Science.gov

Sample records for bio-released gold ions

  1. Gold ions bio-released from metallic gold particles reduce inflammation and apoptosis and increase the regenerative responses in focal brain injury.

    PubMed

    Larsen, Agnete; Kolind, Kristian; Pedersen, Dan Sonne; Doering, Peter; Pedersen, Mie Ostergaard; Danscher, Gorm; Penkowa, Milena; Stoltenberg, Meredin

    2008-10-01

    Traumatic brain injury results in loss of neurons caused as much by the resulting neuroinflammation as by the injury. Gold salts are known to be immunosuppressive, but their use are limited by nephrotoxicity. However, as we have proven that implants of pure metallic gold release gold ions which do not spread in the body, but are taken up by cells near the implant, we hypothesize that metallic gold could reduce local neuroinflammation in a safe way. Bio-liberation, or dissolucytosis, of gold ions from metallic gold surfaces requires the presence of disolycytes i.e. macrophages and the process is limited by their number and activity. We injected 20-45 mum gold particles into the neocortex of mice before generating a cryo-injury. Comparing gold-treated and untreated cryolesions, the release of gold reduced microgliosis and neuronal apoptosis accompanied by a transient astrogliosis and an increased neural stem cell response. We conclude that bio-liberated gold ions possess pronounced anti-inflammatory and neuron-protective capacities in the brain and suggest that metallic gold has clinical potentials. Intra-cerebral application of metallic gold as a pharmaceutical source of gold ions represents a completely new medical concept that bypasses the blood-brain-barrier and allows direct drug delivery to inflamed brain tissue.

  2. Phage based green chemistry for gold ion reduction and gold retrieval.

    PubMed

    Setyawati, Magdiel I; Xie, Jianping; Leong, David T

    2014-01-22

    The gold mining industry has taken its toll on the environment, triggering the development of more environmentally benign processes to alleviate the waste load release. Here, we demonstrate the use of bacteriophages (phages) for biosorption and bioreduction of gold ions from aqueous solution, which potentially can be applied to remediate gold ions from gold mining waste effluent. Phage has shown a remarkably efficient sorption of gold ions with a maximum gold adsorption capacity of 571 mg gold/g dry weight phage. The product of this phage mediated process is gold nanocrystals with the size of 30-630 nm. Biosorption and bioreduction processes are mediated by the ionic and covalent interaction between gold ions and the reducing groups on the phage protein coat. The strategy offers a simple, ecofriendly and feasible option to recover of gold ions to form readily recoverable products of gold nanoparticles within 24 h. PMID:24359519

  3. Phage based green chemistry for gold ion reduction and gold retrieval.

    PubMed

    Setyawati, Magdiel I; Xie, Jianping; Leong, David T

    2014-01-22

    The gold mining industry has taken its toll on the environment, triggering the development of more environmentally benign processes to alleviate the waste load release. Here, we demonstrate the use of bacteriophages (phages) for biosorption and bioreduction of gold ions from aqueous solution, which potentially can be applied to remediate gold ions from gold mining waste effluent. Phage has shown a remarkably efficient sorption of gold ions with a maximum gold adsorption capacity of 571 mg gold/g dry weight phage. The product of this phage mediated process is gold nanocrystals with the size of 30-630 nm. Biosorption and bioreduction processes are mediated by the ionic and covalent interaction between gold ions and the reducing groups on the phage protein coat. The strategy offers a simple, ecofriendly and feasible option to recover of gold ions to form readily recoverable products of gold nanoparticles within 24 h.

  4. Synthesis of gold structures by gold-binding peptide governed by concentration of gold ion and peptide.

    PubMed

    Kim, Jungok; Kim, Dong-Hun; Lee, Sylvia J; Rheem, Youngwoo; Myung, Nosang V; Hur, Hor-Gil

    2016-08-01

    Although biological synthesis methods for the production of gold structures by microorganisms, plant extracts, proteins, and peptide have recently been introduced, there have been few reports pertaining to controlling their size and morphology. The gold ion and peptide concentrations affected on the size and uniformity of gold plates by a gold-binding peptide Midas-11. The higher concentration of gold ions produced a larger size of gold structures reached 125.5 μm, but an increased amount of Midas-11 produced a smaller size of gold platelets and increased the yield percentage of polygonal gold particles rather than platelets. The mechanisms governing factors controlling the production of gold structures were primarily related to nucleation and growth. These results indicate that the synthesis of gold architectures can be controlled by newly isolated and substituted peptides under different reaction conditions. PMID:27108675

  5. Synthesis of gold structures by gold-binding peptide governed by concentration of gold ion and peptide.

    PubMed

    Kim, Jungok; Kim, Dong-Hun; Lee, Sylvia J; Rheem, Youngwoo; Myung, Nosang V; Hur, Hor-Gil

    2016-08-01

    Although biological synthesis methods for the production of gold structures by microorganisms, plant extracts, proteins, and peptide have recently been introduced, there have been few reports pertaining to controlling their size and morphology. The gold ion and peptide concentrations affected on the size and uniformity of gold plates by a gold-binding peptide Midas-11. The higher concentration of gold ions produced a larger size of gold structures reached 125.5 μm, but an increased amount of Midas-11 produced a smaller size of gold platelets and increased the yield percentage of polygonal gold particles rather than platelets. The mechanisms governing factors controlling the production of gold structures were primarily related to nucleation and growth. These results indicate that the synthesis of gold architectures can be controlled by newly isolated and substituted peptides under different reaction conditions.

  6. Fabrication of gold microstructures using negative photoresists doped with gold ions through two-photon excitation.

    PubMed

    Nakamura, Ryotaro; Kinashi, Kenji; Sakai, Wataru; Tsutsumi, Naoto

    2016-06-22

    The fabrication of gold microstructures was investigated using a mixture of SU-8 and gold ions using two-photon excitation induced by a femtosecond laser. Energy dispersive X-ray spectrometry, micro-X-ray diffraction and X-ray photoelectron spectroscopy were performed to analyse the resulting microstructures. Electrical conductivity was also measured. Elemental analysis showed that the fabricated structures consisted of triangular, reduced gold crystals and small amounts of cross-linked SU-8. The conductivity of the fabricated structures was four orders of magnitude lower than that of pure gold because of the cross-linked SU-8 present in the material.

  7. Ion plated gold films: Properties, tribological behavior and performance

    NASA Astrophysics Data System (ADS)

    Spalvins, Talivaldis

    The glow discharge energizing favorably modifies and controls the coating/substrate adherence and the nucleation and growth sequence of ion plated gold films. As a result the adherence, coherence, internal stresses, and morphology of the films are significantly improved. Gold ion plated films because of their graded coating/substrate interface and fine uniform densely packed microstructure not only improve the tribological properties but also induce a surface strengthening effect which improves the mechanical properties such as yield, tensile, and fatigue strength. Consequently significant improvements in the tribological performance of ion plated gold films as compared to vapor deposited gold films are shown in terms of decreased friction/wear and prolonged endurance life.

  8. Ion plated gold films: Properties, tribological behavior and performance

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis

    1987-01-01

    The glow discharge energizing favorably modifies and controls the coating/substrate adherence and the nucleation and growth sequence of ion plated gold films. As a result the adherence, coherence, internal stresses, and morphology of the films are significantly improved. Gold ion plated films because of their graded coating/substrate interface and fine uniform densely packed microstructure not only improve the tribological properties but also induce a surface strengthening effect which improves the mechanical properties such as yield, tensile, and fatigue strength. Consequently significant improvements in the tribological performance of ion plated gold films as compared to vapor deposited gold films are shown in terms of decreased friction/wear and prolonged endurance life.

  9. Plastic flow induced by single ion impacts on gold

    SciTech Connect

    Birtcher, R.C.; Donnelly, S.E.

    1996-12-01

    In situ TEM was used to follow RT irradiation of thinned bulk and 62nm thick gold films with Xe ions at 50-400 keV. Energy spikes from single ion impacts give rise to surface craters and holes which exist until annihilated by subsequent ion impacts. Video recording provided details with a time resolution of 33 ms. Craters were produced on the irradiated surface at all ion energies and on the opposite surface when the ions had enough energy to traverse the specimen. Crater sizes were as large as 12nm for the higher energy irradiations. On average, about 6% of impinging ions result in craters. A single 200 keV Xe ion may produce a hole in thin gold foils. Hole formation involves the movement by plastic flow of massive amounts of material, on the order of tens of thousand Au atoms per ion impact. Individual ion impacts also result in a filling of both holes and craters as well as a thickening of the gold foil. Change in morphology during irradiation is attributed to a localized, thermal-spike induced melting, coupled with plastic flow under the influence of surface forces.

  10. Ion beam analysis of gold jewelry

    NASA Astrophysics Data System (ADS)

    Demortier, Guy

    1992-02-01

    PIXE milliprobe in a nonvacuum assembly has been proven to be a very rapid and accurate method for the elemental analysis of gold jewelry artefacts. Using protons whose energy is lower than 3 MeV, it is possible to obtain, in a few minutes, the actual composition (copper, iron, gold, silver, etc.) of narrow parts of artefacts, without any sampling, even at microscopic level. Most of the studies of our group in this field concern solders on these jewelry items. Narrow regions of gold artefacts have also been studied with a PIXE microprobe. They were then irradiated in vacuum. Nuclear reaction analyses induced by 2 MeV deuterons are also performed to identify the presence of light elements and, particularly O, N and S. Traces of these elements are of primary importance to characterize the origin of the ores used in various workmanships. Interferences of X-ray lines of Au with those of traces of Cu and Zn are solved using a method of selective excitation of X-rays of these elements. Analytical results have been interpreted in order to understand the workmanship of goldsmiths from the Antiquity. Fakes and repairs (or ornaments added to original artefacts) may also be identified. The ancient recipes are improved to give new soldering procedures at low temperature.

  11. The spectral lines of highly charged gold ions

    NASA Astrophysics Data System (ADS)

    Hu, Feng; Yang, Jiamin; Zhang, Jiyan; Jiang, Gang

    2015-02-01

    Extreme ultraviolet spectra of highly charged gold were produced with an electron beam ion trap at the University of Electro-Communications, Tokyo. The X-ray spectra (3240-3360 eV) of Au with well-defined maximum charge states ranging from Cu- to Se-like ions were recorded. Guided by configuration interaction calculations, the strongest 3d-5f transitions have been well defined.

  12. L-shell ionization of gold by nitrogen ion impact

    SciTech Connect

    Palinkas, J.; Bauer, C.; Brankoff, K.; Grambole, D.; Kalman, Gy.; Sarkadi, L.; Schlenk, B.; Torok, I.

    1983-04-01

    Measuring the angular distributions and the absolute intensities of the L x-ray lines of gold at 2.4-18.2 MeV nitrogen ion impact, the absolute subshell ionization cross-sections and the alignment parameter of the L/sub 3/-subshell have been determined and compared to the theoretical results.

  13. Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar.

    PubMed

    Zhai, Guangshu; Walters, Katherine S; Peate, David W; Alvarez, Pedro J J; Schnoor, Jerald L

    2014-02-11

    Poplar plants (Populus deltoides × nigra, DN-34) were used as a model to explore vegetative uptake of commercially available gold nanoparticles (AuNPs) and their subsequent translocation and transport into plant cells. AuNPs were directly taken up and translocated from hydroponic solution to poplar roots, stems and leaves. Total gold concentrations in leaves of plants treated with 15, 25 and 50 nm AuNPs at exposure concentrations of 498±50.5, 247±94.5 and 263±157 ng/mL in solutions were: 0.023±0.006, 0.0218±0.004 and 0.005±0.0003 µg/g dry weight, respectively, which accounted for 0.05, 0.10 and 0.03%, respectively, of the total gold mass added. The presence of total gold in plant tissues was measured by inductively coupled plasma mass spectrometry, while AuNPs were observed by transmission electron microscopy in plant tissues. In solution, AuNPs were distinguished from Au(III) ions by membrane separation and centrifugation. AuNPs behaved conservatively inside the plants and were not dissolved into gold ions. On the other hand, Au(III) ions were taken up and reduced into AuNPs inside whole plants. AuNPs were observed in the cytoplasm and various organelles of root and leaf cells. A distinct change in color from yellow to pink was observed as Au(III) ions were reduced and precipitated in hydroponic solution. The accumulation of AuNPs in the plasmodesma of the phloem complex in root cells clearly suggests ease of transport between cells and translocation throughout the whole plant, inferring the potential for entry and transfer in food webs.

  14. Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar.

    PubMed

    Zhai, Guangshu; Walters, Katherine S; Peate, David W; Alvarez, Pedro J J; Schnoor, Jerald L

    2014-02-11

    Poplar plants (Populus deltoides × nigra, DN-34) were used as a model to explore vegetative uptake of commercially available gold nanoparticles (AuNPs) and their subsequent translocation and transport into plant cells. AuNPs were directly taken up and translocated from hydroponic solution to poplar roots, stems and leaves. Total gold concentrations in leaves of plants treated with 15, 25 and 50 nm AuNPs at exposure concentrations of 498±50.5, 247±94.5 and 263±157 ng/mL in solutions were: 0.023±0.006, 0.0218±0.004 and 0.005±0.0003 µg/g dry weight, respectively, which accounted for 0.05, 0.10 and 0.03%, respectively, of the total gold mass added. The presence of total gold in plant tissues was measured by inductively coupled plasma mass spectrometry, while AuNPs were observed by transmission electron microscopy in plant tissues. In solution, AuNPs were distinguished from Au(III) ions by membrane separation and centrifugation. AuNPs behaved conservatively inside the plants and were not dissolved into gold ions. On the other hand, Au(III) ions were taken up and reduced into AuNPs inside whole plants. AuNPs were observed in the cytoplasm and various organelles of root and leaf cells. A distinct change in color from yellow to pink was observed as Au(III) ions were reduced and precipitated in hydroponic solution. The accumulation of AuNPs in the plasmodesma of the phloem complex in root cells clearly suggests ease of transport between cells and translocation throughout the whole plant, inferring the potential for entry and transfer in food webs. PMID:25386566

  15. Ion beam lithography with gold and silicon ions

    NASA Astrophysics Data System (ADS)

    Seniutinas, Gediminas; Balčytis, Armandas; Nishijima, Yoshiaki; Nadzeyka, Achim; Bauerdick, Sven; Juodkazis, Saulius

    2016-04-01

    Different ion species deliver a different material sputtering yield and implantation depth, thus enabling focused ion beam (FIB) fabrication for diverse applications. Using newly developed FIB milling with double charged hbox {Au}^{2+} and hbox {Si}^{2+} ions, fabrication has been carried out on Au-sputtered films to define arrays of densely packed nanoparticles supporting optical extinction peaks at visible-IR wavelengths determined by the size, shape, and proximity of nanoparticles. Results are qualitatively compared with hbox {Ga}+ milling. A possibility to use such ion implantation to tailor the etching rate of silicon is also demonstrated.

  16. Energy loss of coasting gold ions and deuterons in RHIC.

    SciTech Connect

    Abreu,N.; Blaskiewicz, M.; Brown, K.A.; Butler, J.J.; FischW; Harvey, M.; Tepikian, S.

    2008-06-23

    The total energy loss of coasting gold ion beams was measured at RHIC at two energies, corresponding to a gamma of 75.2 and 107.4. We describe the experiment and observations and compare the measured total energy loss with expectations from ionization losses at the residual gas, the energy loss due to impedance and synchrotron radiation. We find that the measured energy losses are below what is expected from free space synchrotron radiation. We believe that this shows evidence for suppression of synchrotron radiation which is cut off at long wavelength by the presence of the conducting beam pipe.

  17. Effects of chloride and silver ions on gold nanorod formation

    NASA Astrophysics Data System (ADS)

    Ock Park, Jin; Cho, So-Hye; Jeong, Dae-Yong; Kong, Young-Min; Lee, Seung Yong

    2015-01-01

    The ability to tune the longitudinal localized surface plasmon resonance of gold nanorods (AuNRs) via simple modification of their aspect ratio is a large contributing factor to their widespread use across multiple fields. An understanding of the synthesis conditions that affect the aspect ratio and yield of AuNRs is therefore of utmost importance. From this perspective, we take a systematic approach in investigating the effect of the following conditions on the seed-mediated formation of AuNRs: the addition of chloride or silver ions, and the use of a hexadecyltrimethylammonium bromide (CTAB) source with different levels of effectiveness on controlling the shape of growing AuNRs.

  18. Effect of gold ion concentration on size and properties of gold nanoparticles in TritonX-100 based inverse microemulsions

    NASA Astrophysics Data System (ADS)

    Ahmad, Tokeer; Wani, Irshad A.; Ahmed, Jahangeer; Al-Hartomy, Omar A.

    2014-04-01

    Gold nanoparticles have been prepared successfully using TritonX-100 inverse microemulsion at different concentrations of HAuCl4 (0.1, 0.05, 0.04, 0.03, 0.02 and 0.01 M). We have studied the effect of gold ion concentration on the particle size, morphology, surface area and optical properties of the gold nanoparticles. The gold nanoparticles were characterized by X-ray diffraction, transmission electron microscopy, UV-Visible spectroscopy and Brunauer-Emmett-Teller surface area analysis. X-ray diffraction studies show the monophasic nature of the gold nanoparticles. TritonX-100 stabilized gold nanoparticles were appeared to be agglomerated at higher concentrations (0.1 and 0.05 M) of Au3+ with an average grain size of 60 and 50 nm, respectively. Monodisperse and uniform gold nanoparticles with well-defined morphologies of an average grain size of 15 and 25 nm were obtained at lower concentrations (0.01 and 0.02 M). UV-Visible spectroscopy shows the characteristic surface plasmon resonance peak ~540 nm along with the peaks at shorter and longer wavelengths may be due to the higher order plasmon resonance of the gold nanoparticles. The surface areas of the gold nanoparticles were found to be in the range of 5.8-107 m2/g which were well in agreement with the electron microscopic studies.

  19. Effect of gold ion concentration on size and properties of gold nanoparticles in TritonX-100 based inverse microemulsions

    NASA Astrophysics Data System (ADS)

    Ahmad, Tokeer; Wani, Irshad A.; Ahmed, Jahangeer; Al-Hartomy, Omar A.

    2013-04-01

    Gold nanoparticles have been prepared successfully using TritonX-100 inverse microemulsion at different concentrations of HAuCl4 (0.1, 0.05, 0.04, 0.03, 0.02 and 0.01 M). We have studied the effect of gold ion concentration on the particle size, morphology, surface area and optical properties of the gold nanoparticles. The gold nanoparticles were characterized by X-ray diffraction, transmission electron microscopy, UV-Visible spectroscopy and Brunauer-Emmett-Teller surface area analysis. X-ray diffraction studies show the monophasic nature of the gold nanoparticles. TritonX-100 stabilized gold nanoparticles were appeared to be agglomerated at higher concentrations (0.1 and 0.05 M) of Au3+ with an average grain size of 60 and 50 nm, respectively. Monodisperse and uniform gold nanoparticles with well-defined morphologies of an average grain size of 15 and 25 nm were obtained at lower concentrations (0.01 and 0.02 M). UV-Visible spectroscopy shows the characteristic surface plasmon resonance peak ~540 nm along with the peaks at shorter and longer wavelengths may be due to the higher order plasmon resonance of the gold nanoparticles. The surface areas of the gold nanoparticles were found to be in the range of 5.8-107 m2/g which were well in agreement with the electron microscopic studies.

  20. Gold nanoparticle formation in diamond-like carbon using two different methods: Gold ion implantation and co-deposition of gold and carbon

    SciTech Connect

    Salvadori, M. C.; Teixeira, F. S.; Araujo, W. W. R.; Sgubin, L. G.; Cattani, M.; Spirin, R. E.; Brown, I. G.

    2012-10-01

    We describe work in which gold nanoparticles were formed in diamond-like carbon (DLC), thereby generating a Au-DLC nanocomposite. A high-quality, hydrogen-free DLC thin film was formed by filtered vacuum arc plasma deposition, into which gold nanoparticles were introduced using two different methods. The first method was gold ion implantation into the DLC film at a number of decreasing ion energies, distributing the gold over a controllable depth range within the DLC. The second method was co-deposition of gold and carbon, using two separate vacuum arc plasma guns with suitably interleaved repetitive pulsing. Transmission electron microscope images show that the size of the gold nanoparticles obtained by ion implantation is 3-5 nm. For the Au-DLC composite obtained by co-deposition, there were two different nanoparticle sizes, most about 2 nm with some 6-7 nm. Raman spectroscopy indicates that the implanted sample contains a smaller fraction of sp{sup 3} bonding for the DLC, demonstrating that some sp{sup 3} bonds are destroyed by the gold implantation.

  1. Morphology of gold and copper ion-plated coatings

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1978-01-01

    Copper and gold films (0.2 to 2 microns thick) were ion plated onto polished 304-stainless-steel, glass, mica surfaces. These coatings were examined by SEM for defects in their morphological growth. Three types of defects were distinguished: nodular growth, abnormal or runaway growth, and spits. The cause for each type of defect was investigated. Nodular growth is due to inherent substrate microdefects, abnormal or runaway growth is due to external surface inclusions, and spits are due to nonuniform evaporation (ejection of droplets). All these defects induce stresses and produce porosity in the coatings and thus weaken their mechanical properties. During surface rubbing, large nodules are pulled out, leaving vacancies in the coatings.

  2. Surface enhanced Raman scattering of amino acids assisted by gold nanoparticles and Gd(3+) ions.

    PubMed

    López-Neira, Juan Pablo; Galicia-Hernández, José Mario; Reyes-Coronado, Alejandro; Pérez, Elías; Castillo-Rivera, Francisco

    2015-05-01

    The surface enhanced raman scattering (SERS) signal from the l-tyrosine (tyr) molecule adsorbed on gold nanoparticles (Au-tyr) is compared with the SERS signal assisted by the presence of gadolinium ions (Gd(3+)) coordinated with the Au-tyr system. An enhancement factor of the SERS signal in the presence of Gd(3+) ions was ∼5 times higher than that produced by l-tyrosine adsorbed on gold nanoparticles. The enhancement of the SERS signal can be attributed to a corresponding increase in the local electric field due to the presence of Gd(3+) ions in the vicinity of a gold dimer configuration. This scenario was confirmed by solving numerically Maxwell equations, showing an increase of 1 order of magnitude in the local electric scattered field when the Gd(3+) ion is located in between a gold dimer compared with naked gold nanoparticles.

  3. Organic secondary ion mass spectrometry: sensitivity enhancement by gold deposition.

    PubMed

    Delcorte, A; Médard, N; Bertrand, P

    2002-10-01

    Hydrocarbon oligomers, high-molecular-weight polymers, and polymer additives have been covered with 2-60 nmol of gold/cm2 in order to enhance the ionization efficiency for static secondary ion mass spectrometry (s-SIMS) measurements. Au-cationized molecules (up to -3,000 Da) and fragments (up to the trimer) are observed in the positive mass spectra of metallized polystyrene (PS) oligomer films. Beyond 3,000 Da, the entanglement of polymer chains prevents the ejection of intact molecules from a "thick" organic film. This mass limit can be overcome by embedding the polymer chains in a low-molecular-weight matix. The diffusion of organic molecules over the metal surfaces is also demonstrated for short PS oligomers. In the case of high-molecular-weight polymers (polyethylene, polypropylene, PS) and polymer additives (Irganox 1010, Irgafos 168), the metallization procedure induces a dramatic increase of the fingerprint fragment ion yields as well as the formation of new Aucationized species that can be used for chemical diagnostics. In comparison with the deposition of submonolayers of organic molecules on metallic surfaces, metal evaporation onto organic samples provides a comparable sensitivity enhancement. The distinct advantage of the metal evaporation procedure is that it can be used for any kind of organic sample, irrespective of thickness, opening new perspectives for "real world" sample analysis and chemical imaging by s-SIMS.

  4. Tribological characteristics of gold films deposited on metals by ion plating and vapor deposition

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1984-01-01

    The graded interface between an ion-plated film and a substrate is discussed as well as the friction and wear properties of ion-plated gold. X-ray photoelectron spectroscopy (XPS) depth profiling and microhardness depth profiling were used to investigate the interface. The friction and wear properties of ion-plated and vapor-deposited gold films were studied both in an ultra high vacuum system to maximize adhesion and in oil to minimize adhesion. The results indicate that the solubility of gold on the substrate material controls the depth of the graded interface. Thermal diffusion and chemical diffusion mechanisms are thought to be involved in the formation of the gold-nickel interface. In iron-gold graded interfaces the gold was primarily dispersed in the iron and thus formed a physically bonded interface. The hardness of the gold film was influenced by its depth and was also related to the composition gradient between the gold and the substrate. The graded nickel-gold interface exhibited the highest hardness because of an alloy hardening effect. The effects of film thickness on adhesion and friction were established.

  5. Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions).

    PubMed

    Zhang, Jun Feng; Zhou, Ying; Yoon, Juyoung; Kim, Jong Seung

    2011-07-01

    Due to the wide range of applications and biological significance, the development of optical probes for silver, gold and platinum ions has been an active research area in the past few years. This tutorial review focuses on the recent contributions concerning the fluorescent or colorimetric sensors for these metal ions, and is organized according to their structural classifications (for Ag(+) detection) and unique mechanisms between the sensors and metal ions (for Au(3+) and Pt(2+) detection).

  6. Gold

    USGS Publications Warehouse

    Kirkemo, Harold; Newman, William L.; Ashley, Roger P.

    1998-01-01

    Through the ages, men and women have cherished gold, and many have had a compelling desire to amass great quantities of it -- so compelling a desire, in fact, that the frantic need to seek and hoard gold has been aptly named "gold fever." Gold was among the first metals to be mined because it commonly occurs in its native form -- that is, not combined with other elements -- because it is beautiful and imperishable, and because exquisite objects can be made from it.

  7. Gold nanoparticles solid contact for ion-selective electrodes of highly stable potential readings.

    PubMed

    Jaworska, Ewa; Wójcik, Michał; Kisiel, Anna; Mieczkowski, Józef; Michalska, Agata

    2011-09-30

    Internal solution free ion-selective electrodes were prepared applying for the first time gold nanoparticles as a solid contact layer. The presence of a layer of gold nanoparticles stabilized with aliphatic thiols at the back side of the membrane resulted in highly stable potentiometric responses of the sensors, good selectivities and close to Nernstian slopes. Electrochemical studies have confirmed that the applied material is effectively working as capacitive solid contact, yielding high stability sensors. PMID:21872048

  8. Digging gold: keV He+ ion interaction with Au

    PubMed Central

    Veligura, Vasilisa; Hlawacek, Gregor; Berkelaar, Robin P; Zandvliet, Harold J W; Poelsema, Bene

    2013-01-01

    Summary Helium ion microscopy (HIM) was used to investigate the interaction of a focused He+ ion beam with energies of several tens of kiloelectronvolts with metals. HIM is usually applied for the visualization of materials with extreme surface sensitivity and resolution. However, the use of high ion fluences can lead to significant sample modifications. We have characterized the changes caused by a focused He+ ion beam at normal incidence to the Au{111} surface as a function of ion fluence and energy. Under the influence of the beam a periodic surface nanopattern develops. The periodicity of the pattern shows a power-law dependence on the ion fluence. Simultaneously, helium implantation occurs. Depending on the fluence and primary energy, porous nanostructures or large blisters form on the sample surface. The growth of the helium bubbles responsible for this effect is discussed. PMID:23946914

  9. Bromide ion induced formation of PVP-capped anisotropic gold nanoplates/nanotriangles

    NASA Astrophysics Data System (ADS)

    Verma, Manoj; Kedia, Abhitosh; Kumar, P. Senthil

    2014-04-01

    Anisotropic gold nanoparticles are particularly important owing to their exciting applications in plasmonics as well as nanophotonics and biosensing. Herein, we have synthesized gold nanoplates/nanotriangles with an average side-length varying from 80 to 150 nm via a single step room-temperature solution-phase chemical reduction method utilizing predominantly the PVP-bromine interaction. The concentration of bromine as well as the surrounding reaction medium/environment plays an important role in determining the yield of gold nanoplates/nanotriangles at a given PVP to metal ratio. In the presence of bromine ions, the distinctive binding of PVP with metal salt changes owing to its conformational variations, as illustrated successfully through FTIR, optical absorption and TEM, leading to the formation of anisotropic gold nanoplates/nanotriangles.

  10. Matrix-assisted laser ablation production of gold cluster ions from Au-coated photonic crystals.

    PubMed

    Li, Jincheng; Liu, Jian'an; Chen, Yi

    2012-05-01

    A new strategy was explored to generate pure gold cluster ions, Au(n)(+/-), from gold films deposited on solid substrates via a matrix-assisted laser ablation technique. The gold films deposited on SiO(2)-particle-assembled photonic crystals were demonstrated to be the most ideal compared with the films deposited on various glass slides. Dropped with a matrix of 2-(4-hydroxyphenylazo) benzoic acid and bombarded by nitrogen pulse laser (355 nm), they could release a series of Au(n)(+) with n more than 110 or Au(n)(-) with n more than 60 according to the data obtained by inline time-of-flight mass spectrometry. The gold-deposited photonic crystal substrates could be stored at room temperature for at least 6 months. The method is hence steady and convenient in use. PMID:22576875

  11. Friction and hardness of gold films deposited by ion plating and evaporation

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1983-01-01

    Sliding friction experiments were conducted with ion-plated and vapor-deposited gold films on various substrates in contact with a 0.025-mm-radius spherical silicon carbide rider in mineral oil. Hardness measurements were also made to examine the hardness depth profile of the coated gold on the substrate. The results indicate that the hardness is influenced by the depth of the gold coating from the surface. The hardness increases with an increase in the depth. The hardness is also related to the composition gradient in the graded interface between the gold coating and the substrate. The graded interface exhibited the highest hardness resulting from an alloy hardening effect. The coefficient of friction is inversely related to the hardness, namely, the load carrying capacity of the surface. The greater the hardness that the metal surface possesses, the lower is the coefficient of friction. The graded interface exhibited the lowest coefficient of friction.

  12. Charge Retention by Gold Clusters on Surfaces Prepared Using Soft Landing of Mass Selected Ions

    SciTech Connect

    Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

    2012-01-24

    Monodisperse gold clusters have been prepared on surfaces in different charge states through soft landing of mass-selected ions. Ligand-stabilized gold clusters were prepared in methanol solution by reduction of chloro(triphenylphosphine)gold(I) with borane tert-butylamine complex in the presence of 1,3-bis(diphenylphosphino)propane. Electrospray ionization was used to introduce the clusters into the gas-phase and mass-selection was employed to isolate a single ionic cluster species (Au11L53+, L = 1,3-bis(diphenylphosphino)propane) which was delivered to surfaces at well controlled kinetic energies. Using in-situ time of flight secondary ion mass spectrometry (TOF-SIMS) it is demonstrated that the Au11L53+ cluster retains its 3+ charge state when soft landed onto the surface of a 1H,1H,2H,2H-

  13. FY2014 Parameters for Gold Ions in Booster, AGS, and RHIC

    SciTech Connect

    Gardner, C. J.

    2014-07-30

    The nominal parameters for gold ions in Booster, AGS, and RHIC are given for the FY2014 running period. The parameters are worked out using various formulas to derive mass, kinetic parameters, RF parameters, ring parameters, etc.. The ''standard setup'', ''medium-energy'', and ''low-energy'' parameters are summarized in separate sections.

  14. FY2014 Parameters for Helions and Gold Ions in Booster, AGS, and RHIC

    SciTech Connect

    Gardner, C. J.

    2014-08-15

    The nominal parameters for helions (helion is the bound state of two protons and one neutron, the nucleus of a helium-3 atom) and gold ions in Booster, AGS, and RHIC are given for the FY2014 running period. The parameters are found using various formulas to derive mass, helion anomalous g-factor, kinetic parameters, RF parameters, ring parameters, etc..

  15. Adsorption of gold ions from industrial wastewater using activated carbon derived from hard shell of apricot stones - an agricultural waste.

