly reviewed. The interaction between vorticity generation, reaction force, and body dynamics, which constitutes the fluid-structure coupling in the method, is discussed, and the capabilities of the method are demonstrated on the passive propulsion of a fish-like system in the wake of an obstacle. The method is extended to three-dimensional problems, and the various components of the solver are highlighted. The core routines of the three-dimensional tool make use of the Parallel Particle-Mesh library, developed by Koumoutsakos and co-workers (J. Comput. Phys., 215, 2006). The new method is demonstrated with preliminary results of a simple model for a dolphin tail with flexible flukes.

  14. Bio-inspired model of visual information encoding for localization: from the retina to the lateral geniculate nucleus.

    PubMed

    Debaecker, Thibaud; Benosman, Ryad

    2007-09-01

    In this study, a bio-inspired approach for extracting efficient features prior to the recognition of scenes is proposed. It is highly inspired from the model of the mammals visual system. The retina contains many levels of neurons (bipolar, amacrine, horizontal and ganglion cells) accurately organized from cones and rods to the optic nerve up till the lateral geniculate nucleus (LGN) which is the main thalamic relay for inputs to the visual cortex. This structure probably eases other brain areas tasks in preprocessing the visual information. This paper is focusing on the study of these specific structures, relying on a bottom up approach to propose a comprehensive mathematical model of the low level image processing performed within the eye. The presented system takes into account the foveolar structure of the retina to produce a low-resolution representation of observed images by decomposing them into a local summation of elementary gaussian color histograms. This representation corresponds to the LGN biological organization. It has been thought that due to short timings, some very quick localization tasks involving particularly fast information processing pathways cannot be provided by the classical ones passing through higher level cortical areas. This work proposes a model of retinal coding and LGN-visual representation that we show provides reliable and sufficient early features for scenes recognition and localization. Experiments on real scenes using the developed model are presented showing the efficiency of the approach on localization.

  15. A Bio-Inspired, Heavy-Metal-Free, Dual-Electrolyte Liquid Battery towards Sustainable Energy Storage.

    PubMed

    Ding, Yu; Yu, Guihua

    2016-04-04

    Wide-scale exploitation of renewable energy requires low-cost efficient energy storage devices. The use of metal-free, inexpensive redox-active organic materials represents a promising direction for environmental-friendly, cost-effective sustainable energy storage. To this end, a liquid battery is designed using hydroquinone (H2BQ) aqueous solution as catholyte and graphite in aprotic electrolyte as anode. The working potential can reach 3.4 V, with specific capacity of 395 mA h g(-1) and stable capacity retention about 99.7% per cycle. Such high potential and capacity is achieved using only C, H and O atoms as building blocks for redox species, and the replacement of Li metal with graphite anode can circumvent potential safety issues. As H2BQ can be extracted from biomass directly and its redox reaction mimics the bio-electrochemical process of quinones in nature, using such a bio-inspired organic compound in batteries enables access to greener and more sustainable energy-storage technology.

  16. Bio-inspired Plasmonic Nanoarchitectured Hybrid System Towards Enhanced Far Red-to-Near Infrared Solar Photocatalysis.

    PubMed

    Yan, Runyu; Chen, Min; Zhou, Han; Liu, Tian; Tang, Xingwei; Zhang, Ke; Zhu, Hanxing; Ye, Jinhua; Zhang, Di; Fan, Tongxiang

    2016-01-28

    Solar conversion to fuels or to electricity in semiconductors using far red-to-near infrared (NIR) light, which accounts for about 40% of solar energy, is highly significant. One main challenge is the development of novel strategies for activity promotion and new basic mechanisms for NIR response. Mother Nature has evolved to smartly capture far red-to-NIR light via their intelligent systems due to unique micro/nanoarchitectures, thus motivating us for biomimetic design. Here we report the first demonstration of a new strategy, based on adopting nature's far red-to-NIR responsive architectures for an efficient bio-inspired photocatalytic system. The system is constructed by controlled assembly of light-harvesting plasmonic nanoantennas onto a typical photocatalytic unit with butterfly wings' 3D micro/nanoarchitectures. Experiments and finite-difference time-domain (FDTD) simulations demonstrate the structural effects on obvious far red-to-NIR photocatalysis enhancement, which originates from (1) Enhancing far red-to-NIR (700~1200 nm) harvesting, up to 25%. (2) Enhancing electric-field amplitude of localized surface plasmon (LSPs) to more than 3.5 times than that of the non-structured one, which promotes the rate of electron-hole pair formation, thus substantially reinforcing photocatalysis. This proof-of-concept study provides a new methodology for NIR photocatalysis and would potentially guide future conceptually new NIR responsive system designs.

  17. Development Of A Bio-Inspired Mechatronic Chest Wall Simulator For Evaluating The Performances Of Opto-Electronic Plethysmography

    PubMed Central

    C, Massaroni; E, Schena; F, Bastianini; A, Scorza; P, Saccomandi; G, Lupi; F, Botta; S. A, Sciuto; S, Silvestri

    2014-01-01

    Instrumented gait analysis based on optoelectronic systems is an expensive technique used to objectively measure the human movement features and it is generally considered as the gold standard. Opto-electronic plethysmography (OEP) is a particular motion analysis system able to: (i) determine chest wall kinematic via the evaluation of marker displacements placed on the thorax and (ii) compute respiratory volumes during breathing. The aim of this work is to describe the performances of a custom made, bio-inspired, mechatronic chest wall simulator (CWS), specifically designed to assess the metrological performances of the OEP system. The design of the simulator is based on the chest wall kinematic analysis of three healthy subjects previously determined. Two sets of experiments were carried out: (i) to investigate the CWS dynamic response using different target displacements (1 - 12 mm), and (ii) to assess the CWS accuracy and precision in simulating quite breathing, covering the physiological range of respiratory frequency and tidal volume. Results show that the CWS allows simulating respiratory frequency up to ~ 60 bpm. The difference between the actual displacement and the set one is always < 9 μm. The precision error, expressed as the ratio between measurement uncertainty and the actual displacement, is lower than 0.32 %. The observed good performances permit to consider the CWS prototype feasible to be employed for assessing the performances of OEP system in periodical validation routines. PMID:25624954

  18. Development of a bio-inspired mechatronic chest wall simulator for evaluating the performances of opto-electronic plethysmography.

    PubMed

    C, Massaroni; E, Schena; F, Bastianini; A, Scorza; P, Saccomandi; G, Lupi; F, Botta; S A, Sciuto; S, Silvestri

    2014-01-01

    Instrumented gait analysis based on optoelectronic systems is an expensive technique used to objectively measure the human movement features and it is generally considered as the gold standard. Opto-electronic plethysmography (OEP) is a particular motion analysis system able to: (i) determine chest wall kinematic via the evaluation of marker displacements placed on the thorax and (ii) compute respiratory volumes during breathing. The aim of this work is to describe the performances of a custom made, bio-inspired, mechatronic chest wall simulator (CWS), specifically designed to assess the metrological performances of the OEP system. The design of the simulator is based on the chest wall kinematic analysis of three healthy subjects previously determined. Two sets of experiments were carried out: (i) to investigate the CWS dynamic response using different target displacements (1 - 12 mm), and (ii) to assess the CWS accuracy and precision in simulating quite breathing, covering the physiological range of respiratory frequency and tidal volume. Results show that the CWS allows simulating respiratory frequency up to ~ 60 bpm. The difference between the actual displacement and the set one is always < 9 μm. The precision error, expressed as the ratio between measurement uncertainty and the actual displacement, is lower than 0.32 %. The observed good performances permit to consider the CWS prototype feasible to be employed for assessing the performances of OEP system in periodical validation routines.

  19. Biarticular elements as a contributor to energy efficiency: biomechanical review and application in bio-inspired robotics.

    PubMed

    Junius, Karen; Moltedo, Marta; Cherelle, Pierre; Rodriguez-Guerrero, Carlos David; Vanderborght, Bram; Lefeber, Dirk

    2017-07-18

    Despite the increased interest in exoskeleton research in the last decades, not much progress has been made on the successful reduction of user effort. In humans, biarticular elements have been identied as one of the reasons for the energy economy of locomotion. This document gives an extensive literature overview concerning the function of biarticular mus- cles in human beings. The exact role of these muscles in the efficiency of human locomotion is reduced to three elementary functions: energy transfer towards distal joints, efficient control of output force direction and double joint actuation. This information is used to give an insight in the application of biarticular elements in bio-inspired robotics, i.e. bipedal robots, exoskeletons, robotic manipulators and prostheses. Additionally an attempt is made to nd an answer on the question whether the biar- ticular property leads to a unique contribution to energy eciency of lo- comotion, unachievable by mono-articular alternatives. This knowledge is then further utilised to indicate how biarticular actuation of exoskeletons can contribute to an increased performance in reducing user effort. © 2017 IOP Publishing Ltd.

  20. Memetic computing through bio-inspired heuristics integration with sequential quadratic programming for nonlinear systems arising in different physical models.

    PubMed

    Raja, Muhammad Asif Zahoor; Kiani, Adiqa Kausar; Shehzad, Azam; Zameer, Aneela

    2016-01-01

    In this study, bio-inspired computing is exploited for solving system of nonlinear equations using variants of genetic algorithms (GAs) as a tool for global search method hybrid with sequential quadratic programming (SQP) for efficient local search. The fitness function is constructed by defining the error function for systems of nonlinear equations in mean square sense. The design parameters of mathematical models are trained by exploiting the competency of GAs and refinement are carried out by viable SQP algorithm. Twelve versions of the memetic approach GA-SQP are designed by taking a different set of reproduction routines in the optimization process. Performance of proposed variants is evaluated on six numerical problems comprising of system of nonlinear equations arising in the interval arithmetic benchmark model, kinematics, neurophysiology, combustion and chemical equilibrium. Comparative studies of the proposed results in terms of accuracy, convergence and complexity are performed with the help of statistical performance indices to establish the worth of the schemes. Accuracy and convergence of the memetic computing GA-SQP is found better in each case of the simulation study and effectiveness of the scheme is further established through results of statistics based on different performance indices for accuracy and complexity.

  1. Electrochemical properties of large-sized pouch-type lithium ion batteries with bio-inspired organic cathode materials

    NASA Astrophysics Data System (ADS)

    Yeo, Jae-Seong; Yoo, Eun-Ji; Ha, Sang-Hyeon; Cheong, Dong-Ik; Cho, Sung-Baek

    2016-05-01

    To investigate the feasibility of scaling up bio-inspired organic materials as cathode materials in lithium ion batteries, large-sized pouch cells are successfully prepared via tape casting using lumichrome with an alloxazine structure and aqueous styrene butadiene rubber-carboxymethyl cellulose (SBR-CMC) binders. A battery module with a two-in-series, six-in-parallel (2S6P) configuration is also successfully fabricated and is able to power blue LEDs (850 mW). Lumichrome shows no structural changes during the fabrication processes used to produce the positive electrode. The large-sized pouch cells show two sets of cathodic and anodic peaks with average potentials of 2.58 V and 2.26 V vs. Li/Li+, respectively. The initial discharge capacities are 142 mAh g-1 and 148 mAh g-1 for ethylene carbonate-dimethyl carbonate (EC-DMC) and tetraethylene glycol dimethyl ether (TEGDME) electrolytes, respectively, similar to that of a coin cell (149 mAh g-1). The EC-DMC-injected pouch cells exhibit higher rate performance and cyclability than the TEGDME-injected ones. The TEGDME electrolyte is not suitable for lithium metal anodes because of electrolyte decomposition and subsequent cell swelling.

  2. System impairment compensation in coherent optical communications by using a bio-inspired detector based on artificial neural network and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Danshi; Zhang, Min; Li, Ze; Song, Chuang; Fu, Meixia; Li, Jin; Chen, Xue

    2017-09-01

    A bio-inspired detector based on the artificial neural network (ANN) and genetic algorithm is proposed in the context of a coherent optical transmission system. The ANN is designed to mitigate 16-quadrature amplitude modulation system impairments, including linear impairment: Gaussian white noise, laser phase noise, in-phase/quadrature component imbalance, and nonlinear impairment: nonlinear phase. Without prior information or heuristic assumptions, the ANN, functioning as a machine learning algorithm, can learn and capture the characteristics of impairments from observed data. Numerical simulations were performed, and dispersion-shifted, dispersion-managed, and dispersion-unmanaged fiber links were investigated. The launch power dynamic range and maximum transmission distance for the bio-inspired method were 2.7 dBm and 240 km greater, respectively, than those of the maximum likelihood estimation algorithm. Moreover, the linewidth tolerance of the bio-inspired technique was 170 kHz greater than that of the k-means method, demonstrating its usability for digital signal processing in coherent systems.

  3. UAS stealth: target pursuit at constant distance using a bio-inspired motion camouflage guidance law.

    PubMed

    Strydom, Reuben; Srinivasan, Mandyam V

    2017-09-21

    The aim of this study is to derive a guidance law by which an unmanned aerial system(s) (UAS) can pursue a moving target at a constant distance, while concealing its own motion. We derive a closed-form solution for the trajectory of the UAS by imposing two key constraints: (1) the shadower moves in such a way as to be perceived as a stationary object by the shadowee, and (2) the distance between the shadower and shadowee is kept constant. Additionally, the theory presented in this paper considers constraints on the maximum achievable speed and acceleration of the shadower. Our theory is tested through Matlab simulations, which validate the camouflage strategy for both 2D and 3D conditions. Furthermore, experiments using a realistic vision-based implementation are conducted in a virtual environment, where the results demonstrate that even with noisy state information it is possible to remain well camouflaged using the constant distance motion camouflage technique.

  4. Bio-inspired flexible joints with passive feathering for robotic fish pectoral fins.

    PubMed

    Behbahani, Sanaz Bazaz; Tan, Xiaobo

    2016-05-04

    In this paper a novel flexible joint is proposed for robotic fish pectoral fins, which enables a swimming behavior emulating the fin motions of many aquatic animals. In particular, the pectoral fin operates primarily in the rowing mode, while undergoing passive feathering during the recovery stroke to reduce hydrodynamic drag on the fin. The latter enables effective locomotion even with symmetric base actuation during power and recovery strokes. A dynamic model is developed to facilitate the understanding and design of the joint, where blade element theory is used to calculate the hydrodynamic forces on the pectoral fins, and the joint is modeled as a paired torsion spring and damper. Experimental results on a robotic fish prototype are presented to illustrate the effectiveness of the joint mechanism, validate the proposed model, and indicate the utility of the proposed model for the optimal design of joint depth and stiffness in achieving the trade-off between swimming speed and mechanical efficiency.

  5. Numerical study on the hydrodynamics of thunniform bio-inspired swimming under self-propulsion.

    PubMed

    Li, Ningyu; Liu, Huanxing; Su, Yumin

    2017-01-01

    Numerical simulations are employed to study the hydrodynamics of self-propelled thunniform swimming. The swimmer is modeled as a tuna-like flexible body undulating with kinematics of thunniform type. The wake evolution follows the vortex structures arranged nearly vertical to the forward direction, vortex dipole formation resulting in the propulsion motion, and finally a reverse Kármán vortex street. We also carry out a systematic parametric study of various aspects of the fluid dynamics behind the freely swimming behavior, including the swimming speed, hydrodynamic forces, power requirement and wake vortices. The present results show that the fin thrust as well as swimming velocity is an increasing function of both tail undulating amplitude Ap and oscillating amplitude of the caudal fin θm. Whereas change on the propulsive performance with Ap is associated with the strength of wake vortices and the area of suction region on the fin, the swimming performance improves with θm due to the favorable tilting of the fin that make the pressure difference force more oriented toward the thrust direction. Moreover, the energy loss in the transverse direction and the power requirement increase with Ap but decrease with θm, and this indicates that for achieving a desired swimming speed increasing θm seems more efficiently than increasing Ap. Furthermore, we have compared the current simulations with the published experimental studies on undulatory swimming. Comparisons show that our work tackles the flow regime of natural thunniform swimmers and follows the principal scaling law of undulatory locomotion reported. Finally, this study enables a detailed quantitative analysis, which is difficult to obtain by experiments, of the force production of the thunniform mode as well as its connection to the self-propelled swimming kinematics and vortex wake structure. The current findings help provide insights into the swimming performance and mechanisms of self

  6. Numerical study on the hydrodynamics of thunniform bio-inspired swimming under self-propulsion

    PubMed Central

    Li, Ningyu; Liu, Huanxing

    2017-01-01

    Numerical simulations are employed to study the hydrodynamics of self-propelled thunniform swimming. The swimmer is modeled as a tuna-like flexible body undulating with kinematics of thunniform type. The wake evolution follows the vortex structures arranged nearly vertical to the forward direction, vortex dipole formation resulting in the propulsion motion, and finally a reverse Kármán vortex street. We also carry out a systematic parametric study of various aspects of the fluid dynamics behind the freely swimming behavior, including the swimming speed, hydrodynamic forces, power requirement and wake vortices. The present results show that the fin thrust as well as swimming velocity is an increasing function of both tail undulating amplitude Ap and oscillating amplitude of the caudal fin θm. Whereas change on the propulsive performance with Ap is associated with the strength of wake vortices and the area of suction region on the fin, the swimming performance improves with θm due to the favorable tilting of the fin that make the pressure difference force more oriented toward the thrust direction. Moreover, the energy loss in the transverse direction and the power requirement increase with Ap but decrease with θm, and this indicates that for achieving a desired swimming speed increasing θm seems more efficiently than increasing Ap. Furthermore, we have compared the current simulations with the published experimental studies on undulatory swimming. Comparisons show that our work tackles the flow regime of natural thunniform swimmers and follows the principal scaling law of undulatory locomotion reported. Finally, this study enables a detailed quantitative analysis, which is difficult to obtain by experiments, of the force production of the thunniform mode as well as its connection to the self-propelled swimming kinematics and vortex wake structure. The current findings help provide insights into the swimming performance and mechanisms of self

  7. Investigation of Body-involved Lift Enhancement in Bio-inspired Flapping Flight

    NASA Astrophysics Data System (ADS)

    Wang, Junshi; Liu, Geng; Ren, Yan; Dong, Haibo

    2016-11-01

    Previous studies found that insects and birds are capable of using many unsteady aerodynamic mechanisms to augment the lift production. These include leading edge vortices, delayed stall, wake capture, clap-and-fling, etc. Yet the body-involved lift augmentation has not been paid enough attention. In this work, the aerodynamic effects of the wing-body interaction on the lift production in cicada and hummingbird forward flight are computationally investigated. 3D wing-body systems and wing flapping kinematics are reconstructed from the high-speed videos or literatures to keep their complexity. Vortex structures and associated aerodynamic performance are numerically studied by an in-house immersed-boundary-method-based flow solver. The results show that the wing-body interaction enhances the overall lift production by about 20% in the cicada flight and about 28% in the hummingbird flight, respectively. Further investigation on the vortex dynamics has shown that this enhancement is attributed to the interactions between the body-generated vortices and the flapping wings. The output from this work has revealed a new lift enhancement mechanism in the flapping flight. This work is supported by NSF CBET-1313217 and AFOSR FA9550-12-1-0071.

  8. Performance assessment of bio-inspired systems: flow sensing MEMS hairs.

    PubMed

    Droogendijk, H; Casas, J; Steinmann, T; Krijnen, G J M

    2014-12-19

    Despite vigorous growth in biomimetic design, the performance of man-made devices relative to their natural templates is still seldom quantified, a procedure which would however significantly increase the rigour of the biomimetic approach. We applied the ubiquitous engineering concept of a figure of merit (FoM) to MEMS flow sensors inspired by cricket filiform hairs. A well known mechanical model of a hair is refined and tailored to this task. Five criteria of varying importance in the biological and engineering fields are computed: responsivity, power transfer, power efficiency, response time and detection threshold. We selected the metrics response time and detection threshold for building the FoM to capture the performance in a single number. Crickets outperform actual MEMS on all criteria for a large range of flow frequencies. Our approach enables us to propose several improvements for MEMS hair-sensor design.

