Sample records for bio-released gold ions

  1. Phage based green chemistry for gold ion reduction and gold retrieval.

    PubMed

    Setyawati, Magdiel I; Xie, Jianping; Leong, David T

    2014-01-22

    The gold mining industry has taken its toll on the environment, triggering the development of more environmentally benign processes to alleviate the waste load release. Here, we demonstrate the use of bacteriophages (phages) for biosorption and bioreduction of gold ions from aqueous solution, which potentially can be applied to remediate gold ions from gold mining waste effluent. Phage has shown a remarkably efficient sorption of gold ions with a maximum gold adsorption capacity of 571 mg gold/g dry weight phage. The product of this phage mediated process is gold nanocrystals with the size of 30-630 nm. Biosorption and bioreduction processes are mediated by the ionic and covalent interaction between gold ions and the reducing groups on the phage protein coat. The strategy offers a simple, ecofriendly and feasible option to recover of gold ions to form readily recoverable products of gold nanoparticles within 24 h.

  2. New insights into the extraction of invisible gold in a low-grade high-sulfur Carlin-type gold concentrate by bio-pretreatment

    NASA Astrophysics Data System (ADS)

    Qiu, Xiao-bin; Wen, Jian-kang; Huang, Song-tao; Yang, Hong-ying; Liu, Mei-lin; Wu, Biao

    2017-10-01

    To extract gold from a low-grade (13.43 g/t) and high-sulfur (39.94wt% sulfide sulfur) Carlin-type gold concentrate from the Nibao deposit, Guizhou, a bio-pretreatment followed by carbon-in-pulp (CIP) cyanide leaching process was used. Various methods were used to detect the low-grade gold in the concentrate; however, only time-of-flight secondary-ion mass spectrometry (TOF-SIMS) was successful. With bio-pretreatment, the gold recovery rate increased by approximately 70.16% compared with that obtained by direct cyanide leaching of the concentrate. Various attempts were made to increase the final gold recovery rate. However, approximately 20wt% of the gold was non-extractable. To determine the nature of this non-extractable gold, mineralogy liberation analysis (MLA), formation of secondary product during the bio-pretreatment, and the preg-robbing capacity of the carbonaceous matter in the ore were investigated. The results indicated that at least four factors affected the gold recovery rate: gold occurrence, tight junctions of gold-bearing pyrite with gangue minerals, jarosite coating of the ore, and the carbonaceous matter content.

  3. Effects of dissolucytotic gold ions on recovering brain lesions.

    PubMed

    Danscher, Gorm; Larsen, Agnete

    2010-04-01

    Recent experimental research has shown that metallic gold releases charged gold atoms when placed intracerebrally and that the liberated gold ions affect inflammation in the brain. The observations suggest that metallic gold can be used as a safe suppressor of inflammation in the central nervous system.

  4. Low-cost mercury (II) ion sensor by biosynthesized gold nanoparticles (AuNPs)

    NASA Astrophysics Data System (ADS)

    Guerrero, Jet G.; Candano, Gabrielle Jackie; Mendoza, Aileen Nicole; Paderanga, Marciella; Cardino, Krenz John; Locsin, Alessandro; Bibon, Cherilou

    2017-11-01

    Biosynthesis of gold nanoparticles has attracted the curiosity of scientists over the past few decades. Nanoparticles have been proven to exhibit enhanced properties and offer a variety of applications in different fields of study. Utilizing nanoparticles instead of bulky equipment and noxious chemicals has become more convenient; reagents needed for synthesis have been proven to be benign (mostly aqueous solutions) and are cost-effective. In this study, gold nanoparticles were biosynthesized using guyabano (Annonamuricata) peel samples as the source of reducing agents. The optimum concentration ratio of gold chloride to guyabano extract was determined to be 1:7. Characterization studies were accomplished using UV Vis Spectroscopy, Fourier Transform Electron Microscopy (FTIR) and Scanning Electron Microscopy (SEM). Spectroscopic maximum absorbance was found to be at 532 nm thereby confirming the presence of gold nanoparticles. Hydroxyl (O-H stretching), carbonyl (C=O stretching), and amide (N-H stretching) functional groups shown in the FTIR spectra are present on possible reducing agents such as phenols, alkaloids, and saponins found in the plant extract. SEM images revealed spherical shaped nanoparticles with mean diameter of 23.18 nm. It was observed that the bio-synthesized AuNPs were selective to mercury ions through uniform color change from wine red to yellow. A novel smartphone-based mercury (II) ions assay was developed using the gold nanoparticles. A calibration curve correlated the analytical response (Red intensity) to the concentrations of Hg 2+ ions. Around 94% of the variations in the intensity is accounted for by the variations in the concentration of mercury (II) ions suggesting a good linear relationship between the two variables. A relative standard deviation (RSD) of less than 1% was achieved at all individual points. The metal sensor displayed a sensitivity of 0.039 R.I./ppm with an LOD of 93.79 ppm. Thus, the bio-fabricated gold nanoparticles

  5. On the Ni-Ion release rate from surfaces of binary NiTi shape memory alloys

    NASA Astrophysics Data System (ADS)

    Ševčíková, Jana; Bártková, Denisa; Goldbergová, Monika; Kuběnová, Monika; Čermák, Jiří; Frenzel, Jan; Weiser, Adam; Dlouhý, Antonín

    2018-01-01

    The study is focused on Ni-ion release rates from NiTi surfaces exposed in the cell culture media and human vascular endothelial cell (HUVEC) culture environments. The NiTi surface layers situated in the depth of 70 μm below a NiTi oxide scale are affected by interactions between the NiTi alloys and the bio-environments. The finding was proved with use of inductively coupled plasma mass spectrometry and electron microscopy experiments. As the exclusive factor controlling the Ni-ion release rates was not only thicknesses of the oxide scale, but also the passivation depth, which was two-fold larger. Our experimental data strongly suggested that some other factors, in addition to the Ni concentration in the oxide scale, admittedly hydrogen soaking deep below the oxide scale, must be taken into account in order to rationalize the concentrations of Ni-ions released into the bio-environments. The suggested role of hydrogen as the surface passivation agent is also in line with the fact that the Ni-ion release rates considerably decrease in NiTi samples that were annealed in controlled hydrogen atmospheres prior to bio-environmental exposures.

  6. Radiosensitizing effect of gold nanoparticles in carbon ion irradiation of human cervical cancer cells

    NASA Astrophysics Data System (ADS)

    Kaur, Harminder; Avasthi, D. K.; Pujari, Geetanjali; Sarma, Asitikantha

    2013-07-01

    Noble metal nanoparticles have received considerable attention in biotechnology for their role in bio sensing due to surface plasmon resonance, medical diagnostics due to better imaging contrast and therapy. The radiosensitization effect of gold nanoparticles (AuNP) has been gaining popularity in radiation therapy of cancer cells. The better depth dose profile of energetic ion beam proves its superiority over gamma radiation for fighting against cancer. In the present work, the glucose capped gold nanoparticles (Glu-AuNP) were synthesised and internalized in the HeLa cells. Transmission electron microscopic analysis of ultrathin sections of Glu-AuNP treated HeLa cells confirmed the internalization of Glu-AuNPs. Control HeLa cells and Glu-AuNp treated HeLa cells were irradiated at different doses of 62 MeV 12C ion beam (LET - 290keV/μm) at BIO beam line of using 15UD Pelletron accelerator at Inter University Accelerator Centre, New Delhi, India. The survival fraction was assessed by colony forming assay which revealed that the dose of carbon ion for 90% cell killing in Glu-AuNP treated HeLa cells and control HeLa cells are 2.3 and 3.2 Gy respectively. This observation shows ˜ 28% reduction of 12C6+ ion dose for Glu-AuNP treated HeLa cells as compared to control HeLa cells.

  7. Gene expression profiling of macrophages: implications for an immunosuppressive effect of dissolucytotic gold ions

    PubMed Central

    2012-01-01

    Background Gold salts has previously been used in the treatment of rheumatoid arthritis but have been replaced by biologicals such as TNF-α inhibitors. The mechanisms behind the anti-inflammatory effect of metallic gold ions are still unknown, however, recent data showed that charged gold atoms are released from pure metallic gold implants by macrophages via a dissolucytosis membrane, and that gold ions are taken up by local macrophages, mast cells and to some extent fibroblasts. These findings open the question of possible immunomodulatory effects of metallic gold and motivate efforts on a deeper understanding of the effect of metallic gold on key inflammatory cells as macrophages. Methods Human macrophage cells (cell line THP-1) were grown on gold foils and intracellular uptake was analysed by autometallography. The impact of phagocytised gold ions on viability of THP-1 cells was investigated by trypan blue staining and TUNEL assay. The global gene expression profile of THP-1 cells after incorporation of gold ions was studied using microarray analysis comprising approximately 20,000 genes. The gene expression data was confirmed by measurement of secreted proteins. Results Autometallography showed intracellular uptake of gold ions into THP-1 cells. No significant effect on viability of THP-1 cells was demonstrated. Our data revealed a unique gene expression signature of dissolucytotic THP-1 cells that had taken up gold ions. A large number of regulated genes were functionally related to immunomodulation. Gold ion uptake induced downregulation of genes involved in rheumatoid arthritis such as hepatocyte growth factor, tenascin-C, inhibitor of DNA binding 1 and 3 and matrix metalloproteinase 13. Conclusion The data obtained in this study offer new insights into the mode of action of gold ions and suggest for the investigation of effects on other key cells and a possible future role of metallic gold as implants in rheumatoid arthritis or other inflammatory

  8. Improvement in grade of minerals using simultaneous Bio-oxidation of invisible gold concentrate and deep-sea manganese crust

    NASA Astrophysics Data System (ADS)

    Myung, EunJi; Cho, Kang Hee; Kim, Hyun Soo; Park, Cheon Young

    2016-04-01

    Many sulfides of metal such as galena, sphalerite, chalcopyrite, and pyrite, are semiconductors. When two kinds of such minerals contact each other in an electrolyte, a galvanic couple, where the mineral of lower rest potential as anode, and that of higher rest potential as cathode forms. Manganese dioxide is also a semiconductor with much higher rest potential than all sulfides mentioned above, so that a galvanic couple in which both the minerals would dissolve simultaneously can form, when it contacts with any of the sulfides. The aim of this study was to investigate the improvement in grade of minerals using the simultaneous bio-oxidation of deep-sea manganese crust and invisible gold concentrate. The samples(deep-sea manganese crust and invisible gold concentrate) were characterized by chemical and XRD analysis. The primary components of the invisible gold concentrate was pyrite and quartz and the deep-sea manganese crust was amorphous material, as detected using XRD. The result of chemical analysis showed that Au, Ag, Te contents in the invisible gold concentrate 130.2, 954.1 and 1,043.6 mg/kg, respectively. and that Mn, Ni, Co contents in the deep-sea manganese crust 19,501.5, 151.9, 400.4 mg/kg, respectively. In order to increase the bacteria's tolerance of heavy metals, the bacteria using bio-oxidation experiments were repeatedly subcultured in an Cu adaptation-medium containing of 382.98 mg/l for 20 periods of 21 days. The improvement in grade of samples of in present adapted bacteria condition was greater than another conditions(control and in present non-adapted bacteria). The Au-Ag-Te contents in the invisible gold concentrate was enhanced in the order of physical oxidation, simultaneous/non-adaptive bio-oxidation, adaptive/bio-oxidation, simultaneous/adaptive bio-oxidation. If the bacteria is adapted to heavy metal ions and an optimization of conditions is found in future bio-oxidation-leaching processes. Acknowledgment : "This research was supported

  9. Assessment of Ions released from Three Types of Orthodontic Brackets immersed in Different Mouthwashes: An in vitro Study.

    PubMed

    Nahidh, Mohammed; Garma, Noor Mh; Jasim, Esraa S

    2018-01-01

    Herbs are used widely in medicine. The purpose of the present study was to assess the ion release from gold-plated orthodontic bracket compared with other stainless steel brackets, and based on the findings of the study, the orthodontists can choose the most biocompatible brackets and mouthwashes useful in the clinical practice. A total of 150 orthodontic brackets from Orthotechnology™ Company, USA (50 stainless steel one-piece brackets, 50 stainless steel two-piece brackets, and 50 gold brackets) were immersed in four mouthwashes in addition to distilled water. Ten of each type of brackets in every media were immersed under 37°C for 45 days. Ions released in these mouthwashes were measured, and comparisons among different bracket types and among various mouthwashes were done by one-way analysis of variance (ANOVA) and then with Games-Howell tests. Increased amounts of ions released in herbal mouth-washes were recorded in gold and two-piece brackets in comparison with one-piece stainless steel brackets. Herbal mouthwashes must be used with caution as they showed an increased amount of ions released in comparison with chlorhexidine. One-piece stainless steel bracket system is the most compatible bracket type, as they released the least amount of ions. One-piece stainless steel brackets are better than two-piece brackets in terms of ions released.

  10. Synthesis of gold structures by gold-binding peptide governed by concentration of gold ion and peptide.

    PubMed

    Kim, Jungok; Kim, Dong-Hun; Lee, Sylvia J; Rheem, Youngwoo; Myung, Nosang V; Hur, Hor-Gil

    2016-08-01

    Although biological synthesis methods for the production of gold structures by microorganisms, plant extracts, proteins, and peptide have recently been introduced, there have been few reports pertaining to controlling their size and morphology. The gold ion and peptide concentrations affected on the size and uniformity of gold plates by a gold-binding peptide Midas-11. The higher concentration of gold ions produced a larger size of gold structures reached 125.5 μm, but an increased amount of Midas-11 produced a smaller size of gold platelets and increased the yield percentage of polygonal gold particles rather than platelets. The mechanisms governing factors controlling the production of gold structures were primarily related to nucleation and growth. These results indicate that the synthesis of gold architectures can be controlled by newly isolated and substituted peptides under different reaction conditions.

  11. The effect of hydrogen peroxide concentration on metal ion release from dental casting alloys.

    PubMed

    Al-Salehi, S K; Hatton, P V; Johnson, A; Cox, A G; McLeod, C

    2008-04-01

    There are concerns that tooth bleaching agents may adversely affect dental materials. The aim of this study was to test the hypothesis that increasing concentrations of hydrogen peroxide (HP) are more effective than water at increasing metal ion release from two typical dental casting alloys during bleaching. Discs (n = 28 for each alloy) were prepared by casting and heat treated to simulate a typical porcelain-firing cycle. Discs (n = 7) of each alloy were immersed in either 0%, 3%, 10% or 30% (w/v) HP solutions for 24 h at 37 degrees C. Samples were taken for metal ion release determination using inductively coupled plasma-mass spectrometry and the data analysed using a two-way anova followed by a one-way anova. The surface roughness of each disc was measured using a Talysurf contact profilometer before and after bleaching and the data analysed using a paired t-test. With the exception of gold, the differences in metal ion concentration after treatment with 0% (control) and each of 3%, 10% and 30% HP (w/v) were statistically significant (P < 0.05). Metal ion release from the two alloys increased with increasing HP concentrations (over 3000% increase in Ni and 1400% increase in Pd ions were recorded when HP concentration increased from 0% to 30%). Surface roughness values of the samples before and after bleaching were not significantly different (P > 0.05) Exposure of the two dental casting alloys to HP solutions increased metal ion release of all the elements except gold.

  12. Ion Transport across Biological Membranes by Carborane-Capped Gold Nanoparticles.

    PubMed

    Grzelczak, Marcin P; Danks, Stephen P; Klipp, Robert C; Belic, Domagoj; Zaulet, Adnana; Kunstmann-Olsen, Casper; Bradley, Dan F; Tsukuda, Tatsuya; Viñas, Clara; Teixidor, Francesc; Abramson, Jonathan J; Brust, Mathias

    2017-12-26

    Carborane-capped gold nanoparticles (Au/carborane NPs, 2-3 nm) can act as artificial ion transporters across biological membranes. The particles themselves are large hydrophobic anions that have the ability to disperse in aqueous media and to partition over both sides of a phospholipid bilayer membrane. Their presence therefore causes a membrane potential that is determined by the relative concentrations of particles on each side of the membrane according to the Nernst equation. The particles tend to adsorb to both sides of the membrane and can flip across if changes in membrane potential require their repartitioning. Such changes can be made either with a potentiostat in an electrochemical cell or by competition with another partitioning ion, for example, potassium in the presence of its specific transporter valinomycin. Carborane-capped gold nanoparticles have a ligand shell full of voids, which stem from the packing of near spherical ligands on a near spherical metal core. These voids are normally filled with sodium or potassium ions, and the charge is overcompensated by excess electrons in the metal core. The anionic particles are therefore able to take up and release a certain payload of cations and to adjust their net charge accordingly. It is demonstrated by potential-dependent fluorescence spectroscopy that polarized phospholipid membranes of vesicles can be depolarized by ion transport mediated by the particles. It is also shown that the particles act as alkali-ion-specific transporters across free-standing membranes under potentiostatic control. Magnesium ions are not transported.

  13. Biocompatible Surface Chemistry Manipulation of Gold Nanorods Preserves Optical Properties for Bio-Imaging Applications

    DTIC Science & Technology

    2015-12-18

    3. DATES COVERED (From - To) March 2014 – Sept 2014 4. TITLE AND SUBTITLE Biocompatible surface chemistry manipulation of gold nanorods preserves...Due to their anisotropic shape, gold nanorods (GNRs) possess a number of advantages for biosystem use including, enhanced surface area and tunable...intracellular aggregation of MTAB-TA GNRs, and identify them as prime andidates for use in nanobased bio-imaging applications. 15. SUBJECT TERMS Gold

  14. A Gold Nanoparticle Bio-Optical Transponder to Dynamically Monitor Intracellular pH.

    PubMed

    Carnevale, Kate J F; Riskowski, Ryan A; Strouse, Geoffrey F

    2018-06-13

    A pH-sensitive bio-optical transponder (pH-BOT) capable of simultaneously reporting the timing of intracellular DNA cargo release from a gold nanoparticle (AuNP) and the evolving intracellular pH (pH i) during endosomal maturation is demonstrated. The pH-BOT is designed with a triple-dye-labeled duplex DNA appended to a 6.6 nm AuNP, utilizing pH-responsive fluorescein paired with DyLight405 as a surface energy transfer (SET) coupled dye pair to ratiometrically report the pH at and after cargo release. A non-SET-coupled dye, DyLight 700, is used to provide dynamic tracking throughout the experiment. The pH-BOT beacon of the cargo uptake, release, and processing was visualized using live-cell confocal fluorescent microscopy in Chinese hamster ovary cells, and it was observed that while maturation of endosomes carrying pH-BOT is slowed significantly, the pH-BOT is distributed throughout the endolysosomal system while remaining at pH ∼6. This observed decoupling of endosomal maturation from acidification lends support to those models that propose that pH alone is not sufficient to explain endosomal maturation and may enable greater insight into our understanding of the fundamental processes of biology.

  15. Ion Transport across Biological Membranes by Carborane-Capped Gold Nanoparticles

    PubMed Central

    2017-01-01

    Carborane-capped gold nanoparticles (Au/carborane NPs, 2–3 nm) can act as artificial ion transporters across biological membranes. The particles themselves are large hydrophobic anions that have the ability to disperse in aqueous media and to partition over both sides of a phospholipid bilayer membrane. Their presence therefore causes a membrane potential that is determined by the relative concentrations of particles on each side of the membrane according to the Nernst equation. The particles tend to adsorb to both sides of the membrane and can flip across if changes in membrane potential require their repartitioning. Such changes can be made either with a potentiostat in an electrochemical cell or by competition with another partitioning ion, for example, potassium in the presence of its specific transporter valinomycin. Carborane-capped gold nanoparticles have a ligand shell full of voids, which stem from the packing of near spherical ligands on a near spherical metal core. These voids are normally filled with sodium or potassium ions, and the charge is overcompensated by excess electrons in the metal core. The anionic particles are therefore able to take up and release a certain payload of cations and to adjust their net charge accordingly. It is demonstrated by potential-dependent fluorescence spectroscopy that polarized phospholipid membranes of vesicles can be depolarized by ion transport mediated by the particles. It is also shown that the particles act as alkali-ion-specific transporters across free-standing membranes under potentiostatic control. Magnesium ions are not transported. PMID:29161496

  16. Ion plated gold films: Properties, tribological behavior and performance

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis

    1987-01-01

    The glow discharge energizing favorably modifies and controls the coating/substrate adherence and the nucleation and growth sequence of ion plated gold films. As a result the adherence, coherence, internal stresses, and morphology of the films are significantly improved. Gold ion plated films because of their graded coating/substrate interface and fine uniform densely packed microstructure not only improve the tribological properties but also induce a surface strengthening effect which improves the mechanical properties such as yield, tensile, and fatigue strength. Consequently significant improvements in the tribological performance of ion plated gold films as compared to vapor deposited gold films are shown in terms of decreased friction/wear and prolonged endurance life.

  17. Neuron cells uptake of polymeric microcapsules and subsequent intracellular release.

    PubMed

    Pavlov, Anton M; Sapelkin, Andrei V; Huang, Xinyue; P'ng, Ken M Y; Bushby, Andy J; Sukhorukov, Gleb B; Skirtach, André G

    2011-06-14

    Neuron cells uptake of biodegradable and synthetic polymeric microcapsules functionalized with aggregates of gold nanoparticles incorporated into their shells is demonstrated in situ. In addition to traditionally used optical microscopy, electron microscopy is used both for higher-resolution imaging and for confirming the uptake by focused ion beam cross-sectioning of specific cells in situ. Subsequently, physical methods of release are compared to chemical methods wherein laser-induced intracellular release of dextran molecules into the cytosol of hippocampal neuron cells is studied in comparison to biodegradation. Implications of this work for neuroscience, bio-medicine and single cell studies are discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. In vivo self-bio-imaging of tumors through in situ biosynthesized fluorescent gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Wang, Jianling; Zhang, Gen; Li, Qiwei; Jiang, Hui; Liu, Chongyang; Amatore, Christian; Wang, Xuemei

    2013-01-01

    Fluorescence imaging in vivo allows non-invasive tumor diagnostic thus permitting a direct monitoring of cancer therapies progresses. It is established herein that fluorescent gold nanoclusters are spontaneously biosynthesized by cancerous cell (i.e., HepG2, human hepatocarcinoma cell line; K562, leukemia cell line) incubated with micromolar chloroauric acid solutions, a biocompatible molecular Au(III) species. Gold nanoparticles form by Au(III) reduction inside cells cytoplasms and ultimately concentrate around their nucleoli, thus affording precise cell imaging. Importantly, this does not occur in non-cancerous cells, as evidenced with human embryo liver cells (L02) used as controls. This dichotomy is exploited for a new strategy for in vivo self-bio-imaging of tumors. Subcutaneous injections of millimolar chloroauric acid solution near xenograft tumors of the nude mouse model of hepatocellular carcinoma or chronic myeloid leukemia led to efficient biosynthesis of fluorescent gold nanoclusters without significant dissemination to the surrounding normal tissues, hence allowing specific fluorescent self-bio-marking of the tumors.

  19. The use of fibrous ion exchangers in gold hydrometallurgy

    NASA Astrophysics Data System (ADS)

    Kautzmann, R. M.; Sampaio, C. H.; Cortina, J. L.; Soldatov, V.; Shunkevich, A.

    2002-10-01

    This article examines a family of ion-exchange fibers, FIBAN, containing primary and secondary amine groups. These ion exchangers have a fiber diameter of 20 40 Μm, high osmotic and mechanic stability, a high rate of adsorption and regeneration, and excellent dynamic characteristics as filtering media. Inparticular, this article discusses the use of FIBAN fibrous ion exchangers in the recovery of gold cyanide andbase-metal cyanides (copper and mercury) from mineral-leaching solutions. The influence of polymer structure and water content on their extraction ability is described, along with key parameters of gold hydrometallurgy such as extraction efficiency, selectivity, pH dependence, gold cyanide loading, kinetics, and stripping.

  20. Swift heavy ion irradiation of interstellar dust analogues. Small carbonaceous species released by cosmic rays

    NASA Astrophysics Data System (ADS)

    Dartois, E.; Chabot, M.; Pino, T.; Béroff, K.; Godard, M.; Severin, D.; Bender, M.; Trautmann, C.

    2017-03-01

    Context. Interstellar dust grain particles are immersed in vacuum ultraviolet (VUV) and cosmic ray radiation environments influencing their physicochemical composition. Owing to the energetic ionizing interactions, carbonaceous dust particles release fragments that have direct impact on the gas phase chemistry. Aims: The exposure of carbonaceous dust analogues to cosmic rays is simulated in the laboratory by irradiating films of hydrogenated amorphous carbon interstellar analogues with energetic ions. New species formed and released into the gas phase are explored. Methods: Thin carbonaceous interstellar dust analogues were irradiated with gold (950 MeV), xenon (630 MeV), and carbon (43 MeV) ions at the GSI UNILAC accelerator. The evolution of the dust analogues is monitored in situ as a function of fluence at 40, 100, and 300 K. Effects on the solid phase are studied by means of infrared spectroscopy complemented by simultaneously recording mass spectrometry of species released into the gas phase. Results: Specific species produced and released under the ion beam are analyzed. Cross sections derived from ion-solid interaction processes are implemented in an astrophysical context.

  1. Glutathione-mediated release of Bodipy® from PEG cofunctionalized gold nanoparticles

    PubMed Central

    Kumar, Dhiraj; Meenan, Brian J; Dixon, Dorian

    2012-01-01

    Gold nanoparticles synthesized via sodium citrate reduction of chloroauric acid (HAuCl4) were functionalized with either various concentrations of thiol-terminated Bodipy® FL L-cystine (0.5, 1.0, 1.5, and 2.0 μg/mL) or Bodipy-poly(ethylene glycol) at concentrations of 0.5–18.75, 1.0–12.50, and 1.5–6.25 μg/mL to form a mixed monolayer of BODIPY-PEG. Thiol-terminated Bodipy, a fluorescing molecule, was used as the model drug, while PEG is widely used in drug-delivery applications to shield nanoparticles from unwanted immune responses. Understanding the influence of PEG-capping on payload release is critical because it is the most widely used type of nanoparticle functionalization in drug delivery studies. It has been previously reported that glutathione can trigger release of thiol-bound payloads from gold nanoparticles. Bodipy release from Bodipy capped and from Bodipy-PEG functionalized gold nanoparticles was studied at typical intracellular glutathione levels. It was observed that the addition of PEG capping inhibits the initial burst release observed in gold nanoparticles functionalized only with Bodipy and inhibits nanoparticle aggregation. Efficient and controlled payload release was observed in gold nanoparticles cofunctionalized with only a limited amount of PEG, thus enabling the coattachment of large amounts of drug, targeting groups or other payloads. PMID:22915847

  2. Emergency Response to Gold King Mine Release

    EPA Pesticide Factsheets

    Description of August 5, 2015 release of contaminated waters from the Gold King Mine into Cement Creek and the Animas River, and the resulting emergency response remediation efforts, including monitoring of affected waterways.

  3. Putting gold nanocages to work for optical imaging, controlled release and cancer theranostics

    PubMed Central

    Pang, Bo; Yang, Xuan; Xia, Younan

    2016-01-01

    Gold nanocages are hollow nanostructures with ultrathin, porous walls. They are bio-inert and their surface can be readily modified with functional groups to specifically interact with the biological system of interest. They have remarkable optical properties, including localized surface plasmon resonance peaks tunable to the near-infrared region, strong absorption and scattering, as well as two- and three-photon luminescence. With the establishment of robust protocols for both synthesis and surface functionalization, Au nanocages have been extensively explored for various biomedical applications. In this review, we begin with a brief account of the synthesis and properties of Au nanocages, and then highlight some of the recent developments in applying them to an array of biomedical applications related to optical imaging, controlled release and cancer theranostics. PMID:27348546

  4. Electrospun nanofibers decorated with bio-sonochemically synthesized gold nanoparticles as an ultrasensitive probe in amalgam-based mercury (II) detection system.

    PubMed

    Parsaee, Zohreh

    2018-06-01

    In this study, bio-ultrasound-assisted synthesized gold nanoparticles using Gracilaria canaliculata algae have been immobilized on a polymeric support and used as a glassy probe chemosensor for detection and rapid removal of Hg 2+ ions. The function of the suggested chemosensor has been explained based on gold-amalgam formation and its catalytic role on the reaction of sodium borohydride and rhodamine B (RhB) with fluorescent and colorimetric sensing function. The catalyzed reduction of RhB by the gold amalgam led to a distinguished color change from red and yellow florescence to colorless by converting the amount of Hg 2+ deposited on Au-NPs. The detection limit of the colorimetric and fluorescence assays for Hg 2+ was 2.21 nM and 1.10 nM respectively. By exposing the mentioned colorless solution to air for at least 2 h, unexpectedly it was observed that the color and fluorescence of RhB were restored. Have the benefit of the above phenomenon a recyclable and portable glass-based sensor has been provided by immobilizing the Au-NPs and RB on the glass slide using electrospinning. Moreover, the introduced combinatorial membrane has facilitated the detection and removal of Hg 2+ ions in various Hg (II)-contaminated real water samples with efficiency of up to 99%. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Fabrication, nanomechanical characterization, and cytocompatibility of gold-reinforced chitosan bio-nanocomposites

    PubMed Central

    Patel, Nimitt G.; Kumar, Ajeet; Jayawardana, Veroni N.; Woodworth, Craig D.; Yuya, Philip A.

    2017-01-01

    Chitosan, a naturally derived polymer represents one of the most technologically important classes of active materials with applications in a variety of industrial and biomedical fields. Gold nanoparticles (~32 nm) were synthesized via a citrate reduction method from chloroauric acid and incorporated in Chitosan matrix. Bio-nanocomposite films with varying concentrations of gold nanoparticles were prepared through solution casting process. Uniform distribution of gold nanoparticles was achieved throughout the chitosan matrix and was confirmed with SEM. Synthesis outcomes and prepared nanocomposites were characterized using SEM, TEM, EDX, SAED, UV–vis, XRD, DLS, and Zeta potential for their physical, morphological and structural properties. Nanoscale properties of materials under the influence of temperature were characterized through nanoindentation techniques. From quasi-static nanoindentation, it was observed that hardness and reduced modulus of the nanocomposites were increased significantly in direct proportion to the gold nanoparticle concentration. Gold nanoparticle concentration also showed positive impact on storagemodulus and thermal stability of the material. The obtained films were confirmed to be biocompatible by their ability to support growth of human cells in vitro. In summary, the results show enhanced mechanical properties with increasing gold nanoparticle concentration, and provide better understanding of the structure–property relationships of such biocompatiblematerials for potential biomedical applications. PMID:25280713

  6. Surface Modification and Damage of MeV-Energy Heavy Ion Irradiation on Gold Nanowires.

    PubMed

    Cheng, Yaxiong; Yao, Huijun; Duan, Jinglai; Xu, Lijun; Zhai, Pengfei; Lyu, Shuangbao; Chen, Yonghui; Maaz, Khan; Mo, Dan; Sun, Youmei; Liu, Jie

    2017-05-15

    Gold nanowires with diameters ranging from 20 to 90 nm were fabricated by the electrochemical deposition technique in etched ion track polycarbonate templates and were then irradiated by Xe and Kr ions with the energy in MeV range. The surface modification of nanowires was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations. Different craters with and without protrusion on the gold nanowires were analyzed, and the two corresponding formation mechanisms, i.e., plastic flow and micro-explosion, were investigated. In addition, the sputtered gold nanoparticles caused by ion irradiation were studied and it was confirmed that the surface damage produced in gold nanowires was increased as the diameter of the nanowires decreased. It was also found that heavy ion irradiation can also create stacking fault tetrahedrons (SFTs) in gold nanowires and three different SFTs were confirmed in irradiated nanowires. A statistical analysis of the size distribution of SFTs in gold nanowires proved that the average size distribution of SFT was positively related to the nuclear stopping power of incident ions, i.e., the higher nuclear stopping power of incident ions could generate SFT with a larger average size in gold nanowires.

  7. Surface Modification and Damage of MeV-Energy Heavy Ion Irradiation on Gold Nanowires

    PubMed Central

    Cheng, Yaxiong; Yao, Huijun; Duan, Jinglai; Xu, Lijun; Zhai, Pengfei; Lyu, Shuangbao; Chen, Yonghui; Maaz, Khan; Mo, Dan; Sun, Youmei; Liu, Jie

    2017-01-01

    Gold nanowires with diameters ranging from 20 to 90 nm were fabricated by the electrochemical deposition technique in etched ion track polycarbonate templates and were then irradiated by Xe and Kr ions with the energy in MeV range. The surface modification of nanowires was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations. Different craters with and without protrusion on the gold nanowires were analyzed, and the two corresponding formation mechanisms, i.e., plastic flow and micro-explosion, were investigated. In addition, the sputtered gold nanoparticles caused by ion irradiation were studied and it was confirmed that the surface damage produced in gold nanowires was increased as the diameter of the nanowires decreased. It was also found that heavy ion irradiation can also create stacking fault tetrahedrons (SFTs) in gold nanowires and three different SFTs were confirmed in irradiated nanowires. A statistical analysis of the size distribution of SFTs in gold nanowires proved that the average size distribution of SFT was positively related to the nuclear stopping power of incident ions, i.e., the higher nuclear stopping power of incident ions could generate SFT with a larger average size in gold nanowires. PMID:28505116

  8. Detection of proteins using a colorimetric bio-barcode assay.

    PubMed

    Nam, Jwa-Min; Jang, Kyung-Jin; Groves, Jay T

    2007-01-01

    The colorimetric bio-barcode assay is a red-to-blue color change-based protein detection method with ultrahigh sensitivity. This assay is based on both the bio-barcode amplification method that allows for detecting miniscule amount of targets with attomolar sensitivity and gold nanoparticle-based colorimetric DNA detection method that allows for a simple and straightforward detection of biomolecules of interest (here we detect interleukin-2, an important biomarker (cytokine) for many immunodeficiency-related diseases and cancers). The protocol is composed of the following steps: (i) conjugation of target capture molecules and barcode DNA strands onto silica microparticles, (ii) target capture with probes, (iii) separation and release of barcode DNA strands from the separated probes, (iv) detection of released barcode DNA using DNA-modified gold nanoparticle probes and (v) red-to-blue color change analysis with a graphic software. Actual target detection and quantification steps with premade probes take approximately 3 h (whole protocol including probe preparations takes approximately 3 days).

  9. Release Kinetics of Paclitaxel and Cisplatin from Two and Three Layered Gold Nanoparticles

    PubMed Central

    England, Christopher G.; Miller, M. Clarke; Kuttan, Ashani; Trent, John O.; Frieboes, Hermann B.

    2015-01-01

    Gold nanoparticles functionalized with biologically-compatible layers may achieve stable drug release while avoiding adverse effects in cancer treatment. We study cisplatin and paclitaxel release from gold cores functionalized with hexadecanethiol (TL) and phosphatidylcholine (PC) to form two-layer nanoparticles, or TL, PC, and high density lipoprotein (HDL) to form three-layer nanoparticles. Drug release was monitored for 14 days to assess long term effects of the core surface modifications on release kinetics. Release profiles were fitted to previously developed kinetic models to differentiate possible release mechanisms. The hydrophilic drug (cisplatin) showed an initial (5-hr.) burst, followed by a steady release over 14 days. The hydrophobic drug (paclitaxel) showed a steady release over the same time period. Two layer nanoparticles released 64.0 ± 2.5% of cisplatin and 22.3 ± 1.5% of paclitaxel, while three layer nanoparticles released the entire encapsulated drug. The Korsmeyer-Peppas model best described each release scenario, while the simplified Higuchi model also adequately described paclitaxel release from the two layer formulation. We conclude that functionalization of gold nanoparticles with a combination of TL and PC may help to modulate both hydrophilic and hydrophobic drug release kinetics, while the addition of HDL may enhance long term release of hydrophobic drug. PMID:25753197

  10. Investigation on micro-patterned gold-plated polymer substrate for a micro hydraulic actuator

    NASA Astrophysics Data System (ADS)

    Sundaresan, Vishnu Baba; Akle, Barbar; Leo, Donald J.

    2006-03-01

    Plants have the ability to develop large mechanical force from chemical energy available with bio-fuels. The energy released by the cleavage of a terminal phosphate ion during the hydrolysis of a bio-fuel assists the transport of ions and fluids in cellular homeostasis. Materials that develop pressure and hence strain similar to the response of plants to an external stimuli are classified as nastic materials. This new class of actuators use protein transporters as functional units to move species and result in deformation [Leo et al 2005 (Proceedings of IMECE - 06)]. The ion transporters are hydrocarbons which are formed across the cellular membranes. The membranes that house the ion transporters are aggregates of phospholipids rigidized by cytoskeleton. Reconstituting these nano-machines on a harder matrix is quintessential to build a functional device. Artificial phospholipid membranes or Biliayer lipid membranes (BLM) have poor structural integrity and do not adhere to most surfaces. Patterned arrays of pores made on Poly-propylene glycol-diacrylate (PPG-DA) substrate, a photo curable polymer was made available to us for initial design iterations for an actuator. Hydrophobicity of PPG-DA posed initial problems to support a BLM. We modified the surface of micropatterned PPG-DA membrane by gold plating it. The surface of the porous PPG-DA membranes was plated with gold (Au). A 10nm seeding layer of Au was sputtered on the surface of the membrane. Further gold was reduced onto the sputtered gold surface [Supriya et al(Langmuir 2004, 20, 8870-8876)] by suspending the samples in a solution of hydroxylamine and Hydrogen tetrachloroaurate(III) trihydrate [HAuCl4.3H2O]. This reduction process increased the thickness of the gold, enhanced its adhesion to the PPG-DA substrate and improved the shapes of the pores. This surface modification of PPG-DA helped us form stable BLM with 1-Palmitoyl-2-Oleoyl-sn-Glycero-3- [Phospho-L-Serine] (Sodium Salt) (POPS), 1-Palmitoyl-2

  11. Molecular ion yield enhancement induced by gold deposition in static secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Wehbe, Nimer; Delcorte, Arnaud; Heile, Andreas; Arlinghaus, Heinrich F.; Bertrand, Patrick

    2008-12-01

    Static ToF-SIMS was used to evaluate the effect of gold condensation as a sample treatment prior to analysis. The experiments were carried out with a model molecular layer (Triacontane M = 422.4 Da), upon atomic (In +) and polyatomic (Bi 3+) projectile bombardment. The results indicate that the effect of molecular ion yield improvement using gold metallization exists only under atomic projectile impact. While the quasi-molecular ion (M+Au) + signal can become two orders of magnitude larger than that of the deprotonated molecular ion from the pristine sample under In + bombardment, it barely reaches the initial intensity of (M-H) + when Bi 3+ projectiles are used. The differences observed for mono- and polyatomic primary ion bombardment might be explained by differences in near-surface energy deposition, which influences the sputtering and ionization processes.

  12. Rechargeable calcium phosphate orthodontic cement with sustained ion release and re-release

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Weir, Michael D.; Chow, Laurence C.; Reynolds, Mark A.; Xu, Hockin H. K.

    2016-11-01

    White spot lesions (WSL) due to enamel demineralization are major complications for orthodontic treatments. Calcium phosphate (CaP) dental resins with Ca and P ion releases are promising for remineralization. However, previous Ca and P releases lasted for only weeks. Experimental orthodontic cements were developed using pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol A dimethacrylate (EBPADMA) at mass ratio of 1:1 (PE); and PE plus 10% of 2-hydroxyethyl methacrylate (HEMA) and 5% of bisphenol A glycidyl dimethacrylate (BisGMA) (PEHB). Particles of amorphous calcium phosphate (ACP) were incorporated into PE and PEHB at 40% filler level. Specimens were tested for bracket-enamel shear bond strength, water sorption, CaP release, and ion recharge and re-release. PEHB+40ACP had higher bracket-enamel bond strength and ion release and rechargeability than PE+40ACP. ACP incorporation into the novel orthodontic cement did not adversely affect the bracket-enamel bond strength. Ion release and re-release from the novel ACP orthodontic cement indicated favorable release and re-release patterns. The recharged orthodontic cement could release CaP ions continuously for four weeks without further recharge. Novel rechargeable orthodontic cement containing ACP was developed with a high bracket-enamel bond strength and the ability to be repeatedly recharged to maintain long-term high levels of CaP ion releases.

  13. Rechargeable calcium phosphate orthodontic cement with sustained ion release and re-release

    PubMed Central

    Zhang, Ling; Weir, Michael D.; Chow, Laurence C.; Reynolds, Mark A.; Xu, Hockin H. K.

    2016-01-01

    White spot lesions (WSL) due to enamel demineralization are major complications for orthodontic treatments. Calcium phosphate (CaP) dental resins with Ca and P ion releases are promising for remineralization. However, previous Ca and P releases lasted for only weeks. Experimental orthodontic cements were developed using pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol A dimethacrylate (EBPADMA) at mass ratio of 1:1 (PE); and PE plus 10% of 2-hydroxyethyl methacrylate (HEMA) and 5% of bisphenol A glycidyl dimethacrylate (BisGMA) (PEHB). Particles of amorphous calcium phosphate (ACP) were incorporated into PE and PEHB at 40% filler level. Specimens were tested for bracket-enamel shear bond strength, water sorption, CaP release, and ion recharge and re-release. PEHB+40ACP had higher bracket-enamel bond strength and ion release and rechargeability than PE+40ACP. ACP incorporation into the novel orthodontic cement did not adversely affect the bracket-enamel bond strength. Ion release and re-release from the novel ACP orthodontic cement indicated favorable release and re-release patterns. The recharged orthodontic cement could release CaP ions continuously for four weeks without further recharge. Novel rechargeable orthodontic cement containing ACP was developed with a high bracket-enamel bond strength and the ability to be repeatedly recharged to maintain long-term high levels of CaP ion releases. PMID:27808251

  14. Ultrasound-propelled nanoporous gold wire for efficient drug loading and release.

    PubMed

    Garcia-Gradilla, Victor; Sattayasamitsathit, Sirilak; Soto, Fernando; Kuralay, Filiz; Yardımcı, Ceren; Wiitala, Devan; Galarnyk, Michael; Wang, Joseph

    2014-10-29

    Ultrasound (US)-powered nanowire motors based on nanoporous gold segment are developed for increasing the drug loading capacity. The new highly porous nanomotors are characterized with a tunable pore size, high surface area, and high capacity for the drug payload. These nanowire motors are prepared by template membrane deposition of a silver-gold alloy segment followed by dealloying the silver component. The drug doxorubicin (DOX) is loaded within the nanopores via electrostatic interactions with an anionic polymeric coating. The nanoporous gold structure also facilitates the near-infrared (NIR) light controlled release of the drug through photothermal effects. Ultrasound-driven transport of the loaded drug toward cancer cells followed by NIR-light triggered release is illustrated. The incorporation of the nanoporous gold segment leads to a nearly 20-fold increase in the active surface area compared to common gold nanowire motors. It is envisioned that such US-powered nanomotors could provide a new approach to rapidly and efficiently deliver large therapeutic payloads in a target-specific manner. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Tumor-triggered drug release from calcium carbonate-encapsulated gold nanostars for near-infrared photodynamic/photothermal combination antitumor therapy.

    PubMed

    Liu, Yanlei; Zhi, Xiao; Yang, Meng; Zhang, Jingpu; Lin, Lingnan; Zhao, Xin; Hou, Wenxiu; Zhang, Chunlei; Zhang, Qian; Pan, Fei; Alfranca, Gabriel; Yang, Yuming; de la Fuente, Jesús M; Ni, Jian; Cui, Daxiang

    2017-01-01

    Different stimulus including pH, light and temperature have been used for controlled drug release to prevent drug inactivation and minimize side-effects. Herein a novel nano-platform (GNS@CaCO 3 /ICG) consisting of calcium carbonate-encapsulated gold nanostars loaded with ICG was established to couple the photothermal properties of gold nanostars (GNSs) and the photodynamic properties of indocyanine green (ICG) in the photodynamic/photothermal combination therapy (PDT/PTT). In this study, the calcium carbonate worked not only a drug keeper to entrap ICG on the surface of GNSs in the form of a stable aggregate which was protected from blood clearance, but also as the a pH-responder to achieve highly effective tumor-triggered drug release locally. The application of GNS@CaCO 3 /ICG for in vitro and in vivo therapy achieved the combined antitumor effects upon the NIR irradiation, which was superior to the single PDT or PTT. Meanwhile, the distinct pH-triggered drug release performance of GNS@CaCO 3 /ICG implemented the tumor-targeted NIR fluorescence imaging. In addition, we monitored the bio-distribution and excretion pathway of GNS@CaCO 3 /ICG based on the NIR fluorescence from ICG and two-photon fluorescence and photoacoustic signal from GNSs, and the results proved that GNS@CaCO 3 /ICG had a great ability for tumor-specific and tumor-triggered drug release. We therefore conclude that the GNS@CaCO 3 /ICG holds great promise for clinical applications in anti-tumor therapy with tumor imaging or drug tracing.

  16. Exploring the influence of Diels-Alder linker length on photothermal molecule release from gold nanorods.

    PubMed

    Vetterlein, Claudia; Vásquez, Rodrigo; Bolaños, Karen; Acosta, Gerardo A; Guzman, Fanny; Albericio, Fernando; Celis, Freddy; Campos, Marcelo; Kogan, Marcelo J; Araya, Eyleen

    2018-06-01

    We studied the photothermal release of carboxyfluorescein (CF) linked to the gold surface of gold nanorods (GNRs) by two Diels-Alder adducts of different lengths (n = 4 and n = 9). The functionalized GNRs were irradiated with infrared light to produce photothermal release of CF by a retro-Diels-Alder reaction. The adducts were chemisorbed on the GNRs and the functionalized nanoparticles were characterized by UV-vis, DLS, zeta potential and Raman and surface-enhanced Raman spectroscopy (SERS). On the basis of the degree of nanoparticle functionalization and the SERS results, we inferred the orientation of CF on the surface of the gold nanoparticle. Moreover, we determined the photothermal release profiles of CF from the gold surface by laser irradiation. The release was faster for the longer linker (n = 9). SERS revealed that, for the shorter linker (n = 4), molecules are oriented perpendicularly with respect to the gold surface, thereby maintaining the CF far from the surface. In contrast, the longer linker was observed to be tilted, thus maintaining CF close to the gold surface and therefore potentially favoring the photothermal transfer of energy. These results are relevant for the future development of the spatial and temporal controlled release of drugs by means of gold nanoparticles. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. The effect of the shape and size of gold seeds irradiated with ultrasound on the bio-heat transfer in tissue.

    PubMed

    Gkigkitzis, Ioannis; Austerlitz, Carlos; Haranas, Ioannis; Campos, Diana

    2015-01-01

    The aim of this report is to propose a new methodology to treat prostate cancer with macro-rod-shaped gold seeds irradiated with ultrasound and develop a new computational method for temperature and thermal dose control of hyperthermia therapy induced by the proposed procedure. A computer code representation, based on the bio-heat diffusion equation, was developed to calculate the heat deposition and temperature elevation patterns in a gold rod and in the tissue surrounding it as a result of different therapy durations and ultrasound power simulations. The numerical results computed provide quantitative information on the interaction between high-energy ultrasound, gold seeds and biological tissues and can replicate the pattern observed in experimental studies. The effect of differences in shapes and sizes of gold rod targets irradiated with ultrasound is calculated and the heat enhancement and the bio-heat transfer in tissue are analyzed.

  18. Transmission Electron Microscopy as a Tool to Image Bio-Inorganic Nanohybrids: The Case of Phage-Gold Nanocomposites

    PubMed Central

    Cao, Binrui; Xu, Hong; Mao, Chuanbin

    2011-01-01

    In recent years, bio-inorganic nanohybrids composed of biological macromolecules and functional inorganic nanomaterials have revealed many unique properties that show promise for the future. Transmission electron microscopy (TEM) is a popular and relatively simple tool that can offer a direct visualization of the nanomaterials with high resolutions. When TEM is applied to visualize bio-inorganic nanohybrids, a treatment of negative staining is necessary due to the presence of biological molecules in the nanohybrids except for those with densely packed inorganic materials. However, the conventional negative-staining procedure for regular biological samples cannot be directly applied to such bio-inorganic nanohybrids. To image a specific bio-inorganic nanohybrid, negative-staining factors such as negative stain type, working pH, staining time, and drying method, should be identified. Currently, no detailed studies have been done to investigate how to adjust negative-staining factors based on specific bio-inorganic nanohybrids. In this study, bacteriophage-gold nanoparticle hybrids were chosen as a model to systematically study the effects of each factor on the negative staining of the nanohybrids. The best staining conditions for gold nanoparticle-phage nanohybrids were obtained and the effects of each factor on the negative staining of general nanohybrids were discussed. This work indicates that with proper staining it is possible to use TEM to directly visualize both biological and inorganic components without introducing any artifact. PMID:21678527

  19. Tribological characteristics of gold films deposited on metals by ion plating and vapor deposition

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1984-01-01

    The graded interface between an ion-plated film and a substrate is discussed as well as the friction and wear properties of ion-plated gold. X-ray photoelectron spectroscopy (XPS) depth profiling and microhardness depth profiling were used to investigate the interface. The friction and wear properties of ion-plated and vapor-deposited gold films were studied both in an ultra high vacuum system to maximize adhesion and in oil to minimize adhesion. The results indicate that the solubility of gold on the substrate material controls the depth of the graded interface. Thermal diffusion and chemical diffusion mechanisms are thought to be involved in the formation of the gold-nickel interface. In iron-gold graded interfaces the gold was primarily dispersed in the iron and thus formed a physically bonded interface. The hardness of the gold film was influenced by its depth and was also related to the composition gradient between the gold and the substrate. The graded nickel-gold interface exhibited the highest hardness because of an alloy hardening effect. The effects of film thickness on adhesion and friction were established.

  20. Tribological characteristics of gold films deposited on metals by ion plating and vapor deposition

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1986-01-01

    The graded interface between an ion-plated film and a substrate is discussed as well as the friction and wear properties of ion-plated gold. X-ray photoelectron spectroscopy (XPS) depth profiling and microhardness depth profiling were used to investigate the interface. The friction and wear properties of ion-plated and vapor-deposited gold films were studied both in an ultra high vacuum system to maximize adhesion and in oil to minimize adhesion. The results indicate that the solubility of gold on the substrate material controls the depth of the graded interface. Thermal diffusion and chemical diffusion mechanisms are thought to be involved in the formation of the gold-nickel interface. In iron-gold graded interfaces the gold was primarily dispersed in the iron and thus formed a physically bonded interface. The hardness of the gold film was influenced by its depth and was also related to the composition gradient between the gold and the substrate. The graded nickel-gold interface exhibited the highest hardness because of an alloy hardening effect. The effects of film thickness on adhesion and friction were established.

  1. Single nucleotide polymorphism detection using gold nanoprobes and bio-microfluidic platform with embedded microlenses.

    PubMed

    Bernacka-Wojcik, Iwona; Águas, Hugo; Carlos, Fabio Ferreira; Lopes, Paulo; Wojcik, Pawel Jerzy; Costa, Mafalda Nascimento; Veigas, Bruno; Igreja, Rui; Fortunato, Elvira; Baptista, Pedro Viana; Martins, Rodrigo

    2015-06-01

    The use of microfluidics platforms combined with the optimal optical properties of gold nanoparticles has found plenty of application in molecular biosensing. This paper describes a bio-microfluidic platform coupled to a non-cross-linking colorimetric gold nanoprobe assay to detect a single nucleotide polymorphism associated with increased risk of obesity fat-mass and obesity-associated (FTO) rs9939609 (Carlos et al., 2014). The system enabled significant discrimination between positive and negative assays using a target DNA concentration of 5 ng/µL below the limit of detection of the conventionally used microplate reader (i.e., 15 ng/µL) with 10 times lower solution volume (i.e., 3 µL). A set of optimization of our previously reported bio-microfluidic platform (Bernacka-Wojcik et al., 2013) resulted in a 160% improvement of colorimetric analysis results. Incorporation of planar microlenses increased 6 times signal-to-loss ratio reaching the output optical fiber improving by 34% the colorimetric analysis of gold nanoparticles, while the implementation of an optoelectronic acquisition system yielded increased accuracy and reduced noise. The microfluidic chip was also integrated with a miniature fiber spectrometer to analyze the assays' colorimetric changes and also the LEDs transmission spectra when illuminating through various solutions. Furthermore, by coupling an optical microscope to a digital camera with a long exposure time (30 s), we could visualise the different scatter intensities of gold nanoparticles within channels following salt addition. These intensities correlate well to the expected difference in aggregation between FTO positive (none to small aggregates) and negative samples (large aggregates). © 2015 Wiley Periodicals, Inc.

  2. Role of hydrogen ions in standard and activation heap leaching of gold

    NASA Astrophysics Data System (ADS)

    Rubtsov, YuI

    2017-02-01

    The role of hydrogen ions in activation heap leaching of gold from rebellious ore has been studied, which has allowed enhancing gold recovery. The author puts forward a gold leaching circuit with the use of activated oxygen-saturated solutions acidified to pH = 6-9.

  3. Surface enhanced Raman scattering of amino acids assisted by gold nanoparticles and Gd(3+) ions.

    PubMed

    López-Neira, Juan Pablo; Galicia-Hernández, José Mario; Reyes-Coronado, Alejandro; Pérez, Elías; Castillo-Rivera, Francisco

    2015-05-07

    The surface enhanced raman scattering (SERS) signal from the l-tyrosine (tyr) molecule adsorbed on gold nanoparticles (Au-tyr) is compared with the SERS signal assisted by the presence of gadolinium ions (Gd(3+)) coordinated with the Au-tyr system. An enhancement factor of the SERS signal in the presence of Gd(3+) ions was ∼5 times higher than that produced by l-tyrosine adsorbed on gold nanoparticles. The enhancement of the SERS signal can be attributed to a corresponding increase in the local electric field due to the presence of Gd(3+) ions in the vicinity of a gold dimer configuration. This scenario was confirmed by solving numerically Maxwell equations, showing an increase of 1 order of magnitude in the local electric scattered field when the Gd(3+) ion is located in between a gold dimer compared with naked gold nanoparticles.

  4. [Condition optimization for bio-oxidation of high-S and high-As gold concentrate].

    PubMed

    Yang, Caiyun; Dong, Bowen; Wang, Meijun; Ye, Zhiyong; Zheng, Tianling; Huang, Huaiguo

    2015-12-04

    To study the effects of temperature and lixivium return on the concentrate bio-oxidation and rate of gold cyanide leaching. The bioleaching of a high-sulphur (S) and high-arsenic (As) refractory gold concentrate was conducted, and we studied the effects of different temperature (40 ° and 45 °C) and lixivium return (0 and 600 mL) on the bio-oxidation efficiency. The bacterial community structure also was investigated by 16S rRNA gene clone library. The results showed that both the temperature and lixivium return significantly influenced the oxidation system. The temperature rising elevated the oxidation level, while the addition of lixivium depressed the oxidation. Dissimilarity and DCA (detrended correspondence analysis) indicated the effect of temperature on oxidation system was much greater than lixivium. The bacterial community was comprised by Acidithiocacillus caldu (71%) Leptospirillum ferriphilum (23%) and Sulfobacillus thermosulfidooxidans (6%) indicated by the clone library, and the OTU coverage based on 97% sequence similarity was as high as 93.67%. Temperature rising to 45 T would improve the oxidation efficiency while lixivium return would decrease it. This study is helpful to provide an important guiding value for the industry cost optimization of mesophile bacterial oxidation and reduction process.

  5. In vitro cytotoxicity evaluation of elemental ions released from different prosthodontic materials.

    PubMed

    Elshahawy, Waleed M; Watanabe, Ikuya; Kramer, Phillip

    2009-12-01

    This study investigated the cytotoxicity of elemental ions contained in four fixed prosthodontic materials (gold, nickel-chromium, stainless-steel alloys and CAD-CAM ceramics). According to the determination of elements released from prosthodontic materials by using inductively coupled plasma mass spectroscopy, similar amounts of elements Pd, Ag, Zn, Cu, Ni, Cr, Mo, Be, Fe, Al, and K were prepared as salt solutions. Wells with a tenfold higher concentration of the tested elements were used as positive controls, while a well without any tested element was used as a negative control. These salt solutions were tested for cytotoxicity by culturing mouse L-929 fibroblasts in the salt solutions for a 7-day period of incubation. Then, the percentage of viable cells for each element was measured using trypan blue exclusion assay. The data (n=5) were statistically analyzed by ANOVA/Tukey test (p<0.05). The results showed a statistically significant difference for the cytotoxic effect of the tested elements salt solutions. For the released element concentrations the lowest percentage of viable cells (mean+/-SD) was evident with Zn, Cu or Ni indicating that they are the highly toxic elements. Be and Ag were found to be intermediate in cytotoxic effect. Fe, Cr, Mo, Al, Pd or K were found to be the least cytotoxic elements. Zn and Cu released from gold alloys, and Ni released from nickel-chromium alloys, which are commonly used as fixed prosthodontic restorations, show evidence of a high cytotoxic effect on fibroblast cell cultures.

  6. Pharmacokinetics and correlation between in vitro release and in vivo absorption of bio-adhesive pellets of panax notoginseng saponins.

    PubMed

    Li, Ying; Zhang, Yun; Zhu, Chun-Yan

    2017-02-01

    The present study was designed to prepare and compare bio-adhesive pellets of panax notoginseng saponins (PNS) with hydroxy propyl methyl cellulose (HPMC), chitosan, and chitosan : carbomer, explore the influence of different bio-adhesive materials on pharmacokinetics behaviors of PNSbio-adhesive pellets, and evaluate the correlation between in vivo absorption and in vitro release (IVIVC). In order to predict the in vivo concentration-time profile by the in vitro release data of bio-adhesive pellets, the release experiment was performed using the rotating basket method in pH 6.8 phosphate buffer. The PNS concentrations in rat plasma were analyzed by HPLC-MS-MS method and the relative bioavailability and other pharmacokinetic parameters were estimated using Kinetica4.4 pharmacokinetic software. Numerical deconvolution method was used to evaluate IVIVC. Our results indicated that, compared with ordinary pellets, PNS bio-adhesive pellets showed increased oral bioavailability by 1.45 to 3.20 times, increased C max , and extended MRT. What's more, the release behavior of drug in HPMC pellets was shown to follow a Fickian diffusion mechanism, a synergetic function of diffusion and skeleton corrosion. The in vitro release and the in vivo biological activity had a good correlation, demonstrating that the PNS bio-adhesive pellets had a better sustained release. Numerical deconvolution technique showed the advantage in evaluation of IVIVC for self-designed bio-adhesive pellets with HPMC. In conclusion, the in vitro release data of bio-adhesive pellets with HPMC can predict its concentration-time profile in vivo. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  7. Fluorescence bio-barcode DNA assay based on gold and magnetic nanoparticles for detection of Exotoxin A gene sequence.

    PubMed

    Amini, Bahram; Kamali, Mehdi; Salouti, Mojtaba; Yaghmaei, Parichehreh

    2017-06-15

    Bio-barcode DNA based on gold nanoparticle (bDNA-GNPs) as a new generation of biosensor based detection tools, holds promise for biological science studies. They are of enormous importance in the emergence of rapid and sensitive procedures for detecting toxins of microorganisms. Exotoxin A (ETA) is the most toxic virulence factor of Pseudomonas aeruginosa. ETA has ADP-ribosylation activity and decisively affects the protein synthesis of the host cells. In the present study, we developed a fluorescence bio-barcode technology to trace P. aeruginosa ETA. The GNPs were coated with the first target-specific DNA probe 1 (1pDNA) and bio-barcode DNA, which acted as a signal reporter. The magnetic nanoparticles (MNPs) were coated with the second target-specific DNA probe 2 (2pDNA) that was able to recognize the other end of the target DNA. After binding the nanoparticles with the target DNA, the following sandwich structure was formed: MNP 2pDNA/tDNA/1pDNA-GNP-bDNA. After isolating the sandwiches by a magnetic field, the DNAs of the probes which have been hybridized to their complementary DNA, GNPs and MNPs, via the hydrogen, electrostatic and covalently bonds, were released from the sandwiches after dissolving in dithiothreitol solution (DTT 0.8M). This bio-barcode DNA with known DNA sequence was then detected by fluorescence spectrophotometry. The findings showed that the new method has the advantages of fast, high sensitivity (the detection limit was 1.2ng/ml), good selectivity, and wide linear range of 5-200ng/ml. The regression analysis also showed that there was a good linear relationship (∆F=0.57 [target DNA]+21.31, R 2 =0.9984) between the fluorescent intensity and the target DNA concentration in the samples. Copyright © 2016. Published by Elsevier B.V.

  8. In vivo molecular photoacoustic tomography of melanomas targeted by bio-conjugated gold nanocages

    PubMed Central

    Kim, Chulhong; Cho, Eun Chul; Chen, Jingyi; Song, Kwang Hyun; Au, Leslie; Favazza, Christopher; Zhang, Qiang; Cobley, Claire M.; Gao, Feng; Xia, Younan; Wang, Lihong V.

    2010-01-01

    Early diagnosis, accurate staging, and image-guided resection of melanomas remain crucial clinical objectives for improving patient survival and treatment outcomes. Conventional techniques cannot meet this demand because of the low sensitivity, low specificity, poor spatial resolution, shallow penetration, and/or ionizing radiation. Here we overcome such limitations by combining high-resolution photoacoustic tomography (PAT) with extraordinarily optical absorbing gold nanocages (AuNCs). When bio-conjugated with [Nle4,D-Phe7]-α-melanocyte-stimulating hormone, the AuNCs can serve as a novel contrast agent for in vivo molecular PAT of melanomas with both exquisite sensitivity and high specificity. The bio-conjugated AuNCs enhanced contrast ~300% more than the control, PEGylated AuNCs. The in vivo PAT quantification of the amount of AuNCs accumulated in melanomas was further validated with inductively coupled plasma mass spectrometry (ICP-MS). PMID:20731439

  9. Optical Properties of Plasmonic Nanostructures for Bio-Imaging and Bio-Sensing Applications

    NASA Astrophysics Data System (ADS)

    Kravets, Vira V.

    Kravets, Vira V. (Ph.D., Physics). Optical properties of plasmonic nanostructures for bio-imaging and bio-sensing applications. Dissertation directed by Associate Professor Anatoliy Pinchuk. ABSTRACT. This dissertation explores the physics of free electron excitations in gold nanoparticle chains, silver nanoparticle colloids, and thin gold films. Electron excitations in nanostructures (surface plasmons, SP) are responsible for unique optical properties, which are applied in bio-sensing and bio-imaging applications. For gold nanoparticle chains, the effect of SP on resonance light absorption was studied experimentally and theoretically. Mainly, how the spectral position of the absorption peak depends on inter-particle distances. This dependence is used in “molecular rulers”, providing spatial resolution below the Rayleigh limit. The underlying theory is based on particle interaction via scattered dipole fields. Often in literature only the near-field component of the scattered field is considered. Here, I show that middle and far fields should not be neglected for calculation of extinction by particle chains. In silver nanoparticles, SP excitations produce two independent effects: (a) the intrinsic fluorescence of the particles, and (b) the enhancement of a molecule’s fluorescence by a particle’s surface. The mechanism of (a) is deduced by studying how fluorescence depends on particle size. For (b), I show that fluorescence of a dye molecule on the surface of a nanoparticle is enhanced, when compared to that of the free-standing dye. I demonstrate that the dye’s fluorescent quantum yield is dependent on the particle’s size, making labeled silver nanoparticles attractive candidates as bio-imaging agents. Labeled nanoparticles are applied to cell imaging, and their bio-compatibility with two cell lines is evaluated here. Finally, in gold films under attenuated total internal reflection (ATR) conditions, the SP create a propagating wave (SP-polariton, SPP

  10. Chemical functionalization of diatom silica microparticles for adsorption of gold (III) ions.

    PubMed

    Yu, Yang; Addai-Mensah, Jonas; Losic, Dusan

    2011-12-01

    Diatom silica microparticles from natural diatomaceous earth (DE) silica have been functionalized with 3-mercaptopropyltrimethoxysilane (MPTMS) and their application for adsorption of gold (III) ions from aqueous solutions is demonstrated. Fourier transform infrared spectroscopy (FTIR) and X-ray Photoelectron spectroscopy (XPS) analyses of the MPTMS modified diatom microparticles revealed that the silane layer with functional group (-SH) was successfully introduced to the diatom surface. The adsorption study of Au(III) ions using MPTMS-DE indicated that the process depends on initial gold (III) concentration and pH showing maximum adsorption capacity at pH = 3. The Au(III) adsorption kinetics results showed that the adsorption was very fast and followed a pseudo-second-order reaction model. The Langmuir model was used to provide a sound mechanistic basis for the theoretical of the adsorption equilibrium data. Gold recovery from MPTMS-DE structures was also investigated by using acidified thiourea solution and found to be high (> 95%). These results show that chemically modified DE microparticles can be used as a new, cost effective and environmentally benign adsorbent suitable for adsorption of gold metal ions from aqueous solutions.

  11. Analysis of gold(I/III)-complexes by HPLC-ICP-MS demonstrates gold(III) stability in surface waters.

    PubMed

    Ta, Christine; Reith, Frank; Brugger, Joël; Pring, Allan; Lenehan, Claire E

    2014-05-20

    Understanding the form in which gold is transported in surface- and groundwaters underpins our understanding of gold dispersion and (bio)geochemical cycling. Yet, to date, there are no direct techniques capable of identifying the oxidation state and complexation of gold in natural waters. We present a reversed phase ion-pairing HPLC-ICP-MS method for the separation and determination of aqueous gold(III)-chloro-hydroxyl, gold(III)-bromo-hydroxyl, gold(I)-thiosulfate, and gold(I)-cyanide complexes. Detection limits for the gold species range from 0.05 to 0.30 μg L(-1). The [Au(CN)2](-) gold cyanide complex was detected in five of six waters from tailings and adjacent monitoring bores of working gold mines. Contrary to thermodynamic predictions, evidence was obtained for the existence of Au(III)-complexes in circumneutral, hypersaline waters of a natural lake overlying a gold deposit in Western Australia. This first direct evidence for the existence and stability of Au(III)-complexes in natural surface waters suggests that Au(III)-complexes may be important for the transport and biogeochemical cycling of gold in surface environments. Overall, these results show that near-μg L(-1) enrichments of Au in environmental waters result from metastable ligands (e.g., CN(-)) as well as kinetically controlled redox processes leading to the stability of highly soluble Au(III)-complexes.

  12. An overview of the Gold King Mine Release and its Transport ...

    EPA Pesticide Factsheets

    On August 5, 2015, a large acidic mine pool trapped behind a collapsed mine structure and rock debris in the Gold King Mine (GKM) was accidently breached releasing approximately 11.3 million liters (3 million gallons) of low pH (~3) metal contaminated mine drainage into a small tributary in the headwaters of the Animas River in southwestern Colorado. The release introduced approximately 490,000 kg of dissolved and particulate metals over a 12-hour period into the Animas River at Silverton, CO, located 13 km downstream from the mine. The mine effluent contained 2,900 kg of dissolved metals. Most of the released metals were eroded from the old waste pile outside the mine entrance and within Cement Creek by the rushing water. The release introduced large quantities of particulate aluminum, iron, manganese, lead, copper, arsenic and zinc to the Animas River, of which 15,000 kg was in dissolved form To be presented at the New Mexico Water Institute Symposium, 2nd Annual Conference on Environmental Conditionsof the Animas and San Juan Watersheds with Emphasis on Gold King Mine and Other Mine Waste Issues.

  13. Novel bio-active lipid nanocarriers for the stabilization and sustained release of sitosterol

    NASA Astrophysics Data System (ADS)

    Lacatusu, I.; Badea, N.; Stan, R.; Meghea, A.

    2012-11-01

    In this work, new stable and efficiently bio-active lipid nanocarriers (NLCs) with antioxidant properties have been developed for the transport of active ingredients in food. The novel NLCs loaded with β-sitosterol/β-sitosterol and green tea extract (GTE) and prepared by a combination of natural oils (grape seed oil, fish oil and squalene) and biological lipids with food grade surfactants, were physico-chemically examined by DLS, TEM, electrokinetic potential, DSC and HPLC and found to have main diameters less than 200 nm, a spherical morphology, excellent physical stability, an imperfect crystalline lattice and high entrapment efficiency. The novel loaded-NLCs have demonstrated the potential to develop a high blocking action of chain reactions, trapping up to 92% of the free-oxygen radicals, as compared to the native β-sitosterol (AA%=36.5). Another advantage of this study is associated with the quality of bio-active NLCs based on grape seed oil and squalene to manifest a better sitosterol—sustained release behaviour as compared to their related nanoemulsions. By coupling both in vitro results, i.e. the enhanced antioxidant activity and superior release properties, this study emphasizes the sustainability of novel bio-active nanocarriers to gain specific bio-food features for development of functional foods with a high applicability spectrum.

  14. Uptake of Au(III) Ions by Aluminum Hydroxide and Their Spontaneous Reduction to Elemental Gold (Au(0)).

    PubMed

    Yokoyama; Matsukado; Uchida; Motomura; Watanabe; Izawa

    2001-01-01

    The behavior of AuCl(4)(-) ions during the formation of aluminum hydroxide at pH 6 was examined. With an increase in NaCl concentration, the content of gold taken up by aluminum hydroxide decreased, suggesting that chloro-hydroxy complexes of Au(III) ion were taken up due to the formation of Al-O-Au bonds. It was found unexpectedly that the Au(III) ions taken up were spontaneously reduced to elemental gold without addition of a specific reducing reagent and then colloidal gold particles were formed. The mechanisms for the uptake of Au(III) ions by aluminum hydroxide and for their spontaneous reduction are discussed. Copyright 2001 Academic Press.

  15. Bio-removal of Nickel ions by Sporosarcina pasteurii and Bacillus megaterium, A Comparative Study

    NASA Astrophysics Data System (ADS)

    Gheethi, AA; Efaq, AN; Mohamed, RM; Abdel-Monem, MO; Halid Abdullah, Abd; Hashim, M. Amir

    2017-08-01

    The aim of this work was to study the potential of Sporosarcina pasteurii 586S and Bacillus megaterium 1295S isolated from sewage treatment plants (STPs) in removing of nickel ions from the aqueous solution. The bacterial cells were used as living and dead cell biomass. The efficiency of bio-removal process was investigated as a response for nickel and biomass concentrations, time, pH and temperature. The bio-removal capacity (Qmax) of both strains were compared. The highest bio-removal percentage was recorded by dead cells in comparison to living cells. Dead cell biomass of B. megaterium 1295S exhibited higher efficiency for bio-removing of Ni2+ than S. pasteurii 586S at196.4 and 200.2 mg Ni2+ g-1, respectively. It can be concluded that both bacterial strains have high potential to be applied in the biotechnology for removing of Ni2+ ions, however, dead cells of B. megaterium 1295S is the most potent.

  16. Bio-based Interpenetrating Network Polymer Composites from Locust Sawdust as Coating Material for Environmentally Friendly Controlled-Release Urea Fertilizers.

    PubMed

    Zhang, Shugang; Yang, Yuechao; Gao, Bin; Wan, Yongshan; Li, Yuncong C; Zhao, Chenhao

    2016-07-20

    A novel polymer-coated nitrogen (N) fertilizer was developed using bio-based polyurethane (PU) derived from liquefied locust sawdust as the coating material. The bio-based PU was successfully coated on the surface of the urea fertilizer prills to form polymer-coated urea (PCU) fertilizer for controlled N release. Epoxy resin (EP) was also used to further modify the bio-based PU to synthesize the interpenetrating network (IPN), enhancing the slow-release properties of the PCU. The N release characteristics of the EP-modified PCU (EMPCU) in water were determine at 25 °C and compared to that of PCU and EP-coated urea (ECU). The results showed that the EP modification reduced the N release rate and increased the longevity of the fertilizer coated with bio-based PU. A corn growth study was conducted to further evaluate the filed application of the EMPCU. In comparison to commercial PCU and conventional urea fertilizer, EMPCU was more effective and increased the yield and total dry matter accumulation of the corn. Findings from this work indicated that bio-based PU derived from sawdust can be used as coating materials for PCU, particularly after EP modification. The resulting EMPCU was more environmentally friendly and cost-effective than conventional urea fertilizers coated by EP.

  17. Gold nanoparticles paper as a SERS bio-diagnostic platform.

    PubMed

    Ngo, Ying Hui; Then, Whui Lyn; Shen, Wei; Garnier, Gil

    2013-11-01

    Bioactive papers are usually challenged by four major limitations: sensitivity, selectivity, simplicity and strength (4S). Gold nanoparticles (AuNPs) treated paper has previously been demonstrated as a Surface Enhanced Raman Scattering (SERS) active substrate, capable of addressing the 4S issues. In this study, AuNPs on paper substrate were functionalized by a series of biomolecules to develop a generic SERS platform for antibody-antigen detection. The functionalization steps were performed by taking advantage of the high affinity association between Streptomyces avidinii-derived protein, streptavidin, and biotin. Streptavidin was firstly bound onto the AuNPs treated paper using biotinylated-thiol. Subsequently, desired biotinylated-antibody was bound onto the streptavidin. SERS spectra of each functionalization step were obtained to ensure specific adsorption of the bio-molecules. The binding interaction of the antibody with its specific antigen was detected using SERS. Shifts of Raman band associated with α-helix and β-sheet structures indicated structural modification of the antibody upon interaction with its antigen. Predominant tryptophan and tyrosine residue bands were also detected, confirming the presence of antigen. Reproducible spectral features were quantified as AuNP papers were subjected to different concentrations of antigen; the spectra intensity increased as a function of the antigen concentration. The retention of AuNPs on paper remained constant after all the consecutive washing and functionalization steps. The feasibility of AuNPs paper as a low-cost and generic SERS platform for bio-diagnostic applications was demonstrated. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  18. Charge Retention by Monodisperse Gold Clusters on Surfaces Prepared Using Soft Landing of Mass Selected Ions

    NASA Astrophysics Data System (ADS)

    Johnson, Grant; Priest, Thomas; Laskin, Julia

    2012-02-01

    Monodisperse gold clusters have been prepared on surfaces in different charge states through soft landing of mass-selected ions. Gold clusters were synthesized in methanol solution by reduction of a gold precursor with a weak reducing agent in the presence of a diphosphine capping ligand. Electrospray ionization was used to introduce the clusters into the gas-phase and mass-selection was employed to isolate a single ionic cluster species which was delivered to surfaces at well controlled kinetic energies. Using in-situ time of flight secondary ion mass spectrometry (SIMS) it is demonstrated that the cluster retains its 3+ charge state when soft landed onto the surface of a fluorinated self assembled monolayer on gold. In contrast, when deposited onto carboxylic acid terminated and conventional alkyl thiol surfaces on gold the clusters exhibit larger relative abundances of the 2+ and 1+ charge states, respectively. The kinetics of charge reduction on the surface have been investigated using in-situ Fourier Transform Ion Cyclotron Resonance SIMS. It is shown that an extremely slow interfacial charge reduction occurs on the fluorinated monolayer surface while an almost instantaneous neutralization takes place on the surface of the alkyl thiol monolayer. Our results demonstrate that the size and charge state of small gold clusters on surfaces, both of which exert a dramatic influence on their chemical and physical properties, may be tuned through soft landing of mass-selected ions onto selected substrates.

  19. Assessing bio-available silver released from silver nanoparticles embedded in silica layers using the green algae Chlamydomonas reinhardtii as bio-sensors.

    PubMed

    Pugliara, Alessandro; Makasheva, Kremena; Despax, Bernard; Bayle, Maxime; Carles, Robert; Benzo, Patrizio; BenAssayag, Gérard; Pécassou, Béatrice; Sancho, Maria Carmen; Navarro, Enrique; Echegoyen, Yolanda; Bonafos, Caroline

    2016-09-15

    Silver nanoparticles (AgNPs) because of their strong antibacterial activity are widely used in health-care sector and industrial applications. Their huge surface-volume ratio enhances the silver release compared to the bulk material, leading to an increased toxicity for microorganisms sensitive to this element. This work presents an assessment of the toxic effect on algal photosynthesis due to small (size <20nm) AgNPs embedded in silica layers. Two physical approaches were originally used to elaborate the nanocomposite structures: (i) low energy ion beam synthesis and (ii) combined silver sputtering and plasma polymerization. These techniques allow elaboration of a single layer of AgNPs embedded in silica films at defined nanometer distances (from 0 to 7nm) beneath the free surface. The structural and optical properties of the nanostructures were studied by transmission electron microscopy and optical reflectance. The silver release from the nanostructures after 20h of immersion in buffered water was measured by inductively coupled plasma mass spectrometry and ranges between 0.02 and 0.49μM. The short-term toxicity of Ag to photosynthesis of Chlamydomonas reinhardtii was assessed by fluorometry. The obtained results show that embedding AgNPs reduces the interactions with the buffered water free media, protecting the AgNPs from fast oxidation. The release of bio-available silver (impacting on the algal photosynthesis) is controlled by the depth at which AgNPs are located for a given host matrix. This provides a procedure to tailor the toxicity of nanocomposites containing AgNPs. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Study of thickness dependent sputtering in gold thin films by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Dash, P.; Sahoo, P. K.; Solanki, V.; Singh, U. B.; Avasthi, D. K.; Mishra, N. C.

    2015-12-01

    Gold thin films of varying thickness (10-100 nm) grown on silica substrates by e-beam evaporation method were irradiated by 120 MeV Au ions at 3 × 1012 and 1 × 1013 ions cm-2 fluences. Irradiation induced modifications of these films were probed by glancing angle X-ray diffraction (GAXRD), atomic force microscopy (AFM), Rutherford backscattering spectrometry (RBS) and surface enhanced Raman scattering (SERS). Irradiation didn't affect the structure, the lattice parameter or the crystallite size, but modified the texturing of grains from [1 1 1] to [2 2 0]. RBS indicated thickness dependent sputtering on irradiation. The sputtering yield was found to decrease with increasing thickness. AFM indicated increase of roughness with increasing irradiation fluence for films of all thickness. In agreement with the AFM observation, the gold nanostructures on the surface of 20 nm thick film were found to increase the SERS signal of acridine orange dye attached to these structures. The SERS peaks were amplified by many fold with increasing ion fluence. The effect of 120 MeV Au ion irradiation on the grain texture, surface morphology and SERS activity in addition to the thickness dependent sputtering in gold thin films are explained by the thermal spike model of ion-matter interaction.

  1. Light-triggered methylcellulose gold nanoparticle hydrogels for leptin release to inhibit fat stores in adipocytes.

    PubMed

    Liao, Zi-Xian; Liu, Meng-Chia; Kempson, Ivan M; Fa, Yu-Chen; Huang, Kuo-Yen

    2017-01-01

    Leptin is released in response to increased triglyceride storage in adipocytes and impacts body weight, but has drawbacks such as poor therapeutic effect and side effects when delivered systemically. Leptin also modifies adipocyte sensitivity to insulin to inhibit lipid accumulation. Here, light-triggered degradation of hydrogels was used to improve accuracy and effectiveness for sustained and controllable release. In our approach, leptin was entrapped within methylcellulose (MC)-based hydrogels, with incorporation of gold nanoparticles (NP). The incorporation of gold NP into MC hydrogels led to a tunable light irradiation response that dictated the hydrogel release rate of leptin. This manuscript demonstrates feasibility in designing tunable thermosensitive hydrogels for loading multimodality therapeutic agents to enhance the bioactivity of leptin for obesity therapy.

  2. Self-Assembled Gold Nano-Ripple Formation by Gas Cluster Ion Beam Bombardment.

    PubMed

    Tilakaratne, Buddhi P; Chen, Quark Y; Chu, Wei-Kan

    2017-09-08

    In this study, we used a 30 keV argon cluster ion beam bombardment to investigate the dynamic processes during nano-ripple formation on gold surfaces. Atomic force microscope analysis shows that the gold surface has maximum roughness at an incident angle of 60° from the surface normal; moreover, at this angle, and for an applied fluence of 3 × 10 16 clusters/cm², the aspect ratio of the nano-ripple pattern is in the range of ~50%. Rutherford backscattering spectrometry analysis reveals a formation of a surface gradient due to prolonged gas cluster ion bombardment, although the surface roughness remains consistent throughout the bombarded surface area. As a result, significant mass redistribution is triggered by gas cluster ion beam bombardment at room temperature. Where mass redistribution is responsible for nano-ripple formation, the surface erosion process refines the formed nano-ripple structures.

  3. Do soft drinks affect metal ions release from orthodontic appliances?

    PubMed

    Mikulewicz, Marcin; Wołowiec, Paulina; Loster, Bartłomiej W; Chojnacka, Katarzyna

    2015-01-01

    The effect of orange juice and Coca Cola(®) on the release of metal ions from fixed orthodontic appliances. A continuous flow system designed for in vitro testing of orthodontic appliances was used. Orange juice/Coca Cola(®) was flowing through the system alternately with artificial saliva for 5.5 and 18.5h, respectively. The collected samples underwent a multielemental ICP-OES analysis in order to determine the metal ions release pattern in time. The total mass of ions released from the appliance into orange juice and Coca Cola(®) (respectively) during the experiment was calculated (μg): Ni (15.33; 37.75), Cr (3.604; 1.052), Fe (48.42; ≥ 156.1), Cu (57.87, 32.91), Mn (9.164; 41.16), Mo (9.999; 30.12), and Cd (0.5967; 2.173). It was found that orange juice did not intensify the release of metal ions from orthodontic appliances, whereas Coca Cola(®) caused increased release of Ni ions. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. Ejection of nanoclusters from gold nanoislet layers by 38 keV Au ions in the elastic stopping mode.

    PubMed

    Baranov, I A; Della-Negra, S; Domaratsky, V P; Chemezov, A V; Kirillov, S N; Novikov, A C; Obnorsky, V V; Pautrat, M; Urbassek, H M; Wien, K; Yarmiychuk, S V; Zhurkin, E E

    2009-07-01

    Total absolute yields of the ejected gold were obtained regardless of the type of the particles are--atoms, clusters, nanoclusters,--as well as absolute yields of gold nanoclusters, from nanoislet gold targets under bombardment by monoatomic gold ions at 45 degrees to the target surface with the energy 38 keV, i.e., in the "purely" elastic stopping mode -6 keV/nm up to the fluence of 4 x 10(12) cm2. Three targets had gold nanoislets on the substrate surface: 2-12 nm; -18 nm; -35 nm, the most probable sizes being 7.1; 9.4; 17.5 nm respectively. The part of the surface area covered with gold was known. Total transfer of gold was determined by means of the neutron-activation analysis and decreased from 450 to 20 at/ion. The number of the ejected gold nanoclusters was determined using TEM and decreased from approximately 0.06 to < 0.01 per one 38 keV Au ion with the increase of the most probable sizes of the nanoislets on the target from 7.1 to 17.5 nm. The yields appeared to be surprisingly high, which is of scientific and practical importance. Tentative estimations were made using molecular dynamics simulations.