    PubMed

    Soleimani, Mansooreh; Kaghazchi, Tahereh

    2008-09-01

    In this study, hard shell of apricot stones was selected from agricultural solid wastes to prepare effective and low cost adsorbent for the gold separation from gold-plating wastewater. Different adsorption parameters like adsorbent dose, particle size of activated carbon, pH and agitation speed of mixing on the gold adsorption were studied. The results showed that under the optimum operating conditions, more than 98% of gold was adsorbed onto activated carbon after only 3h. The equilibrium adsorption data were well described by the Freundlich and Langmuir isotherms. Isotherms have been used to obtain thermodynamic parameters. Gold desorption studies were performed with aqueous solution mixture of sodium hydroxide and organic solvents at ambient temperatures. Quantitative recovery of gold ions is possible by this method. As hard shell of apricot stones is a discarded as waste from agricultural and food industries, the prepared activated carbon is expected to be an economical product for gold ion recovery from wastewater. PMID:18178431

  16. Chemical functionalization of diatom silica microparticles for adsorption of gold (III) ions.

    PubMed

    Yu, Yang; Addai-Mensah, Jonas; Losic, Dusan

    2011-12-01

    Diatom silica microparticles from natural diatomaceous earth (DE) silica have been functionalized with 3-mercaptopropyltrimethoxysilane (MPTMS) and their application for adsorption of gold (III) ions from aqueous solutions is demonstrated. Fourier transform infrared spectroscopy (FTIR) and X-ray Photoelectron spectroscopy (XPS) analyses of the MPTMS modified diatom microparticles revealed that the silane layer with functional group (-SH) was successfully introduced to the diatom surface. The adsorption study of Au(III) ions using MPTMS-DE indicated that the process depends on initial gold (III) concentration and pH showing maximum adsorption capacity at pH = 3. The Au(III) adsorption kinetics results showed that the adsorption was very fast and followed a pseudo-second-order reaction model. The Langmuir model was used to provide a sound mechanistic basis for the theoretical of the adsorption equilibrium data. Gold recovery from MPTMS-DE structures was also investigated by using acidified thiourea solution and found to be high (> 95%). These results show that chemically modified DE microparticles can be used as a new, cost effective and environmentally benign adsorbent suitable for adsorption of gold metal ions from aqueous solutions. PMID:22408909

  17. Gold nanoparticles with cyclic phenylazomethines: one-pot synthesis and metal ion sensing.

    PubMed

    Shomura, Ryo; Chung, Keum Jee; Iwai, Hideo; Higuchi, Masayoshi

    2011-07-01

    New gold nanoparticles covered with cyclic phenylazomethine (CPA) were obtained by a one-pot synthesis. It is confirmed by XPS that imines of CPA in the nanoparticles (Au-CPA) are partially reduced to amines. The amine part of CPA in Au-CPA is attached to the surfaces of gold nanoparticles, and the imine part works as a redox-active site. A glassy carbon electrode modified with Au-CPA was revealed to work as an electrochemical probe for metal ion sensing.

  18. A high selective ion-imprinted polymer grafted on a novel nanoporous material for efficient gold extraction.

    PubMed

    Moazzen, Elahe; Ebrahimzadeh, Homeira; Amini, Mostafa M; Sadeghi, Omid

    2013-06-01

    In this work, for the first time, an ion-imprinted polymer was developed for selective extraction and determination of gold ions. To increase the sorbent efficiency, this polymer was coated on a novel nanoporous carbon-based material, carbohydrate-derived Max-Planck Gesellschaft 1, which is also the first example of grafting imprinted polymer on nanoporous-carbon material. These particles were applied successfully for preconcentration of ultratrace amount of gold ions, following determination by flame atomic absorption spectrometry. Some effective factors on the efficiency of gold ions extraction, such as concentration and volume of eluent, sample and eluent flow rates, and also effect of interfering ions especially palladium and platinum ions, were investigated. The LOD was determined to be 0.27 ng/mL. Furthermore, the precision of the method was calculated to be 2.14% under optimal conditions with recovery more than 97.3%. The technique was also used to determine the concentration of gold ions in mine stone samples with satisfactory results. The accuracy of this method was investigated by determination of gold ions concentrations in several reference materials with certified gold content.

  19. Nanoporous gold based optical sensor for sub-ppt detection of mercury ions.

    PubMed

    Zhang, Ling; Chang, Haixin; Hirata, Akihiko; Wu, Hongkai; Xue, Qi-Kun; Chen, Mingwei

    2013-05-28

    Precisely probing heavy metal ions in water is important for molecular biology, environmental protection, and healthy monitoring. Although many methods have been reported in the past decade, developing a quantitative approach capable of detecting sub-ppt level heavy metal ions with high selectivity is still challenging. Here we report an extremely sensitive and highly selective nanoporous gold/aptamer based surface enhanced resonance Raman scattering (SERRS) sensor. The optical sensor has an unprecedented detection sensitivity of 1 pM (0.2 ppt) for Hg(2+) ions, the most sensitive Hg(2+) optical sensor known so far. The sensor also exhibits excellent selectivity. Dilute Hg(2+) ions can be identified in an aqueous solution containing 12 metal ions as well as in river water and underground water. Moreover, the SERRS sensor can be reused without an obvious loss of the sensitivity and selectivity even after 10 cycles.

  20. Nanoporous gold based optical sensor for sub-ppt detection of mercury ions.

    PubMed

    Zhang, Ling; Chang, Haixin; Hirata, Akihiko; Wu, Hongkai; Xue, Qi-Kun; Chen, Mingwei

    2013-05-28

    Precisely probing heavy metal ions in water is important for molecular biology, environmental protection, and healthy monitoring. Although many methods have been reported in the past decade, developing a quantitative approach capable of detecting sub-ppt level heavy metal ions with high selectivity is still challenging. Here we report an extremely sensitive and highly selective nanoporous gold/aptamer based surface enhanced resonance Raman scattering (SERRS) sensor. The optical sensor has an unprecedented detection sensitivity of 1 pM (0.2 ppt) for Hg(2+) ions, the most sensitive Hg(2+) optical sensor known so far. The sensor also exhibits excellent selectivity. Dilute Hg(2+) ions can be identified in an aqueous solution containing 12 metal ions as well as in river water and underground water. Moreover, the SERRS sensor can be reused without an obvious loss of the sensitivity and selectivity even after 10 cycles. PMID:23590120

  1. Gold nanoflowers based colorimetric detection of Hg2+ and Pb2+ ions

    NASA Astrophysics Data System (ADS)

    Nalawade, Pradnya; Kapoor, Sudhir

    2013-12-01

    An optical detection method based on the interaction of gold nanoflowers with Hg2+ and Pb2+ has been described. After interaction, gold nanoflowers change the color from violet to wine red. The nanoflowers are capable of determining Hg2+ and Pb2+ over a dynamic range of 1.0 × 10-6 and 1.0 × 10-5 M, respectively. The response time of nanoflowers depends on the concentration of ions. The presence of both Hg2+ and Pb2+ ions in the mixture having Au nanoflowers induced color changes of the solution within several seconds even at 1.0 × 10-6 M. Common metal ions were chosen to investigate their interference in Hg2+ and Pb2+ detection, and the concentration of each metal ion studied was 1.0 × 10-5 M. Other metallic ions could not induce color change even at 1.0 × 10-5 M. The feasibility of our method to detect Hg2+ and Pb2+ ions at high concentration in real water samples was verified. Water samples were from our own laboratory and no pretreatment was made. As the particles are stable they can be used for more than 3 months without observing any major deviation.

  2. Size-dependent stability toward dissociation and ligand binding energies of phosphine-ligated gold cluster ions

    SciTech Connect

    Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

    2014-01-01

    The stability of sub-nanometer size gold clusters ligated with organic molecules is of paramount importance to the scalable synthesis of monodisperse size-selected metal clusters with highly tunable chemical and physical properties. For the first time, a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS) equipped with surface induced dissociation (SID) has been employed to investigate the time and collision energy resolved fragmentation behavior of cationic doubly charged gold clusters containing 7-9 gold atoms and 6-7 triphenylphosphine (TPP) ligands prepared by reduction synthesis in solution. The TPP ligated gold clusters are demonstrated to fragment through three primary dissociation pathways: (1) Loss of a neutral TPP ligand from the precursor gold cluster, (2) asymmetric fission and (3) symmetric fission and charge separation of the gold core resulting in formation of complementary pairs of singly charged fragment ions. Threshold energies and activation entropies of these fragmentation pathways have been determined employing Rice-Ramsperger-Kassel-Marcus (RRKM) modeling of the experimental SID data. It is demonstrated that the doubly charged cluster ion containing eight gold atoms and six TPP ligands, (8,6)2+, exhibits exceptional stability compared to the other cationic gold clusters examined in this study due to its large ligand binding energy of 1.76 eV. Our findings demonstrate the dramatic effect of the size and extent of ligation on the gas-phase stability and preferred fragmentation pathways of small TPP-ligated gold clusters.

  3. Effect of Ions and Ionic Strength on Surface Plasmon Absorption of Single Gold Nanowires.

    PubMed

    Baral, Susil; Green, Andrew J; Richardson, Hugh H

    2016-06-28

    The local temperature change from a single optically excited gold nanowire, lithographically prepared on Al0.94Ga0.06N embedded with Er(3+) ions, is measured in air, pure water, and various concentrations of aqueous solutions of ionic solutes of NaCl, Na2SO4, and MgSO4. The absorption cross section of the nanowire under pure water (2.25 × 10(-14) m(2)) and different solution ionic strength is measured from the slopes of temperature change versus laser intensity plots. Addition of charges into the solution decreases the amount of heat generated during optical excitation of the gold nanostructures because the absorption cross section of the gold nanowire is attenuated. A Langmuir-type behavior of the absorption cross section with ionic strength is observed that is identified with an increase in the occupancy of screened interfacial charges. The absorption cross section of the nanowire decreases with ionic strength until a saturation value of 9 × 10(-15) m(2), where saturation in the occupancy of screened interfacial charge occurs. Dynamic measurements of temperature for a single gold nanowire immersed in a microchannel flow cell show a sharp and fast temperature drop for the flow of ionic solution compared to the pure (deionized) water, suggesting that the technique can be developed as a sensor probe to detect the presence of ions in solution.

  4. Single pass electron beam cooling of gold ions between EBIS LINAC and booster is theoretically possible!

    SciTech Connect

    Hershcovitch, A.

    2011-01-01

    Electron beam cooling is examined as an option to reduce momentum of gold ions exiting the EBIS LINAC before injection into the booster. Electron beam parameters are based on experimental data (obtained at BNL) of electron beams extracted from a plasma cathode. Many issues, regarding a low energy high current electron beam that is needed for electron beam cooling to reduce momentum of gold ions exiting the EBIS LINAC before injection into the booster, were examined. Computations and some experimental data indicate that none of these issues is a show stopper. Preliminary calculations indicate that single pass cooling is feasible; momentum spread can be reduced by more than an order of magnitude in about one meter. Hence, this option cooling deserves further more serious considerations.

  5. Electrically conductive polyimide film containing gold (III) ions, composition, and process of making

    NASA Technical Reports Server (NTRS)

    Caplan, Maggie L. (Inventor); Stoakley, Diane M. (Inventor); St. Clair, Anne K. (Inventor)

    1996-01-01

    An electrically conductive, thermooxidatively stable poltimide, especially a film thereof, is prepared from an intimate admixture of a particular polyimide and gold (III) ions, in an amount sufficient to provide between 17 and 21 percent by weight of gold (III) ions, based on the weight of electrically conductive, thermooxidatively stable polyimide. The particular polyimide is prepared from a polyamic acid which has been synthesized from a dianhydride/diamine combination selected from the group consisting of 3,3',4,4'-benzophenonetetracarboxylic dianhydride and 2,2-bis[4-(4 -aminophenoxy)phenyl]hexafluoropropane; 3,3',4,4'-benzophenonetetracarboxylic dianhydride and 4,4'-oxydianiline; 2,2'-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride and 4,4'-oxydianiline; and 3,3'4,4'-benzophenonetetracarboxylic dianhydride and 2,2-bis(3-aminophenyl)hexafluoropropane.

  6. Analysis of cardiac tissue by gold cluster ion bombardment

    NASA Astrophysics Data System (ADS)

    Aranyosiova, M.; Chorvatova, A.; Chorvat, D.; Biro, Cs.; Velic, D.

    2006-07-01

    Specific molecules in cardiac tissue of spontaneously hypertensive rats are studied by using time-of-flight secondary ion mass spectrometry (TOF-SIMS). The investigation determines phospholipids, cholesterol, fatty acids and their fragments in the cardiac tissue, with special focus on cardiolipin. Cardiolipin is a unique phospholipid typical for cardiomyocyte mitochondrial membrane and its decrease is involved in pathologic conditions. In the positive polarity, the fragments of phosphatydilcholine are observed in the mass region of 700-850 u. Peaks over mass 1400 u correspond to intact and cationized molecules of cardiolipin. In animal tissue, cardiolipin contains of almost exclusively 18 carbon fatty acids, mostly linoleic acid. Linoleic acid at 279 u, other fatty acids, and phosphatidylglycerol fragments, as precursors of cardiolipin synthesis, are identified in the negative polarity. These data demonstrate that SIMS technique along with Au 3+ cluster primary ion beam is a good tool for detection of higher mass biomolecules providing approximately 10 times higher yield in comparison with Au +.

  7. A BODIPY-based fluorescent probe for ratiometric detection of gold ions: utilization of Z-enynol as the reactive unit.

    PubMed

    Üçüncü, Muhammed; Karakuş, Erman; Emrullahoğlu, Mustafa

    2016-07-01

    Using an irreversible intramolecular cyclisation pathway triggered by gold ions, a boron-dipyrromethene (BODIPY) based fluorescent probe integrated with a reactive Z-enynol motif responds selectively to gold ions. With the addition of gold(iii), the probe displays ratiometric fluorescence behaviour clearly observable to the naked eye under both visible and UV light. PMID:27284598

  8. Dilute nitric or nitrous acid solution containing halide ions as effective media for pure gold dissolution.

    PubMed

    Hojo, Masashi; Yamamoto, Masahiko; Okamura, Kei

    2015-08-14

    The greatly enhanced oxidation ability of dilute aqueous nitric acid (0.10-2.0 mol L(-1)) containing bromide and iodide salts as well as chloride salts has been examined based on the dissolution kinetics of pure gold at 30-60 °C. It has been found that bromide salts are more effective than chloride salts in gaining the ability of dissolving gold in dilute aqueous nitric acid solution. At 60 °C, a piece of gold-wire (ca. 20 mg) is dissolved in 20 mL of as low as 0.10 mol L(-1) HNO3 solution containing 1.0-5.0 mol L(-1) NaBr and the dissolution rate constant, log(k/s(-1)), increases linearly (from -5.78 to -4.52) with the increasing NaBr concentration. The addition of organic solvents, such as acetonitrile and acetic acid, causes acceleration of gold dissolution in LiBr and NaBr solutions. With increasing MeCN contents, for instance, the log(k/s(-1)) value of 0.10 mol L(-1) HNO3 solution containing 2.0 mol L(-1) NaBr increases linearly from -5.30 to -4.61 at 30% (v/v) MeCN. The bromide salts affect the gold dissolution rate constant in the order of KBr < NaBr < LiBr < CaBr2. With increasing NaI concentration (0.20-3.0 mol L(-1)), some acceleration in log(k/s(-1)) of 0.50 or 1.0 mol L(-1) HNO3 solution has been observed; however, the slope of acceleration as the function of NaI concentration is much smaller than that of NaCl or NaBr. The gold dissolution ability has been examined also for nitrous acid containing chloride and bromide ions at 35 °C. The NaNO2 solution containing twice or more amounts of HX (X = Cl, Br) gives the maximum efficiency for gold dissolution, according to the log(k/s(-1)) values of the mixed solutions of NaNO2 (0.10-2.0 mol L(-1)) and HX of various concentrations. The influence of oxidation by dilute nitric and nitrous acids on the gold dissolution is discussed from the standpoint of the redox potentials in "modified" aqueous solutions and not of the changes in the activity coefficients of ions.

  9. SETUP AND PERFORMANCE OF THE RHIC INJECTOR ACCELERATORS FOR THE 2007 RUN WITH GOLD IONS

    SciTech Connect

    GARDNER,C.; AHRENS, L.; ALESSI, J.; BENJAMIN, J.; BLASKIEWICZ, M.; ET AL.

    2007-06-25

    Gold ions for the 2007 run of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) are accelerated in the Tandem, Booster and AGS prior to injection into RHIC. The setup and performance of this chain of accelerators is reviewed with a focus on improvements in the quality of beam delivered to RHIC. In particular, more uniform stripping foils between Booster and AGS7 and a new bunch merging scheme in AGS have provided beam bunches with reduced longitudinal emittance for RHIC.

  10. Use of fluorescent DNA-templated gold/silver nanoclusters for the detection of sulfide ions.

    PubMed

    Chen, Wei-Yu; Lan, Guo-Yu; Chang, Huan-Tsung

    2011-12-15

    We have developed a one-pot approach to prepare fluorescent DNA-templated gold/silver nanoclusters (DNA-Au/Ag NCs) from Au(3+), Ag(+), and DNA (5'-CCCTTAATCCCC-3') in the presence of NaBH(4) in order to detect sulfide (S(2-)) ions on the basis of fluorescence quenching. The as-prepared DNA-Au/Ag NCs have been characterized by UV-vis absorption, fluorescence, circular dichroism, X-ray photoelectron spectroscopy, and electrospray ionization-mass spectrometry measurements. Relative to DNA-Ag NCs, DNA-Au/Ag NCs are much more stable in high ionic strength media (e.g., 200 mM NaCl). The quantum yield of the as-prepared DNA-Au/Ag NCs is 4.5%. We have demonstrated that the fluorescence of DNA-Au/Ag NCs is quenched by S(2-) ions through the interaction between sulfide ions and gold/silver atoms/ions, a result which leads to changes in the conformation of the templated DNA from packed hairpin to random coil structures. These changes in fluorescence intensity allow sensitive detection of S(2-) ions at concentrations as low as 0.83 nM. To minimize interference from I(-) ions for the detection of S(2-) ions using the DNA-Au/Ag NCs, the addition of sodium peroxydisulfate to the solution is essential. We have validated the practicality of this probe for the detection of S(2-) ions in hot spring and seawater samples, demonstrating its advantages of simplicity, sensitivity, selectivity, and low cost.

  11. Facile purification of colloidal NIR-responsive gold nanorods using ions assisted self-assembly

    NASA Astrophysics Data System (ADS)

    Liu, Lianke; Guo, Zhirui; Xu, Lina; Xu, Ruizhi; Lu, Xiang

    2011-12-01

    Anisotropic metal nanoparticles have been paid much attention because the broken symmetry of these nanoparticles often leads to novel properties. Anisotropic gold nanoparticles obtained by wet chemical methods inevitably accompany spherical ones due to the intrinsically high symmetry of face-centred cubic metal. Therefore, it is essential for the purification of anisotropic gold nanoparticles. This work presents a facile, low cost while effective solution to the challenging issue of high-purity separation of seed-mediated grown NIR-responsive gold nanorods from co-produced spherical and cubic nanoparticles in solution. The key point of our strategy lies in different shape-dependent solution stability between anisotropic nanoparticles and symmetric ones and selective self-assembly and subsequent precipitation can be induced by introducing ions to the as-made nanorod solution. As a result, gold nanorods of excellent purity (97% in number density) have been obtained within a short time, which has been confirmed by SEM observation and UV-vis-NIR spectroscopy respectively. Based on the experimental facts, a possible shape separation mechanism was also proposed.

  12. Radiosensitizing effect of gold nanoparticles in carbon ion irradiation of human cervical cancer cells

    NASA Astrophysics Data System (ADS)

    Kaur, Harminder; Avasthi, D. K.; Pujari, Geetanjali; Sarma, Asitikantha

    2013-07-01

    Noble metal nanoparticles have received considerable attention in biotechnology for their role in bio sensing due to surface plasmon resonance, medical diagnostics due to better imaging contrast and therapy. The radiosensitization effect of gold nanoparticles (AuNP) has been gaining popularity in radiation therapy of cancer cells. The better depth dose profile of energetic ion beam proves its superiority over gamma radiation for fighting against cancer. In the present work, the glucose capped gold nanoparticles (Glu-AuNP) were synthesised and internalized in the HeLa cells. Transmission electron microscopic analysis of ultrathin sections of Glu-AuNP treated HeLa cells confirmed the internalization of Glu-AuNPs. Control HeLa cells and Glu-AuNp treated HeLa cells were irradiated at different doses of 62 MeV 12C ion beam (LET - 290keV/μm) at BIO beam line of using 15UD Pelletron accelerator at Inter University Accelerator Centre, New Delhi, India. The survival fraction was assessed by colony forming assay which revealed that the dose of carbon ion for 90% cell killing in Glu-AuNP treated HeLa cells and control HeLa cells are 2.3 and 3.2 Gy respectively. This observation shows ˜ 28% reduction of 12C6+ ion dose for Glu-AuNP treated HeLa cells as compared to control HeLa cells.

  13. Protein-gold nanoclusters for identification of amino acids by metal ions modulated ratiometric fluorescence.

    PubMed

    Wang, Min; Mei, Qingsong; Zhang, Kui; Zhang, Zhongping

    2012-04-01

    Here we report that the dual fluorescence emissions from protein-gold (Au) nanoclusters can greatly be modulated by metal ions and the resultant fluorescence ratiometric responses provide a novel sensory method for the identification of amino acids. The protein-gold (Au) nanoclusters were simply synthesized by the reduction of chloroauric acid with bovine serum albumin (BSA), which exhibit dual emissions: the blue at 425 nm from the oxides of BSA, and the red at 635 nm from Au nanoclusters. It has been demonstrated that different metal ions react with BSA-Au nanoclusters and thus greatly affect the two emissions in different ways by fluorescence enhancement or quenching. Interestingly, the addition of amino acids leads to fluorescence ratiometric changes through the interactions with the bound metal ions. When BSA-Au nanocluster probes modulated by four different metal ions were used together to construct a sensor array, different amino acids were clearly discriminated by the distinctive patterns of four ratiometric fluorescence responses. Results and methods reported here provide a unique strategy for the determination of amino acids.

  14. Radiosensitizing effect of gold nanoparticles in carbon ion irradiation of human cervical cancer cells

    SciTech Connect

    Kaur, Harminder; Avasthi, D. K.; Pujari, Geetanjali; Sarma, Asitikantha

    2013-07-18

    Noble metal nanoparticles have received considerable attention in biotechnology for their role in bio sensing due to surface plasmon resonance, medical diagnostics due to better imaging contrast and therapy. The radiosensitization effect of gold nanoparticles (AuNP) has been gaining popularity in radiation therapy of cancer cells. The better depth dose profile of energetic ion beam proves its superiority over gamma radiation for fighting against cancer. In the present work, the glucose capped gold nanoparticles (Glu-AuNP) were synthesised and internalized in the HeLa cells. Transmission electron microscopic analysis of ultrathin sections of Glu-AuNP treated HeLa cells confirmed the internalization of Glu-AuNPs. Control HeLa cells and Glu-AuNp treated HeLa cells were irradiated at different doses of 62 MeV 12C ion beam (LET - 290keV/{mu}m) at BIO beam line of using 15UD Pelletron accelerator at Inter University Accelerator Centre, New Delhi, India. The survival fraction was assessed by colony forming assay which revealed that the dose of carbon ion for 90% cell killing in Glu-AuNP treated HeLa cells and control HeLa cells are 2.3 and 3.2 Gy respectively. This observation shows {approx} 28% reduction of {sup 12}C{sup 6+} ion dose for Glu-AuNP treated HeLa cells as compared to control HeLa cells.

  15. Highly sensitive electrochemical lead ion sensor harnessing peptide probe molecules on porous gold electrodes.

    PubMed

    Su, Wenqiong; Cho, Misuk; Nam, Jae-Do; Choe, Woo-Seok; Lee, Youngkwan

    2013-10-15

    Lead ion is one of the most hazardous and ubiquitous heavy metal pollutants and poses an increasing threat to the environment and human health. This necessitates rapid and selective detection and/or removal of lead ions from various soil and water resources. Recently, we identified several Pb²⁺ binding peptides via phage display technique coupled with chromatographic biopanning (Nian et al., 2010) where a heptapeptide (TNTLSNN) capable of recognizing Pb²⁺ with high affinity and specificity evolved. In the present study, an electrochemical sensor harnessing this Pb²⁺ affinity peptide as a probe on a porous gold electrode was developed. The three dimensional porous gold electrode was obtained from electrochemical deposition using the dynamic hydrogen bubble template method. A thin layer of poly(thiophene acetic acid) (PTAA) was coated on the porous gold surface. The Pb²⁺ recognizing peptide was immobilized via amide linkage on the PTAA. The developed biosensor was demonstrated to be fast, selective and reproducible in Pb²⁺ etection, exhibiting Pb²⁺-specific peak current values around -0.15 V in a broad concentration range (1-1×10⁷ nM) in 10 min despite the repeated use after regeneration.

  16. Highly sensitive electrochemical lead ion sensor harnessing peptide probe molecules on porous gold electrodes.

    PubMed

    Su, Wenqiong; Cho, Misuk; Nam, Jae-Do; Choe, Woo-Seok; Lee, Youngkwan

    2013-10-15

    Lead ion is one of the most hazardous and ubiquitous heavy metal pollutants and poses an increasing threat to the environment and human health. This necessitates rapid and selective detection and/or removal of lead ions from various soil and water resources. Recently, we identified several Pb²⁺ binding peptides via phage display technique coupled with chromatographic biopanning (Nian et al., 2010) where a heptapeptide (TNTLSNN) capable of recognizing Pb²⁺ with high affinity and specificity evolved. In the present study, an electrochemical sensor harnessing this Pb²⁺ affinity peptide as a probe on a porous gold electrode was developed. The three dimensional porous gold electrode was obtained from electrochemical deposition using the dynamic hydrogen bubble template method. A thin layer of poly(thiophene acetic acid) (PTAA) was coated on the porous gold surface. The Pb²⁺ recognizing peptide was immobilized via amide linkage on the PTAA. The developed biosensor was demonstrated to be fast, selective and reproducible in Pb²⁺ etection, exhibiting Pb²⁺-specific peak current values around -0.15 V in a broad concentration range (1-1×10⁷ nM) in 10 min despite the repeated use after regeneration. PMID:23707872

  17. Highly sensitive detection of chromium (III) ions by resonance Rayleigh scattering enhanced by gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Min; Cai, Huai-Hong; Yang, Fen; Lin, Dewen; Yang, Pei-Hui; Cai, Jiye

    2014-01-01

    Simple and sensitive determination of chromium (III) ions (Cr3+) has potential applications for detecting trace contamination in environment. Here, the assay is based on the enhancement of resonance Rayleigh scattering (RRS) by Cr3+-induced aggregation of citrate-capped gold nanoparticles (AuNPs). Transmission electron microscopy (TEM) and UV-vis absorption spectroscopy were employed to characterize the nanostructures and spectroscopic properties of the Cr3+-AuNP system. The experiment conditions, such as reaction time, pH value, salt concentration and interfering ions, were investigated. The combination of signal amplification of Cr3+-citrate chelation with high sensitivity of RRS technique allow a selective assay of Cr3+ ions with a detection limit of up to 1.0 pM. The overall assay can be carried out at room temperature within only twenty minutes, making it suitable for high-throughput routine applications in environment and food samples.

  18. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams

    PubMed Central

    Bang, W.; Albright, B. J.; Bradley, P. A.; Gautier, D. C.; Palaniyappan, S.; Vold, E. L.; Cordoba, M. A. Santiago; Hamilton, C. E.; Fernández, J. C.

    2015-01-01

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has been unavailable to date. Here we have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics. PMID:26392208

  19. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams

    SciTech Connect

    Bang, W.; Albright, B. J.; Bradley, P. A.; Gautier, D. C.; Palaniyappan, S.; Vold, E. L.; Cordoba, M. A. Santiago; Hamilton, C. E.; Fernández, J. C.

    2015-09-22

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has been unavailable to date. We have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.

  20. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams

    DOE PAGESBeta

    Bang, W.; Albright, B. J.; Bradley, P. A.; Gautier, D. C.; Palaniyappan, S.; Vold, E. L.; Cordoba, M. A. Santiago; Hamilton, C. E.; Fernández, J. C.

    2015-09-22

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has beenmore » unavailable to date. We have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.« less

  1. Colorimetric Detection of Cadmium Ions Using DL-Mercaptosuccinic Acid-Modified Gold Nanoparticles.

    PubMed

    Chen, Na; Chen, Jun; Yang, Jing-Hua; Bai, Lian-Yang; Zhang, Yu-Ping

    2016-01-01

    A colorimetric assay has been developed for detection of Cd²⁺ utilizing DL-mercaptosuccinic acid-modified gold nanoparticles (MSA-AuNPs). The method showed good selectivity for Cd²⁺ over other metal ions. As a result, the linear relationships (r > 0.9606) between concentration 0.07 mM and 0.20 mM for cadmium ion were obtained. The detection limit was as low as 0.07 mM by the naked eye. The effect of pH on the aggregation was optimized. The MSA-AuNPs probe could be used to detect Cd²⁺ in an aqueous solution based on the aggregation-induced color change of MSA-AuNPs. PMID:27398533

  2. Recyclable fluorescent gold nanocluster membrane for visual sensing of copper(II) ion in aqueous solution.

    PubMed

    Lin, Zhijin; Luo, Fenqiang; Dong, Tongqing; Zheng, Liyan; Wang, Yaxian; Chi, Yuwu; Chen, Guonan

    2012-05-21

    Recently, metal-selective fluorescent chemosensors have attracted intense attention for their simple and real-time tracking of metal ions in environmental samples. However, most of the existing fluorescent sensors are one-off sensors and thus suffer from large amount of reagent consumption, significant experimental cost and raising the risk of environmental pollution. In this paper, we developed a green (low reagent consumption, low-toxicity reagent use), recyclable, and visual sensor for Cu(2+) in aqueous solution by using a fluorescent gold nanoclusters membrane (FGM) as the sensing unit, basing on our findings on gold nanoclusters (Au NCs) that the bovine serum albumin (BSA)-coated Au NCs exhibit excellent membrane-forming ability under the isoelectric point of BSA, and thus enable us to obtain a new type of sensing membrane (i.e. FGM) by denaturing Au NCs; the fluorescence of FGM can be significantly quenched by Cu(2+) ion, and the quenched fluorescence can be totally recovered by histidine; the as-prepared FGM is very stable and recyclable, which makes it an ideal sensing material. PMID:22489283

  3. Recyclable fluorescent gold nanocluster membrane for visual sensing of copper(II) ion in aqueous solution.

    PubMed

    Lin, Zhijin; Luo, Fenqiang; Dong, Tongqing; Zheng, Liyan; Wang, Yaxian; Chi, Yuwu; Chen, Guonan

    2012-05-21

    Recently, metal-selective fluorescent chemosensors have attracted intense attention for their simple and real-time tracking of metal ions in environmental samples. However, most of the existing fluorescent sensors are one-off sensors and thus suffer from large amount of reagent consumption, significant experimental cost and raising the risk of environmental pollution. In this paper, we developed a green (low reagent consumption, low-toxicity reagent use), recyclable, and visual sensor for Cu(2+) in aqueous solution by using a fluorescent gold nanoclusters membrane (FGM) as the sensing unit, basing on our findings on gold nanoclusters (Au NCs) that the bovine serum albumin (BSA)-coated Au NCs exhibit excellent membrane-forming ability under the isoelectric point of BSA, and thus enable us to obtain a new type of sensing membrane (i.e. FGM) by denaturing Au NCs; the fluorescence of FGM can be significantly quenched by Cu(2+) ion, and the quenched fluorescence can be totally recovered by histidine; the as-prepared FGM is very stable and recyclable, which makes it an ideal sensing material.