  9. Time-recovering PCI-AER interface for bio-inspired spiking systems

    NASA Astrophysics Data System (ADS)

    Paz-Vicente, R.; Linares-Barranco, A.; Cascado, D.; Vicente, S.; Jimenez, G.; Civit, A.

    2005-06-01

    Address Event Representation (AER) is an emergent neuromorphic interchip communication protocol that allows for real-time virtual massive connectivity between huge number neurons located on different chips. By exploiting high speed digital communication circuits (with nano-seconds timings), synaptic neural connections can be time multiplexed, while neural activity signals (with mili-seconds timings) are sampled at low frequencies. Also, neurons generate 'events' according to their activity levels. More active neurons generate more events per unit time, and access the interchip communication channel more frequently, while neurons with low activity consume less communication bandwidth. When building multi-chip muti-layered AER systems it is absolutely necessary to have a computer interface that allows (a) to read AER interchip traffic into the computer and visualize it on screen, and (b) inject a sequence of events at some point of the AER structure. This is necessary for testing and debugging complex AER systems. This paper presents a PCI to AER interface, that dispatches a sequence of events received from the PCI bus with embedded timing information to establish when each event will be delivered. A set of specialized states machines has been introduced to recovery the possible time delays introduced by the asynchronous AER bus. On the input channel, the interface capture events assigning a timestamp and delivers them through the PCI bus to MATLAB applications. It has been implemented in real time hardware using VHDL and it has been tested in a PCI-AER board, developed by authors, that includes a Spartan II 200 FPGA. The demonstration hardware is currently capable to send and receive events at a peak rate of 8,3 Mev/sec, and a typical rate of 1 Mev/sec.

  10. Bio-inspired energy-harvesting mechanisms and patterns of dynamic soaring.

    PubMed

    Liu, Duo-Neng; Hou, Zhong-Xi; Guo, Zheng; Yang, Xi-Xiang; Gao, Xian-Zhong

    2017-01-30

    Albatrosses can make use of the dynamic soaring technique extracting energy from the wind field to achieve large-scale movement without a flap, which stimulates interest in effortless flight with small unmanned aerial vehicles (UAVs). However, mechanisms of energy harvesting in terms of the energy transfer from the wind to the flyer (albatross or UAV) are still indeterminate and controversial when using different reference frames in previous studies. In this paper, the classical four-phase Rayleigh cycle, includes sequentially upwind climb, downwind turn, downwind dive and upwind turn, is introduced in analyses of energy gain with the albatross's equation of motions and the simulated trajectory in dynamic soaring. Analytical and numerical results indicate that the energy gain in the air-relative frame mostly originates from large wind gradients at lower part of the climb and dive, while the energy gain in the inertial frame comes from the lift vector inclined to the wind speed direction during the climb, dive and downwind turn at higher altitude. These two energy-gain mechanisms are not equivalent in terms of energy sources and reference frames but have to be simultaneously satisfied in terms of the energy-neutral dynamic soaring cycle. For each reference frame, energy-loss phases are necessary to connect energy-gain ones. Based on these four essential phases in dynamic soaring and the albatrosses' flight trajectory, different dynamic soaring patterns are schematically depicted and corresponding optimal trajectories are computed. The optimal dynamic soaring trajectories are classified into two closed patterns including 'O' shape and '8' shape, and four travelling patterns including 'Ω' shape, 'α' shape, 'C' shape and 'S' shape. The correlation among these patterns are analysed and discussed. The completeness of the classification for different patterns is confirmed by listing and summarising dynamic soaring trajectories shown in studies over the past decades.

  11. Bio-inspired digital signal processing for fast radionuclide mixture identification

    NASA Astrophysics Data System (ADS)

    Thevenin, M.; Bichler, O.; Thiam, C.; Bobin, C.; Lourenço, V.

    2015-05-01

    Countries are trying to equip their public transportation infrastructure with fixed radiation portals and detectors to detect radiological threat. Current works usually focus on neutron detection, which could be useless in the case of dirty bomb that would not use fissile material. Another approach, such as gamma dose rate variation monitoring is a good indication of the presence of radionuclide. However, some legitimate products emit large quantities of natural gamma rays; environment also emits gamma rays naturally. They can lead to false detections. Moreover, such radio-activity could be used to hide a threat such as material to make a dirty bomb. Consequently, radionuclide identification is a requirement and is traditionally performed by gamma spectrometry using unique spectral signature of each radionuclide. These approaches require high-resolution detectors, sufficient integration time to get enough statistics and large computing capacities for data analysis. High-resolution detectors are fragile and costly, making them bad candidates for large scale homeland security applications. Plastic scintillator and NaI detectors fit with such applications but their resolution makes identification difficult, especially radionuclides mixes. This paper proposes an original signal processing strategy based on artificial spiking neural networks to enable fast radionuclide identification at low count rate and for mixture. It presents results obtained for different challenging mixtures of radionuclides using a NaI scintillator. Results show that a correct identification is performed with less than hundred counts and no false identification is reported, enabling quick identification of a moving threat in a public transportation. Further work will focus on using plastic scintillators.

  12. A bio-inspired memory device based on interfacing Physarum polycephalum with an organic semiconductor

    NASA Astrophysics Data System (ADS)

    Romeo, Agostino; Dimonte, Alice; Tarabella, Giuseppe; D'Angelo, Pasquale; Erokhin, Victor; Iannotta, Salvatore

    2015-01-01

    The development of devices able to detect and record ion fluxes is a crucial point in order to understand the mechanisms that regulate communication and life of organisms. Here, we take advantage of the combined electronic and ionic conduction properties of a conducting polymer to develop a hybrid organic/living device with a three-terminal configuration, using the Physarum polycephalum Cell (PPC) slime mould as a living bio-electrolyte. An over-oxidation process induces a conductivity switch in the polymer, due to the ionic flux taking place at the PPC/polymer interface. This behaviour endows a current-depending memory effect to the device.

  13. A bio-inspired memory device based on interfacing Physarum polycephalum with an organic semiconductor

    SciTech Connect

    Romeo, Agostino; Dimonte, Alice; Tarabella, Giuseppe; D’Angelo, Pasquale E-mail: iannotta@imem.cnr.it; Erokhin, Victor; Iannotta, Salvatore E-mail: iannotta@imem.cnr.it

    2015-01-01

    The development of devices able to detect and record ion fluxes is a crucial point in order to understand the mechanisms that regulate communication and life of organisms. Here, we take advantage of the combined electronic and ionic conduction properties of a conducting polymer to develop a hybrid organic/living device with a three-terminal configuration, using the Physarum polycephalum Cell (PPC) slime mould as a living bio-electrolyte. An over-oxidation process induces a conductivity switch in the polymer, due to the ionic flux taking place at the PPC/polymer interface. This behaviour endows a current-depending memory effect to the device.

  14. Coaxial electrospinning of WO3 nanotubes functionalized with bio-inspired Pd catalysts and their superior hydrogen sensing performance

    NASA Astrophysics Data System (ADS)

    Choi, Seon-Jin; Chattopadhyay, Saptarshi; Kim, Jae Jin; Kim, Sang-Joon; Tuller, Harry L.; Rutledge, Gregory C.; Kim, Il-Doo

    2016-04-01

    Macroporous WO3 nanotubes (NTs) functionalized with nanoscale catalysts were fabricated using coaxial electrospinning combined with sacrificial templating and protein-encapsulated catalysts. The macroporous thin-walled nanotubular structures were obtained by introducing colloidal polystyrene (PS) particles to a shell solution of W precursor and poly(vinylpyrrolidone). After coaxial electrospinning with a core liquid of mineral oil and subsequent calcination, open pores with an average diameter of 173 nm were formed on the surface of WO3 NTs due to decomposition of the PS colloids. In addition, catalytic Pd nanoparticles (NPs) were synthesized using bio-inspired protein cages, i.e., apoferritin, and uniformly dispersed within the shell solution and subsequently on the WO3 NTs. The resulting Pd functionalized macroporous WO3 NTs were demonstrated to be high performance hydrogen (H2) sensors. In particular, Pd-functionalized macroporous WO3 NTs exhibited a very high H2 response (Rair/Rgas) of 17.6 at 500 ppm with a short response time. Furthermore, the NTs were shown to be highly selective for H2 compared to other gases such as carbon monoxide (CO), ammonia (NH3), and methane (CH4). The results demonstrate a new synthetic method to prepare highly porous nanotubular structures with well-dispersed nanoscale catalysts, which can provide improved microstructures for chemical sensing.Macroporous WO3 nanotubes (NTs) functionalized with nanoscale catalysts were fabricated using coaxial electrospinning combined with sacrificial templating and protein-encapsulated catalysts. The macroporous thin-walled nanotubular structures were obtained by introducing colloidal polystyrene (PS) particles to a shell solution of W precursor and poly(vinylpyrrolidone). After coaxial electrospinning with a core liquid of mineral oil and subsequent calcination, open pores with an average diameter of 173 nm were formed on the surface of WO3 NTs due to decomposition of the PS colloids. In addition

  15. Modeling and Thrust Optimization of a Bio-Inspired Pulsatile Jet Thruster

    NASA Astrophysics Data System (ADS)

    Krieg, Michael W.

    A new type of thruster technology offers promising low speed maneuvering capabilities for underwater vehicles. Similar to the natural locomotion of squid and jellyfish the thruster successively forces fluid jets in and out of a small internal cavity. We investigate several properties of squid and jellyfish locomotion to drive the thruster design including actuation of nozzle geometry and vortex ring thrust augmentation. The thrusters are compact with no extruding components to negatively impact the vehicle's drag. These devices have thrust rise-times orders of magnitude faster than those reported for typical propeller thrusters, making them an attractive option for high accuracy underwater vehicle maneuvering. The dynamics of starting jet circulation, impulse, and kinetic energy are derived in terms of kinematics at the entrance boundary of a semi-infinite domain, specifically identifying the effect of a non-parallel incoming flow. A model for pressure at the nozzle is derived without the typical reliance on a predetermined potential function, making it a powerful tool for modeling any jet flow. Jets are created from multiple nozzle configurations to validate these models, and velocity and vorticity fields are determined using DPIV techniques. A converging starting jet resulted in circulation 90--100%, impulse 70--75%, and energy 105--135% larger than a parallel starting jet with identical volume flux and piston velocity, depending on the stroke ratio. The new model is a much better predictor of the jet properties than the standard 1D slug model. A simplified thrust model, was derived to describe the high frequency thruster characteristics. This model accurately predicts the average thrust, measured directly, for stroke ratios up to a critical value where the leading vortex ring separates from the remainder of the shear flow. A new model predicting the vortex ring pinch-off process is developed based on characteristic centerline velocities. The vortex ring pinch

  16. Anti-icing property of bio-inspired micro-structure superhydrophobic surfaces and heat transfer model

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Li, Xinlin; Jin, Jingfu; Liu, Jiaan; Yan, Yuying; Han, Zhiwu; Ren, Luquan

    2017-04-01

    Ice accumulation is a thorny problem which may inflict serious damage even disasters in many areas, such as aircraft, power line maintenance, offshore oil platform and locators of ships. Recent researches have shed light on some promising bio-inspired anti-icing strategies to solve this problem. Inspired by typical plant surfaces with super-hydrophobic character such as lotus leaves and rose petals, structured superhydrophobic surface are prepared to discuss the anti-icing property. 7075 Al alloy, an extensively used materials in aircrafts and marine vessels, is employed as the substrates. As-prepared surfaces are acquired by laser processing after being modified by stearic acid for 1 h at room temperature. The surface morphology, chemical composition and wettability are characterized by means of SEM, XPS, Fourier transform infrared (FTIR) spectroscopy and contact angle measurements. The morphologies of structured as-prepared samples include round hump, square protuberance and mountain-range-like structure, and that the as-prepared structured surfaces shows an excellent superhydrophobic property with a WCA as high as 166 ± 2°. Furthermore, the anti-icing property of as-prepared surfaces was tested by a self-established apparatus, and the crystallization process of a cooling water on the sample was recorded. More importantly, we introduced a model to analyze heat transfer process between the droplet and the structured surfaces. This study offers an insight into understanding the heat transfer process of the superhydrophobic surface, so as to further research about its unique property against ice accumulation.

  17. A Bio-inspired Collision Avoidance Model Based on Spatial Information Derived from Motion Detectors Leads to Common Routes

    PubMed Central

    Bertrand, Olivier J. N.; Lindemann, Jens P.; Egelhaaf, Martin

    2015-01-01

    Avoiding collisions is one of the most basic needs of any mobile agent, both biological and technical, when searching around or aiming toward a goal. We propose a model of collision avoidance inspired by behavioral experiments on insects and by properties of optic flow on a spherical eye experienced during translation, and test the interaction of this model with goal-driven behavior. Insects, such as flies and bees, actively separate the rotational and translational optic flow components via behavior, i.e. by employing a saccadic strategy of flight and gaze control. Optic flow experienced during translation, i.e. during intersaccadic phases, contains information on the depth-structure of the environment, but this information is entangled with that on self-motion. Here, we propose a simple model to extract the depth structure from translational optic flow by using local properties of a spherical eye. On this basis, a motion direction of the agent is computed that ensures collision avoidance. Flying insects are thought to measure optic flow by correlation-type elementary motion detectors. Their responses depend, in addition to velocity, on the texture and contrast of objects and, thus, do not measure the velocity of objects veridically. Therefore, we initially used geometrically determined optic flow as input to a collision avoidance algorithm to show that depth information inferred from optic flow is sufficient to account for collision avoidance under closed-loop conditions. Then, the collision avoidance algorithm was tested with bio-inspired correlation-type elementary motion detectors in its input. Even then, the algorithm led successfully to collision avoidance and, in addition, replicated the characteristics of collision avoidance behavior of insects. Finally, the collision avoidance algorithm was combined with a goal direction and tested in cluttered environments. The simulated agent then showed goal-directed behavior reminiscent of components of the navigation

  18. Mobile Robots for Localizing Gas Emission Sources on Landfill Sites: Is Bio-Inspiration the Way to Go?

    PubMed Central

    Hernandez Bennetts, Victor; Lilienthal, Achim J.; Neumann, Patrick P.; Trincavelli, Marco

    2011-01-01

    Roboticists often take inspiration from animals for designing sensors, actuators, or algorithms that control the behavior of robots. Bio-inspiration is motivated with the uncanny ability of animals to solve complex tasks like recognizing and manipulating objects, walking on uneven terrains, or navigating to the source of an odor plume. In particular the task of tracking an odor plume up to its source has nearly exclusively been addressed using biologically inspired algorithms and robots have been developed, for example, to mimic the behavior of moths, dung beetles, or lobsters. In this paper we argue that biomimetic approaches to gas source localization are of limited use, primarily because animals differ fundamentally in their sensing and actuation capabilities from state-of-the-art gas-sensitive mobile robots. To support our claim, we compare actuation and chemical sensing available to mobile robots to the corresponding capabilities of moths. We further characterize airflow and chemosensor measurements obtained with three different robot platforms (two wheeled robots and one flying micro-drone) in four prototypical environments and show that the assumption of a constant and unidirectional airflow, which is the basis of many gas source localization approaches, is usually far from being valid. This analysis should help to identify how underlying principles, which govern the gas source tracking behavior of animals, can be usefully “translated” into gas source localization approaches that fully take into account the capabilities of mobile robots. We also describe the requirements for a reference application, monitoring of gas emissions at landfill sites with mobile robots, and discuss an engineered gas source localization approach based on statistics as an alternative to biologically inspired algorithms. PMID:22319493

  19. Mobile robots for localizing gas emission sources on landfill sites: is bio-inspiration the way to go?

    PubMed

    Hernandez Bennetts, Victor; Lilienthal, Achim J; Neumann, Patrick P; Trincavelli, Marco

    2011-01-01

    Roboticists often take inspiration from animals for designing sensors, actuators, or algorithms that control the behavior of robots. Bio-inspiration is motivated with the uncanny ability of animals to solve complex tasks like recognizing and manipulating objects, walking on uneven terrains, or navigating to the source of an odor plume. In particular the task of tracking an odor plume up to its source has nearly exclusively been addressed using biologically inspired algorithms and robots have been developed, for example, to mimic the behavior of moths, dung beetles, or lobsters. In this paper we argue that biomimetic approaches to gas source localization are of limited use, primarily because animals differ fundamentally in their sensing and actuation capabilities from state-of-the-art gas-sensitive mobile robots. To support our claim, we compare actuation and chemical sensing available to mobile robots to the corresponding capabilities of moths. We further characterize airflow and chemosensor measurements obtained with three different robot platforms (two wheeled robots and one flying micro-drone) in four prototypical environments and show that the assumption of a constant and unidirectional airflow, which is the basis of many gas source localization approaches, is usually far from being valid. This analysis should help to identify how underlying principles, which govern the gas source tracking behavior of animals, can be usefully "translated" into gas source localization approaches that fully take into account the capabilities of mobile robots. We also describe the requirements for a reference application, monitoring of gas emissions at landfill sites with mobile robots, and discuss an engineered gas source localization approach based on statistics as an alternative to biologically inspired algorithms.

  20. A Bio-inspired Collision Avoidance Model Based on Spatial Information Derived from Motion Detectors Leads to Common Routes.

    PubMed

    Bertrand, Olivier J N; Lindemann, Jens P; Egelhaaf, Martin

    2015-11-01

    Avoiding collisions is one of the most basic needs of any mobile agent, both biological and technical, when searching around or aiming toward a goal. We propose a model of collision avoidance inspired by behavioral experiments on insects and by properties of optic flow on a spherical eye experienced during translation, and test the interaction of this model with goal-driven behavior. Insects, such as flies and bees, actively separate the rotational and translational optic flow components via behavior, i.e. by employing a saccadic strategy of flight and gaze control. Optic flow experienced during translation, i.e. during intersaccadic phases, contains information on the depth-structure of the environment, but this information is entangled with that on self-motion. Here, we propose a simple model to extract the depth structure from translational optic flow by using local properties of a spherical eye. On this basis, a motion direction of the agent is computed that ensures collision avoidance. Flying insects are thought to measure optic flow by correlation-type elementary motion detectors. Their responses depend, in addition to velocity, on the texture and contrast of objects and, thus, do not measure the velocity of objects veridically. Therefore, we initially used geometrically determined optic flow as input to a collision avoidance algorithm to show that depth information inferred from optic flow is sufficient to account for collision avoidance under closed-loop conditions. Then, the collision avoidance algorithm was tested with bio-inspired correlation-type elementary motion detectors in its input. Even then, the algorithm led successfully to collision avoidance and, in addition, replicated the characteristics of collision avoidance behavior of insects. Finally, the collision avoidance algorithm was combined with a goal direction and tested in cluttered environments. The simulated agent then showed goal-directed behavior reminiscent of components of the navigation

  1. Bio-inspired hybrid microelectrodes: a hybrid solution to improve long-term performance of chronic intracortical implants.

    PubMed

    De Faveri, Sara; Maggiolini, Emma; Miele, Ermanno; De Angelis, Francesco; Cesca, Fabrizia; Benfenati, Fabio; Fadiga, Luciano

    2014-01-01

    The use of implants that allow chronic electrical stimulation and recording in the brain of human patients is currently limited by a series of events that cause the deterioration over time of both the electrode surface and the surrounding tissue. The main reason of failure is the tissue inflammatory reaction that eventually causes neuronal loss and glial encapsulation, resulting in a progressive increase of the electrode-electrolyte impedance. Here, we describe a new method to create bio-inspired electrodes to mimic the mechanical properties and biological composition of the host tissue. This combination has a great potential to increase the implant lifetime by reducing tissue reaction and improving electrical coupling. Our method implies coating the electrode with reprogrammed neural or glial cells encapsulated within a hydrogel layer. We chose fibrin as a hydrogel and primary hippocampal neurons or astrocytes from rat brain as cellular layer. We demonstrate that fibrin coating is highly biocompatible, forms uniform coatings of controllable thickness, does not alter the electrochemical properties of the microelectrode and allows good quality recordings. Moreover, it reduces the amount of host reactive astrocytes - over time - compared to a bare wire and is fully reabsorbed by the surrounding tissue within 7 days after implantation, avoiding the common problem of hydrogels swelling. Both astrocytes and neurons could be successfully grown onto the electrode surface within the fibrin hydrogel without altering the electrochemical properties of the microelectrode. This bio-hybrid device has therefore a good potential to improve the electrical integration at the neuron-electrode interface and support the long-term success of neural prostheses.

