Science.gov

Sample records for bio-released gold ions

  1. In vivo liberation of gold ions from gold implants. Autometallographic tracing of gold in cells adjacent to metallic gold.

    PubMed

    Danscher, Gorm

    2002-05-01

    For some years, the implantation of small pieces of gold has been used as an unauthorised remedy for osteoarthritis and pain. The aim of the present study was to evaluate whether gold ions are released from gold implants. Pieces of pure gold were placed in the connective tissue of skin, bone and brains of anaesthetised animals. Ten days to several months later the animals were anaesthetised and killed by transcardial perfusion. Tissue blocks containing the gold pieces were cut, and the sections were silver-enhanced by autometallography. It was found that gold ions are released from the implanted gold and diffuse out into the surrounding tissue. The gold-containing cells in connective tissues were macrophages, mast cells and fibroblasts. In the brain, gold accumulated in astrocytes and neurons. Proton-induced X-ray emission spectroscopy analysis of the tissue surrounding gold implants confirmed that gold ions are liberated. The findings suggest that the gold implant technique, on a local scale, mimics systemic treatment with a gold-containing drug.

  2. Phage based green chemistry for gold ion reduction and gold retrieval.

    PubMed

    Setyawati, Magdiel I; Xie, Jianping; Leong, David T

    2014-01-22

    The gold mining industry has taken its toll on the environment, triggering the development of more environmentally benign processes to alleviate the waste load release. Here, we demonstrate the use of bacteriophages (phages) for biosorption and bioreduction of gold ions from aqueous solution, which potentially can be applied to remediate gold ions from gold mining waste effluent. Phage has shown a remarkably efficient sorption of gold ions with a maximum gold adsorption capacity of 571 mg gold/g dry weight phage. The product of this phage mediated process is gold nanocrystals with the size of 30-630 nm. Biosorption and bioreduction processes are mediated by the ionic and covalent interaction between gold ions and the reducing groups on the phage protein coat. The strategy offers a simple, ecofriendly and feasible option to recover of gold ions to form readily recoverable products of gold nanoparticles within 24 h.

  3. Synthesis of gold structures by gold-binding peptide governed by concentration of gold ion and peptide.

    PubMed

    Kim, Jungok; Kim, Dong-Hun; Lee, Sylvia J; Rheem, Youngwoo; Myung, Nosang V; Hur, Hor-Gil

    2016-08-01

    Although biological synthesis methods for the production of gold structures by microorganisms, plant extracts, proteins, and peptide have recently been introduced, there have been few reports pertaining to controlling their size and morphology. The gold ion and peptide concentrations affected on the size and uniformity of gold plates by a gold-binding peptide Midas-11. The higher concentration of gold ions produced a larger size of gold structures reached 125.5 μm, but an increased amount of Midas-11 produced a smaller size of gold platelets and increased the yield percentage of polygonal gold particles rather than platelets. The mechanisms governing factors controlling the production of gold structures were primarily related to nucleation and growth. These results indicate that the synthesis of gold architectures can be controlled by newly isolated and substituted peptides under different reaction conditions.

  4. In vitro liberation of charged gold atoms: autometallographic tracing of gold ions released by macrophages grown on metallic gold surfaces.

    PubMed

    Larsen, Agnete; Stoltenberg, Meredin; Danscher, Gorm

    2007-07-01

    The present study demonstrates that cultured macrophages are able to liberate gold ions from metallic gold surfaces, a process suggested to be called "dissolucytosis", in a way analogous to the release taking place when metallic implants are placed in a body. Using the ultra-sensitive autometallographic (AMG) technique, we demonstrate that murine macrophages grown on a surface of metallic gold liberate gold ions. Ultra-structural AMG reveals that the gold ions are located in an ultra-thin membrane-like structure, "the dissolution membrane", intervened between the macrophages and the metal surface. The presence of AMG silver enhanced gold nanoparticles in the dissolution membrane proves that the release of charged gold atoms takes place extracellularly. The dissolution membrane is most likely secreted and chemically controlled by the "dissolucytes", here macrophages, and the membrane is essential for the dissolution of metal implants and particles, which cannot be phagocytosed. Our findings support the notion that whenever a metallic gold surface is attacked by dissolucytes, gold ions are liberated and taken up by surrounding cells. As gold ions can suppress the inflammatory process, it is reasonable to expect that when dissolucytosis takes place in the living organism the liberated gold ions will cause local immunosuppression.

  5. Ion-selective electrodes for gold and silver determination.

    PubMed

    Petrukhin, O M; Avdeeva, E N; Shavnya, Y V; Yankauskas, V P; Kazlauskas, R M; Bychkov, A S; Zolotov, Y A

    1987-01-01

    Some new ion-selective electrodes for silver and gold are described. They are based on the ion-associate species formed by the cyanide, chloride or thiourea complexes of the metals, with hydrophobic anions or cations, as appropriate. The electrodes have been applied to the determination of gold and silver in various technological process solutions in industry.

  6. Gold Ion-Angiotensin Peptide Interaction by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Lee, Jenny; Jayathilaka, Lasanthi P.; Gupta, Shalini; Huang, Jin-Sheng; Lee, Bao-Shiang

    2012-05-01

    Stimulated by the interest in developing gold compounds for treating cancer, gold ion-angiotensin peptide interactions are investigated by mass spectrometry. Under the experimental conditions used, the majority of gold ion-angiotensin peptide complexes contain gold in the oxidation states I and III. Both ESI-MS and MALDI-TOF MS detect singly/multiply charged ions for mononuclear/multinuclear gold-attached peptides, which are represented as [peptide + a Au(I) + b Au(III) + (e - a -3b) H]e+, where a,b ≥ 0 and e is charge. ESI-MS data shows singly/multiply charged ions of Au(I)-peptide and Au(III)-peptide complexes. This study reveals that MALDI-TOF MS mainly detects singly charged Au(I)-peptide complexes, presumably due to the ionization process. The electrons in the MALDI plume seem to efficiently reduce Au(III) to Au(I). MALDI also tends to enhance the higher polymeric forms of gold-peptide complexes regardless of the laser power used. Collision-induced dissociation experiments of the mononuclear and dinuclear gold-attached peptide ions for angiotensin peptides show that the gold ion (a soft acid) binding sites are in the vicinity of Cys (a soft ligand), His (a major anchor of peptide for metal ion chelation), and the basic residue Arg. Data also suggests that the abundance of gold-attached peptides increases with higher gold concentration until saturation, after which an increase in gold ion concentration leads to the aggregation and/or precipitation of gold-bound peptides.

  7. Ion plated gold films: Properties, tribological behavior and performance

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis

    1987-01-01

    The glow discharge energizing favorably modifies and controls the coating/substrate adherence and the nucleation and growth sequence of ion plated gold films. As a result the adherence, coherence, internal stresses, and morphology of the films are significantly improved. Gold ion plated films because of their graded coating/substrate interface and fine uniform densely packed microstructure not only improve the tribological properties but also induce a surface strengthening effect which improves the mechanical properties such as yield, tensile, and fatigue strength. Consequently significant improvements in the tribological performance of ion plated gold films as compared to vapor deposited gold films are shown in terms of decreased friction/wear and prolonged endurance life.

  8. On the Energetics of Ions in Carbon and Gold Nanotubes.

    PubMed

    Mohammadzadeh, Leila; Goduljan, Aleksej; Juarez, Fernanda; Quaino, Paola; Santos, Elizabeth; Schmickler, Wolfgang

    2016-01-04

    We investigate the insertion of halide and alkali atoms into narrow single-walled carbon nanotubes with diameters <9 Å by density functional theory; both chiral and non-chiral tubes are considered. The atoms are stored in the form of ions; the concomitant charge transfer affects the band structure and makes originally semiconducting tubes conducting. The electrostatic interaction between a charge and the walls of the tube is explicitly calculated. The insertion energies and the positions of the ions are determined by a competition between electrostatic energy and Pauli repulsion. For comparison, we consider ions in gold nanotubes. Alkali ions follow the same principles in gold as in carbon tubes, but chloride is specifically adsorbed inside gold tubes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The use of fibrous ion exchangers in gold hydrometallurgy

    NASA Astrophysics Data System (ADS)

    Kautzmann, R. M.; Sampaio, C. H.; Cortina, J. L.; Soldatov, V.; Shunkevich, A.

    2002-10-01

    This article examines a family of ion-exchange fibers, FIBAN, containing primary and secondary amine groups. These ion exchangers have a fiber diameter of 20 40 Μm, high osmotic and mechanic stability, a high rate of adsorption and regeneration, and excellent dynamic characteristics as filtering media. Inparticular, this article discusses the use of FIBAN fibrous ion exchangers in the recovery of gold cyanide andbase-metal cyanides (copper and mercury) from mineral-leaching solutions. The influence of polymer structure and water content on their extraction ability is described, along with key parameters of gold hydrometallurgy such as extraction efficiency, selectivity, pH dependence, gold cyanide loading, kinetics, and stripping.

  10. Ion beam analysis of gold jewelry

    NASA Astrophysics Data System (ADS)

    Demortier, Guy

    1992-02-01

    PIXE milliprobe in a nonvacuum assembly has been proven to be a very rapid and accurate method for the elemental analysis of gold jewelry artefacts. Using protons whose energy is lower than 3 MeV, it is possible to obtain, in a few minutes, the actual composition (copper, iron, gold, silver, etc.) of narrow parts of artefacts, without any sampling, even at microscopic level. Most of the studies of our group in this field concern solders on these jewelry items. Narrow regions of gold artefacts have also been studied with a PIXE microprobe. They were then irradiated in vacuum. Nuclear reaction analyses induced by 2 MeV deuterons are also performed to identify the presence of light elements and, particularly O, N and S. Traces of these elements are of primary importance to characterize the origin of the ores used in various workmanships. Interferences of X-ray lines of Au with those of traces of Cu and Zn are solved using a method of selective excitation of X-rays of these elements. Analytical results have been interpreted in order to understand the workmanship of goldsmiths from the Antiquity. Fakes and repairs (or ornaments added to original artefacts) may also be identified. The ancient recipes are improved to give new soldering procedures at low temperature.

  11. The spectral lines of highly charged gold ions

    NASA Astrophysics Data System (ADS)

    Hu, Feng; Yang, Jiamin; Zhang, Jiyan; Jiang, Gang

    2015-02-01

    Extreme ultraviolet spectra of highly charged gold were produced with an electron beam ion trap at the University of Electro-Communications, Tokyo. The X-ray spectra (3240-3360 eV) of Au with well-defined maximum charge states ranging from Cu- to Se-like ions were recorded. Guided by configuration interaction calculations, the strongest 3d-5f transitions have been well defined.

  12. L-shell ionization of gold by nitrogen ion impact

    SciTech Connect

    Palinkas, J.; Bauer, C.; Brankoff, K.; Grambole, D.; Kalman, Gy.; Sarkadi, L.; Schlenk, B.; Torok, I.

    1983-04-01

    Measuring the angular distributions and the absolute intensities of the L x-ray lines of gold at 2.4-18.2 MeV nitrogen ion impact, the absolute subshell ionization cross-sections and the alignment parameter of the L/sub 3/-subshell have been determined and compared to the theoretical results.

  13. [Use of gold implants as a treatment of pain related to canine hip dysplasia--a review. Part 1: Background and current state of research regarding the effects of implanting gold in tissue].

    PubMed

    Deisenroth, A; Nolte, I; Wefstaedt, P

    2013-01-01

    Gold-bead implantation as a method of pain treatment in dogs suffering from osteoarthritic disease is receiving increasing attention in veterinary medicine. For the present article, publications from veterinary books and journals were collected and evaluated, together with related articles in human medicine. After providing an overview of the historical use of gold and gold compounds, the technique of implanting this noble metal is introduced. The reasons for establishing the terms gold acupuncture and gold (bead) implantation are described, considering the question whether and what kind of methodological differences exist behind these terms. Next, previous publications concerning the effects of gold implantation in tissue are summarised. In 2002 it was proven that gold ions are released from the surface of gold implants by a process termed dissolucytosis. Subsequent publications further investigated details about the interaction between gold ions and tissue as well as the distribution pattern of bio-released ions. Gold compounds were previously used for chrysotherapy in human medicine until medication with fewer side effects became established. The anti-inflammatory and immuno-modulatory properties of gold compounds were used to treat rheumatoid arthritis. Current research aims to ascertain whether the anti-inflammatory and immuno-modulating effects of gold compounds are imitated by gold ions released from gold implants at a local level. In conclusion, the present review summarises important findings about the effects of gold implanted in tissue. However, further research is necessary to estimate the limitations and benefits of this auromedication.

  14. Energy loss of coasting gold ions and deuterons in RHIC.

    SciTech Connect

    Abreu,N.; Blaskiewicz, M.; Brown, K.A.; Butler, J.J.; FischW; Harvey, M.; Tepikian, S.

    2008-06-23

    The total energy loss of coasting gold ion beams was measured at RHIC at two energies, corresponding to a gamma of 75.2 and 107.4. We describe the experiment and observations and compare the measured total energy loss with expectations from ionization losses at the residual gas, the energy loss due to impedance and synchrotron radiation. We find that the measured energy losses are below what is expected from free space synchrotron radiation. We believe that this shows evidence for suppression of synchrotron radiation which is cut off at long wavelength by the presence of the conducting beam pipe.

  15. Effects of chloride and silver ions on gold nanorod formation

    NASA Astrophysics Data System (ADS)

    Ock Park, Jin; Cho, So-Hye; Jeong, Dae-Yong; Kong, Young-Min; Lee, Seung Yong

    2015-01-01

    The ability to tune the longitudinal localized surface plasmon resonance of gold nanorods (AuNRs) via simple modification of their aspect ratio is a large contributing factor to their widespread use across multiple fields. An understanding of the synthesis conditions that affect the aspect ratio and yield of AuNRs is therefore of utmost importance. From this perspective, we take a systematic approach in investigating the effect of the following conditions on the seed-mediated formation of AuNRs: the addition of chloride or silver ions, and the use of a hexadecyltrimethylammonium bromide (CTAB) source with different levels of effectiveness on controlling the shape of growing AuNRs.

  16. Role of hydrogen ions in standard and activation heap leaching of gold

    NASA Astrophysics Data System (ADS)

    Rubtsov, YuI

    2017-02-01

    The role of hydrogen ions in activation heap leaching of gold from rebellious ore has been studied, which has allowed enhancing gold recovery. The author puts forward a gold leaching circuit with the use of activated oxygen-saturated solutions acidified to pH = 6–9.

  17. Effect of gold ion concentration on size and properties of gold nanoparticles in TritonX-100 based inverse microemulsions

    NASA Astrophysics Data System (ADS)

    Ahmad, Tokeer; Wani, Irshad A.; Ahmed, Jahangeer; Al-Hartomy, Omar A.

    2014-04-01

    Gold nanoparticles have been prepared successfully using TritonX-100 inverse microemulsion at different concentrations of HAuCl4 (0.1, 0.05, 0.04, 0.03, 0.02 and 0.01 M). We have studied the effect of gold ion concentration on the particle size, morphology, surface area and optical properties of the gold nanoparticles. The gold nanoparticles were characterized by X-ray diffraction, transmission electron microscopy, UV-Visible spectroscopy and Brunauer-Emmett-Teller surface area analysis. X-ray diffraction studies show the monophasic nature of the gold nanoparticles. TritonX-100 stabilized gold nanoparticles were appeared to be agglomerated at higher concentrations (0.1 and 0.05 M) of Au3+ with an average grain size of 60 and 50 nm, respectively. Monodisperse and uniform gold nanoparticles with well-defined morphologies of an average grain size of 15 and 25 nm were obtained at lower concentrations (0.01 and 0.02 M). UV-Visible spectroscopy shows the characteristic surface plasmon resonance peak ~540 nm along with the peaks at shorter and longer wavelengths may be due to the higher order plasmon resonance of the gold nanoparticles. The surface areas of the gold nanoparticles were found to be in the range of 5.8-107 m2/g which were well in agreement with the electron microscopic studies.

  18. Effect of gold ion concentration on size and properties of gold nanoparticles in TritonX-100 based inverse microemulsions

    NASA Astrophysics Data System (ADS)

    Ahmad, Tokeer; Wani, Irshad A.; Ahmed, Jahangeer; Al-Hartomy, Omar A.

    2013-04-01

    Gold nanoparticles have been prepared successfully using TritonX-100 inverse microemulsion at different concentrations of HAuCl4 (0.1, 0.05, 0.04, 0.03, 0.02 and 0.01 M). We have studied the effect of gold ion concentration on the particle size, morphology, surface area and optical properties of the gold nanoparticles. The gold nanoparticles were characterized by X-ray diffraction, transmission electron microscopy, UV-Visible spectroscopy and Brunauer-Emmett-Teller surface area analysis. X-ray diffraction studies show the monophasic nature of the gold nanoparticles. TritonX-100 stabilized gold nanoparticles were appeared to be agglomerated at higher concentrations (0.1 and 0.05 M) of Au3+ with an average grain size of 60 and 50 nm, respectively. Monodisperse and uniform gold nanoparticles with well-defined morphologies of an average grain size of 15 and 25 nm were obtained at lower concentrations (0.01 and 0.02 M). UV-Visible spectroscopy shows the characteristic surface plasmon resonance peak ~540 nm along with the peaks at shorter and longer wavelengths may be due to the higher order plasmon resonance of the gold nanoparticles. The surface areas of the gold nanoparticles were found to be in the range of 5.8-107 m2/g which were well in agreement with the electron microscopic studies.

  19. Morphology of gold and copper ion-plated coatings

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1978-01-01

    Copper and gold films (0.2 to 2 microns thick) were ion plated onto polished 304-stainless-steel, glass, mica surfaces. These coatings were examined by SEM for defects in their morphological growth. Three types of defects were distinguished: nodular growth, abnormal or runaway growth, and spits. The cause for each type of defect was investigated. Nodular growth is due to inherent substrate microdefects, abnormal or runaway growth is due to external surface inclusions, and spits are due to nonuniform evaporation (ejection of droplets). All these defects induce stresses and produce porosity in the coatings and thus weaken their mechanical properties. During surface rubbing, large nodules are pulled out, leaving vacancies in the coatings.

  20. Gold ion implantation into alumina using an "inverted ion source" configuration

    NASA Astrophysics Data System (ADS)

    Salvadori, M. C.; Teixeira, F. S.; Sgubin, L. G.; Araujo, W. W. R.; Spirin, R. E.; Cattani, M.; Oks, E. M.; Brown, I. G.

    2014-02-01

    We describe an approach to ion implantation in which the plasma and its electronics are held at ground potential and the ion beam is injected into a space held at high negative potential, allowing considerable savings both economically and technologically. We used an "inverted ion implanter" of this kind to carry out implantation of gold into alumina, with Au ion energy 40 keV and dose (3-9) × 1016 cm-2. Resistivity was measured in situ as a function of dose and compared with predictions of a model based on percolation theory, in which electron transport in the composite is explained by conduction through a random resistor network formed by Au nanoparticles. Excellent agreement is found between the experimental results and the theory.

  1. Surface enhanced Raman scattering of amino acids assisted by gold nanoparticles and Gd(3+) ions.

    PubMed

    López-Neira, Juan Pablo; Galicia-Hernández, José Mario; Reyes-Coronado, Alejandro; Pérez, Elías; Castillo-Rivera, Francisco

    2015-05-07

    The surface enhanced raman scattering (SERS) signal from the l-tyrosine (tyr) molecule adsorbed on gold nanoparticles (Au-tyr) is compared with the SERS signal assisted by the presence of gadolinium ions (Gd(3+)) coordinated with the Au-tyr system. An enhancement factor of the SERS signal in the presence of Gd(3+) ions was ∼5 times higher than that produced by l-tyrosine adsorbed on gold nanoparticles. The enhancement of the SERS signal can be attributed to a corresponding increase in the local electric field due to the presence of Gd(3+) ions in the vicinity of a gold dimer configuration. This scenario was confirmed by solving numerically Maxwell equations, showing an increase of 1 order of magnitude in the local electric scattered field when the Gd(3+) ion is located in between a gold dimer compared with naked gold nanoparticles.

  2. Tribological characteristics of gold films deposited on metals by ion plating and vapor deposition

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1984-01-01

    The graded interface between an ion-plated film and a substrate is discussed as well as the friction and wear properties of ion-plated gold. X-ray photoelectron spectroscopy (XPS) depth profiling and microhardness depth profiling were used to investigate the interface. The friction and wear properties of ion-plated and vapor-deposited gold films were studied both in an ultra high vacuum system to maximize adhesion and in oil to minimize adhesion. The results indicate that the solubility of gold on the substrate material controls the depth of the graded interface. Thermal diffusion and chemical diffusion mechanisms are thought to be involved in the formation of the gold-nickel interface. In iron-gold graded interfaces the gold was primarily dispersed in the iron and thus formed a physically bonded interface. The hardness of the gold film was influenced by its depth and was also related to the composition gradient between the gold and the substrate. The graded nickel-gold interface exhibited the highest hardness because of an alloy hardening effect. The effects of film thickness on adhesion and friction were established.

  3. Tribological characteristics of gold films deposited on metals by ion plating and vapor deposition

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1986-01-01

    The graded interface between an ion-plated film and a substrate is discussed as well as the friction and wear properties of ion-plated gold. X-ray photoelectron spectroscopy (XPS) depth profiling and microhardness depth profiling were used to investigate the interface. The friction and wear properties of ion-plated and vapor-deposited gold films were studied both in an ultra high vacuum system to maximize adhesion and in oil to minimize adhesion. The results indicate that the solubility of gold on the substrate material controls the depth of the graded interface. Thermal diffusion and chemical diffusion mechanisms are thought to be involved in the formation of the gold-nickel interface. In iron-gold graded interfaces the gold was primarily dispersed in the iron and thus formed a physically bonded interface. The hardness of the gold film was influenced by its depth and was also related to the composition gradient between the gold and the substrate. The graded nickel-gold interface exhibited the highest hardness because of an alloy hardening effect. The effects of film thickness on adhesion and friction were established.

  4. Tribological characteristics of gold films deposited on metals by ion plating and vapor deposition

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1986-01-01

    The graded interface between an ion-plated film and a substrate is discussed as well as the friction and wear properties of ion-plated gold. X-ray photoelectron spectroscopy (XPS) depth profiling and microhardness depth profiling were used to investigate the interface. The friction and wear properties of ion-plated and vapor-deposited gold films were studied both in an ultra high vacuum system to maximize adhesion and in oil to minimize adhesion. The results indicate that the solubility of gold on the substrate material controls the depth of the graded interface. Thermal diffusion and chemical diffusion mechanisms are thought to be involved in the formation of the gold-nickel interface. In iron-gold graded interfaces the gold was primarily dispersed in the iron and thus formed a physically bonded interface. The hardness of the gold film was influenced by its depth and was also related to the composition gradient between the gold and the substrate. The graded nickel-gold interface exhibited the highest hardness because of an alloy hardening effect. The effects of film thickness on adhesion and friction were established.

  5. Colorimetric detection of manganese(II) ions using gold/dopa nanoparticles.

    PubMed

    Narayanan, Kannan Badri; Park, Hyun Ho

    2014-10-15

    We report here a one-pot, greener, eco-friendly strategy for the synthesis of gold nanoparticles using L-dopa. The as-prepared dopa-functionalized gold nanoparticles (AuNPs/dopa) can detect low concentrations of manganese(II) metal ions in aqueous solution. The binding forces between dopa and Mn(2+) ions cause dopa-functionalized gold nanoparticles to come closer together, decreasing the interparticle distance and aggregating it with a change in color of colloidal solution from red to purplish-blue. Dynamic light scattering (DLS) analysis showed a decreased surface charge on the surface of gold nanoparticles when exposed to Mn(2+) ions, which caused cross-linking aggregation. Transmission electron microscopic (TEM) images also revealed the aggregation of gold nanoparticles with the addition of Mn(2+) ions. The extinction ratio of absorbance at 700-550nm (A700/A550) was linear against the concentration of [Mn(2+)] ions. Thus, the optical absorption spectra of gold colloidal solution before and after the addition of Mn(2+) ions reveal the concentration of Mn(2+) ions in solution.

  6. Colorimetric detection of manganese(II) ions using gold/dopa nanoparticles

    NASA Astrophysics Data System (ADS)

    Narayanan, Kannan Badri; Park, Hyun Ho

    2014-10-01

    We report here a one-pot, greener, eco-friendly strategy for the synthesis of gold nanoparticles using L-dopa. The as-prepared dopa-functionalized gold nanoparticles (AuNPs/dopa) can detect low concentrations of manganese(II) metal ions in aqueous solution. The binding forces between dopa and Mn2+ ions cause dopa-functionalized gold nanoparticles to come closer together, decreasing the interparticle distance and aggregating it with a change in color of colloidal solution from red to purplish-blue. Dynamic light scattering (DLS) analysis showed a decreased surface charge on the surface of gold nanoparticles when exposed to Mn2+ ions, which caused cross-linking aggregation. Transmission electron microscopic (TEM) images also revealed the aggregation of gold nanoparticles with the addition of Mn2+ ions. The extinction ratio of absorbance at 700-550 nm (A700/A550) was linear against the concentration of [Mn2+] ions. Thus, the optical absorption spectra of gold colloidal solution before and after the addition of Mn2+ ions reveal the concentration of Mn2+ ions in solution.

  7. Preparation of gold microparticles using halide ions in bulk block copolymer phases via photoreduction

    SciTech Connect

    Cha, Sang-Ho; Kim, Ki-Hyun; Lee, Won-Ki; Lee, Jong-Chan

    2009-06-15

    Gold microparticles were prepared from the gold salt in the solid bulk phase of a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer via a photoreduction process in the presence of halide ions. The shapes and sizes of the gold microparticles were found to be dependent on the types and amount of halide ions as well as the types of cations used due to the combined effects of the adsorption power and oxidative dissolution ability of the additives on gold surfaces. Gold nanorods were obtained when poly(ethylene oxide) was used instead of the block copolymer. This suggests that the poly(propylene oxide) (PPO) parts in the block copolymer are essential for the formation of gold microparticles, even though the degree of the direct interaction between the PPO blocks and gold salt is not significant. - Graphical abstract: Gold microparticles were successfully prepared using halide ions as additives in the polymeric bulk phase via photoreduction with the glow lamp irradiation.

  8. Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles.

    PubMed

    Rai, Akhilesh; Singh, Amit; Ahmad, Absar; Sastry, Murali

    2006-01-17

    In this paper, we demonstrate the effect of halide ions on the formation of biogenically prepared gold nanotriangles using the leaf extract of lemongrass (Cymbopogon flexuosus) plant. We have also studied the effect of halide ions on the morphology of biogenic nanotriangles. It has been shown that iodide ions have a greater propensity to transform flat gold nanotriangles into circular disk-like structures as compared to other halide ions. The study also suggests that the presence of Cl- ions during the synthesis promotes the growth of nanotriangles, whereas the presence of I- ions distorts the nanotriangle morphology and induces the formation of aggregated spherical nanoparticles. The change in the morphology of gold nanotriangles has been explained in terms of the ability of the halide ions to stabilize or inhibit the formation of (111) faces to form [111] oriented gold nanotriangles. Last, we have also shown that the temperature is an important parameter for controlling the aspect ratio and the relative amounts of gold nanotriangles and spherical particles. The results show that, by varying the temperature of reaction condition, the shape, size, and optical properties of anisotropic nanoparticles can be fine-tuned.

  9. Bioinspired colorimetric detection of calcium(II) ions in serum using calsequestrin-functionalized gold nanoparticles.

    PubMed

    Kim, Sunghyun; Park, Jeong Won; Kim, Dongkyu; Kim, Daejin; Lee, In-Hyun; Jon, Sangyong

    2009-01-01

    Seeing is sensing: Calsequestrin (CSQ) functionalized gold nanoparticles undergo calcium-dependent CSQ polymerization, which results in a clear color change (see picture) together with precipitation. The sensing system is specific for Ca(2+) ions and the differences between normal and disease-associated abnormal (hypercalcemia) Ca(2+) ion levels in serum can be distinguished with the naked eye.

  10. Stability of Phosphine-Ligated Gold Cluster Ions toward Dissociation: Effect of Ligand and Cluster Size

    NASA Astrophysics Data System (ADS)

    Laskin, Julia

    2015-03-01

    Precise control of the composition of phosphine-ligated gold clusters is of interest to their applications in catalysis, sensing, and drug delivery. Reduction synthesis in solution typically generates a distribution of ligated clusters containing different number of gold atoms and capping ligands. Ligand binding energy is an important factor determining the kinetics of cluster nucleation and growth in solution and hence the resulting cluster distribution. Phosphines are popular capping ligands with tunable electronic and steric properties that affect their binding to the gold core. We examined the effect of the number of gold atoms in the cluster and the properties of the phosphine ligand on the ligand binding energy to the gold core using surface-induced dissociation (SID) of mass selected cluster cations produced through electrospray ionization. SID of vibrationally excited ions is ideally suited for studying gas-phase fragmentation of complex ions such as ligated gold clusters. The energetics, dynamics, and mechanisms of cluster ion fragmentation in the absence of solvent are determined through RRKM modeling of time and kinetic energy dependent SID spectra. This approach provides quantitative information on the ligand binding energies in phosphine-ligated gold clusters important for understanding their formation in solution. Furthermore, ligand binding energies derived from SID data provide the first benchmark values for comparison with electronic structure calculations. This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences.

  11. Charge Retention by Monodisperse Gold Clusters on Surfaces Prepared Using Soft Landing of Mass Selected Ions

    NASA Astrophysics Data System (ADS)

    Johnson, Grant; Priest, Thomas; Laskin, Julia

    2012-02-01

    Monodisperse gold clusters have been prepared on surfaces in different charge states through soft landing of mass-selected ions. Gold clusters were synthesized in methanol solution by reduction of a gold precursor with a weak reducing agent in the presence of a diphosphine capping ligand. Electrospray ionization was used to introduce the clusters into the gas-phase and mass-selection was employed to isolate a single ionic cluster species which was delivered to surfaces at well controlled kinetic energies. Using in-situ time of flight secondary ion mass spectrometry (SIMS) it is demonstrated that the cluster retains its 3+ charge state when soft landed onto the surface of a fluorinated self assembled monolayer on gold. In contrast, when deposited onto carboxylic acid terminated and conventional alkyl thiol surfaces on gold the clusters exhibit larger relative abundances of the 2+ and 1+ charge states, respectively. The kinetics of charge reduction on the surface have been investigated using in-situ Fourier Transform Ion Cyclotron Resonance SIMS. It is shown that an extremely slow interfacial charge reduction occurs on the fluorinated monolayer surface while an almost instantaneous neutralization takes place on the surface of the alkyl thiol monolayer. Our results demonstrate that the size and charge state of small gold clusters on surfaces, both of which exert a dramatic influence on their chemical and physical properties, may be tuned through soft landing of mass-selected ions onto selected substrates.

  12. Gold

    USGS Publications Warehouse

    Kirkemo, Harold; Newman, William L.; Ashley, Roger P.

    1998-01-01

    Through the ages, men and women have cherished gold, and many have had a compelling desire to amass great quantities of it -- so compelling a desire, in fact, that the frantic need to seek and hoard gold has been aptly named "gold fever." Gold was among the first metals to be mined because it commonly occurs in its native form -- that is, not combined with other elements -- because it is beautiful and imperishable, and because exquisite objects can be made from it.

  13. Mycocrystallization of gold ions by the fungus Cylindrocladium floridanum.

    PubMed

    Narayanan, Kannan Badri; Sakthivel, Natarajan

    2013-11-01

    The size and morphology determines the thermodynamic, physical and electronic properties of metal nanoparticles. The extracellular synthesis of gold nanoparticles by fungus, Cylindrocladium floridanum, which acts as a source of reducing and stabilizing agent has been described. The synthesized nanoparticles were characterized using techniques such as UV-Vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy, energy dispersive X-ray analysis (EDAX), and high-resolution transmission electron microscopy (HR-TEM). Based on the evidence of HR-TEM, the synthesized particles were found to be spherical with an average size of 19.05 nm. Powder XRD pattern proved the formation of (111)-oriented face-centered cubic crystals of metallic gold. This microbial approach by fungus for the green synthesis of spherical gold nanoparticles has many advantages such as economic viability, scaling up and environment friendliness.

  14. Ultra-low level optical detection of mercuric ions using biogenic gold nanotriangles.

    PubMed

    Singh, Amit; Pasricha, Renu; Sastry, Murali

    2012-07-07

    Mercury is a serious environmental pollutant known to have detrimental health effects in all life forms. Here, we report the use of biologically synthesized aqueous gold nanotriangles for sensitive and selective optical detection of femto-molar levels of mercury ions by exploiting the high amalgamation tendency of mercury metal towards gold. Aqueous chloroaurate ions were reduced using lemongrass (Cymbopogon flexuosus) leaf extract at room temperature to form gold nanotriangles. Mercuric (Hg(2+)) ions were reduced in the presence of these triangles to facilitate amalgamation and the optical properties were monitored. We observe a significant change in the longitudinal plasmon absorption band of the nanotriangles even at femto-molar concentrations of mercuric ions. High-resolution transmission electron microscopy confirms changes in particle morphology at such low concentrations. This protocol shows no sensitivity to other environmentally relevant metal ions, including Pb(2+), Zn(2+), Cd(2+), Fe(2+), Ni(2+), Sr(2+), Ca(2+), Mn(2+), and Cu(2+), confirming further that change in the optical properties of gold nanotriangles in the presence of reduced mercuric ions is solely due to the strong amalgamation tendency of mercury metal.

  15. Formation of silicon nanodots via ion beam sputtering of ultrathin gold thin film coatings on Si

    PubMed Central

    2011-01-01

    Ion beam sputtering of ultrathin film Au coatings used as a physical catalyst for self-organization of Si nanostructures has been achieved by tuning the incident particle energy. This approach holds promise as a scalable nanomanufacturing parallel processing alternative to candidate nanolithography techniques. Structures of 11- to 14-nm Si nanodots are formed with normal incidence low-energy Ar ions of 200 eV and fluences above 2 × 1017 cm-2. In situ surface characterization during ion irradiation elucidates early stage ion mixing migration mechanism for nanodot self-organization. In particular, the evolution from gold film islands to the formation of ion-induced metastable gold silicide followed by pure Si nanodots formed with no need for impurity seeding. PMID:21711934

  16. Friction and hardness of gold films deposited by ion plating and evaporation

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1983-01-01

    Sliding friction experiments were conducted with ion-plated and vapor-deposited gold films on various substrates in contact with a 0.025-mm-radius spherical silicon carbide rider in mineral oil. Hardness measurements were also made to examine the hardness depth profile of the coated gold on the substrate. The results indicate that the hardness is influenced by the depth of the gold coating from the surface. The hardness increases with an increase in the depth. The hardness is also related to the composition gradient in the graded interface between the gold coating and the substrate. The graded interface exhibited the highest hardness resulting from an alloy hardening effect. The coefficient of friction is inversely related to the hardness, namely, the load carrying capacity of the surface. The greater the hardness that the metal surface possesses, the lower is the coefficient of friction. The graded interface exhibited the lowest coefficient of friction.

  17. Visualization of expanding warm dense gold and diamond heated uniformly by laser-generated ion beams

    NASA Astrophysics Data System (ADS)

    Bang, W.; Albright, B. J.; Bradley, P. A.; Gautier, D. C.; Palaniyappan, S.; Vold, E. L.; Santiago Cordoba, M. A.; Hamilton, C. E.; Fernández, J. C.

    2015-11-01

    With a laser-generated beam of quasi-monoenergetic ions, a solid density target can be heated uniformly and isochorically. On the LANL Trident laser facility, we have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils. We visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperatures of these heated samples from the measured expansion speeds of gold and diamond into vacuum. These temperatures are in good agreement with the expected temperatures calculated using the total deposited energy into the cold targets and SESAME equation-of-state tables at solid densities. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics. *This work is sponsored by the LANL LDRD Program.

  18. Charge Retention by Gold Clusters on Surfaces Prepared Using Soft Landing of Mass Selected Ions

    SciTech Connect

    Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

    2012-01-24

    Monodisperse gold clusters have been prepared on surfaces in different charge states through soft landing of mass-selected ions. Ligand-stabilized gold clusters were prepared in methanol solution by reduction of chloro(triphenylphosphine)gold(I) with borane tert-butylamine complex in the presence of 1,3-bis(diphenylphosphino)propane. Electrospray ionization was used to introduce the clusters into the gas-phase and mass-selection was employed to isolate a single ionic cluster species (Au11L53+, L = 1,3-bis(diphenylphosphino)propane) which was delivered to surfaces at well controlled kinetic energies. Using in-situ time of flight secondary ion mass spectrometry (TOF-SIMS) it is demonstrated that the Au11L53+ cluster retains its 3+ charge state when soft landed onto the surface of a 1H,1H,2H,2H-

  19. Ligand induced structural isomerism in phosphine coordinated gold clusters revealed by ion mobility mass spectrometry

    SciTech Connect

    Ligare, Marshall R.; Baker, Erin S.; Laskin, Julia; Johnson, Grant E.

    2017-01-01

    Structural isomerism in ligated gold clusters is revealed using electrospray ionization ion mobility spectrometry mass spectrometry. Phosphine ligated Au8 clusters are shown to adopt more “extended” type structures with increasing exchange of methyldiphenylphosphine (MePPh2) for triphenylphosphine (PPh3). These ligand-dependant structure-property relationships are critical to applications of clusters in catalysis.

  20. Synthesis of aluminum oxide supported fluorescent gold nanodots for the detection of silver ions.

    PubMed

    Chen, Po-Cheng; Yeh, Ting-Yin; Ou, Chung-Mao; Shih, Chung-Chien; Chang, Huan-Tsung

    2013-06-07

    Photoluminescent gold nanodots (Au NDs) on aluminum oxide nanoparticles (Al2O3 NPs) with the emission wavelengths ranging from 510 to 630 nm are unveiled. Orange Al2O3 NP@AuNDs show high selectivity and sensitivity towards Ag(+) ions by metallophilic Ag(+)-Au(+) interactions and induced fluorescence quenching of Au NDs.

  1. FY2014 Parameters for Gold Ions in Booster, AGS, and RHIC

    SciTech Connect

    Gardner, C. J.

    2014-07-30

    The nominal parameters for gold ions in Booster, AGS, and RHIC are given for the FY2014 running period. The parameters are worked out using various formulas to derive mass, kinetic parameters, RF parameters, ring parameters, etc.. The ''standard setup'', ''medium-energy'', and ''low-energy'' parameters are summarized in separate sections.

  2. FY2014 Parameters for Helions and Gold Ions in Booster, AGS, and RHIC

    SciTech Connect

    Gardner, C. J.

    2014-08-15

    The nominal parameters for helions (helion is the bound state of two protons and one neutron, the nucleus of a helium-3 atom) and gold ions in Booster, AGS, and RHIC are given for the FY2014 running period. The parameters are found using various formulas to derive mass, helion anomalous g-factor, kinetic parameters, RF parameters, ring parameters, etc..

  3. Adsorption of gold ions from industrial wastewater using activated carbon derived from hard shell of apricot stones - an agricultural waste.

    PubMed

    Soleimani, Mansooreh; Kaghazchi, Tahereh

    2008-09-01

    In this study, hard shell of apricot stones was selected from agricultural solid wastes to prepare effective and low cost adsorbent for the gold separation from gold-plating wastewater. Different adsorption parameters like adsorbent dose, particle size of activated carbon, pH and agitation speed of mixing on the gold adsorption were studied. The results showed that under the optimum operating conditions, more than 98% of gold was adsorbed onto activated carbon after only 3h. The equilibrium adsorption data were well described by the Freundlich and Langmuir isotherms. Isotherms have been used to obtain thermodynamic parameters. Gold desorption studies were performed with aqueous solution mixture of sodium hydroxide and organic solvents at ambient temperatures. Quantitative recovery of gold ions is possible by this method. As hard shell of apricot stones is a discarded as waste from agricultural and food industries, the prepared activated carbon is expected to be an economical product for gold ion recovery from wastewater.

  4. Selective detection of mercury (II) ion using nonlinear optical properties of gold nanoparticles.

    PubMed

    Darbha, Gopala Krishna; Singh, Anant Kumar; Rai, Uma Shanker; Yu, Eugene; Yu, Hongtao; Chandra Ray, Paresh

    2008-06-25

    Contamination of the environment with heavy metal ions has been an important concern throughout the world for decades. Driven by the need to detect trace amounts of mercury in environmental samples, this article demonstrates for the first time that nonlinear optical (NLO) properties of MPA-HCys-PDCA-modified gold nanoparticles can be used for rapid, easy and reliable screening of Hg(II) ions in aqueous solution, with high sensitivity (5 ppb) and selectivity over competing analytes. The hyper Rayleigh scattering (HRS) intensity increases 10 times after the addition of 20 ppm Hg(2+) ions to modified gold nanoparticle solution. The mechanism for HRS intensity change has been discussed in detail using particle size-dependent NLO properties as well as a two-state model. Our results show that the HRS assay for monitoring Hg(II) ions using MPA-HCys-PDCA-modified gold nanoparticles has excellent selectivity over alkali, alkaline earth (Li(+), Na(+), K(+), Mg(2+), Ca(2+)), and transition heavy metal ions (Pb(2+), Pb(+), Mn(2+), Fe(2+), Cu(2+), Ni(2+), Zn(2+), Cd(2+)).

  5. Nanoporous gold based optical sensor for sub-ppt detection of mercury ions.

    PubMed

    Zhang, Ling; Chang, Haixin; Hirata, Akihiko; Wu, Hongkai; Xue, Qi-Kun; Chen, Mingwei

    2013-05-28

    Precisely probing heavy metal ions in water is important for molecular biology, environmental protection, and healthy monitoring. Although many methods have been reported in the past decade, developing a quantitative approach capable of detecting sub-ppt level heavy metal ions with high selectivity is still challenging. Here we report an extremely sensitive and highly selective nanoporous gold/aptamer based surface enhanced resonance Raman scattering (SERRS) sensor. The optical sensor has an unprecedented detection sensitivity of 1 pM (0.2 ppt) for Hg(2+) ions, the most sensitive Hg(2+) optical sensor known so far. The sensor also exhibits excellent selectivity. Dilute Hg(2+) ions can be identified in an aqueous solution containing 12 metal ions as well as in river water and underground water. Moreover, the SERRS sensor can be reused without an obvious loss of the sensitivity and selectivity even after 10 cycles.

  6. Polarization of gold in nanopores leads to ion current rectification

    DOE PAGES

    Yang, Crystal; Hinkle, Preston; Menestrina, Justin; ...

    2016-10-03

    Biomimetic nanopores with rectifying properties are relevant components of ionic switches, ionic circuits, and biological sensors. Rectification indicates that currents for voltages of one polarity are higher than currents for voltages of the opposite polarity. Ion current rectification requires the presence of surface charges on the pore walls, achieved either by the attachment of charged groups or in multielectrode systems by applying voltage to integrated gate electrodes. Here we present a simpler concept for introducing surface charges via polarization of a thin layer of Au present at one entrance of a silicon nitride nanopore. In an electric field applied bymore » two electrodes placed in bulk solution on both sides of the membrane, the Au layer polarizes such that excess positive charge locally concentrates at one end and negative charge concentrates at the other end. Consequently, a junction is formed between zones with enhanced anion and cation concentrations in the solution adjacent to the Au layer. This bipolar double layer together with enhanced cation concentration in a negatively charged silicon nitride nanopore leads to voltage-controlled surface-charge patterns and ion current rectification. The experimental findings are supported by numerical modeling that confirm modulation of ionic concentrations by the Au layer and ion current rectification even in low-aspect ratio nanopores. Lastly, our findings enable a new strategy for creating ionic circuits with diodes and transistors.« less

  7. Polarization of gold in nanopores leads to ion current rectification

    SciTech Connect

    Yang, Crystal; Hinkle, Preston; Menestrina, Justin; Vlassiouk, Ivan V.; Siwy, Zuzanna S.

    2016-10-03

    Biomimetic nanopores with rectifying properties are relevant components of ionic switches, ionic circuits, and biological sensors. Rectification indicates that currents for voltages of one polarity are higher than currents for voltages of the opposite polarity. Ion current rectification requires the presence of surface charges on the pore walls, achieved either by the attachment of charged groups or in multielectrode systems by applying voltage to integrated gate electrodes. Here we present a simpler concept for introducing surface charges via polarization of a thin layer of Au present at one entrance of a silicon nitride nanopore. In an electric field applied by two electrodes placed in bulk solution on both sides of the membrane, the Au layer polarizes such that excess positive charge locally concentrates at one end and negative charge concentrates at the other end. Consequently, a junction is formed between zones with enhanced anion and cation concentrations in the solution adjacent to the Au layer. This bipolar double layer together with enhanced cation concentration in a negatively charged silicon nitride nanopore leads to voltage-controlled surface-charge patterns and ion current rectification. The experimental findings are supported by numerical modeling that confirm modulation of ionic concentrations by the Au layer and ion current rectification even in low-aspect ratio nanopores. Lastly, our findings enable a new strategy for creating ionic circuits with diodes and transistors.

  8. Polarization of gold in nanopores leads to ion current rectification

    SciTech Connect

    Yang, Crystal; Hinkle, Preston; Menestrina, Justin; Vlassiouk, Ivan V.; Siwy, Zuzanna S.

    2016-10-03

    Biomimetic nanopores with rectifying properties are relevant components of ionic switches, ionic circuits, and biological sensors. Rectification indicates that currents for voltages of one polarity are higher than currents for voltages of the opposite polarity. Ion current rectification requires the presence of surface charges on the pore walls, achieved either by the attachment of charged groups or in multielectrode systems by applying voltage to integrated gate electrodes. Here we present a simpler concept for introducing surface charges via polarization of a thin layer of Au present at one entrance of a silicon nitride nanopore. In an electric field applied by two electrodes placed in bulk solution on both sides of the membrane, the Au layer polarizes such that excess positive charge locally concentrates at one end and negative charge concentrates at the other end. Consequently, a junction is formed between zones with enhanced anion and cation concentrations in the solution adjacent to the Au layer. This bipolar double layer together with enhanced cation concentration in a negatively charged silicon nitride nanopore leads to voltage-controlled surface-charge patterns and ion current rectification. The experimental findings are supported by numerical modeling that confirm modulation of ionic concentrations by the Au layer and ion current rectification even in low-aspect ratio nanopores. Lastly, our findings enable a new strategy for creating ionic circuits with diodes and transistors.

  9. Liquid-liquid ion transport junctions based on paired gold electrodes in generator-collector mode.

    PubMed

    French, Robert W; Chan, Yohan; Bulman-Page, Philip C; Marken, Frank

    2009-10-01

    Simultaneous electrochemically driven double anion transfer across liquid-liquid interfaces is demonstrated at a gold-gold junction electrode. In the presence of two closely spaced electrodes (generator and collector), anion uptake into the organic phase (oxidation) and anion expulsion into the aqueous phase (reduction) can be combined to result in a generator-collector anion transport system across the liquid-liquid interface. In this report we are employing a paired gold junction grown by electro-deposition to ca. 5 microm gap size with the N,N-diethyl-N',N'-didodecyl-phenylene-diamine water immiscible redox liquid immobilized into the gap to demonstrate simultaneous perchlorate anion uptake and expulsion. The effects of redox liquid volume and scan rate on the magnitude of currents and two mechanistic pathways for ion transport are discussed in the context of micro-electrophoretic processes.

  10. Range parameters of slow gold ions implanted into light targets

    NASA Astrophysics Data System (ADS)

    Kuzmin, V.

    2009-08-01

    Interatomic potentials for Au-C, Au-B, Au-N and Au-Si systems, calculated with density-functional theory (DFT) methods, have been used to evaluate the range parameters of gold in B, Si, BN and SiC films at energies of about 10-400 keV. The potentials have been employed to describe scattering angles of a projectile and to calculate the nuclear stopping powers and the higher moments of the energy, transferred in single collisions. Utilizing these findings the range parameters have been obtained by the standard transport theory and by Monte-Carlo simulations. A velocity proportional electronic stopping was included into the consideration. The approach developed corresponds completely to the standard classical scheme of the calculation of range parameters. Good agreement between the computed range parameters and available experimental data allow us to conclude that correlation effects between the nuclear and electronic stopping can be neglected in the energy range in question. Moreover, it is proven for the first time that the model by Grande, et al. [P.L. Grande, F.C. Zawislak, D. Fink, M. Behar, Nucl. Instr. and Meth. B 61 (1991) 282], which relies on the importance of correlation effects, contains inherent contradictions.

  11. A microcantilever-based silver ion sensor using DNA-functionalized gold nanoparticles as mass amplifier.

    PubMed

    You, Juneseok; Song, Yeongjin; Park, Chanho; Jang, Kuewhan; Na, Sungsoo

    2017-04-13

    Silver ions have been used to sterilize many products, however, it has recently been demonstrated that silver ions can be toxic. This toxicity has been researched over many years with the lethal concentration at 10 μM. Silver ions can accumulate through the food chain, causing serious health problems in species. Hence, there is a need for a commercially available silver ion sensor, with high detection sensitivity. In this work, we develop an ultra-sensitive silver ion sensor platform, using cytosine-based DNA and gold nanoparticle as the mass amplifier. We achieve a lower detection limit for silver ions of 10 pM; this detection limit is one million times lower than the toxic concentration. Using our sensor platform we examine highly selective characteristics of other typical ions in water from natural sources. Furthermore, our sensor platform is able to detect silver ions in a real practical sample of commercially available drinking water. Our sensor platform, which we have termed a 'MAIS' (Mass Amplifier Ion Sensor), with the simple detection procedure, high sensitivity, selectivity and real practical applicability has shown potential as an early toxicity assessment of silver ions for the environment.

  12. Gold nanoflowers based colorimetric detection of Hg2+ and Pb2+ ions

    NASA Astrophysics Data System (ADS)

    Nalawade, Pradnya; Kapoor, Sudhir

    2013-12-01

    An optical detection method based on the interaction of gold nanoflowers with Hg2+ and Pb2+ has been described. After interaction, gold nanoflowers change the color from violet to wine red. The nanoflowers are capable of determining Hg2+ and Pb2+ over a dynamic range of 1.0 × 10-6 and 1.0 × 10-5 M, respectively. The response time of nanoflowers depends on the concentration of ions. The presence of both Hg2+ and Pb2+ ions in the mixture having Au nanoflowers induced color changes of the solution within several seconds even at 1.0 × 10-6 M. Common metal ions were chosen to investigate their interference in Hg2+ and Pb2+ detection, and the concentration of each metal ion studied was 1.0 × 10-5 M. Other metallic ions could not induce color change even at 1.0 × 10-5 M. The feasibility of our method to detect Hg2+ and Pb2+ ions at high concentration in real water samples was verified. Water samples were from our own laboratory and no pretreatment was made. As the particles are stable they can be used for more than 3 months without observing any major deviation.

  13. Isochoric heating of solid gold targets with the PW-laser-driven ion beams (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Steinke, Sven; Ji, Qing; Bulanov, Stepan S.; Barnard, John; Vincenti, Henri; Schenkel, Thomas; Esarey, Eric H.; Leemans, Wim P.

    2017-05-01

    We present first results on ion acceleration with the BELLA PW laser as well as end-to-end simulation for isochoric heating of solid gold targets using PW-laser generated ion beams: (i) 2D Particle-In-Cell (PIC) simulations are applied to study the ion source characteristics of the PW laser-target interaction at the long focal length (f/65) beamline at laser intensities of ˜[5×10]^19 Wcm-2 at spot size of 0=53 μm on a CH target. (ii) In order to transport the ion beams to an EMP-free environment, an active plasma lens will be used. This was modeled [1] by calculating the Twiss parameters of the ion beam from the appropriate transport matrixes taking the source parameters obtained from the PIC simulation. (iii) Hydrodynamic simulations indicate that these ion beams can isochorically heat a 1 mm3 gold target to the Warm Dense Matter state. Reference: J. van Tilborg et al, Phys. Rev. Lett. 115, 184802 (2015). This work was supported by Laboratory Directed Research and Development (LDRD) funding from Lawrence Berkeley National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  14. Self-assembly of core-satellite gold nanoparticles for colorimetric detection of copper ions.

    PubMed

    Weng, Ziqing; Wang, Hongbin; Vongsvivut, Jitraporn; Li, Runqing; Glushenkov, Alexey M; He, Jin; Chen, Ying; Barrow, Colin J; Yang, Wenrong

    2013-11-25

    Molecule-coated nanoparticles are hybrid materials which can be engineered with novel properties. The molecular coating of metal nanoparticles can provide chemical functionality, enabling assembly of the nanoparticles that are important for applications, such as biosensing devices. Herein, we report a new self-assembly of core-satellite gold nanoparticles linked by a simple amino acid l-Cysteine for biosensing of Cu(2+). The plasmonic properties of core-satellite nano-assemblies were investigated, a new red shifted absorbance peak from about 600 to 800 nm was found, with specific wavelength depending on ratios with assembly of large and small gold nanoparticles. The spectral features obtained using surface-enhanced Raman spectroscopy (SERS) provided strong evidence for the assembly of the Cu(2+) ions to the L-Cysteine molecules leading to the successful formation of the core-satellite Cu(l-Cysteine) complex on the gold surfaces. In addition, a linear relationship between the concentration of mediating Cu(2+) and absorbance of self-assembled gold nanoparticles (GNPs) at 680 nm was obtained. These results strongly address the potential strategy for applying the functionalized GNPs as novel biosensing tools in trace detections of certain metal ions.

  15. Size-dependent stability toward dissociation and ligand binding energies of phosphine-ligated gold cluster ions

    SciTech Connect

    Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

    2014-01-01

    The stability of sub-nanometer size gold clusters ligated with organic molecules is of paramount importance to the scalable synthesis of monodisperse size-selected metal clusters with highly tunable chemical and physical properties. For the first time, a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS) equipped with surface induced dissociation (SID) has been employed to investigate the time and collision energy resolved fragmentation behavior of cationic doubly charged gold clusters containing 7-9 gold atoms and 6-7 triphenylphosphine (TPP) ligands prepared by reduction synthesis in solution. The TPP ligated gold clusters are demonstrated to fragment through three primary dissociation pathways: (1) Loss of a neutral TPP ligand from the precursor gold cluster, (2) asymmetric fission and (3) symmetric fission and charge separation of the gold core resulting in formation of complementary pairs of singly charged fragment ions. Threshold energies and activation entropies of these fragmentation pathways have been determined employing Rice-Ramsperger-Kassel-Marcus (RRKM) modeling of the experimental SID data. It is demonstrated that the doubly charged cluster ion containing eight gold atoms and six TPP ligands, (8,6)2+, exhibits exceptional stability compared to the other cationic gold clusters examined in this study due to its large ligand binding energy of 1.76 eV. Our findings demonstrate the dramatic effect of the size and extent of ligation on the gas-phase stability and preferred fragmentation pathways of small TPP-ligated gold clusters.

  16. Single pass electron beam cooling of gold ions between EBIS LINAC and booster is theoretically possible!

    SciTech Connect

    Hershcovitch, A.

    2011-01-01

    Electron beam cooling is examined as an option to reduce momentum of gold ions exiting the EBIS LINAC before injection into the booster. Electron beam parameters are based on experimental data (obtained at BNL) of electron beams extracted from a plasma cathode. Many issues, regarding a low energy high current electron beam that is needed for electron beam cooling to reduce momentum of gold ions exiting the EBIS LINAC before injection into the booster, were examined. Computations and some experimental data indicate that none of these issues is a show stopper. Preliminary calculations indicate that single pass cooling is feasible; momentum spread can be reduced by more than an order of magnitude in about one meter. Hence, this option cooling deserves further more serious considerations.

  17. Electrically conductive polyimide film containing gold (III) ions, composition, and process of making

    NASA Technical Reports Server (NTRS)

    Caplan, Maggie L. (Inventor); Stoakley, Diane M. (Inventor); St. Clair, Anne K. (Inventor)

    1996-01-01

    An electrically conductive, thermooxidatively stable poltimide, especially a film thereof, is prepared from an intimate admixture of a particular polyimide and gold (III) ions, in an amount sufficient to provide between 17 and 21 percent by weight of gold (III) ions, based on the weight of electrically conductive, thermooxidatively stable polyimide. The particular polyimide is prepared from a polyamic acid which has been synthesized from a dianhydride/diamine combination selected from the group consisting of 3,3',4,4'-benzophenonetetracarboxylic dianhydride and 2,2-bis[4-(4 -aminophenoxy)phenyl]hexafluoropropane; 3,3',4,4'-benzophenonetetracarboxylic dianhydride and 4,4'-oxydianiline; 2,2'-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride and 4,4'-oxydianiline; and 3,3'4,4'-benzophenonetetracarboxylic dianhydride and 2,2-bis(3-aminophenyl)hexafluoropropane.

  18. An evaluation of the physicochemical degradation of gold ion-exchange resins in hypochlorite solutions

    NASA Astrophysics Data System (ADS)

    Sole, Kathryn C.; Qi, Peihao; Hiskey, J. Brent

    1993-02-01

    The long-term operating characteristics of ion-exchange resins suitable for the hydrometallurgical recovery of precious metals remain largely unknown. This study examines some physicochemical properties of two promising ion-exchange resins for gold, SR-3 and PAZ-8, when subjected to experimental conditions similar to those of a typical alkaline-chlorination gold recovery process. It is shown that the degradation behavior may be related to both the micro- and macrostructural properties of the resins. Severe resin degradation occurs on pro-longed, agitated contact of the SR-3 resin beads with hypochlorite solutions at ambient tem-perature; the low cross linkage of the resin facilitates mechanical damage, while chemical degradation occurs by dehydration, oxidative scission of the functional groups, and breakdown of the polymer matrix. The PAZ-8 resin is highly cross linked and is more resistant to both mechanical and chemical attack under similar conditions.

  19. Analysis of cardiac tissue by gold cluster ion bombardment

    NASA Astrophysics Data System (ADS)

    Aranyosiova, M.; Chorvatova, A.; Chorvat, D.; Biro, Cs.; Velic, D.

    2006-07-01

    Specific molecules in cardiac tissue of spontaneously hypertensive rats are studied by using time-of-flight secondary ion mass spectrometry (TOF-SIMS). The investigation determines phospholipids, cholesterol, fatty acids and their fragments in the cardiac tissue, with special focus on cardiolipin. Cardiolipin is a unique phospholipid typical for cardiomyocyte mitochondrial membrane and its decrease is involved in pathologic conditions. In the positive polarity, the fragments of phosphatydilcholine are observed in the mass region of 700-850 u. Peaks over mass 1400 u correspond to intact and cationized molecules of cardiolipin. In animal tissue, cardiolipin contains of almost exclusively 18 carbon fatty acids, mostly linoleic acid. Linoleic acid at 279 u, other fatty acids, and phosphatidylglycerol fragments, as precursors of cardiolipin synthesis, are identified in the negative polarity. These data demonstrate that SIMS technique along with Au 3+ cluster primary ion beam is a good tool for detection of higher mass biomolecules providing approximately 10 times higher yield in comparison with Au +.

  20. Gold glyconanoparticles for mimics and measurement of metal ion-mediated carbohydrate-carbohydrate interactions.

    PubMed

    Reynolds, Angela J; Haines, Alan H; Russell, David A

    2006-01-31

    To mimic and measure calcium ion-mediated carbohydrate-carbohydrate interactions, four lactose derivatives have been synthesized for assembly on gold nanoparticles. The series of lactose derivatives varied by the length of the thiolated ethylene glycol anchor chain [O(CH2CH2O)(m)CH2CH2SH; where m = 0, 1, 2, and 3] used to self-assemble the carbohydrates to the preformed gold nanoparticles of ca. 16 nm diameter. Upon addition of calcium ions to the lactose-stabilized nanoparticles, rapid carbohydrate-carbohydrate interactions were visualized and subsequently measured using UV-visible spectrometry and transmission electron microscopy (TEM). The nanoparticle aggregates formed via metal-mediated carbohydrate-carbohydrate interactions could be readily redispersed through the addition of EDTA. Multiple reaggregation and redispersion cycles were achieved, confirming that the aggregation process was due to metal ion-mediated carbohydrate interactions rather than calcium chelation by residual citrate ions on the particle surface. The essential involvement of the lactose moiety in Ca2+ complexation was shown by control measurements on related D-glucose-derivatized nanoparticles, where a significantly reduced aggregation response was obtained only at high ion concentrations. Other group 2 metal ions with radii larger than that of calcium, viz., barium and strontium, were also shown to mediate the aggregation of the lactose-stabilized nanoparticles. The induced aggregation of the lactose nanoparticles was determined to be quantitatively dependent upon the calcium ion concentration. Furthermore, the analytical sensitivity of the calcium-induced aggregation and the linear dynamic range were dependent on the length of the ethylene glycol anchor chain. The shortest ethylene glycol chain (m = 0) gave the most sensitive response with the optimum limit of detection (0.8 mM Ca2+), whereas the longest ethylene glycol chain (m = 3) provides a measurement of calcium ion concentration

  1. SETUP AND PERFORMANCE OF THE RHIC INJECTOR ACCELERATORS FOR THE 2007 RUN WITH GOLD IONS

    SciTech Connect

    GARDNER,C.; AHRENS, L.; ALESSI, J.; BENJAMIN, J.; BLASKIEWICZ, M.; ET AL.

    2007-06-25

    Gold ions for the 2007 run of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) are accelerated in the Tandem, Booster and AGS prior to injection into RHIC. The setup and performance of this chain of accelerators is reviewed with a focus on improvements in the quality of beam delivered to RHIC. In particular, more uniform stripping foils between Booster and AGS7 and a new bunch merging scheme in AGS have provided beam bunches with reduced longitudinal emittance for RHIC.

  2. Dilute nitric or nitrous acid solution containing halide ions as effective media for pure gold dissolution.

    PubMed

    Hojo, Masashi; Yamamoto, Masahiko; Okamura, Kei

    2015-08-14

    The greatly enhanced oxidation ability of dilute aqueous nitric acid (0.10-2.0 mol L(-1)) containing bromide and iodide salts as well as chloride salts has been examined based on the dissolution kinetics of pure gold at 30-60 °C. It has been found that bromide salts are more effective than chloride salts in gaining the ability of dissolving gold in dilute aqueous nitric acid solution. At 60 °C, a piece of gold-wire (ca. 20 mg) is dissolved in 20 mL of as low as 0.10 mol L(-1) HNO3 solution containing 1.0-5.0 mol L(-1) NaBr and the dissolution rate constant, log(k/s(-1)), increases linearly (from -5.78 to -4.52) with the increasing NaBr concentration. The addition of organic solvents, such as acetonitrile and acetic acid, causes acceleration of gold dissolution in LiBr and NaBr solutions. With increasing MeCN contents, for instance, the log(k/s(-1)) value of 0.10 mol L(-1) HNO3 solution containing 2.0 mol L(-1) NaBr increases linearly from -5.30 to -4.61 at 30% (v/v) MeCN. The bromide salts affect the gold dissolution rate constant in the order of KBr < NaBr < LiBr < CaBr2. With increasing NaI concentration (0.20-3.0 mol L(-1)), some acceleration in log(k/s(-1)) of 0.50 or 1.0 mol L(-1) HNO3 solution has been observed; however, the slope of acceleration as the function of NaI concentration is much smaller than that of NaCl or NaBr. The gold dissolution ability has been examined also for nitrous acid containing chloride and bromide ions at 35 °C. The NaNO2 solution containing twice or more amounts of HX (X = Cl, Br) gives the maximum efficiency for gold dissolution, according to the log(k/s(-1)) values of the mixed solutions of NaNO2 (0.10-2.0 mol L(-1)) and HX of various concentrations. The influence of oxidation by dilute nitric and nitrous acids on the gold dissolution is discussed from the standpoint of the redox potentials in "modified" aqueous solutions and not of the changes in the activity coefficients of ions.

  3. Isochoric heating of solid gold targets with the PW-laser-driven ion beams

    NASA Astrophysics Data System (ADS)

    Steinke, Sven; Ji, Qing; Bulanov, Stepan; Barnard, John; Schenkel, Thomas; Esarey, Eric; Leemans, Wim

    2016-10-01

    We present an end-to-end simulation for isochoric heating of solid gold targets using ion beams produced with the BELLA PW laser at LBNL: (i) 2D Particle-In-Cell (PIC) simulations are applied to study the ion source characteristics of the PW laser-target interaction at the long focal length (f/#65) beamline at laser intensities of 5x1019W/cm2 at spot size of ω0 = 52 μm on a CH target. (ii) In order to transport the ion beams to an EMP-free environment, an active plasma lens will be used. This was modeled by calculating the Twiss parameters of the ion beam from the appropriate transport matrixes using the source parameters obtained from the PIC simulation. Space charge effects were considered as well. (iii) Hydrodynamic simulations indicate that these ion beams can isochorically heat a 1 mm3 gold target to the Warm Dense Matter state. This work was supported by Fusion Energy Science, and LDRD funding from Lawrence Berkeley National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  4. Radiosensitizing effect of gold nanoparticles in carbon ion irradiation of human cervical cancer cells

    SciTech Connect

    Kaur, Harminder; Avasthi, D. K.; Pujari, Geetanjali; Sarma, Asitikantha

    2013-07-18

    Noble metal nanoparticles have received considerable attention in biotechnology for their role in bio sensing due to surface plasmon resonance, medical diagnostics due to better imaging contrast and therapy. The radiosensitization effect of gold nanoparticles (AuNP) has been gaining popularity in radiation therapy of cancer cells. The better depth dose profile of energetic ion beam proves its superiority over gamma radiation for fighting against cancer. In the present work, the glucose capped gold nanoparticles (Glu-AuNP) were synthesised and internalized in the HeLa cells. Transmission electron microscopic analysis of ultrathin sections of Glu-AuNP treated HeLa cells confirmed the internalization of Glu-AuNPs. Control HeLa cells and Glu-AuNp treated HeLa cells were irradiated at different doses of 62 MeV 12C ion beam (LET - 290keV/{mu}m) at BIO beam line of using 15UD Pelletron accelerator at Inter University Accelerator Centre, New Delhi, India. The survival fraction was assessed by colony forming assay which revealed that the dose of carbon ion for 90% cell killing in Glu-AuNP treated HeLa cells and control HeLa cells are 2.3 and 3.2 Gy respectively. This observation shows {approx} 28% reduction of {sup 12}C{sup 6+} ion dose for Glu-AuNP treated HeLa cells as compared to control HeLa cells.

  5. Radiosensitizing effect of gold nanoparticles in carbon ion irradiation of human cervical cancer cells

    NASA Astrophysics Data System (ADS)

    Kaur, Harminder; Avasthi, D. K.; Pujari, Geetanjali; Sarma, Asitikantha

    2013-07-01

    Noble metal nanoparticles have received considerable attention in biotechnology for their role in bio sensing due to surface plasmon resonance, medical diagnostics due to better imaging contrast and therapy. The radiosensitization effect of gold nanoparticles (AuNP) has been gaining popularity in radiation therapy of cancer cells. The better depth dose profile of energetic ion beam proves its superiority over gamma radiation for fighting against cancer. In the present work, the glucose capped gold nanoparticles (Glu-AuNP) were synthesised and internalized in the HeLa cells. Transmission electron microscopic analysis of ultrathin sections of Glu-AuNP treated HeLa cells confirmed the internalization of Glu-AuNPs. Control HeLa cells and Glu-AuNp treated HeLa cells were irradiated at different doses of 62 MeV 12C ion beam (LET - 290keV/μm) at BIO beam line of using 15UD Pelletron accelerator at Inter University Accelerator Centre, New Delhi, India. The survival fraction was assessed by colony forming assay which revealed that the dose of carbon ion for 90% cell killing in Glu-AuNP treated HeLa cells and control HeLa cells are 2.3 and 3.2 Gy respectively. This observation shows ˜ 28% reduction of 12C6+ ion dose for Glu-AuNP treated HeLa cells as compared to control HeLa cells.

  6. Selective disulfide bond cleavage in gold(I) cationized polypeptide ions formed via gas-phase ion/ion cation switching.

    PubMed

    Gunawardena, Harsha P; O'Hair, Richard A J; McLuckey, Scott A

    2006-09-01

    Gaseous multiply protonated disulfide-linked peptides have been subjected to reactions with AuCl2(-) ions to explore the possibility of effecting cation switching of Au+ for two protons and to determine whether cationization by Au+ ions affords selective dissociation of disulfide linkages. The incorporation of Au+ into several model disulfide-linked peptides proved to be straightforward. The primary ion/ion reaction channels were proton transfer, which does not lead to Au+ incorporation, and attachment of AuCl2(-) ions to the polypeptide cation, which does incorporate Au+. Fragmentation of the attachment product, the extent of which varied with peptide and charge state, led to losses of one or more molecules of HCl and, to some extent, cleavage of polypeptides at the disulfide linkage into its two constituent chains. Collisional activation of the intact metal-ion-incorporated peptides showed cleavage of the disulfide linkage to be a major, and in some cases exclusive, process. Cations with protons as the only cationizing agents showed only small contributions from cleavage of the disulfide linkage. These results indicate that Au+ incorporation into a disulfide-linked polypeptide ion is a promising way to effect selective dissociation of disulfide bonds. Cation switching via ion/ion reactions is a convenient means for incorporating gold and is attractive because it avoids the requirement of adding metal salts to the analyte solution.

  7. Label-free colorimetric detection of cadmium ions in rice samples using gold nanoparticles.

    PubMed

    Guo, Yongming; Zhang, Yi; Shao, Huawu; Wang, Zhuo; Wang, Xuefei; Jiang, Xingyu

    2014-09-02

    A simple and label-free colorimetric method for cadmium ions (Cd(2+)) detection using unmodified gold nanoparticles (AuNPs) is reported. The unmodified AuNPs easily aggregate in a high concentration of NaCl solution, but the presence of glutathione (GSH) can prevent the salt-induced aggregation of AuNPs. When Cd(2+) is added to the stable mixture of AuNPs, GSH, and NaCl, Cd(2+) can coordinate with 4× GSH as a spherical shaped complex, which decreases the amount of free GSH on the surface of gold nanoparticles to weaken the stability of AuNPs, and AuNPs will easily aggregate in high-salt conditions. On the basis of the mechanism, we design a simple, label-free colorimetric method using AuNPs accompanied by GSH in a high-salt environment to detect Cd(2+) in water and digested rice samples.