  4. Silica-gold bilayer-based transfer of focused ion beam-fabricated nanostructures

    NASA Astrophysics Data System (ADS)

    Wu, Xiaofei; Geisler, Peter; Krauss, Enno; Kullock, René; Hecht, Bert

    2015-10-01

    The demand for using nanostructures fabricated by focused ion beam (FIB) on delicate substrates or as building blocks for complex devices motivates the development of protocols that allow FIB-fabricated nanostructures to be transferred from the original substrate to the desired target. However, transfer of FIB-fabricated nanostructures is severely hindered by FIB-induced welding of structure and substrate. Here we present two (ex and in situ) transfer methods for FIB-fabricated nanostructures based on a silica-gold bilayer evaporated onto a bulk substrate. Utilizing the poor adhesion between silica and gold, the nanostructures can be mechanically separated from the bulk substrate. For the ex situ transfer, a spin-coated poly(methyl methacrylate) film is used to carry the nanostructures so that the bilayer can be etched away after being peeled off. For the in situ transfer, using a micro-manipulator inside the FIB machine, a cut-out piece of silica on which a nanostructure has been fabricated is peeled off from the bulk substrate and thus carries the nanostructure to a target substrate. We demonstrate the performance of both methods by transferring plasmonic nano-antennas fabricated from single-crystalline gold flakes by FIB milling to a silicon wafer and to a scanning probe tip.The demand for using nanostructures fabricated by focused ion beam (FIB) on delicate substrates or as building blocks for complex devices motivates the development of protocols that allow FIB-fabricated nanostructures to be transferred from the original substrate to the desired target. However, transfer of FIB-fabricated nanostructures is severely hindered by FIB-induced welding of structure and substrate. Here we present two (ex and in situ) transfer methods for FIB-fabricated nanostructures based on a silica-gold bilayer evaporated onto a bulk substrate. Utilizing the poor adhesion between silica and gold, the nanostructures can be mechanically separated from the bulk substrate. For the ex

  5. Selective recovery of gold and other metal ions from an algal biomass

    SciTech Connect

    Darnall, D.W.; Greene, B.; Henzl, M.T.; Hosea, J.M.; McPherson, R.A.; Sneddon, J.; Alexander, M.D.

    1986-02-01

    The authors observed that the pH dependence of the binding of Au/sup 3 +/, Ag/sup +/, and Hg/sup 2 +/ to the algae Chlorella vulgaris is different than the binding of other metal ions. Between pH 5 and 7, a variety of metal ions bind strongly to the cell surface. Most of these algal-bound metal ions can be selectively desorbed by lowering the pH to 2; however, Au/sup 3 +/, Hg/sup 2 +/, and Ag/sup +/ are all bound strongly at pH 2. Addition of a strong ligand at different pHs is required to elute these ions from the algal surface. Algal-bound gold and mercury can be selectively eluted by using mercaptoethanol. An elution scheme is demonstrated for the binding and selective recovery of Cu/sup 2 +/, Zn/sup 2 +/, Au/sup 3 +/, and Hg/sup 2 +/ from an equimolar mixture. 20 references, 2 figures.

  6. Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas.

    PubMed

    Kollmann, Heiko; Piao, Xianji; Esmann, Martin; Becker, Simon F; Hou, Dongchao; Huynh, Chuong; Kautschor, Lars-Oliver; Bösker, Guido; Vieker, Henning; Beyer, André; Gölzhäuser, Armin; Park, Namkyoo; Vogelgesang, Ralf; Silies, Martin; Lienau, Christoph

    2014-08-13

    Plasmonic nanoantennas are versatile tools for coherently controlling and directing light on the nanoscale. For these antennas, current fabrication techniques such as electron beam lithography (EBL) or focused ion beam (FIB) milling with Ga(+)-ions routinely achieve feature sizes in the 10 nm range. However, they suffer increasingly from inherent limitations when a precision of single nanometers down to atomic length scales is required, where exciting quantum mechanical effects are expected to affect the nanoantenna optics. Here, we demonstrate that a combined approach of Ga(+)-FIB and milling-based He(+)-ion lithography (HIL) for the fabrication of nanoantennas offers to readily overcome some of these limitations. Gold bowtie antennas with 6 nm gap size were fabricated with single-nanometer accuracy and high reproducibility. Using third harmonic (TH) spectroscopy, we find a substantial enhancement of the nonlinear emission intensity of single HIL-antennas compared to those produced by state-of-the-art gallium-based milling. Moreover, HIL-antennas show a vastly improved polarization contrast. This superior nonlinear performance of HIL-derived plasmonic structures is an excellent testimonial to the application of He(+)-ion beam milling for ultrahigh precision nanofabrication, which in turn can be viewed as a stepping stone to mastering quantum optical investigations in the near-field.

  7. Physical response of gold nanoparticles to single self-ion bombardment

    DOE PAGESBeta

    Bufford, Daniel C.; Hattar, Khalid

    2014-09-23

    The reliability of nanomaterials depends on maintaining their specific sizes and structures. However, the stability of many nanomaterials in radiation environments remains uncertain due to the lack of a fully developed fundamental understanding of the radiation response on the nanoscale. To provide an insight into the dynamic aspects of single ion effects in nanomaterials, gold nanoparticles (NPs) with nominal diameters of 5, 20, and 60 nm were subjected to self-ion irradiation at energies of 46 keV, 2.8 MeV, and 10 MeV in situ inside of a transmission electron microscope. Ion interactions created a variety of far-from-equilibrium structures including small (~1more » nm) sputtered nanoclusters from the parent NPs of all sizes. Single ions created surface bumps and elongated nanofilaments in the 60 nm NPs. As a result, similar shape changes were observed in the 20 nm nanoparticles, while the 5 nm nanoparticles were transiently melted or explosively broken apart.« less

  8. Physical response of gold nanoparticles to single self-ion bombardment

    SciTech Connect

    Bufford, Daniel C.; Hattar, Khalid

    2014-09-23

    The reliability of nanomaterials depends on maintaining their specific sizes and structures. However, the stability of many nanomaterials in radiation environments remains uncertain due to the lack of a fully developed fundamental understanding of the radiation response on the nanoscale. To provide an insight into the dynamic aspects of single ion effects in nanomaterials, gold nanoparticles (NPs) with nominal diameters of 5, 20, and 60 nm were subjected to self-ion irradiation at energies of 46 keV, 2.8 MeV, and 10 MeV in situ inside of a transmission electron microscope. Ion interactions created a variety of far-from-equilibrium structures including small (~1 nm) sputtered nanoclusters from the parent NPs of all sizes. Single ions created surface bumps and elongated nanofilaments in the 60 nm NPs. As a result, similar shape changes were observed in the 20 nm nanoparticles, while the 5 nm nanoparticles were transiently melted or explosively broken apart.

  9. Structural Modification of Single Wall and Multiwalled Carbon Nanotubes under Carbon, Nickel and Gold Ion Beam Irradiation

    SciTech Connect

    Jeet, Kiran; Jindal, V. K.; Dharamvir, Keya; Bharadwaj, L. M.

    2011-12-12

    Thin film samples of carbon nanotubes were irradiated with ion beam of carbon, nickel and gold. The irradiation results were characterized using Raman Spectroscopy. Modifications of the disorder mode (D mode) and the tangential mode (G mode) under different irradiation fluences were studied in detail. Raman results of carbon ion beam indicate the interesting phenomenon of ordering of the system under irradiation. Under the effect of nickel and gold ion irradiation, the structural evolution of CNTs occurs in three different stages. At lower fluences the process of healing occurs; at intermediate fluences damages on the surface of CNTs occurs and finally at very high fluences of the order of 1x10{sup 14} ions/cm{sup 2} the system gets amorphised.

  10. Determination of ion pairing on capping structures of gold nanoparticles by phase extraction.

    PubMed

    Cheng, Han-Wen; Schadt, Mark J; Young, Kaylie; Luo, Jin; Zhong, Chuan-Jian

    2015-09-21

    As nanoparticles with different capping structures in solution phases have found widespread applications of wide interest, understanding how the capping structure change influences their presence in phases or solutions is important for gaining full control over both the intended nanoactivity and the unintended nanotoxicity. This report describes a simple and effective phase extraction method for analyzing the degree of ion pairing in the capping molecular structure of nanoparticles. Gold nanoparticles of a few nanometers diameter with a mixed monolayer capping structure consisting of both hydrophobic and hydrophilic and reactive groups were studied as a model system, and a quantitative model was derived based on chemical equilibria in a two-phase system, and used to assess the experimental data for phase extraction by cationic species. In contrast to the traditional perception of 100% ion pairing, only a small fraction (∼20%) of the negatively-charged groups was found to be responsible for the phase extraction. The viability of using this phase extraction method for analyzing the degree of ion-pairing in the capping molecular structure of different nanoparticles is also discussed, which has implications for the control of the nanoactivity and nanotoxicity of molecularly-capped or bio-conjugated nanoparticles.

  11. Precise Determination of the Lyman-1 Transition Energy in Hydrogen-like Gold Ions with Microcalorimeters

    NASA Astrophysics Data System (ADS)

    Kraft-Bermuth, S.; Andrianov, V.; Bleile, A.; Echler, A.; Egelhof, P.; Grabitz, P.; Kilbourne, C.; Kiselev, O.; McCammon, D.; Scholz, P.

    2014-09-01

    The precise determination of the transition energy of the Lyman-1 line in hydrogen-like heavy ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields. We report the determination of the Lyman-1 transition energy of gold ions (Au) with microcalorimeters at the experimental storage ring at GSI. X-rays produced by the interaction of 125 MeV/u Au ions with an internal argon gas-jet target were detected. The detector array consisted of 14 pixels with silicon thermistors and Sn absorbers, for which an energy resolution of 50 eV for an X-ray energy of 59.5 keV was obtained in the laboratory. The Lyman-1 transition energy was determined for each pixel in the laboratory frame, then transformed into the emitter frame and averaged. A Dy-159 source was used for energy calibration. The absolute positions of the detector pixels, which are needed for an accurate correction of the Doppler shift, were determined by topographic measurements and by scanning a collimated Am-241 source across the cryostat window. The energy of the Lyman-1 line in the emitter frame is eV, in good agreement with theoretical predictions. The systematic error is dominated by the uncertainty in the position of the cryostat relative to the interaction region of beam and target.

  12. Direct patterning of gold oxide thin films by focused ion-beam irradiation

    NASA Astrophysics Data System (ADS)

    Machalett, F.; Edinger, K.; Melngailis, J.; Diegel, M.; Steenbeck, K.; Steinbeiss, E.

    For direct writing of electrically conducting connections and areas into insulating gold oxide thin films a scanning Ar+ laser beam and a 30 keV Ga+ focused ion beam (FIB) have been used. The gold oxide films are prepared by magnetron sputtering under argon/oxygen plasma. The patterning of larger areas (dimension 10-100 μm) has been carried out with the laser beam by local heating of the selected area above the decomposition temperature of AuOx (130-150 °C). For smaller dimensions (100 nm to 10 μm) the FIB irradiation could be used. With both complementary methods a reduction of the sheet resistance by 6-7 orders of magnitude has been achieved in the irradiated regions (e.g. with FIB irradiation from 1.5×107 Ω/□ to approximately 6 Ω/□). The energy-dispersive X-ray analysis (EDX) show a considerably reduced oxygen content in the irradiated areas, and scanning electron microscopy (SEM), as well as atomic force microscopy (AFM) investigations, indicate that the FIB patterning in the low-dose region (1014 Ga+/cm2) is combined with a volume reduction, which is caused by oxygen escape rather than by sputtering.

  13. FY08 parameters for the injection, acceleration, and extraction of gold ions and deuterons in the booster, AGS, and RHIC

    SciTech Connect

    Gardner, C.J.

    2010-08-01

    A Gold ion with charge eQ has N = 197 Nucleons, Z = 79 Protons, and (Z-Q) electrons. (Here Q is an integer and e is the charge of a single proton.) The mass is m = au - Qm{sub e} + E{sub b}/c{sup 2} (1) where a = 196.966552 is the relative atomic mass [1, 2] of the neutral Gold atom, u = 931.494013 MeV/c{sup 2} is the unified atomic mass unit [3], and m{sub e}c{sup 2} = .510998902 MeV is the electron mass [3]. E{sub b} is the binding energy of the Q electrons removed from the neutral Gold atom. This amounts to 0.332 MeV for the helium-like gold ion (Q = 77) and 0.517 MeV for the fully stripped ion. For the Au{sup 31+} ion we have E{sub b} = 13.5 keV. These numbers are given in Ref. [4]. The deuteron mass [3] is 1875.612762(75) MeV/c{sup 2}.

  14. FY10 parameters for the injection, acceleration, and extraction of gold ions in booster, AGS, and RHIC

    SciTech Connect

    Gardner, C.J.

    2010-08-01

    A Gold ion with charge eQ has N = 197 Nucleons, Z = 79 Protons, and (Z-Q) electrons. (Here Q is an integer and e is the charge of a single proton.) The mass is m = au - Qm{sub e} + E{sub b}/c{sup 2} (1) where a = 196.966552 is the relative atomic mass [1, 2] of the neutral Gold atom, u = 931.494013 MeV/c{sup 2} is the unified atomic mass unit [3], and m{sub e}c{sup 2} = .510998902 MeV is the electron mass [3]. E{sub b} is the binding energy of the Q electrons removed from the neutral Gold atom. This amounts to 0.332 MeV for the helium-like gold ion (Q = 77) and 0.517 MeV for the fully stripped ion. For the Au{sup 31+} ion we have E{sub b} = 13.5 keV. These numbers are given in Ref. [4].

  15. Exploiting the higher alkynophilicity of Au-species: development of a highly selective fluorescent probe for gold ions.

    PubMed

    Patil, Nitin T; Shinde, Valmik S; Thakare, Milind S; Hemant Kumar, P; Bangal, Prakriti R; Barui, Ayan Kumar; Patra, Chitta Ranjan

    2012-11-25

    A new approach, involving the anchoring-unanchoring of a fluorophore, has been developed for the detection of Au-species. The fluorescent probe was found to be highly selective for sensing gold species in the presence of several other metal ions. A successful application to bioimaging has also been demonstrated with A549 lung cancer cells. PMID:23066526

  16. Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules

    NASA Astrophysics Data System (ADS)

    Liu, Dingbin; Wang, Zhuo; Jiang, Xingyu

    2011-04-01

    In recent years, gold nanoparticles (AuNPs) have drawn considerable research attention in the fields of catalysis, drug delivery, imaging, diagnostics, therapy and biosensors due to their unique optical and electronic properties. In this review, we summarized recent advances in the development of AuNP-based colorimetric and fluorescent assays for ions including cations (such as Hg2+, Cu2+, Pb2+, As3+, Ca2+, Al3+, etc) and anions (such as NO2-, CN-, PF6-, F-, I-, oxoanions), and small organic molecules (such as cysteine, homocysteine, trinitrotoluene, melamine and cocaine, ATP, glucose, dopamine and so forth). Many of these species adversely affect human health and the environment. Moreover, we paid particular attention to AuNP-based colorimetric and fluorescent assays in practical applications.

  17. Liquid-like instabilities in gold nanowires fabricated by focused ion beam lithography

    NASA Astrophysics Data System (ADS)

    Naik, J. P.; Das, K.; Prewett, P. D.; Raychaudhuri, A. K.; Chen, Yifang

    2012-10-01

    Observation of liquid-like instabilities is reported in Au nanowires formed by nanopatterning of Au films using focused ion beam (FIB) on different types of Si substrates including those passivated with SiO2 or Si3N4 surfaces. The onset of the instability, which can ultimately lead to break up of the FIB patterned nanowires into gold islands, occurs when the diameter of the nanowire is below a critical range, which depends on the conductivity of the substrate and the extent of native oxide present on it. We also observe the formation of Taylor cones on very narrow nanowires grown on insulating substrates at the onset of instabilities. This effect is further strong evidence of liquid behaviour and is the result of charging of the wires during FIB nanofabrication.

  18. Silver Ions Direct Twin-Plane Formation during the Overgrowth of Single-Crystal Gold Nanoparticles

    PubMed Central

    2016-01-01

    It is commonly agreed that the crystalline structure of seeds dictates the crystallinity of final nanoparticles in a seeded-growth process. Although the formation of monocrystalline particles does require the use of single-crystal seeds, twin planes may stem from either single- or polycrystalline seeds. However, experimental control over twin-plane formation remains difficult to achieve synthetically. Here, we show that a careful interplay between kinetics and selective surface passivation offers a unique handle over the emergence of twin planes (in decahedra and triangles) during the growth over single-crystalline gold nanoparticles of quasi-spherical shape. Twinning can be suppressed under conditions of slow kinetics in the presence of silver ions, yielding single-crystalline particles with high-index facets. PMID:27656688

  19. Silver Ions Direct Twin-Plane Formation during the Overgrowth of Single-Crystal Gold Nanoparticles

    PubMed Central

    2016-01-01

    It is commonly agreed that the crystalline structure of seeds dictates the crystallinity of final nanoparticles in a seeded-growth process. Although the formation of monocrystalline particles does require the use of single-crystal seeds, twin planes may stem from either single- or polycrystalline seeds. However, experimental control over twin-plane formation remains difficult to achieve synthetically. Here, we show that a careful interplay between kinetics and selective surface passivation offers a unique handle over the emergence of twin planes (in decahedra and triangles) during the growth over single-crystalline gold nanoparticles of quasi-spherical shape. Twinning can be suppressed under conditions of slow kinetics in the presence of silver ions, yielding single-crystalline particles with high-index facets.

  20. Logical regulation of the enzyme-like activity of gold nanoparticles by using heavy metal ions

    NASA Astrophysics Data System (ADS)

    Lien, Chia-Wen; Chen, Ying-Chieh; Chang, Huan-Tsung; Huang, Chih-Ching

    2013-08-01

    In this study we employed self-deposition and competitive or synergistic interactions between metal ions and gold nanoparticles (Au NPs) to develop OR, AND, INHIBIT, and XOR logic gates through regulation of the enzyme-like activity of Au NPs. In the presence of various metal ions (Ag+, Bi3+, Pb2+, Pt4+, and Hg2+), we found that Au NPs (13 nm) exhibited peroxidase-, oxidase-, or catalase-like activity. After Ag+, Bi3+, or Pb2+ ions had been deposited on the Au NPs, the particles displayed strong peroxidase-like activity; on the other hand, they exhibited strong oxidase- and catalase-like activities after reactions with Ag+/Hg2+ and Hg2+/Bi3+ ions, respectively. The catalytic activities of these Au NPs arose mainly from the various oxidation states of the surface metal atoms/ions. Taking advantage of this behavior, we constructed multiplex logic operations--OR, AND, INHIBIT, and XOR logic gates--through regulation of the enzyme-like activity after the introduction of metal ions into the Au NP solution. When we deposited Hg2+ and/or Bi3+ ions onto the Au NPs, the catalase-like activities of the Au NPs were strongly enhanced (>100-fold). Therefore, we could construct an OR logic gate by using Hg2+/Bi3+ as inputs and the catalase-like activity of the Au NPs as the output. Likewise, we constructed an AND logic gate by using Pt4+ and Hg2+ as inputs and the oxidase-like activity of the Au NPs as the output; the co-deposition of Pt and Hg atoms/ions on the Au NPs was responsible for this oxidase-like activity. Competition between Pb2+ and Hg2+ ions for the Au NPs allowed us to develop an INHIBIT logic gate--using Pb2+ and Hg2+ as inputs and the peroxidase-like activity of the Au NPs as the output. Finally, regulation of the peroxidase-like activity of the Au NPs through the two inputs Ag+ and Bi3+ enabled us to construct an XOR logic gate.In this study we employed self-deposition and competitive or synergistic interactions between metal ions and gold nanoparticles (Au NPs

  1. Soft Landing of Mass-Selected Gold Clusters: Influence of Ion and Ligand on Charge Retention and Reactivity

    SciTech Connect

    Johnson, Grant E.; Laskin, Julia

    2015-02-01

    Herein, we employ a combination of reduction synthesis in solution, soft landing of mass-selected precursor and product ions, and in situ time-of-flight secondary ion mass spectrometry (TOF-SIMS) to examine the influence of ion and the length of diphosphine ligands on the charge retention and reactivity of ligated gold clusters deposited onto self-assembled monolayer surfaces (SAMs). Product ions (Au10L42+, (10,4)2+, L = 1,3-bis(diphenyl-phosphino)propane, DPPP) were prepared through in-source collision induced dissociation (CID) and precursor ions [(8,4)2+, L = 1,6-bis(diphenylphosphino)hexane, DPPH] were synthesized in solution for comparison to (11,5)3+ precursor ions ligated with DPPP investigated previously (ACS Nano 2012, 6, 573 and J. Phys. Chem. C. 2012, 116, 24977). Similar to (11,5)3+ precursor ions, the (10,4)2+ product ions are shown to retain charge on 1H,1H,2H,2H-perfluorodecanethiol monolayers (FSAMs). Additional abundant peaks at higher m/z indicative of reactivity are observed in the TOF-SIMS spectrum of (10,4)2+ product ions that are not seen for (11,5)3+ precursor ions. The abundance of (10,4)2+ on 16-mercaptohexadecanoic acid (COOH-SAMs) is demonstrated to be lower than on FSAMs, consistent with partial reduction of charge. The (10,4)2+ product ion on 1-dodecanethiol (HSAMs) exhibits peaks similar to those seen on the COOH-SAM. On the HSAM, higher m/z peaks indicative of reactivity are observed similar to those on the FSAM. The (8,4)2+ DPPH precursor ions are shown to retain charge on FSAMs similar to (11,5)3+ precursor ions prepared with DPPP. An additional peak corresponding to attachment of one gold atom to (8,4)2+ is observed at higher m/z for DPPH-ligated clusters. On the COOH-SAM, (8,4)2+ is less abundant than on the FSAM consistent with partial neutralization. The results indicate that although retention of charge by product ions generated by CID is similar to precursor ions their reactivity during analysis with SIMS is different

  2. Gold nanoparticle-sensitized quartz crystal microbalance sensor for rapid and highly selective determination of Cu(II) ions.

    PubMed

    Jin, Yulong; Huang, Yanyan; Liu, Guoquan; Zhao, Rui

    2013-09-21

    A novel quartz crystal microbalance (QCM) sensor for rapid, highly selective and sensitive detection of copper ions was developed. As a signal amplifier, gold nanoparticles (Au NPs) were self-assembled onto the surface of the sensor. A simple dip-and-dry method enabled the whole detection procedure to be accomplished within 20 min. High selectivity of the sensor towards copper ions is demonstrated by both individual and coexisting assays with interference ions. This gold nanoparticle mediated amplification allowed a detection limit down to 3.1 μM. Together with good repeatability and regeneration, the QCM sensor was also applied to the analysis of copper contamination in drinking water. This work provides a flexible method for fabricating QCM sensors for the analysis of important small molecules in environmental and biological samples. PMID:23888301

  3. Development of double-pulse lasers ablation system for generating gold ion source under applying an electric field

    NASA Astrophysics Data System (ADS)

    Khalil, A. A. I.

    2015-12-01

    Double-pulse lasers ablation (DPLA) technique was developed to generate gold (Au) ion source and produce high current under applying an electric potential in an argon ambient gas environment. Two Q-switched Nd:YAG lasers operating at 1064 and 266 nm wavelengths are combined in an unconventional orthogonal (crossed-beam) double-pulse configuration with 45° angle to focus on a gold target along with a spectrometer for spectral analysis of gold plasma. The properties of gold plasma produced under double-pulse lasers excitation were studied. The velocity distribution function (VDF) of the emitted plasma was studied using a dedicated Faraday-cup ion probe (FCIP) under argon gas discharge. The experimental parameters were optimized to attain the best signal to noise (S/N) ratio. The results depicted that the VDF and current signals depend on the discharge applied voltage, laser intensity, laser wavelength and ambient argon gas pressure. A seven-fold increases in the current signal by increasing the discharge applied voltage and ion velocity under applying double-pulse lasers field. The plasma parameters (electron temperature and density) were also studied and their dependence on the delay (times between the excitation laser pulse and the opening of camera shutter) was investigated as well. This study could provide significant reference data for the optimization and design of DPLA systems engaged in laser induced plasma deposition thin films and facing components diagnostics.

  4. Using L-arginine-functionalized gold nanorods for visible detection of mercury(II) ions.

    PubMed

    Guan, Jiehao; Wang, Yi-Cheng; Gunasekaran, Sundaram

    2015-04-01

    A rapid and simple approach for visible determination of mercury ions (Hg(2+) ) in aqueous solutions was developed based on surface plasmon resonance phenomenon using L-arginine-functionalized gold nanorods (AuNRs). At pH greater than 9, the deprotonated amine group of L-arginine on the AuNRs bound with Hg(2+) leading to the side-by-side assembly of AuNRs, which was verified by transmission electron microscopy images. Thus, when Hg(2+) was present in the test solution, a blue shift of the typical longitudinal plasmon band of the AuNRs was observed in the ultra violet-visible-near infrared (UV-Vis-NIR) spectra, along with a change in the color of the solution, which occurred within 5 min. After carefully optimizing the potential factors affecting the performance, the L-arginine/AuNRs sensing system was found to be highly sensitive to Hg(2+) , with the limit of detection of 5 nM (S/N = 3); it is also very selective and free of interference from 10 other metal ions (Ba(2+) , Ca(2+) , Cd(2+) , Co(2+) , Cs(+) , Cu(2+) , K(+) , Li(+) , Ni(2+) , Pb(2+) ). The result suggests that the L-arginine-functionalized AuNRs can potentially serve as a rapid, sensitive, and easy-to-use colorimetric biosensor useful for determining Hg(2+) in food and environmental samples. PMID:25754066

  5. Formation of gold and gold sulfide nanoparticles and mesoscale intermediate structures in the reactions of aqueous HAuCl4 with sulfide and citrate ions.

    PubMed

    Mikhlin, Yuri; Likhatski, Maxim; Karacharov, Anton; Zaikovski, Vladimir; Krylov, Alexander

    2009-07-14

    The effects of the molar ratio of sodium sulfide to chloroauric acid in the range of 0.5 to 5 and the time factor on the formation of the nanoparticles (NPs) of metallic Au, Au(2)S or their mixtures have been studied applying in situ and ex situ techniques (UV-Vis absorption spectroscopy, potentiometry, TEM, SPM, SERS, XPS). The products and intermediates have been compared with those for the reduction of chloroaurate with citrate ions and combinations of citrate and sulfide ions. An increase in the concentration of sulfide ions accelerates the reduction of Au(iii) complexes but hinders the nucleation and growth of Au NPs, resulting in a prolonged period before the appearance of plasmon peaks. The electrochemical potential is not directly associated with the plasmon intensities, although the potential sharply decreases simultaneously with a blue shift of the near-IR peak emerging with the Na(2)S/HAuCl(4) ratios of 0.5 to 1.5. It was concluded that the peak is due to longitudinal plasmon resonance of gold nanoplates. Au(2)S NPs, the nucleation of which is effectively inhibited, and probably some structures and fragments visible in TEM and AFM, including 2-5 nm Au NPs, crystallize in part outside the solutions. The evidence of partially liquid mesoscale structures comprising intermediate gold species as precursors of nanoparticles is presented, and their origin, ex situ transformation and role in the reaction mechanisms are discussed.

  6. Capillary electrophoretic study of thiolated alpha-cyclodextrin-capped gold nanoparticles with tetraalkylammonium ions.

    PubMed

    Paau, Man Chin; Lo, Chung Keung; Yang, Xiupei; Choi, Martin M F

    2009-11-27

    Capillary zone electrophoresis (CZE) has been employed to characterize nanometer-sized thiolated alpha-cyclodextrin-capped gold nanoparticles (alpha-CD-S-AuNPs). The addition of tetrabutylammonium (Bu(4)N(+)) ions to the run buffer greatly narrows the migration peak of alpha-CD-S-AuNP. The optimal run buffer was determined to be 10mM Bu(4)N(+) in 30 mM phosphate buffer at pH 12 and an applied voltage of 15 kV. The effect of various tetraalkylammonium ions on the peak width and electrophoretic mobility (mu(e)) of alpha-CD-S-AuNP was studied in detail. Bu(4)N(+) ions assist in inter-linking the alpha-CD-S-AuNPs and narrowing the migration peak in CZE. This observation can be explained by the fact that each Bu(4)N(+) ion can simultaneously interact with several hydrophobic cavities of the surface-attached alpha-CDs on AuNPs. The TEM images show that alpha-CD-S-AuNPs with Bu(4)N(+) are linked together but in the absence of Bu(4)N(+), they are more dispersed. The migration mechanism in CZE is based on the formation of inclusion complexes between Bu(4)N(+) and alpha-CD-S-AuNPs which induces changes in the charge-to-size ratio of alpha-CD-S-AuNPs and mu(e). An inverse linear relationship (r(2)>0.998) exists between the mu(e) and size of alpha-CD-S-AuNPs in the core range 1.4-4.1 nm. The CZE analyses are rapid with migration time less than 4 min. A few nanoliters of each of the alpha-CD-S-AuNP samples were injected hydrodynamically at 0.5 psi for 5s. Our work confirms that CZE is an efficient tool for characterizing the sizes of alpha-CD-S-AuNPs using Bu(4)N(+) ions. PMID:19853853

  7. Anomalous patterns and nearly defect-free ripples produced by bombarding silicon and germanium with a beam of gold ions

    SciTech Connect

    Mollick, Safiul Alam; Ghose, Debabrata; Shipman, Patrick D.; Mark Bradley, R.

    2014-01-27

    We demonstrate that surface ripples with an exceptionally high degree of order can develop when germanium is bombarded with a broad beam of gold ions. In contrast, if silicon is sputtered with an Au{sup −} beam, patches of ripples with two distinct wave vectors can emerge. These types of order can be understood if the coupling between the surface morphology and composition is taken into account.

  8. Lipid imaging by gold cluster time-of-flight secondary ion mass spectrometry: application to Duchenne muscular dystrophy.

    PubMed

    Touboul, David; Brunelle, Alain; Halgand, Frédéric; De La Porte, Sabine; Laprévote, Olivier

    2005-07-01

    Imaging with time-of-flight secondary ion mass spectrometry (TOF-SIMS) has expanded very rapidly with the development of gold cluster ion sources (Au(3+)). It is now possible to acquire ion density maps (ion images) on a tissue section without any treatment and with a lateral resolution of few micrometers. In this article, we have taken advantage of this technique to study the degeneration/regeneration process in muscles of a Duchenne muscular dystrophy model mouse. Specific distribution of different lipid classes (fatty acids, triglycerides, phospholipids, tocopherol, coenzyme Q9, and cholesterol) allows us to distinguish three different regions on a mouse leg section: one is destroyed, another is degenerating (oxidative stress and deregulation of the phosphoinositol cycle), and the last one is stable. TOF-SIMS imaging shows the ability to localize directly on a tissue section a great number of lipid compounds that reflect the state of the cellular metabolism. PMID:15834124

  9. Interaction of gold nanoparticles mediated by captopril and S-nitrosocaptopril: the effect of manganese ions in mild acid medium.

    PubMed

    Iglesias, Emilia; Prado-Gotor, Rafael

    2015-01-01

    We report herein results regarding reactivity and assembly of citrate-capped gold nanoparticles (AuNPs) mediated by captopril (cap) and S-nitrosocaptopril (NOcap), two angiotensin converting enzyme inhibitors and antihypertensive agents. The results were compared with that of cysteine (Cys), a thiol-containing amino acid found in plasma. The interparticle interactions were characterized by monitoring the evolution of the surface plasmon resonance band using the spectrophotometric method. The original gold nanoparticles were efficiently modified by small amounts of Mn(+2) ions, which are adsorbed onto the surface of 15.4 nm citrate-capped gold nanoparticles, giving rise to manganese-gold nanoparticles (Mn-AuNPs) that, in mild acid medium, have proved to be highly sensitive and a rapid colorimetric detection method for thiols. Depending on the concentration of the Mn(+2) ions the aggregation of AuNPs can be rapidly induced. The kinetics of the assembly process has been studied. Good first-order kinetics has been observed, with the exception of captopril-mediated nanoparticle aggregation at low concentration of either cap or acid. The rate of Cys-mediated assembly of gold nanoparticles in aqueous 10 mM acetic acid is more than 20-times faster than pure AuNPs and concentrations of Cys as low as 34 nM can be detected in less than 40 min under conditions of stable Mn-AuNPs. Similar effects were observed with cap or NOcap. The assembly-disassembly reversibility is shown with cap and NOcap and depends highly on pH.