  2. A Novel UV-Shielding and Transparent Polymer Film: When Bio-inspired Dopamine-Melanin Hollow Nanoparticles Join Polymer.

    PubMed

    Wang, Yang; Su, Jing; Li, Ting; Ma, Piming; Bai, Huiyu; Xie, Yi; Chen, Mingqing; Dong, Weifu

    2017-09-25

    Ultraviolet (UV) light is known to be harmful to human health and cause organic materials to undergo photodegradation. In this article, bio-inspired dopamine-melanin dense nanoparticles (Dpa-d NPs) and hollow nanoparticles (Dpa-h NPs) as UV-absorbers were introduced to enhance the UV-shielding performance of polymer. First, Dpa-d NPs were synthesized through autoxidation of dopamine in alkaline aqueous solution. Dpa-h NPs were prepared by the spontaneous oxidative polymerization of dopamine solution onto polystyrene (PS) nanospheres template, followed by removal of the template. Poly(vinyl alcohol) (PVA)/Dpa nanocomposite films were subsequently fabricated by a simple casting solvent. UV irradiation protocols were set up, allowing selective study of the extra-shielding effects of Dpa-d vs Dpa-h NPs. In contrast to PVA/Dpa-d films, PVA/Dpa-h films exhibit stronger UV-shielding capabilities and can almost block the whole UV region (200-400 nm). The high UV-shielding performance of the PVA/Dpa-h films mainly arises from multiple absorption due to hollow structure and large specific area of Dpa-h NPs. Moreover, the wall thickness of Dpa-h NPs can be simply controlled from 28 to 8 nm depending on the ratio between PS and dopamine. The resulting films with Dpa-h (wall thickness ~8 nm) still maintained relatively high transparency to visible light because of the thinner wall thickness. The results indicate that the prepared Dpa-h NPs can be used as a novel UV absorber for next-generation transparent UV-shielding materials.

  3. Real-time object tracking based on scale-invariant features employing bio-inspired hardware.

    PubMed

    Yasukawa, Shinsuke; Okuno, Hirotsugu; Ishii, Kazuo; Yagi, Tetsuya

    2016-09-01

    We developed a vision sensor system that performs a scale-invariant feature transform (SIFT) in real time. To apply the SIFT algorithm efficiently, we focus on a two-fold process performed by the visual system: whole-image parallel filtering and frequency-band parallel processing. The vision sensor system comprises an active pixel sensor, a metal-oxide semiconductor (MOS)-based resistive network, a field-programmable gate array (FPGA), and a digital computer. We employed the MOS-based resistive network for instantaneous spatial filtering and a configurable filter size. The FPGA is used to pipeline process the frequency-band signals. The proposed system was evaluated by tracking the feature points detected on an object in a video. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Bio-inspired flow sensor from printed PEDOT:PSS micro-hairs.

    PubMed

    Devaraj, Harish; Travas-Sejdic, Jadranka; Sharma, Rajnish; Aydemir, Nihan; Williams, David; Haemmerle, Enrico; Aw, Kean C

    2015-02-04

    This paper reports on the creation of a low-cost, disposable sensor for low flow velocities, constructed from extruded micro-sized 'hair' of conducting polymer PEDOT. These microstructures are inspired by hair strands found in many arthropods and chordates, which play a prime role in sensing air flows. The paper describes the fabrication techniques and the initial prototype testing results toward employing this sensing mechanism in applications requiring sensing of low flow rates such as a flow sensor in neonatal resuscitators. The fabricated 1000 μm long, 6 μm diameter micro-hairs mimic the bending movement of tactile hair strands to sense the velocity of air flow. The prototype sensor developed is a four-level direct digital-output sensor and is capable of detecting flow velocities of up to 0.97 m s(-1).

  5. BATMAV - A Bio-Inspired Micro-Aerial Vehicle for Flapping Flight

    NASA Astrophysics Data System (ADS)

    Bunget, Gheorghe

    The main objective of the BATMAV project is the development of a biologically-inspired Micro Aerial Vehicle (MAV) with flexible and foldable wings for flapping flight. While flapping flight in MAV has been previously studied and a number of models were realized they usually had unfoldable wings actuated with DC motors and mechanical transmission to achieve flapping motion. This approach limits the system to a rather small number of degrees of freedom with little flexibility and introduces an additional disadvantage of a heavy flight platform. The BATMAV project aims at the development of a flight platform that features bat-inspired wings with smart materials-based flexible joints and artificial muscles, which has the potential to closely mimic the kinematics of the real mammalian flyer. The bat-like flight platform was selected after an extensive analysis of morphological and aerodynamic flight parameters of small birds, bats and large insects characterized by a superior maneuverability and wind gust rejection. Morphological and aerodynamic parameters were collected from existing literature and compared concluding that bat wing present a suitable platform that can be actuated efficiently using artificial muscles. Due to their wing camber variation, the bat species can operate effectively at a large range of speeds and exhibit a remarkably maneuverable and agile flight. Although numerous studies were recently investigated the flapping flight, flexible and foldable wings that reproduce the natural intricate and efficient flapping motion were not designed yet. A comprehensive analysis of flight styles in bats based on the data collected by Norberg (Norberg, 1976) and the engineering theory of robotic manipulators resulted in a 2 and 3-DOF models which managed to mimic the wingbeat cycle of the natural flyer. The flexible joints of the 2 and 2-DOF models were replicated using smart materials like superelastic Shape Memory Alloys (SMA). The results of these kinematic

  6. Macromodeling for analog design and robustness boosting in bio-inspired computing models

    NASA Astrophysics Data System (ADS)

    Cuadri, J.; Linan, G.; Roca, E.; Rodriguez-Vazquez, A.

    2005-06-01

    Setting specifications for the electronic implementation of biological neural-network-like vision systems on-chip is not straightforward, neither it is to simulate the resulting circuit. The structure of these systems leads to a netlist of more than 100.000 nodes for a small array of 100x150 pixels. Moreover, introducing an optical input in the low level simulation is nowadays not feasible with standard electrical simulation environments. Given that, to accomplish the task of integrating those systems in silicon to build compact, low power consuming, and reliable systems, a previous step in the standard analog electronic design flux should be introduced. Here a methodology to make the translation from the biological model to circuit-level specifications for electronic design is proposed. The purpose is to include non ideal effects as mismatching, noise, leakages, supply degradation, feedthrough, and temperature of operation in a high level description of the implementation, in order to accomplish behavioural simulations that require less computational effort and resources. A particular case study is presented, the analog electronic implementation of the locust"s Lobula Giant Movement Detector (LGMD), a neural structure that fires a collision alarm based on visual information. The final goal is a collision threat detection vision system on-chip for automotive applications.

  7. Bio-Inspired Polarized Skylight-Based Navigation Sensors: A Review

    PubMed Central

    Karman, Salmah B.; Diah, S. Zaleha M.; Gebeshuber, Ille C.

    2012-01-01

    Animal senses cover a broad range of signal types and signal bandwidths and have inspired various sensors and bioinstrumentation devices for biological and medical applications. Insects, such as desert ants and honeybees, for example, utilize polarized skylight pattern-based information in their navigation activities. They reliably return to their nests and hives from places many kilometers away. The insect navigation system involves the dorsal rim area in their compound eyes and the corresponding polarization sensitive neurons in the brain. The dorsal rim area is equipped with photoreceptors, which have orthogonally arranged small hair-like structures termed microvilli. These are the specialized sensors for the detection of polarized skylight patterns (e-vector orientation). Various research groups have been working on the development of novel navigation systems inspired by polarized skylight-based navigation in animals. Their major contributions are critically reviewed. One focus of current research activities is on imitating the integration path mechanism in desert ants. The potential for simple, high performance miniaturized bioinstrumentation that can assist people in navigation will be explored. PMID:23202158

  8. Advances in sensor adaptation to changes in ambient light: a bio-inspired solution - biomed 2010.

    PubMed

    Dean, Brian; Wright, Cameron H G; Barrett, Stephen F

    2010-01-01

    Fly-inspired sensors have been shown to have many interesting qualities such as hyperacuity (or an ability to achieve movement resolution beyond the theoretical limit), extreme sensitivity to motion, and (through software simulation) image edge extraction, motion detection, and orientation and location of a line. Many of these qualities are beyond the ability of traditional computer vision sensors such as charge-coupled device (CCD) arrays. To obtain these characteristics, a prototype fly-inspired sensor has been built and tested in a laboratory environment and shows promise. Any sophisticated visual system, whether man made or natural, must adequately adapt to lighting conditions; therefore, light adaptation is a vital milestone in getting the fly eye vision sensor prototype working in real-world conditions. A design based on the common house fly, Musca domestica, was suggested in a paper presented to RMBS 2009 and showed an ability to remove 72-86% of effects due to ambient light changes. In this paper, a more advanced version of this design is discussed. This new design is able to remove 97-99% of the effects due to changes in ambient light, by more accurately approximating the light adaptation process used by the common house fly.

  9. Understanding Vesicles and Bio-Inspired Systems with Dissipative Particle Dynamics

    NASA Astrophysics Data System (ADS)

    Shillcock, Julian C.

    Biological organisms have always been a source of inspiration for the designers of artificial materials and machines. At the boundaries of Biology, Chemistry and Physics, this process of borrowing from Nature is becoming increasingly important for several reasons. Industrial sectors, such as pharmaceutical com- panies and the chemicals industry [1], are keen to understand and rationally modify the design of natural materials so as to minimise manufacturing costs and create new materials whose properties are better suited to their purpose. Biologists and biophysicists would like to understand how organisms perform crucial life functions, such as protecting themselves against infectious agents, so that they can mimic these functions in the fields of medical treatment and bioweapons detection. Novel treatments for genetic diseases require the con- trolled replacement of defective genes with healthy ones, and will only fulfill their promise if their delivery can be made routine and reliable. The construc- tion of artificial viruses [2] to deliver genetic material is a promising route, but understanding the interactions of their components, and optimising their structure, are challenging tasks.

  10. Superior visual performance in nocturnal insects: neural principles and bio-inspired technologies

    NASA Astrophysics Data System (ADS)

    Warrant, Eric J.

    2016-04-01

    At night, our visual capacities are severely reduced, with a complete loss in our ability to see colour and a dramatic loss in our ability to see fine spatial and temporal details. This is not the case for many nocturnal animals, notably insects. Our recent work, particularly on fast-flying moths and bees and on ball-rolling dung beetles, has shown that nocturnal animals are able to distinguish colours, to detect faint movements, to learn visual landmarks, to orient to the faint pattern of polarised light produced by the moon and to navigate using the stars. These impressive visual abilities are the result of exquisitely adapted eyes and visual systems, the product of millions of years of evolution. Nocturnal animals typically have highly sensitive eye designs and visual neural circuitry that is optimised for extracting reliable information from dim and noisy visual images. Even though we are only at the threshold of understanding the neural mechanisms responsible for reliable nocturnal vision, growing evidence suggests that the neural summation of photons in space and time is critically important: even though vision in dim light becomes necessarily coarser and slower, it also becomes significantly more reliable. We explored the benefits of spatiotemporal summation by creating a computer algorithm that mimicked nocturnal visual processing strategies. This algorithm dramatically increased the reliability of video collected in dim light, including the preservation of colour, strengthening evidence that summation strategies are essential for nocturnal vision.

  11. Design of a biomass-to-biorefinery logistics system through bio-inspired metaheuristic optimization considering multiple types of feedstocks

    NASA Astrophysics Data System (ADS)

    Trueba, Isidoro

    fossil fuels to biofuels. In many ways biomass is a unique renewable resource. It can be stored and transported relatively easily in contrast to renewable options such as wind and solar, which create intermittent electrical power that requires immediate consumption and a connection to the grid. This thesis presents two different models for the design optimization of a biomass-to-biorefinery logistics system through bio-inspired metaheuristic optimization considering multiple types of feedstocks. This work compares the performance and solutions obtained by two types of metaheuristic approaches; genetic algorithm and ant colony optimization. Compared to rigorous mathematical optimization methods or iterative algorithms, metaheuristics do not guarantee that a global optimal solution can be found on some class of problems. Problems with similar characteristics to the one presented in this thesis have been previously solved using linear programming, integer programming and mixed integer programming methods. However, depending on the type of problem, these mathematical or complete methods might need exponential computation time in the worst-case. This often leads to computation times too high for practical purposes. Therefore, this thesis develops two types of metaheuristic approaches for the design optimization of a biomass-to-biorefinery logistics system considering multiple types of feedstocks and shows that metaheuristics are highly suitable to solve hard combinatorial optimization problems such as the one addressed in this research work.

  12. High Speed Detection and Characterization of Defects in the Railhead

    NASA Astrophysics Data System (ADS)

    Edwards, R. S.; Fan, Y.; Dixon, S.

    2007-03-01

    In the UK, changing usage patterns for the rail network mean that rolling contact fatigue (RCF) in the railhead is an increasingly urgent problem. Current ultrasonic testing techniques have limitations in terms of testing speed and ability to reliably detect such defects. A different approach to the problem is to use ultrasonic surface waves generated and detected in a pitch-catch manner, thus simplifying the probe to detect surface defects such as RCF and to ignore deeper bulk defects. By using a pitch-catch configuration several of the speed limitations are removed; the probes are free to move as soon as each signal has been generated, without the need to wait for detection of the signal, and separation of the probes can be increased to allow for limited pulse repetition rates. Better reliability of detection for surface defects is also found, with the transmitted signal being dominated by the deepest surface-breaking defect present between the probes. We present details of a new high speed system, consisting of several electro-magnetic acoustic transducers (EMATs) to generate and detect the signals, with a high speed A-D system which has the ability to detect, window and FFT time signals and analyse the FFT to give a cut-off frequency within 1 ms, giving a depth for any defects present between the probes.

  13. Bio-inspired anti-oil-fouling chitosan-coated mesh for oil/water separation suitable for broad pH range and hyper-saline environments.

    PubMed

    Zhang, Shiyan; Lu, Fei; Tao, Lei; Liu, Na; Gao, Changrui; Feng, Lin; Wei, Yen

    2013-11-27

    Here, we report a bio-inspired chitosan (CS)-based mesh with high separation efficiency, oil-fouling repellency, and stability in a complex liquid environment. The surface of the CS coating maintains underwater superoleophobicity and low oil adhesion (<1 μN) in pure water and hyper-saline solutions, and it can keep stable special wettability in broad pH range environments after the CS mesh is fully cross-linked with glutaraldehyde and then reduced by sodium borohydride to form a stable carbon-nitrogen single bond. The separation process is solely gravity-driven, and the mesh can separate a range of different oil/water mixtures with >99% separation efficiency in hyper-saline and broad pH range conditions. We envision that such a separation method will be useful in oil spill cleanup and industrial oily wastewater treatment in extreme environments.

  14. A bio-inspired, computational model suggests velocity gradients of optic flow locally encode ordinal depth at surface borders and globally they encode self-motion.

    PubMed

    Raudies, Florian; Ringbauer, Stefan; Neumann, Heiko

    2013-09-01

    Visual navigation requires the estimation of self-motion as well as the segmentation of objects from the background. We suggest a definition of local velocity gradients to compute types of self-motion, segment objects, and compute local properties of optical flow fields, such as divergence, curl, and shear. Such velocity gradients are computed as velocity differences measured locally tangent and normal to the direction of flow. Then these differences are rotated according to the local direction of flow to achieve independence of that direction. We propose a bio-inspired model for the computation of these velocity gradients for video sequences. Simulation results show that local gradients encode ordinal surface depth, assuming self-motion in a rigid scene or object motions in a nonrigid scene. For translational self-motion velocity, gradients can be used to distinguish between static and moving objects. The information about ordinal surface depth and self-motion can help steering control for visual navigation.

  15. Bio-inspired approach of the fluorescence emission properties in the scarabaeid beetle Hoplia coerulea (Coleoptera): Modeling by transfer-matrix optical simulations

    NASA Astrophysics Data System (ADS)

    Van Hooijdonk, Eloise; Berthier, Serge; Vigneron, Jean-Pol

    2012-12-01

    Scales of the scarabaeid beetle Hoplia coerulea (Coleoptera) contain fluorescent molecules embedded in a multilayer structure. The consequence of this source confinement is a modification of the fluorescence properties, i.e., an enhancement or inhibition of the emission of certain wavelengths. In this work, we propose a bio-inspired approach to this problem. In other words, we use numerical simulations based on the one-dimensional transfer-matrix formalism to investigate the influence of a Hoplia-like system on emission characteristics and, from the results, we deduce potential technical applications. We reveal that depending on the choice of some parameters (layer thickness, dielectric constant, and position of the emitting source in the structure), it is possible to enhance or inhibit the fluorescence emission for certain wavelengths. This observation could be of great interest to design new optical devices in the field of optoelectronic, solar cells, biosensors, etc.

  16. Polyamine-Mediated Interfacial Assembly of rGO-ZnO Nanostructures: A Bio-inspired Approach and Enhanced Photocatalytic Properties.

    PubMed

    Reddy, Thuniki Naveen; Manna, Joydeb; Rana, Rohit K

    2015-09-09

    A bio-inspired approach for the fabrication of reduced graphene oxide (rGO) embedded ZnO nanostructure has been attempted to address issues pertaining to charge recombination and photocorrosion in ZnO for application as an effective photocatalyst. Herein we demonstrate the synthesis of rGO-ZnO nanostructures in a single step using polyamines, which simultaneously aid in the mineralization of ZnO nanostructures from zinc nitrate, reduction of graphene oxide (GO), and finally their assembly to form rGO-ZnO composite structures under environmentally benign conditions. The interspersed nanocomponents in the assembled heterostructures result in enhanced photocatalytic activity under UV light, indicating an effective charge separation of the excited electrons. Furthermore, the composite structure provides stability against photocorrosion for efficient recyclability of the catalyst.

  17. Biomechanical model of batoid (skates and rays) pectoral fins predicts the influence of skeletal structure on fin kinematics: implications for bio-inspired design.