  8. Ion-directed assembly of gold nanorods: a strategy for mercury detection.

    PubMed

    Placido, Tiziana; Aragay, Gemma; Pons, Josefina; Comparelli, Roberto; Curri, M Lucia; Merkoçi, Arben

    2013-02-01

    Water-soluble gold nanorods (Au NRs) have been functionalized with an N-alkylaminopyrazole ligand, 1-[2-(octylamino)ethyl]-3,5-diphenylpyrazole (PyL), that has been demonstrated able to coordinate heavy metal ions. The N-alkylaminopyrazole functionalized Au NRs have been characterized by electron microscopy and spectroscopic investigation and tested in optical detection experiments of different ions, namely, Zn(2+), Cd(2+), Hg(2+), Cu(2+), Pb(2+), and As(3+). In particular, the exposure of the functionalized NRs to increasing amounts of Hg(2+) ions has resulted in a gradual red-shift and broadening of the longitudinal plasmon band, up to 900 nm. Interestingly, a significantly different response has been recorded for the other tested ions. In fact, no significant shift in the longitudinal plasmon band has been observed for any of them, while a nearly linear reduction in the plasmon band intensity versus ion concentration in solution has been detected. The very high sensitivity for Hg(2+) with respect to other investigated ions, with a limit of detection of 3 ppt, demonstrates that the functionalization of Au NRs with PyL is a very effective method to be implemented in a reliable colorimetric sensing device, able to push further down the detection limit achieved by applying similar strategies to spherical Au NPs.

  9. Biosensors Based on Nano-Gold/Zeolite-Modified Ion Selective Field-Effect Transistors for Creatinine Detection

    NASA Astrophysics Data System (ADS)

    Ozansoy Kasap, Berna; Marchenko, Svitlana V.; Soldatkin, Oleksandr O.; Dzyadevych, Sergei V.; Akata Kurc, Burcu

    2017-03-01

    The combination of advantages of using zeolites and gold nanoparticles were aimed to be used for the first time to improve the characteristic properties of ion selective field-effect transistor (ISFET)-based creatinine biosensors. The biosensors with covalently cross-linked creatinine deiminase using glutaraldehyde (GA) were used as a control group, and the effect of different types of zeolites on biosensor responses was investigated in detail by using silicalite, zeolite beta (BEA), nano-sized zeolite beta (Nano BEA) and zeolite BEA including gold nanoparticle (BEA-Gold). The presence of gold nanoparticles was investigated by ICP, STEM-EDX and XPS analysis. The chosen zeolite types allowed investigating the effect of aluminium in the zeolite framework, particle size and the presence of gold nanoparticles in the zeolitic framework.

  10. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams

    DOE PAGES

    Bang, W.; Albright, B. J.; Bradley, P. A.; ...

    2015-09-22

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has beenmore » unavailable to date. We have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.« less

  11. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams

    SciTech Connect

    Bang, W.; Albright, B. J.; Bradley, P. A.; Gautier, D. C.; Palaniyappan, S.; Vold, E. L.; Cordoba, M. A. Santiago; Hamilton, C. E.; Fernández, J. C.

    2015-09-22

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has been unavailable to date. We have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.

  12. Silica-gold bilayer-based transfer of focused ion beam-fabricated nanostructures.

    PubMed

    Wu, Xiaofei; Geisler, Peter; Krauss, Enno; Kullock, René; Hecht, Bert

    2015-10-21

    The demand for using nanostructures fabricated by focused ion beam (FIB) on delicate substrates or as building blocks for complex devices motivates the development of protocols that allow FIB-fabricated nanostructures to be transferred from the original substrate to the desired target. However, transfer of FIB-fabricated nanostructures is severely hindered by FIB-induced welding of structure and substrate. Here we present two (ex and in situ) transfer methods for FIB-fabricated nanostructures based on a silica-gold bilayer evaporated onto a bulk substrate. Utilizing the poor adhesion between silica and gold, the nanostructures can be mechanically separated from the bulk substrate. For the ex situ transfer, a spin-coated poly(methyl methacrylate) film is used to carry the nanostructures so that the bilayer can be etched away after being peeled off. For the in situ transfer, using a micro-manipulator inside the FIB machine, a cut-out piece of silica on which a nanostructure has been fabricated is peeled off from the bulk substrate and thus carries the nanostructure to a target substrate. We demonstrate the performance of both methods by transferring plasmonic nano-antennas fabricated from single-crystalline gold flakes by FIB milling to a silicon wafer and to a scanning probe tip.

  13. Multipath colourimetric assay for copper(II) ions utilizing MarR functionalized gold nanoparticles

    PubMed Central

    Wang, Yulong; Wang, Limin; Su, Zhenhe; Xue, Juanjuan; Dong, Jinbo; Zhang, Cunzheng; Hua, Xiude; Wang, Minghua; Liu, Fengquan

    2017-01-01

    We use the multiple antibiotic resistance regulator (MarR), as a highly selective biorecognition elements in a multipath colourimetric sensing strategy for the fast detection of Cu2+ in water samples. The colourimetric assay is based on the aggregation of MarR-coated gold nanoparticles in the presence of Cu2+ ions, which induces a red-to-purple colour change of the solution. The colour variation in the gold nanoparticle aggregation process can be used for qualitative and quantitative detection of Cu2+ by the naked eye, and with UV–vis and smartphone-based approaches. The three analysis techniques used in the multipath colourimetric assay complement each other and provide greater flexibility for differing requirements and conditions, making the assay highly applicable for Cu2+ detection. Under optimal conditions, the Cu2+ concentration was quantified in less than 5 min with limits of detection for the naked eye, UV–vis and smartphone-based approaches of 1 μM, 405 nM and 61 nM, respectively. Moreover, the sensing system exhibited excellent selectivity and practical application for Cu2+ detection in real water samples. Thus, our strategy has great potential for application in on-site monitoring of Cu2+, and the unique response of MarR towards copper ions may provide a new approach to Cu2+ sensing. PMID:28155905

  14. Multipath colourimetric assay for copper(II) ions utilizing MarR functionalized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Yulong; Wang, Limin; Su, Zhenhe; Xue, Juanjuan; Dong, Jinbo; Zhang, Cunzheng; Hua, Xiude; Wang, Minghua; Liu, Fengquan

    2017-02-01

    We use the multiple antibiotic resistance regulator (MarR), as a highly selective biorecognition elements in a multipath colourimetric sensing strategy for the fast detection of Cu2+ in water samples. The colourimetric assay is based on the aggregation of MarR-coated gold nanoparticles in the presence of Cu2+ ions, which induces a red-to-purple colour change of the solution. The colour variation in the gold nanoparticle aggregation process can be used for qualitative and quantitative detection of Cu2+ by the naked eye, and with UV-vis and smartphone-based approaches. The three analysis techniques used in the multipath colourimetric assay complement each other and provide greater flexibility for differing requirements and conditions, making the assay highly applicable for Cu2+ detection. Under optimal conditions, the Cu2+ concentration was quantified in less than 5 min with limits of detection for the naked eye, UV-vis and smartphone-based approaches of 1 μM, 405 nM and 61 nM, respectively. Moreover, the sensing system exhibited excellent selectivity and practical application for Cu2+ detection in real water samples. Thus, our strategy has great potential for application in on-site monitoring of Cu2+, and the unique response of MarR towards copper ions may provide a new approach to Cu2+ sensing.

  15. Recyclable fluorescent gold nanocluster membrane for visual sensing of copper(II) ion in aqueous solution.

    PubMed

    Lin, Zhijin; Luo, Fenqiang; Dong, Tongqing; Zheng, Liyan; Wang, Yaxian; Chi, Yuwu; Chen, Guonan

    2012-05-21

    Recently, metal-selective fluorescent chemosensors have attracted intense attention for their simple and real-time tracking of metal ions in environmental samples. However, most of the existing fluorescent sensors are one-off sensors and thus suffer from large amount of reagent consumption, significant experimental cost and raising the risk of environmental pollution. In this paper, we developed a green (low reagent consumption, low-toxicity reagent use), recyclable, and visual sensor for Cu(2+) in aqueous solution by using a fluorescent gold nanoclusters membrane (FGM) as the sensing unit, basing on our findings on gold nanoclusters (Au NCs) that the bovine serum albumin (BSA)-coated Au NCs exhibit excellent membrane-forming ability under the isoelectric point of BSA, and thus enable us to obtain a new type of sensing membrane (i.e. FGM) by denaturing Au NCs; the fluorescence of FGM can be significantly quenched by Cu(2+) ion, and the quenched fluorescence can be totally recovered by histidine; the as-prepared FGM is very stable and recyclable, which makes it an ideal sensing material.

  16. Physical response of gold nanoparticles to single self-ion bombardment

    DOE PAGES

    Bufford, Daniel C.; Hattar, Khalid

    2014-09-23

    The reliability of nanomaterials depends on maintaining their specific sizes and structures. However, the stability of many nanomaterials in radiation environments remains uncertain due to the lack of a fully developed fundamental understanding of the radiation response on the nanoscale. To provide an insight into the dynamic aspects of single ion effects in nanomaterials, gold nanoparticles (NPs) with nominal diameters of 5, 20, and 60 nm were subjected to self-ion irradiation at energies of 46 keV, 2.8 MeV, and 10 MeV in situ inside of a transmission electron microscope. Ion interactions created a variety of far-from-equilibrium structures including small (~1more » nm) sputtered nanoclusters from the parent NPs of all sizes. Single ions created surface bumps and elongated nanofilaments in the 60 nm NPs. As a result, similar shape changes were observed in the 20 nm nanoparticles, while the 5 nm nanoparticles were transiently melted or explosively broken apart.« less

  17. Physical response of gold nanoparticles to single self-ion bombardment

    SciTech Connect

    Bufford, Daniel C.; Hattar, Khalid

    2014-09-23

    The reliability of nanomaterials depends on maintaining their specific sizes and structures. However, the stability of many nanomaterials in radiation environments remains uncertain due to the lack of a fully developed fundamental understanding of the radiation response on the nanoscale. To provide an insight into the dynamic aspects of single ion effects in nanomaterials, gold nanoparticles (NPs) with nominal diameters of 5, 20, and 60 nm were subjected to self-ion irradiation at energies of 46 keV, 2.8 MeV, and 10 MeV in situ inside of a transmission electron microscope. Ion interactions created a variety of far-from-equilibrium structures including small (~1 nm) sputtered nanoclusters from the parent NPs of all sizes. Single ions created surface bumps and elongated nanofilaments in the 60 nm NPs. As a result, similar shape changes were observed in the 20 nm nanoparticles, while the 5 nm nanoparticles were transiently melted or explosively broken apart.

  18. Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas.

    PubMed

    Kollmann, Heiko; Piao, Xianji; Esmann, Martin; Becker, Simon F; Hou, Dongchao; Huynh, Chuong; Kautschor, Lars-Oliver; Bösker, Guido; Vieker, Henning; Beyer, André; Gölzhäuser, Armin; Park, Namkyoo; Vogelgesang, Ralf; Silies, Martin; Lienau, Christoph

    2014-08-13

    Plasmonic nanoantennas are versatile tools for coherently controlling and directing light on the nanoscale. For these antennas, current fabrication techniques such as electron beam lithography (EBL) or focused ion beam (FIB) milling with Ga(+)-ions routinely achieve feature sizes in the 10 nm range. However, they suffer increasingly from inherent limitations when a precision of single nanometers down to atomic length scales is required, where exciting quantum mechanical effects are expected to affect the nanoantenna optics. Here, we demonstrate that a combined approach of Ga(+)-FIB and milling-based He(+)-ion lithography (HIL) for the fabrication of nanoantennas offers to readily overcome some of these limitations. Gold bowtie antennas with 6 nm gap size were fabricated with single-nanometer accuracy and high reproducibility. Using third harmonic (TH) spectroscopy, we find a substantial enhancement of the nonlinear emission intensity of single HIL-antennas compared to those produced by state-of-the-art gallium-based milling. Moreover, HIL-antennas show a vastly improved polarization contrast. This superior nonlinear performance of HIL-derived plasmonic structures is an excellent testimonial to the application of He(+)-ion beam milling for ultrahigh precision nanofabrication, which in turn can be viewed as a stepping stone to mastering quantum optical investigations in the near-field.

  19. Neutralization of slow multicharged ions at a clean gold surface: Electron-emission statistics

    NASA Astrophysics Data System (ADS)

    Kurz, H.; Aumayr, F.; Lemell, C.; Töglhofer, K.; Winter, Hp.

    1993-09-01

    Emission of slow electrons (Ee<=60 eV) induced by impact of slow multicharged ions (impact velocity vp<=2×105 m/s) onto an atomically clean, polycrystalline gold surface has been studied both experimentally and by numerical simulation, based on the resulting electron-emission statistics. The projectile ions (Nq+, q=5,6; Neq+, q=5-10 Arq+, q=5-16 Krq+, q=5-10 Xeq+, q=6,8,10; Iq+, q=16,20,23,25) have been extracted from a recoil ion source pumped by the GSI UNILAC heavy-ion accelerator in Darmstadt, Germany. We discuss the shape of the experimentally obtained electron-emission statistics and, by means of numerical simulation based on the classical over-the-barrier model put forward recently by Burgdörfer, Lerner, and Meyer [Phys. Rev. A 44, 5674 (1991)], identify the various processes contributing to the ``above-surface'' electron emission, i.e., taking place until projectile impact on the surface. In particular, for impact of slow (E>=50 eV) Ar12+ we show that most of the emitted electrons have energies below 50 eV, with the above-surface-produced fast Auger electrons being a small minority of less than 1%.

  20. Silica-gold bilayer-based transfer of focused ion beam-fabricated nanostructures

    NASA Astrophysics Data System (ADS)

    Wu, Xiaofei; Geisler, Peter; Krauss, Enno; Kullock, René; Hecht, Bert

    2015-10-01

    The demand for using nanostructures fabricated by focused ion beam (FIB) on delicate substrates or as building blocks for complex devices motivates the development of protocols that allow FIB-fabricated nanostructures to be transferred from the original substrate to the desired target. However, transfer of FIB-fabricated nanostructures is severely hindered by FIB-induced welding of structure and substrate. Here we present two (ex and in situ) transfer methods for FIB-fabricated nanostructures based on a silica-gold bilayer evaporated onto a bulk substrate. Utilizing the poor adhesion between silica and gold, the nanostructures can be mechanically separated from the bulk substrate. For the ex situ transfer, a spin-coated poly(methyl methacrylate) film is used to carry the nanostructures so that the bilayer can be etched away after being peeled off. For the in situ transfer, using a micro-manipulator inside the FIB machine, a cut-out piece of silica on which a nanostructure has been fabricated is peeled off from the bulk substrate and thus carries the nanostructure to a target substrate. We demonstrate the performance of both methods by transferring plasmonic nano-antennas fabricated from single-crystalline gold flakes by FIB milling to a silicon wafer and to a scanning probe tip.The demand for using nanostructures fabricated by focused ion beam (FIB) on delicate substrates or as building blocks for complex devices motivates the development of protocols that allow FIB-fabricated nanostructures to be transferred from the original substrate to the desired target. However, transfer of FIB-fabricated nanostructures is severely hindered by FIB-induced welding of structure and substrate. Here we present two (ex and in situ) transfer methods for FIB-fabricated nanostructures based on a silica-gold bilayer evaporated onto a bulk substrate. Utilizing the poor adhesion between silica and gold, the nanostructures can be mechanically separated from the bulk substrate. For the ex

  1. Colorimetric assay for lead ions based on the leaching of gold nanoparticles.

    PubMed

    Chen, Yi-You; Chang, Huan-Tsung; Shiang, Yen-Chun; Hung, Yu-Lun; Chiang, Cheng-Kang; Huang, Chih-Ching

    2009-11-15

    A colorimetric, label-free, and nonaggregation-based gold nanoparticles (Au NPs) probe has been developed for the detection of Pb(2+) in aqueous solution, based on the fact that Pb(2+) ions accelerate the leaching rate of Au NPs by thiosulfate (S(2)O(3)(2-)) and 2-mercaptoethanol (2-ME). Au NPs reacted with S(2)O(3)(2-) ions in solution to form Au(S(2)O(3))(2)(3-) complexes on the Au NP surfaces, leading to slight decreases in their surface plasmon resonance (SPR) absorption. Surface-assisted laser desorption/ionization time-of-flight ionization mass spectrometry (SALDI-TOF MS) data reveals the formation of Pb-Au alloys on the surfaces of the Au NPs in the presence of Pb(2+) ions and 2-ME. The formation of Pb-Au alloys accelerated the Au NPs rapidly dissolved into solution, leading to dramatic decreases in the SPR absorption. The 2-ME/S(2)O(3)(2-)-Au NP probe is highly sensitive (LOD = 0.5 nM) and selective (by at least 1000-fold over other metal ions) toward Pb(2+) ions, with a linear detection range (2.5 nM-10 muM) over nearly 4 orders of magnitude. The cost-effective probe allows rapid and simple determination of the concentrations of Pb(2+) ions in environmental samples (Montana soil and river), with results showing its great practicality for the detection of lead in real samples.

  2. SU-E-T-518: Investigation of Gold Nanoparticle Radiosensitization for Carbon Ion Therapy

    SciTech Connect

    Lin, Y; Held, K; Paganetti, H; Schuemann, J; McMahon, S

    2015-06-15

    Purpose The aim of this work is to investigate the radiosensitization effect of gold nanoparticles (GNP) in carbon ion irradiation. Nano-scale dosimetric characteristics of GNP interaction with carbon ions as well as the secondary particles generated as a carbon beam traverses the water phantom were studied. Methods Monte Carlo simulations were carried out using TOPAS (Tool for Particle Simulation). First, a water phantom was irradiated by the carbon ion beam and the particle shower spectrum at several depths was recorded in phase spaces. We analyzed the number and energy spectrum of each particle type. Then, the phase spaces obtained from Step 1 were modified to nanometer scale to irradiate a single 50 nm GNP. The secondary electrons that escaped from the GNPs following interactions with each particle type were recorded as phase spaces. The number and energy spectrum of the secondary electrons were studied. The same simulations were repeated replacing the GNPs with water nanoparticles (WNPs) with the same size. The energy absorbed in either GNP or WNP was scored. Results There is a large amount of secondary particles generated through carbon ion beam interaction with the water phantom. Analysis of the secondary electrons generated by the primary particles which escape from the nanoparticle revealed that majority (above 80%) of these electrons were generated by the GNP interaction with Carbon beam itself, making it the biggest contributor to the enhancement. The ratio of the energy absorbed by GNP and WNP is about 8–10 for charged particles and above 3000 for gammas. Conclusion We showed in the study the GNPs may potentially be used to enhance carbon ion therapy, and the main mechanism of enhancement is the interaction with Carbon ion particles itself.

  3. Peroxidase mimicking DNA-gold nanoparticles for fluorescence detection of the lead ions in blood.

    PubMed

    Li, Chi-Lin; Huang, Chih-Ching; Chen, Wei-Hsi; Chiang, Cheng-Kang; Chang, Huan-Tsung

    2012-11-21

    Oligonucleotide (T30695) modified gold nanoparticles (T30695-Au NPs) have been prepared and employed for quantification of lead ions (Pb(2+)) in blood. The detection of Pb(2+) ions is through the formation of Au-Pb alloys and oligonucleotide-Pb(2+) complexes that catalyze the H(2)O(2)-mediated oxidation of non-fluorescent Amplex UltraRed (AUR) to form a highly fluorescent oxidized AUR product. Surface-assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI-TOF MS) and inductively coupled plasma mass spectrometry (ICP-MS) revealed the formation of Au-Pb alloys on the surfaces of the 40T30695-Au NPs (i.e., the system featuring 40 molecules of T30695 per Au NP) in the presence of Pb(2+) ions, leading to increased catalytic activity for the H(2)O(2)-mediated oxidation of AUR. The fluorescence intensity (excitation/emission maxima: ca. 540/584 nm) of the oxidized AUR product is proportional to the concentration of Pb(2+) ions over the range 0.1-100 nM, with a linear correlation (R(2) = 0.99). The 40T30695-Au NP/AUR probe is highly selective toward Pb(2+) ions (by at least 200-fold over other tested metal ions). The 40T30695-Au NPs/AUR probe provided limits of detection (LOD, at a signal-to-noise ratio 3) for Pb(2+) ions of 0.05 and 0.1 nM, in Tris-acetate solution (5 mM, pH 8.0) without and with salt (150 mM NaCl, 5 mM KCl, 1 mM MgCl(2), and 1 mM CaCl(2)), respectively. Without conducting tedious sample pretreatment, the approach allows detection of Pb(2+) ions in blood samples, showing the potential of the 40T30695-Au NPs/AUR assay for on-site and real-time detection of Pb(2+) ions in biological samples.

  4. Logical regulation of the enzyme-like activity of gold nanoparticles by using heavy metal ions.

    PubMed

    Lien, Chia-Wen; Chen, Ying-Chieh; Chang, Huan-Tsung; Huang, Chih-Ching

    2013-09-07

    In this study we employed self-deposition and competitive or synergistic interactions between metal ions and gold nanoparticles (Au NPs) to develop OR, AND, INHIBIT, and XOR logic gates through regulation of the enzyme-like activity of Au NPs. In the presence of various metal ions (Ag(+), Bi(3+), Pb(2+), Pt(4+), and Hg(2+)), we found that Au NPs (13 nm) exhibited peroxidase-, oxidase-, or catalase-like activity. After Ag(+), Bi(3+), or Pb(2+) ions had been deposited on the Au NPs, the particles displayed strong peroxidase-like activity; on the other hand, they exhibited strong oxidase- and catalase-like activities after reactions with Ag(+)/Hg(2+) and Hg(2+)/Bi(3+) ions, respectively. The catalytic activities of these Au NPs arose mainly from the various oxidation states of the surface metal atoms/ions. Taking advantage of this behavior, we constructed multiplex logic operations-OR, AND, INHIBIT, and XOR logic gates-through regulation of the enzyme-like activity after the introduction of metal ions into the Au NP solution. When we deposited Hg(2+) and/or Bi(3+) ions onto the Au NPs, the catalase-like activities of the Au NPs were strongly enhanced (>100-fold). Therefore, we could construct an OR logic gate by using Hg(2+)/Bi(3+) as inputs and the catalase-like activity of the Au NPs as the output. Likewise, we constructed an AND logic gate by using Pt(4+) and Hg(2+) as inputs and the oxidase-like activity of the Au NPs as the output; the co-deposition of Pt and Hg atoms/ions on the Au NPs was responsible for this oxidase-like activity. Competition between Pb(2+) and Hg(2+) ions for the Au NPs allowed us to develop an INHIBIT logic gate-using Pb(2+) and Hg(2+) as inputs and the peroxidase-like activity of the Au NPs as the output. Finally, regulation of the peroxidase-like activity of the Au NPs through the two inputs Ag(+) and Bi(3+) enabled us to construct an XOR logic gate.

  5. Precise Determination of the Lyman-1 Transition Energy in Hydrogen-like Gold Ions with Microcalorimeters

    NASA Astrophysics Data System (ADS)

    Kraft-Bermuth, S.; Andrianov, V.; Bleile, A.; Echler, A.; Egelhof, P.; Grabitz, P.; Kilbourne, C.; Kiselev, O.; McCammon, D.; Scholz, P.

    2014-09-01

    The precise determination of the transition energy of the Lyman-1 line in hydrogen-like heavy ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields. We report the determination of the Lyman-1 transition energy of gold ions (Au) with microcalorimeters at the experimental storage ring at GSI. X-rays produced by the interaction of 125 MeV/u Au ions with an internal argon gas-jet target were detected. The detector array consisted of 14 pixels with silicon thermistors and Sn absorbers, for which an energy resolution of 50 eV for an X-ray energy of 59.5 keV was obtained in the laboratory. The Lyman-1 transition energy was determined for each pixel in the laboratory frame, then transformed into the emitter frame and averaged. A Dy-159 source was used for energy calibration. The absolute positions of the detector pixels, which are needed for an accurate correction of the Doppler shift, were determined by topographic measurements and by scanning a collimated Am-241 source across the cryostat window. The energy of the Lyman-1 line in the emitter frame is eV, in good agreement with theoretical predictions. The systematic error is dominated by the uncertainty in the position of the cryostat relative to the interaction region of beam and target.

  6. Voltammetric detection of cadmium ions at glutathione-modified gold electrodes.

    PubMed

    Chow, Edith; Hibbert, D Brynn; Gooding, J Justin

    2005-06-01

    An electrochemical sensor for the detection of cadmium ions is described using immobilized glutathione as a selective ligand. First, a self-assembled monolayer of 3-mercaptopropionic acid (MPA) was formed on a gold electrode. The carboxyl terminus then allowed attachment of glutathione (GSH)via carbodiimide coupling to give the MPA-GSH modified electrode. A cadmium ion forms a complex with glutathione via the free sulfhydryl group and also to the carboxyl groups. The complexed ion is reduced by linear and Osteryoung square wave voltammetry with a detection limit of 5 nM. The effect of the kinetics of accumulation of cadmium on the measured current was investigated and modeled. Increasing the temperature of accumulation and electrochemical analysis caused an increase in the voltammetric peak of approximately 4% per degrees C around room temperature. The modified electrode could be regenerated, being stable for more than 16 repeated uses and more than two weeks if used once a day. Some interference from Pb(2+) and Cu(2+) was observed but the effects of Zn(2+), Ni(2+), Cr(3+) and Ba(2+) were insignificant.

  7. STM characterization of DNA immobilized via Zr ion glue onto gold thiol SAMs

    NASA Astrophysics Data System (ADS)

    Pourbeyram, S.; Shervedani, R. K.; Sabzyan, H.

    2013-10-01

    In this paper layer-by-layer (LBL) assembly of calf thymus DNA (ct-DNA) onto gold-mercaptopropionic acid self-assembled monolayer via Zr(IV) ion glue, Au-MPA-Zr(IV)-ct-DNA SAM, is monitored by scanning tunneling microscopy (STM) technique. The STM images of Au-MPA-Zr(IV) template show well-organized arrays of rod-like peaks. ct-DNA has been immobilized on the Au-MPA-Zr(IV) surface in hilly forms, implying globular structure for the immobilized ct-DNA. This immobilization strategy offers a simple and fast method to prepare the Au-MPA-Zr(IV)-ct-DNA template with promising applications for immobilization and study of the other compounds.

  8. Silver Ions Direct Twin-Plane Formation during the Overgrowth of Single-Crystal Gold Nanoparticles

    PubMed Central

    2016-01-01

    It is commonly agreed that the crystalline structure of seeds dictates the crystallinity of final nanoparticles in a seeded-growth process. Although the formation of monocrystalline particles does require the use of single-crystal seeds, twin planes may stem from either single- or polycrystalline seeds. However, experimental control over twin-plane formation remains difficult to achieve synthetically. Here, we show that a careful interplay between kinetics and selective surface passivation offers a unique handle over the emergence of twin planes (in decahedra and triangles) during the growth over single-crystalline gold nanoparticles of quasi-spherical shape. Twinning can be suppressed under conditions of slow kinetics in the presence of silver ions, yielding single-crystalline particles with high-index facets. PMID:27656688

  9. Many-body theory of the neutralization of strontium ions on gold surfaces

    NASA Astrophysics Data System (ADS)

    Pamperin, M.; Bronold, F. X.; Fehske, H.

    2015-01-01

    Motivated by experimental evidence for mixed-valence correlations affecting the neutralization of strontium ions on gold surfaces, we set up an Anderson-Newns model for the Sr:Au system and calculate the neutralization probability α as a function of temperature. We employ quantum-kinetic equations for the projectile Green functions in the finite -U noncrossing approximation. Our results for α agree reasonably well with the experimental data as far as the overall order of magnitude is concerned, showing in particular the correlation-induced enhancement of α . The experimentally found nonmonotonous temperature dependence, however, could not be reproduced. Instead of an initially increasing and then decreasing α , we find over the whole temperature range only a weak negative temperature dependence. It arises, however, clearly from a mixed-valence resonance in the projectile's spectral density and thus supports qualitatively the interpretation of the experimental data in terms of a mixed-valence scenario.

  10. Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules

    NASA Astrophysics Data System (ADS)

    Liu, Dingbin; Wang, Zhuo; Jiang, Xingyu

    2011-04-01

    In recent years, gold nanoparticles (AuNPs) have drawn considerable research attention in the fields of catalysis, drug delivery, imaging, diagnostics, therapy and biosensors due to their unique optical and electronic properties. In this review, we summarized recent advances in the development of AuNP-based colorimetric and fluorescent assays for ions including cations (such as Hg2+, Cu2+, Pb2+, As3+, Ca2+, Al3+, etc) and anions (such as NO2-, CN-, PF6-, F-, I-, oxoanions), and small organic molecules (such as cysteine, homocysteine, trinitrotoluene, melamine and cocaine, ATP, glucose, dopamine and so forth). Many of these species adversely affect human health and the environment. Moreover, we paid particular attention to AuNP-based colorimetric and fluorescent assays in practical applications.

  11. Logical regulation of the enzyme-like activity of gold nanoparticles by using heavy metal ions

    NASA Astrophysics Data System (ADS)

    Lien, Chia-Wen; Chen, Ying-Chieh; Chang, Huan-Tsung; Huang, Chih-Ching

    2013-08-01

    In this study we employed self-deposition and competitive or synergistic interactions between metal ions and gold nanoparticles (Au NPs) to develop OR, AND, INHIBIT, and XOR logic gates through regulation of the enzyme-like activity of Au NPs. In the presence of various metal ions (Ag+, Bi3+, Pb2+, Pt4+, and Hg2+), we found that Au NPs (13 nm) exhibited peroxidase-, oxidase-, or catalase-like activity. After Ag+, Bi3+, or Pb2+ ions had been deposited on the Au NPs, the particles displayed strong peroxidase-like activity; on the other hand, they exhibited strong oxidase- and catalase-like activities after reactions with Ag+/Hg2+ and Hg2+/Bi3+ ions, respectively. The catalytic activities of these Au NPs arose mainly from the various oxidation states of the surface metal atoms/ions. Taking advantage of this behavior, we constructed multiplex logic operations--OR, AND, INHIBIT, and XOR logic gates--through regulation of the enzyme-like activity after the introduction of metal ions into the Au NP solution. When we deposited Hg2+ and/or Bi3+ ions onto the Au NPs, the catalase-like activities of the Au NPs were strongly enhanced (>100-fold). Therefore, we could construct an OR logic gate by using Hg2+/Bi3+ as inputs and the catalase-like activity of the Au NPs as the output. Likewise, we constructed an AND logic gate by using Pt4+ and Hg2+ as inputs and the oxidase-like activity of the Au NPs as the output; the co-deposition of Pt and Hg atoms/ions on the Au NPs was responsible for this oxidase-like activity. Competition between Pb2+ and Hg2+ ions for the Au NPs allowed us to develop an INHIBIT logic gate--using Pb2+ and Hg2+ as inputs and the peroxidase-like activity of the Au NPs as the output. Finally, regulation of the peroxidase-like activity of the Au NPs through the two inputs Ag+ and Bi3+ enabled us to construct an XOR logic gate.In this study we employed self-deposition and competitive or synergistic interactions between metal ions and gold nanoparticles (Au NPs

  12. Soft Landing of Mass-Selected Gold Clusters: Influence of Ion and Ligand on Charge Retention and Reactivity

    SciTech Connect

    Johnson, Grant E.; Laskin, Julia

    2015-02-01

    Herein, we employ a combination of reduction synthesis in solution, soft landing of mass-selected precursor and product ions, and in situ time-of-flight secondary ion mass spectrometry (TOF-SIMS) to examine the influence of ion and the length of diphosphine ligands on the charge retention and reactivity of ligated gold clusters deposited onto self-assembled monolayer surfaces (SAMs). Product ions (Au10L42+, (10,4)2+, L = 1,3-bis(diphenyl-phosphino)propane, DPPP) were prepared through in-source collision induced dissociation (CID) and precursor ions [(8,4)2+, L = 1,6-bis(diphenylphosphino)hexane, DPPH] were synthesized in solution for comparison to (11,5)3+ precursor ions ligated with DPPP investigated previously (ACS Nano 2012, 6, 573 and J. Phys. Chem. C. 2012, 116, 24977). Similar to (11,5)3+ precursor ions, the (10,4)2+ product ions are shown to retain charge on 1H,1H,2H,2H-perfluorodecanethiol monolayers (FSAMs). Additional abundant peaks at higher m/z indicative of reactivity are observed in the TOF-SIMS spectrum of (10,4)2+ product ions that are not seen for (11,5)3+ precursor ions. The abundance of (10,4)2+ on 16-mercaptohexadecanoic acid (COOH-SAMs) is demonstrated to be lower than on FSAMs, consistent with partial reduction of charge. The (10,4)2+ product ion on 1-dodecanethiol (HSAMs) exhibits peaks similar to those seen on the COOH-SAM. On the HSAM, higher m/z peaks indicative of reactivity are observed similar to those on the FSAM. The (8,4)2+ DPPH precursor ions are shown to retain charge on FSAMs similar to (11,5)3+ precursor ions prepared with DPPP. An additional peak corresponding to attachment of one gold atom to (8,4)2+ is observed at higher m/z for DPPH-ligated clusters. On the COOH-SAM, (8,4)2+ is less abundant than on the FSAM consistent with partial neutralization. The results indicate that although retention of charge by product ions generated by CID is similar to precursor ions their reactivity during analysis with SIMS is different

  13. Preconcentration of gold ions from water samples by modified organo-nanoclay sorbent prior to flame atomic absorption spectrometry determination.

    PubMed

    Afzali, Daryoush; Mostafavi, Ali; Mirzaei, Mohammad

    2010-09-15

    In this work, the applicability of modified organo nanoclay as a new and easy prepared solid sorbent for the preconcentration of trace amounts of Au(III) ion from water samples is studied. The organo nanoclay was modified with 5-(4'-dimethylamino benzyliden)-rhodanine and used as a sorbent for separation of Au(III) ions. The sorption of gold ions was quantitative in the pH range of 2.0-6.0. Quantitative desorption occurred with 6.0 mL of 1.0 mol L(-1) Na(2)S(2)O(3). The amount of eluted Au(III) was measured using flame atomic absorption spectrometry. In the initial solution the linear dynamic range was in the range of 0.45 ng mL(-1) to 10.0 microg mL(-1), the detection limit was 0.1 ng mL(-1) and the preconcentration factor was 105. Also, the relative standard deviation was +/-2.3% (n=8 and C=2.0 microg mL(-1)) and the maximum capacity of the sorbent was 3.9 mg of Au(III) per gram of modified organo nanoclay. The influences of the experimental parameters including sample pH, eluent volume and eluent type, sample volume, and interference of some ions on the recoveries of the gold ion were investigated. The proposed method was applied for preconcentration and determination of gold in different samples.

  14. A novel electrode surface fabricated by directly attaching gold nanoparticles onto NH2+ ions implanted-indium tin oxide substrate

    NASA Astrophysics Data System (ADS)

    Liu, Chenyao; Jiao, Jiao; Chen, Qunxia; Xia, Ji; Li, Shuoqi; Hu, Jingbo; Li, Qilong

    2010-12-01

    A new type of gold nanoparticle attached to a NH2+ ion implanted-indium tin oxide surface was fabricated without using peculiar binder molecules, such as 3-(aminopropyl)-trimethoxysilane. A NH 2/indium tin oxide film was obtained by implantation at an energy of 80 keV with a fluence of 5 × 10 15 ions/cm 2. The gold nanoparticle-modified film was characterized by X-ray photoelectron spectroscopy, scanning electron microscopy and electrochemical techniques and compared with a modified bare indium tin oxide surface and 3-(aminopropyl)-trimethoxysilane linked surface, which exhibited a relatively low electron transfer resistance and high electrocatalytic activity. The results demonstrate that NH2+ ion implanted-indium tin oxide films can provide an important route to immobilize nanoparticles, which is attractive in developing new biomaterials.

  15. Using L-arginine-functionalized gold nanorods for visible detection of mercury(II) ions.

    PubMed

    Guan, Jiehao; Wang, Yi-Cheng; Gunasekaran, Sundaram

    2015-04-01

    A rapid and simple approach for visible determination of mercury ions (Hg(2+) ) in aqueous solutions was developed based on surface plasmon resonance phenomenon using L-arginine-functionalized gold nanorods (AuNRs). At pH greater than 9, the deprotonated amine group of L-arginine on the AuNRs bound with Hg(2+) leading to the side-by-side assembly of AuNRs, which was verified by transmission electron microscopy images. Thus, when Hg(2+) was present in the test solution, a blue shift of the typical longitudinal plasmon band of the AuNRs was observed in the ultra violet-visible-near infrared (UV-Vis-NIR) spectra, along with a change in the color of the solution, which occurred within 5 min. After carefully optimizing the potential factors affecting the performance, the L-arginine/AuNRs sensing system was found to be highly sensitive to Hg(2+) , with the limit of detection of 5 nM (S/N = 3); it is also very selective and free of interference from 10 other metal ions (Ba(2+) , Ca(2+) , Cd(2+) , Co(2+) , Cs(+) , Cu(2+) , K(+) , Li(+) , Ni(2+) , Pb(2+) ). The result suggests that the L-arginine-functionalized AuNRs can potentially serve as a rapid, sensitive, and easy-to-use colorimetric biosensor useful for determining Hg(2+) in food and environmental samples. © 2015 Institute of Food Technologists®

  16. Gold nanoparticle-enhanced secondary ion mass spectrometry and its bio-applications

    NASA Astrophysics Data System (ADS)

    Kim, Young-Pil; Oh, Eunkeu; Shon, Hyun Kyong; Moon, Dae Won; Lee, Tae Geol; Kim, Hak-Sung

    2008-12-01

    Enhancement of signals in time-of-flight secondary ion mass spectrometry (ToF-SIMS) studies is necessary to many biological applications. We have developed an efficient method of enhancing the signals of secondary ions from peptides using gold nanoparticles (AuNPs) attached to a well-controlled surface such as self-assembled monolayers (SAMs). AuNPs function as both signal enhancers and effective binding sites for peptides, which allow the high signal intensity from the peptides to produce well-contrasted ToF-SIMS images of peptides that are micropatterned on the surface of the AuNPs. For application, this AuNP-enhanced SIMS (NE-SIMS) provided the basis for the spectrum and images to assay protein kinases and their inhibitors. Phosphorylation efficiency and inhibitor effect were quantified by detecting mass change of the peptide substrates by kinase reaction. Maximum efficiency of phosphorylation was achieved from cysteine-tethered peptides with a spacer linker, indicating that accessibility of kinase was dependent on the surface orientation and length of the peptide substrate on the three-dimensional AuNPs. The activities of other enzymes such as phosphatase and protease could also be assayed using NE-SIMS. Our study shows that NE-SIMS can be applied as a useful tool for enzyme assay in biochip surfaces.

  17. Development of double-pulse lasers ablation system for generating gold ion source under applying an electric field

    NASA Astrophysics Data System (ADS)

    Khalil, A. A. I.

    2015-12-01

    Double-pulse lasers ablation (DPLA) technique was developed to generate gold (Au) ion source and produce high current under applying an electric potential in an argon ambient gas environment. Two Q-switched Nd:YAG lasers operating at 1064 and 266 nm wavelengths are combined in an unconventional orthogonal (crossed-beam) double-pulse configuration with 45° angle to focus on a gold target along with a spectrometer for spectral analysis of gold plasma. The properties of gold plasma produced under double-pulse lasers excitation were studied. The velocity distribution function (VDF) of the emitted plasma was studied using a dedicated Faraday-cup ion probe (FCIP) under argon gas discharge. The experimental parameters were optimized to attain the best signal to noise (S/N) ratio. The results depicted that the VDF and current signals depend on the discharge applied voltage, laser intensity, laser wavelength and ambient argon gas pressure. A seven-fold increases in the current signal by increasing the discharge applied voltage and ion velocity under applying double-pulse lasers field. The plasma parameters (electron temperature and density) were also studied and their dependence on the delay (times between the excitation laser pulse and the opening of camera shutter) was investigated as well. This study could provide significant reference data for the optimization and design of DPLA systems engaged in laser induced plasma deposition thin films and facing components diagnostics.

  18. Formation of gold and gold sulfide nanoparticles and mesoscale intermediate structures in the reactions of aqueous HAuCl4 with sulfide and citrate ions.

    PubMed

    Mikhlin, Yuri; Likhatski, Maxim; Karacharov, Anton; Zaikovski, Vladimir; Krylov, Alexander

    2009-07-14

    The effects of the molar ratio of sodium sulfide to chloroauric acid in the range of 0.5 to 5 and the time factor on the formation of the nanoparticles (NPs) of metallic Au, Au(2)S or their mixtures have been studied applying in situ and ex situ techniques (UV-Vis absorption spectroscopy, potentiometry, TEM, SPM, SERS, XPS). The products and intermediates have been compared with those for the reduction of chloroaurate with citrate ions and combinations of citrate and sulfide ions. An increase in the concentration of sulfide ions accelerates the reduction of Au(iii) complexes but hinders the nucleation and growth of Au NPs, resulting in a prolonged period before the appearance of plasmon peaks. The electrochemical potential is not directly associated with the plasmon intensities, although the potential sharply decreases simultaneously with a blue shift of the near-IR peak emerging with the Na(2)S/HAuCl(4) ratios of 0.5 to 1.5. It was concluded that the peak is due to longitudinal plasmon resonance of gold nanoplates. Au(2)S NPs, the nucleation of which is effectively inhibited, and probably some structures and fragments visible in TEM and AFM, including 2-5 nm Au NPs, crystallize in part outside the solutions. The evidence of partially liquid mesoscale structures comprising intermediate gold species as precursors of nanoparticles is presented, and their origin, ex situ transformation and role in the reaction mechanisms are discussed.

  19. Sorption characteristics and chromatographic separation of gold (I and III) from silver and base metal ions using polyurethane foams.

    PubMed

    Farag, A B; Soliman, M H; Abdel-Rasoul, O S; el-Shahawi, M S

    2007-10-10

    The influence of different parameters on the sorption profiles of trace and ultra traces of gold (I) species from the aqueous cyanide media onto the solid sorbents ion exchange polyurethane foams (IEPUFs) and commercial unloaded polyurethane foams (PUFs) based polyether type has been investigated. The retention of gold (I) species onto the investigated solid sorbents followed a first-order rate equation with an overall rate constant k in the range 2.2-2.8+/-0.2 s(-1). The sorption data of gold (I) followed Freundlich and Langmuir isotherm models. Thus, the a dual-mode of sorption mechanism involving absorption related to "weak base anion exchanger" and an added component for "surface adsorption" seems the most likely proposed dual mechanism for retention profile of gold (I) by the IEPUFs and PUFs solid sorbents. The capacity of the IEPUFs and PUFs towards gold (I) sorption calculated from the sorption isotherms was found to be 11.21+/-1.8 and 5.29+/-0.9 mg g(-1), respectively. The chromatographic separation of the spiked inorganic gold (I) from de ionized water at concentrations 5-15 microg mL(-1) onto the developed IEPUFs and PUFs packed columns at 10 mL min(-1) flow rate was successfully achieved. The retained gold (I) species were then recovered quantitatively from the IEPUFs (98.4+/-2.4%, n=5) and PUFs (95.4+/-3.4%, n=5) packed columns using perchloric acid (60 mL, 1.0 mol L(-1)) as a proper eluting agent. Thiourea (1.0 mol L(-1))-H2SO4 (0.1 mol L(-1)) system was also used as eluting agent for the recovery of gold (I) from IEPUFS (95.4+/-5.4%, n=3) and also PUFs (93.4+/-4.4%, n=3) packed columns. The performance of the IEPUFs and PUFs packed columns in terms of the height equivalent to the theoretical plates (HETP), number of plates (N), and critical and breakthrough capacities towards gold (I) species were evaluated. The developed IEPUFs packed column was applied successfully for complete retention and recovery (98.5+/-2.7) of gold (III) species spiked onto

  20. The X-ray photoelectron spectroscopy depth profiling and tribological characterization of ion-plated gold on various metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1983-01-01

    For the case of ion-plated gold, the graded interface between gold and a nickel substrate and a nickel substrate, such tribological properties as friction and microhardness are examined by means of X-ray photoelectron spectroscopy analysis and depth profiling. Sliding was conducted against SiC pins in both the adhesive process, where friction arises from adhesion between sliding surfaces, and abrasion, in which friction is due to pin indentation and groove-plowing. Both types of friction are influenced by coating depth, but with opposite trends: the graded interface exhibited the highest adhesion, but the lowest abrasion. The coefficient of friction due to abrasion is inversely related to hardness. Graded interface microhardness values are found to be the highest, due to an alloying effect. There is almost no interface gradation between the vapor-deposited gold film and the substrate.

  1. The X-ray photoelectron spectroscopy depth profiling and tribological characterization of ion-plated gold on various metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1983-01-01

    For the case of ion-plated gold, the graded interface between gold and a nickel substrate and a nickel substrate, such tribological properties as friction and microhardness are examined by means of X-ray photoelectron spectroscopy analysis and depth profiling. Sliding was conducted against SiC pins in both the adhesive process, where friction arises from adhesion between sliding surfaces, and abrasion, in which friction is due to pin indentation and groove-plowing. Both types of friction are influenced by coating depth, but with opposite trends: the graded interface exhibited the highest adhesion, but the lowest abrasion. The coefficient of friction due to abrasion is inversely related to hardness. Graded interface microhardness values are found to be the highest, due to an alloying effect. There is almost no interface gradation between the vapor-deposited gold film and the substrate.

  2. A microcantilever-based silver ion sensor using DNA-functionalized gold nanoparticles as a mass amplifier

    NASA Astrophysics Data System (ADS)

    You, Juneseok; Song, Yeongjin; Park, Chanho; Jang, Kuewhan; Na, Sungsoo

    2017-06-01

    Silver ions have been used to sterilize many products, however, it has recently been demonstrated that silver ions can be toxic. This toxicity has been studied over many years with the lethal concentration at 10 μM. Silver ions can accumulate through the food chain, causing serious health problems in many species. Hence, there is a need for a commercially available silver ion sensor, with high detection sensitivity. In this work, we develop an ultra-sensitive silver ion sensor platform, using cytosine based DNA and gold nanoparticles as the mass amplifier. We achieve a lower detection limit for silver ions of 10 pM; this detection limit is one million times lower than the toxic concentration. Using our sensor platform we examine highly selective characteristics of other typical ions in water from natural sources. Furthermore, our sensor platform is able to detect silver ions in a real practical sample of commercially available drinking water. Our sensor platform, which we have termed a ‘MAIS’ (mass amplifier ion sensor), with a simple detection procedure, high sensitivity, selectivity and real practical applicability has shown potential as an early toxicity assessment of silver ions in the environment.

  3. Biosensors Based on Nano-Gold/Zeolite-Modified Ion Selective Field-Effect Transistors for Creatinine Detection.

    PubMed

    Ozansoy Kasap, Berna; Marchenko, Svitlana V; Soldatkin, Oleksandr O; Dzyadevych, Sergei V; Akata Kurc, Burcu

    2017-12-01

    The combination of advantages of using zeolites and gold nanoparticles were aimed to be used for the first time to improve the characteristic properties of ion selective field-effect transistor (ISFET)-based creatinine biosensors. The biosensors with covalently cross-linked creatinine deiminase using glutaraldehyde (GA) were used as a control group, and the effect of different types of zeolites on biosensor responses was investigated in detail by using silicalite, zeolite beta (BEA), nano-sized zeolite beta (Nano BEA) and zeolite BEA including gold nanoparticle (BEA-Gold). The presence of gold nanoparticles was investigated by ICP, STEM-EDX and XPS analysis. The chosen zeolite types allowed investigating the effect of aluminium in the zeolite framework, particle size and the presence of gold nanoparticles in the zeolitic framework.After the synthesis of different types of zeolites in powder form, bare biosensor surfaces were modified by drop-coating of zeolites and creatinine deiminase (CD) was adsorbed on this layer. The sensitivities of the obtained biosensors to 1 mM creatinine decreased in the order of BEA-Gold > BEA > Nano BEA > Silicalite > GA. The highest sensitivity belongs to BEA-Gold, having threefold increase compared to GA, which can be attributed to the presence of gold nanoparticle causing favourable microenvironment for CD to avoid denaturation as well as increased surface area. BEA zeolites, having aluminium in their framework, regardless of particle size, gave higher responses than silicalite, which has no aluminium in its structure. These results suggest that ISFET biosensor responses to creatinine can be tailored and enhanced upon carefully controlled alteration of zeolite parameters used to modify electrode surfaces.

  4. Comparative efficacy of BioRelease Deslorelin® injection for induction of ovulation in oestrus mares: a field study.

    PubMed

    Finan, S A; Lamkin, E L; McKinnon, A O

    2016-09-01

    To investigate the comparative efficacy of BioRelease Deslorelin® (BRD) and Ovuplant® for induction of ovulation in cyclic mares in Australia. Ovarian follicular activity of 60 mares for a total of 95 cycles was monitored by ultrasonography until they developed a follicle ≥30 mm and a uterine oedema pattern of 3. Mares were then randomly allocated to one of three treatment groups: (1) treatment with 1.25 mg BRD, (2) a single Ovuplant pellet or (3) 1 mL compound sodium lactate control. Follicular activity was monitored with ultrasonography every 12 h until ovulation was detected or for at least 5 days post treatment. The injection site on each mare was monitored for reaction for a minimum of 5 days post treatment. There was no difference in the percentage of mares ovulating within 48 h when treated with BRD (93.75%) compared with Ovuplant (87.09%). Treatment with both ovulating agents significantly decreased the time to ovulation compared with control mares (P < 0.00005). More mares had injection site reactions with Ovuplant (64.5%) treatment compared with BRD (15.6%) or control mares (0%) (P < 0.00005). Treatment of mares with 1.25 mg BRD when there is a follicle ≥30 mm and uterine oedema pattern of 3 is as effective as treatment with Ovuplant. © 2016 Australian Veterinary Association.

  5. Interaction of gold nanoparticles mediated by captopril and S-nitrosocaptopril: the effect of manganese ions in mild acid medium.

    PubMed

    Iglesias, Emilia; Prado-Gotor, Rafael

    2015-01-07

    We report herein results regarding reactivity and assembly of citrate-capped gold nanoparticles (AuNPs) mediated by captopril (cap) and S-nitrosocaptopril (NOcap), two angiotensin converting enzyme inhibitors and antihypertensive agents. The results were compared with that of cysteine (Cys), a thiol-containing amino acid found in plasma. The interparticle interactions were characterized by monitoring the evolution of the surface plasmon resonance band using the spectrophotometric method. The original gold nanoparticles were efficiently modified by small amounts of Mn(+2) ions, which are adsorbed onto the surface of 15.4 nm citrate-capped gold nanoparticles, giving rise to manganese-gold nanoparticles (Mn-AuNPs) that, in mild acid medium, have proved to be highly sensitive and a rapid colorimetric detection method for thiols. Depending on the concentration of the Mn(+2) ions the aggregation of AuNPs can be rapidly induced. The kinetics of the assembly process has been studied. Good first-order kinetics has been observed, with the exception of captopril-mediated nanoparticle aggregation at low concentration of either cap or acid. The rate of Cys-mediated assembly of gold nanoparticles in aqueous 10 mM acetic acid is more than 20-times faster than pure AuNPs and concentrations of Cys as low as 34 nM can be detected in less than 40 min under conditions of stable Mn-AuNPs. Similar effects were observed with cap or NOcap. The assembly-disassembly reversibility is shown with cap and NOcap and depends highly on pH.

  6. Ion transport and electron transfer at self-assembled alkylthiol/gold monolayers

    NASA Astrophysics Data System (ADS)

    Boubour, Emmanuelle

    The electrical and electrochemical properties of self-assembled n-alkylthiol monolayers (SAMs) on gold are important if SAMs are to be used as molecular building blocks in biomimetic membranes and in micro- or nano-electronics. Ion transport and electron transfer at SAM/electrolyte interfaces are two important processes which have been characterized by cyclic voltammetry and a.c. impedance spectroscopy. Ion transport from an aqueous phase to the hydrophobic SAM region has been addressed by investigating the insulating properties of a wide variety of X(CH2)nS/Au SAMs (X = CH3, OH, CO2H and CF 3, and n = 7, 9, 11, 15). It was established that when the phase angle at a frequency characteristic of ion diffusion processes ( i.e. 1 Hz) is ≥88°, the SAM is defect-free and obeys the Helmholtz ideal capacitor model. However, when ϕ1HZ < 88°, the SAM is no longer an ionic insulator and ion/water penetration from the electrolyte into the SAM hydrophobic region is observed. The behavior of the phase angle with frequency was used to characterize the permeability of SAMs to electrolyte ions (K+, H2PO4 -, and HPO42-) as a function of the applied d.c. potential. A critical potential, Vc, was identified for each type of SAM corresponding to a transition from an insulating state to a more permeable state. When X = CH3, V c becomes more cathodic with increasing chainlength, i.e. Vc = -0.15 V (vs. Ag/AgCl) for n = 7, -0.25 V for n = 9, 11, and -0.35 V for n = 15. The SAM ionic permeability can also be modulated by maintaining n constant (15) and by varying the terminal group X. Vc is considerably more anodic for hydrophilic SAM/electrolyte interfaces (+0.25 V vs . Ag/AgCl for X = OH and + 0.15 V for X = CO2H) than for hydrophobic interfaces (-0.35 V for X = CH3). The kinetics of electron transfer at CH3(CH2)15CH3 SAMs have been investigated by a.c. impedance spectroscopy at various d.c. overpotentials with three redox couples, Ru(NH3)63+/2+, Fe(CN)63-/4-, and Co(bpy)3 3+/2+. Fits

  7. Colorimetric sensor array based on gold nanoparticles and amino acids for identification of toxic metal ions in water.

    PubMed

    Sener, Gulsu; Uzun, Lokman; Denizli, Adil

    2014-01-01

    A facile colorimetric sensor array for detection of multiple toxic heavy metal ions (Hg(2+), Cd(2+), Fe(3+), Pb(2+), Al(3+), Cu(2+), and Cr(3+)) in water is demonstrated using 11-mercaptoundecanoic acid (MUA)-capped gold nanoparticles (AuNPs) and five amino acids (lysine, cysteine, histidine, tyrosine, and arginine). The presence of amino acids (which have functional groups that can form complexes with metal ions and MUA) regulates the aggregation of MUA-capped particles; it can either enhance or diminish the particle aggregation. The combinatorial colorimetric response of all channels of the sensor array (i.e., color change in each of AuNP and amino acid couples) enables naked-eye discrimination of all of the metal ions tested in this study with excellent selectivity.

  8. Measurement of fragmentation cross sections of 12C ions on a thin gold target with the FIRST apparatus

    NASA Astrophysics Data System (ADS)

    Toppi, M.; Abou-Haidar, Z.; Agodi, C.; Alvarez, M. A. G.; Aumann, T.; Balestra, F.; Battistoni, G.; Bocci, A.; Böhlen, T. T.; Boudard, A.; Brunetti, A.; Carpinelli, M.; Cirio, R.; Cirrone, G. A. P.; Cortes-Giraldo, M. A.; Cuttone, G.; de Napoli, M.; Durante, M.; Fernández-García, J. P.; Finck, Ch.; Golosio, B.; Iarocci, E.; Iazzi, F.; Ickert, G.; Introzzi, R.; Juliani, D.; Krimmer, J.; Kummali, A. H.; Kurz, N.; Labalme, M.; Leifels, Y.; Le Fèvre, A.; Leray, S.; Marchetto, F.; Monaco, V.; Morone, M. C.; Nicolosi, D.; Oliva, P.; Paoloni, A.; Piersanti, L.; Pleskac, R.; Randazzo, N.; Rescigno, R.; Romano, F.; Rossi, D.; Rosso, V.; Rousseau, M.; Sacchi, R.; Sala, P.; Salvador, S.; Sarti, A.; Scheidenberger, C.; Schuy, C.; Sciubba, A.; Sfienti, C.; Simon, H.; Sipala, V.; Spiriti, E.; Tropea, S.; Vanstalle, M.; Younis, H.; Patera, V.; FIRST Collaboration

    2016-06-01

    A detailed knowledge of the light ions interaction processes with matter is of great interest in basic and applied physics. As an example, particle therapy and space radioprotection require highly accurate fragmentation cross-section measurements to develop shielding materials and estimate acute and late health risks for manned missions in space and for treatment planning in particle therapy. The Fragmentation of Ions Relevant for Space and Therapy experiment at the Helmholtz Center for Heavy Ion research (GSI) was designed and built by an international collaboration from France, Germany, Italy, and Spain for studying the collisions of a 12C ion beam with thin targets. The collaboration's main purpose is to provide the double-differential cross-section measurement of carbon-ion fragmentation at energies that are relevant for both tumor therapy and space radiation protection applications. Fragmentation cross sections of light ions impinging on a wide range of thin targets are also essential to validate the nuclear models implemented in MC simulations that, in such an energy range, fail to reproduce the data with the required accuracy. This paper presents the single differential carbon-ion fragmentation cross sections on a thin gold target, measured as a function of the fragment angle and kinetic energy in the forward angular region (θ ≲6° ), aiming to provide useful data for the benchmarking of the simulation softwares used in light ions fragmentation applications. The 12C ions used in the measurement were accelerated at the energy of 400 MeV/nucleon by the SIS (heavy ion synchrotron) GSI facility.

  9. A portable lab-on-a-chip system for gold-nanoparticle-based colorimetric detection of metal ions in water.

    PubMed

    Zhao, Chen; Zhong, Guowei; Kim, Da-Eun; Liu, Jinxia; Liu, Xinyu

    2014-09-01

    Heavy metal ions released into various water systems have a severe impact on the environment and human beings, and excess exposure to toxic metal ions through drinking water poses high risks to human health and causes life-threatening diseases. Thus, there is high demand for the development of a rapid, low-cost, and sensitive method for detection of metal ions in water. We present a portable analytical system for colorimetric detection of lead (Pb(2+)) and aluminum (Al(3+)) ions in water based on gold nanoparticle probes and lab-on-a-chip instrumentation. The colorimetric detection of metal ions is conducted via single-step assays with low limits of detection (LODs) and high selectivity. We design a custom-made microwell plate and a handheld colorimetric reader for implementing the assays and quantifying the signal readout. The calibration experiments demonstrate that this portable system provides LODs of 30 ppb for Pb(2+) and 89 ppb for Al(3+), both comparable to bench-top analytical spectrometers. It promises an effective platform for metal ion analysis in a more economical and convenient way, which is particularly useful for water quality monitoring in field and resource-poor settings.

  10. Nanoparticles for multi-modality cancer diagnosis: Simple protocol for self-assembly of gold nanoclusters mediated by gadolinium ions.

    PubMed

    Hou, Wenxiu; Xia, Fangfang; Alfranca, Gabriel; Yan, Hao; Zhi, Xiao; Liu, Yanlei; Peng, Chen; Zhang, Chunlei; de la Fuente, Jesus Martinez; Cui, Daxiang

    2017-03-01

    It is essential to develop a simple synthetic strategy to improve the quality of multifunctional contrast agents for cancer diagnosis. Herein, we report a time-saving method for gadolinium (Gd(3+)) ions-mediated self-assembly of gold nanoclusters (GNCs) into monodisperse spherical nanoparticles (GNCNs) under mild conditions. The monodisperse, regular and colloidal stable GNCNs were formed via selectively inducing electrostatic interactions between negatively-charged carboxylic groups of gold nanoclusters and trivalent cations of gadolinium in aqueous solution. In this way, the Gd(3+) ions were chelated into GNCNs without the use of molecular gadolinium chelates. With the co-existence of GNCs and Gd(3+) ions, the formed GNCNs exhibit significant luminescence intensity enhancement for near-infrared fluorescence (NIRF) imaging, high X-ray attenuation for computed tomography (CT) imaging and reasonable r1 relaxivity for magnetic resonance (MR) imaging. The excellent biocompatibility of the GNCNs was proved both in vitro and in vivo. Meanwhile, the GNCNs also possess unique NIRF/CT/MR imaging ability in A549 tumor-bearing mice. In a nutshell, the simple and safe GNCNs hold great potential for tumor multi-modality clinical diagnosis.

  11. Derivation of guideline values for gold (III) ion toxicity limits to protect aquatic ecosystems.

    PubMed

    Nam, Sun-Hwa; Lee, Woo-Mi; Shin, Yu-Jin; Yoon, Sung-Ji; Kim, Shin Woong; Kwak, Jin Il; An, Youn-Joo

    2014-01-01

    This study focused on estimating the toxicity values of various aquatic organisms exposed to gold (III) ion (Au(3+)), and to propose maximum guideline values for Au(3+) toxicity that protect the aquatic ecosystem. A comparative assessment of methods developed in Australia and New Zealand versus the European Community (EC) was conducted. The test species used in this study included two bacteria (Escherichia coli and Bacillus subtilis), one alga (Pseudokirchneriella subcapitata), one euglena (Euglena gracilis), three cladocerans (Daphnia magna, Moina macrocopa, and Simocephalus mixtus), and two fish (Danio rerio and Oryzias latipes). Au(3+) induced growth inhibition, mortality, immobilization, and/or developmental malformations in all test species, with responses being concentration-dependent. According to the moderate reliability method of Australia and New Zealand, 0.006 and 0.075 mg/L of guideline values for Au(3+) were obtained by dividing 0.33 and 4.46 mg/L of HC5 and HC50 species sensitivity distributions (SSD) with an FACR (Final Acute to Chronic Ratio) of 59.09. In contrast, the EC method uses an assessment factor (AF), with the 0.0006 mg/L guideline value for Au(3+) being divided with the 48-h EC50 value for 0.60 mg/L (the lowest toxicity value obtained from short term results) by an AF of 1000. The Au(3+) guideline value derived using an AF was more stringent than the SSD. We recommend that more toxicity data using various bioassays are required to develop more accurate ecological risk assessments. More chronic/long-term exposure studies on sensitive endpoints using additional fish species and invertebrates not included in the current dataset will be needed to use other derivation methods (e.g., US EPA and Canadian Type A) or the "High Reliability Method" from Australia/New Zealand. Such research would facilitate the establishment of guideline values for various pollutants that reflect the universal effects of various pollutants in aquatic ecosystems. To

  12. Theranostic Iron Oxide/Gold Ion Nanoprobes for MR Imaging and Noninvasive RF Hyperthermia.

    PubMed

    Fazal, Sajid; Paul-Prasanth, Bindhu; Nair, Shantikumar V; Menon, Deepthy

    2017-08-30

    This work focuses on the development of a nanoparticulate system that can be used for magnetic resonance (MR) imaging and E-field noninvasive radiofrequency (RF) hyperthermia. For this purpose, an amine-functional gold ion complex (GIC), [Au(III)(diethylenetriamine)Cl]Cl2, which generates heat upon RF exposure, was conjugated to carboxyl-functional poly(acrylic acid)-capped iron-oxide nanoparticles (IO-PAA NPs) to form IO-GIC NPs of size ∼100 nm. The multimodal superparamagnetic IO-GIC NPs produced T2-contrast on MR imaging and unlike IO-PAA NPs generated heat on RF exposure. The RF heating response of IO-GIC NPs was found to be dependent on the RF power, exposure period, and particle concentration. IO-GIC NPs at a concentration of 2.5 mg/mL showed a high heating response (δT) of ∼40 °C when exposed to 100 W RF power for 1 min. In vitro cytotoxicity measurements on NIH-3T3 fibroblast cells and 4T1 cancer cells showed that IO-GIC NPs are cytocompatible at high NP concentrations for up to 72 h. Upon in vitro RF exposure (100 W, 1 min), a high thermal response leads to cell death of 4T1 cancer cells incubated with IO-GIC NPs (1 mg/mL). Hematoxylin and eosin imaging of rat liver tissues injected with 100 μL of 2.5 mg/mL IO-GIC NPs and exposed to low RF power of 20 W for 10 min showed significant loss of tissue morphology at the site of injection, as against RF-exposed or nanoparticle-injected controls. In vivo MR imaging and noninvasive RF exposure of 4T1-tumor-bearing mice after IO-GIC NP administration showed T2 contrast enhancement and a localized generation of high temperatures in tumors, leading to tumor tissue damage. Furthermore, the administration of IO-GIC NPs followed by RF exposure showed no adverse acute toxicity effects in vivo. Thus, IO-GIC NPs show good promise as a theranostic agent for magnetic resonance imaging and noninvasive RF hyperthermia for cancer.

  13. Core-satellites assembly of silver nanoparticles on a single gold nanoparticle via metal ion-mediated complex.

    PubMed

    Choi, Inhee; Song, Hyeon Don; Lee, Suseung; Yang, Young In; Kang, Taewook; Yi, Jongheop

    2012-07-25

    We report core-satellites (Au-Ag) coupled plasmonic nanoassemblies based on bottom-up, high-density assembly of molecular-scale silver nanoparticles on a single gold nanoparticle surface, and demonstrate direct observation and quantification of enhanced plasmon coupling (i.e., intensity amplification and apparent spectra shift) in a single particle level. We also explore metal ion sensing capability based on our coupled plasmonic core-satellites, which enabled at least 1000 times better detection limit as compared to that of a single plasmonic nanoparticle. Our results demonstrate and suggest substantial promise for the development of coupled plasmonic nanostructures for ultrasensitive detection of various biological and chemical analytes.

  14. Time-of-flight-secondary ion mass spectrometry and cyclic voltammetry studies of self-assembly of dodecanethiol on a nanoporous gold surface.

    PubMed

    Hafez, Aly M; Huber, Andreas; Wenclawiak, Bernd W

    2013-03-19

    Preparation of a nanoporous gold surface by dealloying (etching) of a 585 gold plate (58.5% Au, 30% Ag, and 11.5% non-noble metals) was studied by applying acidic and thermal treatment of the gold plate. The gold plate surface was studied before and after the etching process using different analytical techniques like field emission scanning electron microscope (FE-SEM) with an energy dispersive X-ray spectroscopy analyzer (EDX), cyclic voltammetry (CV), and time-of-flight-secondary ion mass spectrometry (TOF-SIMS). CV analysis of the gold surface has shown that overnight etching with warm nitric acid increases the surface area 20 times higher than before etching. FE-SEM analysis has shown that a nanoporous gold surface with pore diameter ≤100 nm was obtained. SIMS depth profile analysis and EDX analysis have shown that the nanoporous gold surface was obtained as a result of removing the silver and copper from the first layers of the plate. The nanoporous gold surface was used as a substrate for self-assembly of dodecanethiol and has shown a higher extraction efficiency than the unetched gold alloy.

  15. Cytotoxicity and terminal differentiation of human oral keratinocyte by indium ions from a silver-palladium-gold-indium dental alloy.

    PubMed

    Lee, Jung-Hwan; Seo, Sang-Hee; Lee, Sang-Bae; Om, Ji-Yeon; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2015-02-01

    Dental alloys containing indium (In) have been used in dental restoration for two decades; however, no study has investigated the biological effects of In ions, which may be released in the oral cavity, on human oral keratinocytes. The objective of the present study was to investigate the biological effects of In ions on human oral keratinocyte after confirming their release from a silver-palladium-gold-indium (Ag-Pd-Au-In) dental alloy. As a corrosion assay, a static immersion tests were performed by detecting the released ions in the corrosion solution from the Ag-Pd-Au-In dental alloy using inductively coupled plasma atomic emission spectroscopy. The cytotoxicity and biological effects of In ions were then studied with In compounds in three human oral keratinocyte cell lines: immortalized human oral keratinocyte (IHOK), HSC-2, and SCC-15. Higher concentrations of In and Cu ions were detected in Ag-Pd-Au-In (P<0.05) than in Ag-Pd-Au, and AgCl deposition occurred on the surface of Ag-Pd-Au-In after a 7-day corrosion test due to its low corrosion resistance. At high concentrations, In ions induced cytotoxicity; however, at low concentrations (∼0.8In(3+)mM), terminal differentiation was observed in human oral keratinocytes. Intracellular ROS was revealed to be a key component of In-induced terminal differentiation. In ions were released from dental alloys containing In, and high concentrations of In ions resulted in cytotoxicity, whereas low concentrations induced the terminal differentiation of human oral keratinocytes via increased intracellular ROS. Therefore, dental alloys containing In must be biologically evaluated for their safe use. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Aspheric Solute Ions Modulate Gold Nanoparticle Interactions in an Aqueous Solution: An Optimal Way to Reversibly Concentrate Functionalized Nanoparticles

    PubMed Central

    Villarreal, Oscar D; Chen, Liao Y; Whetten, Robert L; Demeler, Borries

    2015-01-01

    Nanometer-sized gold particles (AuNPs) are of peculiar interest because their behaviors in an aqueous solution are sensitive to changes in environmental factors including the size and shape of the solute ions. In order to determine these important characteristics, we performed all-atom molecular dynamics simulations on the icosahedral Au144 nanoparticles each coated with a homogeneous set of 60 thiolates (4-mercapto-benzoate, pMBA) in eight aqueous solutions having ions of varying sizes and shapes (Na+, K+, tetramethylamonium cation TMA+, trisamonium cation TRS+, Cl−, and OH−). For each solution, we computed the reversible work (potential of mean of force) to bring two nanoparticles together as a function of their separation distance. We found that the behavior of pMBA protected Au144 nanoparticles can be readily modulated by tuning their aqueous environmental factors (pH and solute ion combinations). We examined the atomistic details on how the sizes and shapes of solute ions quantitatively factor in the definitive characteristics of nanoparticle-environment and nanoparticle-nanoparticle interactions. We predict that tuning the concentrations of non-spherical composite ions such as TRS+ in an aqueous solution of AuNPs be an effective means to modulate the aggregation propensity desired in biomedical and other applications of small charged nanoparticles. PMID:26581232

  17. Activation of oxygen-mediating pathway using copper ions: fine-tuning of growth kinetics in gold nanorod overgrowth.

    PubMed

    Liu, Wenqi; Zhang, Hui; Wen, Tao; Yan, Jiao; Hou, Shuai; Shi, Xiaowei; Hu, Zhijian; Ji, Yinglu; Wu, Xiaochun

    2014-10-21

    Growth kinetics plays an important role in the shape control of nanocrystals (NCs). Herein, we presented a unique way to fine-tune the growth kinetics via oxidative etching activated by copper ions. For the overgrowth of gold nanorods (Au NRs), competitive adsorption of dissolved oxygen on rod surface was found to slow down the overgrowth rate. Copper ions were able to remove the adsorbed oxygen species from the Au surface via oxidative etching, thus exposing more reaction sites for Au deposition. In this way, copper ions facilitated the overgrowth process. Furthermore, Cu(2+) rather than Cu(+) acted as the catalyst for the oxidative etching. Comparative study with Ag(+) indicated that Cu(2+) cannot regulate NC shapes via an underpotential deposition mechanism. In contrast, Ag(+) led to the formation of Au tetrahexahedra (THH) and a slight decrease of the growth rate at similar growth conditions. Combining the distinct roles of the two ions enabled elongated THH to be produced. Copper ions activating the O2 pathway suggested that dissolved oxygen has a strong affinity for the Au surface. Moreover, the results of NC-sensitized singlet oxygen ((1)O2) indicated that the absorbed oxygen species on the surface of Au NCs bounded with low-index facets mainly existed in the form of molecular O2.