  10. Colorimetric sensor array based on gold nanoparticles and amino acids for identification of toxic metal ions in water.

    PubMed

    Sener, Gulsu; Uzun, Lokman; Denizli, Adil

    2014-01-01

    A facile colorimetric sensor array for detection of multiple toxic heavy metal ions (Hg(2+), Cd(2+), Fe(3+), Pb(2+), Al(3+), Cu(2+), and Cr(3+)) in water is demonstrated using 11-mercaptoundecanoic acid (MUA)-capped gold nanoparticles (AuNPs) and five amino acids (lysine, cysteine, histidine, tyrosine, and arginine). The presence of amino acids (which have functional groups that can form complexes with metal ions and MUA) regulates the aggregation of MUA-capped particles; it can either enhance or diminish the particle aggregation. The combinatorial colorimetric response of all channels of the sensor array (i.e., color change in each of AuNP and amino acid couples) enables naked-eye discrimination of all of the metal ions tested in this study with excellent selectivity.

  11. Colorimetric sensor array based on gold nanoparticles and amino acids for identification of toxic metal ions in water.

    PubMed

    Sener, Gulsu; Uzun, Lokman; Denizli, Adil

    2014-01-01

    A facile colorimetric sensor array for detection of multiple toxic heavy metal ions (Hg(2+), Cd(2+), Fe(3+), Pb(2+), Al(3+), Cu(2+), and Cr(3+)) in water is demonstrated using 11-mercaptoundecanoic acid (MUA)-capped gold nanoparticles (AuNPs) and five amino acids (lysine, cysteine, histidine, tyrosine, and arginine). The presence of amino acids (which have functional groups that can form complexes with metal ions and MUA) regulates the aggregation of MUA-capped particles; it can either enhance or diminish the particle aggregation. The combinatorial colorimetric response of all channels of the sensor array (i.e., color change in each of AuNP and amino acid couples) enables naked-eye discrimination of all of the metal ions tested in this study with excellent selectivity. PMID:25330256

  12. Application of MeV ion bombardment to create micro-scale annealing of Silica-Gold films

    SciTech Connect

    Bouyard, A.; Blanchet, X.; Ila, D.; Muntele, C.I.; Muntele, I.C.; Zimmerman, R.L.

    2003-08-26

    This project studies the production of nanoscale annealing using MeV Si ion beams. To test the technique we produced thin films of Au-Silica by sequential deposition of Au and SiO2 on Suprasil substrates. We measured the thickness of the deposited films with an interferometer and by using Rutherford backscattering spectrometry (RBS). Using the measured thickness we calculated the concentration of Au in each film. TRIM simulation was used to confirm our results. Since the localized annealing causes the formation of gold nano-clusters, we performed optical absorption photospectrometry (OAP) on all slides, before deposition, after deposition, and after bombardment by MeV Si beams. Optical index changes are apparent in the sequentially deposited multilayer samples that were not seen in Au-silica co-deposited samples with the same volume fraction of gold.

  13. Measurement of fragmentation cross sections of 12C ions on a thin gold target with the FIRST apparatus

    NASA Astrophysics Data System (ADS)

    Toppi, M.; Abou-Haidar, Z.; Agodi, C.; Alvarez, M. A. G.; Aumann, T.; Balestra, F.; Battistoni, G.; Bocci, A.; Böhlen, T. T.; Boudard, A.; Brunetti, A.; Carpinelli, M.; Cirio, R.; Cirrone, G. A. P.; Cortes-Giraldo, M. A.; Cuttone, G.; de Napoli, M.; Durante, M.; Fernández-García, J. P.; Finck, Ch.; Golosio, B.; Iarocci, E.; Iazzi, F.; Ickert, G.; Introzzi, R.; Juliani, D.; Krimmer, J.; Kummali, A. H.; Kurz, N.; Labalme, M.; Leifels, Y.; Le Fèvre, A.; Leray, S.; Marchetto, F.; Monaco, V.; Morone, M. C.; Nicolosi, D.; Oliva, P.; Paoloni, A.; Piersanti, L.; Pleskac, R.; Randazzo, N.; Rescigno, R.; Romano, F.; Rossi, D.; Rosso, V.; Rousseau, M.; Sacchi, R.; Sala, P.; Salvador, S.; Sarti, A.; Scheidenberger, C.; Schuy, C.; Sciubba, A.; Sfienti, C.; Simon, H.; Sipala, V.; Spiriti, E.; Tropea, S.; Vanstalle, M.; Younis, H.; Patera, V.; FIRST Collaboration

    2016-06-01

    A detailed knowledge of the light ions interaction processes with matter is of great interest in basic and applied physics. As an example, particle therapy and space radioprotection require highly accurate fragmentation cross-section measurements to develop shielding materials and estimate acute and late health risks for manned missions in space and for treatment planning in particle therapy. The Fragmentation of Ions Relevant for Space and Therapy experiment at the Helmholtz Center for Heavy Ion research (GSI) was designed and built by an international collaboration from France, Germany, Italy, and Spain for studying the collisions of a 12C ion beam with thin targets. The collaboration's main purpose is to provide the double-differential cross-section measurement of carbon-ion fragmentation at energies that are relevant for both tumor therapy and space radiation protection applications. Fragmentation cross sections of light ions impinging on a wide range of thin targets are also essential to validate the nuclear models implemented in MC simulations that, in such an energy range, fail to reproduce the data with the required accuracy. This paper presents the single differential carbon-ion fragmentation cross sections on a thin gold target, measured as a function of the fragment angle and kinetic energy in the forward angular region (θ ≲6° ), aiming to provide useful data for the benchmarking of the simulation softwares used in light ions fragmentation applications. The 12C ions used in the measurement were accelerated at the energy of 400 MeV/nucleon by the SIS (heavy ion synchrotron) GSI facility.

  14. The role of halide ions in the anisotropic growth of gold nanoparticles: a microscopic, atomistic perspective.

    PubMed

    Meena, Santosh Kumar; Celiksoy, Sirin; Schäfer, Philipp; Henkel, Andreas; Sönnichsen, Carsten; Sulpizi, Marialore

    2016-05-21

    We provide a microscopic view of the role of halides in controlling the anisotropic growth of gold nanorods through a combined computational and experimental study. Atomistic molecular dynamics simulations unveil that Br(-) adsorption is not only responsible for surface passivation, but also acts as the driving force for CTAB micelle adsorption and stabilization on the gold surface in a facet-dependent way. The partial replacement of Br(-) by Cl(-) decreases the difference between facets and the surfactant density. Finally, in the CTAC solution, no halides or micellar structures protect the gold surface and further gold reduction should be uniformly possible. Experimentally observed nanoparticle's growth in different CTAB/CTAC mixtures is more uniform and faster as the amount of Cl(-) increases, confirming the picture from the simulations. In addition, the surfactant layer thickness measured on nanorods exposed to CTAB and CTAC quantitatively agrees with the simulation results. PMID:27118188

  15. Derivation of guideline values for gold (III) ion toxicity limits to protect aquatic ecosystems.

    PubMed

    Nam, Sun-Hwa; Lee, Woo-Mi; Shin, Yu-Jin; Yoon, Sung-Ji; Kim, Shin Woong; Kwak, Jin Il; An, Youn-Joo

    2014-01-01

    This study focused on estimating the toxicity values of various aquatic organisms exposed to gold (III) ion (Au(3+)), and to propose maximum guideline values for Au(3+) toxicity that protect the aquatic ecosystem. A comparative assessment of methods developed in Australia and New Zealand versus the European Community (EC) was conducted. The test species used in this study included two bacteria (Escherichia coli and Bacillus subtilis), one alga (Pseudokirchneriella subcapitata), one euglena (Euglena gracilis), three cladocerans (Daphnia magna, Moina macrocopa, and Simocephalus mixtus), and two fish (Danio rerio and Oryzias latipes). Au(3+) induced growth inhibition, mortality, immobilization, and/or developmental malformations in all test species, with responses being concentration-dependent. According to the moderate reliability method of Australia and New Zealand, 0.006 and 0.075 mg/L of guideline values for Au(3+) were obtained by dividing 0.33 and 4.46 mg/L of HC5 and HC50 species sensitivity distributions (SSD) with an FACR (Final Acute to Chronic Ratio) of 59.09. In contrast, the EC method uses an assessment factor (AF), with the 0.0006 mg/L guideline value for Au(3+) being divided with the 48-h EC50 value for 0.60 mg/L (the lowest toxicity value obtained from short term results) by an AF of 1000. The Au(3+) guideline value derived using an AF was more stringent than the SSD. We recommend that more toxicity data using various bioassays are required to develop more accurate ecological risk assessments. More chronic/long-term exposure studies on sensitive endpoints using additional fish species and invertebrates not included in the current dataset will be needed to use other derivation methods (e.g., US EPA and Canadian Type A) or the "High Reliability Method" from Australia/New Zealand. Such research would facilitate the establishment of guideline values for various pollutants that reflect the universal effects of various pollutants in aquatic ecosystems. To

  16. Aspheric Solute Ions Modulate Gold Nanoparticle Interactions in an Aqueous Solution: An Optimal Way To Reversibly Concentrate Functionalized Nanoparticles.

    PubMed

    Villarreal, Oscar D; Chen, Liao Y; Whetten, Robert L; Demeler, Borries

    2015-12-17

    Nanometer-sized gold particles (AuNPs) are of peculiar interest because their behaviors in an aqueous solution are sensitive to changes in environmental factors including the size and shape of the solute ions. In order to determine these important characteristics, we performed all-atom molecular dynamics simulations on the icosahedral Au144 nanoparticles each coated with a homogeneous set of 60 thiolates (4-mercaptobenzoate, pMBA) in eight aqueous solutions having ions of varying sizes and shapes (Na(+), K(+), tetramethylamonium cation TMA(+), tris-ammonium cation TRS(+), Cl(-), and OH(-)). For each solution, we computed the reversible work (potential of mean of force) to bring two nanoparticles together as a function of their separation distance. We found that the behavior of pMBA protected Au144 nanoparticles can be readily modulated by tuning their aqueous environmental factors (pH and solute ion combinations). We examined the atomistic details on how the sizes and shapes of solute ions quantitatively factor in the definitive characteristics of nanoparticle-environment and nanoparticle-nanoparticle interactions. We predict that tuning the concentrations of nonspherical composite ions such as TRS(+) in an aqueous solution of AuNPs be an effective means to modulate the aggregation propensity desired in biomedical and other applications of small charged nanoparticles.

  17. Activation of oxygen-mediating pathway using copper ions: fine-tuning of growth kinetics in gold nanorod overgrowth.

    PubMed

    Liu, Wenqi; Zhang, Hui; Wen, Tao; Yan, Jiao; Hou, Shuai; Shi, Xiaowei; Hu, Zhijian; Ji, Yinglu; Wu, Xiaochun

    2014-10-21

    Growth kinetics plays an important role in the shape control of nanocrystals (NCs). Herein, we presented a unique way to fine-tune the growth kinetics via oxidative etching activated by copper ions. For the overgrowth of gold nanorods (Au NRs), competitive adsorption of dissolved oxygen on rod surface was found to slow down the overgrowth rate. Copper ions were able to remove the adsorbed oxygen species from the Au surface via oxidative etching, thus exposing more reaction sites for Au deposition. In this way, copper ions facilitated the overgrowth process. Furthermore, Cu(2+) rather than Cu(+) acted as the catalyst for the oxidative etching. Comparative study with Ag(+) indicated that Cu(2+) cannot regulate NC shapes via an underpotential deposition mechanism. In contrast, Ag(+) led to the formation of Au tetrahexahedra (THH) and a slight decrease of the growth rate at similar growth conditions. Combining the distinct roles of the two ions enabled elongated THH to be produced. Copper ions activating the O2 pathway suggested that dissolved oxygen has a strong affinity for the Au surface. Moreover, the results of NC-sensitized singlet oxygen ((1)O2) indicated that the absorbed oxygen species on the surface of Au NCs bounded with low-index facets mainly existed in the form of molecular O2. PMID:25244407

  18. Colorimetric Signal Amplification Assay for Mercury Ions Based on the Catalysis of Gold Amalgam.

    PubMed

    Chen, Zhengbo; Zhang, Chenmeng; Gao, Qinggang; Wang, Guo; Tan, Lulu; Liao, Qing

    2015-11-01

    Mercury is a major threat to the environment and to human health. It is highly desirable to develop a user-friendly kit for on-site mercury detection. Such a method must be able to detect mercury below the threshold levels (10 nM) for drinking water defined by the U.S. Environmental Protection Agency. Herein, we for the first time reported catalytically active gold amalgam-based reaction between 4-nitrophenol and NaBH4 with colorimetric sensing function. We take advantage of the correlation between the catalytic properties and the surface area of gold amalgam, which is proportional to the amount of the gold nanoparticle (AuNP)-bound Hg(2+). As the concentration of Hg(2+) increases until the saturation of Hg onto the AuNPs, the catalytic performance of the gold amalgam is much stronger due to the formation of gold amalgam and the increase of the nanoparticle surface area, leading to the decrease of the reduction time of 4-nitrophenol for the color change. This sensing system exhibits excellent selectivity and ultrahigh sensitivity up to the 1.45 nM detection limit. The practical use of this system for Hg(2+) determination in tap water samples is also demonstrated successfully.

  19. Coverage Dependent Charge Reduction of Cationic Gold Clusters on Surfaces Prepared Using Soft Landing of Mass-selected Ions

    SciTech Connect

    Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

    2012-11-29

    The ionic charge state of monodisperse cationic gold clusters on surfaces may be controlled by selecting the coverage of mass-selected ions soft landed onto a substrate. Polydisperse diphosphine-capped gold clusters were synthesized in solution by reduction of chloro(triphenylphosphine)gold(I) with borane tert-butylamine in the presence of 1,3-bis(diphenylphosphino)propane. The polydisperse gold clusters were introduced into the gas phase by electrospray ionization and mass selection was employed to select a multiply charged cationic cluster species (Au11L53+, m/z = 1409, L = 1,3-bis(diphenylphosphino)propane) which was delivered to the surfaces of four different self-assembled monolayers on gold (SAMs) at coverages of 1011 and 1012 clusters/mm2. Employing the spatial profiling capabilities of in-situ time-of-flight secondary ion mass spectrometry (TOF-SIMS) it is shown that, in addition to the chemical functionality of the monolayer (as demonstrated previously: ACS Nano, 2012, 6, 573) the coverage of cationic gold clusters on the surface may be used to control the distribution of ionic charge states of the soft-landed multiply charged clusters. In the case of a 1H,1H,2H,2H-perfluorodecanethiol SAM (FSAM) almost complete retention of charge by the deposited Au11L53+ clusters was observed at a lower coverage of 1011 clusters/mm2. In contrast, at a higher coverage of 1012 clusters/mm2, pronounced reduction of charge to Au11L52+ and Au11L5+ was observed on the FSAM. When soft landed onto 16- and 11-mercaptohexadecanoic acid surfaces on gold (16,11-COOH-SAMs), the mass-selected Au11L53+ clusters exhibited partial reduction of charge to Au11L52+ at lower coverage and additional reduction of charge to both Au11L52+ and Au11L5+ at higher coverage. The reduction of charge was found to be more pronounced on the surface of the shorter (thinner) C11 than the longer (thicker) C16-COOH-SAM. On the surface of the 1-dodecanethiol (HSAM) monolayer, the most abundant charge state

  20. Colloidal gold nanoparticle probe-based immunochromatographic assay for the rapid detection of chromium ions in water and serum samples

    SciTech Connect

    Liu, Xi; Xiang, Jun-Jian; Tang, Yong; Zhang, Xiao-Li; Fu, Qiang-Qiang; Zou, Jun-Hui; Lin, Yuehe

    2012-09-01

    An immunochromatographic assay (ICA) using gold nanoparticles coated with monoclonal antibody (McAb) for the detection of chromium ions (Cr) in water and serum samples was developed, optimized, and validated. Gold nanoparticles coated with affinity- purified monoclonal antibodies against isothiocyanobenzyl-EDTA (iEDTA)-chelated Cr3+ were used as the detecting reagent in this completive immunoassay-based one- step test strip. The ICA was investigated to measure chromium speciation in water samples. Chromium standard samples of 0-80 ng/mL in water were determined by the test strips. The results showed that the visual lowest detection limit (LDL) of the test strip was 50.0 ng/mL. A portable colorimetric lateral flow reader was used for the quantification of Cr. The results indicated that the linear range of the ICA with colorimetric detection was 5-80 ng/mL. The ICA was also validated for the detection of chromium ions in serum samples. The test trips showed high stability in that they could be stored at at 37 C for at least 12 weeks without significant loss of activity. The test strip also showed good selectivity for Cr detection with negligible interference from other heavy metals. Because of its low cost and short testing time (within 5 min), the test strip is especially suitable for on-site large- scale screening of Cr-polluted water samples, biomonitoring of Cr exposure, and many other field applications.

  1. Terbium ion-coordinated carbon dots for fluorescent aptasensing of adenosine 5'-triphosphate with unmodified gold nanoparticles.

    PubMed

    Xu, Mingdi; Gao, Zhuangqiang; Zhou, Qian; Lin, Youxiu; Lu, Minghua; Tang, Dianping

    2016-12-15

    This work reports on a novel time-resolved fluorescent aptasensing platform for the quantitative monitoring of adenosine 5'-triphosphate (ATP) by interaction of dispersive/agglomerate gold nanoparticles (AuNPs) with terbium ion-coordinated carbon dots (Tb-CDs). To construct such a fluorescent nanoprobe, Tb-CDs with high-efficient fluorescent intensity are first synthesized by the microwave method with terbium ions (Tb(3+)). The aptasensing system consists of ATP aptamer, AuNP and Tb-CD. The dispersive/agglomerate gold nanoparticles are acquired through the reaction of the aptamer with target ATP. Upon target ATP introduction, the aptamers bind with the analytes to form new aptamer-ATP complexes and coat on the surface of AuNPs to inhibit their aggregation in the high salt solution. In this case, the fluorescent signal of Tb-CDs is quenched by the dispersive AuNPs on the basis of the fluorescence resonance energy transfer (FRET). At the absence of target analyte, gold nanoparticles tend to aggregate in the high salt state even if the aptamers are present. Thus, the added Tb-CDs maintain their intrinsic fluorescent intensity. Experimental results indicated that the aptasensing system exhibited good fluorescent responses toward ATP in the dynamic range from 40nM to 4.0μM with a detection limit of 8.5nM at 3sblank criterion. The repeatability and intermediate precision is less than 9.5% at three concentrations including 0.04, 0.4 and 2.0μM ATP. The selectivity was acceptable toward guanosine 5'-triphosphate, uridine 5'-triphosphate and cytidine 5'-triphosphate. The methodology was applied to evaluate the blank human serum spiked with target ATP, and the recoveries (at 3 concentration levels) ranged between 97.0% and 103.7%. Importantly, this detection scheme is rapid, simple, cost-effective, and does not require extensive sample preparation or separation.

  2. High-Resolution 3D Imaging and Quantification of Gold Nanoparticles in a Whole Cell Using Scanning Transmission Ion Microscopy

    PubMed Central

    Chen, Xiao; Chen, Ce-Belle; Udalagama, Chammika N.B.; Ren, Minqin; Fong, Kah Ee; Yung, Lin Yue Lanry; Giorgia, Pastorin; Bettiol, Andrew Anthony; Watt, Frank

    2013-01-01

    Increasing interest in the use of nanoparticles (NPs) to elucidate the function of nanometer-sized assemblies of macromolecules and organelles within cells, and to develop biomedical applications such as drug delivery, labeling, diagnostic sensing, and heat treatment of cancer cells has prompted investigations into novel techniques that can image NPs within whole cells and tissue at high resolution. Using fast ions focused to nanodimensions, we show that gold NPs (AuNPs) inside whole cells can be imaged at high resolution, and the precise location of the particles and the number of particles can be quantified. High-resolution density information of the cell can be generated using scanning transmission ion microscopy, enhanced contrast for AuNPs can be achieved using forward scattering transmission ion microscopy, and depth information can be generated from elastically backscattered ions (Rutherford backscattering spectrometry). These techniques and associated instrumentation are at an early stage of technical development, but we believe there are no physical constraints that will prevent whole-cell three-dimensional imaging at <10 nm resolution. PMID:23561518

  3. DNA-mediated gold nanoparticle signal transducers for combinatorial logic operations and heavy metal ions sensing.

    PubMed

    Zhang, Yuhuan; Liu, Wei; Zhang, Wentao; Yu, Shaoxuan; Yue, Xiaoyue; Zhu, Wenxin; Zhang, Daohong; Wang, Yanru; Wang, Jianlong

    2015-10-15

    Herein, the structure of two DNA strands which are complementary except fourteen T-T and C-C mismatches was programmed for the design of the combinatorial logic operation by utilizing the different protective capacities of single chain DNA, part-hybridized DNA and completed-hybridized DNA on unmodified gold nanoparticles. In the presence of either Hg(2+) or Ag(+), the T-Hg(2+)-T or C-Ag(+)-C coordination chemistry could lead to the formation of part-hybridized DNA which keeps gold nanoparticles from clumping after the addition of 40 μL 0.2M NaClO4 solution, but the protection would be screened by 120 μL 0.2M NaClO4 solution. While the coexistence of Hg(2+), Ag(+) caused the formation of completed-hybridized DNA and the protection for gold nanoparticles lost in either 40 μL or 120 μL NaClO4 solutions. Benefiting from sharing of the same inputs of Hg(2+) and Ag(+), OR and AND logic gates were easily integrated into a simple colorimetric combinatorial logic operation in one system, which make it possible to execute logic gates in parallel to mimic arithmetic calculations on a binary digit. Furthermore, two other logic gates including INHIBIT1 and INHIBIT2 were realized to integrated with OR logic gate both for simultaneous qualitative discrimination and quantitative determination of Hg(2+) and Ag(+). Results indicate that the developed logic system based on the different protective capacities of DNA structure on gold nanoparticles provides a new pathway for the design of the combinatorial logic operation in one system and presents a useful strategy for development of advanced sensors, which may have potential applications in multiplex chemical analysis and molecular-scale computer design. PMID:25985196

  4. DNA-mediated gold nanoparticle signal transducers for combinatorial logic operations and heavy metal ions sensing.

    PubMed

    Zhang, Yuhuan; Liu, Wei; Zhang, Wentao; Yu, Shaoxuan; Yue, Xiaoyue; Zhu, Wenxin; Zhang, Daohong; Wang, Yanru; Wang, Jianlong

    2015-10-15

    Herein, the structure of two DNA strands which are complementary except fourteen T-T and C-C mismatches was programmed for the design of the combinatorial logic operation by utilizing the different protective capacities of single chain DNA, part-hybridized DNA and completed-hybridized DNA on unmodified gold nanoparticles. In the presence of either Hg(2+) or Ag(+), the T-Hg(2+)-T or C-Ag(+)-C coordination chemistry could lead to the formation of part-hybridized DNA which keeps gold nanoparticles from clumping after the addition of 40 μL 0.2M NaClO4 solution, but the protection would be screened by 120 μL 0.2M NaClO4 solution. While the coexistence of Hg(2+), Ag(+) caused the formation of completed-hybridized DNA and the protection for gold nanoparticles lost in either 40 μL or 120 μL NaClO4 solutions. Benefiting from sharing of the same inputs of Hg(2+) and Ag(+), OR and AND logic gates were easily integrated into a simple colorimetric combinatorial logic operation in one system, which make it possible to execute logic gates in parallel to mimic arithmetic calculations on a binary digit. Furthermore, two other logic gates including INHIBIT1 and INHIBIT2 were realized to integrated with OR logic gate both for simultaneous qualitative discrimination and quantitative determination of Hg(2+) and Ag(+). Results indicate that the developed logic system based on the different protective capacities of DNA structure on gold nanoparticles provides a new pathway for the design of the combinatorial logic operation in one system and presents a useful strategy for development of advanced sensors, which may have potential applications in multiplex chemical analysis and molecular-scale computer design.

  5. The XPS depth profiling and tribological characterization of ion-plated gold on various metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1983-01-01

    Friction properties were measured with a gold film; the graded interface between gold and nickel substrate; and the nickel substrate. All sliding was conducted against hard silicon carbide pins in two processes. In the adhesive process, friction arises primarily from adhesion between sliding surfaces. In the abrasion process, friction occurs as a result of the hard pin sliding against the film, indenting into it, and plowing a series of grooves. Copper and 440 C stainless steel substrates were also used. Results indicate that the friction related to both adhesion and abrasion is influenced by coating depth. The trends in friction behavior as a function of film depth are, however, just the opposite. The graded interface exhibited the highest adhesion and friction, while the graded interface resulted in the lowest abrasion and friction. The coefficient of friction due to abrasion is inversely related to the hardness. The greater the hardness of the surface, the lower is the abrasion and friction. The microhardness in the graded interface exhibited the highest hardness due to an alloy hardening effect. Almost no graded interface between the vapor-deposited gold film and the substrates was detected.

  6. A sensitive and selective colorimetric method for detection of copper ions based on anti-aggregation of unmodified gold nanoparticles.

    PubMed

    Hormozi-Nezhad, M Reza; Abbasi-Moayed, Samira

    2014-11-01

    A highly sensitive and selective colorimetric method for detection of copper ions, based on anti-aggregation of D-penicillamine (D-PC) induced aggregated gold nanoparticles (AuNPs) was developed. Copper ions can hinder the aggregation of AuNPs induced by D-PC, through formation of mixed-valence complex with D-PC that is a selective copper chelator. In the presence of a fixed amount of D-PC, the aggregation of AuNPs decreases with increasing concentrations of Cu(2+) along with a color change from blue to red in AuNPs solution and an increase in the absorption ratio (A520/A650). Under the optimum experimental conditions (pH 7, [AuNPs] =3.0 nmol L(-1) and [NaCl]=25 mmol L(-1)), a linear calibration curve for Cu(2+) was obtained within the range of 0.05-1.85 µmol L(-1) with a limit of detection (3Sb) of 30 nmol L(-1). Excellent selectivity toward Cu(2+) was observed among various metal ions due to a specific complex formation between Cu(2+) and D-PC. The proposed method has been successfully applied for the detection of Cu(2+) in various real samples.

  7. A colorimetric probe based on desensitized ionene-stabilized gold nanoparticles for single-step test for sulfate ions

    NASA Astrophysics Data System (ADS)

    Arkhipova, Viktoriya V.; Apyari, Vladimir V.; Dmitrienko, Stanislava G.

    2015-03-01

    Desensitized ionene-stabilized gold nanoparticles have been prepared and applied as a colorimetric probe for the single-step test for sulfate ions at the relatively high concentration level. The approach is based on aggregation of the nanoparticles leading to the change in absorption spectra and color of the solution. These nanoparticles are characterized by the decreased sensitivity due to both electrostatic and steric stabilization, which allows for simple, and rapid direct single-step determination of sulfate at the relatively high concentration level in real water samples without sample pretreatment or dilution. Influence of different factors (the time of interaction, pH, the concentrations of sulfate ions and the nanoparticles) on the aggregation and analytical performance of the procedure was investigated. The method allows for the determination of sulfate ions in the mass range of 0.2-0.4 mg with RSD of 5% from the sample volume of less than 2 mL. It has a sharp dependence of the colorimetric response on the concentration of sulfate, which makes it prospective for indicating deviations of the sulfate concentration regarding some declared value chosen within the above range. The time of the analysis is 2 min. The method was applied to the analysis of mineral water samples.

  8. High-temperature tribological characteristics of silver and gold coatings on ceramics prepared by ion-beam-assisted deposition

    SciTech Connect

    Erdemir, A.; Erck, R.A.; Fenske, G.R.; Nichols, F.A.

    1992-04-01

    An ion-beam-assisted deposition (IBAD) system was used to deposit silver and gold coatings on polycrystalline {alpha}-alumina (Al{sub 2}O{sub 3}) substrates for tribological studies at temperatures to 400{degrees}C. The wear tests were performed with an oscillating ball-on-flat type of test apparatus as a partial simulation of ring/liner motion and contact geometry in actual engine systems. The test results showed that without a surface coating, both the wear rates and the friction coefficients of Al{sub 2}O{sub 3}/Al{sub 2}O{sub 3} test pairs were quite high, and increased substantially with temperature. In contract, the wear of flats coated with silver and gold was at unmeasurable levels, even after sliding tests of 110,000 passes. The wear of balls (uncoated) sliding against the Ag- and Au-coated flats was reduced by factors of 45 to more than 500 depending on coating type and ambient temperature. The friction coefficients of pairs with an IBAD-Ag or Au coating were in the range of 0.32--0.5.

  9. Combining Zn Ion Catalysis with Homogeneous Gold Catalysis: An Efficient Annulation Approach to N-Protected Indoles.

    PubMed

    Wang, Yanzhao; Liu, Lianzhu; Zhang, Liming

    2013-02-01

    The Fischer indole synthesis is perhaps the most powerful method for indole preparation, but it often suffers from low regioselectivities with unsymmetric aliphatic ketone substrates and strong acidic conditions and is not suitable for α,β-unsaturated ketones. In this article, we disclose an efficient synthesis of N-protected indoles from N-arylhydroxamic acids/N-aryl-N-hydroxycarbamates and a variety of alkynes via a cooperative gold and zinc catalysis. The zinc catalysis is similar to the related zinc ion catalysis in metalloenzymes such as human carbonic anhydrase II and substantially enhances the O-nucleophilicity of N-acylated hydroxamines by forming the corresponding Zn chelates. The Zn chelates can attack gold-activated alkynes to form O-alkenyl-N-arylhydroxamates, which can undergo facile 3,3-sigmatropic rearrangements and subsequent cyclodehydrations to yield N-protected indole products. This new chemistry offers several important improvements over the Fischer indole synthesis: a) the reaction conditions are mildly acidic and can tolerate sensitive groups such as Boc; b) broader substrate scopes including substrates with pendant carbonyl groups (reactive in the Fischer chemistry) and alkyl chlorides (e.g., 3f); c) better regioselectivities for the formation of 2-substituted indoles under much milder conditions; d) 2-alkenylindoles can be prepared readily in good to excellent yields, but the Fischer chemistry could not; e) with internal alkynes both steric and electronic controls are available for achieving good regioselectivities, while the Fischer chemistry is in general problematic.

  10. The Radiation Enhancement of 15 nm Citrate-Capped Gold Nanoparticles Exposed to 70 keV/μm Carbon Ions.

    PubMed

    Liu, Yan; Liu, Xi; Jin, Xiaodong; He, Pengbo; Zheng, Xiaogang; Ye, Fei; Chen, Weiqiang; Li, Qiang

    2016-03-01

    Radiotherapy is an important modality for tumor treatment. The central goal of radiotherapy is to deliver a therapeutic dose to the tumor as much as possible whilst sparing the surrounding normal tissues. On one hand, heavy ion radiation induces maximum damage at the end of the track (called the Bragg Peak). Hadron therapy based on heavy ions is considered superior to conventional X-rays and γ-rays radiations for tumors sited in sensitive tissues, childhood cases and radioresistant cancers. On the other hand, radiation sensitizers enhanced the radiation effects in tumors by increasing the dose specifically to the tumor cells. Recently, the use of gold nanoparticles as potential tumor selective radio-sensitizers has been proposed as a breakthrough in radiotherapy with conventional radiations. The enhanced radiation effect of heavy ions in tumor by using gold nanoparticles as radio-sensitizer may provide alternative in hadron therapy. In this study, we investigated the radiosensitizing effects of carbon ions with a linear energy transfer of 70 keV/μm in the presence of 15 nm citrate-capped AuNPs. The existing of AuNPs resulted in 5.5-fold enhancement in hydroxyl radical production and 24.5% increment in relative biological effectiveness (RBE) values for carbon-ion-irradiated HeLa cells. The study indicated gold nanoparticles can be used as potential radio-sensitizer in carbon ions therapy.