    PubMed

    Russo, R S; Blemker, S S; Fish, F E; Bart-Smith, H

    2015-06-16

    Growing interest in the development of bio-inspired autonomous underwater vehicles (AUVs) has motivated research in understanding the mechanisms behind the propulsion systems of marine animals. For example, the locomotive behavior of rays (Batoidea) by movement of the pectoral fins is of particular interest due to their superior performance characteristics over contemporary AUV propulsion systems. To better understand the mechanics of pectoral fin propulsion, this paper introduces a biomechanical model that simulates how batoid skeletal structures function to achieve the swimming locomotion observed in nature. Two rays were studied, Dasyatis sabina (Atlantic ray), and Rhinoptera bonasus (cownose ray). These species were selected because they exhibit very different swimming styles (undulation versus oscillation), but all use primarily their pectoral fins for propulsion (unlike electric rays or guitarfishes). Computerized tomography scans of each species were taken to image the underlying structure, which reveal a complex system of cartilaginous joints and linkages. Data collected from these images were used to quantify the complete skeletal morphometry of each batoid fin. Morphological differences were identified in the internal cartilage arrangement between each species including variations in the orientation of the skeletal elements, or radials, and the joint patterns between them, called the inter-radial joint pattern. These data were used as the primary input into the biomechanical model to couple a given ray skeletal structure with various swimming motions. A key output of the model is an estimation of the uniaxial strain that develops in the skeletal connective tissue in order for the structure to achieve motions observed during swimming. Tensile load tests of this connective tissue were conducted to further investigate the implications of the material strain predictions. The model also demonstrates that changes in the skeletal architecture (e.g., joint

  18. Speed enforcement detection devices for preventing road traffic injuries.

    PubMed

    Wilson, C; Willis, C; Hendrikz, J K; Bellamy, N

    2006-04-19

    It is estimated that by 2020, road traffic crashes will have moved from ninth to third in the world ranking of burden of disease, as measured in disability adjusted life years. The identification of effective strategies for the prevention of road traffic injuries is of global public health importance. Measures aimed at reducing traffic speed are considered essential to preventing road injuries; the use of speed enforcement detection devices (including speed cameras and radar and laser devices) is one such measure. To assess whether the use of speed enforcement detection devices (SEDs) reduces the incidence of speeding, road traffic crashes, injuries and deaths. We searched the Cochrane Injuries Group's Specialised Register, CENTRAL, MEDLINE, EMBASE, Science (and Social Science) Citation Index, TRANSPORT, PsycINFO, CINAHL, EconLit. We searched the websites of road safety and motoring associations, as well as general internet searches. We handsearched selected journals and conference proceedings, and contacted experts in the field. The searches were conducted during May to November 2004. Randomised controlled trials and controlled before-after studies that assessed the impact of speed enforcement detection devices on speeding, road crashes, injuries and deaths were eligible for inclusion. For studies involving co-interventions, SEDs had to be the major intervention focus of the study to be eligible. We independently screened search results, assessed studies for inclusion, extracted data and assessed methodological quality. Due to variability between and within included studies, a pooled analysis was not appropriate. No randomised controlled trials were identified. Twenty-six studies met the inclusion criteria, of which 22 were controlled before-after trials incorporating a distinct control or comparison group(s) and four were interrupted time series designs with a comparison group(s). Fourteen studies reported speed and crash outcomes, seven reported crash outcomes

  19. Multimode nondestructive detecting method for high-speed rail defects

    NASA Astrophysics Data System (ADS)

    Sun, Mingjian; Cheng, Xingzhen; Wan, Guangnan; Liu, Ting; Fu, Ying; Wang, Yan

    2015-11-01

    It is very important to detect the surface defects of the high-speed rail for security concerns. A multimode detecting method, which integrates high resolution of optical image, high precision of photoacoustic detection and strong penetration of ultrasound detecting, is proposed for the rail defect detection. Utilizing the surface defect characteristics obtained from optical signal, the photoacoustic and ultrasound scanning region could be determined, and rail shallow and internal defect characteristics can be acquired subsequently. Eventually, fusing three modal signals mentioned above, the information of the entire rail defect, including type, extension trend and depth can be detected. It has been proved that the multimode method can improve the detecting efficiency, and enlarge the detection range in the meantime.

  20. High Speed Genetic Lips Detection by Dynamic Search Domain Control

    NASA Astrophysics Data System (ADS)

    Akashi, Takuya; Wakasa, Yuji; Tanaka, Kanya; Karungaru, Stephen; Fukumi, Minoru

    In this paper, high-speed size and orientation invariant lips detection of a talking person in an active scene using template matching and genetic algorithms is proposed. As part of the objectives, we also try to acquire numerical parameters to represent the lips. The information is very important for many applications, where high performance is required, such as audio-visual speech recognition, speaker identification systems, robot perception and personal mobile devices interfaces. The difficulty in lips detection is mainly due to deformations and geometric changes of the lips during speech and the active scene by free camera motion. In order to enhance the performance in speed and accuracy, initially, the performance is improved on a single still image, that is, the base of video processing. Our proposed system is based on template matching using genetic algorithms (GA). Only one template is prepared per experiment. The template is the closed mouth of a subject, because the application is for personal devices. In our previous study, the main problem was trade-off between search accuracy and search speed. To overcome this problem, we use two methods: scaling window and dynamic search domain control (SD-Control). We therefore focus on the population size of the GA, because it has a direct effect on search accuracy and speed. The effectiveness of the proposed system is demonstrated by performing computer simulations. We achieved a lips detection accuracy of 91.33% at an average processing time of 33.70 milliseconds per frame.

  1. Detection of object vibrations from high speed infrared images

    NASA Astrophysics Data System (ADS)

    Paunescu, Gabriela; Lutzmann, Peter

    2016-10-01

    Remote detection of vibrational features from an object is important for many short range civil applications, but it is also of interest for long range applications in the defense and security area. The well-established laser Doppler vibrometry technique is widely used as a high-sensitivity, non-contact method. The development of camera technology in recent years made image-based methods reliable passive alternatives for vibration and dynamic measurements. Very sensitive applications have been demonstrated using high speed cameras in the visual spectral range. However, for long range applications, where turbulence becomes a limiting factor, image acquisition in the short- to mid-wave IR region would be desirable, as the atmospheric effects attenuate at longer wavelength. In this paper, we investigate experimentally the vibration detection from short- and mid-wave IR image sequences using high speed imaging technique. Experiments on the extraction of vibration signature under strong local turbulence conditions are presented.

  2. Characterization of anthocyanin based dye-sensitized organic solar cells (DSSC) and modifications based on bio-inspired ion mobility improvements

    NASA Astrophysics Data System (ADS)

    Mawyin, Jose Amador

    The worldwide electrical energy consumption will increase from currently 10 terawatts to 30 terawatts by 2050. To decrease the current atmospheric CO2 would require our civilization to develop a 20 terawatts non-greenhouse emitting (renewable) electrical power generation capability. Solar photovoltaic electric power generation is thought to be a major component of proposed renewable energy-based economy. One approach to less costly, easily manufactured solar cells is the Dye-sensitized solar cells (DSSC) introduced by Greatzel and others. This dissertation describes the work focused on improving the performance of DSSC type solar cells. In particular parameters affecting dye-sensitized solar cells (DSSC) based on anthocyanin pigments extracted from California blackberries (Rubus ursinus) and bio-inspired modifications were analyzed and solar cell designs optimized. Using off-the-shelf materials DSSC were constructed and tested using a custom made solar spectrum simulator and photoelectric property characterization. This equipment facilitated the taking of automated I-V curve plots and the experimental determination of parameters such as open circuit voltage (V OC), short circuit current (JSC), fill factor (FF), etc. This equipment was used to probe the effect of various modifications such as changes in the annealing time and composition of the of the electrode counter-electrode. Solar cell optimization schemes included novel schemes such as solar spectrum manipulation to increase the percentage of the solar spectrum capable of generating power in the DSSC. Solar manipulation included light scattering and photon upconversion. Techniques examined here focused on affordable materials such as silica nanoparticles embedded inside a TiO2 matrix. Such materials were examined for controlled scattering of visible light and optimize light trapping within the matrix as well as a means to achieve photon up-energy-conversion using the Raman effect in silica nano-particles (due

  3. Lidar characteristics for detecting and tracking high-speed bullets

    NASA Astrophysics Data System (ADS)

    Peri, Joseph S. J.

    2011-06-01

    In this paper, we discuss the possible use of a light-weight lidar system to detect and track a sniper's high-speed bullet. The analysis includes the calculation of the beam waist, the irradiance per pulse, average irradiance, the maximum time between pulses and the minimum pulse repetition frequency, all as functions of range, beam diameter and beam quality (M2). We discuss, briefly, the possible cueing of such a lidar system by an IR system. The measurement of the BRDF of a bullet is briefly described. Finally, we report on the detection range, based on SNR calculations, as a function of energy per pulse, beam diameter and M2.

  4. Bio-Inspired Fluoro-polydopamine Meets Barium Titanate Nanowires: A Perfect Combination to Enhance Energy Storage Capability of Polymer Nanocomposites.

    PubMed

    Wang, Guanyao; Huang, Xingyi; Jiang, Pingkai

    2017-03-01

    Rapid evolution of energy storage devices expedites the development of high-energy-density materials with excellent flexibility and easy processing. The search for such materials has triggered the development of high-dielectric-constant (high-k) polymer nanocomposites. However, the enhancement of k usually suffers from sharp reduction of breakdown strength, which is detrimental to substantial increase of energy storage capability. Herein, the combination of bio-inspired fluoro-polydopamine functionalized BaTiO3 nanowires (NWs) and a fluoropolymer matrix offers a new thought to prepare polymer nanocomposites. The elaborate functionalization of BaTiO3 NWs with fluoro-polydopamine has guaranteed both the increase of k and the maintenance of breakdown strength, resulting in significantly enhanced energy storage capability. The nanocomposite with 5 vol % functionalized BaTiO3 NWs discharges an ultrahigh energy density of 12.87 J cm(-3) at a relatively low electric field of 480 MV m(-1), more than three and a half times that of biaxial-oriented polypropylene (BOPP, 3.56 J cm(-3) at 600 MV m(-1)). This superior energy storage capability seems to rival or exceed some reported advanced nanoceramics-based materials at 500 MV m(-1). This new strategy permits insights into the construction of polymer nanocomposites with high energy storage capability.

  5. Laser-Sintered Constructs with Bio-inspired Porosity and Surface Micro/Nano-Roughness Enhance Mesenchymal Stem Cell Differentiation and Matrix Mineralization In Vitro.

    PubMed

    Cheng, Alice; Cohen, David J; Boyan, Barbara D; Schwartz, Zvi

    2016-12-01

    Direct metal laser sintering can produce porous Ti-6Al-4V orthopedic and dental implants. The process requires reduced resources and time and can provide greater structural control than machine manufacturing. Implants in bone are colonized by mesenchymal stem cells (MSCs), which can differentiate into osteoblasts and contribute to osseointegration. This study examined osteoblast differentiation and matrix mineralization of human MSCs cultured on laser-sintered Ti-6Al-4V constructs with varying porosity and at different time scales. 2D solid disks and low, medium and high porosity (LP, MP, and HP) 3D constructs based on a human trabecular bone template were laser sintered from Ti-6Al-4V powder and further processed to have micro- and nanoscale roughness. hMSCs exhibited greater osteoblastic differentiation and local factor production on all 3D porous constructs compared to 2D surfaces, which was sustained for 9 days without use of exogenous factors. hMSCs cultured for 8 weeks on MP constructs in osteogenic medium (OM), OM supplemented with BMP2 or collagen-coated MP constructs in OM exhibited bone-like extracellular matrix mineralization. Use of bio-inspired porosity for the 3D architecture of additively manufactured Ti-6Al-4V enhanced osteogenic differentiation of hMSCs beyond surface roughness alone. This study suggests that a 3D architecture may enhance the osseointegration of orthopedic and dental implants in vivo.

  6. Concepts and Development of Bio-Inspired Distributed Embedded Wired/Wireless Sensor Array Architectures for Acoustic Wave Sensing in Integrated Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Ghoshal, Anindya; Prosser, William H.; Kirikera, Goutham; Schulz, Mark J.; Hughes, Derke J.; Orisamolu, Wally

    2003-01-01

    This paper discusses the modeling of acoustic emissions in plate structures and their sensing by embedded or surface bonded piezoelectric sensor arrays. Three different modeling efforts for acoustic emission (AE) wave generation and propagation are discussed briefly along with their advantages and disadvantages. Continuous sensors placed at right angles on a plate are being discussed as a new approach to measure and locate the source of acoustic waves. Evolutionary novel signal processing algorithms and bio-inspired distributed sensor array systems are used on large structures and integrated aerospace vehicles for AE source localization and preliminary results are presented. These systems allow for a great reduction in the amount of data that needs to be processed and also reduce the chances of false alarms from ambient noises. It is envisioned that these biomimetic sensor arrays and signal processing techniques will be useful for both wireless and wired sensor arrays for real time health monitoring of large integrated aerospace vehicles and earth fixed civil structures. The sensor array architectures can also be used with other types of sensors and for other applications.

  7. Direct comparison of the performance of a bio-inspired synthetic nickel catalyst and a [NiFe]-hydrogenase, both covalently attached to electrodes.

    PubMed

    Rodriguez-Maciá, Patricia; Dutta, Arnab; Lubitz, Wolfgang; Shaw, Wendy J; Rüdiger, Olaf

    2015-10-12

    The active site of hydrogenases has been a source of inspiration for the development of molecular catalysts. However, direct comparisons between molecular catalysts and enzymes have not been possible because different techniques are used to evaluate both types of catalysts, minimizing our ability to determine how far we have come in mimicking the enzymatic performance. The catalytic properties of the [Ni(P(Cy) 2 N(Gly) 2 )2 ](2+) complex with the [NiFe]-hydrogenase from Desulfovibrio vulgaris immobilized on a functionalized electrode were compared under identical conditions. At pH 7, the enzyme shows higher activity and lower overpotential with better stability, while at low pH, the molecular catalyst outperforms the enzyme in all respects. This is the first direct comparison of enzymes and molecular complexes, enabling a unique understanding of the benefits and detriments of both systems, and advancing our understanding of the utilization of these bio-inspired complexes in fuel cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Well-defined functional mesoporous silica/polymer hybrids prepared by an ICAR ATRP technique integrated with bio-inspired polydopamine chemistry for lithium isotope separation.

    PubMed

    Liu, Yuekun; Liu, Xuegang; Ye, Gang; Song, Yang; Liu, Fei; Huo, Xiaomei; Chen, Jing

    2017-05-09

    Mesoporous silica/polymer hybrids with well-preserved mesoporosity were prepared by integrating the initiators for continuous activator regeneration (ICAR) atom transfer radical polymerization (ATRP) technique with the bio-inspired polydopamine (PDA) chemistry. By manipulating the auto-oxidative polymerization of dopamine, uniform PDA layers were deposited on the surfaces and pore walls of ordered mesoporous silicas (OMSs), thereby promoting the immobilization of ATRP initiators. Poly(glycidyl methacrylate) (PGMA) brushes were then grown from the OMSs by using the ICAR ATRP technique. The evolution of the mesoporous silica/polymer hybrids during synthesis, in terms of morphology, structure, surface and porous properties, was detailed. And, parameters influencing the controlled growth of polymer chains in the ICAR ATRP system were studied. Taking advantage of the abundant epoxy groups in the PGMA platform, post-functionalization of the mesoporous silica/polymer hybrids by the covalent attachment of macrocyclic ligands for the adsorptive separation of lithium isotopes was realized. Adsorption behavior of the functionalized hybrids toward lithium ions was fully investigated, highlighting the good selectivity, and effects of temperature, solvent and counter ions. The ability for lithium isotope separation was evaluated. A higher separation factor could be obtained in systems with softer counter anions and lower polarity solvents. More importantly, due to the versatility of the ICAR ATRP technique, combined with the non-surface specific PDA chemistry, the methodology established in this work would provide new opportunities for the preparation of advanced organic-inorganic porous hybrids for broadened applications.

  9. Folic acid bio-inspired route for facile synthesis of AuPt nanodendrites as enhanced electrocatalysts for methanol and ethanol oxidation reactions

    NASA Astrophysics Data System (ADS)

    Wang, Ai-Jun; Ju, Ke-Jian; Zhang, Qian-Li; Song, Pei; Wei, Jie; Feng, Jiu-Ju

    2016-09-01

    Folic acid (FA), as an important biomolecule in cell division and growth, is firstly employed as the structure director and stabilizing agent for controlled synthesis of uniform Au65Pt35 nanodendrites (NDs) by a one-pot wet-chemical bio-inspired route at room temperature. No pre-seed, template, organic solvent, polymer, surfactant or complex instrument is involved. The products are mainly characterized by transmission electron microscopy (TEM), high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), X-ray diffraction (XRD), and X-Ray photoelectron spectroscopy (XPS). The architectures have enlarged electrochemically active surface area (60.6 m2 gPt-1), enhanced catalytic activity and durability for methanol and ethanol oxidation in contrast with commercial Pt black and the other AuPt alloys by tuning the molar ratios of Au to Pt (e.g., Au31Pt69 and Au82Pt18 nanoparticles). This strategy would be applied to fabricate other bimetallic nanocatalysts in fuel cells.

  10. Identification of a low-spin acylperoxoiron(III) intermediate in bio-inspired non-heme iron-catalysed oxidations

    NASA Astrophysics Data System (ADS)

    Oloo, Williamson N.; Meier, Katlyn K.; Wang, Yong; Shaik, Sason; Münck, Eckard; Que, Lawrence

    2014-01-01

    Synthetically useful hydrocarbon oxidations are catalysed by bio-inspired non-heme iron complexes using hydrogen peroxide as oxidant, and carboxylic acid addition enhances their selectivity and catalytic efficiency. Talsi has identified a low-intensity g=2.7 electron paramagnetic resonance signal in such catalytic systems and attributed it to an oxoiron(V)-carboxylate oxidant. Herein we report the use of FeII(TPA*) (TPA*=tris(3,5-dimethyl-4-methoxypyridyl-2-methyl)amine) to generate this intermediate in 50% yield, and have characterized it by ultraviolet-visible, resonance Raman, Mössbauer and electrospray ionization mass spectrometric methods as a low-spin acylperoxoiron(III) species. Kinetic studies show that this intermediate is not itself the oxidant but decays via a unimolecular rate-determining step to unmask a powerful oxidant. The latter is shown by density functional theory calculations to be an oxoiron(V) species that oxidises substrate without a barrier. This study provides a mechanistic scenario for understanding catalyst reactivity and selectivity as well as a basis for improving catalyst design.

  11. Highly robust hydrogen generation by bio-inspired Ir complexes for dehydrogenation of formic acid in water: Experimental and theoretical mechanistic investigations at different pH

    DOE PAGES

    Wang, Wan -Hui; Fujita, Etsuko; Ertem, Mehmed Z.; ...

    2015-07-30

    Hydrogen generation from formic acid (FA), one of the most promising hydrogen storage materials, has attracted much attention due to the demand for the development of renewable energy carriers. Catalytic dehydrogenation of FA in an efficient and green manner remains challenging. Here, we report a series of bio-inspired Ir complexes for highly robust and selective hydrogen production from FA in aqueous solutions without organic solvents or additives. One of these complexes bearing an imidazoline moiety (complex 6) achieved a turnover frequency (TOF) of 322,000 h⁻¹ at 100 °C, which is higher than ever reported. The novel catalysts are very stablemore » and applicable in highly concentrated FA. For instance, complex 3 (1 μmol) affords an unprecedented turnover number (TON) of 2,050,000 at 60 °C. Deuterium kinetic isotope effect experiments and density functional theory (DFT) calculations employing a “speciation” approach demonstrated a change in the rate-determining step with increasing solution pH. This study provides not only more insight into the mechanism of dehydrogenation of FA but also offers a new principle for the design of effective homogeneous organometallic catalysts for H₂ generation from FA.« less

  12. Bio-inspired oligovitronectin-grafted surface for enhanced self-renewal and long-term maintenance of human pluripotent stem cells under feeder-free conditions.

    PubMed

    Park, Hyun-Ji; Yang, Kisuk; Kim, Mun-Jung; Jang, Jiho; Lee, Mihyun; Kim, Dong-Wook; Lee, Haeshin; Cho, Seung-Woo

    2015-05-01

    Current protocols for human pluripotent stem cell (hPSC) expansion require feeder cells or matrices from animal sources that have been the major obstacle to obtain clinical grade hPSCs due to safety issues, difficulty in quality control, and high expense. Thus, feeder-free, chemically defined synthetic platforms have been developed, but are mostly confined to typical polystyrene culture plates. Here, we report a chemically defined, material-independent, bio-inspired surface coating allowing for feeder-free expansion and maintenance of self-renewal and pluripotency of hPSCs on various polymer substrates and devices. Polydopamine (pDA)-mediated immobilization of vitronectin (VN) peptides results in surface functionalization of VN-dimer/pDA conjugates. The engineered surfaces facilitate adhesion, proliferation, and colony formation of hPSCs via enhanced focal adhesion, cell-cell interaction, and biophysical signals, providing a chemically defined, xeno-free culture system for clonal expansion and long-term maintenance of hPSCs. This surface engineering enables the application of clinically-relevant hPSCs to a variety of biomedical systems such as tissue-engineering scaffolds and medical devices.

  13. Improving neural decoding in the central auditory system using bio-inspired spectro-temporal representations and a generalized bilinear model.