  18. Sensitive and selective determination of NO(2)(-) ion in aqueous samples using modified gold nanoparticle as a colorimetric probe.

    PubMed

    Nam, Yun-Sik; Noh, Kown-Chul; Kim, Nak-Kyoon; Lee, Yeonhee; Park, Hee-Kyung; Lee, Kang-Bong

    2014-07-01

    A sensitive and selective colorimetric method for determination of nitrite ion in aqueous samples was developed using 1-(2-mercaptoethyl)-1, 3, 5-triazinane-2, 4, 6-trione-functionalized gold nanoparticles (MTT-GNPs). The nitrite ion seems to be used as a "molecular bridge", which can form NH---N and NH---O hydrogen bonds with the MTT-GNPs, shorten the interparticle distance, and induce the aggregation of the MTT-GNPs. This aggregation results in a dramatic change from wine-red to purple-gray color. Therefore, the concentration of nitrite ion in environmental samples can be quantitatively detected using the MTT-GNPs sensor by the naked eyes or UV-vis spectrometer. Moreover, investigations have revealed the sensitivity of the detection could be clearly improved by modulating pH of the solution, which led to a more rapid color change in the optimized GNPs system. The absorption ratios (A790/A535) of the modified GNPs solution exhibited a linear correlation with nitrite ion concentrations and the limit of detection was 1 ppm. This cost effective sensing system allows for the rapid and facile determination of the concentration of [Formula: see text] ions in aqueous samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Aspheric Solute Ions Modulate Gold Nanoparticle Interactions in an Aqueous Solution: An Optimal Way To Reversibly Concentrate Functionalized Nanoparticles.

    PubMed

    Villarreal, Oscar D; Chen, Liao Y; Whetten, Robert L; Demeler, Borries

    2015-12-17

    Nanometer-sized gold particles (AuNPs) are of peculiar interest because their behaviors in an aqueous solution are sensitive to changes in environmental factors including the size and shape of the solute ions. In order to determine these important characteristics, we performed all-atom molecular dynamics simulations on the icosahedral Au144 nanoparticles each coated with a homogeneous set of 60 thiolates (4-mercaptobenzoate, pMBA) in eight aqueous solutions having ions of varying sizes and shapes (Na(+), K(+), tetramethylamonium cation TMA(+), tris-ammonium cation TRS(+), Cl(-), and OH(-)). For each solution, we computed the reversible work (potential of mean of force) to bring two nanoparticles together as a function of their separation distance. We found that the behavior of pMBA protected Au144 nanoparticles can be readily modulated by tuning their aqueous environmental factors (pH and solute ion combinations). We examined the atomistic details on how the sizes and shapes of solute ions quantitatively factor in the definitive characteristics of nanoparticle-environment and nanoparticle-nanoparticle interactions. We predict that tuning the concentrations of nonspherical composite ions such as TRS(+) in an aqueous solution of AuNPs be an effective means to modulate the aggregation propensity desired in biomedical and other applications of small charged nanoparticles.

  20. Colorimetric Signal Amplification Assay for Mercury Ions Based on the Catalysis of Gold Amalgam.

    PubMed

    Chen, Zhengbo; Zhang, Chenmeng; Gao, Qinggang; Wang, Guo; Tan, Lulu; Liao, Qing

    2015-11-03

    Mercury is a major threat to the environment and to human health. It is highly desirable to develop a user-friendly kit for on-site mercury detection. Such a method must be able to detect mercury below the threshold levels (10 nM) for drinking water defined by the U.S. Environmental Protection Agency. Herein, we for the first time reported catalytically active gold amalgam-based reaction between 4-nitrophenol and NaBH4 with colorimetric sensing function. We take advantage of the correlation between the catalytic properties and the surface area of gold amalgam, which is proportional to the amount of the gold nanoparticle (AuNP)-bound Hg(2+). As the concentration of Hg(2+) increases until the saturation of Hg onto the AuNPs, the catalytic performance of the gold amalgam is much stronger due to the formation of gold amalgam and the increase of the nanoparticle surface area, leading to the decrease of the reduction time of 4-nitrophenol for the color change. This sensing system exhibits excellent selectivity and ultrahigh sensitivity up to the 1.45 nM detection limit. The practical use of this system for Hg(2+) determination in tap water samples is also demonstrated successfully.

  1. The structures of small gold cluster anions as determined by a combination of ion mobility measurements and density functional calculations

    NASA Astrophysics Data System (ADS)

    Furche, Filipp; Ahlrichs, Reinhart; Weis, Patrick; Jacob, Christoph; Gilb, Stefan; Bierweiler, Thomas; Kappes, Manfred M.

    2002-10-01

    A combined experimental and theoretical study of small gold cluster anions is performed. The experimental effort consists of ion mobility measurements that lead to the assignment of the collision cross sections for the different cluster sizes at room temperature. The theoretical study is based on ab initio molecular dynamics calculations with the goal to find energetically favorable candidate structures. By comparison of the theoretical results with the measured collision cross sections as well as vertical detachment energies (VDEs) from the literature, we assign structures for the small Aun- ions (n<13) and locate the transition from planar to three-dimensional structures. While a unique assignment based on the observed VDEs alone is generally not possible, the collision cross sections provide a direct and rather sensitive measure of the cluster structure. In contrast to what was expected from other metal clusters and previous theoretical studies, the structural transition occurs at an unusually large cluster size of twelve atoms.

  2. Coverage Dependent Charge Reduction of Cationic Gold Clusters on Surfaces Prepared Using Soft Landing of Mass-selected Ions

    SciTech Connect

    Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

    2012-11-29

    The ionic charge state of monodisperse cationic gold clusters on surfaces may be controlled by selecting the coverage of mass-selected ions soft landed onto a substrate. Polydisperse diphosphine-capped gold clusters were synthesized in solution by reduction of chloro(triphenylphosphine)gold(I) with borane tert-butylamine in the presence of 1,3-bis(diphenylphosphino)propane. The polydisperse gold clusters were introduced into the gas phase by electrospray ionization and mass selection was employed to select a multiply charged cationic cluster species (Au11L53+, m/z = 1409, L = 1,3-bis(diphenylphosphino)propane) which was delivered to the surfaces of four different self-assembled monolayers on gold (SAMs) at coverages of 1011 and 1012 clusters/mm2. Employing the spatial profiling capabilities of in-situ time-of-flight secondary ion mass spectrometry (TOF-SIMS) it is shown that, in addition to the chemical functionality of the monolayer (as demonstrated previously: ACS Nano, 2012, 6, 573) the coverage of cationic gold clusters on the surface may be used to control the distribution of ionic charge states of the soft-landed multiply charged clusters. In the case of a 1H,1H,2H,2H-perfluorodecanethiol SAM (FSAM) almost complete retention of charge by the deposited Au11L53+ clusters was observed at a lower coverage of 1011 clusters/mm2. In contrast, at a higher coverage of 1012 clusters/mm2, pronounced reduction of charge to Au11L52+ and Au11L5+ was observed on the FSAM. When soft landed onto 16- and 11-mercaptohexadecanoic acid surfaces on gold (16,11-COOH-SAMs), the mass-selected Au11L53+ clusters exhibited partial reduction of charge to Au11L52+ at lower coverage and additional reduction of charge to both Au11L52+ and Au11L5+ at higher coverage. The reduction of charge was found to be more pronounced on the surface of the shorter (thinner) C11 than the longer (thicker) C16-COOH-SAM. On the surface of the 1-dodecanethiol (HSAM) monolayer, the most abundant charge state

  3. Gold nano-particle formation from crystalline AuCN: Comparison of thermal, plasma- and ion-beam activated decomposition

    NASA Astrophysics Data System (ADS)

    Beck, Mihály T.; Bertóti, Imre; Mohai, Miklós; Németh, Péter; Jakab, Emma; Szabó, László; Szépvölgyi, János

    2017-02-01

    In this work, in addition to the conventional thermal process, two non-conventional ways, the plasma and ion beam activations are described for preparing gold nanoparticles from microcrystalline AuCN precursor. The phase formation at plasma and ion beam treatments was compared with that at thermal treatments and the products and transformations were characterized by thermogravimetry-mass-spectrometry (TG-MS), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). TG-MS measurements in Ar atmosphere revealed that AuCN decomposition starts at 400 °C and completes at ≈700 °C with evolution of gaseous (CN)2. XPS and TEM show that in heat treatment at 450 °C for 1 h in Ar, loss of nitrogen and carbon occurs and small, 5-30 nm gold particles forms. Heating at 450 °C for 10 h in sealed ampoule, much larger, 60-200 nm size and well faceted Au particles develop together with a fibrous (CN)n polymer phase, and the Au crystallites are covered by a 3-5 nm thick polymer shell. Low pressure Ar plasma treatment at 300 eV energy results in 4-20 nm size Au particles and removes most of the nitrogen and part of carbon. During Ar+ ion bombardment with 2500 eV energy, 5-30 nm size Au crystallites form already in 10 min, with preferential loss of nitrogen and with increased amount of carbon residue. The results suggest that plasma and ion beam activation, acting similarly to thermal treatment, may be used to prepare Au nanoparticles from AuCN on selected surface areas either by depositing AuCN precursors on selected regions or by focusing the applied ionized radiation. Thus they may offer alternative ways for preparing tailor-made catalysts, electronic devices and sensors for different applications.

  4. Used gold nano-particles as an on/off switch for response of a potentiometric sensor to Al(III) or Cu(II) metal ions.

    PubMed

    Mashhadizadeh, Mohammad Hossein; Talemi, Rasoul Pourtaghavi

    2011-04-29

    The potentiometric response of a carbon paste electrode modified with silica sol-gel and mercaptosuccinic acid (MSA) in the presence and absence of gold nano-particles was studied. The results showed that the electrode with gold nano-particles was responded to Al(3+) ions as a hard metal ion. On the other hand, the electrode without gold nano-particles was responded to copper ions as a soft metal ion. The electrodes without and with gold nano-particles exhibits a Nernstian slope of 29.1 and 19.2 mV decade(-1) for copper and aluminum ions over a wide concentration range of 4.3×10(-7)-1.0×10(-2) and 4.5×10(-7)-1.6×10(-3) mol L(-1), respectively. The detection limits of electrodes were 4.0×10(-7) and 1.6×10(-7) mol L(-1) for copper and aluminum ions, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Colloidal gold nanoparticle probe-based immunochromatographic assay for the rapid detection of chromium ions in water and serum samples

    SciTech Connect

    Liu, Xi; Xiang, Jun-Jian; Tang, Yong; Zhang, Xiao-Li; Fu, Qiang-Qiang; Zou, Jun-Hui; Lin, Yuehe

    2012-09-01

    An immunochromatographic assay (ICA) using gold nanoparticles coated with monoclonal antibody (McAb) for the detection of chromium ions (Cr) in water and serum samples was developed, optimized, and validated. Gold nanoparticles coated with affinity- purified monoclonal antibodies against isothiocyanobenzyl-EDTA (iEDTA)-chelated Cr3+ were used as the detecting reagent in this completive immunoassay-based one- step test strip. The ICA was investigated to measure chromium speciation in water samples. Chromium standard samples of 0-80 ng/mL in water were determined by the test strips. The results showed that the visual lowest detection limit (LDL) of the test strip was 50.0 ng/mL. A portable colorimetric lateral flow reader was used for the quantification of Cr. The results indicated that the linear range of the ICA with colorimetric detection was 5-80 ng/mL. The ICA was also validated for the detection of chromium ions in serum samples. The test trips showed high stability in that they could be stored at at 37 C for at least 12 weeks without significant loss of activity. The test strip also showed good selectivity for Cr detection with negligible interference from other heavy metals. Because of its low cost and short testing time (within 5 min), the test strip is especially suitable for on-site large- scale screening of Cr-polluted water samples, biomonitoring of Cr exposure, and many other field applications.

  6. Conjugates of graphene oxide covalently linked ligands and gold nanoparticles to construct silver ion graphene paste electrode.

    PubMed

    Yang, Chunli; Chai, Yaqin; Yuan, Ruo; Xu, Wenju; Zhang, Ting; Jia, Feng

    2012-08-15

    We reported on the synthesis and application of ionophore-gold nanoparticle conjugates in Ag(+) graphene paste electrode. Ionophore was a novel graphene oxide nanosheets (NGO) covalently grafted 2-thiophenecarboxylic (TPC) hybrid material. The hybrid material NGO-TPC decorated with gold nanoparticles was used as both a receptor and an ion-to-electron transducer to fabricate Ag(+) graphene paste electrode. The developed electrode was highly selective to Ag(+) over other tested cations and exhibited an excellent Nernstian slope of 59.3 mV dec(-1) ranging from 8.4×10(-7) to 1.0×10(-) M with a detection limit of 6.3×10(-7) M. Moreover, it also showed a fast response time and a long lifetime. Importantly, the new method of immobilizing ligands on NGO nanosheets to construct electrode successfully solved the universal problem of the electrode components loss from ion-selective electrode. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Terbium ion-coordinated carbon dots for fluorescent aptasensing of adenosine 5'-triphosphate with unmodified gold nanoparticles.

    PubMed

    Xu, Mingdi; Gao, Zhuangqiang; Zhou, Qian; Lin, Youxiu; Lu, Minghua; Tang, Dianping

    2016-12-15

    This work reports on a novel time-resolved fluorescent aptasensing platform for the quantitative monitoring of adenosine 5'-triphosphate (ATP) by interaction of dispersive/agglomerate gold nanoparticles (AuNPs) with terbium ion-coordinated carbon dots (Tb-CDs). To construct such a fluorescent nanoprobe, Tb-CDs with high-efficient fluorescent intensity are first synthesized by the microwave method with terbium ions (Tb(3+)). The aptasensing system consists of ATP aptamer, AuNP and Tb-CD. The dispersive/agglomerate gold nanoparticles are acquired through the reaction of the aptamer with target ATP. Upon target ATP introduction, the aptamers bind with the analytes to form new aptamer-ATP complexes and coat on the surface of AuNPs to inhibit their aggregation in the high salt solution. In this case, the fluorescent signal of Tb-CDs is quenched by the dispersive AuNPs on the basis of the fluorescence resonance energy transfer (FRET). At the absence of target analyte, gold nanoparticles tend to aggregate in the high salt state even if the aptamers are present. Thus, the added Tb-CDs maintain their intrinsic fluorescent intensity. Experimental results indicated that the aptasensing system exhibited good fluorescent responses toward ATP in the dynamic range from 40nM to 4.0μM with a detection limit of 8.5nM at 3sblank criterion. The repeatability and intermediate precision is less than 9.5% at three concentrations including 0.04, 0.4 and 2.0μM ATP. The selectivity was acceptable toward guanosine 5'-triphosphate, uridine 5'-triphosphate and cytidine 5'-triphosphate. The methodology was applied to evaluate the blank human serum spiked with target ATP, and the recoveries (at 3 concentration levels) ranged between 97.0% and 103.7%. Importantly, this detection scheme is rapid, simple, cost-effective, and does not require extensive sample preparation or separation.

  8. Dispersive solid phase microextraction with magnetic graphene oxide as the sorbent for separation and preconcentration of ultra-trace amounts of gold ions.

    PubMed

    Kazemi, Elahe; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad

    2015-08-15

    A selective, simple and rapid dispersive solid phase microextraction was developed using magnetic graphene oxide (MGO) as an efficient sorbent for the separation and preconcentration of gold ions. The MGO was synthesized by means of the simple one step chemical coprecipitation method, characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). Gold ions retained by the sorbent were eluted using 0.5mol L(-)(1) thiourea in 0.1mol L(-1) HCl solution and determined by the flow injection flame atomic absorption spectrometry (FI-FAAS). The factors affecting the separation and preconcentration of gold were investigated and optimized. Under the optimized conditions, the method exhibited a linear dynamic range of 0.02-100.0µg L(-)(1) with a detection limit of 4ng L(-1) and an enrichment factor of 500. The relative standard deviations of 3.2% and 4.7% (n=6) were obtained at 20µg L(-1) level of gold ions for the intra and the inter day analysis, respectively. The method was successfully applied to the determination of gold ions in water and waste water samples as well as a certified reference material (CCU-1b, copper flotation concentrate). Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Detection of Copper(II) Ions Using Glycine on Hydrazine-Adsorbed Gold Nanoparticles via Raman Spectroscopy

    PubMed Central

    Ly, Nguyễn Hoàng; Seo, Chulhun; Joo, Sang-Woo

    2016-01-01

    A facile, selective, and sensitive detection method for the Cu2+ ions in environmental and biological solutions has been newly developed by observing the unique CN stretching peaks at ~2108 cm−1 upon the dissociative adsorption of glycine (GLY) in hydrazine buffer on gold nanoparticles (AuNPs). The relative abundance of Cu species on AuNPs was identified from X-ray photoelectron spectroscopy analysis. UV-Vis spectra also indicated that the Au particles aggregated to result in the color change owing to the destabilization induced by the GLY-Cu2+ complex. The CN stretching band at ~2108 cm−1 could be observed to indicate the formation of the CN species from GLY on the hydrazine-covered AuNP surfaces. The other ions of Fe3+, Fe2+, Hg2+, Mg2+, Mn2+, Ni2+, Zn2+, Cr3+, Co2+, Cd2+, Pb2+, Ca2+, NH4+, Na+, and K+ at high concentrations of 50 µM did not produce such spectral changes. The detection limit based on the CN band for the determination of the Cu2+ ion could be estimated to be as low as 500 nM in distilled water and 1 µM in river water, respectively. We attempted to apply our method to estimate intracellular ion detection in cancer cells for more practical purposes. PMID:27792178

  10. High-Resolution 3D Imaging and Quantification of Gold Nanoparticles in a Whole Cell Using Scanning Transmission Ion Microscopy

    PubMed Central

    Chen, Xiao; Chen, Ce-Belle; Udalagama, Chammika N.B.; Ren, Minqin; Fong, Kah Ee; Yung, Lin Yue Lanry; Giorgia, Pastorin; Bettiol, Andrew Anthony; Watt, Frank

    2013-01-01

    Increasing interest in the use of nanoparticles (NPs) to elucidate the function of nanometer-sized assemblies of macromolecules and organelles within cells, and to develop biomedical applications such as drug delivery, labeling, diagnostic sensing, and heat treatment of cancer cells has prompted investigations into novel techniques that can image NPs within whole cells and tissue at high resolution. Using fast ions focused to nanodimensions, we show that gold NPs (AuNPs) inside whole cells can be imaged at high resolution, and the precise location of the particles and the number of particles can be quantified. High-resolution density information of the cell can be generated using scanning transmission ion microscopy, enhanced contrast for AuNPs can be achieved using forward scattering transmission ion microscopy, and depth information can be generated from elastically backscattered ions (Rutherford backscattering spectrometry). These techniques and associated instrumentation are at an early stage of technical development, but we believe there are no physical constraints that will prevent whole-cell three-dimensional imaging at <10 nm resolution. PMID:23561518

  11. Gold nanoparticles decorated on cobalt porphyrin-modified glassy carbon electrode for the sensitive determination of nitrite ion.

    PubMed

    Muthukumar, Palanisamy; Abraham John, S

    2014-05-01

    The present study reports the electrochemical determination of nitrite ion using citrate-gold nanoparticles (cit-AuNPs) decorated on meso-tetra(para-aminophenyl)porphyrinatocobalt(II) (Co(II)MTpAP) self-assembled glassy carbon electrode (GCE). The decoration of cit-AuNPs on Co(II)MTpAP was achieved with the aid of amine groups present on the surface of the self-assembled monolayer (SAM) of Co(II)MTpAP. The SEM image shows that the cit-AuNPs were densely packed on Co(II)MTpAP. The AuNPs decorated electrode was successfully used for the determination of nitrite ion. The cit-AuNPs decorated electrode not only shifted nitrite ion oxidation potential towards less positive potential but also greatly enhanced its current when compared to bare and Co(II)MTpAP SAM modified electrodes. The amperometric current increases linearly while increasing the concentration of nitrite ion ranging from 0.5×10(-6) to 4.7×10(-3) M and the detection limit was found to be 60 nM (S/N=3). Further, the modified electrode was successfully used to determine nitrite ion in the presence of 200-fold excess of common interferents such as Na+, NO3-, I-, K+, CO3(2-), Ca2+, SO4(2-), NH4+, Cl- and glucose. The practical application of the cit-AuNPs decorated electrode was demonstrated by determining nitrite ion in water samples.

  12. Simultaneous ejection of two molecular ions from keV gold atomic and polyatomic projectile impacts.

    PubMed

    Rickman, R D; Verkhoturov, S V; Parilis, E S; Schweikert, E A

    2004-01-30

    We present the first experimental data on the simultaneous ejection of two molecular ions from the impact of Au(+)(n) (1< or =n< or =4) with energies ranging between 17 and 56 keV. The yields from single phenylalanine (Ph) emission, coemission of two Ph ions, and emission of the Ph dimer were measured. Large increases (1 to 2 orders of magnitude) in coemitted ion yields were observed with increasing projectile energy and complexity. Correlation coefficients were calculated for the coemission of two Ph ions; their behavior suggests differences in emission pathways for bombardment by atomic and polyatomic projectiles.

  13. DNA-mediated gold nanoparticle signal transducers for combinatorial logic operations and heavy metal ions sensing.

    PubMed

    Zhang, Yuhuan; Liu, Wei; Zhang, Wentao; Yu, Shaoxuan; Yue, Xiaoyue; Zhu, Wenxin; Zhang, Daohong; Wang, Yanru; Wang, Jianlong

    2015-10-15

    Herein, the structure of two DNA strands which are complementary except fourteen T-T and C-C mismatches was programmed for the design of the combinatorial logic operation by utilizing the different protective capacities of single chain DNA, part-hybridized DNA and completed-hybridized DNA on unmodified gold nanoparticles. In the presence of either Hg(2+) or Ag(+), the T-Hg(2+)-T or C-Ag(+)-C coordination chemistry could lead to the formation of part-hybridized DNA which keeps gold nanoparticles from clumping after the addition of 40 μL 0.2M NaClO4 solution, but the protection would be screened by 120 μL 0.2M NaClO4 solution. While the coexistence of Hg(2+), Ag(+) caused the formation of completed-hybridized DNA and the protection for gold nanoparticles lost in either 40 μL or 120 μL NaClO4 solutions. Benefiting from sharing of the same inputs of Hg(2+) and Ag(+), OR and AND logic gates were easily integrated into a simple colorimetric combinatorial logic operation in one system, which make it possible to execute logic gates in parallel to mimic arithmetic calculations on a binary digit. Furthermore, two other logic gates including INHIBIT1 and INHIBIT2 were realized to integrated with OR logic gate both for simultaneous qualitative discrimination and quantitative determination of Hg(2+) and Ag(+). Results indicate that the developed logic system based on the different protective capacities of DNA structure on gold nanoparticles provides a new pathway for the design of the combinatorial logic operation in one system and presents a useful strategy for development of advanced sensors, which may have potential applications in multiplex chemical analysis and molecular-scale computer design. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. The XPS depth profiling and tribological characterization of ion-plated gold on various metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1983-01-01

    Friction properties were measured with a gold film; the graded interface between gold and nickel substrate; and the nickel substrate. All sliding was conducted against hard silicon carbide pins in two processes. In the adhesive process, friction arises primarily from adhesion between sliding surfaces. In the abrasion process, friction occurs as a result of the hard pin sliding against the film, indenting into it, and plowing a series of grooves. Copper and 440 C stainless steel substrates were also used. Results indicate that the friction related to both adhesion and abrasion is influenced by coating depth. The trends in friction behavior as a function of film depth are, however, just the opposite. The graded interface exhibited the highest adhesion and friction, while the graded interface resulted in the lowest abrasion and friction. The coefficient of friction due to abrasion is inversely related to the hardness. The greater the hardness of the surface, the lower is the abrasion and friction. The microhardness in the graded interface exhibited the highest hardness due to an alloy hardening effect. Almost no graded interface between the vapor-deposited gold film and the substrates was detected.

  15. A sensitive and selective colorimetric method for detection of copper ions based on anti-aggregation of unmodified gold nanoparticles.

    PubMed

    Hormozi-Nezhad, M Reza; Abbasi-Moayed, Samira

    2014-11-01

    A highly sensitive and selective colorimetric method for detection of copper ions, based on anti-aggregation of D-penicillamine (D-PC) induced aggregated gold nanoparticles (AuNPs) was developed. Copper ions can hinder the aggregation of AuNPs induced by D-PC, through formation of mixed-valence complex with D-PC that is a selective copper chelator. In the presence of a fixed amount of D-PC, the aggregation of AuNPs decreases with increasing concentrations of Cu(2+) along with a color change from blue to red in AuNPs solution and an increase in the absorption ratio (A520/A650). Under the optimum experimental conditions (pH 7, [AuNPs] =3.0 nmol L(-1) and [NaCl]=25 mmol L(-1)), a linear calibration curve for Cu(2+) was obtained within the range of 0.05-1.85 µmol L(-1) with a limit of detection (3Sb) of 30 nmol L(-1). Excellent selectivity toward Cu(2+) was observed among various metal ions due to a specific complex formation between Cu(2+) and D-PC. The proposed method has been successfully applied for the detection of Cu(2+) in various real samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. A colorimetric probe based on desensitized ionene-stabilized gold nanoparticles for single-step test for sulfate ions

    NASA Astrophysics Data System (ADS)

    Arkhipova, Viktoriya V.; Apyari, Vladimir V.; Dmitrienko, Stanislava G.

    2015-03-01

    Desensitized ionene-stabilized gold nanoparticles have been prepared and applied as a colorimetric probe for the single-step test for sulfate ions at the relatively high concentration level. The approach is based on aggregation of the nanoparticles leading to the change in absorption spectra and color of the solution. These nanoparticles are characterized by the decreased sensitivity due to both electrostatic and steric stabilization, which allows for simple, and rapid direct single-step determination of sulfate at the relatively high concentration level in real water samples without sample pretreatment or dilution. Influence of different factors (the time of interaction, pH, the concentrations of sulfate ions and the nanoparticles) on the aggregation and analytical performance of the procedure was investigated. The method allows for the determination of sulfate ions in the mass range of 0.2-0.4 mg with RSD of 5% from the sample volume of less than 2 mL. It has a sharp dependence of the colorimetric response on the concentration of sulfate, which makes it prospective for indicating deviations of the sulfate concentration regarding some declared value chosen within the above range. The time of the analysis is 2 min. The method was applied to the analysis of mineral water samples.

  17. Synthesis of nanocrystalline thin films of gold on the surface of GaSb by swift heavy ion

    SciTech Connect

    Jadhav, Vidya; Dubey, S. K.; Yadav, A. D.; Singh, A.

    2013-02-05

    Thin films of gold ({approx}100 nm thick) were deposited on p-type GaSb substrates. These samples were irradiated with 100 MeV Fe{sup 7+}ions for the fluence of 1 Multiplication-Sign 10{sup 13} and 1 Multiplication-Sign 10{sup 14} ions cm{sup -2}. After irradiation, samples were characterized using AFM, UV-VIS -NIR, X-Ray Diffraction techniques. AFM studies showed the presence of clusters on the surface of GaSb. R.M.S. roughness of the sample was found to increase w.r.t ion fluence. Absorption coefficient obtained from the Ultra violet - Visible NIR (UV-VIS -NIR) spectra of the samples irradiated with various fluences compared with non irradiated GaSb. The annealing experiment showed a significant improvement in the absorption coefficient after rapid thermal annealing at temperature of 400 Degree-Sign C. X-Ray Diffraction study reveals different orientations of Au film.

  18. Tailored SERS substrates obtained with cathodic arc plasma ion implantation of gold nanoparticles into a polymer matrix.

    PubMed

    Ferreira, Jacqueline; Teixeira, Fernanda S; Zanatta, Antonio R; Salvadori, Maria C; Gordon, Reuven; Oliveira, Osvaldo N

    2012-02-14

    This manuscript reports on the fabrication of plasmonic substrates using cathodic arc plasma ion implantation, in addition to their performance as SERS substrates. The technique allows for the incorporation of a wide layer of metallic nanoparticles into a polymer matrix, such as PMMA. The ability to pattern different structures using the PMMA matrix is one of the main advantages of the fabrication method. This opens up new possibilities for obtaining tailored substrates with enhanced performance for SERS and other surface-enhanced spectroscopies, as well as for exploring the basic physics of patterned metal nanostructures. The architecture of the SERS-active substrate was varied using three adsorption strategies for incorporating a laser dye (rhodamine): alongside the nanoparticles into the polymer matrix, during the polymer cure and within nanoholes lithographed on the polymer. As a proof-of-concept, we obtained the SERS spectra of rhodamine for the three types of substrates. The hypothesis of incorporation of rhodamine molecules into the polymer matrix during the cathodic arc plasma ion implantation was supported by FDTD (Finite-Difference Time-Domain) simulations. In the case of arrays of nanoholes, rhodamine molecules could be adsorbed directly on the gold surface, then yielding a well-resolved SERS spectrum for a small amount of analyte owing to the short-range interactions and the large longitudinal field component inside the nanoholes. The results shown here demonstrate that the approach based on ion implantation can be adapted to produce reproducible tailored substrates for SERS and other surface-enhanced spectroscopies.

  19. Highly selective visual monitoring of hazardous fluoride ion in aqueous media using thiobarbituric-capped gold nanoparticles.

    PubMed

    Boken, Jyoti; Thatai, Sheenam; Khurana, Parul; Prasad, Surendra; Kumar, Dinesh

    2015-01-01

    The rapid, selective and sensitive measurement and monitoring of hazardous materials as analytes are the central themes in the development of any successful analytical technique. With this aim, we have synthesized the thiobarbituric-capped gold nanoparticles (TBA-capped Au NPs) involving chemical reduction of HAuCl4 using 2-thiobarbituric acid (TBA) as a reducing and capping agent. The morphology of the TBA-capped Au NPs was confirmed using transmission electron microscope images. For the first time this article reports that the developed TAB-capped Au NPs displays selective, ultrafast and sensitive colorimetric detection of fluoride ion in aqueous samples. The detection of fluoride ion was confirmed by the disappearance of the localized surface plasmon resonance (LSPR) band at 554 nm using UV-vis spectroscopy. The interaction of F(-) with TBA-capped Au NPs in aqueous solution has also been confirmed by Raman and FTIR spectroscopy. One of the most exciting accomplishments is the visual detection limit for fluoride ion has been found to be 10 mM at commonly acceptable water pH range 7-8. The whole detection procedure takes not more than 40s with excellent selectivity providing sample throughput of more than 60 per hour. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. EQCM Measurements: Redox-Induced Changes in Solvent and Ion Content in Anchored Redox Monolayers of Organosulfur Compounds and Their Electrocatalysis on Gold Electrodes

    DTIC Science & Technology

    1990-08-01

    EQCM Mwasurements: Redox-Induced Changes in Solvent and M0 Content in Anchored Redox Monolayers of Organosulfur CD Compounds and their Electrocatalysis ...REDOX-INDUCED CHANGES IN SOLVENT AND ION CONTENT IN ANCHORED REDOX MONOLAYERS OF ORGANOSULFUR COMPOUNDS AND THEIR ELECTROCATALYSIS ON GOLD...Measurements: Redox-Induced Changes in Solvent and Ion Content in Anchored Redox Monolayers of Organosulfur Compounds and their Electrocatalysis on

  1. Membrane-based assay for iodide ions based on anti-leaching of gold nanoparticles.

    PubMed

    Shen, Yu-Wei; Hsu, Pang-Hung; Unnikrishnan, Binesh; Li, Yu-Jia; Huang, Chih-Ching

    2014-02-26

    We report a label-free colorimetric strategy for the highly selective and sensitive detection of iodide (I(-)) ions in human urine sample, seawater and edible salt. A poly(N-vinyl-2-pyrrolidone)-stabilized Au nanoparticle (34.2-nm) was prepared to detect I(-) ions using silver (Ag(+)) and cyanide (CN(-)) ions as leaching agents in a glycine-NaOH (pH 9.0) solution. For the visual detection of the I(-) ions by naked eye, and for long time stability of the probe, Au nanoparticles (NPs) decorated mixed cellulose ester membrane (MCEM) was prepared (Au NPs/MCEM). The Au NPs-based probe (CN(-)/Ag(+)-Au NPs/MCEM) operates on the principle that Ag(+) ions form a monolyar silver atoms/ions by aurophilic/argentophilic interactions on the Au NPs and it accelerates the leaching rate of Au atoms in presence of CN(-) ions. However, when I(-) is introduced into this system, it inhibits the leaching of Au atoms because of the strong interactions between Ag/Au ions and I(-) ions. Inductively coupled plasma mass spectrometry, surface-assisted laser desorption/ionization time-of-flight mass spectrometry were used to characterize the surface properties of the Au NPs in the presence of Ag(+) and I(-). Under optimal solution conditions, the CN(-)/Ag(+)-Au NPs/MCEM probe enabled the detection of I(-) by the naked eye at nanomolar concentrations with high selectivity (at least 1000-fold over other anions). In addition, this cost-effective probe allowed the determination of I(-) ions in complex samples, such as urine, seawater, and edible salt samples.

  2. The Radiation Enhancement of 15 nm Citrate-Capped Gold Nanoparticles Exposed to 70 keV/μm Carbon Ions.

    PubMed

    Liu, Yan; Liu, Xi; Jin, Xiaodong; He, Pengbo; Zheng, Xiaogang; Ye, Fei; Chen, Weiqiang; Li, Qiang

    2016-03-01

    Radiotherapy is an important modality for tumor treatment. The central goal of radiotherapy is to deliver a therapeutic dose to the tumor as much as possible whilst sparing the surrounding normal tissues. On one hand, heavy ion radiation induces maximum damage at the end of the track (called the Bragg Peak). Hadron therapy based on heavy ions is considered superior to conventional X-rays and γ-rays radiations for tumors sited in sensitive tissues, childhood cases and radioresistant cancers. On the other hand, radiation sensitizers enhanced the radiation effects in tumors by increasing the dose specifically to the tumor cells. Recently, the use of gold nanoparticles as potential tumor selective radio-sensitizers has been proposed as a breakthrough in radiotherapy with conventional radiations. The enhanced radiation effect of heavy ions in tumor by using gold nanoparticles as radio-sensitizer may provide alternative in hadron therapy. In this study, we investigated the radiosensitizing effects of carbon ions with a linear energy transfer of 70 keV/μm in the presence of 15 nm citrate-capped AuNPs. The existing of AuNPs resulted in 5.5-fold enhancement in hydroxyl radical production and 24.5% increment in relative biological effectiveness (RBE) values for carbon-ion-irradiated HeLa cells. The study indicated gold nanoparticles can be used as potential radio-sensitizer in carbon ions therapy.

  3. Chemically modified cellulose strips with pyridoxal conjugated red fluorescent gold nanoclusters for nanomolar detection of mercuric ions.

    PubMed

    Bothra, Shilpa; Upadhyay, Yachana; Kumar, Rajender; Ashok Kumar, S K; Sahoo, Suban K

    2017-04-15

    One-pot approach was adopted for the synthesis of highly luminescent near-infrared (NIR)-emitting gold nanoclusters (AuNCs) using bovine serum albumin (BSA) as a protecting agent. The vitamin B6 cofactor pyridoxal was conjugated with the luminescent BSA-AuNCs through the free amines of BSA and then employed for the nanomolar detection of Hg(2+) in aqueous medium via selective fluorescence quenching of AuNCs. This nano-assembly was successfully applied for the real sample analysis of Hg(2+) in fish, tap water and river water. The study also presents chemically-modified cellulosic paper strips with the pyridoxal conjugated BSA-AuNCs for detecting Hg(2+) ion up to 1nM.

  4. Simple Colorimetric Detection of Amyloid β-peptide (1-40) based on Aggregation of Gold Nanoparticles in the Presence of Copper Ions.

    PubMed

    Zhou, Yanli; Dong, Hui; Liu, Lantao; Xu, Maotian

    2015-05-13

    A simple method for specific colorimetric sensing of Alzheimer's disease related amyloid-β peptide (Aβ) is developed based on the aggregation of gold nanoparticles in the presence of copper ion. The detection of limit for Aβ(1-40) is 0.6 nM and the promising results from practical samples (human serum) indicate the great potential for the routine detection.

  5. UV-Visible Spectroscopy Detection of Iron(III) Ion on Modified Gold Nanoparticles With a Hydroxamic Acid

    NASA Astrophysics Data System (ADS)

    Karami, C.; Alizadeh, A.; Taher, M. A.; Hamidi, Z.; Bahrami, B.

    2016-09-01

    The present work describes the preparation of gold nanoparticles (AuNPs) functionalized with hydroxamic acid and the use of them in UV-visible spectroscopy detection of iron(III) ions. The prepared AuNPs were thoroughly characterized by using UV-visible spectroscopy, TEM, and 1H NMR techniques. The newly synthesized hydroxamic acid-AuNPs are brown in color due to the intense surface plasmon absorption band centered at 527 nm. In the presence of Fe(III), the surface plasmon absorption band is centered at 540 nm. However, the sensitivity of hydroxamic acid-AuNPs towards other metal ions such as Mg(II), Ca(II), Ag(I), Cu(II), Mn(II), Cr(II), Ni(II), Co(II),Fe(II), Hg(II), and Pb(II) can be negligible. This highly selective sensor allows a direct quantitative assay of Fe(III) with a UVvisible spectroscopy detection limited to 45.8 nM.

  6. Differential hERG ion channel activity of ultrasmall gold nanoparticles

    PubMed Central

    Leifert, Annika; Pan, Yu; Kinkeldey, Anne; Schiefer, Frank; Setzler, Julia; Scheel, Olaf; Lichtenbeld, Hera; Schmid, Günter; Wenzel, Wolfgang; Jahnen-Dechent, Willi; Simon, Ulrich

    2013-01-01

    Understanding the mechanism of toxicity of nanomaterials remains a challenge with respect to both mechanisms involved and product regulation. Here we show toxicity of ultrasmall gold nanoparticles (AuNPs). Depending on the ligand chemistry, 1.4-nm-diameter AuNPs failed electrophysiology-based safety testing using human embryonic kidney cell line 293 cells expressing human ether-á-go-go-Related gene (hERG), a Food and Drug Administration-established drug safety test. In patch-clamp experiments, phosphine-stabilized AuNPs irreversibly blocked hERG channels, whereas thiol-stabilized AuNPs of similar size had no effect in vitro, and neither particle blocked the channel in vivo. We conclude that safety regulations may need to be reevaluated and adapted to reflect the fact that the binding modality of surface functional groups becomes a relevant parameter for the design of nanoscale bioactive compounds. PMID:23630249

  7. Differential hERG ion channel activity of ultrasmall gold nanoparticles.

    PubMed

    Leifert, Annika; Pan, Yu; Kinkeldey, Anne; Schiefer, Frank; Setzler, Julia; Scheel, Olaf; Lichtenbeld, Hera; Schmid, Günter; Wenzel, Wolfgang; Jahnen-Dechent, Willi; Simon, Ulrich

    2013-05-14

    Understanding the mechanism of toxicity of nanomaterials remains a challenge with respect to both mechanisms involved and product regulation. Here we show toxicity of ultrasmall gold nanoparticles (AuNPs). Depending on the ligand chemistry, 1.4-nm-diameter AuNPs failed electrophysiology-based safety testing using human embryonic kidney cell line 293 cells expressing human ether-á-go-go-Related gene (hERG), a Food and Drug Administration-established drug safety test. In patch-clamp experiments, phosphine-stabilized AuNPs irreversibly blocked hERG channels, whereas thiol-stabilized AuNPs of similar size had no effect in vitro, and neither particle blocked the channel in vivo. We conclude that safety regulations may need to be reevaluated and adapted to reflect the fact that the binding modality of surface functional groups becomes a relevant parameter for the design of nanoscale bioactive compounds.

  8. Ion-shaping of embedded gold hollow nanoshells into vertically aligned prolate morphologies

    PubMed Central

    Coulon, Pierre-Eugéne; Amici, Julia; Clochard, Marie-Claude; Khomenkov, Vladimir; Dufour, Christian; Monnet, Isabelle; Grygiel, Clara; Perruchas, Sandrine; Ulysse, Christian; Largeau, Ludovic; Rizza, Giancarlo

    2016-01-01

    Ion beam shaping is a novel technique with which one can shape nano-structures that are embedded in a matrix, while simultaneously imposing their orientation in space. In this work, we demonstrate that the ion-shaping technique can be implemented successfully to engineer the morphology of hollow metallic spherical particles embedded within a silica matrix. The outer diameter of these particles ranges between 20 and 60 nm and their shell thickness between 3 and 14 nm. Samples have been irradiated with 74 MeV Kr ions at room temperature and for increasing fluences up to 3.8 × 1014 cm−2. In parallel, the experimental results have been theoretically simulated by using a three-dimensional code based on the thermal-spike model. These calculations show that the particles undergo a partial melting during the ion impact, and that the amount of molten phase is maximal when the impact is off-center, hitting only one hemisphere of the hollow nano-particle. We suggest a deformation scenario which differs from the one that is generally proposed for solid nano-particles. Finally, these functional materials can be seen as building blocks for the fabrication of nanodevices with really three-dimensional architecture. PMID:26883992

  9. Ion-shaping of embedded gold hollow nanoshells into vertically aligned prolate morphologies.

    PubMed

    Coulon, Pierre-Eugéne; Amici, Julia; Clochard, Marie-Claude; Khomenkov, Vladimir; Dufour, Christian; Monnet, Isabelle; Grygiel, Clara; Perruchas, Sandrine; Ulysse, Christian; Largeau, Ludovic; Rizza, Giancarlo

    2016-02-17

    Ion beam shaping is a novel technique with which one can shape nano-structures that are embedded in a matrix, while simultaneously imposing their orientation in space. In this work, we demonstrate that the ion-shaping technique can be implemented successfully to engineer the morphology of hollow metallic spherical particles embedded within a silica matrix. The outer diameter of these particles ranges between 20 and 60 nm and their shell thickness between 3 and 14 nm. Samples have been irradiated with 74 MeV Kr ions at room temperature and for increasing fluences up to 3.8 × 10(14) cm(-2). In parallel, the experimental results have been theoretically simulated by using a three-dimensional code based on the thermal-spike model. These calculations show that the particles undergo a partial melting during the ion impact, and that the amount of molten phase is maximal when the impact is off-center, hitting only one hemisphere of the hollow nano-particle. We suggest a deformation scenario which differs from the one that is generally proposed for solid nano-particles. Finally, these functional materials can be seen as building blocks for the fabrication of nanodevices with really three-dimensional architecture.

  10. Ion-shaping of embedded gold hollow nanoshells into vertically aligned prolate morphologies

    NASA Astrophysics Data System (ADS)

    Coulon, Pierre-Eugéne; Amici, Julia; Clochard, Marie-Claude; Khomenkov, Vladimir; Dufour, Christian; Monnet, Isabelle; Grygiel, Clara; Perruchas, Sandrine; Ulysse, Christian; Largeau, Ludovic; Rizza, Giancarlo

    2016-02-01

    Ion beam shaping is a novel technique with which one can shape nano-structures that are embedded in a matrix, while simultaneously imposing their orientation in space. In this work, we demonstrate that the ion-shaping technique can be implemented successfully to engineer the morphology of hollow metallic spherical particles embedded within a silica matrix. The outer diameter of these particles ranges between 20 and 60 nm and their shell thickness between 3 and 14 nm. Samples have been irradiated with 74 MeV Kr ions at room temperature and for increasing fluences up to 3.8 × 1014 cm-2. In parallel, the experimental results have been theoretically simulated by using a three-dimensional code based on the thermal-spike model. These calculations show that the particles undergo a partial melting during the ion impact, and that the amount of molten phase is maximal when the impact is off-center, hitting only one hemisphere of the hollow nano-particle. We suggest a deformation scenario which differs from the one that is generally proposed for solid nano-particles. Finally, these functional materials can be seen as building blocks for the fabrication of nanodevices with really three-dimensional architecture.

  11. A simple "clickable" biosensor for colorimetric detection of copper(II) ions based on unmodified gold nanoparticles.

    PubMed

    Shen, Qinpeng; Li, Wenhua; Tang, Shiyun; Hu, Yufang; Nie, Zhou; Huang, Yan; Yao, Shouzhuo

    2013-03-15

    A novel colorimetric copper(II) biosensor has been developed based on the high specificity of alkyne-azide click reaction to the catalysis of copper ions and unmodified gold nanoparticles (AuNPs) as the signal reporter. The clickable DNA probe consists of two parts: an azide group-modified double-stranded DNA (dsDNA) hybrid with an elongated tail and a short alkyne-modified single-stranded DNA (ssDNA). Because of low melting temperature of the short ssDNA, these two parts are separated in the absence of Cu(2+). Copper ion-induced azide-alkyne click ligation caused a structural change of probe from the separated form to entire dsDNA form. This structural change of probe can be monitored by the unmodified AuNPs via mediating their aggregation with a red-to-blue colorimetric read-out because of the differential ability of ssDNA and dsDNA to protect AuNPs against salt-induced aggregation. Under the optimum conditions, this biosensor can sensitively and specifically detect Cu(2+) with a low detection limit of 250 nM and a linear range of 0.5-10 μM. The method is simple and economic without dual-labeling DNA and AuNPs modification. It is also highly selective for Cu(2+) in the presence of high concentrations of other environmentally relevant metal ions because of the great specificity of the copper-caused alkyne-azide click reaction, which potentially meets the requirement of the detection in real samples.

  12. A test strip platform based on DNA-functionalized gold nanoparticles for on-site detection of mercury (II) ions.

    PubMed

    Guo, Zhiyong; Duan, Jing; Yang, Fei; Li, Min; Hao, Tingting; Wang, Sui; Wei, Danyi

    2012-05-15

    A test strip, based on DNA-functionalized gold nanoparticles for Hg(2+) detection, has been developed, optimized and validated. The developed colorimetric mercury sensor system exhibited a highly sensitive and selective response to mercury. The measurement principle is based on thymine-Hg(2+)-thymine (T-Hg(2+)-T) coordination chemistry and streptavidin-biotin interaction. A biotin-labeled and thiolated DNA was immobilized on the gold nanoparticles (AuNPs) surface through a self-assembling method. Another thymine-rich DNA, which was introduced to form DNA duplexes on the AuNPs surface with thymine-Hg(2+)-thymine (T-Hg(2+)-T) coordination in the presence of Hg(2+), was immobilized on the nitrocellulose membrane as the test zone. When Hg(2+) ions were introduced into this system, they induced the two strands of DNA to intertwist by forming T-Hg(2+)-T bonds resulting in a red line at the test zone. The biotin-labeled and thiolated DNA-functionalized AuNPs could be captured by streptavidin which was immobilized on the nitrocellulose membrane as the control zone. Under optimized conditions, the detection limit for Hg(2+) was 3 nM, which is lower than the 10nM, maximum contaminant limit defined by the US Environmental Protection Agency (EPA) for drinking water. A parallel analysis of Hg(2+) in pool water samples using cold vapor atomic absorption spectrometry showed comparable results to those obtained from the strip test. Therefore, the results obtained in this study could be used as basic research for the development of Hg(2+) detection, and the method developed could be a potential on-site screening tool for the rapid detection of Hg(2+) in different water samples without special instrumentation. All experimental variables that influence the test strip response were optimized and reported. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Fabrication of novel gold nanorod/polymer nanocomposite fibers and their application in heavy metal ion sensing

    NASA Astrophysics Data System (ADS)

    Tang, Wenqiong

    Metallic nanoparticles (MNPs), which exhibit fascinating optical, electronic and catalytic properties, have been recognized as essential building blocks for the development of advanced nanodevices. Production of MNP assemblies on a pre-designed substrate is a crucial step towards the exploration of their ensemble properties as well as their potential applications. Despite the diverse assembly strategies reported in the literature, the lack of a generic MNP immobilization strategy with applicability to MNPs and substrates with various shapes and chemical compositions remains an unsolved problem. To this end, we proposed an electrostatic attraction-driven assembly strategy and applied it to the fabrication of a novel nanocomposite material composed of gold nanorod (AuNR) assemblies supported on electrospun polycaprolactone (PCL) fibers. In order to utilize electrostatic attraction as the driving force, opposite surface charges on the AuNRs and the PCL fibrous substrate were developed via polyelectrolyte decoration. UV-Vis studies on the AuNR immobilization process revealed that the AuNR density on the fiber surface can be effectively tuned by changing the immersion time. The as-fabricated AuNR/PCL nanocomposite fibers were further employed as substrates for surface enhanced Raman scattering (SERS) measurements and they exhibited high activity as well as excellent reproducibility for both chemisorbed and physisorbed analyte molecules. In addition, a comparison experiment on the SERS performance of the 3D AuNR/PCL fibrous substrate and its 2D counterpart---a AuNR/PCL film, demonstrated that the former provided superior SERS activity due to the enhanced surface area. With the demonstration on the high SERS efficacy, we moved one step further towards the development of a SERS-based environmental sensor targeting the detection of highly toxic heavy metal ions of Hg2+ and Cu 2+. The SERS detection of Hg2+ and Cu2+ was achieved through the functionalization of Au

  14. Gold nanoparticle-decorated keggin ions/TiO2 photococatalyst for improved solar light photocatalysis.

    PubMed

    Pearson, Andrew; Jani, Harit; Kalantar-zadeh, Kourosh; Bhargava, Suresh K; Bansal, Vipul

    2011-06-07

    We demonstrate a facile localized reduction approach to synthesizing a Au nanoparticle-decorated Keggin ion/TiO(2) photococatalyst for improved solar light photocatalysis application. This has been achieved by exploiting the ability of TiO(2)-bound Keggin ions to act as a UV-switchable, highly localized reducing agent. Notably, the approach proposed here does not lead to contamination of the resultant cocatalyst with free metal nanoparticles during aqueous solution-based synthesis. The study shows that for Keggin ions (phosphotungstic acid, PTA), being photoactive molecules, the presence of both Au nanoparticles and PTA on the TiO(2) surface in a cocatalytic system can have a dramatic effect on increasing the photocatalytic performance of the composite system, as opposed to a TiO(2) surface directly decorated with metal nanoparticles without a sandwiched PTA layer. The remarkable increase in the photocatalytic performance of these materials toward the degradation of a model organic Congo red dye correlates to an increase of 2.7-fold over that of anatase TiO(2) after adding Au to it and 4.3-fold after introducing PTA along with Au to it. The generalized localized reduction approach to preparing TiO(2)-PTA-Au cocatalysts reported here can be further extended to other similar systems, wherein a range of metal nanoparticles in the presence of different Keggin ions can be utilized. The composites reported here may have wide potential implications toward the degradation of organic species and solar cell applications.

  15. Ion pair-dispersive liquid-liquid microextraction coupled to microsample injection system-flame atomic absorption spectrometry for determination of gold at trace level in real samples.

    PubMed

    Hol, Aysen; Kartal, Aslıhan Arslan; Akdogan, Abdullah; Elçi, Aydan; Arslan, Tuba; Elçi, Lati

    2015-01-01

    A novel ion pair-dispersive liquid-liquid microextraction (IP-DLLME) of gold followed by its determination with microsample injection system-flame atomic absorption spectrometry (MIS-FAAS) detection was developed. The extraction method was based on the reaction of anionic tetrachloro gold(III) complex with the cationic form of Rhodamine B to give a violet ion pair complex, which is extracted from 1.0 mol L(-1) HCl solution of 8.0 mL to fine droplets of chloroform of 500 µL. A Plackett-Burman experimental design of MINITAB statistical program was employed to optimize the influence of main parameters to be controlled in DLLME. After optimizing the extraction conditions, gold was quantitatively recovered by preconcentration factor of 40, limit of detection (LOD) of 1.8 μg L(-1) and relative standard deviation of less than 6.8%. The proposed method was successfully applied to the preconcentration and determination of gold in some samples such as tap water, waste water, copper electrolysis solution and copper wire coated nickel.

  16. Investigation of argon ion sputtering on the secondary electron emission from gold samples

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Cui, Wanzhao; Li, Yun; Xie, Guibai; Zhang, Na; Wang, Rui; Hu, Tiancun; Zhang, Hongtai

    2016-09-01

    Secondary electron (SE) yield, δ, is a very sensitive surface property. The values of δ often are not consistent for even identical materials. The influence of surface changes on the SE yield was investigated experimentally in this article. Argon ion sputtering was used to remove the contamination from the surface. Surface composition was monitored by X-ray photoelectron spectroscopy (XPS) and surface topography was scanned by scanning electron microscope (SEM) and atomic force microscope (AFM) before and after every sputtering. It was found that argon sputtering can remove contamination and roughen the surface. An "equivalent work function" is presented in this thesis to establish the relationship between SE yield and surface properties. Argon ion sputtering of 1.5keV leads to a significant increase of so called "work function" (from 3.7 eV to 6.0 eV), and a decrease of SE yield (from 2.01 to 1.54). These results provided a new insight into the influence of surface changes on the SE emission.

  17. Chemical speciation and recovery of gold(I, III) from wastewater and silver by liquid-liquid extraction with the ion-pair reagent amiloride mono hydrochloride and AAS determination.

    PubMed

    El-Shahawi, M S; Bashammakh, A S; Bahaffi, S O

    2007-06-15

    A novel and low cost liquid-liquid extraction procedure for the separation of gold(III) at trace level from aqueous medium of pH 5-9 has been developed. The method has been based upon the formation of a yellow colored ternary complex ion associate of tetrachloro gold(III) complex anion, AuCl(4)(-) with the ion-pair reagent 1-(3,5-diamino-6-chloropyrazinecarboxyl) guanidine hydrochloride monohydrate, namely amiloride, DPG(+).Cl(-). The effect of various parameters, e.g. pH, organic solvent, shaking time, etc. on the preconcentration of gold(III) from the aqueous media by the DPG(+).Cl(-) reagent has been investigated. The colored gold species was quantitatively extracted into 4-methyl pentan-2-one. The chemical composition of the ion associate of DPG(+).Cl(-) with AuCl(4)(-) in the organic solvent has been determined by the Job's method. The molar absorptivity (2.19x10(4)Lmol(-1)cm(-1)) of the associate DPG(+).AuCl(4)(-) at 362nm enabled a convenient application of the developed extraction procedure for the separation and AAS determination of traces of aurate ions. Mono-valence gold ions after oxidation to gold(III) with bromine water in HCl (1.0molL(-1)) media have been also extracted quantitatively from the aqueous media by the developed procedure. The chemical speciation of mono- and/or tri-valence gold species spiked to fresh and industrial wastewater samples has been achieved. The method has been also applied successfully from the separation of gold(I) and gold(III) species from metallic ions and silver. The developed method has also the advantage of freedom from most diverse ions.

  18. Bi-Directional Ion Emission from Massive Gold Cluster Impacts on Nanometric Carbon Foils

    PubMed Central

    DeBord, J. Daniel; Della-Negra, Serge; Fernandez-Lima, Francisco A.; Verkhoturov, Stanislav V.; Schweikert, Emile A.

    2012-01-01

    Carbon cluster emission from thin carbon foils (5–40 nm) impacted by individual Aun+q cluster projectiles (95–125 qkeV, n/q = 3–200) reveals features regarding the energy deposition, projectile range, and projectile fate in matter as a function of the projectile characteristics. For the first time, the secondary ion emission from thin foils has been monitored simultaneously in both forward and backward emission directions. The projectile range and depth of emission were examined as a function of projectile size, energy, and target thickness. A key finding is that the massive cluster impact develops very differently from that of a small polyatomic projectile. The range of the 125 qkeV Au100q+q (q ≈ 4) projectile is estimated to be 20 nm (well beyond the range of an equal velocity Au+) and projectile disintegration occurs at the exit of even a 5 nm thick foil. PMID:22888385

  19. Negative ionization of the secondary ions of silver and gold sputtered from their elemental surfaces

    NASA Astrophysics Data System (ADS)

    Sindona, A.; Riccardi, P.; Maletta, S.; Rudi, S. A.; Falcone, G.

    2007-03-01

    Calculations of the ionization probabilities of Ag- and Au- particles, ejected during sputtering of clean Ag(1 0 0) and Au(1 0 0) surfaces, respectively, are reported. An effective one-electron theory is used to describe: the plane metal surface, with a projected band gap, the secondary emitted atom, whose charge state is investigated, and its nearest-neighbor substrate atom, put in motion by the collision cascade generated by the primary ion beam. Suitable rectilinear trajectories are selected to describe the motion of these two atoms outside the solid. A good agreement is found with van Der Heide's experiments (P.A.W. van Der Heide, Nucl. Instr. and Meth. B 157 (1999) 126).

  20. Hybridization-Modulated Ion Fluxes through Peptide-Nucleic-Acid-Functionalized Gold Nanotubules. A New Approach to Quantitative Label-Free DNA Analysis

    PubMed Central

    Jágerszki, Gyula; Gyurcsányi, Róbert E.; Höfler, Lajos; Pretsch, Ernő

    2008-01-01

    The inner walls of gold nanotubules, prepared by template synthesis in the nanopores of polycarbonate track etch membranes, have been chemically modified with peptide nucleic acid (PNA) and used for label-free quantification of complementary DNA sequences. Selective binding of DNA to the PNA modified nanotubules are shown to decrease the flux of optically detected anionic markers through the nanotubules in a concentration-dependent manner. The strong dependence of the biorecognition-modulated ion transport through the nanopores on the ionic strength suggests a dominantly electrostatic exclusion mechanism of the ion flux decrease as a result of DNA binding to the PNA-modified nanopores. PMID:17488052

  1. Hybridization-modulated ion fluxes through peptide-nucleic-acid- functionalized gold nanotubes. A new approach to quantitative label-free DNA analysis.

    PubMed

    Jágerszki, Gyula; Gyurcsányi, Róbert E; Höfler, Lajos; Pretsch, Ernö

    2007-06-01

    The inner walls of gold nanotubes, prepared by template synthesis in the nanopores of polycarbonate track etch membranes, have been chemically modified with peptide nucleic acid (PNA) and used for label-free quantification of complementary DNA sequences. Selective binding of DNA to the PNA-modified nanotubes is shown to decrease the flux of optically detected anionic markers through the nanotubes in a concentration-dependent manner. The strong dependence of the biorecognition-modulated ion transport through the nanopores on the ionic strength suggests a dominantly electrostatic exclusion mechanism of the ion flux decrease as a result of DNA binding to the PNA-modified nanopores.

  2. Transmission sputtering of gold thin films by low-energy (< 1 keV) xenon ions. I. The system and the measurement

    NASA Astrophysics Data System (ADS)

    Ayrault, Guy; Seidman, David N.

    1982-10-01

    A novel system for direct measurement of the transmission-sputtering yields of ion-irradiated thin films is described. The system was specifically designed for the study of the transmission sputtering caused by low-energy (<1 keV) xenon ions. The xenon ion beam employed is first mass-analyzed in a specially constructed corssed magnetic- and electric-field mass spectrometer; this analyzer eliminates all energetic neutral and singly charged ions of mass less than 40 amu; it is also expected that ≤2% of the xenon ions which actually reach a specimen are doubly charged. The analyzed xenon ion beam is made to impinge on a gold thin film (˜100-500 Å thick) which is mounted in a JEM 200 transmission electron-microscope holder. The temperature of the specimen can be varied between ˜25 and 300 K employing a continuous transfer liquid-helium cryostat. The particles (atoms or ions) ejected from the unirradiated surface of the gold thin film are detected by two channeltron electron-multiplier arrays (CEMA) in the Chevron configuration; the Chevron detector is able to detect individual transmission-sputtered particles when operated in the saturated mode. To further enhance resolution, the electron cascades (produced by the CEMA), are amplified and shaped electronically into uniform square pulses. The shaped signals are detected with an Ithaco 391A lock-in amplifier (LIA). With the aid of a ratiometer feature in the LIA, we are able to measure directly the ratio of the transmission-sputtered current It to the incident ion current Ib; for Ibn=1 μA cm-2, a ratio of It/Ib as small as 1×10-9 has been measured. A detailed discussion of the calibration procedure and the experimental errors, involved in this technique, are also presented.

  3. Nondegenerate Four-Wave Mixing in Gold Nanocomposites Formed by Ion Implantation

    SciTech Connect

    Saonov, V.P.; Zhu, J.G.; Lepeshkin, N.N.; Armstrong, R.L.; Shalaev, V.M.; Ying, Z.C.; White, C.W.; Zuhr, R.A.

    1999-07-01

    Nondegenerate four-wave mixing technique has been used to investigate the third-order nonlinear susceptibility for nanocomposite material with Au nanocrystals formed inside a SiO{sub 2} glass matrix. High concentrations of encapsulated Au nanocrystals are formed by implantation of Au ions into fused silica glass substrates and thermal annealing. The size distribution and the depth profiles of the Au nanoparticles can be controlled by the implantation dose, energy and annealing temperatures. The high value of the third-order susceptibility - (0.26--1.3)x10{sup -7} esu was found in the range of the frequency detunings near the surface plasmon resonance. Two characteristic relaxation times, 0.66 ps and 5.3 ps, have been extracted from the detuning curve of the third-order susceptibility as the probe-beam frequency changes and the pump-beam frequency fixed at the plasmon resonance. The first relaxation time was attributed to electron-phonon relaxation, and the second to thermal diffusion to the host medium. The efficient nondegenerate conversion is attractive for optical processing.

  4. Development of gold standard ion-selective electrode-based methods for fluoride analysis.

    PubMed

    Martínez-Mier, E A; Cury, J A; Heilman, J R; Katz, B P; Levy, S M; Li, Y; Maguire, A; Margineda, J; O'Mullane, D; Phantumvanit, P; Soto-Rojas, A E; Stookey, G K; Villa, A; Wefel, J S; Whelton, H; Whitford, G M; Zero, D T; Zhang, W; Zohouri, V

    2011-01-01

    Currently available techniques for fluoride analysis are not standardized. Therefore, this study was designed to develop standardized methods for analyzing fluoride in biological and nonbiological samples used for dental research. A group of nine laboratories analyzed a set of standardized samples for fluoride concentration using their own methods. The group then reviewed existing analytical techniques for fluoride analysis, identified inconsistencies in the use of these techniques and conducted testing to resolve differences. Based on the results of the testing undertaken to define the best approaches for the analysis, the group developed recommendations for direct and microdiffusion methods using the fluoride ion-selective electrode. Initial results demonstrated that there was no consensus regarding the choice of analytical techniques for different types of samples. Although for several types of samples, the results of the fluoride analyses were similar among some laboratories, greater differences were observed for saliva, food and beverage samples. In spite of these initial differences, precise and true values of fluoride concentration, as well as smaller differences between laboratories, were obtained once the standardized methodologies were used. Intraclass correlation coefficients ranged from 0.90 to 0.93, for the analysis of a certified reference material, using the standardized methodologies. The results of this study demonstrate that the development and use of standardized protocols for F analysis significantly decreased differences among laboratories and resulted in more precise and true values. 2010 S. Karger AG, Basel.

  5. Development of Gold Standard Ion-Selective Electrode-Based Methods for Fluoride Analysis

    PubMed Central

    Martínez-Mier, E.A.; Cury, J.A.; Heilman, J.R.; Katz, B.P.; Levy, S.M.; Li, Y.; Maguire, A.; Margineda, J.; O’Mullane, D.; Phantumvanit, P.; Soto-Rojas, A.E.; Stookey, G.K.; Villa, A.; Wefel, J.S.; Whelton, H.; Whitford, G.M.; Zero, D.T.; Zhang, W.; Zohouri, V.

    2011-01-01

    Background/Aims: Currently available techniques for fluoride analysis are not standardized. Therefore, this study was designed to develop standardized methods for analyzing fluoride in biological and nonbiological samples used for dental research. Methods A group of nine laboratories analyzed a set of standardized samples for fluoride concentration using their own methods. The group then reviewed existing analytical techniques for fluoride analysis, identified inconsistencies in the use of these techniques and conducted testing to resolve differences. Based on the results of the testing undertaken to define the best approaches for the analysis, the group developed recommendations for direct and microdiffusion methods using the fluoride ion-selective electrode. Results Initial results demonstrated that there was no consensus regarding the choice of analytical techniques for different types of samples. Although for several types of samples, the results of the fluoride analyses were similar among some laboratories, greater differences were observed for saliva, food and beverage samples. In spite of these initial differences, precise and true values of fluoride concentration, as well as smaller differences between laboratories, were obtained once the standardized methodologies were used. Intraclass correlation coefficients ranged from 0.90 to 0.93, for the analysis of a certified reference material, using the standardized methodologies. Conclusion The results of this study demonstrate that the development and use of standardized protocols for F analysis significantly decreased differences among laboratories and resulted in more precise and true values. PMID:21160184

  6. Interface-state-controlled segregation of gold during ion-beam-induced epitaxy of amorphous silicon

    SciTech Connect

    Custer, J.S.; Thompson, M.O. ); Jacobson, D.C.; Poate, J.M. )

    1991-10-15

    Segregation coefficients and velocity enhancements for Au in amorphous Si during ion-beam-induced epitaxial crystallization were measured. At 320 {degree}C, velocity enhancements of up to 2.5 times were observed, and interface breakdown occurred at interfacial Au concentrations of 11 at. %. Although qualitatively similar to thermal solid-phase epitaxy, these velocity enhancements are substantially reduced in magnitude while the interface breakdown occurs at much higher concentrations. Between 250 {degree}C and 400 {degree}C, Au is trapped at the moving interface with segregation coefficients {ital k}, which are approximately velocity and concentration independent and vary between 0.001 and 0.012. In contrast with classical segregation, however, {ital k} increases linearly with interface position during the initial stages of growth to a temperature-dependent steady-state value. At 250 {degree}C, for example, {ital k} increases by at least a factor of 4 to 0.012 during growth. These results suggest an evolving interface structure from the initial thermal configuration to an irradiation-induced steady-state configuration with a higher trapping efficiency.

  7. Ion mobility based on column leaching of South African gold tailings dam with chemometric evaluation.

    PubMed

    Cukrowska, Ewa M; Govender, Koovila; Viljoen, Morris

    2004-07-01

    New column leaching experiments were designed and used as an alternative rapid screening approach to element mobility assessment. In these experiments, field-moist material was treated with an extracting solution to assess the effects of acidification on element mobility in mine tailings. The main advantage of this version of column leaching experiments with partitioned segments is that they give quick information on current element mobility in conditions closely simulating field conditions to compare with common unrepresentative air-dried, sieved samples used for column leaching experiments. Layers from the tailings dump material were sampled and packed into columns. The design of columns allows extracting leachates from each layer. The extracting solutions used were natural (pH 6.8) and acidified (pH 4.2) rainwater. Metals and anions were determined in the leachates. The concentrations of metals (Ca, Mg, Fe, Mn, Al, Cr, Ni, Co, Zn, and Cu) in sample leachates were determined using ICP OES. The most important anions (NO3-, Cl-, and SO4(2)-) were determined using the closed system izotacophoresis ITP analyser. The chemical analytical data from tailings leaching and physico-chemical data from field measurements (including pH, conductivity, redox potential, temperature) were used for chemometric evaluation of element mobility. Principal factor analysis (PFA) was used to evaluate ions mobility from different layers of tailings dump arising from varied pH and redox conditions. It was found that the results from the partitioned column leaching illustrate much better complex processes of metals mobility from tailings dump than the total column. The chemometric data analysis (PFA) proofed the differences in the various layers leachability that are arising from physico-chemical processes due to chemical composition of tailings dump deposit. Copyright 2004 Elsevier Ltd.

  8. Bonding in gold-rare earth [Au2M] (M = Eu, Yb, Lu) ions. A strong covalent gold-lanthanide bond

    NASA Astrophysics Data System (ADS)

    Páez-Hernández, Dayán; Muñoz-Castro, Alvaro; Arratia-Perez, Ramiro

    2017-09-01

    The electronic structure and bonding nature of a series of intermetallic gold-lanthanide [Au2Ln] molecules, where Ln = Eu, Yb, Lu is predicted via the DFT and CASSCF/CASPT2 calculations. The 2c-2e bond model shows a good description of the intermetallic bonding which have a large covalent component with important contribution from bonding interaction between the 6s-Au and the 6s-Ln shell of orbitals.

  9. Detection of mercury ions based on mercury-induced switching of enzyme-like activity of platinum/gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Tseng, Chao-Wei; Chang, Hsiang-Yu; Chang, Jia-Yaw; Huang, Chih-Ching

    2012-10-01

    In this study, bimetallic platinum/gold nanoparticles (Pt/Au NPs) were found to exhibit peroxidase-like activity, and the deposition of mercury was found to switch the enzymatic activity to a catalase-like activity. Based on this phenomenon, we developed a new method for detecting mercury ions through their deposition on bimetallic Pt/Au NPs to switch the catalytic activity of Pt/Au NPs. Pt/Au NPs could be easily prepared through reduction of Au3+ and Pt4+ by sodium citrate in a one-pot synthesis. The peroxidase catalytic activity of the Pt/Au NPs was controlled by varying the ratios of Pt to Au. The Pt0.1/Au NPs (prepared with a [Au3+]/[Pt4+] molar ratio of 9.0/1.0) showed excellent oxidation catalysis for H2O2-mediated oxidation of Amplex® Red (AR) to resorufin. The oxidized product of AR, resorufin, fluoresces more strongly (excitation/emission wavelength maxima ca. 570/585 nm) than AR alone. The peroxidase catalytic activity of Pt0.1/Au NPs was switched to catalase-like activity in the presence of mercury ions in a 5.0 mM tris(hydroxymethyl)aminomethane (Tris)-borate solution (pH 7.0) through the deposition of Hg on the particle surfaces owing to the strong Hg-Au metallic bond. The catalytic activity of Hg-Pt0.1/Au NPs is superior (by at least 5-fold) to that of natural catalase (from bovine liver). Under optimal solution conditions [5.0 mM Tris-borate (pH 7.0), H2O2 (50 mM), and AR (10 μM)] and in the presence of the masking agents polyacrylic acid and tellurium nanowires, the Pt0.1/Au NPs allowed the selective detection of inorganic mercury (Hg2+) and methylmercury ions (MeHg+) at concentrations as low as several nanomolar. This simple, fast, and cost-effective system enabled selective determination of the spiked concentrations of Hg2+ and MeHg+ in tap, pond, and stream waters.In this study, bimetallic platinum/gold nanoparticles (Pt/Au NPs) were found to exhibit peroxidase-like activity, and the deposition of mercury was found to switch the enzymatic

  10. Colorimetric detection of mercury ion based on unmodified gold nanoparticles and target-triggered hybridization chain reaction amplification

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Yang, Xiaohan; Yang, Xiaohai; Liu, Pei; Wang, Kemin; Huang, Jin; Liu, Jianbo; Song, Chunxia; Wang, Jingjing

    2015-02-01

    A novel unmodified gold nanoparticles (AuNPs)-based colorimetric strategy for label-free, specific and sensitive mercury ion (Hg2+) detection was demonstrated by using thymine-Hg2+-thymine (T-Hg2+-T) recognition mechanism and hybridization chain reaction (HCR) amplification strategy. In this protocol, a structure-switching probe (H0) was designed to recognize Hg2+ and then propagated a chain reaction of hybridization events between two other hairpin probes (H1 and H2). In the absence of Hg2+, all hairpin probes could stably coexist in solution, the exposed sticky ends of hairpin probes were capable of stabilizing AuNPs. As a result, salt-induced AuNPs aggregation could be effectively prevented. In the presence of Hg2+, thymine bases of H0 could specifically interact with Hg2+ to form stable T-Hg2+-T complex. Consequently, the hairpin structure of H0 probe was changed. As H1/H2 probes were added, the HCR process could be triggered and nicked double-helixes were formed. Since it was difficult for the formed nicked double-helixes to inhibit salt-induced AuNPs aggregation, a red-to-blue color change was observed in the colloid solution as the salt concentration increased. With the elegant amplification effect of HCR, a detection limit of around 30 nM was achieved (S/N = 3), which was about 1-2 orders of magnitudes lower than that of previous unmodified AuNPs-based colorimetric methods. By using the T-Hg2+-T recognition mechanism, high selectivity was also obtained. As an unmodified AuNPs-based colorimetric strategy, the system was simple in design, convenient in operation, and eliminated the requirements of separation processes, chemical modifications, and sophisticated instrumentations.