  5. Modulatory effects of Zn2+ ions on the toxicity of citrate- and PVP-capped gold nanoparticles towards freshwater algae, Scenedesmus obliquus.

    PubMed

    Iswarya, V; Johnson, J B; Parashar, Abhinav; Pulimi, Mrudula; Chandrasekaran, N; Mukherjee, Amitava

    2017-02-01

    Gold nanoparticles (GNPs) are widely used for medical purposes, both in diagnostics as well as drug delivery, and hence are prone to release and distribution in the environment. Thus, we have explored the effects of GNPs with two distinct surface capping (citrate and PVP), and three different sizes (16, 27, and 37 nm) at 0.01-, 0.1-, and 1-mg L -1 concentrations on a predominant freshwater alga Scenedesmus obliquus in the sterile freshwater matrix. We have also investigated how an abundant metal ion from freshwater, i.e., Zn 2+ ions may modulate the effects of the selected GNPs (40 nm, citrate, and PVP capped). Preliminary toxicity results revealed that gold nanoparticles were highly toxic in comparison to zinc ions alone. A significant modulation in the toxicity of Zn ions was not noticed in the presence of GNPs. In contrast, zinc ions minimized the toxicity produced by GNPs (both CIT-37 and PVP-37), despite its individual toxicity. Approximately, about 42, 33, and 25% toxicity reduction was noted at 0.05-, 0.5-, and 5-mg L -1 Zn ions, respectively, for CIT-37 GNPs, while 31% (0.05 mg L -1 ), 24% (0.5 mg L -1 ), and 9% (5 mg L -1 ) of toxicity reduction were noted for PVP-37 GNPs. Maximum toxicity reduction was seen at 0.05 mg L -1 of Zn ions. Abbott modeling substantiated antagonistic effects offered by Zn 2+ ions on GNPs. Stability and sedimentation data revealed that the addition of zinc ions gradually induced the aggregation of NPs and in turn significantly reduced the toxicity of GNPs. Thus, the naturally existing ions like Zn 2+ have an ability to modulate the toxicity of GNPs in a real-world environment scenario.

  6. Ion exchange during heavy metal bio-sorption from aqueous solution by dried biomass of macrophytes.

    PubMed

    Verma, V K; Tewari, Saumyata; Rai, J P N

    2008-04-01

    In this study, potentials of oven dried biomass of Eichhornia crassipes, Valisneria spiralis and Pistia stratiotes, were examined in terms of their heavy metal (Cd, Ni, Zn, Cu, Cr and Pb) sorption capacity, from individual-metal and multi-metal aqueous solutions at pH 6.0+/-0.1 (a popular pH of industrial effluent). V. spiralis was the most and E. crassipes was the least efficient for removal of all the metals. Cd, Pb and Zn were efficiently removed by all the three biomass. Cd was removed up to 98% by V. spiralis. Sorption data for Cr, Ni and Cd fitted better to Langmuir isotherm equation, while, the sorption data for Pb, Zn and Cu fitted better to Freundlich isotherm equation. In general, the presence of other metal ions did not influence significantly the targeted metal sorption capacity of the test plant biomasses. Ion exchange was proven the main mechanism involved in bio-sorption and there was a strong ionic balance between adsorbed (H(+) and M(2+)) to the released ions (Na(+) and K(+)) to and from the biomass. No significant difference was observed in the metal exchanged amount, by doubling of metal concentration (15-30 mg/l) in the solution and employing individual-metal and multi-metal solutions.

  7. Gold coast seaway smartrelease decision support system: optimising recycled water release in a sub tropical estuarine environment.

    PubMed

    Stuart, G; Hollingsworth, A; Thomsen, F; Szylkarski, S; Khan, S; Tomlinson, R; Kirkpatrick, S; Catterall, K; Capati, B

    2009-01-01

    Gold Coast Water is responsible for the management of the water, recycled water and wastewater assets of the City of the Gold Coast on Australia's east coast. Excess treated recycled water is released at the Gold Coast Seaway, a man-made channel connecting the Broadwater Estuary with the Pacific Ocean, on an outgoing tide in order for the recycled water to be dispersed before the tide changes and re-enters the Broadwater estuary. Rapid population growth has placed increasing demands on the city's recycled water release system and an investigation of the capacity of the Broadwater to assimilate a greater volume of recycled water over a longer release period was undertaken in 2007. As an outcome, Gold Coast Water was granted an extension of the existing release licence from 10.5 hours per day to 13.3 hours per day from the Coombabah wastewater treatment plant (WWTP). The Seaway SmartRelease Project has been designed to optimise the release of the recycled water from the Coombabah WWTP in order to minimise the impact to the receiving estuarine water quality and maximise the cost efficiency of pumping. In order achieve this; an optimisation study that involves intensive hydrodynamic and water quality monitoring, numerical modelling and a web-based decision support system is underway. An intensive monitoring campaign provided information on water levels, currents, winds, waves, nutrients and bacterial levels within the Broadwater. This data was then used to calibrate and verify numerical models using the MIKE by DHI suite of software. The Decision Support System will then collect continually measured data such as water levels, interact with the WWTP SCADA system, run the numerical models and provide the optimal time window to release the required amount of recycled water from the WWTP within the licence specifications.

  8. Formation of silicon nanodots via ion beam sputtering of ultrathin gold thin film coatings on Si

    PubMed Central

    2011-01-01

    Ion beam sputtering of ultrathin film Au coatings used as a physical catalyst for self-organization of Si nanostructures has been achieved by tuning the incident particle energy. This approach holds promise as a scalable nanomanufacturing parallel processing alternative to candidate nanolithography techniques. Structures of 11- to 14-nm Si nanodots are formed with normal incidence low-energy Ar ions of 200 eV and fluences above 2 × 1017 cm-2. In situ surface characterization during ion irradiation elucidates early stage ion mixing migration mechanism for nanodot self-organization. In particular, the evolution from gold film islands to the formation of ion-induced metastable gold silicide followed by pure Si nanodots formed with no need for impurity seeding. PMID:21711934

  9. Secondary ion mass spectra of gold super clusters up to 140000 Dalton

    NASA Astrophysics Data System (ADS)

    Feld, H.; Leute, A.; Rading, D.; Benninghoven, A.; Schmid, G.

    1990-03-01

    The bombardment of a two-shell gold complex (Au55(PPh3)12Cl6) with 10 keV Xe+-ions results in the formation of secondary ion masses up to 140000 u. These are by far the largest secondary ions observed under primary particle bombardment. The detection and identification of these ions with a Time-Of-Flight Secondary Ion Mass Spectrometer (TOF-SIMS) gives important information about the behavior of naked full-shell clusters. Au13 particles, generated from the Au55 cluster, serve as building blocks for a series of super-clusters up to (Au13)55. The results for keV-ion bombardment are compared to those for MeV-ion bombardment.

  10. EXAFS studies on the reaction of gold (III) chloride complex ions with sodium hydroxide and glucose.

    PubMed

    Pacławski, K; Zajac, D A; Borowiec, M; Kapusta, Cz; Fitzner, K

    2010-11-11

    EXAFS and QEXAFS experiments were carried out at Hasylab laboratory in DESY center (X1 beamline, Hamburg, Germany) to monitor the course of the hydrolysis reactions of [AuCl(4)](-) complex ions as well as their reduction using glucose. As a result, changes in the spectra of [AuCl(4)](-) ions and disappearance of absorption Au-L(3) edge were registered. From the results of the experiments we have carried out, the changes in bond lengths between Au(3+) central ion and Cl(-) ligands as well as the reduction of Au(3+) to metallic form (colloidal gold was formed in the system) are evident. Good quality spectra obtained before and after the reactions gave a chance to determine the bond length characteristic of Au-Cl, Au-OH and Au-Au pairs. Additionally, the obtained results were compared with the simulated spectra of different gold (III) complex ions, possibly present in the solution. Finally, the mechanism of these reactions was suggested. Unfortunately, it was not possible to detect the changes in the structure of gold (III) complex ions within the time of reaction, because of too high rates of both processes (hydrolysis and reduction) as compared with the detection time.

  11. Isochoric heating of solid gold targets with the PW-laser-driven ion beams

    NASA Astrophysics Data System (ADS)

    Steinke, Sven; Ji, Qing; Bulanov, Stepan; Barnard, John; Schenkel, Thomas; Esarey, Eric; Leemans, Wim

    2016-10-01

    We present an end-to-end simulation for isochoric heating of solid gold targets using ion beams produced with the BELLA PW laser at LBNL: (i) 2D Particle-In-Cell (PIC) simulations are applied to study the ion source characteristics of the PW laser-target interaction at the long focal length (f/#65) beamline at laser intensities of 5x1019W/cm2 at spot size of ω0 = 52 μm on a CH target. (ii) In order to transport the ion beams to an EMP-free environment, an active plasma lens will be used. This was modeled by calculating the Twiss parameters of the ion beam from the appropriate transport matrixes using the source parameters obtained from the PIC simulation. Space charge effects were considered as well. (iii) Hydrodynamic simulations indicate that these ion beams can isochorically heat a 1 mm3 gold target to the Warm Dense Matter state. This work was supported by Fusion Energy Science, and LDRD funding from Lawrence Berkeley National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  12. D-Amino acid oxidase bio-functionalized platforms: Toward an enhanced enzymatic bio-activity

    NASA Astrophysics Data System (ADS)

    Herrera, Elisa; Valdez Taubas, Javier; Giacomelli, Carla E.

    2015-11-01

    The purpose of this work is to study the adsorption process and surface bio-activity of His-tagged D-amino acid oxidase (DAAO) from Rhodotorula gracilis (His6-RgDAAO) as the first step for the development of an electrochemical bio-functionalized platform. With such a purpose this work comprises: (a) the His6-RgDAAO bio-activity in solution determined by amperometry, (b) the adsorption mechanism of His6-RgDAAO on bare gold and carboxylated modified substrates in the absence (substrate/COO-) and presence of Ni(II) (substrate/COO- + Ni(II)) determined by reflectometry, and (c) the bio-activity of the His6-RgDAAO bio-functionalized platforms determined by amperometry. Comparing the adsorption behavior and bio-activity of His6-RgDAAO on these different solid substrates allows understanding the contribution of the diverse interactions responsible for the platform performance. His6-RgDAAO enzymatic performance in solution is highly improved when compared to the previously used pig kidney (pk) DAAO. His6-RgDAAO exhibits an amperometrically detectable bio-activity at concentrations as low as those expected on a bio-functional platform; hence, it is a viable bio-recognition element of D-amino acids to be coupled to electrochemical platforms. Moreover, His6-RgDAAO bio-functionalized platforms exhibit a higher surface activity than pkDAAO physically adsorbed on gold. The platform built on Ni(II) modified substrates present enhanced bio-activity because the surface complexes histidine-Ni(II) provide with site-oriented, native-like enzymes. The adsorption mechanism responsible of the excellent performance of the bio-functionalized platform takes place in two steps involving electrostatic and bio-affinity interactions whose prevalence depends on the degree of surface coverage.

  13. Structural properties of buried conducting layers formed by very low energy ion implantation of gold into polymer

    NASA Astrophysics Data System (ADS)

    Teixeira, F. S.; Salvadori, M. C.; Cattani, M.; Brown, I. G.

    2009-09-01

    We have investigated the fundamental structural properties of conducting thin films formed by implanting gold ions into polymethylmethacrylate (PMMA) polymer at 49 eV using a repetitively pulsed cathodic arc plasma gun. Transmission electron microscopy images of these composites show that the implanted ions form gold clusters of diameter ˜2-12 nm distributed throughout a shallow, buried layer of average thickness 7 nm, and small angle x-ray scattering (SAXS) reveals the structural properties of the PMMA-gold buried layer. The SAXS data have been interpreted using a theoretical model that accounts for peculiarities of disordered systems.

  14. Rechargeable dental adhesive with calcium phosphate nanoparticles for long-term ion release

    PubMed Central

    Zhang, Ling; Weir, Michael D.; Hack, Gary; Fouad, Ashraf F.; Xu, Hockin H. K.

    2015-01-01

    Objectives The tooth-resin bond is the weak link of restoration, with secondary caries as a main reason for failure. Calcium phosphate-containing resins are promising for remineralization; however, calcium (Ca) and phosphate (P) ion releases last only a couple of months. The objectives of this study were to develop the first rechargeable CaP bonding agent and investigate the key factors that determine CaP ion recharge and re-release. Methods Nanoparticles of amorphous calcium phosphate (NACP) were synthesized. Pyromellitic glycerol dimethacrylate (PMGDM), ethoxylated bisphenol-A dimethacrylate (EBPADMA), 2-hydroxyethyl methacrylate (HEMA), and bisphenol-A glycidyl dimethacrylate (BisGMA) were used to synthesize three adhesives (denoted PE, PEH and PEHB). NACP were mixed into adhesive at 0–30% by mass. Dentin shear bond strengths were measured. Adhesive specimens were tested for Ca and P initial ion release. Then the ion-exhausted specimens were immersed in Ca and P solution to recharge the specimens, and the recharged specimens were then used to measure ion re-release for 7 days as one cycle. Then these specimens were again recharged and the re-release was measured for 7 days as the second cycle. Three recharge/re-release cycles were tested. Results PEHB had the highest dentin bond strength (p<0.05). Increasing NACP content from 0 to 30% did not affect dentin bond strength (p>0.1), but increased CaP release and re-release (p<0.05). PEHB-NACP had the greatest recharge/re-release, and PE-NACP had the least (p<0.05). Ion release remained high and did not decrease with increasing the number of recharge/re-release cycles (p>0.1). After the third cycle, specimens without further recharge had continuous CaP ion release for 2–3 weeks. Significance Rechargeable CaP bonding agents were developed for the first time to provide long-term Ca and P ions to promote remineralization and reduce caries. Incorporation of NACP into adhesive had no negative effect on dentin bond

  15. Electrically conductive polyimide film containing gold (III) ions, composition, and process of making

    NASA Technical Reports Server (NTRS)

    Caplan, Maggie L. (Inventor); Stoakley, Diane M. (Inventor); St. Clair, Anne K. (Inventor)

    1996-01-01

    An electrically conductive, thermooxidatively stable poltimide, especially a film thereof, is prepared from an intimate admixture of a particular polyimide and gold (III) ions, in an amount sufficient to provide between 17 and 21 percent by weight of gold (III) ions, based on the weight of electrically conductive, thermooxidatively stable polyimide. The particular polyimide is prepared from a polyamic acid which has been synthesized from a dianhydride/diamine combination selected from the group consisting of 3,3',4,4'-benzophenonetetracarboxylic dianhydride and 2,2-bis[4-(4 -aminophenoxy)phenyl]hexafluoropropane; 3,3',4,4'-benzophenonetetracarboxylic dianhydride and 4,4'-oxydianiline; 2,2'-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride and 4,4'-oxydianiline; and 3,3'4,4'-benzophenonetetracarboxylic dianhydride and 2,2-bis(3-aminophenyl)hexafluoropropane.

  16. Zoledronate and Ion-releasing Resins Impair Dentin Collagen Degradation

    PubMed Central

    Tezvergil-Mutluay, A.; Seseogullari-Dirihan, R.; Feitosa, V.P.; Tay, F.R.; Watson, T.F.; Pashley, D.H.; Sauro, S.

    2014-01-01

    This study analyzed the amounts of solubilized telopeptides cross-linked carboxyterminal telopeptide of type I collagen (ICTP) and C-terminal crosslinked telopeptide of type I collagen (CTX) derived from matrix-metalloproteinases (MMPs) and cysteine cathepsins (CTPs) subsequent to application of a filler-free (Res.A) or an ion-releasing resin (Res.B) to ethylenediaminetetraacetic acid (EDTA)-demineralized dentin with or without zoledronate-containing primer (Zol-primer) pre-treatment. The chemical modification induced following treatments and artificial saliva (AS) storage was also analyzed through attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Totally EDTA-demineralized specimens were infiltrated with Res.A or Res.B with or without Zol-primer pre-treatment, light-cured, and immersed in AS for up to 4 wk. ICTP release was reduced following infiltration with Res.B and further reduced when Res.B was used with Zol-primer; remarkable phosphate mineral uptake was attained after AS storage. CTX release was increased in Res.A- and Res.B-treated dentin. However, when Zol-primer was used with Res.A, the CTX release fell significantly compared to the other tested resin-infiltration methods. In conclusion, zoledronate offers an additional inhibitory effect to the ion-releasing resins in MMP-mediated collagen degradation. However, Zol-primer induces a modest reduction in CTX release only when used with resin-based systems containing no ion-releasing fillers. PMID:25074494

  17. Ion release from orthodontic brackets in 3 mouthwashes: an in-vitro study.

    PubMed

    Danaei, Shahla Momeni; Safavi, Afsaneh; Roeinpeikar, S M Mehdi; Oshagh, Morteza; Iranpour, Shiva; Omidkhoda, Maryam; Omidekhoda, Maryam

    2011-06-01

    Stainless steel orthodontic brackets can release metal ions into the saliva. Fluoridated mouthwashes are often recommended to orthodontic patients to reduce the risk of white-spot lesions around their brackets. However, little information is available regarding the effect of different mouthwashes in ion release of orthodontic brackets. The purpose of this study was to measure the amount of metal ion release from orthodontic brackets when kept in different mouthwashes. One hundred sixty stainless steel brackets (0.022-in, 3M Unitek, Monrovia, Calif) were divided randomly into 4 equal groups and immersed in Oral B (Procter & Gamble, Weybridge, United Kingdom), chlorhexidine (Shahdaru Labratories, Tehran, Iran), and Persica (Poursina Pharmaceutical Laboratories, Tehran, Iran) mouthwashes and distilled deionized water and incubated at 37°C for 45 days. Nickel, chromium, iron, copper, and manganese released from the orthodontic brackets were measured with an inductively coupled plasma spectrometer. For statistical analysis, 1-way analysis of variance (ANOVA) and the Duncan multiple-range tests were used. The results showed that ion release in deionized water was significantly (P <0.05) higher than in the 3 mouthwashes. Higher ion release was found with chlorhexidine compared with the other 2 mouthwashes. There was no significant difference (P >0.05) in nickel, chromium, iron, and copper ion release in the Oral B and Persica mouthwashes. The level of manganese release was significantly different in all 4 groups. If ion release is a concern, Oral B and Persica mouthwashes might be better options than chlorhexidine for orthodontic patients with stainless steel brackets. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  18. Release of major ions during rigor mortis development in kid Longissimus dorsi muscle.

    PubMed

    Feidt, C; Brun-Bellut, J

    1999-01-01

    Ionic strength plays an important role in post mortem muscle changes. Its increase is due to ion release during the development of rigor mortis. Twelve alpine kids were used to study the effects of chilling and meat pH on ion release. Free ions were measured in Longissimus dorsi muscle by capillary electrophoresis after water extraction. All free ion concentrations increased after death, but there were differences between ions. Temperature was not a factor affecting ion release in contrast to ultimate pH value. Three release mechanisms are believed to coexist: a passive binding to proteins, which stops as pH decreases, an active segregation which stops as ATP disappears and the production of metabolites due to anaerobic glycolysis.

  19. Vesicular gold assemblies based on host-guest inclusion and its controllable release of doxorubicin

    NASA Astrophysics Data System (ADS)

    Ha, Wei; Kang, Yang; Peng, Shu-Lin; Ding, Li-Sheng; Zhang, Sheng; Li, Bang-Jing

    2013-12-01

    We have developed a kind of gold nanoparticle (AuNP) in which polyethylene glycol (PEG) and poly(N-isopropylacrylamide) (PNIPAM) are attached on the surface of a gold nanocrystal through the host-guest inclusion between adamantane groups (ADA) and β-cyclodextrin (β-CD). The resulting AuNPs become amphiphilic in water above body temperature and self-assemble into vesicles. It is found that these vesicles can load doxorubicin (Dox) effectively. With a decrease in temperature, the PNIPAM shifted from hydrophobic to hydrophilic, causing Au vesicles to disassemble into stable small AuNPs, triggering the release of Dox. These hybrid vesicles, combining polymer functionality with the intriguing properties of AuNPs, can first release free Dox and AuNP/Dox at a site of a tumor through the application of either simple ice packs or deeply penetrating cryoprobes, then the AuNP/Dox can be taken in by tumor cells and destroy them like miniature munitions. Furthermore, these vesicles showed other therapeutic possibilities due to the presence of gold. We believe that the development of such multi-functional vesicles will provide new and therapeutically useful means for medical applications.

  20. Coprecipitation of gold(III) complex ions with manganese(II) hydroxide and their stoichiometric reduction to atomic gold (Au(0)): analysis by Mössbauer spectroscopy and XPS.

    PubMed

    Yamashita, Mamiko; Ohashi, Hironori; Kobayashi, Yasuhiro; Okaue, Yoshihiro; Kurisaki, Tsutomu; Wakita, Hisanobu; Yokoyama, Takushi

    2008-03-01

    To elucidate the formation process of precursor of gold-supported manganese dioxide (MnO2), the coprecipitation behavior of [AuCl4-n(OH)n](-) (n=0-4) (Au(III)) complex ions with manganese(II) hydroxide (Mn(OH)2 and the change in their chemical state were examined. The Au(III) complex ions were rapidly and effectively coprecipitated with Mn(OH)(2) at pH 9. According to the Mössbauer spectra for gold (Au) coprecipitated with Mn(OH)2, below an Au content of 60 wt% in the coprecipitates, all of the coprecipitated Au existed in the atomic state (Au(0)), while, above an Au content of 65 wt%, part of the gold existed in the Au(III) state, and the proportion increased with increasing coprecipitated Au content. Based on the results of X-ray photoelectron spectroscopy, Mn(II) in Mn(OH)2 converted to Mn(IV) in conjunction with coprecipitation of Au(III) complex ions. These results indicate that the rapid stoichiometric reduction of Au(III) to Au(0) is caused by electron transfer from Mn(II) in Mn(OH)2 to the Au(III) complex ion through an Mn-O-Au bond.

  1. Facile method for the synthesis of gold nanoparticles using an ion coater

    NASA Astrophysics Data System (ADS)

    Lee, Seung Han; Jung, Hyun Kyu; Kim, Tae Cheol; Kim, Chang Hee; Shin, Chang Hwan; Yoon, Tae-Sik; Hong, A.-Ra; Jang, Ho Seong; Kim, Dong Hun

    2018-03-01

    Herein we report a metal nanoparticle synthesis method based on a physical vapor deposition process instead of the conventional wet process of chemical reactions in liquids. A narrow size distribution of synthesized gold nanoparticles was obtained using an ion coater on glycerin at low vapor pressure. The nanoparticle size could be modulated by controlling the sputtering conditions especially the discharge current. Due to the formation of gold nanoparticles, a surface plasmon resonance peak appeared at ∼530 nm in the absorption spectrum. The surface plasmon resonance peak exhibited red-shift with increasing size of the gold nanoparticles. Our results provide a simple, environmental friendly method for the synthesis of metal nanoparticles by combine low-cost deposition apparatus and a liquid medium, which is free from toxic reagents.

  2. Bio-functionalized silver nanoparticles for selective colorimetric sensing of toxic metal ions and antimicrobial studies

    NASA Astrophysics Data System (ADS)

    Vinod Kumar, V.; Anbarasan, S.; Christena, Lawrence Rene; SaiSubramanian, Nagarajan; Philip Anthony, Savarimuthu

    2014-08-01

    Hibiscus Sabdariffa (Gongura) plant extracts (leaves (HL) and stem (HS) were used for the first time in the green synthesis of bio-functionalized silver nanoparticles (AgNPs). The bio-functionality of AgNPs has been successfully utilized for selective colorimetric sensing of potentially health and environmentally hazardous Hg2+, Cd2+ and Pb2+ metal ions at ppm level in aqueous solution. Importantly, clearly distinguishable colour for all three metal ions was observed. The influence of extract preparation condition and pH were also explored on the formation of AgNPs. Both selectivity and sensitivity differed for AgNPs synthesized from different parts of the plant. Direct correlation between the stability of green synthesized AgNPs at different pH and its antibacterial effects has been established. The selective colorimetric sensing of toxic metal ions and antimicrobial effect of green synthesized AgNPs demonstrated the multifunctional applications of green nanotechnology.

  3. Characterization of un-hydrated and hydrated BioAggregate™ and MTA Angelus™.

    PubMed

    Camilleri, J; Sorrentino, F; Damidot, D

    2015-04-01

    high calcium ion release early, which was maintained over the 28-day period as opposed to MTA Angelus, which demonstrated low early calcium ion release which increased as the material aged. The mineralogical composition of BioAggregate was different to MTA Angelus. As opposed to MTA Angelus, BioAggregate did not contain aluminium and contained additives such as calcium phosphate and silicon dioxide. As a consequence, BioAggregate reacted more slowly and formation of calcium hydroxide and leaching of calcium ions in solution were not evident as the material aged. The additives in BioAggregate modify the kinetics and the end products of hydration. Although newer generation tricalcium silicate-based materials contain similar constituents to MTA, they do not undergo the same setting reactions, and thus, their clinical performance will not be comparable to that of MTA.

  4. Synthesis and characterization of a multifunctional gold-doxorubicin nanoparticle system for pH triggered intracellular anticancer drug release.

    PubMed

    Khutale, Ganesh V; Casey, Alan

    2017-10-01

    A nanoparticle drug carrier system has been developed to alter the cellular uptake and chemotherapeutic performance of an available chemotherapeutic drug. The system comprises of a multifunctional gold nanoparticle based drug delivery system (Au-PEG-PAMAM-DOX) as a novel platform for intracellular delivery of doxorubicin (DOX). Spherical gold nanoparticles were synthesized by a gold chloride reduction, stabilized with thiolated polyethylene glycol (PEG) and then covalently coupled with a polyamidoamine (PAMAM) G4 dendrimer. Further, conjugation of an anti-cancer drug doxorubicin to the dendrimer via amide bond resulted in Au-PEG-PAMAM-DOX drug delivery system. Acellular drug release studies proved that DOX released from Au-PEG-PAMAM-DOX at physiological pH was negligible but it was significantly increased at a weak acidic milieu. The intracellular drug release was monitored with confocal laser scanning microscopy analysis. In vitro viability studies showed an increase in the associated doxorubicin cytotoxicity not attributed to carrier components indicating the efficiency of the doxorubicin was improved, upon conjugation to the nano system. As such it is postulated that the developed pH triggered multifunctional doxorubicin-gold nanoparticle system, could lead to a promising platform for intracellular delivery of variety of anticancer drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Zoledronate and ion-releasing resins impair dentin collagen degradation.

    PubMed

    Tezvergil-Mutluay, A; Seseogullari-Dirihan, R; Feitosa, V P; Tay, F R; Watson, T F; Pashley, D H; Sauro, S

    2014-10-01

    This study analyzed the amounts of solubilized telopeptides cross-linked carboxyterminal telopeptide of type I collagen (ICTP) and C-terminal crosslinked telopeptide of type I collagen (CTX) derived from matrix-metalloproteinases (MMPs) and cysteine cathepsins (CTPs) subsequent to application of a filler-free (Res.A) or an ion-releasing resin (Res.B) to ethylenediaminetetraacetic acid (EDTA)-demineralized dentin with or without zoledronate-containing primer (Zol-primer) pre-treatment. The chemical modification induced following treatments and artificial saliva (AS) storage was also analyzed through attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Totally EDTA-demineralized specimens were infiltrated with Res.A or Res.B with or without Zol-primer pre-treatment, light-cured, and immersed in AS for up to 4 wk. ICTP release was reduced following infiltration with Res.B and further reduced when Res.B was used with Zol-primer; remarkable phosphate mineral uptake was attained after AS storage. CTX release was increased in Res.A- and Res.B-treated dentin. However, when Zol-primer was used with Res.A, the CTX release fell significantly compared to the other tested resin-infiltration methods. In conclusion, zoledronate offers an additional inhibitory effect to the ion-releasing resins in MMP-mediated collagen degradation. However, Zol-primer induces a modest reduction in CTX release only when used with resin-based systems containing no ion-releasing fillers. © International & American Associations for Dental Research.

  6. Friction and hardness of gold films deposited by ion plating and evaporation

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1983-01-01

    Sliding friction experiments were conducted with ion-plated and vapor-deposited gold films on various substrates in contact with a 0.025-mm-radius spherical silicon carbide rider in mineral oil. Hardness measurements were also made to examine the hardness depth profile of the coated gold on the substrate. The results indicate that the hardness is influenced by the depth of the gold coating from the surface. The hardness increases with an increase in the depth. The hardness is also related to the composition gradient in the graded interface between the gold coating and the substrate. The graded interface exhibited the highest hardness resulting from an alloy hardening effect. The coefficient of friction is inversely related to the hardness, namely, the load carrying capacity of the surface. The greater the hardness that the metal surface possesses, the lower is the coefficient of friction. The graded interface exhibited the lowest coefficient of friction.

  7. Accumulation of nanoparticles in “jellyfish” mucus: a bio-inspired route to decontamination of nano-waste

    NASA Astrophysics Data System (ADS)

    Patwa, Amit; Thiéry, Alain; Lombard, Fabien; Lilley, Martin K. S.; Boisset, Claire; Bramard, Jean-François; Bottero, Jean-Yves; Barthélémy, Philippe

    2015-06-01

    The economic and societal impacts of nano-materials are enormous. However, releasing such materials in the environment could be detrimental to human health and the ecological biosphere. Here we demonstrate that gold and quantum dots nanoparticles bio-accumulate into mucus materials coming from natural species such as jellyfish. One strategy that emerges from this finding would be to take advantage of these trapping properties to remove nanoparticles from contaminated water.

  8. Metal ion interaction with phosphorylated tyrosine analogue monolayers on gold.

    PubMed

    Petoral, Rodrigo M; Björefors, Fredrik; Uvdal, Kajsa

    2006-11-23

    Phosphorylated tyrosine analogue molecules (pTyr-PT) were assembled onto gold substrates, and the resulting monolayers were used for metal ion interaction studies. The monolayers were characterized by X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IRAS), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), both prior to and after exposure to metal ions. XPS verified the elemental composition of the molecular adsorbate and the presence of metal ions coordinated to the phosphate groups. Both the angle-dependent XPS and IRAS results were consistent with the change in the structural orientation of the pTyr-PT monolayer upon exposure to metal ions. The differential capacitance of the monolayers upon coordination of the metal ions was evaluated using EIS. These metal ions were found to significantly change the capacitance of the pTyr-PT monolayers in contrast to the nonphosphorylated tyrosine analogue (TPT). CV results showed reduced electrochemical blocking capabilities of the phosphorylated analogue monolayer when exposed to metal ions, supporting the change in the structure of the monolayer observed by XPS and IRAS. The largest change in the structure and interfacial capacitance was observed for aluminum ions, compared to calcium, magnesium, and chromium ions. This type of monolayer shows an excellent capability to coordinate metal ions and has a high potential for use as sensing layers in biochip applications to monitor the presence of metal ions.

  9. Tuning silver ion release properties in reactively sputtered Ag/TiOx nanocomposites

    NASA Astrophysics Data System (ADS)

    Xiong, J.; Ghori, M. Z.; Henkel, B.; Strunskus, T.; Schürmann, U.; Deng, M.; Kienle, L.; Faupel, F.

    2017-07-01

    Silver/titania nanocomposites with strong bactericidal effects and good biocompatibility/environmental safety show a high potential for antibacterial applications. Tailoring the silver ion release is thus highly promising to optimize the antibacterial properties of such coatings and to preserve biocompatibility. Reactive sputtering is a fast and versatile method for the preparation of such Ag/TiOx nanocomposites coatings. The present work is concerned with the influence of sputter parameters on the surface morphology and silver ion release properties of reactively sputtered Ag/TiOx nanocomposites coatings showing a silver nanoparticle size distribution in the range from 1 to 20 nm. It is shown that the silver ion release rate strongly depends on the total pressure: the coatings prepared at lower pressure present a lower but long-lasting release behavior. The much denser structure produced under these conditions reduces the transport of water molecules into the coating. In addition, the influence of microstructure and thickness of titanium oxide barriers on the silver ion release were investigated intensively. Moreover, for the coatings prepared at high total pressure, it was demonstrated that stable and long-lasting silver release can be achieved by depositing a barrier with a high rate. Nanocomposites produced under these conditions show well controllable silver ion release properties for applications as antibacterial coatings.

  10. Bio-active nanoemulsions enriched with gold nanoparticle, marigold extracts and lipoic acid: In vitro investigations.

    PubMed

    Guler, Emine; Barlas, F Baris; Yavuz, Murat; Demir, Bilal; Gumus, Z Pinar; Baspinar, Yucel; Coskunol, Hakan; Timur, Suna

    2014-09-01

    A novel and efficient approach for the preparation of enriched herbal formulations was described and their potential applications including wound healing and antioxidant activity (cell based and cell free) were investigated via in vitro cell culture studies. Nigella sativa oil was enriched with Calendula officinalis extract and lipoic acid capped gold nanoparticles (AuNP-LA) using nanoemulsion systems. The combination of these bio-active compounds was used to design oil in water (O/W) and water in oil (W/O) emulsions. The resulted emulsions were characterized by particle size measurements. The phenolic content of each nanoemulsion was examined by using both colorimetric assay and chromatographic analyses. Two different methods containing cell free chemical assay (1-diphenyl-2-picrylhydrazyl method) and cell based antioxidant activity test were used to evaluate the antioxidant capacities. In order to investigate the bio-activities of the herbal formulations, in vitro cell culture experiments, including cytotoxicity, scratch assay, antioxidant activity and cell proliferation were carried out using Vero cell line as a model cell line. Furthermore, to monitor localization of the nanoemulsions after application of the cell culture, the cell images were monitored via fluorescence microscope after FITC labeling. All data confirmed that the enriched N. sativa formulations exhibited better antioxidant and wound healing activity than N. sativa emulsion without any enrichment. In conclusion, the incorporation of AuNP-LA and C. officinalis extract into the N. sativa emulsions significantly increased the bio-activities. The present work may support further studies about using the other bio-active agents for the enrichment of herbal preparations to strengthen their activities. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Bio-functionalized silver nanoparticles for selective colorimetric sensing of toxic metal ions and antimicrobial studies.

    PubMed

    Vinod Kumar, V; Anbarasan, S; Christena, Lawrence Rene; SaiSubramanian, Nagarajan; Philip Anthony, Savarimuthu

    2014-08-14

    Hibiscus Sabdariffa (Gongura) plant extracts (leaves (HL) and stem (HS)) were used for the first time in the green synthesis of bio-functionalized silver nanoparticles (AgNPs). The bio-functionality of AgNPs has been successfully utilized for selective colorimetric sensing of potentially health and environmentally hazardous Hg(2+), Cd(2+) and Pb(2+) metal ions at ppm level in aqueous solution. Importantly, clearly distinguishable colour for all three metal ions was observed. The influence of extract preparation condition and pH were also explored on the formation of AgNPs. Both selectivity and sensitivity differed for AgNPs synthesized from different parts of the plant. Direct correlation between the stability of green synthesized AgNPs at different pH and its antibacterial effects has been established. The selective colorimetric sensing of toxic metal ions and antimicrobial effect of green synthesized AgNPs demonstrated the multifunctional applications of green nanotechnology. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Physical response of gold nanoparticles to single self-ion bombardment

    DOE PAGES

    Bufford, Daniel C.; Hattar, Khalid

    2014-09-23

    The reliability of nanomaterials depends on maintaining their specific sizes and structures. However, the stability of many nanomaterials in radiation environments remains uncertain due to the lack of a fully developed fundamental understanding of the radiation response on the nanoscale. To provide an insight into the dynamic aspects of single ion effects in nanomaterials, gold nanoparticles (NPs) with nominal diameters of 5, 20, and 60 nm were subjected to self-ion irradiation at energies of 46 keV, 2.8 MeV, and 10 MeV in situ inside of a transmission electron microscope. Ion interactions created a variety of far-from-equilibrium structures including small (~1more » nm) sputtered nanoclusters from the parent NPs of all sizes. Single ions created surface bumps and elongated nanofilaments in the 60 nm NPs. As a result, similar shape changes were observed in the 20 nm nanoparticles, while the 5 nm nanoparticles were transiently melted or explosively broken apart.« less

  13. Adsorption of gold ions from industrial wastewater using activated carbon derived from hard shell of apricot stones - an agricultural waste.

    PubMed

    Soleimani, Mansooreh; Kaghazchi, Tahereh

    2008-09-01

    In this study, hard shell of apricot stones was selected from agricultural solid wastes to prepare effective and low cost adsorbent for the gold separation from gold-plating wastewater. Different adsorption parameters like adsorbent dose, particle size of activated carbon, pH and agitation speed of mixing on the gold adsorption were studied. The results showed that under the optimum operating conditions, more than 98% of gold was adsorbed onto activated carbon after only 3h. The equilibrium adsorption data were well described by the Freundlich and Langmuir isotherms. Isotherms have been used to obtain thermodynamic parameters. Gold desorption studies were performed with aqueous solution mixture of sodium hydroxide and organic solvents at ambient temperatures. Quantitative recovery of gold ions is possible by this method. As hard shell of apricot stones is a discarded as waste from agricultural and food industries, the prepared activated carbon is expected to be an economical product for gold ion recovery from wastewater.

  14. Comparison of metal ion release from different bracket archwire combinations: an in vitro study.

    PubMed

    Karnam, Srinivas Kumar; Reddy, A Naveen; Manjith, C M

    2012-05-01

    The metal ion released from the orthodontic appliance may cause allergic reactions particularly nickel and chromium ions. Hence, this study was undertaken to determine the amount of nickel, chromium, copper, cobalt and iron ions released from simulated orthodontic appliance made of new archwires and brackets. Sixty sets of new archwire, band material, brackets and ligature wires were prepared simulating fixed orthodontic appliance. These sets were divided into four groups of fifteen samples each. Group 1: Stainless steel rectangular archwires. Group 2: Rectangular NiTi archwires. Group 3: Rectangular copper NiTi archwires. Group 4: Rectangular elgiloy archwires. These appliances were immersed in 50 ml of artificial saliva solution and stored in polypropylene bottles in the incubator to simulate oral conditions. After 90 days the solution were tested for nickel, chromium, copper, cobalt and iron ions using atomic absorption spectrophotometer. Results showed that high levels of nickel ions were released from all four groups, compared to all other ions, followed by release of iron ion levels. There is no significant difference in the levels of all metal ions released in the different groups. The study confirms that the use of newer brackets and newer archwires confirms the negligible release of metal ions from the orthodontic appliance. The measurable amount of metals, released from orthodontic appliances in artificial saliva, was significantly below the average dietary intake and did not reach toxic concentrations.

  15. Glutathione-Capped Gold Nanoparticles-Based Photoacoustic Sensor for Label-Free Detection of Lead Ions

    NASA Astrophysics Data System (ADS)

    Shi, R.; Liu, X.-J.; Ying, Y.

    2017-07-01

    The photoacoustic signal generated by laser-induced nanobubbles (PA-LINB) proved to be a sensitive tool to monitor the aggregation of gold nanoparticles. Here, a simple and label-free photoacoustic method for the rapid detection of Pb2+ in the aqueous phase was developed. Due to the high affinity of Pb2+ ions to glutathione, the presence of Pb2+ led to the aggregation of glutathione-conjugated gold nanoparticles (GSH-GNPs). Hence, by measuring the variation of the PA-LINB signal after the aggregation of GSH-GNPs, Pb2+ can be quantified. A low detection limit for Pb2+ (42 nM) and a wide linear working range ( 42-1000 nM) were achieved. Furthermore, the proposed method showed good selectivity against other metal ions.

  16. Organic SIMS: the influence of time on the ion yield enhancement by silver and gold deposition

    NASA Astrophysics Data System (ADS)

    Adriaensen, L.; Vangaever, F.; Gijbels, R.

    2004-06-01

    A series of organic dyes and pharmaceuticals was used to study the secondary ion yield enhancement by metal deposition. The molecules were dissolved in methanol and spincasted on silicon substrates. Subsequently, silver or gold was evaporated on the samples to produce a very thin coating. The coated samples, when measured with TOF-SIMS, showed a considerable increase in characteristic secondary ion intensity. Gold-evaporated samples appear to exhibit the highest signal enhancement. These observations apply to organic samples in general, an advantage that allows to use the technique of metal deposition on real-world samples. However, the observed signal increase does not occur at any given moment. The time between metal deposition on the sample surface and the measuring of the sample with TOF-SIMS appears to have an important influence on the enhancement of the secondary ion intensities. In consideration of these observations several experiments were carried out, in which the spincasted samples were measured at different times after sample preparation, i.e., after gold or silver was deposited on the sample surface. The results show that, depending on the sample and the metal deposited, the secondary ion signals reach their maximum at different times. Further study will be necessary to detect the mechanism responsible for the observed enhancement effect.

  17. Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials.

    PubMed

    Cui, Lin; Wu, Jie; Ju, Huangxian

    2015-01-15

    As heavy metal ions severely harm human health, it is important to develop simple, sensitive and accurate methods for their detection in environment and food. Electrochemical detection featured with short analytical time, low power cost, high sensitivity and easy adaptability for in-situ measurement is one of the most developed methods. This review introduces briefly the recent achievements in electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials modified electrodes. In particular, the unique properties of inorganic nanomaterials, organic small molecules or their polymers, enzymes and nucleic acids for detection of heavy metal ions are highlighted. By employing some representative examples, the design and sensing mechanisms of these electrodes are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Ion release and cytotoxicity of stainless steel wires.

    PubMed

    Oh, Keun-Taek; Kim, Kyoung-Nam

    2005-12-01

    Heat treatment is generally applied to orthodontic stainless steel (SS) wires to relieve the stresses that result from their manipulation by orthodontists. The quality and thickness of the oxide films formed on the surface of heat-treated wires can vary, and it is believed that these oxide films can influence the properties of heat-treated wires. The aim of this study was to investigate the influence of heat treatment and cooling methods on the amount of metal ions released and to examine the cytotoxicity of heat-treated wires. In this study, four types of SS wires (Remanium, Permachrome, Colboloy and Orthos) with a cross-sectional area of 0.41 x 0.56 mm were investigated. These wires were heat-treated in a vacuum, air, or argon environment, and were cooled in either a furnace or a water bath. Four control groups and 24 experimental groups were classified according to the type of wires, heat treatment conditions and cooling methods. In each group, the amount of nickel released as well as its cytotoxicity was investigated. The concentration of dissolved nickel ions in artificial saliva was measured for a period of up to 12 weeks. In all groups, the concentration of dissolved nickel ions in artificial saliva was lowest for the vacuum heat treatment-furnace cooling group and a significant difference was shown compared with the other experimental groups. The concentration of dissolved nickel ions in artificial saliva was highest in the groups heat-treated in air (P < 0.05), while the amount of nickel released was highest in the Remanium and Colboloy (P < 0.05). The cytotoxicity was mild in all the experimental groups but the response index of the air groups was slightly higher than in the other groups. According to these results, SS wires retain their high corrosion resistance and low ion release rate when heat-treated in a vacuum and cooled in a furnace.

  19. Effect of pH on the extra cellular synthesis of gold and silver nanoparticles by Saccharomyces cerevisae.

    PubMed

    Lim, Hyun-Ah; Mishra, Amrita; Yun, Soon-Il

    2011-01-01

    In the present study, the synthesis of gold and silver nanoparticles was investigated using the culture supernatant broth of the yeast Saccharomyces cerevisae. Gold nanoparticles were formed within 24 hours of gold ion coming in contact with the culture supernatant broth. In case of silver the reduction process took 48 hours. The synthesized nanoparticles were investigated by UV-Visible spectroscopy. Distinct surface plasmon peaks were observed at 540 nm and 415 nm for gold and silver nanoparticles respectively. Bio-TEM micrographs of the synthesized nanoparticles indicated that the particles were well dispersed and near spherical in shape. The size range of the gold and silver nanoparticles was around 20-100 nm and 5-20 nm respectively. XRD patterns showed the presence of three distinct peaks corresponding to gold and silver nanoparticles respectively. A pH range of 4 to 6 and 8 to 10 favored optimum synthesis of gold and silver nanoparticles respectively. The process of reduction being extra cellular could be used in future for downstream processing in an eco friendly manner.

  20. Isochoric heating of solid gold targets with the PW-laser-driven ion beams (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Steinke, Sven; Ji, Qing; Bulanov, Stepan S.; Barnard, John; Vincenti, Henri; Schenkel, Thomas; Esarey, Eric H.; Leemans, Wim P.

    2017-05-01

    We present first results on ion acceleration with the BELLA PW laser as well as end-to-end simulation for isochoric heating of solid gold targets using PW-laser generated ion beams: (i) 2D Particle-In-Cell (PIC) simulations are applied to study the ion source characteristics of the PW laser-target interaction at the long focal length (f/65) beamline at laser intensities of ˜[5×10]^19 Wcm-2 at spot size of 0=53 μm on a CH target. (ii) In order to transport the ion beams to an EMP-free environment, an active plasma lens will be used. This was modeled [1] by calculating the Twiss parameters of the ion beam from the appropriate transport matrixes taking the source parameters obtained from the PIC simulation. (iii) Hydrodynamic simulations indicate that these ion beams can isochorically heat a 1 mm3 gold target to the Warm Dense Matter state. Reference: J. van Tilborg et al, Phys. Rev. Lett. 115, 184802 (2015). This work was supported by Laboratory Directed Research and Development (LDRD) funding from Lawrence Berkeley National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  1. BioMEMS for mitochondria medicine

    NASA Astrophysics Data System (ADS)

    Padmaraj, Divya

    A BioMEMS device to study cell-mitochondrial physiological functionalities was developed. The pathogenesis of many diseases including obesity, diabetes and heart failure as well as aging has been linked to functional defects of mitochondria. The synthesis of Adenosine Tri Phosphate (ATP) is determined by the electrical potential across the inner mitochondrial membrane and by the pH difference due to proton flux across it. Therefore, electrical characterization by E-fields with complementary chemical testing was used here. The BioMEMS device was fabricated as an SU-8 based microfluidic system with gold electrodes on SiO2/Si wafers for electromagnetic interrogation. Ion Sensitive Field Effect Transistors (ISFETs) were incorporated for proton studies important in the electron transport chain, together with monitoring Na+, K+ and Ca++ ions for ion channel studies. ISFETs are chemically sensitive Metal Oxide Semiconductor Field Effect Transistor (MOSFET) devices and their threshold voltage is directly proportional to the electrolytic H+ ion variation. These ISFETs (sensitivity ˜55 mV/pH for H+) were further realized as specific ion sensitive Chemical Field Effect Transistors (CHEMFETs) by depositing a specific ion sensitive membrane on the gate. Electrodes for dielectric spectroscopy studies of mitochondria were designed as 2- and 4-probe structures for optimized operation over a wide frequency range. In addition, to limit polarization effects, a 4-electrode set-up with unique meshed pickup electrodes (7.5x7.5 mum2 loops with 4 mum wires) was fabricated. Sensitivity of impedance spectroscopy to membrane potential changes was confirmed by studying the influence of uncouplers and glucose on mitochondria. An electrical model was developed for the mitochondrial sample, and its frequency response correlated with impedance spectroscopy experiments of sarcolemmal mitochondria. Using the mesh electrode structure, we obtained a reduction of 83.28% in impedance at 200 Hz. COMSOL

  2. Ion-selective gold-thiol film on integrated screen-printed electrodes for analysis of Cu(II) ions.

    PubMed

    Li, Meng; Zhou, Hao; Shi, Lei; Li, Da-Wei; Long, Yi-Tao

    2014-02-07

    A novel type of ion-selective electrode (ISE) was manufactured for detecting trace amounts of Cu(II) ions. The basic substrates of ISE were fabricated using screen-printing technology, which could produce disposable electrodes on a large-scale with good repeatability. Moreover, the printed integrated three-electrode system of ISE could be directly used to read out the open-circuit potentials by a handheld device through a USB port. The ion-selective film was composed of gold nanorods (GNRs) and 6-(bis(pyridin-2-ylmethyl)amino)hexane-1-thiol (compound ), which were layer-by-layer modified on the electrode through an easily controlled self-assembly method. Compound contained the 2,2'-dipyridylamine (dpa) group that could coordinate with Cu(II) ions to form a 2 : 1 complex, therefore the screen-printed ISEs exhibited Nernstian potentiometric responses to Cu(II) ions with a detection limit of 6.3 × 10(-7) mol L(-1) over the range of 1.0 × 10(-6) to 1.0 × 10(-2) mol L(-1). The easily prepared screen-printed ion-selective electrode reported here was appropriate for in field analysis and pollutant detection in remote environments.

  3. Oral gold compound auranofin triggers arachidonate release and cyclooxygenase metabolism in the alveolar macrophage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters-Golden, M.; Shelly, C.

    1988-12-01

    We examined the effect of in vitro incubation with the oral gold compound auranofin (AF) on arachidonic acid (AA) release and metabolism by rat alveolar macrophages (AMs). AF stimulated dose- and time-dependent release of /sup 14/C-AA from prelabeled AMs, which reached 4.7 +/- 0.3% (mean +/- SEM) of incorporated radioactivity at 10 micrograms/ml for 90 min, as compared to 0.5 +/- 0.1% release following control incubation for 90 min (p less than 0.001). Similar dose- and time-dependent synthesis of thromboxane (Tx) A2 (measured as TxB2) and prostaglandin (PG) E2 was demonstrated by radioimmunoassay of medium from unlabeled cultures, reaching 18-foldmore » and 9-fold, respectively, of the control values at 10 micrograms/ml AF for 90 min (p less than 0.001 for both). AF-induced TxB2 and PGE2 synthesis was inhibited by indomethacin as well as by pretreatment with methylprednisolone. No increase in the synthesis of immunoreactive leukotrienes (LT) B4 or C4 was noted at any dose or time of AF. High performance liquid chromatographic separation of /sup 14/C-eicosanoids synthesized by prelabeled AMs confirmed that AF induced the release of free AA and its metabolism to cyclooxygenase, but not 5-lipoxygenase, metabolites. The ability of AF to trigger macrophage AA metabolism may be relevant to the exacerbation of certain inflammatory processes which sometimes accompany gold therapy.« less

  4. Metal ion release from metallothioneins: proteolysis as an alternative to oxidation.

    PubMed

    Peroza, Estevão A; dos Santos Cabral, Augusto; Wan, Xiaoqiong; Freisinger, Eva

    2013-09-01

    Metallothioneins (MTs) are among others involved in the cellular regulation of essential Zn(II) and Cu(I) ions. However, the high binding affinity of these proteins requires additional factors to promote metal ion release under physiological conditions. The mechanisms and efficiencies of these processes leave many open questions. We report here a comprehensive analysis of the Zn(II)-release properties of various MTs with special focus on members of the four main subfamilies of plant MTs. Zn(II) competition experiments with the metal ion chelator 4-(2-pyridylazo)resorcinol (PAR) in the presence of the cellular redox pair glutathione (GSH)/glutathione disulfide (GSSG) show that plant MTs from the subfamilies MT1, MT2, and MT3 are remarkably more affected by oxidative stress than those from the Ec subfamily and the well-characterized human MT2 form. In addition, we evaluated proteolytic digestion with trypsin and proteinase K as an alternative mechanism for selective promotion of metal ion release from MTs. Also here the observed percentage of liberated metal ions depends strongly on the MT form evaluated. Closer evaluation of the data additionally allowed deducing the thermodynamic and kinetic properties of the Zn(II) release processes. The Cu(I)-form of chickpea MT2 was used to exemplify that both oxidation and proteolysis are also effective ways to increase the transfer of copper ions to other molecules. Zn(II) release experiments with the individual metal-binding domains of Ec-1 from wheat grain reveal distinct differences from the full-length protein. This triggers the question about the roles of the long cysteine-free peptide stretches typical for plant MTs.

  5. Macroporous mesh of nanoporous gold in electrochemical monitoring of superoxide release from skeletal muscle cells.

    PubMed

    Banan Sadeghian, Ramin; Han, Jiuhui; Ostrovidov, Serge; Salehi, Sahar; Bahraminejad, Behzad; Ahadian, Samad; Chen, Mingwei; Khademhosseini, Ali

    2017-02-15

    Real-time monitoring of metabolically relevant biochemicals released in minuscule amounts is of utmost diagnostic importance. Superoxide anion as a primary member of reactive oxygen species, has physiological and pathological effects that depend on its concentration and release rate. Here we present fabrication and successfully testing of a highly sensitive electrochemical biosensor featuring a three-dimensional macroporous mesh of nanoporous gold tailored to measure the dynamics of extracellular superoxide concentration. Wide and accessible surface of the mesh combined with high porosity of the thin nanoporous gold coating enables capturing the analyte in pico- to nano-molar ranges. The mesh is functionalized with cytochrome-c (cyt-c) and incorporated as a working electrode to measure the release rate of drug-induced superoxides from C2C12 cells through a porous membrane. The device displays a considerably improved superoxide sensitivity of 7.29nAnM - 1 cm - 2 and a low level of detection of 70pM. Such sensitivity is orders of magnitude higher than any similar enzyme-based electrochemical superoxide sensor and is attributed to the facile diffusion of the analyte through the well-spread nanofeatured gold skin. Superoxide generation rates captured from monolayer myoblast cultures containing about 4×10 4 cells, varied from 1.0 to 9.0nMmin - 1 in a quasi-linear fashion as a function of drug concentration. This work provides a platform for the development of highly sensitive molecular electrochemical biosensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Surfactant-Modified Ultrafine Gold Nanoparticles with Magnetic Responsiveness for Reversible Convergence and Release of Biomacromolecules.

    PubMed

    Xu, Lu; Dong, Shuli; Hao, Jingcheng; Cui, Jiwei; Hoffmann, Heinz

    2017-03-28

    It is difficult to synthesize magnetic gold nanoparticles (AuNPs) with ultrafine sizes (<2 nm) based on a conventional method via coating AuNPs using magnetic particles, compounds, or ions. Here, magnetic cationic surfactants C 16 H 33 N + (CH 3 ) 3 [CeCl 3 Br] - (CTACe) and C 16 H 33 N + (CH 3 ) 3 [GdCl 3 Br] - (CTAGd) are prepared by a one-step coordination reaction, i.e., C 16 H 33 N + (CH 3 ) 3 Br - (CTABr) + CeCl 3 or GdCl 3 → CTACe or CTAGd. A simple strategy for fabricate ultrafine (<2 nm) magnetic gold nanoparticles (AuNPs) via surface modification with weak oxidizing paramagnetic cationic surfactants, CTACe or CTAGd, is developed. The resulting AuNPs can highly concentrate the charges of cationic surfactants on their surfaces, thereby presenting strong electrostatic interaction with negatively charged biomacromolecules, DNA, and proteins. As a consequence, they can converge DNA and proteins over 90% at a lower dosage than magnetic surfactants or existing magnetic AuNPs. The surface modification with these cationic surfactants endows AuNPs with strong magnetism, which allows them to magnetize and migrate the attached biomacromolecules with a much higher efficiency. The native conformation of DNA and proteins can be protected during the migration. Besides, the captured DNA and proteins could be released after adding sufficient inorganic salts such as at c NaBr = 50 mmol·L -1 . Our results could offer new guidance for a diverse range of systems including gene delivery, DNA transfection, and protein delivery and separation.

  7. Chemical speciation and recovery of gold(I, III) from wastewater and silver by liquid-liquid extraction with the ion-pair reagent amiloride mono hydrochloride and AAS determination.

    PubMed

    El-Shahawi, M S; Bashammakh, A S; Bahaffi, S O

    2007-06-15

    A novel and low cost liquid-liquid extraction procedure for the separation of gold(III) at trace level from aqueous medium of pH 5-9 has been developed. The method has been based upon the formation of a yellow colored ternary complex ion associate of tetrachloro gold(III) complex anion, AuCl(4)(-) with the ion-pair reagent 1-(3,5-diamino-6-chloropyrazinecarboxyl) guanidine hydrochloride monohydrate, namely amiloride, DPG(+).Cl(-). The effect of various parameters, e.g. pH, organic solvent, shaking time, etc. on the preconcentration of gold(III) from the aqueous media by the DPG(+).Cl(-) reagent has been investigated. The colored gold species was quantitatively extracted into 4-methyl pentan-2-one. The chemical composition of the ion associate of DPG(+).Cl(-) with AuCl(4)(-) in the organic solvent has been determined by the Job's method. The molar absorptivity (2.19x10(4)Lmol(-1)cm(-1)) of the associate DPG(+).AuCl(4)(-) at 362nm enabled a convenient application of the developed extraction procedure for the separation and AAS determination of traces of aurate ions. Mono-valence gold ions after oxidation to gold(III) with bromine water in HCl (1.0molL(-1)) media have been also extracted quantitatively from the aqueous media by the developed procedure. The chemical speciation of mono- and/or tri-valence gold species spiked to fresh and industrial wastewater samples has been achieved. The method has been also applied successfully from the separation of gold(I) and gold(III) species from metallic ions and silver. The developed method has also the advantage of freedom from most diverse ions.

  8. Preparation and characterisation of a novel hydrogel based on Auricularia polytricha β-glucan and its bio-release property for vitamin B12 delivery.

    PubMed

    Zhu, Kai; Chen, Xiaoyuan; Yu, Da; He, Yue; Song, Guanglei

    2018-05-01

    This study investigates a novel hydrogel synthesis method and its bio-release property. This hydrogel, with a three-dimensional network structure based on Auricularia polytricha β-glucan, was characterised by means of Fourier transform infrared spectroscopy, 1 H NMR and scanning electron microscopy. Vitamin B 12 (VB 12 , cobalamin) as a hydrophilic functional food component was entrapped into these hydrogels. The in vitro release profile of VB 12 was established in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). The results showed that the hydrogel had medium pore size from 30 to 300 µm, and the swelling ratio increased with the degree of substitution. The hydrogel demonstrated good stability in SGF and bio-release capability in SIF for VB 12 . The accumulated release rate is about 80% in SIF and below 20% in SGF, which indicated the significant different release property in stomach and intestine. The Auricularia polytricha β-glucan-based hydrogel has a good swelling ratio, pepsin stability and pancrelipase-catalysed biodegradation property. The bio-release rate is significantly different in SIF and SGF, which indicated that this hydrogel could be a good intestinal target carrier of VB 12 . © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Development of double-pulse lasers ablation system for generating gold ion source under applying an electric field

    NASA Astrophysics Data System (ADS)

    Khalil, A. A. I.

    2015-12-01

    Double-pulse lasers ablation (DPLA) technique was developed to generate gold (Au) ion source and produce high current under applying an electric potential in an argon ambient gas environment. Two Q-switched Nd:YAG lasers operating at 1064 and 266 nm wavelengths are combined in an unconventional orthogonal (crossed-beam) double-pulse configuration with 45° angle to focus on a gold target along with a spectrometer for spectral analysis of gold plasma. The properties of gold plasma produced under double-pulse lasers excitation were studied. The velocity distribution function (VDF) of the emitted plasma was studied using a dedicated Faraday-cup ion probe (FCIP) under argon gas discharge. The experimental parameters were optimized to attain the best signal to noise (S/N) ratio. The results depicted that the VDF and current signals depend on the discharge applied voltage, laser intensity, laser wavelength and ambient argon gas pressure. A seven-fold increases in the current signal by increasing the discharge applied voltage and ion velocity under applying double-pulse lasers field. The plasma parameters (electron temperature and density) were also studied and their dependence on the delay (times between the excitation laser pulse and the opening of camera shutter) was investigated as well. This study could provide significant reference data for the optimization and design of DPLA systems engaged in laser induced plasma deposition thin films and facing components diagnostics.

  10. Microbial synthesis of core/shell gold/palladium nanoparticles for applications in green chemistry

    PubMed Central

    Deplanche, Kevin; Merroun, Mohamed L.; Casadesus, Merixtell; Tran, Dung T.; Mikheenko, Iryna P.; Bennett, James A.; Zhu, Ju; Jones, Ian P.; Attard, Gary A.; Wood, J.; Selenska-Pobell, Sonja; Macaskie, Lynne E.

    2012-01-01

    We report a novel biochemical method based on the sacrificial hydrogen strategy to synthesize bimetallic gold (Au)–palladium (Pd) nanoparticles (NPs) with a core/shell configuration. The ability of Escherichia coli cells supplied with H2 as electron donor to rapidly precipitate Pd(II) ions from solution is used to promote the reduction of soluble Au(III). Pre-coating cells with Pd(0) (bioPd) dramatically accelerated Au(III) reduction, with the Au(III) reduction rate being dependent upon the initial Pd loading by mass on the cells. Following Au(III) addition, the bioPd–Au(III) mixture rapidly turned purple, indicating the formation of colloidal gold. Mapping of bio-NPs by energy dispersive X-ray microanalysis suggested Au-dense core regions and peripheral Pd but only Au was detected by X-ray diffraction (XRD) analysis. However, surface analysis of cleaned NPs by cyclic voltammetry revealed large Pd surface sites, suggesting, since XRD shows no crystalline Pd component, that layers of Pd atoms surround Au NPs. Characterization of the bimetallic particles using X-ray absorption spectroscopy confirmed the existence of Au-rich core and Pd-rich shell type bimetallic biogenic NPs. These showed comparable catalytic activity to chemical counterparts with respect to the oxidation of benzyl alcohol, in air, and at a low temperature (90°C). PMID:22399790

  11. Synthesis, characterization and application of ion exchange resin as a slow-release fertilizer for wheat cultivation in space

    NASA Astrophysics Data System (ADS)

    Li, Bowei; Dong, Chen; Chu, Zhengpei; Zhang, Weizhe; Wang, Minjuan; Liu, Hong; Xie, Beizhen

    2016-10-01

    In addition to the bio-regenerative air revitalization, water recycling and waste management systems and their associated challenges, enhancing the crop yield with less fertilizer input for sustainable food production in space is also a challenge that needs to be overcome. The purpose of this study is to investigate the feasibility of applying ion exchange resin as a slow-release fertilizer for wheat cultivation in space. Strong-acid cationic exchange resins and weak-base anion exchange resins soaked in 1X, 5X, 10X and 15X Hoagland nutrient solutions, respectively, were used as fertilizers in clinoptilolite to cultivate wheat plants, and the morphological and physiological characteristics of the wheat plants were studied and compared with that of the wheat planted in vermiculite and nutrient solutions. The results showed that more ions were attached on the surface of the ion exchange resins as the solution concentration increased. After 14 days, the fresh weight of wheat planted in the ion exchange resin-clinoptilolite (IER-clinoptilolite) treated with 10X and 15X solutions were 190% and 192% higher than that of wheat planted in nutrient solution with the same concentration. Chlorophyll content of wheat plants cultivated in the two kinds of solid medium is significantly higher than that of liquid cultivation. The lowest peroxidase (POD) activity and malondialdehyde (MDA) contents of wheat plants cultivated in the IER-clinoptilolite appeared on the 14th day. According to all the experimental data, it's promising to produce slow-release nutrient fertilizer by using strong-acid cationic exchange resins and weak-base anion exchange resins for wheat cultivation in space.

  12. Gold nanoparticle-sensitized quartz crystal microbalance sensor for rapid and highly selective determination of Cu(II) ions.

    PubMed

    Jin, Yulong; Huang, Yanyan; Liu, Guoquan; Zhao, Rui

    2013-09-21

    A novel quartz crystal microbalance (QCM) sensor for rapid, highly selective and sensitive detection of copper ions was developed. As a signal amplifier, gold nanoparticles (Au NPs) were self-assembled onto the surface of the sensor. A simple dip-and-dry method enabled the whole detection procedure to be accomplished within 20 min. High selectivity of the sensor towards copper ions is demonstrated by both individual and coexisting assays with interference ions. This gold nanoparticle mediated amplification allowed a detection limit down to 3.1 μM. Together with good repeatability and regeneration, the QCM sensor was also applied to the analysis of copper contamination in drinking water. This work provides a flexible method for fabricating QCM sensors for the analysis of important small molecules in environmental and biological samples.

  13. Dispersive solid phase microextraction with magnetic graphene oxide as the sorbent for separation and preconcentration of ultra-trace amounts of gold ions.

    PubMed

    Kazemi, Elahe; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad

    2015-08-15

    A selective, simple and rapid dispersive solid phase microextraction was developed using magnetic graphene oxide (MGO) as an efficient sorbent for the separation and preconcentration of gold ions. The MGO was synthesized by means of the simple one step chemical coprecipitation method, characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). Gold ions retained by the sorbent were eluted using 0.5mol L(-)(1) thiourea in 0.1mol L(-1) HCl solution and determined by the flow injection flame atomic absorption spectrometry (FI-FAAS). The factors affecting the separation and preconcentration of gold were investigated and optimized. Under the optimized conditions, the method exhibited a linear dynamic range of 0.02-100.0µg L(-)(1) with a detection limit of 4ng L(-1) and an enrichment factor of 500. The relative standard deviations of 3.2% and 4.7% (n=6) were obtained at 20µg L(-1) level of gold ions for the intra and the inter day analysis, respectively. The method was successfully applied to the determination of gold ions in water and waste water samples as well as a certified reference material (CCU-1b, copper flotation concentrate). Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Two-Step Oxidation of Refractory Gold Concentrates with Different Microbial Communities.

    PubMed

    Wang, Guo-Hua; Xie, Jian-Ping; Li, Shou-Peng; Guo, Yu-Jie; Pan, Ying; Wu, Haiyan; Liu, Xin-Xing

    2016-11-28

    Bio-oxidation is an effective technology for treatment of refractory gold concentrates. However, the unsatisfactory oxidation rate and long residence time, which cause a lower cyanide leaching rate and gold recovery, are key factors that restrict the application of traditional bio-oxidation technology. In this study, the oxidation rate of refractory gold concentrates and the adaption of microorganisms were analyzed to evaluate a newly developed two-step pretreatment process, which includes a high temperature chemical oxidation step and a subsequent bio-oxidation step. The oxidation rate and recovery rate of gold were improved significantly after the two-step process. The results showed that the highest oxidation rate of sulfide sulfur could reach to 99.01 % with an extreme thermophile microbial community when the pulp density was 5%. Accordingly, the recovery rate of gold was elevated to 92.51%. Meanwhile, the results revealed that moderate thermophiles performed better than acidophilic mesophiles and extreme thermophiles, whose oxidation rates declined drastically when the pulp density was increased to 10% and 15%. The oxidation rates of sulfide sulfur with moderate thermophiles were 93.94% and 65.73% when the pulp density was increased to 10% and 15%, respectively. All these results indicated that the two-step pretreatment increased the oxidation rate of refractory gold concentrates and is a potential technology to pretreat the refractory sample. Meanwhile, owing to the sensitivity of the microbial community under different pulp density levels, the optimization of microbial community in bio-oxidation is necessary in industry.

  15. Background Characterization for Thermal Ion Release Experiments with 224Ra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwong, H.; /Stanford U., Phys. Dept.; Rowson, P.

    The Enriched Xenon Observatory for neutrinoless double beta decay uses {sup 136}Ba identification as a means for verifying the decay's occurrence in {sup 136}Xe. A current challenge is the release of Ba ions from the Ba extraction probe, and one possible solution is to heat the probe to high temperatures to release the ions. The investigation of this method requires a characterization of the alpha decay background in our test apparatus, which uses a {sup 228}Th source that produces {sup 224}Ra daughters, the ionization energies of which are similar to those of Ba. For this purpose, we ran a backgroundmore » count with our apparatus maintained at a vacuum, and then three counts with the apparatus filled with Xe gas. We were able to match up our alpha spectrum in vacuum with the known decay scheme of {sup 228}Th, while the spectrum in xenon gas had too many unresolved ambiguities for an accurate characterization. We also found that the alpha decays occurred at a near-zero rate both in vacuum and in xenon gas, which indicates that the rate was determined by {sup 228}Th decays. With these background measurements, we can in the future make a more accurate measurement of the temperature dependency of the ratio of ions to neutral atoms released from the hot surface of the probe, which may lead to a successful method of Ba ion release.« less

  16. Morphology of gold and copper ion-plated coatings

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1978-01-01

    Copper and gold films (0.2 to 2 microns thick) were ion plated onto polished 304-stainless-steel, glass, mica surfaces. These coatings were examined by SEM for defects in their morphological growth. Three types of defects were distinguished: nodular growth, abnormal or runaway growth, and spits. The cause for each type of defect was investigated. Nodular growth is due to inherent substrate microdefects, abnormal or runaway growth is due to external surface inclusions, and spits are due to nonuniform evaporation (ejection of droplets). All these defects induce stresses and produce porosity in the coatings and thus weaken their mechanical properties. During surface rubbing, large nodules are pulled out, leaving vacancies in the coatings.

  17. The protective effect of platelet released growth factors and bone augmentation (Bio-Oss®) on ethanol impaired osteoblasts.

    PubMed

    Sönmez, Tolga Taha; Bayer, Andreas; Cremer, Tillman; Hock, Jennifer Vanessa Phi; Lethaus, Bernd; Kweider, Nisreen; Wruck, Christoph Jan; Drescher, Wolf; Jahr, Holger; Lippross, Sebastian; Pufe, Thomas; Tohidnezhad, Mersedeh

    2017-11-01

    Chronic alcohol consumption is a known limiting factor for bone healing. One promising strategy to improve bone augmentation techniques with Bio-Oss ® in oral and maxillofacial surgery might be the supportive application of platelet-concentrated biomaterials as platelet-released growth factor (PRGF). To address this matter, we performed an in vitro study investigating the protective effects of PRGF and Bio-Oss ® in ethanol (EtOH) treated osteoblasts. The SAOS-2 osteosarcoma cell line, with and without EtOH pretreatment was used. The cell viability, proliferation and alkali phosphatase activity (ALP) after application of 0%, 5% and 10% PRGF and Bio-Oss ® were assessed. The application of PRGF and Bio-Oss ® in EtOH impaired osteoblasts showed a significant beneficial influence increasing the viability of the osteoblasts in cell culture. The synergistic effect of Bio-Oss ® and 5% PRGF on the proliferation of osteoblasts was also demonstrated. Bio-Oss ® only in combination with PRGF increases the alkaline phosphatase (ALP) activity in EtOH pretreated cells. These results indicate that the simultaneous application of PRGF and Bio-Oss ® inhibits EtOH induced bone healing impairment. Furthermore, in the cells, PRGF induced a protective mechanism which might promote bone regeneration. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Preparation of conductive gold nanowires in confined environment of gold-filled polymer nanotubes.

    PubMed

    Mitschang, Fabian; Langner, Markus; Vieker, Henning; Beyer, André; Greiner, Andreas

    2015-02-01

    Continuous conductive gold nanofibers are prepared via the "tubes by fiber templates" process. First, poly(l-lactide) (PLLA)-stabilized gold nanoparticles (AuNP) with over 60 wt% gold are synthesized and characterized, including gel permeation chromatography coupled with a diode array detector. Subsequent electrospinning of these AuNP with template PLLA results in composite nanofibers featuring a high gold content of 57 wt%. Highly homogeneous gold nanowires are obtained after chemical vapor deposition of 345 nm of poly(p-xylylene) (PPX) onto the composite fibers followed by pyrolysis of the polymers at 1050 °C. The corresponding heat-induced transition from continuous gold-loaded polymer tubes to smooth gold nanofibers is studied by transmission electron microscopy and helium ion microscopy using both secondary electrons and Rutherford backscattered ions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Synthesis and characterization of zinc adeninate metal-organic frameworks (bioMOF1) as potential anti-inflammatory drug delivery material

    NASA Astrophysics Data System (ADS)

    Usman, Ken Aldren S.; Buenviaje, Salvador C.; Razal, Joselito M.; Conato, Marlon T.; Payawan, Leon M.

    2018-05-01

    Zn8(ad)4(BPDC)6O•2Me2NH2 (bioMOF1), a porous metal-organic framework with zinc-adeninate secondary building units (SBUs), interconnected via biphenyldicarboxylate linkers, shows great potential for drug delivery applications due to its non-toxic and biocompatible components (zinc and adenine). In this study, bioMOF1 crystals synthesized solvothermally at 130°C for 24 hours, were characterized thoroughly and loaded with a known anti-inflammatory drug, nimesulide (NIM). The crystalline nature of the material was confirmed using powder x-ray diffraction crystallography (PXRD) along with morphology assessment using focused-ion beam/field emission scanning electron microscopy (FIB/FESEM). NIM was introduced to the crystals via solvent exchange accompanied with vigorous stirring and quantified using thermogravimetric analysis (TGA) with loading saturation of ˜30% attained during the 2nd to 3rd day of drug immersion. Drug release in phosphate buffer saline and in deionized water was done to monitor the kinetic of drug release in vitro. The drug release showed a controlled discharge profile which slowed down at the 24th and 48th hour of release. Drug release in buffer showed a faster release of drug from the material, which means that the presence of cations in the solution could further trigger the release of drug. Slow drug release was observed for all of the set-ups with maximum % drug release of 24.47%, and 16.14% for the bioMOF1 in buffer and bioMOF1 in water respectively for the span of 48 hours.

  20. Formation of mono-layered gold nanoparticles in shallow depth of SiO 2 thin film by low-energy negative-ion implantation

    NASA Astrophysics Data System (ADS)

    Tsuji, H.; Arai, N.; Ueno, K.; Matsumoto, T.; Gotoh, N.; Adachi, K.; Kotaki, H.; Gotoh, Y.; Ishikawa, J.

    2006-01-01

    Mono-layered gold nanoparticles just below the surface of silicon oxide film have been formed by a gold negative-ion implantation at a very low-energy, where the deviation of implanted atoms was sufficiently narrow comparing to the size of nanoparticles. Gold negative ions were implanted into SiO2 thin films on Si substrate at energies of 35, 15 and 1 keV. The samples were annealed in Ar flow for 1 h at 900 or 1000 °C. Cross-sectional TEM observation for the implantation at 1 keV showed existence of Au nanoparticles aligned in the same depth of 5 nm from the surface. The nanoparticles had almost same diameter of 7 nm. The nanoparticles were found to be gold single crystal from a high-resolution TEM image.

  1. Plasmonic Gold Decorated MWCNT Nanocomposite for Localized Plasmon Resonance Sensing

    PubMed Central

    Ozhikandathil, J.; Badilescu, S.; Packirisamy, M.

    2015-01-01

    The synergism of excellent properties of carbon nanotubes and gold nanoparticles is used in this work for bio-sensing of recombinant bovine growth hormones (rbST) by making Multi Wall Carbon Nanotubes (MWCNT) locally optically responsive by augmenting it optical properties through Localized Surface Plasmon Resonance (LSPR). To this purpose, locally gold nano particles decorated gold–MWCNT composite was synthesized from a suspension of MWCNT bundles and hydrogen chloroauric acid in an aqueous solution, activated ultrasonically and, then, drop-casted on a glass substrate. The slow drying of the drop produces a “coffee ring” pattern that is found to contain gold–MWCNT nanocomposites, accumulated mostly along the perimeter of the ring. The reaction is studied also at low-temperature, in the vacuum chamber of the Scanning Electron Microscope and is accounted for by the local melting processes that facilitate the contact between the bundle of tubes and the gold ions. Biosensing applications of the gold–MWCNT nanocomposite using their LSPR properties are demonstrated for the plasmonic detection of traces of bovine growth hormone. The sensitivity of the hybrid platform which is found to be 1 ng/ml is much better than that measuring with gold nanoparticles alone which is only 25 ng/ml. PMID:26282187

  2. Surface modifications of ultra-thin gold films by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Dash, P.; Mallick, P.; Rath, H.; Dash, B. N.; Tripathi, A.; Prakash, Jai; Avasthi, D. K.; Satyam, P. V.; Mishra, N. C.

    2010-10-01

    Gold films of thickness 10 and 20 nm grown on float glass substrate by thermal evaporation technique were irradiated with 107 MeV Ag8+ and 58 MeV Ni5+ ions at different fluences and characterized by Grazing Incidence X-ray Diffraction (GIXRD) and Atomic Force Microscopy (AFM). The pristine films were continuous and no island structures were found even at these small thicknesses. The surface roughness estimated from AFM data did not show either monotonic increase or decrease with ion fluences. Instead, it increased at low fluences and decreased at high fluences for 20 nm thick film. In the 10 nm film roughness first increased with ion fluence, then decreased and again increased at higher fluences. The pattern of variation, however, was identical for Ni and Ag beams. Both the beams led to the formation of cracks on the film surface at intermediate fluences. The observed ion-irradiation induced thickness dependent topographic modification is explained by the spatial confinement of the energy deposited by ions in the reduced dimension of the films.

  3. Gold nanorod embedded novel 3D graphene nanocomposite for selective bio-capture in rapid detection of Mycobacterium tuberculosis.

    PubMed

    Perumal, Veeradasan; Saheed, Mohamed Shuaib Mohamed; Mohamed, Norani Muti; Saheed, Mohamed Salleh Mohamed; Murthe, Satisvar Sundera; Gopinath, Subash C B; Chiu, Jian-Ming

    2018-09-30

    Tuberculosis (TB) is a chronic and infectious airborne disease which requires a diagnosing system with high sensitivity and specificity. However, the traditional gold standard method for TB detection remains unreliable with low specificity and sensitivity. Nanostructured composite materials coupled with impedimetric sensing utilised in this study offered a feasible solution. Herein, novel gold (Au) nanorods were synthesized on 3D graphene grown by chemical vapour deposition. The irregularly spaced and rippled morphology of 3D graphene provided a path for Au nanoparticles to self-assemble and form rod-like structures on the surface of the 3D graphene. The formation of Au nanorods were showcased through scanning electron microscopy which revealed the evolution of Au nanoparticle into Au islets. Eventually, it formed nanorods possessing lengths of ~ 150 nm and diameters of ~ 30 nm. The X-ray diffractogram displayed appropriate peaks suitable to defect-free and high crystalline graphene with face centered cubic Au. The strong optical interrelation between Au nanorod and 3D graphene was elucidated by Raman spectroscopy analysis. Furthermore, the anchored Au nanorods on 3D graphene nanocomposite enables feasible bio-capturing on the exposed Au surface on defect free graphene. The impedimetric sensing of DNA sequence from TB on 3D graphene/Au nanocomposite revealed a remarkable wide detection linear range from 10 fM to 0.1 µM, displays the capability of detecting femtomolar DNA concentration. Overall, the novel 3D graphene/Au nanocomposite demonstrated here offers high-performance bio-sensing and opens a new avenue for TB detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Nickel and chromium ion release from stainless steel bracket on immersion various types of mouthwashes

    NASA Astrophysics Data System (ADS)

    Mihardjanti, M.; Ismah, N.; Purwanegara, M. K.

    2017-08-01

    The stainless steel bracket is widely used in orthodontics because of its mechanical properties, strength, and good biocompatibility. However, under certain conditions, it can be susceptible to corrosion. Studies have reported that the release of nickel and chromium ions because of corrosion can cause allergic reactions in some individuals and are mutagenic. The condition of the oral environment can lead to corrosion, and one factor that can alter the oral environment is mouthwash. The aim of this study was to measure the nickel and chromium ions released from stainless steel brackets when immersed in mouthwash and aquadest. The objects consisted of four groups of 17 maxillary premolar brackets with .022 slots. Each group was immersed in a different mouthwash and aquadest and incubated at 37 °C for 30 days. After 30 days of immersion, the released ions were measured using the ICP-MS (Inductively Coupled Plasma-Mass Spectrometer). For statistical analysis, both the Kruskal-Wallis and Mann-Whitney tests were used. The results showed differences among the four groups in the nickel ions released (p < 0.05) and the chromium ions released (p < 0.5). In conclusion, the ions released as a result of mouthwash immersion have a small value that is below the limit of daily intake recommended by the World Health Organization.

  5. Soft Landing of Mass-Selected Gold Clusters: Influence of Ion and Ligand on Charge Retention and Reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Grant E.; Laskin, Julia

    Herein, we employ a combination of reduction synthesis in solution, soft landing of mass-selected precursor and product ions, and in situ time-of-flight secondary ion mass spectrometry (TOF-SIMS) to examine the influence of ion and the length of diphosphine ligands on the charge retention and reactivity of ligated gold clusters deposited onto self-assembled monolayer surfaces (SAMs). Product ions (Au10L42+, (10,4)2+, L = 1,3-bis(diphenyl-phosphino)propane, DPPP) were prepared through in-source collision induced dissociation (CID) and precursor ions [(8,4)2+, L = 1,6-bis(diphenylphosphino)hexane, DPPH] were synthesized in solution for comparison to (11,5)3+ precursor ions ligated with DPPP investigated previously (ACS Nano 2012, 6, 573 andmore » J. Phys. Chem. C. 2012, 116, 24977). Similar to (11,5)3+ precursor ions, the (10,4)2+ product ions are shown to retain charge on 1H,1H,2H,2H-perfluorodecanethiol monolayers (FSAMs). Additional abundant peaks at higher m/z indicative of reactivity are observed in the TOF-SIMS spectrum of (10,4)2+ product ions that are not seen for (11,5)3+ precursor ions. The abundance of (10,4)2+ on 16-mercaptohexadecanoic acid (COOH-SAMs) is demonstrated to be lower than on FSAMs, consistent with partial reduction of charge. The (10,4)2+ product ion on 1-dodecanethiol (HSAMs) exhibits peaks similar to those seen on the COOH-SAM. On the HSAM, higher m/z peaks indicative of reactivity are observed similar to those on the FSAM. The (8,4)2+ DPPH precursor ions are shown to retain charge on FSAMs similar to (11,5)3+ precursor ions prepared with DPPP. An additional peak corresponding to attachment of one gold atom to (8,4)2+ is observed at higher m/z for DPPH-ligated clusters. On the COOH-SAM, (8,4)2+ is less abundant than on the FSAM consistent with partial neutralization. The results indicate that although retention of charge by product ions generated by CID is similar to precursor ions their reactivity during analysis with SIMS is different

  6. Ion release from dental casting alloys as assessed by a continuous flow system: Nutritional and toxicological implications.