    PubMed

    Siahpoush, Shadi; Erfani, Yousof; Rode, Thilo; Lim, Hubert H; Rouat, Jean; Plourde, Eric

    2015-01-01

    We study the impact of different encoding models and spectro-temporal representations on the accuracy of Bayesian decoding of neural activity recorded from the central auditory system. Two encoding models, a generalized linear model (GLM) and a generalized bilinear model (GBM), are compared along with three different spectro-temporal representations of the input stimuli: a spectrogram and two bio-inspired representations, i.e. a gammatone filter bank (GFB) and a spikegram. Signal to noise ratios between the reconstructed and original representations are used to evaluate the decoding, or reconstruction accuracy. We experimentally show that the reconstruction accuracy is best with the spikegram representation and worst with the spectrogram representation and, furthermore, that using a GBM instead of a GLM significantly increases the reconstruction accuracy. In fact, our results show that the spikegram reconstruction accuracy with a GBM fitting yields an SNR that is 3.3 dB better than when using the standard decoding approach of reconstructing a spectrogram with GLM fitting.

  14. A new numerical approach to solve Thomas-Fermi model of an atom using bio-inspired heuristics integrated with sequential quadratic programming.

    PubMed

    Raja, Muhammad Asif Zahoor; Zameer, Aneela; Khan, Aziz Ullah; Wazwaz, Abdul Majid

    2016-01-01

    In this study, a novel bio-inspired computing approach is developed to analyze the dynamics of nonlinear singular Thomas-Fermi equation (TFE) arising in potential and charge density models of an atom by exploiting the strength of finite difference scheme (FDS) for discretization and optimization through genetic algorithms (GAs) hybrid with sequential quadratic programming. The FDS procedures are used to transform the TFE differential equations into a system of nonlinear equations. A fitness function is constructed based on the residual error of constituent equations in the mean square sense and is formulated as the minimization problem. Optimization of parameters for the system is carried out with GAs, used as a tool for viable global search integrated with SQP algorithm for rapid refinement of the results. The design scheme is applied to solve TFE for five different scenarios by taking various step sizes and different input intervals. Comparison of the proposed results with the state of the art numerical and analytical solutions reveals that the worth of our scheme in terms of accuracy and convergence. The reliability and effectiveness of the proposed scheme are validated through consistently getting optimal values of statistical performance indices calculated for a sufficiently large number of independent runs to establish its significance.

  15. Bio-inspired cofacial Fe porphyrin dimers for efficient electrocatalytic CO2 to CO conversion: Overpotential tuning by substituents at the porphyrin rings.

    PubMed

    Zahran, Zaki N; Mohamed, Eman A; Naruta, Yoshinori

    2016-04-18

    Efficient reduction of CO2 into useful carbon resources particularly CO is an essential reaction for developing alternate sources of fuels and for reducing the greenhouse effect of CO2. The binuclear Ni, Fe-containing carbon monoxide dehydrogenase (CODHs) efficiently catalyzes the reduction of CO2 to CO. The location of Ni and Fe at proper positions allows their cooperation for CO2 to CO conversion through a push-pull mechanism. Bio-inspired from CODHs, we used several cofacial porphyrin dimers with different substituents as suitable ligands for holding two Fe ions with suitable Fe-Fe separation distance to efficiently and selectively promote CO2 to CO conversion with high turnover frequencies, TOFs. The substituents on the porphyrin rings greatly affect the catalysis process. By introducing electron-withdrawing/-donating groups, e.g. electron-withdrawing perfluorophenyl, at all meso positions of the porphyrin rings, the catalysis overpotential, η was minimized by ≈0.3 V compared to that obtained by introducing electron-donating mesityl groups. The Fe porphyrin dimers among reported catalysts are the most efficient ones for CO2 to CO conversion. Control experiments indicate that the high performance of the current CO2 to CO conversion catalysts is due to the presence of binuclear Fe centers at suitable Fe-Fe separation distance.

  16. Highly robust hydrogen generation by bio-inspired Ir complexes for dehydrogenation of formic acid in water: Experimental and theoretical mechanistic investigations at different pH

    SciTech Connect

    Wang, Wan -Hui; Fujita, Etsuko; Ertem, Mehmed Z.; Xu, Shaoan; Onishi, Naoya; Manaka, Yuichi; Suna, Yuki; Kambayashi, Hide; Muckerman, James T.; Himeda, Yuichiro

    2015-07-30

    Hydrogen generation from formic acid (FA), one of the most promising hydrogen storage materials, has attracted much attention due to the demand for the development of renewable energy carriers. Catalytic dehydrogenation of FA in an efficient and green manner remains challenging. Here, we report a series of bio-inspired Ir complexes for highly robust and selective hydrogen production from FA in aqueous solutions without organic solvents or additives. One of these complexes bearing an imidazoline moiety (complex 6) achieved a turnover frequency (TOF) of 322,000 h⁻¹ at 100 °C, which is higher than ever reported. The novel catalysts are very stable and applicable in highly concentrated FA. For instance, complex 3 (1 μmol) affords an unprecedented turnover number (TON) of 2,050,000 at 60 °C. Deuterium kinetic isotope effect experiments and density functional theory (DFT) calculations employing a “speciation” approach demonstrated a change in the rate-determining step with increasing solution pH. This study provides not only more insight into the mechanism of dehydrogenation of FA but also offers a new principle for the design of effective homogeneous organometallic catalysts for H₂ generation from FA.

  17. Bio-inspired enhancement of friction and adhesion at the polydimethylsiloxane-intestine interface and biocompatibility characterization.

    PubMed

    Zhang, Hongyu; Wang, Yi; Vasilescu, Steven; Gu, Zhibin; Sun, Tao

    2017-05-01

    An active navigation of self-propelled miniaturized robot along the intestinal tract without injuring the soft tissue remains a challenge as yet. Particularly in this case an effective control of the interfacial friction and adhesion between the material used and the soft tissue is crucial. In the present study, we investigated the frictional and adhesive properties between polydimethylsiloxane (PDMS, microscopically patterned with micro-pillar arrays and non-patterned with a flat surface) and rabbit small intestinal tract using a universal material tester. The friction coefficient-time plot and adhesive force-time plot were recorded during the friction test (sliding speed: 0.25mm/s; normal loading: 0.4N) and adhesion test (preloading: 0.5N; hoisting speed: 2.5×10(-3)mm/s). In addition, biocompatibility of the PDMS samples was characterized in terms of cell morphology (scanning electron microscope) and cell cytotoxicity (alamarBlue assay) using human vascular endothelial cells (HUVECs). The results demonstrated that the interfacial friction (0.27 vs 0.19) and adhesion (34.9mN vs 26.7mN) were greatly increased using microscopically patterned PDMS, in comparison with non-patterned PDMS. HUVECs adhered to and proliferated on non-patterned/microscopically patterned PDMS very well, with a relative cell viability of about 90% following seeding at 1d, 3d, and 5d. The favorable enhancement of the frictional and adhesive properties, along with the excellent biocompatibility of the microscopically patterned PDMS, makes it a propitious choice for clinical application of self-propelled miniaturized robots. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. High-Speed Observer: Automated Streak Detection in SSME Plumes

    NASA Technical Reports Server (NTRS)

    Rieckoff, T. J.; Covan, M.; OFarrell, J. M.

    2001-01-01

    A high frame rate digital video camera installed on test stands at Stennis Space Center has been used to capture images of Space Shuttle main engine plumes during test. These plume images are processed in real time to detect and differentiate anomalous plume events occurring during a time interval on the order of 5 msec. Such speed yields near instantaneous availability of information concerning the state of the hardware. This information can be monitored by the test conductor or by other computer systems, such as the integrated health monitoring system processors, for possible test shutdown before occurrence of a catastrophic engine failure.

  19. Sequentially-coupled space-time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV

    NASA Astrophysics Data System (ADS)

    Takizawa, Kenji; Tezduyar, Tayfun E.; Kostov, Nikolay

    2014-08-01

    We present a sequentially-coupled space-time (ST) computational fluid-structure interaction (FSI) analysis of flapping-wing aerodynamics of a micro aerial vehicle (MAV). The wing motion and deformation data, whether prescribed fully or partially, is from an actual locust, extracted from high-speed, multi-camera video recordings of the locust in a wind tunnel. The core computational FSI technology is based on the Deforming-Spatial-Domain/Stabilized ST (DSD/SST) formulation. This is supplemented with using NURBS basis functions in temporal representation of the wing and mesh motion, and in remeshing. Here we use the version of the DSD/SST formulation derived in conjunction with the variational multiscale (VMS) method, and this version is called "DSD/SST-VMST." The structural mechanics computations are based on the Kirchhoff-Love shell model. The sequential-coupling technique is applicable to some classes of FSI problems, especially those with temporally-periodic behavior. We show that it performs well in FSI computations of the flapping-wing aerodynamics we consider here. In addition to the straight-flight case, we analyze cases where the MAV body has rolling, pitching, or rolling and pitching motion. We study how all these influence the lift and thrust.

  20. A Bio-Inspired, Motion-Based Analysis of Crowd Behavior Attributes Relevance to Motion Transparency, Velocity Gradients, and Motion Patterns

    PubMed Central

    Raudies, Florian; Neumann, Heiko

    2012-01-01

    The analysis of motion crowds is concerned with the detection of potential hazards for individuals of the crowd. Existing methods analyze the statistics of pixel motion to classify non-dangerous or dangerous behavior, to detect outlier motions, or to estimate the mean throughput of people for an image region. We suggest a biologically inspired model for the analysis of motion crowds that extracts motion features indicative for potential dangers in crowd behavior. Our model consists of stages for motion detection, integration, and pattern detection that model functions of the primate primary visual cortex area (V1), the middle temporal area (MT), and the medial superior temporal area (MST), respectively. This model allows for the processing of motion transparency, the appearance of multiple motions in the same visual region, in addition to processing opaque motion. We suggest that motion transparency helps to identify “danger zones” in motion crowds. For instance, motion transparency occurs in small exit passages during evacuation. However, motion transparency occurs also for non-dangerous crowd behavior when people move in opposite directions organized into separate lanes. Our analysis suggests: The combination of motion transparency and a slow motion speed can be used for labeling of candidate regions that contain dangerous behavior. In addition, locally detected decelerations or negative speed gradients of motions are a precursor of danger in crowd behavior as are globally detected motion patterns that show a contraction toward a single point. In sum, motion transparency, image speeds, motion patterns, and speed gradients extracted from visual motion in videos are important features to describe the behavioral state of a motion crowd. PMID:23300930

  1. A bio-inspired, motion-based analysis of crowd behavior attributes relevance to motion transparency, velocity gradients, and motion patterns.

    PubMed

    Raudies, Florian; Neumann, Heiko

    2012-01-01

    The analysis of motion crowds is concerned with the detection of potential hazards for individuals of the crowd. Existing methods analyze the statistics of pixel motion to classify non-dangerous or dangerous behavior, to detect outlier motions, or to estimate the mean throughput of people for an image region. We suggest a biologically inspired model for the analysis of motion crowds that extracts motion features indicative for potential dangers in crowd behavior. Our model consists of stages for motion detection, integration, and pattern detection that model functions of the primate primary visual cortex area (V1), the middle temporal area (MT), and the medial superior temporal area (MST), respectively. This model allows for the processing of motion transparency, the appearance of multiple motions in the same visual region, in addition to processing opaque motion. We suggest that motion transparency helps to identify "danger zones" in motion crowds. For instance, motion transparency occurs in small exit passages during evacuation. However, motion transparency occurs also for non-dangerous crowd behavior when people move in opposite directions organized into separate lanes. Our analysis suggests: The combination of motion transparency and a slow motion speed can be used for labeling of candidate regions that contain dangerous behavior. In addition, locally detected decelerations or negative speed gradients of motions are a precursor of danger in crowd behavior as are globally detected motion patterns that show a contraction toward a single point. In sum, motion transparency, image speeds, motion patterns, and speed gradients extracted from visual motion in videos are important features to describe the behavioral state of a motion crowd.

  2. On the synthesis of a bio-inspired dual-cellular fluidic flexible matrix composite adaptive structure based on a non-dimensional dynamics model

    NASA Astrophysics Data System (ADS)

    Li, Suyi; Wang, K. W.

    2013-01-01

    A recent study investigated the dynamic characteristics of an adaptive structure concept featuring dual fluidic flexible matrix composite (F2MC) cells inspired by the configuration of plant cells and cell walls. This novel bio-inspired system consists of two F2MC cells with different fiber angles connected through internal fluid circuits. It was discovered that the dual F2MC cellular structure can be characterized as a two degree of freedom damped mass-spring oscillator, and can be utilized as a vibration absorber or an enhanced actuator under different operation conditions. These results demonstrated that the concept is promising and further investigations are needed to develop methodologies for synthesizing future multi-cellular F2MC structural systems. While interesting, the previous study focused on specific case studies and analysis. That is, the outcome did not provide insight that could be generalized, or tools for synthesizing a multiple F2MC cellular structure. This paper attempts to address this important issue by developing a non-dimensional dynamic model, which reveals good physical insights as well as identifying crucial constitutive parameters for F2MC cellular design. Working with these parameters, rather than physical variables, can greatly simplify the mathematics involved in the study. A synthesis tool is then developed for the dual-cellular structure, and it is found that for each set of achievable target poles and zero, there exist multiple F2MC cellular designs, forming a design space. The presented physical insights and synthesis tool for the dual-cellular structure will be the building blocks for future investigation on cellular structures with a larger number of cells.

  3. Bio-inspired FPGA architecture for self-calibration of an image compression core based on wavelet transforms in embedded systems

    NASA Astrophysics Data System (ADS)

    Salvador, Rubén; Vidal, Alberto; Moreno, Félix; Riesgo, Teresa; Sekanina, Lukáš

    2011-05-01

    A generic bio-inspired adaptive architecture for image compression suitable to be implemented in embedded systems is presented. The architecture allows the system to be tuned during its calibration phase. An evolutionary algorithm is responsible of making the system evolve towards the required performance. A prototype has been implemented in a Xilinx Virtex-5 FPGA featuring an adaptive wavelet transform core directed at improving image compression for specific types of images. An Evolution Strategy has been chosen as the search algorithm and its typical genetic operators adapted to allow for a hardware friendly implementation. HW/SW partitioning issues are also considered after a high level description of the algorithm is profiled which validates the proposed resource allocation in the device fabric. To check the robustness of the system and its adaptation capabilities, different types of images have been selected as validation patterns. A direct application of such a system is its deployment in an unknown environment during design time, letting the calibration phase adjust the system parameters so that it performs efcient image compression. Also, this prototype implementation may serve as an accelerator for the automatic design of evolved transform coefficients which are later on synthesized and implemented in a non-adaptive system in the final implementation device, whether it is a HW or SW based computing device. The architecture has been built in a modular way so that it can be easily extended to adapt other types of image processing cores. Details on this pluggable component point of view are also given in the paper.

  4. High-Speed Edge-Detecting Line Scan Smart Camera

    NASA Technical Reports Server (NTRS)

    Prokop, Norman F.

    2012-01-01

    A high-speed edge-detecting line scan smart camera was developed. The camera is designed to operate as a component in a NASA Glenn Research Center developed inlet shock detection system. The inlet shock is detected by projecting a laser sheet through the airflow. The shock within the airflow is the densest part and refracts the laser sheet the most in its vicinity, leaving a dark spot or shadowgraph. These spots show up as a dip or negative peak within the pixel intensity profile of an image of the projected laser sheet. The smart camera acquires and processes in real-time the linear image containing the shock shadowgraph and outputting the shock location. Previously a high-speed camera and personal computer would perform the image capture and processing to determine the shock location. This innovation consists of a linear image sensor, analog signal processing circuit, and a digital circuit that provides a numerical digital output of the shock or negative edge location. The smart camera is capable of capturing and processing linear images at over 1,000 frames per second. The edges are identified as numeric pixel values within the linear array of pixels, and the edge location information can be sent out from the circuit in a variety of ways, such as by using a microcontroller and onboard or external digital interface to include serial data such as RS-232/485, USB, Ethernet, or CAN BUS; parallel digital data; or an analog signal. The smart camera system can be integrated into a small package with a relatively small number of parts, reducing size and increasing reliability over the previous imaging system..

  5. Development and testing of bio-inspired microelectromechanical pressure sensor arrays for increased situational awareness for marine vehicles

    NASA Astrophysics Data System (ADS)

    Dusek, J.; Kottapalli, A. G. P.; Woo, M. E.; Asadnia, M.; Miao, J.; Lang, J. H.; Triantafyllou, M. S.

    2013-01-01

    The lateral line found on most species of fish is a sensory organ without analog in humans. Using sensory feedback from the lateral line, fish are able to track prey, school, avoid obstacles, and detect vortical flow structures. Composed of both a superficial component, and a component contained within canals beneath the fish’s skin, the lateral line acts in a similar fashion to an array of differential pressure sensors. In an effort to enhance the situational and environmental awareness of marine vehicles, lateral-line-inspired pressure sensor arrays were developed to mimic the enhanced sensory capabilities observed in fish. Three flexible and waterproof pressure sensor arrays were fabricated for use as a surface-mounted ‘smart skin’ on marine vehicles. Two of the sensor arrays were based around the use of commercially available piezoresistive sensor dies, with innovative packaging schemes to allow for flexibility and underwater operation. The sensor arrays employed liquid crystal polymer and flexible printed circuit board substrates with metallic circuits and silicone encapsulation. The third sensor array employed a novel nanocomposite material set that allowed for the fabrication of a completely flexible sensor array. All three sensors were surface mounted on the curved hull of an autonomous kayak vehicle, and tested in both pool and reservoir environments. Results demonstrated that all three sensors were operational while deployed on the autonomous vehicle, and provided an accurate means for monitoring the vehicle dynamics.

  6. 3D-SSF: A bio-inspired approach for dynamic multi-subject clustering of white matter tracts.

    PubMed

    Chekir, A; Hassas, S; Descoteaux, M; Côté, M; Garyfallidis, E; Oulebsir-Boumghar, F

    2017-01-27

    There is growing interest in the study of white matter (WM) variation across subjects, and in particular the analysis of specific WM bundles, to better understand brain development and aging, as well as to improve early detection of some diseases. Several WM multi-subject clustering methods have been proposed to study WM bundles. These methods aim to overcome the complexity of the problem, which includes the huge size of the WM tractography datasets generated from multiple subjects, the existence of various streamlines with different positions, lengths and geometric forms, as well as the presence of outliers. However, the current methods are not sufficiently flexible to address all of these constraints. Here we introduce a novel dynamic multi-subject clustering framework based on a distributed multiagent implementation of the Multiple Species Flocking model, that we name 3D-Streamlines Stream Flocking (3D-SSF). Specifically, we consider streamlines from different subjects as data streams, and each streamline is assigned to a mobile agent. Agents work together following flocking rules in order to form a flock. Thanks to a similarity function, the agents that are associated with similar streamlines form a flock, whereas the agents that are associated with dissimilar streamlines are considered outliers. We use various experiments performed on noisy synthetic and real human brain data to validate 3D-SSF and demonstrate that it is more efficient and robust to outliers compared to other classical approaches. 3D-SSF is able to extract WM bundles at a population level, while considering WM variation across subjects and eliminating outlier streamlines.