  11. The Radiation Enhancement of 15 nm Citrate-Capped Gold Nanoparticles Exposed to 70 keV/μm Carbon Ions.

    PubMed

    Liu, Yan; Liu, Xi; Jin, Xiaodong; He, Pengbo; Zheng, Xiaogang; Ye, Fei; Chen, Weiqiang; Li, Qiang

    2016-03-01

    Radiotherapy is an important modality for tumor treatment. The central goal of radiotherapy is to deliver a therapeutic dose to the tumor as much as possible whilst sparing the surrounding normal tissues. On one hand, heavy ion radiation induces maximum damage at the end of the track (called the Bragg Peak). Hadron therapy based on heavy ions is considered superior to conventional X-rays and γ-rays radiations for tumors sited in sensitive tissues, childhood cases and radioresistant cancers. On the other hand, radiation sensitizers enhanced the radiation effects in tumors by increasing the dose specifically to the tumor cells. Recently, the use of gold nanoparticles as potential tumor selective radio-sensitizers has been proposed as a breakthrough in radiotherapy with conventional radiations. The enhanced radiation effect of heavy ions in tumor by using gold nanoparticles as radio-sensitizer may provide alternative in hadron therapy. In this study, we investigated the radiosensitizing effects of carbon ions with a linear energy transfer of 70 keV/μm in the presence of 15 nm citrate-capped AuNPs. The existing of AuNPs resulted in 5.5-fold enhancement in hydroxyl radical production and 24.5% increment in relative biological effectiveness (RBE) values for carbon-ion-irradiated HeLa cells. The study indicated gold nanoparticles can be used as potential radio-sensitizer in carbon ions therapy. PMID:27455642

  12. Monitoring Cluster Ions Derived from Aptamer-Modified Gold Nanofilms under Laser Desorption/Ionization for the Detection of Circulating Tumor Cells.

    PubMed

    Chiu, Wei-Jane; Ling, Tsung-Kai; Chiang, Hai-Pang; Lin, Han-Jia; Huang, Chih-Ching

    2015-04-29

    In this paper, we describe the use of pulsed laser desorption/ionization mass spectrometry (LDI-MS) for the detection of tumor cells through the analysis of gold cluster ions [Aun](+) from aptamer-modified gold nanofilms (Au NFs). We observed not only the transformation of the Au NFs into gold nanoparticles (Au NPs) but also the formation of gaseous gold cluster ions ([Au(n)](+); n = 1-5) under irradiation with a nanosecond pulsed laser. The size and density of the formed Au NPs and the abundance of [Au(n)](+) ions were both highly dependent on the thickness of the Au NFs (10-100 nm). Thin Au NFs tended to form highly dense Au NPs on the substrate and favored the desorption and ionization of gold cluster ions. The signal intensities of the [Au(n)](+) species, monitoring using mass spectrometry, decreased upon increasing the thickness of the Au NF from 10 to 100 nm and after modification with thiolated DNA. Furthermore, we found that Au NFs modified with mucin1-binding aptamer (AptMUC1-Au NFs) could selectively enrich MCF-7 cells (human breast adenocarcinoma cell line) in blood samples; coupled with LDI-MS analysis of the [Au(n)](+) ions, we could detect MCF-7 cells selectively in blood samples at abundances as low as 10 cells. This approach offers the advantages of high sensitivity, selectivity, and throughput for the detection of circulating tumor cells, and has great potential for use as a powerful analytical platform for clinical diagnoses of tumor metastasis.

  13. Target-induced formation of gold amalgamation on DNA-based sensing platform for electrochemical monitoring of mercury ion coupling with cycling signal amplification strategy.

    PubMed

    Chen, Jinfeng; Tang, Juan; Zhou, Jun; Zhang, Lan; Chen, Guonan; Tang, Dianping

    2014-01-31

    Heavy metal ion pollution poses severe risks in human health and environmental pollutant, because of the likelihood of bioaccumulation and toxicity. Driven by the requirement to monitor trace-level mercury ion (Hg(2+)), herein we construct a new DNA-based sensor for sensitive electrochemical monitoring of Hg(2+) by coupling target-induced formation of gold amalgamation on DNA-based sensing platform with gold amalgamation-catalyzed cycling signal amplification strategy. The sensor was simply prepared by covalent conjugation of aminated poly-T(25) oligonucleotide onto the glassy carbon electrode by typical carbodiimide coupling. Upon introduction of target analyte, Hg(2+) ion was intercalated into the DNA polyion complex membrane based on T-Hg(2+)-T coordination chemistry. The chelated Hg(2+) ion could induce the formation of gold amalgamation, which could catalyze the p-nitrophenol with the aid of NaBH4 and Ru(NH3)6(3+) for cycling signal amplification. Experimental results indicated that the electronic signal of our system increased with the increasing Hg(2+) level in the sample, and has a detection limit of 0.02nM with a dynamic range of up to 1000nM Hg(2+). The strategy afforded exquisite selectivity for Hg(2+) against other environmentally related metal ions. In addition, the methodology was evaluated for the analysis of Hg(2+) in spiked tap-water samples, and the recovery was 87.9-113.8%. PMID:24439499

  14. Surface-plasmon-based colorimetric detection of Cu(II) ions using label-free gold nanoparticles in aqueous thiosulfate systems

    NASA Astrophysics Data System (ADS)

    Tripathy, Suraj Kumar; Woo, Ju Yeon; Han, Chang-Soo

    2012-08-01

    We report colorimetric, label-free and non-aggregation-based gold nanoparticle (AuNP) probes for the highly selective detection of Cu(II) ions in aqueous environments. This detection scheme relies on the ability of Cu(II) ions to catalyze the leaching of gold at room temperature in the presence of thiosulfate species and ammonia. This simple and cost-effective probe provides rapid detection of Cu(II) ions at concentrations as low as 10 ppm. A similar detection method using AuNPs in ammonia-free thiosulfate solution is also viable at moderate reaction temperature (50 °C). The ammonia-free method also leads to marked damping and red-shifting of the surface plasmon resonance signal of the AuNP dispersion. The two methods clearly differ in the nature of the surface plasmon damping phenomenon, and their working mechanisms are plausibly explained based on the experimental investigations.

  15. UV-Visible Spectroscopy Detection of Iron(III) Ion on Modified Gold Nanoparticles With a Hydroxamic Acid

    NASA Astrophysics Data System (ADS)

    Karami, C.; Alizadeh, A.; Taher, M. A.; Hamidi, Z.; Bahrami, B.

    2016-09-01

    The present work describes the preparation of gold nanoparticles (AuNPs) functionalized with hydroxamic acid and the use of them in UV-visible spectroscopy detection of iron(III) ions. The prepared AuNPs were thoroughly characterized by using UV-visible spectroscopy, TEM, and 1H NMR techniques. The newly synthesized hydroxamic acid-AuNPs are brown in color due to the intense surface plasmon absorption band centered at 527 nm. In the presence of Fe(III), the surface plasmon absorption band is centered at 540 nm. However, the sensitivity of hydroxamic acid-AuNPs towards other metal ions such as Mg(II), Ca(II), Ag(I), Cu(II), Mn(II), Cr(II), Ni(II), Co(II),Fe(II), Hg(II), and Pb(II) can be negligible. This highly selective sensor allows a direct quantitative assay of Fe(III) with a UVvisible spectroscopy detection limited to 45.8 nM.

  16. Enhanced sputtering yields from single-ion impacts on gold nanorods.

    PubMed

    Greaves, G; Hinks, J A; Busby, P; Mellors, N J; Ilinov, A; Kuronen, A; Nordlund, K; Donnelly, S E

    2013-08-01

    Sputtering yields, enhanced by more than an order of magnitude, have been observed for 80 keV Xe ion irradiation of monocrystalline Au nanorods. Yields are in the range 100-1900  atoms/ion compared with values for a flat surface of ≈50. This enhancement results in part from the proximity of collision cascades and ensuing thermal spikes to the nanorod surfaces. Molecular dynamic modeling reveals that the range of incident angles occurring for irradiation of nanorods and the larger number of atoms in "explosively ejected" atomic clusters make a significant contribution to the enhanced yield. PMID:23971585

  17. Determining the size-dependent structure of ligand-free gold-cluster ions.

    PubMed

    Schooss, Detlef; Weis, Patrick; Hampe, Oliver; Kappes, Manfred M

    2010-03-28

    Ligand-free metal clusters can be prepared over a wide size range, but only in comparatively small amounts. Determining their size-dependent properties has therefore required the development of experimental methods that allow characterization of sample sizes comprising only a few thousand mass-selected particles under well-defined collision-free conditions. In this review, we describe the application of these methods to the geometric structural determination of Au(n)(+) and Au(n)(-) with n = 3-20. Geometries were assigned by comparing experimental data, primarily from ion-mobility spectrometry and trapped ion electron diffraction, to structural models from quantum chemical calculations.

  18. Ion-shaping of embedded gold hollow nanoshells into vertically aligned prolate morphologies

    NASA Astrophysics Data System (ADS)

    Coulon, Pierre-Eugéne; Amici, Julia; Clochard, Marie-Claude; Khomenkov, Vladimir; Dufour, Christian; Monnet, Isabelle; Grygiel, Clara; Perruchas, Sandrine; Ulysse, Christian; Largeau, Ludovic; Rizza, Giancarlo

    2016-02-01

    Ion beam shaping is a novel technique with which one can shape nano-structures that are embedded in a matrix, while simultaneously imposing their orientation in space. In this work, we demonstrate that the ion-shaping technique can be implemented successfully to engineer the morphology of hollow metallic spherical particles embedded within a silica matrix. The outer diameter of these particles ranges between 20 and 60 nm and their shell thickness between 3 and 14 nm. Samples have been irradiated with 74 MeV Kr ions at room temperature and for increasing fluences up to 3.8 × 1014 cm-2. In parallel, the experimental results have been theoretically simulated by using a three-dimensional code based on the thermal-spike model. These calculations show that the particles undergo a partial melting during the ion impact, and that the amount of molten phase is maximal when the impact is off-center, hitting only one hemisphere of the hollow nano-particle. We suggest a deformation scenario which differs from the one that is generally proposed for solid nano-particles. Finally, these functional materials can be seen as building blocks for the fabrication of nanodevices with really three-dimensional architecture.

  19. Ion-shaping of embedded gold hollow nanoshells into vertically aligned prolate morphologies.

    PubMed

    Coulon, Pierre-Eugéne; Amici, Julia; Clochard, Marie-Claude; Khomenkov, Vladimir; Dufour, Christian; Monnet, Isabelle; Grygiel, Clara; Perruchas, Sandrine; Ulysse, Christian; Largeau, Ludovic; Rizza, Giancarlo

    2016-01-01

    Ion beam shaping is a novel technique with which one can shape nano-structures that are embedded in a matrix, while simultaneously imposing their orientation in space. In this work, we demonstrate that the ion-shaping technique can be implemented successfully to engineer the morphology of hollow metallic spherical particles embedded within a silica matrix. The outer diameter of these particles ranges between 20 and 60 nm and their shell thickness between 3 and 14 nm. Samples have been irradiated with 74 MeV Kr ions at room temperature and for increasing fluences up to 3.8 × 10(14) cm(-2). In parallel, the experimental results have been theoretically simulated by using a three-dimensional code based on the thermal-spike model. These calculations show that the particles undergo a partial melting during the ion impact, and that the amount of molten phase is maximal when the impact is off-center, hitting only one hemisphere of the hollow nano-particle. We suggest a deformation scenario which differs from the one that is generally proposed for solid nano-particles. Finally, these functional materials can be seen as building blocks for the fabrication of nanodevices with really three-dimensional architecture.

  20. Ion-shaping of embedded gold hollow nanoshells into vertically aligned prolate morphologies

    PubMed Central

    Coulon, Pierre-Eugéne; Amici, Julia; Clochard, Marie-Claude; Khomenkov, Vladimir; Dufour, Christian; Monnet, Isabelle; Grygiel, Clara; Perruchas, Sandrine; Ulysse, Christian; Largeau, Ludovic; Rizza, Giancarlo

    2016-01-01

    Ion beam shaping is a novel technique with which one can shape nano-structures that are embedded in a matrix, while simultaneously imposing their orientation in space. In this work, we demonstrate that the ion-shaping technique can be implemented successfully to engineer the morphology of hollow metallic spherical particles embedded within a silica matrix. The outer diameter of these particles ranges between 20 and 60 nm and their shell thickness between 3 and 14 nm. Samples have been irradiated with 74 MeV Kr ions at room temperature and for increasing fluences up to 3.8 × 1014 cm−2. In parallel, the experimental results have been theoretically simulated by using a three-dimensional code based on the thermal-spike model. These calculations show that the particles undergo a partial melting during the ion impact, and that the amount of molten phase is maximal when the impact is off-center, hitting only one hemisphere of the hollow nano-particle. We suggest a deformation scenario which differs from the one that is generally proposed for solid nano-particles. Finally, these functional materials can be seen as building blocks for the fabrication of nanodevices with really three-dimensional architecture. PMID:26883992

  1. Influence of ion induced amorphicity on the diffusion of gold into silicon

    SciTech Connect

    Ehrhardt, J.; Klimmer, A.; Eisenmenger, J.; Mueller, Th.; Boyen, H.-G.; Ziemann, P.; Biskupek, J.; Kaiser, U.

    2006-09-15

    It is experimentally demonstrated that, after ion irradiating 60 nm thick Au films on Si substrates with 230 keV Ar{sup +} ions, annealing conditions can be found leading to strong diffusional contrasts between bombarded and unbombarded areas. While Au readily diffuses into the bombarded part of the sample at 310 deg. C, its diffusion is still completely blocked under identical conditions in the unbombarded parts. Clear evidence is provided that this diffusional contrast is due to bombardment induced amorphization of the underlying Si substrate. The amorphous Silicon (a-Si), however, has to extend right to the Au/Si interface, since any intermediate crystalline layer will suppress the diffusional contrast. An example for this latter situation is realized by performing the ion bombardment prior to the evaporation of the top Au layer leading to a still crystalline Si surface layer, which is found to act as a barrier against Au diffusion at 310 deg. C. In accordance with the idea that a-Si, independent of its specific preparation, causes the observed Au diffusion enhancement, the effect is also found for a-Si prepared by evaporation at ambient temperature. In that case an even higher Au diffusion coefficient is obtained than for Si amorphized by ion bombardment pointing to subtle structural differences between both types of amorphous Si.

  2. Ion-shaping of embedded gold hollow nanoshells into vertically aligned prolate morphologies.

    PubMed

    Coulon, Pierre-Eugéne; Amici, Julia; Clochard, Marie-Claude; Khomenkov, Vladimir; Dufour, Christian; Monnet, Isabelle; Grygiel, Clara; Perruchas, Sandrine; Ulysse, Christian; Largeau, Ludovic; Rizza, Giancarlo

    2016-01-01

    Ion beam shaping is a novel technique with which one can shape nano-structures that are embedded in a matrix, while simultaneously imposing their orientation in space. In this work, we demonstrate that the ion-shaping technique can be implemented successfully to engineer the morphology of hollow metallic spherical particles embedded within a silica matrix. The outer diameter of these particles ranges between 20 and 60 nm and their shell thickness between 3 and 14 nm. Samples have been irradiated with 74 MeV Kr ions at room temperature and for increasing fluences up to 3.8 × 10(14) cm(-2). In parallel, the experimental results have been theoretically simulated by using a three-dimensional code based on the thermal-spike model. These calculations show that the particles undergo a partial melting during the ion impact, and that the amount of molten phase is maximal when the impact is off-center, hitting only one hemisphere of the hollow nano-particle. We suggest a deformation scenario which differs from the one that is generally proposed for solid nano-particles. Finally, these functional materials can be seen as building blocks for the fabrication of nanodevices with really three-dimensional architecture. PMID:26883992

  3. Fabrication of novel gold nanorod/polymer nanocomposite fibers and their application in heavy metal ion sensing

    NASA Astrophysics Data System (ADS)

    Tang, Wenqiong

    Metallic nanoparticles (MNPs), which exhibit fascinating optical, electronic and catalytic properties, have been recognized as essential building blocks for the development of advanced nanodevices. Production of MNP assemblies on a pre-designed substrate is a crucial step towards the exploration of their ensemble properties as well as their potential applications. Despite the diverse assembly strategies reported in the literature, the lack of a generic MNP immobilization strategy with applicability to MNPs and substrates with various shapes and chemical compositions remains an unsolved problem. To this end, we proposed an electrostatic attraction-driven assembly strategy and applied it to the fabrication of a novel nanocomposite material composed of gold nanorod (AuNR) assemblies supported on electrospun polycaprolactone (PCL) fibers. In order to utilize electrostatic attraction as the driving force, opposite surface charges on the AuNRs and the PCL fibrous substrate were developed via polyelectrolyte decoration. UV-Vis studies on the AuNR immobilization process revealed that the AuNR density on the fiber surface can be effectively tuned by changing the immersion time. The as-fabricated AuNR/PCL nanocomposite fibers were further employed as substrates for surface enhanced Raman scattering (SERS) measurements and they exhibited high activity as well as excellent reproducibility for both chemisorbed and physisorbed analyte molecules. In addition, a comparison experiment on the SERS performance of the 3D AuNR/PCL fibrous substrate and its 2D counterpart---a AuNR/PCL film, demonstrated that the former provided superior SERS activity due to the enhanced surface area. With the demonstration on the high SERS efficacy, we moved one step further towards the development of a SERS-based environmental sensor targeting the detection of highly toxic heavy metal ions of Hg2+ and Cu 2+. The SERS detection of Hg2+ and Cu2+ was achieved through the functionalization of Au

  4. Mercaptocarborane-capped gold nanoparticles: electron pools and ion traps with switchable hydrophilicity.

    PubMed

    Cioran, Ana M; Musteti, Ana D; Teixidor, Francesc; Krpetić, Željka; Prior, Ian A; He, Qian; Kiely, Christopher J; Brust, Mathias; Viñas, Clara

    2012-01-11

    A simple single-phase method for the preparation of ca. 2 nm gold nanoparticles capped with mercaptocarborane ligands is introduced. The resultant monolayer protected clusters (MPCs) exhibit redox-dependent solubility and readily phase transfer between water and nonpolar solvents depending on the electronic and ionic charge stored in the metal core and in the ligand shell, respectively. The particles and their properties have been characterized by high angle annular dark field imaging in a scanning transmission electron microscope, elemental analysis, centrifugal particle sizing, UV-vis and FTIR spectroscopy, and thermogravimetric analysis and by (1)H, (11)B, and (7)Li NMR spectroscopy. Cellular uptake of the MPCs by HeLa cells has been studied by TEM, and the subsequent generation of reactive oxygen species inside the cells has been evaluated by confocal fluorescence microscopy. These MPCs qualitatively showed significant toxicity and the ability to penetrate into most cell compartments with a strong tendency of finally residing inside membranes. Applications in catalysis, electrocatalysis, and biomedicine are envisaged.

  5. Microwave-assisted synthesis of BSA-protected small gold nanoclusters and their fluorescence-enhanced sensing of silver(i) ions

    NASA Astrophysics Data System (ADS)

    Yue, Yuan; Liu, Tian-Ying; Li, Hong-Wei; Liu, Zhongying; Wu, Yuqing

    2012-03-01

    A one-step microwave-assisted method is used for the synthesis of small gold nanoclusters, Au16NCs@BSA, which are used as a fluorescence enhanced sensor for detection of silver(i) ions with high selectivity and sensitivity.A one-step microwave-assisted method is used for the synthesis of small gold nanoclusters, Au16NCs@BSA, which are used as a fluorescence enhanced sensor for detection of silver(i) ions with high selectivity and sensitivity. Electronic supplementary information (ESI) available: Experimental details of the synthesis of AuNCs@BSA and fluorescent detection, and Fig. S1-S10. See DOI: 10.1039/c2nr12056a

  6. Investigation of argon ion sputtering on the secondary electron emission from gold samples

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Cui, Wanzhao; Li, Yun; Xie, Guibai; Zhang, Na; Wang, Rui; Hu, Tiancun; Zhang, Hongtai

    2016-09-01

    Secondary electron (SE) yield, δ, is a very sensitive surface property. The values of δ often are not consistent for even identical materials. The influence of surface changes on the SE yield was investigated experimentally in this article. Argon ion sputtering was used to remove the contamination from the surface. Surface composition was monitored by X-ray photoelectron spectroscopy (XPS) and surface topography was scanned by scanning electron microscope (SEM) and atomic force microscope (AFM) before and after every sputtering. It was found that argon sputtering can remove contamination and roughen the surface. An "equivalent work function" is presented in this thesis to establish the relationship between SE yield and surface properties. Argon ion sputtering of 1.5keV leads to a significant increase of so called "work function" (from 3.7 eV to 6.0 eV), and a decrease of SE yield (from 2.01 to 1.54). These results provided a new insight into the influence of surface changes on the SE emission.

  7. Selective detection of silver ions using mushroom-like polyaniline and gold nanoparticle nanocomposite-based electrochemical DNA sensor.

    PubMed

    Yang, Yanqin; Zhang, Shuai; Kang, Mengmeng; He, Linghao; Zhao, Jihong; Zhang, Hongzhong; Zhang, Zhihong

    2015-12-01

    A highly sensitive electrochemical DNA biosensor made of polyaniline (PANI) and gold nanoparticles (AuNPs) nanocomposite (AuNPs@PANI) has been used for the detection of trace concentration of Ag(+). In the presence of Ag(+), with the interaction of cytosine-Ag(+)-cytosine (C-Ag(+)-C), cytosine-rich DNA sequence immobilized onto the surface of AuNPs@PANI has a self-hybridization and then forms a duplex-like structure. The whole detection procedure of Ag(+) based on the developed biosensor was evaluated by electrochemical impedance spectroscopy. On semi-logarithmic plots of the log Ag(+) concentration versus peak current, the results show that the prepared biosensor can detect silver ions at a wide linear range of 0.01-100 nM (R = 0.9828) with a detection limit of 10 pM (signal/noise = 3). Moreover, the fabricated sensor exhibits good selectivity and repeatability. The detection of Ag(+) was determined by Ag(+) self-induced conformational change of DNA scaffold that involved only one oligonucleotide, showing its convenience and availability. PMID:26292168

  8. Transmission sputtering of gold thin films by low-energy (< 1 keV) xenon ions. I. The system and the measurement

    NASA Astrophysics Data System (ADS)

    Ayrault, Guy; Seidman, David N.

    1982-10-01

    A novel system for direct measurement of the transmission-sputtering yields of ion-irradiated thin films is described. The system was specifically designed for the study of the transmission sputtering caused by low-energy (<1 keV) xenon ions. The xenon ion beam employed is first mass-analyzed in a specially constructed corssed magnetic- and electric-field mass spectrometer; this analyzer eliminates all energetic neutral and singly charged ions of mass less than 40 amu; it is also expected that ≤2% of the xenon ions which actually reach a specimen are doubly charged. The analyzed xenon ion beam is made to impinge on a gold thin film (˜100-500 Å thick) which is mounted in a JEM 200 transmission electron-microscope holder. The temperature of the specimen can be varied between ˜25 and 300 K employing a continuous transfer liquid-helium cryostat. The particles (atoms or ions) ejected from the unirradiated surface of the gold thin film are detected by two channeltron electron-multiplier arrays (CEMA) in the Chevron configuration; the Chevron detector is able to detect individual transmission-sputtered particles when operated in the saturated mode. To further enhance resolution, the electron cascades (produced by the CEMA), are amplified and shaped electronically into uniform square pulses. The shaped signals are detected with an Ithaco 391A lock-in amplifier (LIA). With the aid of a ratiometer feature in the LIA, we are able to measure directly the ratio of the transmission-sputtered current It to the incident ion current Ib; for Ibn=1 μA cm-2, a ratio of It/Ib as small as 1×10-9 has been measured. A detailed discussion of the calibration procedure and the experimental errors, involved in this technique, are also presented.

  9. Nondegenerate Four-Wave Mixing in Gold Nanocomposites Formed by Ion Implantation

    SciTech Connect

    Saonov, V.P.; Zhu, J.G.; Lepeshkin, N.N.; Armstrong, R.L.; Shalaev, V.M.; Ying, Z.C.; White, C.W.; Zuhr, R.A.

    1999-07-01

    Nondegenerate four-wave mixing technique has been used to investigate the third-order nonlinear susceptibility for nanocomposite material with Au nanocrystals formed inside a SiO{sub 2} glass matrix. High concentrations of encapsulated Au nanocrystals are formed by implantation of Au ions into fused silica glass substrates and thermal annealing. The size distribution and the depth profiles of the Au nanoparticles can be controlled by the implantation dose, energy and annealing temperatures. The high value of the third-order susceptibility - (0.26--1.3)x10{sup -7} esu was found in the range of the frequency detunings near the surface plasmon resonance. Two characteristic relaxation times, 0.66 ps and 5.3 ps, have been extracted from the detuning curve of the third-order susceptibility as the probe-beam frequency changes and the pump-beam frequency fixed at the plasmon resonance. The first relaxation time was attributed to electron-phonon relaxation, and the second to thermal diffusion to the host medium. The efficient nondegenerate conversion is attractive for optical processing.

  10. Detection of mercury ions based on mercury-induced switching of enzyme-like activity of platinum/gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Tseng, Chao-Wei; Chang, Hsiang-Yu; Chang, Jia-Yaw; Huang, Chih-Ching

    2012-10-01

    In this study, bimetallic platinum/gold nanoparticles (Pt/Au NPs) were found to exhibit peroxidase-like activity, and the deposition of mercury was found to switch the enzymatic activity to a catalase-like activity. Based on this phenomenon, we developed a new method for detecting mercury ions through their deposition on bimetallic Pt/Au NPs to switch the catalytic activity of Pt/Au NPs. Pt/Au NPs could be easily prepared through reduction of Au3+ and Pt4+ by sodium citrate in a one-pot synthesis. The peroxidase catalytic activity of the Pt/Au NPs was controlled by varying the ratios of Pt to Au. The Pt0.1/Au NPs (prepared with a [Au3+]/[Pt4+] molar ratio of 9.0/1.0) showed excellent oxidation catalysis for H2O2-mediated oxidation of Amplex® Red (AR) to resorufin. The oxidized product of AR, resorufin, fluoresces more strongly (excitation/emission wavelength maxima ca. 570/585 nm) than AR alone. The peroxidase catalytic activity of Pt0.1/Au NPs was switched to catalase-like activity in the presence of mercury ions in a 5.0 mM tris(hydroxymethyl)aminomethane (Tris)-borate solution (pH 7.0) through the deposition of Hg on the particle surfaces owing to the strong Hg-Au metallic bond. The catalytic activity of Hg-Pt0.1/Au NPs is superior (by at least 5-fold) to that of natural catalase (from bovine liver). Under optimal solution conditions [5.0 mM Tris-borate (pH 7.0), H2O2 (50 mM), and AR (10 μM)] and in the presence of the masking agents polyacrylic acid and tellurium nanowires, the Pt0.1/Au NPs allowed the selective detection of inorganic mercury (Hg2+) and methylmercury ions (MeHg+) at concentrations as low as several nanomolar. This simple, fast, and cost-effective system enabled selective determination of the spiked concentrations of Hg2+ and MeHg+ in tap, pond, and stream waters.In this study, bimetallic platinum/gold nanoparticles (Pt/Au NPs) were found to exhibit peroxidase-like activity, and the deposition of mercury was found to switch the enzymatic

  11. Colorimetric detection of mercury ion based on unmodified gold nanoparticles and target-triggered hybridization chain reaction amplification

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Yang, Xiaohan; Yang, Xiaohai; Liu, Pei; Wang, Kemin; Huang, Jin; Liu, Jianbo; Song, Chunxia; Wang, Jingjing

    2015-02-01

    A novel unmodified gold nanoparticles (AuNPs)-based colorimetric strategy for label-free, specific and sensitive mercury ion (Hg2+) detection was demonstrated by using thymine-Hg2+-thymine (T-Hg2+-T) recognition mechanism and hybridization chain reaction (HCR) amplification strategy. In this protocol, a structure-switching probe (H0) was designed to recognize Hg2+ and then propagated a chain reaction of hybridization events between two other hairpin probes (H1 and H2). In the absence of Hg2+, all hairpin probes could stably coexist in solution, the exposed sticky ends of hairpin probes were capable of stabilizing AuNPs. As a result, salt-induced AuNPs aggregation could be effectively prevented. In the presence of Hg2+, thymine bases of H0 could specifically interact with Hg2+ to form stable T-Hg2+-T complex. Consequently, the hairpin structure of H0 probe was changed. As H1/H2 probes were added, the HCR process could be triggered and nicked double-helixes were formed. Since it was difficult for the formed nicked double-helixes to inhibit salt-induced AuNPs aggregation, a red-to-blue color change was observed in the colloid solution as the salt concentration increased. With the elegant amplification effect of HCR, a detection limit of around 30 nM was achieved (S/N = 3), which was about 1-2 orders of magnitudes lower than that of previous unmodified AuNPs-based colorimetric methods. By using the T-Hg2+-T recognition mechanism, high selectivity was also obtained. As an unmodified AuNPs-based colorimetric strategy, the system was simple in design, convenient in operation, and eliminated the requirements of separation processes, chemical modifications, and sophisticated instrumentations.

  12. LUMINOSITY INCREASES IN GOLD-GOLD OPERATION IN RHIC.

    SciTech Connect

    FISCHER,W.AHERNS,L.BAI,M.ET AL.

    2004-07-05

    After an exploratory phase, during which a number of beam parameters were varied, the RHIC experiments now demand higher luminosity to study heavy ion collisions in detail. In gold-gold, operation, RHIC delivers now twice the design luminosity. During the last gold-gold operating period (Run-4) the machine delivered 15 times more luminosity than during the previous gold-gold operating period (Run-2), two years ago. We give an overview of the changes that increased the instantaneous luminosity and luminosity lifetime, raised the reliability, and improved the operational efficiency.

  13. Highly Sensitive Aluminium(III) Ion Sensor Based on a Self-assembled Monolayer on a Gold Nanoparticles Modified Screen-printed Carbon Electrode.

    PubMed

    See, Wong Pooi; Heng, Lee Yook; Nathan, Sheila

    2015-01-01

    A new approach for the development of a highly sensitive aluminium(III) ion sensor via the preconcentration of aluminium(III) ion with a self-assembled monolayer on a gold nanoparticles modified screen-printed carbon electrode and current mediation by potassium ferricyanide redox behavior during aluminium(III) ion binding has been attempted. A monolayer of mercaptosuccinic acid served as an effective complexation ligand for the preconcentration of trace aluminium; this led to an enhancement of aluminium(III) ion capture and thus improved the sensitivity of the sensor with a detection limit of down to the ppb level. Under the optimum experimental conditions, the sensor exhibited a wide linear dynamic range from 0.041 to 12.4 μM. The lower detection limit of the developed sensor was 0.037 μM (8.90 ppb) using a 10 min preconcentration time. The sensor showed excellent selectivity towards aluminium(III) ion over other interference ions.

  14. Modification of gold nanoparticle loaded on activated carbon with bis(4-methoxysalicylaldehyde)-1,2-phenylenediamine as new sorbent for enrichment of some metal ions.

    PubMed

    Karimipour, Gholamreza; Ghaedi, Mehrorang; Sahraei, Reza; Daneshfar, Ali; Biyareh, Mehdi Nejati

    2012-01-01

    In this study, a new sorbent based on the gold nanoparticle loaded in activated carbon (Au-NP-AC) was synthesized and modified by bis(4-methoxy salicylaldehyde)-1,2-phenylenediamine (BMSAPD). This sorbent, which is abbreviated as Au-NP-AC-BMSAPD, has been applied for the enrichment and preconcentration of trace amounts of Co(2+), Cu(2+), Ni(2+), Fe(2+), Pb(2+), and Zn(2+) ions in real samples. All metal ions under study were retained on the Au-NP-AC-BMSAPD sorbent by complexation of the ions with the BMSAPD ligand, providing an efficient preconcentration fashion. The retained metal ions were then eluted from the sorbent by HNO(3) and detected by flame atomic absorption spectrometry. The analytical parameters including pH, amount of ligand, and the nature of the eluent and solid phase were evaluated to obtain the optimum condition for the preconcentration factor. Following the optimum conditions, a preconcentration factor of 200 was obtained for all the metal ions under study with detection limits of 1.4-2.6 ng mL(-1). The method has been successfully applied for the extraction and determination of the ion content in the same real samples with recoveries in the range of 95-99.6% and a relative standard deviation lower than 4.0%. PMID:21837453

  15. Highly stable water dispersible calix[4]pyrrole octa-hydrazide protected gold nanoparticles as colorimetric and fluorometric chemosensors for selective signaling of Co(II) ions.