    PubMed

    López-Alías, José F; Martinez-Gomis, Jordi; Anglada, Josep M; Peraire, Maria

    2006-09-01

    The aims of this study were to quantify the metallic ions released by various dental alloys subjected to a continuous flow of saliva and to estimate the nutritional and toxicological implications of such a release. Four pieces of three nickel-based, one noble, one high-noble and two copper-aluminum alloys were cast and then immersed in a continuous flow of artificial saliva for 15 days. To simulate three meals a day, casts were subjected to thrice-daily episodes, lasting 30 min each and consisting of pH decreases and salinity increases. After 15 days, the metallic ions in the artificial saliva were analyzed. Data were expressed as averaged release rate: microg/cm2/day of ion released for each alloy. The highest value of 95% Cl of each ion was adapted to a hypothetical worst scenario of a subject with 100 cm2 of exposed metal surface. The results were compared with the tolerable upper daily intake level of each ion. The copper-aluminum alloys released copper, aluminum, nickel, manganese and iron. The nickel-based alloys essentially released nickel and chromium, while the beryllium-containing alloy released beryllium and significantly more nickel. The noble and high-noble alloys were very resistant to corrosion. The amount of ions released remained far below the upper tolerable intake level, with the exception of nickel, released by beryllium-containing nickel-based alloy, whose levels approach 50% of this threshold. The daily amount of ions released seems to be far below the tolerable upper intake levels for each ion.

  7. Effect of iron ions and electric field on nitrification process in the periodic reversal bio-electrocoagulation system.

    PubMed

    Qian, Guangsheng; Hu, Xiaomin; Li, Liang; Ye, Linlin; Lv, Weijian

    2017-11-01

    This study explored the nitrification mechanism of a periodic reversal bio-electrocoagulation system with Fe-C electrodes. The ammonia nitrogen removal was compared in four identical cylindrical sequencing bath reactors. Two of them were reactors with Fe-C electrodes (S1) and C-C electrodes (S2), respectively. The other two were a reactor with iron ions (S3) and a traditional SBR (S4), respectively. The results demonstrated that the effect on enhancing nitrification in S1 was the best among all four SBRs, followed by S3, S2 and S4. Iron ions increased the biomass, and electric field improved the proton transfer and enzyme activity. The dominant bacterial genera in the four SBRs were Hyphomicrobium, Thauera, Nitrobacter, Nitrosomonas, Paracoccus and Hydrogenophaga. The iron ions may increase the levels of Nitrosomonas and Nitrobacter, both of which were the main microbes of the nitrification process. This study provided a significant and meaningful understanding of nitrification in a bio-electrocoagulation system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. [Analysis the cupric ion release characteristics of different copper raw materials in intrauterine device in vitro using ICP method].

    PubMed

    Lu, Hua; Ding, Tingting; Yao, Tianping; Sun, Jiao

    2014-05-01

    To study the Cupric ion release characteristics of different copper raw materials in intrauterine device in vitro by ICP. Reveal the relationship between purity and shape of Cu-IUD copper and copper ion release. According to a certain proportion, the copper raw materials were 100 times diluted into the simulated uterine solution at 37 +/- 0.5 degrees C. Replaced medium at certain time points and collected soaking liquid. Using ICP analyzed the concentration of copper ion released. The largest daily release of copper ions was in the first 7 days. There was no statistically significant difference between the copper ion release amount of 99.99% and 99.95% purity copper wire (P > 0.05). The release of copper ion of the copper wire was far greater than that of the copper pipe in early stage (P < 0.01). The release amount decreased and stabilized at 56 day. Release characteristics of copper ion could effectively analysis by ICP. And in the same area, the release amount of copper ions of copper wire was greater than that of copper pipe.

  9. Plasma immersion ion implantation for reducing metal ion release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, C.; Garcia, J. A.; Maendl, S.

    Plasma immersion ion implantation of Nitrogen and Oxygen on CoCrMo alloys was carried out to improve the tribological and corrosion behaviors of these biomedical alloys. In order to optimize the implantation results we were carried experiments at different temperatures. Tribocorrosion tests in bovine serum were used to measure Co, Cr and Mo releasing by using Inductively Coupled Plasma Mass Spectrometry analysis after tests. Also, X-ray Diffraction analysis were employed in order to explain any obtained difference in wear rate and corrosion tests. Wear tests reveals important decreases in rate of more than one order of magnitude for the best treatment.more » Moreover decreases in metal release were found for all the implanted samples, preserving the same corrosion resistance of the unimplanted samples. Finally this paper gathers an analysis, in terms of implantation parameters and achieved properties for industrial implementation of these treatments.« less

  10. Economic Assessment of FMDv Releases from the National Bio and Agro Defense Facility

    PubMed Central

    Pendell, Dustin L.; Marsh, Thomas L.; Coble, Keith H.; Lusk, Jayson L.; Szmania, Sara C.

    2015-01-01

    This study evaluates the economic consequences of hypothetical foot-and-mouth disease releases from the future National Bio and Agro Defense Facility in Manhattan, Kansas. Using an economic framework that estimates the impacts to agricultural firms and consumers, quantifies costs to non-agricultural activities in the epidemiologically impacted region, and assesses costs of response to the government, we find the distribution of economic impacts to be very significant. Furthermore, agricultural firms and consumers bear most of the impacts followed by the government and the regional non-agricultural firms. PMID:26114546

  11. Release of nickel and chromium ions from orthodontic wires following the use of teeth whitening mouthwashes.

    PubMed

    Mirhashemi, AmirHossein; Jahangiri, Sahar; Kharrazifard, MohammadJavad

    2018-02-05

    Corrosion resistance is an important requirement for orthodontic appliances. Nickel and chromium may be released from orthodontic wires and can cause allergic reactions and cytotoxicity when patients use various mouthwashes to whiten their teeth. Our study aimed to assess the release of nickel and chromium ions from nickel titanium (NiTi) and stainless steel (SS) orthodontic wires following the use of four common mouthwashes available on the market. This in vitro, experimental study was conducted on 120 orthodontic appliances for one maxillary quadrant including five brackets, one band and half of the required length of SS, and NiTi wires. The samples were immersed in Oral B, Oral B 3D White Luxe, Listerine, and Listerine Advance White for 1, 6, 24, and 168 h. The samples immersed in distilled water served as the control group. Atomic absorption spectroscopy served to quantify the amount of released ions. Nickel ions were released from both wires at all time-points; the highest amount was in Listerine and the lowest in Oral B mouthwashes. The remaining two solutions were in-between this range. The process of release of chromium from the SS wire was the same as that of nickel. However, the release trend in NiTi wires was not uniform. Listerine caused the highest release of ions. Listerine Advance White, Oral B 3D White Luxe, and distilled water were the same in terms of ion release. Oral B showed the lowest amount of ion release.

  12. Antibacterial activity and ion release of bonding agent containing amorphous calcium phosphate nanoparticles

    PubMed Central

    Chen, Chen; Weir, Michael D.; Cheng, Lei; Lin, Nancy; Lin-Gibson, Sheng; Chow, Laurence C.; Zhou, Xuedong; Xu, Hockin H. K.

    2015-01-01

    Objectives Recurrent caries at the margins is a primary reason for restoration failure. The objectives of this study were to develop bonding agent with the double benefits of antibacterial and remineralizing capabilities, to investigate the effects of NACP filler level and solution pH on Ca and P ion release from adhesive, and to examine the antibacterial and dentin bond properties. Methods Nanoparticles of amorphous calcium phosphate (NACP) and a quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM) were synthesized. Scotchbond Multi-Purpose (SBMP) primer and adhesive served as control. DMADDM was incorporated into primer and adhesive at 5% by mass. NACP was incorporated into adhesive at filler mass fractions of 10%, 20%, 30% and 40%. A dental plaque microcosm biofilm model was used to test the antibacterial bonding agents. Calcium (Ca) and phosphate (P) ion releases from the cured adhesive samples were measured vs. filler level and solution pH of 7, 5.5 and 4. Results Adding 5% DMADDM and 10–40% NACP into bonding agent, and water-aging for 28 days, did not affect dentin bond strength, compared to SBMP control at 1 day (p > 0.1). Adding DMADDM into bonding agent substantially decreased the biofilm metabolic activity and lactic acid production. Total microorganisms, total streptococci, and mutans streptococci were greatly reduced for bonding agents containing DMADDM. Increasing NACP filler level from 10% to 40% in adhesive increased the Ca and P ion release by an order of magnitude. Decreasing solution pH from 7 to 4 increased the ion release from adhesive by 6–10 folds. Significance Bonding agents containing antibacterial DMADDM and remineralizer NACP were formulated to have Ca and P ion release, which increased with NACP filler level from 10% to 40% in adhesive. NACP adhesive was “smart” and dramatically increased the ion release at cariogenic pH 4, when these ions would be most-needed to inhibit caries. Therefore, bonding agent

  13. FY2014 Parameters for Helions and Gold Ions in Booster, AGS, and RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, C. J.

    The nominal parameters for helions (helion is the bound state of two protons and one neutron, the nucleus of a helium-3 atom) and gold ions in Booster, AGS, and RHIC are given for the FY2014 running period. The parameters are found using various formulas to derive mass, helion anomalous g-factor, kinetic parameters, RF parameters, ring parameters, etc..

  14. Wound healing effect of bioactive ion released from Mg-smectite.

    PubMed

    Sasaki, Yu; Sathi, Gulsan Ara; Yamamoto, Osamu

    2017-08-01

    Bioactive ions like Mg 2+ and Si 4+ have been known as promotion factors of tissue regeneration. In the present work, Mg-smectite, consisting of Mg 2+ and Si 4+ ions, was synthesized by a solution process, and evaluated for the efficiency of the powder on wound healing in rats. White precipitates were obtained by mixing a magnesium chloride hexahydrate solution and a sodium silicate hexahydrate solution at room temperature. The precipitates mixed with a NaOH aqueous solution were subjected to hydrothermal reaction, and finally crystalline Mg-smectite powder was obtained. The crystal and molecular structure of Mg-smectite was identified by X-ray diffractometry (XRD) and Fourier-transform infrared spectroscopy (FT-IR). The synthesized material was determined to be crystalline Mg-smectite. The amount of Mg 2+ and Si 4+ ions released from Mg-smectite in physiological saline was analyzed by inductively coupled plasma mass spectroscopy (ICP-MS). The total amount of Si 4+ ion released from Mg-smectite was greater than that of Mg 2+ ion. To evaluate the wound healing effect of Mg-smectite, Mg-smectite powder was applied to a full-thickness surgical wound reaching the subcutaneous tissue in the rat's abdomen. At 1 and 2weeks, skin tissue was collected and subjected to histological analysis. The results for skin regeneration showed no significant difference in wound size between the control and Mg-smectite group. However, it was found that the neovascularization, collagen deposition, and maturation were notedly accelerated by applying Mg-smectite powder in comparison with the control. Mg-smectite can then be hypothesized to stimulate the regeneration of skin tissue by releasing Mg 2+ and Si 4+ ions. These results suggested that Mg-smectite could offer great potential as a wound dressing material. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Glucose release in mantle tissue of Mytilus: regulation by calcium ions.

    PubMed

    Crespo, C A; Espinosa, J

    1990-09-01

    Glucose release activity in mantle tissue of Mytilus galloprovincialis was studied. Mantle tissue shows a basal glucose releasing activity. The external Ca2+ absence increases 2 to 3-fold the basal glucose release, and when A23187 (10 microM) was simultaneously present the release doubled that obtained in Ca2(+)-absence. EGTA (2 mM), chlorpromazine (200 microM) and lanthanum (3 mM) decreased the glucose release promoted by external Ca2+ absence. This and other data suggest that glucose release activity in mantle tissue might be controlled by Ca2+ ions.

  16. Triggered metal ion release and oxidation: Ferrocene as new mechanophore in polymers.

    PubMed

    Di Giannantonio, Michela; Ayer, Mathieu A; Verde-Sesto, Ester; Lattuada, Marco; Weder, Christoph; Fromm, Katharina M

    2018-06-13

    The introduction of mechanophores into polymers allows transducing mechanical forces into chemical reactions for e.g. self-healing, catalytic activity, or mechanochromic response. Here, the first example of mechanically induced metal ion release from a polymer is reported. Ferrocene (Fc) was incorporated as an Fe-ion releasing mechanophore into poly(methyl acrylate)s (PMAs) and polyurethanes (PUs). Sonication triggered the preferential cleavage of the polymers at the Fc units over other bonds, as shown by a kinetic study of the molar mass distribution of the cleaved Fc-containing and Fc-free reference polymers. The released and oxidized Fe2+ ions can be detected with KSCN to generate the red-colored [Fe(SCN)n(H2O)6-n)](3-n)+ or reacted with K4[Fe(CN)6] to afford Prussian blue. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A simple method using on-line continuous leaching and ion exchange chromatography coupled to inductively coupled plasma mass spectrometry for the speciation analysis of bio-accessible arsenic in rice.

    PubMed

    Horner, Nolan S; Beauchemin, Diane

    2012-03-02

    A simple method for the speciation analysis of bio-accessible arsenic (As) in rice was developed using a continuous on-line leaching method to release the bio-accessible fraction. The continuous on-line leaching method has several advantages over commonly used batch methods including quicker and easier sample preparation, reduced risk of contamination and access to real time leaching data. The bio-accessibility of As in the samples was monitored using inductively coupled plasma mass spectrometry (ICP-MS). Results from a certified reference material as well as cooked and uncooked white rice showed that the majority of As was leached by saliva. Results obtained using the continuous on-line leaching method were comparable to those obtained using a batch method. Speciation analysis of the saliva leachate was performed using ion exchange chromatography coupled to ICP-MS. The four most toxic forms of As (As(III), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and As(V)) were clearly separated within 5 min in a single chromatographic run. Over 92% of bio-accessible As in the certified reference material and uncooked white rice sample was in the form of DMA and As(V), whereas it was present as DMA and As(III) in the cooked white rice. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Effects of crystallographic and geometric orientation on ion beam sputtering of gold nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinks, J. A.; Hibberd, F.; Hattar, K.

    Nanostructures may be exposed to irradiation during their manufacture, their engineering and whilst in-service. The consequences of such bombardment can be vastly different from those seen in the bulk. In this paper, we combine transmission electron microscopy with in situ ion irradiation with complementary computer modelling techniques to explore the physics governing the effects of 1.7 MeV Au ions on gold nanorods. Phenomena surrounding the sputtering and associated morphological changes caused by the ion irradiation have been explored. In both the experiments and the simulations, large variations in the sputter yields from individual nanorods were observed. These sputter yields havemore » been shown to correlate with the strength of channelling directions close to the direction in which the ion beam was incident. Finally, craters decorated by ejecta blankets were found to form due to cluster emission thus explaining the high sputter yields.« less

  19. Effects of crystallographic and geometric orientation on ion beam sputtering of gold nanorods

    DOE PAGES

    Hinks, J. A.; Hibberd, F.; Hattar, K.; ...

    2018-01-11

    Nanostructures may be exposed to irradiation during their manufacture, their engineering and whilst in-service. The consequences of such bombardment can be vastly different from those seen in the bulk. In this paper, we combine transmission electron microscopy with in situ ion irradiation with complementary computer modelling techniques to explore the physics governing the effects of 1.7 MeV Au ions on gold nanorods. Phenomena surrounding the sputtering and associated morphological changes caused by the ion irradiation have been explored. In both the experiments and the simulations, large variations in the sputter yields from individual nanorods were observed. These sputter yields havemore » been shown to correlate with the strength of channelling directions close to the direction in which the ion beam was incident. Finally, craters decorated by ejecta blankets were found to form due to cluster emission thus explaining the high sputter yields.« less

  20. Schiff Base modified on CPE electrode and PCB gold electrode for selective determination of silver ion

    NASA Astrophysics Data System (ADS)

    Leepheng, Piyawan; Suramitr, Songwut; Phromyothin, Darinee

    2017-09-01

    The schiff base was synthesized by 2,5-thiophenedicarboxaldehyde and 1,2,4-thiadiazole-3,5-diamine with condensation method. There was modified on carbon paste electrode (CPE) and Printed circuit board (PCB) gold electrode for determination silver ion. The schiff base modified electrodes was characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM), respectively. The electrochemical study was reported by cyclic voltammetry method and impedance spectroscopy using modified electrode as working electrode, platinum wire and Ag/AgCl as counter electrode and reference electrode, respectively. The modified electrodes have suitable detection for Ag+. The determination of silver ions using the modified electrodes depended linearly on Ag+ concentration in the range 1×10-10 M to 1×10-7 M, with cyclic voltammetry sensitivity were 2.51×108 μAM-1 and 1.88×108 μAM-1 for PCB gold electrode and CPE electrode, respectively, limits of detection were 5.33×10-9 M and 1.99×10-8 M for PCB gold electrode and CPE electrode, respectively. The modified electrodes have high accuracy, inexpensive and can applied to detection Ag+ in real samples.

  1. Petroleomic Analysis of Bio- Oils from the Fast Pyrolysis or Biomass: Laser Desorption Ionization-Linear Ion Trap-Orbitrap mass Spectrometry Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Erica A.; Lee, Young Jin

    2010-08-23

    Fast pyrolysis of biomass produces bio-oils that can be upgraded into biofuels. Despite similar physical properties to petroleum, the chemical properties of bio-oils are quite different and their chemical compositions, particularly those of non-volatile compounds, are not well-known. Here, we report the first time attempt at analyzing bio-oils using high-resolution mass spectrometry (MS), which employed laser desorption ionization-linear ion trap-Orbitrap MS. Besides a few limitations, we could determine chemical compositions for over 100 molecular compounds in a bio-oil sample produced from the pyrolysis of a loblolly pine tree. These compounds consist of 3-6 oxygens and 9-17 double-bond equivalents (DBEs). Amongmore » those, O{sub 4} compounds with a DBE of 9-13 were most abundant. Unlike petroleum oils, the lack of nearby molecules within a {+-}2 Da mass window for major components enabled clear isolation of precursor ions for subsequent MS/MS structural investigations. Petroleomic analysis and a comparison to low-mass components in hydrolytic lignin suggest that they are dimers and trimers of depolymerized lignin.« less

  2. Gold nanocages covered by smart polymers for controlled release with near-infrared light.

    PubMed

    Yavuz, Mustafa S; Cheng, Yiyun; Chen, Jingyi; Cobley, Claire M; Zhang, Qiang; Rycenga, Matthew; Xie, Jingwei; Kim, Chulhong; Song, Kwang H; Schwartz, Andrea G; Wang, Lihong V; Xia, Younan

    2009-12-01

    Photosensitive caged compounds have enhanced our ability to address the complexity of biological systems by generating effectors with remarkable spatial/temporal resolutions. The caging effect is typically removed by photolysis with ultraviolet light to liberate the bioactive species. Although this technique has been successfully applied to many biological problems, it suffers from a number of intrinsic drawbacks. For example, it requires dedicated efforts to design and synthesize a precursor compound for each effector. The ultraviolet light may cause damage to biological samples and is suitable only for in vitro studies because of its quick attenuation in tissue. Here we address these issues by developing a platform based on the photothermal effect of gold nanocages. Gold nanocages represent a class of nanostructures with hollow interiors and porous walls. They can have strong absorption (for the photothermal effect) in the near-infrared while maintaining a compact size. When the surface of a gold nanocage is covered with a smart polymer, the pre-loaded effector can be released in a controllable fashion using a near-infrared laser. This system works well with various effectors without involving sophisticated syntheses, and is well suited for in vivo studies owing to the high transparency of soft tissue in the near-infrared region.

  3. Gold nanocages covered by smart polymers for controlled release with near-infrared light

    PubMed Central

    Yavuz, Mustafa S.; Cheng, Yiyun; Chen, Jingyi; Cobley, Claire M.; Zhang, Qiang; Rycenga, Matthew; Xie, Jingwei; Kim, Chulhong; Schwartz, Andrea G.; Wang, Lihong V.; Xia, Younan

    2009-01-01

    Photosensitive caged compounds have enhanced our ability to address the complexity of biological systems by generating effectors with remarkable spatial/temporal resolutions1-3. The caging effect is typically removed by photolysis with ultraviolet light to liberate the bioactive species. Although this technique has been successfully applied to many biological problems, it suffers from a number of intrinsic drawbacks. For example, it requires dedicated efforts to design and synthesize a precursor compound to the effector. The ultraviolet light may cause damage to biological samples and is only suitable for in vitro studies because of its quick attenuation in tissue4. Here we address these issues by developing a platform based on the photothermal effect of gold nanocages. Gold nanocages represent a class of nanostructures with hollow interiors and porous walls5. They can have strong absorption (for the photothermal effect) in the near-infrared (NIR) while maintaining a compact size. When the surface of a gold nanocage is covered with a smart polymer, the pre-loaded effector can be released in a controllable fashion using a NIR laser. This system works well with various effectors without involving sophiscated syntheses, and is well-suited for in vivo studies due to the high transparency of soft tissue in NIR6. PMID:19881498

  4. Metal ion release from silver soldering and laser welding caused by different types of mouthwash.

    PubMed

    Erdogan, Ayse Tuygun; Nalbantgil, Didem; Ulkur, Feyza; Sahin, Fikrettin

    2015-07-01

    To compare metal ion release from samples welded with silver soldering and laser welding when immersed into mouthwashes with different ingredients. A total of 72 samples were prepared: 36 laser welded and 36 silver soldered. Four samples were chosen from each subgroup to study the morphologic changes on their surfaces via scanning electron microscopy (SEM). Each group was further divided into four groups where the samples were submerged into mouthwash containing sodium fluoride (NaF), mouthwash containing sodium fluoride + alcohol (NaF + alcohol), mouthwash containing chlorhexidine (CHX), or artificial saliva (AS) for 24 hours and removed thereafter. Subsequently, the metal ion release from the samples was measured with inductively coupled plasma mass spectrometry (ICP-MS). The metal ion release among the solutions and the welding methods were compared. The Kruskal-Wallis and analysis of variance (ANOVA) tests were used for the group comparisons, and post hoc Dunn multiple comparison test was utilized for the two group comparisons. The level of metal ion release from samples of silver soldering was higher than from samples of laser welding. Furthermore, greater amounts of nickel, chrome, and iron were released from silver soldering. With regard to the mouthwash solutions, the lowest amounts of metal ions were released in CHX, and the highest amounts of metal ions were released in NaF + alcohol. SEM images were in accord with these findings. The laser welding should be preferred over silver soldering. CHX can be recommended for patients who have welded appliances for orthodontic reasons.

  5. Two-chamber configuration of Bio-Nano electron cyclotron resonance ion source for fullerene modification.

    PubMed

    Uchida, T; Rácz, R; Muramatsu, M; Kato, Y; Kitagawa, A; Biri, S; Yoshida, Y

    2016-02-01

    We report on the modification of fullerenes with iron and chlorine using two individually controllable plasmas in the Bio-Nano electron cyclotron resonance ion source (ECRIS). One of the plasmas is composed of fullerene and the other one is composed of iron and chlorine. The online ion beam analysis allows one to investigate the rate of the vapor-phase collisional modification process in the ECRIS, while the offline analyses (e.g., liquid chromatography-mass spectrometry) of the materials deposited on the plasma chamber can give information on the surface-type process. Both analytical methods show the presence of modified fullerenes such as fullerene-chlorine, fullerene-iron, and fullerene-chlorine-iron.

  6. Ion release and mechanical properties of calcium silicate and calcium hydroxide materials used for pulp capping.

    PubMed

    Natale, L C; Rodrigues, M C; Xavier, T A; Simões, A; de Souza, D N; Braga, R R

    2015-01-01

    To compare the ion release and mechanical properties of a calcium hydroxide (Dycal) and two calcium silicate (MTA Angelus and Biodentine) cements. Calcium and hydroxyl ion release in water from 24-h set cements were calculated from titration with HCl (n = 3). Calcium release after 7, 14, 21 and 28 days at pH 5.5 and 7.0 was measured using ICP-OES (n = 6). Flexural strength (FS) and modulus (E) were tested after 48-h storage, and compressive strength (CS) was tested after 48 h and 7 days (n = 10). Ion release and mechanical data were subjected to anova/Tukey and Kruskal-Wallis/Mann-Whitney tests, respectively (α = 0.05). Titration curves revealed that Dycal released significantly fewer ions in solution than calcium silicates (P < 0.001). Calcium release remained constant at pH 7.0, whilst at pH 5.5, it dropped significantly by 24% after 21 days (P < 0.05). At pH 5.5, MTA Angelus released significantly more calcium than Dycal (P < 0.01), whilst Biodentine had superior ion release than Dycal at pH 7.0 (P < 0.01). Biodentine had superior flexural strength, flexural modulus and compressive strength than the other cements, whilst MTA Angelus had higher modulus than Dycal (P < 0.001). Immediate calcium and hydroxyl ion release in solution was significantly lower for Dycal. In general, all materials released constant calcium levels over 28 days, but release from Dycal was significantly lower than Biodentine and MTA Angelus depending on pH conditions. Biodentine had substantially higher strength and modulus than MTA Angelus and Dycal, both of which demonstrated low stress-bearing capabilities. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  7. Synthesis of bio-based nanocomposites for controlled release of antimicrobial agents in food packaging

    NASA Astrophysics Data System (ADS)

    DeGruson, Min Liu

    The utilization of bio-based polymers as packaging materials has attracted great attention in both scientific and industrial areas due to the non-renewable and nondegradable nature of synthetic plastic packaging. Polyhydroxyalkanoate (PHA) is a biobased polymer with excellent film-forming and coating properties, but exhibits brittleness, insufficient gas barrier properties, and poor thermal stability. The overall goal of the project was to develop the polyhydroxyalkanoate-based bio-nanocomposite films modified by antimicrobial agents with improved mechanical and gas barrier properties, along with a controlled release rate of antimicrobial agents for the inhibition of foodborne pathogens and fungi in food. The ability for antimicrobial agents to intercalate into layered double hydroxides depended on the nature of the antimicrobial agents, such as size, spatial structure, and polarity, etc. Benzoate and gallate anions were successfully intercalated into LDH in the present study and different amounts of benzoate anion were loaded into LDH under different reaction conditions. Incorporation of nanoparticles showed no significant effect on mechanical properties of polyhydroxybutyrate (PHB) films, however, significantly increased the tensile strength and elongation at break of polyhydroxybutyrate-co-valerate (PHBV) films. The effects of type and concentration of LDH nanoparticles (unmodified LDH and LDH modified by sodium benzoate and sodium gallate) on structure and properties of PHBV films were then studied. The arrangement of LDH in the bio-nanocomposite matrices ranged from exfoliated to phase-separated depending on the type and concentration of LDH nanoparticles. Intercalated or partially exfoliated structures were obtained using modified LDH, however, only phase-separated structures were formed using unmodified LDH. The mechanical (tensile strength and elongation at break) and thermo-mechanical (storage modulus) properties were significantly improved with low

  8. Anti-cancer activity of ZnO chips by sustained zinc ion release.

    PubMed

    Moon, Seong-Hee; Choi, Won Jin; Choi, Sik-Won; Kim, Eun Hye; Kim, Jiyeon; Lee, Jeong-O; Kim, Seong Hwan

    2016-01-01

    We report anti-cancer activity of ZnO thin-film-coated chips by sustained release of zinc ions. ZnO chips were fabricated by precisely tuning ZnO thickness using atomic layer deposition, and their potential to release zinc ions relative to the number of deposition cycles was evaluated. ZnO chips exhibited selective cytotoxicity in human B lymphocyte Raji cells while having no effect on human peripheral blood mononuclear cells. Of importance, the half-maximal inhibitory concentration of the ZnO chip on the viability of Raji cells was 121.5 cycles, which was comparable to 65.7 nM of daunorubicin, an anti-cancer drug for leukemia. Molecular analysis of cells treated with ZnO chips revealed that zinc ions released from the chips increased cellular levels of reactive oxygen species, including hydrogen peroxide, which led to the down-regulation of anti-apoptotic molecules (such as HIF-1α, survivin, cIAP-2, claspin, p-53, and XIAP) and caspase-dependent apoptosis. Because the anti-cancer activity of ZnO chips and the mode of action were comparable to those of daunorubicin, the development and optimization of ZnO chips that gradually release zinc ions might have clinical anti-cancer potential. A further understanding of the biological action of ZnO-related products is crucial for designing safe biomaterials with applications in disease treatment.

  9. PCR-free quantitative detection of genetically modified organism from raw materials. An electrochemiluminescence-based bio bar code method.

    PubMed

    Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R

    2008-05-15

    A bio bar code assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio bar code assay requires lengthy experimental procedures including the preparation and release of bar code DNA probes from the target-nanoparticle complex and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio bar code assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2,2'-bipyridyl) ruthenium (TBR)-labeled bar code DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products.

  10. Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices.

    PubMed

    Chen, Guan-Hua; Chen, Wei-Yu; Yen, Yu-Chun; Wang, Chia-Wei; Chang, Huan-Tsung; Chen, Chien-Fu

    2014-07-15

    An on-field colorimetric sensing strategy employing gold nanoparticles (AuNPs) and a paper-based analytical platform was investigated for mercury ion (Hg(2+)) detection at water sources. By utilizing thymine-Hg(2+)-thymine (T-Hg(2+)-T) coordination chemistry, label-free detection oligonucleotide sequences were attached to unmodified gold nanoparticles to provide rapid mercury ion sensing without complicated and time-consuming thiolated or other costly labeled probe preparation processes. Not only is this strategy's sensing mechanism specific toward Hg(2+), rather than other metal ions, but also the conformational change in the detection oligonucleotide sequences introduces different degrees of AuNP aggregation that causes the color of AuNPs to exhibit a mixture variance. To eliminate the use of sophisticated equipment and minimize the power requirement for data analysis and transmission, the color variance of multiple detection results were transferred and concentrated on cellulose-based paper analytical devices, and the data were subsequently transmitted for the readout and storage of results using cloud computing via a smartphone. As a result, a detection limit of 50 nM for Hg(2+) spiked pond and river water could be achieved. Furthermore, multiple tests could be performed simultaneously with a 40 min turnaround time. These results suggest that the proposed platform possesses the capability for sensitive and high-throughput on-site mercury pollution monitoring in resource-constrained settings.

  11. Nanoparticle based bio-bar code technology for trace analysis of aflatoxin B1 in Chinese herbs.

    PubMed

    Yu, Yu-Yan; Chen, Yuan-Yuan; Gao, Xuan; Liu, Yuan-Yuan; Zhang, Hong-Yan; Wang, Tong-Ying

    2018-04-01

    A novel and sensitive assay for aflatoxin B1 (AFB1) detection has been developed by using bio-bar code assay (BCA). The method that relies on polyclonal antibodies encoded with DNA modified gold nanoparticle (NP) and monoclonal antibodies modified magnetic microparticle (MMP), and subsequent detection of amplified target in the form of bio-bar code using a fluorescent quantitative polymerase chain reaction (FQ-PCR) detection method. First, NP probes encoded with DNA that was unique to AFB1, MMP probes with monoclonal antibodies that bind AFB1 specifically were prepared. Then, the MMP-AFB1-NP sandwich compounds were acquired, dehybridization of the oligonucleotides on the nanoparticle surface allows the determination of the presence of AFB1 by identifying the oligonucleotide sequence released from the NP through FQ-PCR detection. The bio-bar code techniques system for detecting AFB1 was established, and the sensitivity limit was about 10 -8  ng/mL, comparable ELISA assays for detecting the same target, it showed that we can detect AFB1 at low attomolar levels with the bio-bar-code amplification approach. This is also the first demonstration of a bio-bar code type assay for the detection of AFB1 in Chinese herbs. Copyright © 2017. Published by Elsevier B.V.

  12. Antibacterial activity and ion release of bonding agent containing amorphous calcium phosphate nanoparticles.

    PubMed

    Chen, Chen; Weir, Michael D; Cheng, Lei; Lin, Nancy J; Lin-Gibson, Sheng; Chow, Laurence C; Zhou, Xuedong; Xu, Hockin H K

    2014-08-01

    Recurrent caries at the margins is a primary reason for restoration failure. The objectives of this study were to develop bonding agent with the double benefits of antibacterial and remineralizing capabilities, to investigate the effects of NACP filler level and solution pH on Ca and P ion release from adhesive, and to examine the antibacterial and dentin bond properties. Nanoparticles of amorphous calcium phosphate (NACP) and a quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM) were synthesized. Scotchbond Multi-Purpose (SBMP) primer and adhesive served as control. DMADDM was incorporated into primer and adhesive at 5% by mass. NACP was incorporated into adhesive at filler mass fractions of 10%, 20%, 30% and 40%. A dental plaque microcosm biofilm model was used to test the antibacterial bonding agents. Calcium (Ca) and phosphate (P) ion releases from the cured adhesive samples were measured vs. filler level and solution pH of 7, 5.5 and 4. Adding 5% DMADDM and 10-40% NACP into bonding agent, and water-aging for 28 days, did not affect dentin bond strength, compared to SBMP control at 1 day (p>0.1). Adding DMADDM into bonding agent substantially decreased the biofilm metabolic activity and lactic acid production. Total microorganisms, total streptococci, and mutans streptococci were greatly reduced for bonding agents containing DMADDM. Increasing NACP filler level from 10% to 40% in adhesive increased the Ca and P ion release by an order of magnitude. Decreasing solution pH from 7 to 4 increased the ion release from adhesive by 6-10 folds. Bonding agents containing antibacterial DMADDM and remineralizer NACP were formulated to have Ca and P ion release, which increased with NACP filler level from 10% to 40% in adhesive. NACP adhesive was "smart" and dramatically increased the ion release at cariogenic pH 4, when these ions would be most-needed to inhibit caries. Therefore, bonding agent containing DMADDM and NACP may be promising to inhibit

  13. Green Chemistry Approach for the Synthesis of Gold Nanoparticles Using the Fungus Alternaria sp.

    PubMed

    Dhanasekar, Naresh Niranjan; Rahul, Ganga Ravindran; Narayanan, Kannan Badri; Raman, Gurusamy; Sakthivel, Natarajan

    2015-07-01

    The synthesis of gold nanoparticles has gained tremendous attention owing to their immense applications in the field of biomedical sciences. Although several chemical procedures are used for the synthesis of nanoparticles, the release of toxic and hazardous by-products restricts their use in biomedical applications. In the present investigation, gold nanoparticles were synthesized biologically using the culture filtrate of the filamentous fungus Alternaria sp. The culture filtrate of the fungus was exposed to three different concentrations of chloroaurate ions. In all cases, the gold ions were reduced to Au(0), leading to the formation of stable gold nanoparticles of variable sizes and shapes. UV-Vis spectroscopy analysis confirmed the formation of nanoparticles by reduction of Au(3+) to Au(0). TEM analysis revealed the presence of spherical, rod, square, pentagonal, and hexagonal morphologies for 1 mM chloroaurate solution. However, quasi-spherical and spherical nanoparticles/heart-like morphologies with size range of about 7-13 and 15-18 nm were observed for lower molar concentrations of 0.3 and 0.5 mM gold chloride solution, respectively. The XRD spectrum revealed the face-centered cubic crystals of synthesized gold nanoparticles. FT-IR spectroscopy analysis confirmed the presence of aromatic primary amines, and the additional SPR bands at 290 and 230 nm further suggested that the presence of amino acids such as tryptophan/tyrosine or phenylalanine acts as the capping agent on the synthesized mycogenic gold nanoparticles.

  14. Construction of conductive multilayer films of biogenic triangular gold nanoparticles and their application in chemical vapour sensing

    NASA Astrophysics Data System (ADS)

    Singh, Amit; Chaudhari, Minakshi; Sastry, Murali

    2006-05-01

    Metal nanoparticles are interesting building blocks for realizing films for a number of applications that include bio- and chemical sensing. To date, spherical metal nanoparticles have been used to generate functional electrical coatings. In this paper we demonstrate the synthesis of electrically conductive coatings using biologically prepared gold nanotriangles as the building blocks. The gold nanotriangles are prepared by the reduction of aqueous chloroaurate ions using an extract of the lemongrass plant (Cymbopogon flexuosus) which are thereafter assembled onto a variety of substrates by simple solution casting. The conductivity of the film shows a drastic fall upon mild heat treatment, leading to the formation of electrically conductive thin films of nanoparticles. We have also investigated the possibility of using the gold nanotriangle films in vapour sensing. A large fall in film resistance is observed upon exposure to polar molecules such as methanol, while little change occurs upon exposure to weakly polar molecules such as chloroform.

  15. Controlled gas-liquid interfacial plasmas for synthesis of nano-bio-carbon conjugate materials

    NASA Astrophysics Data System (ADS)

    Kaneko, Toshiro; Hatakeyama, Rikizo

    2018-01-01

    Plasmas generated in contact with a liquid have been recognized to be a novel reactive field in nano-bio-carbon conjugate creation because several new chemical reactions have been yielded at the gas-liquid interface, which were induced by the physical dynamics of non-equilibrium plasmas. One is the ion irradiation to a liquid, which caused the spatially selective dissociation of the liquid and the generation of additive reducing and oxidizing agents, resulting in the spatially controlled synthesis of nanostructures. The other is the electron irradiation to a liquid, which directly enhanced the reduction action at the plasma-liquid interface, resulting in temporally controlled nanomaterial synthesis. Using this novel reaction field, gold nanoparticles with controlled interparticle distance were synthesized using carbon nanotubes as a template. Furthermore, nanoparticle-biomolecule conjugates and nanocarbon-biomolecule conjugates were successfully synthesized by an aqueous-solution contact plasma and an electrolyte plasma, respectively, which were rapid and low-damage processes suitable for nano-bio-carbon conjugate materials.

  16. Facile preparation of antibacterial chitosan/graphene oxide-Ag bio-nanocomposite hydrogel beads for controlled release of doxorubicin.

    PubMed

    Rasoulzadehzali, Monireh; Namazi, Hassan

    2018-04-27

    The present project describes the facile preparation of novel pH-sensitive bio-nanocomposite hydrogel beads based on chitosan (CH) and GO-Ag nanohybrid particles for controlled release of anti-cancer drugs such as doxorubicin (DOX). The loading efficiency of doxorubicin into test beads was measured via UV-vis spectroscopy analysis and was found to be high. The formation of silver nanoparticles on the GO sheets and structural characteristics were evaluated via FT-IR, TEM, XRD, and SEM techniques. In addition, the antibacterial activity, swelling and drug release profiles of prepared nanocomposite beads were evaluated. Also, in vitro drug release test was performed in order to investigate the efficiency of CH/GO-Ag nanocomposite hydrogel beads as a drug carrier for controlled release of anti-cancer drugs such as doxorubicin (DOX). A more sustained and controlled drug release profile was observed for CH/GO-Ag nanocomposite hydrogel beads that enhanced by increasing the GO-Ag nanohybrid particles content. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Bio-Corrosion of Magnesium Alloys for Orthopaedic Applications

    PubMed Central

    Brooks, Emily K.; Ehrensberger, Mark T.

    2017-01-01

    Three Mg alloys, Mg–1.34% Ca–3% Zn (MCZ), Mg–1.34% Ca–3% Zn–0.2% Sr (MCZS), and Mg–2% Sr (MS), were examined to understand their bio-corrosion behavior. Electrochemical impedance spectroscopy and polarization scans were performed after 6 days of immersion in cell culture medium, and ion release and changes in media pH were tracked over a 28 day time period. Scanning electron microscopy (SEM) of alloy microstructure was performed to help interpret the results of the electrochemical testing. Results indicate that corrosion resistance of the alloys is as follows: MCZ > MCZS > MS. PMID:28862647

  18. Tunable release of clavam from clavam stabilized gold nanoparticles--design, characterization and antimicrobial study.

    PubMed

    Manju, V; Dhandapani, P; Gurusamy Neelavannan, M; Maruthamuthu, S; Berchmans, S; Palaniappan, A

    2015-04-01

    A facile one-step approach is developed to synthesize highly stable (up to 6months) gold nanoparticles (GNPs) using Clavam, pharmaceutical form of amoxicillin which contains a mixture of amoxicillin and potassium salt of clavulanic acid, at room temperature (25-30°C). The clavam stabilized GNPs are characterized using various techniques including UV-Visible, FT-IR spectrophotometry and transmission electron microscopy (TEM). Tunable release of clavam from clavam stabilized GNPs is demonstrated using intracellular concentrations of glutathione (GSH). The process is monitored using an UV-Vis spectroscopy and the amount of clavam released in terms of amoxicillin concentration is quantitatively estimated using reverse phase high performance liquid chromatographic (RP-HPLC) technique. In vitro study reveals that the clavam released from GNPs' surface was found to show a significant enhancement in antibacterial activity against Escherichia coli and the cause of enhancement is addressed. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. PCR-free quantitative detection of genetically modified organism from raw materials – A novel electrochemiluminescence-based bio-barcode method

    PubMed Central

    Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R.

    2018-01-01

    Bio-barcode assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio-barcode assay requires lengthy experimental procedures including the preparation and release of barcode DNA probes from the target-nanoparticle complex, and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio-barcode assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2’2’-bipyridyl) ruthenium (TBR)-labele barcode DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products. PMID:18386909

  20. Two-chamber configuration of Bio-Nano electron cyclotron resonance ion source for fullerene modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uchida, T., E-mail: uchida-t@toyo.jp; Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585; Rácz, R.

    2016-02-15

    We report on the modification of fullerenes with iron and chlorine using two individually controllable plasmas in the Bio-Nano electron cyclotron resonance ion source (ECRIS). One of the plasmas is composed of fullerene and the other one is composed of iron and chlorine. The online ion beam analysis allows one to investigate the rate of the vapor-phase collisional modification process in the ECRIS, while the offline analyses (e.g., liquid chromatography-mass spectrometry) of the materials deposited on the plasma chamber can give information on the surface-type process. Both analytical methods show the presence of modified fullerenes such as fullerene-chlorine, fullerene-iron, andmore » fullerene-chlorine-iron.« less

  1. Preparation, Surface Properties, and Therapeutic Applications of Gold Nanoparticles in Biomedicine.

    PubMed

    Panahi, Yunes; Mohammadhosseini, Majid; Nejati-Koshki, Kazem; Abadi, Azam Jafari Najaf; Moafi, Hadi Fallah; Akbarzadeh, Abolfazl; Farshbaf, Masoud

    2017-02-01

    Gold nanoparticles (AuNPs) due to their unique properties and manifold surface functionalities have been applied in bio-nanotechnology. The application of GNPs in recent medical and biological research is very extensive. Especially it involves applications such as detection and photothermalysis of microorganisms and cancer stem cells, biosensors; optical bio-imaging and observing of cells and these nanostructures also serve as practical platforms for therapeutic agents. In this review we studied all therapeutic applications of gold nanoparticles in biomedicine, synthesis methods, and surface properties. © Georg Thieme Verlag KG Stuttgart · New York.

  2. A microcantilever-based silver ion sensor using DNA-functionalized gold nanoparticles as a mass amplifier

    NASA Astrophysics Data System (ADS)

    You, Juneseok; Song, Yeongjin; Park, Chanho; Jang, Kuewhan; Na, Sungsoo

    2017-06-01

    Silver ions have been used to sterilize many products, however, it has recently been demonstrated that silver ions can be toxic. This toxicity has been studied over many years with the lethal concentration at 10 μM. Silver ions can accumulate through the food chain, causing serious health problems in many species. Hence, there is a need for a commercially available silver ion sensor, with high detection sensitivity. In this work, we develop an ultra-sensitive silver ion sensor platform, using cytosine based DNA and gold nanoparticles as the mass amplifier. We achieve a lower detection limit for silver ions of 10 pM; this detection limit is one million times lower than the toxic concentration. Using our sensor platform we examine highly selective characteristics of other typical ions in water from natural sources. Furthermore, our sensor platform is able to detect silver ions in a real practical sample of commercially available drinking water. Our sensor platform, which we have termed a ‘MAIS’ (mass amplifier ion sensor), with a simple detection procedure, high sensitivity, selectivity and real practical applicability has shown potential as an early toxicity assessment of silver ions in the environment.

  3. Label-free Raman spectroscopy for accessing intracellular anticancer drug release on gold nanoparticles.

    PubMed

    Ock, Kwang-Su; Ganbold, Erdene Ochir; Park, Jin; Cho, Keunchang; Joo, Sang-Woo; Lee, So Yeong

    2012-06-21

    We investigated glutathione (GSH)-induced purine or pyrimidine anticancer drug release on gold nanoparticle (AuNP) surfaces by means of label-free Raman spectroscopy. GSH-triggered releases of 6-thioguanine (6TG), gemcitabine (GEM), acycloguanosine (ACY), and fadrozole (FAD) were examined in a comparative way by means of surface-enhanced Raman scattering (SERS). The GSH-induced dissociation constant of GEM (or ACY/FAD) from AuNPs was estimated to be larger by more than 38 times than that of 6TG from the kinetic relationship. Tripeptide control experiments were presented to check the turn-off Raman signalling mechanism. Dark-field microscopy (DFM) and transmission electron microscopy (TEM) indicated the intracellular AuNP loads. After their cellular uptake, GEM, ACY, and FAD would not show SERS intensities as strong as 6TG. This may be due to easier release of GEM, ACY, and FAD than 6TG by intracellular reducing species including GSH. We observed fairly strong SERS signals of GEM and 6TG in cell culture media solution. Our CCK-8 cytotoxicity assay data support that 6TG-AuNPs did not exhibit a substantial decrease in cell viability presumably due to strong binding. Label-free confocal Raman spectroscopy can be utilized as an effective tool to access intracellular anticancer drug release.

  4. The effect of platform switching on the levels of metal ion release from different implant–abutment couples

    PubMed Central

    Alrabeah, Ghada O; Knowles, Jonathan C; Petridis, Haralampos

    2016-01-01

    The improved peri-implant bone response demonstrated by platform switching may be the result of reduced amounts of metal ions released to the surrounding tissues. The aim of this study was to compare the levels of metal ions released from platform-matched and platform-switched implant–abutment couples as a result of accelerated corrosion. Thirty-six titanium alloy (Ti-6Al-4V) and cobalt–chrome alloy abutments were coupled with titanium cylinders forming either platform-switched or platform-matched groups (n=6). In addition, 18 unconnected samples served as controls. The specimens were subjected to accelerated corrosion by static immersion in 1% lactic acid for 1 week. The amount of metal ions ion of each test tube was measured using inductively coupled plasma mass spectrometry. Scanning electron microscope (SEM) images and energy dispersive spectroscopy X-ray analyses were performed pre- and post-immersion to assess corrosion at the interface. The platform-matched groups demonstrated higher ion release for vanadium, aluminium, cobalt, chrome, and molybdenum compared with the platform-switched groups (P<0.05). Titanium was the highest element to be released regardless of abutment size or connection (P<0.05). SEM images showed pitting corrosion prominent on the outer borders of the implant and abutment platform surfaces. In conclusion, implant–abutment couples underwent an active corrosion process resulting in metal ions release into the surrounding environment. The highest amount of metal ions released was recorded for the platform-matched groups, suggesting that platform-switching concept has a positive effect in reducing the levels of metal ion release from the implant–abutment couples. PMID:27357323

  5. Microcavity surface plasmon resonance bio-sensors

    NASA Astrophysics Data System (ADS)

    Mosavian, Nazanin

    This work discusses a miniature surface plasmon biosensor which uses a dielectric sub- micron diameter core with gold spherical shell. The shell has a subwavelength nanoaperture believed to excite stationary plasmon resonances at the biosensor's surface. The sub-micron cavity enhances the measurement sensitivity of molecules binding to the sensor surface. We used visible-range optical spectroscopy to study the wavelength shift as bio-molecules absorbed-desorbed at the shell surface. We also used Scanning Electron Microscopy (SEM) and Focused Ion Beam (FIB) ablation to study the characteristics of microcavity surface plasmon resonance sensor (MSPRS) and the inner structure formed with metal deposition and its spectrum. We found that resonances at 580 nm and 670 nm responded to bound test agents and that Surface Plasmon Resonance (SPR) sensor intensity could be used to differentiate between D-glucose and L-glucose. The responsiveness of the system depended upon the mechanical integrity of the metallic surface coating.

  6. Recyclable fluorescent gold nanocluster membrane for visual sensing of copper(II) ion in aqueous solution.

    PubMed

    Lin, Zhijin; Luo, Fenqiang; Dong, Tongqing; Zheng, Liyan; Wang, Yaxian; Chi, Yuwu; Chen, Guonan

    2012-05-21

    Recently, metal-selective fluorescent chemosensors have attracted intense attention for their simple and real-time tracking of metal ions in environmental samples. However, most of the existing fluorescent sensors are one-off sensors and thus suffer from large amount of reagent consumption, significant experimental cost and raising the risk of environmental pollution. In this paper, we developed a green (low reagent consumption, low-toxicity reagent use), recyclable, and visual sensor for Cu(2+) in aqueous solution by using a fluorescent gold nanoclusters membrane (FGM) as the sensing unit, basing on our findings on gold nanoclusters (Au NCs) that the bovine serum albumin (BSA)-coated Au NCs exhibit excellent membrane-forming ability under the isoelectric point of BSA, and thus enable us to obtain a new type of sensing membrane (i.e. FGM) by denaturing Au NCs; the fluorescence of FGM can be significantly quenched by Cu(2+) ion, and the quenched fluorescence can be totally recovered by histidine; the as-prepared FGM is very stable and recyclable, which makes it an ideal sensing material.

  7. Ligand induced structural isomerism in phosphine coordinated gold clusters revealed by ion mobility mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ligare, Marshall R.; Baker, Erin S.; Laskin, Julia

    Structural isomerism in ligated gold clusters is revealed using electrospray ionization ion mobility spectrometry mass spectrometry. Phosphine ligated Au8 clusters are shown to adopt more “extended” type structures with increasing exchange of methyldiphenylphosphine (MePPh2) for triphenylphosphine (PPh3). These ligand-dependant structure-property relationships are critical to applications of clusters in catalysis.

  8. Silver, gold, and alloyed silver-gold nanoparticles: characterization and comparative cell-biologic action

    NASA Astrophysics Data System (ADS)

    Mahl, Dirk; Diendorf, Jörg; Ristig, Simon; Greulich, Christina; Li, Zi-An; Farle, Michael; Köller, Manfred; Epple, Matthias

    2012-10-01

    Silver, gold, and silver-gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly( N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15-25 nm), gold (5-6 nm), and silver-gold (50:50; 10-12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver-gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver-gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver-gold nanoparticles in the concentration range of 5-20 μg mL-1 induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  9. The load and release characteristics on a strong cationic ion-exchange fiber: kinetics, thermodynamics, and influences.

    PubMed

    Yuan, Jing; Gao, Yanan; Wang, Xinyu; Liu, Hongzhuo; Che, Xin; Xu, Lu; Yang, Yang; Wang, Qifang; Wang, Yan; Li, Sanming

    2014-01-01

    Ion-exchange fibers were different from conventional ion-exchange resins in their non-cross-linked structure. The exchange was located on the surface of the framework, and the transport resistance reduced significantly, which might mean that the exchange is controlled by an ionic reaction instead of diffusion. Therefore, this work aimed to investigate the load and release characteristics of five model drugs with the strong cationic ion-exchange fiber ZB-1. Drugs were loaded using a batch process and released in United States Pharmacopoeia (USP) dissolution apparatus 2. Opposing exchange kinetics, suitable for the special structure of the fiber, were developed for describing the exchange process with the help of thermodynamics, which illustrated that the load was controlled by an ionic reaction. The molecular weight was the most important factor to influence the drug load and release rate. Strong alkalinity and rings in the molecular structures made the affinity between the drug and fiber strong, while logP did not cause any profound differences. The drug-fiber complexes exhibited sustained release. Different kinds and concentrations of counter ions or different amounts of drug-fiber complexes in the release medium affected the release behavior, while the pH value was independent of it. The groundwork for in-depth exploration and further application of ion-exchange fibers has been laid.

  10. The load and release characteristics on a strong cationic ion-exchange fiber: kinetics, thermodynamics, and influences

    PubMed Central

    Yuan, Jing; Gao, Yanan; Wang, Xinyu; Liu, Hongzhuo; Che, Xin; Xu, Lu; Yang, Yang; Wang, Qifang; Wang, Yan; Li, Sanming

    2014-01-01

    Ion-exchange fibers were different from conventional ion-exchange resins in their non-cross-linked structure. The exchange was located on the surface of the framework, and the transport resistance reduced significantly, which might mean that the exchange is controlled by an ionic reaction instead of diffusion. Therefore, this work aimed to investigate the load and release characteristics of five model drugs with the strong cationic ion-exchange fiber ZB-1. Drugs were loaded using a batch process and released in United States Pharmacopoeia (USP) dissolution apparatus 2. Opposing exchange kinetics, suitable for the special structure of the fiber, were developed for describing the exchange process with the help of thermodynamics, which illustrated that the load was controlled by an ionic reaction. The molecular weight was the most important factor to influence the drug load and release rate. Strong alkalinity and rings in the molecular structures made the affinity between the drug and fiber strong, while logP did not cause any profound differences. The drug–fiber complexes exhibited sustained release. Different kinds and concentrations of counter ions or different amounts of drug–fiber complexes in the release medium affected the release behavior, while the pH value was independent of it. The groundwork for in-depth exploration and further application of ion-exchange fibers has been laid. PMID:25114504

  11. Ion release, fluoride charge of and adhesion of an orthodontic cement paste containing microcapsules.

    PubMed

    Burbank, Brant D; Slater, Michael; Kava, Alyssa; Doyle, James; McHale, William A; Latta, Mark A; Gross, Stephen M

    2016-02-01

    Dental materials capable of releasing calcium, phosphate and fluoride are of great interest for remineralization. Microencapsulated aqueous solutions of these ions in orthodontic cement demonstrate slow, sustained release by passive diffusion through a permeable membrane without the need for dissolution or etching of fillers. The potential to charge a dental material formulated with microencapsulated water with fluoride by toothbrushing with over the counter toothpaste and the effect of microcapsules on cement adhesion to enamel was determined. Orthodontic cements that contained microcapsules with water and controls without microcapsules were brushed with over-the-counter toothpaste and fluoride release was measured. Adhesion measurements were performed loading orthodontic brackets to failure. Cements that contained microencapsulated solutions of 5.0M Ca(NO3)2, 0.8M NaF, 6.0MK2HPO4 or a mixture of all three were prepared. Ion release profiles were measured as a function of time. A greater fluoride charge and re-release from toothbrushing was demonstrated compared to a control with no microcapsules. Adhesion of an orthodontic cement that contained microencapsulated remineralizing agents was 8.5±2.5MPa compared to the control without microcapsules which was of 8.3±1.7MPa. Sustained release of fluoride, calcium and phosphate ions from cement formulated with microencapsulated remineralizing agents was demonstrated. Orthodontic cements with microcapsules show a release of bioavailable fluoride, calcium, and phosphate ions near the tooth surface while having the ability to charge with fluoride and not effect the adhesion of the material to enamel. Incorporation of microcapsules in dental materials is promising for promoting remineralization. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Dating native gold by noble gas analyses

    NASA Technical Reports Server (NTRS)

    Niedermann, S.; Eugster, O.; Hofmann, B.; Thalmann, CH.; Reimold, W. U.

    1993-01-01

    Our recent work on He, Ne, and Ar in Alpine gold samples has demonstrated that gold is extremely retentive for He and could thus, in principle, be used for U/Th-He-4 dating. For vein-type gold from Brusson, Northern Italy, we derived a U/Th-He-4 age of 36 Ma, in agreement with the K-Ar formation age of associated muscovites and biotites. However, in placer gold from the Napf area, Central Switzerland, we observed large excesses of both He-4 and radiogenic Ar-40 (Ar-40 sub rad, defined as Ar-40-295.5-Ar-.36). The gas release systematics indicate two distinct noble gas components, one of which is released below about 800 C and the other one at the melting point of gold (1064 C). We now present results of He and Xe measurements in a 1 g placer gold sample from the river Kruempelgraben, as well as He and Ar data for Brusson vein-type gold and for gold from the Lily Gold Mine, South Africa. We calculate reasonable U/Th-He-4 as well as U-Xe ages based on those gases which are released at approximately 800 C. Probably the low-temperature components represent in-situ-produced radiogenic He and fission Xe, whereas the gases evolving when gold melts have been trapped during gold formation. Therefore, only the low-temperature components are relevant for dating purposes.

  13. Influence of Co content on the biocompatibility and bio-corrosion of super ferritic stainless steels

    NASA Astrophysics Data System (ADS)

    Yoo, Y. R.; Jang, S. G.; Nam, H. S.; Shim, G. T.; Cho, H. H.; Kim, J. G.; Kim, Y. S.

    2008-12-01

    Bio-metals require high corrosion resistance, because their biocompatibility is closely related to this parameter. Bio-metals release metal ions into the human body, leading to deleterious effects. Allergies, dermatitis, and asthma are the predominant systemic effects resulting in the human body. In particular, Ni is one of the most common causes of allergic contact dermatitis. In the present work, we designed new ferritic stainless steels wherein Ni is replaced with Co under consideration of allergic respondes and microstructural stability. This work focuses on the effect of Co content on the biocompatibility and corrosion resistance of high PRE super ferritic stainless steels in bio-solution and acidic chloride solution. In the case of the acidic chloride solution, with increasing Co content in the ferritic stainless steels, passive current density increased and critical pitting temperature (CPT) decreased. Also, in the passive state, AC impedance and repassivation rate were reduced. These results are attributed to the thermodynamic stability of cobalt ions, as indicated in the EpH diagram for a Co-H2O system. However, in the case of bio-solutions, with increasing Co content of the alloys, the passive current density decreased. AC impedance and repassivation rate meanwhile increased in the passive state. This is due to the increased ratios of Cr2O3/Cr(OH)3 and [Metal Oxide]/Metal + Metal Oxide] of the passive film formed in bio-solution.

  14. Colorimetric assay for lead ions based on the leaching of gold nanoparticles.

    PubMed

    Chen, Yi-You; Chang, Huan-Tsung; Shiang, Yen-Chun; Hung, Yu-Lun; Chiang, Cheng-Kang; Huang, Chih-Ching

    2009-11-15

    A colorimetric, label-free, and nonaggregation-based gold nanoparticles (Au NPs) probe has been developed for the detection of Pb(2+) in aqueous solution, based on the fact that Pb(2+) ions accelerate the leaching rate of Au NPs by thiosulfate (S(2)O(3)(2-)) and 2-mercaptoethanol (2-ME). Au NPs reacted with S(2)O(3)(2-) ions in solution to form Au(S(2)O(3))(2)(3-) complexes on the Au NP surfaces, leading to slight decreases in their surface plasmon resonance (SPR) absorption. Surface-assisted laser desorption/ionization time-of-flight ionization mass spectrometry (SALDI-TOF MS) data reveals the formation of Pb-Au alloys on the surfaces of the Au NPs in the presence of Pb(2+) ions and 2-ME. The formation of Pb-Au alloys accelerated the Au NPs rapidly dissolved into solution, leading to dramatic decreases in the SPR absorption. The 2-ME/S(2)O(3)(2-)-Au NP probe is highly sensitive (LOD = 0.5 nM) and selective (by at least 1000-fold over other metal ions) toward Pb(2+) ions, with a linear detection range (2.5 nM-10 muM) over nearly 4 orders of magnitude. The cost-effective probe allows rapid and simple determination of the concentrations of Pb(2+) ions in environmental samples (Montana soil and river), with results showing its great practicality for the detection of lead in real samples.

  15. Modification and Utilization of Nanoporous Gold for Loading and Release of Drugs

    NASA Astrophysics Data System (ADS)

    Al-badri, Ibtisam

    Nanoporous gold (np-Au) is a sponge-like structure of gold, which can be created by removing the less noble element from the precursor alloy, most typically silver or copper, using different chemical or electrochemical methods. It consists of interconnected ligaments and gaps between the ligaments, whose width can range from a few nanometers to a few hundreds of nanometers, creating a high surface area-to-volume ratio. Due to its many important properties (e.g., conductivity, high surface area-to-volume ratio, plasmonic response, biocompatibility, chemically inertness, and physically robustness), np-Au is suitable for different types of applications, including as a transducer for biosensors, in catalysis, for biomolecule separation, as a substrate for enzyme immobilization, and in drug delivery. The widths of the ligaments and gaps of np-Au can be easily tuned by varying conditions during the pre- or post-production process, for example, time kept in an acid bath and post-annealing (e.g. thermal, chemical, and electrochemical), depending on the requirement of the study. Thermal annealing is a commonly used process for tuning the ligaments and pore size of np-Au. However, the effects of thermal annealing on modification of ligaments and gaps sizes are not completely understood and more research needs to be done. Herein, we have explored the effect of annealing time and thickness of the np-Au sample on modification of ligaments and gaps. Furthermore, we used the electroless plating method to cover the pores or gaps partially on the surface without modifying the interior of np-Au. As-prepared np-Au was then studied as a platform for molecular loading and releasing kinetics for the possible use in drug delivery. We have found that simply applying the electroless deposition for 1 to 5 min can drastically decrease the rate of release of the molecules, and flow cell-based loading is the preferred way to load the molecules inside np-Au compared to the static method. The

  16. Effects of Ion-Releasing Tooth-Coating Material on Demineralization of Bovine Tooth Enamel

    PubMed Central

    Kawasaki, Koji; Kambara, Masaki

    2014-01-01

    We compared the effect of a novel ion-releasing tooth-coating material that contained S-PRG (surface-reaction type prereacted glass-ionomer) filler to that of non-S-PRG filler and nail varnish on the demineralization of bovine enamel subsurface lesions. The demineralization process of bovine enamel was examined using quantitative light-induced fluorescence (QLF) and electron probe microanalyzer (EPMA) measurement. Ion concentrations in demineralizing solution were measured using inductively coupled plasma atomic (ICP) emission spectrometry and an ion electrode. The nail varnish group and the non-S-PRG filler group showed linear demineralization. Although the nail varnish group and the non-S-PRG filler group showed linear demineralization, the S-PRG filler group did not. Further, plane-scanning by EPMA analysis in the S-PRG filler group showed no changes in Ca ion distribution, and F ions showed peak levels on the surface of enamel specimens. Most ions in the demineralizing solution were present at higher concentrations in the S-PRG filler group than in the other two groups. In conclusion, only the S-PRG filler-containing tooth-coating material released ions and inhibited demineralization around the coating. PMID:24578706

  17. Illustration of a fingerprinting method to isolate Gold King Release Metals from Background Concentrations in the San Juan River

    EPA Science Inventory

    Detecting the Gold King Mine metals as the release plume passed was difficult once it entered the San Juan River on August 8, 2015. Plume metals concentrations were relatively low after 200 km of travel and deposition in the Animas River while background concentrations of the sa...

  18. Zn(2+)-Triggered Drug Release from Biocompatible Zirconium MOFs Equipped with Supramolecular Gates.

    PubMed

    Tan, Li-Li; Li, Haiwei; Zhou, Yue; Zhang, Yuanyuan; Feng, Xiao; Wang, Bo; Yang, Ying-Wei

    2015-08-01

    A new theranostic nanoplatform, comprising of monodisperse zirconium metal-organic frameworks (MOFs) as drug carriers and carboxylatopillar[5]arene-based supramolecular switches as gating entities, is constructed, and controlled drug release triggered by bio-friendly Zn(2+) ions (abundant in synaptic vesicles) and auxiliary thermal stimulus is realized. This on-command drug delivery system exhibits large pore sizes for drug encapsulation, excellent biodegradability and biocompatibility, extremely low cytotoxicity and premature drug release, and superior dual-stimuli responsiveness, opening a new avenue in targeted drug delivery and controlled release of therapeutic agents, especially in the treatment of central nervous system diseases. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Metal Ion-Loaded Nanofibre Matrices for Calcification Inhibition in Polyurethane Implants

    PubMed Central

    Singh, Charanpreet; Wang, Xungai

    2017-01-01

    Pathologic calcification leads to structural deterioration of implant materials via stiffening, stress cracking, and other structural disintegration mechanisms, and the effect can be critical for implants intended for long-term or permanent implantation. This study demonstrates the potential of using specific metal ions (MI)s for inhibiting pathological calcification in polyurethane (PU) implants. The hypothesis of using MIs as anti-calcification agents was based on the natural calcium-antagonist role of Mg2+ ions in human body, and the anti-calcification effect of Fe3+ ions in bio-prosthetic heart valves has previously been confirmed. In vitro calcification results indicated that a protective covering mesh of MI-doped PU can prevent calcification by preventing hydroxyapatite crystal growth. However, microstructure and mechanical characterisation revealed oxidative degradation effects from Fe3+ ions on the mechanical properties of the PU matrix. Therefore, from both a mechanical and anti-calcification effects point of view, Mg2+ ions are more promising candidates than Fe3+ ions. The in vitro MI release experiments demonstrated that PU microphase separation and the structural design of PU-MI matrices were important determinants of release kinetics. Increased phase separation in doped PU assisted in consistent long-term release of dissolved MIs from both hard and soft segments of the PU. The use of a composite-sandwich mesh design prevented an initial burst release which improved the late (>20 days) release rate of MIs from the matrix. PMID:28644382

  20. Silver-Ion-Exchanged Nanostructured Zeolite X as Antibacterial Agent with Superior Ion Release Kinetics and Efficacy against Methicillin-Resistant Staphylococcus aureus.

    PubMed

    Chen, Shaojiang; Popovich, John; Iannuzo, Natalie; Haydel, Shelley E; Seo, Dong-Kyun

    2017-11-15

    As antibiotic resistance continues to be a major public health problem, antimicrobial alternatives have become critically important. Nanostructured zeolites have been considered as an ideal host for improving popular antimicrobial silver-ion-exchanged zeolites, because with very short diffusion path lengths they offer advantages in ion diffusion and release over their conventional microsized zeolite counterparts. Herein, comprehensive studies are reported on materials characteristics, silver-ion release kinetics, and antibacterial properties of silver-ion-exchanged nanostructured zeolite X with comparisons to conventional microsized silver-ion-exchanged zeolite (∼2 μm) as a reference. The nanostructured zeolites are submicrometer-sized aggregates (100-700 nm) made up of primary zeolite particles with an average primary particle size of 24 nm. The silver-ion-exchanged nanostructured zeolite released twice the concentration of silver ions at a rate approximately three times faster than the reference. The material exhibited rapid antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) with minimum inhibitory concentration (MIC) values ranging from 4 to 16 μg/mL after 24 h exposure in various growth media and a minimum bactericidal concentration (MBC; >99.9% population reduction) of 1 μg/mL after 2 h in water. While high concentrations of silver-ion-exchanged nanostructured zeolite X were ineffective at reducing MRSA biofilm cell viability, efficacy increased at lower concentrations. In consideration of potential medical applications, cytotoxicity of the silver-ion-exchanged nanostructured zeolite X was also investigated. After 4 days of incubation, significant reduction in eukaryotic cell viability was observed only at concentrations 4-16-fold greater than the 24 h MIC, indicating low cytotoxicity of the material. Our results establish silver-ion-exchanged nanostructured zeolites as an effective antibacterial material against dangerous

  1. Investigation of bio-oil produced by hydrothermal liquefaction of food waste using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Kostyukevich, Yury; Vlaskin, Mikhail; Borisova, Ludmila; Zherebker, Alexander; Perminova, Irina; Kononikhin, Alexey; Popov, Igor; Nikolaev, Eugene

    2018-02-01

    Recent research has revealed that more than 1.3 billion tons of food is wasted globally every year. The disposal of such huge biomass has become a challenge. In the present paper, we report the production of the bio-oil by hydrothermal liquefaction of three classes of food waste: meat, cheese and fruits. The highest yield of the bio-oil was observed for meat (∼60%) and cheese (∼75%), while for fruits, it was considerably low (∼10%). The molecular composition of the obtained bio-oil was investigated using ultrahigh resolution Fourier Transform Ion Cyclotron Resonance mass spectrometry and was found to be similar to that obtained from algae. Several thousand heteroatom compounds (N, N 2 , ON 2 , etc. classes) were reliably identified from each sample. It was found that bio-oils produced from meat and cheese have many compounds (∼90%) with common molecular formulas, while bio-oil produced from fruits differs considerably (∼30% of compounds are unique).

  2. Trapping Mode Dipolar DC Collisional Activation in the RF-Only Ion Guide of a Linear Ion Trap/Time-of-Flight Instrument for Gaseous Bio-Ion Declustering

    PubMed Central

    Webb, Ian K.; Gao, Yang; Londry, Frank A.; McLuckey, Scott A.

    2013-01-01

    The application of dipolar DC (DDC) to the RF-only ion guide (Q0) of a hybrid quadrupole/time-of-flight (QqTOF) mass spectrometer for collision-induced declustering of large bio-ions is described. As a broadband technique, ion trap DDC collision activation (CA) is employed to decluster ions simultaneously over a relatively broad mass-to-charge range. Declustering DDC CA can yield significantly narrower peaks relative to those observed in the absence of declustering methods, depending upon the extent of non-covalent adduction associated with the ions, and can also be used in conjunction with other methods, such as nozzle-skimmer collisional activation. The key experimental variables in the DDC experiment are the dipolar DC voltage (VDDC), VRF, and the time over which VDDC is applied. The VDDC/VRF ratio is key to the extent to which ion temperatures are elevated and also influences the upper mass-to-charge limit for ion storage. The VDDC/VRF ratio affects ion temperatures and upper m/z limit in opposing directions. That is, as the ratio increases, ion temperature increases whereas the upper m/z storage limit decreases. However, for a given VDDC/VRF ratio, the upper m/z storage limit can be increased by increasing VRF, at the expense of the lower m/z limit for ion storage. The key value of the approach is that it affords a relatively precise degree of control over ion temperatures as well as the time over which they are elevated to the higher temperature. The utility of the method is illustrated by the application of ion trap DDC CA in Q0 to oligonucleotide, protein, and multimeric protein complex analyte ions. PMID:24078247

  3. A gold nanohole array based surface-enhanced Raman scattering biosensor for detection of silver(I) and mercury(II) in human saliva†

    PubMed Central

    Zheng, Peng; Li, Ming; Jurevic, Richard; Cushing, Scott K.; Liu, Yuxin

    2015-01-01

    A surface-enhanced Raman scattering (SERS) biosensor has been developed by incorporating a gold nanohole array with a SERS probe (a gold nanostar@Raman-reporter@silica sandwich structure) into a single detection platform via DNA hybridization, which circumvents the nanoparticle aggregation and the inefficient Raman scattering issues. Strong plasmonic coupling between the Au nanostar and the Au nanohole array results in a large enhancement of the electromagnetic field, leading to amplification of the SERS signal. The SERS sensor has been used to detect Ag(i) and Hg(ii) ions in human saliva because both the metal ions could be released from dental amalgam fillings. The developed SERS sensor can be adapted as a general detection platform for non-invasive measurements of a wide range of analytes such as metal ions, small molecules, DNA and proteins in body fluids. PMID:26008641

  4. The X-ray photoelectron spectroscopy depth profiling and tribological characterization of ion-plated gold on various metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1983-01-01

    For the case of ion-plated gold, the graded interface between gold and a nickel substrate and a nickel substrate, such tribological properties as friction and microhardness are examined by means of X-ray photoelectron spectroscopy analysis and depth profiling. Sliding was conducted against SiC pins in both the adhesive process, where friction arises from adhesion between sliding surfaces, and abrasion, in which friction is due to pin indentation and groove-plowing. Both types of friction are influenced by coating depth, but with opposite trends: the graded interface exhibited the highest adhesion, but the lowest abrasion. The coefficient of friction due to abrasion is inversely related to hardness. Graded interface microhardness values are found to be the highest, due to an alloying effect. There is almost no interface gradation between the vapor-deposited gold film and the substrate.

  5. Inductively coupled plasma mass spectrometer with laser ablation metal ions release detection in the human mouth

    NASA Astrophysics Data System (ADS)

    Kueerova, Hana; Dostalova, Tatjana; Prochazkova, J.

    2002-06-01

    Presence of more dental alloys in oral cavity often causes pathological symptoms. Due to various and multi-faced symptomatology, they tend to be a source of significant problems not only for the patient but also for the dentist. Metal ions released from alloys can cause subjective and objective symptoms in mouth. The aim of this study was detection of metal elements presence in saliva. There were 4 groups of examined persons: with intact teeth (15 individuals) with metallic restorations, pathological currents 5-30 (mu) A, multi-faced subjective symptomatology and uncharacteristic objective diagnosis (32 patients), with metallic restorations and no subjective symptoms (14 persons) and with metallic restorations, without pathological currents and with problems related to galvanism (13 patients). Presence of 14 metal elements was checked by inductively coupled plasma mass spectrometer with laser ablation. Nd:YAG laser detector was used. There were significant differences in content of silver, gold and mercury between persons with intact teeth and other three groups. There were no differences found between subjects with and without galvanic currents, and presence of subjective and objective symptoms.

  6. Antimicrobial Activity of Silver Ions Released from Zeolites Immobilized on Cellulose Nanofiber Mats.

    PubMed

    Rieger, Katrina A; Cho, Hong Je; Yeung, Hiu Fai; Fan, Wei; Schiffman, Jessica D

    2016-02-10

    In this study, we exploit the high silver ion exchange capability of Linde Type A (LTA) zeolites and present, for the first time, electrospun nanofiber mats decorated with in-house synthesized silver (Ag(+)) ion exchanged zeolites that function as molecular delivery vehicles. LTA-Large zeolites with a particle size of 6.0 μm were grown on the surface of the cellulose nanofiber mats, whereas LTA-Small zeolites (0.2 μm) and three-dimensionally ordered mesoporous-imprinted (LTA-Meso) zeolites (0.5 μm) were attached to the surface of the cellulose nanofiber mats postsynthesis. After the three zeolite/nanofiber mat assemblies were ion-exchanged with Ag(+) ions, their ion release profiles and ability to inactivate Escherichia coli (E. coli) K12 were evaluated as a function of time. LTA-Large zeolites immobilized on the nanofiber mats displayed more than an 11 times greater E. coli K12 inactivation than the Ag-LTA-Large zeolites that were not immobilized on the nanofiber mats. This study demonstrates that by decorating nanometer to micrometer scale Ag(+) ion-exchanged zeolites on the surface of high porosity, hydrophilic cellulose nanofiber mats, we can achieve a tunable release of Ag(+) ions that inactivate bacteria faster and are more practical to use in applications over powder zeolites.

  7. Ion Release and Galvanic Corrosion of Different Orthodontic Brackets and Wires in Artificial Saliva.

    PubMed

    Tahmasbi, Soodeh; Sheikh, Tahereh; Hemmati, Yasamin B

    2017-03-01

    To investigate the galvanic corrosion of brackets manufactured by four different companies coupled with stainless steel (SS) or nickel-titanium (NiTi) wires in an artificial saliva solution. A total of 24 mandibular central incisor Roth brackets of four different manufacturers (American Orthodontics, Dentaurum, Shinye, ORJ) were used in this experimental study. These brackets were immersed in artificial saliva along with SS or NiTi orthodontic wires (0.016'', round) for 28 days. The electric potential difference of each bracket/ wire coupled with a saturated calomel reference electrode was measured via a voltmeter and recorded constantly. Corrosion rate (CR) was calculated, and release of ions was measured with an atomic absorption spectrometer. Stereomicroscope was used to evaluate all samples. Then, samples with corrosion were further assessed by scanning electron microscope and energy-dispersive X-ray spectroscopy. Two-way analysis of variance was used to analyze data. Among ions evaluated, release of nickel ions from Shinye brackets was significantly higher than that of other brackets. The mean potential difference was significantly lower in specimens containing a couple of Shinye brackets and SS wire compared with other specimens. No significant difference was observed in the mean CR of various groups (p > 0.05). Microscopic evaluation showed corrosion in two samples only: Shinye bracket coupled with SS wire and American Orthodontics bracket coupled with NiTi wire. Shinye brackets coupled with SS wire showed more susceptibility to galvanic corrosion. There were no significant differences among specimens in terms of the CR or released ions except the release of Ni ions, which was higher in Shinye brackets.

  8. Ion release from, and fluoride recharge of a composite with a fluoride-containing bioactive glass.

    PubMed

    Davis, Harry B; Gwinner, Fernanda; Mitchell, John C; Ferracane, Jack L

    2014-10-01

    Materials that are capable of releasing ions such as calcium and fluoride, that are necessary for remineralization of dentin and enamel, have been the topic of intensive research for many years. The source of calcium has most often been some form of calcium phosphate, and that for fluoride has been one of several metal fluoride or hexafluorophosphate salts. Fluoride-containing bioactive glass (BAG) prepared by the sol-gel method acts as a single source of both calcium and fluoride ions in aqueous solutions. The objective of this investigation was to determine if BAG, when added to a composite formulation, can be used as a single source for calcium and fluoride ion release over an extended time period, and to determine if the BAG-containing composite can be recharged upon exposure to a solution of 5000ppm fluoride. BAG 61 (61% Si; 31% Ca; 4% P; 3% F; 1% B) and BAG 81 (81% Si; 11% Ca; 4% P; 3% F; 1% B) were synthesized by the sol-gel method. The composite used was composed of 50/50 Bis-GMA/TEGDMA, 0.8% EDMAB, 0.4% CQ, and 0.05% BHT, combined with a mixture of BAG (15%) and strontium glass (85%) to a total filler load of 72% by weight. Disks were prepared, allowed to age for 24h, abraded, then placed into DI water. Calcium and fluoride release was measured by atomic absorption spectroscopy and fluoride ion selective electrode methods, respectively, after 2, 22, and 222h. The composite samples were then soaked for 5min in an aqueous 5000ppm fluoride solution, after which calcium and fluoride release was again measured at 2, 22, and 222h time points. Prior to fluoride recharge, release of fluoride ions was similar for the BAG 61 and BAG 81 composites after 2h, and also similar after 22h. At the four subsequent time points, one prior to, and three following fluoride recharge, the BAG 81 composite released significantly more fluoride ions (p<0.05). Both composites were recharged by exposure to 5000ppm fluoride, although the BAG 81 composite was recharged more than the BAG

  9. Photofunctional hybrids of lanthanide functionalized bio-MOF-1 for fluorescence tuning and sensing.

    PubMed

    Shen, Xiang; Yan, Bing

    2015-08-01

    A series of luminescent Ln(3+)@bio-MOF-1 (Ln=Eu, Tb, bio-MOF-1=Zn8(ad)4(BPDC)6O⋅2Me2NH2 (ad=adeninate, BPDC=biphenyldicarboxylate)) are synthesized via postsynthetic cation exchange by encapsulating lanthanide ions into an anionic metal-organic framework (MOF), and their photophysical properties are studied. After loading 2-thenoyltrifluroacetone (TTA) as sensitized ligand by a gas diffusion ("ship-in-bottle") method, it is found that the luminescent intensity of Eu(3+) is enhanced. Especially, when loading two different lanthanide cations into bio-MOF-1, the luminescent color can be tuned to close white (light pink) light output. Additionally, bio-MOF-1 and Eu(3+)@bio-MOF-1 are selected as representative samples for sensing metal ions. When bio-MOF-1 is immersed in the aqueous solutions of different metal ions, it shows highly sensitive sensing for Fe(3+) as well as Eu(3+)@bio-MOF-1 immersed in the DMF solutions of different metal ion. The results are benefit for the further application of functionalized bio-MOFs in practical fields. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Light induced cytosolic drug delivery from liposomes with gold nanoparticles.

    PubMed

    Lajunen, Tatu; Viitala, Lauri; Kontturi, Leena-Stiina; Laaksonen, Timo; Liang, Huamin; Vuorimaa-Laukkanen, Elina; Viitala, Tapani; Le Guével, Xavier; Yliperttula, Marjo; Murtomäki, Lasse; Urtti, Arto

    2015-04-10

    Externally triggered drug release at defined targets allows site- and time-controlled drug treatment regimens. We have developed liposomal drug carriers with encapsulated gold nanoparticles for triggered drug release. Light energy is converted to heat in the gold nanoparticles and released to the lipid bilayers. Localized temperature increase renders liposomal bilayers to be leaky and triggers drug release. The aim of this study was to develop a drug releasing system capable of releasing its cargo to cell cytosol upon triggering with visible and near infrared light signals. The liposomes were formulated using either heat-sensitive or heat- and pH-sensitive lipid compositions with star or rod shaped gold nanoparticles. Encapsulated fluorescent probe, calcein, was released from the liposomes after exposure to the light. In addition, the pH-sensitive formulations showed a faster drug release in acidic conditions than in neutral conditions. The liposomes were internalized into human retinal pigment epithelial cells (ARPE-19) and human umbilical vein endothelial cells (HUVECs) and did not show any cellular toxicity. The light induced cytosolic delivery of calcein from the gold nanoparticle containing liposomes was shown, whereas no cytosolic release was seen without light induction or without gold nanoparticles in the liposomes. The light activated liposome formulations showed a controlled content release to the cellular cytosol at a specific location and time. Triggering with visual and near infrared light allows good tissue penetration and safety, and the pH-sensitive liposomes may enable selective drug release in the intracellular acidic compartments (endosomes, lysosomes). Thus, light activated liposomes with gold nanoparticles are an attractive option for time- and site-specific drug delivery into the target cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Starch-based bio-elastomers functionalized with red beetroot natural antioxidant.

    PubMed

    Tran, Thi Nga; Athanassiou, Athanassia; Basit, Abdul; Bayer, Ilker S

    2017-02-01

    Red beetroot (RB) powder was incorporated into starch-based bio-elastomers to obtain flexible biocomposites with tunable antioxidant properties. Starch granules within the bio-elastomers affected the release of the antioxidant molecule betanin in the RB powder. The bio-elastomers were hydrophobic and resisted dissolution in water, hence the release of betanin was due to diffusion rather than polymer matrix disintegration. Hydrophobicity was maintained even after water immersion. Released betanin demonstrated highly efficient antioxidant scavenging activity against 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS(+)). RB powder was also found to increase the Young's modulus of the bio-elastomers without compromising their elongation ability. Infrared spectral analysis indicated weak interactions through hydrogen bonding among starch granules, RB powder and PDMS polymer within the bio-elastomers. Hence, as a simple but intelligent biomaterial consisting of mainly edible starch and RB powder the present bio-elastomers can be used in active packaging for a variety of pharmaceutical, medical, and food applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Target-induced formation of gold amalgamation on DNA-based sensing platform for electrochemical monitoring of mercury ion coupling with cycling signal amplification strategy.