  7. High-speed detection of DNA translocation in nanopipettes

    NASA Astrophysics Data System (ADS)

    Fraccari, Raquel L.; Ciccarella, Pietro; Bahrami, Azadeh; Carminati, Marco; Ferrari, Giorgio; Albrecht, Tim

    2016-03-01

    We present a high-speed electrical detection scheme based on a custom-designed CMOS amplifier which allows the analysis of DNA translocation in glass nanopipettes on a microsecond timescale. Translocation of different DNA lengths in KCl electrolyte provides a scaling factor of the DNA translocation time equal to p = 1.22, which is different from values observed previously with nanopipettes in LiCl electrolyte or with nanopores. Based on a theoretical model involving electrophoresis, hydrodynamics and surface friction, we show that the experimentally observed range of p-values may be the result of, or at least be affected by DNA adsorption and friction between the DNA and the substrate surface.We present a high-speed electrical detection scheme based on a custom-designed CMOS amplifier which allows the analysis of DNA translocation in glass nanopipettes on a microsecond timescale. Translocation of different DNA lengths in KCl electrolyte provides a scaling factor of the DNA translocation time equal to p = 1.22, which is different from values observed previously with nanopipettes in LiCl electrolyte or with nanopores. Based on a theoretical model involving electrophoresis, hydrodynamics and surface friction, we show that the experimentally observed range of p-values may be the result of, or at least be affected by DNA adsorption and friction between the DNA and the substrate surface. Electronic supplementary information (ESI) available: Gel electrophoresis confirming lengths and purity of DNA samples, comparison between Axopatch 200B and custom-built setup, comprehensive low-noise amplifier characterization, representative I-V curves of nanopipettes used, typical scatter plots of τ vs. peak amplitude for the four LDNA's used, table of most probable τ values, a comparison between different fitting models for the DNA translocation time distribution, further details on the stochastic numerical simulation of the scaling statistics and the derivation of the extended

  8. Online Wear Detection Using High-Speed Imaging.

    PubMed

    Soleimani, Seyfollah; Sukumaran, Jacob; Douterloigne, Koen; De Baets, Patrick; Philips, Wilfried

    2016-08-01

    In this paper, the change detection of a fast turning specimen is studied at micro-level, whereas the images are acquired without stopping the rotation. In the beginning of the experiment, the imaging system is focused on the surface of the specimen. By starting the rotation of the specimen, the diameter of the specimen changes due to wear, which results in de-focusing of the imaging system. So the amount of blur in the images can be used as evidence of the wear phenomenon. Due to the properties of the microscope, the corners of the frames were dark and had to be cropped. So, each micrograph reflects only a small area of the surface. Nevertheless, techniques like stitching of multiple images can provide a significant surface area for micro-level investigation which increases the effectiveness of analyzing the material modification. Based on the results computer vision could detect a change of about 1.2 µm in the diameter of the specimen. More important is that we could follow the same locations of the surface in the microscopic images despite blurring, uneven illumination, change on the surface, and relatively a high-speed rotation.

  9. Bio-Inspired Controllable Adhesive

    DTIC Science & Technology

    2008-12-01

    instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send...such as enabling microrobotics to explore extraterrestrial surfaces or harsh climates otherwise not accessible to man. Current work is also...11437. M. Sitti, 2003: Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics AIM 2003, Piscataway, NJ

  10. Bio-inspired dynamic robots

    NASA Astrophysics Data System (ADS)

    Rudolph, Alan S.; Wax, Steven G.; Christodoulou, Leo

    2003-09-01

    The unique performance of biological systems across a wide spectrum of phylogenetic species has historically provided inspirations for roboticists in new designs and fabrication of new robotic platforms. Of particular interest to a number of important applications is to create dynamic robots able to adapt to a change in their world, unplanned events that are sometimes unexpected, and sometimes unstable, harsh conditions. It is likely that the exploring dynamics in biological systems will continue to provide rich solutions to attaining robots capable of more complex tasks for this purpose. This is because the long-term design process of evolution utilizes a natural selection process that responds to such changes. Recently, there have been significant advances across a number of interdisciplinary efforts that have generated new capabilities in biorobotics. Whole body dynamics that capture the force dynamics and functional stability of legged systems over rough terrain have been elucidated and applied in legged robotic systems. Exploying the force dynamics of flapping winged insect flight has provided key discoveries and enabled the fabrication of new micro air vehicles. New classes of materials are being developed that emulate the ability of natural muscle, capturing the compliant and soft subtle movement and performance of biological appendages. In addition, classes of new multifunctional materials are being developed to enable the design of biorobotics with the structural and functional efficiency of living organisms. Optical flow and other sensors based on the principles of invertebrate vision have been implemented on robotic platforms for autonomous robotic guidance and control. These fundamental advances have resulted in the emergence of a new generation of bioinspired dynamic robots which show significant performance improvements in early prototype testing and that could someday be useful in a number of significant applications such as search and rescue and entertainment.

  11. Metabolic Control With the Bio-inspired Artificial Pancreas in Adults With Type 1 Diabetes: A 24-Hour Randomized Controlled Crossover Study.

    PubMed

    Reddy, Monika; Herrero, Pau; Sharkawy, Mohamed El; Pesl, Peter; Jugnee, Narvada; Pavitt, Darrell; Godsland, Ian F; Alberti, George; Toumazou, Christofer; Johnston, Desmond G; Georgiou, Pantelis; Oliver, Nick S

    2015-11-17

    The Bio-inspired Artificial Pancreas (BiAP) is a closed-loop insulin delivery system based on a mathematical model of beta-cell physiology and implemented in a microchip within a low-powered handheld device. We aimed to evaluate the safety and efficacy of the BiAP over 24 hours, followed by a substudy assessing the safety of the algorithm without and with partial meal announcement. Changes in lactate and 3-hydroxybutyrate concentrations were investigated for the first time during closed-loop. This is a prospective randomized controlled open-label crossover study. Participants were randomly assigned to attend either a 24-hour closed-loop visit connected to the BiAP system or a 24-hour open-loop visit (standard insulin pump therapy). The primary outcome was percentage time spent in target range (3.9-10 mmol/l) measured by sensor glucose. Secondary outcomes included percentage time in hypoglycemia (<3.9 mmol/l) and hyperglycemia (>10 mmol/l). Participants were invited to attend for an additional visit to assess the BiAP without and with partial meal announcements. A total of 12 adults with type 1 diabetes completed the study (58% female, mean [SD] age 45 [10] years, BMI 25 [4] kg/m(2), duration of diabetes 22 [12] years and HbA1c 7.4 [0.7]% [58 (8) mmol/mol]). The median (IQR) percentage time in target did not differ between closed-loop and open-loop (71% vs 66.9%, P = .9). Closed-loop reduced time spent in hypoglycemia from 17.9% to 3.0% (P < .01), but increased time was spent in hyperglycemia (10% vs 28.9%, P = .01). The percentage time in target was higher when all meals were announced during closed-loop compared to no or partial meal announcement (65.7% [53.6-80.5] vs 45.5% [38.2-68.3], P = .12). The BiAP is safe and achieved equivalent time in target as measured by sensor glucose, with improvement in hypoglycemia, when compared to standard pump therapy. © 2015 Diabetes Technology Society.

  12. A bio-inspired approach for the design of a multifunctional robotic end-effector customized for automated maintenance of a reconfigurable vibrating screen.

    PubMed

    Makinde, O A; Mpofu, K; Vrabic, R; Ramatsetse, B I

    2017-01-01

    The development of a robotic-driven maintenance solution capable of automatically maintaining reconfigurable vibrating screen (RVS) machine when utilized in dangerous and hazardous underground mining environment has called for the design of a multifunctional robotic end-effector capable of carrying out all the maintenance tasks on the RVS machine. In view of this, the paper presents a bio-inspired approach which unfolds the design of a novel multifunctional robotic end-effector embedded with mechanical and control mechanisms capable of automatically maintaining the RVS machine. To achieve this, therblig and morphological methodologies (which classifies the motions as well as the actions required by the robotic end-effector in carrying out RVS machine maintenance tasks), obtained from a detailed analogy of how human being (i.e. a machine maintenance manager) will carry out different maintenance tasks on the RVS machine, were used to obtain the maintenance objective functions or goals of the multifunctional robotic end-effector as well as the maintenance activity constraints of the RVS machine that must be adhered to by the multifunctional robotic end-effector during the machine maintenance. The results of the therblig and morphological analyses of five (5) different maintenance tasks capture and classify one hundred and thirty-four (134) repetitive motions and fifty-four (54) functions required in automating the maintenance tasks of the RVS machine. Based on these findings, a worm-gear mechanism embedded with fingers extruded with a hexagonal shaped heads capable of carrying out the "gripping and ungrasping" and "loosening and bolting" functions of the robotic end-effector and an electric cylinder actuator module capable of carrying out "unpinning and hammering" functions of the robotic end-effector were integrated together to produce the customized multifunctional robotic end-effector capable of automatically maintaining the RVS machine. The axial forces ([Formula

  13. A model of visual detection of angular speed for bees.

    PubMed

    Riabinina, Olena; Philippides, Andrew O

    2009-03-07

    A fly or bee's responses to widefield image motion depend on two basic parameters: temporal frequency and angular speed. Rotational optic flow is monitored using temporal frequency analysers, whereas translational optic flow seems to be monitored in terms of angular speed. Here we present a possible model of an angular speed detector which processes input signals through two parallel channels. The output of the detector is taken as the ratio of the two channels' outputs. This operation amplifies angular speed sensitivity and depresses temporal frequency tuning. We analyse the behaviour of two versions of this model with different filtering properties in response to a variety of input signals. We then embody the detector in a simulated agent's visual system and explore its behaviour in experiments on speed control and odometry. The latter leads us to suggest a new algorithm for optic flow driven odometry.

  14. Measuring the speed of dark: Detecting dark energy perturbations

    SciTech Connect

    Putter, Roland de; Huterer, Dragan; Linder, Eric V.

    2010-05-15

    The nature of dark energy can be probed not only through its equation of state but also through its microphysics, characterized by the sound speed of perturbations to the dark energy density and pressure. As the sound speed drops below the speed of light, dark energy inhomogeneities increase, affecting both cosmic microwave background and matter power spectra. We show that current data can put no significant constraints on the value of the sound speed when dark energy is purely a recent phenomenon, but can begin to show more interesting results for early dark energy models. For example, the best fit model for current data has a slight preference for dynamics [w(a){ne}-1], degrees of freedom distinct from quintessence (c{sub s{ne}}1), and early presence of dark energy [{Omega}{sub de}(a<<1){ne}0]. Future data may open a new window on dark energy by measuring its spatial as well as time variation.

  15. Traffic management: Assessing various countermeasures to improve detection failure of changes in speed limit signals.

    PubMed

    Harms, Ilse M; Brookhuis, Karel A

    2017-05-01

    Under certain circumstances, drivers fail to notice changes in electronic speed limits. A video-based study was performed to reveal which countermeasures would improve drivers' ability to detect changes in electronic speed limits. Countermeasures included leaving electronic signs blank prior to a speed limit change and adding motion signals by means of flashing amber lights or a wave. A video representing a motorway was shown repeatedly to 255 participants. They were instructed to press the space bar when detecting a change. The video was viewed 13 times before the speed limit changed. Results showed that leaving signs blank prior to the change instead of displaying speed limits continuously did not alter change detection, whereas flashers and waves eroded detection of the changed speed limit. This suggests that using flashers and waves to attract attention to electronic signs in fact decreases people's ability to process the information contained in the signs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Detecting and Blocking Network Attacks at Ultra High Speeds

    SciTech Connect

    Paxson, Vern

    2010-11-29

    Stateful, in-depth, in-line traffic analysis for intrusion detection and prevention has grown increasingly more difficult as the data rates of modern networks rise. One point in the design space for high-performance network analysis - pursued by a number of commercial products - is the use of sophisticated custom hardware. For very high-speed processing, such systems often cast the entire analysis process in ASICs. This project pursued a different architectural approach, which we term Shunting. Shunting marries a conceptually quite simple hardware device with an Intrusion Prevention System (IPS) running on commodity PC hardware. The overall design goal is was to keep the hardware both cheap and readily scalable to future higher speeds, yet also retain the unparalleled flexibility that running the main IPS analysis in a full general-computing environment provides. The Shunting architecture we developed uses a simple in-line hardware element that maintains several large state tables indexed by packet header fields, including IP/TCP flags, source and destination IP addresses, and connection tuples. The tables yield decision values the element makes on a packet-by-packet basis: forward the packet, drop it, or divert ('shunt') it through the IPS (the default). By manipulating table entries, the IPS can, on a fine-grained basis: (i) specify the traffic it wishes to examine, (ii) directly block malicious traffic, and (iii) 'cut through' traffic streams once it has had an opportunity to 'vet' them, or (iv) skip over large items within a stream before proceeding to further analyze it. For the Shunting architecture to yield benefits, it needs to operate in an environment for which the monitored network traffic has the property that - after proper vetting - much of it can be safely skipped. This property does not universally hold. For example, if a bank needs to examine all Web traffic involving its servers for regulatory compliance, then a monitor in front of one of the bank

  17. An infrared small target detection algorithm based on high-speed local contrast method

    NASA Astrophysics Data System (ADS)

    Cui, Zheng; Yang, Jingli; Jiang, Shouda; Li, Junbao

    2016-05-01

    Small-target detection in infrared imagery with a complex background is always an important task in remote sensing fields. It is important to improve the detection capabilities such as detection rate, false alarm rate, and speed. However, current algorithms usually improve one or two of the detection capabilities while sacrificing the other. In this letter, an Infrared (IR) small target detection algorithm with two layers inspired by Human Visual System (HVS) is proposed to balance those detection capabilities. The first layer uses high speed simplified local contrast method to select significant information. And the second layer uses machine learning classifier to separate targets from background clutters. Experimental results show the proposed algorithm pursue good performance in detection rate, false alarm rate and speed simultaneously.

  18. Adaptation to audiovisual asynchrony modulates the speeded detection of sound

    PubMed Central

    Navarra, Jordi; Hartcher-O'Brien, Jessica; Piazza, Elise; Spence, Charles

    2009-01-01

    The brain adapts to asynchronous audiovisual signals by reducing the subjective temporal lag between them. However, it is currently unclear which sensory signal (visual or auditory) shifts toward the other. According to the idea that the auditory system codes temporal information more precisely than the visual system, one should expect to find some temporal shift of vision toward audition (as in the temporal ventriloquism effect) as a result of adaptation to asynchronous audiovisual signals. Given that visual information gives a more exact estimate of the time of occurrence of distal events than auditory information (due to the fact that the time of arrival of visual information regarding an external event is always closer to the time at which this event occurred), the opposite result could also be expected. Here, we demonstrate that participants' speeded reaction times (RTs) to auditory (but, critically, not visual) stimuli are altered following adaptation to asynchronous audiovisual stimuli. After receiving “baseline” exposure to synchrony, participants were exposed either to auditory-lagging asynchrony (VA group) or to auditory-leading asynchrony (AV group). The results revealed that RTs to sounds became progressively faster (in the VA group) or slower (in the AV group) as participants' exposure to asynchrony increased, thus providing empirical evidence that speeded responses to sounds are influenced by exposure to audiovisual asynchrony. PMID:19458252

  19. High speed microscopy techniques for signaling detection in live cells

    NASA Astrophysics Data System (ADS)

    de Mauro, C.; Cecchetti, C. A.; Alfieri, D.; Borile, Giulia; Urbani, A.; Mongillo, M.; Pavone, F. S.

    2014-05-01

    Alterations in intracellular cardiomyocyte calcium handling have a key role in initiating and sustaining arrhythmias. Arrhythmogenic calcium leak from sarcoplasmic reticulum (SR) can be attributed to all means by which calcium exits the SR store in an abnormal fashion. Abnormal SR calcium exit maymanifest as intracellular Ca2+ sparks and/or Ca2+ waves. Ca2+ signaling in arrhythmogenesis has been mainly studied in isolated cardiomyocytes and given that the extracellular matrix influences both Ca2+ and membrane potential dynamics in the intact heart and underlies environmentally mediated changes, understanding how Ca2+ and voltage are regulated in the intact heart will represent a tremendous advancement in the understanding of arrhythmogenic mechanisms. Using novel high-speed multiphoton microscopy techinques, such as multispot and random access, we investigated animal models with inherited and acquired arrhythmias to assess the role of Ca2+ and voltage signals as arrhythmia triggers in cell and subcellular components of the intact heart and correlate these with electrophysiology.

  20. Optimal Intermittence in Search Strategies under Speed-Selective Target Detection

    NASA Astrophysics Data System (ADS)

    Campos, Daniel; Méndez, Vicenç; Bartumeus, Frederic

    2012-01-01

    Random search theory has been previously explored for both continuous and intermittent scanning modes with full target detection capacity. Here we present a new class of random search problems in which a single searcher performs flights of random velocities, the detection probability when it passes over a target location being conditioned to the searcher speed. As a result, target detection involves an N-passage process for which the mean search time is here analytically obtained through a renewal approximation. We apply the idea of speed-selective detection to random animal foraging since a fast movement is known to significantly degrade perception abilities in many animals. We show that speed-selective detection naturally introduces an optimal level of behavioral intermittence in order to solve the compromise between fast relocations and target detection capability.

  1. Vehicle speed detection based on gaussian mixture model using sequential of images

    NASA Astrophysics Data System (ADS)

    Setiyono, Budi; Ratna Sulistyaningrum, Dwi; Soetrisno; Fajriyah, Farah; Wahyu Wicaksono, Danang

    2017-09-01

    Intelligent Transportation System is one of the important components in the development of smart cities. Detection of vehicle speed on the highway is supporting the management of traffic engineering. The purpose of this study is to detect the speed of the moving vehicles using digital image processing. Our approach is as follows: The inputs are a sequence of frames, frame rate (fps) and ROI. The steps are following: First we separate foreground and background using Gaussian Mixture Model (GMM) in each frames. Then in each frame, we calculate the location of object and its centroid. Next we determine the speed by computing the movement of centroid in sequence of frames. In the calculation of speed, we only consider frames when the centroid is inside the predefined region of interest (ROI). Finally we transform the pixel displacement into a time unit of km/hour. Validation of the system is done by comparing the speed calculated manually and obtained by the system. The results of software testing can detect the speed of vehicles with the highest accuracy is 97.52% and the lowest accuracy is 77.41%. And the detection results of testing by using real video footage on the road is included with real speed of the vehicle.

  2. Incipient Fault Detection for Rolling Element Bearings under Varying Speed Conditions

    PubMed Central

    Xue, Lang; Li, Naipeng; Lei, Yaguo; Li, Ningbo

    2017-01-01

    Varying speed conditions bring a huge challenge to incipient fault detection of rolling element bearings because both the change of speed and faults could lead to the amplitude fluctuation of vibration signals. Effective detection methods need to be developed to eliminate the influence of speed variation. This paper proposes an incipient fault detection method for bearings under varying speed conditions. Firstly, relative residual (RR) features are extracted, which are insensitive to the varying speed conditions and are able to reflect the degradation trend of bearings. Then, a health indicator named selected negative log-likelihood probability (SNLLP) is constructed to fuse a feature set including RR features and non-dimensional features. Finally, based on the constructed SNLLP health indicator, a novel alarm trigger mechanism is designed to detect the incipient fault. The proposed method is demonstrated using vibration signals from bearing tests and industrial wind turbines. The results verify the effectiveness of the proposed method for incipient fault detection of rolling element bearings under varying speed conditions. PMID:28773035

  3. System for detecting an engine speed in a multi-cylinder internal combustion engine

    SciTech Connect

    Kinugasa, Y.

    1988-10-18

    This patent describes a system for detecting engine speed in a multi-cylinder internal combustion engine which has N cylinders provided with n sets of camshafts where n is at least two, each of the sets of camshafts being mechanically connected to a crank shaft of the engine, each of the sets of camshafts for separately operating respective valves of respective cylinders in the engine, and system comprising: timing means, cooperating with one of the camshafts, for issuing timing signals representing a rotational speed of the one camshaft; angle determining means for determining a determined angle substantially equal to (720/N) x n degrees; engine state detecting means for detecting whether the engine is in a state which the engine requires a shortened period for detection of the engine speed; modifying means for modifying a time of calculating the engine speed when the engine is in the state, by changing the determined angle; time detecting means, responsive to the timing signals from the timing means, for detecting a time required for a rotation of the camshaft by the determined angle and means for calculating an engine speed from the detected time.