  11. Wearable Sweatband Sensor Platform Based on Gold Nanodendrite Array as Efficient Solid Contact of Ion-Selective Electrode.

    PubMed

    Wang, Shuqi; Wu, Yongjin; Gu, Yang; Li, Tie; Luo, Hui; Li, Lian-Hui; Bai, Yuanyuan; Li, Lili; Liu, Lin; Cao, Yudong; Ding, Haiyan; Zhang, Ting

    2017-10-03

    As chemical sensors are in great demand for portable and wearable analytical applications, it is highly desirable to develop an all-solid-state ion-selective electrode (ISE) and reference electrode (RE) platform with simplicity and stability. Here we propose a wearable sensor platform with a new type of all-solid-state ISE based on a gold nanodendrite (AuND) array electrode as the solid contact and a poly(vinyl acetate)/inorganic salt (PVA/KCl) membrane-coated all-solid-state RE. A simple and controllable method was developed to fabricate the AuNDs on a microwell array patterned chip by one-step electrodeposition without additional processing. For the first time, the AuND electrodes with different real surface area and double layer capacitance were developed as solid contact of the Na(+)-ISE to investigate the relationship between performance of the ISE and surface area. As-prepared AuND-ISE with larger surface area (∼7.23 cm(2)) exhibited enhanced potential stability compared to those with smaller surface area (∼1.85 cm(2)) and to bare Au ISE. Important as the ISE, the PVA/KCl membrane-coated Ag/AgCl RE exhibited highly stable potential even after 3 months' storage. Finally, a wearable sweatband sensor platform was developed for efficient sweat collection and real-time analysis of sweat sodium during indoor exercise. This all-solid-state ISE and RE integrated sensor platform provided a very simple and reliable way to construct diverse portable and wearable devices for healthcare, sports, clinical diagnosis, and environmental analysis applications.

  12. Comparison of silver, gold and modified platinum electrodes for the electrochemical detection of iodide in urine samples following ion chromatography.

    PubMed

    Cataldi, Tommaso R I; Rubino, Alessandra; Laviola, Maria Carmela; Ciriello, Rosanna

    2005-12-05

    The electrochemical (EC) detection of iodide at gold, silver and platinum electrodes under similar experimental conditions was evaluated. To achieve optimal amperometric detection, the electrode sensitivity, selectivity, and stability was compared. Isocratic separation of iodide was attained by ion chromatography (IC) using an anion-exchange column with nitrate as an eluent ion (25 mM HNO(3) + 50 mM NaNO(3)). Although the Ag electrode showed the highest selectivity due to the relatively low applied potential (+0.10 V versus Ag|AgCl), it requires continuous surface polishing upon injection of standard solutions or real samples; in addition, the chromatographic peak of iodide exhibited a pronounced dip-tailing. The limit of detection (LoD) of iodide was estimated to be 3.5 microg/L (S/N=3) with an injection volume of 50 microL. Likewise, pulsed electrochemical detection at the silver electrode did not demonstrate the expected results in terms of peak shape and low detection limit. Using the same chromatographic conditions, iodide detection at the Au electrode (E(app)= +0.80 V versus Ag|AgCl) exhibited a regular peak shape accompanied by a sensitivity comparable to the silver one. Yet, upon continuous injections the signal intensity displayed a progressive lowering up to ca. 40% in 6h. Best results in terms of signal stability, peak shape and analytical response were obtained with a modified platinum electrode which allowed to achieve a LoD of 0.5 microg/L (S/N=3). The present IC-EC detection method using a modified Pt electrode (E(app)= +0.85 V versus Ag|AgCl) was successfully applied to determine low contents of iodide in human urine with solid phase extraction as pretreatment. Such a developed method correlated very well with the reference colorimetric method in urine (r=0.95273), and it is specifically suggested when the iodide content is relatively low, i.e., <20 microg/L.

  13. Arsenate reductase from Thermus thermophilus conjugated to polyethylene glycol-stabilized gold nanospheres allow trace sensing and speciation of arsenic ions

    PubMed Central

    Politi, Jane; Spadavecchia, Jolanda; Fiorentino, Gabriella; Antonucci, Immacolata

    2016-01-01

    Water sources pollution by arsenic ions is a serious environmental problem all around the world. Arsenate reductase enzyme (TtArsC) from Thermus thermophilus extremophile bacterium, naturally binds arsenic ions, As(V) and As (III), in aqueous solutions. In this research, TtArsC enzyme adsorption onto hybrid polyethylene glycol-stabilized gold nanoparticles (AuNPs) was studied at different pH values as an innovative nanobiosystem for metal concentration monitoring. Characterizations were performed by UV/Vis and circular dichroism spectroscopies, TEM images and in terms of surface charge changes. The molecular interaction between arsenic ions and the TtArsC-AuNPs nanobiosystem was also monitored at all pH values considered by UV/Vis spectroscopy. Tests performed revealed high sensitivities and limits of detection equal to 10 ± 3 M−12 and 7.7 ± 0.3 M−12 for As(III) and As(V), respectively. PMID:27707908

  14. Highly Sensitive Aluminium(III) Ion Sensor Based on a Self-assembled Monolayer on a Gold Nanoparticles Modified Screen-printed Carbon Electrode.

    PubMed

    See, Wong Pooi; Heng, Lee Yook; Nathan, Sheila

    2015-01-01

    A new approach for the development of a highly sensitive aluminium(III) ion sensor via the preconcentration of aluminium(III) ion with a self-assembled monolayer on a gold nanoparticles modified screen-printed carbon electrode and current mediation by potassium ferricyanide redox behavior during aluminium(III) ion binding has been attempted. A monolayer of mercaptosuccinic acid served as an effective complexation ligand for the preconcentration of trace aluminium; this led to an enhancement of aluminium(III) ion capture and thus improved the sensitivity of the sensor with a detection limit of down to the ppb level. Under the optimum experimental conditions, the sensor exhibited a wide linear dynamic range from 0.041 to 12.4 μM. The lower detection limit of the developed sensor was 0.037 μM (8.90 ppb) using a 10 min preconcentration time. The sensor showed excellent selectivity towards aluminium(III) ion over other interference ions.

  15. Highly stable water dispersible calix[4]pyrrole octa-hydrazide protected gold nanoparticles as colorimetric and fluorometric chemosensors for selective signaling of Co(II) ions

    NASA Astrophysics Data System (ADS)

    Bhatt, Keyur D.; Vyas, Disha J.; Makwana, Bharat A.; Darjee, Savan M.; Jain, Vinod K.

    2014-03-01

    Water dispersible stable gold nanoparticles (AuNps) have been synthesized by using calix[4]pyrrole octa-hydrazide (CPOH) as a reducing as well as stabilizing agent. CPOH-AuNps have been characterized by surface plasmon resonance, particle size analyzer and transmission electron microscopy. CPOH-AuNps are water dispersible, highly stable for more than 150 days at neutral pH with a size of less than 10 nm and zeta potential of 15 ± 2 MeV. Ion sensing property of CPOH-AuNps has been investigated for various metal ions Pb(II), Cd(II), Mn(II), Fe(III), Ni(II), Zn(II), Hg(II), Co(II) and Cu(II) by colorimetry and spectrofluorimetry. Among all the metal ions investigated, only Co(II) ions gives sharp colour change from ruby red to blue and is easily detectable by naked-eye. CPOH-AuNps being fluorescent in nature also shows great sensitivity and selectivity for Co(II) ions. Co(II) ions can be selectively detected at very low concentration level of 1 nM in a facile way of fluorescence quenching.

  16. Successive coordination of palladium(II)-ions and terpyridine-ligands to a pyridyl-terminated self-assembled monolayer on gold

    NASA Astrophysics Data System (ADS)

    Poppenberg, Johannes; Richter, Sebastian; Darlatt, Erik; Traulsen, Christoph H.-H.; Min, Hyegeun; Unger, Wolfgang E. S.; Schalley, Christoph A.

    2012-02-01

    The deposition of palladium on a novel, reversibly protonatable, pyridyl-terminated self-assembled monolayer on gold substrates has been studied by X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure spectroscopy (NEXAFS spectroscopy) and time of flight-secondary ion mass spectrometry (ToF-SIMS). For this purpose, 12-(pyridin-4-yl)dodecane-1-thiol, consisting of a surface-active head group, an unfunctionalized hydrocarbon backbone and a terminal pyridyl group, has been synthesized and deposited on gold surfaces. Coordination of Pd(II) ions to the pyridyl group was examined. Furthermore, a reversible protonation/deprotonation cycle has been applied, and the relation between protonation and the amount of complexed palladium was studied. Investigation of the SAM by angle-resolved NEXAFS spectroscopy revealed the aliphatic backbone to be preferentially upright oriented with the aromatic head group being not preferentially oriented. The palladium layer was further coordinated with a CF3-labeled terpyridine ligand in order to prove the accessibility of the Pd(II) ions to further complexation and the platform useful for deposition of further layers toward a multi-layered system.

  17. Gold nanoparticles in aqueous solutions: influence of size and pH on hydrogen dissociative adsorption and Au(iii) ion reduction.

    PubMed

    Ershov, B G; Abkhalimov, E V; Solovov, R D; Roldughin, V I

    2016-05-21

    The shift of the localized surface plasmon resonance (LSPR) band of gold nanoparticles to shorter wavelengths upon saturation of the hydrosol with hydrogen is used as a tool to study the electrochemical processes on the particle surface. It is shown that dissociative adsorption of hydrogen takes place on the surface of a particle and results in the migration of a proton into the dispersion medium, while the electron remains on the nanoparticle, i.e., a hydrogen-like nanoelectrode is formed. It is shown that Au(iii) ions can be reduced on the gold nanoelectrodes. A thermodynamic scheme explaining the shift of the LSPR band is used to explain the peculiarities of the Au(iii) ion reduction. The reduction rate does not depend on the ion concentration and varies linearly with pH. The observed correlations are explained in terms of a simple model of electrochemical processes taking place on the nanoparticle as an electrode. It is shown that with an increase in the particle size, its capacity for dissociative adsorption of hydrogen decreases and the Au(iii) reduction slows down.

  18. Porous polymer monolithic columns with gold nanoparticles as an intermediate ligand for the separation of proteins in reverse phase-ion exchange mixed mode

    DOE PAGES

    Terborg, Lydia; Masini, Jorge C.; Lin, Michelle; ...

    2014-11-04

    A new approach has been developed for the preparation of mixed-mode stationary phases to separate proteins. The pore surface of monolithic poly(glycidyl methacrylate-co-ethylene dimethacrylate) capillary columns was functionalized with thiols and coated with gold nanoparticles. The final mixed mode surface chemistry was formed by attaching, in a single step, alkanethiols, mercaptoalkanoic acids, and their mixtures on the free surface of attached gold nanoparticles. Use of these mixtures allowed fine tuning of the hydrophobic/hydrophilic balance. The amount of attached gold nanoparticles according to thermal gravimetric analysis was 44.8 wt.%. This value together with results of frontal elution enabled calculation of surfacemore » coverage with the alkanethiol and mercaptoalkanoic acid ligands. Interestingly, alkanethiols coverage in a range of 4.46–4.51 molecules/nm2 significantly exceeded that of mercaptoalkanoic acids with 2.39–2.45 molecules/nm2. The mixed mode character of these monolithic stationary phases was for the first time demonstrated in the separations of proteins that could be achieved in the same column using gradient elution conditions typical of reverse phase (using gradient of acetonitrile in water) and ion exchange chromatographic modes (applying gradient of salt in water), respectively.« less

  19. Porous polymer monolithic columns with gold nanoparticles as an intermediate ligand for the separation of proteins in reverse phase-ion exchange mixed mode.

    PubMed

    Terborg, Lydia; Masini, Jorge C; Lin, Michelle; Lipponen, Katriina; Riekolla, Marja-Liisa; Svec, Frantisek

    2015-05-01

    A new approach has been developed for the preparation of mixed-mode stationary phases to separate proteins. The pore surface of monolithic poly(glycidyl methacrylate-co-ethylene dimethacrylate) capillary columns was functionalized with thiols and coated with gold nanoparticles. The final mixed mode surface chemistry was formed by attaching, in a single step, alkanethiols, mercaptoalkanoic acids, and their mixtures on the free surface of attached gold nanoparticles. Use of these mixtures allowed fine tuning of the hydrophobic/hydrophilic balance. The amount of attached gold nanoparticles according to thermal gravimetric analysis was 44.8 wt.%. This value together with results of frontal elution enabled calculation of surface coverage with the alkanethiol and mercaptoalkanoic acid ligands. Interestingly, alkanethiols coverage in a range of 4.46-4.51 molecules/nm(2) significantly exceeded that of mercaptoalkanoic acids with 2.39-2.45 molecules/nm(2). The mixed mode character of these monolithic stationary phases was for the first time demonstrated in the separations of proteins that could be achieved in the same column using gradient elution conditions typical of reverse phase (using gradient of acetonitrile in water) and ion exchange chromatographic modes (applying gradient of salt in water), respectively.

  20. Porous polymer monolithic columns with gold nanoparticles as an intermediate ligand for the separation of proteins in reverse phase-ion exchange mixed mode

    PubMed Central

    Terborg, Lydia; Masini, Jorge C.; Lin, Michelle; Lipponen, Katriina; Riekolla, Marja-Liisa; Svec, Frantisek

    2014-01-01

    A new approach has been developed for the preparation of mixed-mode stationary phases to separate proteins. The pore surface of monolithic poly(glycidyl methacrylate-co-ethylene dimethacrylate) capillary columns was functionalized with thiols and coated with gold nanoparticles. The final mixed mode surface chemistry was formed by attaching, in a single step, alkanethiols, mercaptoalkanoic acids, and their mixtures on the free surface of attached gold nanoparticles. Use of these mixtures allowed fine tuning of the hydrophobic/hydrophilic balance. The amount of attached gold nanoparticles according to thermal gravimetric analysis was 44.8 wt.%. This value together with results of frontal elution enabled calculation of surface coverage with the alkanethiol and mercaptoalkanoic acid ligands. Interestingly, alkanethiols coverage in a range of 4.46–4.51 molecules/nm2 significantly exceeded that of mercaptoalkanoic acids with 2.39–2.45 molecules/nm2. The mixed mode character of these monolithic stationary phases was for the first time demonstrated in the separations of proteins that could be achieved in the same column using gradient elution conditions typical of reverse phase (using gradient of acetonitrile in water) and ion exchange chromatographic modes (applying gradient of salt in water), respectively. PMID:26257942

  1. Gold carbenes, gold-stabilized carbocations, and cationic intermediates relevant to gold-catalysed enyne cycloaddition.

    PubMed

    Harris, R J; Widenhoefer, R A

    2016-08-21

    Cationic gold complexes in which gold is bound to a formally divalent carbon atom, typically formulated as gold carbenes or α-metallocarbenium ions, have been widely invoked in a range of gold-catalyzed transformations, most notably in the gold-catalyzed cycloisomerization of 1,n-enynes. Although the existence of gold carbene complexes as intermediates in gold-catalyzed transformations is supported by a wealth of indirect experimental data and by computation, until recently no examples of cationic gold carbenes/α-metallocarbenium ions had been synthesized nor had any cationic intermediates generated via gold-catalyzed enyne cycloaddition been directly observed. Largely for this reason, there has been considerable debate regarding the electronic structure of these cationic complexes, in particular the relative contributions of the carbene (LAu(+)[double bond, length as m-dash]CR2) and α-metallocarbenium (LAu-CR2(+)) forms, which is intimately related to the extent of d → p backbonding from gold to the C1 carbon atom. However, over the past ∼ seven years, a number of cationic gold carbene complexes have been synthesized in solution and generated in the gas phase and cationic intermediates have been directly observed in the gold-catalyzed cycloaddition of enynes. Together, these advances provide insight into the nature and electronic structure of gold carbene/α-metallocarbenium complexes and the cationic intermediates generated via gold-catalyzed enyne cycloaddition. Herein we review recent advances in this area.

  2. The fate of silver ions in the photochemical synthesis of gold nanorods: an extended X-ray absorption fine structure analysis.

    PubMed

    Giannici, Francesco; Placido, Tiziana; Curri, Maria Lucia; Striccoli, Marinella; Agostiano, Angela; Comparelli, Roberto

    2009-12-14

    Water-soluble gold nanorods (Au NRs) were synthesized using a silver-ion mediated photochemical route under UV irradiation. Extended X-ray Absorption Fine Structure (EXAFS) measurements on the Ag K-edge were performed on samples obtained at different Ag/Au ratios and at increasing irradiation times in order to investigate the fate of silver ions during the growth of Au NRs. EXAFS measurements allowed to probe the chemical state and the local environment of silver in the final product. Experimental data suggest that Ag atoms are placed on top of the Au particles as metallic Ag(0), while no significant contribution to the EXAFS spectra comes from AgBr or other Ag(+) based species. The reported results strongly support the deposition of Ag(0) islands on the (110) surfaces of the Au particles, thus driving the anisotropic growth via the (111) surfaces.

  3. Cluster linker approach: preparation of a luminescent porous framework with NbO topology by linking silver ions with gold(I) clusters.

    PubMed

    Lei, Zhen; Pei, Xiao-Li; Jiang, Zhan-Guo; Wang, Quan-Ming

    2014-11-17

    A cluster-based luminescent porous metal-organic framework has been constructed through a "cluster linker" approach. The luminescent gold(I) cluster, prefunctionalized with pyrazinyl groups, was used as a cluster linker, similar to an organic linker, to connect silver ions in order to form a 3D framework. 1D channels with 1.1 nm diameter were observed in the framework. The cluster with its intrinsic luminescence was incorporated into a porous framework to give a luminescent bifunctional NbO net. This MOF shows solvatochromic behavior, and the interactions between solvent molecules and silver ions inside the channels account for the changes in absorption and emission spectra. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. In vitro studies on radiosensitization effect of glucose capped gold nanoparticles in photon and ion irradiation of HeLa cells

    NASA Astrophysics Data System (ADS)

    Kaur, Harminder; Pujari, Geetanjali; Semwal, Manoj K.; Sarma, Asitikantha; Avasthi, Devesh Kumar

    2013-04-01

    Noble metal nanoparticles are of great interest due to their potential applications in diagnostics and therapeutics. In the present work, we synthesized glucose capped gold nanoparticle (Glu-AuNP) for internalization in the HeLa cell line (human cervix cancer cells). The capping of glucose on Au nanoparticle was confirmed by Raman spectroscopy. The Glu-AuNP did not show any toxicity to the HeLa cell. The γ-radiation and carbon ion irradiation of HeLa cell with and without Glu-AuNP were performed to evaluate radiosensitization effects. The study revealed a significant reduction in radiation dose for killing the HeLa cells with internalized Glu-AuNPs as compared to the HeLa cells without Glu-AuNP. The Glu-AuNP treatment resulted in enhancement of radiation effect as evident from increase in relative biological effectiveness (RBE) values for carbon ion irradiated HeLa cells.

  5. Nucleotide-directed syntheses of gold nanohybrid systems with structure-dependent optical features: Selective fluorescence sensing of Fe(3+) ions.

    PubMed

    Ungor, Ditta; Csapó, Edit; Kismárton, Barbara; Juhász, Ádám; Dékány, Imre

    2017-07-01

    This study demonstrates a one-step synthesis for the preparation of both adenosine monophosphate (AMP)-stabilized colloidal gold nanoparticles (AMP-Au NPs) and fluorescent gold nanoclusters (AMP-Au NCs). The dominant role of AMP:AuCl4(-) molar ratios in the formation of diverse nanosized Au products was proved. The size, the structure and the unique structure-dependent optical properties of the NPs and NCs were determined based on the results of numerous spectroscopic (UV-vis, fluorescence, infrared, x-ray photoelectron), high resolution electron microscopy (HRTEM) and dynamic light scattering (DLS) techniques. Stabile AMP-Au NPs with diameter of ca. 11nm and ultra-small AMP-Au NCs having blue fluorescence (λem=480nm) were identified. In addition, the AMP-Au NCs have been utilized to develop a selective sensor for the detection of Fe(3+) ions in aqueous medium based on fluorescence quenching. Several essential metal ions and anions have been tested but our results clearly supported that dominant quenching was observed only for Fe(3+) ions. Based on the determined limit of detection (LOD=2.0μM) our system is capable of detecting Fe(3+) ions in drinking water. The Stern-Volmer constants (KSV) and various thermodynamic parameters (ΔG, ΔH°, ΔS°, ΔCp) of the quenching process have also been determined by the Stern-Volmer fitting of the fluorescence data in order to better understand the quenching mechanism. Copyright © 2017. Published by Elsevier B.V.

  6. Electron and ion transfer through multilayers of gold nanoclusters covered by self-assembled monolayers of alkylthiols with various functional groups.

    PubMed

    Uosaki, Kohei; Kondo, Toshihiro; Okamura, Masayuki; Song, Wenbo

    2002-01-01

    The electrochemical characteristics of various kinds of multilayers of gold nanoclusters (GNCs) were investigated. Two types of gold nanoclusters, one covered by self-assembled monolayers (SAMs) of mercaptoundecanoic acid (MUA), hexanethiol (C6SH), and ferrocenylhexanethiol (FcC6SH), MHF-GNC, and the other with MUA and C6SH, MH-GNC, were used. The multilayers were constructed on a Au(111) surface based on a carboxylate/metal cation (Cu++)/carboxylate or carboxylate/cationic polymer (poly(allylamine hydrochloride):PAH)/carboxylate electrostatic interaction. While the multilayers constructed by the former method were stable only in nonaqueous solutions, those constructed by the latter method were stable even in aqueous solutions. Electrochemical measurements of the multilayers of MHF-GNCs showed a pair of waves corresponding to the redox of the ferrocene group around 350-480 mV and the charge of these peaks, i.e., the amount of adsorbed GNC, increased linearly with the construction cycle up to 6 cycles in the former and to 18 cycles in the latter. A rather reversible redox response of the ferrocene moiety was observed even at the gold electrodes with five GNC layers of two different sequences in which MHF-GNC exists as the layer closest to the gold electrode, ie., the first layer, or as the outermost layer with MH-GNC in the other layers. These results show the facile transfer of electrons and ions through the multilayers of the SAM-covered GNCs and electron transfer between the ferrocene moiety and the Au(111) electrode takes place through the GNC cores by hopping.

  7. Importance of nanoparticle size in colorimetric and SERS-based multimodal trace detection of Ni(II) ions with functional gold nanoparticles.

    PubMed

    Krpetić, Zeljka; Guerrini, Luca; Larmour, Iain A; Reglinski, John; Faulds, Karen; Graham, Duncan

    2012-03-12

    Colorimetric detection of analytes using gold nanoparticles along with surface-enhanced Raman spectroscopy (SERS) are areas of intense research activity since they both offer sensing of very low concentrations of target species. Multimodal detection promotes the simultaneous detection of a sample by a combination of different techniques; consequently, surface chemistry design in the development of multimodal nanosensors is important for rapid and sensitive evaluation of the analytes by diverse analytical methods. Herein it is shown that nanoparticle size plays an important role in the design of functional nanoparticles for colorimetric and SERS-based sensing applications, allowing controlled nanoparticle assembly and tunable sensor response. The design and preparation of robust nanoparticle systems and their assembly is reported for trace detection of Ni(II) ions as a model system in an aqueous solution. The combination of covalently attached nitrilotriacetic acid moieties along with the L-carnosine dipeptide on the nanoparticle surface represents a highly sensitive platform for rapid and selective detection of Ni(II) ions. This systematic study demonstrates that significantly lower detection limits can be achieved by finely tuning the assembly of gold nanoparticles of different core sizes. The results clearly demonstrate the feasibility and usefulness of a multimodal approach.

  8. Z-scan study of nonlinear absorption of gold nano-particles prepared by ion implantation in various types of silicate glasses

    NASA Astrophysics Data System (ADS)

    Husinsky, W.; Ajami, A.; Nekvindova, P.; Svecova, B.; Pesicka, J.; Janecek, M.

    2012-05-01

    Metal nano-clusters composite glasses synthesized by ion implantation have been shown as promising nonlinear photonic material. In this paper, we report on the nonlinear absorption measurements of gold nano-particles implanted in four structurally different types of silicate glasses. All targets containing gold nano-particles in a layer 500 nm under the surface of the glass have been prepared by ion implantation with subsequent annealing. The targets were characterized by UV-VIS absorption spectroscopy, transmission electron microscopy (TEM) and by the Z-scan technique. The resulting nano-particles differed in size, range of particle size and shape as well as depth distribution characteristic for glasses with different chemical compositions. With the Z-scan technique, it can be shown that the nano-particles produced in silicate glasses exhibit substantial two-photon absorption (TPA). The TPA coefficient differed depending on size, shape, and depth distribution of the metal nano-clusters and the structure and composition of the glass substrates. The highest TPA coefficient (16.25 cm/GW) was found for the glass BK7 in which the largest non-spherical nano-particles have been observed in the thinnest layer.

  9. Convenient purification of gold clusters by co-precipitation for improved sensing of hydrogen peroxide, mercury ions and pesticides.

    PubMed

    Guan, Guijian; Zhang, Shuang-Yuan; Cai, Yongqing; Liu, Shuhua; Bharathi, M S; Low, Michelle; Yu, Yong; Xie, Jianping; Zheng, Yuangang; Zhang, Yong-Wei; Han, Ming-Yong

    2014-06-01

    An effective separation process is developed to remove free protein from the protein-protected gold clusters via co-precipitation with zinc hydroxide on their surface. After dialysis, the purified clusters exhibit an enhanced fluorescence for improved sensitive detection and selective visualization.

  10. Radiation synthesized poly( n-vinyl-2-pyrrolidone)-stabilized-gold nanoparticles as LSPR-based optical sensor for mercury ions estimation

    NASA Astrophysics Data System (ADS)

    Misra, Nilanjal; Kumar, Virendra; Goel, Narender Kumar; Varshney, Lalit

    2015-07-01

    Poly( n-vinyl-2-pyrrolidone)-stabilized-gold nanoparticles (PVP-Au-NPs) have been synthesized via a green-60Co-Gamma radiolytic route and employed as a localized surface plasmon resonance (LSPR)-based optical sensor for estimation of trace quantities of Hg2+ ion in aqueous solutions. The in situ generated PVP-Au-NPs were characterized using UV-vis spectroscopy, transmission electron microscopy, and particle size analysis techniques. Reaction conditions were optimized to obtain uniformly dispersed PVP-Au-NPs with average particle size of 7.1 ± 1.6 nm (±s), which exhibited a narrow LSPR band at 527 nm. The decrease in LSPR band intensity of PVP-Au-NPs with increase in Hg2+ ion concentration was found to be linear in the Hg2+ ion concentration range of 0-100 nM. The LSPR-based PVP-Au-NPs optical sensor system was found to be selective for Hg2+ and independent of interference from other metal ions such as Ca2+, Cu2+, Cd2+, and Fe2+ up to a concentration of 500 nM.

  11. Collective optical Kerr effect exhibited by an integrated configuration of silicon quantum dots and gold nanoparticles embedded in ion-implanted silica

    NASA Astrophysics Data System (ADS)

    Torres-Torres, C.; López-Suárez, A.; Can-Uc, B.; Rangel-Rojo, R.; Tamayo-Rivera, L.; Oliver, A.

    2015-07-01

    The study of the third-order optical nonlinear response exhibited by a composite containing gold nanoparticles and silicon quantum dots nucleated by ion implantation in a high-purity silica matrix is presented. The nanocomposites were explored as an integrated configuration containing two different ion-implanted distributions. The time-resolved optical Kerr gate and z-scan techniques were conducted using 80 fs pulses at a 825 nm wavelength; while the nanosecond response was investigated by a vectorial two-wave mixing method at 532 nm with 1 ns pulses. An ultrafast purely electronic nonlinearity was associated to the optical Kerr effect for the femtosecond experiments, while a thermal effect was identified as the main mechanism responsible for the nonlinear optical refraction induced by nanosecond pulses. Comparative experimental tests for examining the contribution of the Au and Si distributions to the total third-order optical response were carried out. We consider that the additional defects generated by consecutive ion irradiations in the preparation of ion-implanted samples do not notably modify the off-resonance electronic optical nonlinearities; but they do result in an important change for near-resonant nanosecond third-order optical phenomena exhibited by the closely spaced nanoparticle distributions.

  12. Gold Rush!

    ERIC Educational Resources Information Center

    Brahier, Daniel J.

    1997-01-01

    Describes a mathematical investigation of gold--how it is weighed, stored, used, and valued. For grades 3-4, children estimate the value of treasure chests filled with gold coins and explore the size and weight of gold bars. Children in grades 5-6 explore how gold is mined and used, and how the value of gold changes over time. (PVD)

  13. Effective and selective recovery of gold and palladium ions from metal wastewater using a sulfothermophilic red alga, Galdieria sulphuraria.

    PubMed

    Ju, Xiaohui; Igarashi, Kensuke; Miyashita, Shin-Ichi; Mitsuhashi, Hiroaki; Inagaki, Kazumi; Fujii, Shin-Ichiro; Sawada, Hitomi; Kuwabara, Tomohiko; Minoda, Ayumi

    2016-07-01

    The demand for precious metals has increased in recent years. However, low concentrations of precious metals dissolved in wastewater are yet to be recovered because of high operation costs and technical problems. The unicellular red alga, Galdieria sulphuraria, efficiently absorbs precious metals through biosorption. In this study, over 90% of gold and palladium could be selectively recovered from aqua regia-based metal wastewater by using G. sulphuraria. These metals were eluted from the cells into ammonium solutions containing 0.2M ammonium salts without other contaminating metals. The use of G. sulphuraria is an eco-friendly and cost-effective way of recovering low concentrations of gold and palladium discarded in metal wastewater. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Fluorinated colloidal gold immunolabels for imaging select proteins in parallel with lipids using high-resolution secondary ion mass spectrometry

    PubMed Central

    Wilson, Robert L.; Frisz, Jessica F.; Hanafin, William P.; Carpenter, Kevin J.; Hutcheon, Ian D.; Weber, Peter K.; Kraft, Mary L.

    2014-01-01

    The local abundance of specific lipid species near a membrane protein is hypothesized to influence the protein’s activity. The ability to simultaneously image the distributions of specific protein and lipid species in the cell membrane would facilitate testing these hypotheses. Recent advances in imaging the distribution of cell membrane lipids with mass spectrometry have created the desire for membrane protein probes that can be simultaneously imaged with isotope labeled lipids. Such probes would enable conclusive tests of whether specific proteins co-localize with particular lipid species. Here, we describe the development of fluorine-functionalized colloidal gold immunolabels that facilitate the detection and imaging of specific proteins in parallel with lipids in the plasma membrane using high-resolution SIMS performed with a NanoSIMS. First, we developed a method to functionalize colloidal gold nanoparticles with a partially fluorinated mixed monolayer that permitted NanoSIMS detection and rendered the functionalized nanoparticles dispersible in aqueous buffer. Then, to allow for selective protein labeling, we attached the fluorinated colloidal gold nanoparticles to the nonbinding portion of antibodies. By combining these functionalized immunolabels with metabolic incorporation of stable isotopes, we demonstrate that influenza hemagglutinin and cellular lipids can be imaged in parallel using NanoSIMS. These labels enable a general approach to simultaneously imaging specific proteins and lipids with high sensitivity and lateral resolution, which may be used to evaluate predictions of protein co-localization with specific lipid species. PMID:22284327

  15. Fluorinated colloidal gold immunolabels for imaging select proteins in parallel with lipids using high-resolution secondary ion mass spectrometry.

    PubMed

    Wilson, Robert L; Frisz, Jessica F; Hanafin, William P; Carpenter, Kevin J; Hutcheon, Ian D; Weber, Peter K; Kraft, Mary L

    2012-03-21

    The local abundance of specific lipid species near a membrane protein is hypothesized to influence the protein's activity. The ability to simultaneously image the distributions of specific protein and lipid species in the cell membrane would facilitate testing these hypotheses. Recent advances in imaging the distribution of cell membrane lipids with mass spectrometry have created the desire for membrane protein probes that can be simultaneously imaged with isotope labeled lipids. Such probes would enable conclusive tests to determine whether specific proteins colocalize with particular lipid species. Here, we describe the development of fluorine-functionalized colloidal gold immunolabels that facilitate the detection and imaging of specific proteins in parallel with lipids in the plasma membrane using high-resolution SIMS performed with a NanoSIMS. First, we developed a method to functionalize colloidal gold nanoparticles with a partially fluorinated mixed monolayer that permitted NanoSIMS detection and rendered the functionalized nanoparticles dispersible in aqueous buffer. Then, to allow for selective protein labeling, we attached the fluorinated colloidal gold nanoparticles to the nonbinding portion of antibodies. By combining these functionalized immunolabels with metabolic incorporation of stable isotopes, we demonstrate that influenza hemagglutinin and cellular lipids can be imaged in parallel using NanoSIMS. These labels enable a general approach to simultaneously imaging specific proteins and lipids with high sensitivity and lateral resolution, which may be used to evaluate predictions of protein colocalization with specific lipid species.

  16. Functionalized gold nanoparticles/reduced graphene oxide nanocomposites for ultrasensitive electrochemical sensing of mercury ions based on thymine-mercury-thymine structure.

    PubMed

    Wang, Nan; Lin, Meng; Dai, Hongxiu; Ma, Houyi

    2016-05-15

    A sensitive, selective and reusable electrochemical biosensor for the determination of mercury ions (Hg(2+)) has been developed based on thymine (T) modified gold nanoparticles/reduced graphene oxide (AuNPs/rGO) nanocomposites. Graphene oxide (GO) was electrochemically reduced on a glassy carbon substrate. Subsequently, AuNPs were deposited onto the surface of rGO by cyclic voltammetry. For functionalization of the electrode, the carboxylic group of the thymine-1-acetic acid was covalently coupled with the amine group of the cysteamine which self-assembled onto AuNPs. The structural features of the T bases functionalized AuNPs/rGO electrode were confirmed by attenuated total reflection infrared (ATR-IR) spectroscopy and scanning electron microscopy (SEM) spectroscopy. Each step of the modification process was characterized by cyclic voltammetry (CV) and electrochemical impedence spectroscopy (EIS). The T bases modified AuNPs/rGO electrode was applied to detect various trace metal ions by differential pulse voltammetry (DPV). The proposed biosensor was found to be highly sensitive to Hg(2+) in the range of 10 ng/L-1.0 µg/L. The biosensor afforded excellent selectivity for Hg(2+) against other heavy metal ions such as Zn(2+), Cd(2+), Pb(2+), Cu(2+), Ni(2+), and Co(2+). Furthermore, the developed sensor exhibited a high reusability through a simple washing. In addition, the prepared biosensor was successfully applied to assay Hg(2+) in real environmental samples.

  17. Arsenate reductase from Thermus thermophilus conjugated to polyethylene glycol-stabilized gold nanospheres allow trace sensing and speciation of arsenic ions.

    PubMed

    Politi, Jane; Spadavecchia, Jolanda; Fiorentino, Gabriella; Antonucci, Immacolata; De Stefano, Luca

    2016-10-01

    Water sources pollution by arsenic ions is a serious environmental problem all around the world. Arsenate reductase enzyme (TtArsC) from Thermus thermophilus extremophile bacterium, naturally binds arsenic ions, As(V) and As (III), in aqueous solutions. In this research, TtArsC enzyme adsorption onto hybrid polyethylene glycol-stabilized gold nanoparticles (AuNPs) was studied at different pH values as an innovative nanobiosystem for metal concentration monitoring. Characterizations were performed by UV/Vis and circular dichroism spectroscopies, TEM images and in terms of surface charge changes. The molecular interaction between arsenic ions and the TtArsC-AuNPs nanobiosystem was also monitored at all pH values considered by UV/Vis spectroscopy. Tests performed revealed high sensitivities and limits of detection equal to 10 ± 3 M(-12) and 7.7 ± 0.3 M(-12) for As(III) and As(V), respectively. © 2016 The Author(s).

  18. Luminescent quantum clusters of gold in bulk by albumin-induced core etching of nanoparticles: metal ion sensing, metal-enhanced luminescence, and biolabeling.

    PubMed

    Habeeb Muhammed, Madathumpady Abubaker; Verma, Pramod Kumar; Pal, Samir Kumar; Retnakumari, Archana; Koyakutty, Manzoor; Nair, Shantikumar; Pradeep, Thalappil

    2010-09-03

    The synthesis of a luminescent quantum cluster (QC) of gold with a quantum yield of approximately 4 % is reported. It was synthesized in gram quantities by the core etching of mercaptosuccinic acid protected gold nanoparticles by bovine serum albumin (BSA), abbreviated as Au(QC)@BSA. The cluster was characterized and a core of Au(38) was assigned tentatively from mass spectrometric analysis. Luminescence of the QC is exploited as a "turn-off" sensor for Cu(2+) ions and a "turn-on" sensor for glutathione detection. Metal-enhanced luminescence (MEL) of this QC in the presence of silver nanoparticles is demonstrated and a ninefold maximum enhancement is seen. This is the first report of the observation of MEL from QCs. Folic acid conjugated Au(QC)@BSA was found to be internalized to a significant extent by oral carcinoma KB cells through folic acid mediated endocytosis. The inherent luminescence of the internalized Au(QC)@BSA was used in cell imaging.

  19. A novel optical DNA biosensor for detection of trace amounts of mercuric ions using gold nanoparticles introduced onto modified glass surface

    NASA Astrophysics Data System (ADS)

    Mashhadizadeh, Mohammad Hossein; Talemi, Rasoul Pourtaghavi

    2014-11-01

    In this work we report a DNA spectrophotometric biosensor for detection of Hg2+ ions in which a pair of oligonucleotides with four thymine-thymine (T-T) mismatched bases was immobilized onto modified glass surface. Firstly, glass surface modified with 3-(mercaptopropyl) trimethoxysilane (MSPT) and gold nano-particles respectively and then one oligonucleotide (P1) modified with hexanthiol at 5-terminal was immobilized on gold nano-particles via self-assembly and inserted in methylene blue. Methylene blue can intercalate on single strand DNA (ss-DNA) and its absorption peak can measure spectrophotometrically. Then the other oligonucleotide was able to hybridize with P1 by forming thymine-Hg2+-thymine (T-Hg2+-T) complexes in the presence of Hg2+, and absorption signal of methylene blue reduced upon Hg2+ increasing concentration because inaccessibility of guanine base in DNA duplex. However, when Hg2+ was absent, the two oligonucleotides could not hybridize due to the T-T mismatched bases, and P2 could not be fixed on the modified glass surface and any change in absorption peak of methylene blue takes place. The UV-Vis spectrum showed a linear correlation between the absorption peak of methylene blue and the concentration of Hg2+ over the range from 10 nM to 10 μM (R2 = 0.9985) with a detection limit of 6 nM. This spectrophotometric biosensor could be widely used for selective detection of Hg2+.

  20. Applications of vitamin B6 cofactor pyridoxal 5‧-phosphate and pyridoxal 5‧-phosphate crowned gold nanoparticles for optical sensing of metal ions

    NASA Astrophysics Data System (ADS)

    Bothra, Shilpa; Upadhyay, Yachana; Kumar, Rajender; Sahoo, Suban K.

    2017-03-01

    Vitamin B6 cofactor pyridoxal 5‧-phosphate (PLP) and PLP crowned gold nanoparticles (PLP-AuNPs) was applied for the optical chemosensing of metal ions in aqueous medium. PLP showed a visually detectable colour change from colourless to yellow and 'turn-off' fluorescence in the presence of Fe3 +. The fluorescence intensity of PLP at 433 nm was also blue-shifted and enhanced at 395 nm upon addition of Al3 +. When the PLP was functionalized over AuNPs surface, the wine red colour of PLP-AuNPs was turned to purplish-blue and the SPR band at 525 nm was red-shifted upon addition of Al3 +, Cd2 + and Pb2 + due to the complexation-induced aggregation of nanoparticles. The developed sensing systems exhibited good selectivity and specificity for the detected analytes (Fe3 +, Al3 +, Cd2 + and Pb2 +).

  1. Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification.

    PubMed

    Zhu, Zhiqiang; Su, Yuanyuan; Li, Jiang; Li, Di; Zhang, Jiong; Song, Shiping; Zhao, Yun; Li, Genxi; Fan, Chunhai

    2009-09-15

    We report a highly sensitive electrochemical sensor for the detection of Hg(2+) ions in aqueous solution by using a thymine (T)-rich, mercury-specific oligonucleotide (MSO) probe and gold nanoparticles (Au NPs)-based signal amplification. The MSO probe contains seven thymine bases at both ends and a "mute" spacer in the middle, which, in the presence of Hg(2+), forms a hairpin structure via the Hg(2+)-mediated coordination of T-Hg(2+)-T base pairs. The thiolated MSO probe is immobilized on Au electrodes to capture free Hg(2+) in aqueous media, and the MSO-bound Hg(2+) can be electrochemically reduced to Hg(+), which provides a readout signal for quantitative detection of Hg(2+). This direct immobilization strategy leads to a detection limit of 1 microM. In order to improve the sensitivity, MSO probe-modified Au NPs are employed to amplify the electrochemical signals. Au NPs are comodified with the MSO probe and a linking probe that is complementary to a capture DNA probe immobilized on gold electrodes. We demonstrated that this Au NPs-based sensing strategy brings about an amplification factor of more than 3 orders of magnitude, leading to a limit of detection of 0.5 nM (100 ppt), which satisfactorily meets the sensitivity requirement of U.S. Environmental Protection Agency (EPA). This Au NPs-based Hg(2+) sensor also exhibits excellent selectivity over a spectrum of interference metal ions. Considering the high sensitivity and selectivity of this sensor, as well as the cost-effective and portable features of electrochemical techniques, we expect this Au NPs amplified electrochemical sensor will be a promising candidate for field detection of environmentally toxic mercury.

  2. Bioinspired systems for metal-ion sensing: new emissive peptide probes based on benzo[d]oxazole derivatives and their gold and silica nanoparticles.

    PubMed

    Oliveira, Elisabete; Genovese, Damiano; Juris, Riccardo; Zaccheroni, Nelsi; Capelo, José Luis; Raposo, M Manuela M; Costa, Susana P G; Prodi, Luca; Lodeiro, Carlos

    2011-09-19

    Seven new bioinspired chemosensors (2-4 and 7-10) based on fluorescent peptides were synthesized and characterized by elemental analysis, (1)H and (13)C NMR, melting point, matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS), and IR and UV-vis absorption and emission spectroscopy. The interaction with transition- and post-transition-metal ions (Cu(2+), Ni(2+), Ag(+), Zn(2+), Cd(2+), Hg(2+), Pb(2+), and Fe(3+)) has been explored by absorption and fluorescence emission spectroscopy and MALDI-TOF-MS. The reported fluorescent peptide systems, introducing biological molecules in the skeleton of the probes, enhance their sensitivity and confer them strong potential for applications in biological fields. Gold and silica nanoparticles functionalized with these peptides were also obtained. All nanoparticles were characterized by dynamic light scattering, transmission electron microscopy, and UV-vis absorption and fluorescence spectroscopy. Stable gold nanoparticles (diameter 2-10 nm) bearing ligands 1 and 4 were obtained by common reductive synthesis. Commercial silica nanoparticles were decorated at their surface using compounds 8-10, linked through a silane spacer. The same chemosensors were also taken into aqueous solutions through their dispersion in the outer layer of silica core/poly(ethylene glycol) shell nanoparticles. In both cases, these complex nanoarchitectures behaved as new sensitive materials for Ag(+) and Hg(2+) in water. The possibility of using these species in this solvent is particularly valuable because the impact on human health of heavy- and transition-metal-ion pollution is very severe, and all analytical and diagnostics investigations involve a water environment.

  3. Colorimetric sensing of silver(I) and mercury(II) ions based on an assembly of Tween 20-stabilized gold nanoparticles.

    PubMed

    Lin, Cheng-Yan; Yu, Cheng-Ju; Lin, Yen-Hsiu; Tseng, Wei-Lung

    2010-08-15

    We have developed a rapid and homogeneous method for the highly selective detection of Hg(2+) and Ag(+) using Tween 20-modified gold nanoparticles (AuNPs). Citrate ions were found to still be adsorbed on the Au surface when citrate-capped AuNPs were modified with Tween 20, which stabilizes the citrate-capped AuNPs against conditions of high ionic strength. When citrate ions had reduced Hg(2+) and Ag(+) to form Hg-Au alloys and Ag on the surface of the AuNPs, Tween 20 was removed from the NP surface. As a result, the AuNPs were unstable under a high-ionic-strength solution, resulting in NP aggregation. The formation of Hg-Au alloys or Ag on the surface of the AuNPs was demonstrated by means of inductively coupled plasma mass spectroscopy and energy-dispersive X-ray spectroscopy. Tween 20-AuNPs could selectively detect Hg(2+) and Ag(+) at concentrations as low as 0.1 and 0.1 microM in the presence of NaCl and EDTA, respectively. Moreover, the probe enables the analysis of AgNPs with a minimum detectable concentration that corresponds to 1 pM. This probe was successfully applied to detect Hg(2+) in drinking water and seawater, Ag(+) in drinking water, and AgNPs in drinking water.

  4. Detection of mercury ions (II) based on non-cross-linking aggregation of double-stranded DNA modified gold nanoparticles by resonance Rayleigh scattering method.

    PubMed

    Gao, Zhong Feng; Song, Wei Wei; Luo, Hong Qun; Li, Nian Bing

    2015-03-15

    This work describes a sensitive approach utilizing non-cross-linking aggregation of double-stranded DNA modified gold nanoparticles (dsDNA-AuNPs) for the detection of mercury ions (Hg(2+)) by resonance Rayleigh scattering (RRS) method for the first time. The double-stranded DNA contains a mismatched T-T base pair in the chain terminus, resulting in a flexible DNA tail and preventing the AuNPs from aggregation. Thus, a low RRS signal is obtained. However, in the presence of Hg(2+), the non-cross-linking aggregation of dsDNA-AuNPs occurs, due to the Hg(2+)-mediated coordination of T-Hg(2+)-T base pair. The aggregation of nanoparticles generates a high RRS value. Particularly, the solution color and ultraviolet-visible absorption barely changed under the same conditions, while it is capable of detecting by RRS method with a low detection limit (0.4nM), which is 1000-fold lower than that of the colorimetric method. The proposed method was successfully applied to the detection of Hg(2+) in real samples. The sensitive and selective assay might be inspiring for the development of new detectors for other metal ions or biomolecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Selective determination of gold(III) ion using CuO microsheets as a solid phase adsorbent prior by ICP-OES measurement.

    PubMed

    Rahman, Mohammed M; Khan, Sher Bahadar; Marwani, Hadi M; Asiri, Abdullah M; Alamry, Khalid A; Al-Youbi, Abdulrahman O

    2013-01-30

    We have prepared calcined CuO microsheets (MSs) by a wet-chemical process using reducing agents in alkaline medium and characterized by UV/vis., fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD), and field-emission scanning electron microscopy (FESEM) etc. The detailed structural, compositional, and optical characterizations of the MSs were evaluated by XRD pattern, FT-IR, X-ray photoelectron spectroscopy (XPS), and UV-vis spectroscopy, respectively which confirmed that the obtained MSs are well-crystalline CuO and possessed good optical properties. The CuO MSs morphology was investigated by FESEM, which confirmed that the calcined nanomaterials were sheet-shaped and grown in large-quantity. Here, the efficiency of the CuO MS was applied for a selective adsorption of gold(III) ion prior to its detection by inductively coupled plasma-optical emission spectrometry (ICP-OES). The selectivity of CuO MSs towards various metal ions, including Au(III), Cd(II), Co(II), Cr(III), Fe(III), Pd(II), and Zn(II) was analyzed. Based on the adsorption isotherm study, it was confirmed that the selectivity of MSs phase was mostly towards Au(III) ion. The static adsorption capacity for Au(III) was calculated to be 57.0 mg g(-1). From Langmuir adsorption isotherm, it was confirmed that the adsorption process was mainly monolayer-adsorption onto a surface containing a finite number of adsorption sites.

  6. Characterization of silver ions adsorbed on gold nanorods: surface analysis by using surface-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Niidome, Yasuro; Nakamura, Yuki; Honda, Kanako; Akiyama, Yasuyuki; Nishioka, Koji; Kawasaki, Hideya; Nakashima, Naotoshi

    2009-04-07

    Surface-assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI-MS) indicated AgBr2-, which adsorbed on gold nanorod surfaces, was a key material to control the anisotropic growth of gold nanorods.

  7. Hollow nanospheres composed of titanium dioxide nanocrystals modified with carbon and gold for high performance lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Geng, Hongbo; Cao, Xueqin; Zhang, Yu; Geng, Kaiming; Qu, Genlong; Tang, Minghua; Zheng, Junwei; Yang, Yonggang; Gu, Hongwei

    2015-10-01

    Herein, we reported a facile route to fabricate carbon and Au treated TiO2 mesoporous hollow spheres (MHTiO2@C-Au) as high performance anode materials for lithium ion batteries. The high porosity of the hollow spheres, together with the inner carbon supporting and superficial Au coating, enhanced the cycling stability and rate performance of the MHTiO2@C-Au electrode significantly. The MHTiO2@C-Au composite exhibits a high reversible specific capacity of 186.6 mA h g-1 after 200 cycles at the current density of 1.0C, superior rate performances of around 151.0 mA h g-1 at the current rate of 5.0C. The outstanding electrochemical property is attributed to the overall structural features of the MHTiO2@C-Au, which can not only shorten the diffusion path of lithium ions and electrons, but also improve the stability of the hollow structures during the lithium ion insertion and extraction process.

  8. Glutathione Modified Gold Nanoparticles for Sensitive Colorimetric Detection of Pb(2+) Ions in Rainwater Polluted by Leaking Perovskite Solar Cells.

    PubMed

    Yu, Yaming; Hong, Ying; Gao, Peng; Nazeeruddin, Mohammad Khaja

    2016-12-20

    In the past few years, the advent of lead halide perovskite solar cells (PSCs) has revolutionized the prospects of the third- generation photovoltaics and the reported power conversion efficiency (PCE) has been updated to 22%. Nevertheless, two main challenges, including the poisonous content of Pb and the vexing instability toward water, still lie between the lab-based PSCs technology and large scale commercialization. With this background, we first evaluated Pb(2+) concentration from the rainwater samples polluted by three types of markets promising PSCs with inductively coupled plasma mass spectrometry measurements (ICP-MS) as a case study. The influence of possible conditions (pH value and exposure time) on the contents of Pb(2+) from the three PSCs was systematically compared and discussed. Furthermore, an optimized glutathione functionalized gold nanoparticles (GSH-AuNPs) colorimetric sensing assay was used to determine Pb(2+) leaking from PSCs for the first time. The Pb(2+)-induced aggregation of sensing assay could be monitored via both naked eye and UV-vis spectroscopy with a detection limit of 15 and 13 nM, which are all lower than the maximum level in drinking water permitted by WHO. The quantitative detection results were compared and in good agreement with that of ICP-MS. The results indicate that the content of Pb(2+) from three PSCs are in the same order of magnitude under various conditions. By the use of the prepared GSH-AuNPs self-assembled sensing assay, the fast and on-site detection of Pb(2+) from PSCs can be realized.

  9. An ultrasensitive sandwich-type electrochemical immunosensor based on signal amplification strategy of gold nanoparticles functionalized magnetic multi-walled carbon nanotubes loaded with lead ions.

    PubMed

    Li, Faying; Han, Jian; Jiang, Liping; Wang, Yulan; Li, Yueyun; Dong, Yunhui; Wei, Qin

    2015-06-15

    In this study, a novel and ultrasensitive sandwich-type electrochemical immunosensor was prepared for the quantitative detection of alpha fetoprotein (AFP), a well-known hepatocellular carcinoma biomarker. Gold nanoparticles (Au NPs) functionalized magnetic multi-walled carbon nanotubes (MWCNTs-Fe3O4) were prepared and utilized for the adsorption of lead ions (Pb(2+)) and the secondary antibodies (Ab2). The resultant nanocomposites (Pb(2+)@Au@MWCNTs-Fe3O4) were used as the label for signal amplification, showing better electrocatalytic activity towards the reduction of hydrogen peroxide (H2O2) than MWCNTs, MWCNTs-Fe3O4 or Au@MWCNTs-Fe3O4 due to the synergetic effect presented in Pb(2+)@Au@MWCNTs-Fe3O4. Moreover, Au NPs were electrodeposited on the surface of glassy carbon electrode (GCE) for the effective immobilization of primary antibodies (Ab1). Under the optimal conditions, a linear range from 10 fg/mL to 100 ng/mL and a detection limit of 3.33 fg/mL were obtained. The proposed electrochemical sandwich-type immunosensor shows high sensitivity, good selectivity and stability for the quantitative detection of AFP, holding a great potential in clinical and diagnostic applications.

  10. Gold-coated silicon nanowire-graphene core-shell composite film as a polymer binder-free anode for rechargeable lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Kim, Han-Jung; Lee, Sang Eon; Lee, Jihye; Jung, Joo-Yun; Lee, Eung-Sug; Choi, Jun-Hyuk; Jung, Jun-Ho; Oh, Minsub; Hyun, Seungmin; Choi, Dae-Geun

    2014-07-01

    We designed and fabricated a gold (Au)-coated silicon nanowires/graphene (Au-SiNWs/G) hybrid composite as a polymer binder-free anode for rechargeable lithium-ion batteries (LIBs). A large amount of SiNWs for LIB anode materials can be prepared by metal-assisted chemical etching (MaCE) process. The Au-SiNWs/G composite film on current collector was obtained by vacuum filtration using an anodic aluminum oxide (AAO) membrane and hot pressing method. Our experimental results show that the Au-SiNWs/G composite has a stable reversible capacity of about 1520 mA h/g which was maintained for 20 cycles. The Au-SiNWs/G composite anode showed much better cycling performance than SiNWs/polyvinylidene fluoride (PVDF)/Super-P, SiNWs/G composite, and pure SiNWs anodes. The improved electrochemical properties of the Au-SiNWs/G composite anode material is mainly ascribed to the composite's porous network structure.

  11. Synthesis and Coordination Chemistry of a Phosphine-Decorated Fluorescein: "Double Turn-On" Sensing of Gold(III) Ions in Water.

    PubMed

    Christianson, Anna M; Gabbaï, François P

    2016-06-20

    Although phosphine ligands are ubiquitous in transition metal chemistry, few reports of fluorescent phosphines exist that explore the effect of metal coordination on the photophysical properties of a phosphine-bound fluorescent group. The coordination chemistry of a derivative of fluorescein decorated with an o-phenylene-linked phosphine group has been studied with late transition metals. An Au(I) complex of the phosphine-decorated fluorescein has been structurally characterized, showing that the metal center is held closely over the plane of the fluorophore. Despite the presence of the heavy metal center, however, the phosphine-gold complex displays greatly increased fluorescence compared to the free ligand, in which photoelectron transfer from the lone-pair-bearing phosphine causes low emission. The phosphine-decorated fluorescein ligand was tested in a simple sensing system for metal ions in aqueous solution and shows a "turn-on" response to Au, Ag, and Hg, with an especially dramatic response to Au(III) species. The selectivity for Au(III) was determined to be the result of a "double turn-on" response that is both reaction- and coordination-based.

  12. Ultrasensitive detection of lead ion sensor based on gold nanodendrites modified electrode and electrochemiluminescent quenching of quantum dots by electrocatalytic silver/zinc oxide coupled structures.

    PubMed

    Li, Meng; Kong, Qingkun; Bian, Zhaoquan; Ma, Chao; Ge, Shenguang; Zhang, Yan; Yu, Jinghua; Yan, Mei

    2015-03-15

    A signal-off electrochemiluminescence (ECL) DNA sensor based on gold nanodendrites (Au NDs) modified indium tin oxide (ITO) electrode for the detection of lead ion (Pb(2+)) was developed. Well-defined Au NDs were prepared on ITO electrode using low-potential synthesis, assisted by ethylenediamine. Based on Pb(2+)-specific deoxyribozyme, the silver/zinc oxide (Ag/ZnO) with coupled structure, prepared by one-pot method, was close to the surface of the electrode to catalyze the reduction of part of H2O2, the coreactant for cathodic ECL emission, leading to a decrease of ECL intensity. In addition, taking advantage of the larger surface area to capture a large amount of capture probe as well as excellent conductivity of Au NDs, the sensor could detect Pb(2+) quantitatively in a wider range, and performed excellent selectivity. Furthermore, such simple and sensitive DNA sensor was successfully applied for the detection of Pb(2+) in lake water and human serum samples, respectively.

  13. Gold coating for a high performance Li4Ti5O12 nanorod aggregates anode in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Guo, Yuanyuan; Liu, Lixiang; Wang, Shixiong; Yang, Xiangjun; Guo, Hong

    2014-01-01

    An effective strategy by combination of alcoholysis, solid-state reaction and coating techniques is employed to prepare Au@Li4Ti5O12 nanorod aggregates as anode materials for Li-ion batteries. The lithium diffusion coefficient of resulting Au@Li4Ti5O12 is 7.32 × 10-10 cm2 s-1, and its stable reversible capacity is 169 mAh g-1 with the retention of 91.1% after 100 cycles at 5 C. Moreover, it also exhibits excellent rate-capability performance. The superior cycling performance can be attributed to the unique nanorod characteristics, structural stability, and the improved ionic and electronic conduction in the electrode due to the uniform nano coating of Au.

  14. Fabrication of copper and gold nanoclusters in MgO (100) by MeV ion implantation

    SciTech Connect

    Zimmerman, R.L.; Ila, D.; Williams, E.K.; Sarkisov, S.S.; Poker, D.B.; Hensley, D.K.

    1997-10-01

    MeV ions of Au and Cu were implanted into single crystals of MgO (100) and the formation of metallic nanoclusters was observed by an indirect method of optical absorption spectrophotometry. Using Mei`s theory the authors related the observed optical absorption band to the formation of nanoclusters and using Doyle`s theory, as well as Rutherford Backscattering Spectrometry (RB S), the authors correlated the fill width half maximum (FWHM) of the absorption bands to the estimated size of the metallic nanoclusters between 1--10 nm. These clusters were formed by implantation above the threshold fluence for cluster formation and by a combination of threshold fluence of the implanted species and thermal annealing. The changes in the estimated size of the nanoclusters, after annealing at temperatures ranging from 5,000 C to 10,000 C, were observed using optical absorption spectrophotometry and calculated using Doyle`s theory.

  15. Ligandless, ion pair-based and ultrasound assisted emulsification solidified floating organic drop microextraction for simultaneous preconcentration of ultra-trace amounts of gold and thallium and determination by GFAAS.

    PubMed

    Fazelirad, Hamid; Taher, Mohammad Ali

    2013-01-15

    In the present work, a new, simple and efficient method for simultaneous preconcentration of ultra-trace amounts of gold and thallium is developed using an ion pair based-ultrasound assisted emulsification-solidified floating organic drop microextraction procedure before graphite furnace atomic absorption spectrometry determination. This methodology was used to preconcentrate the ion pairs formed between AuCl(4)(-) and TlCl(4)(-) and [C(23)H(42)]N(+) in a microliter-range volume of 1-undecanol. Several factors affecting the microextraction efficiency, such as HCl volume, type and volume of extraction solvent, sonication time, sample volume, temperature, ionic strength and [C(23)H(42)]NCl volume were investigated and optimized. Under the optimized conditions, the enrichment factor of 441 and 443 and calibration graphs of 2.2-89 and 22.2-667 ng L(-1) for gold and thallium were obtained, respectively. The intra- and inter-day precision of ± 4.4 and ± 4.9% for Au and ± 4.8 and ± 5.4% for Tl were obtained. The detection limit was 0.66 ng L(-1) for Au and 4.67 ng L(-1) for Tl. The results show that the liquid-liquid pretreatment using ion pair forming, is sensitive, rapid, simple and safe method for the simultaneous preconcentration of gold and thallium. The method was successfully applied for determination of gold and thallium in natural water and hair samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Efficient On-Off Ratiometric Fluorescence Probe for Cyanide Ion Based on Perturbation of the Interaction between Gold Nanoclusters and a Copper(II)-Phthalocyanine Complex.

    PubMed

    Shojaeifard, Zahra; Hemmateenejad, Bahram; Shamsipur, Mojtaba

    2016-06-22

    A new ratiometric fluorescent sensor was developed for the sensitive and selective detection of cyanide ion (CN(-)) in aqueous media. The ratiometric sensing system is based on CN(-) modulated recovery of copper(II) phthalocyanine (Cu(PcTs)) fluorescence signal at the expense of diminished fluorescence intensity of gold nanoclusters (AuNCs). Preliminary experiments revealed that the AuNCs and Cu(PcTs) possess a turn-off effect on each other, the interaction of which being verified through studying their interactions by principle component analysis (PCA) and multivariate cure resolution-alternating least-squares (MCR-ALS) methods. In the presence of CN(-) anion, the AuNCs and Cu(PcTs) interaction was perturbed, so that the fluorescence of Cu (PcTs), already quenched by AuNCs, was found to be efficiently recovered, while the fluorescence intensity of AuNCs was quenched via the formation of a stable [Au(CN)2](-) species. The ratiometric variation of AuNCs and Cu(PcTs) fluorescence intensities leads to designing a highly sensitive probe for CN(-) ion detection. Under the optimal conditions, CN(-) anion was detected without needing any etching time, over the concentration range of 100 nM-220 μM, with a detection limit of 75 nM, which is much lower than the allowable level of CN(-) in water permitted by the World Health Organization (WHO). Moreover, the detection of CN(-) was developed based on the CN(-) effects on the blue and red florescent colors of Cu(PcTs) and AuNCs, respectively. The designed probe displays a continuous color change from red to blue by addition of CN(-), which can be clearly observed by the naked eye in the range of 7-350 μM, under UV lamp. The prepared AuNCs/Cu(PcTs) probe was successfully utilized for the selective and sensitive determination of CN(-) anion in two different types of natural water (Rodbal dam and rainwater) and also in blood serum as a biological sample.

  17. Visual test of subparts per billion-level mercuric ion with a gold nanoparticle probe after preconcentration by hollow fiber supported liquid membrane.

    PubMed

    Tan, Zhi-qiang; Liu, Jing-fu

    2010-05-15

    With the combination of the gold nanoparticle (AuNP)-based visual test with hollow fiber supported liquid membrane (HFSLM) extraction, a highly sensitive and selective method was developed for field detection of mercuric ion (Hg(2+)) in environmental waters. Hg(2+) in water samples was extracted through HFSLM and trapped in the aqueous acceptor and then visually detected based on the red-to-blue color change of 3-mercaptopropionic acid-functionalized AuNP (MPA-AuNP) probe. The highest extraction efficiency of Hg(2+) was obtained by using a 600 mL sample (pH 8.0, 2.0% (w/v) NaCl), approximately 35 microL of acceptor (10 mM of 2,6-pyridinedicarboxylic acid, pH 4.0) filled in the lumen of a polypropylene hollow fiber tubing (55 cm in length, 50 microm wall thickness, 280 microm inner diameter), a liquid membrane of 2.0% (w/v) trioctycphosphine oxide in undecane, and a shaking rate of 250 rpm. The chromegenic reaction was conducted by incubating the mixture of MPA-AuNP stock solution (12 microL, 15 nM), Tris-borate buffer solution (18 microL, 0.2 M, pH 9.5), and acceptor (30 microL) at 30 degrees C for 1 h. The detection limit can be adjusted to 0.8 microg/L Hg(2+) (corresponding to an enrichment factor of approximately 1000 in the HFSLM) and 2.0 microg/L Hg(2+) (the U.S. Environmental Protection Agency limit of [Hg(2+)] for drinkable water) by using extraction times of 3 and 1 h, respectively. The proposed method is extremely specific for Hg(2+) with tolerance to at least 1000-fold of other environmentally relevant heavy and transition metal ions and was successfully applied to detect Hg(2+) in a certified reference water sample, as well as real river, lake, and tap water samples.

  18. Gold nanodumbbell-seeded growth of silver nanobars and nanobipyramids

    NASA Astrophysics Data System (ADS)

    Deng, Jin-Pei; Chen, Chih-Wei; Hsieh, Wei-Chi; Wang, Chao-Hsien; Hsu, Cheng-Yung; Lin, Jyun-Hao

    2014-03-01

    Gold nanodumbbells (NDs) are prepared by the reduction of gold ions in the presence of gold nanorods. Gold NDs are then employed for the synthesis of gold-silver core-shell nanoparticles (Au@Ag NPs). The quasi-ellipsoidal NPs could be found at room temperature, but Au@Ag bar and triangular bipyramid (TBP) NPs were obtained at 75 °C. Our results show that the long ends of gold NDs are in the position of the bar center and closely paralleled the shorter edge of TBP. Mechanisms in the growth of silver on gold NDs are proposed for the formations of these Au@Ag NPs.

  19. Preparation of conductive gold nanowires in confined environment of gold-filled polymer nanotubes.

    PubMed

    Mitschang, Fabian; Langner, Markus; Vieker, Henning; Beyer, André; Greiner, Andreas

    2015-02-01

    Continuous conductive gold nanofibers are prepared via the "tubes by fiber templates" process. First, poly(l-lactide) (PLLA)-stabilized gold nanoparticles (AuNP) with over 60 wt% gold are synthesized and characterized, including gel permeation chromatography coupled with a diode array detector. Subsequent electrospinning of these AuNP with template PLLA results in composite nanofibers featuring a high gold content of 57 wt%. Highly homogeneous gold nanowires are obtained after chemical vapor deposition of 345 nm of poly(p-xylylene) (PPX) onto the composite fibers followed by pyrolysis of the polymers at 1050 °C. The corresponding heat-induced transition from continuous gold-loaded polymer tubes to smooth gold nanofibers is studied by transmission electron microscopy and helium ion microscopy using both secondary electrons and Rutherford backscattered ions.

  20. Orientations of polyoxometalate anions on gold nanoparticles.

    PubMed

    Sharet, Shelly; Sandars, Ella; Wang, Yifeng; Zeiri, Offer; Neyman, Alevtina; Meshi, Louisa; Weinstock, Ira A

    2012-09-07

    Cryogenic transmission electron microscopy of polyoxometalate-protected gold nanoparticles reveals that the Preyssler ion, [NaP(5)W(30)O(110)](14-), lies "face down" with its C(5) axis perpendicular to the gold surface, while the Finke-Droege ion, [P(4)W(30)Zn(4)(H(2)O)(2)O(112)](16-), is "tilted", with its long axis close to 60° from the normal to the surface.

  1. Gold Coating

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Epner Technology Inc. responded to a need from Goddard Space Flight Center for the ultimate in electroplated reflectivity needed for the Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA). Made of beryllium, the MOLA mirror was coated by Epner Technology Laser Gold process, specially improved for the project. Improved Laser Gold- coated reflectors have found use in an epitaxial reactor built for a large semiconductor manufacturer as well as the waveguide in Braun-Thermoscan tympanic thermometer and lasing cavities in various surgical instruments.

  2. CO oxidation on electrically charged gold nanotips.

    PubMed

    McEwen, J-S; Gaspard, P

    2006-12-07

    We report a study of the oxidation of CO on a gold nanotip in the presence of high electrostatic fields. With the binding energies obtained using density functional theory as a function of the electric field, a simple field-dependent kinetic model based on the Langmuir-Hinshelwood mechanism is set up. We show that the dissociative adsorption of oxygen on gold happens only below a negative critical value of the electric field while the binding of CO on gold is enhanced for positive values. We explain the propagation of a wave observed in field ion microscopy experiments and predict that the oxidation of CO occurs on negatively charged gold clusters.

  3. Gold Nanoantennas

    SciTech Connect

    2012-01-01

    An array of gold nanoantennas laced into an artificial membrane enhances the fluorescence intensity of three different molecules when they pass through plasmonic hot spots in the array. Watch for the blue, green and red flashes. The photobleaching at the end of each fluorescence event (white flashes) is indicative of single molecule observations.

  4. Determination of low levels of cadmium ions by the under potential deposition on a self-assembled monolayer on gold electrode.

    PubMed

    Noyhouzer, Tomer; Mandler, Daniel

    2011-01-17

    The electrochemical determination of low levels of Cd using a self-assembled monolayer (SAM) modified Au electrode is reported. Determination was based on the stripping of Cd, which was deposited by under potential deposition (UPD). A series of short alkanethiol SAMs bearing different end groups, i.e., sulfonate, carboxylate and ammonium, were examined. Lowest level of detection (ca. 50 ngL(-1)) was achieved with a 3-mercaptopropionic acid (MPA) monolayer using subtractive anodic square wave voltammetry (SASV). Additional surface methods, namely, reductive desorption and X-ray photoelectron spectroscopy, were applied to determine the interfacial structure of the electrodeposited Cd on the modified electrodes. We conclude that the deposited Cd forms a monoatomic layer, which bridges between the gold surface and the alkanethiol monolayer associating with both the gold and the sulfur atoms.

  5. Biomineralization of gold: biofilms on bacterioform gold.

    PubMed

    Reith, Frank; Rogers, Stephen L; McPhail, D C; Webb, Daryl

    2006-07-14

    Bacterial biofilms are associated with secondary gold grains from two sites in Australia. 16S ribosomal DNA clones of the genus Ralstonia that bear 99% similarity to the bacterium Ralstonia metallidurans-shown to precipitate gold from aqueous gold(III) tetrachloride-were present on all DNA-positive gold grains but were not detected in the surrounding soils. These results provide evidence for the bacterial contribution to the authigenic formation of secondary bacterioform gold grains and nuggets.

  6. Is It Real Gold?

    ERIC Educational Resources Information Center

    Harris, Harold H.