    PubMed

    Chen, Jinfeng; Tang, Juan; Zhou, Jun; Zhang, Lan; Chen, Guonan; Tang, Dianping

    2014-01-31

    Heavy metal ion pollution poses severe risks in human health and environmental pollutant, because of the likelihood of bioaccumulation and toxicity. Driven by the requirement to monitor trace-level mercury ion (Hg(2+)), herein we construct a new DNA-based sensor for sensitive electrochemical monitoring of Hg(2+) by coupling target-induced formation of gold amalgamation on DNA-based sensing platform with gold amalgamation-catalyzed cycling signal amplification strategy. The sensor was simply prepared by covalent conjugation of aminated poly-T(25) oligonucleotide onto the glassy carbon electrode by typical carbodiimide coupling. Upon introduction of target analyte, Hg(2+) ion was intercalated into the DNA polyion complex membrane based on T-Hg(2+)-T coordination chemistry. The chelated Hg(2+) ion could induce the formation of gold amalgamation, which could catalyze the p-nitrophenol with the aid of NaBH4 and Ru(NH3)6(3+) for cycling signal amplification. Experimental results indicated that the electronic signal of our system increased with the increasing Hg(2+) level in the sample, and has a detection limit of 0.02nM with a dynamic range of up to 1000nM Hg(2+). The strategy afforded exquisite selectivity for Hg(2+) against other environmentally related metal ions. In addition, the methodology was evaluated for the analysis of Hg(2+) in spiked tap-water samples, and the recovery was 87.9-113.8%. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Source and Biological Response of Biochar Organic Compounds Released into Water; Relationships with Bio-Oil Composition and Carbonization Degree.

    PubMed

    Ghidotti, Michele; Fabbri, Daniele; Mašek, Ondřej; Mackay, Colin Logan; Montalti, Marco; Hornung, Andreas

    2017-06-06

    Water-soluble organic compounds (WSOCs) were extracted from corn stalk biochar produced at increasing pyrolysis temperatures (350-650 °C) and from the corresponding vapors, collected as bio-oil. WSOCs were characterized by gas chromatography (semivolatile fraction), negative electron spray ionization high resolution mass spectrometry (hydrophilic fraction) and fluorescence spectroscopy. The pattern of semivolatile WSOCs in bio-oil was dominated by aromatic products from lignocellulose, while in biochar was featured by saturated carboxylic acids from hemi/cellulose and lipids with concentrations decreasing with decreasing H/C ratios. Hydrophilic species in poorly carbonized biochar resembled those in bio-oil, but the increasing charring intensity caused a marked reduction in the molecular complexity and degree of aromaticity. Differences in the fluorescence spectra were attributed to the predominance of fulvic acid-like structures in biochar and lignin-like moieties in bio-oil. The divergence between pyrolysis vapors and biochar in the distribution of WSOCs with increasing carbonization was explained by the hydrophobic carbonaceous matrix acting like a filter favoring the release into water of carboxylic and fulvic acid-like components. The formation of these structures was confirmed in biochar produced by pilot plant pyrolysis units. Biochar affected differently shoot and root length of cress seedlings in germination tests highlighting its complex role on plant growth.

  14. Ion release from magnesium materials in physiological solutions under different oxygen tensions.

    PubMed

    Feyerabend, Frank; Drücker, Heiko; Laipple, Daniel; Vogt, Carla; Stekker, Michael; Hort, Norbert; Willumeit, Regine

    2012-01-01

    Although magnesium as degradable biomaterial already showed clinical proof of concepts, the design of new alloys requires predictive in vitro methods, which are still lacking. Incubation under cell culture conditions to obtain "physiological" corrosion may be a solution. The aim of this study was to analyse the influence of different solutions, addition of proteins and of oxygen availability on the corrosion of different magnesium materials (pure Mg, WE43, and E11) with different surface finishing. Oxygen content in solution, pH, osmolality and ion release were determined. Corrosion led to a reduction of oxygen in solution. The influence of oxygen on pH was enhanced by proteins, while osmolality was not influenced. Magnesium ion release was solution-dependent and enhanced in the initial phase by proteins with delayed release of alloying elements. The main corrosion product formed was magnesium carbonate. Therefore, cell culture conditions are proposed as first step toward physiological corrosion.

  15. Gold dendrites Co-deposited with M13 virus as a biosensor platform for nitrite ions.

    PubMed

    Seo, Yeji; Manivannan, Shanmugam; Kang, Inhak; Lee, Seung-Wuk; Kim, Kyuwon

    2017-08-15

    We developed a biosensor for nitrite ion on an electrode surface modified with M13 viruses and gold nanostructures. Gold dendritic nanostructures (Au-DNs) are electrochemically co-deposited from 4E peptides engineered M13 virus (M13 4E ) mixed electrolyte on to the ITO electrode. The M13 4E could specifically nucleate Au precursor (Gold (III) chloride), which enable the efficient growth of dendritic nanostructures, whereas such dendritic structures were not obtained in the presence of wild-type and Y3E peptides engineered M13 viruses. The structural features of the Au-DNs and their interfacing mechanism with ITO electrode are characterized by SEM, EDX and XRD analyses. The growth of Au-DNs at ITO electrode has been monitored by time dependent SEM study. The M13 4E induces the formation and plays a crucial role in shaping the dendritic morphology for Au. Biosensor electrode was constructed using Au-DNs modified electrode for nitrite ions and found improved sensitivity relative to the sensor electrode prepared from wild-type M13, Y3E peptides engineered M13 and without M13. Sensor electrode exhibited good selectivity toward target analyte from the possible interferences. Furthermore, 4E native peptides were used as additive to deposit Au nanostructures and it is compared with the structure and reactivity of the Au nanostructures prepared in the presence of M13 4E . Our novel biosensor fabrication can be extended to other metal and metal oxide nanostructures and its application might be useful to develop novel biosensor electrode for variety of biomolecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Plasmonic activity on gold nanoparticles embedded in nanopores formed in a surface layer of silica glass by swift-heavy-ion irradiation.

    PubMed

    Nomura, Ken-ichi; Ohki, Yoshimichi; Fujimaki, Makoto; Wang, Xiaomin; Awazu, Koichi; Komatsubara, Tetsuro

    2009-11-25

    Silica glass was irradiated by swift heavy ions by selecting the ion species and its energy in order to induce the largest damaged regions. These regions were then selectively etched by hydrofluoric acid vapour to form nanopores on the glass surface. Subsequently, gold nanoparticles were embedded into the nanopores by vacuum evaporation, followed by thermal treatment. In the new plasmonic structure obtained with these procedures, the localized surface plasmon excitation wavelength induced around the gold nanoparticles was found to show a redshift, which agreed well with the theoretical calculation, when water was introduced into the nanopores. This indicates that the fabricated structure can be used as a sensing element to detect the adhesion of substances such as biomolecules to the nanoparticles by measuring the redshift.

  17. Evaluation of calcium ion, hydroxyl ion release and pH levels in various calcium hydroxide based intracanal medicaments: An in vitro study

    PubMed Central

    Fulzele, Punit; Baliga, Sudhindra; Thosar, Nilima; Pradhan, Debaprya

    2011-01-01

    Aims: Evaluation of calcium ion and hydroxyl ion release and pH levels in various calcium hydroxide based intracanal medicaments. Objective: The purpose of this study was to evaluate calcium and hydroxyl ion release and pH levels of calcium hydroxide based products, namely, RC Cal, Metapex, calcium hydroxide with distilled water, along with the new gutta-percha points with calcium hydroxide. Materials and Methods: The materials were inserted in polyethylene tubes and immersed in deionized water. The pH variation, Ca++ and OH- release were monitored periodically for 1 week. Statistical Analysis Used: Statistical analysis was carried out using one-way analysis of variance and Tukey's post hoc tests with PASW Statistics version 18 software to compare the statistical difference. Results: After 1 week, calcium hydroxide with distilled water and RC Cal raised the pH to 12.7 and 11.8, respectively, while a small change was observed for Metapex, calcium hydroxide gutta-percha points. The calcium released after 1 week was 15.36 mg/dL from RC Cal, followed by 13.04, 1.296, 3.064 mg/dL from calcium hydroxide with sterile water, Metapex and calcium hydroxide gutta-percha points, respectively. Conclusions: Calcium hydroxide with sterile water and RC Cal pastes liberate significantly more calcium and hydroxyl ions and raise the pH higher than Metapex and calcium hydroxidegutta-percha points. PMID:22346155

  18. Recovering gold from thiosulfate leach pulps via ion exchange

    NASA Astrophysics Data System (ADS)

    Nicol, Michael J.; O'Malley, Glen

    2002-10-01

    Increasing environmental and occupational safety concerns about the use of cyanide in gold processing has increased interest in more acceptable alternative lixiviants, the most promising of which is thiosulfate. However, the thiosulfate process lacks a proven inpulp method of recovering the dissolved gold because activated carbon is not effective for the absorption of the gold-thiosulfate complex. This paper describes work aimed at evaluating the effectiveness of commercially available anion exchange resins for the recovery of gold from thiosulfate leach liquors and pulps.

  19. An overview of the Gold King Mine Release and its Transport and Fate in the Animas and San Juan Rivers

    EPA Science Inventory

    On August 5, 2015, a large acidic mine pool trapped behind a collapsed mine structure and rock debris in the Gold King Mine (GKM) was accidently breached releasing approximately 11.3 million liters (3 million gallons) of low pH (~3) metal contaminated mine drainage into a small t...

  20. Co-production of bio-ethanol, xylonic acid and slow-release nitrogen fertilizer from low-cost straw pulping solid residue.

    PubMed

    Huang, Chen; Ragauskas, Arthur J; Wu, Xinxing; Huang, Yang; Zhou, Xuelian; He, Juan; Huang, Caoxing; Lai, Chenhuan; Li, Xin; Yong, Qiang

    2018-02-01

    A novel bio-refinery sequence yielding varieties of co-products was developed using straw pulping solid residue. This process utilizes neutral sulfite pretreatment which under optimal conditions (160 °C and 3% (w/v) sulfite charge) provides 64.3% delignification while retaining 90% of cellulose and 67.3% of xylan. The pretreated solids exhibited excellent enzymatic digestibility, with saccharification yields of 86.9% and 81.1% for cellulose and xylan, respectively. After pretreatment, the process of semi-simultaneous saccharification and fermentation (S-SSF) and bio-catalysis was investigated. The results revealed that decreased ethanol yields were achieved when solid loading increased from 5% to 30%. An acceptable ethanol yield of 76.8% was obtained at 20% solid loading. After fermentation, bio-catalysis of xylose remaining in fermentation broth resulted in near 100% xylonic acid (XA) yield at varied solid loadings. To complete the co-product portfolio, oxidation ammoniation of the dissolved lignin successfully transformed it into biodegradable slow-release nitrogen fertilizer with excellent agricultural properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Synergistic cytotoxic effects of ions released by zinc-aluminum bronze and the metallic salts on osteoblastic cells.

    PubMed

    Grillo, Claudia A; Morales, María L; Mirífico, María V; Fernández Lorenzo de Mele, Mónica A

    2013-07-01

    The use of copper-based alloys for fixed dental crowns and bridges is increasingly widespread in several countries. The aim of this work is to study the dissolution of a zinc-aluminum-bronze and the cytotoxic effects of the ions released on UMR-106 osteoblastic cell line. Two sources of ions were used: (1) ions released by the metal alloy immersed in the cell culture and (2) salts of the metal ions. Conventional electrochemical techniques, atomic absorption spectroscopy [to obtain the average concentration of ions (AC) in solution], and energy dispersive X-ray (EDX) spectroscopy analysis were used to study the corrosion process. Corrosion tests revealed a strong influence of the composition of the electrolyte medium and the immersion time on the electrochemical response. The cytotoxicity was evaluated with (a) individual ions, (b) combinations of two ions, and (c) the mixture of all the ions released by a metal disc of the alloy. Importantly, synergistic cytotoxic effects were found when Al-Zn ion combinations were used at concentration levels lower than the cytotoxic threshold values of the individual ions. Cytotoxic effects in cells in the vicinity of the metal disc were also found. These results were interpreted considering synergistic effects and a diffusion controlled mechanism that yields to concentration levels, in the metal surroundings, several times higher than the measured AC value. Copyright © 2013 Wiley Periodicals, Inc.

  2. Formation of a uniform ion beam using octupole magnets for BioLEIR facility at CERN

    NASA Astrophysics Data System (ADS)

    Amin, T.; Barlow, R.; Ghithan, S.; Roy, G.; Schuh, S.

    2018-04-01

    The possibility to transform the Low Energy Ion Ring (LEIR) accelerator at CERN into a multidisciplinary, biomedical research facility (BioLEIR) was investigated based on a request from the biomedical community. BioLEIR aims to provide a unique facility with a range of fully stripped ion beams (e.g. He, Li, Be, B, C, N, O) and energies suitable for multidisciplinary biomedical, clinically-oriented research. Two horizontal and one vertical beam transport lines have been designed for transporting the extracted beam from LEIR to three experimental end-stations. The vertical beamline was designed for a maximum energy of 75 MeV/u, while the two horizontal beamlines shall deliver up to a maximum energy of 440 MeV/u. A pencil beam of 4.3 mm FWHM (Full Width Half Maximum) as well as a homogeneous broad beam of 40 × 40 mm2, with a beam homogeneity better than ±4%, are available at the first horizontal (H1) irradiation point, while only a pencil beam is available at the second horizontal (H2) and vertical (V) irradiation points. The H1 irradiation point shall be used to conduct systematic studies of the radiation effect from different ion species on cell-lines. The H1 beamline was designed to utilize two octupole magnets which transform the Gaussian beam distribution at the target location into an approximately uniformly distributed rectangular beam. In this paper, we report on the multi-particle tracking calculations performed using MAD-X software suite for the H1 beam optics to arrive at a homogeneous broad beam on target using nonlinear focusing techniques, and on those to create a Gaussian pencil beam on target by adjusting quadrupoles strengths and positions.

  3. Real-time monitoring of H2O2 release from single cells using nanoporous gold microelectrodes decorated with platinum nanoparticles.

    PubMed

    Xiao, Chong; Liu, Yan-Ling; Xu, Jia-Quan; Lv, Song-Wei; Guo, Shan; Huang, Wei-Hua

    2015-06-07

    Here, we report a self-supported nanoporous gold microelectrode decorated with well-dispersed and tiny platinum nanoparticles as an electrochemical nonenzymatic hydrogen peroxide biosensor. Nanoporous gold was fabricated by electrochemical alloying/dealloying and then small-sized platinum nanoparticles were electrodeposited uniformly on them. This novel hybrid nanostructure endows the sensor with high sensitivity and selectivity towards the reduction of hydrogen peroxide with a low detection limit of 0.3 nM. The sensor has been successfully applied for the measurement of H2O2 release from a single isolated human breast cancer cell, demonstrating its great potential for further physiological and pathological applications.

  4. A biomimetic colorimetric logic gate system based on multi-functional peptide-mediated gold nanoparticle assembly

    NASA Astrophysics Data System (ADS)

    Li, Yong; Li, Wang; He, Kai-Yu; Li, Pei; Huang, Yan; Nie, Zhou; Yao, Shou-Zhuo

    2016-04-01

    In natural biological systems, proteins exploit various functional peptide motifs to exert target response and activity switch, providing a functional and logic basis for complex cellular activities. Building biomimetic peptide-based bio-logic systems is highly intriguing but remains relatively unexplored due to limited logic recognition elements and complex signal outputs. In this proof-of-principle work, we attempted to address these problems by utilizing multi-functional peptide probes and the peptide-mediated nanoparticle assembly system. Here, the rationally designed peptide probes function as the dual-target responsive element specifically responsive to metal ions and enzymes as well as the mediator regulating the assembly of gold nanoparticles (AuNPs). Taking advantage of Zn2+ ions and chymotrypsin as the model inputs of metal ions and enzymes, respectively, we constructed the peptide logic system computed by the multi-functional peptide probes and outputted by the readable colour change of AuNPs. In this way, the representative binary basic logic gates (AND, OR, INHIBIT, NAND, IMPLICATION) have been achieved by delicately coding the peptide sequence, demonstrating the versatility of our logic system. Additionally, we demonstrated that the three-input combinational logic gate (INHIBIT-OR) could also be successfully integrated and applied as a multi-tasking biosensor for colorimetric detection of dual targets. This nanoparticle-based peptide logic system presents a valid strategy to illustrate peptide information processing and provides a practical platform for executing peptide computing or peptide-related multiplexing sensing, implying that the controllable nanomaterial assembly is a promising and potent methodology for the advancement of biomimetic bio-logic computation.In natural biological systems, proteins exploit various functional peptide motifs to exert target response and activity switch, providing a functional and logic basis for complex cellular

  5. Bone Cell–materials Interactions and Ni Ion Release of Anodized Equiatomic NiTi Alloy

    PubMed Central

    Bernard, Sheldon A.; Balla, Vamsi Krishna; Davies, Neal M.; Bose, Susmita; Bandyopadhyay, Amit

    2011-01-01

    Laser processed NiTi alloy was anodized for different durations in H2SO4 electrolyte with varying pH to create biocompatible surfaces with low Ni ion release as well as bioactive surfaces to enhance biocompatibility and bone cell-materials interactions. The anodized surfaces were assessed for their in vitro cell-materials interactions using human fetal osteoblast (hFOB) cells for 3, 7 and 11 days, and Ni ion release up to 8 weeks in simulated body fluids. The results were correlated with surface morphologies of anodized surfaces characterized using field-emission scanning electron microscopy (FESEM). The results show that the anodization creates a surface with nano/micro roughness depending on anodization conditions. The hydrophilicity of NiTi surface was found to improve after anodization due to lower contact angles in cell media, which dropped from 32° to < 5°. The improved wettability of anodized surfaces is further corroborated by their high surface energy comparable to that of cp Ti. Relatively high surface energy, especially polar component, and nano/micro surface features of anodized surfaces significantly increased the number of living cells and their adherence and growth on these surfaces. Finally, a significant drop in Ni ion release from 268 ± 11 to 136 ± 15 ppb was observed for NiTi surfaces after anodization. This work indicates that anodization of NiTi alloy has a positive influence on the surface energy and surface morphology, which in turn improve bone cell-materials interactions and reduce Ni ion release in vitro. PMID:21232641

  6. In vitro release of cupric ion from intrauterine devices: influence of frame, shape, copper surface area and indomethacin.

    PubMed

    Zhang, Shuangshuang; Li, Ying; Yu, Panpan; Chen, Tong; Zhou, Weisai; Zhang, Wenli; Liu, Jianping

    2015-02-01

    The release of cupric ion from copper intrauterine device (Cu-IUD) in human uterus is essential for contraception. However, excessive cupric ion will cause cytotoxic effect. In this paper, we investigated the influence of device characteristics (frame, copper surface area, shape, copper type and indomethacin) on copper release for the efficacy and adverse effects vary with IUD types which may correlate to their different release behaviors. Nine types of Cu-IUDs were selected and incubated in simulated uterine fluid. They were paired for comparison based on the device properties and the release of cupric ion was determined by flame atomic absorption spectrometer for about 160 days. The result showed that there was a burst release during the first month and the release rate tends to slow down and become steady afterwards. In addition, the copper release was mainly influenced by frame, indomethacin and copper type (copper wire and copper sleeve) while the shape variation had little effect on copper release throughout the experiment. Moreover, the influence of copper surface area was only noticeable during the first month. These findings were seldom reported before and may provide some useful information for the design of Cu-IUDs.

  7. Development and Evaluation of Oral Controlled Release Chlorpheniramine-Ion Exchange Resinate Suspension

    PubMed Central

    Kadam, A. U.; Sakarkar, D. M.; Kawtikwar, P. S.

    2008-01-01

    An oral controlled release suspension of chlorpheniramine maleate was prepared using ion-exchange resin technology. A strong cation exchange resin Indion 244 was utilized for the sorption of the drug and the drug resinates was evaluated for various physical and chemical parameters. The drug-resinate complex was microencapsulated with a polymer Eudragit RS 100 to further retard the release characteristics. Both the drug-resinate complex and microencapsulated drug resinate were suspended in a palatable aqueous suspension base and were evaluated for controlled release characteristic. Stability study indicated that elevated temperature did not alter the sustained release nature of the dosage form indicating that polymer membrane surrounding the core material remained intact throughout the storage period. PMID:20046790

  8. Characteristics of Metals Concentrations in in the Animas and San Juan Rivers during Passage of the Gold King Mine Release Plume

    EPA Science Inventory

    The accidental release of 11.3 million liters (~ 3,000,000 gallons) of acidic mine water from the Gold King Mine (GKM) in southwestern Colorado on August 5, 2015, created high concentrations of dissolved and particulate metals into the Animas River over about a 12-hour period. Th...

  9. The adsorption of helium atoms on small cationic gold clusters.

    PubMed

    Goulart, Marcelo; Gatchell, Michael; Kranabetter, Lorenz; Kuhn, Martin; Martini, Paul; Gitzl, Norbert; Rainer, Manuel; Postler, Johannes; Scheier, Paul; Ellis, Andrew M

    2018-04-04

    Adducts formed between small gold cluster cations and helium atoms are reported for the first time. These binary ions, Aun+Hem, were produced by electron ionization of helium nanodroplets doped with neutral gold clusters and were detected using mass spectrometry. For a given value of n, the distribution of ions as a function of the number of added helium atoms, m, has been recorded. Peaks with anomalously high intensities, corresponding to so-called magic number ions, are identified and interpreted in terms of the geometric structures of the underlying Aun+ ions. These features can be accounted for by planar structures for Aun+ ions with n ≤ 7, with the addition of helium having no significant effect on the structures of the underlying gold cluster ions. According to ion mobility studies and some theoretical predictions, a 3-D structure is expected for Au8+. However, the findings for Au8+ in this work are more consistent with a planar structure.

  10. Release of metal ions from fixed orthodontic appliance: an in vitro study in continuous flow system.

    PubMed

    Mikulewicz, Marcin; Chojnacka, Katarzyna; Wołowiec, Paulina

    2014-01-01

    To evaluate the release of metal ions from fixed orthodontic appliances. A new system for in vitro testing of dental materials was constructed and consisted of a thermostatic glass reactor that enabled immersion of the studied material. Experimental conditions reflected the human oral cavity, with a temperature of 37°C and a saliva flow rate of 0.5mL/min. The simulated fixed orthodontic appliance made of stainless steel was evaluated. Sampling was performed at several time points during the 28-day study, and the metal ion concentration was determined by inductively coupled plasma optical emission spectrometry. The total mass of released metal ions from the appliance during 4 weeks of the experiment was as follows nickel 18.7 μg, chromium 5.47 μg, copper 31.3 μg. The estimated doses of nickel, chromium, and copper determined by extrapolation of experimental data released during the treatment period were far below the toxic dose to humans. This shows that orthodontic treatment might not be a significant source of exposure to these metal ions.

  11. Annealing Effects on the Surface Plasmon of MgO Implanted with Gold

    NASA Technical Reports Server (NTRS)

    Ueda, A.; Mu, R.; Tung, Y. -S.; Henderson, D. O.; White, C. W.; Zuhr, R. A.; Zhu, Jane G.; Wang, P. W.

    1997-01-01

    Gold ion implantation was carried out with the energy of 1.1 MeV into (100) oriented MgO single crystal. Implanted doses are 1, 3, 6, 10 x 10(exp 16) ions/sq cm. The gold irradiation results in the formation of gold ion implanted layer with a thickness of 0.2 microns and defect formation. In order to form gold colloids from the as-implanted samples, we annealed the gold implanted MgO samples in three kinds of atmospheres: (1)Ar only, (2)H2 and Ar, and (3)O2 and Ar. The annealing over 1200 C enhanced the gold colloid formation which shows surface plasmon resonance band of gold. The surface plasmon bands of samples annealed in three kinds of atmospheres were found to be at 535 nm (Ar only), 524 nm(H2+Ar), and 560 nm (02+Ar), The band positions of surface plasmon can be reversibly changed by an additional annealing.

  12. Bone cell-materials interactions and Ni ion release of anodized equiatomic NiTi alloy.

    PubMed

    Bernard, Sheldon A; Balla, Vamsi Krishna; Davies, Neal M; Bose, Susmita; Bandyopadhyay, Amit

    2011-04-01

    A laser processed NiTi alloy was anodized for different times in H(2)SO(4) electrolyte with varying pH to create biocompatible surfaces with low Ni ion release as well as bioactive surfaces to enhance biocompatibility and bone cell-material interactions. The anodized surfaces were assessed for their in vitro cell-material interactions using human fetal osteoblast (hFOB) cells for 3, 7 and 11 days, and Ni ion release up to 8 weeks in simulated body fluids. The results were correlated with the surface morphologies of anodized surfaces characterized using field-emission scanning electron microscopy (FESEM). The results show that anodization creates a surface with nano/micro-roughness depending on the anodization conditions. The hydrophilicity of the NiTi surface was found to improve after anodization, as shown by the lower contact angles in cell medium, which dropped from 32° to <5°. The improved wettability of anodized surfaces is further corroborated by their high surface energy, comparable with that of commercially pure Ti. Relatively high surface energies, especially the polar component, and nano/micro surface features of anodized surfaces significantly increased the number of living cells and their adherence and growth on these surfaces. Finally, a significant drop in Ni ion release from 268±11 to 136±15 ppb was observed for NiTi surfaces after anodization. This work indicates that anodization of a NiTi alloy has a positive influence on the surface energy and surface morphology, which in turn improves bone cell-material interactions and reduces Ni ion release in vitro. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Nickel Ion Release from Three Types of Nickel-titanium-based Orthodontic Archwires in the As-received State and After Oral Simulation

    PubMed Central

    Ramazanzadeh, Barat Ali; Ahrari, Farzaneh; Sabzevari, Berahman; Habibi, Samaneh

    2014-01-01

    Background and aims. This study aimed to investigate release of nickel ion from three types of nickel-titanium-based wires in the as-received state and after immersion in a simulated oral environment. Materials and methods. Forty specimens from each of the single-strand NiTi (Rematitan "Lite"), multi-strand NiTi (SPEED Supercable) and Copper NiTi (Damon Copper NiTi) were selected. Twenty specimens from each type were used in the as-received state and the others were kept in deflected state at 37ºC for 2 months followed by autoclave sterilization. The as-received and recycled wire specimens were immersed in glass bottles containing 1.8 mL of artificial saliva for 28 days and the amount of nickel ion released into the electrolyte was determined using atomic absorption spectrophotometry. Results. The single-strand NiTi released the highest quantity of nickel ion in the as-received state and the multi-strand NiTi showed the highest ion release after oral simulation. The quantity of nickelion released from Damon Copper NiTi was the lowest in both conditions. Oral simulation followed by sterilization did not have a significant influence on nickel ion release from multi-strand NiTi and Damon Copper NiTi wires, but single-strand NiTi released statistically lower quantities of nickel ion after oral simulation. Conclusion. The multi-strand nature of Supercable did not enhance the potential of corrosion after immersion in the simulated oral environment. In vitro use of nickel-titanium-based archwires followed by sterilization did not significantly increase the amount of nickel ion released from these wires. PMID:25093049

  14. Anti-biofilm efficacy of 100 MeV gold ion irradiated polycarbonate against Salmonella typhi

    NASA Astrophysics Data System (ADS)

    Joshi, R. P.; Hareesh, K.; Bankar, A.; Sanjeev, G.; Asokan, K.; Kanjilal, D.; Dahiwale, S. S.; Bhoraskar, V. N.; Dhole, S. D.

    2017-12-01

    Polycarbonate (PC) films were irradiated by 100 MeV gold (Au7+) ions and characterized to study changes in its optical, chemical, surface morphology and thermal properties. UV-Visible spectroscopic results revealed the decrease in the optical band gap of PC after ion irradiation due to chain scission mainly at the carbonyl group which is corroborated by Fourier Transform Infrared spectroscopic results. X-ray diffractogram study showed decrease in crystallinity of PC film after irradiation. Scanning electron microscopic results showed the micropores formation in PC which results in surface roughening. Differential scanning calorimetric results revealed decrease in glass transition temperature indicating the decrease in molecular weight of PC corroborated by rheometric studies. PC films irradiated by 100 MeV Au7+ ions showed increased anti-biofilm activity against the human pathogen, Salmonella typhi (S. typhi). Morphology of S. typhi was changed due to stress of Au7+ irradiated PC. Cells length was increased with increasing fluences. The average cell length, cell volume and surface area was increased significantly (P<0.05) with increasing ion fluences. Biofilm formation was inhibited ≈ 20% at lower fluence and 96% at higher fluence, which observed to be enhanced anti-biofilm activity in Au7+ irradiated PC.

  15. Organic secondary ion mass spectrometry: sensitivity enhancement by gold deposition.

    PubMed

    Delcorte, A; Médard, N; Bertrand, P

    2002-10-01

    Hydrocarbon oligomers, high-molecular-weight polymers, and polymer additives have been covered with 2-60 nmol of gold/cm2 in order to enhance the ionization efficiency for static secondary ion mass spectrometry (s-SIMS) measurements. Au-cationized molecules (up to -3,000 Da) and fragments (up to the trimer) are observed in the positive mass spectra of metallized polystyrene (PS) oligomer films. Beyond 3,000 Da, the entanglement of polymer chains prevents the ejection of intact molecules from a "thick" organic film. This mass limit can be overcome by embedding the polymer chains in a low-molecular-weight matix. The diffusion of organic molecules over the metal surfaces is also demonstrated for short PS oligomers. In the case of high-molecular-weight polymers (polyethylene, polypropylene, PS) and polymer additives (Irganox 1010, Irgafos 168), the metallization procedure induces a dramatic increase of the fingerprint fragment ion yields as well as the formation of new Aucationized species that can be used for chemical diagnostics. In comparison with the deposition of submonolayers of organic molecules on metallic surfaces, metal evaporation onto organic samples provides a comparable sensitivity enhancement. The distinct advantage of the metal evaporation procedure is that it can be used for any kind of organic sample, irrespective of thickness, opening new perspectives for "real world" sample analysis and chemical imaging by s-SIMS.

  16. A biomimetic colorimetric logic gate system based on multi-functional peptide-mediated gold nanoparticle assembly.

    PubMed

    Li, Yong; Li, Wang; He, Kai-Yu; Li, Pei; Huang, Yan; Nie, Zhou; Yao, Shou-Zhuo

    2016-04-28

    In natural biological systems, proteins exploit various functional peptide motifs to exert target response and activity switch, providing a functional and logic basis for complex cellular activities. Building biomimetic peptide-based bio-logic systems is highly intriguing but remains relatively unexplored due to limited logic recognition elements and complex signal outputs. In this proof-of-principle work, we attempted to address these problems by utilizing multi-functional peptide probes and the peptide-mediated nanoparticle assembly system. Here, the rationally designed peptide probes function as the dual-target responsive element specifically responsive to metal ions and enzymes as well as the mediator regulating the assembly of gold nanoparticles (AuNPs). Taking advantage of Zn2+ ions and chymotrypsin as the model inputs of metal ions and enzymes, respectively, we constructed the peptide logic system computed by the multi-functional peptide probes and outputted by the readable colour change of AuNPs. In this way, the representative binary basic logic gates (AND, OR, INHIBIT, NAND, IMPLICATION) have been achieved by delicately coding the peptide sequence, demonstrating the versatility of our logic system. Additionally, we demonstrated that the three-input combinational logic gate (INHIBIT-OR) could also be successfully integrated and applied as a multi-tasking biosensor for colorimetric detection of dual targets. This nanoparticle-based peptide logic system presents a valid strategy to illustrate peptide information processing and provides a practical platform for executing peptide computing or peptide-related multiplexing sensing, implying that the controllable nanomaterial assembly is a promising and potent methodology for the advancement of biomimetic bio-logic computation.

  17. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams

    DOE PAGES

    Bang, W.; Albright, B. J.; Bradley, P. A.; ...

    2015-09-22

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has beenmore » unavailable to date. We have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.« less

  18. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams.

    PubMed

    Bang, W; Albright, B J; Bradley, P A; Gautier, D C; Palaniyappan, S; Vold, E L; Santiago Cordoba, M A; Hamilton, C E; Fernández, J C

    2015-09-22

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has been unavailable to date. Here we have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.

  19. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bang, W.; Albright, B. J.; Bradley, P. A.

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has beenmore » unavailable to date. We have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.« less

  20. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams

    NASA Astrophysics Data System (ADS)

    Bang, W.; Albright, B. J.; Bradley, P. A.; Gautier, D. C.; Palaniyappan, S.; Vold, E. L.; Cordoba, M. A. Santiago; Hamilton, C. E.; Fernández, J. C.

    2015-09-01

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has been unavailable to date. Here we have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.

  1. GOLD NANOPARTICLES: A REVIVAL IN PRECIOUS METAL ADMINISTRATION TO PATIENTS

    PubMed Central

    Thakor, AS; Jokerst, J; Zaveleta, C; Massoud, TF; Gambhir, SS

    2011-01-01

    Gold has been used as a therapeutic agent to treat a wide variety of rheumatic diseases including psoriatic arthritis, juvenile arthritis and discoid lupus erythematosus. Although the use of gold has been largely superseded by newer drugs, gold nanoparticles are being used effectively in laboratory based clinical diagnostic methods whilst concurrently showing great promise in vivo either as a diagnostic imaging agent or a therapeutic agent. For these reasons, gold nanoparticles are therefore well placed to enter mainstream clinical practice in the near future. Hence, the present review summarizes the chemistry, pharmacokinetics, bio-distribution, metabolism and toxicity of bulk gold in humans based on decades of clinical observation and experiments in which gold was used to treat patients with rheumatoid arthritis. The beneficial attributes of gold nanoparticles, such as their ease of synthesis, functionalization and shape control are also highlighted demonstrating why gold nanoparticles are an attractive target for further development and optimization. The importance of controlling the size and shape of gold nanoparticles to minimize any potential toxic side effects is also discussed. PMID:21846107

  2. Dental glass-reinforced composite for caries inhibition: Calcium phosphate ion release and mechanical properties

    PubMed Central

    Xu, Hockin H. K.; Moreau, Jennifer L.

    2010-01-01

    The two main challenges facing dental composite restorations are secondary caries and bulk fracture. Previous studies developed whisker-reinforced Ca-PO4 composites that were relatively opaque. The objective of this study was to develop an esthetic glass particle-reinforced, photo-cured calcium phosphate composite. Tetracalcium phosphate (TTCP) particles were incorporated into a resin for Ca and PO4 release, while glass particles provided reinforcement. Ion release and mechanical properties were measured after immersion in solutions with pH of 7, 5.5, and 4. For the composite containing 40% mass fraction of TTCP, incorporating glass fillers increased the strength (p < 0.05). Flexural strength (mean ± sd; n = 6) at 30% glass was (99 ± 18) MPa, higher than (54 ± 20) MPa at 0% glass (p < 0.05). Elastic modulus was 11 GPa at 30% glass, compared to 2 GPa without glass. At 28 d, the released Ca ion concentration was (4.61 ± 0.18) mmol/L at pH of 4, much higher than (1.14 ± 0.07) at pH of 5.5, and (0.27 ± 0.01) at pH of 7 (p < 0.05). PO4 release was also dramatically increased at cariogenic, acidic pH. The TTCP-glass composite had strength 2-3 fold that of a resin-modified glass ionomer control. In conclusion, the photo-cured TTCP-glass composite was “smart” and substantially increased the Ca and PO4 release when the pH was reduced from neutral to a cariogenic pH of 4, when these ions are most needed to inhibit tooth caries. Its mechanical properties were significantly higher than previous Ca, PO4 and fluoride releasing restoratives. Hence, the photo-cured TTCP-glass composite may have potential to provide the necessary combination of load-bearing and caries-inhibiting capabilities. PMID:19810118

  3. Observation of enhanced infrared absorption in silicon supersaturated with gold by pulsed laser melting of nanometer-thick gold films

    NASA Astrophysics Data System (ADS)

    Chow, Philippe K.; Yang, Wenjie; Hudspeth, Quentin; Lim, Shao Qi; Williams, Jim S.; Warrender, Jeffrey M.

    2018-04-01

    We demonstrate that pulsed laser melting (PLM) of thin 1, 5, and 10 nm-thick vapor-deposited gold layers on silicon enhances its room-temperature sub-band gap infrared absorption, as in the case of ion-implanted and PLM-treated silicon. The former approach offers reduced fabrication complexity and avoids implantation-induced lattice damage compared to ion implantation and pulsed laser melting, while exhibiting comparable optical absorptance. We additionally observed strong broadband absorptance enhancement in PLM samples made using 5- and 10-nm-thick gold layers. Raman spectroscopy and Rutherford backscattering analysis indicate that such an enhancement could be explained by absorption by a metastable, disordered and gold-rich surface layer. The sheet resistance and the diode electrical characteristics further elucidate the role of gold-supersaturation in silicon, revealing the promise for future silicon-based infrared device applications.

  4. Reversing an S-kink effect caused by interface degradation in organic solar cells through gold ion implantation in the PEDOT:PSS layer

    NASA Astrophysics Data System (ADS)

    Brenes-Badilla, D.; Coutinho, D. J.; Amorim, D. R. B.; Faria, R. M.; Salvadori, M. C.

    2018-04-01

    In this work, we performed a study on the recovery of the photovoltaic performance of an ITO/PEDOT:PSS/P3HT:PCBM/Ca/Al solar cell after the hole transport layer (PEDOT:PSS) had been degraded by contact with the environment. A device that was fully built in an inert environment exhibited a fill factor (FF) of 0.64, while the device whose hole transport layer was exposed to air presented a FF equal to 0.2. In addition, the J-V characteristic curve of the degraded device did not follow the photovoltaic pattern exhibiting the degenerate S shape. However, the elimination of the deleterious effect was achieved by bombarding gold ions on the contaminated surface of PEDOT:PSS by means of the Metal Plasma Immersion Ion Implantation technique. Due to the low energy of the ionic beam of gold, the implanted gold atoms were located at few nanometers off the surface, forming nanometric clusters, that is, gold nanoparticles. Most probably, the degradation of the J-V photovoltaic curve, represented by the S-kink effect, was caused by the appearance of a potential barrier at PEDOT:PSS/P3HT:PCBM interface, which was demolished by the gold nanoparticles that have work function close to HOMO of P3HT. This S-kink effect was also simulated by using an equivalent circuit model constituted by a two-diode circuit, one of which plays the role of the undesirable potential barrier formed at the PEDOT:PSS/P3HT:PCBM interface. Our analysis shows that deposition of gold nanoparticles next to the interface recovers the good hole injection condition from the PEDOT:PSS into the active layer, restoring the fill factor and the device efficiency.

  5. Surface ligand controls silver ion release of nanosilver and its antibacterial activity against Escherichia coli.

    PubMed

    Long, Yan-Min; Hu, Li-Gang; Yan, Xue-Ting; Zhao, Xing-Chen; Zhou, Qun-Fang; Cai, Yong; Jiang, Gui-Bin

    2017-01-01

    Understanding the mechanism of nanosilver-dependent antibacterial activity against microorganisms helps optimize the design and usage of the related nanomaterials. In this study, we prepared four kinds of 10 nm-sized silver nanoparticles (AgNPs) with dictated surface chemistry by capping different ligands, including citrate, mercaptopropionic acid, mercaptohexanoic acid, and mercaptopropionic sulfonic acid. Their surface-dependent chemistry and antibacterial activities were investigated. Owing to the weak bond to surface Ag, short carbon chain, and low silver ion attraction, citrate-coated AgNPs caused the highest silver ion release and the strongest antibacterial activity against Escherichia coli , when compared to the other tested AgNPs. The study on the underlying antibacterial mechanisms indicated that cellular membrane uptake of Ag, NAD + /NADH ratio increase, and intracellular reactive oxygen species (ROS) generation were significantly induced in both AgNP and silver ion exposure groups. The released silver ions from AgNPs inside cells through a Trojan-horse-type mechanism were suggested to interact with respiratory chain proteins on the membrane, interrupt intracellular O 2 reduction, and induce ROS production. The further oxidative damages of lipid peroxidation and membrane breakdown caused the lethal effect on E. coli . Altogether, this study demonstrated that AgNPs exerted antibacterial activity through the release of silver ions and the subsequent induction of intracellular ROS generation by interacting with the cell membrane. The findings are helpful in guiding the controllable synthesis through the regulation of surface coating for medical care purpose.

  6. Coverage Dependent Charge Reduction of Cationic Gold Clusters on Surfaces Prepared Using Soft Landing of Mass-selected Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

    2012-11-29

    The ionic charge state of monodisperse cationic gold clusters on surfaces may be controlled by selecting the coverage of mass-selected ions soft landed onto a substrate. Polydisperse diphosphine-capped gold clusters were synthesized in solution by reduction of chloro(triphenylphosphine)gold(I) with borane tert-butylamine in the presence of 1,3-bis(diphenylphosphino)propane. The polydisperse gold clusters were introduced into the gas phase by electrospray ionization and mass selection was employed to select a multiply charged cationic cluster species (Au11L53+, m/z = 1409, L = 1,3-bis(diphenylphosphino)propane) which was delivered to the surfaces of four different self-assembled monolayers on gold (SAMs) at coverages of 1011 and 1012 clusters/mm2.more » Employing the spatial profiling capabilities of in-situ time-of-flight secondary ion mass spectrometry (TOF-SIMS) it is shown that, in addition to the chemical functionality of the monolayer (as demonstrated previously: ACS Nano, 2012, 6, 573) the coverage of cationic gold clusters on the surface may be used to control the distribution of ionic charge states of the soft-landed multiply charged clusters. In the case of a 1H,1H,2H,2H-perfluorodecanethiol SAM (FSAM) almost complete retention of charge by the deposited Au11L53+ clusters was observed at a lower coverage of 1011 clusters/mm2. In contrast, at a higher coverage of 1012 clusters/mm2, pronounced reduction of charge to Au11L52+ and Au11L5+ was observed on the FSAM. When soft landed onto 16- and 11-mercaptohexadecanoic acid surfaces on gold (16,11-COOH-SAMs), the mass-selected Au11L53+ clusters exhibited partial reduction of charge to Au11L52+ at lower coverage and additional reduction of charge to both Au11L52+ and Au11L5+ at higher coverage. The reduction of charge was found to be more pronounced on the surface of the shorter (thinner) C11 than the longer (thicker) C16-COOH-SAM. On the surface of the 1-dodecanethiol (HSAM) monolayer, the most abundant charge

  7. Sustained release of antibiotic complexed by multivalent ion: in vitro and in vivo study for the treatment of peritonitis.

    PubMed

    Na, Seung Yeon; Oh, Se Heang; Kim, Tae Ho; Yoon, Jin A; Lee, In Soo; Lee, Jin Ho

    2014-12-10

    The main aims of this study are (i) the development of an antibiotic complexed with multivalent ion, which can allow sustained release of the antibiotic without any additional matrix or difficult process and (ii) the feasibility study of the ion-complexed antibiotic as a therapeutic technique for peritonitis treatment. An ion-complexed antibiotic is prepared by simple mixing of two aqueous solutions containing an ionized (water-soluble) drug (tetracycline) and a multivalent counter ionic compound. The ion-complexed antibiotic shows a continuous release of the antibiotic up to 21 days, and thus prolonged anti-bacterial effect by gradual ionic exchange between the multivalent ions in the complex and same-charged monovalent ions in surrounding medium. From the in vivo animal study using a cecum perforated peritonitis mouse model, the ion-complexed antibiotic group shows sufficient anti-bacterial effect and thus effectively treat the peritonitis because of the extermination of the contaminated enteric bacteria in the peritoneum during wound healing of injury cecum (by the sustained release of antibiotic from the ion complex). These results suggest that the ion-complexed antibiotic system may be promising for the effective treatment of the peritonitis caused by frequent gastrointestinal defect in clinical fields. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Bio-reinforced self-healing concrete using magnetic iron oxide nanoparticles.

    PubMed

    Seifan, Mostafa; Sarmah, Ajit K; Ebrahiminezhad, Alireza; Ghasemi, Younes; Samani, Ali Khajeh; Berenjian, Aydin

    2018-03-01

    Immobilization has been reported as an efficient technique to address the bacterial vulnerability for application in bio self-healing concrete. In this study, for the first time, magnetic iron oxide nanoparticles (IONs) are being practically employed as the protective vehicle for bacteria to evaluate the self-healing performance in concrete environment. Magnetic IONs were successfully synthesized and characterized using different techniques. The scanning electron microscope (SEM) images show the efficient adsorption of nanoparticles to the Bacillus cells. Microscopic observation illustrates that the incorporation of the immobilized bacteria in the concrete matrix resulted in a significant crack healing behavior, while the control specimen had no healing characteristics. Analysis of bio-precipitates revealed that the induced minerals in the cracks were calcium carbonate. The effect of magnetic immobilized cells on the concrete water absorption showed that the concrete specimens supplemented with decorated bacteria with IONs had a higher resistance to water penetration. The initial and secondary water absorption rates in bio-concrete specimens were 26% and 22% lower than the control specimens. Due to the compatible behavior of IONs with the concrete compositions, the results of this study proved the potential application of IONs for developing a new generation of bio self-healing concrete.

  9. Synthesis and antimicrobial activity of gold/silver-tellurium nanostructures.

    PubMed

    Chang, Hsiang-Yu; Cang, Jinshun; Roy, Prathik; Chang, Huan-Tsung; Huang, Yi-Cheng; Huang, Chih-Ching

    2014-06-11

    Gold-tellurium nanostructures (Au-Te NSs), silver-tellurium nanostructures (Ag-Te NSs), and gold/silver-tellurium nanostructures (Au/Ag-Te NSs) have been prepared through galvanic reactions of tellurium nanotubes (Te NTs) with Au(3+), Ag(+), and both ions, respectively. Unlike the use of less environmentally friendly hydrazine, fructose as a reducing agent has been used to prepare Te NTs from TeO2 powders under alkaline conditions. The Au/Ag-Te NSs have highly catlaytic activity to convert nonfluorescent Amplex Red to form fluorescent product, revealing their great strength of generating reactive oxygen species (ROS). Au/Ag-Te NSs relative to the other two NSs exhibit greater antimicrobial activity toward the growth of E. coli, S. enteritidis, and S. aureus; the minimal inhibitory concentration (MIC) values of Au/Ag-Te NSs were much lower (>10-fold) than that of Ag-Te NSs and Au-Te NSs. The antibacterial activity of Au/Ag-Te NSs is mainly due to the release of Ag(+) ions and Te-related ions and also may be due to the generated ROS which destroys the bacteria membrane. In vitro cytotoxicity and hemolysis analyses have revealed their low toxicity in selected human cell lines and insignificant hemolysis in red blood cells. In addition, inhibition zone measurements using a Au/Ag-Te NSs-loaded konjac jelly film have suggested that it has great potential in practial application such as wound dressing for reducing bacterial wound infection. Having great antibacterial activitiy and excellent biocompatibility, the low-cost Au/Ag-Te NSs hold great potential as effective antimicrobial drugs.

  10. Preparation, characterization, and optical properties of gold, silver, and gold-silver alloy nanoshells having silica cores.

    PubMed

    Kim, Jun-Hyun; Bryan, William W; Lee, T Randall

    2008-10-07

    This report describes the structural and optical properties of a series of spherical shell/core nanoparticles in which the shell is comprised of a thin layer of gold, silver, or gold-silver alloy, and the core is comprised of a monodispersed silica nanoparticle. The silica core particles were prepared using the Stöber method, functionalized with terminal amine groups, and then seeded with small gold nanoparticles (approximately 2 nm in diameter). The gold-seeded silica particles were coated with a layer of gold, silver, or gold-silver alloy via solution-phase reduction of an appropriate metal ion or mixture of metal ions. The size, morphology, and elemental composition of the composite nanoparticles were characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, thermal gravimetric analysis (TGA), dynamic light scattering (DLS), and transmission electron microscopy (TEM). The optical properties of the nanoparticles were analyzed by UV-vis spectroscopy, which showed strong absorptions ranging from 400 nm into the near-IR region, where the position of the plasmon band reflected not only the thickness of the metal shell, but also the nature of the metal comprising the shell. Importantly, the results demonstrate a new strategy for tuning the position of the plasmon resonance without having to vary the core diameter or the shell thickness.

  11. Fe(Ⅲ) ions enhanced catalytic properties of (BiO)2CO3 nanowires and mechanism study for complete degradation of xanthate.

    PubMed

    Guo, Yujiao; Cui, Kuixin; Hu, Mingyi; Jin, Shengming

    2017-08-01

    The wire-like Fe 3+ -doped (BiO) 2 CO 3 photocatalyst was synthesized by a hydrothermal method. The photocatalytic property of Fe 3+ -doped (BiO) 2 CO 3 nanowires was evaluated through degradation of sodium isopropyl xanthate under UV-visible light irradiation. The as-prepared Fe 3+ -doped (BiO) 2 CO 3 nanowires were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), UV-visible diffuse reflectance spectroscopy (UV-vis DRS), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) in detail. The results of XRD showed that the crystallinity of (BiO) 2 CO 3 nanowires decreased when Fe 3+ ions were introduced into the solution system. XPS results illustrated that xanthate could be absorbed on the surface of Fe 3+ -doped (BiO) 2 CO 3 nanowires to produce BiS bond at the beginning of the reaction, which could broaden the visible light absorption. FTIR spectra confirmed the formation of SO 4 2- after photocatalytic decomposition of xanthate solution. The Fe 3+ -doped (BiO) 2 CO 3 nanowires showed an enhanced photocatalytic activity for decomposition of xanthate due to the narrower band gap and larger BET surface area, comparing with pure (BiO) 2 CO 3 nanowires. By the results of UV-vis spectra of the solution and FTIR spectra of recycled Fe 3+ -doped (BiO) 2 CO 3 , the xanthate was oxidized completely into CO 2 and SO 4 2- . The photocatalytic degradation process of xanthate followed a pseudo-second-order kinetics model. The mechanism of enhanced photocatalytic activity was proposed as well. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Glutathione-facilitated design and fabrication of gold nanoparticle-based logic gates and keypad lock.

    PubMed

    Huang, Zhenzhen; Wang, Haonan; Yang, Wensheng

    2014-07-21

    In this paper, we describe how we developed a simple design and fabrication method for logic gates and a device by using a commercially available tripeptide, namely glutathione (GSH), together with metal ions and disodium ethylenediaminetetraacetate (EDTA) to control the dispersion and aggregation of gold nanoparticles (NPs). With the fast adsorption of GSH on gold NPs and the strong coordination of GSH with metal ions, the addition of GSH and Pb(2+) ions immediately resulted in the aggregation of gold NPs, giving rise to an AND function. Either Pb(2+) or Ba(2+) ions induced the aggregation of gold NPs in the presence of GSH, supporting an OR gate. Based on the fact that EDTA has a strong capacity to bind metal ions, thus preventing the aggregation of gold NPs, an INHIBIT gate was also fabricated. More interestingly, we found that the addition sequence of GSH and Hg(2+) ions influenced the aggregation of gold NPs in a controlled manner, which was used to design a sequential logic gate and a three-input keypad lock for potential use in information security. The GSH strategy addresses concerns of low cost, simple fabrication, versatile design and easy operation, and offers a promising platform for the development of functional logic systems.

  13. Gold nano-particle formation from crystalline AuCN: Comparison of thermal, plasma- and ion-beam activated decomposition

    NASA Astrophysics Data System (ADS)

    Beck, Mihály T.; Bertóti, Imre; Mohai, Miklós; Németh, Péter; Jakab, Emma; Szabó, László; Szépvölgyi, János

    2017-02-01

    In this work, in addition to the conventional thermal process, two non-conventional ways, the plasma and ion beam activations are described for preparing gold nanoparticles from microcrystalline AuCN precursor. The phase formation at plasma and ion beam treatments was compared with that at thermal treatments and the products and transformations were characterized by thermogravimetry-mass-spectrometry (TG-MS), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). TG-MS measurements in Ar atmosphere revealed that AuCN decomposition starts at 400 °C and completes at ≈700 °C with evolution of gaseous (CN)2. XPS and TEM show that in heat treatment at 450 °C for 1 h in Ar, loss of nitrogen and carbon occurs and small, 5-30 nm gold particles forms. Heating at 450 °C for 10 h in sealed ampoule, much larger, 60-200 nm size and well faceted Au particles develop together with a fibrous (CN)n polymer phase, and the Au crystallites are covered by a 3-5 nm thick polymer shell. Low pressure Ar plasma treatment at 300 eV energy results in 4-20 nm size Au particles and removes most of the nitrogen and part of carbon. During Ar+ ion bombardment with 2500 eV energy, 5-30 nm size Au crystallites form already in 10 min, with preferential loss of nitrogen and with increased amount of carbon residue. The results suggest that plasma and ion beam activation, acting similarly to thermal treatment, may be used to prepare Au nanoparticles from AuCN on selected surface areas either by depositing AuCN precursors on selected regions or by focusing the applied ionized radiation. Thus they may offer alternative ways for preparing tailor-made catalysts, electronic devices and sensors for different applications.

  14. Removal of Copper(II) Ions in Aqueous Solutions Using Tannin-Rich Plants as Natural Bio-Adsorbents

    NASA Astrophysics Data System (ADS)

    Paksamut, J.; Boonsong, P.

    2018-03-01

    In this study, the purpose of our interest is to investigatethe adsorption behavior of copper (II) ions in aqueous solution using some tannin-rich plants as natural bio-adsorbents such as mangosteen peels (Garciniamangostana L.), cassava leaves (Manihotesculenta Crantz) and Thai copper pod leaves (Sennasiamea (Lam.)) as powder form in different dosage of adsorbent plant materials.The adsorption capacities at different pH of solution and contact time were performed.All the experiments in this studywere chosen at room temperature by batch technique. From the experimental results showed that cassava leaves gave better adsorbent properties than mangosteen peels and Thai copper pod leaves. The increasing dosage of all adsorbents and contact time have been found to increase adsorption capacities. In this respect, the adsorption capacities depend crucially on the adsorbents and contact time. The optimum pH of copper (II) ions adsorption was pH4. According to this work, it was observed that bioadsorbent materials from tannin-rich plants could be used to remove copper (II) ions from aqueous solutions.

  15. Gold recovery from low concentrations using nanoporous silica adsorbent

    NASA Astrophysics Data System (ADS)

    Aledresse, Adil

    The development of high capacity adsorbents with uniform porosity denoted 5%MP-HMS (5% Mercaptopropyl-Hexagonal Mesoporous Structure) to extract gold from noncyanide solutions is presented. The preliminary studies from laboratory simulated noncyanide gold solutions show that the adsorption capacities of these materials are among the highest reported. The high adsorption saturation level of these materials, up to 1.9 mmol/g (37% of the adsorbent weight) from gold chloride solutions (potassium tetrachloroaurate) and 2.9 mmol/g (57% of the adsorbent weight) from gold bromide solutions (potassium tetrabromoaurate) at pH = 2, is a noteworthy feature of these materials. This gold loading from [AuC4]- and [AuBr4 ]- solutions corresponds to a relative Au:S molar ratio of 2.5:1 and 3.8:1, respectively. These rates are significantly higher than the usual 1:1 (Au:S) ratio expected for metal ion binding with the material. The additional gold ions loaded have been spontaneously reduced to metallic gold in the mesoporous material. Experimental studies indicated high maximum adsorptions of gold as high as 99.9% recovery. Another promising attribute of these materials is their favourable adsorption kinetics. The MP-HMS reaches equilibrium (saturation) in less than 1 minute of exposure in gold bromide and less than 10 minutes in gold chloride. The MP-HMS materials adsorption is significantly improved by agitation and the adsorption capacity of Au (III) ions increases with the decrease in pH. The recovery of adsorbed gold and the regeneration of spent adsorbent were investigated for MP-HMS adsorbent. The regenerated adsorbent (MP-HMS) maintained its adsorption capacity even after repeated use and all the gold was successfully recovered from the spent adsorbent. For the fist time, a promising adsorbent system has been found that is capable of effectively concentrating gold thiosulphate complexes, whereas conventional carbon-inpulp (CIP) and carbon-in-leach (CIL) systems fail. The

  16. Development of a 3D origami multiplex electrochemical immunodevice using a nanoporous silver-paper electrode and metal ion functionalized nanoporous gold-chitosan.

    PubMed

    Li, Weiping; Li, Long; Li, Meng; Yu, Jinghua; Ge, Shenguang; Yan, Mei; Song, Xianrang

    2013-10-25

    A simple and sensitive 3D microfluidic origami multiplex electrochemical immunodevice was developed for the first time using a novel nanoporous silver modified paper working electrode as a sensor platform and different metal ion functionalized nanoporous gold-chitosan as a tracer.

  17. Oligonucleotide-functionalized gold nanoparticles-enhanced QCM-D sensor for mercury(II) ions with high sensitivity and tunable dynamic range.

    PubMed

    Chen, Qiang; Wu, Xiaojie; Wang, Dingzhong; Tang, Wei; Li, Na; Liu, Feng

    2011-06-21

    A quartz crystal microbalance with dissipation monitoring (QCM-D) sensor was developed for highly sensitive and specific detection of mercury(II) ions (Hg(2+)) with a tunable dynamic range, using oligonucleotide-functionalized gold nanoparticles (GNPs) for both frequency and dissipation amplification. The fabrication of the sensor employed a 'sandwich-type' strategy, and formation of T-Hg(2+)-T structures in linker DNA reduced the hybridization of the GNPs-tagged DNA on the gold electrode, which could be used as the molecular switch for Hg(2+) sensing. This QCM-D mercury sensor showed a linear response of 10-200 nM, with detection limits of 4 nM and 7 nM for frequency and dissipation measurements, respectively. Moreover, the dynamic range of the sensor could be tuned by simply altering the concentration of linker DNA without designing new sensors in the cases where detection of Hg(2+) at different levels is required. This sensor afforded excellent selectivity toward Hg(2+) compared with other potential coexisting metal ions. The feasibility of the sensor was demonstrated by analyzing Hg(2+)-spiked tap- and lake-water samples with satisfactory recoveries. The proposed approach extended the application of the QCM-D system in metal ions sensing, and could be adopted for the detection of other analytes when complemented with the use of functional DNA structures.

  18. Localized Surface Plasmon Resonance with Five-Branched Gold Nanostars in a Plastic Optical Fiber for Bio-Chemical Sensor Implementation

    PubMed Central

    Cennamo, Nunzio; D'Agostino, Girolamo; Donà, Alice; Dacarro, Giacomo; Pallavicini, Piersandro; Pesavento, Maria; Zeni, Luigi

    2013-01-01

    In this paper a refractive index sensor based on localized surface plasmon resonance (LSPR) in a Plastic Optical Fiber (POF), is presented and experimentally tested. LSPR is achieved exploiting five-branched gold nanostars (GNS) obtained using Triton X-100 in a seed-growth synthesis. They have the uncommon feature of three localized surface plasmon resonances. The strongest LSPRs fall in two ranges, one in the 600–900 nm range (LSPR 2) and the other one in the 1,100–1,600 nm range (LSPR 3), both sensible to refractive index changes. Anyway, due to the extremely strong attenuation (>102 dB/m) of the employed POF in the 1,100–1,600 nm range, only LSPR 2 will be exploited for refractive index change measurements, useful for bio-chemical sensing applications, as a proof of principle of the possibility of realizing a compact, low cost and easy-to-use GNS based device. PMID:24172284

  19. Localized surface plasmon resonance with five-branched gold nanostars in a plastic optical fiber for bio-chemical sensor implementation.

    PubMed

    Cennamo, Nunzio; D'Agostino, Girolamo; Donà, Alice; Dacarro, Giacomo; Pallavicini, Piersandro; Pesavento, Maria; Zeni, Luigi

    2013-10-29

    In this paper a refractive index sensor based on localized surface plasmon resonance (LSPR) in a Plastic Optical Fiber (POF), is presented and experimentally tested. LSPR is achieved exploiting five-branched gold nanostars (GNS) obtained using Triton X-100 in a seed-growth synthesis. They have the uncommon feature of three localized surface plasmon resonances. The strongest LSPRs fall in two ranges, one in the 600-900 nm range (LSPR 2) and the other one in the 1,100-1,600 nm range (LSPR 3), both sensible to refractive index changes. Anyway, due to the extremely strong attenuation (>10(2) dB/m) of the employed POF in the 1,100-1,600 nm range, only LSPR 2 will be exploited for refractive index change measurements, useful for bio-chemical sensing applications, as a proof of principle of the possibility of realizing a compact, low cost and easy-to-use GNS based device.

  20. Negated bio-events: analysis and identification

    PubMed Central

    2013-01-01

    Background Negation occurs frequently in scientific literature, especially in biomedical literature. It has previously been reported that around 13% of sentences found in biomedical research articles contain negation. Historically, the main motivation for identifying negated events has been to ensure their exclusion from lists of extracted interactions. However, recently, there has been a growing interest in negative results, which has resulted in negation detection being identified as a key challenge in biomedical relation extraction. In this article, we focus on the problem of identifying negated bio-events, given gold standard event annotations. Results We have conducted a detailed analysis of three open access bio-event corpora containing negation information (i.e., GENIA Event, BioInfer and BioNLP’09 ST), and have identified the main types of negated bio-events. We have analysed the key aspects of a machine learning solution to the problem of detecting negated events, including selection of negation cues, feature engineering and the choice of learning algorithm. Combining the best solutions for each aspect of the problem, we propose a novel framework for the identification of negated bio-events. We have evaluated our system on each of the three open access corpora mentioned above. The performance of the system significantly surpasses the best results previously reported on the BioNLP’09 ST corpus, and achieves even better results on the GENIA Event and BioInfer corpora, both of which contain more varied and complex events. Conclusions Recently, in the field of biomedical text mining, the development and enhancement of event-based systems has received significant interest. The ability to identify negated events is a key performance element for these systems. We have conducted the first detailed study on the analysis and identification of negated bio-events. Our proposed framework can be integrated with state-of-the-art event extraction systems. The

  1. Selective adsorption and recovery of Au(III) from three kinds of acidic systems by persimmon residual based bio-sorbent: a method for gold recycling from e-wastes.

    PubMed

    Fan, Ruiyi; Xie, Feng; Guan, Xueliang; Zhang, Qinglin; Luo, Zhengrong

    2014-07-01

    A low cost bio-sorbent, named "PPF resin", was prepared by crosslinking the persimmon residual with formaldehyde. The adsorption behavior of PPF resin towards Au(III) from varied HCl and HNO3 concentration solutions was studied. PPF resin could adsorb almost complete Au(III) from high acidic systems. The influence of dilution ratio, solid-liquid ratio and time towards Au(III) from aqua regia leached PCBs liquor was censored in detail by batch and continuous adsorption methods. The PPF resin before and after adsorption was characterized by FT-IR, XRD and XPS spectra which provided evidences for the reduction of Au(III) to Au(0) with a proposed mechanism of Au(III) adsorption-reduction process. After saturated column adsorption of 0.1g PPF resin, 0.0506 g gold (purity: 99.9%) was obtained by the method of incineration. The present results provide a new approach for gold recovery from the secondary resources. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Formation of neutral and charged gold carbonyls on highly facetted gold nanostructures

    NASA Astrophysics Data System (ADS)

    Chau, Thoi-Dai; Visart de Bocarmé, Thierry; Kruse, Norbert; Wang, Richard L. C.; Kreuzer, Hans Jürgen

    2003-12-01

    We show that gold mono- and di-carbonyls are formed on gold field emitter tips during interaction with carbon monoxide gas at room temperature and in the presence of high electrostatic fields. The experiments are done in a time-of-flight atom probe to obtain mass spectra. The yield of monocarbonyl cations is about twice that of di-carbonyl ions. Density functional theory calculations are reported that explain the field stabilization of adsorbed carbonyls and the desorption yield of their cations.

  3. Systemic levels of metallic ions released from orthodontic mini-implants.

    PubMed

    de Morais, Liliane Siqueira; Serra, Glaucio Guimarães; Albuquerque Palermo, Elisabete Fernandes; Andrade, Leonardo Rodrigues; Müller, Carlos Alberto; Meyers, Marc André; Elias, Carlos Nelson

    2009-04-01

    Orthodontic mini-implants are a potential source of metallic ions to the human body because of the corrosion of titanium (Ti) alloy in body fluids. The purpose of this study was to gauge the concentration of Ti, aluminum (Al), and vanadium (V), as a function of time, in the kidneys, livers, and lungs of rabbits that had Ti-6Al-4V alloy orthodontic mini-implants placed in their tibia. Twenty-three New Zealand rabbits were randomly divided into 4 groups: control, 1 week, 4 weeks, and 12 weeks. Four orthodontic mini-implants were placed in the left proximal tibia of 18 rabbits. Five control rabbits had no orthodontic mini-implants. After 1, 4, and 12 weeks, the rabbits were killed, and the selected tissues were extracted and prepared for analysis by graphite furnace atomic absorption spectrophotometry. Low amounts of Ti, Al, and V were detectable in the 1-week, 4-weeks, and 12-weeks groups, confirming that release of these metals from the mini-implants occurs, with diffusion and accumulation in remote organs. Despite the tendency of ion release when using the Ti alloy as orthodontic mini-implants, the amounts of metals detected were significantly below the average intake of these elements through food and drink and did not reach toxic concentrations.

  4. In vivo bio-distribution, clearance and toxicity assessment of biogenic silver and gold nanoparticles synthesized from Abutilon indicum in Wistar rats.

    PubMed

    Mata, Rani; Nakkala, Jayachandra Reddy; Chandra, Varshney Khub; Raja, Kumar; Sadras, Sudha Rani

    2018-07-01

    This study reports the bio-distribution and clearance of Abutilon indicum silver and gold nanoparticles (AIAgNPs and AIAuNPs) in Wistar rats. Rats in different groups were orally administered with 5 and 10 mg/Kg BW of AIAgNPs and AIAuNPs (size 1-25 nm) for 28 days and few were maintained until 58 days of washout period. Serum biochemical parameters were not changed significantly at both doses of AIAuNPs and at lower concentration of AIAgNPs. But, with 10 mg/Kg BW of AIAgNPs rats showed elevated levels of AST, ALP and ALT on day 29, however, these levels were restored to normal after washout period. Liver oxidative stress markers were not altered with the treatment of AIAgNPs and AIAuNPs. ICP-OES analysis indicated bio-distribution of Ag and Au more in liver, kidney and spleen on day 29 and was found cleared on day 59. Histological analysis of nine vital organs indicated normal tissue architecture at both doses of AIAuNPs and lower dose of AIAgNPs. While the rats treated with higher dose of AIAgNPs showed mild liver sinusoid cell swelling on day 29, which also was recovered on day 59. Findings of this preclinical study indicate biocompatible nature of biogenic nanoparticles supporting their future biomedical applications. Copyright © 2018 Elsevier GmbH. All rights reserved.

  5. Self-Replenishing Vascularized Fouling-Release Surfaces

    DTIC Science & Technology

    2014-01-01

    similar results. Surfaces submerged for 12 days in static cultures of B. braunii, a green microalga known for its potential in the algae biofuels...Technol. 2004, 32, 219−222. (12) Kirschner, C. M.; Brennan, A. B. Bio -Inspired Antifouling Strategies. Annu. Rev. Mater. Res. 2012, 42, 211−229. (13...Release from Fouling Release Coatings. Biofouling 2000, 15, 73−81. (25) Liu, K.; Jiang, L. Bio -Inspired Self-Cleaning Surfaces. Annu. Rev. Mater. Res

  6. In Situ Gold Nanoparticle Gradient Formation in a 3D Meso- and Macroporous Polymer Matrix.

    PubMed

    Penders, Jelle; Rajasekharan, Anand K; Hulander, Mats; Andersson, Martin

    2017-08-01

    Herein, the development and characterization of a 3D gradient structure of gold nanoparticles is described. The gradient of gold nanoparticles is made in situ in a macroporous nonionic block copolymer hydrogel matrix, through gold ion diffusion control. The polymer provides a matrix for diffusion of gold ions, acts as a template for controlling nanoparticle growth, and facilitates the in situ reduction of gold ions to gold nanoparticles. A clear gradient in gold nanoparticles is observed across the 3D space of the polymer matrix using scanning electron microscopy, fluorescence microscopy, atomic force microscopy, and thermogravimetric analysis. The particle gradient is further functionalized with both hydrophobic and hydrophilic groups via thiol-gold linkage to demonstrate the ability to form gradients with different chemical functionalities. Using additive manufacturing, the polymer can also be printed as a porous network with possible applications for 3D cell culturing in, e.g., biomaterials research. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Multiple-channel detection of cellular activities by ion-sensitive transistors

    NASA Astrophysics Data System (ADS)

    Machida, Satoru; Shimada, Hideto; Motoyama, Yumi

    2018-04-01

    An ion-sensitive field-effect transistor to record cellular activities was demonstrated. This field-effect transistor (bio transistor) includes cultured cells on the gate insulator instead of gate electrode. The bio transistor converts a change in potential underneath the cells into variation of the drain current when ion channels open. The bio transistor has high detection sensitivity to even minute variations in potential utilizing a subthreshold swing region. To open ion channels, a reagent solution (acetylcholine) was added to a human-originating cell cultured on the bio transistor. The drain current was successfully decreased with the addition of acetylcholine. Moreover, we attempted to detect the opening of ion channels using a multiple-channel measurement circuit containing several bio transistors. As a consequence, the drain current distinctly decreased only after the addition of acetylcholine. We confirmed that this measurement system including bio transistors enables to observation of cellular activities sensitively and simultaneously.

  8. Cryogel-supported titanate nanotubes for waste treatment: Impact on methane production and bio-fertilizer quality.

    PubMed

    Önnby, Linda; Harald, Kirsebom; Nges, Ivo Achu

    2015-08-10

    By reducing the cadmium (Cd(2+)) content in biomass used for bio-based products such as biogas, a less toxic bio-based fertilizer can be obtained. In this work, we demonstrate how a macroporous polymer can support titanate nanotubes, and we take advantage of its known selective adsorption behavior towards Cd(2+) in an adsorption process from real nutrient-rich process water from hydrolysis of seaweed, a pollutant-rich biomass. We show that pretreatment steps involving alteration in area-to-volume ratio performed in aerated and acidic conditions release the most Cd(2+) from the solid material. By integrating an adsorption step between hydrolysis and the biomethane, we show that it was possible to obtain high Cd(2+) removal (ca. 94%) despite molar excess (between 100 and 500) of co-present ions (e.g., Mg(2+), Ca(2+), Na(+), K(+)) and with maintained total phosphorous content. The bio-methane potential did not significantly decrease as compared to a process without cadmium removal and the yielded bio-fertilizer followed Swedish guideline values. This study provides a sound and promising alternative for a novel remediation step, enabling higher use of otherwise tricky and to some extent overlooked biomass sources. Copyright © 2015. Published by Elsevier B.V.

  9. Effect of Exposed Surface Area, Volume and Environmental pH on the Calcium Ion Release of Three Commercially Available Tricalcium Silicate Based Dental Cements.

    PubMed

    Rajasekharan, Sivaprakash; Vercruysse, Chris; Martens, Luc; Verbeeck, Ronald

    2018-01-13

    Tricalcium silicate cements (TSC) are used in dental traumatology and endodontics for their bioactivity which is mostly attributed to formation of calcium hydroxide during TSC hydration and its subsequent release of calcium and hydroxide ions. The aim of this study was to determine the effect of volume (Vol), exposed surface area (ESA) and pH of surrounding medium on calcium ion release. Three commercially available hydraulic alkaline dental cements were mixed and condensed into cylindrical tubes of varying length and diameter ( n = 6/group). For the effect of ESA and Vol, tubes were immersed in 10 mL of deionized water. To analyze the effect of environmental pH, the tubes were randomly immersed in 10 mL of buffer solutions with varying pH (10.4, 7.4 or 4.4). The solutions were collected and renewed at various time intervals. pH and/or calcium ion release was measured using a pH glass electrode and atomic absorption spectrophotometer respectively. The change of pH, short-term calcium ion release and rate at which calcium ion release reaches maximum were dependent on ESA ( p < 0.05) while maximum calcium ion release was dependent on Vol of TSC ( p < 0.05). Maximum calcium ion release was significantly higher in acidic solution followed by neutral and alkaline solution ( p < 0.05).

  10. Effect of Exposed Surface Area, Volume and Environmental pH on the Calcium Ion Release of Three Commercially Available Tricalcium Silicate Based Dental Cements

    PubMed Central

    Rajasekharan, Sivaprakash; Vercruysse, Chris; Martens, Luc; Verbeeck, Ronald

    2018-01-01

    Tricalcium silicate cements (TSC) are used in dental traumatology and endodontics for their bioactivity which is mostly attributed to formation of calcium hydroxide during TSC hydration and its subsequent release of calcium and hydroxide ions. The aim of this study was to determine the effect of volume (Vol), exposed surface area (ESA) and pH of surrounding medium on calcium ion release. Three commercially available hydraulic alkaline dental cements were mixed and condensed into cylindrical tubes of varying length and diameter (n = 6/group). For the effect of ESA and Vol, tubes were immersed in 10 mL of deionized water. To analyze the effect of environmental pH, the tubes were randomly immersed in 10 mL of buffer solutions with varying pH (10.4, 7.4 or 4.4). The solutions were collected and renewed at various time intervals. pH and/or calcium ion release was measured using a pH glass electrode and atomic absorption spectrophotometer respectively. The change of pH, short-term calcium ion release and rate at which calcium ion release reaches maximum were dependent on ESA (p < 0.05) while maximum calcium ion release was dependent on Vol of TSC (p < 0.05). Maximum calcium ion release was significantly higher in acidic solution followed by neutral and alkaline solution (p < 0.05). PMID:29342837

  11. Extracellular mycosynthesis of gold nanoparticles using Fusarium solani

    NASA Astrophysics Data System (ADS)

    Gopinath, K.; Arumugam, A.

    2014-08-01

    The development of eco-friendly methods for the synthesis of nanomaterial shape and size is an important area of research in the field of nanotechnology. The present investigation deals with the extracellular rapid biosynthesis of gold nanoparticles using Fusarium solani culture filtrate. The UV-vis spectra of the fungal culture filtrate medium containing gold ion showed peak at 527 nm corresponding to the plasmon absorbance of gold nanoparticles. FTIR spectra provide an evidence for the presence of heterocyclic compound in the culture filtrate, which increases the stability of the synthesized gold nanoparticles. The X-ray analysis respects the Bragg's law and confirmed the crystalline nature of the gold nanoparticles. AFM analysis showed the results of particle sizes (41 nm). Transmission electron microscopy (TEM) showed that the gold nanoparticles are spherical in shape with the size range from 20 to 50 nm. The use of F. solani will offer several advantages since it is considered as a non-human pathogenic organism. The fungus F. solani has a fast growth rate, rapid capacity of metallic ions reduction, NPs stabilization and facile and economical biomass handling. Extracellular biosynthesis of gold nanoparticles could be highly advantageous from the point of view of synthesis in large quantities, time consumption, eco-friendly, non-toxic and easy downstream processing.

  12. Therapeutic ion-releasing bioactive glass ionomer cements with improved mechanical strength and radiopacity

    NASA Astrophysics Data System (ADS)

    Fuchs, Maximilian; Gentleman, Eileen; Shahid, Saroash; Hill, Robert; Brauer, Delia

    2015-10-01

    Bioactive glasses (BG) are used to regenerate bone, as they degrade and release therapeutic ions. Glass ionomer cements (GIC) are used in dentistry, can be delivered by injection and set in situ by a reaction between an acid-degradable glass and a polymeric acid. Our aim was to combine the advantages of BG and GIC, and we investigated the use of alkali-free BG (SiO2-CaO-CaF2-MgO) with 0 to 50% of calcium replaced by strontium, as the beneficial effects of strontium on bone formation are well documented. When mixing BG and poly(vinyl phosphonic-co-acrylic acid), ions were released fast (up to 90% within 15 minutes at pH 1), which resulted in GIC setting, as followed by infrared spectroscopy. GIC mixed well and set to hard cements (compressive strength up to 35 MPa), staying hard when in contact with aqueous solution. This is in contrast to GIC prepared with poly(acrylic acid), which were shown previously to become soft in contact with water. Strontium release from GIC increased linearly with strontium for calcium substitution, allowing for tailoring of strontium release depending on clinical requirements. Furthermore, strontium substitution increased GIC radiopacity. GIC passed ISO10993 cytotoxicity test, making them promising candidates for use as injectable bone cements.

  13. Charge-switchable gold nanoparticles for enhanced enzymatic thermostability.

    PubMed

    Shankar, Shiv; Soni, Sarvesh K; Daima, Hemant K; Selvakannan, P R; Khire, Jayant M; Bhargava, Suresh K; Bansal, Vipul

    2015-09-07

    This study illustrates a facile strategy for efficient immobilization of enzymes on a metal nanoparticle surface. The strategy proposed here enables the enzymatic activity to be retained while increasing the enzyme thermostability. It is demonstrated that the use of a zwitterionic amino acid tyrosine as a reducing and capping agent to synthesise gold nanoparticles allows efficient immobilization of phytase enzyme through charge-switchable electrostatic interactions. The detailed kinetic and thermodynamic studies reveal that the proposed enzyme immobilization strategy improves the overall quality of phytase by reducing the activation energy required for substrate hydrolysis and broadening the temperature window in which immobilized enzyme is able to operate. The outcomes of this study indicate that the underlying zwitterionic nature of 20 natural amino acids along with significant variability in their isoelectric points and hydropathy indices as well the ability of some of the amino acids to reduce metal ions is likely to offer significant opportunities for tailoring nano-bio interfaces in a rational manner for a range of biological applications.

  14. Helium, neon, and argon composition of the solar wind as recorded in gold and other Genesis collector materials

    NASA Astrophysics Data System (ADS)

    Pepin, Robert O.; Schlutter, Dennis J.; Becker, Richard H.; Reisenfeld, Daniel B.

    2012-07-01

    We report compositions and fluxes of light noble gases in the solar wind (SW), extracted by stepped pyrolysis and amalgamation from gold collector materials carried on the Genesis Solar Wind Sample Return Mission. Results are compared with data from other laboratories on SW-He, Ne and Ar distributions implanted in Genesis aluminum, carbon, and silicon collectors and extracted by laser ablation. Corrections for mass-dependent losses (“backscatter”) of impinging SW ions due to scattering from the collector material are substantially larger for gold than for these lower atomic weight targets. We assess such losses by SRIM simulation calculations of SW backscatter from gold which are applied to the measurements to recover the composition of the incident SW. Averaged results of integrated stepped pyrolysis and single-step amalgamation measurements, with 1σ errors, are as follows: for SW-Ne and Ar isotope ratios (3He/4He was not measured), 20Ne/22Ne = 14.001 ± 0.042, 21Ne/22Ne = 0.03361 ± 0.00018, 36Ar/38Ar = 5.501 ± 0.014; for SW element ratios, 4He/20Ne = 641 ± 15, 20Ne/36Ar = 51.6 ± 0.5; and for SW fluxes in atoms cm-2 s-1 at the Genesis L1 station, 4He = 1.14 ± 0.04 × 107, 20Ne = 1.80 ± 0.06 × 104, 36Ar = 3.58 ± 0.11 × 102. Except for the 21Ne/22Ne and 20Ne/36Ar ratios, these values are in reasonable accord (within ∼1-3σ) with measurements on different collector materials reported by one or both of two other Genesis noble gas research groups. We further find, in three stepped pyrolysis experiments on gold foil, that He, Ne and Ar are released at increasing temperatures without elemental fractionation, in contrast to a pyrolytic extraction of a single non-gold collector (Al) where the release patterns point to mass-dependent thermal diffusion. The pyrolyzed gold foils exhibit enhancements, relative to sample totals, in 20Ne/22Ne and 21Ne/22Ne ratios evolved at low temperatures. The absence of elemental fractionation in pyrolytic release from gold

  15. Gold Nanoparticles Cytotoxicity

    NASA Astrophysics Data System (ADS)

    Mironava, Tatsiana

    Over the last two decades gold nanoparticles (AuNPs) have been used for many scientific applications and have attracted attention due to the specific chemical, electronic and optical size dependent properties that make them very promising agents in many fields such as medicine, imagine techniques and electronics. More specifically, biocompatible gold nanoparticles have a huge potential for use as the contrast augmentation agent in X-ray Computed Tomography and Photo Acoustic Tomography for early tumor diagnostic as well these nanoparticles are extensively researched for enhancing the targeted cancer treatment effectiveness such as photo-thermal and radiotherapy. In most biomedical applications biocompatible gold nanoparticles are labeled with specific tumor or other pathology targeting antibodies and used for site specific drug delivery. However, even though gold nanoparticles poses very high level of anti cancer properties, the question of their cytotoxicity ones they are released in normal tissue has to be researched. Moreover, the huge amount of industrially produced gold nanoparticles raises the question of these particles being a health hazard, since the penetration is fairly easy for the "nano" size substances. This study focuses on the effect of AuNPs on a human skin tissue, since it is fall in both categories -- the side effects for biomedical applications and industrial workers and users' exposure during production and handling. Therefore, in the present project, gold nanoparticles stabilized with the biocompatible agent citric acid were generated and characterized by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). The cytotoxic effect of AuNPs release to healthy skin tissue was modeled on 3 different cell types: human keratinocytes, human dermal fibroblasts, and human adipose derived stromal (ADS) cells. The AuNPs localization inside the cell was found to be cell type dependent. Overall cytotoxicity was found to be dependent

  16. Coherent diffractive photoproduction of ρ0 mesons on gold nuclei at 200 GeV/nucleon-pair at the Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, B.; Huang, X.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Klein, S. R.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, W.; Li, Y.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, H.; Liu, P.; Liu, Y.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, G. L.; Ma, L.; Ma, Y. G.; Ma, R.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y. F.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, C.; Yang, S.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, X. P.; Zhang, J. B.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.; STAR Collaboration

    2017-11-01

    The STAR Collaboration reports on the photoproduction of π+π- pairs in gold-gold collisions at a center-of-mass energy of 200 GeV/nucleon-pair. These pion pairs are produced when a nearly real photon emitted by one ion scatters from the other ion. We fit the π+π- invariant-mass spectrum with a combination of ρ0 and ω resonances and a direct π+π- continuum. This is the first observation of the ω in ultraperipheral collisions, and the first measurement of ρ -ω interference at energies where photoproduction is dominated by Pomeron exchange. The ω amplitude is consistent with the measured γ p →ω p cross section, a classical Glauber calculation, and the ω →π+π- branching ratio. The ω phase angle is similar to that observed at much lower energies, showing that the ρ -ω phase difference does not depend significantly on photon energy. The ρ0 differential cross section d σ /d t exhibits a clear diffraction pattern, compatible with scattering from a gold nucleus, with two minima visible. The positions of the diffractive minima agree better with the predictions of a quantum Glauber calculation that does not include nuclear shadowing than with a calculation that does include shadowing.