    PubMed

    Bhatt, Keyur D; Vyas, Disha J; Makwana, Bharat A; Darjee, Savan M; Jain, Vinod K

    2014-01-01

    Water dispersible stable gold nanoparticles (AuNps) have been synthesized by using calix[4]pyrrole octa-hydrazide (CPOH) as a reducing as well as stabilizing agent. CPOH-AuNps have been characterized by surface plasmon resonance, particle size analyzer and transmission electron microscopy. CPOH-AuNps are water dispersible, highly stable for more than 150 days at neutral pH with a size of less than 10nm and zeta potential of 15±2 MeV. Ion sensing property of CPOH-AuNps has been investigated for various metal ions Pb(II), Cd(II), Mn(II), Fe(III), Ni(II), Zn(II), Hg(II), Co(II) and Cu(II) by colorimetry and spectrofluorimetry. Among all the metal ions investigated, only Co(II) ions gives sharp colour change from ruby red to blue and is easily detectable by naked-eye. CPOH-AuNps being fluorescent in nature also shows great sensitivity and selectivity for Co(II) ions. Co(II) ions can be selectively detected at very low concentration level of 1 nM in a facile way of fluorescence quenching.

  16. Highly stable water dispersible calix[4]pyrrole octa-hydrazide protected gold nanoparticles as colorimetric and fluorometric chemosensors for selective signaling of Co(II) ions

    NASA Astrophysics Data System (ADS)

    Bhatt, Keyur D.; Vyas, Disha J.; Makwana, Bharat A.; Darjee, Savan M.; Jain, Vinod K.

    2014-03-01

    Water dispersible stable gold nanoparticles (AuNps) have been synthesized by using calix[4]pyrrole octa-hydrazide (CPOH) as a reducing as well as stabilizing agent. CPOH-AuNps have been characterized by surface plasmon resonance, particle size analyzer and transmission electron microscopy. CPOH-AuNps are water dispersible, highly stable for more than 150 days at neutral pH with a size of less than 10 nm and zeta potential of 15 ± 2 MeV. Ion sensing property of CPOH-AuNps has been investigated for various metal ions Pb(II), Cd(II), Mn(II), Fe(III), Ni(II), Zn(II), Hg(II), Co(II) and Cu(II) by colorimetry and spectrofluorimetry. Among all the metal ions investigated, only Co(II) ions gives sharp colour change from ruby red to blue and is easily detectable by naked-eye. CPOH-AuNps being fluorescent in nature also shows great sensitivity and selectivity for Co(II) ions. Co(II) ions can be selectively detected at very low concentration level of 1 nM in a facile way of fluorescence quenching.

  17. Facile and One Pot Synthesis of Gold Nanoparticles Using Tetraphenylborate and Polyvinylpyrrolidone for Selective Colorimetric Detection of Mercury Ions in Aqueous Medium

    PubMed Central

    Boopathi, Sidhureddy; Senthilkumar, Shanmugam; Phani, Kanala Lakshminarasimha

    2012-01-01

    In this work, we reported for the first time, a facile and one step synthesis of gold nanoparticles from HAuCl4, employing tetraphenylborate as the reducing agent. The synthesis is not only facile but also yields “dumb-bell-shaped”particles. This shape appears to arise from a possible emulsion of the products of oxidation/decomposition of tetraphenylborate by HAuCl4, surrounding the particle. The size and shape of the AuNPs were characterized by Transmission electron microscopy (TEM) and UV-visible Spectroscopy. Interestingly, the addition of polyvinylpyrrolidone (PVP) during the synthesis was found to enhance the stability of the nanoparticle dispersion. The particles synthesized under these conditions assume “spherical” shape with the appearance of only transverse surface plasmon resonance band. The highlight of the observations is that the gold nanoparticles synthesized using tetraphenylborate as reducing agent and PVP as stabilizer are highly stable in alkaline medium, in contrast to the synthesis wherein borohydride is used as reducing agent. The AuNPs synthesized using tetraphenylborate and PVP show their mercury sensing behavior only in the alkaline medium. The color of the nanoparticle dispersion undergoes distinct color change from pink to blue with the addition of mercury ions. They also show dramatic selectivity to mercury ions in presence of other interfering ions, Pb2+, Zn2+ and Ca2+. PMID:22567557

  18. Gold nanoparticles in aqueous solutions: influence of size and pH on hydrogen dissociative adsorption and Au(iii) ion reduction.

    PubMed

    Ershov, B G; Abkhalimov, E V; Solovov, R D; Roldughin, V I

    2016-05-21

    The shift of the localized surface plasmon resonance (LSPR) band of gold nanoparticles to shorter wavelengths upon saturation of the hydrosol with hydrogen is used as a tool to study the electrochemical processes on the particle surface. It is shown that dissociative adsorption of hydrogen takes place on the surface of a particle and results in the migration of a proton into the dispersion medium, while the electron remains on the nanoparticle, i.e., a hydrogen-like nanoelectrode is formed. It is shown that Au(iii) ions can be reduced on the gold nanoelectrodes. A thermodynamic scheme explaining the shift of the LSPR band is used to explain the peculiarities of the Au(iii) ion reduction. The reduction rate does not depend on the ion concentration and varies linearly with pH. The observed correlations are explained in terms of a simple model of electrochemical processes taking place on the nanoparticle as an electrode. It is shown that with an increase in the particle size, its capacity for dissociative adsorption of hydrogen decreases and the Au(iii) reduction slows down.

  19. Copper-ion-assisted growth of gold nanorods in seed-mediated growth: significant narrowing of size distribution via tailoring reactivity of seeds.

    PubMed

    Wen, Tao; Hu, Zhijian; Liu, Wenqi; Zhang, Hui; Hou, Shuai; Hu, Xiaona; Wu, Xiaochun

    2012-12-18

    In the well-developed seed-mediated growth of gold nanorods (GNRs), adding the proper amount of Cu(2+) ions in the growth solution leads to significant narrowing in the size distribution of the resultant GNRs, especially for those with shorter aspect ratios (corresponding longitudinal surface plasmon resonance (LSPR) peaks shorter than 750 nm). Cu(2+) ions were found to be able to catalyze the oxidative etching of gold seeds by oxygen, thus mediating subsequent growth kinetics of the GNRs. At proper Cu(2+) concentrations, the size distribution of the original seeds is greatly narrowed via oxidative etching. The etched seeds are highly reactive and grow quickly into desired GNRs with significantly improved size distribution. A similar mechanism can be employed to tune the end cap of the GNRs. Except for copper ions, no observable catalytic effect is observed from other cations presumably due to their lower affinity to oxygen. Considering the widespread use of seed-mediated growth in the morphology-controlled synthesis of noble metal nanostructures, the tailoring in seed reactivity we presented herein could be extended to other systems. PMID:23173599

  20. Gold carbenes, gold-stabilized carbocations, and cationic intermediates relevant to gold-catalysed enyne cycloaddition.

    PubMed

    Harris, R J; Widenhoefer, R A

    2016-08-21

    Cationic gold complexes in which gold is bound to a formally divalent carbon atom, typically formulated as gold carbenes or α-metallocarbenium ions, have been widely invoked in a range of gold-catalyzed transformations, most notably in the gold-catalyzed cycloisomerization of 1,n-enynes. Although the existence of gold carbene complexes as intermediates in gold-catalyzed transformations is supported by a wealth of indirect experimental data and by computation, until recently no examples of cationic gold carbenes/α-metallocarbenium ions had been synthesized nor had any cationic intermediates generated via gold-catalyzed enyne cycloaddition been directly observed. Largely for this reason, there has been considerable debate regarding the electronic structure of these cationic complexes, in particular the relative contributions of the carbene (LAu(+)[double bond, length as m-dash]CR2) and α-metallocarbenium (LAu-CR2(+)) forms, which is intimately related to the extent of d → p backbonding from gold to the C1 carbon atom. However, over the past ∼ seven years, a number of cationic gold carbene complexes have been synthesized in solution and generated in the gas phase and cationic intermediates have been directly observed in the gold-catalyzed cycloaddition of enynes. Together, these advances provide insight into the nature and electronic structure of gold carbene/α-metallocarbenium complexes and the cationic intermediates generated via gold-catalyzed enyne cycloaddition. Herein we review recent advances in this area. PMID:27146712

  1. Gold film with gold nitride - A conductor but harder than gold

    SciTech Connect

    Siller, L.; Peltekis, N.; Krishnamurthy, S.; Chao, Y.; Bull, S.J.; Hunt, M.R.C.

    2005-05-30

    The formation of surface nitrides on gold films is a particularly attractive proposition, addressing the need to produce harder, but still conductive, gold coatings which reduce wear but avoid the pollution associated with conventional additives. Here we report production of large area gold nitride films on silicon substrates, using reactive ion sputtering and plasma etching, without the need for ultrahigh vacuum. Nanoindentation data show that gold nitride films have a hardness {approx}50% greater than that of pure gold. These results are important for large-scale applications of gold nitride in coatings and electronics.

  2. In vitro studies on radiosensitization effect of glucose capped gold nanoparticles in photon and ion irradiation of HeLa cells

    NASA Astrophysics Data System (ADS)

    Kaur, Harminder; Pujari, Geetanjali; Semwal, Manoj K.; Sarma, Asitikantha; Avasthi, Devesh Kumar

    2013-04-01

    Noble metal nanoparticles are of great interest due to their potential applications in diagnostics and therapeutics. In the present work, we synthesized glucose capped gold nanoparticle (Glu-AuNP) for internalization in the HeLa cell line (human cervix cancer cells). The capping of glucose on Au nanoparticle was confirmed by Raman spectroscopy. The Glu-AuNP did not show any toxicity to the HeLa cell. The γ-radiation and carbon ion irradiation of HeLa cell with and without Glu-AuNP were performed to evaluate radiosensitization effects. The study revealed a significant reduction in radiation dose for killing the HeLa cells with internalized Glu-AuNPs as compared to the HeLa cells without Glu-AuNP. The Glu-AuNP treatment resulted in enhancement of radiation effect as evident from increase in relative biological effectiveness (RBE) values for carbon ion irradiated HeLa cells.

  3. Collective optical Kerr effect exhibited by an integrated configuration of silicon quantum dots and gold nanoparticles embedded in ion-implanted silica.

    PubMed

    Torres-Torres, C; López-Suárez, A; Can-Uc, B; Rangel-Rojo, R; Tamayo-Rivera, L; Oliver, A

    2015-07-24

    The study of the third-order optical nonlinear response exhibited by a composite containing gold nanoparticles and silicon quantum dots nucleated by ion implantation in a high-purity silica matrix is presented. The nanocomposites were explored as an integrated configuration containing two different ion-implanted distributions. The time-resolved optical Kerr gate and z-scan techniques were conducted using 80 fs pulses at a 825 nm wavelength; while the nanosecond response was investigated by a vectorial two-wave mixing method at 532 nm with 1 ns pulses. An ultrafast purely electronic nonlinearity was associated to the optical Kerr effect for the femtosecond experiments, while a thermal effect was identified as the main mechanism responsible for the nonlinear optical refraction induced by nanosecond pulses. Comparative experimental tests for examining the contribution of the Au and Si distributions to the total third-order optical response were carried out. We consider that the additional defects generated by consecutive ion irradiations in the preparation of ion-implanted samples do not notably modify the off-resonance electronic optical nonlinearities; but they do result in an important change for near-resonant nanosecond third-order optical phenomena exhibited by the closely spaced nanoparticle distributions. PMID:26135968

  4. Effective and selective recovery of gold and palladium ions from metal wastewater using a sulfothermophilic red alga, Galdieria sulphuraria.

    PubMed

    Ju, Xiaohui; Igarashi, Kensuke; Miyashita, Shin-Ichi; Mitsuhashi, Hiroaki; Inagaki, Kazumi; Fujii, Shin-Ichiro; Sawada, Hitomi; Kuwabara, Tomohiko; Minoda, Ayumi

    2016-07-01

    The demand for precious metals has increased in recent years. However, low concentrations of precious metals dissolved in wastewater are yet to be recovered because of high operation costs and technical problems. The unicellular red alga, Galdieria sulphuraria, efficiently absorbs precious metals through biosorption. In this study, over 90% of gold and palladium could be selectively recovered from aqua regia-based metal wastewater by using G. sulphuraria. These metals were eluted from the cells into ammonium solutions containing 0.2M ammonium salts without other contaminating metals. The use of G. sulphuraria is an eco-friendly and cost-effective way of recovering low concentrations of gold and palladium discarded in metal wastewater. PMID:27118429

  5. Fluorinated colloidal gold immunolabels for imaging select proteins in parallel with lipids using high-resolution secondary ion mass spectrometry

    PubMed Central

    Wilson, Robert L.; Frisz, Jessica F.; Hanafin, William P.; Carpenter, Kevin J.; Hutcheon, Ian D.; Weber, Peter K.; Kraft, Mary L.

    2014-01-01

    The local abundance of specific lipid species near a membrane protein is hypothesized to influence the protein’s activity. The ability to simultaneously image the distributions of specific protein and lipid species in the cell membrane would facilitate testing these hypotheses. Recent advances in imaging the distribution of cell membrane lipids with mass spectrometry have created the desire for membrane protein probes that can be simultaneously imaged with isotope labeled lipids. Such probes would enable conclusive tests of whether specific proteins co-localize with particular lipid species. Here, we describe the development of fluorine-functionalized colloidal gold immunolabels that facilitate the detection and imaging of specific proteins in parallel with lipids in the plasma membrane using high-resolution SIMS performed with a NanoSIMS. First, we developed a method to functionalize colloidal gold nanoparticles with a partially fluorinated mixed monolayer that permitted NanoSIMS detection and rendered the functionalized nanoparticles dispersible in aqueous buffer. Then, to allow for selective protein labeling, we attached the fluorinated colloidal gold nanoparticles to the nonbinding portion of antibodies. By combining these functionalized immunolabels with metabolic incorporation of stable isotopes, we demonstrate that influenza hemagglutinin and cellular lipids can be imaged in parallel using NanoSIMS. These labels enable a general approach to simultaneously imaging specific proteins and lipids with high sensitivity and lateral resolution, which may be used to evaluate predictions of protein co-localization with specific lipid species. PMID:22284327

  6. Functionalized gold nanoparticles/reduced graphene oxide nanocomposites for ultrasensitive electrochemical sensing of mercury ions based on thymine-mercury-thymine structure.

    PubMed

    Wang, Nan; Lin, Meng; Dai, Hongxiu; Ma, Houyi

    2016-05-15

    A sensitive, selective and reusable electrochemical biosensor for the determination of mercury ions (Hg(2+)) has been developed based on thymine (T) modified gold nanoparticles/reduced graphene oxide (AuNPs/rGO) nanocomposites. Graphene oxide (GO) was electrochemically reduced on a glassy carbon substrate. Subsequently, AuNPs were deposited onto the surface of rGO by cyclic voltammetry. For functionalization of the electrode, the carboxylic group of the thymine-1-acetic acid was covalently coupled with the amine group of the cysteamine which self-assembled onto AuNPs. The structural features of the T bases functionalized AuNPs/rGO electrode were confirmed by attenuated total reflection infrared (ATR-IR) spectroscopy and scanning electron microscopy (SEM) spectroscopy. Each step of the modification process was characterized by cyclic voltammetry (CV) and electrochemical impedence spectroscopy (EIS). The T bases modified AuNPs/rGO electrode was applied to detect various trace metal ions by differential pulse voltammetry (DPV). The proposed biosensor was found to be highly sensitive to Hg(2+) in the range of 10 ng/L-1.0 µg/L. The biosensor afforded excellent selectivity for Hg(2+) against other heavy metal ions such as Zn(2+), Cd(2+), Pb(2+), Cu(2+), Ni(2+), and Co(2+). Furthermore, the developed sensor exhibited a high reusability through a simple washing. In addition, the prepared biosensor was successfully applied to assay Hg(2+) in real environmental samples.

  7. A novel optical DNA biosensor for detection of trace amounts of mercuric ions using gold nanoparticles introduced onto modified glass surface

    NASA Astrophysics Data System (ADS)

    Mashhadizadeh, Mohammad Hossein; Talemi, Rasoul Pourtaghavi

    2014-11-01

    In this work we report a DNA spectrophotometric biosensor for detection of Hg2+ ions in which a pair of oligonucleotides with four thymine-thymine (T-T) mismatched bases was immobilized onto modified glass surface. Firstly, glass surface modified with 3-(mercaptopropyl) trimethoxysilane (MSPT) and gold nano-particles respectively and then one oligonucleotide (P1) modified with hexanthiol at 5-terminal was immobilized on gold nano-particles via self-assembly and inserted in methylene blue. Methylene blue can intercalate on single strand DNA (ss-DNA) and its absorption peak can measure spectrophotometrically. Then the other oligonucleotide was able to hybridize with P1 by forming thymine-Hg2+-thymine (T-Hg2+-T) complexes in the presence of Hg2+, and absorption signal of methylene blue reduced upon Hg2+ increasing concentration because inaccessibility of guanine base in DNA duplex. However, when Hg2+ was absent, the two oligonucleotides could not hybridize due to the T-T mismatched bases, and P2 could not be fixed on the modified glass surface and any change in absorption peak of methylene blue takes place. The UV-Vis spectrum showed a linear correlation between the absorption peak of methylene blue and the concentration of Hg2+ over the range from 10 nM to 10 μM (R2 = 0.9985) with a detection limit of 6 nM. This spectrophotometric biosensor could be widely used for selective detection of Hg2+.

  8. Ligandless, ion pair-based and ultrasound assisted emulsification solidified floating organic drop microextraction for simultaneous preconcentration of ultra-trace amounts of gold and thallium and determination by GFAAS.

    PubMed

    Fazelirad, Hamid; Taher, Mohammad Ali

    2013-01-15

    In the present work, a new, simple and efficient method for simultaneous preconcentration of ultra-trace amounts of gold and thallium is developed using an ion pair based-ultrasound assisted emulsification-solidified floating organic drop microextraction procedure before graphite furnace atomic absorption spectrometry determination. This methodology was used to preconcentrate the ion pairs formed between AuCl(4)(-) and TlCl(4)(-) and [C(23)H(42)]N(+) in a microliter-range volume of 1-undecanol. Several factors affecting the microextraction efficiency, such as HCl volume, type and volume of extraction solvent, sonication time, sample volume, temperature, ionic strength and [C(23)H(42)]NCl volume were investigated and optimized. Under the optimized conditions, the enrichment factor of 441 and 443 and calibration graphs of 2.2-89 and 22.2-667 ng L(-1) for gold and thallium were obtained, respectively. The intra- and inter-day precision of ± 4.4 and ± 4.9% for Au and ± 4.8 and ± 5.4% for Tl were obtained. The detection limit was 0.66 ng L(-1) for Au and 4.67 ng L(-1) for Tl. The results show that the liquid-liquid pretreatment using ion pair forming, is sensitive, rapid, simple and safe method for the simultaneous preconcentration of gold and thallium. The method was successfully applied for determination of gold and thallium in natural water and hair samples.

  9. Direct colorimetric biosensing of mercury(II) ion based on aggregation of poly-(γ-glutamic acid)-functionalized gold nanoparticles.

    PubMed

    Guan, Huanan; Liu, Xiaofei; Wang, Wei; Liang, Jinzhong

    2014-01-01

    A simple and sensitive method for colorimetric detection of mercury ion (Hg(2+)) has been developed by using a poly (γ-glutamic acid) functionalized gold nanoparticles (PGA-AuNPs) system. Electrostatic self-assembly technique was used to assemble negatively charged PGA on the surface of positively charged CTAB-capped AuNPs. With the increase of Hg(2+) concentration, the color of the solution would progress from light red to purple blue. The results showed that the absorbance ratio (A750/A580) was linear with the Hg(2+) concentration in the range of 0.01-10 μM and from 50 to 300 μM, with the correlation coefficients of 0.998 and 0.991, respectively. The reported probe is suitable for real-time detection of Hg(2+) in water with the limit of detection (LOD) of 1.9 nM obtained by UV-vis spectrum, and exhibits selectivity toward one order of magnitude over other metal ions. This approach was applied successfully to the determination of Hg(2+) in tap water and mineral water, and the recoveries were from 90% to 103% and from 103.53% to 113%, respectively. The proposed method is rapid, low-cost and free of complex equipment, making it possible to analyze Hg(2+) in various water samples. PMID:24291429

  10. Simple, fast and selective detection of adenosine triphosphate at physiological pH using unmodified gold nanoparticles as colorimetric probes and metal ions as cross-linkers.

    PubMed

    Deng, Dehua; Xia, Ning; Li, Sujuan; Xu, Chunying; Sun, Ting; Pang, Huan; Liu, Lin

    2012-11-06

    We report a simple, fast and selective colorimetric assay of adenosine triphosphate (ATP) using unmodified gold nanoparticles (AuNPs) as probes and metal ions as cross-linkers. ATP can be assembled onto the surface of AuNPs through interaction between the electron-rich nitrogen atoms and the electron-deficient surface of AuNPs. Accordingly, Cu2+ ions induce a change in the color and UV/Vis absorbance of AuNPs by coordinating to the triphosphate groups and a ring nitrogen of ATP. A detection limit of 50 nM was achieved, which is comparable to or lower than that achievable by the currently used electrochemical, spectroscopic or chromatographic methods. The theoretical simplicity and high selectivity reported herein demonstrated that AuNPs-based colorimetric assay could be applied in a wide variety of fields by rationally designing the surface chemistry of AuNPs. In addition, our results indicate that ATP-modified AuNPs are less stable in Cu2+, Cd2+ or Zn2+-containing solutions due to the formation of the corresponding dimeric metal-ATP complexes.

  11. Photochemical synthesis of gold nanorods.

    PubMed

    Kim, Franklin; Song, Jae Hee; Yang, Peidong

    2002-12-01

    Gold nanorods have been synthesized by photochemically reducing gold ions within a micellar solution. The aspect ratio of the rods can be controlled with the addition of silver ions. This process reported here is highly promising for producing uniform nanorods, and more importantly it will be useful in resolving the growth mechanism of anisotropic metal nanoparticles due to its simplicity and the relatively slow growth rate of the nanorods. PMID:12452700

  12. Label-free colorimetric biosensing of copper(II) ions with unimolecular self-cleaving deoxyribozymes and unmodified gold nanoparticle probes

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Yang, Fan; Yang, Xiurong

    2010-05-01

    Using unimolecular copper(II)-dependent self-cleaving deoxyribozymes (DNAzymes), a label-free colorimetric biosensor for copper(II) ions (Cu2 + ) has been developed based on the sequence-length-dependent adsorption of single-stranded deoxyribonucleic acid (ssDNA) on unmodified gold nanoparticles (AuNPs). In the presence of Cu2 + , the Cu2 + -dependent DNAzyme could be self-cleaved into short ssDNA fragments. The cleaved short ssDNA could adsorb rapidly onto the surface of the AuNPs. This enhanced the stability of the AuNPs against salt-induced aggregation, and thus the solution color remained red. In the absence of Cu2 + , however, uncleaved long ssDNA adsorbed relatively slowly onto the AuNPs and upon the addition of salt, the electrostatic repulsion between the AuNPs was screened, resulting in aggregation of the AuNPs which produced a red-to-blue color change. Thus, Cu2 + detection could be realized by monitoring the color change of the AuNPs. The calibration curve showed that the absorption ratio values at 520 and 620 nm increased linearly over the Cu2 + concentration range of 0.625-15 µM, with a limit of detection of 290 nM. The other environmentally relevant metal ions did not interfere with the determination of Cu2 + . Subsequently, the assay was employed to determine Cu2 + in several water samples, and the results were satisfactory. It is expected that the present colorimetric strategy will be possibly extended to the detection of cofactors of other in vitro-selected unimolecular self-cleaving DNAzymes, such as amino acids, nucleic acids, metal ions and small organic molecules.

  13. Biothiols as chelators for preparation of N-(aminobutyl)-N-(ethylisoluminol)/Cu(2+) complexes bifunctionalized gold nanoparticles and sensitive sensing of pyrophosphate ion.

    PubMed

    Li, Fang; Liu, Yating; Zhuang, Meng; Zhang, Hongli; Liu, Xiaoying; Cui, Hua

    2014-10-22

    In this work, chemiluminescence (CL) reagent and catalyst metal ion complexes bifunctionalized gold nanoparticles (BF-AuNPs) with high CL efficiency were synthesized via an improved synthesis strategy. Biothiols, such as cysteine (Cys), cysteinyl-glycine (Cys-Gly), homocysteine (Hcy), and glutathione (GSH), instead of 2-[bis[2-[carboxymethyl-[2-oxo-2-(2-sulfanylethylamino)ethyl]amino]ethyl]amino]acetic acid (DTDTPA), were used as new chelators. N-(aminobutyl)-N-(ethylisoluminol) (ABEI) was used as a model of CL reagents and Cu(2+) as a model of metal ion. In this strategy, biothiols were first grafted on the surface of ABEI-AuNPs by Au-S bond. Then, Cu(2+) was captured onto the surface of ABEI-AuNPs by the coordination reaction to form BF-AuNPs. The CL intensity of Cu(2+)-Cys/ABEI-AuNPs was 1 order of magnitude higher than that of DTDTPA/Cu(2+)-ABEI-AuNPs synthesized by the previous work. Moreover, strong CL emission of Cu(2+)-Cys/ABEI-AuNPs was also observed in neutral pH conditions. In addition, the present BF-AuNPs synthesis method exhibited advantages over the previous method in CL efficiency, simplicity, and synthetic rate. Finally, by virtue of Cu(2+)-Cys/ABEI-AuNPs as a platform, a simple CL chemosensor for the sensitive and selective detection of pyrophosphate ion (PPi) was established based on the competitive coordination interactions of Cu(2+) between Cys and PPi. The method exhibited a wide detection range from 10 nM to 100 μM, with a low detection limit of 3.6 nM. The chemosensor was successfully applied to the detection of PPi in human plasma samples. It is of great application potential in clinical analysis. This work reveals that BF-AuNPs could be used as ideal nanointerface for the development of novel analytical methods. PMID:25275558

  14. Ultrasensitive detection of lead ion sensor based on gold nanodendrites modified electrode and electrochemiluminescent quenching of quantum dots by electrocatalytic silver/zinc oxide coupled structures.

    PubMed

    Li, Meng; Kong, Qingkun; Bian, Zhaoquan; Ma, Chao; Ge, Shenguang; Zhang, Yan; Yu, Jinghua; Yan, Mei

    2015-03-15

    A signal-off electrochemiluminescence (ECL) DNA sensor based on gold nanodendrites (Au NDs) modified indium tin oxide (ITO) electrode for the detection of lead ion (Pb(2+)) was developed. Well-defined Au NDs were prepared on ITO electrode using low-potential synthesis, assisted by ethylenediamine. Based on Pb(2+)-specific deoxyribozyme, the silver/zinc oxide (Ag/ZnO) with coupled structure, prepared by one-pot method, was close to the surface of the electrode to catalyze the reduction of part of H2O2, the coreactant for cathodic ECL emission, leading to a decrease of ECL intensity. In addition, taking advantage of the larger surface area to capture a large amount of capture probe as well as excellent conductivity of Au NDs, the sensor could detect Pb(2+) quantitatively in a wider range, and performed excellent selectivity. Furthermore, such simple and sensitive DNA sensor was successfully applied for the detection of Pb(2+) in lake water and human serum samples, respectively. PMID:25461155

  15. Ultrasensitive detection of lead ion sensor based on gold nanodendrites modified electrode and electrochemiluminescent quenching of quantum dots by electrocatalytic silver/zinc oxide coupled structures.

    PubMed

    Li, Meng; Kong, Qingkun; Bian, Zhaoquan; Ma, Chao; Ge, Shenguang; Zhang, Yan; Yu, Jinghua; Yan, Mei

    2015-03-15

    A signal-off electrochemiluminescence (ECL) DNA sensor based on gold nanodendrites (Au NDs) modified indium tin oxide (ITO) electrode for the detection of lead ion (Pb(2+)) was developed. Well-defined Au NDs were prepared on ITO electrode using low-potential synthesis, assisted by ethylenediamine. Based on Pb(2+)-specific deoxyribozyme, the silver/zinc oxide (Ag/ZnO) with coupled structure, prepared by one-pot method, was close to the surface of the electrode to catalyze the reduction of part of H2O2, the coreactant for cathodic ECL emission, leading to a decrease of ECL intensity. In addition, taking advantage of the larger surface area to capture a large amount of capture probe as well as excellent conductivity of Au NDs, the sensor could detect Pb(2+) quantitatively in a wider range, and performed excellent selectivity. Furthermore, such simple and sensitive DNA sensor was successfully applied for the detection of Pb(2+) in lake water and human serum samples, respectively.

  16. An ultrasensitive sandwich-type electrochemical immunosensor based on signal amplification strategy of gold nanoparticles functionalized magnetic multi-walled carbon nanotubes loaded with lead ions.

    PubMed

    Li, Faying; Han, Jian; Jiang, Liping; Wang, Yulan; Li, Yueyun; Dong, Yunhui; Wei, Qin

    2015-06-15

    In this study, a novel and ultrasensitive sandwich-type electrochemical immunosensor was prepared for the quantitative detection of alpha fetoprotein (AFP), a well-known hepatocellular carcinoma biomarker. Gold nanoparticles (Au NPs) functionalized magnetic multi-walled carbon nanotubes (MWCNTs-Fe3O4) were prepared and utilized for the adsorption of lead ions (Pb(2+)) and the secondary antibodies (Ab2). The resultant nanocomposites (Pb(2+)@Au@MWCNTs-Fe3O4) were used as the label for signal amplification, showing better electrocatalytic activity towards the reduction of hydrogen peroxide (H2O2) than MWCNTs, MWCNTs-Fe3O4 or Au@MWCNTs-Fe3O4 due to the synergetic effect presented in Pb(2+)@Au@MWCNTs-Fe3O4. Moreover, Au NPs were electrodeposited on the surface of glassy carbon electrode (GCE) for the effective immobilization of primary antibodies (Ab1). Under the optimal conditions, a linear range from 10 fg/mL to 100 ng/mL and a detection limit of 3.33 fg/mL were obtained. The proposed electrochemical sandwich-type immunosensor shows high sensitivity, good selectivity and stability for the quantitative detection of AFP, holding a great potential in clinical and diagnostic applications.

  17. Synthesis and Coordination Chemistry of a Phosphine-Decorated Fluorescein: "Double Turn-On" Sensing of Gold(III) Ions in Water.

    PubMed

    Christianson, Anna M; Gabbaï, François P

    2016-06-20

    Although phosphine ligands are ubiquitous in transition metal chemistry, few reports of fluorescent phosphines exist that explore the effect of metal coordination on the photophysical properties of a phosphine-bound fluorescent group. The coordination chemistry of a derivative of fluorescein decorated with an o-phenylene-linked phosphine group has been studied with late transition metals. An Au(I) complex of the phosphine-decorated fluorescein has been structurally characterized, showing that the metal center is held closely over the plane of the fluorophore. Despite the presence of the heavy metal center, however, the phosphine-gold complex displays greatly increased fluorescence compared to the free ligand, in which photoelectron transfer from the lone-pair-bearing phosphine causes low emission. The phosphine-decorated fluorescein ligand was tested in a simple sensing system for metal ions in aqueous solution and shows a "turn-on" response to Au, Ag, and Hg, with an especially dramatic response to Au(III) species. The selectivity for Au(III) was determined to be the result of a "double turn-on" response that is both reaction- and coordination-based.

  18. Fabrication of copper and gold nanoclusters in MgO (100) by MeV ion implantation

    SciTech Connect

    Zimmerman, R.L.; Ila, D.; Williams, E.K.; Sarkisov, S.S.; Poker, D.B.; Hensley, D.K.