    1999-01-01

    Features acid tests for determining whether jewelry is "real" gold or simply gold-plated. Describes the carat system of denoting gold content and explains how alloys are used to create various shades of gold jewelry. Addresses the question of whether gold jewelry can turn a wearer's skin green by considering various oxidation reactions.…

  7. Is It Real Gold?

    ERIC Educational Resources Information Center

    Harris, Harold H.

    1999-01-01

    Features acid tests for determining whether jewelry is "real" gold or simply gold-plated. Describes the carat system of denoting gold content and explains how alloys are used to create various shades of gold jewelry. Addresses the question of whether gold jewelry can turn a wearer's skin green by considering various oxidation reactions.…

  8. Effects of gold coating on experimental implant fixation

    PubMed Central

    Zainali, Kasra; Danscher, Gorm; Jakobsen, Thomas; Jakobsen, Stig S.; Baas, Jørgen; Møller, Per; Bechtold, Joan E.; Soballe, Kjeld

    2013-01-01

    Insertions of orthopedic implants are traumatic procedures that trigger an inflammatory response. Macrophages have been shown to liberate gold ions from metallic gold. Gold ions are known to act in an antiinflammatory manner by inhibiting cellular NF-κB–DNA binding and suppressing I-κ B-kinase activation. The present study investigated whether gilding implant surfaces augmented early implant osseointegration and implant fixation by its modulatory effect on the local inflammatory response. Ion release was traced by autometallographic silver enhancement. Gold-coated cylindrical porous coated Ti6Al4V implants were inserted press-fit in the proximal part of tibiae in nine canines and control implants without gold inserted contralateral. Observation time was 4 weeks. Biomechanical push-out tests showed that implants with gold coating had ~50% decrease in mechanical strength and stiffness. Histomorphometrical analyses showed gold-coated implants had a decrease in overall total bone-to-implant contact of 35%. Autometallographic analysis revealed few cells loaded with gold close to the gilded implant surface. The findings demonstrate that gilding of implants negatively affects mechanical strength and osseointegration because of a significant effect of the released gold ions on the local inflammatory process around the implant. The possibility that a partial metallic gold coating could prolong the period of satisfactory mechanical strength, however, cannot be excluded. PMID:18335533

  9. Silver-gold alloy nanoparticles as tunable substrates for systematic control of ion-desorption efficiency and heat transfer in surface-assisted laser desorption/ionization.

    PubMed

    Lai, Samuel Kin-Man; Cheng, Yu-Hong; Tang, Ho-Wai; Ng, Kwan-Ming

    2017-08-09

    Systematically controlling heat transfer in the surface-assisted laser desorption/ionization (SALDI) process and thus enhancing the analytical performance of SALDI-MS remains a challenging task. In the current study, by tuning the metal contents of Ag-Au alloy nanoparticle substrates (AgNPs, Ag55Au45NPs, Ag15Au85NPs and AuNPs, ∅: ∼2.0 nm), it was found that both SALDI ion-desorption efficiency and heat transfer can be controlled in a wide range of laser fluence (21.3 mJ cm(-2) to 125.9 mJ cm(-2)). It was discovered that ion detection sensitivity can be enhanced at any laser fluence by tuning up the Ag content of the alloy nanoparticle, whereas the extent of ion fragmentation can be reduced by tuning up the Au content. The enhancement effect of Ag content on ion desorption was found to be attributable to the increase in laser absorption efficiency (at 355 nm) with Ag content. Tuning the laser absorption efficiency by changing the metal composition was also effective in controlling the heat transfer from the NPs to the analytes. The laser-induced heating of Ag-rich alloy NPs could be balanced or even overridden by increasing the Au content of NPs, resulting in the reduction of the fragmentation of analytes. In the correlation of experimental measurement with molecular dynamics simulation, the effect of metal composition on the dynamics of the ion desorption process was also elucidated. Upon increasing the Ag content, it was also found that phase transition temperatures, such as melting, vaporization and phase explosion temperature, of NPs could be reduced. This further enhanced the desorption of analyte ions via phase-transition-driven desorption processes. The significant cooling effect on the analyte ions observed at high laser fluence was also determined to be originated from the phase explosion of the NPs. This study revealed that the development of alloy nanoparticles as SALDI substrates can constitute an effective means for the systematic control of ion

  10. Mercaptoethane sulfonate protected, water-soluble gold and silver nanoparticles: Syntheses, characterization and their building multilayer films with polyaniline via ion-dipole interactions.

    PubMed

    Zou, Xiangqin; Bao, Haifeng; Guo, Hongwei; Zhang, Lei; Qi, Li; Jiang, Junguang; Niu, Li; Dong, Shaojun

    2006-03-15

    Mercaptoethane sulfonate protected, water-soluble gold and silver nanoparticles (Au-MES and Ag-MES) are synthesized by one-phase method and characterized by TEM, TGA and XPS techniques, UV-vis and FTIR spectra. Both Au-MES and Ag-MES nanoparticles are soluble in the water up to 2.0 mg/ml and the stability of Au-MES is much better than that of Ag-MES. When dissolved in the water, they behave like a polyanion and can be used to build multilayer films with polyaniline (PANI) by way of layer-by-layer. A new approach is presented to fabricate the multilayer films of Au-MES/PANI and Ag-MES/PANI. The assembly mechanism of these multilayer films is also discussed. We anticipate highly conducting PANI films can be obtained by doping with these nanoparticles.

  11. X-ray diffraction study of gold nitride films: Observation of a solid solution phase

    NASA Astrophysics Data System (ADS)

    Alves, L.; Hase, T. P. A.; Hunt, M. R. C.; Brieva, A. C.; Šiller, L.

    2008-12-01

    The structure of nitride containing gold films produced by reactive ion sputtering and nitrogen plasma etching is investigated using x-ray photoelectron spectroscopy and x-ray diffraction. It is found that gold nitride is a solid solution of nitrogen atoms dissolved in a fcc gold matrix. Differences between the strain and lattice parameters of gold and gold nitride films were observed and are explained by interstitial nitrogen present in the latter.

  12. Electrochemical detection of copper ions leached from CuO nanoparticles in saline buffers and biological media using a gold wire working electrode

    NASA Astrophysics Data System (ADS)

    Baldisserri, Carlo; Costa, Anna Luisa

    2016-04-01

    We performed explorative cyclic voltammetry in phosphate-buffered saline buffers, Dulbecco's modified Eagle's medium (DMEM), and fetal bovine serum-added DMEM using Au wire as working electrode, both in the absence and in the presence of known nominal concentrations of Cu2+ ions or 15 nm CuO nanoparticles. Addition of either Cu2+ ions or aqueous suspension of CuO nanoparticles caused a single anodic peak to appear in the double-layer region of all three pristine media. The height of the anodic peak was found to increase in a monotonic fashion vs. Cu2+ concentration in Cu2+-added media, and versus time since CuO addition in CuO-added media. Stepwise addition of glycine to Cu2+-added phosphate-buffered saline buffer caused an increasing cathodic shift of the anodic peak accompanied by decreasing peak currents. Results indicate that preparing Cu2+-free suspensions of CuO nanoparticles in such media is difficult, owing to the presence of leached copper ions. The implications on results of experiments in which CuO nanoparticle-added biological media are used as cell culture substrates are discussed. Literature data on the interactions between Cu2+ ions, dissolved carbon dioxide in aqueous CuO suspensions, and amino acids present in such media are compared to our results.

  13. Bromide ion binding by a dinuclear gold(I) N-heterocyclic carbene complex: a spectrofluorescence and X-ray absorption spectroscopic study.

    PubMed

    Wedlock, Louise E; Aitken, Jade B; Berners-Price, Susan J; Barnard, Peter J

    2013-01-28

    Fluorescence and X-ray absorption spectroscopy were used to investigate the anion binding properties of a luminescent, dinuclear Au(I) N-heterocyclic carbene (NHC) complex ([1](2+)) with a short Au(I)···Au(I) contact. The addition of Br(-) ions to a DMSO solution of [1](PF(6))(2) caused a red-shift in the fluorescence emission band from 396 nm to 496 nm. Similarly, the addition of Br(-) ions to [1](PF(6))(2) caused a decrease in the energy of the Au L(3)-edge in the X-ray absorption spectrum, consistent with the formation of an association complex between the cation [1](2+) and Br(-) ions. Solution-based structural studies of the association complex were carried out using extended X-ray absorption fine structure (EXAFS) modelling of the Au(I)···Au(I) core of the cation. These studies indicate that the association complex results from Au(I)···Br(-) interactions, with the Br(-) ions occupying two partially occupied sites at ~2.9 and 3.9 Å from the Au(I) atoms.

  14. Biosynthesis of Gold Nanoparticles Using Pseudomonas Aeruginosa

    SciTech Connect

    Abd El-Aziz, M.; Badr, Y.; Mahmoud, M. A.

    2007-02-14

    Pseudomonas aeruginosa were used for extracellular biosynthesis of gold nanoparticles (Au NPs). Consequently, Au NPs were formed due to reduction of gold ion by bacterial cell supernatant of P. aeruginos ATCC 90271, P. aeruginos (2) and P. aeruginos (1). The UV-Vis. and fluorescence spectra of the bacterial as well as chemical prepared Au NPs were recorded. Transmission electron microscopy (TEM) micrograph showed the formation of well-dispersed gold nanoparticles in the range of 15-30 nm. The process of reduction being extracellular and may lead to the development of an easy bioprocess for synthesis of Au NPs.

  15. Multienergy gold ion implantation for enhancing the field electron emission characteristics of heterogranular structured diamond films grown on Au-coated Si substrates

    NASA Astrophysics Data System (ADS)

    Sankaran, K. J.; Manoharan, D.; Sundaravel, B.; Lin, I. N.

    2016-09-01

    Multienergy Au-ion implantation enhanced the electrical conductivity of heterogranular structured diamond films grown on Au-coated Si substrates to a high level of 5076.0 (Ω cm)-1 and improved the field electron emission (FEE) characteristics of the films to low turn-on field of 1.6 V/μm, high current density of 5.4 mA/cm2 (@ 2.65 V/μm), and high lifetime stability of 1825 min. The catalytic induction of nanographitic phases in the films due to Au-ion implantation and the formation of diamond-to-Si eutectic interface layer due to Au-coating on Si together encouraged the efficient conducting channels for electron transport, thereby improved the FEE characteristics of the films.

  16. Label-Free LSPR Detection of Trace Lead(II) Ions in Drinking Water by Synthetic Poly(mPD-co-ASA) Nanoparticles on Gold Nanoislands.

    PubMed

    Qiu, Guangyu; Ng, Siu Pang; Liang, Xiongyi; Ding, Ning; Chen, Xiangfeng; Wu, Chi-Man Lawrence

    2017-02-07

    Using self-assembly gold nanoislands (SAM-AuNIs) functionalized by poly(m-phenylenediamine-co-aniline-2-sulfonic acid) (poly(mPD-co-ASA)) copolymer nanoparticles as specific receptors, a highly sensitive localized surface plasmon resonance (LSPR) optochemical sensor is demonstrated for detection of trace lead cation (Pb(II)) in drinking water. The copolymer receptor is optimized in three aspects: (1) mole ratio of mPD:ASA monomers, (2) size of copolymer nanoparticles, and (3) surface density of the copolymer. It is shown that the 95:5 (mPD:ASA mole ratio) copolymer with size less than 100 nm exhibits the best Pb(II)-sensing performance, and the 200 times diluted standard copolymer solution contributes to the most effective functionalization protocol. The resulting poly(mPD-co-ASA)-functionalized LSPR sensor attains the detection limit to 0.011 ppb toward Pb(II) in drinking water, and the linear dynamic range covers 0.011 to 5000 ppb (i.e., 6 orders of magnitude). In addition, the sensing system exhibits robust selectivity to Pb(II) in the presence of other metallic cations as well as common anions. The proposed functional copolymer functionalized on AuNIs is found to provide excellent Pb(II)-sensing performance using simple LSPR instrumentation for rapid drinking-water inspection.

  17. Synthesis, structure, properties and immobilization on a gold surface of the monoribbed-functionalized tris-dioximate cobalt(II) clathrochelates and an electrocatalytic hydrogen production from H+ ions.

    PubMed

    Voloshin, Y Z; Belov, A S; Vologzhanina, A V; Aleksandrov, G G; Dolganov, A V; Novikov, V V; Varzatskii, O A; Bubnov, Y N

    2012-05-28

    The cycloaddition of the mono- and dichloroglyoximes to the cobalt(II) bis-α-benzyldioximate afforded the cobalt(II) mono- and dichloroclathrochelates in moderate yields (40-60%). These complexes undergo nucleophilic substitution of their reactive chlorine atoms with aliphatic amines, alcohols and thiolate anions. In the case of ethylenediamine and 1,2-ethanedithiol, only the macrobicyclic products with α,α'-N(2)- and α,α'-S(2)-alicyclic six-numbered ribbed fragments were obtained. The cobalt(II) cage complexes with terminal mercapto groups were synthesized using aliphatic dithiols. The crystal and molecular structures of the six cobalt(II) clathrochelates were obtained by X-ray diffraction. Their CoN(6)-coordination polyhedra possess a geometry intermediate between a trigonal prism and a trigonal antiprism, and the encapsulated cobalt(II) ions are shifted from their centres due to the structural Jahn-Teller effect with the Co-N distances varying significantly (by 0.10-0.26 Å). The electrochemistry of the complexes obtained was studied by cyclic voltammetry (CV). The anodic waves correspond to the quasi-reversible Co(2+/3+) oxidations, whereas the cathodic ranges contain the quasi-reversibile waves assigned to the Co(2+/+) reductions; all the cobalt(i)-containing clathrochelate anions formed are stable in the CV time scale. The electrocatalytic properties of the cobalt complexes obtained were studied in the production of hydrogen from H(+) ions: the addition of HClO(4) resulted in the formation of the same catalytic cathodic reduction Co(2+/+) waves. The controlled-potential electrolysis with gas chromatography analysis confirmed the production of H(2) in high Faraday yields. The efficiency of this electrocatalytic process was enhanced by an immobilization of the complexes with terminal mercapto groups on a surface of the working gold electrode.

  18. Ion Sources

    NASA Astrophysics Data System (ADS)

    Haseroth, Helmut; Hora, Heinrich

    1993-03-01

    Ion sources for accelerators are based on plasma configurations with an extraction system in order to gain a very high number of ions within an appropriately short pulse and of sufficiently high charge number Z for advanced research. Beginning with the duoplasmatron, all established ion sources are based on low-density plasmas, of which the electron beam ionization source (EBIS) and the electron cyclotron resonance (ECR) source are the most advanced; for example they result in pulses of nearly 6 × 108 fully stripped sulfur ions per pulse in the Super Proton Synchrotron (SPS) at CERN with energies of 200 GeV/u. As an example of a forthcoming development, we are reporting about the lead ion source for the same purpose. Contrary to these cases of low-density plasmas, where a rather long time is always necessary to generate sufficiently high charge states, the laser ion source uses very high density plasmas and therefore produced, for example in 1983, single shots of Au51+ ions of high directivity with energies above 300 MeV within 2 ns irradiation time of a gold target with a medium-to-large CO2 laser. Experiments at Dubna and Moscow, using small-size lasers, produced up to one million shots with 1 Hz sequence. After acceleration by a linac or otherwise, ion pulses of up to nearly 5 × 1010 ions of C4+ or Mg12+ with energies in the synchrotrons of up to 2 GeV/u were produced. The physics of the laser generation of the ions is most complex, as we know from laser fusion studies, including non-linear dynamic and dielectric effects, resonances, self-focusing, instabilities, double layers, and an irregular pulsation in the 20 ps range. This explains not only what difficulties are implied with the laser ion source, but also why it opens up a new direction of ion sources.

  19. Analysis of gold(I/III)-complexes by HPLC-ICP-MS demonstrates gold(III) stability in surface waters.

    PubMed

    Ta, Christine; Reith, Frank; Brugger, Joël; Pring, Allan; Lenehan, Claire E

    2014-05-20

    Understanding the form in which gold is transported in surface- and groundwaters underpins our understanding of gold dispersion and (bio)geochemical cycling. Yet, to date, there are no direct techniques capable of identifying the oxidation state and complexation of gold in natural waters. We present a reversed phase ion-pairing HPLC-ICP-MS method for the separation and determination of aqueous gold(III)-chloro-hydroxyl, gold(III)-bromo-hydroxyl, gold(I)-thiosulfate, and gold(I)-cyanide complexes. Detection limits for the gold species range from 0.05 to 0.30 μg L(-1). The [Au(CN)2](-) gold cyanide complex was detected in five of six waters from tailings and adjacent monitoring bores of working gold mines. Contrary to thermodynamic predictions, evidence was obtained for the existence of Au(III)-complexes in circumneutral, hypersaline waters of a natural lake overlying a gold deposit in Western Australia. This first direct evidence for the existence and stability of Au(III)-complexes in natural surface waters suggests that Au(III)-complexes may be important for the transport and biogeochemical cycling of gold in surface environments. Overall, these results show that near-μg L(-1) enrichments of Au in environmental waters result from metastable ligands (e.g., CN(-)) as well as kinetically controlled redox processes leading to the stability of highly soluble Au(III)-complexes.

  20. Preparation of concave magnetoplasmonic core-shell supraparticles of gold-coated iron oxide via ion-reducible layer-by-layer method for surface enhanced Raman scattering.

    PubMed

    Lee, Dong Kyu; Song, Younseong; Tran, Van Tan; Kim, Jeonghyo; Park, Enoch Y; Lee, Jaebeom

    2017-03-23

    Preparation of suprastructure assemblies with unique colloidal and optical properties remains challenging. Non-uniform covering of magnetic nanoparticles (NPs) with an external inert Au shell has been attempted to protect the magnetic core against oxidation as well as to produce multifunctional supraparticles (SPs) possessing respective optical and magnetic properties. In this study, a concave Au NP coating was deposited on magnetic nanoparticles (MNPs) with precise control of the shell thickness and roughness through a layer-by-layer (LbL) assisted ionic reduction method termed ion-reducible LbL (IR-LbL) method. Surface enhanced Raman spectra were obtained using graphene quantum dots (GQDs) on the magnetically aligned structure of the prepared core-shell SPs. It is probable that this synthesis method and the generated SPs are essential for characterizing the merge of electronics and magnetism in the nano-regime and may be applicable for further electronics, magnetic storage, and biomedical applications.

  1. Oxidation of atomic gold ions: thermochemistry for the activation of O(2) and N(2)O BY Au(+) ((1)S(0) and (3)D).

    PubMed

    Li, Feng-Xia; Gorham, Katrine; Armentrout, P B

    2010-10-28

    Reaction of Au(+) ((1)S(0) and (3)D) with O(2) and N(2)O is studied as a function of kinetic energy using guided ion beam tandem mass spectrometry. A flow tube ion source produces Au(+) primarily in its (1)S(0) (5d(10)) electronic ground state level but with some (3)D and perhaps higher lying excited states. The distribution of states can be altered by adding N(2)O, which completely quenches the excited states, or CH(4) to the flow gases. Cross sections as a function of kinetic energy are measured for both neutral reagents and both ground and excited states of Au(+). Formation of AuO(+) is common to both systems with the N(2)O system also exhibiting AuN(2)(+) and AuNO(+) formation. All reactions of Au(+) ((1)S(0)) are observed to be endothermic, whereas the excitation energy available to the (3)D state allows some reactions to be exothermic. Because of the closed shell character of ground state Au(+) ((1)S(0), 5d(10)), the reactivity of these systems is low and has cross sections with onsets and peaks at higher energies than expected from the known thermochemistry but lower than energies expected from impulsive processes. Analyses of the endothermic reaction cross sections yield the 0 K bond dissociation energy (BDE) in eV of D(0)(Au(+)-O) = 1.12 ± 0.08, D(0)(Au(+)-N(2)) ≥ 0.30 ± 0.04, and D(0)(Au(+)-NO) = 0.89 ± 0.17, values that are all speculative because of the unusual experimental behavior. Combining the AuO(+) BDE measured here with literature data also yields the ionization energy of AuO as 10.38 ± 0.23 eV. Quantum chemical calculations show reasonable agreement with the experimental bond energies and provide the electronic structures of these species.

  2. The geomicrobiology of gold.

    PubMed

    Reith, Frank; Lengke, Maggy F; Falconer, Donna; Craw, David; Southam, Gordon

    2007-11-01

    Microorganisms capable of actively solubilizing and precipitating gold appear to play a larger role in the biogeochemical cycling of gold than previously believed. Recent research suggests that bacteria and archaea are involved in every step of the biogeochemical cycle of gold, from the formation of primary mineralization in hydrothermal and deep subsurface systems to its solubilization, dispersion and re-concentration as secondary gold under surface conditions. Enzymatically catalysed precipitation of gold has been observed in thermophilic and hyperthermophilic bacteria and archaea (for example, Thermotoga maritime, Pyrobaculum islandicum), and their activity led to the formation of gold- and silver-bearing sinters in New Zealand's hot spring systems. Sulphate-reducing bacteria (SRB), for example, Desulfovibrio sp., may be involved in the formation of gold-bearing sulphide minerals in deep subsurface environments; over geological timescales this may contribute to the formation of economic deposits. Iron- and sulphur-oxidizing bacteria (for example, Acidothiobacillus ferrooxidans, A. thiooxidans) are known to breakdown gold-hosting sulphide minerals in zones of primary mineralization, and release associated gold in the process. These and other bacteria (for example, actinobacteria) produce thiosulphate, which is known to oxidize gold and form stable, transportable complexes. Other microbial processes, for example, excretion of amino acids and cyanide, may control gold solubilization in auriferous top- and rhizosphere soils. A number of bacteria and archaea are capable of actively catalysing the precipitation of toxic gold(I/III) complexes. Reductive precipitation of these complexes may improve survival rates of bacterial populations that are capable of (1) detoxifying the immediate cell environment by detecting, excreting and reducing gold complexes, possibly using P-type ATPase efflux pumps as well as membrane vesicles (for example, Salmonella enterica

  3. Toxicological risk assessment of elemental gold following oral exposure to sheets and nanoparticles - A review.

    PubMed

    Hadrup, Niels; Sharma, Anoop K; Poulsen, Morten; Nielsen, Elsa

    2015-07-01

    Elemental gold is used as a food coloring agent and in dental fillings. In addition, gold nanoparticles are gaining increasing attention due to their potential use as inert carriers for medical purposes. Although elemental gold is considered to be inert, there is evidence to suggest the release of gold ions from its surface. Elemental gold, or the released ions, is, to some extent, absorbed in the gastrointestinal tract. Gold is distributed to organs such as the liver, heart, kidneys and lungs. The main excretion route of absorbed gold is through urine. Data on the oral toxicity of elemental gold is limited. The acute toxicity of elemental gold seems to be low, as rats were unaffected by a single dose of 2000mg nanoparticles/kg of body weight. Information on repeated dose toxicity is very limited. Skin rashes have been reported in humans following the ingestion of liquors containing gold. In addition, gold released from dental restorations has been reported to increase the risk of developing gold hypersensitivity. Regarding genotoxicity, in vitro studies indicate that gold nanoparticles induce DNA damage in mammalian cells. In vivo, gold nanoparticles induce genotoxic effects in Drosophila melanogaster; however, genotoxicity studies in mammals are lacking. Overall, based on the literature and taking low human exposure into account, elemental gold via the oral route is not considered to pose a health concern to humans in general.

  4. In situ synthesis of water dispersible bovine serum albumin capped gold and silver nanoparticles and their cytocompatibility studies.

    PubMed

    Murawala, Priyanka; Phadnis, S M; Bhonde, R R; Prasad, B L V

    2009-10-15

    A simple and convenient one step room temperature method is described for the synthesis of bovine serum albumin (BSA) capped gold and silver nanoparticles. BSA reduces silver ions to silver nanoparticles but does not directly reduce gold ions to gold nanoparticles at room temperature and varying pH conditions. However, when silver and gold ions are simultaneously added to BSA, silver ions get reduced to metallic silver first and these in turn reduce gold ions to gold nanoparticles through a galvanic exchange reaction. The so synthesized silver and gold nanoparticles are easily water dispersible and can withstand addition of salt even at high concentrations. It is shown that the capped protein retains its secondary structure and the helicity to a large extent on the nanoparticles surface and that the protein capping makes the nanoparticles cytocompatible.

  5. Cyclic photochemical re-growth of gold nanoparticles: Overcoming the mask-erosion limit during reactive ion etching on the nanoscale.

    PubMed

    Ozdemir, Burcin; Seidenstücker, Axel; Plettl, Alfred; Ziemann, Paul

    2013-01-01

    THE BASIC IDEA OF USING HEXAGONALLY ORDERED ARRAYS OF AU NANOPARTICLES (NP) ON TOP OF A GIVEN SUBSTRATE AS A MASK FOR THE SUBSEQUENT ANISOTROPIC ETCHING IN ORDER TO FABRICATE CORRESPONDINGLY ORDERED ARRAYS OF NANOPILLARS MEETS TWO SERIOUS OBSTACLES: The position of the NP may change during the etching process and, thus, the primary pattern of the mask deteriorates or is completely lost. Furthermore, the NP are significantly eroded during etching and, consequently, the achievable pillar height is strongly restricted. The present work presents approaches on how to get around both problems. For this purpose, arrays of Au NPs (starting diameter 12 nm) are deposited on top of silica substrates by applying diblock copolymer micelle nanolithography (BCML). It is demonstrated that evaporated octadecyltrimethoxysilane (OTMS) layers act as stabilizer on the NP position, which allows for an increase of their size up to 50 nm by an electroless photochemical process. In this way, ordered arrays of silica nanopillars are obtained with maximum heights of 270 nm and aspect ratios of 5:1. Alternatively, the NP position can be fixed by a short etching step with negligible mask erosion followed by cycles of growing and reactive ion etching (RIE). In that case, each cycle is started by photochemically re-growing the Au NP mask and thereby completely compensating for the erosion due to the previous cycle. As a result of this mask repair method, arrays of silica nanopillar with heights up to 680 nm and aspect ratios of 10:1 are fabricated. Based on the given recipes, the approach can be applied to a variety of materials like silicon, silicon oxide, and silicon nitride.

  6. Monomer adsorption of indocyanine green to gold nanoparticles.

    PubMed

    Guerrini, Luca; Hartsuiker, Liesbeth; Manohar, Srirang; Otto, Cees

    2011-10-05

    NIR-dye encoded gold nanoparticles (GNP) are rapidly emerging as contrast agents in many bio-imaging/sensing applications. The coding process is usually carried out without control or a clear understanding of the metal-liquid interface properties which, in contrast, are critical in determining the type and extension of dye-metal interaction. In this paper, we investigated the effect of gold surface composition on the adsorption of indocyanine green (ICG) on GNP, simulating the surface conditions of gold nanorods on citrate-capped gold nanospheres. These substrates allowed a careful control of the metal-liquid interface composition and, thus, detailed absorption and fluorescence concentration studies of the effects of each individual chemical in the colloidal solution (i.e. bromide anions, cetyl trimethylammonium ions and Ag(+) ions) on the ICG-gold interaction. This study reveals the drastic effect that these experimental parameters can have on the ICG adsorption on GNP.

  7. A novel approach in dispersive liquid-liquid microextraction based on the use of an auxiliary solvent for adjustment of density UV-VIS spectrophotometric and graphite furnace atomic absorption spectrometric determination of gold based on ion pair formation.

    PubMed

    Kocúrová, Lívia; Balogh, Ioseph S; Skrlíková, Jana; Posta, József; Andruch, Vasil

    2010-10-15

    This paper presents a novel approach to dispersive liquid-liquid microextraction (DLLME), based on the use of an auxiliary solvent for the adjustment of density. The procedure utilises a solvent system consisting of a dispersive solvent, an extraction solvent and an auxiliary solvent, which allows for the use of solvents having a density lower than that of water as an extraction solvent while preserving simple phase separation by centrifugation. The suggested approach could be an alternative to procedures described in the literature in recent months and which have been devoted to solving the same problem. The efficiency of the suggested approach is demonstrated through the determination of gold based on the formation of the ion pair [Au(CN)(2)](-) anion with Astra Phloxine (R) reagent and its extraction using the DLLME procedure with subsequent UV-VIS spectrophotometric and graphite furnace atomic absorption spectrometric detection. The optimum conditions were found to be: pH 3; 0.8 mmol L(-1) K(4)[Fe(CN)(6)]; 0.12 mmol L(-1) R; dispersive solvent, methanol; extraction solvent, toluene; auxiliary solvent, tetrachloromethane. The calibration plots were linear in the ranges 0.39-4.7 mg L(-1) and 0.5-39.4 μg L(-1) for UV-VIS and GFAAS detection, respectively; thus enables the application of the developed method in two ranges differing from one from another by three orders of magnitude. The presented approach can be applied to the development of DLLME procedures for the determination of other compounds extractable by organic solvents with a density lower than that of water. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Synthesis and characterization of functional multicomponent nanosized gallium chelated gold crystals.

    PubMed

    Zambre, Ajit; Silva, Francisco; Upendran, Anandhi; Afrasiabi, Zahra; Xin, Yan; Paulo, António; Kannan, Raghuraman

    2014-03-28

    In this communication, we describe a novel synthetic method for fabricating multicomponent gold nanoparticles containing both gallium ions and biomolecules on the surface. Detailed compositional analysis, using STEM-HAADF and EELS spectroscopy, confirmed the crystalline nature of gold and chelation of gallium ions. The presence of the biomolecule was validated using conventional ELISA.

  9. A halogen-free synthesis of gold nanoparticles using gold(III) oxide

    NASA Astrophysics Data System (ADS)

    Sashuk, Volodymyr; Rogaczewski, Konrad

    2016-09-01

    Gold nanoparticles are one of the most used nanomaterials. They are usually synthesized by the reduction of gold(III) chloride. However, the presence of halide ions in the reaction mixture is not always welcome. In some cases, these ions have detrimental influence on the morphology and structure of resulting nanoparticles. Here, we present a simple and halogen-free procedure to prepare gold nanoparticles by reduction of gold(III) oxide in neat oleylamine. The method provides the particles with an average size below 10 nm and dispersity of tens of percent. The process of nanoparticle formation was monitored using UV-Vis spectroscopy. The structure and chemical composition of the nanoparticles was determined by SEM, XPS and EDX. We also proposed the mechanism of reduction of gold(III) oxide based on MS, IR and NMR data. Importantly, the synthetic protocol is general and applicable for the preparation of other coinage metal nanoparticles from the corresponding metal oxides. For instance, we demonstrated that the absence of halogen enables efficient alloying of metals when preparing gold-silver bimetallic nanoparticles.

  10. Role of CO2 in the formation of gold deposits.

    PubMed

    Phillips, G N; Evans, K A

    2004-06-24

    Much of global gold production has come from deposits with uneconomic concentrations of base metals, such as copper, lead and zinc. These 'gold-only' deposits are thought to have formed from hot, aqueous fluids rich in carbon dioxide, but only minor significance has been attached to the role of the CO2 in the process of gold transport. This is because chemical bonding between gold ions and CO2 species is not strong, and so it is unlikely that CO2 has a direct role in gold transport. An alternative indirect role for CO2 as a weak acid that buffers pH has also appeared unlikely, because previously inferred pH values for such gold-bearing fluids are variable. Here we show that such calculated pH values are unlikely to record conditions of gold transport, and propose that CO2 may play a critical role during gold transport by buffering the fluid in a pH range where elevated gold concentration can be maintained by complexation with reduced sulphur. Our conclusions, which are supported by geochemical modelling, may provide a platform for new gold exploration methods.

  11. Acoustic vibrations of single suspended gold nanostructures

    NASA Astrophysics Data System (ADS)

    Major, Todd A.

    The acoustic vibrations for single gold nanowires and gold plates were studied using time-resolved ultrafast transient absorption. The objective of this work was to remove the contribution of the supporting substrate from the damping of the acoustic vibrations of the metal nano-objects. This was achieved by suspending the nano-objects across trenches created by photolithography and reactive ion etching. Transient absorption measurements for single suspended gold nanowires were initially completed in air and water environments. The acoustic vibrations for gold nanowires over the trench in air last typically for several nanoseconds, whereas gold nanowires in water are damped more quickly. Continuum mechanics models suggest that the acoustic impedance mismatch between air and water dominates the damping rate. Later transient absorption studies on single suspended gold nanowires were completed in glycerol and ethylene glycol environments. However, our continuum mechanical model suggests nearly complete damping in glycerol due to its high viscosity, but similar damping rates are seen between the two liquids. The continuum mechanics model thus incorrectly addresses high viscosity effects on the lifetimes of the acoustic vibrations, and more complicated viscoelastic interactions occur for the higher viscosity liquids. (Abstract shortened by UMI.).

  12. Determination of the concentration and the average number of gold atoms in a gold nanoparticle by osmotic pressure.

    PubMed

    Lu, Yan; Wang, Lixia; Chen, Dejun; Wang, Gongke

    2012-06-26

    For an ideal solution, an analytical expression for the macromolecule concentration, electrolyte concentration, and solution osmotic pressure is obtained on the basis of the van't Hoff equation and the Donnan equilibrium. The expression was further applied to a colloid solution of about 3 nm glutathione-stabilized gold nanoparticles. The concentration of the colloid solution and the average net ion charge number for each gold nanoparticle were determined with the measured osmotic pressure data. Meanwhile, the gold contents of the solutions were analyzed by means of atomic absorption spectrophotometry, and the results were combined with the determined concentration of gold nanoparticle colloids to determine that the average number of gold atoms per 3 nm gold nanoparticle is 479, which is 1/1.7 times the number of atoms in bulk metallic gold of the same size. The same proportion also occurred in the 2 nm 4-mercaptobenzoic acid monolayer-protected gold nanoparticles prepared by Ackerson et al., who utilized the quantitative high-angle annular dark-field scanning transmission electron microscope to determine the average number of gold atoms per nanoparticle (Ackerson, C. J.; Jadzinsky, P. D.; Sexton J. Z.; Bushnell, D. A.; Kornberg, R. D. Synthesis and Bioconjugation of 2 and 3 nm-Diameter Gold Nanoparticles. Bioconjugate Chem. 2010, 21, 214-218).

  13. GOLD PLATING PROCESS

    DOEpatents

    Seegmiller, R.

    1957-08-01

    An improved bath is reported for plating gold on other metals. The composition of the plating bath is as follows: Gold cyanide from about 15 to about 50 grams, potassium cyanide from about 70 to about 125 grams, and sulfonated castor oil from about 0.1 to about 10 cc. The gold plate produced from this bath is smooth, semi-hard, and nonporous.

  14. Speciation of surface gold in pressure oxidized carbonaceous gold ores by TOF-SIMS and TOF-LIMS

    NASA Astrophysics Data System (ADS)

    Dimov, S. S.; Chryssoulis, S. L.; Sodhi, R. N.

    2003-01-01

    To the best of our knowledge, this is the first attempt ever to speciate gold preg-robbed by carbonaceous matter using a surface sensitive microbeam technique. This approach enables the direct determination of gold species sorbed on carbonaceous particulates thus providing a new tool in understanding the chemistry of gold sorption on carbon. The reasoning behind this effort was to study the detrimental effect chloride ions have on gold recovery by pressure oxidation of carbonaceous sulfide ores, a technology largely used by the mining industry. The characterization of the sorbed gold species involved three surface sensitive microbeam analytical techniques (TOF-SIMS, TOF-LIMS and XPS) providing confirmatory results for better accuracy. Optimum conditions for detection of gold compounds with minimum fragmentation by TOF-SIMS and TOF-LIMS mass spectrometers have been determined. A reference library of 16 major gold complexes with halogen, thiosulfate, cyanide and thiocyanate groups relevant to the gold recovery processes has been established. The most suitable of the microbeam techniques tested was found to be negative (-ve) ion TOF-LIMS, offering best sensitivity and a small analytical spot size.

  15. Magnetism in nanocrystalline gold.

    PubMed

    Tuboltsev, Vladimir; Savin, Alexander; Pirojenko, Alexandre; Räisänen, Jyrki

    2013-08-27

    While bulk gold is well known to be diamagnetic, there is a growing body of convincing experimental and theoretical work indicating that nanostructured gold can be imparted with unconventional magnetic properties. Bridging the current gap in experimental study of magnetism in bare gold nanomaterials, we report here on magnetism in gold nanocrystalline films produced by cluster deposition in the aggregate form that can be considered as a crossover state between a nanocluster and a continuous film. We demonstrate ferromagnetic-like hysteretic magnetization with temperature dependence indicative of spin-glass-like behavior and find this to be consistent with theoretical predictions, available in the literature, based on first-principles calculations.

  16. Plant Extract (Bupleurum falcatum) as a Green Factory for Biofabrication of Gold Nanoparticles.

    PubMed

    Lee, You Jeong; Cha, Song-Hyun; Lee, Kyoung Jin; Kim, Yeong Shik; Cho, Seonho; Park, Youmie

    2015-09-01

    This work describes a biofabrication process for gold nanoparticles in which the plant extract (Bupleurum falcatum) is used as a reducing agent to convert gold ions to gold nanoparticles. Biofabricated gold nanoparticles with spherical shapes were observed with an average diameter of 10.5 ± 2.3 nm. The color of the gold nanoparticles was purple, with a surface plasmon resonance peak at 542 nm. The face-centered cubic structure of crystalline gold was confirmed by high-resolution X-ray diffraction patterns. The biofabricated gold nanoparticles demonstrated excellent catalytic activity towards the 4-nitrophenol reduction reaction. The current report suggests that plant extracts are valuable natural sources for the biofabrication of gold nanoparticles with excellent catalytic activities.

  17. Gold nanoparticle based surface enhanced fluorescence for detection of organophosphorus agents

    NASA Astrophysics Data System (ADS)

    Dasary, Samuel S. R.; Rai, Uma S.; Yu, Hongtao; Anjaneyulu, Yerramilli; Dubey, Madan; Ray, Paresh Chandra

    2008-07-01

    Organophosphorus agents (OPA) represent a serious concern to public safety as nerve agents and pesticides. Here we report the development of gold nanoparticle based surface enhanced fluorescence (NSEF) spectroscopy for rapid and sensitive screening of organophosphorus agents. Fluorescent from Eu 3+ ions that are bound within the electromagnetic field of gold nanoparticles exhibit a strong enhancement. In the presence of OPA, Eu 3+ ions are released from the gold nanoparticle surface and thus a very distinct fluorescence signal change was observed. We discussed the mechanism of fluorescence enhancement and the role of OPA for fluorescence intensity change in the presence of gold nanoparticles.

  18. Therapeutic gold, silver, and platinum nanoparticles.

    PubMed

    Yamada, Miko; Foote, Matthew; Prow, Tarl W

    2015-01-01

    There are an abundance of nanoparticle technologies being developed for use as part of therapeutic strategies. This review focuses on a narrow class of metal nanoparticles that have therapeutic potential that is a consequence of elemental composition and size. The most widely known of these are gold nanoshells that have been developed over the last two decades for photothermal ablation in superficial cancers. The therapeutic effect is the outcome of the thickness and diameter of the gold shell that enables fine tuning of the plasmon resonance. When these metal nanoparticles are exposed to the relevant wavelength of light, their temperature rapidly increases. This in turn induces a localized photothermal ablation that kills the surrounding tumor tissue. Similarly, gold nanoparticles have been developed to enhance radiotherapy. The high-Z nature of gold dramatically increases the photoelectric cross-section. Thus, the photoelectric effects are significantly increased. The outcome of these interactions is enhanced tumor killing with lower doses of radiation, all while sparing tissue without gold nanoparticles. Silver nanoparticles have been used for their wound healing properties in addition to enhancing the tumor-killing effects of anticancer drugs. Finally, platinum nanoparticles are thought to serve as a reservoir for platinum ions that can induce DNA damage in cancer cells. The future is bright with the path to clinical trials is largely cleared for some of the less complex therapeutic metal nanoparticle systems.

  19. One-pot synthesis of gold nanorods via autocatalytic growth of sonochemically formed gold seeds: the effect of irradiation time on the formation of seeds and nanorods.

    PubMed

    Okitsu, Kenji; Nunota, Yuho

    2014-11-01

    A one-pot synthesis for gold nanorods was developed using sonochemical reduction of gold ions in an aqueous solution in the presence of cetyltrimethylammonium bromide, silver nitrate, and ascorbic acid, where we focused on the autocatalytic growth of gold seeds formed by ultrasonic irradiation for short times. In growth experiments with these sonochemically formed gold seeds, sigmoidal shape growth curves were observed, and the induction period before growth began was longer for shorter irradiation times. This result indicated that the number of sonochemically formed gold seeds increased with increasing irradiation time. The average aspect ratio of the gold nanorods produced changed from 2.0 at an irradiation time of 0.5min to 3.6 at 15min. The gold nanorods produced were longer and wider when the irradiation time was shorter.

  20. Extracellular mycosynthesis of gold nanoparticles using Fusarium solani

    NASA Astrophysics Data System (ADS)

    Gopinath, K.; Arumugam, A.

    2014-08-01

    The development of eco-friendly methods for the synthesis of nanomaterial shape and size is an important area of research in the field of nanotechnology. The present investigation deals with the extracellular rapid biosynthesis of gold nanoparticles using Fusarium solani culture filtrate. The UV-vis spectra of the fungal culture filtrate medium containing gold ion showed peak at 527 nm corresponding to the plasmon absorbance of gold nanoparticles. FTIR spectra provide an evidence for the presence of heterocyclic compound in the culture filtrate, which increases the stability of the synthesized gold nanoparticles. The X-ray analysis respects the Bragg's law and confirmed the crystalline nature of the gold nanoparticles. AFM analysis showed the results of particle sizes (41 nm). Transmission electron microscopy (TEM) showed that the gold nanoparticles are spherical in shape with the size range from 20 to 50 nm. The use of F. solani will offer several advantages since it is considered as a non-human pathogenic organism. The fungus F. solani has a fast growth rate, rapid capacity of metallic ions reduction, NPs stabilization and facile and economical biomass handling. Extracellular biosynthesis of gold nanoparticles could be highly advantageous from the point of view of synthesis in large quantities, time consumption, eco-friendly, non-toxic and easy downstream processing.

  1. Investigating the Toxicity, Uptake, Nanoparticle Formation and Genetic Response of Plants to Gold

    PubMed Central

    Taylor, Andrew F.; Rylott, Elizabeth L.; Anderson, Christopher W. N.; Bruce, Neil C.

    2014-01-01

    We have studied the physiological and genetic responses of Arabidopsis thaliana L. (Arabidopsis) to gold. The root lengths of Arabidopsis seedlings grown on nutrient agar plates containing 100 mg/L gold were reduced by 75%. Oxidized gold was subsequently found in roots and shoots of these plants, but gold nanoparticles (reduced gold) were only observed in the root tissues. We used a microarray-based study to monitor the expression of candidate genes involved in metal uptake and transport in Arabidopsis upon gold exposure. There was up-regulation of genes involved in plant stress response such as glutathione transferases, cytochromes P450, glucosyl transferases and peroxidases. In parallel, our data show the significant down-regulation of a discreet number of genes encoding proteins involved in the transport of copper, cadmium, iron and nickel ions, along with aquaporins, which bind to gold. We used Medicago sativa L. (alfalfa) to study nanoparticle uptake from hydroponic culture using ionic gold as a non-nanoparticle control and concluded that nanoparticles between 5 and 100 nm in diameter are not directly accumulated by plants. Gold nanoparticles were only observed in plants exposed to ionic gold in solution. Together, we believe our results imply that gold is taken up by the plant predominantly as an ionic form, and that plants respond to gold exposure by up-regulating genes for plant stress and down-regulating specific metal transporters to reduce gold uptake. PMID:24736522

  2. Ionic transport properties of template-synthesized gold nanotube membranes

    NASA Astrophysics Data System (ADS)

    Gao, Peng

    Ionic transport in nanotubes exhibits unique properties due to the strong interactions between ions and the nanotube surface. The main objective of my research is to explore and regulate the ionic transport in gold nanotube membranes. Chapter 1 overviews a versatile method of fabricating nanostructured materials, called the template synthesis. Important parameters of the template synthesis are introduced such as templates and deposition methods. The template synthesis method is used to prepare membranes used in this dissertation. Chapter 2 describes a method to increase the ionic conductivity in membranes containing gold nanotubes with small diameter (4 nm). The gold nanotube membrane is prepared by the electroless plating of gold in a commercially available polycarbonate membrane. Voltages are applied to the gold nanotube membrane and fixed charges are injected on the gold nanotube walls. We show that ionic conductivity of the gold nanotube membrane can be enhanced in aqueous potassium chloride (KCl) solution at negative applied voltages. When the most negative voltage (-0.8 V vs. Ag/AgCl) is applied to the membrane, the ionic conductivity of the solution inside the gold nanotube (94 mS.cm-1) is comparable to that of 1 M aqueous KCl, over two orders of magnitude higher than that of the 0.01 M KCl contacting the membrane. Chapter 3 explores another important transport property of the gold nanotube membrane -- ion permselectivity. When the permselective membrane separates two electrolyte solutions at different concentrations, a membrane potential is developed and measured by the potentiometric method. Surface charge density and the ion mobilities are estimated by fitting the experimental data with a pre-existing model. The surface charge density of the gold nanotube membrane in this research is estimated to be 2 muC/cm2. Chapter 4 describes voltage-controlled ionic transport in a gold/polypyrrole membrane doped with sodium dodecylbenzene sulfonate (DBS). Polypyrrole

  3. Titration of gold nanoparticles in phase extraction.

    PubMed

    Cheng, Han-Wen; Schadt, Mark J; Zhong, Chuan-Jian

    2015-12-07

    In the organic-aqueous phase transfer process of gold nanoparticles, there are two types of distinctive interfaces involving hydrophilic and hydrophobic ligands, the understanding of which is important for the design of functional nanomaterials for analytical/bioanalytical applications and the control over the nanoparticles' nanoactivity and nanotoxicity in different phases. This report describes new findings of an investigation of the quantitative aspect of ligand ion pairing at the capping monolayer structure that drives the phase extraction of gold nanoparticles. Alkanethiolate-capped gold nanoparticles of 8 nm diameter with high size monodispersity (RSD ∼ 5%) were first derivatized by a ligand place exchange reaction with 11-mercaptoundecanoic acid to form a mixed monolayer shell consisting of both hydrophobic (-CH3) and hydrophilic (-COOH) groups. It was followed by quantitative titration of the resulting nanoparticles with a cationic species (-NR4(+)) in a toluene phase, yielding ion pairing of -NR4(+) and -COO(-) on part of the capping monolayer. Analysis of the phase extraction allowed a quantitative determination of the percentage of ion pairing and structural changes in the capping monolayer on the nanoparticles. The results, along with morphological characterization, are discussed in terms of the interfacial structural changes and their implications on the rational design of surface-functionalized nanoparticles and fine tuning of the interfacial reactivity.

  4. Gold emissivities for hydrocode applications

    NASA Astrophysics Data System (ADS)

    Bowen, C.; Wagon, F.; Galmiche, D.; Loiseau, P.; Dattolo, E.; Babonneau, D.

    2004-10-01

    The Radiom model [M. Busquet, Phys Fluids B 5, 4191 (1993)] is designed to provide a radiative-hydrodynamic code with non-local thermodynamic equilibrium (non-LTE) data efficiently by using LTE tables. Comparison with benchmark data [M. Klapisch and A. Bar-Shalom, J. Quant. Spectrosc. Radiat. Transf. 58, 687 (1997)] has shown Radiom to be inaccurate far from LTE and for heavy ions. In particular, the emissivity was found to be strongly underestimated. A recent algorithm, Gondor [C. Bowen and P. Kaiser, J. Quant. Spectrosc. Radiat. Transf. 81, 85 (2003)], was introduced to improve the gold non-LTE ionization and corresponding opacity. It relies on fitting the collisional ionization rate to reproduce benchmark data given by the Averroès superconfiguration code [O. Peyrusse, J. Phys. B 33, 4303 (2000)]. Gondor is extended here to gold emissivity calculations, with two simple modifications of the two-level atom line source function used by Radiom: (a) a larger collisional excitation rate and (b) the addition of a Planckian source term, fitted to spectrally integrated Averroès emissivity data. This approach improves the agreement between experiments and hydrodynamic simulations.

  5. Chalcogenide centred gold complexes.

    PubMed

    Gimeno, M Concepción; Laguna, Antonio

    2008-09-01

    Chalcogenide-centred gold complexes are an important class of compounds in which a central chalcogen is surrounded by several gold atoms or gold and other metals. They have special characteristics such as unusual geometries, electron deficiency and properties such as luminescence or non-linear optical properties. The best known species are the trinuclear [E(AuPR3)3]+, 'oxonium' type species, that have high synthetic applicability, not only in other chalcogen-centred species, but in many other organometallic derivatives. The aurophilic interactions play an important role in the stability, preference for a particular geometry and luminescence properties in this type of derivatives (critical review, 117 references).

  6. Gold-bearing skarns

    USGS Publications Warehouse

    Theodore, Ted G.; Orris, Greta J.; Hammerstrom, Jane M.; Bliss, James D.

    1991-01-01

    In recent years, a significant proportion of the mining industry's interest has been centered on discovery of gold deposits; this includes discovery of additional deposits where gold occurs in skarn, such as at Fortitude, Nevada, and at Red Dome, Australia. Under the classification of Au-bearing skarns, we have modeled these and similar gold-rich deposits that have a gold grade of at least 1 g/t and exhibit distinctive skarn mineralogy. Two subtypes, Au-skarns and byproduct Au-skarns, can be recognized on the basis of gold, silver, and base-metal grades, although many other geological factors apparently are still undistinguishable largely because of a lack of detailed studies of the Au-skarns. Median grades and tonnage for 40 Au-skarn deposits are 8.6 g/t Au, 5.0 g/t Ag, and 213,000 t. Median grades and tonnage for 50 byproduct and Au-skarn deposits are 3.7 g/t Au, 37 g/t Ag, and 330,000 t. Gold-bearing skarns are generally calcic exoskarns associated with intense retrograde hydrosilicate alteration. These skarns may contain economic amounts of numerous other commodities (Cu, Fe, Pb, Zn, As, Bi, W, Sb, Co, Cd, and S) as well as gold and silver. Most Au-bearing skarns are found in Paleozoic and Cenozoic orogenic-belt and island-arc settings and are associated with felsic to intermediate intrusive rocks of Paleozoic to Tertiary age. Native gold, electru, pyrite, pyrrhotite, chalcopyrite, arsenopyrite, sphalerite, galena, bismuth minerals, and magnetite or hematite are the most common opaque minerals. Gangue minerals typically include garnet (andradite-grossular), pyroxene (diopside-hedenbergite), wollastonite, chlorite, epidote, quartz, actinolite-tremolite, and (or) calcite.

  7. Gold nanoprobes for theranostics

    PubMed Central

    Panchapakesan, Balaji; Book-Newell, Brittany; Sethu, Palaniappan; Rao, Madhusudhana; Irudayaraj, Joseph

    2011-01-01

    Gold nanoprobes have become attractive diagnostic and therapeutic agents in medicine and life sciences research owing to their reproducible synthesis with atomic level precision, unique physical and chemical properties, versatility of their morphologies, flexibility in functionalization, ease of targeting, efficiency in drug delivery and opportunities for multimodal therapy. This review highlights some of the recent advances and the potential for gold nanoprobes in theranostics. PMID:22122586

  8. Ion-Ion Neutralization.

    DTIC Science & Technology

    1982-05-31

    Accession No. 3. Recipient’s Catalog Number FGL -TR-82 -0202 b- /- 4. Title (and Subtitle) 5. Type of Report & Period Covered ION-ION NEUTRALIZATION Final...few years under the terms of the grant has been the detailed study of binary ion-ion neutralization reactions involving ions of atmospheric...2TT, England. 1. INTRODUCTION Binary positive-ion negative-ion mutual neutralization viz: A+ + B->C + D (1) can be an important loss process for

  9. Getting the Gold Treatment

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Epner Technology, Inc., worked with Goddard Space Center to apply gold coating to the Vegetation Canopy Lidar (VCL) mirror. This partnership resulted in new commercial applications for Epner's LaserGold(R) process in the automotive industry. Previously, the company did not have equipment large enough to handle the plating of the stainless steel panels cost effectively. Seeing a chance to renew this effort, Epner Technology and Goddard entered into an agreement by which NASA would fund the facility needed to do the gold-plating, and Epner Technology would cover all other costs as part of their internal research and development. The VCL mirror project proceeded successfully, fulfilling Goddard's needs and leaving Epner Technology with a new facility to provide LaserGold for the automotive industry. The new capability means increased power savings and improvements in both quality and production time for BMW Manufacturing Corporation of Spartanburg, South Carolina, and Cadillac of Detroit, Michigan, as well as other manufacturers who have implemented Epner Technology's LaserGold process. LaserGold(R) is a registered trademark of Epner Technology, Inc.

  10. Gold in minerals and the composition of native gold

    USGS Publications Warehouse

    Jones, Robert Sprague; Fleischer, Michael

    1969-01-01

    Gold occurs in nature mainly as the metal and as various alloys. It forms complete series of solid solutions with silver, copper, nickel, palladium, and platinum. In association with the platinum metals, gold occurs as free gold as well as in solid solution. The native elements contain the most gold, followed by the sulfide minerals. Several gold tellurides are known, but no gold selenides have been reported, and only one sulfide, the telluride-sulfide mineral nagyagite, is known. The nonmetallic minerals carry the least gold, and the light-colored minerals generally contain less gold than the dark minerals. Some conclusions in the literature are conflicting in regard to the relation of fineness of native gold to its position laterally and vertically within a lode, the nature of the country rocks, and the location and size of nuggets in a streambed, as well as to the variation of fineness within an individual nugget.

  11. Alkyl and Aromatic Amines as Digestive Ripening/Size Focusing Agents for Gold Nanoparticles

    PubMed Central

    Sun, Yijun; Jose, Deepa; Sorensen, Christopher; Klabunde, Kenneth J.

    2013-01-01

    Both long chain alkyl thiols and alkyl amines behave as size focusing agents for gold nanoparticles, a process that is under thermodynamic control. However, amines do not oxidize surface gold atoms while thiols do oxidize surface gold to gold(I) with evolution of hydrogen gas. Therefore, alkyl amines participate in digestive ripening by a different mechanism. The efficiency of alkyl amines for this process is described and compared, and ultimate gold particle size differences are discussed. Reported herein is a detailed investigation of alkyl chain lengths for alkyl amines, aromatic amines (aniline), and unusually reactive amines (2-phenylethyl amine). Also, two methods of preparation of the crude gold nanoparticles were employed: gold ion reduction/inverse micelle vs. metal vaporization (Solvated Metal Atom Dispersion—SMAD).

  12. Laser Desorption Ionization Quadrupole Ion Trap Time-of-Flight Mass Spectrometry of Au m Fe n +/- Clusters Generated from Gold-Iron Nanoparticles and their Giant Nanoflowers. Electrochemical and/or Plasma Assisted Synthesis

    NASA Astrophysics Data System (ADS)

    Mawale, Ravi Madhukar; Ausekar, Mayuri Vilas; Pavliňák, David; Galmiz, Oleksandr; Kubáček, Pavel; Havel, Josef

    2017-02-01

    Gold nanoparticles (NP) with average diameter 100 nm synthesized from tetrachloroauric acid solution using stainless steel as a reducing agent were found to contain iron. Applying simultaneously high frequency (HF) plasma discharge in solution during the electrochemical reduction, giant gold-iron nanoflowers with average size 1000-5000 nm were formed. Scanning electron microscopy (SEM) shows the morphology of the nanopowders produced as polygonal yet nearly spherical, whereas iron content in both products determined by energy dispersive X-ray analysis (EDX) was found to be at 2.5 at. %. Laser desorption ionization (LDI) of both nanomaterials and mass spectrometric analysis show the formation of Au m Fe n +/- ( m = 1-35; n = 1-3) clusters. Structure of few selected clusters in neutral or monocharged forms were computed by density functional theory (DFT) calculations and it was found that typical distances of an iron nucleus from adjacent gold nuclei lie in the interval 2.5 to 2.7 Å. Synthetized Au-Fe nanoparticles were found stable for at least 2 mo at room temperature (even in aqueous solution) without any stabilizing agent. Produced Au-Fe nanoparticles in combination with standard MALDI matrices enhance ionization of peptides and might find use in nanomedicine.

  13. Hydroquinone Based Synthesis of Gold Nanorods.

    PubMed

    Picciolini, Silvia; Mehn, Dora; Ojea-Jiménez, Isaac; Gramatica, Furio; Morasso, Carlo

    2016-08-10

    Gold nanorods are an important kind of nanoparticles characterized by peculiar plasmonic properties. Despite their widespread use in nanotechnology, the synthetic methods for the preparation of gold nanorods are still not fully optimized. In this paper we describe a new, highly efficient, two-step protocol based on the use of hydroquinone as a mild reducing agent. Our approach allows the preparation of nanorods with a good control of size and aspect ratio (AR) simply by varying the amount of hexadecyl trimethylammonium bromide (CTAB) and silver ions (Ag(+)) present in the "growth solution". By using this method, it is possible to markedly reduce the amount of CTAB, an expensive and cytotoxic reagent, necessary to obtain the elongated shape. Gold nanorods with an aspect ratio of about 3 can be obtained in the presence of just 50 mM of CTAB (versus 100 mM used in the standard protocol based on the use of ascorbic acid), while shorter gold nanorods are obtained using a concentration as low as 10 mM.

  14. Reprotoxicity of gold, silver, and gold-silver alloy nanoparticles on mammalian gametes.

    PubMed

    Tiedemann, Daniela; Taylor, Ulrike; Rehbock, Christoph; Jakobi, Jurij; Klein, Sabine; Kues, Wilfried A; Barcikowski, Stephan; Rath, Detlef

    2014-03-07

    Metal and alloy nanoparticles are increasingly developed for biomedical applications, while a firm understanding of their biocompatibility is still missing. Various properties have been reported to influence the toxic potential of nanoparticles. This study aimed to assess the impact of nanoparticle size, surface ligands and chemical composition of gold, silver or gold-silver alloy nanoparticles on mammalian gametes. An in vitro assay for porcine gametes was developed, since these are delicate primary cells, for which well-established culture systems exist and functional parameters are defined. During coincubation with oocytes for 46 h neither any of the tested gold nanoparticles nor the gold-silver alloy particles with a silver molar fraction of up to 50% showed any impact on oocyte maturation. Alloy nanoparticles with 80% silver molar fraction and pure silver nanoparticles inhibited cumulus-oocyte maturation. Confocal microscopy revealed a selective uptake of gold nanoparticles by oocytes, while silver and alloy particles mainly accumulated in the cumulus cell layer surrounding the oocyte. Interestingly sperm vitality parameters (motility, membrane integrity and morphology) were not affected by any of the tested nanoparticles. Only sporadic association of nanoparticles with the sperm plasma membrane was found by transmission electron microscopy. In conclusion, mammalian oocytes were sensitive to silver containing nanoparticles. Likely, the delicate process of completing meiosis in maternal gametes features high vulnerability towards nanomaterial derived toxicity. The results imply that released Ag(+)-ions are responsible for the observed toxicity, but the compounding into an alloy seemed to alleviate the toxic effects to a certain extent.

  15. Monomer adsorption of indocyanine green to gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Guerrini, Luca; Hartsuiker, Liesbeth; Manohar, Srirang; Otto, Cees

    2011-10-01

    NIR-dye encoded gold nanoparticles (GNP) are rapidly emerging as contrast agents in many bio-imaging/sensing applications. The coding process is usually carried out without control or a clear understanding of the metal-liquid interface properties which, in contrast, are critical in determining the type and extension of dye-metal interaction. In this paper, we investigated the effect of gold surface composition on the adsorption of indocyanine green (ICG) on GNP, simulating the surface conditions of gold nanorods on citrate-capped gold nanospheres. These substrates allowed a careful control of the metal-liquid interface composition and, thus, detailed absorption and fluorescence concentration studies of the effects of each individual chemical in the colloidal solution (i.e. bromide anions, cetyl trimethylammonium ions and Ag+ ions) on the ICG-gold interaction. This study reveals the drastic effect that these experimental parameters can have on the ICG adsorption on GNP.NIR-dye encoded gold nanoparticles (GNP) are rapidly emerging as contrast agents in many bio-imaging/sensing applications. The coding process is usually carried out without control or a clear understanding of the metal-liquid interface properties which, in contrast, are critical in determining the type and extension of dye-metal interaction. In this paper, we investigated the effect of gold surface composition on the adsorption of indocyanine green (ICG) on GNP, simulating the surface conditions of gold nanorods on citrate-capped gold nanospheres. These substrates allowed a careful control of the metal-liquid interface composition and, thus, detailed absorption and fluorescence concentration studies of the effects of each individual chemical in the colloidal solution (i.e. bromide anions, cetyl trimethylammonium ions and Ag+ ions) on the ICG-gold interaction. This study reveals the drastic effect that these experimental parameters can have on the ICG adsorption on GNP. Electronic supplementary

  16. A rotating disk study of gold dissolution by bromine

    NASA Astrophysics Data System (ADS)

    Pesic, Batric; Sergent, Rodney H.

    1991-12-01

    Gold dissolution with bromine was studied using the rotating disk technique with Geobrom™ 3400 as a source of bromine. The parameters studied were speed of rotation, lixiviant concentration, pH, temperature, sulfuric acid and hydrochloric acid concentrations, and the concentrations of various cations (i.e., copper, iron, zinc, aluminum, manganese, potassium, and sodium) and anions (i.e., chloride, bromide, sulfate, nitrate, and iodide). According to the Lavich plot and activation energy, gold dissolution is controlled by a chemical reaction rate. Copper, iron, and manganese in their highest oxidation states, as well as aluminum, zinc, sodium, and potassium, have no effect on the rate of gold dissolution. The presence of manganous ion substantially decreases the gold dissolution rate. The kinetic performance of bromine was found to be dramatically better than the performance of cyanide and thiourea.

  17. Electrical bending actuation of gold-films with nanotextured surfaces

    NASA Astrophysics Data System (ADS)

    Kwan, K. W.; Gao, P.; Martin, C. R.; Ngan, A. H. W.

    2015-01-01

    An actuating material system comprising a gold-film with nanotextured surface was fabricated. Using electroless gold plating onto a substrate of porous anodized aluminum oxide, a thin film of gold with a high density of short gold nanofibers on its surface was made. When one end of such a film was connected to an ion generator, bending was achieved upon electrical charging in air. Experiments showed that the free end of an 8 mm film could be displaced by more than 1.6 mm with a bending strain of 0.08%. In contrast with other types of thin-film artificial muscle materials, the present Au-film did not require any electrolyte to function. With the relatively easy fabrication method, this nanotextured film shows promising actuation behavior in air.

  18. 2D-3D transition of gold cluster anions resolved

    NASA Astrophysics Data System (ADS)

    Johansson, Mikael P.; Lechtken, Anne; Schooss, Detlef; Kappes, Manfred M.; Furche, Filipp

    2008-05-01

    Small gold cluster anions Aun- are known for their unusual two-dimensional (2D) structures, giving rise to properties very different from those of bulk gold. Previous experiments and calculations disagree about the number of gold atoms nc where the transition to 3D structures occurs. We combine trapped ion electron diffraction and state of the art electronic structure calculations to resolve this puzzle and establish nc=12 . It is shown that theoretical studies using traditional generalized gradient functionals are heavily biased towards 2D structures. For a correct prediction of the 2D-3D crossover point it is crucial to use density functionals yielding accurate jellium surface energies, such as the Tao-Perdew-Staroverov-Scuseria (TPSS) functional or the Perdew-Burke-Ernzerhof functional modified for solids (PBEsol). Further, spin-orbit effects have to be included, and large, flexible basis sets employed. This combined theoretical-experimental approach is promising for larger gold and other metal clusters.

  19. Plasmonic Gold Decorated MWCNT Nanocomposite for Localized Plasmon Resonance Sensing.

    PubMed

    Ozhikandathil, J; Badilescu, S; Packirisamy, M

    2015-08-18

    The synergism of excellent properties of carbon nanotubes and gold nanoparticles is used in this work for bio-sensing of recombinant bovine growth hormones (rbST) by making Multi Wall Carbon Nanotubes (MWCNT) locally optically responsive by augmenting it optical properties through Localized Surface Plasmon Resonance (LSPR). To this purpose, locally gold nano particles decorated gold-MWCNT composite was synthesized from a suspension of MWCNT bundles and hydrogen chloroauric acid in an aqueous solution, activated ultrasonically and, then, drop-casted on a glass substrate. The slow drying of the drop produces a "coffee ring" pattern that is found to contain gold-MWCNT nanocomposites, accumulated mostly along the perimeter of the ring. The reaction is studied also at low-temperature, in the vacuum chamber of the Scanning Electron Microscope and is accounted for by the local melting processes that facilitate the contact between the bundle of tubes and the gold ions. Biosensing applications of the gold-MWCNT nanocomposite using their LSPR properties are demonstrated for the plasmonic detection of traces of bovine growth hormone. The sensitivity of the hybrid platform which is found to be 1 ng/ml is much better than that measuring with gold nanoparticles alone which is only 25 ng/ml.

  20. Silver and gold nanoparticles for sensor and antibacterial applications.

    PubMed

    Bindhu, M R; Umadevi, M

    2014-07-15

    Green biogenic method for the synthesis of gold and silver nanoparticles using Solanum lycopersicums extract as reducing agent was studied. The biomolecules present in the extract was responsible for reduction of Au(3+) and Ag(+) ions from HAuCl4 and AgNO3 respectively. The prepared nanoparticles were characterized by UV-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) technique to identify the size, shape of nanoparticles and biomolecules act as reducing agents. UV-visible spectra show the surface plasmon resonance peak at 546 nm and 445 nm corresponding to gold and silver nanoparticles respectively. Crystalline nature of the nanoparticles was evident from TEM images and XRD analysis. TEM images showed average size of 14 nm and 12 nm for prepared gold and silver nanoparticles respectively. FTIR analysis provides the presence of biomolecules responsible for the reduction and stability of the prepared silver and gold nanoparticles. XRD analysis of the silver and gold nanoparticles confirmed the formation of metallic silver and gold. The prepared gold and silver nanoparticles show good sensing and antimicrobial activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Plasmonic Gold Decorated MWCNT Nanocomposite for Localized Plasmon Resonance Sensing

    NASA Astrophysics Data System (ADS)

    Ozhikandathil, J.; Badilescu, S.; Packirisamy, M.

    2015-08-01

    The synergism of excellent properties of carbon nanotubes and gold nanoparticles is used in this work for bio-sensing of recombinant bovine growth hormones (rbST) by making Multi Wall Carbon Nanotubes (MWCNT) locally optically responsive by augmenting it optical properties through Localized Surface Plasmon Resonance (LSPR). To this purpose, locally gold nano particles decorated gold-MWCNT composite was synthesized from a suspension of MWCNT bundles and hydrogen chloroauric acid in an aqueous solution, activated ultrasonically and, then, drop-casted on a glass substrate. The slow drying of the drop produces a “coffee ring” pattern that is found to contain gold-MWCNT nanocomposites, accumulated mostly along the perimeter of the ring. The reaction is studied also at low-temperature, in the vacuum chamber of the Scanning Electron Microscope and is accounted for by the local melting processes that facilitate the contact between the bundle of tubes and the gold ions. Biosensing applications of the gold-MWCNT nanocomposite using their LSPR properties are demonstrated for the plasmonic detection of traces of bovine growth hormone. The sensitivity of the hybrid platform which is found to be 1 ng/ml is much better than that measuring with gold nanoparticles alone which is only 25 ng/ml.

  2. Biological synthesis of triangular gold nanoprisms

    NASA Astrophysics Data System (ADS)

    Shankar, S. Shiv; Rai, Akhilesh; Ankamwar, Balaprasad; Singh, Amit; Ahmad, Absar; Sastry, Murali

    2004-07-01

    The optoelectronic and physicochemical properties of nanoscale matter are a strong function of particle size. Nanoparticle shape also contributes significantly to modulating their electronic properties. Several shapes ranging from rods to wires to plates to teardrop structures may be obtained by chemical methods; triangular nanoparticles have been synthesized by using a seeded growth process. Here, we report the discovery that the extract from the lemongrass plant, when reacted with aqueous chloroaurate ions, yields a high percentage of thin, flat, single-crystalline gold nanotriangles. The nanotriangles seem to grow by a process involving rapid reduction, assembly and room-temperature sintering of 'liquid-like' spherical gold nanoparticles. The anisotropy in nanoparticle shape results in large near-infrared absorption by the particles, and highly anisotropic electron transport in films of the nanotriangles.

  3. Biological synthesis of triangular gold nanoprisms.

    PubMed

    Shankar, S Shiv; Rai, Akhilesh; Ankamwar, Balaprasad; Singh, Amit; Ahmad, Absar; Sastry, Murali

    2004-07-01

    The optoelectronic and physicochemical properties of nanoscale matter are a strong function of particle size. Nanoparticle shape also contributes significantly to modulating their electronic properties. Several shapes ranging from rods to wires to plates to teardrop structures may be obtained by chemical methods; triangular nanoparticles have been synthesized by using a seeded growth process. Here, we report the discovery that the extract from the lemongrass plant, when reacted with aqueous chloroaurate ions, yields a high percentage of thin, flat, single-crystalline gold nanotriangles. The nanotriangles seem to grow by a process involving rapid reduction, assembly and room-temperature sintering of 'liquid-like' spherical gold nanoparticles. The anisotropy in nanoparticle shape results in large near-infrared absorption by the particles, and highly anisotropic electron transport in films of the nanotriangles.

  4. Migratory gold resistive shorts - Chemical aspects of a failure mechanism

    NASA Technical Reports Server (NTRS)

    Grunthaner, F. J.; Griswold, T. W.; Clendening, P. J.

    1975-01-01

    Integrated-circuit devices using the Ti/W/Au metal system are subject to failure mechanisms based on electrolytic corrosion. The migratory gold resistive short (MGRS) failure mode is one example of this mechanism and results in the formation of filamentary or dendritic deposits of gold between adjacent stripes on the IC chip. This reaction requires the presence of a sufficient amount of water, a bias voltage between adjacent stripes, and the activation of the cathodic (-) stripe. Gold ions are transported from anode to cathode through a film of moisture adsorbed on the surface of the chip; halide ions are probably involved in the transfer. Their presence is verified experimentally by X-ray photoelectron spectroscopy. Some of the chemical and electrostatic factors involved in the MGRS mechanism are discussed in this paper, including the questions of a threshold level of moisture and contamination.

  5. Gallium arsenide/gold nanostructures deposited using plasma method

    SciTech Connect

    Mangla, O.; Roy, S.; Annapoorni, S.