  17. Structure-Property Relationships in Novel Materials Part I: Frustrated Magnetism and Deintercalation of Honeycomb Oxides Part II: Electron-Precise Gold Intermetallics

    NASA Astrophysics Data System (ADS)

    Seibel, Elizabeth M.

    This thesis is a study of the structure-property relationships of novel materials, broken into two major parts. The first part, "Part I: Frustrated Magnetism and Deintercalation of Honeycomb Oxides" explores new, layered nickel oxides and their properties, specifically the synthesis, structure, magnetism, and applications of the Na3Ni 2BiO6-NaNi2BiO6-NaNi2BiO 6•1.7H2O system. These phases are of interest to the solid-state and physics communities because they display frustrated magnetism on a hexagonal lattice. Chapter 3 explores the chemistry and physics of Na 3Ni2BiO6; Chapter 4 then discusses its chemical deintercalation and subsequent hydration to form the NaNi2BiO 6-NaNi2BiO6•1.7H2O system. These phases are examples of sought-after spin-1/2 systems on a hexagonal lattice. The second part of this thesis, "Part II: Electron-Precise Gold Intermetallics" explores novel, electron-precise intermetallics in the Lanthanide-gold-pnictide ternary system. The chemistry of gold-containing solids has not been well-studied despite gold's unusual physics, motivating the study. There are three new families discussed herein. The first, found in Chapter 7, is of the type LnAuSb (Ln = Lanthanide) which are new Dirac semimetals. The work illustrates a chemical design principle that can be used to predict new Dirac Semimetals, which is important given that the field of topological materials is rapidly growing. Chapter 8 discusses materials of the type LnAuBi2, which are layered intermetallics with a high degree of magnetic anisotropy. Finally, Chapter 9 explores new phases of the form Ln 3Au3Bi4. These materials are semiconductors with high Seebeck coefficients at room temperature, indicating their potential for use as thermoelectric materials.

  18. Non-linear optical response by functionalized gold nanospheres: identifying design principles to maximize the molecular photo-release.

    PubMed

    Bergamini, Luca; Voliani, Valerio; Cappello, Valentina; Nifosì, Riccardo; Corni, Stefano

    2015-08-28

    In a recent study by Voliani et al. [Small, 2011, 7, 3271], the electromagnetic field enhancement in the vicinity of the gold nanoparticle surface has been exploited to achieve photocontrolled release of a molecular cargo conjugated to the nanoparticles via 1,2,3-triazole, a photocleavable moiety. The aim of the present study is to investigate the mechanism of the photorelease by characterizing the nanoparticle aggregation status within the cells and simulating the electric field enhancement in a range of experimentally realistic geometries, such as single Au nanoparticles, dimers, trimers and random aggregates. Two plasmon-enhanced processes are examined for triazole photocleavage, i.e. three-photon excitation and third-harmonic-generation (one-photon) excitation. Taking into account the absorption cross sections of the triazole, we conclude that the latter mechanism is more efficient, and provides a photocleavage rate that explains the experimental findings. Moreover, we determine which aggregate geometries are required to maximize the field enhancement, and the dependence of such enhancement on the excitation wavelength. Our results provide design principles for maximizing the multiphoton molecular photorelease by such functionalized gold nanoparticles.

  19. Bio-microfluidics: biomaterials and biomimetic designs.

    PubMed

    Domachuk, Peter; Tsioris, Konstantinos; Omenetto, Fiorenzo G; Kaplan, David L

    2010-01-12

    Bio-microfluidics applies biomaterials and biologically inspired structural designs (biomimetics) to microfluidic devices. Microfluidics, the techniques for constraining fluids on the micrometer and sub-micrometer scale, offer applications ranging from lab-on-a-chip to optofluidics. Despite this wealth of applications, the design of typical microfluidic devices imparts relatively simple, laminar behavior on fluids and is realized using materials and techniques from silicon planar fabrication. On the other hand, highly complex microfluidic behavior is commonplace in nature, where fluids with nonlinear rheology flow through chaotic vasculature composed from a range of biopolymers. In this Review, the current state of bio-microfluidic materials, designs and applications are examined. Biopolymers enable bio-microfluidic devices with versatile functionalization chemistries, flexibility in fabrication, and biocompatibility in vitro and in vivo. Polymeric materials such as alginate, collagen, chitosan, and silk are being explored as bulk and film materials for bio-microfluidics. Hydrogels offer options for mechanically functional devices for microfluidic systems such as self-regulating valves, microlens arrays and drug release systems, vital for integrated bio-microfluidic devices. These devices including growth factor gradients to study cell responses, blood analysis, biomimetic capillary designs, and blood vessel tissue culture systems, as some recent examples of inroads in the field that should lead the way in a new generation of microfluidic devices for bio-related needs and applications. Perhaps one of the most intriguing directions for the future will be fully implantable microfluidic devices that will also integrate with existing vasculature and slowly degrade to fully recapitulate native tissue structure and function, yet serve critical interim functions, such as tissue maintenance, drug release, mechanical support, and cell delivery.

  20. Gold Nanoparticle Quantitation by Whole Cell Tomography.

    PubMed

    Sanders, Aric W; Jeerage, Kavita M; Schwartz, Cindi L; Curtin, Alexandra E; Chiaramonti, Ann N

    2015-12-22

    Many proposed biomedical applications for engineered gold nanoparticles require their incorporation by mammalian cells in specific numbers and locations. Here, the number of gold nanoparticles inside of individual mammalian stem cells was characterized using fast focused ion beam-scanning electron microscopy based tomography. Enhanced optical microscopy was used to provide a multiscale map of the in vitro sample, which allows cells of interest to be identified within their local environment. Cells were then serially sectioned using a gallium ion beam and imaged using a scanning electron beam. To confirm the accuracy of single cross sections, nanoparticles in similar cross sections were imaged using transmission electron microscopy and scanning helium ion microscopy. Complete tomographic series were then used to count the nanoparticles inside of each cell and measure their spatial distribution. We investigated the influence of slice thickness on counting single particles and clusters as well as nanoparticle packing within clusters. For 60 nm citrate stabilized particles, the nanoparticle cluster packing volume is 2.15 ± 0.20 times the volume of the bare gold nanoparticles.

  1. On-Demand Drug Release from Gold Nanoturf for a Thermo- & Chemo-Therapeutic Esophageal Stent (TES).

    PubMed

    Lee, Sori; Hwang, Gyoyeon; Kim, Tae Hee; Kwon, S Joon; Kim, Jong Uk; Koh, Kyongbeom; Park, Byeonghak; Hong, Haeleen; Yu, Ki Jun; Chae, Heeyeop; Jung, Youngmee; Lee, Jiyeon; Kim, Tae-Il

    2018-06-07

    Stimuli-responsive delivery systems for cancer therapy have been increasingly used to promote the on-demand therapeutic efficacy of anticancer drugs, and in some cases, simultaneously generate heat in response to a stimulus, resulting in hyperthermia. However, their application is still limited due to the systemic drawbacks of intravenous delivery, such as rapid clearance from the bloodstream, and the repeat injections required for sustained safe dosage, which can cause over-dosing. Here, we propose a gold (Au)-coated nanoturf structure as an implantable therapeutic interface for near-infrared (NIR)-mediated on-demand hyperthermia chemotherapy. The Au nanoturf possessed long-lasting doxorubicin (DOX) duration, which helps facilitate drug release in a sustained and prolonged manner. Moreover, the Au-coated nanoturf provides reproducible hyperthermia induced by localized surface plasmon resonances (LSPRs) under NIR irradiation. Simultaneously, the NIR-mediated temperature increase can promote on-demand drug release at desired time points. For in vivo analysis, the Au nanoturf structure was applied on an esophageal stent, which needs sustained anticancer treatment to prevent tumor recurrence on the implanted surface. This thermo- and chemo-esophageal stent induced significant cancer cell death with released drug and hyperthermia. These phenomena were also confirmed by theoretical analysis. The proposed strategy provides a solution to achieve enhanced thermo-/chemotherapy, and has broad applications in sustained cancer treatments.

  2. Synthesis of camptothecin-loaded gold nanomaterials

    NASA Astrophysics Data System (ADS)

    Xing, Zhimin; Liu, Zhiguo; Zu, Yuangang; Fu, Yujie; Zhao, Chunjian; Zhao, Xiuhua; Meng, Ronghua; Tan, Shengnan

    2010-04-01

    Camptothecin-loaded gold nanomaterials have been synthesized by the sodium borohydride reduction method under a strong basic condition. The obtained gold nanomaterials have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV-vis absorption spectroscopy. The camptothecin-loaded gold colloidal solution was very stable and can be stored for more than two months at room temperature without obvious changes. The color of the colloidal solution can change from wine red to purple and blue during the acidifying process. It was revealed that the release of camptothecin and the aggregation of gold nanoparticles can be controlled by tuning the solution pH. The present study implied that the gold nanomaterials can be used as the potential carrier for CPT delivery.

  3. Enhancement of gold grade through arsenic removal in the gold concentrate using sulfuric acid baking and hot water leaching

    NASA Astrophysics Data System (ADS)

    On, Hyun-sung; Lim, Dae-hack; Myung, Eun-ji; Kim, Hyun-soo; Park, Cheon-young

    2017-04-01

    In order to improve gold recovery, in general, the roasting process is carried out on gold concentrate. However in this process, Arsenic(As) is released from the gold concentrate and valuable elements such as Fe, Cu, Zn and Pb are converted into oxides. This causes air pollution through the release of As and loss of valuable elements by discarding the oxide minerals in the tailings. In order to prevent the release of As and the loss of valuable metals, an acid baking experiment was carried out on the gold concentrate with the addition of an H2SO4 solution. The baking effect, H2SO4 concentration effect and the effects of changing the baking time were examined using an electric furnace. In experimental results, soluble metal sulfates such as Rhomboclase and Mikasite were formed in the baked samples as seen through XRD analysis. In hot(70 degree Celsius) water leaching of the roast and baked samples, As the contents leached were 60 times more in the baked sample than the roast sample, and the Fe, Cu, Zn and Pb contents were 17, 10, 14, 13 times in the baked sample than in the roast sample, respectively. In the water leached solid-residues, the maximum gold grade was upgraded by 33% due to the acid baking effect. It is confirmed that acid baking with H2SO4 prevented As release into the air and the recovery of valuable metals through hot water leaching such as Fe, Cu, Zn and Pb which were formerly discarded in the tailings. Acknowledgment : This work was supported by the Energy and Resources Engineering Program Grant funded by the Ministry of Trade, Industry and Energy, Korea

  4. Exploring luminescence-based temperature sensing using protein-passivated gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Essner, Jeremy B.; Baker, Gary A.

    2014-07-01

    We explore the analytical performance and limitations of optically monitoring aqueous-phase temperature using protein-protected gold nanoclusters (AuNCs). Although not reported elsewhere, we find that these bio-passivated AuNCs show pronounced hysteresis upon thermal cycling. This unwanted behaviour can be eliminated by several strategies, including sol-gel coating and thermal denaturation of the biomolecular template, introducing protein-templated AuNC probes as viable nanothermometers.We explore the analytical performance and limitations of optically monitoring aqueous-phase temperature using protein-protected gold nanoclusters (AuNCs). Although not reported elsewhere, we find that these bio-passivated AuNCs show pronounced hysteresis upon thermal cycling. This unwanted behaviour can be eliminated by several strategies, including sol-gel coating and thermal denaturation of the biomolecular template, introducing protein-templated AuNC probes as viable nanothermometers. Electronic supplementary information (ESI) available: Supplemental figures and experimental details. See DOI: 10.1039/c4nr02069c

  5. BioMig--A Method to Evaluate the Potential Release of Compounds from and the Formation of Biofilms on Polymeric Materials in Contact with Drinking Water.

    PubMed

    Wen, Gang; Kötzsch, Stefan; Vital, Marius; Egli, Thomas; Ma, Jun

    2015-10-06

    In contact with water, polymeric materials (plastics) release compounds that can support suspended microbial growth and/or biofilm formation. The different methods presently used in the European Union to test plastics take 7-16 weeks to obtain a result. In industry, this delays material and product development as well as quality testing. Therefore, we developed a method package (BioMig) that allows testing of plastic materials with high reproducibility in 2 weeks for their potential biofilm (or biomass) formation and release of carbonaceous migration products when in contact with water. BioMig consists of (i) an extended migration potential test (seven times for 24 h at 60 °C), based on the European norm EN 12873-1 and the German UBA (Umweltbundesamt) guideline, and (ii) a biomass formation potential (BFP) test (14 days at 30 °C), which is a modified version of the Dutch biofilm production potential test. In the migration potential test, the amount of carbon released into water by the specimen is quantified by monitoring total and assimilable organic carbon over time; furthermore, the modular design of the test also allows one to assess additional parameters such as pathogen growth potential on the migration water or toxic effects on microbial growth. Flow cytometry (FCM)-based total cell counting (TCC) is used to quantify microbial growth in suspension and on surfaces after removal with mild sonication without affecting cell integrity. The BFP test allows one to determine both the planktonic (pBFP) and the sessile (sBFP) cell fractions. The sBFP consists of surface-attached cells after removal (>90% efficiency). Results for four standard test materials (PE-Xa, PE-Xc, EPDM 2%, and EPDM 20%), plus positive (PVC-P) and negative (glass) controls are presented. FCM-based TCC demonstrates that the release of growth-supporting carbon and proliferation of surface-attached cells stops increasing and stabilizes after 14 days of incubation; this allows for faster

  6. Investigating the role of ion-pair strategy in regulating nicotine release from patch: Mechanistic insights based on intermolecular interaction and mobility of pressure sensitive adhesive.

    PubMed

    Li, Qiaoyun; Wan, Xiaocao; Liu, Chao; Fang, Liang

    2018-07-01

    The aim of this study was to prepare a drug-in-adhesive patch of nicotine (NIC) and use ion-pair strategy to regulate drug delivery rate. Moreover, the mechanism of how ion-pair strategy regulated drug release was elucidated at molecular level. Formulation factors including pressure sensitive adhesives (PSAs), drug loading and counter ions (C 4 , C 6 , C 8 , C 10 , and C 12 ) were screened. In vitro release experiment and in vitro transdermal experiment were conducted to determine the rate-limiting step in drug delivery process. FT-IR and molecular modeling were used to characterize the interaction between drug and PSA. Thermal analysis and rheology study were conducted to investigate the mobility variation of PSA. The optimized patch prepared with NIC-C 8 had the transdermal profile fairly close to that of the commercial product (p > 0.05). The release rate constants (k) of NIC, NIC-C 4 and NIC-C 10 were 21.1, 14.4 and 32.4, respectively. Different release rates of NIC ion-pair complexes were attributed to the dual effect of ion-pair strategy on drug release. On one hand, ion-pair strategy enhanced the interaction between drug and PSA, which inhibited drug release. On the other hand, using ion-pair strategy improved the mobility of PSA, which facilitated drug release. Drug release behavior was determined by combined effect of two aspects above. These conclusions provided a new idea for us to regulate drug release behavior from patch. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Highly Sensitive Aluminium(III) Ion Sensor Based on a Self-assembled Monolayer on a Gold Nanoparticles Modified Screen-printed Carbon Electrode.

    PubMed

    See, Wong Pooi; Heng, Lee Yook; Nathan, Sheila

    2015-01-01

    A new approach for the development of a highly sensitive aluminium(III) ion sensor via the preconcentration of aluminium(III) ion with a self-assembled monolayer on a gold nanoparticles modified screen-printed carbon electrode and current mediation by potassium ferricyanide redox behavior during aluminium(III) ion binding has been attempted. A monolayer of mercaptosuccinic acid served as an effective complexation ligand for the preconcentration of trace aluminium; this led to an enhancement of aluminium(III) ion capture and thus improved the sensitivity of the sensor with a detection limit of down to the ppb level. Under the optimum experimental conditions, the sensor exhibited a wide linear dynamic range from 0.041 to 12.4 μM. The lower detection limit of the developed sensor was 0.037 μM (8.90 ppb) using a 10 min preconcentration time. The sensor showed excellent selectivity towards aluminium(III) ion over other interference ions.

  8. Release of mineral ions in dental plaque following acid production.

    PubMed

    Tanaka, M; Margolis, H C

    1999-03-01

    The release of appreciable amounts of calcium, phosphate and fluoride found in whole plaque into the plaque-fluid phase, following bacterial acid production, can potentially reduce the driving force for tooth demineralization. However, limited information is available on this topic, particularly on the release of fluoride. This study sought to determine the change in calcium, phosphate and fluoride concentrations in plaque fluid after sucrose exposure. 48 h overnight-fasted supragingival plaque samples were collected from all tooth surfaces (with the exception of the lower lingual anterior teeth) of one half of an individual mouth, following a 1 min water rinse. Plaque samples were then collected from the other half of the same mouth, following a 292 mM sucrose rinse. Plaque fluid was isolated by centrifugation and analysed for total calcium and phosphate (ion chromatography) and for free fluoride (ion-specific electrode). Samples were collected from seven individuals. Following sucrose exposure, plaque-fluid pH decreased significantly from 6.5+/- 0.3 to 5.4+/-0.2; calcium concentrations (mmol/l) also increased significantly (p < 0.01) from 1.9+/-0.5 to 5.0+/-2.1. Fluoride and phosphate concentrations in plaque fluid, however, did not increase significantly after sucrose exposure: mean concentrations (mmol/l) of fluoride after the water and sucrose rinses were 0.006+/-0.003 and 0.005+/-0.002, respectively, and mean phosphate concentrations (mmol/l) were 11.0+/-2.0 and 12.0+/-3.0, respectively. When results were expressed per wet plaque weight, phosphate concentrations were also found to increase significantly. The same trends were observed when additional plaque samples were treated in vitro with sucrose: fluoride-ion activity did not increase in plaque under in vivo-like conditions.

  9. Rough Gold Electrodes for Decreasing Impedance at the Electrolyte/Electrode Interface

    PubMed Central

    Koklu, Anil; Sabuncu, Ahmet C.; Beskok, Ali

    2016-01-01

    Electrode polarization at the electrolyte/electrode interface is often undesirable for bio-sensing applications, where charge accumulated over an electrode at constant potential causes large potential drop at the interface and low measurement sensitivity. In this study, novel rough electrodes were developed for decreasing electrical impedance at the interface. The electrodes were fabricated using electrochemical deposition of gold and sintering of gold nanoparticles. The performances of the gold electrodes were compared with platinum black electrodes. A constant phase element model was used to describe the interfacial impedance. Hundred folds of decrease in interfacial impedance were observed for fractal gold electrodes and platinum black. Biotoxicity, contact angle, and surface morphology of the electrodes were investigated. Relatively low toxicity and hydrophilic nature of the fractal and granulated gold electrodes make them suitable for bioimpedance and cell electromanipulation studies compared to platinum black electrodes which are both hydrophobic and toxic. PMID:27695132

  10. Chemically functionalized gold nanoparticles: Synthesis, characterization, and applications

    NASA Astrophysics Data System (ADS)

    Daniel, Weston Lewis

    This thesis focuses on the development and application of gold nanoparticle based detection systems and biomimetic structures. Each class of modified nanoparticle has properties that are defined by its chemical moieties that interface with solution and the gold nanoparticle core. In Chapter 2, a comparison of the biomolecular composition and binding properties of various preparations of antibody oligonucleotide gold nanoparticle conjugates is presented. These constructs differed significantly in terms of their structure and binding properties. Chapter 3 reports the use of electroless gold deposition as a light scattering signal enhancer in a multiplexed, microarray-based scanometric immunoassay using the gold nanoparticle probes evaluated in Chapter 2. The use of gold development results in greater signal enhancement than the typical silver development, and multiple rounds of metal development were found to increase the resulting signal compared to one development. Chapter 4 describes an amplified scanometric detection method for human telomerase activity. Gold nanoparticles functionalized with specific oligonucleotide sequences can efficiently capture telomerase enzymes and subsequently be elongated. Both the elongated and unmodified oligonucleotide sequences are simultaneously measured. At low telomerase concentrations, elongated strands cannot be detected, but the unmodified sequences, which come from the same probe particles, can be detected because their concentration is higher, providing a novel form of amplification. Chapter 5 reports the development of a novel colorimetric nitrite and nitrate ion assay based upon gold nanoparticle probes functionalized with Griess reaction reagents. This assay takes advantage of the distance-dependent plasmonic properties of the gold nanoparticles and the ability of nitrite ion to facilitate the cross coupling of novel nanoparticle probes. The assay works on the concept of a kinetic end point and can be triggered at the EPA

  11. The gene normalization task in BioCreative III

    PubMed Central

    2011-01-01

    Background We report the Gene Normalization (GN) challenge in BioCreative III where participating teams were asked to return a ranked list of identifiers of the genes detected in full-text articles. For training, 32 fully and 500 partially annotated articles were prepared. A total of 507 articles were selected as the test set. Due to the high annotation cost, it was not feasible to obtain gold-standard human annotations for all test articles. Instead, we developed an Expectation Maximization (EM) algorithm approach for choosing a small number of test articles for manual annotation that were most capable of differentiating team performance. Moreover, the same algorithm was subsequently used for inferring ground truth based solely on team submissions. We report team performance on both gold standard and inferred ground truth using a newly proposed metric called Threshold Average Precision (TAP-k). Results We received a total of 37 runs from 14 different teams for the task. When evaluated using the gold-standard annotations of the 50 articles, the highest TAP-k scores were 0.3297 (k=5), 0.3538 (k=10), and 0.3535 (k=20), respectively. Higher TAP-k scores of 0.4916 (k=5, 10, 20) were observed when evaluated using the inferred ground truth over the full test set. When combining team results using machine learning, the best composite system achieved TAP-k scores of 0.3707 (k=5), 0.4311 (k=10), and 0.4477 (k=20) on the gold standard, representing improvements of 12.4%, 21.8%, and 26.6% over the best team results, respectively. Conclusions By using full text and being species non-specific, the GN task in BioCreative III has moved closer to a real literature curation task than similar tasks in the past and presents additional challenges for the text mining community, as revealed in the overall team results. By evaluating teams using the gold standard, we show that the EM algorithm allows team submissions to be differentiated while keeping the manual annotation effort

  12. The gene normalization task in BioCreative III.

    PubMed

    Lu, Zhiyong; Kao, Hung-Yu; Wei, Chih-Hsuan; Huang, Minlie; Liu, Jingchen; Kuo, Cheng-Ju; Hsu, Chun-Nan; Tsai, Richard Tzong-Han; Dai, Hong-Jie; Okazaki, Naoaki; Cho, Han-Cheol; Gerner, Martin; Solt, Illes; Agarwal, Shashank; Liu, Feifan; Vishnyakova, Dina; Ruch, Patrick; Romacker, Martin; Rinaldi, Fabio; Bhattacharya, Sanmitra; Srinivasan, Padmini; Liu, Hongfang; Torii, Manabu; Matos, Sergio; Campos, David; Verspoor, Karin; Livingston, Kevin M; Wilbur, W John

    2011-10-03

    We report the Gene Normalization (GN) challenge in BioCreative III where participating teams were asked to return a ranked list of identifiers of the genes detected in full-text articles. For training, 32 fully and 500 partially annotated articles were prepared. A total of 507 articles were selected as the test set. Due to the high annotation cost, it was not feasible to obtain gold-standard human annotations for all test articles. Instead, we developed an Expectation Maximization (EM) algorithm approach for choosing a small number of test articles for manual annotation that were most capable of differentiating team performance. Moreover, the same algorithm was subsequently used for inferring ground truth based solely on team submissions. We report team performance on both gold standard and inferred ground truth using a newly proposed metric called Threshold Average Precision (TAP-k). We received a total of 37 runs from 14 different teams for the task. When evaluated using the gold-standard annotations of the 50 articles, the highest TAP-k scores were 0.3297 (k=5), 0.3538 (k=10), and 0.3535 (k=20), respectively. Higher TAP-k scores of 0.4916 (k=5, 10, 20) were observed when evaluated using the inferred ground truth over the full test set. When combining team results using machine learning, the best composite system achieved TAP-k scores of 0.3707 (k=5), 0.4311 (k=10), and 0.4477 (k=20) on the gold standard, representing improvements of 12.4%, 21.8%, and 26.6% over the best team results, respectively. By using full text and being species non-specific, the GN task in BioCreative III has moved closer to a real literature curation task than similar tasks in the past and presents additional challenges for the text mining community, as revealed in the overall team results. By evaluating teams using the gold standard, we show that the EM algorithm allows team submissions to be differentiated while keeping the manual annotation effort feasible. Using the inferred ground

  13. Turn-off fluorescence sensor for the detection of ferric ion in water using green synthesized N-doped carbon dots and its bio-imaging.

    PubMed

    Edison, Thomas Nesakumar Jebakumar Immanuel; Atchudan, Raji; Shim, Jae-Jin; Kalimuthu, Senthilkumar; Ahn, Byeong-Cheol; Lee, Yong Rok

    2016-05-01

    This paper reports turn-off fluorescence sensor for Fe(3+) ion in water using fluorescent N-doped carbon dots as a probe. A simple and efficient hydrothermal carbonization of Prunus avium fruit extract for the synthesis of fluorescent nitrogen-doped carbon dots (N-CDs) is described. This green approach proceeds quickly and provides good quality N-CDs. The mean size of synthesized N-CDs was approximately 7nm calculated from the high-resolution transmission electron microscopic images. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy revealed the presence of -OH, -NH2, -COOH, and -CO functional groups over the surface of CDs. The N-CDs showed excellent fluorescent properties, and emitted blue fluorescence at 411nm upon excitation at 310nm. The calculated quantum yield of the synthesized N-CDs is 13% against quinine sulfate as a reference fluorophore. The synthesized N-CDs were used as a fluorescent probe towards the selective and sensitive detection of biologically important Fe(3+) ions in water by fluorescence spectroscopy and for bio-imaging of MDA-MB-231 cells. The limit of detection (LOD) and the Stern-Volmer quenching constant for the synthesized N-CDs were 0.96μM and 2.0958×10(3)M of Fe(3+) ions. The green synthesized N-CDs are efficiently used as a promising candidate for the detection of Fe(3+) ions and bio-imaging. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. An evaluation of two types of nickel-titanium wires in terms of micromorphology and nickel ions' release following oral environment exposure.

    PubMed

    Ghazal, Abdul Razzak A; Hajeer, Mohammad Y; Al-Sabbagh, Rabab; Alghoraibi, Ibrahim; Aldiry, Ahmad

    2015-01-01

    This study aimed to compare superelastic and heat-activated nickel-titanium orthodontic wires' surface morphology and potential release of nickel ions following exposure to oral environment conditions. Twenty-four 20-mm-length distal cuts of superelastic (NiTi Force I®) and 24 20-mm-length distal cuts of heat-activated (Therma-Ti Lite®) nickel-titanium wires (American Orthodontics, Sheboygan, WI, USA) were divided into two equal groups: 12 wire segments left unused and 12 segments passively exposed to oral environment for 1 month. Scanning electron microscopy and atomic force microscopy were used to analyze surface morphology of the wires which were then immersed in artificial saliva for 1 month to determine potential nickel ions' release by means of atomic absorption spectrophotometer. Heat-activated nickel-titanium (NiTi) wires were rougher than superelastic wires, and both types of wires released almost the same amount of Ni ions. After clinical exposure, more surface roughness was recorded for superelastic NiTi wires and heat-activated NiTi wires. However, retrieved superelastic NiTi wires released less Ni ions in artificial saliva after clinical exposure, and the same result was recorded regarding heat-activated wires. Both types of NiTi wires were obviously affected by oral environment conditions; their surface roughness significantly increased while the amount of the released Ni ions significantly declined.

  15. Anti-aggregation-based spectrometric detection of Hg(II) at physiological pH using gold nanorods.

    PubMed

    Rajeshwari, A; Karthiga, D; Chandrasekaran, Natarajan; Mukherjee, Amitava

    2016-10-01

    An efficient detection method for Hg (II) ions at physiological pH (pH7.4) was developed using tween 20-modified gold nanorods (NRs) in the presence of dithiothreitol (DTT). Thiol groups (-SH) at the end of DTT have a higher affinity towards gold atoms, and they can covalently interact with gold NRs and leads to their aggregation. The addition of Hg(II) ions prevents the aggregation of gold NRs due to the covalent bond formation between the -SH group of DTT and Hg(II) ions in the buffer system. The changes in the longitudinal surface plasmon resonance peak of gold NRs were characterized using a UV-visible spectrophotometer. The absorption intensity peak of gold NRs at 679nm was observed to reduce after interaction with DTT, and the absorption intensity was noted to increase by increasing the concentration of Hg(II) ions. The TEM analysis confirms the morphological changes of gold NRs before and after addition of Hg(II) ions in the presence of DTT. Further, the aggregation and disaggregation of gold NRs were confirmed by particle size and zeta potential analysis. The developed method shows an excellent linearity (y=0.001x+0.794) for the graph plotted between the absorption ratio and Hg(II) concentration (1 to 100pM) under the optimized conditions. The limit of detection was noted to be 0.42pM in the buffer system. The developed method was tested in simulated body fluid, and it was found to have a good recovery rate. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The physical properties and ion release of CPP-ACP-modified calcium silicate-based cements.

    PubMed

    Dawood, A E; Manton, D J; Parashos, P; Wong, Rhk; Palamara, Jea; Stanton, D P; Reynolds, E C

    2015-12-01

    This study investigated the physical properties and ion release of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP)-modified calcium silicate-based cements (CSCs) and compared the properties of a trial mineral trioxide aggregate (MTA) with two commercially available CSCs, Biodentine(™) and Angelus(®) MTA. The setting time, solubility, compressive strength and Vickers surface microhardness of the three CSCs incorporated with 0%, 0.5%, 1.0%, 2.0% and 3.0% (w/w) CPP-ACP were investigated. Release of calcium (Ca(2+) ), phosphate ions (Pi ) and pH of the test cements were measured after 24, 72, 168 and 336 h of storage. The addition of up to 1.0% CPP-ACP into Biodentine(™) and 0.5% into the other cements did not adversely affect their physical properties except for the setting time. The addition of 0.5% CPP-ACP increased Ca(2+) released from Biodentine(™) (after 168 and 336 h), Angelus(®) MTA (after 168 h) and the trial MTA (after 72 h). The addition of 1.0-3.0% CPP-ACP increased Ca(2+) and Pi released from all the cements. Biodentine(™) released more Ca(2+) particularly in the early stages and showed shorter setting time and higher mechanical properties than the other cements. The mechanical properties of Angelus(®) MTA and the trial MTA were similar. All the cements produced highly alkaline storage solutions. Up to 1.0% CPP-ACP in Biodentine(™) improves Ca(2+) and Pi release and 0.5% CPP-ACP in Angelus(®) MTA and the trial MTA improves Ca(2+) release without altering the mechanical properties and solubility. The addition of CPP-ACP into CSCs prolonged the setting time. © 2015 Australian Dental Association.

  17. Release of Gd-ions from peralkaline borosilicate glass in pure water for neutrino detection in Water-Cherenkov Detectors

    NASA Astrophysics Data System (ADS)

    Dongol, R.; Sundaram, S. K.

    2017-09-01

    The addition of Gadolinium (Gd)-based salt, specially GdCl3, in the Water Cherenkov Detectors (WCDs) enhances the sensitivity to neutrino detection. However, the unwanted Cl-based byproducts, significantly reduces the transparency of water and sensitivity of WCDs. An alternative method, to introduce Gd-ions in the WCDs, is through Gd-release from a custom designed Gd-doped glass, when in contact with water. This can potentially eliminate the use of Gd-based salts and byproducts. In this work, we report the Gd-ions release for a Gd-doped peralkaline (Na/Al > 1) borosilicate glass, which closely represents photomultiplier tube (PMT) glass composition used in WCDs. The purpose of the paper is to show that the Gd-ion release from a custom designed glass in the form of beads or powders is feasible and could be used as a controlled Gd-source in future WCDs to enhance neutrino detection. In addition, we present our results of Gd-solubility in the base glass composition.

  18. Preparation and cupric ion release behavior of Cu/LDPE porous composites with tunable pore morphology for intrauterine devices.

    PubMed

    Xiao, Lian; Xia, Xianping; Xie, Changsheng; Ge, Man; Xiao, Cheng; Cai, Shuizhou

    2013-07-01

    Copper/low-density polyethylene (Cu/LDPE) porous composites are novel materials for copper-containing intrauterine devices (Cu-IUDs). Here we report a method, i.e., by changing the mass ratio of two kinds of porogens that have different melting points through the combined techniques of injection molding and particulate leaching, to prepare the Cu/LDPE porous composites with tunable pore morphology. After these Cu/LDPE porous composites with different pore morphologies were obtained, the influences of pore morphologies on their cupric ion release behaviors were studied. The results show that the pore morphology has great influence on the cupric ion release behavior of Cu/LDPE porous composites. This phenomenon is caused by the different influences of different pore morphologies on the effective porosity and the surface hydrophilicity. And those results can be applied to guide the fabrication of Cu/LDPE porous composite Cu-IUDs with minimal weight at an appropriate cupric ion release rate. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Logical regulation of the enzyme-like activity of gold nanoparticles by using heavy metal ions.

    PubMed

    Lien, Chia-Wen; Chen, Ying-Chieh; Chang, Huan-Tsung; Huang, Chih-Ching

    2013-09-07

    In this study we employed self-deposition and competitive or synergistic interactions between metal ions and gold nanoparticles (Au NPs) to develop OR, AND, INHIBIT, and XOR logic gates through regulation of the enzyme-like activity of Au NPs. In the presence of various metal ions (Ag(+), Bi(3+), Pb(2+), Pt(4+), and Hg(2+)), we found that Au NPs (13 nm) exhibited peroxidase-, oxidase-, or catalase-like activity. After Ag(+), Bi(3+), or Pb(2+) ions had been deposited on the Au NPs, the particles displayed strong peroxidase-like activity; on the other hand, they exhibited strong oxidase- and catalase-like activities after reactions with Ag(+)/Hg(2+) and Hg(2+)/Bi(3+) ions, respectively. The catalytic activities of these Au NPs arose mainly from the various oxidation states of the surface metal atoms/ions. Taking advantage of this behavior, we constructed multiplex logic operations-OR, AND, INHIBIT, and XOR logic gates-through regulation of the enzyme-like activity after the introduction of metal ions into the Au NP solution. When we deposited Hg(2+) and/or Bi(3+) ions onto the Au NPs, the catalase-like activities of the Au NPs were strongly enhanced (>100-fold). Therefore, we could construct an OR logic gate by using Hg(2+)/Bi(3+) as inputs and the catalase-like activity of the Au NPs as the output. Likewise, we constructed an AND logic gate by using Pt(4+) and Hg(2+) as inputs and the oxidase-like activity of the Au NPs as the output; the co-deposition of Pt and Hg atoms/ions on the Au NPs was responsible for this oxidase-like activity. Competition between Pb(2+) and Hg(2+) ions for the Au NPs allowed us to develop an INHIBIT logic gate-using Pb(2+) and Hg(2+) as inputs and the peroxidase-like activity of the Au NPs as the output. Finally, regulation of the peroxidase-like activity of the Au NPs through the two inputs Ag(+) and Bi(3+) enabled us to construct an XOR logic gate.

  20. High sensitive detection of copper II ions using D-penicillamine-coated gold nanorods based on localized surface plasmon resonance.

    PubMed

    Hong, Yoochan; Jo, Seongjae; Park, Joohyung; Park, Jinsung; Yang, Jaemoon

    2018-05-25

    In this paper, we describe the development of a nanoplasmonic biosensor based on the localized surface plasmon resonance (LSPR) effect that enables a sensitive and selective recognition of copper II ions. First, we fabricated the nanoplasmonics as LSPR substrates using gold nanorods (GNR) and the nano-adsorption method. The LSPR sensitivity of the nanoplasmonics was evaluated using various solvents with different refractive indexes. Subsequently, D-penicillamine (DPA)-a chelating agent of copper II ions-was conjugated to the surface of the GNR. The limit of detection (LOD) for the DPA-conjugated nanoplasmonics was 100 pM. Furthermore, selectivity tests were conducted using various divalent cations, and sensitivity tests were conducted on the nanoplasmonics under blood-like environments. Finally, the developed nanoplasmonic biosensor based on GNR shows great potential for the effective recognition of copper II ions, even in human blood conditions.

  1. Green Synthesis, Characterization and Application of Proanthocyanidins-Functionalized Gold Nanoparticles

    PubMed Central

    Biao, Linhai; Tan, Shengnan; Meng, Qinghuan; Gao, Jing; Zhang, Xuewei; Liu, Zhiguo; Fu, Yujie

    2018-01-01

    Green synthesis of gold nanoparticles using plant extracts is one of the more promising approaches for obtaining environmentally friendly nanomaterials for biological applications and environmental remediation. In this study, proanthocyanidins-functionalized gold nanoparticles were synthesized via a hydrothermal method. The obtained gold nanoparticles were characterized by ultraviolet and visible spectrophotometry (UV-Vis), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and X-ray diffraction (XRD) measurements. UV-Vis and FTIR results indicated that the obtained products were mainly spherical in shape, and that the phenolic hydroxyl of proanthocyanidins had strong interactions with the gold surface. TEM and XRD determination revealed that the synthesized gold nanoparticles had a highly crystalline structure and good monodispersity. The application of proanthocyanidins-functionalized gold nanoparticles for the removal of dyes and heavy metal ions Ni2+, Cu2+, Cd2+ and Pb2+ in an aqueous solution was investigated. The primary results indicate that proanthocyanidins-functionalized gold nanoparticles had high removal rates for the heavy metal ions and dye, which implies that they have potential applications as a new kind of adsorbent for the removal of contaminants in aqueous solution. PMID:29361727

  2. Three-dimensional endothelial cell morphogenesis under controlled ion release from copper-doped phosphate glass.

    PubMed

    Stähli, Christoph; James-Bhasin, Mark; Nazhat, Showan N

    2015-02-28

    Copper ions represent a promising angiogenic agent but are associated with cytotoxicity at elevated concentrations. Phosphate-based glasses (PGs) exhibit adjustable dissolution properties and allow for controlled ion release. This study examined the formation of capillary-like networks by SVEC4-10 endothelial cells (ECs) seeded in a three-dimensional (3D) type I collagen hydrogel matrix mixed with PG particles of the formulation 50P2O5-30CaO-(20-x)Na2O-xCuO (x=0 and 10 mol%). Copper and total phosphorus release decreased over time and was more sustained in the case of 10% CuO PG. Moreover, increasing the concentration of 10% CuO PG in collagen substantially delayed dissolution along with preferential release of copper. A 3D morphometric characterization method based on confocal laser scanning microscopy image stacks was developed in order to quantify EC network length, connectivity and branching. Network length was initially reduced in a concentration-dependent fashion by 10% CuO PG and, to a lesser extent, by 0% CuO PG, but reached values identical to the non-PG control by day 5 in culture. This reduction was attributed to a PG-mediated decrease in cell metabolic activity while cell proliferation as well as network connectivity and branching were independent of PG content. Gene expression of matrix metalloproteinases (MMP)-1 and -2 was up-regulated by PGs, indicating that MMPs did not play a critical role in network growth. The relationship between ion release and EC morphogenesis in 3D provided in this study is expected to contribute to an ultimately successful pro-angiogenic application of CuO-doped PGs. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Galvanic Corrosion of and Ion Release from Various Orthodontic Brackets and Wires in a Fluoride-containing Mouthwash.

    PubMed

    Tahmasbi, Soodeh; Ghorbani, Mohammad; Masudrad, Mahdis

    2015-01-01

    Background and aims. This study compared the galvanic corrosion of orthodontic wires and brackets from various manufacturers following exposure to a fluoride mouthwash. Materials and methods. This study was conducted on 24 lower central incisor 0.022" Roth brackets of four different commercially available brands (Dentaurum, American Orthodontics, ORJ, Shinye). These brackets along with stainless steel (SS) or nickel-titanium (NiTi) orthodontic wires (0.016", round) were immersed in Oral-B mouthwash containing 0.05% sodium fluoride for 28 days. The electric potential (EP) difference of each bracket-wire couple was measured with a Saturated Calomel Reference Electrode (Ag/AgCl saturated with KCl) via a voltmeter. The ions released in the electrolyte weremeasured with an atomic absorption spectrometer. All the specimens were assessed under a stereomicroscope and specimens with corrosion were analyzed with scanning electron microscopy (SEM). Data were analyzed using ANOVA. Results. The copper ions released from specimens with NiTi wire were greater than those of samples containing SS wire. ORJ brackets released more Cu ions than other samples. The Ni ions released from Shinye brackets were significantly more than those of other specimens (P < 0.05). Corrosion rate of brackets coupled with NiTi wires was higher than that of brackets coupled with SS wires. Light and electron microscopic observations showed greater corrosion of ORJ brackets. Conclusion. In fluoride mouthwash, Shinye and ORJ brackets exhibited greater corrosion than Dentaurum and American Orthodontics brackets. Stainless steel brackets used with NiTi wires showed greater corrosion and thus caution is recommended when using them.

  4. Galvanic Corrosion of and Ion Release from Various Orthodontic Brackets and Wires in a Fluoride-containing Mouthwash

    PubMed Central

    Tahmasbi, Soodeh; Ghorbani, Mohammad; Masudrad, Mahdis

    2015-01-01

    Background and aims. This study compared the galvanic corrosion of orthodontic wires and brackets from various manufacturers following exposure to a fluoride mouthwash. Materials and methods. This study was conducted on 24 lower central incisor 0.022" Roth brackets of four different commercially available brands (Dentaurum, American Orthodontics, ORJ, Shinye). These brackets along with stainless steel (SS) or nickel-titanium (NiTi) orthodontic wires (0.016", round) were immersed in Oral-B mouthwash containing 0.05% sodium fluoride for 28 days. The electric potential (EP) difference of each bracket-wire couple was measured with a Saturated Calomel Reference Electrode (Ag/AgCl saturated with KCl) via a voltmeter. The ions released in the electrolyte weremeasured with an atomic absorption spectrometer. All the specimens were assessed under a stereomicroscope and specimens with corrosion were analyzed with scanning electron microscopy (SEM). Data were analyzed using ANOVA. Results. The copper ions released from specimens with NiTi wire were greater than those of samples containing SS wire. ORJ brackets released more Cu ions than other samples. The Ni ions released from Shinye brackets were significantly more than those of other specimens (P < 0.05). Corrosion rate of brackets coupled with NiTi wires was higher than that of brackets coupled with SS wires. Light and electron microscopic observations showed greater corrosion of ORJ brackets. Conclusion. In fluoride mouthwash, Shinye and ORJ brackets exhibited greater corrosion than Dentaurum and American Orthodontics brackets. Stainless steel brackets used with NiTi wires showed greater corrosion and thus caution is recommended when using them. PMID:26697148

  5. Gallium arsenide/gold nanostructures deposited using plasma method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangla, O.; Physics Department, Hindu College, University of Delhi, Delhi, 110007; Roy, S.

    2016-05-23

    The fabrication of gallium arsenide (GaAs) nanostructures on gold coated glass, quartz and silicon substrates using the high fluence and highly energetic ions has been reported. The high fluence and highly energetic ions are produced by the hot, dense and extremely non-equilibrium plasma in a modified dense plasma focus device. The nanostructures having mean size about 14 nm, 13 nm and 18 nm are deposited on gold coated glass, quartz and silicon substrates, respectively. The optical properties of nanostructures studied using absorption spectra show surface plasmon resonance peak of gold nanoparticles. In addition, the band-gap of GaAs nanoparticles is more than that ofmore » bulk GaAs suggesting potential applications in the field of optoelectronic and sensor systems.« less

  6. Silver nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of antibacterial action

    PubMed Central

    Nagy, Amber; Harrison, Alistair; Sabbani, Supriya; Munson, Robert S; Dutta, Prabir K; Waldman, W James

    2011-01-01

    Background The focus of this study is on the antibacterial properties of silver nanoparticles embedded within a zeolite membrane (AgNP-ZM). Methods and Results These membranes were effective in killing Escherichia coli and were bacteriostatic against methicillin-resistant Staphylococcus aureus. E. coli suspended in Luria Bertani (LB) broth and isolated from physical contact with the membrane were also killed. Elemental analysis indicated slow release of Ag+ from the AgNP-ZM into the LB broth. The E. coli killing efficiency of AgNP-ZM was found to decrease with repeated use, and this was correlated with decreased release of silver ions with each use of the support. Gene expression microarrays revealed upregulation of several antioxidant genes as well as genes coding for metal transport, metal reduction, and ATPase pumps in response to silver ions released from AgNP-ZM. Gene expression of iron transporters was reduced, and increased expression of ferrochelatase was observed. In addition, upregulation of multiple antibiotic resistance genes was demonstrated. The expression levels of multicopper oxidase, glutaredoxin, and thioredoxin decreased with each support use, reflecting the lower amounts of Ag+ released from the membrane. The antibacterial mechanism of AgNP-ZM is proposed to be related to the exhaustion of antioxidant capacity. Conclusion These results indicate that AgNP-ZM provide a novel matrix for gradual release of Ag+. PMID:21931480

  7. Coherent diffractive photoproduction of ρ 0 mesons on gold nuclei at 200 GeV/nucleon-pair at the Relativistic Heavy Ion Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.

    The STAR Collaboration reports on the photoproduction of π + π - pairs in gold-gold collisions at a center-of-mass energy of 200 GeV/nucleon-pair. These pion pairs are produced when a nearly real photon emitted by one ion scatters from the other ion. In this work, we fit the π + π - invariant-mass spectrum with a combination of ρ 0 and ω resonances and a direct π + π - continuum. This is the first observation of the ω in ultraperipheral collisions, and the first measurement of ρ - ω interference at energies where photoproduction is dominated by Pomeron exchange.more » The ω amplitude is consistent with the measured γp → ωp cross section, a classical Glauber calculation, and the ω → π + π - branching ratio. The ω phase angle is similar to that observed at much lower energies, showing that the ρ - ω phase difference does not depend significantly on photon energy. The ρ 0 differential cross section dσ/dt exhibits a clear diffraction pattern, compatible with scattering from a gold nucleus, with two minima visible. In conclusion, the positions of the diffractive minima agree better with the predictions of a quantum Glauber calculation that does not include nuclear shadowing than with a calculation that does include shadowing.« less

  8. Coherent diffractive photoproduction of ρ 0 mesons on gold nuclei at 200 GeV/nucleon-pair at the Relativistic Heavy Ion Collider

    DOE PAGES

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; ...

    2017-11-13

    The STAR Collaboration reports on the photoproduction of π + π - pairs in gold-gold collisions at a center-of-mass energy of 200 GeV/nucleon-pair. These pion pairs are produced when a nearly real photon emitted by one ion scatters from the other ion. In this work, we fit the π + π - invariant-mass spectrum with a combination of ρ 0 and ω resonances and a direct π + π - continuum. This is the first observation of the ω in ultraperipheral collisions, and the first measurement of ρ - ω interference at energies where photoproduction is dominated by Pomeron exchange.more » The ω amplitude is consistent with the measured γp → ωp cross section, a classical Glauber calculation, and the ω → π + π - branching ratio. The ω phase angle is similar to that observed at much lower energies, showing that the ρ - ω phase difference does not depend significantly on photon energy. The ρ 0 differential cross section dσ/dt exhibits a clear diffraction pattern, compatible with scattering from a gold nucleus, with two minima visible. In conclusion, the positions of the diffractive minima agree better with the predictions of a quantum Glauber calculation that does not include nuclear shadowing than with a calculation that does include shadowing.« less

  9. Measurement of fragmentation cross sections of 12C ions on a thin gold target with the FIRST apparatus

    NASA Astrophysics Data System (ADS)

    Toppi, M.; Abou-Haidar, Z.; Agodi, C.; Alvarez, M. A. G.; Aumann, T.; Balestra, F.; Battistoni, G.; Bocci, A.; Böhlen, T. T.; Boudard, A.; Brunetti, A.; Carpinelli, M.; Cirio, R.; Cirrone, G. A. P.; Cortes-Giraldo, M. A.; Cuttone, G.; de Napoli, M.; Durante, M.; Fernández-García, J. P.; Finck, Ch.; Golosio, B.; Iarocci, E.; Iazzi, F.; Ickert, G.; Introzzi, R.; Juliani, D.; Krimmer, J.; Kummali, A. H.; Kurz, N.; Labalme, M.; Leifels, Y.; Le Fèvre, A.; Leray, S.; Marchetto, F.; Monaco, V.; Morone, M. C.; Nicolosi, D.; Oliva, P.; Paoloni, A.; Piersanti, L.; Pleskac, R.; Randazzo, N.; Rescigno, R.; Romano, F.; Rossi, D.; Rosso, V.; Rousseau, M.; Sacchi, R.; Sala, P.; Salvador, S.; Sarti, A.; Scheidenberger, C.; Schuy, C.; Sciubba, A.; Sfienti, C.; Simon, H.; Sipala, V.; Spiriti, E.; Tropea, S.; Vanstalle, M.; Younis, H.; Patera, V.; FIRST Collaboration

    2016-06-01

    A detailed knowledge of the light ions interaction processes with matter is of great interest in basic and applied physics. As an example, particle therapy and space radioprotection require highly accurate fragmentation cross-section measurements to develop shielding materials and estimate acute and late health risks for manned missions in space and for treatment planning in particle therapy. The Fragmentation of Ions Relevant for Space and Therapy experiment at the Helmholtz Center for Heavy Ion research (GSI) was designed and built by an international collaboration from France, Germany, Italy, and Spain for studying the collisions of a 12C ion beam with thin targets. The collaboration's main purpose is to provide the double-differential cross-section measurement of carbon-ion fragmentation at energies that are relevant for both tumor therapy and space radiation protection applications. Fragmentation cross sections of light ions impinging on a wide range of thin targets are also essential to validate the nuclear models implemented in MC simulations that, in such an energy range, fail to reproduce the data with the required accuracy. This paper presents the single differential carbon-ion fragmentation cross sections on a thin gold target, measured as a function of the fragment angle and kinetic energy in the forward angular region (θ ≲6° ), aiming to provide useful data for the benchmarking of the simulation softwares used in light ions fragmentation applications. The 12C ions used in the measurement were accelerated at the energy of 400 MeV/nucleon by the SIS (heavy ion synchrotron) GSI facility.

  10. Refractory concentrate gold leaching: Cyanide vs. bromine

    NASA Astrophysics Data System (ADS)

    Dadgar, Ahmad

    1989-12-01

    Gold extraction, recovery and economics for two refractory concentrates were investigated using cyanide and bromine reagents. Gold extractions for cyanide leaching (24-48 hours) and bromine leaching (six hours) were the same and ranged from 94 to 96%. Gold recoveries from bromine pregnant solutions using carbon adsorption, ion exchange, solvent extraction, and zinc and aluminum precipitation methods were better than 99.9%. A preliminary economic analysis indicates that chemical costs for cyanidation and bromine process are 11.70 and 11.60 respectively, per tonne of calcine processed.

  11. Selective recovery of gold from waste mobile phone PCBs by hydrometallurgical process.

    PubMed

    Kim, Eun-young; Kim, Min-seuk; Lee, Jae-chun; Pandey, B D

    2011-12-30

    The leaching of gold from the scrap mobile phone PCBs by electro-generated chlorine as an oxidant and its recovery by ion exchange process was investigated. The leaching experiments were carried out by employing separate leaching reactor connected with the anode compartment of a Cl(2) gas generator. The leaching of gold increased with increase in temperature and initial concentration of chlorine, and was favorable even at low concentration of acid, whereas copper leaching increased with increase in concentration of acid and decrease in temperature. In a two-stage leaching process, copper was mostly dissolved (97%) in 165 min at 25°C during the 1st stage leaching in 2.0 mol/L HCl by electro-generated chlorine at a current density of 714A/m(2) along with a minor recovery of gold (5%). In the 2nd stage gold was mostly leached out (93% recovery, ∼67 mg/L) from the residue of the 1st stage by the electro-generated chlorine in 0.1 mol/L HCl. Gold recovery from the leach liquor by ion exchange using Amberlite XAD-7HP resin was found to be 95% with the maximum amount of gold adsorbed as 46.03 mg/g resin. A concentrated gold solution, 6034 mg/L with 99.9% purity was obtained in the ion exchange process. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Experimental demonstration of a novel bio-sensing platform via plasmonic band gap formation in gold nano-patch arrays.

    PubMed

    Grande, Marco; Vincenti, Maria Antonietta; Stomeo, Tiziana; Morea, Giuseppe; Marani, Roberto; Marrocco, Valeria; Petruzzelli, Vincenzo; D'Orazio, Antonella; Cingolani, Roberto; De Vittorio, Massimo; de Ceglia, Domenico; Scalora, Michael

    2011-10-24

    In this paper we discuss the possibility of implementing a novel bio-sensing platform based on the observation of the shift of the leaky surface plasmon mode that occurs at the edge of the plasmonic band gap of metal gratings, when an analyte is deposited on top of the metallic structure. We report numerical calculations, fabrication and experimental measurements to prove the sensing capability of a two-dimensional array of gold nano-patches in the detection of a small quantity of Isopropyl Alcohol (IPA) deposited on top of sensor surface. The calculated sensitivity of our device approaches a value of 1000 nm/RIU with a corresponding Figure of Merit (FOM) of 222 RIU(-1). The presence of IPA can also be visually estimated by observing a color variation in the diffracted field. We show that color brightness and intensity variations can be ascribed to a change in the aperture size, keeping the periodicity constant, and to different types of analyte deposited on the sample, respectively. Moreover, we demonstrate that unavoidable fabrication imperfections revealed by the presence of rounded corners and surface roughness do not significantly affect device performance. © 2011 Optical Society of America

  13. Bio-synthesis of triangular and hexagonal gold nanoparticles using palm oil fronds’ extracts at room temperature

    NASA Astrophysics Data System (ADS)

    Usman, Adamu Ibrahim; Aziz, Azlan Abdul; Abu Noqta, Osama

    2018-01-01

    Development of bio-reduction techniques for nanoparticles (NPs) synthesis in medical application remains a challenge to numerous researchers. This work reports a novel technique for the synthesis of triangular and hexagonal gold nanoparticles (AuNP) using palm oil fronds’ (POFs) extracts. The functional groups in the POFs’ extracts operate as a persuasive capping and reducing agent to growth AuNPs. The prepared AuNPs were characterized using UV-vis spectrophotometry, Fourier-transform infrared (FTIR) spectroscopy, dynamic light scattering, energy filtered transmission electron microscopy (EFTEM), and x-ray diffraction (XRD). The analysis of FTIR validates the coating of alkynes and phenolic composites on the AuNPs. This shows a feasible function of biomolecules for efficient stabilization of the AuNPs. EFTEM clearly show the triangular and hexagonal shapes of the prepared AuNPs. The XRD patterns display the peaks of fcc crystal structures at (111), (200), (220), (311) and (222), with average particle sizes of 66.7 and 79.02 nm for 1% and 5% POFs extracts concentrations respectively at room temperature. While at 120 °C the average particles size recorded for 1% and 5% of POFs extract concentrations were 32.17 nm and 45.66 nm respectively, and the reaction completed in less than 2 min. The prepared NPs could be potentially applied in biomedical application, due to their excellent stability and refine morphology without agglomeration.

  14. Evaluation of ion release, cytotoxicity, and platelet adhesion of electrochemical anodized 316 L stainless steel cardiovascular stents.

    PubMed

    Díaz, M; Sevilla, P; Galán, A M; Escolar, G; Engel, E; Gil, F J

    2008-11-01

    316L Stainless steel is one of the most used metallic material in orthopedical prosthesis, osteosinthesis plates, and cardiovascular stents. One of the main problems this material presents is the nickel and chromium release, specially the Ni ion release that provokes allergy in a high number of patients. Recently, experimental applications in vitro and in vivo seem to indicate that the thickness of the nature oxide of the stainless steel results in very strong reinforcement of the biological response and reduce the ion release due to the thicker surface oxide. It is possible to grow the natural chromium oxide layer by electrolytic method such anodization. In this study, two main anodization methods to grow chromium oxide on the 316L stainless steel have been evaluated. Nickel and Chromium ions release in human blood at 37 degrees C were detected at times of 1, 6, 11, and 15 days by means of atomic absorption in a graphite furnace (GAAF). Moreover, cytocompatibility tests were carried out. Perfusion experiments were performed to evaluate morphometrically platelet interaction with the material and to explore the potential thrombogenicity. The results showed a good cytocompatibility between the material and the osteoblast-like cells. However, these anodization methods released between 2 and 10 times more nickel and chromium than the original stainless steel, depending on the method used. Besides, anodized samples shown an increase of the percentage of surface covered by platelets. Consequently, the anodization methods studied do not improve the long-term behavior of the stainless steel for its application as cardiovascular stents.

  15. Therapeutic polymers for dental adhesives: Loading resins with bio-active components

    PubMed Central

    Imazato, Satoshi; Ma, Sai; Chen, Ji-hua; Xu, Hockin H.K.

    2014-01-01

    Objectives Many recent adhesives on the market exhibit reasonable clinical performance. Future innovations in adhesive materials should therefore seek out novel properties rather than simply modifying existing technologies. It is proposed that adhesive materials that are “bio-active” could contribute to better prognosis of restorative treatments. Methods This review examines the recent approaches used to achieve therapeutic polymers for dental adhesives by incorporating bio-active components. A strategy to maintain adhesive restorations is the focus of this paper. Results Major trials on therapeutic dental adhesives have looked at adding antibacterial activities or remineralization effects. Applications of antibacterial resin monomers based on quaternary ammonium compounds have received much research attention, and the loading of nano-sized bioactive particles or multiple ion-releasing glass fillers have been perceived as advantageous since they are not expected to influence the mechanical properties of the carrier polymer. Significance The therapeutic polymer approaches described here have the potential to provide clinical benefits. However, not many technological applications in this category have been successfully commercialized. Clinical evidence as well as further advancement of these technologies can be a driving force to make these new types of materials clinically available. PMID:23899387

  16. Testing in artificial sweat - Is less more? Comparison of metal release in two different artificial sweat solutions.

    PubMed

    Midander, Klara; Julander, Anneli; Kettelarij, Jolinde; Lidén, Carola

    2016-11-01

    Metal release from materials immersed in artificial sweat can function as a measure of potential skin exposure. Several artificial sweat models exist that, to various degree, mimic realistic conditions. Study objective was to evaluate metal release from previously examined and well characterized materials in two different artificial sweat solutions; a comprehensive sweat model intended for use within research, based on the composition of human sweat; and the artificial sweat, EN1811, intended for testing compliance with the nickel restriction in REACH. The aim was to better understand whether there are advantages using either of the sweat solutions in bio-elution testing of materials. Metal release in two different artificial sweat solutions was compared for discs of a white gold alloy and two hard metals, and a rock drilling insert of tungsten carbide at 1 h, 24 h, 1 week and 1 month. The released amount of metal was analysed by means of inductively coupled plasma mass spectrometry. Similar levels of released metals were measured from test materials in the two different artificial sweat solutions. For purposes in relation to legislations, it was concluded that a metal release test using a simple artificial sweat composition may provide results that sufficiently indicate the degree of metal release at skin contact. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. The investigation of the bio-oil produced by hydrothermal liquefaction of Spirulina platensis using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Kostyukevich, Yury; Vlaskin, Mikhail; Vladimirov, Gleb; Zherebker, Alexander; Kononikhin, Alexey; Popov, Igor; Nikolaev, Eugene

    2017-04-01

    We report the investigation of the hydrothermal liquefaction products of the Spirulina platensis microalgae by using the Fourier transform ion cyclotron resonance mass spectrometry. The hydrothermal liquefaction produced two fractions: one with boiling temperature below 300℃ and the dense residue that remained in the reactor. It was observed that N 2 and N classes of compounds that dominate in the positive ESI Fourier transform ion cyclotron resonance spectra for both fractions, and that the light fraction is considerably more saturated then the heavy one. The performed hydrogen/deuterium exchange reaction indicated the presence of the onium compounds in the bio-oil.

  18. Detection of mercury (II) ions in water by polyelectrolyte-gold nanoparticles coated long period fiber grating sensor

    NASA Astrophysics Data System (ADS)

    Tan, Shin-Yinn; Lee, Sheng-Chyan; Okazaki, Takuya; Kuramitz, Hideki; Abd-Rahman, Faidz

    2018-07-01

    This paper presents mercury (II) ions detection based on long period fiber grating (LPFG) sensor written on a single mode optical fiber by electrical arc induced technique that is suitable to be used for long term monitoring purpose. In the work, the LPFG was coated with both polyelectrolyte (PE) layers to enhance its sensitivity as well as a layer of gold nanoparticles (AuNP) for reaction to the mercury (II) ions. Experiments were conducted using double-pass configurations with mercury (II) ions concentrations varied between 0.5 ppm to 10 ppm. The results showed that the resonance wavelength of the PE-AuNP coated LPFG notch shifted to the longer wavelength, with a total shift of 1.34 nm and transmission power increment of 1.74 dBm over a period of 5 h. The results were then compared with uncoated as well as PE-only coated LPFGs, where no significant changes in resonance wavelength and transmission power were observed for these LPFGs. A novel PE-AuNP coated LPFG sensor that is suitable to be used for in-situ, long term and remote monitoring has been successfully demonstrated and tested for the detection of mercury (II) ions in water.

  19. pH and calcium ion release evaluation of pure and calcium hydroxide-containing Epiphany for use in retrograde filling

    PubMed Central

    TANOMARU-FILHO, Mário; SAÇAKI, Juliana Nogueira; FALEIROS, Frederico Bordini Chaves; GUERREIRO-TANOMARU, Juliane Maria

    2011-01-01

    Objective Hydroxyl (OH-) and calcium (Ca++) ion release was evaluated in six materials: G1) Sealer 26, G2) White mineral trioxide aggregate (MTA), G3) epiphany, G4) epiphany + 10% calcium hydroxide (CH), G5) epiphany + 20% CH, and G6) zinc oxide and eugenol. Material and Methods Specimens were placed in polyethylene tubes and immersed in distilled water. After 3, 6, 12, 24, and 48 h, 7, 14, and 28 days, the water was assessed for pH with a pH meter and for Ca++ release by atomic absorption spectrophotometry. Results G1, G2, G4, and G5 had the highest pH until 14 days (p<0.05). G1 presented the highest Ca++ release until 6 h, and G4 and G5, from 12 h through 14 days. Ca++ release was greater for G1 and G2 at 28 days. G6 released the least Ca++. Conclusion MTA, Sealer 26, epiphany, and epiphany + CH release OH - and Ca++ ions. Epiphany + CH may be an alternative as retrofilling material. PMID:21437461

  20. [Bio-objects and biological methods of space radiation effects evaluation].

    PubMed

    Kaminskaia, E V; Nevzgodina, L V; Platova, N G

    2009-01-01

    The unique conditions of space experiments place austere requirements to bio-objects and biological methods of radiation effects evaluation. The paper discusses suitability of a number of bio-objects varying in stage of evolution and metabolism for space researches aimed to state common patterns of the radiation damage caused by heavy ions (HI), and character of HI-cell interaction. Physical detectors in space experiments of the BIOBLOCK series make it possible to identify bio-objects hit by space HI and to set correlation between HI track topography and biological effect. The paper provides an all-round description of the bio-objects chosen for two BIOBLOCK experiments (population of hydrophyte Wolffia arrhiza (fam. duckweed) and Lactuca sativa seeds) and the method of evaluating effects from single space radiation HI. Direct effects of heavy ions on cells can be determined by the criteria of chromosomal aberrations and delayed morphologic abnormalities. The evaluation results are compared with the data about human blood lymphocytes. Consideration is being given to the procedures of test-objects' treatment and investigation.

  1. Understanding the evolution of luminescent gold quantum clusters in protein templates.

    PubMed

    Chaudhari, Kamalesh; Xavier, Paulrajpillai Lourdu; Pradeep, Thalappil

    2011-11-22

    We show that the time-dependent biomineralization of Au(3+) by native lactoferrin (NLf) and bovine serum albumin (BSA) resulting in near-infrared (NIR) luminescent gold quantum clusters (QCs) occurs through a protein-bound Au(1+) intermediate and subsequent emergence of free protein. The evolution was probed by diverse tools, principally, using matrix-assisted laser desorption ionization mass spectrometry (MALDI MS), X-ray photoelectron spectroscopy (XPS), and photoluminescence spectroscopy (PL). The importance of alkaline pH in the formation of clusters was probed. At neutral pH, a Au(1+)-protein complex was formed (starting from Au(3+)) with the binding of 13-14 gold atoms per protein. When the pH was increased above 12, these bound gold ions were further reduced to Au(0) and nucleation and growth of cluster commenced, which was corroborated by the beginning of emission; at this point, the number of gold atoms per protein was ~25, suggesting the formation of Au(25). During the cluster evolution, at certain time intervals, for specific molar ratios of gold and protein, occurrence of free protein was noticed in the mass spectra, suggesting a mixture of products and gold ion redistribution. By providing gold ions at specific time of the reaction, monodispersed clusters with enhanced luminescence could be obtained, and the available quantity of free protein could be utilized efficiently. Monodispersed clusters would be useful in obtaining single crystals of protein-protected noble metal quantum clusters where homogeneity of the system is of primary concern. © 2011 American Chemical Society

  2. Metal is not inert: role of metal ions released by biocorrosion in aseptic loosening--current concepts.

    PubMed

    Cadosch, Dieter; Chan, Erwin; Gautschi, Oliver P; Filgueira, Luis

    2009-12-15

    Metal implants are essential therapeutic tools for the treatment of bone fractures and joint replacements. The metals and metal alloys used in contemporary orthopedic and trauma surgery are well tolerated by the majority of patients. However, complications resulting from inflammatory and immune reactions to metal implants have been well documented. This review briefly discusses the different mechanisms of metal implant corrosion in the human body, which lead to the release of significant levels of metal ions into the peri-implant tissues and the systemic blood circulation. Additionally, this article reviews the effects of the released ions on bone metabolism and the immune system and discusses their involvement in the pathophysiological mechanisms of aseptic loosening and metal hypersensitivity in patients with metal implants.

  3. On the origin of (4)He and (40)Ar in natural gold

    NASA Technical Reports Server (NTRS)

    Eugster, O.; Hofmann, B.; Niedermann, S.; Thalmann, CH.

    1993-01-01

    In a first report on our investigations of noble gases in native gold we demonstrated that placer gold contains an excess of radiogenic (4)He and (40)Ar relative to the concentrations expected from in situ decay of U, Th, and K, respectively, during the geologic age of about 30 Ma of the samples. We also showed that the U/Th-(4)He age of 36 Ma of vein-type gold from the Southern Alps agrees with its K-Ar formation age derived from associated muscovite and biotite. We now studied the question of the origin of the (4)He and (40)Ar excesses of placer gold. We conclude that gold contains two components of noble gases, a low-temperature component from fluid inclusions or phases which release noble gases at less than 800 C and a high-temperature component released when gold melts (1064 C). In some samples extremely high U and K concentrations or an unreasonably high formation age would be required to explain the observed (4)He abundances. Thus, trapped (4)He and (40)Ar must be present in gold.

  4. Price To Be Paid for Two-Metal Catalysis: Magnesium Ions That Accelerate Chemistry Unavoidably Limit Product Release from a Protein Kinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsen, Douglas M.; Bao, Zhao-Qin; O'’Brien, Patrick

    Incorporation of divalent metal ions into an active site is a fundamental catalytic tool used by diverse enzymes. Divalent cations are used by protein kinases to both stabilize ATP binding and accelerate chemistry. Kinetic analysis establishes that Cyclin-dependent kinase 2 (CDK2) requires simultaneous binding of two Mg 2+ ions for catalysis of phosphoryl transfer. This tool, however, comes with a price: the rate-acceleration effects are opposed by an unavoidable rate-limiting consequence of the use of two Mg 2+ ions by CDK2. The essential metal ions stabilize ADP product binding and limit the overall rate of the reaction. We demonstrate thatmore » product release is rate limiting for activated CDK2 and evaluate the effects of the two catalytically essential Mg 2+ ions on the stability of the ADP product within the active site. We present two new crystal structures of CDK2 bound to ADP showing how the phosphate groups can be coordinated by either one or two Mg 2+ ions, with the occupancy of one site in a weaker equilibrium. Molecular dynamics simulations indicate that ADP phosphate mobility is more restricted when ADP is coordinated by two Mg 2+ ions compared to one. The structural similarity between the rigid ADP·2Mg product and the cooperatively assembled transition state provides a mechanistic rational for the rate-limiting ADP release that is observed. We demonstrate that although the simultaneous binding of two Mg 2+ ions is essential for efficient phosphoryl transfer, the presence of both Mg 2+ ions in the active site also cooperatively increases ADP affinity and opposes its release. Evolution of protein kinases must have involved careful tuning of the affinity for the second Mg 2+ ion in order to balance the needs to stabilize the chemical transition state and allow timely product release. The link between Mg 2+ site affinity and activity presents a chemical handle that may be used by regulatory factors as well as explain some mutational effects.« less

  5. Mechanical properties and ion release from bioactive restorative composites containing glass fillers and calcium phosphate nano-structured particles.

    PubMed

    Chiari, Marina D S; Rodrigues, Marcela C; Xavier, Tathy A; de Souza, Eugen M N; Arana-Chavez, Victor E; Braga, Roberto R

    2015-06-01

    To evaluate the effect of the replacement of barium glass by dicalcium phosphate dihydrate (DCPD) particles on the mechanical properties and degree of conversion (DC) of composites. Additionally, calcium and hydrogen phosphate (HPO4(2-)) release were followed for 28 days. Nine composites containing equal parts (in mols) of BisGMA and TEGDMA and 40, 50 or 60 vol% of total filler were manipulated. Filler phase was constituted by silanated barium glass and 0%, 10% or 20% of DCPD particles. DC was determined by near-FTIR. Biaxial flexural strength (BFS) and modulus (E) were tested using the "piston on three balls" method, while fracture toughness (KIc) used the "single edge notched beam" method. Specimens were tested after 24h and 28 days in water. Ion release was determined using inductively coupled plasma optical emission spectrometry (ICP-OES). Data were analyzed by ANOVA/Tukey (DC and ion release) or Kruskal-Wallis/Mann-Whitney (mechanical properties; alpha: 5%). DC was not affected by DCPD. The presence of DCPD reduced BFS for both storage times, while differences in E became evident after 28 days. After 24h, KIc increased with the addition of DCPD; after 28 days, however, KIc decreased only for DCPD-containing composites. Calcium release was similar for both DCPD contents and remained fairly constant during the 28-day period. Overall, HPO4(2-) release was higher at 7 days and did not decrease after 14 days. The composite with the highest filler level and 10% DCPD represented the best compromise between mechanical properties after aging in water and ion release. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Rational Design of Branched Nanoporous Gold Nanoshells with Enhanced Physico-Optical Properties for Optical Imaging and Cancer Therapy.

    PubMed

    Song, Jibin; Yang, Xiangyu; Yang, Zhen; Lin, Lisen; Liu, Yijing; Zhou, Zijian; Shen, Zheyu; Yu, Guocan; Dai, Yunlu; Jacobson, Orit; Munasinghe, Jeeva; Yung, Bryant; Teng, Gao-Jun; Chen, Xiaoyuan

    2017-06-27

    Reported procedures on the synthesis of gold nanoshells with smooth surfaces have merely demonstrated efficient control of shell thickness and particle size, yet no branch and nanoporous features on the nanoshell have been implemented to date. Herein, we demonstrate the ability to control the roughness and nanoscale porosity of gold nanoshells by using redox-active polymer poly(vinylphenol)-b-(styrene) nanoparticles as reducing agent and template. The porosity and size of the branches on this branched nanoporous gold nanoshell (BAuNSP) material can be facilely adjusted by control of the reaction speed or the reaction time between the redox-active polymer nanoparticles and gold ions (Au 3+ ). Due to the strong reduction ability of the redox-active polymer, the yield of BAuNSP was virtually 100%. By taking advantage of the sharp branches and nanoporous features, BAuNSP exhibited greatly enhanced physico-optical properties, including photothermal effect, surface-enhanced Raman scattering (SERS), and photoacoustic (PA) signals. The photothermal conversion efficiency can reach as high as 75.5%, which is greater than most gold nanocrystals. Furthermore, the nanoporous nature of the shells allows for effective drug loading and controlled drug release. The thermoresponsive polymer coated on the BAuNSP surface serves as a gate keeper, governing the drug release behavior through photothermal heating. Positron emission tomography imaging demonstrated a high passive tumor accumulation of 64 Cu-labeled BAuNSP. The strong SERS signal generated by the SERS-active BAuNSP in vivo, accompanied by enhanced PA signals in the tumor region, provide significant tumor information, including size, morphology, position, and boundaries between tumor and healthy tissues. In vivo tumor therapy experiments demonstrated a highly synergistic chemo-photothermal therapy effect of drug-loaded BAuNSPs, guided by three modes of optical imaging.

  7. Biosynthesis of Gold Nanoparticles Using Pseudomonas Aeruginosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abd El-Aziz, M.; Badr, Y.; Mahmoud, M. A.

    2007-02-14

    Pseudomonas aeruginosa were used for extracellular biosynthesis of gold nanoparticles (Au NPs). Consequently, Au NPs were formed due to reduction of gold ion by bacterial cell supernatant of P. aeruginos ATCC 90271, P. aeruginos (2) and P. aeruginos (1). The UV-Vis. and fluorescence spectra of the bacterial as well as chemical prepared Au NPs were recorded. Transmission electron microscopy (TEM) micrograph showed the formation of well-dispersed gold nanoparticles in the range of 15-30 nm. The process of reduction being extracellular and may lead to the development of an easy bioprocess for synthesis of Au NPs.

  8. Trace metal ions release from fixed orthodontic appliances and DNA damage in oral mucosa cells by in vivo studies: A literature review.

    PubMed

    Downarowicz, Patrycja; Mikulewicz, Marcin

    2017-10-01

    An overview of professional literature referring to the release of metal ions from fixed orthodontic appliances and their influence on oral mucosa in conditions of in vivo are presented, along with a detailed analysis of the exposure of the cells of cheek mucosa epithelium to metal ions. Electronic databases (PubMed, Elsevier, Ebsco) were searched with no language restrictions. The relevant orthodontic journals and reference lists were checked for all eligible studies. A total of 38 scientific articles were retrieved in the initial search. However, only 7 articles met the inclusion criteria. Statistically significant differences in the levels of the amount of nickel ions, cobalt ions and chromium ions were observed in cells of cheek mucosa. The most biocompatible material used in the production of fixed orthodontic appliances is titanium, and the least biocompatible material is steel, which releases the largest amount of nickel and chromium. Metal ions are released from fixed orthodontic appliances only in the first phase of treatment. It is recommended to conduct further, long-term research on a larger number of patients to define the influence of using fixed orthodontic appliances and biological effect they might have on tissues.

  9. Genetically modified luminescent bacteria Ralostonia solanacerum, Pseudomonas syringae, Pseudomonas savastanoi, and wild type bacterium Vibrio fischeri in biosynthesis of gold nanoparticles from gold chloride trihydrate.

    PubMed

    Attaran, Neda; Eshghi, Hossein; Rahimizadeh, Mohammad; Mashreghi, Mansour; Bakavoli, Mehdi

    2014-08-04

    The effect of different genetically engineered bacteria, Pseudomonas syringae, Pseudomonas savastanoi, and Ralostonia solanacerum and also a natural marine bacterial species, Vibrio fischeri NRRL B-11177, is studied in producing gold nanoparticles. This is the first report about the biosynthesis of gold nanoparticles by natural and genetically engineered luminescent bacteria. These microorganisms reduced gold ions and produced fairly monodisperse nanoparticles. TEM analysis indicated that spherical nano gold particles in the different diameters and shapes were obtained at pH values of 6.64. In this biosynthesis protocol, the gold nanoparticles with desired shape and size can be prepared.

  10. Precise Determination of the Lyman-1 Transition Energy in Hydrogen-like Gold Ions with Microcalorimeters

    NASA Astrophysics Data System (ADS)

    Kraft-Bermuth, S.; Andrianov, V.; Bleile, A.; Echler, A.; Egelhof, P.; Grabitz, P.; Kilbourne, C.; Kiselev, O.; McCammon, D.; Scholz, P.

    2014-09-01

    The precise determination of the transition energy of the Lyman-1 line in hydrogen-like heavy ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields. We report the determination of the Lyman-1 transition energy of gold ions (Au) with microcalorimeters at the experimental storage ring at GSI. X-rays produced by the interaction of 125 MeV/u Au ions with an internal argon gas-jet target were detected. The detector array consisted of 14 pixels with silicon thermistors and Sn absorbers, for which an energy resolution of 50 eV for an X-ray energy of 59.5 keV was obtained in the laboratory. The Lyman-1 transition energy was determined for each pixel in the laboratory frame, then transformed into the emitter frame and averaged. A Dy-159 source was used for energy calibration. The absolute positions of the detector pixels, which are needed for an accurate correction of the Doppler shift, were determined by topographic measurements and by scanning a collimated Am-241 source across the cryostat window. The energy of the Lyman-1 line in the emitter frame is eV, in good agreement with theoretical predictions. The systematic error is dominated by the uncertainty in the position of the cryostat relative to the interaction region of beam and target.

  11. Biosynthesis of size-controlled gold nanoparticles using fungus, Penicillium sp.

    PubMed

    Zhang, Xiaorong; He, Xiaoxiao; Wang, Kemin; Wang, Yonghong; Li, Huimin; Tan, Weihong

    2009-10-01

    The unique optoelectronic and physicochemical properties of gold nanoparticles are significantly dependent on the particle size, shape and structure. In this paper, biosynthesis of size-controlled gold nanoparticles using fungus Penicillium sp. is reported. Fungus Penicillium sp. could successfully bioreduce and nucleate AuCl4(-) ions, and lead to the assembly and formation of intracellular Au nanoparticles with spherical morphology and good monodispersity after exposure to HAuCl4 solution. Reaction temperature, as an important physiological parameter for fungus Penicillium sp. growth, could significantly control the size of the biosynthesized Au nanoparticles. The biological compositions and FTIR spectra analysis of fungus Penicillium sp. exposed to HAuCl4 solution indicated the intracellular reducing sugar played an important role in the occurrence of intracellular reduction of AuCl4(-) ions and the growth of gold nanoparticles. Furthermore, the intracellular gold nanoparticles could be easily separated from the fungal cell lysate by ultrasonication and centrifugation.

  12. Highly selective visual monitoring of hazardous fluoride ion in aqueous media using thiobarbituric-capped gold nanoparticles.

    PubMed

    Boken, Jyoti; Thatai, Sheenam; Khurana, Parul; Prasad, Surendra; Kumar, Dinesh

    2015-01-01

    The rapid, selective and sensitive measurement and monitoring of hazardous materials as analytes are the central themes in the development of any successful analytical technique. With this aim, we have synthesized the thiobarbituric-capped gold nanoparticles (TBA-capped Au NPs) involving chemical reduction of HAuCl4 using 2-thiobarbituric acid (TBA) as a reducing and capping agent. The morphology of the TBA-capped Au NPs was confirmed using transmission electron microscope images. For the first time this article reports that the developed TAB-capped Au NPs displays selective, ultrafast and sensitive colorimetric detection of fluoride ion in aqueous samples. The detection of fluoride ion was confirmed by the disappearance of the localized surface plasmon resonance (LSPR) band at 554 nm using UV-vis spectroscopy. The interaction of F(-) with TBA-capped Au NPs in aqueous solution has also been confirmed by Raman and FTIR spectroscopy. One of the most exciting accomplishments is the visual detection limit for fluoride ion has been found to be 10 mM at commonly acceptable water pH range 7-8. The whole detection procedure takes not more than 40s with excellent selectivity providing sample throughput of more than 60 per hour. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Toward a chemiresistive ammonia (NH3) gas sensor based on viral-templated gold nanoparticles embedded in polypyrrole nanowires

    NASA Astrophysics Data System (ADS)

    Yan, Yiran; Zhang, Miluo; Su, Heng Chia; Myung, Nosang V.; Haberer, Elaine D.

    2014-08-01

    Preliminary studies toward the assembly of a gold-polypyrrole (PPy) peapod-like chemiresistive ammonia (NH3) gas sensors are presented. The proposed synthesis process will use electropolymerization to embed gold nanoparticles in polypyrrole nanowires. Viral-templating of gold nanoparticles and PPy electrodeposition via cyclic voltammetry are the focus of this investigation. A gold-binding M13 bacteriophage was used as a bio-template to assemble continuous chains of gold nanoparticles on interdigitated Pt working electrodes. The dimensions of the resulting nanowire-like structures were examined and the electrical resistance measured. PPy films were electropolymerized using an interdigitated planar, Pt electrode integrated counter and reference electrode. Morphological characterization of the polymer films was completed.

  14. Identification of gold sensing peptide by integrative proteomics and a bacterial two-component system

    NASA Astrophysics Data System (ADS)

    Ng, I.-Son; Yu, You-Jin; Yi, Ying-Chen; Tan, Shih-I.; Huang, Bo-Chuan; Han, Yin-Lung

    2017-12-01

    The proteomics strategy was utilized to analyze and identify the gold adsorption proteins from Tepidimonas fonticaldi AT-A2, due to its outstanding performance in gold-binding and recovery. The results showed that three small proteins, including histidine biosynthesis protein (HisIE), iron donor protein (CyaY) and hypothetical protein_65aa, have a higher ability to adsorb gold ions because of the negatively charged domains or metal binding sites. On the other hand, the Salmonella PmrA/PmrB two-component system first replaces the iron (III)-binding motif using the peptide sequence from hypothetical protein_65aa, and this is then used to reveal the sensing and responsiveness to gold metal ions, which is totally different from the performance of traditional gold binding peptide (GBP) on the crystals on the surface of gold (111). We have successfully demonstrated an integrative proteomics and bacterial two-component system to explore the novel gold binding peptide. Finally, the heterologous over-expression of gold binding peptide by E. coli and the equilibrium of binding capacity for Au(III) have been conducted.

  15. Ion release and in vitro enamel fluoride uptake associated with pit and fissure sealants containing microencapsulated remineralizing agents.