    1997-10-01

    MeV ions of Au and Cu were implanted into single crystals of MgO (100) and the formation of metallic nanoclusters was observed by an indirect method of optical absorption spectrophotometry. Using Mei`s theory the authors related the observed optical absorption band to the formation of nanoclusters and using Doyle`s theory, as well as Rutherford Backscattering Spectrometry (RB S), the authors correlated the fill width half maximum (FWHM) of the absorption bands to the estimated size of the metallic nanoclusters between 1--10 nm. These clusters were formed by implantation above the threshold fluence for cluster formation and by a combination of threshold fluence of the implanted species and thermal annealing. The changes in the estimated size of the nanoclusters, after annealing at temperatures ranging from 5,000 C to 10,000 C, were observed using optical absorption spectrophotometry and calculated using Doyle`s theory.

  19. Colloidal gold nanorods: from reduction to growth

    NASA Astrophysics Data System (ADS)

    Park, Kyoungweon; El-Sayed, Mostafa; Srinivasarao, Mohan

    2005-03-01

    Formation of gold nanorods(NRs) in controlled reduction condition was investigated. Gold NRs were synthesized by seed mediated method where pre-made gold nanospheres were added to a growth solution containing surfactants, reducing agent and compound of gold ion and surfactant. Reduction mechanism was manipulated by changing catalytic activity of seed. Seed of different size and capping agent coverage led to different dispersity of NRs since seed plays a role as catalyst as well as nucleation site. The difference between the redox potentials of gold species and reducing agent(δE) was controlled by the strength of reducing agent and the stability of the gold compound. As δE leading to changing the morphology of resulting gold NRs. The surface of gold NRs with a series of aspect ratio was functionalized by thiolated beta cyclodextrin which binds preferentially to the end of NRs and promotes the orientation of rod-rod pair even without host-guest interaction.

  20. Efficient On-Off Ratiometric Fluorescence Probe for Cyanide Ion Based on Perturbation of the Interaction between Gold Nanoclusters and a Copper(II)-Phthalocyanine Complex.

    PubMed

    Shojaeifard, Zahra; Hemmateenejad, Bahram; Shamsipur, Mojtaba

    2016-06-22

    A new ratiometric fluorescent sensor was developed for the sensitive and selective detection of cyanide ion (CN(-)) in aqueous media. The ratiometric sensing system is based on CN(-) modulated recovery of copper(II) phthalocyanine (Cu(PcTs)) fluorescence signal at the expense of diminished fluorescence intensity of gold nanoclusters (AuNCs). Preliminary experiments revealed that the AuNCs and Cu(PcTs) possess a turn-off effect on each other, the interaction of which being verified through studying their interactions by principle component analysis (PCA) and multivariate cure resolution-alternating least-squares (MCR-ALS) methods. In the presence of CN(-) anion, the AuNCs and Cu(PcTs) interaction was perturbed, so that the fluorescence of Cu (PcTs), already quenched by AuNCs, was found to be efficiently recovered, while the fluorescence intensity of AuNCs was quenched via the formation of a stable [Au(CN)2](-) species. The ratiometric variation of AuNCs and Cu(PcTs) fluorescence intensities leads to designing a highly sensitive probe for CN(-) ion detection. Under the optimal conditions, CN(-) anion was detected without needing any etching time, over the concentration range of 100 nM-220 μM, with a detection limit of 75 nM, which is much lower than the allowable level of CN(-) in water permitted by the World Health Organization (WHO). Moreover, the detection of CN(-) was developed based on the CN(-) effects on the blue and red florescent colors of Cu(PcTs) and AuNCs, respectively. The designed probe displays a continuous color change from red to blue by addition of CN(-), which can be clearly observed by the naked eye in the range of 7-350 μM, under UV lamp. The prepared AuNCs/Cu(PcTs) probe was successfully utilized for the selective and sensitive determination of CN(-) anion in two different types of natural water (Rodbal dam and rainwater) and also in blood serum as a biological sample.

  1. Efficient On-Off Ratiometric Fluorescence Probe for Cyanide Ion Based on Perturbation of the Interaction between Gold Nanoclusters and a Copper(II)-Phthalocyanine Complex.

    PubMed

    Shojaeifard, Zahra; Hemmateenejad, Bahram; Shamsipur, Mojtaba

    2016-06-22

    A new ratiometric fluorescent sensor was developed for the sensitive and selective detection of cyanide ion (CN(-)) in aqueous media. The ratiometric sensing system is based on CN(-) modulated recovery of copper(II) phthalocyanine (Cu(PcTs)) fluorescence signal at the expense of diminished fluorescence intensity of gold nanoclusters (AuNCs). Preliminary experiments revealed that the AuNCs and Cu(PcTs) possess a turn-off effect on each other, the interaction of which being verified through studying their interactions by principle component analysis (PCA) and multivariate cure resolution-alternating least-squares (MCR-ALS) methods. In the presence of CN(-) anion, the AuNCs and Cu(PcTs) interaction was perturbed, so that the fluorescence of Cu (PcTs), already quenched by AuNCs, was found to be efficiently recovered, while the fluorescence intensity of AuNCs was quenched via the formation of a stable [Au(CN)2](-) species. The ratiometric variation of AuNCs and Cu(PcTs) fluorescence intensities leads to designing a highly sensitive probe for CN(-) ion detection. Under the optimal conditions, CN(-) anion was detected without needing any etching time, over the concentration range of 100 nM-220 μM, with a detection limit of 75 nM, which is much lower than the allowable level of CN(-) in water permitted by the World Health Organization (WHO). Moreover, the detection of CN(-) was developed based on the CN(-) effects on the blue and red florescent colors of Cu(PcTs) and AuNCs, respectively. The designed probe displays a continuous color change from red to blue by addition of CN(-), which can be clearly observed by the naked eye in the range of 7-350 μM, under UV lamp. The prepared AuNCs/Cu(PcTs) probe was successfully utilized for the selective and sensitive determination of CN(-) anion in two different types of natural water (Rodbal dam and rainwater) and also in blood serum as a biological sample. PMID:27211049

  2. Gold nanodumbbell-seeded growth of silver nanobars and nanobipyramids

    NASA Astrophysics Data System (ADS)

    Deng, Jin-Pei; Chen, Chih-Wei; Hsieh, Wei-Chi; Wang, Chao-Hsien; Hsu, Cheng-Yung; Lin, Jyun-Hao

    2014-03-01

    Gold nanodumbbells (NDs) are prepared by the reduction of gold ions in the presence of gold nanorods. Gold NDs are then employed for the synthesis of gold-silver core-shell nanoparticles (Au@Ag NPs). The quasi-ellipsoidal NPs could be found at room temperature, but Au@Ag bar and triangular bipyramid (TBP) NPs were obtained at 75 °C. Our results show that the long ends of gold NDs are in the position of the bar center and closely paralleled the shorter edge of TBP. Mechanisms in the growth of silver on gold NDs are proposed for the formations of these Au@Ag NPs.

  3. Preparation of conductive gold nanowires in confined environment of gold-filled polymer nanotubes.

    PubMed

    Mitschang, Fabian; Langner, Markus; Vieker, Henning; Beyer, André; Greiner, Andreas

    2015-02-01

    Continuous conductive gold nanofibers are prepared via the "tubes by fiber templates" process. First, poly(l-lactide) (PLLA)-stabilized gold nanoparticles (AuNP) with over 60 wt% gold are synthesized and characterized, including gel permeation chromatography coupled with a diode array detector. Subsequent electrospinning of these AuNP with template PLLA results in composite nanofibers featuring a high gold content of 57 wt%. Highly homogeneous gold nanowires are obtained after chemical vapor deposition of 345 nm of poly(p-xylylene) (PPX) onto the composite fibers followed by pyrolysis of the polymers at 1050 °C. The corresponding heat-induced transition from continuous gold-loaded polymer tubes to smooth gold nanofibers is studied by transmission electron microscopy and helium ion microscopy using both secondary electrons and Rutherford backscattered ions.

  4. Colorimetric response of dithizone product and hexadecyl trimethyl ammonium bromide modified gold nanoparticle dispersion to 10 types of heavy metal ions: understanding the involved molecules from experiment to simulation.

    PubMed

    Leng, Yumin; Li, Yonglong; Gong, An; Shen, Zheyu; Chen, Liang; Wu, Aiguo

    2013-06-25

    A new kind of analytical reagent, hexadecyl trimethyl ammonium bromide (CTAB), and dithizone product-modified gold nanoparticle dispersion, is developed for colorimetric response to 10 types of heavy metal ions (M(n+)), including Cr(VI), Cr(3+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+), and Pb(2+). The color change of the modified gold nanoparticle dispersion is instantaneous and distinct for Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+), and Pb(2+). The color change results from the multiple reasons, such as electronic transitions, cation-π interactions, formation of coordination bonds, and M(n+)-induced aggregation of gold nanoparticles (AuNPs). The different combining capacity of heavy metal ions to modifiers results in the different broadening and red-shifting of the plasmon peak of modified AuNPs. In addition, Cr(VI), Cu(2+), Co(2+), Ni(2+), and Mn(2+) cause the new UV-vis absorption peaks in the region of 360-460 nm. The interactions between the modifiers and AuNPs, and between the modifiers and M(n+), are investigated by using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The results confirm that AuNPs are modified by CTAB and dithizone products through electrostatic interactions and Au-S bonds, respectively, and the M(n+)-N bonds form between M(n+) and dithizone products. Furthermore, the experimental and density functional theory calculated IR spectra prove that dithizone reacts with NaOH to produce C6H5O(-) and [SCH2N4](2-). The validation of this method is carried out by analysis of heavy metal ions in tap water. PMID:23724944

  5. Colorimetric response of dithizone product and hexadecyl trimethyl ammonium bromide modified gold nanoparticle dispersion to 10 types of heavy metal ions: understanding the involved molecules from experiment to simulation.

    PubMed

    Leng, Yumin; Li, Yonglong; Gong, An; Shen, Zheyu; Chen, Liang; Wu, Aiguo

    2013-06-25

    A new kind of analytical reagent, hexadecyl trimethyl ammonium bromide (CTAB), and dithizone product-modified gold nanoparticle dispersion, is developed for colorimetric response to 10 types of heavy metal ions (M(n+)), including Cr(VI), Cr(3+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+), and Pb(2+). The color change of the modified gold nanoparticle dispersion is instantaneous and distinct for Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+), and Pb(2+). The color change results from the multiple reasons, such as electronic transitions, cation-π interactions, formation of coordination bonds, and M(n+)-induced aggregation of gold nanoparticles (AuNPs). The different combining capacity of heavy metal ions to modifiers results in the different broadening and red-shifting of the plasmon peak of modified AuNPs. In addition, Cr(VI), Cu(2+), Co(2+), Ni(2+), and Mn(2+) cause the new UV-vis absorption peaks in the region of 360-460 nm. The interactions between the modifiers and AuNPs, and between the modifiers and M(n+), are investigated by using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The results confirm that AuNPs are modified by CTAB and dithizone products through electrostatic interactions and Au-S bonds, respectively, and the M(n+)-N bonds form between M(n+) and dithizone products. Furthermore, the experimental and density functional theory calculated IR spectra prove that dithizone reacts with NaOH to produce C6H5O(-) and [SCH2N4](2-). The validation of this method is carried out by analysis of heavy metal ions in tap water.

  6. Gold Coating

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Epner Technology Inc. responded to a need from Goddard Space Flight Center for the ultimate in electroplated reflectivity needed for the Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA). Made of beryllium, the MOLA mirror was coated by Epner Technology Laser Gold process, specially improved for the project. Improved Laser Gold- coated reflectors have found use in an epitaxial reactor built for a large semiconductor manufacturer as well as the waveguide in Braun-Thermoscan tympanic thermometer and lasing cavities in various surgical instruments.

  7. Gold Nanoantennas

    SciTech Connect

    2012-01-01

    An array of gold nanoantennas laced into an artificial membrane enhances the fluorescence intensity of three different molecules when they pass through plasmonic hot spots in the array. Watch for the blue, green and red flashes. The photobleaching at the end of each fluorescence event (white flashes) is indicative of single molecule observations.

  8. Gold liposomes

    SciTech Connect

    Hainfeld, J.F.

    1996-12-31

    Lipids are an important class of molecules, being found in membranes, HDL, LDL, and other natural structures, serving essential roles in structure and with varied functions such as compartmentalization and transport. Synthetic liposomes are also widely used as delivery and release vehicles for drugs, cosmetics, and other chemicals; soap is made from lipids. Lipids may form bilayer or multilammellar vesicles, micelles, sheets, tubes, and other structures. Lipid molecules may be linked to proteins, carbohydrates, or other moieties. EM study of this essential ingredient of life has lagged, due to lack of direct methods to visualize lipids without extensive alteration. OsO4 reacts with double bonds in membrane phospholipids, forming crossbridges. This has been the method of choice to both fix and stain membranes, thus far. An earlier work described the use of tungstate clusters (W{sub 11}) attached to lipid moieties to form lipid structures and lipid probes. With the development of gold clusters, it is now possible to covalently and specifically link a dense gold sphere to a lipid molecule; for example, reacting a mono-N-hydroxysuccinimide Nanogold cluster with the amino group on phosphatidyl ethanolaminine. Examples of a gold-fatty acid and a gold-phospholipid are shown.

  9. Gold, palladium, and gold-palladium alloy nanoshells on silica nanoparticle cores.

    PubMed

    Kim, Jun-Hyun; Bryan, William W; Chung, Hae-Won; Park, Chan Young; Jacobson, Allan J; Lee, T Randall

    2009-05-01

    The synthesis of gold, palladium, and gold-palladium alloy nanoshells (approximately 15-20 nm thickness) was accomplished by the reduction of gold and palladium ions onto dielectric silica core particles (approximately 100 nm in diameter) seeded with small gold nanoparticles (approximately 2-3 nm in diameter). The size, morphology, elemental composition, and optical properties of the nanoshells were characterized using field-emission scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and ultraviolet-visible spectroscopy. The results demonstrate the successful growth of gold, palladium, and gold-palladium alloy nanoshells, where the optical properties systematically vary with the relative content of gold and palladium. The alloy nanoshells are being prepared for use in applications that stand to benefit from photoenhanced catalysis. PMID:20355892

  10. Is It Real Gold?

    ERIC Educational Resources Information Center

    Harris, Harold H.

    1999-01-01

    Features acid tests for determining whether jewelry is "real" gold or simply gold-plated. Describes the carat system of denoting gold content and explains how alloys are used to create various shades of gold jewelry. Addresses the question of whether gold jewelry can turn a wearer's skin green by considering various oxidation reactions. (WRM)

  11. Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures.

    PubMed

    Ye, Jian; Van Dorpe, Pol; Van Roy, Willem; Borghs, Gustaaf; Maes, Guido

    2009-02-01

    We report on a versatile method to fabricate hollow gold nanobowls and complex gold nanobowls (with a core) based on an ion milling and a vapor HF etching technique. Two different sized hollow gold nanobowls are fabricated by milling and etching submonolayers of gold nanoshells deposited on a substrate, and their sizes and morphologies are characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Optical properties of hollow gold nanobowls with different sizes are investigated experimentally and theoretically, showing highly tunable plasmon resonance ranging from the visible to the near-infrared region. Additionally, finite difference time domain (FDTD) calculations show an enhanced localized electromagnetic field around hollow gold nanobowl structures, which indicates a potential application in surface-enhanced Raman scattering (SERS) spectroscopy for biomolecular detection. Finally, we demonstrate the fabrication of complex gold nanobowls with a gold nanoparticle core which offers the capability to create plasmon hybridized nanostructures. PMID:19125593

  12. A possible new origin of long absorption tail in Nd-doped yttrium aluminum garnet induced by 15 MeV gold-ion irradiation and heat treatment

    NASA Astrophysics Data System (ADS)

    Amekura, Hiro; Akhmadaliev, Shavkat; Zhou, Shengqiang; Chen, Feng

    2016-05-01

    When ion irradiation introduces point-defects in semiconductors/insulators, discrete energy levels can be introduced in the bandgap, and then optical transitions whose energies are lower than the bandgap become possible. The electronic transitions between the discrete level and the continuous host band are observed as a continuous tail starting from the fundamental edge. This is the well-known mechanism of the absorption tail close to the band-edge observed in many semiconductors/insulators. In this paper, we propose another mechanism for the absorption tail, which is probably active in Nd-doped yttrium aluminum garnet (Nd:YAG) after ion irradiation and annealing. A Nd:YAG bulk crystal was irradiated with 15 MeV Au5+ ions to a fluence of 8 × 1014 ions/cm2. The irradiation generates an amorphous layer of ˜3 μm thick with refractive index reduction of Δn = -0.03. Thermal annealing at 1000 °C induces recrystallization to randomly aligned small crystalline grains. Simultaneously, an extraordinarily long absorption tail appeared in the optical spectrum covering from 0.24 to ˜2 μm without fringes. The origin of the tail is discussed based on two models: (i) conventional electronic transitions between defect levels and YAG host band and (ii) enhanced light scattering by randomly aligned small grains.

  13. Separation and preconcentration of trace amounts of gold(III) ions using modified multiwalled carbon nanotube sorbent prior to flame atomic absorption spectrometry determination.

    PubMed

    Afzali, Daryoush; Ghaseminezhad, Sima; Taher, Mohammad Ali

    2010-01-01

    Multiwalled carbon nanotubes are attractive as sorbents for SPE because they can be used for enrichment of organic compounds and metal ions at trace levels. In this study, multiwalled carbon nanotubes were oxidized with concentrated HNO3, and then the oxidized multiwalled carbon nanotubes were modified with 5-(4'-dimethylamino-benzyliden)-rhodanine. The modified multiwalled carbon nanotubes were used as a solid sorbent for separation and preconcentration of trace amounts of Au(III) ions. The sorption of Au(III) ions was quantitative in the pH range of 2.0-5.0, whereas quantitative desorption occurred instantaneously with 5.0 mL 2.0 M Na2S2O3. The eluted solution was aspirated directly into the flame for atomic absorption spectrometry. The proposed method resulted in an enrichment factor of 94. The RSD of the method was +/- 1.11% (n=10, 2.0 microg/mL) and the LOD was 0.15 ng/mL. The calibration curve for Au(III) was linear between 0.53 ng/mL and 36.0 microg/mL in the initial solution, with an R2 value of 0.9999. The sorbent capacity of the modified multiwalled carbon nanotubes was 7.3 mg Au(III)/g sorbent. The influences of the experimental parameters, including sample pH, sample flow rate, eluent volume and flow rate, sample volume, and interference of some ions on the recoveries of the Au ions, were investigated. The proposed method was applied for preconcentration and determination of Au in different samples.

  14. Multienergy gold ion implantation for enhancing the field electron emission characteristics of heterogranular structured diamond films grown on Au-coated Si substrates

    NASA Astrophysics Data System (ADS)

    Sankaran, K. J.; Manoharan, D.; Sundaravel, B.; Lin, I. N.

    2016-09-01

    Multienergy Au-ion implantation enhanced the electrical conductivity of heterogranular structured diamond films grown on Au-coated Si substrates to a high level of 5076.0 (Ω cm)-1 and improved the field electron emission (FEE) characteristics of the films to low turn-on field of 1.6 V/μm, high current density of 5.4 mA/cm2 (@ 2.65 V/μm), and high lifetime stability of 1825 min. The catalytic induction of nanographitic phases in the films due to Au-ion implantation and the formation of diamond-to-Si eutectic interface layer due to Au-coating on Si together encouraged the efficient conducting channels for electron transport, thereby improved the FEE characteristics of the films.

  15. M -shell x-ray production by 0. 6--3. 0-MeV sup 3 He sup + ions in tantalum, osmium, gold, bismuth, and thorium

    SciTech Connect

    Pajek, M. ); Kobzev, A.P.; Sandrik, R.; Skrypnik, A.V. ); Ilkhamov, R.A.; Khusmurodov, S.H. ); Lapicki, G. )

    1990-12-01

    {ital M}-{ital shell} x-ray production cross sections in {sub 73}Ta, {sub 76}Os, {sub 79}Au, {sub 83}Bi, and {sub 90}Th bombarded by {sup 3}He{sup +} ions of energy 0.6--3.0 MeV are reported. The data are compared with the predictions of the semiclassical and the first-order Born approximations and the calculations of the perturbed-stationary-state (PSS) theory that accounts for energy-loss (E), Coulomb deflection (C), and relativistic (R) effects (ECPSSR). The ECPSSR theory gives the best description of the measured cross sections, although a systematical underestimation of the data is observed in the low-velocity region. For tantalum, uncertainties of the available {ital M}-shell Coster-Kronig factors and fluorescence yields are indicated, as they have been noted previously for {ital Z}{sub 2}{approx}74 elements, bombarded by protons and {sup 4}He ions (Pajek {ital et} {ital al}., Phys. Rev. A 42, 261 (1990); 42, 5298 (1990)). Using average {ital M}-shell fluorescence yields {bar {omega}}{sub {ital M}}, we have obtained the scaled {ital M}-shell ionization cross sections, which were highly universal as a function of projectile velocity scaled to the mean {ital M}-shell orbital velocity. Finally, comparing our previously measured {ital M} x-ray production cross sections for {sup 4}He{sup +} ions with the present data for {sup 3}He{sup +} ions---taken at the same velocities---we try to test a description of the Coulomb deflection effect within the ECPSSR theory.

  16. Toxicological risk assessment of elemental gold following oral exposure to sheets and nanoparticles - A review.

    PubMed

    Hadrup, Niels; Sharma, Anoop K; Poulsen, Morten; Nielsen, Elsa

    2015-07-01

    Elemental gold is used as a food coloring agent and in dental fillings. In addition, gold nanoparticles are gaining increasing attention due to their potential use as inert carriers for medical purposes. Although elemental gold is considered to be inert, there is evidence to suggest the release of gold ions from its surface. Elemental gold, or the released ions, is, to some extent, absorbed in the gastrointestinal tract. Gold is distributed to organs such as the liver, heart, kidneys and lungs. The main excretion route of absorbed gold is through urine. Data on the oral toxicity of elemental gold is limited. The acute toxicity of elemental gold seems to be low, as rats were unaffected by a single dose of 2000mg nanoparticles/kg of body weight. Information on repeated dose toxicity is very limited. Skin rashes have been reported in humans following the ingestion of liquors containing gold. In addition, gold released from dental restorations has been reported to increase the risk of developing gold hypersensitivity. Regarding genotoxicity, in vitro studies indicate that gold nanoparticles induce DNA damage in mammalian cells. In vivo, gold nanoparticles induce genotoxic effects in Drosophila melanogaster; however, genotoxicity studies in mammals are lacking. Overall, based on the literature and taking low human exposure into account, elemental gold via the oral route is not considered to pose a health concern to humans in general.

  17. Internal crystallography and thermal history of natural gold alloys

    NASA Astrophysics Data System (ADS)

    Hough, R.; Cleverley, J. S.

    2011-12-01

    New studies of gold are revealing how metallography is a key component of our understanding of the deposition of precious alloys in primary ore systems. Alluvial gold nuggets once thought to be secondary in origin have now been shown to be the erosional residue of hypogene systems, i.e. primary. This has been achieved through analysis of the internal crystallography using electron back scattered diffraction of large area ion beam polished gold samples. Comparisons of the microstructure are also being made with experiments on gold alloys with the same Ag contents where real time heating and in-situ microstructure mapping reveal the structures are of high temperature origin. A new frontier in gold analysis in both hypogene and supergene systems is the nano domain. In hypogene settings gold at all scales can be metallic and particulate as has been directly observed in refractory ores, or the so called "invisible gold" in pyrite and arsenopyrite. Such nanoparticulate and colloidal transport of gold is a viable mechanism of dispersing the gold during weathering of ore deposits. These gold nanoparticles, long known about in materials sciences and manufacturing have now been seen in these natural environments. Such colloids are also likely to play an important role in gold transport in hydrothermal deposits. The regularly heterogeneous distribution, trace concentration and nanoparticulate grain size of metallic gold in all ore systems has made it difficult for direct observation. Yet, it is critical to be able to establish a broad view of the microstructural/microchemical residence of the actual gold in a given sample. New generation element mapping tools now allow us to 'see' this invisible gold component for the first time and to probe its chemistry and controls on deposition. These studies have the potential to provide a new approach and view of the formation, deposition and provenance history of the metal in all gold deposits.

  18. Reactivity of Cys4 zinc finger domains with gold(III) complexes: insights into the formation of "gold fingers".

    PubMed

    Jacques, Aurélie; Lebrun, Colette; Casini, Angela; Kieffer, Isabelle; Proux, Olivier; Latour, Jean-Marc; Sénèque, Olivier

    2015-04-20

    Gold(I) complexes such as auranofin or aurothiomalate have been used as therapeutic agents for the treatment of rheumatoid arthritis for several decades. Several gold(I) and gold(III) complexes have also shown in vitro anticancer properties against human cancer cell lines, including cell lines resistant to cisplatin. Because of the thiophilicity of gold, cysteine-containing proteins appear as likely targets for gold complexes. Among them, zinc finger proteins have attracted attention and, recently, gold(I) and gold(III) complexes have been shown to inhibit poly(adenosine diphosphate ribose)polymerase-1 (PARP-1), which is an essential protein involved in DNA repair and in cancer resistance to chemotherapies. In this Article, we characterize the reactivity of the gold(III) complex [Au(III)(terpy)Cl]Cl2 (Auterpy) with a model of Zn(Cys)4 "zinc ribbon" zinc finger by a combination of absorption spectroscopy, circular dichroism, mass spectrometry, high-performance liquid chromatography analysis, and X-ray absorption spectroscopy. We show that the Zn(Cys)4 site of Zn·LZR is rapidly oxidized by Auterpy to form a disulfide bond. The Zn(2+) ion is released, and the two remaining cysteines coordinate the Au(+) ion that is produced during the redox reaction. Subsequent oxidation of these cysteines can take place in conditions of excess gold(III) complex. In the presence of excess free thiols mimicking the presence of glutathione in cells, mixing of the zinc finger model and gold(III) complex yields a different product: complex (Au(I))2·LZR with two Au(+) ions bound to cysteines is formed. Thus, on the basis of detailed speciation and kinetic measurements, we demonstrate herein that the destruction of Zn(Cys)4 zinc fingers by gold(III) complexes to achieve the formation of "gold fingers" is worth consideration, either directly or mediated by reducing agents.

  19. Plasmonic biocompatible silver-gold alloyed nanoparticles.

    PubMed

    Sotiriou, Georgios A; Etterlin, Gion Diego; Spyrogianni, Anastasia; Krumeich, Frank; Leroux, Jean-Christophe; Pratsinis, Sotiris E

    2014-11-14

    The addition of Au during scalable synthesis of nanosilver drastically minimizes its surface oxidation and leaching of toxic Ag(+) ions. These biocompatible and inexpensive silver-gold nanoalloyed particles exhibit superior plasmonic performance than commonly used pure Au nanoparticles, and as such these nanoalloys have great potential in theranostic applications.

  20. Amyloid Templated Gold Aerogels.

    PubMed

    Nyström, Gustav; Fernández-Ronco, María P; Bolisetty, Sreenath; Mazzotti, Marco; Mezzenga, Raffaele

    2016-01-20

    Amyloid fibril-based ultralow-density aerogels are designed by functionalization with gold nanoparticles and microcrystals, leading to hybrids of unprecedented lightness and functionality. By changing the colloidal gold shape, size, and concentration, the gold composition can be tuned to reach contents ≥20 kt equivalent, yet at densities ≈10(3) lighter than any equivalent gold alloys, and combining unique features such as porosity, catalytic properties, pressure sensing, and autofluorescence.

  1. Cyclic photochemical re-growth of gold nanoparticles: Overcoming the mask-erosion limit during reactive ion etching on the nanoscale.

    PubMed

    Ozdemir, Burcin; Seidenstücker, Axel; Plettl, Alfred; Ziemann, Paul

    2013-01-01

    THE BASIC IDEA OF USING HEXAGONALLY ORDERED ARRAYS OF AU NANOPARTICLES (NP) ON TOP OF A GIVEN SUBSTRATE AS A MASK FOR THE SUBSEQUENT ANISOTROPIC ETCHING IN ORDER TO FABRICATE CORRESPONDINGLY ORDERED ARRAYS OF NANOPILLARS MEETS TWO SERIOUS OBSTACLES: The position of the NP may change during the etching process and, thus, the primary pattern of the mask deteriorates or is completely lost. Furthermore, the NP are significantly eroded during etching and, consequently, the achievable pillar height is strongly restricted. The present work presents approaches on how to get around both problems. For this purpose, arrays of Au NPs (starting diameter 12 nm) are deposited on top of silica substrates by applying diblock copolymer micelle nanolithography (BCML). It is demonstrated that evaporated octadecyltrimethoxysilane (OTMS) layers act as stabilizer on the NP position, which allows for an increase of their size up to 50 nm by an electroless photochemical process. In this way, ordered arrays of silica nanopillars are obtained with maximum heights of 270 nm and aspect ratios of 5:1. Alternatively, the NP position can be fixed by a short etching step with negligible mask erosion followed by cycles of growing and reactive ion etching (RIE). In that case, each cycle is started by photochemically re-growing the Au NP mask and thereby completely compensating for the erosion due to the previous cycle. As a result of this mask repair method, arrays of silica nanopillar with heights up to 680 nm and aspect ratios of 10:1 are fabricated. Based on the given recipes, the approach can be applied to a variety of materials like silicon, silicon oxide, and silicon nitride.

  2. Shape-tailoring and catalytic function of anisotropic gold nanostructures

    PubMed Central

    2011-01-01

    We report a facile, one-pot, shape-selective synthesis of gold nanoparticles in high yield by the reaction of an aqueous potassium tetrachloroaurate(III) solution with a commercially available detergent. We prove that a commercial detergent can act as a reducing as well as stabilizing agent for the synthesis of differently shaped gold nanoparticles in an aqueous solution at an ambient condition. It is noteworthy that the gold nanoparticles with different shapes can be prepared by simply changing the reaction conditions. It is considered that a slow reduction of the gold ions along with shape-directed effects of the components of the detergent plays a vital function in the formation of the gold nanostructures. Further, the as-prepared gold nanoparticles showed the catalytic activity for the reduction reaction of 4-nitrophenol in the presence of sodium borohydride at room temperature. PMID:21974964

  3. Synthesis and characterization of functional multicomponent nanosized gallium chelated gold crystals.

    PubMed

    Zambre, Ajit; Silva, Francisco; Upendran, Anandhi; Afrasiabi, Zahra; Xin, Yan; Paulo, António; Kannan, Raghuraman

    2014-03-28

    In this communication, we describe a novel synthetic method for fabricating multicomponent gold nanoparticles containing both gallium ions and biomolecules on the surface. Detailed compositional analysis, using STEM-HAADF and EELS spectroscopy, confirmed the crystalline nature of gold and chelation of gallium ions. The presence of the biomolecule was validated using conventional ELISA.

  4. A novel approach in dispersive liquid-liquid microextraction based on the use of an auxiliary solvent for adjustment of density UV-VIS spectrophotometric and graphite furnace atomic absorption spectrometric determination of gold based on ion pair formation.