    2016-05-23

    The fabrication of gallium arsenide (GaAs) nanostructures on gold coated glass, quartz and silicon substrates using the high fluence and highly energetic ions has been reported. The high fluence and highly energetic ions are produced by the hot, dense and extremely non-equilibrium plasma in a modified dense plasma focus device. The nanostructures having mean size about 14 nm, 13 nm and 18 nm are deposited on gold coated glass, quartz and silicon substrates, respectively. The optical properties of nanostructures studied using absorption spectra show surface plasmon resonance peak of gold nanoparticles. In addition, the band-gap of GaAs nanoparticles is more than that of bulk GaAs suggesting potential applications in the field of optoelectronic and sensor systems.

  6. A sensitive immunosensor using colloidal gold as electrochemical label.

    PubMed

    Chen, Zhao-Peng; Peng, Zhao-Feng; Zhang, Peng; Jin, Xue-Fang; Jiang, Jian-Hui; Zhang, Xiao-Bing; Shen, Guo-Li; Yu, Ru-Qin

    2007-07-31

    A sensitive immunosensor using colloidal gold as electrochemical label is described. In this method, the capture protein was first immobilized on a carbon paste electrode surface through passive adsorption to bind quantitatively with corresponding antigen and colloidal gold labeled antibody to perform a sandwich assay. To detect the amount of the colloidal gold captured on the electrode surface, the colloid was first oxidized electrochemically to produce AuCl(4)(-) ions which were adsorbed strongly on the electrode surface. Adsorptive voltammetry was then employed for the determination of the adsorbed AuCl(4)(-) ions. A linear relationship between reduction wave peak current and the antigen concentration (human IgG) from 10 to 500 ng/ml is obtained with a detection limit of 4.0 ng/ml.

  7. Biorecovery of gold

    USGS Publications Warehouse

    Eisler, R.

    2003-01-01

    Recovery of ionic and metallic gold (Au) from a wide variety of solutions by selected species of bacteria, yeasts, fungi, algae, and higher plants is documented. Gold accumulations were up to 7.0 g/kg dry weight (DW) in various species of bacteria, 25.0 g/kg DW in freshwater algae, 84.0 g/kg DW in peat, and 100.0 g/kg DW in dried fungus mixed with keratinous material. Mechanisms of accumulation include oxidation, dissolution, reduction, leaching, and sorption. Uptake patterns are significantly modified by the physicochemical milieu. Crab exoskeletons accumulate up to 4.9 g Au/kg DW; however, gold accumulations in various tissues of living teleosts, decapod crustaceans, and bivalve molluscs are negligible.

  8. Gold-bismuth clusters.

    PubMed

    Martínez, Ana

    2014-08-07

    Metal clusters have interesting characteristics, such as the relationship between properties and size of the cluster. This is not always apparent, so theoretical studies can provide relevant information. In this report, optimized structures and electron donor-acceptor properties of AunBim clusters are reported (n + m = 2-7, 20). Density functional theory calculations were performed to obtain optimized structures. The ground states of gold clusters formed with up to seven atoms are planar. The presence of Bi modifies the structure, and the clusters become 3-D. Several optimized geometries have at least one Bi atom bonded to gold or bismuth atoms and form structures similar to NH3. This fragment is also present in clusters with 20 atoms, where the formation of Au3Bi stabilizes the structures. Bismuth clusters are better electron donors and worse electron acceptors than gold clusters. Mixed clusters fall in between these two extremes. The presence of Bi atoms in gold clusters modifies the electron donor-acceptor properties of the clusters, but there is no correlation between the number of Bi atoms present in the cluster and the capacity for donating electrons. The effect of planarity in Au19Bi clusters is the same as that in Au20 clusters. The properties of pure gold clusters are certainly interesting, but clusters formed by Bi and Au are more important because the introduction of different atoms modifies the geometry, the stability, and consequently the physical and chemical properties. Apparently, the presence of Bi may increase the reactivity of gold clusters, but further studies are necessary to corroborate this hypothesis.

  9. The nanoparticulate nature of invisible gold in arsenopyrite from Pezinok (Slovakia)

    SciTech Connect

    Majzlan, Juraj; Chovan, Martin; Andráš, Peter; Newville, Matthew; Wiedenbeck, Michael

    2010-04-09

    Arsenopyrite is the most common sulfide host of invisible gold. Yet, despite many studies, the position of such gold in the structure of arsenopyrite has not been resolved conclusively. Here we report a multitechnique study of arsenopyrite samples from the Pezinok deposits (Slovakia) with moderate gold concentrations of 7-10 {micro}g/g. Secondary ion mass spectrometry showed that the invisible gold occurs as either (1) almost uniform, low-concentration of 'dispersed' gold, or as (2) hot spots along fractures. X-ray absorption spectra at the Au L{sub III} edge were collected from such hot spots. The spectra document metallic character of gold although no discrete gold particles were seen even after careful re-examining in back-scattered electron images. We conclude that such occurrences are most readily explained by the presence of gold nanoparticles. We suggest that the dispersed gold is the chemically-bound gold previously detected in these deposits by 197Au Moessbauer spectroscopy. The concentration of the dispersed gold is too low for X-ray absorption spectroscopy.

  10. Nanoscale Phase Segregation of Mixed Thiolates on Gold Nanoparticles

    PubMed Central

    Harkness, Kellen M.; Balinski, Andrzej

    2012-01-01

    Phase segregation and domain formation is observed within the protecting monolayer of gold nanoparticles (AuNPs) using ion mobility-mass spectrometry, a two-dimensional gas-phase separation technique. Experimental data is compared to a theoretical model that represents a randomly distributed ligand mixture. Deviations from this model provide evidence for nanophase separation resulting in anisotropic AuNPs. PMID:21882306

  11. Defining rules for the shape evolution of gold nanoparticles.

    PubMed

    Langille, Mark R; Personick, Michelle L; Zhang, Jian; Mirkin, Chad A

    2012-09-05

    The roles of silver ions and halides (chloride, bromide, and iodide) in the seed-mediated synthesis of gold nanostructures have been investigated, and their influence on the growth of 10 classes of nanoparticles that differ in shape has been determined. We systematically studied the effects that each chemical component has on the particle shape, on the rate of particle formation, and on the chemical composition of the particle surface. We demonstrate that halides can be used to (1) adjust the reduction potential of the gold ion species in solution and (2) passivate the gold nanoparticle surface, both of which control the reaction kinetics and thus enable the selective synthesis of a series of different particle shapes. We also show that silver ions can be used as an underpotential deposition agent to access a different set of particle shapes by controlling growth of the resulting gold nanoparticles through surface passivation (more so than kinetic effects). Importantly, we show that the density of silver coverage can be controlled by the amount and type of halide present in solution. This behavior arises from the decreasing stability of the underpotentially deposited silver layer in the presence of larger halides due to the relative strengths of the Ag(+)/Ag(0)-halide and Au(+)/Au(0)-halide interactions, as well as the passivation effects of the halides on the gold particle surface. We summarize this work by proposing a set of design considerations for controlling the growth and final shape of gold nanoparticles prepared by seed-mediated syntheses through the judicious use of halides and silver ions.

  12. Simulated GOLD Observations of Atmospheric Waves

    NASA Astrophysics Data System (ADS)

    Correira, J.; Evans, J. S.; Lumpe, J. D.; Rusch, D. W.; Chandran, A.; Eastes, R.; Codrescu, M.

    2016-12-01

    The Global-scale Observations of the Limb and Disk (GOLD) mission will measure structures in the Earth's airglow layer due to dynamical forcing by vertically and horizontally propagating waves. These measurements focus on global-scale structures, including compositional and temperature responses resulting from dynamical forcing. Daytime observations of far-UV emissions by GOLD will be used to generate two-dimensional maps of the ratio of atomic oxygen and molecular nitrogen column densities (ΣO/N2 ) as well as neutral temperature that provide signatures of large-scale spatial structure. In this presentation, we use simulations to demonstrate GOLD's capability to deduce periodicities and spatial dimensions of large-scale waves from the spatial and temporal evolution observed in composition and temperature maps. Our simulations include sophisticated forward modeling of the upper atmospheric airglow that properly accounts for anisotropy in neutral and ion composition, temperature, and solar illumination. Neutral densities and temperatures used in the simulations are obtained from global circulation and climatology models that have been perturbed by propagating waves with a range of amplitudes, periods, and sources of excitation. Modeling of airglow emission and predictions of ΣO/N2 and neutral temperatures are performed with the Atmospheric Ultraviolet Radiance Integrated Code (AURIC) and associated derived product algorithms. Predicted structure in ΣO/N2 and neutral temperature due to dynamical forcing by propagating waves is compared to existing observations. Realistic GOLD Level 2 data products are generated from simulated airglow emission using algorithm code that will be implemented operationally at the GOLD Science Data Center.

  13. GOLD CLUSTER LABELS AND RELATED TECHNOLOGIES IN MOLECULAR MORPHOLOGY.

    SciTech Connect

    HAINFELD,J.F.; POWELL,R.D.

    2004-02-04

    Although intensely colored, even the largest colloidal gold particles are not, on their own, sufficiently colored for routine use as a light microscopy stain: only with very abundant antigens or with specialized illumination methods can bound gold be seen. Colloidal gold probes were developed primarily as markers for electron microscopy, for which their very high electron density and selectivity for narrow size distributions when prepared in different ways rendered them highly suited. The widespread use of gold labeling for light microscopy was made possible by the introduction of autometallographic enhancement methods. In these processes, the bound gold particles are exposed to a solution containing metal ions and a reducing agent; they catalyze the reduction of the ions, resulting in the deposition of additional metal selectively onto the particles. On the molecular level, the gold particles are enlarged up to 30-100 nm in diameter; on the macroscale level, this results in the formation of a dark stain in regions containing bound gold particles, greatly increasing visibility and contrast. The applications of colloidal gold have been described elsewhere in this chapter, we will focus on the use of covalently linked cluster complexes of gold and other metals. A gold cluster complex is a discrete molecular coordination compound comprising a central core, or ''cluster'' of electron-dense metal atoms, ligated by a shell of small organic molecules (ligands), which are linked to the metal atoms on the surface of the core. This structure gives clusters several important advantages as labels. The capping of the metal surface by ligands prevents non-specific binding to cell and tissue components, which can occur with colloidal gold. Cluster compounds are more stable and may be used under a wider range of conditions. Unlike colloidal gold, clusters do not require additional macromolecules such as bovine serum albumin or polyethylene glycol for stabilization, and the total

  14. Chemistry for oncotheranostic gold nanoparticles.

    PubMed

    Trouiller, Anne Juliette; Hebié, Seydou; El Bahhaj, Fatima; Napporn, Teko W; Bertrand, Philippe

    2015-06-24

    This review presents in a comprehensive ways the chemical methods used to functionalize gold nanoparticles with focus on anti-cancer applications. The review covers the parameters required for the synthesis gold nanoparticles with defined shapes and sizes, method for targeted delivery in tumours, and selected examples of anti-cancers compounds delivered with gold nanoparticles. A short survey of bioassays for oncology based on gold nanoparticles is also presented.

  15. Chemically functionalized gold nanoparticles: Synthesis, characterization, and applications

    NASA Astrophysics Data System (ADS)

    Daniel, Weston Lewis

    This thesis focuses on the development and application of gold nanoparticle based detection systems and biomimetic structures. Each class of modified nanoparticle has properties that are defined by its chemical moieties that interface with solution and the gold nanoparticle core. In Chapter 2, a comparison of the biomolecular composition and binding properties of various preparations of antibody oligonucleotide gold nanoparticle conjugates is presented. These constructs differed significantly in terms of their structure and binding properties. Chapter 3 reports the use of electroless gold deposition as a light scattering signal enhancer in a multiplexed, microarray-based scanometric immunoassay using the gold nanoparticle probes evaluated in Chapter 2. The use of gold development results in greater signal enhancement than the typical silver development, and multiple rounds of metal development were found to increase the resulting signal compared to one development. Chapter 4 describes an amplified scanometric detection method for human telomerase activity. Gold nanoparticles functionalized with specific oligonucleotide sequences can efficiently capture telomerase enzymes and subsequently be elongated. Both the elongated and unmodified oligonucleotide sequences are simultaneously measured. At low telomerase concentrations, elongated strands cannot be detected, but the unmodified sequences, which come from the same probe particles, can be detected because their concentration is higher, providing a novel form of amplification. Chapter 5 reports the development of a novel colorimetric nitrite and nitrate ion assay based upon gold nanoparticle probes functionalized with Griess reaction reagents. This assay takes advantage of the distance-dependent plasmonic properties of the gold nanoparticles and the ability of nitrite ion to facilitate the cross coupling of novel nanoparticle probes. The assay works on the concept of a kinetic end point and can be triggered at the EPA

  16. Derivatized gold clusters and antibody-gold cluster conjugates

    DOEpatents

    Hainfeld, James F.; Furuya, Frederic R.

    1994-11-01

    Antibody- or antibody fragment-gold cluster conjugates are shown wherein the conjugate size can be as small as 5.0 nm. Methods and reagents are disclosed in which antibodies, Fab' or F(ab').sub.2 fragments thereof are covalently bound to a stable cluster of gold atoms. The gold clusters may contain 6, 8, 9, 11, 13, 55 or 67 gold atoms in their inner core. The clusters may also contain radioactive gold. The antibody-cluster conjugates are useful in electron microscopy applications as well as in clinical applications that include imaging, diagnosis and therapy.

  17. Derivatized gold clusters and antibody-gold cluster conjugates

    DOEpatents

    Hainfeld, J.F.; Furuya, F.R.

    1994-11-01

    Antibody- or antibody fragment-gold cluster conjugates are shown wherein the conjugate size can be as small as 5.0 nm. Methods and reagents are disclosed in which antibodies, Fab' or F(ab')[sub 2] fragments are covalently bound to a stable cluster of gold atoms. The gold clusters may contain 6, 8, 9, 11, 13, 55 or 67 gold atoms in their inner core. The clusters may also contain radioactive gold. The antibody-cluster conjugates are useful in electron microscopy applications as well as in clinical applications that include imaging, diagnosis and therapy. 7 figs.

  18. Controlling the Shape and Crystallinity of Gold and Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Personick, Michelle Louise

    The strong dependence of the optical, electronic, and catalytic properties of noble metal nanoparticles on their shape has necessitated the high-yield synthesis of gold and silver nanostructures with precisely defined morphologies. This directed synthesis requires a detailed mechanistic understanding of the chemical and physical factors which control nanoparticle shape; however, these mechanistic explanations are still incomplete. To this end, the work of this dissertation seeks to enhance the understanding of nanoparticle growth on a mechanistic level, while also developing synthetic methods for producing novel nanoparticle shapes. Chapter 1 describes the state of the art in shape-controlled noble metal nanoparticle synthesis prior to the work conducted in this dissertation. In Chapter 2, a method is reported for synthesizing {110}-faceted bipyramids and rhombic dodecahedra, in which the combination of a chloride-containing surfactant and a low concentration of silver ions leads to the stabilization of the {110} facets. Chapter 3 explores in mechanistic detail the use of silver underpotential deposition to control particle growth in the synthesis of four gold nanoparticle shapes: octahedra, rhombic dodecahedra, truncated ditetragonal prisms, and concave cubes. This mechanistic understanding is expanded in Chapter 4, where the independent and synergistic roles of silver ions and halide ions in the seed-mediated synthesis of gold nanoparticles are systematically probed, culminating in a set of design considerations for controlling the shape of gold nanoparticles. Chapter 5 investigates the role of excitation wavelength in controlling the rate of silver ion reduction in the plasmon-mediated synthesis of silver nanoparticles and describes the synthesis of silver cubes with an unusual twinning structure. Finally, Chapter 6 combines the mechanistic insights gained in Chapters 2-5 to address a standing challenge in shape-controlled gold nanoparticle synthesis: the direct

  19. Earth's continental crustal gold endowment

    NASA Astrophysics Data System (ADS)

    Frimmel, H. E.

    2008-03-01

    The analysis of the temporal distribution of gold deposits, combined with gold production data as well as reserve and resource estimates for different genetic types of gold deposit, revealed that the bulk of the gold known to be concentrated in ore bodies was added to the continental crust during a giant Mesoarchaean gold event at a time (3 Ga) when the mantle temperature reached a maximum and the dominant style of tectonic movement changed from vertical, plume-related to subhorizontal plate tectonic. A magmatic derivation of the first generation of crustal gold from a relatively hot mantle that was characterized by a high degree of partial melting is inferred from the gold chemistry, specifically high Os contents. While a large proportion of that gold is still present in only marginally modified palaeoplacer deposits of the Mesoarchaean Witwatersrand Basin in South Africa, accounting for about 40% of all known gold, the remainder has been recycled repeatedly on a lithospheric scale, predominantly by plate-tectonically induced magmatic and hydrothermal fluid circulation, to produce the current variety of gold deposit types. Post-Archaean juvenile gold addition to the continental crust has been limited, but a mantle contribution to some of the largest orogenic or intrusion-related gold deposits is indicated, notably for the Late Palaeozoic Tien Shan gold province. Magmatic fluids in active plate margins seem to be the most effective transport medium for gold mobilization, giving rise to a large proportion of volcanic-arc related gold deposits. Due to their generally shallow crustal level of formation, they have a low preservation potential. In contrast, those gold deposits that form at greater depth are more widespread also in older rocks. This explains the high proportion of orogenic (including intrusion-related) gold (32%) amongst all known gold deposits. The overall proportion of gold concentrated in known ore bodies is only 7 × 10- 7 of the estimated total

  20. Gold and silver nanoparticles from Trianthema decandra: synthesis, characterization, and antimicrobial properties.

    PubMed

    Geethalakshmi, R; Sarada, D V L

    2012-01-01

    There is an increasing commercial demand for nanoparticles due to their wide applicability in various markets, including medicine, catalysis, electronics, chemistry, and energy. In this report, a simple and ecofriendly chemical reaction for the synthesis of gold and silver nanoparticles from Trianthema decandra (Aizoaceae) has been developed. On treatment of aqueous solutions containing chloroauric acid or silver nitrate with root extract of T. decandra, stable gold or silver nanoparticles were rapidly formed. The kinetics of reduction of gold and silver ions during the reaction was analyzed by ultraviolet-visible spectroscopy. Field emission-scanning electron microscopy showed formation of gold nanoparticles in various shapes, including spherical, cubical, triangular, and hexagonal, while silver nanoparticles were spherical. The size of the gold nanoparticles was 33-65 nm and that of the silver nanoparticles was 36-74 nm. Energy dispersive x-ray and Fourier transform infrared spectroscopy confirmed the presence of metallic gold and metallic silver in the respective nanoparticles. The antimicrobial properties of the synthesized nanoparticles were analyzed using the Kirby-Bauer method. The results show varied susceptibility of microorganisms to the gold and silver nanoparticles. It is believed that phytochemicals present in T. decandra extract reduce the silver and gold ions into metallic nanoparticles. This strategy reduces the cost of production and the environmental impact. The silver and gold nanoparticles formed showed strong activity against all microorganisms tested.

  1. Gold and silver nanoparticles from Trianthema decandra: synthesis, characterization, and antimicrobial properties

    PubMed Central

    Geethalakshmi, R; Sarada, DVL

    2012-01-01

    Background There is an increasing commercial demand for nanoparticles due to their wide applicability in various markets, including medicine, catalysis, electronics, chemistry, and energy. In this report, a simple and ecofriendly chemical reaction for the synthesis of gold and silver nanoparticles from Trianthema decandra (Aizoaceae) has been developed. Methods and results On treatment of aqueous solutions containing chloroauric acid or silver nitrate with root extract of T. decandra, stable gold or silver nanoparticles were rapidly formed. The kinetics of reduction of gold and silver ions during the reaction was analyzed by ultraviolet-visible spectroscopy. Field emission-scanning electron microscopy showed formation of gold nanoparticles in various shapes, including spherical, cubical, triangular, and hexagonal, while silver nanoparticles were spherical. The size of the gold nanoparticles was 33–65 nm and that of the silver nanoparticles was 36–74 nm. Energy dispersive x-ray and Fourier transform infrared spectroscopy confirmed the presence of metallic gold and metallic silver in the respective nanoparticles. The antimicrobial properties of the synthesized nanoparticles were analyzed using the Kirby-Bauer method. The results show varied susceptibility of microorganisms to the gold and silver nanoparticles. Conclusion It is believed that phytochemicals present in T. decandra extract reduce the silver and gold ions into metallic nanoparticles. This strategy reduces the cost of production and the environmental impact. The silver and gold nanoparticles formed showed strong activity against all microorganisms tested. PMID:23091381

  2. Gold Nanoparticle Microwave Synthesis

    SciTech Connect

    Krantz, Kelsie E.; Christian, Jonathan H.; Coopersmith, Kaitlin; Washington, II, Aaron L.; Murph, Simona H.

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  3. 'Cascade Gold' raspberry

    USDA-ARS?s Scientific Manuscript database

    ‘Cascade Gold’ is a new gold fruited, floricane fruiting raspberry cultivar (Rubus idaeus L.) jointly released by Washington State University (WSU), Oregon State University (OSU) and the U.S. Department of Agriculture (USDA). It has been evaluated at Puyallup, Wash. in plantings from 1988 to 2008. ...

  4. Digging for Gold

    ERIC Educational Resources Information Center

    Waters, John K.

    2012-01-01

    In the case of higher education, the hills are more like mountains of data that "we're accumulating at a ferocious rate," according to Gerry McCartney, CIO of Purdue University (Indiana). "Every higher education institution has this data, but it just sits there like gold in the ground," complains McCartney. Big Data and the new tools people are…

  5. Digging for Gold

    ERIC Educational Resources Information Center

    Waters, John K.

    2012-01-01

    In the case of higher education, the hills are more like mountains of data that "we're accumulating at a ferocious rate," according to Gerry McCartney, CIO of Purdue University (Indiana). "Every higher education institution has this data, but it just sits there like gold in the ground," complains McCartney. Big Data and the new tools people are…

  6. GOLD PRESSURE VESSEL SEAL

    DOEpatents

    Smith, A.E.

    1963-11-26

    An improved seal between the piston and die member of a piston-cylinder type pressure vessel is presented. A layer of gold, of sufficient thickness to provide an interference fit between the piston and die member, is plated on the contacting surface of at least one of the members. (AEC)

  7. Gold and gold working in Late Bronze Age Northern Greece.

    PubMed

    Vavelidis, M; Andreou, S

    2008-04-01

    Numerous objects of gold displaying an impressive variety of types and manufacturing techniques are known from the Late Bronze Age (LBA) contexts of Mycenaean Greece, but very little is known about the origin and processing of gold during the second millennium B.C: . Ancient literature and recent research indicate that northern Greece is probably the richest gold-bearing region in Greece, and yet, very little evidence exists regarding the exploitation of its deposits and the production as well as use of gold in the area during prehistory. The unusual find of a group of small stone crucibles at the prehistoric settlement of Thessaloniki Toumba, one with visible traces of gold melting, proves local production and offers a rare opportunity to examine the process of on-site gold working. Furthermore, the comparison of the chemical composition of prehistoric artefacts from two settlements with those of gold deposits in their immediate areas supports the local extraction of gold and opens up the prospect for some of the Mycenaean gold to have originated in northern Greece. The scarcity of gold items in northern Greek LBA contexts may not represent the actual amount of gold produced and consumed, but could be a result of the local social attitudes towards the circulation and deposition of artefacts from precious metals.

  8. Gold and gold working in Late Bronze Age Northern Greece

    NASA Astrophysics Data System (ADS)

    Vavelidis, M.; Andreou, S.

    2008-04-01

    Numerous objects of gold displaying an impressive variety of types and manufacturing techniques are known from the Late Bronze Age (LBA) contexts of Mycenaean Greece, but very little is known about the origin and processing of gold during the second millennium b.c. Ancient literature and recent research indicate that northern Greece is probably the richest gold-bearing region in Greece, and yet, very little evidence exists regarding the exploitation of its deposits and the production as well as use of gold in the area during prehistory. The unusual find of a group of small stone crucibles at the prehistoric settlement of Thessaloniki Toumba, one with visible traces of gold melting, proves local production and offers a rare opportunity to examine the process of on-site gold working. Furthermore, the comparison of the chemical composition of prehistoric artefacts from two settlements with those of gold deposits in their immediate areas supports the local extraction of gold and opens up the prospect for some of the Mycenaean gold to have originated in northern Greece. The scarcity of gold items in northern Greek LBA contexts may not represent the actual amount of gold produced and consumed, but could be a result of the local social attitudes towards the circulation and deposition of artefacts from precious metals.

  9. Spectroscopic study of gold nanoparticle formation through high intensity laser irradiation of solution

    SciTech Connect

    Nakamura, Takahiro Sato, Shunichi; Herbani, Yuliati; Ursescu, Daniel; Banici, Romeo; Dabu, Razvan Victor

    2013-08-15

    A spectroscopic study of the gold nanoparticle (NP) formation by high-intensity femtosecond laser irradiation of a gold ion solution was reported. The effect of varying energy density of the laser on the formation of gold NPs was also investigated. The surface plasmon resonance (SPR) peak of the gold nanocolloid in real-time UV-visible absorption spectra during laser irradiation showed a distinctive progress; the SPR absorption peak intensity increased after a certain irradiation time, reached a maximum and then gradually decreased. During this absorption variation, at the same time, the peak wavelength changed from 530 to 507 nm. According to an empirical equation derived from a large volume of experimental data, the estimated mean size of the gold NPs varied from 43.4 to 3.2 nm during the laser irradiation. The mean size of gold NPs formed at specific irradiation times by transmission electron microscopy showed the similar trend as that obtained in the spectroscopic analysis. From these observations, the formation mechanism of gold NPs during laser irradiation was considered to have two steps. The first is a reduction of gold ions by reactive species produced through a non-linear reaction during high intensity laser irradiation of the solution; the second is the laser fragmentation of produced gold particles into smaller pieces. The gold nanocolloid produced after the fragmentation by excess irradiation showed high stability for at least a week without the addition of any dispersant because of the negative charge on the surface of the nanoparticles probably due to the surface oxidation of gold nanoparticles. A higher laser intensity resulted in a higher efficiency of gold NPs fabrication, which was attributed to a larger effective volume of the reaction.

  10. A rationale on the role of intermediate Au(III)-vitamin C complexation in the production of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Zümreoglu-Karan, B.

    2009-07-01

    Preparation of gold nanoparticles, particularly gold nanorods, by wet chemistry processes involves gold seeds, an Au(III) salt, structure directing surfactants, and metal ion additives in the growth solution into which a weak reducing agent is added. The most commonly employed weak reducing agent is l-ascorbic acid (vitamin C) which is known to reduce many metal ions in the solution phase and form complexes with relatively low stability constants. A purple-gray gold-ascorbate compound, obtained from the reaction of sodium tetrachloroaurate(III) with sodium ascorbate, is now reported. The compound possesses the expected structural features of vitamin C-metal complexes as verified by its 13C CP-MAS NMR spectrum. A discussion is also presented on the possibility of gold-ascorbate complexation operating in gold nanoparticle formation.

  11. Gold Nanoparticles Cytotoxicity

    NASA Astrophysics Data System (ADS)

    Mironava, Tatsiana

    Over the last two decades gold nanoparticles (AuNPs) have been used for many scientific applications and have attracted attention due to the specific chemical, electronic and optical size dependent properties that make them very promising agents in many fields such as medicine, imagine techniques and electronics. More specifically, biocompatible gold nanoparticles have a huge potential for use as the contrast augmentation agent in X-ray Computed Tomography and Photo Acoustic Tomography for early tumor diagnostic as well these nanoparticles are extensively researched for enhancing the targeted cancer treatment effectiveness such as photo-thermal and radiotherapy. In most biomedical applications biocompatible gold nanoparticles are labeled with specific tumor or other pathology targeting antibodies and used for site specific drug delivery. However, even though gold nanoparticles poses very high level of anti cancer properties, the question of their cytotoxicity ones they are released in normal tissue has to be researched. Moreover, the huge amount of industrially produced gold nanoparticles raises the question of these particles being a health hazard, since the penetration is fairly easy for the "nano" size substances. This study focuses on the effect of AuNPs on a human skin tissue, since it is fall in both categories -- the side effects for biomedical applications and industrial workers and users' exposure during production and handling. Therefore, in the present project, gold nanoparticles stabilized with the biocompatible agent citric acid were generated and characterized by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). The cytotoxic effect of AuNPs release to healthy skin tissue was modeled on 3 different cell types: human keratinocytes, human dermal fibroblasts, and human adipose derived stromal (ADS) cells. The AuNPs localization inside the cell was found to be cell type dependent. Overall cytotoxicity was found to be dependent

  12. Bio-mediated synthesis, characterization and cytotoxicity of gold nanoparticles.

    PubMed

    Klekotko, Magdalena; Matczyszyn, Katarzyna; Siednienko, Jakub; Olesiak-Banska, Joanna; Pawlik, Krzysztof; Samoc, Marek

    2015-11-21

    We report here a "green" approach for the synthesis of gold nanoparticles (GNPs) in which the Mentha piperita extract was applied for the bioreduction of chloroauric acid and the stabilization of the formed nanostructures. The obtained GNPs were characterized by UV-Vis absorption spectroscopy and transmission electron microscopy (TEM). The reduction of gold ions with the plant extract leads to the production of nanoparticles with various shapes (spherical, triangular and hexagonal) and sizes (from 10 to 300 nm). The kinetics of the reaction was monitored and various conditions of the synthesis were investigated. As a result, we established protocols optimized towards the synthesis of nanospheres and nanoprisms of gold. The cytotoxic effect of the obtained gold nanoparticles was studied by performing MTT assay, which showed lower cytotoxicity of the biosynthesized GNPs compared to gold nanorods synthesized using the usual seed-mediated growth. The results suggest that the synthesis using plant extracts may be a useful method to produce gold nanostructures for various biological and medical applications.

  13. Toxic effects of gold nanoparticles on Salmonella typhimurium bacteria

    PubMed Central

    Wang, Shuguang; Lawson, Rasheeda; Ray, Paresh C; Yu, Hongtao

    2013-01-01

    Nanometer-sized gold, due to its beautiful and bountiful color and unique optical properties, is a versatile material for many industrial and societal applications. We have studied the effect of gold nanoparticles on Salmonella typhimurium strain TA 102. The gold nanoparticles in solution prepared using the citrate reduction method is found not to be toxic or mutagenic but photomutagenic to the bacteria; however, careful control experiments indicate that the photomutagenicity is due to the co-existing citrate and Au3+ ions, not due to the gold nanoparticle itself. Au3+ is also found to be photomutagenic to the bacteria at concentrations lower than 1 µM, but toxic at higher concentrations. The toxicity of Au3+ is enhanced by light irradiation. The photomutagenicity of both citrate and Au3+ is likely due to the formation of free radicals, as a result of light-induced citrate decarboxylation or Au3+ oxidation of co-existing molecules. Both processes can generate free radicals that may cause DNA damage and mutation. Studies of the interaction of gold nanoparticles with the bacteria indicate that gold nanoparticles can be absorbed onto the bacteria surface but not able to penetrate the bacteria wall to enter the bacteria. PMID:21415096

  14. A possible new origin of long absorption tail in Nd-doped yttrium aluminum garnet induced by 15 MeV gold-ion irradiation and heat treatment

    SciTech Connect

    Amekura, Hiro; Akhmadaliev, Shavkat; Zhou, Shengqiang; Chen, Feng

    2016-05-07

    When ion irradiation introduces point-defects in semiconductors/insulators, discrete energy levels can be introduced in the bandgap, and then optical transitions whose energies are lower than the bandgap become possible. The electronic transitions between the discrete level and the continuous host band are observed as a continuous tail starting from the fundamental edge. This is the well-known mechanism of the absorption tail close to the band-edge observed in many semiconductors/insulators. In this paper, we propose another mechanism for the absorption tail, which is probably active in Nd-doped yttrium aluminum garnet (Nd:YAG) after ion irradiation and annealing. A Nd:YAG bulk crystal was irradiated with 15 MeV Au{sup 5+} ions to a fluence of 8 × 10{sup 14} ions/cm{sup 2}. The irradiation generates an amorphous layer of ∼3 μm thick with refractive index reduction of Δn = −0.03. Thermal annealing at 1000 °C induces recrystallization to randomly aligned small crystalline grains. Simultaneously, an extraordinarily long absorption tail appeared in the optical spectrum covering from 0.24 to ∼2 μm without fringes. The origin of the tail is discussed based on two models: (i) conventional electronic transitions between defect levels and YAG host band and (ii) enhanced light scattering by randomly aligned small grains.

  15. Biosynthesis of gold nanoparticles: A green approach.

    PubMed

    Ahmed, Shakeel; Annu; Ikram, Saiqa; Yudha S, Salprima

    2016-08-01

    Nanotechnology is an immensely developing field due to its extensive range of applications in different areas of technology and science. Different types of methods are employed for synthesis of nanoparticles due to their wide applications. The conventional chemical methods have certain limitations with them either in the form of chemical contaminations during their syntheses procedures or in later applications and use of higher energy. During the last decade research have been focussed on developing simple, clean, non-toxic, cost effective and eco-friendly protocols for synthesis of nanoparticles. In order to get this objective, biosynthesis methods have been developed in order to fill this gap. The biosynthesis of nanoparticles is simple, single step, eco-friendly and a green approach. The biochemical processes in biological agents reduce the dissolved metal ions into nano metals. The various biological agents like plant tissues, fungi, bacteria, etc. are used for biosynthesis for metal nanoparticles. In this review article, we summarised recent literature on biosynthesis of gold nanoparticles which have revolutionised technique of synthesis for their applications in different fields. Due to biocompatibility of gold nanoparticles, it has find its applications in biomedical applications. The protocol and mechanism of biosynthesis of gold nanoparticles along with various applications have also been discussed.

  16. Spiky gold nanoshells.

    PubMed

    Sanchez-Gaytan, Brenda L; Park, So-Jung

    2010-12-21

    We report a high-yield synthetic method for a new type of metal nanostructure, spiky gold nanoshells, which combine the morphological characteristics of hollow metal nanoshells and nanorods. Our method utilizes block copolymer assemblies and polymer beads as templates for the growth of spiky nanoshells. Various shapes of spiky metal nanoshells were prepared in addition to spherical nanoshells by using block copolymer assemblies such as rod-like micelles, vesicles, and bilayers as templates. Furthermore, spiky gold shells encapsulating magnetic nanoparticles or quantum dots were prepared based on the ability of block copolymers to self-assemble with various types of nanoparticles and molecules. The capability to encapsulate other materials in the core, the shape tunability, and the highly structured surface of spiky nanoshells should benefit a range of imaging, sensing, and medical applications of metal nanostructures.

  17. 'Pot of Gold'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image taken by the panoramic camera on the Mars Exploration Rover Spirit shows the rock dubbed 'Pot of Gold' (upper left), located near the base of the 'Columbia Hills' in Gusev Crater. The rock's nodules and layered appearance have inspired rover team members to investigate the rock's detailed chemistry in coming sols. This picture was taken on sol 158 (June 13, 2004).

  18. Radioactive gold ring dermatitis

    SciTech Connect

    Miller, R.A.; Aldrich, J.E. )

    1990-08-01

    A superficial squamous cell carcinoma developed in a woman who wore a radioactive gold ring for more than 30 years. Only part of the ring was radioactive. Radiation dose measurements indicated that the dose to basal skin layer was 2.4 Gy (240 rad) per week. If it is assumed that the woman continually wore her wedding ring for 37 years since purchase, she would have received a maximum dose of approximately 4600 Gy.

  19. 'Pot of Gold'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image taken by the panoramic camera on the Mars Exploration Rover Spirit shows the rock dubbed 'Pot of Gold' (upper left), located near the base of the 'Columbia Hills' in Gusev Crater. The rock's nodules and layered appearance have inspired rover team members to investigate the rock's detailed chemistry in coming sols. This picture was taken on sol 158 (June 13, 2004).

  20. One-pot synthesis of gold nanorods by ultrasonic irradiation: the effect of pH on the shape of the gold nanorods and nanoparticles.

    PubMed

    Okitsu, Kenji; Sharyo, Kohei; Nishimura, Rokuro

    2009-07-21

    A novel one-pot synthesis method to prepare gold nanorods was developed by using sonochemical reduction of gold ions in aqueous solution. The size of the sonochemically formed gold nanorods was less than 50 nm, and their average aspect ratio decreased with increasing pH of the solution. The aspect ratio measured was 3.0 at pH 3.5, 2.2 at pH 5.0, and 2.1 at pH 6.5. At pH 7.7, irregular shaped gold nanoparticles were formed. At pH 9.8, most of the particles formed had a spherical shape with a smaller particle size than those formed in the lower pH solutions. Based on the obtained results, it was clear that the size and shape of the sonochemically formed gold nanoparticles are dramatically dependent on the pH value of the solution.

  1. Mechanisms of gold recovery from aqueous solutions using a novel tannin gel adsorbent synthesized from natural condensed tannin.

    PubMed

    Ogata, Takeshi; Nakano, Yoshio

    2005-11-01

    We report a novel recovery system for gold (Au), which is one of the precious metals contained in electronic scrap, utilizing tannin gel particles. Tannin gel particles were prepared by a process of cross-linking of condensed tannin (wattle tannin), which is a ubiquitous and inexpensive natural material having many hydroxyl groups. The adsorption mechanism of gold onto tannin gel particles was elucidated: the adsorption of gold takes place through the reduction of trivalent gold ions to metallic gold on the surface of tannin gel particles, which is accompanied by the simultaneous oxidization of the hydroxyl groups of tannin gel. Additionally, the adsorption capacity of gold was found to be extremely high, 8000 mg-Au/g-dry gel. The outstanding characteristics of tannin gel particles for gold offers the possibility of efficient recovery of other precious metals.

  2. Setup and performance of RHIC for the 2008 run with deuteron-gold collisions.

    SciTech Connect

    Gardner,C.; Abreu, N.P.; Ahren, L.; Alessi, J.; Bai, M.; et al.

    2008-06-23

    This year (2008) deuterons and gold ions were collided in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) for the first time since 2003. The setup and performance of the collider for the 2008 run is reviewed with a focus on improvements that have led to an order of magnitude increase in luminosity over that achieved in the 2003 run.

  3. Gold-gold junction electrodes:the disconnection method.

    PubMed

    Dale, Sara E C; Vuorema, Anne; Ashmore, Ellen M Y; Kasprzyk-Horden, Barbara; Sillanpää, Mika; Denuault, Guy; Marken, Frank

    2012-02-01

    The formation of gold-gold junction electrodes for application in electroanalysis is described here based on electro-deposition from a non-cyanide gold plating bath. Converging growth of two hemispherical gold deposits on two adjacent platinum microelectrodes (both 100 µm diameter in glass, ca. 45 µm gap) followed by careful etching in aqueous chloride solution was employed. During growth both gold hemispheres "connect" and during etching "disconnection" is evident in a drop in current. Gold-gold junctions with sub-micron gaps are formed and applied for the electroanalytical detection of sub-micromolar concentrations of hydroquinone in 0.1 M phosphate buffer pH 7 (E(rev) = 0.04 V vs. SCE) and sub-micromolar concentration of dopamine in 0.1 M phosphate buffer pH 7 (E(rev) = 0.14 V vs. SCE). The potential future uses in analysis and limitations of gold-gold junction electrodes are discussed. Copyright © 2012 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  4. Annealing Effects on the Surface Plasmon of MgO Implanted with Gold

    NASA Technical Reports Server (NTRS)

    Ueda, A.; Mu, R.; Tung, Y. -S.; Henderson, D. O.; White, C. W.; Zuhr, R. A.; Zhu, Jane G.; Wang, P. W.

    1997-01-01

    Gold ion implantation was carried out with the energy of 1.1 MeV into (100) oriented MgO single crystal. Implanted doses are 1, 3, 6, 10 x 10(exp 16) ions/sq cm. The gold irradiation results in the formation of gold ion implanted layer with a thickness of 0.2 microns and defect formation. In order to form gold colloids from the as-implanted samples, we annealed the gold implanted MgO samples in three kinds of atmospheres: (1)Ar only, (2)H2 and Ar, and (3)O2 and Ar. The annealing over 1200 C enhanced the gold colloid formation which shows surface plasmon resonance band of gold. The surface plasmon bands of samples annealed in three kinds of atmospheres were found to be at 535 nm (Ar only), 524 nm(H2+Ar), and 560 nm (02+Ar), The band positions of surface plasmon can be reversibly changed by an additional annealing.

  5. 16 CFR Appendix to Part 23 - Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate, Silver, and Platinum Industry...—Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold...

  6. 16 CFR Appendix to Part 23 - Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate, Silver, and Platinum Industry...—Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold...

  7. 16 CFR Appendix to Part 23 - Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate, Silver, and Platinum Industry...—Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold...

  8. 16 CFR Appendix to Part 23 - Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate, Silver, and Platinum Industry...—Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold...

  9. 16 CFR Appendix to Part 23 - Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate, Silver, and Platinum Industry...—Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold...

  10. Bats, cyanide, and gold mining

    USGS Publications Warehouse

    Clark, Donald R.

    1991-01-01

    Although the boom days of prospectors and gold nuggets are long gone, modern technology enables gold to continue to be extracted from ore. Unfortunately, the extraction method has often been disastrous for bats and other wildlife, an issue I first became aware of in early 1989. Phone calls from Drs. Merlin Tuttle and Elizabeth Pierson, a BCI member and bat researcher from Berkeley, California, alerted me that bats were dying from apparent cyanide poisoning at gold mines in the western United States.

  11. United States gold resource profile.

    USGS Publications Warehouse

    Cargill, S.M.

    1981-01-01

    After a brief background to US gold production, explains how this has a bearing on data used to estimate resources, and gives a resource profile. Concludes that the quantity of remaining gold resources that can be mined at grades that are now or soon will be economic could be sufficient to supply the US for the next 45yr, but reluctance to invest in new processes may mean a continuation of the 80% gold production deficit. -after Author

  12. Industry Forum Navy Gold Coast

    DTIC Science & Technology

    2014-08-13

    NAVFAC Southwest Lora E. Morrow Deputy for Small Business NAVFAC Southwest NAVFAC Southwest Industry Forum Navy Gold Coast August...REPORT DATE 13 AUG 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Industry Forum Navy Gold Coast 5a...S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES NDIA 27th Navy Gold Coast

  13. Gold granuloma after accidental implantation.

    PubMed Central

    Scott, F R; Dhillon, A P; Lewin, J F; Flavell, W; Laws, I M

    1995-01-01

    A case, in a 66 year old man, of a florid granulomatous reaction to gold dental alloy presenting about 20 years after accidental implantation in the oral mucosa of the lip is reported. Subsequent energy dispersive analysis confirmed the presence of a high nobility gold dental alloy. Florid granulomatosis has only rarely been reported in association with gold. Possible explanations for the delay in presentation include alteration of immune status or the development of hypersensitivity with components of the gold dental alloy acting as haptens. Images PMID:8543638

  14. Surface-stabilized gold nanocatalysts

    DOEpatents

    Dai, Sheng [Knoxville, TN; Yan, Wenfu [Oak Ridge, TN

    2009-12-08

    A surface-stabilized gold nanocatalyst includes a solid support having stabilizing surfaces for supporting gold nanoparticles, and a plurality of gold nanoparticles having an average particle size of less than 8 nm disposed on the stabilizing surfaces. The surface-stabilized gold nanocatalyst provides enhanced stability, such as at high temperature under oxygen containing environments. In one embodiment, the solid support is a multi-layer support comprising at least a first layer having a second layer providing the stabilizing surfaces disposed thereon, the first and second layer being chemically distinct.

  15. 31 CFR 100.4 - Gold coin and gold certificates in general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance: Treasury 1 2011-07-01 2011-07-01 false Gold coin and gold certificates in... MONETARY OFFICES, DEPARTMENT OF THE TREASURY EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued...

  16. 31 CFR 100.4 - Gold coin and gold certificates in general.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance: Treasury 1 2013-07-01 2013-07-01 false Gold coin and gold certificates in... MONETARY OFFICES, DEPARTMENT OF THE TREASURY EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued...

  17. 31 CFR 100.4 - Gold coin and gold certificates in general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Gold coin and gold certificates in... EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued before January 30, 1934, are exchangeable, as...

  18. 31 CFR 100.4 - Gold coin and gold certificates in general.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 1 2014-07-01 2014-07-01 false Gold coin and gold certificates in... MONETARY OFFICES, DEPARTMENT OF THE TREASURY EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued...

  19. 31 CFR 100.4 - Gold coin and gold certificates in general.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance: Treasury 1 2012-07-01 2012-07-01 false Gold coin and gold certificates in... MONETARY OFFICES, DEPARTMENT OF THE TREASURY EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued...

  20. Microscale Heat Transfer Transduced by Surface Plasmon Resonant Gold Nanoparticles

    PubMed Central

    Roper, D. Keith; Ahn, W.; Hoepfner, M.

    2008-01-01

    Visible radiation at resonant frequencies is transduced to thermal energy by surface plasmons on gold nanoparticles. Temperature in ≤10-microliter aqueous suspensions of 20-nanometer gold particles irradiated by a continuous wave Ar+ ion laser at 514 nm increased to a maximum equilibrium value. This value increased in proportion to incident laser power and in proportion to nanoparticle content at low concentration. Heat input to the system by nanoparticle transduction of resonant irradiation equaled heat flux outward by conduction and radiation at thermal equilibrium. The efficiency of transducing incident resonant light to heat by microvolume suspensions of gold nanoparticles was determined by applying an energy balance to obtain a microscale heat-transfer time constant from the transient temperature profile. Measured values of transduction efficiency were increased from 3.4% to 9.9% by modulating the incident continuous wave irradiation. PMID:19011696

  1. Gold-implanted shallow conducting layers in polymethylmethacrylate

    SciTech Connect

    Teixeira, F. S.; Salvadori, M. C.; Cattani, M.; Brown, I. G.

    2009-03-15

    PMMA (polymethylmethacrylate) was ion implanted with gold at very low energy and over a range of different doses using a filtered cathodic arc metal plasma system. A nanometer scale conducting layer was formed, fully buried below the polymer surface at low implantation dose, and evolving to include a gold surface layer as the dose was increased. Depth profiles of the implanted material were calculated using the Dynamic TRIM computer simulation program. The electrical conductivity of the gold-implanted PMMA was measured in situ as a function of dose. Samples formed at a number of different doses were subsequently characterized by Rutherford backscattering spectrometry, and test patterns were formed on the polymer by electron beam lithography. Lithographic patterns were imaged by atomic force microscopy and demonstrated that the contrast properties of the lithography were well maintained in the surface-modified PMMA.

  2. Notes on dumping gold beam in the AGS

    SciTech Connect

    Gardner, C.J.; Ahrens, L.; Thieberger, P.

    2010-08-01

    Localized losses of gold beam in the AGS during RHIC Run 8 produced vacuum leaks which required the replacement of several vacuum chambers. A review of what happened and why was given by Leif Ahrens at the Run 8 Retreat. The following notes trace the subsequent development of clean dumping of gold beam on the beam dump in the J10 straight. The novel idea of stripping Au77+ ions in order to put them directly into the upstream face of the dump was introduced by Leif Ahrens and developed by all three of us. George Mahler made the actual stripping device and Dave Gassner developed its control. Leif Ahrens successfully commissioned the device with gold beam during Run 10. The reader may find it helpful to first view the figures herein and then refer to the text for details.

  3. Facile green synthesis of variable metallic gold nanoparticle using Padina gymnospora, a brown marine macroalga

    NASA Astrophysics Data System (ADS)

    Singh, M.; Kalaivani, R.; Manikandan, S.; Sangeetha, N.; Kumaraguru, A. K.

    2013-04-01

    The process of development of reliable and eco-friendly metallic nanoparticles is an important step in the field of nanotechnology. To achieve this, use of natural sources like biological systems becomes essential. In the present work, extracellular biosynthesis of gold nanoparticles using Padina gymnospora has been attempted and achieved rapid formation of gold nanoparticles in a short duration. The UV-vis spectrum of the aqueous medium containing gold ion showed peak at 527 nm corresponding to the plasmon absorbance of gold nanoparticles. Scanning electron microscopy showed the formation of well-dispersed gold nanoparticles. FTIR spectra of brown alga confirmed that hydroxyl groups present in the algal polysaccharides were involved in the gold bioreduction. AFM analysis showed the results of particle sizes (53-67 nm) and average height of the particle roughness (60.0 nm). X-ray diffraction (XRD) spectrum of the gold nanoparticles exhibited Bragg reflections corresponding to gold nanoparticles. This environment-friendly method of biological gold nanoparticle synthesis can be applied potentially in various products that directly come in contact with the human body, such as cosmetics, and foods and consumer goods, besides medical applications.

  4. Chemical analysis of the superatom model for sulfur-stabilized gold nanoparticles.

    PubMed

    Reimers, Jeffrey R; Wang, Yun; Cankurtaran, Burak O; Ford, Michael J

    2010-06-23

    The superatom model for nanoparticle structure is shown to be inadequate for the prediction of the thermodynamic stability of gold nanoparticles. The observed large HOMO-LUMO gaps for stable nanoparticles predicted by this model are, for sulfur-stabilized gold nanoparticles, attributed to covalent interactions of the metal with thiyl adsorbate radicals rather than ionic interactions with thiolate adsorbate ions, as is commonly presumed. In particular, gold adatoms in the stabilizing layer are shown to be of Au(0) nature, subtle but significantly different from the atoms of the gold core owing to the variations in the proportion of gold-gold and gold-sulfur links that form. These interactions explain the success of the superatom model in describing the electronic structure of both known and informatory nanoparticle compositions. Nanoparticle reaction energies are, however, found not to correlate with the completion of superatom shells. Instead, local structural effects are found to dominate the chemistry and in particular the significantly different chemical properties of gold nanoparticle and bulk surfaces. These conclusions are drawn from density-functional-theory calculations for the Au(102)(p-mercaptobenzoic acid)(44) nanoparticle based on the X-ray structure (Jadzinsky, P. D.; et al. Science 2007, 318, 430), as well calculations for the related Au(102)(S(*)-CH(3))(44) nanoparticle, for the inner gold-cluster cores, for partially and overly reacted cores, and for Au(111) surface adsorbates.

  5. Astronauts Congressional Gold Medal

    NASA Image and Video Library

    2009-07-20

    Apollo 11 Astronauts, from left, Michael Collins, Neil Armstrong, Buzz Aldrin and NASA Administrator Charles Bolden attend the U.S House of Representatives Committee on Science and Technology tribute to the Apollo 11 Astronauts at the Cannon House Office Building on Capitol Hill, Tuesday, July 21, 2009 in Washington. The committee presented the three Apollo 11 astronauts with a framed copy of House Resolution 607 honoring their achievement, and announced passage of legislation awarding them and John Glenn the Congressional Gold Medal. Photo Credit: (NASA/Bill Ingalls)

  6. Astronauts Congressional Gold Medal

    NASA Image and Video Library

    2009-07-20

    Apollo 11 Astronauts, from left, Michael Collins, Neil Armstrong, and Buzz Aldrin stand in recognition of Astronaut John Glenn during the U.S House of Representatives Committee on Science and Technology tribute to the Apollo 11 Astronauts at the Cannon House Office Building on Capitol Hill, Tuesday, July 21, 2009 in Washington. The committee presented the three Apollo 11 astronauts with a framed copy of House Resolution 607 honoring their achievement, and announced passage of legislation awarding them and John Glenn the Congressional Gold Medal. Photo Credit: (NASA/Bill Ingalls)

  7. One-dimensional fossil-like γ-Fe2O3@carbon nanostructure: preparation, structural characterization and application as adsorbent for fast and selective recovery of gold ions from aqueous solution

    NASA Astrophysics Data System (ADS)

    Gunawan, Poernomo; Xiao, Wen; Hao Chua, Marcus Wen; Poh-Choo Tan, Cheryl; Ding, Jun; Zhong, Ziyi

    2016-10-01

    One-dimensional (1D) magnetic nanostructures with high thermal stability have important industrial applications, but their fabrication remains a big challenge. Herein we demonstrate a scalable approach for the preparation of stable 1D γ-Fe2O3@carbon, which is also applicable for other metal oxide-core and carbon-shell nanostructures, such as 1D TiO2@carbon. One-dimensional ferric oxyhydroxide (α-FeO(OH)) was initially prepared by a hydrothermal method, followed by carbon coating through hydrothermal treatment of the resulting metal oxide in glucose solution. After calcination in N2 gas at 500 °C and subsequent exposure to air, the initial carbon-coated 1D α-Fe2O3 was converted to 1D γ-Fe2O3@carbon, which was very stable without any observed changes even after 1.5 years of storage under ambient conditions. The materials were then used as adsorbents and found to be highly selective towards Au (III) adsorption, of which the maximum adsorption capacity is about 600 mg Au/g sorbent (1132 mg Au/g carbon). The spent sorbent containing Au after adsorption can be readily collected by applying a magnetic field due to the presence of the magnetic core, and the adsorbed Au particles are subsequently recovered after the combustion and dissolution of the sorbent. This work demonstrates not only a facile approach to the fabrication of robust 1D magnetic materials with a stable carbon shell, but also a possible cyanide-free process for the fast and selective recovery of gold from electronic waste and industrial water.

  8. An unusual red-to-brown colorimetric sensing method for ultrasensitive silver(I) ion detection based on a non-aggregation of hyperbranched polyethylenimine derivative stabilized gold nanoparticles.

    PubMed

    Liu, Yi; Liu, Yang; Li, Zhongfa; Liu, Junshen; Xu, Li; Liu, Xunyong

    2015-08-07

    Here we have developed a facile and rapid colorimetric method for the sensitive and selective detection of Ag(+) based on the non-aggregation of gold nanoparticles (Au NPs) capped with hyperbranched polyethylenimine derivatives. In the detection process, an unusual colour change from red to brown was observed due to the formation of Au-Ag core-shell nanoparticles, which was more sensitive than that of the usual colorimetric assays (red to blue) based on the aggregation of Au NPs. After the colour changed, the non-aggregation-based Au-Ag core-shell nanomaterials did not aggregate further and could remain stable for a long time, which was convenient to record, detect and observe. The sensing probe exhibited a drastically long observing time for detecting Ag(+) owing to the stability of the Au-Ag core-shell non-aggregates, high sensitivity with a low detection limit of 8.76 nM by the naked eye and 1.09 nM by using a UV-vis spectrophotometer and a good linear relationship within the range from 1.09 to 109 nM. The colour change of the system is very fast, occurring within 1 to 2 minutes. Moreover, the proposed method also showed a remarkably high selectivity toward Ag(+) and was successfully used in tap water and drinking water samples. Therefore, this unusual colorimetric assay based on the non-aggregation of Au NPs has a great potential as a simple, rapid, sensitive and selective detection method for the detection of Ag(+).

  9. STATUS AND RECENT PERFORMANCE OF THE ACCELERATORS THAT SERVE AS GOLD INJECTOR FOR RHIC.

    SciTech Connect

    AHRENS,L.; ALESSI,J.; VAN ASSELT,W.; BENJAMIN,J.; BLASKIEWICZ,M.; BRENNAN,J.M.; BROWN,K.A.; CARLSON,C.; DELONG,J.; GARDNER,C.J.; GLENN,J.W.; HAYES,T.; ROSER,T.; SMITH,K.S.; STESKI,D.; TSOUPAS,N.; ZENO,K.; ZHANG,S.Y.

    2001-06-18

    The recent successful commissioning and operation [1] of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) requires the injection of gold ions of specified energy and intensity with longitudinal and transverse emittances small enough to meet the luminosity requirements of the collider. Ion beams with the desired characteristics are provided by a series of three accelerators, the Tandem, Booster and AGS. The current status and recent performance of these accelerators are reviewed in this paper.

  10. Mineral resource of the month: gold

    USGS Publications Warehouse

    George, Micheal W.

    2009-01-01

    The article presents information on the valuable mineral called gold. It states that early civilizations valued gold because of its scarcity, durability and characteristics yellow color. By the late 20th century, gold was used as an industrial metal because of its unique physicochemical properties. The U.S. has several productive deposits of gold, including placer, gold-quartz lode, epithermal and Carlin-type gold deposits.

  11. Light-controlled one-sided growth of large plasmonic gold domains on quantum rods observed on the single particle level

    NASA Astrophysics Data System (ADS)

    Carbone, Luigi; Jakab, Arpad; Khalavka, Yuriy; Sönnichsen, Carsten

    2010-02-01

    We create large gold domains (up to 15 nm) exclusively on one side of CdS or CdSe/CdS quantum rods by photoreduction of gold ions under anaerobic conditions. Electrons generated in the semiconductor by UV stimulation migrate to one tip where they reduce gold ions. Large gold domains eventually form; these support efficient plasmon oscillations with a light scattering cross section large enough to visualize single hybrid particles in a dark-field microscope during growth in real time.

  12. Size and shape control in the overgrowth of gold nanorods

    NASA Astrophysics Data System (ADS)

    Ratto, Fulvio; Matteini, Paolo; Rossi, Francesca; Pini, Roberto

    2010-08-01

    We report on a new sustainable approach to manipulate the optical behaviour and geometrical properties of gold nanorods in aqueous solutions by fine control of their overgrowth. In our approach, the overgrowth is realized by modulation of the reduction of the gold ions which are left as Au1+ after the primary step of the synthesis (typically as much as 80% of the gold ions available in the growth solution). The progress of the reduction requires the gradual addition of ascorbic acid, which transforms the Au1+ into Au0 and may be performed in the original growth solution with no need for any further manipulation. By control of the total amount and rate of administration of the ascorbic acid, we prove the possibility to realize a systematic modulation of the average lengths, diameters, shapes (rod or dog-bone like), and light extinction of the nanoparticles. A slow overgrowth leads to a gradual enlargement of the lengths and diameters at almost constant shape. In contrast, a faster overgrowth results into a more complex modification of the overall shape of the gold nanorods.

  13. Antibody-gold cluster conjugates

    DOEpatents

    Hainfeld, J.F.

    1988-06-28

    Antibody- or antibody fragment-gold cluster conjugates are shown wherein the conjugate size can be about 5.0 nm. Methods and reagents are disclosed in which antibodies or Fab' fragments thereof are covalently bound to a stable cluster of gold atoms. 2 figs.

  14. When cyclopropenes meet gold catalysts

    PubMed Central

    Miege, Frédéric

    2011-01-01

    Summary Cyclopropenes as substrates entered the field of gold catalysis in 2008 and have proven to be valuable partners in a variety of gold-catalyzed reactions. The different contributions in this growing research area are summarized in this review. PMID:21804867

  15. Sulfur radical species form gold deposits on Earth

    PubMed Central

    Pokrovski, Gleb S.; Kokh, Maria A.; Guillaume, Damien; Borisova, Anastassia Y.; Gisquet, Pascal; Hazemann, Jean-Louis; Lahera, Eric; Del Net, William; Proux, Olivier; Testemale, Denis; Haigis, Volker; Jonchière, Romain; Seitsonen, Ari P.; Ferlat, Guillaume; Vuilleumier, Rodolphe; Saitta, Antonino Marco; Boiron, Marie-Christine; Dubessy, Jean

    2015-01-01

    Current models of the formation and distribution of gold deposits on Earth are based on the long-standing paradigm that hydrogen sulfide and chloride are the ligands responsible for gold mobilization and precipitation by fluids across the lithosphere. Here we challenge this view by demonstrating, using in situ X-ray absorption spectroscopy and solubility measurements, coupled with molecular dynamics and thermodynamic simulations, that sulfur radical species, such as the trisulfur ion S3−, form very stable and soluble complexes with Au+ in aqueous solution at elevated temperatures (>250 °C) and pressures (>100 bar). These species enable extraction, transport, and focused precipitation of gold by sulfur-rich fluids 10–100 times more efficiently than sulfide and chloride only. As a result, S3− exerts an important control on the source, concentration, and distribution of gold in its major economic deposits from magmatic, hydrothermal, and metamorphic settings. The growth and decay of S3− during the fluid generation and evolution is one of the key factors that determine the fate of gold in the lithosphere. PMID:26460040

  16. High-Yield Synthesis and Applications of Anisotropic Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Vigderman, Leonid

    This work will describe research directed towards the synthesis of anisotropic gold nanoparticles as well as their functionalization and biological applications. The thesis will begin by describing a new technique for the high-yield synthesis of gold nanorods using hydroquinone as a reducing agent. This addresses important limitations of the traditional nanorod synthesis including low yield of gold ions conversion to metallic form and inability to produce rods with longitudinal surface plasmon peak above 850 nm. The use of hydroquinone was also found to improve the synthesis of gold nanowires via the nanorod-seed mediated procedure developed in our lab. The thesis will next present the synthesis of novel starfruitshaped nanorods, mesorods, and nanowires using a modified nanorod-seed mediated procedure. The starfruit particles displayed increased activity as surfaceenhanced Raman spectroscopy (SERS) substrates as compared to smooth structures. Next, a method for the functionalization of gold nanorods using a cationic thiol, 16-mercaptohexadecyltrimethylammonium bromide (MTAB), will be described. By using this thiol, we were able to demonstrate the complete removal of toxic surfactant from the nanorods and were also able to precisely quantify the grafting density of thiol molecules on the nanorod surface through a combination of several analytical techniques. Finally, this thesis will show that MTABfunctionalized nanorods are nontoxic and can be taken up in extremely high numbers into cancer cells. The thesis will conclude by describing the surprising uptake of larger mesorods and nanowires functionalized with MTAB into cells in high quantities.

  17. Preparation and Characterization of Nano Gold Supported over Montmorillonite Clays

    NASA Astrophysics Data System (ADS)

    Suraja, P. V.; Binitha, N. N.; Yaakob, Z.; Silija, P. P.

    2011-02-01

    The use of montmorillonite clays as a matrix, or as a host, for obtaining intercalated/supported metal particles has potential applications in catalysis and other areas. The gold nanoparticles were obtained from the most common anionic gold precursor HAuCl4·3H2O by deposition-precipitation (DP) methods. However, it is difficult to prepare nanoscale gold catalysts supported on silica surfaces with lower isoelectric point (IEP). Homogeneous precipitation method using urea also fails on silica surfaces. Reasons for the inefficiency of these methods are the negative charge of the metal precursor as well as the support surface and the high pH required for depositing gold nanoparticles. In the present work, we use glucose as the reductant in the presence of stabilizer for preparation of nano gold supported on montmorillonite clay. There is no need of increasing the pH of the solution to reduce the Au3+ ions. The prepared systems are characterized using various techniques such as using X-ray fluorescence (XRF), UV-VIS Diffuse reflectance spectra (DRS) and Fourier Transform infra red spectra (FTIR) to prove the efficiency of the present method.

  18. Sulfur radical species form gold deposits on Earth.

    PubMed

    Pokrovski, Gleb S; Kokh, Maria A; Guillaume, Damien; Borisova, Anastassia Y; Gisquet, Pascal; Hazemann, Jean-Louis; Lahera, Eric; Del Net, William; Proux, Olivier; Testemale, Denis; Haigis, Volker; Jonchière, Romain; Seitsonen, Ari P; Ferlat, Guillaume; Vuilleumier, Rodolphe; Saitta, Antonino Marco; Boiron, Marie-Christine; Dubessy, Jean

    2015-11-03

    Current models of the formation and distribution of gold deposits on Earth are based on the long-standing paradigm that hydrogen sulfide and chloride are the ligands responsible for gold mobilization and precipitation by fluids across the lithosphere. Here we challenge this view by demonstrating, using in situ X-ray absorption spectroscopy and solubility measurements, coupled with molecular dynamics and thermodynamic simulations, that sulfur radical species, such as the trisulfur ion S3(-), form very stable and soluble complexes with Au(+) in aqueous solution at elevated temperatures (>250 °C) and pressures (>100 bar). These species enable extraction, transport, and focused precipitation of gold by sulfur-rich fluids 10-100 times more efficiently than sulfide and chloride only. As a result, S3(-) exerts an important control on the source, concentration, and distribution of gold in its major economic deposits from magmatic, hydrothermal, and metamorphic settings. The growth and decay of S3(-) during the fluid generation and evolution is one of the key factors that determine the fate of gold in the lithosphere.

  19. Anticancer Gold(III) Porphyrins Target Mitochondrial Chaperone Hsp60.

    PubMed

    Hu, Di; Liu, Yungen; Lai, Yau-Tsz; Tong, Ka-Chung; Fung, Yi-Man; Lok, Chun-Nam; Che, Chi-Ming

    2016-01-22

    Identification of the molecular target(s) of anticancer metal complexes is a formidable challenge since most of them are unstable toward ligand exchange reaction(s) or biological reduction under physiological conditions. Gold(III) meso-tetraphenylporphyrin (gold-1 a) is notable for its high stability in biological milieux and potent in vitro and in vivo anticancer activities. Herein, extensive chemical biology approaches employing photo-affinity labeling, click chemistry, chemical proteomics, cellular thermal shift, saturation-transfer difference NMR, protein fluorescence quenching, and protein chaperone assays were used to provide compelling evidence that heat-shock protein 60 (Hsp60), a mitochondrial chaperone and potential anticancer target, is a direct target of gold-1 a in vitro and in cells. Structure-activity studies with a panel of non-porphyrin gold(III) complexes and other metalloporphyrins revealed that Hsp60 inhibition is specifically dependent on both the gold(III) ion and the porphyrin ligand.

  20. Where's the silver? Imaging trace silver coverage on the surface of gold nanorods.

    PubMed

    Jackson, Stephen R; McBride, James R; Rosenthal, Sandra J; Wright, David W

    2014-04-09

    The development of the seeded growth synthesis for gold nanorods provided the first simple, convenient wet chemistry route to these nanomaterials. Over the past decade, the original silver-assisted seeded growth procedure has been the subject of further modifications that have continuously expanded access to anisotropic gold nanoparticles; however, the role of silver in formation of gold nanorods remains poorly understood. We report the first experimental evidence on the position of silver present on gold nanorods using advanced energy dispersive X-ray spectroscopy. Our results indicate the deposition of silver ions on the surface shows no preference for a specific face or axis. Furthermore, we show that the "dog bone" structures developed from gold nanorod solutions show preferential deposition of silver atoms on the ends and in the crevices.

  1. Impedance Analysis of Colloidal Gold Nanoparticles in Chromatography Paper for Quantitation of an Immunochromatographic Assay.

    PubMed

    Hori, Fumitaka; Harada, Yuji; Kuretake, Tatsumi; Uno, Shigeyasu

    2016-01-01

    A detection method of gold nanoparticles in chromatography paper has been developed for a simple, cost-effective and reliable quantitation of immunochromatographic strip test. The time courses of the solution resistance in chromatography paper with the gold nanoparticles solution are electrochemically measured by chrono-impedimetry. The dependence of the solution resistance on the concentration of gold nanoparticles has been successfully observed. The main factor to increase the solution resistance may be obstruction of the ion transport due to the presence of gold nanoparticles. The existence of gold nanoparticles with 1.92 × 10(9) particles/mL in an indistinctly-colored chromatography paper is also identified by a solution resistance measurement. This indicates that the solution resistance assay has the potential to lower the detection limit of the conventional qualitative assay.

  2. Platinum monolayer electrocatalyst on gold nanostructures on silicon for photoelectrochemical hydrogen evolution.

    PubMed

    Kye, Joohong; Shin, Muncheol; Lim, Bora; Jang, Jae-Won; Oh, Ilwhan; Hwang, Seongpil

    2013-07-23

    Pt monolayer decorated gold nanostructured film on planar p-type silicon is utilized for photoelectrochemical H2 generation in this work. First, gold nanostructured film on silicon was spontaneously produced by galvanic displacement of the reduction of gold ion and the oxidation of silicon in the presence of fluoride anion. Second, underpotential deposition (UPD) of copper under illumination produced Cu monolayer on gold nanostructured film followed by galvanic exchange of less-noble Cu monolayer with more-noble PtCl6(2-). Pt(shell)/Au(core) on p-type silicon showed the similar activity with platinum nanoparticle on silicon for photoelectrochemical hydrogen evolution reaction in spite of low platinum loading. From Tafel analysis, Pt(shell)/Au(core) electrocatalyst shows the higher area-specific activity than platinum nanoparticle on silicon demonstrating the significant role of underlying gold for charge transfer reaction from silicon to H(+) through platinum catalyst.

  3. Caffeic acid: potential applications in nanotechnology as a green reducing agent for sustainable synthesis of gold nanoparticles.

    PubMed

    Seo, Yu Seon; Cha, Song-Hyun; Yoon, Hye-Ran; Kang, Young-Hwa; Park, Youmie

    2015-04-01

    The sustainable synthesis of gold nanoparticles from gold ions was conducted with caffeic acid as a green reducing agent. The formation of gold nanoparticles was confirmed by spectroscopic and microscopic methods. Spherical nanoparticles with an average diameter of 29.99 ± 7.43 nm were observed in high- resolution transmission electron microscopy and atomic force microscopy images. The newly prepared gold nanoparticles exhibited catalytic activity toward the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. This system enables the preparation of green catalysts using plant natural products as reducing agents, which fulfills the growing need for sustainability initiatives.

  4. L-subshell ionization cross sections in gold and bismuth by 3.6-9.5-MeV carbon and 4.0-7.2-MeV oxygen ions

    NASA Astrophysics Data System (ADS)

    Bhattacharya, D.; Sarkar, M.; Chatterjee, M. B.; Sen, P.; Kuri, G.; Mahapatra, D. P.; Lapicki, G.

    1994-06-01

    L-subshell ionization cross sections of Au and Bi induced by C2,3+ and O3+ ions have been measured for impact energies ranging from 0.25 to 0.79 MeV/u. The data have been compared with the predictions of the ECPSSR [perturbed-stationary-state (PSS) theory with energy-loss (E), Coulomb deflection (C), and relativistic corrections (R)] theory. Reasonable agreement between theory and experiment is observed for the L1(2s1/2) and L3(2p3/2) subshells. For the L2(2p1/2) subshell, however, large disagreement between the data and the ECPSSR predictions persists. This difference could be due to the ``collision-induced intrashell'' mechanism that was suggested by Sarkadi and Mukoyama [J. Phys. B 14, L255 (1981)].

  5. Experimental and theoretical realization of enhanced light scattering spectroscopy of gold nanorods

    SciTech Connect

    Li, Yunbo; Song, Linlin; Qiao, Yisha

    2015-01-12

    Assisted with transmission electron microscopy and extinction spectra, the enhanced light scattering (ELS) experiments were performed with gold nanoparticles. Although both the nanospheres and nanorods can enhance light scattering in study aggregation, the spectral characteristics of gold nanorods is relatively simple compared to that of nanospheres. This will further extend the application range of ELS method to determinate the amounts of inorganic ions in analytical field and investigate on the macromolecular aggregation in polymeric research due to its simplicity, rapidity, and sensitivity.

  6. Ion implanted dielectric elastomer circuits

    NASA Astrophysics Data System (ADS)

    O'Brien, Benjamin M.; Rosset, Samuel; Anderson, Iain A.; Shea, Herbert R.