    PubMed

    Burbank, Brant D; Cooper, Ryan L; Kava, Alyssa; Hartjes, Jennifer M; McHale, William A; Latta, Mark A; Gross, Stephen M

    2017-04-01

    To determine if pit-and-fissure sealants with microencapsulated remineralizing agents with sustained release of fluoride, calcium and phosphate ions could promote enamel fluoride uptake by demineralized tooth structure. Sealants that contained 5 w/w% microcapsules with aqueous solutions of 5M Ca(NO3)2 or 0.8M NaF or 6.0M K2HPO4 or a mixture of all three were prepared. Ion release profiles were measured as a function of time. Enamel fluoride uptake by demineralized tooth structure was determined. Sustained release of fluoride, calcium and phosphate ions from a sealant was demonstrated. Fluoride uptake by demineralized enamel was significantly increased compared to a control sealant manufactured without microcapsules (P< 0.01). Bovine enamel that contained 2.2±2.1 µg F/g of enamel prior to exposure to a sealant without microcapsules had 2.3±0.5 after 90 days. Enamel exposed to sealant with 5w/% NaF microcapsules went from 3.5±3.5 µg F/g of enamel prior to exposure to 148±76 after 90 days. Enamel exposed to sealant with 2 w/w% NaF, 2 w/w% Ca(NO3)2 and 1 w/w% K2HPO4 microcapsules went from 1.7±0.7 µg F/g of enamel prior to exposure to 190±137 after 90 days. Sealants with encapsulated remineralizing agents were capable of releasing biologically available fluoride, calcium, and phosphate ions. Incorporation of these microcapsules in pit and fissure sealants is a promising method for remineralization determined by enamel fluoride uptake measurements.

  16. A versatile bio-based material for efficiently removing toxic dyes, heavy metal ions and emulsified oil droplets from water simultaneously.

    PubMed

    Li, Daikun; Li, Qing; Mao, Daoyong; Bai, Ningning; Dong, Hongzhou

    2017-12-01

    Developing versatile materials for effective water purification is significant for environment and water source protection. Herein, a versatile bio-based material (CH-PAA-T) was reported by simple thermal cross-linking chitosan and polyacrylic acid which exhibits excellent performances for removing insoluble oil, soluble toxic dyes and heavy metal ions from water, simultaneously. The adsorption capacities are 990.1mgg -1 for methylene blue (MB) and 135.9mgg -1 for Cu 2+ , which are higher than most of present advanced absorbents. The adsorption towards organic dyes possesses high selectivity which makes CH-PAA-T be able to efficiently separate dye mixtures. The stable superoleophobicity under water endows CH-PAA-T good performance to separate toluene-in-water emulsion stabilized by Tween 80. Moreover, CH-PAA-T can be recycled for 10 times with negligible reduction of efficiency. Such versatile bio-based material is a potential candidate for water purification. Copyright © 2017. Published by Elsevier Ltd.

  17. Aspheric Solute Ions Modulate Gold Nanoparticle Interactions in an Aqueous Solution: An Optimal Way to Reversibly Concentrate Functionalized Nanoparticles

    PubMed Central

    Villarreal, Oscar D; Chen, Liao Y; Whetten, Robert L; Demeler, Borries

    2015-01-01

    Nanometer-sized gold particles (AuNPs) are of peculiar interest because their behaviors in an aqueous solution are sensitive to changes in environmental factors including the size and shape of the solute ions. In order to determine these important characteristics, we performed all-atom molecular dynamics simulations on the icosahedral Au144 nanoparticles each coated with a homogeneous set of 60 thiolates (4-mercapto-benzoate, pMBA) in eight aqueous solutions having ions of varying sizes and shapes (Na+, K+, tetramethylamonium cation TMA+, trisamonium cation TRS+, Cl−, and OH−). For each solution, we computed the reversible work (potential of mean of force) to bring two nanoparticles together as a function of their separation distance. We found that the behavior of pMBA protected Au144 nanoparticles can be readily modulated by tuning their aqueous environmental factors (pH and solute ion combinations). We examined the atomistic details on how the sizes and shapes of solute ions quantitatively factor in the definitive characteristics of nanoparticle-environment and nanoparticle-nanoparticle interactions. We predict that tuning the concentrations of non-spherical composite ions such as TRS+ in an aqueous solution of AuNPs be an effective means to modulate the aggregation propensity desired in biomedical and other applications of small charged nanoparticles. PMID:26581232

  18. Aspheric Solute Ions Modulate Gold Nanoparticle Interactions in an Aqueous Solution: An Optimal Way To Reversibly Concentrate Functionalized Nanoparticles.

    PubMed

    Villarreal, Oscar D; Chen, Liao Y; Whetten, Robert L; Demeler, Borries

    2015-12-17

    Nanometer-sized gold particles (AuNPs) are of peculiar interest because their behaviors in an aqueous solution are sensitive to changes in environmental factors including the size and shape of the solute ions. In order to determine these important characteristics, we performed all-atom molecular dynamics simulations on the icosahedral Au144 nanoparticles each coated with a homogeneous set of 60 thiolates (4-mercaptobenzoate, pMBA) in eight aqueous solutions having ions of varying sizes and shapes (Na(+), K(+), tetramethylamonium cation TMA(+), tris-ammonium cation TRS(+), Cl(-), and OH(-)). For each solution, we computed the reversible work (potential of mean of force) to bring two nanoparticles together as a function of their separation distance. We found that the behavior of pMBA protected Au144 nanoparticles can be readily modulated by tuning their aqueous environmental factors (pH and solute ion combinations). We examined the atomistic details on how the sizes and shapes of solute ions quantitatively factor in the definitive characteristics of nanoparticle-environment and nanoparticle-nanoparticle interactions. We predict that tuning the concentrations of nonspherical composite ions such as TRS(+) in an aqueous solution of AuNPs be an effective means to modulate the aggregation propensity desired in biomedical and other applications of small charged nanoparticles.

  19. Metal-assisted SIMS and cluster ion bombardment for ion yield enhancement

    NASA Astrophysics Data System (ADS)

    Heile, A.; Lipinsky, D.; Wehbe, N.; Delcorte, A.; Bertrand, P.; Felten, A.; Houssiau, L.; Pireaux, J.-J.; De Mondt, R.; Van Vaeck, L.; Arlinghaus, H. F.

    2008-12-01

    In addition to structural information, a detailed knowledge of the local chemical environment proves to be of ever greater importance, for example for the development of new types of materials as well as for specific modifications of surfaces and interfaces in multiple fields of materials science or various biomedical and chemical applications. But the ongoing miniaturization and therefore reduction of the amount of material available for analysis constitute a challenge to the detection limits of analytical methods. In the case of time-of-flight secondary ion mass spectrometry (TOF-SIMS), several methods of secondary ion yield enhancement have been proposed. This paper focuses on the investigation of the effects of two of these methods, metal-assisted SIMS and polyatomic primary ion bombardment. For this purpose, thicker layers of polystyrene (PS), both pristine and metallized with different amounts of gold, were analyzed using monoatomic (Ar +, Ga +, Xe +, Bi +) and polyatomic (SF 5+, Bi 3+, C 60+) primary ions. It was found that polyatomic ions generally induce a significant increase of the secondary ion yield. On the other hand, with gold deposition, a yield enhancement can only be detected for monoatomic ion bombardment.

  20. Improvement of corrosion resistance and antibacterial effect of NiTi orthopedic materials by chitosan and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahmed, Rasha A.; Fadl-allah, Sahar A.; El-Bagoury, Nader; El-Rab, Sanaa M. F. Gad

    2014-02-01

    Biocomposite consists of gold nanoparticles (AuNPs) and a natural polymer as Chitosan (CS) was electrodeposited over NiTi alloy to improve biocompatibility, biostability, surface corrosion resistance and antibacterial effect for orthopedic implantation. The forming process and surface morphology of this biocomposite coats over NiTi alloy were studied. The results showed that the nm-scale gold particles were embedded in the composite forming compact, thick and smooth coat. Elemental analysis revealed significant less Ni ion release from the coated NiTi alloy compared with the uncoated one by 20 fold. Furthermore, the electrochemical corrosion measurements indicated that AuNPs/CS composite coat was effective for improving corrosion resistance in different immersion times and at all pH values, which suggests that the coated NiTi alloys have potential for orthopedic applications. Additionally, the efficiencies of the biocomposite coats for inhibiting bacterial growth indicate high antibacterial effect.

  1. Structure and reactivity of a mononuclear gold(II) complex

    NASA Astrophysics Data System (ADS)

    Preiß, Sebastian; Förster, Christoph; Otto, Sven; Bauer, Matthias; Müller, Patrick; Hinderberger, Dariush; Hashemi Haeri, Haleh; Carella, Luca; Heinze, Katja

    2017-12-01

    Mononuclear gold(II) complexes are very rare labile species. Transient gold(II) species have been suggested in homogeneous catalysis and in medical applications, but their geometric and electronic structures have remained essentially unexplored: even fundamental data, such as the ionic radius of gold(II), are unknown. Now, an unprecedentedly stable neutral gold(II) complex of a porphyrin derivative has been isolated, and its structural and spectroscopic features determined. The gold atom adopts a 2+2 coordination mode in between those of gold(III) (four-coordinate square planar) and gold(I) (two-coordinate linear), owing to a second-order Jahn-Teller distortion enabled by the relativistically lowered 6s orbital of gold. The reactivity of this gold(II) complex towards dioxygen, nitrosobenzene and acids is discussed. This study provides insight on the ionic radius of gold(II), and allows it to be placed within the homologous series of nd9 Cu/Ag/Au divalent ions and the 5d8/9/10 Pt/Au/Hg 'relativistic' triad in the periodic table.

  2. Aggregation of gold nanoparticles followed by methotrexate release enables Raman imaging of drug delivery into cancer cells

    NASA Astrophysics Data System (ADS)

    Durgadas, C. V.; Sharma, C. P.; Paul, W.; Rekha, M. R.; Sreenivasan, K.

    2012-09-01

    This study refers an aqueous synthesis of methotrexate (MTX)-conjugated gold nanoparticles (GNPs), their interaction with HepG2 cells, and the use of Raman imaging to observe cellular internalization and drug delivery. GNPs of average size 3.5-5 nm were stabilized using the amine terminated bifunctional biocompatible copolymer and amended by conjugating MTX, an anticancer drug. The nanoparticles were released MTX at a faster rate in acidic pH and subsequently found to form aggregates. The Raman signals of cellular components were found to be enhanced by the aggregated particles enabling the mapping to visualize site-specific drug delivery. The methodology seems to have potential in optimizing the characteristics of nanodrug carriers for emptying the cargo precisely at specified sites.

  3. One-pot green synthesis of luminescent gold nanoparticles using imidazole derivative of chitosan.

    PubMed

    Nazirov, Alexander; Pestov, Alexander; Privar, Yuliya; Ustinov, Alexander; Modin, Evgeny; Bratskaya, Svetlana

    2016-10-20

    Water soluble luminescent gold nanoparticles with average size 2.3nm were for the first time synthesized by completely green method of Au(III) reduction using chitosan derivative-biocompatible nontoxic N-(4-imidazolyl)methylchitosan (IMC) as both reducing and stabilizing agent. Reduction of Au(III) to gold nanoparticles in IMC solution is a slow process, in which coordination power of biopolymer controls both reducing species concentration and gold crystal growth rate. Gold nanoparticles formed in IMC solution do not manifest surface plasmon resonance, but exhibit luminescence at 375nm under UV light excitation at 230nm. Due to biological activity of imidazolyl-containing polymers and their ability to bind proteins and drugs, the obtained ultra-small gold nanoparticles can find an application for biomolecules detection, bio-imaging, drug delivery, and catalysis. Very high catalytic activity (as compared to gold nanoparticles obtained by other green methods) was found for Au/IMC nanoparticles in the model reaction of p-nitrophenol reduction providing complete conversion of p-nitrophenol to p-aminophenol within 180-190s under mild conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Gold nano-particle formation from crystalline AuCN: Comparison of thermal, plasma- and ion-beam activated decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, Mihály T.; Bertóti, Imre, E-mail: bertoti.imre@ttk.mta.hu; Mohai, Miklós

    In this work, in addition to the conventional thermal process, two non-conventional ways, the plasma and ion beam activations are described for preparing gold nanoparticles from microcrystalline AuCN precursor. The phase formation at plasma and ion beam treatments was compared with that at thermal treatments and the products and transformations were characterized by thermogravimetry-mass-spectrometry (TG-MS), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). TG-MS measurements in Ar atmosphere revealed that AuCN decomposition starts at 400 °C and completes at ≈700 °C with evolution of gaseous (CN){sub 2}. XPS and TEM show that in heat treatment at 450 °C formore » 1 h in Ar, loss of nitrogen and carbon occurs and small, 5–30 nm gold particles forms. Heating at 450 °C for 10 h in sealed ampoule, much larger, 60–200 nm size and well faceted Au particles develop together with a fibrous (CN){sub n} polymer phase, and the Au crystallites are covered by a 3–5 nm thick polymer shell. Low pressure Ar plasma treatment at 300 eV energy results in 4–20 nm size Au particles and removes most of the nitrogen and part of carbon. During Ar{sup +} ion bombardment with 2500 eV energy, 5–30 nm size Au crystallites form already in 10 min, with preferential loss of nitrogen and with increased amount of carbon residue. The results suggest that plasma and ion beam activation, acting similarly to thermal treatment, may be used to prepare Au nanoparticles from AuCN on selected surface areas either by depositing AuCN precursors on selected regions or by focusing the applied ionized radiation. Thus they may offer alternative ways for preparing tailor-made catalysts, electronic devices and sensors for different applications. - Graphical abstract: Proposed scheme of the decomposition mechanism of AuCN samples: heat treatment in Ar flow (a) and in sealed ampoule (b); Ar{sup +} ion treatment at 300 eV (c) and at 2500 eV (d). Cross section

  5. Comparison of nickel and chromium ions released from stainless steel and NiTi wires after immersion in Oral B®, Orthokin® and artificial saliva.

    PubMed

    Jamilian, Abdolreza; Moghaddas, Omid; Toopchi, Shabnam; Perillo, Letizia

    2014-07-01

    Oral environment of the mouth is a suitable place for biodegradation of alloys used in orthodontic wires. The toxicity of these alloys namely nickel and chromium has concerned the researchers about the release of these ions from orthodontic wires and brackets. The aim of this study was to measure the levels of nickel and chromium ions released from 0.018" stainless steel (SS) and NiTi wires after immersion in three solutions. One hundred and forty-four round NiTi and 144 round SS archwires with the diameters of 0.018" were immersed in Oral B®, Orthokin® and artificial saliva. The amounts of nickel and chromium ions released were measured after 1, 6, 24 hours and 7 days. Two way repeated ANOVA showed that the amount of chromium and nickel significantly increased in all solutions during all time intervals (p < 0.002). Chromium and nickel ions were released more in NiTi wire in all solutions compared with SS wire. The lowest increase rate was also seen in artificial saliva. There is general consensus in literature that even very little amounts of nickel and chromium are dangerous for human body specially when absorbed orally; therefore, knowing the precise amount of these ions released from different wires when immersed in different mouthwashes is of high priority.

  6. Naked-eye detection of potassium ions in a novel gold nanoparticle aggregation-based aptasensor

    NASA Astrophysics Data System (ADS)

    Naderi, Mahboube; Hosseini, Morteza; Ganjali, Mohammad Reza

    2018-04-01

    In this work, we studied the feasibility of interaction among gold nanoparticles (AuNPs) and a cationic dye in an aptasensor system for the detection of potassium ions. The presence and absence of potassium in the solution was distinguishable by different colors (between orange and green) appeared after reaction. Cationic dye (Y5GL) acts as a new aggregator for AuNP-based sensors which changes the aggregated AuNP solution color from blue-purple to green. In the presence of K+ ions, the aptamer dissociated from the surface of the AuNP so that free AuNPs and cationic dye make the solution green. The aptasensor showed that the analytical linear range was from 10 nM to 50 mM and the detection limit was 4.4 nM. Also, we examined the practicality of this method on a simple paper based platform. The linear range of the colorimetric paper sensor covered of K+ concentration from 10 μM to 40 mM and the detection limit of 6.2 μM was obtained. The selectivity of AuNP aggregation-based sensor improved by the use of cationic dye. Rapidity, simplicity, high sensitivity and excellent selectivity made this assay suitable for practical determination of K+ in real urine samples.

  7. Gold ultra-microelectrode arrays: application to the steady-state voltammetry of hydroxide ion in aqueous solution.

    PubMed

    Ordeig, Olga; Banks, Craig E; Davies, Trevor J; del Campo, F Javier; Muñoz, Francesc Xavier; Compton, Richard G

    2006-05-01

    Gold ultra-microelectrode arrays are used to explore the electrochemical oxidation of hydroxide ions and are shown to be analytical useful. Two types of ultra-microelectrode arrays are used; the first consist of 256 individual electrodes of 5 microm in radius, 170 of which are electrochemically active in a cubic arrangement which are separated from their nearest neighbour by a distance of 100 microm. The second array compromises 2597 electrodes of 2.5 microm in radius and of which 1550 of which are electrochemically active in a hexagonal arrangement separated by the nearest neighbour by 55 microm. Well defined voltammetric waves are found with peak currents proportional to the concentration of hydroxide ions in the range 50 microM to 1 mM. Detection limits of 20 microM using the 170 ultra-microelectrode and 10 microM with the 1550 ultra-microelectrode array are shown to be possible but with a higher sensitivity of 4 mA M(-1) observed using the 1550 ultra-microelectrode array compared to 1.2 mA M(-1) with the 170 ultra-microelectrode array.

  8. Corrosion, ion release and Mott-Schottky probe of chromium oxide coatings in saline solution with potential for orthopaedic implant applications

    NASA Astrophysics Data System (ADS)

    Ogwu, A. A.; Oje, A. M.; Kavanagh, J.

    2016-04-01

    We report our investigation on chromium oxide thin film coatings that show a negligible ion release during electrochemical corrosion testing in saline solution. The chemical constituents of the films prepared by reactive magnetron sputtering were identified to be predominantly Cr2O3 based on Raman spectroscopy anti-symmetric stretching vibration modes for CrIII-O and other peaks and an FTIR spectroscopy E u vibrational mode at 409 cm-1. X-ray photoelectron spectroscopy, multiplet fitting for 2P 3/2 and 2P 1/2 states also confirmed the predominantly Cr2O3 stoichiometry in the films. The prepared chromium oxide coatings showed superior pitting corrosion resistance compared to the native chromium oxide films on bare uncoated stainless steel when tested under open circuit potential, potentiodynamic polarisation and cyclic voltammetry in saline solution. The chromium ion released into solution during the corrosion testing of stainless steel substrates coated with chromium oxide coatings was found to be negligibly small based on atomic absorption spectroscopy measurements. Our Mott-Schottky analysis investigation showed that the negligibly small ion release from the chromium oxide coated steel substrates is most likely due to a much lower defect density on the surface of the deposited coatings compared to the native oxide layer on the uncoated steel substrates. This opens up the opportunity for using chromium oxide surface coatings in hip, knee and other orthopaedic implants where possible metal ion release in vivo still poses a great challenge.

  9. Gold and Iron Oxide Nanoparticle-Based Ethylcellulose Nanocapsules for Cisplatin Drug Delivery

    PubMed Central

    Sathish Kumar, Kannaiyan; Jaikumar, Vasudevan

    2011-01-01

    The present study is aimed at the overall improvement in the efficacy, reduced toxicity and enhancement of therapeutic index of cisplatin. Nanocapsules of cisplatin containing ethylcellulose have been prepared using solvent evaporation technique under ambient conditions. The prepared nanocapsules were used for controlled drug release of anticancer agents with gold and iron oxide nanoparticles. The drug-entrapped nanocapsules were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Fourier transform infrared (FTIR) studies indicated the absence of chemical interactions between the drug, polymer and metal nanoparticles. The drug loaded nanoparticles are spherical in shape and had average diameter in the range of 100-300 nm. Drug release study showed that the acidic media provided a faster release than the phosphate buffer media. These findings were also compared statistically through calculating mean, standard deviation and coefficient of variation for various polymer nanocapsules. However, the drug release for gold nanoparticles/anticancer drug (Au-cis) incorporated ethylcellulose nanocapsules was controlled and slow compared to iron oxide nanoparticles-cisplatin incorporated ethylcellulose nanocapsules. Hence, gold nanoparticles act as good trapping agents which slow down the rate of drug release from nanocapsules. PMID:24250373

  10. Arsenate reductase from Thermus thermophilus conjugated to polyethylene glycol-stabilized gold nanospheres allow trace sensing and speciation of arsenic ions.

    PubMed

    Politi, Jane; Spadavecchia, Jolanda; Fiorentino, Gabriella; Antonucci, Immacolata; De Stefano, Luca

    2016-10-01

    Water sources pollution by arsenic ions is a serious environmental problem all around the world. Arsenate reductase enzyme (TtArsC) from Thermus thermophilus extremophile bacterium, naturally binds arsenic ions, As(V) and As (III), in aqueous solutions. In this research, TtArsC enzyme adsorption onto hybrid polyethylene glycol-stabilized gold nanoparticles (AuNPs) was studied at different pH values as an innovative nanobiosystem for metal concentration monitoring. Characterizations were performed by UV/Vis and circular dichroism spectroscopies, TEM images and in terms of surface charge changes. The molecular interaction between arsenic ions and the TtArsC-AuNPs nanobiosystem was also monitored at all pH values considered by UV/Vis spectroscopy. Tests performed revealed high sensitivities and limits of detection equal to 10 ± 3 M -12 and 7.7 ± 0.3 M -12 for As(III) and As(V), respectively. © 2016 The Author(s).

  11. Bio-sensing with butterfly wings: naturally occurring nano-structures for SERS-based malaria parasite detection.

    PubMed

    Garrett, Natalie L; Sekine, Ryo; Dixon, Matthew W A; Tilley, Leann; Bambery, Keith R; Wood, Bayden R

    2015-09-07

    Surface enhanced Raman scattering (SERS) is a powerful tool with great potential to provide improved bio-sensing capabilities. The current 'gold-standard' method for diagnosis of malaria involves visual inspection of blood smears using light microscopy, which is time consuming and can prevent early diagnosis of the disease. We present a novel surface-enhanced Raman spectroscopy substrate based on gold-coated butterfly wings, which enabled detection of malarial hemozoin pigment within lysed blood samples containing 0.005% and 0.0005% infected red blood cells.

  12. N-heterocyclic carbene gold(I) and silver(I) complexes bearing functional groups for bio-conjugation

    PubMed Central

    Garner, Mary E.; Niu, Weijia; Chen, Xigao; Ghiviriga, Ion; Tan, Weihong; Veige, Adam S.

    2015-01-01

    This work describes several synthetic approaches to append organic functional groups to gold and silver N-heterocyclic carbene (NHC) complexes suitable for applications in biomolecule conjugation. Carboxylate appended NHC ligands (3) lead to unstable AuI complexes that convert into bis-NHC species (4). A benzyl protected carboxylate NHC-AuI complex 2 was synthesized but deprotection to produce the carboxylic acid functionality could not be achieved. A small library of new alkyne functionalized NHC proligands were synthesized and used for subsequent silver and gold metalation reactions. The alkyne appended NHC gold complex 13 readily react with benzyl azide in a copper catalyzed azide-alkyne cycloaddition reaction to form the triazole appended NHC gold complex 14. Cell cytotoxicity studies were performed on DLD-1 (colorectal adenocarcinoma), Hep-G2 (hepatocellular carcinoma), MCF-7 (breast adenocarcinoma), CCRF-CEM (human T-Cell leukemia), and HEK (human embryonic kidney). Complete spectroscopic characterization of the ligands and complexes was achieved using 1H and 13C NMR, gHMBC, ESI-MS, and combustion analysis. PMID:25490699

  13. Gold in placer deposits

    USGS Publications Warehouse

    Yeend, Warren; Shawe, Daniel R.; Wier, Kenneth L.

    1989-01-01

    Man most likely first obtained gold from placer deposits, more than 6,000 years ago. Placers account for more than two-thirds of the total world gold supply, and roughly half of that mined in the States of California, Alaska, Montana, and Idaho.Placer deposits result from weathering and release of gold from lode deposits, transportation of the gold, and concentration of the gold dominantly in stream gravels. Unless preserved by burial, a placer subsequently may be eroded, and either dispersed or reconcentrated.California has produced more than 40 million troy ounces of gold from placers, both modern and fossil (Tertiary). The source of the great bulk of the gold is numerous quartz veins and mineralized zones of the Mother Lode and related systems in the western Sierra Nevada region. The gold-bearing lodes were emplaced in Carboniferous and Jurassic metamorphic rocks intruded by small bodies of Jurassic and Cretaceous igneous rocks. Mineralization occurred probably in Late Cretaceous time. Significant amounts of placer gold also were mined along the Salmon and Trinity Rivers in northern California. Source of the gold is lode deposits in Paleozoic and Mesozoic metamorphic rocks that were intruded by Mesozoic igneous rocks.Alaska has produced roughly 21 million ounces of gold from placer deposits. Most (about 13 million ounces) has come from the interior region, including 7,600,000 ounces from the Fairbanks district and 1,300,000 ounces from the Iditarod district. Lode sources are believed to be mostly quartz veins in Precambrian or Paleozoic metamorphic rocks intruded by small igneous bodies near Fairbanks, and shear zones in Tertiary(?) quartz monzonite stocks at Iditarod. The Seward Peninsula has produced more than 6 million ounces of placer gold, including about 4,000,000 ounces from the Nome district. Most of the gold was derived from raised beach deposits. Source of the gold probably is Tertiary-mineralized faults and joints in metamorphic rocks of late

  14. Gene Silencing by Gold Nanoshell-Mediated Delivery and Laser-Triggered Release of Antisense Oligonucleotide and siRNA

    PubMed Central

    Huschka, Ryan; Barhoumi, Aoune; Liu, Qing; Roth, Jack A.; Ji, Lin; Halas, Naomi J.

    2013-01-01

    The approach of RNA interference (RNAi)- using antisense DNA or RNA oligonucleotides to silence activity of a specific pathogenic gene transcript and reduce expression of the encoded protein- is very useful in dissecting genetic function and holds significant promise as a molecular therapeutic. A major obstacle in achieving gene silencing with RNAi technology is the systemic delivery of therapeutic oligonucleotides. Here we demonstrate an engineered gold nanoshell (NS)-based therapeutic oligonucleotide delivery vehicle, designed to release its cargo on demand upon illumination with a near-infrared (NIR) laser. A poly(L)lysine peptide (PLL) epilayer covalently attached to the NS surface (NS-PLL) is used to capture intact, single-stranded antisense DNA oligonucleotides, or alternatively, double-stranded short-interfering RNA (siRNA) molecules. Controlled release of the captured therapeutic oligonucleotides in each case is accomplished by continuous wave NIR laser irradiation at 800 nm, near the resonance wavelength of the nanoshell. Fluorescently tagged oligonucleotides were used to monitor the time-dependent release process and light-triggered endosomal release. A green fluorescent protein (GFP)-expressing human lung cancer H1299 cell line was used to determine cellular uptake and gene silencing mediated by the NS-PLL carrying GFP gene-specific single-stranded DNA antisense oligonucleotide (AON-GFP), or a double-stranded siRNA (siRNA-GFP), in vitro. Light-triggered delivery resulted in ∼ 47% and ∼49% downregulation of the targeted GFP expression by AON-GFP and siRNA-GFP, respectively. Cytotoxicity induced by both the NS-PLL delivery vector and by laser irradiation is minimal, as demonstrated by a XTT cell proliferation assay. PMID:22862291

  15. PLGA/Ag nanocomposites: in vitro degradation study and silver ion release.

    PubMed

    Fortunati, E; Latterini, L; Rinaldi, S; Kenny, J M; Armentano, I

    2011-12-01

    New nanocomposite films based on a biodegradable poly (DL-Lactide-co-Glycolide) copolymer (PLGA) and different concentration of silver nanoparticles (Ag) were developed by solvent casting. In vitro degradation studies of PLGA/Ag nanocomposites were conducted under physiological conditions, over a 5 week period, and compared to the behaviour of the neat polymer. Furthermore the silver ions (Ag(+)) release upon degradation was monitored to obtain information on the properties of the nanocomposites during the incubation. The obtained results suggest that the PLGA film morphology can be modified introducing a small percentage of silver nanoparticles that do not affect the degradation mechanism of PLGA polymer in the nanocomposite. However results clearly evinced the stabilizing effect of the Ag nanoparticles in the PLGA polymer and the mineralization process induced by the combined effect of silver and nanocomposite surface topography. The Ag(+) release can be controlled by the polymer degradation processes, evidencing a prolonged antibacterial effect.

  16. BioMetals: a historical and personal perspective.

    PubMed

    Silver, Simon

    2011-06-01

    Understanding of BioMetals developed basically from a starting point about 60 years ago to current mechanistic understanding of the biological behavior of many metal ions from protein structural and functional studies. Figure 1 shows a Biochemical Periodic Table, element by element, with requirements, roles and biochemistry of the specific ions indicated. With few exceptions, the biology is of the ions formed and not of the elemental state of each. Early BioMetals efforts defined nutritional growth needs for animals, plants and microbes for inorganic "macro-nutrients" such as magnesium, calcium, potassium, sodium, and phosphate and of "micronutrients" such as copper, iron, manganese and zinc. Surprises came early with regard to microbes, for example the finding that Escherichia coli (then and now the standard microbial model) grows happily in the apparent total absence of calcium, sodium, and chloride, which are certainly major animal nutrients. Some elements such as mercury and arsenic are never required by living cells, but are always toxic, often at very low levels. Therefore, the division into nutrient elements and toxic elements came soon. For most inorganic nutrients, excessive amounts can be toxic as well, for example for copper and iron.

  17. Structure of disordered gold-polymer thin films using small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Teixeira, F. S.; Salvadori, M. C.; Cattani, M.; Brown, I. G.

    2010-11-01

    We have investigated the structure of disordered gold-polymer thin films using small angle x-ray scattering and compared the results with the predictions of a theoretical model based on two approaches—a structure form factor approach and the generalized Porod law. The films are formed of polymer-embedded gold nanoclusters and were fabricated by very low energy gold ion implantation into polymethylmethacrylate (PMMA). The composite films span (with dose variation) the transition from electrically insulating to electrically conducting regimes, a range of interest fundamentally and technologically. We find excellent agreement with theory and show that the PMMA-Au films have monodispersive or polydispersive characteristics depending on the implanted ion dose.

  18. Gold nanotriangles decorated with superparamagnetic iron oxide nanoparticles: a compositional and microstructural study

    DOE PAGES

    Hachtel, J. A.; Yu, S.; Lupini, A. R.; ...

    2016-03-11

    The combination of iron oxide and gold in a single nanoparticle results in both magnetic and plasmonic properties that can stimulate novel applications in bio-sensing, medical imaging, or therapeutics. Microwave assisted heating allows the fabrication of multi-component, multi-functional nanostructures by promoting selective heating at desired sites. Recently, we reported a microwave-assisted polyol route yielding gold nanotriangles decorated with iron oxide nanoparticles. Here, we present an in-depth microstructural and compositional characterization of the system by using scanning transmission electron microscopy (STEM) and electron energy loss (EELS) spectroscopy. A method to remove the iron oxide nanoparticles from the gold nanocrystals and somemore » insights on crystal nucleation and growth mechanisms are also provided.« less

  19. Exploring luminescence-based temperature sensing using protein-passivated gold nanoclusters.

    PubMed

    Chen, Xi; Essner, Jeremy B; Baker, Gary A

    2014-08-21

    We explore the analytical performance and limitations of optically monitoring aqueous-phase temperature using protein-protected gold nanoclusters (AuNCs). Although not reported elsewhere, we find that these bio-passivated AuNCs show pronounced hysteresis upon thermal cycling. This unwanted behaviour can be eliminated by several strategies, including sol-gel coating and thermal denaturation of the biomolecular template, introducing protein-templated AuNC probes as viable nanothermometers.

  20. Rational design of gold nanocarrier for the delivery of JAG-1 peptide.

    PubMed

    Matea, Cristian T; Mocan, Teodora; Tabaran, Flaviu; Iancu, Cornel; Mocan, Lucian-Constantin

    2015-06-16

    Unique properties exhibited by nanoparticles makes them great candidates for applications in physics, chemistry, biology, material science and medicine. The biological applications of water-soluble gold nanoparticles range from contrast agents, delivery vehicles to therapeutics. Notch signaling is a complex network that orchestrates cell fate decisions, which involves proliferation, migration, differentiation and cell death in organisms ranging from insects to humans. Studies have showed that a correct orientation of the Jag-1 signalling protein on the substrates proves to be of great importance when promoting Jagged-1 Notch interactions, also the availability of the ligands, super cedes the importance of their concentration. The aim of the present study was to synthetize a Jag-1 functionalized nanocarrier, which would promote an efficient interaction between the Jag-1 peptide and the Notch receptor. To this end, two routes for gold nanoparticle-peptide assembly were investigated, and the synthetized bio-nanostructures were characterized and compared by means of UV-Vis, FT-IR, DLS and AFM techniques. We have obtained a stable, monodisperse, hetero-functionalized GNP-PEG-JAG-1 bio-nanostructure for Notch pathway activation applications.

  1. Impact of bio-palladium nanoparticles (bio-Pd NPs) on the activity and structure of a marine microbial community.

    PubMed

    Nuzzo, Andrea; Hosseinkhani, Baharak; Boon, Nico; Zanaroli, Giulio; Fava, Fabio

    2017-01-01

    Biogenic palladium nanoparticles (bio-Pd NPs) represent a promising catalyst for organohalide remediation in water and sediments. However, the available information regarding their possible impact in case of release into the environment, particularly on the environmental microbiota, is limited. In this study the toxicity of bio-Pd NPs on the model marine bacterium V. fischeri was assessed. The impacts of different concentrations of bio-Pd NPs on the respiratory metabolisms (i.e. organohalide respiration, sulfate reduction and methanogenesis) and the structure of a PCB-dechlorinating microbial community enriched form a marine sediment were also investigated in microcosms mimicking the actual sampling site conditions. Bio-Pd NPs had no toxic effect on V. fischeri. In addition, they had no significant effects on PCB-dehalogenating activity, while showing a partial, dose-dependent inhibitory effect on sulfate reduction as well as on methanogenesis. No toxic effects by bio-Pd NPs could be also observed on the total bacterial community structure, as its biodiversity was increased compared to the not exposed community. In addition, resilience of the microbial community to bio-Pd NPs exposure was observed, being the final community organization (Gini coefficient) of samples exposed to bio-Pd NPs similar to that of the not exposed one. Considering all the factors evaluated, bio-Pd NPs could be deemed as non-toxic to the marine microbiota in the conditions tested. This is the first study in which the impact of bio-Pd NPs is extensively evaluated over a microbial community in relevant environmental conditions, providing important information for the assessment of their environmental safety. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. High sensitive detection of copper II ions using D-penicillamine-coated gold nanorods based on localized surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Hong, Yoochan; Jo, Seongjae; Park, Joohyung; Park, Jinsung; Yang, Jaemoon

    2018-05-01

    In this paper, we describe the development of a nanoplasmonic biosensor based on the localized surface plasmon resonance (LSPR) effect that enables a sensitive and selective recognition of copper II ions. First, we fabricated the nanoplasmonics as LSPR substrates using gold nanorods (GNR) and the nano-adsorption method. The LSPR sensitivity of the nanoplasmonics was evaluated using various solvents with different refractive indexes. Subsequently, D-penicillamine (DPA)—a chelating agent of copper II ions—was conjugated to the surface of the GNR. The limit of detection (LOD) for the DPA-conjugated nanoplasmonics was 100 pM. Furthermore, selectivity tests were conducted using various divalent cations, and sensitivity tests were conducted on the nanoplasmonics under blood-like environments. Finally, the developed nanoplasmonic biosensor based on GNR shows great potential for the effective recognition of copper II ions, even in human blood conditions.

  3. Migratory gold resistive shorts - Chemical aspects of a failure mechanism

    NASA Technical Reports Server (NTRS)

    Grunthaner, F. J.; Griswold, T. W.; Clendening, P. J.

    1975-01-01

    Integrated-circuit devices using the Ti/W/Au metal system are subject to failure mechanisms based on electrolytic corrosion. The migratory gold resistive short (MGRS) failure mode is one example of this mechanism and results in the formation of filamentary or dendritic deposits of gold between adjacent stripes on the IC chip. This reaction requires the presence of a sufficient amount of water, a bias voltage between adjacent stripes, and the activation of the cathodic (-) stripe. Gold ions are transported from anode to cathode through a film of moisture adsorbed on the surface of the chip; halide ions are probably involved in the transfer. Their presence is verified experimentally by X-ray photoelectron spectroscopy. Some of the chemical and electrostatic factors involved in the MGRS mechanism are discussed in this paper, including the questions of a threshold level of moisture and contamination.

  4. Gold and silver nanoparticles from Trianthema decandra: synthesis, characterization, and antimicrobial properties

    PubMed Central

    Geethalakshmi, R; Sarada, DVL

    2012-01-01

    Background There is an increasing commercial demand for nanoparticles due to their wide applicability in various markets, including medicine, catalysis, electronics, chemistry, and energy. In this report, a simple and ecofriendly chemical reaction for the synthesis of gold and silver nanoparticles from Trianthema decandra (Aizoaceae) has been developed. Methods and results On treatment of aqueous solutions containing chloroauric acid or silver nitrate with root extract of T. decandra, stable gold or silver nanoparticles were rapidly formed. The kinetics of reduction of gold and silver ions during the reaction was analyzed by ultraviolet-visible spectroscopy. Field emission-scanning electron microscopy showed formation of gold nanoparticles in various shapes, including spherical, cubical, triangular, and hexagonal, while silver nanoparticles were spherical. The size of the gold nanoparticles was 33–65 nm and that of the silver nanoparticles was 36–74 nm. Energy dispersive x-ray and Fourier transform infrared spectroscopy confirmed the presence of metallic gold and metallic silver in the respective nanoparticles. The antimicrobial properties of the synthesized nanoparticles were analyzed using the Kirby-Bauer method. The results show varied susceptibility of microorganisms to the gold and silver nanoparticles. Conclusion It is believed that phytochemicals present in T. decandra extract reduce the silver and gold ions into metallic nanoparticles. This strategy reduces the cost of production and the environmental impact. The silver and gold nanoparticles formed showed strong activity against all microorganisms tested. PMID:23091381

  5. A colorimetric probe based on desensitized ionene-stabilized gold nanoparticles for single-step test for sulfate ions.

    PubMed

    Arkhipova, Viktoriya V; Apyari, Vladimir V; Dmitrienko, Stanislava G

    2015-03-15

    Desensitized ionene-stabilized gold nanoparticles have been prepared and applied as a colorimetric probe for the single-step test for sulfate ions at the relatively high concentration level. The approach is based on aggregation of the nanoparticles leading to the change in absorption spectra and color of the solution. These nanoparticles are characterized by the decreased sensitivity due to both electrostatic and steric stabilization, which allows for simple, and rapid direct single-step determination of sulfate at the relatively high concentration level in real water samples without sample pretreatment or dilution. Influence of different factors (the time of interaction, pH, the concentrations of sulfate ions and the nanoparticles) on the aggregation and analytical performance of the procedure was investigated. The method allows for the determination of sulfate ions in the mass range of 0.2-0.4 mg with RSD of 5% from the sample volume of less than 2 mL. It has a sharp dependence of the colorimetric response on the concentration of sulfate, which makes it prospective for indicating deviations of the sulfate concentration regarding some declared value chosen within the above range. The time of the analysis is 2 min. The method was applied to the analysis of mineral water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Biomineralization of gold by Mucor plumbeus: The progress in understanding the mechanism of nanoparticles' formation.

    PubMed

    Maliszewska, Irena; Tylus, Włodzimierz; Chęcmanowski, Jacek; Szczygieł, Bogdan; Pawlaczyk-Graja, Izabela; Pusz, Wojciech; Baturo-Cieśniewska, Anna

    2017-09-01

    This contribution describes the deposition of gold nanoparticles by microbial reduction of Au(III) ions using the mycelium of Mucor plumbeus. Biosorption as the major mechanism of Au(III) ions binding by the fungal cells and the reduction of them to the form of Au(0) on/in the cell wall, followed by the transportation of the synthesized gold nanoparticles to the cytoplasm, is postulated. The probable mechanism behind the reduction of Au(III) ions is discussed, leading to the conclusion that this process is nonenzymatic one. Chitosan of the fungal cell wall is most likely to be the major molecule involved in biomineralization of gold by the mycelium of M. plumbeus. Separation of gold nanoparticles from the cells has been carried out by the ultrasonic disintegration and the obtained nanostructures were characterized by UV-vis spectroscopy and transmission electron micrograph analysis. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1381-1392, 2017. © 2017 American Institute of Chemical Engineers.

  7. Highly sensitive and simple liquid chromatography assay with ion-pairing extraction and visible detection for quantification of gold from nanoparticles.

    PubMed

    Pallotta, Arnaud; Philippe, Valentin; Boudier, Ariane; Leroy, Pierre; Clarot, Igor

    2018-03-01

    A simple isocratic HPLC method using visible detection was developed and validated for the quantification of gold in nanoparticles (AuNP). After a first step of oxidation of nanoparticles, an ion-pair between tetrachloroaurate anion and the cationic dye Rhodamine B was formed and extracted from the aqueous media with the help of an organic solvent. The corresponding Rhodamine B was finally quantified by reversed phase liquid chromatography using a Nucleosil C18 (150mm × 4.6mm, 3µm) column and with a mobile phase containing acetonitrile and 0.1% trifluoroacetic acid aqueous solution (25/75, V/V) at 1.0mLmin -1. and at a wavelength of 555nm. The method was validated using methodology described by the International Conference on Harmonization and was shown to be specific, precise (RSD < 11%), accurate and linear in the range of 0.1 - 30.0µM with a lower limit of quantification (LLOQ) of 0.1µM. This method was in a first time applied to AuNP quality control after their synthesis. In a second time, the absence of gold leakage (either as AuNP or gold salt form) from nanostructured multilayered polyelectrolyte films under shear stress was assessed. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Nanoporous Block Polymer Thin Films Functionalized with Bio-Inspired Ligands for the Efficient Capture of Heavy Metal Ions from Water.

    PubMed

    Weidman, Jacob L; Mulvenna, Ryan A; Boudouris, Bryan W; Phillip, William A

    2017-06-07

    Heavy metal contamination of water supplies poses a serious threat to public health, prompting the development of novel and sustainable treatment technologies. One promising approach is to molecularly engineer the chemical affinity of a material for the targeted removal of specific molecules from solution. In this work, nanoporous polymer thin films generated from tailor-made block polymers were functionalized with the bio-inspired moieties glutathione and cysteamine for the removal of heavy metal ions, including lead and cadmium, from aqueous solutions. In a single equilibrium stage, the films achieved removal rates of the ions in excess of 95%, which was consistent with predictions based on the engineered material properties. In a flow-through configuration, the thin films achieved an even greater removal rate of the metal ions. Furthermore, in mixed ion solutions the capacity of the thin films, and corresponding removal rates, did not demonstrate any reduction due to competitive adsorption effects. After such experiments the material was repeatedly regenerated quickly with no observed loss in capacity. Thus, these membranes provide a sustainable platform for the efficient purification of lead- and cadmium-contaminated water sources to safe levels. Moreover, their straightforward chemical modifications suggest that they could be engineered to treat sources containing other recalcitrant environmental contaminants as well.

  9. A new route to gold nanoflowers

    NASA Astrophysics Data System (ADS)

    Liebig, Ferenc; Henning, Ricky; Sarhan, Radwan M.; Prietzel, Claudia; Bargheer, Matias; Koetz, Joachim

    2018-05-01

    Catanionic vesicles spontaneously formed by mixing the anionic surfactant bis(2-ethylhexyl) sulfosuccinate sodium salt with the cationic surfactant cetyltrimethylammonium bromide were used as a reducing medium to produce gold clusters, which are embedded and well-ordered into the template phase. The gold clusters can be used as seeds in the growth process that follows by adding ascorbic acid as a mild reducing component. When the ascorbic acid was added very slowly in an ice bath round-edged gold nanoflowers were produced. When the same experiments were performed at room temperature in the presence of Ag+ ions, sharp-edged nanoflowers could be synthesized. The mechanism of nanoparticle formation can be understood to be a non-diffusion-limited Ostwald ripening process of preordered gold nanoparticles embedded in catanionic vesicle fragments. Surface-enhanced Raman scattering experiments show an excellent enhancement factor of 1.7 · 105 for the nanoflowers deposited on a silicon wafer.

  10. Mosquito larvicidal effectiveness of EcoBio-Block S: a novel integrated water-purifying concrete block formulation containing insect growth regulator pyriproxyfen.

    PubMed

    Kawada, Hitoshi; Saita, Susumu; Shimabukuro, Kozue; Hirano, Masachika; Koga, Masayuki; Iwashita, Toshiaki; Takagi, Masahiro

    2006-09-01

    EcoBio-Block S, a novel controlled release system (CRS) for the insect growth regulator pyriproxyfen, uses a water-purifying concrete block system (EcoBio-Block) composed of a porous volcanic rock and cement, and it incorporates the aerobic bacterial groups of Bacillus subtilis natto. EcoBio-Block S showed high inhibitory activity against mosquito emergence as well as a water-purifying effect. Chemical analysis and bioassay showed that EcoBio-Block S provides a high-performance CRS that controls the release of pyriproxyfen at low levels according to "zero order kinetics".

  11. Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles

    PubMed Central

    Elavazhagan, Tamizhamudu; Arunachalam, Kantha D

    2011-01-01

    We used an aqueous leaf extract of Memecylon edule (Melastomataceae) to synthesize silver and gold nanoparticles. To our knowledge, this is the first report where M. edule leaf broth was found to be a suitable plant source for the green synthesis of silver and gold nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with M. edule leaf extract, stable silver and gold nanoparticles were rapidly formed. The gold nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and Fourier transform infra-red spectroscopy (FTIR). The kinetics of reduction of aqueous silver and gold ions during reaction with the M. edule leaf broth were easily analyzed by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to M. edule leaf broth, were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20–50 nm. TEM analysis of gold nanoparticles showed formation of triangular, circular, and hexagonal shapes in the size range 10–45 nm. The resulting silver nanoparticles were predominantly square with uniform size range 50–90 nm. EDAX results confirmed the presence of triangular nanoparticles in the adsorption peak of 2.30 keV. Further FTIR analysis was also done to identify the functional groups in silver and gold nanoparticles. The characterized nanoparticles of M. edule have potential for various medical and industrial applications. Saponin presence in aqueous extract of M. edule is responsible for the mass production of silver and gold nanoparticles. PMID:21753878

  12. Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles.

    PubMed

    Elavazhagan, Tamizhamudu; Arunachalam, Kantha D

    2011-01-01

    We used an aqueous leaf extract of Memecylon edule (Melastomataceae) to synthesize silver and gold nanoparticles. To our knowledge, this is the first report where M. edule leaf broth was found to be a suitable plant source for the green synthesis of silver and gold nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with M. edule leaf extract, stable silver and gold nanoparticles were rapidly formed. The gold nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and Fourier transform infra-red spectroscopy (FTIR). The kinetics of reduction of aqueous silver and gold ions during reaction with the M. edule leaf broth were easily analyzed by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to M. edule leaf broth, were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20-50 nm. TEM analysis of gold nanoparticles showed formation of triangular, circular, and hexagonal shapes in the size range 10-45 nm. The resulting silver nanoparticles were predominantly square with uniform size range 50-90 nm. EDAX results confirmed the presence of triangular nanoparticles in the adsorption peak of 2.30 keV. Further FTIR analysis was also done to identify the functional groups in silver and gold nanoparticles. The characterized nanoparticles of M. edule have potential for various medical and industrial applications. Saponin presence in aqueous extract of M. edule is responsible for the mass production of silver and gold nanoparticles.

  13. Orthodontic cement with protein-repellent and antibacterial properties and the release of calcium and phosphate ions.

    PubMed

    Zhang, Ning; Weir, Michael D; Chen, Chen; Melo, Mary A S; Bai, Yuxing; Xu, Hockin H K

    2016-07-01

    White spot lesions often occur in orthodontic treatments. The objective of this study was to develop a novel resin-modified glass ionomer cement (RMGI) as an orthodontic cement with protein-repellent, antibacterial and remineralization capabilities. Protein-repellent 2-methacryloyloxyethyl phosphorylcholine (MPC), antibacterial dimethylaminohexadecyl methacrylate (DMAHDM), nanoparticles of silver (NAg), and nanoparticles of amorphous calcium phosphate (NACP) were incorporated into a RMGI. Enamel shear bond strength (SBS) was determined. Calcium (Ca) and phosphate (P) ion releases were measured. Protein adsorption onto specimens was determined by a micro bicinchoninic acid method. A dental plaque microcosm biofilm model was tested. Increasing the NACP filler level increased the Ca and P ion release. Decreasing the solution pH increased the ion release. Incorporating MPC into RMGI reduced protein adsorption, which was an order of magnitude less than that of commercial controls. Adding DMAHDM and NAg into RMGI yielded a strong antibacterial function, greatly reducing biofilm viability and acid production. Biofilm CFU counts on the multifunctional orthodontic cement were 3 orders of magnitude less than that of commercial control (p<0.05). These benefits were achieved without compromising the enamel shear bond strength (p>0.1). A novel multifunctional orthodontic cement was developed with strong antibacterial and protein-repellent capabilities for preventing enamel demineralization. The new cement is promising to prevent white spot lesions in orthodontic treatments. The method of incorporating four bioactive agents may have wide applicability to the development of other bioactive dental materials to inhibit caries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Bioconjugated gold nanoparticles accelerate the growth of new blood vessels through redox signaling.

    PubMed

    Nethi, Susheel Kumar; Mukherjee, Sudip; Veeriah, Vimal; Barui, Ayan Kumar; Chatterjee, Suvro; Patra, Chitta Ranjan

    2014-11-28

    We have designed and developed novel pro-angiogenic bio-synthesized gold nanoconjugates (b-Au-HP) that make new blood vessels, as observed by several in vitro and in vivo assays, suggesting their future potential applications in alternative treatment strategies for wound healing, cardiovascular diseases (CVD) and ischemic diseases using a nanomedicine approach.

  15. Temperature Dependence of Proton Electroreduction Kinetics at Gold(111) and (210) Surfaces

    DTIC Science & Technology

    1991-05-31

    Temperature Dependence of Proton Electroreduction Kinetics at Gold (111) and (210) Surfaces 12 PERSONAL AUTHOR(S) A. Hamelin, L. Stoicoviciu, S.-C...Technical Report No. 98 Temperature Dependence of Proton Electroreduction Kinetics at Gold (lll) and (210) Surfaces by A. Hamelin, L. Stoicoviciu, S...approved for public release and sale: its distribution is unlimited. Temperature Dependence of Proton Electroreduction Kinetics at Gold (Ill) and (210

  16. Assessment of modified gold surfaced titanium implants on skeletal fixation

    PubMed Central

    Zainali, Kasra; Danscher, Gorm; Jakobsen, Thomas; Baas, Jorgen; Møller, Per; Bechtold, Joan E.; Soballe, Kjeld

    2013-01-01

    Noncemented implants are the primary choice for younger patients undergoing total hip replacements. However, the major concern in this group of patients regarding revision is the concern from wear particles, periimplant inflammation, and subsequently aseptic implant loosening. Macrophages have been shown to liberate gold ions through the process termed dissolucytosis. Furthermore, gold ions are known to act in an anti-inflammatory manner by inhibiting cellular NF-κB-DNA binding. The present study investigated whether partial coating of titanium implants could augment early osseointegration and increase mechanical fixation. Cylindrical porous coated Ti-6Al-4V implants partially coated with metallic gold were inserted in the proximal region of the humerus in ten canines and control implants without gold were inserted in contralateral humerus. Observation time was 4 weeks. Biomechanical push out tests and stereological histomorphometrical analyses showed no statistically significant differences in the two groups. The unchanged parameters are considered an improvement of the coating properties, as a previous complete gold-coated implant showed inferior mechanical fixation and reduced osseointegration compared to control titanium implants in a similar model. Since sufficient early mechanical fixation is achieved with this new coating, it is reasonable to investigate the implant further in long-term studies. PMID:22847873

  17. Assessment of modified gold surfaced titanium implants on skeletal fixation.

    PubMed

    Zainali, Kasra; Danscher, Gorm; Jakobsen, Thomas; Baas, Jorgen; Møller, Per; Bechtold, Joan E; Soballe, Kjeld

    2013-01-01

    Noncemented implants are the primary choice for younger patients undergoing total hip replacements. However, the major concern in this group of patients regarding revision is the concern from wear particles, periimplant inflammation, and subsequently aseptic implant loosening. Macrophages have been shown to liberate gold ions through the process termed dissolucytosis. Furthermore, gold ions are known to act in an anti-inflammatory manner by inhibiting cellular NF-κB-DNA binding. The present study investigated whether partial coating of titanium implants could augment early osseointegration and increase mechanical fixation. Cylindrical porous coated Ti-6Al-4V implants partially coated with metallic gold were inserted in the proximal region of the humerus in ten canines and control implants without gold were inserted in contralateral humerus. Observation time was 4 weeks. Biomechanical push out tests and stereological histomorphometrical analyses showed no statistically significant differences in the two groups. The unchanged parameters are considered an improvement of the coating properties, as a previous complete gold-coated implant showed inferior mechanical fixation and reduced osseointegration compared to control titanium implants in a similar model. Since sufficient early mechanical fixation is achieved with this new coating, it is reasonable to investigate the implant further in long-term studies. Copyright © 2012 Wiley Periodicals, Inc.

  18. Ion-polycyclic aromatic hydrocarbon collisions: kinetic energy releases for specific fragmentation channels

    NASA Astrophysics Data System (ADS)

    Reitsma, G.; Zettergren, H.; Boschman, L.; Bodewits, E.; Hoekstra, R.; Schlathölter, T.

    2013-12-01

    We report on 30 keV He2 + collisions with naphthalene (C10H8) molecules, which leads to very extensive fragmentation. To unravel such complex fragmentation patterns, we designed and constructed an experimental setup, which allows for the determination of the full momentum vector by measuring charged collision products in coincidence in a recoil ion momentum spectrometer type of detection scheme. The determination of fragment kinetic energies is found to be considerably more accurate than for the case of mere coincidence time-of-flight spectrometers. In fission reactions involving two cationic fragments, typically kinetic energy releases of 2-3 eV are observed. The results are interpreted by means of density functional theory calculations of the reverse barriers. It is concluded that naphthalene fragmentation by collisions with keV ions clearly is much more violent than the corresponding photofragmentation with energetic photons. The ion-induced naphthalene fragmentation provides a feedstock of various small hydrocarbonic species of different charge states and kinetic energy, which could influence several molecule formation processes in the cold interstellar medium and facilitates growth of small hydrocarbon species on pre-existing polycyclic aromatic hydrocarbons.

  19. BioFVM: an efficient, parallelized diffusive transport solver for 3-D biological simulations

    PubMed Central

    Ghaffarizadeh, Ahmadreza; Friedman, Samuel H.; Macklin, Paul

    2016-01-01

    Motivation: Computational models of multicellular systems require solving systems of PDEs for release, uptake, decay and diffusion of multiple substrates in 3D, particularly when incorporating the impact of drugs, growth substrates and signaling factors on cell receptors and subcellular systems biology. Results: We introduce BioFVM, a diffusive transport solver tailored to biological problems. BioFVM can simulate release and uptake of many substrates by cell and bulk sources, diffusion and decay in large 3D domains. It has been parallelized with OpenMP, allowing efficient simulations on desktop workstations or single supercomputer nodes. The code is stable even for large time steps, with linear computational cost scalings. Solutions are first-order accurate in time and second-order accurate in space. The code can be run by itself or as part of a larger simulator. Availability and implementation: BioFVM is written in C ++ with parallelization in OpenMP. It is maintained and available for download at http://BioFVM.MathCancer.org and http://BioFVM.sf.net under the Apache License (v2.0). Contact: paul.macklin@usc.edu. Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26656933

  20. Gold Spectra Measurements from LLNL EBIT Plasmas

    NASA Astrophysics Data System (ADS)

    May, M.; Brown, G. V.; Chen, H.; Chung, H. K.; Gu, M.; Hansen, S. B.; Schneider, M. B.; Widmann, K.; Beiersdorfer, P.

    2008-11-01

    Spectra have been recorded from gold that has been injected into the Lawrence Livermore Electron Beam Ion Trap (EBIT-II). Both mono-energetic and experimentally simulated Maxwell-Boltzmann (MB) plasmas were created for these measurements. The beam plasmas had energies of 2.75, 3.0, 3.6, 4.6, 5.5, 6.0, 6.5 keV. The MB plasmas had electron temperatures of 2.0, 2.5 and 3.0 keV. M-band gold spectra (n = 4-3, 5-3, 6-3 and 7-3 transitions) were recorded between 1 - 8 keV from K-like to Kr-like ions in the x-ray. The emission of gold was recorded by crystal spectrometers and a micro-calorimeter from the Goddard Space Flight Center. A full survey of the recorded spectra will be presented along with line emission and charge state modeling from the flexible atomic code (FAC). Some comparisons with laser produced plasmas will be made. *This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. Indocyanine Green-Loaded Liposomes for Light-Triggered Drug Release.

    PubMed

    Lajunen, Tatu; Kontturi, Leena-Stiina; Viitala, Lauri; Manna, Moutusi; Cramariuc, Oana; Róg, Tomasz; Bunker, Alex; Laaksonen, Timo; Viitala, Tapani; Murtomäki, Lasse; Urtti, Arto

    2016-06-06

    Light-triggered drug delivery systems enable site-specific and time-controlled drug release. In previous work, we have achieved this with liposomes containing gold nanoparticles in the aqueous core. Gold nanoparticles absorb near-infrared light and release the energy as heat that increases the permeability of the liposomal bilayer, thus releasing the contents of the liposome. In this work, we replaced the gold nanoparticles with the clinically approved imaging agent indocyanine green (ICG). The ICG liposomes were stable at storage conditions (4-22 °C) and at body temperature, and fast near-infrared (IR) light-triggered drug release was achieved with optimized phospholipid composition and a 1:50 ICG-to-lipid molar ratio. Encapsulated small molecular calcein and FITC-dextran (up to 20 kDa) were completely released from the liposomes after light exposure for 15 s. Location of ICG in the PEG layer of the liposomes was simulated with molecular dynamics. ICG has important benefits as a light-triggering agent in liposomes: fast content release, improved stability, improved possibility of liposomal size control, regulatory approval to use in humans, and the possibility of imaging the in vivo location of the liposomes based on the fluorescence of ICG. Near-infrared light used as a triggering mechanism has good tissue penetration and safety. Thus, ICG liposomes are an attractive option for light-controlled and efficient delivery of small and large drug molecules.

  2. Sodium ion transport participates in non-neuronal acetylcholine release in the renal cortex of anesthetized rabbits.

    PubMed

    Shimizu, Shuji; Akiyama, Tsuyoshi; Kawada, Toru; Sata, Yusuke; Turner, Michael James; Fukumitsu, Masafumi; Yamamoto, Hiromi; Kamiya, Atsunori; Shishido, Toshiaki; Sugimachi, Masaru

    2017-09-01

    This study examined the mechanism of release of endogenous acetylcholine (ACh) in rabbit renal cortex by applying a microdialysis technique. In anesthetized rabbits, a microdialysis probe was implanted into the renal cortex and perfused with Ringer's solution containing high potassium concentration, high sodium concentration, a Na + /K + -ATPase inhibitor (ouabain), or an epithelial Na + channel blocker (benzamil). Dialysate samples were collected at baseline and during exposure to each agent, and ACh concentrations in the samples were measured by high-performance liquid chromatography. High potassium had no effect on renal ACh release. High sodium increased dialysate ACh concentrations significantly. Ouabain increased dialysate ACh concentration significantly. Benzamil decreased dialysate ACh concentrations significantly both at baseline and under high sodium. The finding that high potassium-induced depolarization does not increase ACh release suggests that endogenous ACh is released in renal cortex mainly by non-neuronal mechanism. Sodium ion transport may be involved in the non-neuronal ACh release.

  3. A rationale on the role of intermediate Au(III)-vitamin C complexation in the production of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Zümreoglu-Karan, B.

    2009-07-01

    Preparation of gold nanoparticles, particularly gold nanorods, by wet chemistry processes involves gold seeds, an Au(III) salt, structure directing surfactants, and metal ion additives in the growth solution into which a weak reducing agent is added. The most commonly employed weak reducing agent is l-ascorbic acid (vitamin C) which is known to reduce many metal ions in the solution phase and form complexes with relatively low stability constants. A purple-gray gold-ascorbate compound, obtained from the reaction of sodium tetrachloroaurate(III) with sodium ascorbate, is now reported. The compound possesses the expected structural features of vitamin C-metal complexes as verified by its 13C CP-MAS NMR spectrum. A discussion is also presented on the possibility of gold-ascorbate complexation operating in gold nanoparticle formation.

  4. Acoustic vibrations of single suspended gold nanostructures

    NASA Astrophysics Data System (ADS)

    Major, Todd A.

    The acoustic vibrations for single gold nanowires and gold plates were studied using time-resolved ultrafast transient absorption. The objective of this work was to remove the contribution of the supporting substrate from the damping of the acoustic vibrations of the metal nano-objects. This was achieved by suspending the nano-objects across trenches created by photolithography and reactive ion etching. Transient absorption measurements for single suspended gold nanowires were initially completed in air and water environments. The acoustic vibrations for gold nanowires over the trench in air last typically for several nanoseconds, whereas gold nanowires in water are damped more quickly. Continuum mechanics models suggest that the acoustic impedance mismatch between air and water dominates the damping rate. Later transient absorption studies on single suspended gold nanowires were completed in glycerol and ethylene glycol environments. However, our continuum mechanical model suggests nearly complete damping in glycerol due to its high viscosity, but similar damping rates are seen between the two liquids. The continuum mechanics model thus incorrectly addresses high viscosity effects on the lifetimes of the acoustic vibrations, and more complicated viscoelastic interactions occur for the higher viscosity liquids. (Abstract shortened by UMI.).

  5. Effect of peptide length on the conjugation to the gold nanoparticle surface: a molecular dynamic study.

    PubMed

    Ramezani, Fatemeh; Habibi, Mostafa; Rafii-Tabar, Hashem; Amanlou, Massoud

    2015-01-29

    Gold nanoparticles now command a great deal of attention for medical applications. Despite the importance of nano-bio interfaces, interaction between peptides and proteins with gold surfaces is not still fully understood, especially in a molecular level. In the present study computational simulation of adsorption of 20 amino acids, in three forms of mono-amino acid, homo di-peptide and homo tri-peptide, on the gold nanoparticles was performed by Gromacs using OPLSAA force field. The flexibility, stability, and size effect of the peptides on the gold nanoparticles were studied as well as the molecular structure of them. According to our results, adsorbed homo tri-peptides on the gold surface had more flexibility, more gyration, and the farthest distance from the GNP in comparison with homo di-peptides and mono-amino acids. Our findings provide new insights into the precise control of interactions between amino acids anchored on the GNPs.

  6. Simple method for preparing glucose biosensor based on in-situ polypyrrole cross-linked chitosan/glucose oxidase/gold bionanocomposite film.

    PubMed

    Şenel, Mehmet

    2015-03-01

    A film of chitosan-polypyrrole-gold nanoparticles was fabricated by in-situ chemical synthesis method and its application in glucose biosensor was investigated. The obtained biosensor exhibited a high and reproducible sensitivity of 0.58μA/mM, response time ~4s, linear dynamic range from 1 to 20mM, correlation coefficient of R(2)=0.9981, and limit of detection (LOD), based on S/N ratio (S/N=3) of 0.068mM. A value of 1.83mM for the apparent Michaelis-Menten constant was obtained. The resulting bio-nanocomposite provided a suitable environment for the enzyme to retain its bioactivity at considerably extreme conditions, and the decorated gold nanoparticles in the bio-nanocomposite offer good affinity to enzyme. Copyright © 2014. Published by Elsevier B.V.

  7. Enhancing gold recovery from electronic waste via lixiviant metabolic engineering in Chromobacterium violaceum.

    PubMed

    Tay, Song Buck; Natarajan, Gayathri; Rahim, Muhammad Nadjad bin Abdul; Tan, Hwee Tong; Chung, Maxey Ching Ming; Ting, Yen Peng; Yew, Wen Shan

    2013-01-01

    Conventional leaching (extraction) methods for gold recovery from electronic waste involve the use of strong acids and pose considerable threat to the environment. The alternative use of bioleaching microbes for gold recovery is non-pollutive and relies on the secretion of a lixiviant or (bio)chemical such as cyanide for extraction of gold from electronic waste. However, widespread industrial use of bioleaching microbes has been constrained by the limited cyanogenic capabilities of lixiviant-producing microorganisms such as Chromobacterium violaceum. Here we show the construction of a metabolically-engineered strain of Chromobacterium violaceum that produces more (70%) cyanide lixiviant and recovers more than twice as much gold from electronic waste compared to wild-type bacteria. Comparative proteome analyses suggested the possibility of further enhancement in cyanogenesis through subsequent metabolic engineering. Our results demonstrated the utility of lixiviant metabolic engineering in the construction of enhanced bioleaching microbes for the bioleaching of precious metals from electronic waste.

  8. Enhancing gold recovery from electronic waste via lixiviant metabolic engineering in Chromobacterium violaceum

    PubMed Central

    Tay, Song Buck; Natarajan, Gayathri; Rahim, Muhammad Nadjad bin Abdul; Tan, Hwee Tong; Chung, Maxey Ching Ming; Ting, Yen Peng; Yew, Wen Shan

    2013-01-01

    Conventional leaching (extraction) methods for gold recovery from electronic waste involve the use of strong acids and pose considerable threat to the environment. The alternative use of bioleaching microbes for gold recovery is non-pollutive and relies on the secretion of a lixiviant or (bio)chemical such as cyanide for extraction of gold from electronic waste. However, widespread industrial use of bioleaching microbes has been constrained by the limited cyanogenic capabilities of lixiviant-producing microorganisms such as Chromobacterium violaceum. Here we show the construction of a metabolically-engineered strain of Chromobacterium violaceum that produces more (70%) cyanide lixiviant and recovers more than twice as much gold from electronic waste compared to wild-type bacteria. Comparative proteome analyses suggested the possibility of further enhancement in cyanogenesis through subsequent metabolic engineering. Our results demonstrated the utility of lixiviant metabolic engineering in the construction of enhanced bioleaching microbes for the bioleaching of precious metals from electronic waste. PMID:23868689

  9. Fungal Biorecovery of Gold From E-waste.

    PubMed

    Bindschedler, Saskia; Vu Bouquet, Thi Quynh Trang; Job, Daniel; Joseph, Edith; Junier, Pilar

    2017-01-01

    Waste electric and electronic devices (e-waste) represent a source of valuable raw materials of great interest, and in the case of metals, e-waste might become a prized alternative source. Regarding gold, natural ores are difficult to mine due to their refractory nature and the richest ores have almost all been exploited. Additionally, some gold mining areas are present in geopolitically unstable regions. Finally, the gold mining industry produces toxic compounds, such as cyanides. As a result, the gold present in e-waste represents a nonnegligible resource (urban mining). Extraction methods of gold from natural ores (pyro- and hydrometallurgy) have been adapted to this particular type of matrix. However, to propose novel approaches with a lower environmental footprint, biotechnological methods using microorganisms are being developed (biometallurgy). These processes use the extensive metabolic potential of microbes (algae, bacteria, and fungi) to mobilize and immobilize gold from urban and industrial sources. In this review, we focus on the use of fungi for gold biomining. Fungi interact with gold by mobilizing it through mechanical attack as well as through biochemical leaching by the production of cyanides. Moreover, fungi are also able to release Au through the degradation of cyanide from aurocyanide complexes. Finally, fungi immobilize gold through biosorption, bioaccumulation, and biomineralization, in particular, as gold nanoparticles. Overall, the diversity of mechanisms of gold recycling using fungi combined with their filamentous lifestyle, which allows them to thrive in heterogeneous and solid environments such as e-waste, makes fungi an important bioresource to be harnessed for the biorecovery of gold. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Controlled copper ion release from phosphate-based glasses improves human umbilical vein endothelial cell survival in a reduced nutrient environment.

    PubMed

    Stähli, Christoph; Muja, Naser; Nazhat, Showan N

    2013-02-01

    The success of tissue engineering is dependent on rapid scaffold vascularization after engraftment. Copper ions are well known to be angiogenic but exhibit cytotoxicity at elevated doses. The high sensitivity to copper concentration underlines the need of a controlled release mechanism. This study investigated the effect of copper ions released from phosphate-based glasses (PGs) on human umbilical vein endothelial cells (HUVECs) under standard growth conditions (SGC), as well as in a reduced nutrient environment (RNE) with decreased bovine serum and growth factor concentrations to approximate conditions in the core of large volume scaffolds where nutrient diffusion is limited. Initially, HUVECs were exposed to a range of CuCl(2) concentrations in order to identify an optimal response in terms of their metabolism, viability, and apoptotic activity. Under SGC, HUVEC metabolic activity and viability were reduced in a dose-dependent manner in the presence of 0.44-12 ppm Cu(2+). In contrast, HUVEC death induced by the RNE was delayed by an optimal dose of 4 ppm Cu(2+), which was associated with a down-regulation of apoptosis as evidenced by caspase-3/7 activity. Copper ion release from soluble PGs of the formulation 50P(2)O(5)-30CaO-(20-x)Na(2)O-xCuO [mol%] (x=0, 1, 5 and 10) demonstrated a controllable increase with CuO content. The presence of 4 ppm copper ions released from the 10% CuO PG composition reproduced the delay in HUVEC death in the RNE, suggesting the potential of these materials to extend survival of transplanted endothelial cells in large volume scaffolds.

  11. A light-powered bio-capacitor with nanochannel modulation.

    PubMed

    Rao, Siyuan; Lu, Shanfu; Guo, Zhibin; Li, Yuan; Chen, Deliang; Xiang, Yan

    2014-09-03

    An artificial bio-capacitor system is established, consisting of the proton-pump protein proteorhodopsin and a modified alumina nanochannel, inspired by the capacitor-like behavior of plasma membranes realized through the cooperation of ion-pump and ion-channel proteins. Capacitor-like features of this simplified system are realized and identified, and the photocurrent duration time can be modulated by nanochannel modification to obtain favorable square-wave currents. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Evaluation of effect of galvanic corrosion between nickel-chromium metal and titanium on ion release and cell toxicity

    PubMed Central

    Choi, Jung-Yun

    2015-01-01

    PURPOSE The purpose of this study was to evaluate cell toxicity due to ion release caused by galvanic corrosion as a result of contact between base metal and titanium. MATERIALS AND METHODS It was hypothesized that Nickel (Ni)-Chromium (Cr) alloys with different compositions possess different corrosion resistances when contacted with titanium abutment, and therefore in this study, specimens (10×10×1.5 mm) were fabricated using commercial pure titanium and 3 different types of Ni-Cr alloys (T3, Tilite, Bella bond plus) commonly used for metal ceramic restorations. The specimens were divided into 6 groups according to the composition of Ni-Cr alloy and contact with titanium. The experimental groups were in direct contact with titanium and the control groups were not. After the samples were immersed in the culture medium - Dulbecco's modified Eagle's medium[DMEM] for 48 hours, the released metal ions were detected using inductively coupled plasma mass spectrometer (ICP-MS) and analyzed by the Kruskal-Wallis and Mann-Whitney test (P<.05). Mouse L-929 fibroblast cells were used for cell toxicity evaluation. The cell toxicity of specimens was measured by the 3-{4,5-dimethylthiazol-2yl}-2,5-diphenyltetrazolium bromide (MTT) test. Results of MTT assay were statistically analyzed by the two-way ANOVA test (P<.05). Post-hoc multiple comparisons were conducted using Tukey's tests. RESULTS The amount of metal ions released by galvanic corrosion due to contact between the base metal alloy and titanium was increased in all of the specimens. In the cytotoxicity test, the two-way ANOVA showed a significant effect of the alloy type and galvanic corrosion for cytotoxicity (P<.001). The relative cell growth rate (RGR) was decreased further on the groups in contact with titanium (P<.05). CONCLUSION The release of metal ions was increased by galvanic corrosion due to contact between base metal and titanium, and it can cause adverse effects on the tissue around the implant by inducing

  13. Carbon-Based Solid-State Calcium Ion-Selective Microelectrode and Scanning Electrochemical Microscopy: A Quantitative Study of pH-Dependent Release of Calcium Ions from Bioactive Glass.

    PubMed

    Ummadi, Jyothir Ganesh; Downs, Corey J; Joshi, Vrushali S; Ferracane, Jack L; Koley, Dipankar

    2016-03-15

    Solid-state ion-selective electrodes are used as scanning electrochemical microscope (SECM) probes because of their inherent fast response time and ease of miniaturization. In this study, we report the development of a solid-state, low-poly(vinyl chloride), carbon-based calcium ion-selective microelectrode (Ca(2+)-ISME), 25 μm in diameter, capable of performing an amperometric approach curve and serving as a potentiometric sensor. The Ca(2+)-ISME has a broad linear response range of 5 μM to 200 mM with a near Nernstian slope of 28 mV/log[a(Ca(2+))]. The calculated detection limit for Ca(2+)-ISME is 1 μM. The selectivity coefficients of this Ca(2+)-ISME are log K(Ca(2+),A) = -5.88, -5.54, and -6.31 for Mg(2+), Na(+), and K(+), respectively. We used this new type of Ca(2+)-ISME as an SECM probe to quantitatively map the chemical microenvironment produced by a model substrate, bioactive glass (BAG). In acidic conditions (pH 4.5), BAG was found to increase the calcium ion concentration from 0.7 mM ([Ca(2+)] in artificial saliva) to 1.4 mM at 20 μm above the surface. In addition, a solid-state dual SECM pH probe was used to correlate the release of calcium ions with the change in local pH. Three-dimensional pH and calcium ion distribution mapping were also obtained by using these solid-state probes. The quantitative mapping of pH and Ca(2+) above the BAG elucidates the effectiveness of BAG in neutralizing and releasing calcium ions in acidic conditions.

  14. Gold Nanorods as Nanodevices for Bioimaging, Photothermal Therapeutics, and Drug Delivery.

    PubMed

    Haine, Aung Thu; Niidome, Takuro

    2017-01-01

    Gold nanorods are promising metals in several biomedical applications such as bioimaging, thermal therapy, and drug delivery. Gold nanorods have strong absorption bands in near-infrared (NIR) light region and show photothermal effects. Since NIR light can penetrate deeply into tissues, their unique optical, chemical, and biological properties have attracted considerable clinical interest. Gold nanorods are expected to act not only as on-demand thermal converters for photothermal therapy but also as mediators of a controlled drug-release system responding to light irradiation. In this review, we discuss current progress using gold nanorods as bioimaging platform, phototherapeutic agents, and drug delivery vehicles.

  15. Programmable Payload Release from Transient Polymer Microcapsules Triggered by a Specific Ion Coactivation Effect.

    PubMed

    Tang, Shijia; Tang, Liuyan; Lu, Xiaocun; Liu, Huiying; Moore, Jeffrey S

    2018-01-10

    Stimuli-responsive materials activated by a pair of molecular or ionic species are of interest in the design of chemical logic gates and signal amplification schemes. There are relatively few materials whose coactivated response has been well-characterized. Here, we demonstrate a specific ion coactivation (SICA) effect at the interfaces of transient polymer solids and liquid solutions. We found that depolymerization of the transient polymer, cyclic poly(phthalaldehyde) (cPPA), exhibited a SICA effect when the cPPA core-shell microcapsules were suspended in ion-containing acidic methanol solutions. Significant acceleration in cPPA depolymerization rate is triggered by the combination of acid and ion coactivators. Intriguingly, the SICA effect is related to the Hofmeister behavior. The SICA effect is primarily determined by anions, and cations exhibit a secondary effect that modulates the coactivation strength. Based on these observations, we developed cPPA programmable microcapsules whose payload release rates depend on the composition and concentration of the salt/acidic-methanol solutions.

  16. Three-dimensional atom probe tomography of oxide, anion, and alkanethiolate coatings on gold.

    PubMed

    Zhang, Yi; Hillier, Andrew C

    2010-07-15

    We have used three-dimensional atom probe tomography to analyze several nanometer-thick and monomolecular films on gold surfaces. High-purity gold wire was etched by electropolishing to create a sharp tip suitable for field evaporation with a radius of curvature of <100 nm. The near-surface region of a freshly etched gold tip was examined with the atom probe at subnanometer spatial resolution and with atom-level composition accuracy. A thin contaminant layer, primarily consisting of water and atmospheric gases, was observed on a fresh tip. This sample exhibited crystalline lattice spacings consistent with the interlayer spacing of {200} lattice planes of bulk gold. A thin oxide layer was created on the gold surface via plasma oxidation, and the thickness and composition of this layer was measured. Clear evidence of a nanometer-thick oxide layer was seen coating the gold tip, and the atomic composition of the oxide layer was consistent with the expected stoichiometry for gold oxide. Monomolecular anions layers of Br(-) and I(-) were created via adsorption from aqueous solutions onto the gold. Atom probe data verified the presence of the monomolecular anion layers on the gold surface, with ion density values consistent with literature values. A hexanethiolate monolayer was coated onto the gold tip, and atom probe analysis revealed a thin film whose ion fragments were consistent with the molecular composition of the monolayer and a surface coverage similar to that expected from literature. Details of the various coating compositions and structures are presented, along with discussion of the reconstruction issues associated with properly analyzing these thin-film systems.

  17. ATP-dependent Conformational Changes Trigger Substrate Capture and Release by an ECF-type Biotin Transporter*

    PubMed Central

    Finkenwirth, Friedrich; Sippach, Michael; Landmesser, Heidi; Kirsch, Franziska; Ogienko, Anastasia; Grunzel, Miriam; Kiesler, Cornelia; Steinhoff, Heinz-Jürgen; Schneider, Erwin; Eitinger, Thomas

    2015-01-01

    Energy-coupling factor (ECF) transporters for vitamins and metal ions in prokaryotes consist of two ATP-binding cassette-type ATPases, a substrate-specific transmembrane protein (S component) and a transmembrane protein (T component) that physically interacts with the ATPases and the S component. The mechanism of ECF transporters was analyzed upon reconstitution of a bacterial biotin transporter into phospholipid bilayer nanodiscs. ATPase activity was not stimulated by biotin and was only moderately reduced by vanadate. A non-hydrolyzable ATP analog was a competitive inhibitor. As evidenced by cross-linking of monocysteine variants and by site-specific spin labeling of the Q-helix followed by EPR-based interspin distance analyses, closure and reopening of the ATPase dimer (BioM2) was a consequence of ATP binding and hydrolysis, respectively. A previously suggested role of a stretch of small hydrophobic amino acid residues within the first transmembrane segment of the S units for S unit/T unit interactions was structurally and functionally confirmed for the biotin transporter. Cross-linking of this segment in BioY (S) using homobifunctional thiol-reactive reagents to a coupling helix of BioN (T) indicated a reorientation rather than a disruption of the BioY/BioN interface during catalysis. Fluorescence emission of BioY labeled with an environmentally sensitive fluorophore was compatible with an ATP-induced reorientation and consistent with a hypothesized toppling mechanism. As demonstrated by [3H]biotin capture assays, ATP binding stimulated substrate capture by the transporter, and subsequent ATP hydrolysis led to substrate release. Our study represents the first experimental insight into the individual steps during the catalytic cycle of an ECF transporter in a lipid environment. PMID:25991724

  18. Bio-based barium alginate film: Preparation, flame retardancy and thermal degradation behavior.

    PubMed

    Liu, Yun; Zhang, Chuan-Jie; Zhao, Jin-Chao; Guo, Yi; Zhu, Ping; Wang, De-Yi

    2016-03-30

    A bio-based barium alginate film was prepared via a facile ionic exchange and casting approach. Its flammability, thermal degradation and pyrolysis behaviors, thermal degradation mechanism were studied systemically by limiting oxygen index (LOI), vertical burning (UL-94), microscale combustion calorimetry (MCC), thermogravimetric analysis (TGA) coupled with Fourier transform infrared analysis (FTIR) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). It showed that barium alginate film had much higher LOI value (52.0%) than that of sodium alginate film (24.5%). Moreover, barium alginate film passed the UL-94 V-0 rating, while the sodium alginate film showed no classification. Importantly, peak of heat release rate (PHRR) of barium alginate film in MCC test was much lower than that of sodium alginate film, suggested that introduction of barium ion into alginate film significantly decreased release of combustible gases. TG-FTIR and Py-GC-MS results indicated that barium alginate produced much less flammable products than that of sodium alginate in whole thermal degradation procedure. Finally, a possible degradation mechanism of barium alginate had been proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Coordination-based gold nanoparticle layers.

    PubMed

    Wanunu, Meni; Popovitz-Biro, Ronit; Cohen, Hagai; Vaskevich, Alexander; Rubinstein, Israel

    2005-06-29

    Gold nanoparticle (NP) mono- and multilayers were constructed on gold surfaces using coordination chemistry. Hydrophilic Au NPs (6.4 nm average core diameter), capped with a monolayer of 6-mercaptohexanol, were modified by partial substitution of bishydroxamic acid disulfide ligand molecules into their capping layer. A monolayer of the ligand-modified Au NPs was assembled via coordination with Zr4+ ions onto a semitransparent Au substrate (15 nm Au, evaporated on silanized glass and annealed) precoated with a self-assembled monolayer of the bishydroxamate disulfide ligand. Layer-by-layer construction of NP multilayers was achieved by alternate binding of Zr4+ ions and ligand-modified NPs onto the first NP layer. Characterization by atomic force microscopy (AFM), ellipsometry, wettability, transmission UV-vis spectroscopy, and cross-sectional transmission electron microscopy showed regular growth of NP layers, with a similar NP density in successive layers and gradually increased roughness. The use of coordination chemistry enables convenient step-by-step assembly of different ligand-possessing components to obtain elaborate structures. This is demonstrated by introducing nanometer-scale vertical spacing between a NP layer and the gold surface, using a coordination-based organic multilayer. Electrical characterization of the NP films was carried out using conductive AFM, emphasizing the barrier properties of the organic spacer multilayer. The results exhibit the potential of coordination self-assembly in achieving highly controlled composite nanostructures comprising molecules, NPs, and other ligand-derivatized components.