  4. High-speed image acquisition technology in quality detection of workpiece surface

    NASA Astrophysics Data System (ADS)

    Wu, Kaihua; Jin, Zexuan; Wang, Wenjie; Chen, Nian

    2016-11-01

    High-speed image acquisition technology has a great significance to improve the effciency of the workpiece surface quality detection, image quality directly affects the final test results. Aiming at the high-speed image acquisition of workpiece surface quality online detection, a workpiece image high-speed online acquisition method was produced. A high-speed online image acquisition sequence was designed. The quantitative relationship between the positioning accuracy in the high speed online image acquisition, motion blur, exposure time and the speed of workpiece was analyzed. The effect between the vibration between transfer mechanism and workpiece was analyzed. Fast trigger was implemented by photoelectric sensor. The accurate positioning was implemented by using the high accuracy time delay module. The motion blur was controlled by reducing the exposure time. A high-speed image acquisition system was designed based on the high-speed image acquisition method. The positioning accuracy was less than 0.1 mm, and the motion blur was less than one pixel.

  5. Comparison of high speed imaging technique to laser vibrometry for detection of vibration information from objects

    NASA Astrophysics Data System (ADS)

    Paunescu, Gabriela; Lutzmann, Peter; Göhler, Benjamin; Wegner, Daniel

    2015-10-01

    The development of camera technology in recent years has made high speed imaging a reliable method in vibration and dynamic measurements. The passive recovery of vibration information from high speed video recordings was reported in several recent papers. A highly developed technique, involving decomposition of the input video into spatial subframes to compute local motion signals, allowed an accurate sound reconstruction. A simpler technique based on image matching for vibration measurement was also reported as efficient in extracting audio information from a silent high speed video. In this paper we investigate and discuss the sensitivity and the limitations of the high speed imaging technique for vibration detection in comparison to the well-established Doppler vibrometry technique. Experiments on the extension of the high speed imaging method to longer range applications are presented.

  6. Lightning detection network averts damage and speeds restoration

    SciTech Connect

    Bernstein, R.; Samm, R.; Cummins, K.; Pyle, R.; Tuel, J.

    1996-04-01

    This article describes new tools to track thunderstorms for advance warning, enabling utilities to reduce damage and shorten repair time. Based on an extensive survey of US power utilities, lightning is the single largest cause of outages on distribution and transmission systems in lightning prone areas. But now with the aid of a network of electromagnetic sensors, computer systems, and satellite communications, the National Lightning Detection Network{trademark} (NLDN) helps utilities prepare for storms. Utilities in the path of intense lightning storms can prepare for storms, alert repair crews, and arrange for help from neighboring utilities. Real-time lightning data has been shown to reduce maintenance costs by shortening the thunder-storm-watch period and to improve reliability by allowing prepositioning of repair crews. Also, using line failure history, designers can analyze the lightning and line historical data and prioritize line upgrades to protect them from future storms by employing additional protection. Documented evidence available from the NLDN system helps utilities prove the time and location of lightning strikes, quickly resolving insurance claims. This network is a product of two EPRI research projects (RP3669 and RP2741).

  7. Detection and classification of movement-related cortical potentials associated with task force and speed

    NASA Astrophysics Data System (ADS)

    Jochumsen, Mads; Niazi, Imran Khan; Mrachacz-Kersting, Natalie; Farina, Dario; Dremstrup, Kim

    2013-10-01

    Objective. In this study, the objective was to detect movement intentions and extract different levels of force and speed of the intended movement from scalp electroencephalography (EEG). We then estimated the performance of the closed loop system. Approach. Cued movements were detected from continuous EEG recordings using a template of the initial phase of the movement-related cortical potential in 12 healthy subjects. The temporal features, extracted from the movement intention, were classified with an optimized support vector machine. The system performance was evaluated when combining detection with classification. Main results. The system detected 81% of the movements and correctly classified 75 ± 9% and 80 ± 10% of these at the point of detection when varying the force and speed, respectively. When the detector was combined with the classifier, the system detected and correctly classified 64 ± 13% and 67 ± 13% of these movements. The system detected and incorrectly classified 21 ± 7% and 16 ± 9% of the movements. The movements were detected 317 ± 73 ms before the movement onset. Significance. The results indicate that it is possible to detect movement intentions with limited latencies, and extract and classify different levels of force and speed, which may be combined with assistive technologies for patient-driven neurorehabilitation.

  8. Age mitigates the correlation between cognitive processing speed and audio-visual asynchrony detection in speech.

    PubMed

    Alm, Magnus; Behne, Dawn

    2014-11-01

    Cognitive processing speed, hearing acuity, and audio-visual (AV) experience have been suggested to influence AV asynchrony detection. Whereas the influence of hearing acuity and AV experience have been explored to some extent, the influence of cognitive processing speed on perceived AV asynchrony has not been directly tested. Therefore, the current study investigates the relationship between cognitive processing speed and AV asynchrony detection in speech and, with hearing acuity controlled, assesses whether age-related AV experience mitigates the strength of this relationship. The cognitive processing speed and AV asynchrony detection by 20 young adults (20-30 years) and 20 middle-aged adults (50-60 years) were measured using auditory, visual and AV recognition reaction time tasks, and an AV synchrony judgment task. Strong correlations between audio, visual, and AV reaction times and AV synchrony window size were found for young adults, but not for middle-aged adults. These findings suggest that although cognitive processing speed influences AV asynchrony detection in speech, the strength of the relationship is seemingly reduced by AV experience.

  9. High-Speed Incoming Infrared Target Detection by Fusion of Spatial and Temporal Detectors

    PubMed Central

    Kim, Sungho

    2015-01-01

    This paper presents a method for detecting high-speed incoming targets by the fusion of spatial and temporal detectors to achieve a high detection rate for an active protection system (APS). The incoming targets have different image velocities according to the target-camera geometry. Therefore, single-target detector-based approaches, such as a 1D temporal filter, 2D spatial filter and 3D matched filter, cannot provide a high detection rate with moderate false alarms. The target speed variation was analyzed according to the incoming angle and target velocity. The speed of the distant target at the firing time is almost stationary and increases slowly. The speed varying targets are detected stably by fusing the spatial and temporal filters. The stationary target detector is activated by an almost zero temporal contrast filter (TCF) and identifies targets using a spatial filter called the modified mean subtraction filter (M-MSF). A small motion (sub-pixel velocity) target detector is activated by a small TCF value and finds targets using the same spatial filter. A large motion (pixel-velocity) target detector works when the TCF value is high. The final target detection is terminated by fusing the three detectors based on the threat priority. The experimental results of the various target sequences show that the proposed fusion-based target detector produces the highest detection rate with an acceptable false alarm rate. PMID:25815448

  10. High-speed incoming infrared target detection by fusion of spatial and temporal detectors.

    PubMed

    Kim, Sungho

    2015-03-25

    This paper presents a method for detecting high-speed incoming targets by the fusion of spatial and temporal detectors to achieve a high detection rate for an active protection system (APS). The incoming targets have different image velocities according to the target-camera geometry. Therefore, single-target detector-based approaches, such as a 1D temporal filter, 2D spatial filter and 3D matched filter, cannot provide a high detection rate with moderate false alarms. The target speed variation was analyzed according to the incoming angle and target velocity. The speed of the distant target at the firing time is almost stationary and increases slowly. The speed varying targets are detected stably by fusing the spatial and temporal filters. The stationary target detector is activated by an almost zero temporal contrast filter (TCF) and identifies targets using a spatial filter called the modified mean subtraction filter (M-MSF). A small motion (sub-pixel velocity) target detector is activated by a small TCF value and finds targets using the same spatial filter. A large motion (pixel-velocity) target detector works when the TCF value is high. The final target detection is terminated by fusing the three detectors based on the threat priority. The experimental results of the various target sequences show that the proposed fusion-based target detector produces the highest detection rate with an acceptable false alarm rate.

  11. Derivation of the stress-strain behavior of the constituents of bio-inspired layered TiO2/PE-nanocomposites by inverse modeling based on FE-simulations of nanoindentation test.

    PubMed

    Lasko, G; Schäfer, I; Burghard, Z; Bill, J; Schmauder, S; Weber, U; Galler, D

    2013-03-01

    Owing to the apparent simple morphology and peculiar properties, nacre, an iridescent layer, coating of the inner part of mollusk shells, has attracted considerable attention of biologists, material scientists and engineers. The basic structural motif in nacre is the assembly of oriented plate-like aragonite crystals with a 'brick' (CaCO3 crystals) and 'mortar' (macromolecular components like proteins) organization. Many scientific researchers recognize that such structures are associated with the excellent mechanical properties of nacre and biomimetic strategies have been proposed to produce new layered nanocomposites. During the past years, increasing efforts have been devoted towards exploiting nacre's structural design principle in the synthesis of novel nanocomposites. However, the direct transfer of nacre's architecture to an artificial inorganic material has not been achieved yet. In the present contribution we report on laminated architecture, composed of the inorganic oxide (TiO2) and organic polyelectrolyte (PE) layers which fulfill this task. To get a better insight and understanding concerning the mechanical behaviour of bio-inspired layered materials consisting of oxide ceramics and organic layers, the elastic-plastic properties of titanium dioxide and organic polyelectrolyte phase are determined via FE-modelling of the nanoindentation process. With the use of inverse modeling and based on numerical models which are applied on the microscopic scale, the material properties of the constituents are derived.

  12. Dark energy with non-adiabatic sound speed: initial conditions and detectability

    SciTech Connect

    Ballesteros, Guillermo; Lesgourgues, Julien E-mail: julien.lesgourgues@cern.ch

    2010-10-01

    Assuming that the universe contains a dark energy fluid with a constant linear equation of state and a constant sound speed, we study the prospects of detecting dark energy perturbations using CMB data from Planck, cross-correlated with galaxy distribution maps from a survey like LSST. We update previous estimates by carrying a full exploration of the mock data likelihood for key fiducial models. We find that it will only be possible to exclude values of the sound speed very close to zero, while Planck data alone is not powerful enough for achieving any detection, even with lensing extraction. We also discuss the issue of initial conditions for dark energy perturbations in the radiation and matter epochs, generalizing the usual adiabatic conditions to include the sound speed effect. However, for most purposes, the existence of attractor solutions renders the perturbation evolution nearly independent of these initial conditions.

  13. Shuttlecock detection system for fully-autonomous badminton robot with two high-speed video cameras

    NASA Astrophysics Data System (ADS)

    Masunari, T.; Yamagami, K.; Mizuno, M.; Une, S.; Uotani, M.; Kanematsu, T.; Demachi, K.; Sano, S.; Nakamura, Y.; Suzuki, S.

    2017-02-01

    Two high-speed video cameras are successfully used to detect the motion of a flying shuttlecock of badminton. The shuttlecock detection system is applied to badminton robots that play badminton fully autonomously. The detection system measures the three dimensional position and velocity of a flying shuttlecock, and predicts the position where the shuttlecock falls to the ground. The badminton robot moves quickly to the position where the shuttle-cock falls to, and hits the shuttlecock back into the opponent's side of the court. In the game of badminton, there is a large audience, and some of them move behind a flying shuttlecock, which are a kind of background noise and makes it difficult to detect the motion of the shuttlecock. The present study demonstrates that such noises can be eliminated by the method of stereo imaging with two high-speed cameras.

  14. High Speed All Optical Nyquist Signal Generation and Full-band Coherent Detection

    PubMed Central

    Zhang, Junwen; Yu, Jianjun; Fang, Yuan; Chi, Nan

    2014-01-01

    Spectrum efficient data transmission is of key interest for high capacity optical communication systems considering the limited available bandwidth. Transmission of the high speed signal with higher-order modulation formats within the Nyquist bandwidth using coherent detection brings attractive performance advantages. However, high speed Nyquist signal generation with high order modulation formats is challenging. Electrical Nyquist pulse generation is restricted by the limited sampling rate and processor capacities of digital-to-analog convertor devices, while the optical Nyquist signals can provide a much higher symbol rate using time domain multiplexing method. However, most optical Nyquist signals are based on direct detection with simple modulation formats. Here we report the first experimental demonstration of high speed all optical Nyquist signal generation based on Sinc-shaped pulse generation and time-division multiplexing with high level modulation format and full-band coherent detection. Our experiments demonstrate a highly flexible and compatible all optical high speed Nyquist signal generation and detection scheme for future fiber communication systems. PMID:25142269

  15. High-Speed Observer: Automated Streak Detection for the Aerospike Engine

    NASA Technical Reports Server (NTRS)

    Rieckhoff, T. J.; Covan, M. A.; OFarrell, J. M.

    2001-01-01

    A high-frame-rate digital video camera, installed on test stands at Stennis Space Center (SSC), has been used to capture images of the aerospike engine plume during test. These plume images are processed in real time to detect and differentiate anomalous plume events. Results indicate that the High-Speed Observer (HSO) system can detect anomalous plume streaking events that are indicative of aerospike engine malfunction.

  16. Helicopter main-rotor speed effects: A comparison of predicted ranges of detection from the aural detection program ICHIN and the electronic detection program ARCAS

    NASA Technical Reports Server (NTRS)

    Mueller, Arnold W.; Smith, Charles D.

    1991-01-01

    NASA LaRC personnel have conducted a strudy of the predicted acoustic detection ranges associated with reduced helicopter main rotor speeds. This was accomplished by providing identical input information to both the aural detection program ICHIN 6, (I Can Hear It Now, version 6) and the electronic acoustic detection program ARCAS (Assessment of Rotorcraft Detection by Acoustics Sensing). In this study, it was concluded that reducing the main rotor speed of the helicopter by 27 percent reduced both the predicted aural and electronic detection ranges by approximately 50 percent. Additionally, ARCAS was observed to function better with narrowband spectral input than with one-third octave band spectral inputs and the predicted electronic range of acoustic detection is greater than the predicted aural detection range.

  17. Sensorless speed detection of squirrel-cage induction machines using stator neutral point voltage harmonics

    NASA Astrophysics Data System (ADS)

    Petrovic, Goran; Kilic, Tomislav; Terzic, Bozo

    2009-04-01

    In this paper a sensorless speed detection method of induction squirrel-cage machines is presented. This method is based on frequency determination of the stator neutral point voltage primary slot harmonic, which is dependent on rotor speed. In order to prove method in steady state and dynamic conditions the simulation and experimental study was carried out. For theoretical investigation the mathematical model of squirrel cage induction machines, which takes into consideration actual geometry and windings layout, is used. Speed-related harmonics that arise from rotor slotting are analyzed using digital signal processing and DFT algorithm with Hanning window. The performance of the method is demonstrated over a wide range of load conditions.

  18. Detecting Temporal Change in Dynamic Sounds: On the Role of Stimulus Duration, Speed, and Emotion

    PubMed Central

    Schirmer, Annett; Escoffier, Nicolas; Cheng, Xiaoqin; Feng, Yenju; Penney, Trevor B.

    2016-01-01

    For dynamic sounds, such as vocal expressions, duration often varies alongside speed. Compared to longer sounds, shorter sounds unfold more quickly. Here, we asked whether listeners implicitly use this confound when representing temporal regularities in their environment. In addition, we explored the role of emotions in this process. Using a mismatch negativity (MMN) paradigm, we asked participants to watch a silent movie while passively listening to a stream of task-irrelevant sounds. In Experiment 1, one surprised and one neutral vocalization were compressed and stretched to create stimuli of 378 and 600 ms duration. Stimuli were presented in four blocks, two of which used surprised and two of which used neutral expressions. In one surprised and one neutral block, short and long stimuli served as standards and deviants, respectively. In the other two blocks, the assignment of standards and deviants was reversed. We observed a climbing MMN-like negativity shortly after deviant onset, which suggests that listeners implicitly track sound speed and detect speed changes. Additionally, this MMN-like effect emerged earlier and was larger for long than short deviants, suggesting greater sensitivity to duration increments or slowing down than to decrements or speeding up. Last, deviance detection was facilitated in surprised relative to neutral blocks, indicating that emotion enhances temporal processing. Experiment 2 was comparable to Experiment 1 with the exception that sounds were spectrally rotated to remove vocal emotional content. This abolished the emotional processing benefit, but preserved the other effects. Together, these results provide insights into listener sensitivity to sound speed and raise the possibility that speed biases duration judgements implicitly in a feed-forward manner. Moreover, this bias may be amplified for duration increments relative to decrements and within an emotional relative to a neutral stimulus context. PMID:26793161

  19. Detection of changes in the fractal scaling of heart rate and speed in a marathon race

    NASA Astrophysics Data System (ADS)

    Billat, Véronique L.; Mille-Hamard, Laurence; Meyer, Yves; Wesfreid, Eva

    2009-09-01

    The aim of this study was to detect changes in the fractal scaling behavior of heart rate and speed fluctuations when the average runner’s speed decreased with fatigue. Scaling analysis in heart rate (HR) and speed (S) dynamics of marathon runners was performed using the detrended fluctuation analysis (DFA) and the wavelet based structure function. We considered both: the short-range ( α1) and the long-range ( α2) scaling exponents for the DFA method separated by a change-point, n0=64=5.3 min (box length), the same for all the races. The variability of HR and S decreased in the second part of the marathon race, while the cardiac cost time series (i.e. the number of cardiac beats per meter) increased due to the decreasing speed behavior. The scaling exponents α1 and α2 of HR and α1 of S, increased during the race ( p<0.01) as did the HR wavelet scaling exponent ( τ). These findings provide evidence of the significant effect of fatigue induced by long exercise on the heart rate and speed variability.

  20. Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering

    PubMed Central

    Kelley, Shana O.; Mirkin, Chad A.; Walt, David R.; Ismagilov, Rustem F.; Toner, Mehmet; Sargent, Edward H.

    2015-01-01

    Rapid progress in identifying disease biomarkers has increased the importance of creating high-performance detection technologies. Over the last decade, the design of many detection platforms has focused on either the nano or micro length scale. Here, we review recent strategies that combine nano- and microscale materials and devices to produce large improvements in detection sensitivity, speed and accuracy, allowing previously undetectable biomarkers to be identified in clinical samples. Microsensors that incorporate nanoscale features can now rapidly detect disease-related nucleic acids expressed in patient samples. New microdevices that separate large clinical samples into nanocompartments allow precise quantitation of analytes, and microfluidic systems that utilize nanoscale binding events can detect rare cancer cells in the bloodstream more accurately than before. These advances will lead to faster and more reliable clinical diagnostic devices. PMID:25466541

  1. Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering

    NASA Astrophysics Data System (ADS)

    Kelley, Shana O.; Mirkin, Chad A.; Walt, David R.; Ismagilov, Rustem F.; Toner, Mehmet; Sargent, Edward H.

    2014-12-01

    Rapid progress in identifying disease biomarkers has increased the importance of creating high-performance detection technologies. Over the last decade, the design of many detection platforms has focused on either the nano or micro length scale. Here, we review recent strategies that combine nano- and microscale materials and devices to produce large improvements in detection sensitivity, speed and accuracy, allowing previously undetectable biomarkers to be identified in clinical samples. Microsensors that incorporate nanoscale features can now rapidly detect disease-related nucleic acids expressed in patient samples. New microdevices that separate large clinical samples into nanocompartments allow precise quantitation of analytes, and microfluidic systems that utilize nanoscale binding events can detect rare cancer cells in the bloodstream more accurately than before. These advances will lead to faster and more reliable clinical diagnostic devices.

  2. A feasibility study of damage detection in beams using high-speed camera (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wan, Chao; Yuan, Fuh-Gwo

    2017-04-01

    In this paper a method for damage detection in beam structures using high-speed camera is presented. Traditional methods of damage detection in structures typically involve contact (i.e., piezoelectric sensor or accelerometer) or non-contact sensors (i.e., laser vibrometer) which can be costly and time consuming to inspect an entire structure. With the popularity of the digital camera and the development of computer vision technology, video cameras offer a viable capability of measurement including higher spatial resolution, remote sensing and low-cost. In the study, a damage detection method based on the high-speed camera was proposed. The system setup comprises a high-speed camera and a line-laser which can capture the out-of-plane displacement of a cantilever beam. The cantilever beam with an artificial crack was excited and the vibration process was recorded by the camera. A methodology called motion magnification, which can amplify subtle motions in a video is used for modal identification of the beam. A finite element model was used for validation of the proposed method. Suggestions for applications of this methodology and challenges in future work will be discussed.