    2013-06-01

    Starfish and octopuses control their infinite degree-of-freedom arms with panache—capabilities typical of nature where the distribution of reflex-like intelligence throughout soft muscular networks greatly outperforms anything hard, heavy, and man-made. Dielectric elastomer actuators show great promise for soft artificial muscle networks. One way to make them smart is with piezo-resistive Dielectric Elastomer Switches (DES) that can be combined with artificial muscles to create arbitrary digital logic circuits. Unfortunately there are currently no reliable materials or fabrication process. Thus devices typically fail within a few thousand cycles. As a first step in the search for better materials we present a preliminary exploration of piezo-resistors made with filtered cathodic vacuum arc metal ion implantation. DES were formed on polydimethylsiloxane silicone membranes out of ion implanted gold nano-clusters. We propose that there are four distinct regimes (high dose, above percolation, on percolation, low dose) in which gold ion implanted piezo-resistors can operate and present experimental results on implanted piezo-resistors switching high voltages as well as a simple artificial muscle inverter. While gold ion implanted DES are limited by high hysteresis and low sensitivity, they already show promise for a range of applications including hysteretic oscillators and soft generators. With improvements to implanter process control the promise of artificial muscle circuitry for soft smart actuator networks could become a reality.

  7. Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles.

    PubMed

    Elavazhagan, Tamizhamudu; Arunachalam, Kantha D

    2011-01-01

    We used an aqueous leaf extract of Memecylon edule (Melastomataceae) to synthesize silver and gold nanoparticles. To our knowledge, this is the first report where M. edule leaf broth was found to be a suitable plant source for the green synthesis of silver and gold nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with M. edule leaf extract, stable silver and gold nanoparticles were rapidly formed. The gold nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and Fourier transform infra-red spectroscopy (FTIR). The kinetics of reduction of aqueous silver and gold ions during reaction with the M. edule leaf broth were easily analyzed by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to M. edule leaf broth, were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20-50 nm. TEM analysis of gold nanoparticles showed formation of triangular, circular, and hexagonal shapes in the size range 10-45 nm. The resulting silver nanoparticles were predominantly square with uniform size range 50-90 nm. EDAX results confirmed the presence of triangular nanoparticles in the adsorption peak of 2.30 keV. Further FTIR analysis was also done to identify the functional groups in silver and gold nanoparticles. The characterized nanoparticles of M. edule have potential for various medical and industrial applications. Saponin presence in aqueous extract of M. edule is responsible for the mass production of silver and gold nanoparticles.

  8. Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles

    PubMed Central

    Elavazhagan, Tamizhamudu; Arunachalam, Kantha D

    2011-01-01

    We used an aqueous leaf extract of Memecylon edule (Melastomataceae) to synthesize silver and gold nanoparticles. To our knowledge, this is the first report where M. edule leaf broth was found to be a suitable plant source for the green synthesis of silver and gold nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with M. edule leaf extract, stable silver and gold nanoparticles were rapidly formed. The gold nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and Fourier transform infra-red spectroscopy (FTIR). The kinetics of reduction of aqueous silver and gold ions during reaction with the M. edule leaf broth were easily analyzed by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to M. edule leaf broth, were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20–50 nm. TEM analysis of gold nanoparticles showed formation of triangular, circular, and hexagonal shapes in the size range 10–45 nm. The resulting silver nanoparticles were predominantly square with uniform size range 50–90 nm. EDAX results confirmed the presence of triangular nanoparticles in the adsorption peak of 2.30 keV. Further FTIR analysis was also done to identify the functional groups in silver and gold nanoparticles. The characterized nanoparticles of M. edule have potential for various medical and industrial applications. Saponin presence in aqueous extract of M. edule is responsible for the mass production of silver and gold nanoparticles. PMID:21753878

  9. Mixed monolayer protected gold atom-oxide cluster synthesis and characterization.

    PubMed

    Nambiar, Sindhu R; Aneesh, Padamadathil K; Sukumar, Chinthu; Rao, Talasila P

    2012-07-21

    Small atomic gold clusters in solution, Au(n), stabilized by cetyl trimethylammonium bromide (CTAB) and cysteine, have been synthesized potentiodynamically in quiescent aqueous solutions. The electrodissolution of gold to gold ions during an anodic scan and subsequent cluster formation during a cathodic scan in underpotential (UPDD) and overpotential dissolution-deposition (OPDD) regions were studied. The experimental potentiodynamic I-E profiles and chronoamperometric i-t transients are fit into reported theoretical models of adsorption and electrocrystallization. The plausible application of clusters/cluster film to cysteine sensing based on fluorescence quenching and square wave stripping voltammetry is demonstrated.

  10. Green Chemistry Approach for the Synthesis of Gold Nanoparticles Using the Fungus Alternaria sp.

    PubMed

    Dhanasekar, Naresh Niranjan; Rahul, Ganga Ravindran; Narayanan, Kannan Badri; Raman, Gurusamy; Sakthivel, Natarajan

    2015-07-01

    The synthesis of gold nanoparticles has gained tremendous attention owing to their immense applications in the field of biomedical sciences. Although several chemical procedures are used for the synthesis of nanoparticles, the release of toxic and hazardous by-products restricts their use in biomedical applications. In the present investigation, gold nanoparticles were synthesized biologically using the culture filtrate of the filamentous fungus Alternaria sp. The culture filtrate of the fungus was exposed to three different concentrations of chloroaurate ions. In all cases, the gold ions were reduced to Au(0), leading to the formation of stable gold nanoparticles of variable sizes and shapes. UV-Vis spectroscopy analysis confirmed the formation of nanoparticles by reduction of Au(3+) to Au(0). TEM analysis revealed the presence of spherical, rod, square, pentagonal, and hexagonal morphologies for 1 mM chloroaurate solution. However, quasi-spherical and spherical nanoparticles/heart-like morphologies with size range of about 7-13 and 15-18 nm were observed for lower molar concentrations of 0.3 and 0.5 mM gold chloride solution, respectively. The XRD spectrum revealed the face-centered cubic crystals of synthesized gold nanoparticles. FT-IR spectroscopy analysis confirmed the presence of aromatic primary amines, and the additional SPR bands at 290 and 230 nm further suggested that the presence of amino acids such as tryptophan/tyrosine or phenylalanine acts as the capping agent on the synthesized mycogenic gold nanoparticles.

  11. Secondary ion emission and images from a biologic matrix

    NASA Astrophysics Data System (ADS)

    Todd, Peter J.; McMahon, John M.; Short, Robert T.

    1995-05-01

    Secondary ion mass spectra and images were obtained from organic compounds deposited on gold and 30-50 [mu]m thick biologic tissue substrates. Analyte solutions were prepared from acetylcholine chloride, choline chloride, and methylphenylpyridinium (MPP+) iodide. Tandem mass spectrometry (MS/MS) was used to distinguish secondary ions characteristic of the analyte from secondary ions characteristic of the tissue itself. Effects of primary ion damage appear similar regardless of substrate. Samples of choline chloride deposited on a gold substrate are exceptional; secondary ion emission from such samples appeared unaffected by primary ion dose. Emission of acetylcholine secondary ions was found to decay with a rate independent of primary ion dose, but dependent on the substrate. These results show that the distribution of organic compounds can be mapped from biologic tissue under conditions of static SIMS, but matrix effects and chemical noise must be considered.

  12. Formation of ultrafine uniform gold nanoparticles by sputtering and redeposition

    SciTech Connect

    Zhou Xiuli; Wei Qiangmin; Sun Kai; Wang Lumin

    2009-03-30

    Uniformly distributed Au nanoparticles with controllable size were fabricated by focused ion beam bombardment of thin gold films. In situ scanning electron microscopy and ex situ transmission electron microscopy were used to characterize the nanoparticles. Results show that a dual particle size distribution was generated at low ion fluence, while highly uniform Au particles with diameters around 2 nm formed at high fluence. The balance between sputtering and redeposition is responsible for the formation and size control of the nanoparticles. Optical absorption measurement revealed strong size dependant resonances that are attributed to the surface plasmon resonance of the Au particles.

  13. Liquid-like behaviour of gold nanowire bridges

    NASA Astrophysics Data System (ADS)

    Naik, Jay P.; Cheneler, David; Bowen, James; Prewett, Philip D.

    2017-08-01

    A combination of Focused Ion Beam and Reactive Ion Etch was used to fabricate free standing gold nanowire bridges with radii of 30 nm and below. These were subjected to point loading to failure at their mid-points using an atomic force microscope, providing strength and deformation data. The results demonstrate a dimensionally dependent transition from conventional solid metallic properties to liquid-like behaviour including the unexpected reformation of a fractured bridge. The work reveals mechanical and materials properties of nanowires which could have significant impact on nanofabrication processes and nanotechnology devices such as Nano Electro Mechanical Systems.

  14. Biochemical synthesis of gold and zinc nanoparticles in reverse micelles

    NASA Astrophysics Data System (ADS)

    Egorova, E. M.

    2010-04-01

    Gold and zinc nanoparticles were obtained in AOT reverse micelles in isooctane by reduction of the corresponding metal ions by the natural pigment quercetin (the biochemical synthesis technique). Gold and zinc ions were introduced into the micellar solution of quercetin in the form of aqueous solutions, HAuCl4 and [Zn(NH3)4]SO4, to the water to AOT molar ratios 1-3 and 3-4, respectively. The process of nanoparticle formation was investigated by spectrophotometry. Nanoparticle size and shape were determined by transmission electron microscopy. The data obtained allow to conclude that there are two steps in metal ion-quercetin interaction: (1) complex formation, and (2) complex dissociation with subsequent formation of nanoparticles and a second product, presumably oxidized quercetin. Gold nanoparticles were found to be of various shapes (spheres, hexahedrons, triangles, and cylinders) and sizes, mainly in the 10-20 nm range; zinc nanoparticles are chiefly spherical and ˜5 nm in size. In both cases, the nanoparticles are stable in the air in micellar solution over long periods of time (from a several months to a several years).

  15. Ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.

    1984-01-01

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

  16. Enzymatic synthesis of gold nanoflowers with trypsin

    NASA Astrophysics Data System (ADS)

    Li, Linmei; Weng, Jian

    2010-07-01

    A one-step and eco-friendly approach for the room-temperature synthesis of trypsin-mediated three-dimensional (3D) gold nanoflowers (AuNFs) with high colloidal stability is demonstrated. To prepare AuNFs, ascorbic acid (AA) was quickly added into the premixed solution of HAuCl4 and trypsin at pH = 5.0. The results show that the molar ratio and feeding order of reactant agents, pH and reaction time play important roles in the formation of NFs. The growth mechanism of AuNFs is suggested as three steps: (1) immobilization of AuCl4 - ions with a positively charged trypsin template, (2) spontaneous reduction of AuCl4 - ions with AA in situ and capping Au0 by 12 cysteines of trypsin, (3) reduction of more AuCl4 - ions on the Au nuclei formed in the initial stages and anisotropic growth into AuNFs.

  17. [ital L]-subshell ionization cross sections in gold and bismuth by 3. 6--9. 5-MeV carbon and 4. 0--7. 2-MeV oxygen ions

    SciTech Connect

    Bhattacharya, D.; Sarkar, M.; Chatterjee, M.B.; Sen, P. ); Kuri, G.; Mahapatra, D.P. ); Lapicki, G. )

    1994-06-01

    [ital L]-subshell ionization cross sections of Au and Bi induced by C[sup 2,3+] and O[sup 3+] ions have been measured for impact energies ranging from 0.25 to 0.79 MeV/u. The data have been compared with the predictions of the ECPSSR [perturbed-stationary-state (PSS) theory with energy-loss (E), Coulomb deflection (C), and relativistic corrections (R)] theory. Reasonable agreement between theory and experiment is observed for the [ital L][sub 1](2[ital s][sub 1/2]) and [ital L][sub 3](2[ital p][sub 3/2]) subshells. For the [ital L][sub 2](2[ital p][sub 1/2]) subshell, however, large disagreement between the data and the ECPSSR predictions persists. This difference could be due to the collision-induced intrashell'' mechanism that was suggested by Sarkadi and Mukoyama [J. Phys. B 14, L255 (1981)].

  18. The biodistribution of gold nanoparticles designed for renal clearance

    NASA Astrophysics Data System (ADS)

    Alric, Christophe; Miladi, Imen; Kryza, David; Taleb, Jacqueline; Lux, François; Bazzi, Rana; Billotey, Claire; Janier, Marc; Perriat, Pascal; Roux, Stéphane; Tillement, Olivier

    2013-06-01

    Owing to their tunable optical properties and their high absorption cross-section of X- and γ-ray, gold nanostructures appear as promising agents for remotely controlled therapy. Since the efficiency of cancer therapy is not limited to the eradication of the tumour but rests also on the sparing of healthy tissue, a biodistribution study is required in order to determine whether the behaviour of the nanoparticles after intravenous injection is safe (no accumulation in healthy tissue, no uptake by phagocytic cell-rich organs (liver, spleen) and renal clearance). The biodistribution of Au@DTDTPA nanoparticles which are composed of a gold core and a DTDTPA (dithiolated polyaminocarboxylate) shell can be established by X-ray imaging (owing to the X-ray absorption of the gold core) and by magnetic resonance imaging (MRI) since the DTDTPA shell was designed for the immobilization of paramagnetic gadolinium ions. However scintigraphy appears better suited for a biodistribution study owing to a great sensitivity. The successful immobilization of radioelements (99mTc, 111In) in the DTDTPA shell, instead of gadolinium ions, renders possible the follow up of Au@DTDTPA by scintigraphy which showed that Au@DTDTPA nanoparticles exhibit a safe behaviour after intravenous injection to healthy rats.Owing to their tunable optical properties and their high absorption cross-section of X- and γ-ray, gold nanostructures appear as promising agents for remotely controlled therapy. Since the efficiency of cancer therapy is not limited to the eradication of the tumour but rests also on the sparing of healthy tissue, a biodistribution study is required in order to determine whether the behaviour of the nanoparticles after intravenous injection is safe (no accumulation in healthy tissue, no uptake by phagocytic cell-rich organs (liver, spleen) and renal clearance). The biodistribution of Au@DTDTPA nanoparticles which are composed of a gold core and a DTDTPA (dithiolated polyaminocarboxylate

  19. Ion-Ion Neutralization.

    DTIC Science & Technology

    1980-12-31

    ion flow tube (SIFT) experiments have been given in previous publications and so only the essential features and tho.;e detail:. specific to the present...rapidly, essentially at the gas kinetic limiting rate within the accuracy of the experimental data (1 30% on the measured rate coefficients). The...the various negative ions remained essentially invariant along the length of the plasma column. The data in Table C show that ". for all of the

  20. Ore petrology and geochemistry of Tertiary gold telluride deposits of the Colorado mineral belt

    SciTech Connect

    Saunders, J.A.; Romberger, S.B.

    1985-01-01

    Epithermal gold telluride deposits from the Colorado mineral belt share a number of similarities: relationship to alkalic stocks; high fluorine and CO/sub 2/ content; and similar paragenesis. Petrography of deposits in the Jamestown, Cripple Creek, and La Plata districts has resulted in a composite paragenesis: early Fe-Cu-Pb-Zn sulfides + hematite; tetrahedrite; high Te tellurides; low Te tellurides; late native gold. Fluid inclusion studies suggest telluride deposition occurred below 200/sup 0/C from low salinity. Gangue and alteration mineralogy indicates the ore fluids were near neutral pH during telluride deposition. The presence of hematite and locally barite suggest relatively oxidizing conditions. Evaluation of thermodynamic stabilities of tellurides and aqueous tellurium species indicates that progressive oxidation is consistent with the observed ore mineral paragenesis. Available data on gold bisulfide and chloride complexes suggest neither were important in the transport of gold in these systems. Thermodynamic data suggest the ditelluride ion (Te/sub 2//sup 2 -/) predominates in the range of inferred physiochemical conditions for the transport and deposition of gold in these systems. Inferred complexes such as AuTe/sub 2//sup -/ could account for the gold transport, and oxidation would be the most effective mechanism of precipitation of gold telluride or native gold. Published data suggest the associated alkalic stocks may be the ultimate source of the metals, since they are enriched in Au, Ag, Te, As, and Bi.

  1. In situ gold nanoparticles formation: contrast agent for dental optical coherence tomography.

    PubMed

    Braz, Ana K S; de Araujo, Renato E; Ohulchanskyy, Tymish Y; Shukla, Shoba; Bergey, Earl J; Gomes, Anderson S L; Prasad, Paras N

    2012-06-01

    In this work we demonstrate the potential use of gold nanoparticles as contrast agents for the optical coherence tomography (OCT) imaging technique in dentistry. Here, a new in situ photothermal reduction procedure was developed, producing spherical gold nanoparticles inside dentinal layers and tubules. Gold ions were dispersed in the primer of commercially available dental bonding systems. After the application and permeation in dentin by the modified adhesive systems, the dental bonding materials were photopolymerized concurrently with the formation of gold nanoparticles. The gold nanoparticles were visualized by scanning electron microscopy (SEM). The SEM images show the presence of gold nanospheres in the hybrid layer and dentinal tubules. The diameter of the gold nanoparticles was determined to be in the range of 40 to 120 nm. Optical coherence tomography images were obtained in two- and three-dimensions. The distribution of nanoparticles was analyzed and the extended depth of nanosphere production was determined. The results show that the OCT technique, using in situ formed gold nanoparticles as contrast enhancers, can be used to visualize dentin structures in a non-invasive and non-destructive way.

  2. In situ gold nanoparticles formation: contrast agent for dental optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Braz, Ana K. S.; Araujo, Renato E. de; Ohulchanskyy, Tymish Y.; Shukla, Shoba; Bergey, Earl J.; Gomes, Anderson S. L.; Prasad, Paras N.

    2012-06-01

    In this work we demonstrate the potential use of gold nanoparticles as contrast agents for the optical coherence tomography (OCT) imaging technique in dentistry. Here, a new in situ photothermal reduction procedure was developed, producing spherical gold nanoparticles inside dentinal layers and tubules. Gold ions were dispersed in the primer of commercially available dental bonding systems. After the application and permeation in dentin by the modified adhesive systems, the dental bonding materials were photopolymerized concurrently with the formation of gold nanoparticles. The gold nanoparticles were visualized by scanning electron microscopy (SEM). The SEM images show the presence of gold nanospheres in the hybrid layer and dentinal tubules. The diameter of the gold nanoparticles was determined to be in the range of 40 to 120 nm. Optical coherence tomography images were obtained in two- and three-dimensions. The distribution of nanoparticles was analyzed and the extended depth of nanosphere production was determined. The results show that the OCT technique, using in situ formed gold nanoparticles as contrast enhancers, can be used to visualize dentin structures in a non-invasive and non-destructive way.

  3. Anti-metastatic activity of biologically synthesized gold nanoparticles on human fibrosarcoma cell line HT-1080.

    PubMed

    Karuppaiya, Palaniyandi; Satheeshkumar, Elumalai; Chao, Wei-Ting; Kao, Lin-Yi; Chen, Emily Chin-Fun; Tsay, Hsin-Sheng

    2013-10-01

    Plants are exploited as a potential source for the large-scale production of noble gold nanoparticles in the recent years owing to their various potential applications in nanobiotechnology and nanomedicine. The present work describes green biosynthetic procedures for the production of gold nanoparticles for the first time by using an aqueous extract of the Dysosma pleiantha rhizome. The biosynthesized gold nanoparticles were confirmed and characterized by ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscopy equipped with energy dispersive spectroscopy. The results revealed that aqueous extract of D. pleiantha rhizome has potential to reduce chloroauric ions into gold nanoparticles and the synthesized gold nanoparticles were showed spherical in shape with an average of 127nm. Further, we investigated the anti-metastatic activity of biosynthesized gold nanoparticles against human fibrosarcoma cancer cell line HT-1080. The results showed that the biosynthesized gold nanoparticles were non-toxic to cell proliferation and, also it can inhibit the chemo-attractant cell migration of human fibrosarcoma cancer cell line HT-1080 by interfering the actin polymerization pathway. Thus, the usage of gold nanoparticles biosynthesized from D. pleiantha rhizome can be used as a potential candidate in the drug and gene delivery to metastatic cancer.

  4. Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp.

    NASA Astrophysics Data System (ADS)

    Du, Liangwei; Xian, Liang; Feng, Jia-Xun

    2011-03-01

    In this work, the fungus Penicillium was used for rapid extra-/intracellular biosynthesis of gold nanoparticles. AuCl4 - ions reacted with the cell filtrate of Penicillium sp. resulting in extracellular biosynthesis of gold nanoparticles within 1 min. Intracellular biosynthesis of gold nanoparticles was obtained by incubating AuCl4 - solution with fungal biomass for 8 h. The gold nanoparticles were characterized by means of visual observation, UV-Vis absorption spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The extracellular nanoparticles exhibited maximum absorbance at 545 nm in UV-Vis spectroscopy. The XRD spectrum showed Bragg reflections corresponding to the gold nanocrystals. TEM exhibited the formed spherical gold nanoparticles in the size range from 30 to 50 nm with an average size of 45 nm. SEM and TEM revealed that the intracellular gold nanoparticles were well dispersed on the cell wall and within the cell, and they are mostly spherical in shape with an average diameter of 50 nm. The presence of gold was confirmed by EDX analysis.

  5. A Nanoscale-Localized Ion Damage Josephson Junction Using Focused Ion Beam and Ion Implanter.

    PubMed

    Wu, C H; Ku, W S; Jhan, F J; Chen, J H; Jeng, J T

    2015-05-01

    High-T(c) Josephson junctions were fabricated by nanolithography using focused ion beam (FIB) milling and ion implantation. The junctions were formed in a YBa2Cu3O7-x, thin film in regions defined using a gold-film mask with 50-nm-wide (top) slits, engraved by FIB. The focused ion beam system parameters for dwell time and passes were set to remove gold up to a precise depth. 150 keV oxygen ions were implanted at a nominal dose of up to 5 x 10(13) ions/cm2 into YBa2Cu3O7-x microbridges through the nanoscale slits. The current-voltage curves of the ion implantation junctions exhibit resistive-shunted-junction-like behavior at 77 K. The junction had an approximately linear temperature dependence of critical current. Shapiro steps were observed under microwave irradiation. A 50-nm-wide slit and 0-20-nm-thick buffer layers were chosen in order to make Josephson junctions due to the V-shape of the FIB-milled trench.

  6. Deposition of plasmon gold-fluoropolymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Safonov, Alexey I.; Sulyaeva, Veronica S.; Timoshenko, Nikolay I.; Kubrak, Konstantin V.; Starinskiy, Sergey V.

    2016-12-01

    Degradation-resistant two-dimensional metal-fluoropolymer composites consisting of gold nanoparticles coated with a thin fluoropolymer film were deposited on a substrate by hot wire chemical vapour deposition (HWCVD) and ion sputtering. The morphology and optical properties of the obtained coatings were determined. The thickness of the thin fluoropolymer film was found to influence the position of the surface plasmon resonance peak. Numerical calculations of the optical properties of the deposited materials were performed using Mie theory and the finite-difference time-domain (FDTD) method. The calculation results are consistent with the experimental data. The study shows that the position of the resonance peak can be controlled by changing the surface concentration of particles and the thickness of the fluoropolymer coating. The protective coating was found to prevent the plasmonic properties of the nanoparticles from changing for several months.

  7. Enhancement of gold recovery using bioleaching from gold concentrate

    NASA Astrophysics Data System (ADS)

    Choi, S. H.; Cho, K. H.; Kim, B. J.; Choi, N. C.; Park, C. Y.

    2012-04-01

    The gold in refractory ores is encapsulated as fine particles (sometimes at a molecular level) in the crystal structure of the sulfide (typically pyrite with or without arsenopyrite) matrix. This makes it impossible to extract a significant amount of refractory gold by cyanidation since the cyanide solution cannot penetrate the pyrite/arsenopyrite crystals and dissolve gold particles, even after fine grinding. To effectively extract gold from these ores, an oxidative pretreatment is necessary to break down the sulfide matrix. The most popular methods of pretreatment include nitric acid oxidation, roasting, pressure oxidation and biological oxidation by microorganisms. This study investigated the bioleaching efficiency of Au concentrate under batch experimental conditions (adaptation cycles and chemical composition adaptation) using the indigenous acidophilic bacteria collected from gold mine leachate in Sunsin gold mine, Korea. We conducted the batch experiments at two different chemical composition (CuSO4 and ZnSO4), two different adaptation cycles 1'st (3 weeks) and 2'nd (6 weeks). The results showed that the pH in the bacteria inoculating sample decreased than initial condition and Eh increased. In the chemical composition adaptation case, the leached accumulation content of Fe and Pb was exhibited in CuSO4 adaptation bacteria sample more than in ZnSO4 adaptation bacteria samples, possibly due to pre-adaptation effect on chalcopyrite (CuFeS2) in gold concentrate. And after 21 days on the CuSO4 adaptation cycles case, content of Fe and Pb was appeared at 1'st adaptation bacteria sample(Fe - 1.82 and Pb - 25.81 times per control sample) lower than at 2'nd adaptation bacteria sample(Fe - 2.87 and Pb - 62.05 times per control sample). This study indicates that adaptation chemical composition and adaptation cycles can play an important role in bioleaching of gold concentrate in eco-/economic metallurgy process.

  8. 20th-Century Gold Rush.

    ERIC Educational Resources Information Center

    Wargo, Joseph G.

    1992-01-01

    Presents Nevada's gold rush activities spurred by technological advancements in search methods. Describes the events that led to the twentieth-century gold rush, the techniques for finding deposits and the geological formation process of disseminated gold deposits. Vignettes present the gold extraction process, cross-section, and profile of a…

  9. 20th-Century Gold Rush.

    ERIC Educational Resources Information Center

    Wargo, Joseph G.

    1992-01-01

    Presents Nevada's gold rush activities spurred by technological advancements in search methods. Describes the events that led to the twentieth-century gold rush, the techniques for finding deposits and the geological formation process of disseminated gold deposits. Vignettes present the gold extraction process, cross-section, and profile of a…

  10. 41 CFR 101-45.002 - Gold.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 2 2014-07-01 2012-07-01 true Gold. 101-45.002 Section... PERSONAL PROPERTY § 101-45.002 Gold. (a) Gold will be sold in accordance with this section and part 102-38 of the Federal Management Regulation. (b) Sales of gold shall be processed to— (1) Use the sealed...

  11. 41 CFR 101-45.002 - Gold.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 2 2013-07-01 2012-07-01 true Gold. 101-45.002 Section... PERSONAL PROPERTY § 101-45.002 Gold. (a) Gold will be sold in accordance with this section and part 102-38 of the Federal Management Regulation. (b) Sales of gold shall be processed to— (1) Use the sealed...

  12. 41 CFR 101-45.002 - Gold.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 2 2012-07-01 2012-07-01 false Gold. 101-45.002 Section... PERSONAL PROPERTY § 101-45.002 Gold. (a) Gold will be sold in accordance with this section and part 102-38 of the Federal Management Regulation. (b) Sales of gold shall be processed to— (1) Use the sealed...

  13. 41 CFR 101-45.002 - Gold.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Gold. 101-45.002 Section... PERSONAL PROPERTY § 101-45.002 Gold. (a) Gold will be sold in accordance with this section and part 102-38 of the Federal Management Regulation. (b) Sales of gold shall be processed to— (1) Use the sealed...

  14. 41 CFR 101-45.002 - Gold.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Gold. 101-45.002 Section... PERSONAL PROPERTY § 101-45.002 Gold. (a) Gold will be sold in accordance with this section and part 102-38 of the Federal Management Regulation. (b) Sales of gold shall be processed to— (1) Use the sealed...

  15. Defect recovery and damage reduction in borosilicate glasses under double ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Mir, A. H.; Peuget, S.; Toulemonde, M.; Bulot, P.; Jegou, C.; Miro, S.; Bouffard, S.

    2015-11-01

    A sodium borosilicate glass was irradiated sequentially and simultaneously with alpha particles and gold ions. Alpha particles induced partial recovery of the network damage and mechanical properties in the gold pre-irradiated glass, while no such recovery effect was observed during gold irradiation of the alpha pre-irradiated glass. The damage capacity of the gold ions was significantly reduced during simultaneous irradiation with alpha particles and gold ions. These results highlight that the irradiation sequence of the ions plays an important role in controlling the final damage level; and if properly employed, irradiation can be employed to induce defect recovery. Such results are of paramount importance to understand the radiation damage in nuclear reactor components and in nuclear waste glass matrices which are subjected to multiple particle irradiations.

  16. Gold, currencies and market efficiency

    NASA Astrophysics Data System (ADS)

    Kristoufek, Ladislav; Vosvrda, Miloslav

    2016-05-01

    Gold and currency markets form a unique pair with specific interactions and dynamics. We focus on the efficiency ranking of gold markets with respect to the currency of purchase. By utilizing the Efficiency Index (EI) based on fractal dimension, approximate entropy and long-term memory on a wide portfolio of 142 gold price series for different currencies, we construct the efficiency ranking based on the extended EI methodology we provide. Rather unexpected results are uncovered as the gold prices in major currencies lay among the least efficient ones whereas very minor currencies are among the most efficient ones. We argue that such counterintuitive results can be partly attributed to a unique period of examination (2011-2014) characteristic by quantitative easing and rather unorthodox monetary policies together with the investigated illegal collusion of major foreign exchange market participants, as well as some other factors discussed in some detail.

  17. Colloidal Synthesis of Gold Semishells

    PubMed Central

    Rodríguez-Fernández, Denis; Pérez-Juste, Jorge; Pastoriza-Santos, Isabel; Liz-Marzán, Luis M

    2012-01-01

    This work describes a novel and scalable colloid chemistry strategy to fabricate gold semishells based on the selective growth of gold on Janus silica particles (500 nm in diameter) partly functionalized with amino groups. The modulation of the geometry of the Janus silica particles allows us to tune the final morphology of the gold semishells. This method also provides a route to fabricating hollow gold semishells through etching of the silica cores with hydrofluoric acid. The optical properties were characterized by visible near-infrared (vis-NIR) spectroscopy and compared with simulations performed using the boundary element method (BEM). These revealed that the main optical features are located beyond the NIR region because of the large core size. PMID:24551496

  18. Gold, coal and oil.

    PubMed

    Dani, Sergio U

    2010-03-01

    Jared Diamond has hypothesized that guns, germs and steel account for the fate of human societies. Here I propose an extension of Diamond's hypothesis and put it in other terms and dimensions: gold, coal and oil account not only for the fate of human societies but also for the fate of mankind through the bodily accumulation of anthropogenic arsenic, an invisible weapon of mass extinction and evolutionary change. The background is clear; arsenic species fulfill seven criteria for a weapon of mass extinction and evolutionary change: (i) bioavailability to all living organisms; (ii) imperceptibility; (iii) acute toxicity; (iv) bioaccumulation and chronic toxicity; (v) adverse impact on reproductive fitness and reproductive outcomes and early-age development and growth in a wide range of microbial, plant and animal species including man; (vi) widespread geographical distribution, mobility and ecological persistence on a centennial to millennial basis and (vii) availability in necessary and sufficient amounts to exert evolutionarily meaningful effects. The proof is becoming increasingly feasible as human exploitation of gold, coal and oil deposits cause sustainable rises of arsenic concentrations in the biosphere. Paradoxically, humans are among the least arsenic-resistant organisms because humans are long-lived, encephalized and complex social metazoans. An arsenic accumulation model is presented here to describe how arsenic accumulates in the human body with increasing age and at different provisionally safe exposure levels. Arsenic accumulates in the human body even at daily exposure levels which are within the lowest possible WHO provisional tolerance limits, yielding bodily arsenic concentrations which are above WHO provisional limits. Ongoing consequences of global scale arsenic poisoning of mankind include age-specific rises in morbidity and mortality followed by adaptive changes. The potential rise of successful forms of inborn resistance to arsenic in humans

  19. GOLD: The Genomes Online Database

    DOE Data Explorer

    Kyrpides, Nikos; Liolios, Dinos; Chen, Amy; Tavernarakis, Nektarios; Hugenholtz, Philip; Markowitz, Victor; Bernal, Alex

    Since its inception in 1997, GOLD has continuously monitored genome sequencing projects worldwide and has provided the community with a unique centralized resource that integrates diverse information related to Archaea, Bacteria, Eukaryotic and more recently Metagenomic sequencing projects. As of September 2007, GOLD recorded 639 completed genome projects. These projects have their complete sequence deposited into the public archival sequence databases such as GenBank EMBL,and DDBJ. From the total of 639 complete and published genome projects as of 9/2007, 527 were bacterial, 47 were archaeal and 65 were eukaryotic. In addition to the complete projects, there were 2158 ongoing sequencing projects. 1328 of those were bacterial, 59 archaeal and 771 eukaryotic projects. Two types of metadata are provided by GOLD: (i) project metadata and (ii) organism/environment metadata. GOLD CARD pages for every project are available from the link of every GOLD_STAMP ID. The information in every one of these pages is organized into three tables: (a) Organism information, (b) Genome project information and (c) External links. [The Genomes On Line Database (GOLD) in 2007: Status of genomic and metagenomic projects and their associated metadata, Konstantinos Liolios, Konstantinos Mavromatis, Nektarios Tavernarakis and Nikos C. Kyrpides, Nucleic Acids Research Advance Access published online on November 2, 2007, Nucleic Acids Research, doi:10.1093/nar/gkm884]

    The basic tables in the GOLD database that can be browsed or searched include the following information:

    • Gold Stamp ID
    • Organism name
    • Domain
    • Links to information sources
    • Size and link to a map, when available
    • Chromosome number, Plas number, and GC content
    • A link for downloading the actual genome data
    • Institution that did the sequencing
    • Funding source
    • Database where information resides
    • Publication status and information

    • Sulphur adsorption on gold monolayer

      NASA Astrophysics Data System (ADS)

      Kaur, Damanpreet; Kaur, Sumandeep; Srivastava, Sunita

      2017-05-01

      We use Density Functional Theory to study the electronic and magnetic properties of two dimensional gold monolayer and investigate the effect of adsorption of sulphur atom on it. Of all the possible adsorption sites, hollow site was found to be the most favorable one for adsorption. On-top and bridge adsorption sites are found to exhibit net magnetic moment of adsorbed gold monolayer. This feature of small but non zero magnetic moment could find applications in building small molecular magnetic devices.

  1. Gold-catalyzed domino reactions.

    PubMed

    Michelet, Véronique

    2015-01-01

    Gold-catalyzed reactions have appeared to be highly attractive tools for chemists to promote novel transformations to prepare elaborated structures from simple starting materials. This chapter presents selected and original examples of domino processes in the presence of gold catalysts, highlighting reports implying hydration, hydroxylation, and hydroamination as key starting point for cascade transformations. Domino processes implying 1,n-enynes, asymmetric domino transformations, and applications of all the presented processes in total synthesis are presented.

  2. Synthesis and Characterization of Gold Clusters Ligated with 1,3-Bis(dicyclohexylphosphino)propane

    SciTech Connect

    Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

    2013-09-01

    In this multidisciplinary study we combine chemical reduction synthesis of novel gold clusters in solution with high-resolution analytical mass spectrometry (MS) to gain insight into the composition of the gold clusters and how their size, ionic charge state and ligand substitution influences their gas-phase fragmentation pathways. Ultra small cationic gold clusters ligated with 1,3-bis(dicyclohexylphosphino)propane (DCPP) were synthesized for the first time and introduced into the gas phase using electrospray ionization (ESI). Mass-selected cluster ions were fragmented employing collision induced dissociation (CID) and the product ions were analysed using MS. The solutions were found to contain the multiply charged cationic gold clusters Au9L43+, Au13L53+, Au6L32+, Au8L32+ and Au10L42+ (L = DCPP). The gas-phase fragmentation pathways of these cluster ions were examined systematically employing CID combined with MS. In addition, CID experiments were performed on related gold clusters of the same size and ionic charge state but capped with 1,3-bis(diphenylphosphino)propane (DPPP) ligands containing phenyl functional groups at the two phosphine centers instead of cyclohexane rings. It is shown that this relatively small change in the molecular substitution of the two phosphine centers in diphosphine ligands (C6H11 versus C6H5) exerts a pronounced influence on the size of the species that are preferentially formed in solution during reduction synthesis as well as the gas-phase fragmentation channels of otherwise identical gold cluster ions. The mass spectrometry results indicate that in addition to the length of the alkyl chain between the two phosphine centers, the substituents at the phosphine centers also play a crucial role in determining the composition, size and stability of diphosphine ligated gold clusters synthesized in solution.

  3. In situ non-DLVO stabilization of surfactant-free, plasmonic gold nanoparticles: effect of Hofmeister's anions.

    PubMed

    Merk, Vivian; Rehbock, Christoph; Becker, Felix; Hagemann, Ulrich; Nienhaus, Hermann; Barcikowski, Stephan

    2014-04-22

    Specific ion effects ranking in the Hofmeister sequence are ubiquitous in biochemical, industrial, and atmospheric processes. In this experimental study specific ion effects inexplicable by the classical DLVO theory have been investigated at curved water-metal interfaces of gold nanoparticles synthesized by a laser ablation process in liquid in the absence of any organic stabilizers. Notably, ion-specific differences in colloidal stability occurred in the Hückel regime at extraordinarily low salinities below 50 μM, and indications of a direct influence of ion-specific effects on the nanoparticle formation process are found. UV-vis, zeta potential, and XPS measurements help to elucidate coagulation properties, electrokinetic potential, and the oxidation state of pristine gold nanoparticles. The results clearly demonstrate that stabilization of ligand-free gold nanoparticles scales proportionally with polarizability and antiproportionally with hydration of anions located at defined positions in a direct Hofmeister sequence of anions. These specific ion effects might be due to the adsorption of chaotropic anions (Br(-), SCN(-), or I(-)) at the gold/water interface, leading to repulsive interactions between the partially oxidized gold particles during the nanoparticle formation process. On the other hand, kosmotropic anions (F(-) or SO4(2-)) seem to destabilize the gold colloid, whereas Cl(-) and NO3(-) give rise to an intermediate stability. Quantification of surface charge density indicated that particle stabilization is dominated by ion adsorption and not by surface oxidation. Fundamental insights into specific ion effects on ligand-free aqueous gold nanoparticles beyond purely electrostatic interactions are of paramount importance in biomedical or catalytic applications, since colloidal stability appears to depend greatly on the type of salt rather than on the amount.

  4. Why can a gold salt react as a base?

    PubMed

    Anania, Mariarosa; Jašíková, Lucie; Jašík, Juraj; Roithová, Jana

    2017-09-07

    This study shows that gold salts [(L)AuX] (L = PMe3, PPh3, JohnPhos, IPr; X = SbF6, PF6, BF4, TfO, Tf2N) act as bases in aqueous solutions and can transform acetone to digold acetonyl complexes [(L)2Au2(CH2COCH3)](+) without any additional base present in solution. The key step is the formation of digold hydroxide complexes [(L)2Au2(OH)](+). The kinetics of the formation of the digold complexes and their mutual transformation is studied by electrospray ionization mass spectrometry and the delayed reactant labelling method. We show that the formation of digold hydroxide is the essential first step towards the formation of the digold acetonyl complex, the reaction is favoured by more polar solvents, and the effect of counter ions is negligible. DFT calculations suggest that digold hydroxide and digold acetonyl complexes can exist in solution only due to the stabilization by the interaction with two gold atoms. The reaction between the digold hydroxide and acetone proceeds towards the dimer {[(L)Au(OH)]·[(L)Au(CH3COCH3)](+)}. The monomeric units interact at the gold atoms in the perpendicular arrangement typical of the gold clusters bound by the aurophilic interaction. The hydrogen is transferred within the dimer and the reaction continues towards the digold acetonyl complex and water.

  5. Shape tailored green synthesis and catalytic properties of gold nanocrystals.

    PubMed

    Rajan, Anish; MeenaKumari, M; Philip, Daizy

    2014-01-24

    The use of environmentally benign procedures is highly desirable for the synthesis of nanoparticles. Here we report a simple, versatile, economic, ecofriendly and reproducible green method for the size-tunable synthesis of stable and crystalline gold nanoparticles of varied shape using aqueous extract of Garcinia Combogia fruit. The predominant anisotropic nature in the morphology of synthesized particles at lower quantities of extract gradually shifted to spherical particles with larger quantity of extract and increase of temperature. The onset of reduction, the time-evolution of the Surface Plasmon Resonance (SPR) and the catalytic activity are studied using UV-Visible spectroscopy. The Selected Area Diffraction (SAED) pattern, the lattice fringes in the High Resolution Transmission Electron Microscopic (HRTEM) image and the X-ray Diffraction (XRD) pattern clearly show the pure crystalline nature of the synthesized gold nanoparticles. The role of carboxyl group present in Garcinia Combogia fruit extract in the reduction of chloroaurate ions is established using Fourier Transform Infrared (FTIR) spectra. The size dependent catalytic activity of the green synthesized gold nanoparticles on the reduction of 4-Nitrophenol to 4-Aminophenol using sodium borohydride is studied and reported for the first time. The first order kinetics is fitted and rate constants are calculated. Catalytically active green synthesized gold nanoparticles with controllable size and shape presents an advanced step in future biomedical and chemical applications.

  6. Green synthesis of gold nanoparticles using Nyctanthes arbortristis flower extract.

    PubMed

    Das, Ratul Kumar; Gogoi, Nayanmoni; Bora, Utpal

    2011-06-01

    The present study explores the reducing and capping potentials of ethanolic flower extract of the plant Nyctanthes arbortristis for the synthesis of gold nanoparticles. The extract at different volume fractions were stirred with HAuCl4 aqueous solution at 80 °C for 30 min. The UV-Vis spectroscopic analysis of the reaction products confirmed successful reduction of Au(3+) ions to gold nanoparticles. Transmission electron microscope (TEM) revealed dominant spherical morphology of the gold nanoparticles with an average diameter of 19.8 ± 5.0 nm. X-ray diffraction (XRD) study confirmed crystalline nature of the synthesized particles. Fourier transform infra-red (FTIR) and nuclear magnetic resonance (NMR) analysis of the purified and lyophilized gold nanoparticles confirmed the surface adsorption of biomolecules during preparation and caused long-term (6 months) stability. Low reaction temperature (25 °C) favored anisotropy. The strong reducing power of the flower extract can also be tested in the green synthesis of other metallic nanoparticles.

  7. Shape tailored green synthesis and catalytic properties of gold nanocrystals

    NASA Astrophysics Data System (ADS)

    Rajan, Anish; MeenaKumari, M.; Philip, Daizy

    2014-01-01

    The use of environmentally benign procedures is highly desirable for the synthesis of nanoparticles. Here we report a simple, versatile, economic, ecofriendly and reproducible green method for the size-tunable synthesis of stable and crystalline gold nanoparticles of varied shape using aqueous extract of Garcinia Combogia fruit. The predominant anisotropic nature in the morphology of synthesized particles at lower quantities of extract gradually shifted to spherical particles with larger quantity of extract and increase of temperature. The onset of reduction, the time-evolution of the Surface Plasmon Resonance (SPR) and the catalytic activity are studied using UV-Visible spectroscopy. The Selected Area Diffraction (SAED) pattern, the lattice fringes in the High Resolution Transmission Electron Microscopic (HRTEM) image and the X-ray Diffraction (XRD) pattern clearly show the pure crystalline nature of the synthesized gold nanoparticles. The role of carboxyl group present in Garcinia Combogia fruit extract in the reduction of chloroaurate ions is established using Fourier Transform Infrared (FTIR) spectra. The size dependent catalytic activity of the green synthesized gold nanoparticles on the reduction of 4-Nitrophenol to 4-Aminophenol using sodium borohydride is studied and reported for the first time. The first order kinetics is fitted and rate constants are calculated. Catalytically active green synthesized gold nanoparticles with controllable size and shape presents an advanced step in future biomedical and chemical applications.

  8. Plasmonic Gold Decorated MWCNT Nanocomposite for Localized Plasmon Resonance Sensing

    PubMed Central

    Ozhikandathil, J.; Badilescu, S.; Packirisamy, M.

    2015-01-01

    The synergism of excellent properties of carbon nanotubes and gold nanoparticles is used in this work for bio-sensing of recombinant bovine growth hormones (rbST) by making Multi Wall Carbon Nanotubes (MWCNT) locally optically responsive by augmenting it optical properties through Localized Surface Plasmon Resonance (LSPR). To this purpose, locally gold nano particles decorated gold–MWCNT composite was synthesized from a suspension of MWCNT bundles and hydrogen chloroauric acid in an aqueous solution, activated ultrasonically and, then, drop-casted on a glass substrate. The slow drying of the drop produces a “coffee ring” pattern that is found to contain gold–MWCNT nanocomposites, accumulated mostly along the perimeter of the ring. The reaction is studied also at low-temperature, in the vacuum chamber of the Scanning Electron Microscope and is accounted for by the local melting processes that facilitate the contact between the bundle of tubes and the gold ions. Biosensing applications of the gold–MWCNT nanocomposite using their LSPR properties are demonstrated for the plasmonic detection of traces of bovine growth hormone. The sensitivity of the hybrid platform which is found to be 1 ng/ml is much better than that measuring with gold nanoparticles alone which is only 25 ng/ml. PMID:26282187

  9. Gold nanoparticle (AuNPs) and gold nanopore (AuNPore) catalysts in organic synthesis.

    PubMed

    Takale, Balaram S; Bao, Ming; Yamamoto, Yoshinori

    2014-04-07

    Organic synthesis using gold has gained tremendous attention in last few years, especially heterogeneous gold catalysis based on gold nanoparticles has made its place in almost all organic reactions, because of the robust and green nature of gold catalysts. In this context, gold nanopore (AuNPore) with a 3D metal framework is giving a new dimension to heterogeneous gold catalysts. Interestingly, AuNPore chemistry is proving better than gold nanoparticles based chemistry. In this review, along with recent advances, major discoveries in heterogeneous gold catalysis are discussed.

  10. Modeling of gold production in Malaysia

    NASA Astrophysics Data System (ADS)

    Muda, Nora; Ainuddeen, Nasihah Rasyiqah; Ismail, Hamizun; Umor, Mohd Rozi

    2013-04-01

    This study was conducted to identify the main factors that contribute to the gold production and hence determine the factors that affect to the development of the mining industry in Malaysia. An econometric approach was used by performing the cointegration analysis among the factors to determine the existence of long term relationship between the gold prices, the number of gold mines, the number of workers in gold mines and the gold production. The study continued with the Granger analysis to determine the relationship between factors and gold production. Results have found that there are long term relationship between price, gold production and number of employees. Granger causality analysis shows that there is only one way relationship between the number of employees with gold production in Malaysia and the number of gold mines in Malaysia.

  11. Gold sulfide replacements of cyanide solutions

    SciTech Connect

    Worobey, W.; Norwood, D.; Rieger, D.

    1991-01-01

    At Sandia National Laboratories we have introduced a non-cyanide gold electroplating solution in the Solid State Circuit Processing Lab. This commercially available solution is based on gold sulfite salts. An evaluation of the plating bath and the deposited gold for use in microelectronic circuit fabrication was conducted. The tests included selective plating compatability, wire bonding, soldering, gold resistivity, adherence, and step coverage. The results were all favorable. Precision gold patterns with line widths as small as 2{mu}m and gold thickness over 4{mu}m were selectively plated using a positive photoresist as a plating mask. Also the gold sulfite solution was used to fabricate gold air bridge crossovers for GaAs circuits. The introduction of the non-hazardous sulfite solution for plating high purity gold films will lead to manufacturing processes which are safer to work with and less damaging to the environment.

  12. Mixed monolayer protected gold atom-oxide cluster synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Nambiar, Sindhu R.; Aneesh, Padamadathil K.; Sukumar, Chinthu; Rao, Talasila P.

    2012-06-01

    Small atomic gold clusters in solution, Aun, stabilized by cetyl trimethylammonium bromide (CTAB) and cysteine, have been synthesized potentiodynamically in quiescent aqueous solutions. The electrodissolution of gold to gold ions during an anodic scan and subsequent cluster formation during a cathodic scan in underpotential (UPDD) and overpotential dissolution-deposition (OPDD) regions were studied. The experimental potentiodynamic I-E profiles and chronoamperometric i-t transients are fit into reported theoretical models of adsorption and electrocrystallization. The plausible application of clusters/cluster film to cysteine sensing based on fluorescence quenching and square wave stripping voltammetry is demonstrated.Small atomic gold clusters in solution, Aun, stabilized by cetyl trimethylammonium bromide (CTAB) and cysteine, have been synthesized potentiodynamically in quiescent aqueous solutions. The electrodissolution of gold to gold ions during an anodic scan and subsequent cluster formation during a cathodic scan in underpotential (UPDD) and overpotential dissolution-deposition (OPDD) regions were studied. The experimental potentiodynamic I-E profiles and chronoamperometric i-t transients are fit into reported theoretical models of adsorption and electrocrystallization. The plausible application of clusters/cluster film to cysteine sensing based on fluorescence quenching and square wave stripping voltammetry is demonstrated. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30446e

  13. Anti-aggregation-based spectrometric detection of Hg(II) at physiological pH using gold nanorods.

    PubMed

    Rajeshwari, A; Karthiga, D; Chandrasekaran, Natarajan; Mukherjee, Amitava

    2016-10-01

    An efficient detection method for Hg (II) ions at physiological pH (pH7.4) was developed using tween 20-modified gold nanorods (NRs) in the presence of dithiothreitol (DTT). Thiol groups (-SH) at the end of DTT have a higher affinity towards gold atoms, and they can covalently interact with gold NRs and leads to their aggregation. The addition of Hg(II) ions prevents the aggregation of gold NRs due to the covalent bond formation between the -SH group of DTT and Hg(II) ions in the buffer system. The changes in the longitudinal surface plasmon resonance peak of gold NRs were characterized using a UV-visible spectrophotometer. The absorption intensity peak of gold NRs at 679nm was observed to reduce after interaction with DTT, and the absorption intensity was noted to increase by increasing the concentration of Hg(II) ions. The TEM analysis confirms the morphological changes of gold NRs before and after addition of Hg(II) ions in the presence of DTT. Further, the aggregation and disaggregation of gold NRs were confirmed by particle size and zeta potential analysis. The developed method shows an excellent linearity (y=0.001x+0.794) for the graph plotted between the absorption ratio and Hg(II) concentration (1 to 100pM) under the optimized conditions. The limit of detection was noted to be 0.42pM in the buffer system. The developed method was tested in simulated body fluid, and it was found to have a good recovery rate.

  14. The biodistribution of gold nanoparticles designed for renal clearance.

    PubMed

    Alric, Christophe; Miladi, Imen; Kryza, David; Taleb, Jacqueline; Lux, François; Bazzi, Rana; Billotey, Claire; Janier, Marc; Perriat, Pascal; Roux, Stéphane; Tillement, Olivier

    2013-07-07

    Owing to their tunable optical properties and their high absorption cross-section of X- and γ-ray, gold nanostructures appear as promising agents for remotely controlled therapy. Since the efficiency of cancer therapy is not limited to the eradication of the tumour but rests also on the sparing of healthy tissue, a biodistribution study is required in order to determine whether the behaviour of the nanoparticles after intravenous injection is safe (no accumulation in healthy tissue, no uptake by phagocytic cell-rich organs (liver, spleen) and renal clearance). The biodistribution of Au@DTDTPA nanoparticles which are composed of a gold core and a DTDTPA (dithiolated polyaminocarboxylate) shell can be established by X-ray imaging (owing to the X-ray absorption of the gold core) and by magnetic resonance imaging (MRI) since the DTDTPA shell was designed for the immobilization of paramagnetic gadolinium ions. However scintigraphy appears better suited for a biodistribution study owing to a great sensitivity. The successful immobilization of radioelements ((99m)Tc, (111)In) in the DTDTPA shell, instead of gadolinium ions, renders possible the follow up of Au@DTDTPA by scintigraphy which showed that Au@DTDTPA nanoparticles exhibit a safe behaviour after intravenous injection to healthy rats.

  15. Monoclonal antibody "gold rush".

    PubMed

    Maggon, Krishan

    2007-01-01

    The market, sales and regulatory approval of new human medicines, during the past few years, indicates increasing number and share of new biologics and emergence of new multibillion dollar molecules. The global sale of monoclonal antibodies in 2006 were $20.6 billion. Remicade had annual sales gain of $1 billion during the past 3 years and five brands had similar increase in 2006. Rituxan with 2006 sales of $4.7 billion was the best selling monoclonal antibody and biological product and the 6th among the top selling medicinal brand. It may be the first biologic and monoclonal antibody to reach $10 billion annual sales in the near future. The strong demand from cancer and arthritis patients has surpassed almost all commercial market research reports and sales forecast. Seven monoclonal antibody brands in 2006 had sales exceeding $1 billion. Humanized or fully human monoclonal antibodies with low immunogenicity, enhanced antigen binding and reduced cellular toxicity provide better clinical efficacy. The higher technical and clinical success rate, overcoming of technical hurdles in large scale manufacturing, low cost of market entry and IND filing, use of fully human and humanized monoclonal antibodies has attracted funds and resources towards R&D. Review of industry research pipeline and sales data during the past 3 years indicate a real paradigm shift in industrial R&D from pharmaceutical to biologics and monoclonal antibodies. The antibody bandwagon has been joined by 200 companies with hundreds of new projects and targets and has attracted billions of dollars in R&D investment, acquisitions and licensing deals leading to the current Monoclonal Antibody Gold Rush.

  16. Gold nanonetwork film on the ITO surface exhibiting one-dimensional optical properties

    PubMed Central

    2012-01-01

    A network of gold nanostructures exhibiting one-dimensional gold nanostructure properties may become a prospective novel structure for optical, electrical and catalytic applications benefited by its unusual characteristics resulting from the collective properties of individual nanostructures in the network. In this paper, we demonstrate a facile method for the formation of high-density gold nanonetwork film on the substrate surface composed of quasi-1D nanoparticles (typically fusiform) with length ca. 10 nm - via reduction of gold ions in the presence of nanoseeds attached surface, binary surfactants of cetyltrimethylammonium bromide and hexamethyleneteramine and Ag+ ions. The length of the nanonetworks can be up to ca. 100 nm, which corresponds to the aspect ratio of ca. 10. The quasi-1D gold nanostructures as well as the nanonetworks were found to be sensitive to the binary surfactants system and the Ag+ ions as they can only be formed if all the chemicals are available in the reaction. The nanonetworks exhibit unique 1D optical properties with the presence of transverse and longitudinal surface plasmon resonance absorption. Owing to their peculiar structures that are composed of small quasi-1D nanoparticles, the nanonetworks may produce unusual optical and catalytic properties, which are potentially used in surface-enhanced Raman scattering, catalysis and optical and non-linear optical applications. PMID:22587640

  17. Goldschlager allergy in a gold allergic patient.

    PubMed

    Guenthner, T; Stork, C M; Cantor, R M

    1999-08-01

    We describe the case of gold allergy after ingestion of GOLDSCHLAGER, a gold-containing liquor, in a patient with a previous allergy to gold jewelry. The patient was not aware that genuine gold particles were contained in the schnapps liquor and that ingestion could result in a reaction similar to that experienced by individuals sensitive to gold jewelry. Clinicians should be familiar with the presence of gold particles in GOLDSCHLAGER liquor and the potential for allergic reactions to occur in those so predisposed.

  18. The role of fulvic acid in the supergene migration of gold in tropical rain forest soils

    NASA Astrophysics Data System (ADS)

    Bowell, R. J.; Gize, A. P.; Foster, R. P.

    1993-09-01

    In tropical terrains, gold is released during lateritic weathering from the breakdown of hypogene ore. Soil organic matter provides potential ligands for gold complexing, of which fulvic acid (FA) is the dominant mobile component. At the Ashanti mine, southwest Ghana, a strong correlation between gold and soil organic matter exists. Dissolution studies show that Au, Au-Ag alloy, calaverite, and KAuCl 4 are dissolved by soil fulvic acid. Fulvic acid dissolution increases with pH with a 25 mgL -1 fulvic acid solution leaching 156 μgL -1 Au from KAuCl 4 over twenty-eight days at pH 3 and 477 μgL -1 Au at pH 12. Fulvic acid composition is shown to influence the potential to complex gold. High-sulphur fulvic acid (4.2%S, 2.7%N, 41.1%0) solubilizes more gold than high-nitrogen fulvic acid (0.9%S, 4.9%N, 46.7%O), and more than high-oxygen, low-sulphur fulvic acid (0.7%S, 4.4%N, 53.9%O) at the same pH. From Fourier transform-infrared (FTIR) spectroscopy and titration studies, gold is suggested to be incorporated into fulvic acid in a pseudocrystalline form, probably as a colloid at low pHs. The binding mechanism involves initial formation of a gold complex, possibly a hydroxy complex, by an ion-exchange mechanism. This intermediate complex is then slowly reduced by fulvic acid to a gold-fulvate colloid. In alkaline solutions, gold is fixed by reduction of an intermediate species and chelation with gold bound to S-ligands. Given the low ratio of gold in natural soil waters at Ashanti (0.01-84.4 μg L -1) to fulvic acid (15 mgL -1) the greatest control on gold-fulvate complexing is the availability of gold and not thermodynamic considerations of the gold-complex stability.

  19. Biomedical applications of gold nanoparticles.

    PubMed

    Cabuzu, Daniela; Cirja, Andreea; Puiu, Rebecca; Grumezescu, Alexandru Mihai

    2015-01-01

    Gold nanoparticles may be used in different domains, one of most important being the biomedical field. They have suitable properties for controlled drug delivery, cancer treatment, biomedical imaging, diagnosis and many others, due to their excellent compatibility with the human organism, low toxicity and tunable stability, small dimensions, and possibility to interact with a variety of substances. They also have optical properties, being able to absorb infrared light. Moreover, due to their large surface and the ability of being coated with a variety of therapeutic agents, gold nanoparticles have been showed a great potential to be used as drug delivery systems. Gold nanoparticles are intensively studied in biomedicine, and recent studies revealed the fact that they can cross the blood-brain barrier, may interact with the DNA and produce genotoxic effects. Because of their ability of producing heat, they can target and kill the tumors, being used very often in photodynamic therapy. Gold nanoparticles can be synthesized in many ways, but the most common are the biological and chemical methods, however the chemical method offers the advantage of better controlling the size and shape of the nanoparticles. In this review, we present the principal applications of gold nanoparticles in the biomedical field, like cancer treatment, amyloid-like fibrillogenesis inhibitors, transplacental treatment, the development of specific scaffolds and drug delivery systems.

  20. Seeded Growth of Monodisperse Gold Nanorods Using Bromide-Free Surfactant Mixtures

    SciTech Connect

    Ye, XC; Gao, YZ; Chen, J; Reifsnyder, DC; Zheng, C; Murray, CB

    2013-05-01

    We demonstrate for the first time that monodisperse gold nanorods (NRs) with broadly tunable dimensions and longitudinal surface plasmon resonances can be synthesized using a bromide-free surfactant mixture composed of alkyltrimethylammonium chloride and sodium oleate. It is found that uniform gold NRs can be obtained even with an iodide concentration approaching 100 mu M in the growth solution. In contrast to conventional wisdom, our results provide conclusive evidence that neither bromide as the surfactant counterion nor a high concentration of bromide ions in the growth solution is essential for gold NR formation. Correlated electron microscopy study of three-dimensional structures of gold NRs reveals a previously unprecedented octagonal prismatic structure enclosed predominantly by high index {310} crystal planes. These findings should have profound implications for a comprehensive mechanistic understanding of seeded growth of anisotropic metal nanocrystals.

  1. Extracellular biosynthesis of gold and silver nanoparticles using Krishna tulsi ( Ocimum sanctum) leaf

    NASA Astrophysics Data System (ADS)

    Philip, Daizy; Unni, C.

    2011-05-01

    Aqueous extract of Ocimum sanctum leaf is used as reducing agent for the environmentally friendly synthesis of gold and silver nanoparticles. The nanoparticles were characterized using UV-vis, transmission electron microscopy (TEM), X-ray diffraction (XRD) and FTIR analysis. These methods allow the synthesis of hexagonal gold nanoparticles having size ∼30 nm showing two surface plasmon resonance (SPR) bands by changing the relative concentration of HAuCl 4 and the extract. Broadening of SPR is observed at larger quantities of the extract possibly due to biosorption of gold ions. Silver nanoparticles with size in the range 10-20 nm having symmetric SPR band centered around 409 nm are obtained for the colloid synthesized at room temperature at a pH of 8. Crystallinity of the nanoparticles is confirmed from the XRD pattern. Biomolecules responsible for capping are different in gold and silver nanoparticles as evidenced by the FTIR spectra.

  2. Selective Gold Recovery and Catalysis in a Highly Flexible Methionine-Decorated Metal-Organic Framework.

    PubMed

    Mon, Marta; Ferrando-Soria, Jesús; Grancha, Thais; Fortea-Pérez, Francisco R; Gascon, Jorge; Leyva-Pérez, Antonio; Armentano, Donatella; Pardo, Emilio

    2016-06-29

    A novel chiral 3D bioMOF exhibiting functional channels with thio-alkyl chains derived from the natural amino acid l-methionine (1) has been rationally prepared. The well-known strong affinity of gold for sulfur derivatives, together with the extremely high flexibility of the thioether "arms" decorating the channels, account for a selective capture of gold(III) and gold(I) salts in the presence of other metal cations typically found in electronic wastes. The X-ray single-crystal structures of the different gold adsorbates Au(III)@1 and Au(I)@1 suggest that the selective metal capture occurs in a metal ion recognition process somehow mimicking what happens in biological systems and protein receptors. Both Au(III)@1 and Au(I)@1 display high activity as heterogeneous catalyst for the hydroalkoxylation of alkynes, further expanding the application of these novel hybrid materials.

  3. Root extracts of Polygala tenuifolia for the green synthesis of gold nanoparticles.

    PubMed

    Jun, Sang Hui; Kim, Hyun-Seok; Koo, Yean Kyoung; Park, Yohan; Kim, Jinwoong; Cho, Seonho; Park, Youmie

    2014-08-01

    Traditional medicinal plants possess diverse active constituents for exerting their biological activities. Recently, the innovative applications of plant extracts have revealed their promise as 'green' reducing agents for the reduction of metal ions during the synthesis of metallic nanoparticles. Herein, we report the use of 70% ethanol extracts from Polygala tenuifolia roots as a 'green' reducing agent for the production of gold nanoparticles by reducing gold(III) chloride trihydrate. Gold nanoparticles were characterized using UV-Visible spectrophotometry, high-resolution transmission electron microscopy (HR-TEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). The gold nanoparticles had characteristic surface plasmon resonance bands at 535 nm. HR-TEM and AFM images revealed major spherical-shaped nanoparticles. The average diameter was measured to be 9.77±3.09 nm using HR-TEM images. The crystalline structure of the gold nanoparticles was confirmed through lattice fringes and circular spots within the selected area electron diffraction in the HR-TEM images along with the XRD peaks. The gold nanoparticles exhibited enhanced anticoagulant activity, as assessed by activated partial thromboplastin time. The current method is a straightforward, environmentally friendly, and inexpensive method for the production of gold nanoparticles using extracts from traditional medicinal plants.

  4. Green synthesis of gold nanoparticles using Stevia rebaudiana leaf extracts: Characterization and their stability.

    PubMed

    Sadeghi, Babak; Mohammadzadeh, M; Babakhani, B

    2015-07-01

    Various methods invented and developed for the synthesis of gold nanoparticles that increases daily consumed. According to this method, including potential environmental pollution problems and the complexity of the synthesis, in this study, the feasibility of using the leaves extract of Stevia rebaudiana (SR) for the reduction of gold ions to nanoparticles form have been studied. Stevia leaves were used to prepare the aqueous extract for this study. Gold nanoparticles were characterized with different techniques such as UV-vis spectroscopy, FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Transmission electron microscopy experiments showed that these nanoparticles are spherical and uniformly distributed and its size is from 5 to 20 nm. FT-IR spectroscopy revealed that gold nanoparticles were functionalized with biomolecules that have primary amine group (NH2), carbonyl group, OH groups and other stabilizing functional groups. X-ray diffraction pattern showed high purity and face centered cubic structure of gold nanoparticles with size of 17 nm. The scanning electron microscopy (SEM) implies the right of forming gold nanoparticles. The results, confirm that gold nanoparticles have synthesized by the leaves extract of S. rebaudiana (SR).

  5. Generation of quasi-monoenergetic carbon ions accelerated parallel to the plane of a sandwich target

    SciTech Connect

    Wang, J. W.; Murakami, M.; Weng, S. M.; Xu, H.; Ju, J. J.; Luan, S. X.; Yu, W.

    2014-12-15

    A new ion acceleration scheme, namely, target parallel Coulomb acceleration, is proposed in which a carbon plate sandwiched between gold layers is irradiated with intense linearly polarized laser pulses. The high electrostatic field generated by the gold ions efficiently accelerates the embedded carbon ions parallel to the plane of the target. The ion beam is found to be collimated by the concave-shaped Coulomb potential. As a result, a quasi-monoenergetic and collimated C{sup 6+}-ion beam with an energy exceeding 10 MeV/nucleon is produced at a laser intensity of 5 × 10{sup 19} W/cm{sup 2}.

  6. Direct visualization of lead corona and its nanomolar colorimetric detection using anisotropic gold nanoparticles.

    PubMed

    Dwivedi, Charu; Chaudhary, Abhishek; Gupta, Abhishek; Nandi, Chayan K

    2015-03-11

    The study presents dithiothreitol (DTT) functionalized anisotropic gold nanoparticles (GNP) based colorimetric sensor for detection of toxic lead ions in water. Our results demonstrate the selectivity and sensitivity of the developed sensor over various heavy metal ions with detection limit of ∼9 nM. The mechanism of sensing is explained on the basis of unique corona formation around the DTT functionalized anisotropic GNP.

  7. Synthesis and optical properties of gold nanorods with controllable morphology

    NASA Astrophysics Data System (ADS)

    Ye, Tianyu; Dai, Zhigao; Mei, Fei; Zhang, Xingang; Zhou, Yuanming; Xu, Jinxia; Wu, Wei; Xiao, Xiangheng; Jiang, Changzhong

    2016-11-01

    Searching for architectural building blocks with tunable morphology and peculiarity is a prominent challenge for novel diagnostic and therapeutic applications. Here, the aqueous-based seed-mediated methods for preparing highly mono-dispersed Au nanorods with a different aspect ratio are systematically studied by controlling the amounts of Ag ions and seeds. We also explore the effect of pH on the synthesis of gold nanorods. The realization of the overlap of longitudinal plasmon band and excitation source with different degrees is made by changing the aspect ratio of nanorod in order to determine its effect on the overall surface enhancement. In addition, the gold octahedra are prepared by overgrowth on Au nanorods. The SERS effects of Au nanorods are researched and the FDTD simulations are performed to reveal the morphology induced plasmon modes.

  8. High Brightness Plasmon-Enhanced Nanostructured Gold Photoemitters

    SciTech Connect

    Gong, Yu; Joly, Alan G.; Kong, Lingmei; El-Khoury, Patrick Z.; Hess, Wayne P.

    2014-12-30

    Plasmonic nanohole arrays are fabricated in gold thin films by focused ion beam (FIB) lithography. Subsequent heat treatment creates sub 100 nm nanometric structures including tips, rods and flakes, all localized in the nanohole array region. The combined nanohole array and nanostructured surface comprise an efficient photoemitter. High brightness photoemission is observed from this construct using photoemission electron microscopy (PEEM), following 780 nm femtosecond (fs) laser irradiation. By comparing our observables to results of finite difference time domain (FDTD) calculations, we demonstrate that photoemission from the sub-100 nm structures is enhanced in the region of propagating surface plasmons launched from the nanohole arrays. Additionally, by tuning hole diameter and separation in the nanohole array, the photoemission intensity of nanostructured photoemitters can be controlled. We observe a photoemission enhancement of over 108, relative to photoemission from the flat region of the gold substrate at laser intensities well below the ablation threshold.

  9. Incorporation of gold into silicon by thin film deposition and pulsed laser melting

    NASA Astrophysics Data System (ADS)

    Warrender, Jeffrey M.; Hudspeth, Quentin; Malladi, Girish; Efstathiadis, Harry; Mathews, Jay

    2016-12-01

    We report on the incorporation of gold into silicon at a peak concentration of 1.9 × 1020 at./cm3, four orders of magnitude above the equilibrium solubility limit, using pulsed laser melting of a thin film deposited on the silicon surface. We vary the film thickness and laser process parameters (fluence, number of shots) to quantify the range of concentrations that can be achieved. Our approach achieves gold concentrations comparable to those achieved with ion implantation followed by pulsed laser melting, in a layer with high crystalline quality. This approach offers an attractive alternative to ion implantation for forming high quality, high concentration layers of transition metals like gold in silicon.

  10. Chrysopogon zizanioides aqueous extract mediated synthesis, characterization of crystalline silver and gold nanoparticles for biomedical applications

    PubMed Central

    Arunachalam, Kantha D; Annamalai, Sathesh Kumar

    2013-01-01

    The exploitation of various plant materials for the biosynthesis of nanoparticles is considered a green technology as it does not involve any harmful chemicals. The aim of this study was to develop a simple biological method for the synthesis of silver and gold nanoparticles using Chrysopogon zizanioides. To exploit various plant materials for the biosynthesis of nanoparticles was considered a green technology. An aqueous leaf extract of C. zizanioides was used to synthesize silver and gold nanoparticles by the bioreduction of silver nitrate (AgNO3) and chloroauric acid (HAuCl4) respectively. Water-soluble organics present in the plant materials were mainly responsible for reducing silver or gold ions to nanosized Ag or Au particles. The synthesized silver and gold nanoparticles were characterized by ultraviolet (UV)-visible spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) analysis. The kinetics decline reactions of aqueous silver/gold ion with the C. zizanioides crude extract were determined by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to the extract were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20–50 nm. This eco-friendly approach for the synthesis of nanoparticles is simple, can be scaled up for large-scale production with powerful bioactivity as demonstrated by the synthesized silver nanoparticles. The synthesized nanoparticles can have clinical use as antibacterial, antioxidant, as well as cytotoxic agents and can be used for biomedical applications. PMID:23861583

  11. Chrysopogon zizanioides aqueous extract mediated synthesis, characterization of crystalline silver and gold nanoparticles for biomedical applications.