  20. A novel surface-enhanced Raman scattering nanosensor for detecting multiple heavy metal ions based on 2-mercaptoisonicotinic acid functionalized gold nanoparticles.

    PubMed

    Tan, Enzhong; Yin, Penggang; Lang, Xiufeng; Zhang, Hongyan; Guo, Lin

    2012-11-01

    A novel, effective and simple surface-enhanced Raman scattering (SERS) nanosensor for selectively and sensitively detecting heavy metal ions in aqueous solution has been developed in the form of 2-mercaptoisonicotinic acid (2 MNA)-modified gold nanoparticles (AuNPs). Multiple heavy metal ions can be identified and quantified by using relative peak intensity ratios of selected vibrational bands in the SERS spectra of 2 MNA. Especially, concentration of Hg(2+) and Pb(2+) ions are determined by comparing the intensity ratios of the bands 1160/1230 cm(-1) for Hg(2+) and 861/815 cm(-1) (or 815/1392 cm(-1)) for Pb(2+), with detection limits of 3.4×10(-8) and 1.0×10(-7)M, respectively. 2 MNA-AuNPs sensors show a high selectivity for Hg(2+) without masking reagent, and they can also be highly selective for Pb(2+) when using sodium thiosulphate and l-cysteine as masking reagents. These results demonstrate that these 2 MNA-AuNPs nanosensors are promising candidates for in situ heavy metal ions detection and quantification, maybe even inside living cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Performance Evaluation of Diesel Engine with Preheated Bio Diesel with Additives

    NASA Astrophysics Data System (ADS)

    Ram Vajja, Sai; Murali, R. B. V.

    2016-09-01

    This paper mainly reviews about the usage of preheated bio diesel added with 0.5% Etchant as an alternative fuel and evaluates its performance for various blends with different loads. Bio diesel is added with Etchant for rapid combustion as for the bio diesel, the cetane number is high that results in shorter delay of ignition and the mixture is preheated to raise its temperature to improve the combustion process. Analysis of the parameters required to define the combustion characteristics such as IP, BP, ηbth, ηm, ISFC, BSFC, IMEP, MFC, Exhaust Gas Temperature, Heat Release and heat balance is necessary as these values are significant to assess the performance of engine and its emissions of preheated bio diesel.

  2. BioCIDER: a Contextualisation InDEx for biological Resources discovery

    PubMed Central

    Horro, Carlos; Cook, Martin; Attwood, Teresa K.; Brazas, Michelle D.; Hancock, John M.; Palagi, Patricia; Corpas, Manuel; Jimenez, Rafael

    2017-01-01

    Abstract Summary The vast, uncoordinated proliferation of bioinformatics resources (databases, software tools, training materials etc.) makes it difficult for users to find them. To facilitate their discovery, various services are being developed to collect such resources into registries. We have developed BioCIDER, which, rather like online shopping ‘recommendations’, provides a contextualization index to help identify biological resources relevant to the content of the sites in which it is embedded. Availability and Implementation BioCIDER (www.biocider.org) is an open-source platform. Documentation is available online (https://goo.gl/Klc51G), and source code is freely available via GitHub (https://github.com/BioCIDER). The BioJS widget that enables websites to embed contextualization is available from the BioJS registry (http://biojs.io/). All code is released under an MIT licence. Contact carlos.horro@earlham.ac.uk or rafael.jimenez@elixir-europe.org or manuel@repositive.io PMID:28407033

  3. Probing the magnetosphere using chemical releases from the Combined Release and Radiation Effects Satellite

    NASA Technical Reports Server (NTRS)

    Bernhardt, P. A.

    1992-01-01

    An overview is presented of the chemical release experiments from NASA's Combined Release and Radiation Effects Satellite (CRRES) program. Preliminary results are given for the CRRES investigations of (1) stimulated electron and ion precipitation, (2) ion transport in the magnetotail, (3) critical ionization velocity, (4) field line tracing and parallel acceleration, (5) diamagnetic cavity formation and collapse, and (6) plasma instabilities. The chemical vapor properties from a thermite release mechanism are also briefly described.

  4. Influence of phosphoproteins' biomimetic analogs on remineralization of mineral-depleted resin-dentin interfaces created with ion-releasing resin-based systems.

    PubMed

    Sauro, Salvatore; Osorio, Raquel; Watson, Timothy F; Toledano, Manuel

    2015-07-01

    The study aimed at evaluating the remineralization of acid-etched dentin pre-treated with primers containing biomimetic analogs and bonded using an ion-releasing light-curable resin-based material. An experimental etch-and-rinse adhesive system filled with Ca(2+), PO4(3-)-releasing Ca-Silicate micro-fillers was created along with two experimental primers containing biomimetic analogs such as sodium trimetaphosphate (TMP) and/or polyaspartic acid (PLA). Dentin specimens etched with 37% H3PO4 were pre-treated with two different aqueous primers containing the polyanionic biomimetic analogs or deionized water and subsequently bonded using the experimental resin-based materials. The specimens were sectioned and analyzed by AFM/nanoindentation to evaluate changes in the modulus of elasticity (Ei) across the resin-dentin interface at different AS storage periods (up to 90 days). Raman cluster analysis was also performed to evaluate the chemical changes along the interface. The phosphate uptake by the acid-etched dentin was evaluated using the ATR-FTIR. Additional resin-dentin specimens were tested for microtensile bond strength. SEM examination was performed after de-bonding, while confocal laser microscopy was used to evaluate the interfaces ultramorphology and micropermeability. Both biomimetic primers induced phosphate uptake by acid-etched dentin. Specimens created with the ion-releasing resin in combination with the pre-treatment primers containing either PLA and TMA showed the greatest recovery of the Ei of the hybrid layer, with no decrease in μTBS (p>0.05) after 3-month AS storage. The ion-releasing resin applied after use of the biomimetic primers showed the greatest reduction in micropermeability due to mineral precipitation; these results were confirmed using SEM. The use of the ion-releasing resin-based system applied to acid-etched dentin pre-treated with biomimetic primers containing analogs of phosphoproteins such as poly-l-aspartic acid and/or sodium

  5. ‘Spotted Nanoflowers’: Gold-seeded Zinc Oxide Nanohybrid for Selective Bio-capture

    NASA Astrophysics Data System (ADS)

    Perumal, Veeradasan; Hashim, U.; Gopinath, Subash C. B.; Haarindraprasad, R.; Foo, K. L.; Balakrishnan, S. R.; Poopalan, P.

    2015-07-01

    Hybrid gold nanostructures seeded into nanotextured zinc oxide (ZnO) nanoflowers (NFs) were created for novel biosensing applications. The selected ‘spotted NFs’ had a 30-nm-thick gold nanoparticle (AuNP) layer, chosen from a range of AuNP thicknesses, sputtered onto the surface. The generated nanohybrids, characterized by morphological, physical and structural analyses, were uniformly AuNP-seeded onto the ZnO NFs with an average length of 2-3 μm. Selective capture of molecular probes onto the seeded AuNPs was evidence for the specific interaction with DNA from pathogenic Leptospirosis-causing strains via hybridization and mis-match analyses. The attained detection limit was 100 fM as determined via impedance spectroscopy. High levels of stability, reproducibility and regeneration of the sensor were obtained. Selective DNA immobilization and hybridization were confirmed by nitrogen and phosphorus peaks in an X-ray photoelectron spectroscopy analysis. The created nanostructure hybrids illuminate the mechanism of generating multiple-target, high-performance detection on a single NF platform, which opens a new avenue for array-based medical diagnostics.

  6. Spectroscopic study of gold nanoparticle formation through high intensity laser irradiation of solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Takahiro, E-mail: nakamu@tagen.tohoku.ac.jp; Sato, Shunichi; Herbani, Yuliati

    A spectroscopic study of the gold nanoparticle (NP) formation by high-intensity femtosecond laser irradiation of a gold ion solution was reported. The effect of varying energy density of the laser on the formation of gold NPs was also investigated. The surface plasmon resonance (SPR) peak of the gold nanocolloid in real-time UV-visible absorption spectra during laser irradiation showed a distinctive progress; the SPR absorption peak intensity increased after a certain irradiation time, reached a maximum and then gradually decreased. During this absorption variation, at the same time, the peak wavelength changed from 530 to 507 nm. According to an empiricalmore » equation derived from a large volume of experimental data, the estimated mean size of the gold NPs varied from 43.4 to 3.2 nm during the laser irradiation. The mean size of gold NPs formed at specific irradiation times by transmission electron microscopy showed the similar trend as that obtained in the spectroscopic analysis. From these observations, the formation mechanism of gold NPs during laser irradiation was considered to have two steps. The first is a reduction of gold ions by reactive species produced through a non-linear reaction during high intensity laser irradiation of the solution; the second is the laser fragmentation of produced gold particles into smaller pieces. The gold nanocolloid produced after the fragmentation by excess irradiation showed high stability for at least a week without the addition of any dispersant because of the negative charge on the surface of the nanoparticles probably due to the surface oxidation of gold nanoparticles. A higher laser intensity resulted in a higher efficiency of gold NPs fabrication, which was attributed to a larger effective volume of the reaction.« less

  7. Morphological control of gold nanorods via thermally driven bi-surfactant growth and application for detection of heavy metal ions.

    PubMed

    Huang, Hao; Li, Huiyi; Wang, Huaiyu; Li, Jia; Li, Penghui; Chen, Qidan; Chen, Yue; Chu, Paul K; Li, Bo; Yu, Xuefeng

    2018-05-22

    We report a modified synthesis route of colloidal gold nanorods (AuNRs) by combining the thermal re-shaping treatment and bi-surfactant modification using hexadecyltrimethylammonium bromide (CTAB) and sodium oleate (NaOL). Aspect ratios down to 1.3 ± 0.1 can be achieved in addition to good monodispersity, uniformity, and chemical stability of the materials. Furthermore, without needing post-treatment, metal ions directly interact with the AuNRs efficiently, allowing rapid and sensitive colorimetric detection of heavy metal ions such as Pb<sup>2+</sup> and Cu<sup>2+</sup> with a low concentration down to 2.5 μM. The detection performance in terms of selectivity, sensitivity and stability is systematically evaluated. The AuNRs with tunable aspect ratios as well as chemical stability have potential in surface-plasmon-based applications such as biochemical sensing, biochemical imaging, medical diagnostics, and cancer therapy. © 2018 IOP Publishing Ltd.

  8. Incorporating water-release and lateral protein interactions in modeling equilibrium adsorption for ion-exchange chromatography.

    PubMed

    Thrash, Marvin E; Pinto, Neville G

    2006-09-08

    The equilibrium adsorption of two albumin proteins on a commercial ion exchanger has been studied using a colloidal model. The model accounts for electrostatic and van der Waals forces between proteins and the ion exchanger surface, the energy of interaction between adsorbed proteins, and the contribution of entropy from water-release accompanying protein adsorption. Protein-surface interactions were calculated using methods previously reported in the literature. Lateral interactions between adsorbed proteins were experimentally measured with microcalorimetry. Water-release was estimated by applying the preferential interaction approach to chromatographic retention data. The adsorption of ovalbumin and bovine serum albumin on an anion exchanger at solution pH>pI of protein was measured. The experimental isotherms have been modeled from the linear region to saturation, and the influence of three modulating alkali chlorides on capacity has been evaluated. The heat of adsorption is endothermic for all cases studied, despite the fact that the net charge on the protein is opposite that of the adsorbing surface. Strong repulsive forces between adsorbed proteins underlie the endothermic heat of adsorption, and these forces intensify with protein loading. It was found that the driving force for adsorption is the entropy increase due to the release of water from the protein and adsorbent surfaces. It is shown that the colloidal model predicts protein adsorption capacity in both the linear and non-linear isotherm regions, and can account for the effects of modulating salt.

  9. Enhanced Mechanical Stability of Gold Nanotips through Carbon Nanocone Encapsulation

    PubMed Central

    Cano-Marquez, Abraham G.; Schmidt, Wesller G.; Ribeiro-Soares, Jenaina; Gustavo Cançado, Luiz; Rodrigues, Wagner N.; Santos, Adelina P.; Furtado, Clascidia A.; Autreto, Pedro A.S.; Paupitz, Ricardo; Galvão, Douglas S.; Jorio, Ado

    2015-01-01

    Gold is a noble metal that, in comparison with silver and copper, has the advantage of corrosion resistance. Despite its high conductivity, chemical stability and biocompatibility, gold exhibits high plasticity, which limits its applications in some nanodevices. Here, we report an experimental and theoretical study on how to attain enhanced mechanical stability of gold nanotips. The gold tips were fabricated by chemical etching and further encapsulated with carbon nanocones via nanomanipulation. Atomic force microscopy experiments were carried out to test their mechanical stability. Molecular dynamics simulations show that the encapsulated nanocone changes the strain release mechanisms at the nanoscale by blocking gold atomic sliding, redistributing the strain along the whole nanostructure. The carbon nanocones are conducting and can induce magnetism, thus opening new avenues on the exploitation of transport, mechanical and magnetic properties of gold covered by sp2 carbon at the nanoscale. PMID:26083864

  10. Gold-silver alloy nanoshells: a new candidate for nanotherapeutics and diagnostics

    NASA Astrophysics Data System (ADS)

    Gheorghe, Dana E.; Cui, Lili; Karmonik, Christof; Brazdeikis, Audrius; Penaloza, Jose M.; Young, Joseph K.; Drezek, Rebekah A.; Bikram, Malavosklish

    2011-10-01

    We have developed novel gold-silver alloy nanoshells as magnetic resonance imaging (MRI) dual T 1 (positive) and T 2 (negative) contrast agents as an alternative to typical gadolinium (Gd)-based contrast agents. Specifically, we have doped iron oxide nanoparticles with Gd ions and sequestered the ions within the core by coating the nanoparticles with an alloy of gold and silver. Thus, these nanoparticles are very innovative and have the potential to overcome toxicities related to renal clearance of contrast agents such as nephrogenic systemic fibrosis. The morphology of the attained nanoparticles was characterized by XRD which demonstrated the successful incorporation of Gd(III) ions into the structure of the magnetite, with no major alterations of the spinel structure, as well as the growth of the gold-silver alloy shells. This was supported by TEM, ICP-AES, and SEM/EDS data. The nanoshells showed a saturation magnetization of 38 emu/g because of the presence of Gd ions within the crystalline structure with r 1 and r 2 values of 0.0119 and 0.9229 mL mg-1 s-1, respectively (Au:Ag alloy = 1:1). T 1- and T 2-weighted images of the nanoshells showed that these agents can both increase the surrounding water proton signals in the T 1-weighted image and reduce the signal in T 2-weighted images. The as-synthesized nanoparticles exhibited strong absorption in the range of 600-800 nm, their optical properties being strongly dependent upon the thickness of the gold-silver alloy shell. Thus, these nanoshells have the potential to be utilized for tumor cell ablation because of their absorption as well as an imaging agent.

  11. Mechanical characterization and ion release of bioactive dental composites containing calcium phosphate particles.

    PubMed

    Natale, Livia C; Rodrigues, Marcela C; Alania, Yvette; Chiari, Marina D S; Boaro, Leticia C C; Cotrim, Marycel; Vega, Oscar; Braga, Roberto R

    2018-08-01

    to verify the effect of the addition of dicalcium phosphate dihydrate (DCPD) particles functionalized with di- or triethylene glycol dimethacrylate (DEGDMA or TEGDMA) on the degree of conversion (DC), post-gel shrinkage (PS), mechanical properties, and ion release of experimental composites. Four composites were prepared containing a BisGMA/TEGDMA matrix and 60 vol% of fillers. The positive control contained only barium glass fillers, while in the other composites 15 vol% of the barium was replaced by DCPD. Besides the functionalized particles, non-functionalized DCPD was also tested. DC after 24 h (n = 3) was determined by FTIR spectroscopy. The strain gage method was used to obtain PS 5 min after photoactivation (n = 5). Flexural strength and modulus (n = 10) were calculated based on the biaxial flexural test results, after specimen storage for 24 h or 60 days in water. The same storage times were used for fracture toughness testing (FT, n = 10). Calcium and phosphate release up to 60 days was quantified by ICP-OES (n = 3). Data were analyzed by ANOVA/Tukey test (alpha: 5%). Composites containing functionalized DCPD presented higher DC than the control (p < 0.001). The material containing DEGDMA-functionalized particles showed higher PS than the other composites (p < 0.001). After 60 days, only the composite with DEGDMA-functionalized DCPD presented fracture strength similar to the control, while for flexural modulus only the composite with TEGDMA-functionalized particles was lower than the control (p < 0.001). FT of all composites containing DCPD was higher than the control after 60 days (p < 0.005). Calcium release was higher for the composite with non-functionalized DCPD at 15 days and no significant reductions were observed for composites with functionalized DCPD during the observation period (p < 0.001). For all the tested composites, phosphate release was higher at 15 days than in the subsequent periods, and

  12. Magnetic Graphene Nanosheet-Based Microfluidic Device for Homogeneous Real-Time Electronic Monitoring of Pyrophosphatase Activity Using Enzymatic Hydrolysate-Induced Release of Copper Ion.

    PubMed

    Lin, Youxiu; Zhou, Qian; Li, Juan; Shu, Jian; Qiu, Zhenli; Lin, Yuping; Tang, Dianping

    2016-01-05

    A novel flow-through microfluidic device based on a magneto-controlled graphene sensing platform was designed for homogeneous electronic monitoring of pyrophosphatase (PPase) activity; enzymatic hydrolysate-induced release of inorganic copper ion (Cu(2+)) from the Cu(2+)-coordinated pyrophosphate ions (Cu(2+)-PPi) complex was assessed to determine enzyme activity. Magnetic graphene nanosheets (MGNS) functionalized with negatively charged Nafion were synthesized by using the wet-chemistry method. The Cu(2+)-PPi complexes were prepared on the basis of the coordination reaction between copper ion and inorganic pyrophosphate ions. Upon target PPase introduction into the detection system, the analyte initially hydrolyzed pyrophosphate ions into phosphate ions and released the electroactive copper ions from Cu(2+)-PPi complexes. The released copper ions could be readily captured through the negatively charged Nafion on the magnetic graphene nanosheets, which could be quantitatively monitored by using the stripping voltammetry on the flow-through detection cell with an external magnet. Under optimal conditions, the obtained electrochemical signal exhibited a high dependence on PPase activity within a dynamic range from 0.1 to 20 mU mL(-1) and allowed the detection at a concentration as low as 0.05 mU mL(-1). Coefficients of variation for reproducibility of the intra-assay and interassay were below 7.6 and 9.8%, respectively. The inhibition efficiency of sodium fluoride (NaF) also received good results in pyrophosphatase inhibitor screening research. In addition, the methodology afforded good specificity and selectivity, simplification, and low cost without the need of sample separations and multiple washing steps, thus representing a user-friendly protocol for practical utilization in a quantitative PPase activity.

  13. Bio-nanogate controlled enzymatic reaction for virus sensing.

    PubMed

    Wang, Ronghui; Xu, Lizhou; Li, Yanbin

    2015-05-15

    The objective of this study was to develop an aptamer-based bifunctional bio-nanogate, which could selectively respond to target molecules, and control enzymatic reaction for electrochemical measurements. It was successfully applied for sensitive, selective, rapid, quantitative, and label-free detection of avian influenza viruses (AIV) H5N1. A nanoporous gold film with pore size of ~20 nm was prepared by a metallic corrosion method, and the purity was checked by energy-dispersive X-ray spectroscopy (EDS) study. To improve the performance of the bio-nanogate biosensor, its main analytical parameters were studied and optimized. We demonstrated that the developed bio-nanogate was capable of controlling enzymatic reaction for AIV H5N1 sensing within 1h with a detection limit of 2(-9)HAU (hemagglutination units). The enzymatic reaction was able to cause significant current change due to the presence of target AIV. A linear relationship was found in the virus titer range of 2(-10)-2(2)HAU. No interference was observed from non-target AIV subtypes such as H1N1, H2N2, H4N8 and H7N2. The developed approach could be adopted for sensing of other viruses. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Two types of nanoparticle-based bio-barcode amplification assays to detect HIV-1 p24 antigen.

    PubMed

    Dong, Huahuang; Liu, Jianli; Zhu, Hong; Ou, Chin-Yih; Xing, Wenge; Qiu, Maofeng; Zhang, Guiyun; Xiao, Yao; Yao, Jun; Pan, Pinliang; Jiang, Yan

    2012-08-31

    HIV-1 p24 antigen is a major viral component of human immunodeficiency virus type 1 (HIV-1) which can be used to identify persons in the early stage of infection and transmission of HIV-1 from infected mothers to infants. The detection of p24 is usually accomplished by using an enzyme-linked immunosorbent assay (ELISA) with low detection sensitivity. Here we report the use of two bio-barcode amplification (BCA) assays combined with polymerase chain reaction (PCR) and gel electrophoresis to quantify HIV-1 p24 antigen. A pair of anti-p24 monoclonal antibodies (mAbs) were used in BCA assays to capture HIV-1 p24 antigen in a sandwich format and allowed for the quantitative measurement of captured p24 using PCR and gel electrophoresis. The first 1 G12 mAb was coated on microplate wells or magnetic microparticles (MMPs) to capture free p24 antigens. Captured p24 in turn captured 1D4 mAb coated gold nanoparticle probes (GNPs) containing double-stranded DNA oligonucleotides. One strand of the oligonucleotides was covalently immobilized whereas the unbound complimentary bio-barcode DNA strand could be released upon heating. The released bio-barcode DNA was amplified by PCR, electrophoresed in agarose gel and quantified. The in-house ELISA assay was found to quantify p24 antigen with a limit of detection (LOD) of 1,000 pg/ml and a linear range between 3,000 and 100,000 pg/ml. In contrast, the BCA-based microplate method yielded an LOD of 1 pg/ml and a linear detection range from 1 to 10,000 pg/ml. The BCA-based MMP method yielded an LOD of 0.1 pg/ml and a linear detection range from 0.1 to 1,000 pg/ml. When combined with PCR and simple gel electrophoresis, BCA-based microplate and MMPs assays can be used to quantify HIV-1 p24 antigen. These methods are 3-4 orders of magnitude more sensitive than our in-house ELISA-based assay and may provide a useful approach to detect p24 in patients newly infected with HIV.

  15. Fabrication and characterization of gold nano-wires templated on virus-like arrays of tobacco mosaic virus coat proteins

    NASA Astrophysics Data System (ADS)

    Wnęk, M.; Górzny, M. Ł.; Ward, M. B.; Wälti, C.; Davies, A. G.; Brydson, R.; Evans, S. D.; Stockley, P. G.

    2013-01-01

    The rod-shaped plant virus tobacco mosaic virus (TMV) is widely used as a nano-fabrication template, and chimeric peptide expression on its major coat protein has extended its potential applications. Here we describe a simple bacterial expression system for production and rapid purification of recombinant chimeric TMV coat protein carrying C-terminal peptide tags. These proteins do not bind TMV RNA or form disks at pH 7. However, they retain the ability to self-assemble into virus-like arrays at acidic pH. C-terminal peptide tags in such arrays are exposed on the protein surface, allowing interaction with target species. We have utilized a C-terminal His-tag to create virus coat protein-templated nano-rods able to bind gold nanoparticles uniformly. These can be transformed into gold nano-wires by deposition of additional gold atoms from solution, followed by thermal annealing. The resistivity of a typical annealed wire created by this approach is significantly less than values reported for other nano-wires made using different bio-templates. This expression construct is therefore a useful additional tool for the creation of chimeric TMV-like nano-rods for bio-templating.

  16. Orthogonal chemical functionalization of patterned gold on silica surfaces

    PubMed Central

    Léonard, Didier; Le Mogne, Thierry; Zuttion, Francesca; Chevalier, Céline; Phaner-Goutorbe, Magali; Souteyrand, Éliane

    2015-01-01

    Summary Single-step orthogonal chemical functionalization procedures have been developed with patterned gold on silica surfaces. Different combinations of a silane and a thiol were simultaneously deposited on a gold/silica heterogeneous substrate. The orthogonality of the functionalization (i.e., selective grafting of the thiol on the gold areas and the silane on the silica) was demonstrated by X-ray photoelectron spectroscopy (XPS) as well as time-of-flight secondary ion mass spectrometry (ToF–SIMS) mapping. The orthogonal functionalization was used to immobilize proteins onto gold nanostructures on a silica substrate, as demonstrated by atomic force microscopy (AFM). These results are especially promising in the development of future biosensors where the selective anchoring of target molecules onto nanostructured transducers (e.g., nanoplasmonic biosensors) is a major challenge. PMID:26734519

  17. In vitro studies on radiosensitization effect of glucose capped gold nanoparticles in photon and ion irradiation of HeLa cells

    NASA Astrophysics Data System (ADS)

    Kaur, Harminder; Pujari, Geetanjali; Semwal, Manoj K.; Sarma, Asitikantha; Avasthi, Devesh Kumar

    2013-04-01

    Noble metal nanoparticles are of great interest due to their potential applications in diagnostics and therapeutics. In the present work, we synthesized glucose capped gold nanoparticle (Glu-AuNP) for internalization in the HeLa cell line (human cervix cancer cells). The capping of glucose on Au nanoparticle was confirmed by Raman spectroscopy. The Glu-AuNP did not show any toxicity to the HeLa cell. The γ-radiation and carbon ion irradiation of HeLa cell with and without Glu-AuNP were performed to evaluate radiosensitization effects. The study revealed a significant reduction in radiation dose for killing the HeLa cells with internalized Glu-AuNPs as compared to the HeLa cells without Glu-AuNP. The Glu-AuNP treatment resulted in enhancement of radiation effect as evident from increase in relative biological effectiveness (RBE) values for carbon ion irradiated HeLa cells.

  18. Bio-Response Operational Testing and Evaluation (BOTE) ...

    EPA Pesticide Factsheets

    Report and technical brief and informational video The Bio-response Operational Testing and Evaluation (BOTE) Project was a multi-agency effort designed to operationally test and evaluate, at the scale of a moderately sized building, a response to a B. anthracis spore release from initial public health and law enforcement investigation through environmental remediation.

  19. Bio-barcode gel assay for microRNA

    NASA Astrophysics Data System (ADS)

    Lee, Hyojin; Park, Jeong-Eun; Nam, Jwa-Min

    2014-02-01

    MicroRNA has been identified as a potential biomarker because expression level of microRNA is correlated with various cancers. Its detection at low concentrations would be highly beneficial for cancer diagnosis. Here, we develop a new type of a DNA-modified gold nanoparticle-based bio-barcode assay that uses a conventional gel electrophoresis platform and potassium cyanide chemistry and show this assay can detect microRNA at aM levels without enzymatic amplification. It is also shown that single-base-mismatched microRNA can be differentiated from perfectly matched microRNA and the multiplexed detection of various combinations of microRNA sequences is possible with this approach. Finally, differently expressed microRNA levels are selectively detected from cancer cells using the bio-barcode gel assay, and the results are compared with conventional polymerase chain reaction-based results. The method and results shown herein pave the way for practical use of a conventional gel electrophoresis for detecting biomolecules of interest even at aM level without polymerase chain reaction amplification.

  20. Intracellular Calcium Mobilization in Response to Ion Channel Regulators via a Calcium-Induced Calcium Release Mechanism

    PubMed Central

    Petrou, Terry; Olsen, Hervør L.; Thrasivoulou, Christopher; Masters, John R.; Ashmore, Jonathan F.

    2017-01-01

    Free intracellular calcium ([Ca2+]i), in addition to being an important second messenger, is a key regulator of many cellular processes including cell membrane potential, proliferation, and apoptosis. In many cases, the mobilization of [Ca2+]i is controlled by intracellular store activation and calcium influx. We have investigated the effect of several ion channel modulators, which have been used to treat a range of human diseases, on [Ca2+]i release, by ratiometric calcium imaging. We show that six such modulators [amiodarone (Ami), dofetilide, furosemide (Fur), minoxidil (Min), loxapine (Lox), and Nicorandil] initiate release of [Ca2+]i in prostate and breast cancer cell lines, PC3 and MCF7, respectively. Whole-cell currents in PC3 cells were inhibited by the compounds tested in patch-clamp experiments in a concentration-dependent manner. In all cases [Ca2+]i was increased by modulator concentrations comparable to those used clinically. The increase in [Ca2+]i in response to Ami, Fur, Lox, and Min was reduced significantly (P < 0.01) when the external calcium was reduced to nM concentration by chelation with EGTA. The data suggest that many ion channel regulators mobilize [Ca2+]i. We suggest a mechanism whereby calcium-induced calcium release is implicated; such a mechanism may be important for understanding the action of these compounds. PMID:27980039

  1. Colorimetric detection of trace copper ions based on catalytic leaching of silver-coated gold nanoparticles.

    PubMed

    Lou, Tingting; Chen, Lingxin; Chen, Zhaopeng; Wang, Yunqing; Chen, Ling; Li, Jinhua

    2011-11-01

    A colorimetric, label-free, and nonaggregation-based silver coated gold nanoparticles (Ag/Au NPs) probe has been developed for detection of trace Cu(2+) in aqueous solution, based on the fact that Cu(2+) can accelerate the leaching rate of Ag/Au NPs by thiosulfate (S(2)O(3)(2-)). The leaching of Ag/Au NPs would lead to dramatic decrease in the surface plasmon resonance (SPR) absorption as the size of Ag/Au NPs decreased. This colorimetric strategy based on size-dependence of nanoparticles during their leaching process provided a highly sensitive (1.0 nM) and selective detection toward Cu(2+), with a wide linear detection range (5-800 nM) over nearly 3 orders of magnitude. The cost-effective probe allows rapid and sensitive detection of trace Cu(2+) ions in water samples, indicating its potential applicability for the determination of copper in real samples.

  2. Comparative study on the uptake and bioimpact of metal nanoparticles released into environment

    NASA Astrophysics Data System (ADS)

    Andries, Maria; Pricop, Daniela; Grigoras, Marian; Lupu, Nicoleta; Sacarescu, Liviu; Creanga, Dorina; Iacomi, Felicia

    2015-12-01

    Metallic particles of very small size are ubiquitously released in the air, water and soil from various natural and artificial sources - the last ones with enhanced extent since nanotechnology development accelerated exponentially. In this study we focused on the impact of metal nanoparticles in vegetal species of agroindustrial interest namely the maize (Zea mais L.). Laboratory simulation of environmental pollution was carried out by using engineered nanoparticles of two types: iron oxides with magnetic properties and gold nanoparticles supplied in the form of dilutes stable suspensions in the culture medium of maize seedlings. Magnetic nanoparticle (MNPs) preparation was performed by applying chemical route from iron ferric and ferrous precursor salts in alkali reaction medium at relatively high temperature (over 80 °C). Gold nanoparticles (GNPs) synthesis was accomplished from auric hydrochloride acid in alkali reaction medium in similar temperature conditions. In both types of metallic nanoparticles citrate ions were used as coating shell with role of suspension stabilization. Plantlet response was assessed at the level of assimilatory pigment contents in green tissue of seedlings in early ontogenetic stages.

  3. Monitoring the Stimulated Uncapping Process of Gold-Capped Mesoporous Silica Nanoparticles.

    PubMed

    Augspurger, Ashley E; Sun, Xiaoxing; Trewyn, Brian G; Fang, Ning; Stender, Anthony S

    2018-03-06

    To establish a new method for tracking the interaction of nanoparticles with chemical cleaving agents, we exploited the optical effects caused by attaching 5-10 nm gold nanoparticles with molecular linkers to large mesoporous silica nanoparticles (MSN). At low levels of gold loading onto MSN, the optical spectra resemble colloidal suspensions of gold. As the gold is removed, by cleaving agents, the MSN revert to the optical spectra typical of bare silica. Time-lapse images of gold-capped MSN stationed in microchannels reveal that the rate of gold release is dependent on the concentration of the cleaving agent. The uncapping process was also monitored successfully for MSN endocytosed by A549 cancer cells, which produce the cleaving agent glutathione. These experiments demonstrate that the optical properties of MSN can be used to directly monitor cleaving kinetics, even in complex cellular settings.

  4. Hierarchical Nanoporous Gold-Platinum with Heterogeneous Interfaces for Methanol Electrooxidation

    PubMed Central

    Xiao, Shuang; Xiao, Fei; Hu, Yuan; Yuan, Songliu; Wang, Shuai; Qian, Lihua; Liu, Yunqi

    2014-01-01

    The electrocatalysts utilized as the prospective electrodes in fuel cells and high efficient energy conversion devices require both the interconnected channels for efficient electrolyte transportation and the superior catalytic activity with long service life. In this work, nanoporous gold with the rigid skeletons in three dimensions is partially decorated by porous platinum shell containing nanoscale interstitials, aiming to create the heterogeneous gold-platinum interfaces and facilitate the electrolyte transportation as well. In comparison with no catalytic activity of bare nanoporous gold, the catalytic activity of hierarchical nanoporous gold-platinum towards electrochemical oxidation of methanol increases with the loading level of platinum shells, resulting in the highest electrochemical area of 70.4 m2·g−1 after the normalization by the mass of platinum. Heterogeneous gold-platinum interfaces affect the tolerance of the absorbed intermediate species because of the oxidization by the oxygenated species absorbed on the gold surface and the enhanced ion transportation within the porous platinum shell. PMID:24621809

  5. The biodistribution of gold nanoparticles designed for renal clearance

    NASA Astrophysics Data System (ADS)

    Alric, Christophe; Miladi, Imen; Kryza, David; Taleb, Jacqueline; Lux, François; Bazzi, Rana; Billotey, Claire; Janier, Marc; Perriat, Pascal; Roux, Stéphane; Tillement, Olivier

    2013-06-01

    Owing to their tunable optical properties and their high absorption cross-section of X- and γ-ray, gold nanostructures appear as promising agents for remotely controlled therapy. Since the efficiency of cancer therapy is not limited to the eradication of the tumour but rests also on the sparing of healthy tissue, a biodistribution study is required in order to determine whether the behaviour of the nanoparticles after intravenous injection is safe (no accumulation in healthy tissue, no uptake by phagocytic cell-rich organs (liver, spleen) and renal clearance). The biodistribution of Au@DTDTPA nanoparticles which are composed of a gold core and a DTDTPA (dithiolated polyaminocarboxylate) shell can be established by X-ray imaging (owing to the X-ray absorption of the gold core) and by magnetic resonance imaging (MRI) since the DTDTPA shell was designed for the immobilization of paramagnetic gadolinium ions. However scintigraphy appears better suited for a biodistribution study owing to a great sensitivity. The successful immobilization of radioelements (99mTc, 111In) in the DTDTPA shell, instead of gadolinium ions, renders possible the follow up of Au@DTDTPA by scintigraphy which showed that Au@DTDTPA nanoparticles exhibit a safe behaviour after intravenous injection to healthy rats.Owing to their tunable optical properties and their high absorption cross-section of X- and γ-ray, gold nanostructures appear as promising agents for remotely controlled therapy. Since the efficiency of cancer therapy is not limited to the eradication of the tumour but rests also on the sparing of healthy tissue, a biodistribution study is required in order to determine whether the behaviour of the nanoparticles after intravenous injection is safe (no accumulation in healthy tissue, no uptake by phagocytic cell-rich organs (liver, spleen) and renal clearance). The biodistribution of Au@DTDTPA nanoparticles which are composed of a gold core and a DTDTPA (dithiolated polyaminocarboxylate

  6. Transparent and flexible resistive switching memory devices with a very high ON/OFF ratio using gold nanoparticles embedded in a silk protein matrix

    NASA Astrophysics Data System (ADS)

    Gogurla, Narendar; Mondal, Suvra P.; Sinha, Arun K.; Katiyar, Ajit K.; Banerjee, Writam; Kundu, Subhas C.; Ray, Samit K.

    2013-08-01

    The growing demand for biomaterials for electrical and optical devices is motivated by the need to make building blocks for the next generation of printable bio-electronic devices. In this study, transparent and flexible resistive memory devices with a very high ON/OFF ratio incorporating gold nanoparticles into the Bombyx mori silk protein fibroin biopolymer are demonstrated. The novel electronic memory effect is based on filamentary switching, which leads to the occurrence of bistable states with an ON/OFF ratio larger than six orders of magnitude. The mechanism of this process is attributed to the formation of conductive filaments through silk fibroin and gold nanoparticles in the nanocomposite. The proposed hybrid bio-inorganic devices show promise for use in future flexible and transparent nanoelectronic systems.

  7. QCM-nanomagnetic beads biosensor for lead ion detection.

    PubMed

    Zhang, Qingli; Cui, Haixia; Xiong, Xingliang; Chen, Jun; Wang, Ying; Shen, Jia; Luo, Yiting; Chen, Longcong

    2018-01-15

    As lead poses a serious threat to humans even in small amounts, all kinds of lead detection sensors with high sensitivity and selectivity are being constantly improved and put forward. In this report, a novel, simple and label-free quartz crystal microbalance (QCM) biosensor is proposed for detecting lead ions (Pb 2+ ). The biosensor takes full advantage of the high specificity of GR-5 DNAzyme to Pb 2+ and the high sensitivity of QCM. In particular, nanomagnetic beads (NMBs) are used as a novel and effective mean of signal amplification in the biosensor because of their mass and their ability to enhance the inductive effect, which are very beneficial for both higher sensitivity and a lower detection limit. In practice, GR-5 DNAzyme, innovatively combined with NMBs, was modified on the gold electrode of the QCM through gold-sulfur self-assembly. When the electrode was exposed to Pb 2+ solution, DNAzyme was severed into two parts at the RNA site (rA), along with the release of NMBs, which caused a great increase in frequency shift of the QCM electrode. Finally, a perfect linear correlation between the logarithm of Pb 2+ concentration and the change in frequency was obtained from 1 pM to 50 nM, with a detection limit as low as 0.3 pM. Moreover, the biosensor shows both an average recovery of 97 ± 6% in a drinking water sample and an excellent specificity for Pb 2+ compared with other metal ions.

  8. Developmental toxicity of Japanese medaka embryos by silver nanoparticles and released ions in the presence of humic acid.

    PubMed

    Kim, Jun Y; Kim, Ki-Tae; Lee, Byeong G; Lim, Byung J; Kim, Sang D

    2013-06-01

    The final destination point of nanoparticles is the environment, where they remain a long period; therefore, a deep understanding of the relationship between nanoparticles and the environmental factors is required. Japanese medaka embryos were exposed to two differently prepared AgNPs: freshly prepared AgNPs and aged AgNPs. With these two AgNP preparations, we studied the impacts of humic acid in terms of embryonic toxicity, as well as the behavior of AgNPs. Aged AgNPs exhibited a lower lethal concentration (LC50) value (1.44mg/L) compared to fresh AgNPs (3.53mg/L) through 96h acute toxicity tests, due to the release of silver ions, as confirmed by kinetic analysis. The presence of humic acids considerably reduced the toxicity of aged AgNPs due to complexation with silver ions. Agglomeration, induced by interactions with humic acid, might reduce the bioavailability of AgNPs to Japanese medaka embryos. This study demonstrates that aged AgNPs releasing more silver ions are more toxic than fresh AgNPs, and humic acids play a role in reducing the toxicity of aged AgNPs. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Ion implanted dielectric elastomer circuits

    NASA Astrophysics Data System (ADS)

    O'Brien, Benjamin M.; Rosset, Samuel; Anderson, Iain A.; Shea, Herbert R.

    2013-06-01

    Starfish and octopuses control their infinite degree-of-freedom arms with panache—capabilities typical of nature where the distribution of reflex-like intelligence throughout soft muscular networks greatly outperforms anything hard, heavy, and man-made. Dielectric elastomer actuators show great promise for soft artificial muscle networks. One way to make them smart is with piezo-resistive Dielectric Elastomer Switches (DES) that can be combined with artificial muscles to create arbitrary digital logic circuits. Unfortunately there are currently no reliable materials or fabrication process. Thus devices typically fail within a few thousand cycles. As a first step in the search for better materials we present a preliminary exploration of piezo-resistors made with filtered cathodic vacuum arc metal ion implantation. DES were formed on polydimethylsiloxane silicone membranes out of ion implanted gold nano-clusters. We propose that there are four distinct regimes (high dose, above percolation, on percolation, low dose) in which gold ion implanted piezo-resistors can operate and present experimental results on implanted piezo-resistors switching high voltages as well as a simple artificial muscle inverter. While gold ion implanted DES are limited by high hysteresis and low sensitivity, they already show promise for a range of applications including hysteretic oscillators and soft generators. With improvements to implanter process control the promise of artificial muscle circuitry for soft smart actuator networks could become a reality.

  10. Visualization of Macrophage Recruitment to Inflammation Lesions using Highly Sensitive and Stable Radionuclide-Embedded Gold Nanoparticles as a Nuclear Bio-Imaging Platform

    PubMed Central

    Lee, Sang Bong; Lee, Ho Won; Singh, Thoudam Debraj; Li, Yinghua; Kim, Sang Kyoon; Cho, Sung Jin; Lee, Sang-Woo; Jeong, Shin Young; Ahn, Byeong-Cheol; Choi, Sangil; Lee, In-Kyu; Lim, Dong-Kwon; Lee, Jaetae; Jeon, Yong Hyun

    2017-01-01

    Reliable and sensitive imaging tools are required to track macrophage migration and provide a better understating of their biological roles in various diseases. Here, we demonstrate the possibility of radioactive iodide-embedded gold nanoparticles (RIe-AuNPs) as a cell tracker for nuclear medicine imaging. To demonstrate this utility, we monitored macrophage migration to carrageenan-induced sites of acute inflammation in living subjects and visualized the effects of anti-inflammatory agents on this process. Macrophage labeling with RIe-AuNPs did not alter their biological functions such as cell proliferation, phenotype marker expression, or phagocytic activity. In vivo imaging with positron-emission tomography revealed the migration of labeled macrophages to carrageenan-induced inflammation lesions 3 h after transfer, with highest recruitment at 6 h and a slight decline of radioactive signal at 24 h; these findings were highly consistent with the data of a bio-distribution study. Treatment with dexamethasone (an anti-inflammation drug) or GSK5182 (an ERRγ inverse agonist) hindered macrophage recruitment to the inflamed sites. Our findings suggest that a cell tracking strategy utilizing RIe-AuNPs will likely be highly useful in research related to macrophage-related disease and cell-based therapies. PMID:28382164

  11. Sulfur radical species form gold deposits on Earth

    PubMed Central

    Pokrovski, Gleb S.; Kokh, Maria A.; Guillaume, Damien; Borisova, Anastassia Y.; Gisquet, Pascal; Hazemann, Jean-Louis; Lahera, Eric; Del Net, William; Proux, Olivier; Testemale, Denis; Haigis, Volker; Jonchière, Romain; Seitsonen, Ari P.; Ferlat, Guillaume; Vuilleumier, Rodolphe; Saitta, Antonino Marco; Boiron, Marie-Christine; Dubessy, Jean

    2015-01-01

    Current models of the formation and distribution of gold deposits on Earth are based on the long-standing paradigm that hydrogen sulfide and chloride are the ligands responsible for gold mobilization and precipitation by fluids across the lithosphere. Here we challenge this view by demonstrating, using in situ X-ray absorption spectroscopy and solubility measurements, coupled with molecular dynamics and thermodynamic simulations, that sulfur radical species, such as the trisulfur ion S3−, form very stable and soluble complexes with Au+ in aqueous solution at elevated temperatures (>250 °C) and pressures (>100 bar). These species enable extraction, transport, and focused precipitation of gold by sulfur-rich fluids 10–100 times more efficiently than sulfide and chloride only. As a result, S3− exerts an important control on the source, concentration, and distribution of gold in its major economic deposits from magmatic, hydrothermal, and metamorphic settings. The growth and decay of S3− during the fluid generation and evolution is one of the key factors that determine the fate of gold in the lithosphere. PMID:26460040

  12. Redox-inactive metal ions modulate the reactivity and oxygen release of mononuclear non-haem iron(III)–peroxo complexes

    DOE PAGES

    Bang, Suhee; Lee, Yong -Min; Hong, Seungwoo; ...

    2014-09-14

    Redox-inactive metal ions that function as Lewis acids play pivotal roles in modulating the reactivity of oxygen-containing metal complexes and metalloenzymes, such as the oxygen-evolving complex in photosystem II and its small-molecule mimics. Here we report the synthesis and characterization of non-haem iron(III)–peroxo complexes that bind redox-inactive metal ions, (TMC)FeIII–(μ,η 2:η 2-O 2)–M n+ (M n+ = Sr 2+, Ca 2+, Zn 2+, Lu 3+, Y 3+ and Sc 3+; TMC, 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane). We demonstrate that the Ca 2+ and Sr 2+ complexes showed similar electrochemical properties and reactivities in one-electron oxidation or reduction reactions. However, the properties and reactivities ofmore » complexes formed with stronger Lewis acidities were found to be markedly different. In conclusion, complexes that contain Ca 2+ or Sr 2+ ions were oxidized by an electron acceptor to release O 2, whereas the release of O 2 did not occur for complexes that bind stronger Lewis acids. Furthermore, we discuss these results in the light of the functional role of the Ca 2+ ion in the oxidation of water to dioxygen by the oxygen-evolving complex.« less

  13. Redox-inactive metal ions modulate the reactivity and oxygen release of mononuclear non-haem iron(III)–peroxo complexes

    PubMed Central

    Bang, Suhee; Lee, Yong-Min; Hong, Seungwoo; Cho, Kyung-Bin; Nishida, Yusuke; Seo, Mi Sook; Sarangi, Ritimukta; Fukuzumi, Shunichi; Nam, Wonwoo

    2014-01-01

    Redox-inactive metal ions that function as Lewis acids play pivotal roles in modulating the reactivity of oxygen-containing metal complexes and metalloenzymes, such as the oxygen-evolving complex in photosystem II and its small-molecule mimics. Here we report the synthesis and characterization of non-haem iron(III)–peroxo complexes that bind redox-inactive metal ions, (TMC)FeIII–(μ,η2:η2-O2)–Mn+ (Mn+ = Sr2+, Ca2+, Zn2+, Lu3+, Y3+ and Sc3+; TMC, 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane). We demonstrate that the Ca2+ and Sr2+ complexes showed similar electrochemical properties and reactivities in one-electron oxidation or reduction reactions. However, the properties and reactivities of complexes formed with stronger Lewis acidities were found to be markedly different. Complexes that contain Ca2+ or Sr2+ ions were oxidized by an electron acceptor to release O2, whereas the release of O2 did not occur for complexes that bind stronger Lewis acids. We discuss these results in the light of the functional role of the Ca2+ ion in the oxidation of water to dioxygen by the oxygen-evolving complex. PMID:25242490

  14. Plectranthus amboinicus-mediated silver, gold, and silver-gold nanoparticles: phyto-synthetic, catalytic, and antibacterial studies

    NASA Astrophysics Data System (ADS)

    Purusottam Reddy, B.; Mallikarjuna, K.; Narasimha, G.; Park, Si-Hyun

    2017-08-01

    Bio-based green nanotechnology aims to characterize compounds from natural sources and establish efficient routes for the preparation of nontoxic materials that have applicability in biodegradable and biocompatible devices. The present study has investigated the use of Plectranthus amboinicus leaf extracts as reducing and capping materials for the green fabrication of silver, gold, and silver-gold (Ag, Au, and Ag/Au) metal and bimetallic nanoparticles. The catalytic behavior of these phyto-inspired nanoparticles was then assessed in terms of the reduction of 4-nitrophenol. Transmission electron microscopy was used to investigate the shape, morphology, distribution, and diameter of the phytomolecules capped with Ag, Au, and Ag/Au metal nanoparticles. The nature of the crystallinity of the nanoparticles was studied by small area electron diffraction (SAED) and x-ray diffraction analysis (XRD), and Fourier transform infrared (FTIR) spectroscopy was used to study the reduction and stabilizing involvement of the phyto-organic moieties in aqueous medium. The phyto-inspired Ag and Ag/Au nanoparticles demonstrated good antibacterial properties toward Gram-negative Escherichia coli and Pseudomonas spp. and Gram-positive Bacillus spp. and Staphylococcus spp. microorganisms using the well diffusion method. Notably, the Ag nanoparticles were shown to possess effective antibacterial properties.

  15. Chrysopogon zizanioides aqueous extract mediated synthesis, characterization of crystalline silver and gold nanoparticles for biomedical applications

    PubMed Central

    Arunachalam, Kantha D; Annamalai, Sathesh Kumar

    2013-01-01

    The exploitation of various plant materials for the biosynthesis of nanoparticles is considered a green technology as it does not involve any harmful chemicals. The aim of this study was to develop a simple biological method for the synthesis of silver and gold nanoparticles using Chrysopogon zizanioides. To exploit various plant materials for the biosynthesis of nanoparticles was considered a green technology. An aqueous leaf extract of C. zizanioides was used to synthesize silver and gold nanoparticles by the bioreduction of silver nitrate (AgNO3) and chloroauric acid (HAuCl4) respectively. Water-soluble organics present in the plant materials were mainly responsible for reducing silver or gold ions to nanosized Ag or Au particles. The synthesized silver and gold nanoparticles were characterized by ultraviolet (UV)-visible spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) analysis. The kinetics decline reactions of aqueous silver/gold ion with the C. zizanioides crude extract were determined by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to the extract were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20–50 nm. This eco-friendly approach for the synthesis of nanoparticles is simple, can be scaled up for large-scale production with powerful bioactivity as demonstrated by the synthesized silver nanoparticles. The synthesized nanoparticles can have clinical use as antibacterial, antioxidant, as well as cytotoxic agents and can be used for biomedical applications. PMID:23861583

  16. Discrimination of Isomers of Released N- and O-Glycans Using Diagnostic Product Ions in Negative Ion PGC-LC-ESI-MS/MS

    NASA Astrophysics Data System (ADS)

    Ashwood, Christopher; Lin, Chi-Hung; Thaysen-Andersen, Morten; Packer, Nicolle H.

    2018-03-01

    Profiling cellular protein glycosylation is challenging due to the presence of highly similar glycan structures that play diverse roles in cellular physiology. As the anomericity and the exact linkage type of a single glycosidic bond can influence glycan function, there is a demand for improved and automated methods to confirm detailed structural features and to discriminate between structurally similar isomers, overcoming a significant bottleneck in the analysis of data generated by glycomics experiments. We used porous graphitized carbon-LC-ESI-MS/MS to separate and detect released N- and O-glycan isomers from mammalian model glycoproteins using negative mode resonance activation CID-MS/MS. By interrogating similar fragment spectra from closely related glycan isomers that differ only in arm position and sialyl linkage, product fragment ions for discrimination between these features were discovered. Using the Skyline software, at least two diagnostic fragment ions of high specificity were validated for automated discrimination of sialylation and arm position in N-glycan structures, and sialylation in O-glycan structures, complementing existing structural diagnostic ions. These diagnostic ions were shown to be useful for isomer discrimination using both linear and 3D ion trap mass spectrometers when analyzing complex glycan mixtures from cell lysates. Skyline was found to serve as a useful tool for automated assessment of glycan isomer discrimination. This platform-independent workflow can potentially be extended to automate the characterization and quantitation of other challenging glycan isomers. [Figure not available: see fulltext.

  17. ATP-dependent Conformational Changes Trigger Substrate Capture and Release by an ECF-type Biotin Transporter.

    PubMed

    Finkenwirth, Friedrich; Sippach, Michael; Landmesser, Heidi; Kirsch, Franziska; Ogienko, Anastasia; Grunzel, Miriam; Kiesler, Cornelia; Steinhoff, Heinz-Jürgen; Schneider, Erwin; Eitinger, Thomas

    2015-07-03

    Energy-coupling factor (ECF) transporters for vitamins and metal ions in prokaryotes consist of two ATP-binding cassette-type ATPases, a substrate-specific transmembrane protein (S component) and a transmembrane protein (T component) that physically interacts with the ATPases and the S component. The mechanism of ECF transporters was analyzed upon reconstitution of a bacterial biotin transporter into phospholipid bilayer nanodiscs. ATPase activity was not stimulated by biotin and was only moderately reduced by vanadate. A non-hydrolyzable ATP analog was a competitive inhibitor. As evidenced by cross-linking of monocysteine variants and by site-specific spin labeling of the Q-helix followed by EPR-based interspin distance analyses, closure and reopening of the ATPase dimer (BioM2) was a consequence of ATP binding and hydrolysis, respectively. A previously suggested role of a stretch of small hydrophobic amino acid residues within the first transmembrane segment of the S units for S unit/T unit interactions was structurally and functionally confirmed for the biotin transporter. Cross-linking of this segment in BioY (S) using homobifunctional thiol-reactive reagents to a coupling helix of BioN (T) indicated a reorientation rather than a disruption of the BioY/BioN interface during catalysis. Fluorescence emission of BioY labeled with an environmentally sensitive fluorophore was compatible with an ATP-induced reorientation and consistent with a hypothesized toppling mechanism. As demonstrated by [(3)H]biotin capture assays, ATP binding stimulated substrate capture by the transporter, and subsequent ATP hydrolysis led to substrate release. Our study represents the first experimental insight into the individual steps during the catalytic cycle of an ECF transporter in a lipid environment. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Ice Melting to Release Reactants in Solution Syntheses.

    PubMed

    Wei, Hehe; Huang, Kai; Zhang, Le; Ge, Binghui; Wang, Dong; Lang, Jialiang; Ma, Jingyuan; Wang, Da; Zhang, Shuai; Li, Qunyang; Zhang, Ruoyu; Hussain, Naveed; Lei, Ming; Liu, Li-Min; Wu, Hui

    2018-03-19

    Aqueous solution syntheses are mostly based on mixing two solutions with different reactants. It is shown that freezing one solution and melting it in another solution provides a new interesting strategy to mix chemicals and to significantly change the reaction kinetics and thermodynamics. For example, a precursor solution containing a certain concentration of AgNO 3 was frozen and dropped into a reductive NaBH 4 solution at about 0 °C. The ultra-slow release of reactants was successfully achieved. An ice-melting process can be used to synthesize atomically dispersed metals, including cobalt, nickel, copper, rhodium, ruthenium, palladium, silver, osmium, iridium, platinum, and gold, which can be easily extended to other solution syntheses (such as precipitation, hydrolysis, and displacement reactions) and provide a generalized method to redesign the interphase reaction kinetics and ion diffusion in wet chemistry. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Determination of Ni Release in NiTi SMA with Surface Modification by Nitrogen Plasma Immersion Ion Implantation

    NASA Astrophysics Data System (ADS)

    de Camargo, Eliene Nogueira; Oliveira Lobo, Anderson; Silva, Maria Margareth Da; Ueda, Mario; Garcia, Edivaldo Egea; Pichon, Luc; Reuther, Helfried; Otubo, Jorge

    2011-07-01

    NiTi SMA is a promising material in the biomedical area due to its mechanical properties and biocompatibility. However, the nickel in the alloy may cause allergic and toxic reactions and thus limiting its applications. It was evaluated the influence of surface modification in NiTi SMA by nitrogen plasma immersion ion implantation (varying temperatures, and exposure time as follows: <250 °C/2 h, 290 °C/2 h, and 560 °C/1 h) in the amount of nickel released using immersion test in simulated body fluid. The depth of the nitrogen implanted layer increased as the implantation temperature increased resulting in the decrease of nickel release. The sample implanted in high implantation temperature presented 35% of nickel release reduction compared to reference sample.

  20. Influence of Surface Coating on Metal Ion Release: Evaluation in Patients With Metal Allergy.

    PubMed

    Thomas, Peter; Weik, Thomas; Roider, Gabriele; Summer, Burkhard; Thomsen, Marc

    2016-05-01

    Nickel, chromium, and cobalt in stainless steel and Cobalt-chrome-molybdenum (CoCrMo) alloys may induce allergy. The objectives of this study were to evaluate surface coating regarding ion release, patch test reactivity, and arthroplasty performance. Materials and methods included patch test in 31 patients with metal allergy and 30 patients with no allergy to stainless steel and CoCrMo disks that are uncoated or coated by titanium nitride/zirconium nitride (TiN/ZrN). Assessment include atomic absorption spectrometry of released nickel, cobalt, and chromium from the disks after exposure to distilled water, artificial sweat and culture medium. Results showed that both coatings reduced the nickel and chromium release from stainless steel and CoCrMo disks and mostly the cobalt release from the disks (maximally 11.755 µg/cm(2)/5 d to 1.624 by Ti-N and to 0.442 by ZrN). Six of the 31 patients with metal allergy reacted to uncoated disks, but none reacted to the coated disks. The current authors report on exemplary patients with metal allergy who had symptom relief by revision with surface-coated arthroplasty. The authors concluded that the surface coating may prevent cutaneous and peri-implant allergic reactions. [Orthopedics. 2016; 39(3):S24-S30.]. Copyright 2016, SLACK Incorporated.

  1. Bio-extraction of precious metals from urban solid waste

    NASA Astrophysics Data System (ADS)

    Das, Subhabrata; Natarajan, Gayathri; Ting, Yen-Peng

    2017-01-01

    Reduced product lifecycle and increasing demand for electronic devices have resulted in the generation of huge volumes of electronic waste (e-waste). E-wastes contain high concentrations of toxic heavy metals, which have detrimental effects on health and the environment. However, e-wastes also contain significant concentrations of precious metals such as gold, silver and palladium, which can be a major driving force for recycling of urban waste. Cyanogenic bacteria such as Chromobacterium violaceum generate cyanide as a secondary metabolite which mobilizes gold into solution via a soluble gold-cyanide complex. However, compared to conventional technology for metal recovery, this approach is not effective, owing largely to the low concentration of lixiviants produced by the bacteria. To overcome the challenges of bioleaching of gold from e-waste, several strategies were adopted to enhance gold recovery rates. These included (i) pretreatment of e-waste to remove competing metal ions, (ii) mutation to adapt the bacteria to high pH environment, (iii) metabolic engineering to produce higher cyanide lixiviant, and (iv) spent medium leaching with adjusted initial pH. Compared to 7.1 % recovery by the wild type bacteria, these strategies achieved gold recoveries of 11.3%, 22.5%, 30% and 30% respectively at 0.5% w/v pulp density respectively. Bioleached gold was finally mineralized and precipitated as gold nanoparticles using the bacterium Delftia acidovorans. This study demonstrates the potential for enhancement of biocyanide production and gold recovery from electronic waste through different strategies, and extraction of solid gold from bioleached leachate.

  2. Thermal diffusivity measurement for urchin-like gold nanofluids with different solvents, sizes and concentrations/shapes.

    PubMed

    López-Muñoz, Gerardo A; Balderas-López, José Abraham; Ortega-Lopez, Jaime; Pescador-Rojas, José A; Salazar, Jaime Santoyo

    2012-12-06

    The thermal properties of nanofluids are an especially interesting research topic because of the variety of potential applications, which range from bio-utilities to next-generation heat-transfer fluids. In this study, photopyroelectric calorimetry for measuring the thermal diffusivity of urchin-like colloidal gold nanofluids as a function of particle size, concentration and shape in water, ethanol and ethylene glycol is reported. Urchin-like gold nanoparticles were synthesised in the presence of hydroquinone through seed-mediated growth with homogeneous shape and size ranging from 55 to 115 nm. The optical response, size and morphology of these nanoparticles were characterised using UV-visible spectroscopy and transmission electron microscopy. The thermal diffusivity of these nanofluids decreased as the size of the nanoparticles increased, and the enhancement depended on the thermal diffusivity of the solvent. The opposite effect (increase in thermal diffusivity) was observed when the nanoparticle concentration was increased. These effects were more evident for urchin-like gold nanofluids than for the corresponding spherical gold nanofluids.

  3. Illustration of a fingerprinting method to isolate Gold King ...

    EPA Pesticide Factsheets

    Detecting the Gold King Mine metals as the release plume passed was difficult once it entered the San Juan River on August 8, 2015. Plume metals concentrations were relatively low after 200 km of travel and deposition in the Animas River while background concentrations of the same metals were high due to high sediment load in the San Juan River. A metal fingerprinting technique was used to isolate metals in the Gold King release from background using the measured concentrations of the 23 TAL metals (Metal/Cynaide Target Analyte List) available with most water samples. The method associates the concentration of trace metals to that of aluminum or iron as representative of the dominant metals in the geologic substrate. Metal concentrations can be plotted together, as in Figure 1A, or the ratio can be computed for each sample for use as a value, such as plotted in time in Figure 1B. The correlation technique allowed maximum use of typically available water sample data to isolate Gold King metals as contaminants within the varying background concentrations associated with the natural sediments of the San Juan River. To be presented at the New Mexico Water Institute Symposium, 2nd Annual Conference on Environmental Conditionsof the Animas and San Juan Watersheds with Emphasis on Gold King Mine and Other Mine Waste Issues.

  4. Highly sensitive strategy for Hg2+ detection in environmental water samples using long lifetime fluorescence quantum dots and gold nanoparticles.

    PubMed

    Huang, Dawei; Niu, Chenggang; Ruan, Min; Wang, Xiaoyu; Zeng, Guangming; Deng, Canhui

    2013-05-07

    The authors herein described a time-gated fluorescence resonance energy transfer (TGFRET) sensing strategy employing water-soluble long lifetime fluorescence quantum dots and gold nanoparticles to detect trace Hg(2+) ions in aqueous solution. The water-soluble long lifetime fluorescence quantum dots and gold nanoparticles were functionalized by two complementary ssDNA, except for four deliberately designed T-T mismatches. The quantum dot acted as the energy-transfer donor, and the gold nanoparticle acted as the energy-transfer acceptor. When Hg(2+) ions were present in the aqueous solution, DNA hybridization will occur because of the formation of T-Hg(2+)-T complexes. As a result, the quantum dots and gold nanoparticles are brought into close proximity, which made the energy transfer occur from quantum dots to gold nanoparticles, leading to the fluorescence intensity of quantum dots to decrease obviously. The decrement fluorescence intensity is proportional to the concentration of Hg(2+) ions. Under the optimum conditions, the sensing system exhibits the same liner range from 1 × 10(-9) to 1 × 10(-8) M for Hg(2+) ions, with the detection limits of 0.49 nM in buffer and 0.87 nM in tap water samples. This sensor was also used to detect Hg(2+) ions from samples of tap water, river water, and lake water spiked with Hg(2+) ions, and the results showed good agreement with the found values determined by an atomic fluorescence spectrometer. In comparison to some reported colorimetric and fluorescent sensors, the proposed method displays the advantage of higher sensitivity. The TGFRET sensor also exhibits excellent selectivity and can provide promising potential for Hg(2+) ion detection.

  5. Gold-implanted shallow conducting layers in polymethylmethacrylate

    NASA Astrophysics Data System (ADS)

    Teixeira, F. S.; Salvadori, M. C.; Cattani, M.; Brown, I. G.

    2009-03-01

    PMMA (polymethylmethacrylate) was ion implanted with gold at very low energy and over a range of different doses using a filtered cathodic arc metal plasma system. A nanometer scale conducting layer was formed, fully buried below the polymer surface at low implantation dose, and evolving to include a gold surface layer as the dose was increased. Depth profiles of the implanted material were calculated using the Dynamic TRIM computer simulation program. The electrical conductivity of the gold-implanted PMMA was measured in situ as a function of dose. Samples formed at a number of different doses were subsequently characterized by Rutherford backscattering spectrometry, and test patterns were formed on the polymer by electron beam lithography. Lithographic patterns were imaged by atomic force microscopy and demonstrated that the contrast properties of the lithography were well maintained in the surface-modified PMMA.

  6. Cyanide leaching of Au/CeO2: highly active gold clusters for 1,3-butadiene hydrogenation.

    PubMed

    Guan, Y; Hensen, E J M

    2009-11-07

    Ceria-supported gold catalysts before and after leaching by NaCN were investigated by X-ray absorption spectroscopy at the Au L(III) edge. After gold leaching, isolated gold cations remain in close interaction with the support. These ions form an ideal precursor to very small clusters of a few gold atoms upon reduction. The resulting gold clusters exhibit a very high intrinsic activity in the hydrogenation of 1,3-butadiene, which is at least one order of magnitude higher than that of the nanometre-sized gold particles in the non-leached parent catalyst. These findings point to a very strong structure sensitivity of the gold-catalyzed hydrogenation of dienes.

  7. Monitoring the Stimulated Uncapping Process of Gold-Capped Mesoporous Silica Nanoparticles

    DOE PAGES

    Augspurger, Ashley E.; Sun, Xiaoxing; Trewyn, Brian G.; ...

    2018-02-05

    To establish a new method for tracking the interaction of nanoparticles with chemical cleaving agents, we exploited the optical effects caused by attaching 5-10 nm gold nanoparticles with molecular linkers to large mesoporous silica nanoparticles (MSN). At low levels of gold loading onto MSN, the optical spectra resemble colloidal suspensions of gold. As the gold is removed, by cleaving agents, the MSN revert to the optical spectra typical of bare silica. Time-lapse images of gold-capped MSN stationed in microchannels reveal that the rate of gold release is dependent on the concentration of the cleaving agent. Finally, the uncapping process wasmore » also monitored successfully for MSN endocytosed by A549 cancer cells, which produce the cleaving agent glutathione. These experiments demonstrate that the optical properties of MSN can be used to directly monitor cleaving kinetics, even in complex cellular settings.« less

  8. Monitoring the Stimulated Uncapping Process of Gold-Capped Mesoporous Silica Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augspurger, Ashley E.; Sun, Xiaoxing; Trewyn, Brian G.

    To establish a new method for tracking the interaction of nanoparticles with chemical cleaving agents, we exploited the optical effects caused by attaching 5-10 nm gold nanoparticles with molecular linkers to large mesoporous silica nanoparticles (MSN). At low levels of gold loading onto MSN, the optical spectra resemble colloidal suspensions of gold. As the gold is removed, by cleaving agents, the MSN revert to the optical spectra typical of bare silica. Time-lapse images of gold-capped MSN stationed in microchannels reveal that the rate of gold release is dependent on the concentration of the cleaving agent. Finally, the uncapping process wasmore » also monitored successfully for MSN endocytosed by A549 cancer cells, which produce the cleaving agent glutathione. These experiments demonstrate that the optical properties of MSN can be used to directly monitor cleaving kinetics, even in complex cellular settings.« less

  9. Release Resistant Electrical Interconnections For Mems Devices

    DOEpatents

    Peterson, Kenneth A.; Garrett, Stephen E.; Reber, Cathleen A.

    2005-02-22

    A release resistant electrical interconnection comprising a gold-based electrical conductor compression bonded directly to a highly-doped polysilicon bonding pad in a MEMS, IMEMS, or MOEMS device, without using any intermediate layers of aluminum, titanium, solder, or conductive adhesive disposed in-between the conductor and polysilicon pad. After the initial compression bond has been formed, subsequent heat treatment of the joint above 363 C creates a liquid eutectic phase at the bondline comprising gold plus approximately 3 wt % silicon, which, upon re-solidification, significantly improves the bond strength by reforming and enhancing the initial bond. This type of electrical interconnection is resistant to chemical attack from acids used for releasing MEMS elements (HF, HCL), thereby enabling the use of a "package-first, release-second" sequence for fabricating MEMS devices. Likewise, the bond strength of an Au--Ge compression bond may be increased by forming a transient liquid eutectic phase comprising Au-12 wt % Ge.

  10. Development and Characterization of Liquid Crystal-Gold Nanoparticle Hybrid Materials for Optical Applications

    NASA Astrophysics Data System (ADS)

    Quint, Makiko T.

    Hybrid material, mixtures of two or more materials with new properties, represents an exciting class of new materials for a variety of potential applications such as displays, optoelectronics, and sensors due to their unique physical and optical properties. The scope of this dissertation is to produce two new plasmonic applications by combining liquid crystals with gold nanoparticles. The first application is gold nanoparticle coated liquid crystal thin film. Most liquid crystal (LC) thin films require external voltage to reorient LC molecules. Recent advances in optical controlling technology of LC molecule behavior, resulting in the reduction of energy consumption, have stimulated research and development of new LC thin films. In order to re-orient LC molecules by just using light, the common approach is to include either a photo-responsive LC host, one that require high power light and severely narrows the range of usable materials, or add photo-active dye or polymer layer, photodegradation over time. Our work designing an all-optical method for LC re-orientation that overcomes all the limitations mentioned above. We have successfully both in- and out-of-plane spatial orientation of nematic liquid crystal (LC) molecules by leveraging the highly localized electric fields produced in the near-field regime of a gold nanoparticle (AuNP) layer. This re-orientation of LC molecules in thin LC-AuNP film is all-optical, driven by a small resonance excitation power with the localized surface plasmon absorption of the AuNPs at room temperature. The second application is LC mediated nano-assembled gold microcapsules. This application has a potential in controlled-release cargo-style delivery system. Targeted delivery systems with controlled release mechanisms have been the subject of extensive research more than fifty years. One is to control the release process remotely by using optical excitation. Optical actuation of delivery capsules, which plasmonic nanoparticle such

  11. Hydrophobic ion pairing of a minocycline/Ca(2+)/AOT complex for preparation of drug-loaded PLGA nanoparticles with improved sustained release.

    PubMed

    Holmkvist, Alexander Dontsios; Friberg, Annika; Nilsson, Ulf J; Schouenborg, Jens

    2016-02-29

    Polymeric nanoparticles is an established and efficient means to achieve controlled release of drugs. Incorporation of minocycline, an antibiotic with anti-inflammatory and neuroprotective properties, into biodegradable nanoparticles may therefore provide an efficient means to combat foreign body reactions to implanted electrodes in the brain. However, minocycline is commonly associated with poor encapsulation efficiencies and/or fast release rates due to its high solubility in water. Moreover, minocycline is unstable under conditions of low and high pH, heat and exposure to light, which exacerbate the challenges of encapsulation. In this work drug loaded PLGA nanoparticles were prepared by a modified emulsification-solvent-diffusion technique and characterized for size, drug encapsulation and in vitro drug release. A novel hydrophobic ion pair complex of minocycline, Ca(2+) ions and the anionic surfactant AOT was developed to protect minocycline from degradation and prolong its release. The optimized formulation resulted in particle sizes around 220 nm with an entrapment efficiency of 43% and showed drug release over 30 days in artificial cerebrospinal fluid. The present results constitute a substantial increase in release time compared to what has hitherto been achieved for minocycline and indicate that such particles might provide useful for sustained drug delivery in the CNS. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. A Model Study to Unravel the Complexity of Bio-Oil from Organic Wastes.

    PubMed

    Croce, Annamaria; Battistel, Ezio; Chiaberge, Stefano; Spera, Silvia; De Angelis, Francesco; Reale, Samantha

    2017-01-10

    Binary and ternary mixtures of cellulose, bovine serum albumin (BSA) and tripalmitin, as biomass reference compounds for carbohydrates, proteins and triglycerides, respectively, were treated under hydrothermal liquefaction (HTL) conditions to describe the main reaction pathways involved in the process of bio-oil production from municipal organic wastes. Several analytical techniques (elemental analysis, GC-MS, atmospheric-pressure photo-ionisation high-resolution Fourier transform ion cyclotron resonance mass spectrometry, and 13 C cross-polarisation magic-angle spinning NMR spectroscopy) were used for the molecular-level characterisation of the resulting aqueous phase, solid residue and bio-oil, in particular. The main reaction pathways led to free fatty acids, fatty acid amides, 2,5-diketopiperazines and Maillard-type compounds as the main components of the bio-oil. The relationship of such compounds to the original components of the biomass was thus determined, which highlights the fate of the heteroatom-containing molecules in particular. Finally, the molecular composition of the bio-oils from our reference compounds was matched with that of the bio-oil from municipal organic waste biomass by comparing their high-resolution Fourier transform ion cyclotron resonance mass spectra, and we obtained a surprisingly high similarity. Hence, the ternary mixture acts as a reliable biomass model and is a powerful tool to clarify the degradation mechanisms that occur in the biomass under HTL treatment, with the ultimate goal to improve the HTL process itself by modulating the input of the organic starting matter and then the upgrading steps to bio-fuels. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Gold nanocage decorated pH-sensitive micelle for highly effective photothermo-chemotherapy and photoacoustic imaging.

    PubMed

    Zhou, Guoyong; Xiao, Hong; Li, Xiaoxia; Huang, Yi; Song, Wei; Song, Liang; Chen, Meiwan; Cheng, Du; Shuai, Xintao

    2017-12-01

    A pH-sensitive copolymer PAsp(DIP)-b-PAsp(MEA) (PDPM) was synthesized and self-assembled to micelle loading chemotherapeutic drug doxorubicin (DOX) and introducing a gold nanocage structure for photothermo-chemotherapy and photoacoustic imaging. After further surface modification with polyethylene glycol (PEG), the DOX-loaded pH-sensitive gold nanocage (D-PGNC) around 100 nm possessed a uniform spherical structure with a pH-sensitive core of PAsp(DIP) incorporating DOX, an interlayer crosslinked via disulfide bonds and decorated with discontinuous gold shell, and a PEG corona. The release of DOX from D-PGNC was turned off in bloodstream due to the cross-linking and gold decoration of interlayer but turned on inside tumor tissue by multiple stimulations including the low pH value of tumor tissue (≈6.8), the low lysosomal pH value of cancer cells (≈5.0) and near-infrared (NIR) irradiation. The gold nanocage receiving NIR irradiation could generate hyperthermia to ablate tumor cells. Moreover, the photoacoustic (PA) imaging and analysis of DOX fluorescence inside tumor tissue demonstrated that photothermal therapy based on the gold nanocage effectively drove DOX penetration inside tumor. Owing to the rapid intratumor release and deep tissue penetration of drug favorable for killing cancer cells survived the photothermal therapy, the combined therapy based on D-PGNC via NIR irradiation exhibited a synergistic treatment effect superior to either chemotherapy or NIR-induced photothermal therapy alone. The novelty of the manuscript is its multifunctional system which incorporates anticancer drug DOX in its pH-sensitive core and acts as a template to introduce a gold nanocage. This nanomedicine presents potentials of sequestrating drug molecules in blood circulation but releasing them inside tumor upon responding to the acidic microenvironment therein. Exposure to NIR laser further expedited the pH-sensitive DOX release and promoted DOX penetration into cancer

  14. Modification of gold nanoparticle loaded on activated carbon with bis(4-methoxysalicylaldehyde)-1,2-phenylenediamine as new sorbent for enrichment of some metal ions.

    PubMed

    Karimipour, Gholamreza; Ghaedi, Mehrorang; Sahraei, Reza; Daneshfar, Ali; Biyareh, Mehdi Nejati

    2012-01-01

    In this study, a new sorbent based on the gold nanoparticle loaded in activated carbon (Au-NP-AC) was synthesized and modified by bis(4-methoxy salicylaldehyde)-1,2-phenylenediamine (BMSAPD). This sorbent, which is abbreviated as Au-NP-AC-BMSAPD, has been applied for the enrichment and preconcentration of trace amounts of Co(2+), Cu(2+), Ni(2+), Fe(2+), Pb(2+), and Zn(2+) ions in real samples. All metal ions under study were retained on the Au-NP-AC-BMSAPD sorbent by complexation of the ions with the BMSAPD ligand, providing an efficient preconcentration fashion. The retained metal ions were then eluted from the sorbent by HNO(3) and detected by flame atomic absorption spectrometry. The analytical parameters including pH, amount of ligand, and the nature of the eluent and solid phase were evaluated to obtain the optimum condition for the preconcentration factor. Following the optimum conditions, a preconcentration factor of 200 was obtained for all the metal ions under study with detection limits of 1.4-2.6 ng mL(-1). The method has been successfully applied for the extraction and determination of the ion content in the same real samples with recoveries in the range of 95-99.6% and a relative standard deviation lower than 4.0%.

  15. 'Smart' gold nanoshells for combined cancer chemotherapy and hyperthermia.

    PubMed

    Liang, Zhongshi; Li, Xingui; Xie, Yegui; Liu, Shunying

    2014-04-01

    Nanomaterials that circulate in the body have great potential in the diagnosis and treatment of diseases. Here we report that 'smart' gold nanoshells can carry a drug payload, and that their intrinsic near-infrared (NIR) plasmon resonance enables the combination of chemotherapeutic and hyperthermia therapies. The 'smart' gold nanoshells (named DOX/A54@GNs) consist of (a) gold nanoshells (GNs) with NIR plasmon resonance, which not only act as nanoblocks but also produce local heat to allow hyperthermia; (b) an anticancer drug, doxorubicin (DOX), which was conjugated onto the nanoblocks by pH-dependent biodegradable copolymer thiol poly(ethylene glycol) derivatives via carbamate linkage; and (c) the targeting peptide A54 (AGKGTPSLETTP) to facilitate its orientation to liver cancer cells and enhance cellular uptake. The conjugated DOX was released from the DOX/A54@GNs much more rapidly in an acidic environment (pH 5.3) than in a neutral environment (pH 7.4), which is a desirable characteristic for intracellular tumor drug release. DOX-modified GNs showed pH-dependent release behavior, and the in vitro cell uptake experiment using ICP-AES and microscopy showed greater internalization of A54-modified GNs in the human liver cancer cell line BEL-7402 than of those without A54. Flow cytometry and fluoroscopy analysis were conducted to reveal the enhanced cell apoptosis caused by the A54-modified GNs under combined chemotherapeutic and hyperthermia therapies. These results imply that DOX/A54@GNs could be used as a multifunctional nanomaterial system with pH-triggered drug-releasing properties for tumor-targeted chemotherapy and hyperthermia.

  16. Chromosomal instability induced by heavy ion irradiation

    NASA Technical Reports Server (NTRS)

    Limoli, C. L.; Ponnaiya, B.; Corcoran, J. J.; Giedzinski, E.; Morgan, W. F.

    2000-01-01

    PURPOSE: To establish the dose-response relationship for the induction of chromosomal instability in GM10115 cells exposed to high-energy iron ions (1 GeV/nucleon, mean LET 146 keV/microm) and gold ions (11 GeV/nucleon, mean LET 1450 keV/microm). Past work has established that sparsely ionizing X-rays can induce a long-lived destabilization of chromosomes in a dose-dependent manner at an incidence of approximately 3% per gray. The present investigation assesses the capacity of High-Z and High-energy (HZE) particles to elicit this same endpoint. MATERIALS AND METHODS: Clonal populations derived from single progenitor cells surviving heavy-ion irradiation were analyzed cytogenetically to identify those clones showing a persistent destablization of chromosomes. RESULTS: Dose-response data, with a particular emphasis at low dose (< 1.0 Gy), indicate a frequency of approximately 4% per gray for the induction of chromosomal instability in clones derived from single progenitor cells surviving exposure to iron ions. The induction of chromosomal instability by gold ions was, however, less responsive to applied dose, as the observed incidence of this phenotype varied from 0 to 10% over 1-8 Gy. Both iron and gold ions gave dose-dependent increases in the yield of chromosomal aberrations (both chromosome- and chromatid-type) measured at the first mitosis following irradiation, as well as shoulderless survival curves having D0=0.87 and 1.1 Gy respectively. CONCLUSIONS: Based on the present dose-response data, the relative biological effectiveness of iron ions is 1.3 for the induction of chromosomal instability, and this indicates that heavy ions are only slightly more efficient than X-rays at eliciting this delayed phenotype.

  17. Evaluation of Nickel and Chromium Ion Release During Fixed Orthodontic Treatment Using Inductively Coupled Plasma-Mass Spectrometer: An In Vivo Study

    PubMed Central

    Nayak, Rabindra S; Khanna, Bharti; Pasha, Azam; Vinay, K; Narayan, Anjali; Chaitra, K

    2015-01-01

    Background: Fixed orthodontic appliances with the use of stainless steel brackets and archwires made of nitinol have a corrosive potential in the oral environment. Nickel and chromium ions released from these appliances act as allergens apart from being cytotoxic, mutagenic and carcinogenic in smaller quantities in the range of nanograms. This study was done to evaluate the release of nickel and chromium ions from orthodontic appliances in the oral cavity using Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). Materials and Methods: Saliva samples from 30 orthodontic patients undergoing treatment with 0.022″ MBT mechanotherapy were collected prior to commencement of treatment, after initial aligning wires and after 10-12 months of treatment. Salivary nickel and chromium ion concentration was measured in parts per billion (ppb) using ICP-MS. Results: Mean, standard deviation and range were computed for the concentrations of ions obtained. Results analyzed using ANOVA indicated a statistically significant increase of 10.35 ppb in nickel ion concentration and 33.53 ppb in chromium ion concentration after initial alignment. The ionic concentration at the end of 10-12 months of treatment showed a statistically significant increase in of 17.92 ppb for chromium and a statistically insignificant decrease in nickel ion concentration by 1.58 ppb. Pearson’s correlation coefficient showed a positive correlation for an increase in nickel concentration after aligning, but not at the end of 10-12 months. A positive correlation was seen for an increase in chromium ion concentration at both time intervals. Conclusion: Nickel and chromium ion concentration in saliva even though below the recommended daily allowance should not be ignored in light of the new knowledge regarding effects of these ions at the molecular level and the allergic potential. Careful and detailed medical history of allergy is essential. Nickel free alternatives should form an essential part of an

  18. Evaluation of Nickel and Chromium Ion Release During Fixed Orthodontic Treatment Using Inductively Coupled Plasma-Mass Spectrometer: An In Vivo Study.

    PubMed

    Nayak, Rabindra S; Khanna, Bharti; Pasha, Azam; Vinay, K; Narayan, Anjali; Chaitra, K

    2015-08-01

    Fixed orthodontic appliances with the use of stainless steel brackets and archwires made of nitinol have a corrosive potential in the oral environment. Nickel and chromium ions released from these appliances act as allergens apart from being cytotoxic, mutagenic and carcinogenic in smaller quantities in the range of nanograms. This study was done to evaluate the release of nickel and chromium ions from orthodontic appliances in the oral cavity using Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). Saliva samples from 30 orthodontic patients undergoing treatment with 0.022″ MBT mechanotherapy were collected prior to commencement of treatment, after initial aligning wires and after 10-12 months of treatment. Salivary nickel and chromium ion concentration was measured in parts per billion (ppb) using ICP-MS. Mean, standard deviation and range were computed for the concentrations of ions obtained. Results analyzed using ANOVA indicated a statistically significant increase of 10.35 ppb in nickel ion concentration and 33.53 ppb in chromium ion concentration after initial alignment. The ionic concentration at the end of 10-12 months of treatment showed a statistically significant increase in of 17.92 ppb for chromium and a statistically insignificant decrease in nickel ion concentration by 1.58 ppb. Pearson's correlation coefficient showed a positive correlation for an increase in nickel concentration after aligning, but not at the end of 10-12 months. A positive correlation was seen for an increase in chromium ion concentration at both time intervals. Nickel and chromium ion concentration in saliva even though below the recommended daily allowance should not be ignored in light of the new knowledge regarding effects of these ions at the molecular level and the allergic potential. Careful and detailed medical history of allergy is essential. Nickel free alternatives should form an essential part of an orthodontist's inventory.