  3. Physical activity monitoring: addressing the difficulties of accurately detecting slow walking speeds.

    PubMed

    Harrison, Samantha L; Horton, Elizabeth J; Smith, Robert; Sandland, Carolyn J; Steiner, Michael C; Morgan, Mike D L; Singh, Sally J

    2013-01-01

    To test the accuracy of a multi-sensor activity monitor (SWM) in detecting slow walking speeds in patients with chronic obstructive pulmonary disease (COPD). Concerns have been expressed regarding the use of pedometers in patient populations. Although activity monitors are more sophisticated devices, their accuracy at detecting slow walking speeds common in patients with COPD has yet to be proven. A prospective observational study design was employed. An incremental shuttle walk test (ISWT) was completed by 57 patients with COPD wearing an SWM. The ISWT was repeated by 20 patients wearing the same SWM. Differences were identified between metabolic equivalents (METS) and between step-count across five levels of the ISWT (p < 0.001). Good within monitor reproducibility between two ISWT was identified for total energy expenditure and step-count (p < 0.001). The SWM is able to detect slow (standardized) speeds of walking and is an acceptable method for measuring physical activity in individuals disabled by COPD. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Blowing Snow Detection and Speed Estimation in Antarctica Using ZY-3 Multi-view Satellite Images

    NASA Astrophysics Data System (ADS)

    Liu, S.; Tong, X.; Wu, C.; Li, R.; Xie, H.

    2016-12-01

    The phenomenon of uplift and horizontal transport of snow by wind, referred to as blowing snow, occurs frequently in Antarctica in winter (Palm et al., 2011). In addition to its adverse effects on transportation and life, blowing snow is important in many aspects including surface mass balance (Dery and Yau, 2002) and water budget in high-latitude regions. It also brings in uncertainty for mass balance estimation (Scarchilli et al., 2010). In our study, a stereo photogrammetric technique is proposed for the detection of the blowing snow and estimation of its speed using multi-view stereo images acquired by the ZY-3 satellite, which is the first civilian high-resolution stereo mapping satellite of China. ZY-3 is equipped with a three-line-scanning panchromatic camera system, recording images at a resolution of 2.1m at nadir and 3.5m at forward & backward directions. The three-line-scanning camera acquires three-fold repeated images with a time lag of 30 seconds between the different viewing angles. Thus it has the capability of detecting fast moving objects on ground, such as blowing snow. The detection and speed estimation of the blowing snow is implemented through a series of processing techniques including ortho-rectification of multi-view images, detection and height estimation of blowing snow billows, interactive extraction of blowing snow features, and speed estimation. An experiment using a strip of ZY-3 multi-view images covering an area of about 800 km×50 km in East Antarctica for blowing snow detection and speed estimation has validated the proposed method. The results show that the height of the detected blowing snow billows reached 130 m and the average horizontal speed was 13m/s, which are consistent with the reported characteristics of blowing snow events. References Palm, S. P., Y. Yang, J. D. Spinhirne, and A. Marshak (2011), Satellite remote sensing of blowing snow properties over Antarctica, J. Geophys. Res., 116, D16123. Déry, S. J., and M. K

  5. The design of an analog module for sensor adaptation to changes in ambient light: a bio-inspired solution - biomed 2009.

    PubMed

    Dean, Brian; Wright, Cameron H G; Barrett, Steven F

    2009-01-01

    Fly inspired vision sensors have been shown to have many interesting qualities such as hyperacuity (or an ability to achieve movement resolution beyond the theoretical limit), extreme sensitivity to motion, and (through software simulation) image edge extraction, motion detection, and orientation and location of a line. Many of these qualities are beyond the ability of traditional computer vision sensors such as charge-coupled device (CCD) arrays. To obtain these characteristics, a prototype fly inspired sensor has been built and tested in a laboratory environment and shows promise. Any sophisticated visual system, whether man made or natural, must adequately adapt to lighting conditions, therefore light adaptation is a vital milestone in getting the afore mentioned prototype working in real-world conditions. By studying how the common house fly, Musca domestica, achieves this adaptation it was possible to design an analog solution to this problem. The solution utilizes instrumentation amplifiers and an additional sensor to sense the ambient light. This paper will examine this circuitry in greater detail and will explore the characterization and limitations of this solution.

  6. High speed detection of R-R intervals for universal Holter recordings.

    PubMed

    Sekioka, K; Takaba, H; Nakano, T

    1997-01-01

    Heart rate variability (HRV) has been gaining popularity for its potential to estimate the autonomic nerve function and prognosis of patients with cardiovascular diseases. Holter recordings have been used for the measurement of R-R intervals in out-patients and for the estimation of circadian variations of HRV. However, when the manufacturer of the Holter tape recorder is not the same as that of the Holter analyzer a correction of the tape speed error for the accurate measurement of the R-R intervals is abandoned. The simultaneous assessment of additional physical parameters recorded on the Holter recorder and R-R interval is not possible with commercial software. To overcome these problems, we developed a system to detect R-R intervals at the playback speed of a Holter analyzer 500 times real-time with the correction of tape speed error from a system clock recorded on the Holter tape. High- and low-pass filter processed ECG signals and a comparator provided digital signals representing the R-R intervals. The R-R intervals and system clock intervals (tape speed) were measured simultaneously by interrupt-driven software, using timer-counters in a personal computer. The measured R-R intervals were corrected with the system clock intervals. The power spectra of the tape speed error showed that tape speed error significantly affects the power spectra of HRV, if not corrected. This method is applicable to Holter tape recorders of any manufacturer. This system also enables the simultaneous measurement of HRV and other physical parameters to evaluate their relations.

  7. Jacket-free stir bar sorptive extraction with bio-inspired polydopamine-functionalized immobilization of cross-linked polymer on stainless steel wire.

    PubMed

    Zhang, Zixin; Zhang, Wenpeng; Bao, Tao; Chen, Zilin

    2015-08-14

    Stainless steel wire (SSW) is a good substrate for stir bar sorptive extraction (SBSE). However, it is still a challenge to immobilize commonly used cross-linked polymers onto SSW. In this work, we present a new approach for immobilization of the cross-linked organic polymer onto SSW for jacket-free SBSE. A dopamine derivative was firstly synthesized; by introducing a mussel-inspired polydopamine process, a stable coating layer was finally generated on the surface of SSW. Secondly, the cross-linked polymer was synthesized on the polydopamine-modified SSW by using acetonitrile as the porogen, acrylamide (AA) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linker and 2,2'-azobis (2-methylpropionitrile) as the initiator. A diluted pre-polymerization solution was carefully prepared to generate a thin layer of the polymer. The prepared poly(EGDMA-AA)-modified stir bar showed high stability and good tolerance toward stirring, ultrasonication, organic solvents, and strong acidic and basic conditions. Morphology and structure characterization of coatings were performed by scanning electron microscopy and Fourier transform infrared spectra, respectively. The prepared poly(EGDMA-AA)-modified stir bar showed great extraction efficiency toward protoberberines, with enrichment factors of 19-42. An SBSE-HPLC method was also developed for quantitative analysis of protoberberines. The method showed low limits of detection (0.06-0.15 ng mL(-1)), wide linear range (0.5-400 ng mL(-1)), good linearity (R≥0.9980) and good reproducibility (RSD≤3.60% for intra-day, RSD≤4.73% for inter-day). The developed method has been successfully applied to determine protoberberines in herb and rat plasma samples, with recoveries of 88.53-114.61%. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Quantum witness of high-speed low-noise single-photon detection.

    PubMed

    Zhao, Lin; Huang, Kun; Liang, Yan; Chen, Jie; Shi, Xueshun; Wu, E; Zeng, Heping

    2015-12-14

    We demonstrate high-speed and low-noise near-infrared single-photon detection by using a capacitance balancing circuit to achieve a high spike noise suppression for an InGaAs/InP avalanche photodiode. The single-photon detector could operate at a tunable gate repetition rate from 10 to 60 MHz. A peak detection efficiency of 34% has been achieved with a dark count rate of 9 × 10⁻³ per gate when the detection window was set to 1 ns. Additionally, quantum detector tomography has also been performed at 60 MHz of repetition rate and for the detection window of 1 ns, enabling to witness the quantum features of the detector with the help of a negative Wigner function. By varying the bias voltage of the detector, we further demonstrated a transition from the full-quantum to semi-classical regime.

  9. Effect of chewing speed on the detection of a foreign object in food.

    PubMed

    Paphangkorakit, J; Ladsena, V; Rukyuttithamkul, T; Khamtad, T

    2016-03-01

    Accidentally biting hard on a piece of hard foreign object in food is among the causes of tooth fracturing and could be associated with oral sensibility. This study has investigated the effect of chewing speed on the ability to detect a foreign object in food in human. Fourteen healthy subjects were asked to randomly chew one of 10 cooked rice balls, five of which containing a foreign object made from a tiny uncooked rice grain, until they detected the rice grain. Each subject chewed the test foods both at 50 (slow) and 100 (fast) chews min(-1). The accuracy of detection and the number of chews before detection (CBD) were recorded and compared between the two chewing speeds using paired t-tests. The results showed that almost all subjects detected the foreign object by biting. The accuracy of detection was more than 90% and not significantly different between slow and fast chewing but the mean CBD in slow chewing (11·7 ± 1·3 chews) was significantly different from that in fast chewing (20·7 ± 1·9 chews; P < 0·001). The study showed that slow chewers required less number of chews before a foreign object in food could be detected and was, presumably, more effective in detecting the object compared to fast chewers. If each chew bears equal probability of teeth encountering the foreign object, slow chewing might also reduce the chance of accidentally biting hard on the foreign object and fracturing the tooth. © 2015 John Wiley & Sons Ltd.

  10. Can the speed of sound be used for detecting critical states of fluid mixtures?

    PubMed

    Reis, João Carlos R; Ribeiro, Nuno; Aguiar-Ricardo, Ana

    2006-01-12

    The phenomenology of sound speeds in fluid mixtures is examined near and across critical lines. Using literature data for binary and ternary mixtures, it is shown that the ultrasound speed along an isotherm-isopleth passes through a minimum value in the form of an angular (or V-shaped) point at critical states. The relation between critical and pseudo-critical coordinates is discussed. For nonazeotropic fixed-composition fluid mixtures, pseudo-critical temperatures and pressures are found to be lower than the corresponding critical temperatures and pressures. The analysis shows that unstable pseudo-critical states cannot be detected using acoustic methods. The thermodynamic link between sound speeds and isochoric heat capacities is formulated and discussed in terms of p-Vm-T derivatives capable of being calculated using cubic equations of state. Based on the Griffiths-Wheeler theory of critical phenomena, a new specific link between critical sound speeds and critical isochoric heat capacities is deduced in terms of the rate of change of critical pressures and critical temperatures along the p-T projection of the critical locus of binary fluid mixtures. It is shown that the latter link can be used to obtain estimates of critical isochoric heat capacities from the experimental determination of critical speeds of sound. The applicability domain of the new link does not include binary systems at compositions along the critical line for which the rate of change in pressure with temperature changes sign. The new equation is combined with thermodynamic data to provide approximate numerical estimates for the speed of sound in two mixtures of carbon dioxide and ethane at different temperatures along their critical isochores. A clear decrease in the sound speed is found at critical points. A similar behavior is suggested by available critical heat capacity data for several binary fluid mixtures. Using an acoustic technique, the critical temperature and pressure were

  11. Transient Directed Motions of GABAA Receptors in Growth Cones Detected by a Speed Correlation Index

    PubMed Central

    Bouzigues, Cédric; Dahan, Maxime

    2007-01-01

    Single-molecule tracking of membrane proteins has become an important tool for investigating dynamic processes in live cells, such as cell signaling, membrane compartmentation or trafficking. The extraction of relevant parameters, such as interaction times between molecular partners or confinement-zone sizes, from the trajectories of single molecules requires appropriate statistical methods. Here we report a new tool, the speed correlation index, designed to detect transient periods of directed motion within trajectories of diffusing molecules. The ability to detect such events in a wide range of biologically relevant parameter values (speed, diffusion coefficient, and durations of the directed period) was first established on simulated data. The method was next applied to analyze the trajectories of quantum-dot-labeled GABAA receptors in nerve growth cones. The use of the speed correlation index revealed that the receptors had a “conveyor belt” type of motion due to temporary interactions (∼4.0 s) between the receptors and the microtubules, leading to an average directed motion (velocity ∼0.3 μm s−1) in the growth-cone membrane. Our observations point to the possibility of a cytoskeleton-dependent redistribution of the sensing molecules in the membrane, which could play a role in the modulation of the cell response to external signals. PMID:17071660

  12. Time-Gated Orthogonal Scanning Automated Microscopy (OSAM) for High-speed Cell Detection and Analysis

    NASA Astrophysics Data System (ADS)

    Lu, Yiqing; Xi, Peng; Piper, James A.; Huo, Yujing; Jin, Dayong

    2012-11-01

    We report a new development of orthogonal scanning automated microscopy (OSAM) incorporating time-gated detection to locate rare-event organisms regardless of autofluorescent background. The necessity of using long-lifetime (hundreds of microseconds) luminescent biolabels for time-gated detection implies long integration (dwell) time, resulting in slow scan speed. However, here we achieve high scan speed using a new 2-step orthogonal scanning strategy to realise on-the-fly time-gated detection and precise location of 1-μm lanthanide-doped microspheres with signal-to-background ratio of 8.9. This enables analysis of a 15 mm × 15 mm slide area in only 3.3 minutes. We demonstrate that detection of only a few hundred photoelectrons within 100 μs is sufficient to distinguish a target event in a prototype system using ultraviolet LED excitation. Cytometric analysis of lanthanide labelled Giardia cysts achieved a signal-to-background ratio of two orders of magnitude. Results suggest that time-gated OSAM represents a new opportunity for high-throughput background-free biosensing applications.

  13. Supercontinuum high-speed cavity-enhanced absorption spectroscopy for sensitive multispecies detection.

    PubMed

    Werblinski, Thomas; Lämmlein, Bastian; Huber, Franz J T; Zigan, Lars; Will, Stefan

    2016-05-15

    Cavity-enhanced absorption spectroscopy is promising for many applications requiring a very high concentration sensitivity but often accompanied by low temporal resolution. In this Letter, we demonstrate a broadband cavity-enhanced absorption spectrometer capable of detection rates of up to 50 kHz, based on a spatially coherent supercontinuum (SC) light source and an in-house-built, high-speed near-infrared spectrograph. The SC spectrometer allows for the simultaneous quantitative detection of CO2, C2H2, and H2O within a spectral range from 1420 to 1570 nm. Using cavity mirrors with a specified reflectivity of R=98.0±0.3% a minimal spectrally averaged absorption coefficient of αmin=1·10-5  cm-1 can be detected at a repetition rate of 50 kHz.

  14. Nonimaging speckle interferometry for high-speed nanometer-scale position detection.

    PubMed

    van Putten, E G; Lagendijk, A; Mosk, A P

    2012-03-15

    We experimentally demonstrate a nonimaging approach to displacement measurement for complex scattering materials. By spatially controlling the wavefront of the light that incidents on the material, we concentrate the scattered light in a focus on a designated position. This wavefront acts as a unique optical fingerprint that enables precise position detection of the illuminated material by simply measuring the intensity in the focus. By combining two fingerprints we demonstrate position detection along one in-plane dimension with a displacement resolution of 2.1 nm. As our approach does not require an image of the scattered field, it is possible to employ fast nonimaging detectors to enable high-speed position detection of scattering materials.

  15. Appraising the role of visual threat in speeded detection and classification tasks

    PubMed Central

    Yue, Yue; Quinlan, Philip T.

    2015-01-01

    This research examines the speeded detection and, separately, classification of photographic images of animals. In the initial experiments each display contained various images of animals and, in the detection task, participants responded whether a display contained only images of birds or also included an oddball target image of a cat or dog. In the classification search task, a target was always present and participants classified this as an image of a cat or a dog. Half of the target images depicted the animal in a non-threatening state and the remaining half images depicted the animal in a threatening state. A complex pattern of effects emerged showing some evidence of more efficient detection of a threatening than non-threatening target. No corresponding pattern emerged in the data for the classification task. Next the tasks were repeated when the stimuli were more carefully matched in terms of general pose and salience of facial features. Now the effects in the detection task were reduced but more consistent than before. Threatening targets were more readily detected than non-threatening targets. In addition, non-threatening targets were more readily classified than threatening targets. The nature of these effects appears to reflect decisional/response mechanisms and not search processes. The performance benefit for the non-threatening images was replicated in a final classification task in which, on each trial, only a single peripheral image was presented. The results demonstrate that a number of different affective and perceptual factors can influence performance in speeded search tasks and these may well be confounded with the variation in threat content of the experimental stimuli. The evidence for the automatic detection of visual threat remains illusive. PMID:26136696

  16. Bio-Inspired Innovation and National Security

    DTIC Science & Technology

    2010-01-01

    weaponization of botulinum toxin, anthrax, and the carcinogen aflatoxin , and potential use of a variety of delivery systems including aerial bombs and...salts • long reaction time • high enzyme demand • high energy demand for the cellulose grinding .35, 36 Flow-through acid pretreatment. Most of the

  17. Bio-inspired Computing for Robots

    NASA Technical Reports Server (NTRS)

    Laufenberg, Larry

    2003-01-01

    Living creatures may provide algorithms to enable active sensing/control systems in robots. Active sensing could enable planetary rovers to feel their way in unknown environments. The surface of Jupiter's moon Europa consists of fractured ice over a liquid sea that may contain microbes similar to those on Earth. To explore such extreme environments, NASA needs robots that autonomously survive, navigate, and gather scientific data. They will be too far away for guidance from Earth. They must sense their environment and control their own movements to avoid obstacles or investigate a science opportunity. To meet this challenge, CICT's Information Technology Strategic Research (ITSR) Project is funding neurobiologists at NASA's Jet Propulsion Laboratory (JPL) and selected universities to search for biologically inspired algorithms that enable robust active sensing and control for exploratory robots. Sources for these algorithms are living creatures, including rats and electric fish.

  18. Novel Bio-inspired Aquatic Flow Sensors

    DTIC Science & Technology

    2012-06-18

    fabricate materials, grow food , harvest energy, store and utilize information, and cure ourselves [1]. From the aerodynamic design of airplanes to...include photoreception (sight), mechanoreception (touch, hearing, and balance), and chemoreception ( smell and taste) [7]. For instance, our ability...capable of feeling, hearing, smelling , and tasting stimuli around them through a variety of hair-like receptors. Through pore-bearing chemoreceptors

  19. Bio-Inspired Ceramic/Carbon Composites

    DTIC Science & Technology

    2013-05-01

    the links between CNTs and the ceramic when the CNT is previously synthesized. Spark Plasma Sintering of SiC/CNTs composites Composites containing...5% of CVD MWCNTs and 95% of SiC nanoparticles (size  100nm) were prepared by Spark Plasma Sintering under different conditions. Table I shows the...additives when necessary (additives were added to help to improve the sintering increasing the density values), and the mixture continuously stirred until

  20. A Bio-Inspired Spatial Patterning Circuit

    PubMed Central

    Chen, Kai-Yuan; Joe, Danial J.; Shealy, James B.; Land, Bruce R.; Shen, Xiling

    2015-01-01

    Lateral Inhibition (LI) is a widely conserved patterning mechanism in biological systems across species. Distinct from better-known Turing patterns, LI depend on cell-cell contact rather than diffusion. We built an in silico genetic circuit model to analyze the dynamic properties of LI. The model revealed that LI amplifies differences between neighboring cells to push them into opposite states, hence forming stable 2-D patterns. Inspired by this insight, we designed and implemented an electronic circuit that recapitulates LI patterning dynamics. This biomimetic system serve as a physical model to elucidate the design principle of generating robust patterning through spatial feedback, regardless of the underlying devices being biological or electrical. PMID:25569903