    PubMed

    Arunachalam, Kantha D; Annamalai, Sathesh Kumar

    2013-01-01

    The exploitation of various plant materials for the biosynthesis of nanoparticles is considered a green technology as it does not involve any harmful chemicals. The aim of this study was to develop a simple biological method for the synthesis of silver and gold nanoparticles using Chrysopogon zizanioides. To exploit various plant materials for the biosynthesis of nanoparticles was considered a green technology. An aqueous leaf extract of C. zizanioides was used to synthesize silver and gold nanoparticles by the bioreduction of silver nitrate (AgNO3) and chloroauric acid (HAuCl4) respectively. Water-soluble organics present in the plant materials were mainly responsible for reducing silver or gold ions to nanosized Ag or Au particles. The synthesized silver and gold nanoparticles were characterized by ultraviolet (UV)-visible spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) analysis. The kinetics decline reactions of aqueous silver/gold ion with the C. zizanioides crude extract were determined by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to the extract were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20-50 nm. This eco-friendly approach for the synthesis of nanoparticles is simple, can be scaled up for large-scale production with powerful bioactivity as demonstrated by the synthesized silver nanoparticles. The synthesized nanoparticles can have clinical use as antibacterial, antioxidant, as well as cytotoxic agents and can be used for biomedical applications.

  12. Gold(III)-CO and gold(III)-CO2 complexes and their role in the water-gas shift reaction

    PubMed Central

    Roşca, Dragoş-Adrian; Fernandez-Cestau, Julio; Morris, James; Wright, Joseph A.; Bochmann, Manfred

    2015-01-01

    The water-gas shift (WGS) reaction is an important process for the generation of hydrogen. Heterogeneous gold catalysts exhibit good WGS activity, but the nature of the active site, the oxidation state, and competing reaction mechanisms are very much matters of debate. Homogeneous gold WGS systems that could shed light on the mechanism are conspicuous by their absence: gold(I)–CO is inactive and gold(III)–CO complexes were unknown. We report the synthesis of the first example of an isolable CO complex of Au(III). Its reactivity demonstrates fundamental differences between the CO adducts of the neighboring d8 ions Pt(II) and Au(III): whereas Pt(II)-CO is stable to moisture, Au(III)–CO compounds are extremely susceptible to nucleophilic attack and show WGS reactivity at low temperature. The key to understanding these dramatic differences is the donation/back-donation ratio of the M–CO bond: gold-CO shows substantially less back-bonding than Pt-CO, irrespective of closely similar ν(CO) frequencies. Key WGS intermediates include the gold-CO2 complex [(C^N^C)Au]2(μ-CO2), which reductively eliminates CO2. The species identified here are in accord with Au(III) as active species and a carboxylate WGS mechanism. PMID:26601313

  13. Gold nanoparticles for photoacoustic imaging

    PubMed Central

    Li, Wanwan; Chen, Xiaoyuan

    2015-01-01

    Photoacoustic (PA) imaging is a biomedical imaging modality that provides functional information regarding the cellular and molecular signatures of tissue by using endogenous and exogenous contrast agents. There has been tremendous effort devoted to the development of PA imaging agents, and gold nanoparticles as exogenous contrast agents have great potential for PA imaging due to their inherent and geometrically induced optical properties. The gold-based nanoparticles that are most commonly employed for PA imaging include spheres, rods, shells, prisms, cages, stars and vesicles. This article provides an overview of the current state of research in utilizing these gold nanomaterials for PA imaging of cancer, atherosclerotic plaques, brain function and image-guided therapy. PMID:25600972

  14. Influence of Copper Resistance Determinants on Gold Transformation by Cupriavidus metallidurans Strain CH34

    PubMed Central

    Wiesemann, Nicole; Mohr, Juliane; Grosse, Cornelia; Herzberg, Martin; Hause, Gerd; Reith, Frank

    2013-01-01

    Cupriavidus metallidurans is associated with gold grains and may be involved in their formation. Gold(III) complexes influence the transcriptome of C. metallidurans (F. Reith et al., Proc. Natl. Acad. Sci. U. S. A. 106:17757–17762, 2009), leading to the upregulation of genes involved in the detoxification of reactive oxygen species and metal ions. In a systematic study, the involvement of these systems in gold transformation was investigated. Treatment of C. metallidurans cells with Au(I) complexes, which occur in this organism's natural environment, led to the upregulation of genes similar to those observed for treatment with Au(III) complexes. The two indigenous plasmids of C. metallidurans, which harbor several transition metal resistance determinants, were not involved in resistance to Au(I/III) complexes nor in their transformation to metallic nanoparticles. Upregulation of a cupA-lacZ fusion by the MerR-type regulator CupR with increasing Au(III) concentrations indicated the presence of gold ions in the cytoplasm. A hypothesis stating that the Gig system detoxifies gold complexes by the uptake and reduction of Au(III) to Au(I) or Au(0) reminiscent to detoxification of Hg(II) was disproven. ZupT and other secondary uptake systems for transition metal cations influenced Au(III) resistance but not the upregulation of the cupA-lacZ fusion. The two copper-exporting P-type ATPases CupA and CopF were also not essential for gold resistance. The copABCD determinant on chromosome 2, which encodes periplasmic proteins involved in copper resistance, was required for full gold resistance in C. metallidurans. In conclusion, biomineralization of gold particles via the reduction of mobile Au(I/III) complexes in C. metallidurans appears to primarily occur in the periplasmic space via copper-handling systems. PMID:23475973

  15. Synthesis and luminescence modulation of pyrazine-based gold(III) pincer complexes.

    PubMed

    Fernandez-Cestau, Julio; Bertrand, Benoît; Blaya, Maria; Jones, Garth A; Penfold, Thomas J; Bochmann, Manfred

    2015-12-04

    The first examples of pyrazine-based gold(III) pincer complexes are reported; their intense photoemissions can be modified by protonation, N-alkylation or metal ions, without the need for altering the ligand framework. Emissions shift from red (77 K) to blue (298 K) due to thermally activated delayed fluorescence (TADF).

  16. Study of Vegetable Biodiesel Enhanced by Gold Nanoparticles Using Thermal-Lens Technique

    NASA Astrophysics Data System (ADS)

    Jiménez-Pérez, J. L.; Fuentes, R. Gutiérrez; Correa-Pacheco, Z. N.; Tánori-Cordova, J.; Cruz-Orea, A.; Gamboa, G. López

    2015-06-01

    In this work, experimental results for the enhancement of the thermal diffusivity of a colloidal suspension of gold nanoparticles in biodiesel oil are reported. Different concentrations of Au nanoparticles are prepared using a microemulsion method, by simultaneous reduction of Au ions in the presence of hydrazine as a reducing agent. The thermal diffusivity was found to increase with increasing nanoparticle concentration.

  17. Economic geology: Gold buried by oxygen

    NASA Astrophysics Data System (ADS)

    Gaillard, Fabrice; Copard, Yoann

    2015-03-01

    The Witwatersrand Basin in South Africa contains extraordinary amounts of gold. Thermodynamic calculations suggest that the gold may have accumulated there in response to a perfect storm of conditions available only during the Archaean.

  18. Recent Developments in Australian Gold Extraction.

    ERIC Educational Resources Information Center

    Thiele, Rodney B.

    1995-01-01

    Describes new technologies that have greatly improved the extraction efficiency of gold ore, including: altering plant layout to promote efficiency, engaging Filiblast forced oxidation and bioxidation systems, and updating the electrowinning procedure at the gold recovery stage. (JRH)

  19. Formation, structure, and orientation of gold silicide on gold surfaces

    NASA Technical Reports Server (NTRS)

    Green, A. K.; Bauer, E.

    1976-01-01

    The formation of gold silicide on Au films evaporated onto Si(111) surfaces is studied by Auger electron spectroscopy (AES) and low-energy electron diffraction (LEED). Surface condition, film thickness, deposition temperature, annealing temperature, and heating rate during annealing are varied. Several oriented crystalline silicide layers are observed.

  20. Formation, structure, and orientation of gold silicide on gold surfaces

    NASA Technical Reports Server (NTRS)

    Green, A. K.; Bauer, E.

    1976-01-01

    The formation of gold silicide on Au films evaporated onto Si(111) surfaces is studied by Auger electron spectroscopy (AES) and low-energy electron diffraction (LEED). Surface condition, film thickness, deposition temperature, annealing temperature, and heating rate during annealing are varied. Several oriented crystalline silicide layers are observed.

  1. Hematite spindles with optical functionalities: growth of gold nanoshells and assembly of gold nanorods.

    PubMed

    Spuch-Calvar, Miguel; Pérez-Juste, Jorge; Liz-Marzán, Luis M

    2007-06-01

    The layer-by-layer (LBL) assembly method, combined with the seeded growth technique, have been used to deposit gold shells on the surface of hematite (alpha-Fe(2)O(3)) spindles. While the LBL method yields dense coatings of preformed Au nanoparticles, when AuCl(-)(4) ions are further reduced by a mild reducing agent, thicker, rough nanostructured shells can be grown. The deposition process was monitored by TEM and UV-visible spectroscopy, demonstrating a gradual change in the optical features of the colloids as the surface is more densely covered. The particles so-prepared can find useful applications in cancer therapy and as SERS substrates. Additionally, we show that Au nanorods can be assembled on hematite spindles, providing a flexible way to tune the optical properties of the resulting composite colloids.

  2. A new green chemistry method based on plant extracts to synthesize gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Montes Castillo, Milka Odemariz

    solved. In this work, secondary metabolites were extracted from alfalfa biomass in liquid phase by hot water, isopropanol, and methanol, and used to reduce tetrachloroaurate ion (AuCl4-) for the synthesis of gold nanoparticles. Biosyntheses of gold nanoparticles were performed by mixing 0.75, 1.5 and 3.0 mM Au3+ solutions with each one of the extracts at a ratio of 3:1 respectively, and shaken at room temperature for 1h. Resulting gold colloids were characterized by UV-Vis spectrophotometry and electron microscopy techniques, showing size and morphology dependency on the reaction conditions. Isopropanol alfalfa extracts reacted with Au 3+ produced gold nanoparticles with a size range of 15-60 nm. The most abundant were from 40-50 nm, and the morphologies found were polygons, decahedra and icosahedra. Methanol alfalfa extracts produced monodisperse 50 nm decahedral and icosahedral gold nanoparticles. Lastly, water alfalfa extracts reacted with Au3+ produced triangular, truncated triangular and hexagonal nanoplates with diameters ranging from 500 nm to 4 mum and thicknesses of ˜15-40 nm. The production of gold nanoplates by alfalfa extracts has never been reported before. In order to extract the formed gold nanoparticles from the biomass, physical and chemical extractions were used. For the chemical extraction, NaCl, dilute H2SO4, Triton X and DI water were tested. In these cases, the best results were obtained with DI water, followed by NaCl. The extracted nanoparticles had an absorption band at about 539 nm. For the physical extractions, alfalfa biomass containing gold nanoparticles were exposed to 400°C, 500°C, 550°C and 600°C to recover the gold nanoparticles. X-ray diffractograms taken after pyrolysis of the biomass showed that the recovered nanoparticles kept their crystal structure.

  3. Understanding ligand effects in gold clusters using mass spectrometry

    SciTech Connect

    Johnson, Grant E.; Laskin, Julia

    2016-01-01

    This review summarizes recent research on the influence of phosphine ligands on the size, stability, and reactivity of gold clusters synthesized in solution. Sub-nanometer clusters exhibit size- and composition-dependent properties that are unique from those of larger nanoparticles. The highly tunable properties of clusters and their high surface-to-volume ratio make them promising candidates for a variety of technological applications. However, because “each-atom-counts” toward defining cluster properties it is critically important to develop robust synthesis methods to efficiently prepare clusters of predetermined size. For decades phosphines have been known to direct the size-selected synthesis of gold clusters. Despite the preparation of numerous species it is still not understood how different functional groups at phosphine centers affect the size and properties of gold clusters. Using electrospray ionization mass spectrometry (ESI-MS) it is possible to characterize the effect of ligand substitution on the distribution of clusters formed in solution at defined reaction conditions. In addition, ligand exchange reactions on preformed clusters may be monitored using ESI-MS. Collision induced dissociation (CID) may also be employed to obtain qualitative insight into the fragmentation of mixed ligand clusters and the relative binding energies of differently substituted phosphines. Quantitative ligand binding energies and cluster stability may be determined employing surface induced dissociation (SID) in a custom-built Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS). Rice-Ramsperger-Kassel-Marcus (RRKM) based modeling of the SID data allows dissociation energies and entropy values to be extracted that may be compared with the results of high-level theoretical calculations. The charge reduction and reactivity of atomically precise gold clusters, including partially ligated species generated in the gas-phase by in source CID, on well

  4. Understanding ligand effects in gold clusters using mass spectrometry.

    PubMed

    Johnson, Grant E; Laskin, Julia

    2016-06-21

    This review summarizes recent research on the influence of phosphine ligands on the size, stability, and reactivity of gold clusters synthesized in solution. Sub-nanometer clusters exhibit size- and composition-dependent properties that are unique from those of larger nanoparticles. The highly tunable properties of clusters and their high surface-to-volume ratio make them promising candidates for a variety of technological applications. However, because "each-atom-counts" toward defining cluster properties it is critically important to develop robust synthesis methods to efficiently prepare clusters of predetermined size. For decades phosphines have been known to direct the size-selected synthesis of gold clusters. Despite the preparation of numerous species it is still not understood how different functional groups at phosphine centers affect the size and properties of gold clusters. Using electrospray ionization mass spectrometry (ESI-MS) it is possible to characterize the effect of ligand substitution on the distribution of clusters formed in solution at defined reaction conditions. In addition, ligand exchange reactions on preformed clusters may be monitored using ESI-MS. Collision induced dissociation (CID) may also be employed to obtain qualitative insight into the fragmentation of mixed ligand clusters and the relative binding energies of differently substituted phosphines. Quantitative ligand binding energies and cluster stability may be determined employing surface induced dissociation (SID) in a custom-built Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS). Rice-Ramsperger-Kassel-Marcus (RRKM) based modeling of the SID data allows dissociation energies and entropy values to be extracted. The charge reduction and reactivity of atomically precise gold clusters, including partially ligated species generated in the gas-phase by in source CID, on well-defined surfaces may be explored using ion soft landing (SL) in a custom

  5. Synthesis of graphene-gold nanocomposites via sonochemical reduction.

    PubMed

    Park, Gle; Lee, Kyung G; Lee, Seok Jae; Park, Tae Jung; Wi, Rinbok; Kim, Do Hyun

    2011-07-01

    A Reduced reduced graphene oxide (RGO)-gold (Au) nanoparticle (NP) nanocomposite was synthesized by simultaneously reducing the Au ions and depositing Au NPs on onto the surface surface of the RGOsRGO simultaneously. To facilitate the reduction of Au ions and the generation of oxygen functionalities for anchoring the Au NPs on the RGOsRGO, ultrasound irradiation was applied to the mixture of reactants. The functional groups were investigated with FT-IR spectra. From the Raman and XPS spectra, the oxygen groups were identified as hydroxyl, epoxy, and carboxyl groups, the same as the one from graphene oxide (GO). As a result, the dense and uniform deposition of nanometer-sized Au NPs with nanometer size was observed on the RGO sheets sheet was observed with from the TEM imagesimage. The Oxygen oxygen functional groups that formed on the surface surface of the RGOs RGO seemed to have served serve as links for Au NPs NP attachment, through the electrostatic attraction of Au ions. Hybrid materials could thus be produced in a short time, with a high yield, by via ultrasound application. Besides, it ultrasound application could can readily take goldAu- binding- peptide (GBP)-modified biomolecules, readily implying its possibility in possible biological applications.

  6. 16 CFR 23.4 - Misrepresentation as to gold content.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... unfair or deceptive to misrepresent the presence of gold or gold alloy in an industry product, or the quantity or karat fineness of gold or gold alloy contained in the product, or the karat fineness, thickness, weight ratio, or manner of application of any gold or gold alloy plating, covering, or coating on...

  7. Single-crystalline gold nanoplates from a commercial gold plating solution.

    PubMed

    Li, Zhonghao; Lapeyre, Véronique; Ravaine, Valérie; Ravaine, Serge; Kuhn, Alexander

    2009-03-01

    A novel route was proposed to synthesize gold nanoplates using a commercial gold plating solution as the reactant. Single-crystalline gold nanoplates can be successfully synthesized by reacting gold plating solution with HCl. The as-prepared nanoplates are from several micrometers to tens of micrometers in size. The effects of reactant concentration and temperature on the morphology of the gold products were investigated. The size of the gold nanoplate increases with the decrease of the amount of gold plating solution, while irregular gold nanoparticles are formed as the HCl concentration becomes low. When the reaction temperature is as low as room temperature, nanoplates with a concavity form. Specifically, it is found that the Cl- plays an important role for the formation of these gold nanoplates. The formation mechanism of the gold nanoplates is studied in detail.

  8. Substituting gold for silver improves electrical connections

    NASA Technical Reports Server (NTRS)

    Loyd, J. R.; Pickard, R. F.

    1967-01-01

    In attaching external leads to thin film sensors of platinum ribbon, liquid gold is applied to each end of the ribbon and the leads are soldered to the cured gold. The cured and soldered liquid gold shows no tendency to migrate and retains initial resistance characteristics when exposed to elevated temperatures.

  9. Structural change from doping the gold cluster.

    PubMed

    Tang, Yiji; Wang, Shu-Guang; Li, Jia

    2011-05-01

    Doping gold clusters with a transition metal (M@Au(n)) causes structural change. To determine the mechanism by which these changes occur, the central gold atom of Au(5) was doped with its same row transition metals Pt, Ir, Os, Re, and W. Based on theoretical calculations, a similar trend was found in other gold clusters.

  10. Highly active thermally stable nanoporous gold catalyst

    SciTech Connect

    Biener, Juergen; Wittstock, Arne; Biener, Monika M.; Bagge-Hansen, Michael; Baeumer, Marcus; Wichmann, Andre; Neuman, Bjoern

    2016-12-20

    In one embodiment, a system includes a nanoporous gold structure and a plurality of oxide particles deposited on the nanoporous gold structure; the oxide particles are characterized by a crystalline phase. In another embodiment, a method includes depositing oxide nanoparticles on a nanoporous gold support to form an active structure and functionalizing the deposited oxide nanoparticles.

  11. Sans Studies Insight Into Improving of Yield of Block Copolymer-Stabilized Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ray, Debes; Aswal, V. K.

    2010-01-01

    Triblock copolymer poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) are well known as dispersion stabilizers. It has also been recently found that they can act as reducing agents along with stabilizers and these two properties of block copolymers together have provided a single-step synthesis and stabilization of gold nanoparticles at ambient temperature. We have studied the synthesis of stable gold nanoparticle solutions using block copolymer P85. Gold nanoparticles are prepared from 1 wt% aqueous solution of P85 mixed with varying concentration of HAuCl4.3H2O salt in the range 0.001 to 0.1 wt%. Surface plasmon resonance (SPR) band in UV-visible absorption spectra confirm the formation of the gold nanoparticles and the maximum yield of the nanoparticles is found to be quite low at 0.005 wt% of the salt solution. Small-angle neutron scattering (SANS) measurements in these systems suggest that a very small fraction of the block copolymers (<1%) is only associated with the gold nanoparticles and remaining form their own micelles, which probably results in the low yield. This can be explained as on an average a high block copolymer-to-gold ion ratio r0 (22) is required for 1 wt% P85 in the reduction reaction to produce gold nanoparticles. Based on this understanding, a step-addition method is used to enhance the yield of gold nanoparticles by manifold where the gold salt is added in small steps to maintain higher value of r(>r0) and therefore continuous formation of nanoparticles.

  12. Gold, Silver and Bronze Citations.

    ERIC Educational Resources Information Center

    American School & University, 2003

    2003-01-01

    Presents the gold, silver, and bronze winners of a competition, which judged the most outstanding learning environments at educational institutions nationwide. Jurors spent two days reviewing projects, focusing on concepts and ideas that made them exceptional. For each citation, the article offers information on the firm, client, total area, total…

  13. Gold, Silver and Bronze Citations.

    ERIC Educational Resources Information Center

    American School & University, 2003

    2003-01-01

    Presents the gold, silver, and bronze winners of a competition, which judged the most outstanding learning environments at educational institutions nationwide. Jurors spent two days reviewing projects, focusing on concepts and ideas that made them exceptional. For each citation, the article offers information on the firm, client, total area, total…

  14. Electron-phonon equilibration in laser-heated gold films

    NASA Astrophysics Data System (ADS)

    White, T. G.; Mabey, P.; Gericke, D. O.; Hartley, N. J.; Doyle, H. W.; McGonegle, D.; Rackstraw, D. S.; Higginbotham, A.; Gregori, G.

    2014-07-01

    By irradiating a thin metal foil with an intense short-pulse laser, we have created a uniform system far from equilibrium. The deposited energy is initially deposited only within the electronic subsystem, and the subsequent evolution of the system is determined by the details of the electron-phonon coupling. Here, we measure the time evolution of the lattice parameter through multilayer Bragg diffraction and compare the result to classical molecular dynamic simulations to determine the lattice temperature. The electron-ion coupling constant for gold is then determined by comparison with the evolution of a two-temperature electron-phonon system.

  15. Dissociative Scattering of Hyperthermal Energy CF3+ Ions from Modified Surfaces

    SciTech Connect

    Rezayat, Talayeh; Shukla, Anil K.

    2007-02-28

    We have studied surface-induced dissociation (SID) of a small polyatomic ion, CF3+, at several collision energies between 29 eV and 159 eV in collision with fluorinated alkyl thiol on gold 111 crystal.

  16. Fragmentation of biomolecules using slow highly charged ions

    NASA Astrophysics Data System (ADS)

    Ruehlicke, Christiane; Schneider, Dieter; DuBois, Robert; Balhorn, Rodney

    1997-02-01

    We present first results of biomolecular fragmentation studies with slow highly charged ions (HCI). A thin layer of the tripeptide RVA was deposited on gold targets and irradiated with slow (few 100 keV) ions, e.g. Xe50+ and Xe15+, extracted from the LLNL EBIT (electron beam ion trap). The secondary ions released upon ion impact were mass analyzed via Time-Of-Flight Secondary-Ion-Mass-Spectrometry (TOF-SIMS). The results show a strong dependence of the positive and negative ion yields on the charge state of the incident ion. We also found that incident ions with high charge states cause the ejection of fragments with a wide mass range as well as the intact molecule (345 amu). The underlying mechanisms are not yet understood but electron depletion of the target due to the high incident charge is likely to cause a variety of fragmentation processes.

  17. Gold nephropathy in juvenile rheumatoid arthritis.

    PubMed

    Husserl, F E; Shuler, S E

    1979-01-01

    A 2-year-old girl was treated with gold salts for juvenile rheumatoid arthritis. Treatment had to be discontinued when persistent proteinuria was detected. As this case report indicates, close monitoring of the urine is mandatory during treatment with gold salts to detect early signs of toxicity: hematuria followed by casts and then proteinuria as therapy is continued. Histologic examination with electron microscopy will help to differentiate the different forms of gold toxicity. When the findings are consistent with gold-induced renal involvement, therapy should be discontinued. The gold nephropathy usually resolves in time, with no permanent renal damage.

  18. Bimodal porous gold opals for molecular sensing

    NASA Astrophysics Data System (ADS)

    Chae, Weon-Sik; Yu, Hyunung; Ham, Sung-Kyoung; Lee, Myung-Jin; Jung, Jin-Seung; Robinson, David B.

    2013-11-01

    We have fabricated bimodal porous gold skeletons by double-templating routes using poly(styrene) colloidal opals as templates. The fabricated gold skeletons show a bimodal pore-size distribution, with small pores within spheres and large pores between spheres. The templated bimodal porous gold skeletons were applied in Raman scattering experiments to study sensing efficiency for probe molecules. We found that the bimodal porous gold skeletons showed obvious enhancement of Raman scattering signals versus that of the unimodal porous gold which only has interstitial pores of several hundred nanometers.

  19. Gold recycling; a materials flow study

    USGS Publications Warehouse

    Amey, Earle B.

    2000-01-01

    This materials flow study includes a description of trends in consumption, loss, and recycling of gold-containing materials in the United States in 1998 in order to illustrate the extent to which gold is presently being recycled and to identify recycling trends. The quantity of gold recycled, as a percent of the apparent supply of gold, was estimated to be about 30 percent. Of the approximately 446 metric tons of gold refined in the United States in 1998, the fabricating and industrial use losses were 3 percent.

  20. Chromosomal instability induced by heavy ion irradiation

    NASA Technical Reports Server (NTRS)

    Limoli, C. L.; Ponnaiya, B.; Corcoran, J. J.; Giedzinski, E.; Morgan, W. F.

    2000-01-01

    PURPOSE: To establish the dose-response relationship for the induction of chromosomal instability in GM10115 cells exposed to high-energy iron ions (1 GeV/nucleon, mean LET 146 keV/microm) and gold ions (11 GeV/nucleon, mean LET 1450 keV/microm). Past work has established that sparsely ionizing X-rays can induce a long-lived destabilization of chromosomes in a dose-dependent manner at an incidence of approximately 3% per gray. The present investigation assesses the capacity of High-Z and High-energy (HZE) particles to elicit this same endpoint. MATERIALS AND METHODS: Clonal populations derived from single progenitor cells surviving heavy-ion irradiation were analyzed cytogenetically to identify those clones showing a persistent destablization of chromosomes. RESULTS: Dose-response data, with a particular emphasis at low dose (< 1.0 Gy), indicate a frequency of approximately 4% per gray for the induction of chromosomal instability in clones derived from single progenitor cells surviving exposure to iron ions. The induction of chromosomal instability by gold ions was, however, less responsive to applied dose, as the observed incidence of this phenotype varied from 0 to 10% over 1-8 Gy. Both iron and gold ions gave dose-dependent increases in the yield of chromosomal aberrations (both chromosome- and chromatid-type) measured at the first mitosis following irradiation, as well as shoulderless survival curves having D0=0.87 and 1.1 Gy respectively. CONCLUSIONS: Based on the present dose-response data, the relative biological effectiveness of iron ions is 1.3 for the induction of chromosomal instability, and this indicates that heavy ions are only slightly more efficient than X-rays at eliciting this delayed phenotype.

  1. Chromosomal instability induced by heavy ion irradiation

    NASA Technical Reports Server (NTRS)

    Limoli, C. L.; Ponnaiya, B.; Corcoran, J. J.; Giedzinski, E.; Morgan, W. F.

    2000-01-01

    PURPOSE: To establish the dose-response relationship for the induction of chromosomal instability in GM10115 cells exposed to high-energy iron ions (1 GeV/nucleon, mean LET 146 keV/microm) and gold ions (11 GeV/nucleon, mean LET 1450 keV/microm). Past work has established that sparsely ionizing X-rays can induce a long-lived destabilization of chromosomes in a dose-dependent manner at an incidence of approximately 3% per gray. The present investigation assesses the capacity of High-Z and High-energy (HZE) particles to elicit this same endpoint. MATERIALS AND METHODS: Clonal populations derived from single progenitor cells surviving heavy-ion irradiation were analyzed cytogenetically to identify those clones showing a persistent destablization of chromosomes. RESULTS: Dose-response data, with a particular emphasis at low dose (< 1.0 Gy), indicate a frequency of approximately 4% per gray for the induction of chromosomal instability in clones derived from single progenitor cells surviving exposure to iron ions. The induction of chromosomal instability by gold ions was, however, less responsive to applied dose, as the observed incidence of this phenotype varied from 0 to 10% over 1-8 Gy. Both iron and gold ions gave dose-dependent increases in the yield of chromosomal aberrations (both chromosome- and chromatid-type) measured at the first mitosis following irradiation, as well as shoulderless survival curves having D0=0.87 and 1.1 Gy respectively. CONCLUSIONS: Based on the present dose-response data, the relative biological effectiveness of iron ions is 1.3 for the induction of chromosomal instability, and this indicates that heavy ions are only slightly more efficient than X-rays at eliciting this delayed phenotype.

  2. Invertebrate water extracts as biocompatible reducing agents for the green synthesis of gold and silver nanoparticles.

    PubMed

    Han, Lina; Kim, Yeong Shik; Cho, Seonho; Park, Youmie

    2013-08-01

    We report the use of water extracts of two invertebrates, snail body and earthworm, as biocompatible reducing agents for the green synthesis of gold and silver nanoparticles. The reaction conditions were optimized by varying the extract concentration, gold ion or silver ion concentration, reaction time, and reaction temperature. The gold and silver nanoparticles exhibited their characteristic surface plasmon resonance bands. Mostly spherical and amorphous shapes of the nanoparticles were synthesized. The average diameters of the gold and silver nanoparticles were 4.56 +/- 1.81 nm and 11.12 +/- 5.25 nm, respectively, when the extract of snail body was used as the reducing agent. The earthworm extracts produced gold and silver nanoparticles with average diameters of 6.70 +/- 2.69 nm and 12.19 +/- 4.28 nm, respectively. This report suggests that the invertebrate natural products have potential as biocompatible reducing agents for the green synthesis of metallic nanoparticles. This utility would open up novel applications of invertebrate natural products as nanocomposites and in nanomedicine.

  3. Mammalian sensitivity to elemental gold (Au?)

    USGS Publications Warehouse

    Eisler, R.

    2004-01-01

    There is increasing documentation of allergic contact dermatitis and other effects from gold jewelry, gold dental restorations, and gold implants. These effects were especially pronounced among females wearing body-piercing gold objects. One estimate of the prevalence of gold allergy worldwide is 13%, as judged by patch tests with monovalent organogold salts. Eczema of the head and neck was the most common response of individuals hypersensitive to gold, and sensitivity can last for at least several years. Ingestion of beverages containing flake gold can result in allergic-type reactions similar to those seen in gold-allergic individuals exposed to gold through dermal contact and other routes. Studies with small laboratory mammals and injected doses of colloidal gold showed increased body temperatures, accumulations in reticular cells, and dose enhancement in tumor therapy; gold implants were associated with tissue injuries. It is proposed that Au? toxicity to mammals is associated, in part, with formation of the more reactive Au+ and Au3+ species.

  4. Dating native gold by noble gas analyses

    NASA Technical Reports Server (NTRS)

    Niedermann, S.; Eugster, O.; Hofmann, B.; Thalmann, CH.; Reimold, W. U.

    1993-01-01

    Our recent work on He, Ne, and Ar in Alpine gold samples has demonstrated that gold is extremely retentive for He and could thus, in principle, be used for U/Th-He-4 dating. For vein-type gold from Brusson, Northern Italy, we derived a U/Th-He-4 age of 36 Ma, in agreement with the K-Ar formation age of associated muscovites and biotites. However, in placer gold from the Napf area, Central Switzerland, we observed large excesses of both He-4 and radiogenic Ar-40 (Ar-40 sub rad, defined as Ar-40-295.5-Ar-.36). The gas release systematics indicate two distinct noble gas components, one of which is released below about 800 C and the other one at the melting point of gold (1064 C). We now present results of He and Xe measurements in a 1 g placer gold sample from the river Kruempelgraben, as well as He and Ar data for Brusson vein-type gold and for gold from the Lily Gold Mine, South Africa. We calculate reasonable U/Th-He-4 as well as U-Xe ages based on those gases which are released at approximately 800 C. Probably the low-temperature components represent in-situ-produced radiogenic He and fission Xe, whereas the gases evolving when gold melts have been trapped during gold formation. Therefore, only the low-temperature components are relevant for dating purposes.

  5. Dating native gold by noble gas analyses

    NASA Technical Reports Server (NTRS)

    Niedermann, S.; Eugster, O.; Hofmann, B.; Thalmann, CH.; Reimold, W. U.

    1993-01-01

    Our recent work on He, Ne, and Ar in Alpine gold samples has demonstrated that gold is extremely retentive for He and could thus, in principle, be used for U/Th-He-4 dating. For vein-type gold from Brusson, Northern Italy, we derived a U/Th-He-4 age of 36 Ma, in agreement with the K-Ar formation age of associated muscovites and biotites. However, in placer gold from the Napf area, Central Switzerland, we observed large excesses of both He-4 and radiogenic Ar-40 (Ar-40 sub rad, defined as Ar-40-295.5-Ar-.36). The gas release systematics indicate two distinct noble gas components, one of which is released below about 800 C and the other one at the melting point of gold (1064 C). We now present results of He and Xe measurements in a 1 g placer gold sample from the river Kruempelgraben, as well as He and Ar data for Brusson vein-type gold and for gold from the Lily Gold Mine, South Africa. We calculate reasonable U/Th-He-4 as well as U-Xe ages based on those gases which are released at approximately 800 C. Probably the low-temperature components represent in-situ-produced radiogenic He and fission Xe, whereas the gases evolving when gold melts have been trapped during gold formation. Therefore, only the low-temperature components are relevant for dating purposes.

  6. [Determination of cadmium in human urine by colloidal gold immunochromatographic assay].

    PubMed

    Fu, G Y; Gong, J; Leng, X X

    2017-03-20

    Objective: To establish the method of colloidal gold immunochrom atographic assay for detecting cadmium ions rapidly. Methods: The anti-cadmium ion monoclonal antibody-gold conjugate was labeled on the binding pad, cadmium ion hapten and goat anti-mouse IgG were coated on nitrocellulose membrane as the detection line (T line) and quality control line (C line) respectively. The sample pad, colloidal gold bonding pad, nitrocellulose membrane and absorption pad were orderly assembled on the PVC board to cut into a test paper strip. The qualitative results of the assay were visualized in color. Results: When detecting the human urine cadmium ions, the results were tested qualitativly within 15 minutes. The detection limit was 30 μg/L. No cross-reactivity with other heavy metal ions. The test paper strip could be stored at 4 ℃ for 3 months. Conclusion: The method has the advantages of low cost, strong specificity, good stability and reliable results, and is suitable for rapid screening of cadmium poisoning of enterprise and occupational health.

  7. Shape-controlled synthesis of gold icosahedra and nanoplates using Pluronic P123 block copolymer and sodium chloride

    SciTech Connect

    Lee, Won-Ki; Cha, Sang-Ho; Kim, Ki-Hyun; Kim, Byung-Woo; Lee, Jong-Chan

    2009-12-15

    Gold icosahedra with an average diameter of about 600 nm were easily prepared by heating an aqueous solution of the amphiphilic block copolymer, poly(ethylene oxide){sub 20}-poly(propylene oxide){sub 70}-poly(ethylene oxide){sub 20} (Pluronic P123), and hydrogen tetrachloroaurate(III) trihydrate (HAuCl{sub 4}.3H{sub 2}O) at 60 deg. C for 25 min. When sodium chloride (NaCl:HAuCl{sub 4} molar ratio=10:1) was added to this aqueous solution, gold nanoplates were produced. The chloride ion was found to be a key component in the formation of the gold nanoplates by facilitating the growth of {l_brace}111{r_brace} oriented hexagonal/triangular gold nanoplates, because similar gold nanoplates were produced when LiCl or KCl was added to the aqueous solution instead of NaCl, while gold nanocrystals having irregular shapes were produced when NaBr or NaI was added. - Graphical abstract: Gold icosahedra were prepared by heating an aqueous solution of Pluronic P123 and HAuCl{sub 4}. When NaCl was added to this solution, gold nanoplates were produced.

  8. Cyto- and genotoxicity assessment of Gold nanoparticles obtained by laser ablation in A549 lung adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Di Bucchianico, Sebastiano; Migliore, Lucia; Marsili, Paolo; Vergari, Chiara; Giammanco, Francesco; Giorgetti, Emilia

    2015-05-01

    Gold nanoparticles have attracted enormous interest in biomedical applications, based on their unique optical properties. However, their toxicity on human tissues is still an open issue. Beyond the potential intrinsic toxicity of nanostructured gold, a non-negligible contribution of stabilizers or reaction by-products related to current wet chemical synthesis procedures can be expected. Aimed at isolating gold contribution from that of any other contaminant, we produced colloidal suspensions of Gold nanoparticles having average size <10 nm in deionized water or acetone by pulsed laser ablation, that permits preparation of uncoated and highly stable Gold nanoparticles in pure solvents. Subsequently, we investigated the role of surface chemistry, size, and dispersivity of synthesized Gold nanoparticles in exerting toxicity in a cell model system of deep respiratory tract, representing the main route of exposure to NPs, namely adenocarcinoma epithelial A549 cells. Gold nanoparticles prepared in water showed no particular signs of cytotoxicity, cytostasis, and/or genotoxicity as assessed by MTT colorimetric viability test and Cytokinesis-block micronucleus cytome assay up to concentrations of the order of 5 μg/mL. In contrast, Gold nanoparticles produced in pure acetone and then transferred into deionized water showed impaired cell viability, apoptosis responses, micronuclei, and dicentric chromosomes induction as well as nuclear budding, as a function of the amount of surface contaminants like amorphous carbon and enolate ions.

  9. Benchmark Measurements of the Ionization Balance of Non-LTE Gold

    SciTech Connect

    Heeter, R F; Hansen, S B; Fournier, K B; Foord, M E; Froula, D H; Mackinnon, A J; May, M J; Schneider, M B; Young, B F

    2007-04-20

    The authors present a series of benchmark measurements of the ionization balance of well characterized gold plasmas with and without external radiation fields at electron densities near 10{sup 21} cm{sup -3} and various electron temperatures spanning the range 0.8 to 2.4 keV. They have analyzed time- and space-resolved M-shell gold emission spectra using a sophisticated collisional-radiative model with hybrid level structure, finding average ion changes ranging from 42 to 50. At the lower temperatures, the spectra exhibit significant sensitivity to external radiation fields and include emission features from complex N-shell ions not previously studied at these densities. The measured spectra and inferred provide a stringent test for non-local thermodynamic equilibrium (non-LTE) models of complex high-Z ions.

  10. Ultrasensitive SERS detection of mercury based on the assembled gold nanochains.

    PubMed

    Xu, Liguang; Yin, Honghong; Ma, Wei; Kuang, Hua; Wang, Libing; Xu, Chuanlai

    2015-05-15

    Mercuric ions (Hg(2+)) mediate the transformation of single-stranded DNA to form double helical DNA by T-Hg(2+)-T interaction between base pairs. With this strategy, DNA modified gold nanoparticles (Au NPs) were assembled into chains which were displayed remarkable surface-enhanced Raman scattering (SERS) signal. Under optimized conditions, the length of gold nanochains was directly proportional to the mercuric ions concentrations over 0.001-0.5 ng mL(-1) and the limit of detection (LOD) in drinking water was as low as 0.45 pg mL(-1). With ultrasensitivity and excellent selectivity, this feasible and simple method is potentially as a promising tool for monitoring of mercury ions in food safety and environmental applications.

  11. Deposition of gold nanoparticles on silica spheres by electroless metal plating technique.

    PubMed

    Kobayashi, Yoshio; Tadaki, Yohei; Nagao, Daisuke; Konno, Mikio

    2005-03-15

    A previously proposed method for metal deposition with silver [Kobayashi et al., Chem. Mater. 13 (2001) 1630] was extended to uniform deposition of gold nanoparticles on submicrometer-sized silica spheres. The present method consisted of three steps: (1) the adsorption of Sn(2+) ions took place on surface of silica particles, (2) Ag(+) ions added were reduced and simultaneously adsorbed to the surface, while Sn(2+) was oxidized to Sn(4+), and (3) Au(+) ions added were reduced and deposited on the Ag surface. TEM observation, X-ray diffractometry, and UV-vis absorption spectroscopy revealed that gold metal nanoparticles with an average particle size of 13 nm and a crystal size of 5.1 nm were formed on the silica spheres with a size of 273 nm at an Au concentration of 0.77 M.

  12. ``Gold corrosion'': red stains on a gold Austrian Ducat

    NASA Astrophysics Data System (ADS)

    Gusmano, G.; Montanari, R.; Kaciulis, S.; Montesperelli, G.; Denk, R.

    Stains of different colours have been observed on historic and modern gold coins in several countries. An Austrian Ducat at the Kunsthistorisches Museum in Vienna has developed some red spots on its surface over the years. The same defects have also been observed in modern coins of higher gold purity. The spots have been examined by OM, SEM, EDS, XPS and AES. Optical microscopy showed that ``red'' defects exhibit in fact a nuance of colours. The surface analysis put in evidence the presence in the stains, in addition to gold, of silver and sulphur. The values of the modified Auger parameter α' of silver correspond to those of Ag2S; thus, it can be assumed that the stains are composed of silver sulphide (Ag2S). It was not possible to determine whether the presence of silver on the surface is due to segregation towards the surface or to external particles of silver embedded in the matrix. Depth profiling performed on modern coins suffering from the same problem allowed us to demonstrate that the nuance of colours is due to the inhomogeneous thickness of the spots. Moreover, it was demonstrated that spots are formed by two layers: an outer layer of silver sulphide and an inner layer of silver.

  13. In situ synthesis of gold nanoparticles in exponentially-growing layer-by-layer films.

    PubMed

    Shen, Liyan; Rapenne, Laetitia; Chaudouet, Patrick; Ji, Jian; Picart, Catherine

    2012-12-15

    In situ synthesis of inorganic nanoparticles (NPs) in polyelectrolytes multilayers (PEMs) has recently gained much attention. Due to the versatility of their composition, PEMs offer a unique opportunity to synthesize a variety of NPs. So far, mostly cationic precursors have been used and only few studies have investigated the possibility of using amine groups to bind anionic precursors. Here, we use exponentially growing poly(L-lysine)/hyaluronan (PLL/HA) films as a nanoreservoir to bind and sequester aurochlorate (AuCl(4)(-)) anions thanks to the large number of free amine groups. The polypeptide-polysaccharide reactive template enabled the formation in a spatially-confined environment of gold NP at a very high yield. The synthesized gold NPs were homogenous and well-dispersed in the nanocomposite. Importantly, there was no particular effect of the film-ending layer (either PLL or HA). The largest particles of ~9 nm and the largest amount of gold were obtained at acidic pH of 3. When the pH was increased, smaller and more numerous NPs were synthesized but the total amount of gold was lower. Based on UV-visible spectrometry, FTIR and TEM data, we finally propose a scheme for the mechanism of gold NPs formation, in which several groups of PLL and HA contribute to the binding of gold ions, the nucleation and growth of NPs, and their stabilization in the "bulk" of the film.

  14. In situ synthesis of gold nanoparticles in exponentially-growing layer-by-layer films

    PubMed Central

    Shen, Liyan; Rapenne, Laetitia; Chaudouet, Patrick; Ji, Jian; Picart, Catherine

    2014-01-01

    In situ synthesis of inorganic nanoparticles (NPs) in polyelectrolytes multilayers (PEMs) has recently gained much attention. Due to the versatility of their composition, PEMs offer a unique opportunity to synthesize a variety of NPs. So far, mostly cationic precursors have been used and only few studies have investigated the possibility of using amine groups to bind anionic precursors. Here, we use exponentially growing poly(L-lysine)/hyaluronan (PLL/HA) films as a nanoreservoir to bind and sequester aurochlorate (AuCl4−) anions thanks to the large number of free amine groups. The polypeptide-polysaccharide reactive template enabled the formation in a spatially-confined environment of gold NP at a very high yield. The synthesized gold NPs were homogenous and well-dispersed in the nanocomposite. Importantly, there was no particular effect of the film-ending layer (either PLL or HA). The largest particles of ~ 9 nm and the largest amount of gold were obtained at acidic pH of 3. When the pH was increased, smaller and more numerous NPs were synthesized but the total amount of gold was lower. Based on UV-visible spectrometry, FTIR and TEM data, we finally propose a scheme for the mechanism of gold NPs formation, in which several groups of PLL and HA contribute to the binding of gold ions, the nucleation and growth of NPs, and their stabilization in the “bulk” of the film. PMID:22981588

  15. Hierarchical Nanoporous Gold-Platinum with Heterogeneous Interfaces for Methanol Electrooxidation

    PubMed Central

    Xiao, Shuang; Xiao, Fei; Hu, Yuan; Yuan, Songliu; Wang, Shuai; Qian, Lihua; Liu, Yunqi

    2014-01-01

    The electrocatalysts utilized as the prospective electrodes in fuel cells and high efficient energy conversion devices require both the interconnected channels for efficient electrolyte transportation and the superior catalytic activity with long service life. In this work, nanoporous gold with the rigid skeletons in three dimensions is partially decorated by porous platinum shell containing nanoscale interstitials, aiming to create the heterogeneous gold-platinum interfaces and facilitate the electrolyte transportation as well. In comparison with no catalytic activity of bare nanoporous gold, the catalytic activity of hierarchical nanoporous gold-platinum towards electrochemical oxidation of methanol increases with the loading level of platinum shells, resulting in the highest electrochemical area of 70.4 m2·g−1 after the normalization by the mass of platinum. Heterogeneous gold-platinum interfaces affect the tolerance of the absorbed intermediate species because of the oxidization by the oxygenated species absorbed on the gold surface and the enhanced ion transportation within the porous platinum shell. PMID:24621809

  16. Phytofabrication of gold nanoparticles assisted by leaves of Suaeda monoica and its free radical scavenging property.

    PubMed

    Arockiya Aarthi Rajathi, F; Arumugam, R; Saravanan, S; Anantharaman, P

    2014-06-05

    Development of biologically inspired experimental processes for the synthesis of nanoparticles is evolving into an important branch of nanotechnology. An eco-friendly synthesis of inorganic nanoparticle is a fast growing research in the limb of nanotechnology. In the present study, it is reported that Suaeda monoica leaf mediated synthesis of gold nanoparticles by the reduction of gold ions. The formation of gold nanoparticle was confirmed by color changes from turbid brown to deep purple violet color and a characteristic peak at 535 nm. The morphology and structure of synthesized gold nanoparticles were characterized on Scanning Electron Microscopy (SEM) equipped with a Thermo EDAX attachment, Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), (FT-IR), Dynamic Light Scattering (DLS) which reveals that the Au nanoparticles are spherical and the average particle size is 12.96 nm. Crystalline nature of the nanoparticles is confirmed from the XRD pattern. FTIR spectrum indicates that the biomolecules of carboxyl, amine and hydroxyl functional groups involved in the reduction of gold nanoparticles. The biosynthesized gold nanoparticles displayed considerable antioxidant capacity.

  17. Ultrasmooth gold thin films by self-limiting galvanic displacement on silicon.

    PubMed

    Gutés, Albert; Carraro, Carlo; Maboudian, Roya

    2011-05-01

    Galvanic displacement (GD), a type of electroless deposition, has been used to obtain ultrasmooth gold thin films on silicon <111>. The novel aspect of the method presented herein is the absence of fluoride ions in the liquid phase, and its principal advantage when compared to previous efforts is that the process is inherently self-limiting. The self-limiting factor is due to the fact that in the absence of fluorinated species, no silicon oxide is removed during the process. Thus, the maximum gold film thickness is achieved when elemental silicon is no longer available once the surface is oxidized completely during the galvanic displacement process. X-ray photoelectron spectroscopy has been used as a tool for thickness measurement, using the gold to silicon ratio as an analytical signal. Three gold plating solutions with different concentrations of KAuCl₄ (2, 0.2, and 0.02 mM) have been used to obtain information about the formation rate of the gold film. This XPS analysis demonstrates the formation of gold films to a maximum thickness of ∼3.5 Å. Atomic force microscopy is used to confirm surface smoothness, suggesting that the monolayer growth does not follow the Volmer-Weber growth mode, in contrast to the GD process from aqueous conditions with fluorinated species.

  18. Understanding the Seed-Mediated Growth of Gold Nanorods through a Fractional Factorial Design of Experiments.

    PubMed

    Burrows, Nathan D; Harvey, Samantha; Idesis, Fred A; Murphy, Catherine J

    2017-02-28

    Since the development of simple, aqueous protocols for the synthesis of anisotropic metal nanoparticles, research into many promising, valuable applications of gold nanorods has grown considerably, but a number of challenges remain, including gold-particle yield, robustness to minor impurities, and precise control of gold nanorod surface chemistry. Herein we present the results of a composite fractional factorial series of experiments designed to screen seven additional potential avenues of control and to understand the seed-mediated silver-assisted synthesis of gold nanorods. These synthesis variables are the amount of sodium borohydride used and the rate of stirring when producing seed nanoparticles, the age of and the amount of seeds added, the reaction temperature, the amounts of silver nitrate and ascorbic acid added, and the age of the reduced growth solution before seed nanoparticles are added to initiate rod formation. This statistical experimental design and analysis method, besides determining which experimental variables are important and which are not when synthesizing gold nanorods (and quantifying their effects), gives further insight into the mechanism of growth by measuring the degree to which variables interact with each other by mapping out their mechanistic connections. This work demonstrates that when forming gold nanorods by the reduction of auric ions by ascorbic acid onto seed nanoparticles, ascorbic acid determines how much gold is reduced, and the amount of seeds determine how it is divided, yet both influence the intrinsic growth rates, in both width and length, of the forming nanorods. Furthermore, this work shows that the reduction of gold proceeds via direct reduction on the surface of seeds and not through a disproportionation reaction. Further control over the length of gold nanorods can be achieved by tuning the amount of silver nitrate or the reaction temperature. This work shows that silver does not directly influence rod length or

  19. Metallic glass as a temperature sensor during ion plating

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1985-01-01

    The temperature of the interface and/or a superficial layer of a substrate during ion plating was investigated using a metallic glass of the composition Fe67Co18B14Si1 as the substrate and as the temperature sensor. Transmission electron microscopy and diffraction studies determined the microstructure of the ion-plated gold film and the substrate. Results indicate that crystallization occurs not only in the film, but also in the substrate. The grain size of crystals formed during ion plating was 6 to 60 nm in the gold film and 8 to 100 nm in the substrate at a depth of 10 to 15 micrometers from the ion-plated interface. The temperature rise of the substrate during ion plating was approximately 500 C. Discontinuous changes in metallurgical microstructure, and physical, chemical, and mechanical properties during the amorphous to crystalline transition in metallic glasses make metallic glasses extremely useful materials for temperature sensor applications in coating processes.

  20. Metallic glass as a temperature sensor during ion plating

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1984-01-01

    The temperature of the interface and/or a superficial layer of a substrate during ion plating was investigated using a metallic glass of the composition Fe67Co18B14Si1 as the substrate and as the temperature sensor. Transmission electron microscopy and diffraction studies determined the microstructure of the ion-plated gold film and the substrate. Results indicate that crystallization occurs not only in the film, but also in the substrate. The grain size of crystals formed during ion plating was 6 to 60 nm in the gold film and 8 to 100 nm in the substrate at a depth of 10 to 15 micrometers from the ion-plated interface. The temperature rise of the substrate during ion plating was approximately 500 C. Discontinuous changes in metallurgical microstructure, and physical, chemical, and mechanical properties during the amorphous to crystalline transition in metallic glasses make metallic glasses extremely useful materials for temperature sensor applications in coating processes.

  1. Metallic glass as a temperature sensor during ion plating

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1985-01-01

    The temperature of the interface and/or a superficial layer of a substrate during ion plating was investigated using a metallic glass of the composition Fe67Co18B14Si1 as the substrate and as the temperature sensor. Transmission electron microscopy and diffraction studies determined the microstructure of the ion-plated gold film and the substrate. Results indicate that crystallization occurs not only in the film, but also in the substrate. The grain size of crystals formed during ion plating was 6 to 60 nm in the gold film and 8 to 100 nm in the substrate at a depth of 10 to 15 micrometers from the ion-plated interface. The temperature rise of the substrate during ion plating was approximately 500 C. Discontinuous changes in metallurgical microstructure, and physical, chemical, and mechanical properties during the amorphous to crystalline transition in metallic glasses make metallic glasses extremely useful materials for temperature sensor applications in coating processes.

  2. Gold-Speckled Multimodal Nanoparticles for Noninvasive Bioimaging

    PubMed Central

    2008-01-01

    In this report the synthesis, characterization, and functional evaluation of a multimodal nanoparticulate contrast agent for noninvasive imaging through both magnetic resonance imaging (MRI) and photoacoustic tomography (PAT) is presented. The nanoparticles described herein enable high resolution and highly sensitive three-dimensional diagnostic imaging through the synergistic coupling of MRI and PAT capabilities. Gadolinium (Gd)-doped gold-speckled silica (GSS) nanoparticles, ranging from 50 to 200 nm, have been prepared in a simple one-pot synthesis using nonionic microemulsions. The photoacoustic signal is generated from a nonuniform, discontinuous gold nanodomains speckled across the silica surface, whereas the MR contrast is provided through Gd incorporated in the silica matrix. The presence of a discontinuous speckled surface, as opposed to a continuous gold shell, allows sufficient bulk water exchange with the Gd ions to generate a strong MR contrast. The dual imaging capabilities of the particles have been demonstrated through in silicio and in vitro methods. The described particles also have the capacity for therapeutic applications including the thermal ablation of tumors through the absorption of irradiated light. PMID:19466201

  3. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry.

    PubMed

    Huang, Jer-Shing; Callegari, Victor; Geisler, Peter; Brüning, Christoph; Kern, Johannes; Prangsma, Jord C; Wu, Xiaofei; Feichtner, Thorsten; Ziegler, Johannes; Weinmann, Pia; Kamp, Martin; Forchel, Alfred; Biagioni, Paolo; Sennhauser, Urs; Hecht, Bert

    2010-01-01

    Deep subwavelength integration of high-definition plasmonic nanostructures is of key importance in the development of future optical nanocircuitry for high-speed communication, quantum computation and lab-on-a-chip applications. To date, the experimental realization of proposed extended plasmonic networks consisting of multiple functional elements remains challenging, mainly because of the multi-crystallinity of commonly used thermally evaporated gold layers. This can produce structural imperfections in individual circuit elements that drastically reduce the yield of functional integrated nanocircuits. In this paper we demonstrate the use of large (>100 μm(2)) but thin (<80 nm) chemically grown single-crystalline gold flakes that, after immobilization, serve as an ideal basis for focused ion beam milling and other top-down nanofabrication techniques on any desired substrate. Using this methodology we obtain high-definition ultrasmooth gold nanostructures with superior optical properties and reproducible nano-sized features over micrometre-length scales. Our approach provides a possible solution to overcome the current fabrication bottleneck and realize high-definition plasmonic nanocircuitry.

  4. Gallium in the Carlin-type gold deposits

    SciTech Connect

    Owens, P.A.; Ikramuddin, M.

    1985-01-01

    Gallium and aluminum are dispersed elements and are associated with each other because of their similar geochemical characteristics. The somewhat larger size of the Ga ion suggests that it may concentrate in residual melts and hydrothermal solutions. Ga and Al are also presumed to have different mobilities at a pH range of 3.4-4.1 and in alkaline solutions. Very little precise and accurate data exist on the concentration of Ga in hydrothermally altered rocks. In order to understand the behavior of Ga during hydrothermal processes and to explore the possibility of utilizing Ga as a guide to mineral deposits, unmineralized and mineralized rocks from four Carlin-type gold deposits were studied. Ga was analyzed by a newly developed precise and accurate method by electrothermal atomic absorption spectrophotometry. The Carlin-type gold deposits studied include Carlin and Alligator Ridge deposits of Nevada, Mercur deposit of Utah, and north Moccasin deposits of Montana. In all the mineralized areas there is more Ga in hydrothermally altered (mineralized) rocks than in unaltered (unmineralized) rocks. The enrichment factors for Ga differ from deposit to deposit. The highest enrichment of Ga is found in the north Moccasin deposits, where the average values in unmineralized and mineralized rocks are about 2 ppm and 10 ppm respectively. The oxidized mineralized rocks of the Carlin-type gold deposits have higher contents of Ga than carbonaceous rocks, while siliceous rocks contain the lowest Ga concentrations.

  5. Robust nanogap electrodes by self-terminating electroless gold plating.

    PubMed

    Serdio V, Victor M; Azuma, Yasuo; Takeshita, Shuhei; Muraki, Taro; Teranishi, Toshiharu; Majima, Yutaka

    2012-11-21

    Robust nanogap electrodes for nanodevices with a separation of 3.0 ± 1.7 nm were simultaneously mass-produced at a yield of 90% by a combination of electron beam lithography (EBL) and electroless gold plating (EGP). Nanogap electrodes demonstrated their robustness as they maintained their structure unchanged up to temperatures of 170 °C, during the isotropic oxygen plasma ashing removal of the amorphous carbon overlayer resulting from scanning electron microscopy observations, therefore maintaining their surface reactivity for EGP and formation of a self-assembled monolayer. A gold layer grows over the electrode surface during EGP, narrowing the separation between the electrodes; growth stops around 3 nm due to a self-termination phenomenon. This is the main factor in the high yield and reproducibility of the EGP process because it prevents contact between the electrodes. A 90% yield is achieved by also controlling the etching and physisorption of gold clusters, which is accomplished by reduction of triiodide ions and heat treatment of the EGP solution, respectively. A mixed self-assembled monolayer of octanethiol and decanedithiol can be formed at the surface of the nanogap electrodes after the oxygen plasma treatment, and decanethiol-protected Au nanoparticles were chemisorbed between the self-terminated nanogap electrodes via decanedithiol. Chemically assembled single-electron transistors based on the nanogap electrodes exhibit ideal, stable, and reproducible Coulomb diamonds.

  6. Toxicity and Biokinetics of Colloidal Gold Nanoparticles

    PubMed Central

    Jo, Mi-Rae; Bae, Song-Hwa; Go, Mi-Ran; Kim, Hyun-Jin; Hwang, Yun-Gu; Choi, Soo-Jin

    2015-01-01

    Gold nanoparticles (Au-NPs) have promising potential for diverse biological application, but it has not been completely determined whether Au-NP has potential toxicity in vitro and in vivo. In the present study, toxicity of Au-NP was evaluated in human intestinal cells as well as in rats after 14-day repeated oral administration. Biokinetic study was also performed to assess oral absorption and tissue distribution. The results demonstrated that Au-NP did not cause cytotoxic effects on cells after 24 h exposure in terms of inhibition of cell proliferation, membrane damage, and oxidative stress. However, when a small number of cells were exposed to Au-NP for seven days, colony forming ability remarkably decreased by Au-NP treatment, suggesting its potential toxicity after long-term exposure at high concentration. Biokinetic study revealed that Au-NP slowly entered the blood stream and slightly accumulated only in kidney after oral administration to rats. Whereas, orally administered Au ions were rapidly absorbed, and then distributed in kidney, liver, lung, and spleen at high levels, suggesting that the biological fate of Au-NP is primarily in nanoparticulate form, not in ionic Au. Fourteen-day repeated oral toxicity evaluation showed that Au-NP did not cause severe toxicity in rats based on histopathological, hematological, and serum biochemical analysis.

  7. One pot, rapid and efficient synthesis of water dispersible gold nanoparticles using alpha-amino acids

    NASA Astrophysics Data System (ADS)

    Wangoo, Nishima; Kaur, Sarabjit; Bajaj, Manish; Jain, D. V. S.; Sharma, Rohit K.

    2014-10-01

    A detailed study on the synthesis of spherical and monodispersed gold nanoparticles (AuNPs) using all of the 20 naturally occurring α-amino acids has been reported. The synthesized nanoparticles have been further characterized using various techniques such as absorbance spectroscopy, transmission electron microscopy, dynamic light scattering and nuclear magnetic resonance. Size control of the nanoparticles has been achieved by varying the ratio of the gold ion to the amino acid. These monodispersed water soluble AuNPs synthesized using non-toxic, naturally occurring α-amino acids as reducing and capping/stabilizing agents serve as a remarkable example of green chemistry.

  8. Efficient Coupling and Transport of a Surface Plasmon at 780 nm in a Gold Nanostructure

    SciTech Connect

    Gong, Yu; Joly, Alan G.; El-Khoury, Patrick Z.; Hess, Wayne P.

    2015-08-28

    We studied plasmonic nanostructures in single-crystal gold with scanning electron and femtosecond photoemission electron microscopies. We designed an integrated laser coupling and nanowire waveguide structure by focused ion beam lithography in single-crystal gold flakes. The photoemission results show that the laser field is efficiently coupled into a propagating surface plasmon by a simple hole structure and propagates efficiently in an adjacent nano-bar waveguide. A strong local field is created by the propagating surface plasmon at the nano-bar tip. A similar structure, with a decreased waveguide width and thickness, displayed significantly more intense photoemission indicating enhanced local electric field at the sharper tip.

  9. Bending Gold Nanorods with Light.

    PubMed

    Babynina, Anastasia; Fedoruk, Michael; Kühler, Paul; Meledin, Alexander; Döblinger, Markus; Lohmüller, Theobald

    2016-10-12

    V-shaped gold nanoantennas are the functional components of plasmonic metasurfaces, which are capable of manipulating light in unprecedented ways. Designing a metasurface requires the custom arrangement of individual antennas with controlled shape and orientation. Here, we show how highly crystalline gold nanorods in solution can be bent, one-by-one, into a V-shaped geometry and printed to the surface of a solid support through a combination of plasmonic heating and optical force. Significantly, we demonstrate that both the bending angle and the orientation of each rod-antenna can be adjusted independent from each other by tuning the laser intensity and polarization. This approach is applicable for the patterning of V-shaped plasmonic antennas on almost any substrate, which holds great potential for the fabrication of ultrathin optical components and devices.

  10. Biomolecular Assembly of Gold Nanocrystals

    SciTech Connect

    Micheel, Christine Marya

    2005-05-20

    Over the past ten years, methods have been developed to construct discrete nanostructures using nanocrystals and biomolecules. While these frequently consist of gold nanocrystals and DNA, semiconductor nanocrystals as well as antibodies and enzymes have also been used. One example of discrete nanostructures is dimers of gold nanocrystals linked together with complementary DNA. This type of nanostructure is also known as a nanocrystal molecule. Discrete nanostructures of this kind have a number of potential applications, from highly parallel self-assembly of electronics components and rapid read-out of DNA computations to biological imaging and a variety of bioassays. My research focused in three main areas. The first area, the refinement of electrophoresis as a purification and characterization method, included application of agarose gel electrophoresis to the purification of discrete gold nanocrystal/DNA conjugates and nanocrystal molecules, as well as development of a more detailed understanding of the hydrodynamic behavior of these materials in gels. The second area, the development of methods for quantitative analysis of transmission electron microscope data, used computer programs written to find pair correlations as well as higher order correlations. With these programs, it is possible to reliably locate and measure nanocrystal molecules in TEM images. The final area of research explored the use of DNA ligase in the formation of nanocrystal molecules. Synthesis of dimers of gold particles linked with a single strand of DNA possible through the use of DNA ligase opens the possibility for amplification of nanostructures in a manner similar to polymerase chain reaction. These three areas are discussed in the context of the work in the Alivisatos group, as well as the field as a whole.

  11. Visualizing expanding warm dense matter heated by laser-generated ion beams

    SciTech Connect

    Bang, Woosuk

    2015-08-24

    This PowerPoint presentation concluded with the following. We calculated the expected heating per atom and temperatures of various target materials using a Monte Carlo simulation code and SESAME EOS tables. We used aluminum ion beams to heat gold and diamond uniformly and isochorically. A streak camera imaged the expansion of warm dense gold (5.5 eV) and diamond (1.7 eV). GXI-X recorded all 16 x-ray images of the unheated gold bar targets proving that it could image the motion of the gold/diamond interface of the proposed target.

  12. DNA-templated gold nanowires

    NASA Astrophysics Data System (ADS)

    Mohammadzadegan, Reza; Mohabatkar, Hassan; Sheikhi, Mohammad Hossein; Safavi, Afsaneh; Khajouee, Mahmood Barati

    2008-10-01

    We have developed simple methods of reproducibly creating deoxyribonucleic acid (DNA)-templated gold nanowires on silicon. First DNA nanowires were aligned on silicon surfaces. Briefly, modified silicon wafer was soaked in the DNA solution, and then the solution was removed using micropipettes; the surface tension at the moving air-solution interface is sufficient to align the DNA nanowires on the silicon wafer. In another attempt, an aqueous dispersion of sodium azide-stabilized gold nanoparticles was prepared. The nanoparticles aligned double-stranded λ-DNA to form a linear nanoparticle array. Continuous gold nanowires were obtained. The above nanowires were structurally characterized using scanning electron microscopy. The results of the characterizations show the wires to be 57-323 nm wide, to be continuous with a length of 2.8-9.5 μm. The use of DNA as a template for the self-assembly of conducting nanowires represents a potentially important approach in the fabrication of nanoscale interconnects.

  13. Synthesis and Functionalization of Gold Nanoparticles Using Chemically Modified ssDNA

    NASA Astrophysics Data System (ADS)

    Calabrese, P. G.

    In the first part of this thesis, methods for functionalizing spherical gold nanoparticles with nucleic acid binding ligands (aptamers) that target the VEGF receptor complex were developed. In order to provide a multiplexed labeling strategy for imaging the VEGF receptor complex in electron microscopy, gold nanoparticles of distinct sizes were conjugated to modified ssDNA aptamers that target the VEGF-A cytokine, the VEGFR-2 RTK receptor and a membrane associated co-receptor, Nrp-1. The modified ssDNA gold nanoparticle conjugates were applied to a human lung carcinoma cell line (A549) which has been shown to express each of these proteins and used as a model system for VEGF signaling. Binding constants for the modified aptamers were also determined using a fluorescence polarization anisotropy assay to determine KD and KOFF for the aptamers with their respective proteins. In the latter part of this thesis, a modied ssDNA SELEX protocol was also developed in order to evolve imidazole modied ssDNA sequences that assemble gold nanoparticles from Au3+ precursor ions in aqueous solution. Active sequences bound to nanoparticles were partitioned from inactive sequences based on density via ultracentrifugation through a discontinuous sucrose gradient. Colloidal gold solutions produced by the evolved pool had a distinct absorbance spectra and produced nanoparticles with a narrower distribution of sizes compared to colloidal gold solutions produced by the starting randomized pool of imidazole modified ssDNA. Sequencing data from the evolved pool shows that conserved 5 and 6 nt motifs were shared amongst many of the isolates, which indicates that these motifs could serve as chelation sites for gold atoms or help stabilize colloidal gold solutions in a base specific manner.

  14. Catalytically active Au-O(OH)x- species stabilized by alkali ions on zeolites and mesoporous oxides

    SciTech Connect

    Yang, Ming; Li, Sha; Wang, Yuan; Herron, Jeffrey A.; Xu, Ye; Allard, Lawrence F.; Lee, Sungsik; Huang, Jun; Mavrikakis, Manos; Flytzani-Stephanopoulos, Maria

    2014-11-27

    Here we report that the addition of alkali ions (sodium or potassium) to gold on KLTL-zeolite and mesoporous MCM-41 silica stabilizes mononuclear gold in Au-O(OH)x-(Na or K) ensembles. This single-site gold species is active for the low-temperature (<200°C) water-gas shift (WGS) reaction. Unexpectedly, gold is thus similar to platinum in creating –O linkages with more than eight alkali ions and establishing an active site on various supports. The intrinsic activity of the single-site gold species is the same on irreducible supports as on reducible ceria, iron oxide, and titania supports, apparently all sharing a common, similarly structured gold active site. This finding paves the way for using earth-abundant supports to disperse and stabilize precious metal atoms with alkali additives for the WGS and potentially other fuel-processing reactions.

  15. Catalytically active Au-O(OH)x- species stabilized by alkali ions on zeolites and mesoporous oxides

    DOE PAGES

    Yang, Ming; Li, Sha; Wang, Yuan; ...

    2014-11-27

    Here we report that the addition of alkali ions (sodium or potassium) to gold on KLTL-zeolite and mesoporous MCM-41 silica stabilizes mononuclear gold in Au-O(OH)x-(Na or K) ensembles. This single-site gold species is active for the low-temperature (<200°C) water-gas shift (WGS) reaction. Unexpectedly, gold is thus similar to platinum in creating –O linkages with more than eight alkali ions and establishing an active site on various supports. The intrinsic activity of the single-site gold species is the same on irreducible supports as on reducible ceria, iron oxide, and titania supports, apparently all sharing a common, similarly structured gold active site.more » This finding paves the way for using earth-abundant supports to disperse and stabilize precious metal atoms with alkali additives for the WGS and potentially other fuel-processing reactions.« less

  16. Catalytically active Au-O(OH)x- species stabilized by alkali ions on zeolites and mesoporous oxides

    SciTech Connect

    Lee, Sungsik

    2014-12-19

    We report that the addition of alkali ions (sodium or potassium) to gold on KLTL-zeolite and mesoporous MCM-41 silica stabilizes mononuclear gold in Au-O(OH)x-(Na or K) ensembles. This single-site gold species is active for the low-temperature (< 200°C) water-gas shift (WGS) reaction. Unexpectedly, gold is thus similar to platinum in creating –O and –OH linkages with more than eight alkali ions and establishing an active site on various supports. The intrinsic activity of the single-site gold species is the same on irreducible supports as on reducible ceria, iron oxide, and titania supports; apparently all sharing a common, similarly structured gold active site. This finding paves the way for using earth-abundant supports to disperse and stabilize precious metal atoms with alkali additives for the WGS and potentially other fuel processing reactions.

  17. Ion colliders

    SciTech Connect

    Fischer, W.

    2011-12-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions [77Asb1, 81Bou1]. The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  18. ION SOURCE

    DOEpatents

    Martina, E.F.

    1958-04-22

    An improved ion source particularly adapted to provide an intense beam of ions with minimum neutral molecule egress from the source is described. The ion source structure includes means for establishing an oscillating electron discharge, including an apertured cathode at one end of the discharge. The egress of ions from the source is in a pencil like beam. This desirable form of withdrawal of the ions from the plasma created by the discharge is achieved by shaping the field at the aperture of the cathode. A tubular insulator is extended into the plasma from the aperture and in cooperation with the electric fields at the cathode end of the discharge focuses the ions from the source,

  19. Ion mixing

    NASA Technical Reports Server (NTRS)

    Matteson, S.; Nicolet, M.-A.

    1983-01-01

    Recent experimental studies of the ion-mixing phenomenon are summarized. Ion mixing is differentiated from ion implantation and shown to be a useful technique for overcoming the sputter-dependent limitations of implantation processes. The fundamental physical principles of ion/solid interactions are explored. The basic experimental configurations currently in use are characterized: bilayered samples, multilayered samples, and samples with a thin marker layer. A table listing the binary systems (metal-semiconductor or metal-metal) which have been investigated using each configuration is presented. Results are discussed, and some sample data are plotted. The prospects for future application of ion mixing to the alteration of solid surface properties are considered. Practical applications are seen as restricted by economic considerations to the production of small, expensive components or to fields (such as the semiconductor industry) which already have facilities for ion implantation.

  20. Distinguishing Between Legally and Illegally Produced Gold in South Africa.

    PubMed

    Roberts, Richard J; Dixon, Roger D; Merkle, Roland K W

    2016-01-01

    The identification of gold-bearing material is essential for combating the theft of gold in South Africa. Material seized in police operations is generally a mixture of gold from different mines, and as such cannot be traced back to a single location. ICP-OES analysis of material dissolved by acid dissolution provided a database of gold compositions comprising gold from South African mines, illegal gold stolen from the mines, and commercial gold alloys and jewelery. Discrimination between legal and illegal gold was possible due to the presence of Pb, As, Sb, Sn, Se, and Te in the stolen material, elements which are not present in legally produced gold. The presence of these elements is a quick and simple way to distinguish between gold alloys based on refined gold, such as in commercially manufactured jewelery, and gold alloys containing a proportion of unrefined and therefore illegally obtained gold.