  19. The adsorption of gold, palladium and platinum from acidic chloride solutions on mesoporous carbons.

    DOE PAGES

    Zalupski, Peter R.; McDowell, Rocklan; Dutech, Guy

    2014-08-05

    Studies on the adsorption characteristics of gold, palladium and platinum on mesoporous carbon (CMK-3) and sulfur-impregnated mesoporous carbon (CMK-3/S) evaluated the benefits/drawbacks of the presence of a layer of elemental sulfur inside mesoporous carbon structures. Adsorption isotherms collected for Au(III), Pd(II) and Pt(IV) on those materials suggest that sulfur does enhance the adsorption of those metal ions in mildly acidic environment (pH 3). The isotherms collected in 1 M HCl show that the benefit of sulfur disappears due to the competing influence of large concentration of hydrogen ions on the ion-exchanging mechanism of metal ions sorption on mesoporous carbon surfaces.more » The collected acid dependencies illustrate similar adsorption characteristics for CMK-3 and CMK-3/S in 1-5 M HCl concentration range. Sorption of metal ions from diluted aqueous acidic mixtures of actual leached electronic waste demonstrated the feasibility of recovery of gold from such liquors.« less

  20. Deposition of gold nanoparticles from colloid on TiO2 surface

    NASA Astrophysics Data System (ADS)

    Rehacek, Vlastimil; Hotovy, Ivan

    2017-11-01

    In this paper, experimental results are presented on the deposition of colloidal gold nanoparticles on the surfaces of TiO2 prepared on silicon/silicon dioxide. Important procedures, such as titanium dioxide surface hydrophilization as well as functionalization by an organosilane coupling agent (3-aminopropyl) trimethoxysilane and (3-mercaptopropyl) trimethoxysilane were investigated in order to obtain a metal oxide surface with the most convenient properties for immobilization of gold nanoparticles having a dense and uniform distribution. TiO2 nanotips prepared by reactive ion etching of oxide surface covered with self-mask gold nanoparticles are demonstrated.

  1. In vitro and in vivo evidence of the cytotoxic and genotoxic effects of metal ions released by orthodontic appliances: A review.

    PubMed

    Martín-Cameán, Ana; Jos, Ángeles; Mellado-García, Pilar; Iglesias-Linares, Alejandro; Solano, Enrique; Cameán, Ana M

    2015-07-01

    Intraoral fixed orthodontic appliances are frequently used in the clinical practice of dentistry. They are made from alloys containing different metals at various percentages. The use of these appliances leads to the long-term exposure of patients to these materials, and the potential toxic effects of this exposure raises concerns about patient safety. Thus, the biocompatibility (corrosion behaviour and toxicity) of these materials has to be evaluated prior to clinical use. In the present report, the most recent studies in the scientific literature examining metal ion release from orthodontic appliances and the toxic effects of these ions have been reviewed with a special focus on cytotoxicity and genotoxicity. Previous studies suggest that a case-by-case safety evaluation is required to take into account the increasing variability of materials, their composition and the manufacturing processes. Moreover, in vivo toxicity studies in regard to metal release, cytotoxicity and genotoxicity are still scarce. Therefore, in vitro and in vivo monitoring studies are needed to establish cause-effect relationships between metal ion release and biomarkers of cytotoxicity and genotoxicity. Further investigations could be performed to elucidate the toxic mechanisms involved in the observed effects with a special emphasis on oxidative damage. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Chemiresistive hydrogen gas sensors from gold-palladium nanopeapods

    NASA Astrophysics Data System (ADS)

    Moon, Chung Hee; Myung, Nosang V.; Haberer, Elaine D.

    2014-12-01

    Gold-palladium (Au-Pd) nanopeapod-based H2 chemiresistors were fabricated using a gold binding M13 viral template. Peptides displayed along the length of this biological template served as affinity binding sites to direct gold nanoparticle assembly under ambient conditions in an aqueous environment. In addition, the geometry of this filamentous biomolecule readily facilitated the formation of the highly anisotropic nanopeapod structure. Pd electroless deposition controlled peapod diameter, as well as electrical resistance. Sensor performance was determined by overall peapod morphology. Thicker nanopeapods (i.e., ˜15 nm Pd layer) with fully encapsulated Au nanoparticle seeds showed strong evidence of oxygen inclusion during or after Pd deposition, and a modest response (i.e., 0.04%-2.6%) at 2000 ppmv H2 after device conditioning through extended H2 exposure. Thinner nanopeapods (i.e., ˜5 nm Pd layer) with discontinuous Au nanoparticle coverage showed superior performance with a response of 117% at 2000 ppmv H2 in air, a 70% response time (t70%) within 1 min, and a low detection limit of 25 ppmv. The bio-directed formation of these unique thin-shelled, Au-Pd peapod nanostructures and the development of a highly sensitive H2 detector advance both the fields of nanoassembly and gas sensing.

  3. Combination of active targeting, enzyme-triggered release and fluorescent dye into gold nanoclusters for endomicroscopy-guided photothermal/photodynamic therapy to pancreatic ductal adenocarcinoma.

    PubMed

    Li, Hui; Wang, Ping; Deng, Yunxiang; Zeng, Meiying; Tang, Yan; Zhu, Wei-Hong; Cheng, Yingsheng

    2017-09-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most devastating malignancies in patients, and there is an urgent need for an effective treatment method. Herein, we report a novel gold nanocluster-based platform for confocal laser endomicroscopy-guided photothermal therapy (PTT)/photodynamic therapy (PDT) for PDAC, which consists of four components: the PTT-carrier gold nanocluster, an active targeting ligand U11 peptide, a Cathepsin E (CTSE)-sensitive PDT therapy prodrug, and a CTSE-sensitive imaging agent (cyanine dye Cy5.5). Due to the strong coupling among cross-linked gold nanoparticles (AuNPs), the surface plasmon resonance peak of nanoclusters shifts to the near-infrared (NIR) region, thus making the nanoclusters useful in the effective PTT therapy. In the system, the labeling of nanoclusters with U11 peptide can distinctly increase their affinity and accelerate their uptake by pancreatic cancer cells. Cell apoptosis staining demonstrates that, upon incorporation of the uPAR-targeted unit, the antitumor efficacy of CTSE-sensitive nanocluster AuS-U11 is significantly enhanced with respect to that of the non-targeted nanocluster AuS-PEG and the insensitive nanocluster AuC-PEG. In vivo and ex vivo optical imaging confirms the high accumulation of AuS-U11 in the in situ pancreatic tumor model. Therapeutic studies further show that the combination of active targeting for tumor tissue, enzyme-triggered drug release of 5-ALA and fluorescent dye Cy5.5 in nanoclusters AuS-U11 could achieve optimal therapeutic efficacy with endomicroscopy-guided photothermal/photodynamic therapy with minimal side effects. As a consequence, the delicate gold nanocluster concept provides a promising strategy to enhance the therapy efficiency in the most challenging PDAC treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. BioServices: a common Python package to access biological Web Services programmatically.

    PubMed

    Cokelaer, Thomas; Pultz, Dennis; Harder, Lea M; Serra-Musach, Jordi; Saez-Rodriguez, Julio

    2013-12-15

    Web interfaces provide access to numerous biological databases. Many can be accessed to in a programmatic way thanks to Web Services. Building applications that combine several of them would benefit from a single framework. BioServices is a comprehensive Python framework that provides programmatic access to major bioinformatics Web Services (e.g. KEGG, UniProt, BioModels, ChEMBLdb). Wrapping additional Web Services based either on Representational State Transfer or Simple Object Access Protocol/Web Services Description Language technologies is eased by the usage of object-oriented programming. BioServices releases and documentation are available at http://pypi.python.org/pypi/bioservices under a GPL-v3 license.

  5. Spontaneous water filtration of bio-inspired membrane

    NASA Astrophysics Data System (ADS)

    Kim, Kiwoong; Kim, Hyejeong; Lee, Sang Joon

    2016-11-01

    Water is one of the most important elements for plants, because it is essential for various metabolic activities. Thus, water management systems of vascular plants, such as water collection and water filtration have been optimized through a long history. In this view point, bio-inspired technologies can be developed by mimicking the nature's strategies for the survival of the fittest. However, most of the underlying biophysical features of the optimized water management systems remain unsolved In this study, the biophysical characteristics of water filtration phenomena in the roots of mangrove are experimentally investigated. To understand water-filtration features of the mangrove, the morphological structures of its roots are analyzed. The electrokinetic properties of the root surface are also examined. Based on the quantitatively analyzed information, filtration of sodium ions in the roots are visualized. Motivated by this mechanism, spontaneous desalination mechanism in the root of mangrove is proposed by combining the electrokinetics and hydrodynamic transportation of ions. This study would be helpful for understanding the water-filtration mechanism of the roots of mangrove and developing a new bio-inspired desalination technology. This research was financially supported by the National Research Foundation (NRF) of Korea (Contract Grant Number: 2008-0061991).

  6. Mastering multi-depth bio-chip patterns with DVD LBRs

    NASA Astrophysics Data System (ADS)

    Carson, Doug

    2017-08-01

    Bio chip and bio disc are rapidly growing technologies used in medical, health and other industries. While there are numerous unique designs and features, these products all rely on precise three-dimensional micro-fluidic channels or arrays to move, separate and combine samples under test. These bio chip and bio disc consumables are typically manufactured by molding these parts to a precise three-dimensional pattern on a negative metal stamper, or they can be made in smaller quantities using an appropriate curable resin and a negative mold/stamper. Stampers required for bio chips have been traditionally made using either micro machining or XY stepping lithography. Both of these technologies have their advantages as well as limitations when it comes to creating micro-fluidic patterns. Significant breakthroughs in continuous maskless lithography have enabled accurate and efficient manufacturing of micro-fluidic masters using LBRs (Laser Beam Recorders) and DRIE (Deep Reactive Ion Etching). The important advantages of LBR continuous lithography vs. XY stepping lithography and micro machining are speed and cost. LBR based continuous lithography is >100x faster than XY stepping lithography and more accurate than micro machining. Several innovations were required in order to create multi-depth patterns with sub micron accuracy. By combining proven industrial LBRs with DCA's G3-VIA pattern generator and DRIE, three-dimensional bio chip masters and stampers are being manufactured efficiently and accurately.

  7. Porous polymer monolithic columns with gold nanoparticles as an intermediate ligand for the separation of proteins in reverse phase-ion exchange mixed mode

    DOE PAGES

    Terborg, Lydia; Masini, Jorge C.; Lin, Michelle; ...

    2014-11-04

    A new approach has been developed for the preparation of mixed-mode stationary phases to separate proteins. The pore surface of monolithic poly(glycidyl methacrylate- co-ethylene dimethacrylate) capillary columns was functionalized with thiols and coated with gold nanoparticles. The final mixed mode surface chemistry was formed by attaching, in a single step, alkanethiols, mercaptoalkanoic acids, and their mixtures on the free surface of attached gold nanoparticles. Use of these mixtures allowed fine tuning of the hydrophobic/hydrophilic balance. The amount of attached gold nanoparticles according to thermal gravimetric analysis was 44.8 wt.%. This value together with results of frontal elution enabled calculation ofmore » surface coverage with the alkanethiol and mercaptoalkanoic acid ligands. Interestingly, alkanethiols coverage in a range of 4.46–4.51 molecules/nm 2 significantly exceeded that of mercaptoalkanoic acids with 2.39–2.45 molecules/nm 2. The mixed mode character of these monolithic stationary phases was for the first time demonstrated in the separations of proteins that could be achieved in the same column using gradient elution conditions typical of reverse phase (using gradient of acetonitrile in water) and ion exchange chromatographic modes (applying gradient of salt in water), respectively.« less

  8. Release of nickel and chromium ions in the saliva of patients with fixed orthodontic appliance: An in-vivo study.

    PubMed

    Dwivedi, Anoop; Tikku, Tripti; Khanna, Rohit; Maurya, Rana Pratap; Verma, Geeta; Murthy, R C

    2015-01-01

    Various components of fixed orthodontic appliances are continuously interacting with saliva and other fluids in the mouth releasing various metal ions including nickel and chromium that can cause damaging effects if their concentration exceeds above the toxic dose. To determine and compare the level of nickel and chromium in the saliva of patients undergoing fixed orthodontic treatment at different time periods. The sample of saliva of 13 patients was taken at different time periods that is: Group 1 (before appliance placement), Group II, III, and IV (after 1-week, 1-month, and 3 months of appliance placement respectively). The fixed appliance comprised of brackets, bands, buccal tubes, lingual sheath, transpalatal arch and wires composed of Ni-Ti and stainless steel. The level of ions was determined using graphite furnace atomic absorption spectro-photometry. The data thus obtained were statistically analyzed using SPSS Statistical Analysis Software (Version 15.0). Level of nickel and chromium in saliva was highest in Group II and lowest in Groups I for both the ions. On comparison among different Groups, it was statistically significant for all the groups (<0.001) except between Group III and Group IV. The release of nickel and chromium was maximum at 1-week and then the level gradually declined. These values were well below the toxic dose of these ions. The results should be viewed with caution in subjects with Ni hypersensitivity.

  9. Oxygen-ion-migration-modulated bipolar resistive switching and complementary resistive switching in tungsten/indium tin oxide/gold memory device

    NASA Astrophysics Data System (ADS)

    Wu, Xinghui; Zhang, Qiuhui; Cui, Nana; Xu, Weiwei; Wang, Kefu; Jiang, Wei; Xu, Qixing

    2018-06-01

    In this paper, we report our investigation of room-temperature-fabricated tungsten/indium tin oxide/gold (W/ITO/Au) resistive random access memory (RRAM), which exhibits asymmetric bipolar resistive switching (BRS) behavior. The device displays good write/erase endurance and data retention properties. The device shows complementary resistive switching (CRS) characteristics after controlling the compliance current. A WO x layer electrically formed at the W/ITO in the forming process. Mobile oxygen ions within ITO migrate toward the electrode/ITO interface and produce a semiconductor-like layer that acts as a free-carrier barrier. The CRS characteristic here can be elucidated in light of the evolution of an asymmetric free-carrier blocking layer at the electrode/ITO interface.

  10. The Deep-Sea Natural Products, Biogenic Polyphosphate (Bio-PolyP) and Biogenic Silica (Bio-Silica), as Biomimetic Scaffolds for Bone Tissue Engineering: Fabrication of a Morphogenetically-Active Polymer

    PubMed Central

    Wang, Xiaohong; Schröder, Heinz C.; Feng, Qingling; Draenert, Florian; Müller, Werner E. G.

    2013-01-01

    Bone defects in human, caused by fractures/nonunions or trauma, gain increasing impact and have become a medical challenge in the present-day aging population. Frequently, those fractures require surgical intervention which ideally relies on autografts or suboptimally on allografts. Therefore, it is pressing and likewise challenging to develop bone substitution materials to heal bone defects. During the differentiation of osteoblasts from their mesenchymal progenitor/stem cells and of osteoclasts from their hemopoietic precursor cells, a lineage-specific release of growth factors and a trans-lineage homeostatic cross-talk via signaling molecules take place. Hence, the major hurdle is to fabricate a template that is functioning in a way mimicking the morphogenetic, inductive role(s) of the native extracellular matrix. In the last few years, two naturally occurring polymers that are produced by deep-sea sponges, the biogenic polyphosphate (bio-polyP) and biogenic silica (bio-silica) have also been identified as promoting morphogenetic on both osteoblasts and osteoclasts. These polymers elicit cytokines that affect bone mineralization (hydroxyapatite formation). In this manner, bio-silica and bio-polyP cause an increased release of BMP-2, the key mediator activating the anabolic arm of the hydroxyapatite forming cells, and of RANKL. In addition, bio-polyP inhibits the progression of the pre-osteoclasts to functionally active osteoclasts. Based on these findings, new bioinspired strategies for the fabrication of bone biomimetic templates have been developed applying 3D-printing techniques. Finally, a strategy is outlined by which these two morphogenetically active polymers might be used to develop a novel functionally active polymer. PMID:23528950

  11. Copper-transporting P-type ATPases use a unique ion-release pathway

    PubMed Central

    Andersson, Magnus; Mattle, Daniel; Sitsel, Oleg; Nielsen, Anna Marie; White, Stephen H.; Nissen, Poul; Gourdon, Pontus

    2014-01-01

    Heavy metals in cells are typically regulated by PIB-type ATPases such as the copper transporting Cu+-ATPases. The first crystal structure of a Cu+-ATPase (LpCopA) was trapped in a transition state of dephosphorylation (E2.Pi) and inferred to be occluded. The structure revealed a PIB-specific topology and suggested a copper transport pathway across the membrane. Here we show by molecular dynamics (MD) simulations that extracellular water solvates the transmembrane (TM) domain, indicative of a pathway for Cu+ release. Furthermore, a new LpCopA crystal structure determined at 2.8 Å resolution, trapped in the E2P state (which is associated with extracellular exchange in PII-type ATPases), delineates the same conduit as also further supported by site-directed mutagenesis. The E2P and E2.Pi states therefore appear equivalent and open to the extracellular side, in contrast to PII-type ATPases where the E2.Pi state is occluded. This indicates that Cu+-ATPases couple dephosphorylation differently to the conformational changes associated with ion extrusion. The ion pathway may explain why Menkes’ and Wilson’s disease mutations at the extracellular side impair protein function, and points to an accessible site for novel inhibitors targeting Cu+-ATPases of pathogens. PMID:24317491

  12. Detection of Staphylococcus aureus by functional gold nanoparticle-based affinity surface-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Lai, Hong-Zheng; Wang, Sin-Ge; Wu, Ching-Yi; Chen, Yu-Chie

    2015-02-17

    Staphylococcus aureus is one of the common pathogenic bacteria responsible for bacterial infectious diseases and food poisoning. This study presents an analytical method based on the affinity nanoprobe-based mass spectrometry that enables detection of S. aureus in aqueous samples. A peptide aptamer DVFLGDVFLGDEC (DD) that can recognize S. aureus and methicillin-resistant S. aureus (MRSA) was used as the reducing agent and protective group to generate DD-immobilized gold nanoparticles (AuNPs@DD) from one-pot reactions. The thiol group from cysteine in the peptide aptamer, i.e., DD, can interact with gold ions to generate DD-immobilized AuNPs in an alkaline solution. The generated AuNPs@DD has an absorption maximum at ∼518 nm. The average particle size is 7.6 ± 1.2 nm. Furthermore, the generated AuNPs@DD can selectively bind with S. aureus and MRSA. The conjugates of the target bacteria with AuNPs were directly analyzed by surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS). The gold ions generated from the AuNPs@DD anchored on the target bacteria were monitored. Gold ions (m/z 197 and 394) were only generated from the conjugates of the target bacterium-AuNP@DD in the SALDI process. Thus, the gold ions could be used as the indicators for the presence of the target bacteria. The detection limit of S. aureus using this method is in the order of a few tens of cells. The low detection limit is due to the ease of generation of gold cluster ion derived from AuNPs under irradiation with a 355 nm laser beam. Apple juice mixed with S. aureus was used as the sample to demonstrate the suitability of the method for real-world application. Because of its low detection limit, this approach can potentially be used to screen the presence of S. aureus in complex samples.

  13. In situ gold nanoparticles formation: contrast agent for dental optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Braz, Ana K. S.; Araujo, Renato E. de; Ohulchanskyy, Tymish Y.; Shukla, Shoba; Bergey, Earl J.; Gomes, Anderson S. L.; Prasad, Paras N.

    2012-06-01

    In this work we demonstrate the potential use of gold nanoparticles as contrast agents for the optical coherence tomography (OCT) imaging technique in dentistry. Here, a new in situ photothermal reduction procedure was developed, producing spherical gold nanoparticles inside dentinal layers and tubules. Gold ions were dispersed in the primer of commercially available dental bonding systems. After the application and permeation in dentin by the modified adhesive systems, the dental bonding materials were photopolymerized concurrently with the formation of gold nanoparticles. The gold nanoparticles were visualized by scanning electron microscopy (SEM). The SEM images show the presence of gold nanospheres in the hybrid layer and dentinal tubules. The diameter of the gold nanoparticles was determined to be in the range of 40 to 120 nm. Optical coherence tomography images were obtained in two- and three-dimensions. The distribution of nanoparticles was analyzed and the extended depth of nanosphere production was determined. The results show that the OCT technique, using in situ formed gold nanoparticles as contrast enhancers, can be used to visualize dentin structures in a non-invasive and non-destructive way.

  14. Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp.

    NASA Astrophysics Data System (ADS)

    Du, Liangwei; Xian, Liang; Feng, Jia-Xun

    2011-03-01

    In this work, the fungus Penicillium was used for rapid extra-/intracellular biosynthesis of gold nanoparticles. AuCl4 - ions reacted with the cell filtrate of Penicillium sp. resulting in extracellular biosynthesis of gold nanoparticles within 1 min. Intracellular biosynthesis of gold nanoparticles was obtained by incubating AuCl4 - solution with fungal biomass for 8 h. The gold nanoparticles were characterized by means of visual observation, UV-Vis absorption spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The extracellular nanoparticles exhibited maximum absorbance at 545 nm in UV-Vis spectroscopy. The XRD spectrum showed Bragg reflections corresponding to the gold nanocrystals. TEM exhibited the formed spherical gold nanoparticles in the size range from 30 to 50 nm with an average size of 45 nm. SEM and TEM revealed that the intracellular gold nanoparticles were well dispersed on the cell wall and within the cell, and they are mostly spherical in shape with an average diameter of 50 nm. The presence of gold was confirmed by EDX analysis.

  15. Nanostructured gold microelectrodes for extracellular recording from electrogenic cells.

    PubMed

    Brüggemann, D; Wolfrum, B; Maybeck, V; Mourzina, Y; Jansen, M; Offenhäusser, A

    2011-07-01

    We present a new biocompatible nanostructured microelectrode array for extracellular signal recording from electrogenic cells. Microfabrication techniques were combined with a template-assisted approach using nanoporous aluminum oxide to develop gold nanopillar electrodes. The nanopillars were approximately 300-400 nm high and had a diameter of 60 nm. Thus, they yielded a higher surface area of the electrodes resulting in a decreased impedance compared to planar electrodes. The interaction between the large-scale gold nanopillar arrays and cardiac muscle cells (HL-1) was investigated via focused ion beam milling. In the resulting cross-sections we observed a tight coupling between the HL-1 cells and the gold nanostructures. However, the cell membranes did not bend into the cleft between adjacent nanopillars due to the high pillar density. We performed extracellular potential recordings from HL-1 cells with the nanostructured microelectrode arrays. The maximal amplitudes recorded with the nanopillar electrodes were up to 100% higher than those recorded with planar gold electrodes. Increasing the aspect ratio of the gold nanopillars and changing the geometrical layout can further enhance the signal quality in the future.

  16. Potent antimicrobial and antibiofilm activities of bacteriogenically synthesized gold-silver nanoparticles against pathogenic bacteria and their physiochemical characterizations.

    PubMed

    Ramasamy, Mohankandhasamy; Lee, Jin-Hyung; Lee, Jintae

    2016-09-01

    The objective of this study was to develop a bimetallic nanoparticle with enhanced antibacterial activity that would improve the therapeutic efficacy against bacterial biofilms. Bimetallic gold-silver nanoparticles were bacteriogenically synthesized using γ-proteobacterium, Shewanella oneidensis MR-1. The antibacterial activities of gold-silver nanoparticles were assessed on the planktonic and biofilm phases of individual and mixed multi-cultures of pathogenic Gram negative (Escherichia coli and Pseudomonas aeruginosa) and Gram positive bacteria (Enterococcus faecalis and Staphylococcus aureus), respectively. The minimum inhibitory concentration of gold-silver nanoparticles was 30-50 µM than that of other nanoparticles (>100 µM) for the tested bacteria. Interestingly, gold-silver nanoparticles were more effective in inhibiting bacterial biofilm formation at 10 µM concentration. Both scanning and transmission electron microscopy results further accounted the impact of gold-silver nanoparticles on biocompatibility and bactericidal effect that the small size and bio-organic materials covering on gold-silver nanoparticles improves the internalization and thus caused bacterial inactivation. Thus, bacteriogenically synthesized gold-silver nanoparticles appear to be a promising nanoantibiotic for overcoming the bacterial resistance in the established bacterial biofilms. © The Author(s) 2016.

  17. Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface.

    PubMed

    Wang, Zhenhui; Liu, Yanming; Tao, Peng; Shen, Qingchen; Yi, Nan; Zhang, Fangyu; Liu, Quanlong; Song, Chengyi; Zhang, Di; Shang, Wen; Deng, Tao

    2014-08-27

    Plasmonic gold nanoparticles self-assembled at the air-water interface to produce an evaporative surface with local control inspired by skins and plant leaves. Fast and efficient evaporation is realized due to the instant and localized plasmonic heating at the evaporative surface. The bio-inspired evaporation process provides an alternative promising approach for evaporation, and has potential applications in sterilization, distillation, and heat transfer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Combination of electrospray ionization, atmospheric pressure photoionization and laser desorption ionization Fourier transform ion cyclotronic resonance mass spectrometry for the investigation of complex mixtures - Application to the petroleomic analysis of bio-oils.

    PubMed

    Hertzog, Jasmine; Carré, Vincent; Le Brech, Yann; Mackay, Colin Logan; Dufour, Anthony; Mašek, Ondřej; Aubriet, Frédéric

    2017-05-29

    The comprehensive description of complex mixtures such as bio-oils is required to understand and improve the different processes involved during biological, environmental or industrial operation. In this context, we have to consider how different ionization sources can improve a non-targeted approach. Thus, the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been coupled to electrospray ionization (ESI), laser desorption ionization (LDI) and atmospheric pressure photoionization (APPI) to characterize an oak pyrolysis bio-oil. Close to 90% of the all 4500 compound formulae has been attributed to C x H y O z with similar oxygen class compound distribution. Nevertheless, their relative abundance in respect with their double bound equivalent (DBE) value has evidenced significant differences depending on the ion source used. ESI has allowed compounds with low DBE but more oxygen atoms to be ionized. APPI has demonstrated the efficient ionization of less polar compounds (high DBE values and less oxygen atoms). The LDI behavior of bio-oils has been considered intermediate in terms of DBE and oxygen amounts but it has also been demonstrated that a significant part of the features are specifically detected by this ionization method. Thus, the complementarity of three different ionization sources has been successfully demonstrated for the exhaustive characterization by petroleomic approach of a complex mixture. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Newer polyanionic bio-composite anode for sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Karuppiah, Saravanan; Vellingiri, Suganya; Nallathamby, Kalaiselvi

    2017-02-01

    NASICON frame work Na3V2(PO4)3 (NVP), wrapped by nitrogen and sulfur doped bio-carbon matrix derived from human hair (HHC) has been investigated for its anode behavior in SIBs. Basically, NVP is bestowed with a crystal structure of 3D open framework and a moderate theoretical capacity of 118 mAh g-1, which are the twin advantages and motivation behind the selection of this material. Prepared through a simple, scalable and facile method, the key problems associated with pristine NVP electrode material, such as inferior conductivity and severe volume change have been mitigated to a great extent through the formation of a composite containing HHC. Herein, HHC is a cheap and eco-friendly composite additive, obtained from a universal bio-waste, viz., human hair and hence NVP/HHC qualifies itself as a green composite. Interestingly, NVP/HHC-10 (in-situ) and NVP/HHC-20 (ex-situ) anodes show excellent electrochemical performance in terms of cycling stability up to 500 cycles and rate capability @ 2 A g-1, which are superior than similar category NVP anodes reported in the literature. Further, post cycling structure and morphology of NVP/HHC composite anodes evidence the appreciable stability bestowed with the select composition, which is found to get maintained upon extended cycles and even after rate capability test.

  20. Performance Assessment of the CapitalBio Mycobacterium Identification Array System for Identification of Mycobacteria

    PubMed Central

    Liu, Jingbo; Yan, Zihe; Han, Min; Han, Zhijun; Jin, Lingjie; Zhao, Yanlin

    2012-01-01

    The CapitalBio Mycobacterium identification microarray system is a rapid system for the detection of Mycobacterium tuberculosis. The performance of this system was assessed with 24 reference strains, 486 Mycobacterium tuberculosis clinical isolates, and 40 clinical samples and then compared to the “gold standard” of DNA sequencing. The CapitalBio Mycobacterium identification microarray system showed highly concordant identification results of 100% and 98.4% for Mycobacterium tuberculosis complex (MTC) and nontuberculous mycobacteria (NTM), respectively. The sensitivity and specificity of the CapitalBio Mycobacterium identification array for identification of Mycobacterium tuberculosis isolates were 99.6% and 100%, respectively, for direct detection and identification of clinical samples, and the overall sensitivity was 52.5%. It was 100% for sputum, 16.7% for pleural fluid, and 10% for bronchoalveolar lavage fluid, respectively. The total assay was completed in 6 h, including DNA extraction, PCR, and hybridization. The results of this study confirm the utility of this system for the rapid identification of mycobacteria and suggest that the CapitalBio Mycobacterium identification array is a molecular diagnostic technique with high sensitivity and specificity that has the capacity to quickly identify most mycobacteria. PMID:22090408

  1. Azido, triazolyl, and alkynyl complexes of gold(I): syntheses, structures, and ligand effects.

    PubMed

    Robilotto, Thomas J; Deligonul, Nihal; Updegraff, James B; Gray, Thomas G

    2013-08-19

    Gold(I) triazolyl complexes are prepared in [3 + 2] cycloaddition reactions of (tertiary phosphine)gold(I) azides with terminal alkynes. Seven such triazolyl complexes, not previously prepared, are described. Reducible functional groups are accommodated. In addition, two new (N-heterocyclic carbene)gold(I) azides and two new gold(I) alkynyls are described. Eight complexes are crystallographically authenticated; aurophilic interactions appear in one structure only. The packing diagrams of gold(I) triazolyls all show intermolecular hydrogen bonding between N-1 of one molecule and N-3 of a neighbor. This hydrogen bonding permeates the crystal lattice. Density-functional theory calculations of (triphenylphosphine)gold(I) triazolyls and the corresponding alkynyls indicate that the triazolyl is a stronger trans-influencer than is the alkynyl, but the alkynyl is more electron-releasing. These results suggest that trans-influences in two-coordinate gold(I) complexes can be more than a simple matter of ligand donicity.

  2. Study of Dielectric Behavior and Charge Conduction Mechanism of Poly(Vinyl Alcohol) (PVA)-Copper (Cu) and Gold (Au) Nanocomposites as a Bio-resorbable Material for Organic Electronics

    NASA Astrophysics Data System (ADS)

    Mahendia, Suman; Goyal, Parveen Kumar; Tomar, Anil Kumar; Chahal, Rishi Pal; Kumar, Shyam

    2016-10-01

    Poly(vinyl alcohol) (PVA) embedded with varying concentrations of chemically synthesized copper (Cu) and gold (Au) nanoparticles (NPs) were prepared using ex situ sol-gel casting method. The addition of almost the same concentration of CuNPs in PVA improves the conducting properties, while that of AuNPs improves the dielectric nature of composite films. It has been found that addition of AuNPs up to ˜0.4 wt.% concentration enhaneces the capacitive nature due to the formation of small Coulomb tunneling knots as internal capacitors. The dielectric studies suggest the Maxwell-Wagner interfacial polarization as the dominant dielectric relaxation process, whereas the I- V characteristics indicate bulk limited Poole-Frenkel emission at high voltages as the dominant charge transport mechanism operating at room temperature in all specimens. These novel features lead to the conclusion that addition of a small quantity of metal nanoparticles can help tune the properties of PVA for desired applications in bio-compatible polymer-based organic electronic devices.

  3. Green synthesis of stabilized spherical shaped gold nanoparticles using novel aqueous Elaeis guineensis (oil palm) leaves extract

    NASA Astrophysics Data System (ADS)

    Ahmad, Tausif; Bustam, Mohamad Azmi; Irfan, Muhammad; Moniruzzaman, Muhammad; Anwaar Asghar, Hafiz Muhammad; Bhattacharjee, Sekhar

    2018-05-01

    In the last decade, development of bioinspired protocols to synthesize gold nanoparticles (AuNPs) using plants and their extracts have been dealt by researchers due to their low cost, renewability and non-toxic features. A simple, cheap and ecofriendly method is reported to synthesize stabilized AuNPs of size 35-75 nm at room temperature using aqueous Elaeis guineensis (oil palm) leaves extract without addition of any external agent. Oil palm leaves mediated AuNPs were characterized using FTIR, UV-vis spectrophotometer, EDAX, XPS, FESEM, TEM, DLS and TGA. FTIR spectra results revealed contribution of phenolic, carboxylic, amines and amides in reduction of trivalent gold ions and stabilization of formed gold atoms. Reaction solution color change and UV-vis spectra confirmed reduction of gold ions to generate gold atoms. Reaction mechanism explained the role of phenolic compounds in reduction reaction using FTIR and UV-vis spectra results. EDAX and XPS results further validated the formation of metallic gold particles through bioreduction of gold ions. Crystal structure of metallic gold particles was confirmed through XRD peaks indexing to (111), (200), (220) and (311) planes. TEM and FESEM particles size measurements exhibited the formation of nanostructured AuNPs. Synthesis of well scattered and spherical shaped AuNPs was revealed through FESEM and TEM images. The excellent stability of AuNPs was shown through high negative zeta potential value (-14.7 ± 4.68 mV) and uniform dispersion in aqueous media. Our results disclosed the excellent potential of Elaeis guineensis (oil palm) leaves as reducing and stabilizing agents in green synthesis of well scattered spherical shaped AuNPs, which can be employed as strong candidates in medical drug delivery and industrial applications.

  4. Angiogenesis in calcium phosphate scaffolds by inorganic copper ion release.

    PubMed

    Barralet, Jake; Gbureck, Uwe; Habibovic, Pamela; Vorndran, Elke; Gerard, Catherine; Doillon, Charles J

    2009-07-01

    Angiogenesis in a tissue-engineered device may be induced by incorporating growth factors (e.g., vascular endothelial growth factor [VEGF]), genetically modified cells, and=or vascular cells. It represents an important process during the formation and repair of tissue and is essential for nourishment and supply of reparative and immunological cells. Inorganic angiogenic factors, such as copper ions, are therefore of interest in the fields of regenerative medicine and tissue engineering due to their low cost, higher stability, and potentially greater safety compared with recombinant proteins or genetic engineering approaches. The purpose of this study was to compare tissue responses to 3D printed macroporous bioceramic scaffolds implanted in mice that had been loaded with either VEGF or copper sulfate. These factors were spatially localized at the end of a single macropore some 7 mm from the surface of the scaffold. Controls without angiogenic factors exhibited only poor tissue growth within the blocks; in contrast, low doses of copper sulfate led to the formation of microvessels oriented along the macropore axis. Further, wound tissue ingrowth was particularly sensitive to the quantity of copper sulfate and was enhanced at specific concentrations or in combination with VEGF. The potential to accelerate and guide angiogenesis and wound healing by copper ion release without the expense of inductive protein(s) is highly attractive in the area of tissue-engineered bone and offers significant future potential in the field of regenerative biomaterials.

  5. One-step green synthesis and characterization of leaf extract-mediated biocompatible silver and gold nanoparticles from Memecylon umbellatum.

    PubMed

    Arunachalam, Kantha D; Annamalai, Sathesh Kumar; Hari, Shanmugasundaram

    2013-01-01

    In this experiment, green-synthesized silver and gold nanoparticles were produced rapidly by treating silver and gold ions with an extract of Memecylon umbellatum leaf. The reaction process was simple and easy to handle, and was monitored using ultraviolet-visible spectroscopy. The effect of the phytochemicals present in M. umbellatum, including saponins, phenolic compounds, phytosterols, and quinones, on formation of stable silver and gold nanoparticles was investigated by Fourier-transform infrared spectroscopy. The morphology and crystalline phase of the nanoparticles were determined by transmission electron microscopy and energy-dispersive x-ray spectroscopy. The results indicate that the saponins, phytosterols, and phenolic compounds present in the plant extract play a major role in formation of silver and gold nanoparticles in their respective ions in solution. The characteristics of the nanoparticles formed suggest application of silver and gold nanoparticles as chemical sensors in the future. Given the simple and eco-friendly approach for synthesis, these nanoparticles could easily be commercialized for large-scale production.

  6. One-step green synthesis and characterization of leaf extract-mediated biocompatible silver and gold nanoparticles from Memecylon umbellatum

    PubMed Central

    Arunachalam, Kantha D; Annamalai, Sathesh Kumar; Hari, Shanmugasundaram

    2013-01-01

    In this experiment, green-synthesized silver and gold nanoparticles were produced rapidly by treating silver and gold ions with an extract of Memecylon umbellatum leaf. The reaction process was simple and easy to handle, and was monitored using ultraviolet-visible spectroscopy. The effect of the phytochemicals present in M. umbellatum, including saponins, phenolic compounds, phytosterols, and quinones, on formation of stable silver and gold nanoparticles was investigated by Fourier-transform infrared spectroscopy. The morphology and crystalline phase of the nanoparticles were determined by transmission electron microscopy and energy-dispersive x-ray spectroscopy. The results indicate that the saponins, phytosterols, and phenolic compounds present in the plant extract play a major role in formation of silver and gold nanoparticles in their respective ions in solution. The characteristics of the nanoparticles formed suggest application of silver and gold nanoparticles as chemical sensors in the future. Given the simple and eco-friendly approach for synthesis, these nanoparticles could easily be commercialized for large-scale production. PMID:23569372

  7. Impact of gold mining associated with mercury contamination in soil, biota sediments and tailings in Kenya.

    PubMed

    Odumo, Benjamin Okang'; Carbonell, Gregoria; Angeyo, Hudson Kalambuka; Patel, Jayanti Purshottam; Torrijos, Manuel; Rodríguez Martín, José Antonio

    2014-11-01

    This work considered the environmental impact of artisanal mining gold activity in the Migori-Transmara area (Kenya). From artisanal gold mining, mercury is released to the environment, thus contributing to degradation of soil and water bodies. High mercury contents have been quantified in soil (140 μg kg(-1)), sediment (430 μg kg(-1)) and tailings (8,900 μg kg(-1)), as expected. The results reveal that the mechanism for transporting mercury to the terrestrial ecosystem is associated with wet and dry depositions. Lichens and mosses, used as bioindicators of pollution, are related to the proximity to mining areas. The further the distance from mining areas, the lower the mercury levels. This study also provides risk maps to evaluate potential negative repercussions. We conclude that the Migori-Transmara region can be considered a strongly polluted area with high mercury contents. The technology used to extract gold throughout amalgamation processes causes a high degree of mercury pollution around this gold mining area. Thus, alternative gold extraction methods should be considered to reduce mercury levels that can be released to the environment.

  8. Understanding ligand effects in gold clusters using mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Grant E.; Laskin, Julia

    This review summarizes recent research on the influence of phosphine ligands on the size, stability, and reactivity of gold clusters synthesized in solution. Sub-nanometer clusters exhibit size- and composition-dependent properties that are unique from those of larger nanoparticles. The highly tunable properties of clusters and their high surface-to-volume ratio make them promising candidates for a variety of technological applications. However, because “each-atom-counts” toward defining cluster properties it is critically important to develop robust synthesis methods to efficiently prepare clusters of predetermined size. For decades phosphines have been known to direct the size-selected synthesis of gold clusters. Despite the preparation ofmore » numerous species it is still not understood how different functional groups at phosphine centers affect the size and properties of gold clusters. Using electrospray ionization mass spectrometry (ESI-MS) it is possible to characterize the effect of ligand substitution on the distribution of clusters formed in solution at defined reaction conditions. In addition, ligand exchange reactions on preformed clusters may be monitored using ESI-MS. Collision induced dissociation (CID) may also be employed to obtain qualitative insight into the fragmentation of mixed ligand clusters and the relative binding energies of differently substituted phosphines. Quantitative ligand binding energies and cluster stability may be determined employing surface induced dissociation (SID) in a custom-built Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS). Rice-Ramsperger-Kassel-Marcus (RRKM) based modeling of the SID data allows dissociation energies and entropy values to be extracted that may be compared with the results of high-level theoretical calculations. The charge reduction and reactivity of atomically precise gold clusters, including partially ligated species generated in the gas-phase by in source CID, on

  9. An aptamer-based fluorescence bio-sensor for chiral recognition of arginine enantiomers

    NASA Astrophysics Data System (ADS)

    Yuan, Haiyan; Huang, Yunmei; Yang, Jidong; Guo, Yuan; Zeng, Xiaoqing; Zhou, Shang; Cheng, Jiawei; Zhang, Yuhui

    2018-07-01

    In this study, a novel aptamer - based fluorescence bio-sensor (aptamer-AuNps) was developed for chiral recognition of arginine (Arg) enantiomers based on aptamer and gold nanoparticles (AuNps). Carboxyfluorescein (FAM) labeled aptamers (Apt) were absorbed on AuNps and their fluorescence intensity could be significantly quenched by AuNps based on fluorescence resonance energy transfer (FRET). Once D-Arg or L-Arg were added into the above solution, the aptamer specifically bind to Arg enantiomers and released from AuNps, so the fluorescence intensity of D-Arg system and L-Arg system were all enhanced. The affinity of Apt to L-Arg is tighter to D-Arg, so the enhanced fluorescence signals of L-Arg system was stronger than D-Arg system. What's more, the enhanced fluorescence were directly proportional to the concentration of D-Arg and L-Arg ranging from 0-300 nM and 0-400 nM with related coefficients of 0.9939 and 0.9952, respectively. Furthermore, the method was successfully applied to detection L-Arg in human urine samples with satisfactory results. Eventually, a simple "OR" logic gate with D-Arg &L-Arg as inputs and AuNps aggregation state as outputs was fabricated, which can help us understand the chiral recognition process deeply.

  10. A SERS protocol as a potential tool to access 6-mercaptopurine release accelerated by glutathione-S-transferase.

    PubMed

    Wang, Ying; Sun, Jie; Yang, Qingran; Lu, Wenbo; Li, Yan; Dong, Jian; Qian, Weiping

    2015-11-21

    The developed method for monitoring GST, an important drug metabolic enzyme, could greatly facilitate researches on relative biological fields. In this work, we have developed a SERS technique to monitor the absorbance behaviour of 6-mercaptopurine (6-MP) and its glutathione-S-transferase (GST)-accelerated glutathione (GSH)-triggered release behaviour on the surface of gold nanoflowers (GNFs), using the GNFs as excellent SERS substrates. The SERS signal was used as an indicator of absorbance or release of 6-MP on the gold surface. We found that GST can accelerate GSH-triggered release behaviour of 6-MP from the gold surface. We speculated that GST catalyzes nucleophilic GSH to competitively bind with the electrophilic substance 6-MP. Experimental results have proved that the presented SERS protocol can be utilized as an effective tool for accessing the release of anticancer drugs.

  11. Ionic liquid functionalized synthesis of gold nanoparticles in response to Elaise Guineensis (oil palm) leaves amount

    NASA Astrophysics Data System (ADS)

    Irfan, Muhammad; Ahmad, Tausif; Moniruzzaman, Muhammad; Abdullah, Bawadi

    2018-05-01

    A modified bio-synthesis method was developed to synthesize gold nanoparticles (AuNPs) using Elaeis Guineensis (oil palm) leaves (OPL) extract prepared in aqueous solution of IL, [EMIM][OAc]. The strong interaction and capping ability of IL at surface of AuNPs was examined through XPS analysis. The effect of OPL powder to liquid (P/L) ratio on absorbance, maximum wavelength (λmax) and size variation of AuNPs was observed through UV-vis. TEM analysis indicated predominantly spherical shape AuNPs with mean diameter of 15.76 nm. This study exhibits a rapid, cheap and efficient method to achieve stable AuNPs using bio-waste material.

  12. Fabrication of Photothermal Stable Gold Nanosphere/Mesoporous Silica Hybrid Nanoparticle Responsive to Near-Infrared Light.

    PubMed

    Cheng, Bei; Xu, Peisheng

    2017-01-01

    Various gold nanoparticles have been explored in biomedical systems and proven to be promising in photothermal therapy and drug delivery. Among them, nanoshells were regarded as traditionally strong near infrared absorbers that have been widely used to generate photothermal effect for cancer therapy. However, the nanoshell is not photo-thermal stable and thus is not suitable for repeated irradiation. Here, we describe a novel discrete gold nanostructure by mimicking the continuous gold nanoshell-gold/mesoporous silica hybrid nanoparticle (GoMe). It possesses the best characteristics of both conventional gold nanoparticles and mesoporous silica nanoparticles, such as excellent photothermal converting ability as well as high drug loading capacity and triggerable drug release.

  13. Therapeutic gold, silver, and platinum nanoparticles.

    PubMed

    Yamada, Miko; Foote, Matthew; Prow, Tarl W

    2015-01-01

    There are an abundance of nanoparticle technologies being developed for use as part of therapeutic strategies. This review focuses on a narrow class of metal nanoparticles that have therapeutic potential that is a consequence of elemental composition and size. The most widely known of these are gold nanoshells that have been developed over the last two decades for photothermal ablation in superficial cancers. The therapeutic effect is the outcome of the thickness and diameter of the gold shell that enables fine tuning of the plasmon resonance. When these metal nanoparticles are exposed to the relevant wavelength of light, their temperature rapidly increases. This in turn induces a localized photothermal ablation that kills the surrounding tumor tissue. Similarly, gold nanoparticles have been developed to enhance radiotherapy. The high-Z nature of gold dramatically increases the photoelectric cross-section. Thus, the photoelectric effects are significantly increased. The outcome of these interactions is enhanced tumor killing with lower doses of radiation, all while sparing tissue without gold nanoparticles. Silver nanoparticles have been used for their wound healing properties in addition to enhancing the tumor-killing effects of anticancer drugs. Finally, platinum nanoparticles are thought to serve as a reservoir for platinum ions that can induce DNA damage in cancer cells. The future is bright with the path to clinical trials is largely cleared for some of the less complex therapeutic metal nanoparticle systems. © 2014 The Authors. WIREs Nanomedicine and Nanobiotechnology published by Wiley Periodicals, Inc.

  14. Gold nanoflowers with mesoporous silica as "nanocarriers" for drug release and photothermal therapy in the treatment of oral cancer using near-infrared (NIR) laser light

    NASA Astrophysics Data System (ADS)

    Song, Wenzhi; Gong, Junxia; Wang, Yuqian; Zhang, Yan; Zhang, Hongmei; Zhang, Weihang; Zhang, Hu; Liu, Xin; Zhang, Tianfu; Yin, Wanzhong; Yang, Wensheng

    2016-04-01

    In this experiment, we successfully developed nanocarriers in the form of gold nanoflowers coated with two layers of silica for the purposes of drug loading and NIR (near-infrared) photothermal therapy for the treatment of oral cancer. The gold nanoflowers converted NIR laser energy into heat energy. The cores were coated with a thin silica layer (AuNFs@SiO2) to protect the gold nanoflowers from intraparticle ripening. The second layer was mesoporous silica (AuNFs@SiO2@mSiO2), which acted as a nanocarrier for anticancer drug (DOX) loads. The mean effective diameter of the nanoparticles was approximately 150-200 nm, whereas the peak absorption of the AuNFs was 684 nm. After the AuNFs were encapsulated by the silica shells, the plasmonic absorption peak of AuNFs@SiO2 and AuNFs@SiO2@mSiO2 exhibited a red shift to 718 nm. When exposed to an 808 nm NIR laser, these crystals showed an obvious photothermal conversion in the NIR region and a highly efficient release of DOX. Biocompatibility was assessed in vitro using Cell Counting Kit-8 assays, and the results showed that the nanocarriers induced no obvious cytotoxicity. This nanomaterial could be considered a new type of material that shows promising potential for photothermal-chemotherapy against malignant tumours, including those of oral cancers.

  15. Surface Modification of NiTi Alloy via Cathodic Plasma Electrolytic Deposition and its Effect on Ni Ion Release and Osteoblast Behaviors

    NASA Astrophysics Data System (ADS)

    Yan, Ying; Cai, Kaiyong; Yang, Weihu; Liu, Peng

    2013-07-01

    To reduce Ni ion release and improve biocompatibility of NiTi alloy, the cathodic plasma electrolytic deposition (CPED) technique was used to fabricate ceramic coating onto a NiTi alloy surface. The formation of a coating with a rough and micro-textured surface was confirmed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. An inductively coupled plasma mass spectrometry test showed that the formed coating significantly reduced the release of Ni ions from the NiTi alloy in simulated body fluid. The influence of CPED treated NiTi substrates on the biological behaviors of osteoblasts, including cell adhesion, cell viability, and osteogenic differentiation function (alkaline phosphatase), was investigated in vitro. Immunofluorescence staining of nuclei revealed that the CPED treated NiTi alloy was favorable for cell growth. Osteoblasts on CPED modified NiTi alloy showed greater cell viability than those for the native NiTi substrate after 4 and 7 days cultures. More importantly, osteoblasts cultured onto a modified NiTi sample displayed significantly higher differentiation levels of alkaline phosphatase. The results suggested that surface functionalization of NiTi alloy with ceramic coating via the CPED technique was beneficial for cell proliferation and differentiation. The approach presented here is useful for NiTi implants to enhance bone osseointegration and reduce Ni ion release in vitro.

  16. DNA nanotechnology-based composite-type gold nanoparticle-immunostimulatory DNA hydrogel for tumor photothermal immunotherapy.

    PubMed

    Yata, Tomoya; Takahashi, Yuki; Tan, Mengmeng; Nakatsuji, Hirotaka; Ohtsuki, Shozo; Murakami, Tatsuya; Imahori, Hiroshi; Umeki, Yuka; Shiomi, Tomoki; Takakura, Yoshinobu; Nishikawa, Makiya

    2017-11-01

    Success of tumor photothermal immunotherapy requires a system that induces heat stress in cancer cells and enhances strong anti-tumor immune responses. Here, we designed a composite-type immunostimulatory DNA hydrogel consisting of a hexapod-like structured DNA (hexapodna) with CpG sequences and gold nanoparticles. Mixing of the properly designed hexapodna and oligodeoxynucleotide-modified gold nanoparticles resulted in the formation of composite-type gold nanoparticle-DNA hydrogels. Laser irradiation of the hydrogel resulted in the release of hexapodna, which efficiently stimulated immune cells to release proinflammatory cytokines. Then, EG7-OVA tumor-bearing mice received an intratumoral injection of a gold nanoparticle-DNA hydrogel, followed by laser irradiation at 780 nm. This treatment increased the local temperature and the mRNA expression of heat shock protein 70 in the tumor tissue, increased tumor-associated antigen-specific IgG levels in the serum, and induced tumor-associated antigen-specific interferon-γ production from splenocytes. Moreover, the treatment significantly retarded the tumor growth and extended the survival of the tumor-bearing mice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Bioinspired systems for metal-ion sensing: new emissive peptide probes based on benzo[d]oxazole derivatives and their gold and silica nanoparticles.

    PubMed

    Oliveira, Elisabete; Genovese, Damiano; Juris, Riccardo; Zaccheroni, Nelsi; Capelo, José Luis; Raposo, M Manuela M; Costa, Susana P G; Prodi, Luca; Lodeiro, Carlos

    2011-09-19

    Seven new bioinspired chemosensors (2-4 and 7-10) based on fluorescent peptides were synthesized and characterized by elemental analysis, (1)H and (13)C NMR, melting point, matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS), and IR and UV-vis absorption and emission spectroscopy. The interaction with transition- and post-transition-metal ions (Cu(2+), Ni(2+), Ag(+), Zn(2+), Cd(2+), Hg(2+), Pb(2+), and Fe(3+)) has been explored by absorption and fluorescence emission spectroscopy and MALDI-TOF-MS. The reported fluorescent peptide systems, introducing biological molecules in the skeleton of the probes, enhance their sensitivity and confer them strong potential for applications in biological fields. Gold and silica nanoparticles functionalized with these peptides were also obtained. All nanoparticles were characterized by dynamic light scattering, transmission electron microscopy, and UV-vis absorption and fluorescence spectroscopy. Stable gold nanoparticles (diameter 2-10 nm) bearing ligands 1 and 4 were obtained by common reductive synthesis. Commercial silica nanoparticles were decorated at their surface using compounds 8-10, linked through a silane spacer. The same chemosensors were also taken into aqueous solutions through their dispersion in the outer layer of silica core/poly(ethylene glycol) shell nanoparticles. In both cases, these complex nanoarchitectures behaved as new sensitive materials for Ag(+) and Hg(2+) in water. The possibility of using these species in this solvent is particularly valuable because the impact on human health of heavy- and transition-metal-ion pollution is very severe, and all analytical and diagnostics investigations involve a water environment.

  18. Reduction of the "burst release" of copper ions from copper-based intrauterine devices by organic inhibitors.

    PubMed

    Alvarez, Florencia; Schilardi, Patricia L; de Mele, Monica Fernández Lorenzo

    2012-01-01

    The copper intrauterine device is a contraceptive method that is based on the release of copper ions from a copper wire. Immediately after insertion, the dissolution of copper in the uterine fluid is markedly higher ("burst release") than that necessary for contraception action, leading to a variety of harmful effects. Pretreatments with organic compounds [thiourea (TU) and purine (PU), 10(-4)-10(-2) M concentration range, 1- and 3-h immersion times] were tested. The dissolution of copper with and without pretreatments in TU and PU solutions was analyzed by conventional electrochemical techniques and surface analysis. Pretreatments in PU solutions reduced the initial corrosion rate of copper in simulated uterine solutions, with inhibitory efficiencies that depend on the PU concentration and on the immersion time assayed. Inhibitory efficiency values higher than 98% for pretreatments with ≥10(-3) M PU were found. Conversely, after TU pretreatments, a high copper release was measured. It was concluded that 10(-3) M PU pretreatment is a promising strategy able to reduce the "burst release" of copper and to ensure contraceptive action. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Protein coated gold nanoparticles as template for the directed synthesis of highly fluorescent gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhang, Lingyan; Han, Fei

    2018-04-01

    Bovine serum albumin (BSA) modified gold nanoparticles (AuNPs) was selected as template for the synthesis of AuNPs@gold nanoclusters (AuNCs) core/shell nanoparticles, in which BSA not only acted as dual functions agent for both anchoring and reducing Au3+ ions, but also was employed as a bridge between the AuNPs and AuNCs. Optical properties of AuNPs@AuNCs core/shell nanoparticles were studied using UV-visible and fluorescence spectroscopy. The prepared AuNPs@AuNCs core/shell nanoparticles exhibited sphere size uniformity with improved monodispersity, excellent fluorescence and fluorescent stability. Compared with AuNCs, AuNPs@AuNCs core/shell nanoparticles possessed large size and strong fluorescence intensity due to the effect of AuNPs as core. Moreover, the mechanism of the AuNPs induced fluorescence changes of the core/shell nanoparticles was first explored.

  20. A bio-image sensor for simultaneous detection of multi-neurotransmitters.

    PubMed

    Lee, You-Na; Okumura, Koichi; Horio, Tomoko; Iwata, Tatsuya; Takahashi, Kazuhiro; Hattori, Toshiaki; Sawada, Kazuaki

    2018-03-01

    We report here a new bio-image sensor for simultaneous detection of spatial and temporal distribution of multi-neurotransmitters. It consists of multiple enzyme-immobilized membranes on a 128 × 128 pixel array with read-out circuit. Apyrase and acetylcholinesterase (AChE), as selective elements, are used to recognize adenosine 5'-triphosphate (ATP) and acetylcholine (ACh), respectively. To enhance the spatial resolution, hydrogen ion (H + ) diffusion barrier layers are deposited on top of the bio-image sensor and demonstrated their prevention capability. The results are used to design the space among enzyme-immobilized pixels and the null H + sensor to minimize the undesired signal overlap by H + diffusion. Using this bio-image sensor, we can obtain H + diffusion-independent imaging of concentration gradients of ATP and ACh in real-time. The sensing characteristics, such as sensitivity and detection of limit, are determined experimentally. With the proposed bio-image sensor the possibility exists for customizable monitoring of the activities of various neurochemicals by using different kinds of proton-consuming or generating enzymes. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Past, Present, and Future Production of Bio-oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, Philip; Yu, Fei; Gajjela, Sanjeev

    Bio-oil is a liquid product produced by fast pyrol-ysis of biomass. The fast pyrolysis is performed by heating the biomass rapidly (2 sec) at temperatures ranging from 350 to 650 oC. The vapors produced by this rapid heating are then condensed to produce a dark brown water-based emulsion composed of frag-ments of the original hemicellulose, cellulose and lignin molecules contained in the biomass. Yields range from 60 to 75% based on the feedstock type and the pyrolysis reactor employed. The bio-oil pro-duced by this process has a number of negative prop-erties that are produced mainly by the high oxygen contentmore » (40 to 50%) contributed by that contained in water (25 to 30% of total mass) and oxygenated compounds. Each bio-oil contains hundreds of chemi-cal compounds. The chemical composition of bio-oil renders it a very recalcitrant chemical compound. To date, the difficulties in utilizing bio-oil have limited its commercial development to the production of liq-uid smoke as food flavoring. Practitioners have at-tempted to utilize raw bio-oil as a fuel; they have also applied many techniques to upgrade bio-oil to a fuel. Attempts to utilize raw bio-oil as a combustion engine fuel have resulted in engine or turbine dam-age; however, Stirling engines have been shown to successfully combust raw bio-oil without damage. Utilization of raw bio-oil as a boiler fuel has met with more success and an ASTM standard has recently been released describing bio-oil characteristics in relation to assigned fuel grades. However, commercialization has been slow to follow and no reports of distribution of these bio-oil boiler fuels have been reported. Co-feeding raw bio-oil with coal has been successfully performed but no current power generation facilities are following this practice. Upgrading of bio-oils to hydrocarbons via hydroprocessing is being performed by several organizations. Currently, limited catalyst life is the obstacle to commercialization of this tech

  2. Nano-crystalline hydroxyapatite bio-mineral for the treatment of strontium from aqueous solutions.

    PubMed

    Handley-Sidhu, Stephanie; Renshaw, Joanna C; Yong, Ping; Kerley, Robert; Macaskie, Lynne E

    2011-01-01

    Hydroxyapatites were analysed using electron microscopy, X-ray diffraction (XRD) and X-ray fluorescence (XRF) analysis. Examination of a bacterially produced hydroxyapatite (Bio-HA) by scanning electron microscopy showed agglomerated nano-sized particles; XRD analysis confirmed that the Bio-HA was hydroxyapatite, with an organic matter content of 7.6%; XRF analysis gave a Ca/P ratio of 1.55, also indicative of HA. The size of the Bio-HA crystals was calculated as ~25 nm from XRD data using the Scherrer equation, whereas Comm-HA powder size was measured as ≤ 50 μm. The nano-crystalline Bio-HA was ~7 times more efficient in removing Sr(2+) from synthetic groundwater than Comm-HA. Dissolution of HA as indicated by the release of phosphate into the solution phase was higher in the Comm-HA than the Bio-HA, indicating a more stable biomaterial which has a potential for the remediation of contaminated sites.

  3. Nanosilver coated orthodontic brackets: in vivo antibacterial properties and ion release.

    PubMed

    Metin-Gürsoy, Gamze; Taner, Lale; Akca, Gülçin

    2017-02-01

    Silver nanoparticles are currently utilized in the fields of dentistry. The aim of this study was to evaluate the antibacterial properties and ion release of nanosilver coated orthodontic brackets compared to conventional brackets. Nanosilver coating process was applied to standard orthodontic brackets placed on the mandibular incisors of Wistar Albino rats in the study group and conventional brackets in the control group. Dental plaque, mucosal vestibular smears, saliva, and blood samples were collected from rats at various days. The amounts of nanosilver ions in blood and saliva were measured and microbiological evaluation was made for Streptococcus mutans. For testing cariogenicity, all rats were sacrificed at the end of 75 days under anaesthesia. Teeth were stained using a caries indicator, then the caries ratio was assessed. Nanosilver coated orthodontic bracket favoured the inhibition of S.mutans on Day 30 and reduction of caries on the smooth surfaces. The nanosilver amounts in the saliva and serum samples were significantly higher in the study group on Day 7. It is suggested that nanosilver coated orthodontic brackets, as an antibacterial agent without patient compliance, could be helpful for the prevention of white spot lesions during fixed orthodontic treatment. © The Author 2016. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Zinc-sensitive MRI contrast agent detects differential release of Zn(II) ions from the healthy vs. malignant mouse prostate.

    PubMed

    Clavijo Jordan, M Veronica; Lo, Su-Tang; Chen, Shiuhwei; Preihs, Christian; Chirayil, Sara; Zhang, Shanrong; Kapur, Payal; Li, Wen-Hong; De Leon-Rodriguez, Luis M; Lubag, Angelo J M; Rofsky, Neil M; Sherry, A Dean

    2016-09-13

    Many secretory tissues release Zn(II) ions along with other molecules in response to external stimuli. Here we demonstrate that secretion of Zn(II) ions from normal, healthy prostate tissue is stimulated by glucose in fasted mice and that release of Zn(II) can be monitored by MRI. An ∼50% increase in water proton signal enhancement is observed in T1-weighted images of the healthy mouse prostate after infusion of a Gd-based Zn(II) sensor and an i.p. bolus of glucose. Release of Zn(II) from intracellular stores was validated in human epithelial prostate cells in vitro and in surgically exposed prostate tissue in vivo using a Zn(II)-sensitive fluorescent probe known to bind to the extracellular surface of cells. Given the known differences in intracellular Zn(II) stores in healthy versus malignant prostate tissues, the Zn(II) sensor was then evaluated in a transgenic adenocarcinoma of the mouse prostate (TRAMP) model in vivo. The agent proved successful in detecting small malignant lesions as early as 11 wk of age, making this noninvasive MR imaging method potentially useful for identifying prostate cancer in situations where it may be difficult to detect using current multiparametric MRI protocols.

  5. Effect of Mobile Phone Usage on Nickel Ions Release and pH of Saliva in Patients Undergoing Fixed Orthodontic Treatment

    PubMed Central

    Girme, Tejashree Suresh; Agrawal, Jiwanasha Manish; Agrawal, Manish Suresh; Fulari, Sangamesh Gurunath; Shetti, Shraddha Subhash; Kagi, Vishwal Ajith

    2017-01-01

    Introduction Hand held mobile phones are presently the most popular means of communication worldwide and have transformed our lives in many aspects. The widespread use of such devices have resulted in growing concerns regarding harmful effects of radiations emitted by them. This study was designed to evaluate the effects of mobile phone usage on nickel ion release as well as pH of saliva in patients with fixed orthodontic appliances. Aim To assess the level of nickel ions in saliva and pH of saliva in mobile phone users undergoing fixed orthodontic treatment using inductively coupled plasma atomic emission spectrometry. Materials and Methods A total of 42 healthy patients with fixed orthodontic appliance in mouth for a duration of six to nine months were selected for the study. They were divided into experimental group (n=21) consisting of mobile phone users and control group (n=21) of non mobile phone users. Saliva samples were collected from both the groups and nickel ion levels were measured using inductively coupled plasma-mass spectroscopy. The pH values were also assessed for both groups using pH meter. Unpaired t-test was used for the data analysis. Results Statistical analysis revealed that though the pH levels were reduced and the nickel ion levels were higher in the experimental group compared to the control group, the results were non significant. Conclusion Mobile phone usage may affect the pH of saliva and result in increased release of nickel ions in saliva of patients with fixed orthodontic appliances in the oral cavity. PMID:29207841

  6. Effect of Mobile Phone Usage on Nickel Ions Release and pH of Saliva in Patients Undergoing Fixed Orthodontic Treatment.

    PubMed

    Nanjannawar, Lalita Girish; Girme, Tejashree Suresh; Agrawal, Jiwanasha Manish; Agrawal, Manish Suresh; Fulari, Sangamesh Gurunath; Shetti, Shraddha Subhash; Kagi, Vishwal Ajith

    2017-09-01

    Hand held mobile phones are presently the most popular means of communication worldwide and have transformed our lives in many aspects. The widespread use of such devices have resulted in growing concerns regarding harmful effects of radiations emitted by them. This study was designed to evaluate the effects of mobile phone usage on nickel ion release as well as pH of saliva in patients with fixed orthodontic appliances. To assess the level of nickel ions in saliva and pH of saliva in mobile phone users undergoing fixed orthodontic treatment using inductively coupled plasma atomic emission spectrometry. A total of 42 healthy patients with fixed orthodontic appliance in mouth for a duration of six to nine months were selected for the study. They were divided into experimental group (n=21) consisting of mobile phone users and control group (n=21) of non mobile phone users. Saliva samples were collected from both the groups and nickel ion levels were measured using inductively coupled plasma-mass spectroscopy. The pH values were also assessed for both groups using pH meter. Unpaired t-test was used for the data analysis. Statistical analysis revealed that though the pH levels were reduced and the nickel ion levels were higher in the experimental group compared to the control group, the results were non significant. Mobile phone usage may affect the pH of saliva and result in increased release of nickel ions in saliva of patients with fixed orthodontic appliances in the oral cavity.

  7. Fabrication of Annealed Gold Nanostructures on Pre-Treated Glow-Discharge Cleaned Glasses and Their Used for Localized Surface Plasmon Resonance (LSPR) and Surface Enhanced Raman Spectroscopy (SERS) Detection of Adsorbed (Bio)molecules.

    PubMed

    Ionescu, Rodica Elena; Aybeke, Ece Neslihan; Bourillot, Eric; Lacroute, Yvon; Lesniewska, Eric; Adam, Pierre-Michel; Bijeon, Jean-Louis

    2017-01-26

    Metallic nanoparticles are considered as active supports in the development of specific chemical or biological biosensors. Well-organized nanoparticles can be prepared either through expensive (e.g., electron beam lithography) or inexpensive (e.g., thermal synthesis) approaches where different shapes of nanoparticles are easily obtained over large solid surfaces. Herein, the authors propose a low-cost thermal synthesis of active plasmonic nanostructures on thin gold layers modified glass supports after 1 h holding on a hot plate (~350 °C). The resulted annealed nanoparticles proved a good reproducibility of localized surface plasmon resonance (LSPR) and surface enhanced Raman spectroscopy (SERS) optical responses and where used for the detection of low concentrations of two model (bio)chemical molecules, namely the human cytochrome b5 (Cyt-b5) and trans -1,2-bis(4-pyridyl)ethylene (BPE).

  8. Labeling monocytes with gold nanoparticles to track their recruitment in atherosclerosis with computed tomography

    PubMed Central

    Chhour, Peter; Naha, Pratap C.; O’Neill, Sean M.; Litt, Harold I.; Reilly, Muredach P.; Ferrari, Victor A.; Cormode, David P.

    2016-01-01

    Monocytes are actively recruited from the circulation into developing atherosclerotic plaques. In the plaque, monocytes differentiate into macrophages and eventually form foam cells. Continued accumulation of foam cells can lead to plaque rupture and subsequent myocardial infarction. X-ray computed tomography (CT) is the best modality to image the coronary arteries non-invasively, therefore we have sought to track the accumulation of monocytes into atherosclerotic plaques using CT. Gold nanoparticles were synthesized and stabilized with a variety of ligands. Select formulations were incubated with an immortalized monocyte cell line in vitro and evaluated for cytotoxicity, effects on cytokine release, and cell uptake. These data identified a lead formulation, 11-MUDA capped gold nanoparticles, to test for labeling primary monocytes. The formulation did not the affect the viability or cytokine release of primary monocytes and was highly taken up by these cells. Gold labeled primary monocytes were injected into apolipoprotein E deficient mice kept on Western diet for 10 weeks. Imaging was done with a microCT scanner. A significant increase in attenuation was measured in the aorta of mice receiving the gold labeled cells as compared to control animals. Following the experiment, the biodistribution of gold was evaluated in major organs. Additionally, plaques were sectioned and examined with electron microscopy. The results showed that gold nanoparticles were present inside monocytes located within plaques. This study demonstrates the feasibility of using gold nanoparticles as effective cell labeling contrast agents for non-invasive imaging of monocyte accumulation within plaques with CT. PMID:26914700

  9. Labeling monocytes with gold nanoparticles to track their recruitment in atherosclerosis with computed tomography.

    PubMed

    Chhour, Peter; Naha, Pratap C; O'Neill, Sean M; Litt, Harold I; Reilly, Muredach P; Ferrari, Victor A; Cormode, David P

    2016-05-01

    Monocytes are actively recruited from the circulation into developing atherosclerotic plaques. In the plaque, monocytes differentiate into macrophages and eventually form foam cells. Continued accumulation of foam cells can lead to plaque rupture and subsequent myocardial infarction. X-ray computed tomography (CT) is the best modality to image the coronary arteries non-invasively, therefore we have sought to track the accumulation of monocytes into atherosclerotic plaques using CT. Gold nanoparticles were synthesized and stabilized with a variety of ligands. Select formulations were incubated with an immortalized monocyte cell line in vitro and evaluated for cytotoxicity, effects on cytokine release, and cell uptake. These data identified a lead formulation, 11-MUDA capped gold nanoparticles, to test for labeling primary monocytes. The formulation did not the affect the viability or cytokine release of primary monocytes and was highly taken up by these cells. Gold labeled primary monocytes were injected into apolipoprotein E deficient mice kept on Western diet for 10 weeks. Imaging was done with a microCT scanner. A significant increase in attenuation was measured in the aorta of mice receiving the gold labeled cells as compared to control animals. Following the experiment, the biodistribution of gold was evaluated in major organs. Additionally, plaques were sectioned and examined with electron microscopy. The results showed that gold nanoparticles were present inside monocytes located within plaques. This study demonstrates the feasibility of using gold nanoparticles as effective cell labeling contrast agents for non-invasive imaging of monocyte accumulation within plaques with CT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Functional mesoporous silica nanoparticles for bio-imaging applications.

    PubMed

    Cha, Bong Geun; Kim, Jaeyun

    2018-03-22

    Biomedical investigations using mesoporous silica nanoparticles (MSNs) have received significant attention because of their unique properties including controllable mesoporous structure, high specific surface area, large pore volume, and tunable particle size. These unique features make MSNs suitable for simultaneous diagnosis and therapy with unique advantages to encapsulate and load a variety of therapeutic agents, deliver these agents to the desired location, and release the drugs in a controlled manner. Among various clinical areas, nanomaterials-based bio-imaging techniques have advanced rapidly with the development of diverse functional nanoparticles. Due to the unique features of MSNs, an imaging agent supported by MSNs can be a promising system for developing targeted bio-imaging contrast agents with high structural stability and enhanced functionality that enable imaging of various modalities. Here, we review the recent achievements on the development of functional MSNs for bio-imaging applications, including optical imaging, magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), ultrasound imaging, and multimodal imaging for early diagnosis. With further improvement in noninvasive bio-imaging techniques, the MSN-supported imaging agent systems are expected to contribute to clinical applications in the future. This article is categorized under: Diagnostic Tools > In vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology. © 2018 Wiley Periodicals, Inc.

  11. Biological synthesis of triangular gold nanoprisms

    NASA Astrophysics Data System (ADS)

    Shankar, S. Shiv; Rai, Akhilesh; Ankamwar, Balaprasad; Singh, Amit; Ahmad, Absar; Sastry, Murali

    2004-07-01

    The optoelectronic and physicochemical properties of nanoscale matter are a strong function of particle size. Nanoparticle shape also contributes significantly to modulating their electronic properties. Several shapes ranging from rods to wires to plates to teardrop structures may be obtained by chemical methods; triangular nanoparticles have been synthesized by using a seeded growth process. Here, we report the discovery that the extract from the lemongrass plant, when reacted with aqueous chloroaurate ions, yields a high percentage of thin, flat, single-crystalline gold nanotriangles. The nanotriangles seem to grow by a process involving rapid reduction, assembly and room-temperature sintering of 'liquid-like' spherical gold nanoparticles. The anisotropy in nanoparticle shape results in large near-infrared absorption by the particles, and highly anisotropic electron transport in films of the nanotriangles.

  12. simBio: a Java package for the development of detailed cell models.

    PubMed

    Sarai, Nobuaki; Matsuoka, Satoshi; Noma, Akinori

    2006-01-01

    Quantitative dynamic computer models, which integrate a variety of molecular functions into a cell model, provide a powerful tool to create and test working hypotheses. We have developed a new modeling tool, the simBio package (freely available from ), which can be used for constructing cell models, such as cardiac cells (the Kyoto model from Matsuoka et al., 2003, 2004 a, b, the LRd model from Faber and Rudy, 2000, and the Noble 98 model from Noble et al., 1998), epithelial cells (Strieter et al., 1990) and pancreatic beta cells (Magnus and Keizer, 1998). The simBio package is written in Java, uses XML and can solve ordinary differential equations. In an attempt to mimic biological functional structures, a cell model is, in simBio, composed of independent functional modules called Reactors, such as ion channels and the sarcoplasmic reticulum, and dynamic variables called Nodes, such as ion concentrations. The interactions between Reactors and Nodes are described by the graph theory and the resulting graph represents a blueprint of an intricate cellular system. Reactors are prepared in a hierarchical order, in analogy to the biological classification. Each Reactor can be composed or improved independently, and can easily be reused for different models. This way of building models, through the combination of various modules, is enabled through the use of object-oriented programming concepts. Thus, simBio is a straightforward system for the creation of a variety of cell models on a common database of functional modules.

  13. Bio-prospecting of distillery yeasts as bio-control and bio-remediation agents.

    PubMed

    Ubeda, Juan F; Maldonado, María; Briones, Ana I; Francisco, J Fernández; González, Francisco J

    2014-05-01

    This work constitutes a preliminary study in which the capacity of non-Saccharomyces yeasts isolated from ancient distilleries as bio-control agents against moulds and in the treatment of waste waters contaminated by heavy metals-i.e. bio-remediation-is shown. In the first control assays, antagonist effect between non-Saccharomyces yeasts, their extracts and supernatants against some moulds, analysing the plausible (not exhaustive) involved factors were qualitatively verified. In addition, two enzymatic degrading properties of cell wall plant polymers, quitinolitic and pectinolitic, were screened. Finally, their use as agents of bio-remediation of three heavy metals (cadmium, chromium and lead) was analysed semi-quantitatively. The results showed that all isolates belonging to Pichia species effectively inhibited all moulds assayed. Moreover, P. kudriavzevii is a good candidate for both bio-control and bio-remediation because it inhibited moulds and accumulated the major proportion of the three tested metals.

  14. Notes on dumping gold beam in the AGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, C.J.; Ahrens, L.; Thieberger, P.

    2010-08-01

    Localized losses of gold beam in the AGS during RHIC Run 8 produced vacuum leaks which required the replacement of several vacuum chambers. A review of what happened and why was given by Leif Ahrens at the Run 8 Retreat. The following notes trace the subsequent development of clean dumping of gold beam on the beam dump in the J10 straight. The novel idea of stripping Au77+ ions in order to put them directly into the upstream face of the dump was introduced by Leif Ahrens and developed by all three of us. George Mahler made the actual stripping devicemore » and Dave Gassner developed its control. Leif Ahrens successfully commissioned the device with gold beam during Run 10. The reader may find it helpful to first view the figures herein and then refer to the text for details.« less

  15. Material and energy recovery in integrated waste management systems: an innovative approach for the characterization of the gaseous emissions from residual MSW bio-drying.

    PubMed

    Ragazzi, M; Rada, E C; Antolini, D

    2011-01-01

    In the sector of residual municipal solid waste management an increasing attention is put towards the role of biological treatments like bio-drying and bio-stabilization in order to decrease the need of landfilling volumes. The literature shows a lack of information concerning the emission factor of pollutants released from these processes. The available data are generally spot characterizations of concentration and air flow-rate that are used together in order to assess the emission factors. This approach caused significant differences among the available data as the release of pollutants is not steady. This paper belongs to a group of six papers concerning a research on material and energy recovery in integrated waste management systems, developed by a network of five universities. The contribution of the University of Trento, focuses on the bio-drying process with the following targets: (a) developing an innovative low cost method of sampling/measurement able to take into account the dynamics of release of pollutants; (b) checking the efficiency of a bio-filter; (c) verifying the variability of generation of some pollutants; (d) generating emission factors. The research was developed using a bio-drying pilot plant. As a treatment of the process air, the bio-reactor was coupled with a bio-filter. The emissions were characterized using an original approach based on the adoption of two measurement chambers suitable for hosting passive samplers. The passive samplers allowed the characterization of VOCs, N(2)O, NH(3) and H(2)S. A bio-chemical model, useful for energy and mass balances, supported the interpretation of the presented bio-drying run. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Removal of Lead Hydroxides Complexes from Solutions Formed in Silver/Gold: Cyanidation Process

    NASA Astrophysics Data System (ADS)

    Parga, José R.; Martinez, Raul Flores; Moreno, Hector; Gomes, Andrew Jewel; Cocke, David L.

    2014-04-01

    The presence of lead hydroxides in "pregnant cyanide solution" decreases the quality of the Dore obtained in the recovery processes of gold and silver, so it is convenient to remove them. The adsorbent capacity of the low cost cow bone powder was investigated for the removal of lead ions from a solution of lead hydroxide complexes at different initial metal ion concentrations (10 to 50 mg/L), and reaction time. Experiments were carried out in batches. The maximum sorption capacity of lead determined by the Langmuir model was found to be 126.58 mg/g, and the separation factor R L was between 0 and 1, indicating a significant affinity of bone for lead. Experimental data follow pseudo-second order kinetics suggesting chemisorption. It is concluded that cow bone powder can be successfully used for the removal of lead ions, and improves the quality of the silver-gold cyanides precipitate.

  17. Seeded Growth of Monodisperse Gold Nanorods Using Bromide-Free Surfactant Mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, XC; Gao, YZ; Chen, J

    We demonstrate for the first time that monodisperse gold nanorods (NRs) with broadly tunable dimensions and longitudinal surface plasmon resonances can be synthesized using a bromide-free surfactant mixture composed of alkyltrimethylammonium chloride and sodium oleate. It is found that uniform gold NRs can be obtained even with an iodide concentration approaching 100 mu M in the growth solution. In contrast to conventional wisdom, our results provide conclusive evidence that neither bromide as the surfactant counterion nor a high concentration of bromide ions in the growth solution is essential for gold NR formation. Correlated electron microscopy study of three-dimensional structures ofmore » gold NRs reveals a previously unprecedented octagonal prismatic structure enclosed predominantly by high index {310} crystal planes. These findings should have profound implications for a comprehensive mechanistic understanding of seeded growth of anisotropic metal nanocrystals.« less

  18. Implementing biological logic gates using gold nanoparticles conjugated to fluorophores

    NASA Astrophysics Data System (ADS)

    Barnoy, Eran A.; Popovtzer, Rachela; Fixler, Dror

    2018-02-01

    We describe recent research in which we explored biologically relevant logic gates using gold nanoparticles (GNPs) conjugated to fluorophores and tracing the results remotely by time-domain fluorescence lifetime imaging microscopy (FLIM). GNPs have a well-known effect on nearby fluorophores in terms of their fluorescence intensity (FI - increase or decrease) as well as fluorescence lifetime (FLT). We have designed a few bio-switch systems in which the FLIMdetected fluorescence varies after biologically relevant stimulation. Some of our tools include fluorescein diacetate (FDA) which can be activated by either esterases or pH, peptide chains cleavable by caspase 3, and the polymer polyacrylic acid which varies in size based on surrounding pH. After conjugating GNPs to chosen fluorophores, we have successfully demonstrated the logic gates of NOT, AND, OR, NAND, NOR, and XOR by imaging different stages of activation. These logic gates have been demonstrated both in solutions as well as within cultured cells, thereby possibly opening the door for nanoparticulate in vivo smart detection. While these initial probes are mainly tools for intelligent detection systems, they lay the foundation for logic gates functioning in conjunction so as to lead to a form of in vivo biological computing, where the system would be able to release proper treatment options in specific situations without external influence.

  19. VUV-Photoionization CES-Detector of Volatile Bio-Marker Molecules

    NASA Astrophysics Data System (ADS)

    Mustafaev, Alexander; Luneva, Nataliya; Panasyuk, George; Timofeev, Nikolay; Tsyganov, Alexander

    2014-10-01

    Energy spectra of characteristic electrons released via photoionization by vacuum ultraviolet (VUV) radiation of admixture molecules in the atmospheric air, not using traditional evacuated energy analyzers, can be determined by Collisional Electron Spectroscopy (CES) method. Some details of CES-photoionization sensor were described in. Our further developments are devoted to application of CES-detectors for a mobile continuous bio-chemical diagnostics. It is known that ``on breathing'' it is possible to find out volatile bio-marker molecules of a lot of diseases (lung cancer, tuberculosis, COPD, asthma, diabetes, kidney disease, mammary cancer, Crohn's disease, ulcerative colitis, etc). But today's weighty and expensive laboratory equipment (like GC MS) provides observation of these bio-markers only during patients' visits to a doctor. In this way we study pocket-size CES-sensor with micro-plasma krypton resonance radiation source (10.6 eV photons) for the photoionization detection of metabolic ammonia, ethanol, acetone and pentane molecules directly in atmospheric air.

  20. Observation and theory of the barium releases from the CRRES satellite

    NASA Technical Reports Server (NTRS)

    Bernhardt, P. A.; Huba, J. D.; Scales, W. A.; Wescott, E. M.; Stenbaek-Nielsen, H. C.

    1992-01-01

    The relationship between releases of barium from the NASA Combined Release and Radiation Effects Satellite (CRRES) and enhanced auroral activity is discussed with reference to observational data. Barium releases were conducted at a variety of altitudes and injection velocities, and plasma irregularities are reported as a result of the interactions. Auroral activity increased within 5 min of each release, and references are made to the effects on diamagnetic cavities, bulk ion motion, and stimulated electron and ion precipitation. Artificially created structured diamagnetic cavities are noted for each release, plasma waves are generated by the high-speed ion clouds, and enhanced ionization is found in the critical ionization-velocity process. Barium releases are effective in stimulating electron precipitation, and the observed irregularities are related to cycloid bunching of the initial ion distributions.