    PubMed

    Kocúrová, Lívia; Balogh, Ioseph S; Skrlíková, Jana; Posta, József; Andruch, Vasil

    2010-10-15

    This paper presents a novel approach to dispersive liquid-liquid microextraction (DLLME), based on the use of an auxiliary solvent for the adjustment of density. The procedure utilises a solvent system consisting of a dispersive solvent, an extraction solvent and an auxiliary solvent, which allows for the use of solvents having a density lower than that of water as an extraction solvent while preserving simple phase separation by centrifugation. The suggested approach could be an alternative to procedures described in the literature in recent months and which have been devoted to solving the same problem. The efficiency of the suggested approach is demonstrated through the determination of gold based on the formation of the ion pair [Au(CN)(2)](-) anion with Astra Phloxine (R) reagent and its extraction using the DLLME procedure with subsequent UV-VIS spectrophotometric and graphite furnace atomic absorption spectrometric detection. The optimum conditions were found to be: pH 3; 0.8 mmol L(-1) K(4)[Fe(CN)(6)]; 0.12 mmol L(-1) R; dispersive solvent, methanol; extraction solvent, toluene; auxiliary solvent, tetrachloromethane. The calibration plots were linear in the ranges 0.39-4.7 mg L(-1) and 0.5-39.4 μg L(-1) for UV-VIS and GFAAS detection, respectively; thus enables the application of the developed method in two ranges differing from one from another by three orders of magnitude. The presented approach can be applied to the development of DLLME procedures for the determination of other compounds extractable by organic solvents with a density lower than that of water. PMID:20875602

  5. Role of CO2 in the formation of gold deposits.

    PubMed

    Phillips, G N; Evans, K A

    2004-06-24

    Much of global gold production has come from deposits with uneconomic concentrations of base metals, such as copper, lead and zinc. These 'gold-only' deposits are thought to have formed from hot, aqueous fluids rich in carbon dioxide, but only minor significance has been attached to the role of the CO2 in the process of gold transport. This is because chemical bonding between gold ions and CO2 species is not strong, and so it is unlikely that CO2 has a direct role in gold transport. An alternative indirect role for CO2 as a weak acid that buffers pH has also appeared unlikely, because previously inferred pH values for such gold-bearing fluids are variable. Here we show that such calculated pH values are unlikely to record conditions of gold transport, and propose that CO2 may play a critical role during gold transport by buffering the fluid in a pH range where elevated gold concentration can be maintained by complexation with reduced sulphur. Our conclusions, which are supported by geochemical modelling, may provide a platform for new gold exploration methods.

  6. Anisotropic Gold Nanocrystals:. Synthesis and Characterization

    NASA Astrophysics Data System (ADS)

    Stiufiuc, R.; Toderas, F.; Iosin, M.; Stiufiuc, G.

    In this letter we report on successful preparation and characterization of anisotropic gold nanocrystals bio-synthesized by reduction of aqueous chloroaurate ions in pelargonium plant extract. The nanocrystals have been characterized by means of Transmission Electron Microscopy (TEM), UV-VIS absorption spectroscopy and tapping mode atomic force microscopy (TM-AFM). Using these investigation techniques, the successful formation of anisotropic single nanocrystals with the preferential growth direction along the gold (111) plane has been confirmed. The high detail phase images could give us an explanation concerning the growth mechanism of the nanocrystals.

  7. GOLD PLATING PROCESS

    DOEpatents

    Seegmiller, R.

    1957-08-01

    An improved bath is reported for plating gold on other metals. The composition of the plating bath is as follows: Gold cyanide from about 15 to about 50 grams, potassium cyanide from about 70 to about 125 grams, and sulfonated castor oil from about 0.1 to about 10 cc. The gold plate produced from this bath is smooth, semi-hard, and nonporous.

  8. Thomson parabola spectrometry for gold laser-generated plasmas

    SciTech Connect

    Torrisi, L.; Cutroneo, M.; Ando, L.; Ullschmied, J.

    2013-02-15

    The plasma generated from thin gold films irradiated in high vacuum at high intensity ({approx}10{sup 15} W/cm{sup 2}) laser shot is characterized in terms of ion generation through time-of-flight techniques and Thomson parabola spectrometry. Gold ions and protons, accelerated in forward direction by the electric field developed in non-equilibrium plasma, have been investigated. Measurements, performed at PALS laboratory, give information about the gold charge states distributions, the ion energy distributions and the proton acceleration driven as a function of film thickness, laser parameters, and angular emission. The ion diagnostics of produced plasma in forward direction permits to understand some mechanisms developed during its expansion kinetics. The role of the focal position of a laser beam with respect to the target surface, plasma properties, and the possibility to accelerate protons up to energies above 3 MeV has been presented and discussed.

  9. Magnetism in nanocrystalline gold.

    PubMed

    Tuboltsev, Vladimir; Savin, Alexander; Pirojenko, Alexandre; Räisänen, Jyrki

    2013-08-27

    While bulk gold is well known to be diamagnetic, there is a growing body of convincing experimental and theoretical work indicating that nanostructured gold can be imparted with unconventional magnetic properties. Bridging the current gap in experimental study of magnetism in bare gold nanomaterials, we report here on magnetism in gold nanocrystalline films produced by cluster deposition in the aggregate form that can be considered as a crossover state between a nanocluster and a continuous film. We demonstrate ferromagnetic-like hysteretic magnetization with temperature dependence indicative of spin-glass-like behavior and find this to be consistent with theoretical predictions, available in the literature, based on first-principles calculations.

  10. Plant Extract (Bupleurum falcatum) as a Green Factory for Biofabrication of Gold Nanoparticles.

    PubMed

    Lee, You Jeong; Cha, Song-Hyun; Lee, Kyoung Jin; Kim, Yeong Shik; Cho, Seonho; Park, Youmie

    2015-09-01

    This work describes a biofabrication process for gold nanoparticles in which the plant extract (Bupleurum falcatum) is used as a reducing agent to convert gold ions to gold nanoparticles. Biofabricated gold nanoparticles with spherical shapes were observed with an average diameter of 10.5 ± 2.3 nm. The color of the gold nanoparticles was purple, with a surface plasmon resonance peak at 542 nm. The face-centered cubic structure of crystalline gold was confirmed by high-resolution X-ray diffraction patterns. The biofabricated gold nanoparticles demonstrated excellent catalytic activity towards the 4-nitrophenol reduction reaction. The current report suggests that plant extracts are valuable natural sources for the biofabrication of gold nanoparticles with excellent catalytic activities.

  11. Probing the Surface Properties of Gold at Low Electrolyte Concentration.

    PubMed

    Tivony, Ran; Klein, Jacob

    2016-07-26

    Using the surface force balance (SFB), we studied the surface properties of gold in aqueous solution with low electrolyte concentration (∼10(-5) M and pH = 5.8), i.e., water with no added salt, by directly measuring the interaction between an ultrasmooth gold surface (ca. 0.2 nm rms roughness) and a mica surface. Under these conditions, specific adsorption of ions is minimized and its influence on the surface charge and surface potential of gold is markedly reduced. At open circuit potential, the electrostatic interaction between gold and mica was purely attractive and gold was found to be positively charged. This was further confirmed by force measurements against a positively charged surface, poly-l-lysine coated mica. Successive force measurements unambiguously showed that once gold and mica reach contact all counterions are expelled from the gap, confirming that at contact the surface charge of gold is equal and opposite in charge to that of mica. Further analysis of adhesion energy between the surfaces indicated that adhesion is mostly governed by vdW dispersion force and to a lesser extent by electrostatic interaction. Force measurements under external applied potentials showed that the gold-mica interaction can be regulated as a function of applied potential even at low electrolyte concentration. The gold-mica interaction was described very precisely by the nonlinearized Poisson-Boltzmann (PB) equation, where one of the surfaces is at constant charge, i.e., mica, and the other, i.e., gold, is at constant potential. Consequently, the gold surface potential could be determined accurately both at open circuit potential (OCP) and under different applied potentials. Using the obtained surface potentials, we were able to derive fundamental characteristics of the gold surface, e.g., its surface charge density and potential of zero charge (PZC), at very low electrolyte concentration. PMID:27357375

  12. Gold recovery from low concentrations using nanoporous silica adsorbent

    NASA Astrophysics Data System (ADS)

    Aledresse, Adil

    The development of high capacity adsorbents with uniform porosity denoted 5%MP-HMS (5% Mercaptopropyl-Hexagonal Mesoporous Structure) to extract gold from noncyanide solutions is presented. The preliminary studies from laboratory simulated noncyanide gold solutions show that the adsorption capacities of these materials are among the highest reported. The high adsorption saturation level of these materials, up to 1.9 mmol/g (37% of the adsorbent weight) from gold chloride solutions (potassium tetrachloroaurate) and 2.9 mmol/g (57% of the adsorbent weight) from gold bromide solutions (potassium tetrabromoaurate) at pH = 2, is a noteworthy feature of these materials. This gold loading from [AuC4]- and [AuBr4 ]- solutions corresponds to a relative Au:S molar ratio of 2.5:1 and 3.8:1, respectively. These rates are significantly higher than the usual 1:1 (Au:S) ratio expected for metal ion binding with the material. The additional gold ions loaded have been spontaneously reduced to metallic gold in the mesoporous material. Experimental studies indicated high maximum adsorptions of gold as high as 99.9% recovery. Another promising attribute of these materials is their favourable adsorption kinetics. The MP-HMS reaches equilibrium (saturation) in less than 1 minute of exposure in gold bromide and less than 10 minutes in gold chloride. The MP-HMS materials adsorption is significantly improved by agitation and the adsorption capacity of Au (III) ions increases with the decrease in pH. The recovery of adsorbed gold and the regeneration of spent adsorbent were investigated for MP-HMS adsorbent. The regenerated adsorbent (MP-HMS) maintained its adsorption capacity even after repeated use and all the gold was successfully recovered from the spent adsorbent. For the fist time, a promising adsorbent system has been found that is capable of effectively concentrating gold thiosulphate complexes, whereas conventional carbon-inpulp (CIP) and carbon-in-leach (CIL) systems fail. The

  13. Laser-targeted photofabrication of gold nanoparticles inside cells.

    PubMed

    Smith, Nicholas I; Mochizuki, Kentaro; Niioka, Hirohiko; Ichikawa, Satoshi; Pavillon, Nicolas; Hobro, Alison J; Ando, Jun; Fujita, Katsumasa; Kumagai, Yutaro

    2014-10-09

    Nanoparticle manipulation is of increasing interest, since they can report single molecule-level measurements of the cellular environment. Until now, however, intracellular nanoparticle locations have been essentially uncontrollable. Here we show that by infusing a gold ion solution, focused laser light-induced photoreduction allows in situ fabrication of gold nanoparticles at precise locations. The resulting particles are pure gold nanocrystals, distributed throughout the laser focus at sizes ranging from 2 to 20 nm, and remain in place even after removing the gold solution. We demonstrate the spatial control by scanning a laser beam to write characters in gold inside a cell. Plasmonically enhanced molecular signals could be detected from nanoparticles, allowing their use as nano-chemical probes at targeted locations inside the cell, with intracellular molecular feedback. Such light-based control of the intracellular particle generation reaction also offers avenues for in situ plasmonic device creation in organic targets, and may eventually link optical and electron microscopy.

  14. Effect of precursor solution dark incubation on gold nanorods morphology

    NASA Astrophysics Data System (ADS)

    Abdelrasoul, Gaser N.; Scotto, Marco; Cingolani, Roberto; Diaspro, Alberto; Athanassiou, Athanassia; Pignatelli, Francesca

    2012-12-01

    Gold nanorods were synthesized in an aqueous solution of hexadecyltrimethylammonium bromide via a combination of chemical reduction and UV photoirradiation. Gold ligand complexes, present in the stock solution, are initially reduced, by ascorbic acid as mild reducing agent. The gold ions nucleation and colloid growth proceeds then by subsequent UV irradiation of the so-obtained precursor solution. We present a systematic study of the effect of incubation of the precursor solution on the dispersion state and aspect ratio of the produced nanorods. Incubation of the precursor solution allows the synthesis of higher aspect ratio nanorods with narrower size distribution compared to those obtained without incubation. We propose a mechanism for the gold nanorods formation including two stages, a nucleation and a diffusive growth. This allows us to explain the synthesis improvement as a consequence of the increase in the size of the gold ligand complexes aggregates, leading to a decrease of the nanorods growth rate.

  15. Therapeutic gold, silver, and platinum nanoparticles.

    PubMed

    Yamada, Miko; Foote, Matthew; Prow, Tarl W

    2015-01-01

    There are an abundance of nanoparticle technologies being developed for use as part of therapeutic strategies. This review focuses on a narrow class of metal nanoparticles that have therapeutic potential that is a consequence of elemental composition and size. The most widely known of these are gold nanoshells that have been developed over the last two decades for photothermal ablation in superficial cancers. The therapeutic effect is the outcome of the thickness and diameter of the gold shell that enables fine tuning of the plasmon resonance. When these metal nanoparticles are exposed to the relevant wavelength of light, their temperature rapidly increases. This in turn induces a localized photothermal ablation that kills the surrounding tumor tissue. Similarly, gold nanoparticles have been developed to enhance radiotherapy. The high-Z nature of gold dramatically increases the photoelectric cross-section. Thus, the photoelectric effects are significantly increased. The outcome of these interactions is enhanced tumor killing with lower doses of radiation, all while sparing tissue without gold nanoparticles. Silver nanoparticles have been used for their wound healing properties in addition to enhancing the tumor-killing effects of anticancer drugs. Finally, platinum nanoparticles are thought to serve as a reservoir for platinum ions that can induce DNA damage in cancer cells. The future is bright with the path to clinical trials is largely cleared for some of the less complex therapeutic metal nanoparticle systems.

  16. Therapeutic gold, silver, and platinum nanoparticles.

    PubMed

    Yamada, Miko; Foote, Matthew; Prow, Tarl W

    2015-01-01

    There are an abundance of nanoparticle technologies being developed for use as part of therapeutic strategies. This review focuses on a narrow class of metal nanoparticles that have therapeutic potential that is a consequence of elemental composition and size. The most widely known of these are gold nanoshells that have been developed over the last two decades for photothermal ablation in superficial cancers. The therapeutic effect is the outcome of the thickness and diameter of the gold shell that enables fine tuning of the plasmon resonance. When these metal nanoparticles are exposed to the relevant wavelength of light, their temperature rapidly increases. This in turn induces a localized photothermal ablation that kills the surrounding tumor tissue. Similarly, gold nanoparticles have been developed to enhance radiotherapy. The high-Z nature of gold dramatically increases the photoelectric cross-section. Thus, the photoelectric effects are significantly increased. The outcome of these interactions is enhanced tumor killing with lower doses of radiation, all while sparing tissue without gold nanoparticles. Silver nanoparticles have been used for their wound healing properties in addition to enhancing the tumor-killing effects of anticancer drugs. Finally, platinum nanoparticles are thought to serve as a reservoir for platinum ions that can induce DNA damage in cancer cells. The future is bright with the path to clinical trials is largely cleared for some of the less complex therapeutic metal nanoparticle systems. PMID:25521618

  17. Investigating the Toxicity, Uptake, Nanoparticle Formation and Genetic Response of Plants to Gold

    PubMed Central

    Taylor, Andrew F.; Rylott, Elizabeth L.; Anderson, Christopher W. N.; Bruce, Neil C.

    2014-01-01

    We have studied the physiological and genetic responses of Arabidopsis thaliana L. (Arabidopsis) to gold. The root lengths of Arabidopsis seedlings grown on nutrient agar plates containing 100 mg/L gold were reduced by 75%. Oxidized gold was subsequently found in roots and shoots of these plants, but gold nanoparticles (reduced gold) were only observed in the root tissues. We used a microarray-based study to monitor the expression of candidate genes involved in metal uptake and transport in Arabidopsis upon gold exposure. There was up-regulation of genes involved in plant stress response such as glutathione transferases, cytochromes P450, glucosyl transferases and peroxidases. In parallel, our data show the significant down-regulation of a discreet number of genes encoding proteins involved in the transport of copper, cadmium, iron and nickel ions, along with aquaporins, which bind to gold. We used Medicago sativa L. (alfalfa) to study nanoparticle uptake from hydroponic culture using ionic gold as a non-nanoparticle control and concluded that nanoparticles between 5 and 100 nm in diameter are not directly accumulated by plants. Gold nanoparticles were only observed in plants exposed to ionic gold in solution. Together, we believe our results imply that gold is taken up by the plant predominantly as an ionic form, and that plants respond to gold exposure by up-regulating genes for plant stress and down-regulating specific metal transporters to reduce gold uptake. PMID:24736522

  18. Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold.

    PubMed

    Taylor, Andrew F; Rylott, Elizabeth L; Anderson, Christopher W N; Bruce, Neil C

    2014-01-01

    We have studied the physiological and genetic responses of Arabidopsis thaliana L. (Arabidopsis) to gold. The root lengths of Arabidopsis seedlings grown on nutrient agar plates containing 100 mg/L gold were reduced by 75%. Oxidized gold was subsequently found in roots and shoots of these plants, but gold nanoparticles (reduced gold) were only observed in the root tissues. We used a microarray-based study to monitor the expression of candidate genes involved in metal uptake and transport in Arabidopsis upon gold exposure. There was up-regulation of genes involved in plant stress response such as glutathione transferases, cytochromes P450, glucosyl transferases and peroxidases. In parallel, our data show the significant down-regulation of a discreet number of genes encoding proteins involved in the transport of copper, cadmium, iron and nickel ions, along with aquaporins, which bind to gold. We used Medicago sativa L. (alfalfa) to study nanoparticle uptake from hydroponic culture using ionic gold as a non-nanoparticle control and concluded that nanoparticles between 5 and 100 nm in diameter are not directly accumulated by plants. Gold nanoparticles were only observed in plants exposed to ionic gold in solution. Together, we believe our results imply that gold is taken up by the plant predominantly as an ionic form, and that plants respond to gold exposure by up-regulating genes for plant stress and down-regulating specific metal transporters to reduce gold uptake. PMID:24736522

  19. Extracellular mycosynthesis of gold nanoparticles using Fusarium solani

    NASA Astrophysics Data System (ADS)

    Gopinath, K.; Arumugam, A.

    2014-08-01

    The development of eco-friendly methods for the synthesis of nanomaterial shape and size is an important area of research in the field of nanotechnology. The present investigation deals with the extracellular rapid biosynthesis of gold nanoparticles using Fusarium solani culture filtrate. The UV-vis spectra of the fungal culture filtrate medium containing gold ion showed peak at 527 nm corresponding to the plasmon absorbance of gold nanoparticles. FTIR spectra provide an evidence for the presence of heterocyclic compound in the culture filtrate, which increases the stability of the synthesized gold nanoparticles. The X-ray analysis respects the Bragg's law and confirmed the crystalline nature of the gold nanoparticles. AFM analysis showed the results of particle sizes (41 nm). Transmission electron microscopy (TEM) showed that the gold nanoparticles are spherical in shape with the size range from 20 to 50 nm. The use of F. solani will offer several advantages since it is considered as a non-human pathogenic organism. The fungus F. solani has a fast growth rate, rapid capacity of metallic ions reduction, NPs stabilization and facile and economical biomass handling. Extracellular biosynthesis of gold nanoparticles could be highly advantageous from the point of view of synthesis in large quantities, time consumption, eco-friendly, non-toxic and easy downstream processing.

  20. Titration of gold nanoparticles in phase extraction.

    PubMed

    Cheng, Han-Wen; Schadt, Mark J; Zhong, Chuan-Jian

    2015-12-01

    In the organic-aqueous phase transfer process of gold nanoparticles, there are two types of distinctive interfaces involving hydrophilic and hydrophobic ligands, the understanding of which is important for the design of functional nanomaterials for analytical/bioanalytical applications and the control over the nanoparticles' nanoactivity and nanotoxicity in different phases. This report describes new findings of an investigation of the quantitative aspect of ligand ion pairing at the capping monolayer structure that drives the phase extraction of gold nanoparticles. Alkanethiolate-capped gold nanoparticles of 8 nm diameter with high size monodispersity (RSD ∼ 5%) were first derivatized by a ligand place exchange reaction with 11-mercaptoundecanoic acid to form a mixed monolayer shell consisting of both hydrophobic (-CH3) and hydrophilic (-COOH) groups. It was followed by quantitative titration of the resulting nanoparticles with a cationic species (-NR4(+)) in a toluene phase, yielding ion pairing of -NR4(+) and -COO(-) on part of the capping monolayer. Analysis of the phase extraction allowed a quantitative determination of the percentage of ion pairing and structural changes in the capping monolayer on the nanoparticles. The results, along with morphological characterization, are discussed in terms of the interfacial structural changes and their implications on the rational design of surface-functionalized nanoparticles and fine tuning of the interfacial reactivity. PMID:26523548

  1. Gold Nanoparticle Quantitation by Whole Cell Tomography.

    PubMed

    Sanders, Aric W; Jeerage, Kavita M; Schwartz, Cindi L; Curtin, Alexandra E; Chiaramonti, Ann N

    2015-12-22

    Many proposed biomedical applications for engineered gold nanoparticles require their incorporation by mammalian cells in specific numbers and locations. Here, the number of gold nanoparticles inside of individual mammalian stem cells was characterized using fast focused ion beam-scanning electron microscopy based tomography. Enhanced optical microscopy was used to provide a multiscale map of the in vitro sample, which allows cells of interest to be identified within their local environment. Cells were then serially sectioned using a gallium ion beam and imaged using a scanning electron beam. To confirm the accuracy of single cross sections, nanoparticles in similar cross sections were imaged using transmission electron microscopy and scanning helium ion microscopy. Complete tomographic series were then used to count the nanoparticles inside of each cell and measure their spatial distribution. We investigated the influence of slice thickness on counting single particles and clusters as well as nanoparticle packing within clusters. For 60 nm citrate stabilized particles, the nanoparticle cluster packing volume is 2.15 ± 0.20 times the volume of the bare gold nanoparticles.

  2. Titration of gold nanoparticles in phase extraction.

    PubMed

    Cheng, Han-Wen; Schadt, Mark J; Zhong, Chuan-Jian

    2015-12-01

    In the organic-aqueous phase transfer process of gold nanoparticles, there are two types of distinctive interfaces involving hydrophilic and hydrophobic ligands, the understanding of which is important for the design of functional nanomaterials for analytical/bioanalytical applications and the control over the nanoparticles' nanoactivity and nanotoxicity in different phases. This report describes new findings of an investigation of the quantitative aspect of ligand ion pairing at the capping monolayer structure that drives the phase extraction of gold nanoparticles. Alkanethiolate-capped gold nanoparticles of 8 nm diameter with high size monodispersity (RSD ∼ 5%) were first derivatized by a ligand place exchange reaction with 11-mercaptoundecanoic acid to form a mixed monolayer shell consisting of both hydrophobic (-CH3) and hydrophilic (-COOH) groups. It was followed by quantitative titration of the resulting nanoparticles with a cationic species (-NR4(+)) in a toluene phase, yielding ion pairing of -NR4(+) and -COO(-) on part of the capping monolayer. Analysis of the phase extraction allowed a quantitative determination of the percentage of ion pairing and structural changes in the capping monolayer on the nanoparticles. The results, along with morphological characterization, are discussed in terms of the interfacial structural changes and their implications on the rational design of surface-functionalized nanoparticles and fine tuning of the interfacial reactivity.

  3. Gold emissivities for hydrocode applications

    NASA Astrophysics Data System (ADS)

    Bowen, C.; Wagon, F.; Galmiche, D.; Loiseau, P.; Dattolo, E.; Babonneau, D.

    2004-10-01

    The Radiom model [M. Busquet, Phys Fluids B 5, 4191 (1993)] is designed to provide a radiative-hydrodynamic code with non-local thermodynamic equilibrium (non-LTE) data efficiently by using LTE tables. Comparison with benchmark data [M. Klapisch and A. Bar-Shalom, J. Quant. Spectrosc. Radiat. Transf. 58, 687 (1997)] has shown Radiom to be inaccurate far from LTE and for heavy ions. In particular, the emissivity was found to be strongly underestimated. A recent algorithm, Gondor [C. Bowen and P. Kaiser, J. Quant. Spectrosc. Radiat. Transf. 81, 85 (2003)], was introduced to improve the gold non-LTE ionization and corresponding opacity. It relies on fitting the collisional ionization rate to reproduce benchmark data given by the Averroès superconfiguration code [O. Peyrusse, J. Phys. B 33, 4303 (2000)]. Gondor is extended here to gold emissivity calculations, with two simple modifications of the two-level atom line source function used by Radiom: (a) a larger collisional excitation rate and (b) the addition of a Planckian source term, fitted to spectrally integrated Averroès emissivity data. This approach improves the agreement between experiments and hydrodynamic simulations.

  4. Axially chiral allenyl gold complexes.

    PubMed

    Johnson, Alice; Laguna, Antonio; Gimeno, M Concepción

    2014-09-17

    Unprecedented allenyl gold complexes have been achieved starting from triphenylpropargylphosphonium bromide. Two different coordination modes of the allene isomer of triphenylphosphoniumpropargylide to gold have been found depending on the gold oxidation state. Bromo-, pentafluorophenyl-, and triphenylphosphine-gold(I) allenyl complexes were prepared in which the α carbon coordinates to the gold(I) center. A chiral pentafluorophenyl-gold(III) allenyl complex with the gold atoms coordinated to the γ carbon was also prepared. All the complexes have been structurally characterized by X-ray diffraction showing the characteristic distances for a C═C═C unit.

  5. Gold nanoprobes for theranostics

    PubMed Central

    Panchapakesan, Balaji; Book-Newell, Brittany; Sethu, Palaniappan; Rao, Madhusudhana; Irudayaraj, Joseph

    2011-01-01

    Gold nanoprobes have become attractive diagnostic and therapeutic agents in medicine and life sciences research owing to their reproducible synthesis with atomic level precision, unique physical and chemical properties, versatility of their morphologies, flexibility in functionalization, ease of targeting, efficiency in drug delivery and opportunities for multimodal therapy. This review highlights some of the recent advances and the potential for gold nanoprobes in theranostics. PMID:22122586

  6. Gold-bearing skarns

    USGS Publications Warehouse

    Theodore, Ted G.; Orris, Greta J.; Hammerstrom, Jane M.; Bliss, James D.

    1991-01-01

    In recent years, a significant proportion of the mining industry's interest has been centered on discovery of gold deposits; this includes discovery of additional deposits where gold occurs in skarn, such as at Fortitude, Nevada, and at Red Dome, Australia. Under the classification of Au-bearing skarns, we have modeled these and similar gold-rich deposits that have a gold grade of at least 1 g/t and exhibit distinctive skarn mineralogy. Two subtypes, Au-skarns and byproduct Au-skarns, can be recognized on the basis of gold, silver, and base-metal grades, although many other geological factors apparently are still undistinguishable largely because of a lack of detailed studies of the Au-skarns. Median grades and tonnage for 40 Au-skarn deposits are 8.6 g/t Au, 5.0 g/t Ag, and 213,000 t. Median grades and tonnage for 50 byproduct and Au-skarn deposits are 3.7 g/t Au, 37 g/t Ag, and 330,000 t. Gold-bearing skarns are generally calcic exoskarns associated with intense retrograde hydrosilicate alteration. These skarns may contain economic amounts of numerous other commodities (Cu, Fe, Pb, Zn, As, Bi, W, Sb, Co, Cd, and S) as well as gold and silver. Most Au-bearing skarns are found in Paleozoic and Cenozoic orogenic-belt and island-arc settings and are associated with felsic to intermediate intrusive rocks of Paleozoic to Tertiary age. Native gold, electru, pyrite, pyrrhotite, chalcopyrite, arsenopyrite, sphalerite, galena, bismuth minerals, and magnetite or hematite are the most common opaque minerals. Gangue minerals typically include garnet (andradite-grossular), pyroxene (diopside-hedenbergite), wollastonite, chlorite, epidote, quartz, actinolite-tremolite, and (or) calcite.

  7. Metallogeny of gold deposits

    SciTech Connect

    Hutchinson, R.W.

    1985-01-01

    The metallogeny of various gold deposits, particularly their broad temporal and spatial relations, and their relations to other metallic ores, is significant to genetic understanding and also useful in exploration. Archean gold deposits co-exist, both regionally and locally, with certain iron formations, massive base metal and nickel sulfide ores, but these occur generally in differing parts of the host stratigraphic sequences. Gold deposits in marine-eugeosynclinal environments are most important and numerous in Archean rocks. They become increasingly rare in successively younger strata where epithermal deposits in subaerial-continental rocks become important. The hydrothermal systems that formed both were apparently similar; one active in submarine tectonic settings, the other in sub-volcanic continental ones. Gold was apparently first introduced extensively into supracrustal rocks by sub-sea floor hydrothermal processes in Archean time, forming gold-enriched exhalites. These were reworked by metamorphic processes forming epithermal veins in many lode districts, and by sedimentary processes in the Witwatersrand. Epithermal gold deposits were generated where these older, auriferous basement source rocks were affected by younger, plutonic-volcanic-hydrothermal activity.

  8. Getting the Gold Treatment

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Epner Technology, Inc., worked with Goddard Space Center to apply gold coating to the Vegetation Canopy Lidar (VCL) mirror. This partnership resulted in new commercial applications for Epner's LaserGold(R) process in the automotive industry. Previously, the company did not have equipment large enough to handle the plating of the stainless steel panels cost effectively. Seeing a chance to renew this effort, Epner Technology and Goddard entered into an agreement by which NASA would fund the facility needed to do the gold-plating, and Epner Technology would cover all other costs as part of their internal research and development. The VCL mirror project proceeded successfully, fulfilling Goddard's needs and leaving Epner Technology with a new facility to provide LaserGold for the automotive industry. The new capability means increased power savings and improvements in both quality and production time for BMW Manufacturing Corporation of Spartanburg, South Carolina, and Cadillac of Detroit, Michigan, as well as other manufacturers who have implemented Epner Technology's LaserGold process. LaserGold(R) is a registered trademark of Epner Technology, Inc.

  9. Gold in minerals and the composition of native gold

    USGS Publications Warehouse

    Jones, Robert Sprague; Fleischer, Michael

    1969-01-01

    Gold occurs in nature mainly as the metal and as various alloys. It forms complete series of solid solutions with silver, copper, nickel, palladium, and platinum. In association with the platinum metals, gold occurs as free gold as well as in solid solution. The native elements contain the most gold, followed by the sulfide minerals. Several gold tellurides are known, but no gold selenides have been reported, and only one sulfide, the telluride-sulfide mineral nagyagite, is known. The nonmetallic minerals carry the least gold, and the light-colored minerals generally contain less gold than the dark minerals. Some conclusions in the literature are conflicting in regard to the relation of fineness of native gold to its position laterally and vertically within a lode, the nature of the country rocks, and the location and size of nuggets in a streambed, as well as to the variation of fineness within an individual nugget.

  10. Hydroquinone Based Synthesis of Gold Nanorods.

    PubMed

    Picciolini, Silvia; Mehn, Dora; Ojea-Jiménez, Isaac; Gramatica, Furio; Morasso, Carlo

    2016-08-10

    Gold nanorods are an important kind of nanoparticles characterized by peculiar plasmonic properties. Despite their widespread use in nanotechnology, the synthetic methods for the preparation of gold nanorods are still not fully optimized. In this paper we describe a new, highly efficient, two-step protocol based on the use of hydroquinone as a mild reducing agent. Our approach allows the preparation of nanorods with a good control of size and aspect ratio (AR) simply by varying the amount of hexadecyl trimethylammonium bromide (CTAB) and silver ions (Ag(+)) present in the "growth solution". By using this method, it is possible to markedly reduce the amount of CTAB, an expensive and cytotoxic reagent, necessary to obtain the elongated shape. Gold nanorods with an aspect ratio of about 3 can be obtained in the presence of just 50 mM of CTAB (versus 100 mM used in the standard protocol based on the use of ascorbic acid), while shorter gold nanorods are obtained using a concentration as low as 10 mM.

  11. Hydroquinone Based Synthesis of Gold Nanorods.

    PubMed

    Picciolini, Silvia; Mehn, Dora; Ojea-Jiménez, Isaac; Gramatica, Furio; Morasso, Carlo

    2016-01-01

    Gold nanorods are an important kind of nanoparticles characterized by peculiar plasmonic properties. Despite their widespread use in nanotechnology, the synthetic methods for the preparation of gold nanorods are still not fully optimized. In this paper we describe a new, highly efficient, two-step protocol based on the use of hydroquinone as a mild reducing agent. Our approach allows the preparation of nanorods with a good control of size and aspect ratio (AR) simply by varying the amount of hexadecyl trimethylammonium bromide (CTAB) and silver ions (Ag(+)) present in the "growth solution". By using this method, it is possible to markedly reduce the amount of CTAB, an expensive and cytotoxic reagent, necessary to obtain the elongated shape. Gold nanorods with an aspect ratio of about 3 can be obtained in the presence of just 50 mM of CTAB (versus 100 mM used in the standard protocol based on the use of ascorbic acid), while shorter gold nanorods are obtained using a concentration as low as 10 mM. PMID:27585238

  12. Reprotoxicity of gold, silver, and gold-silver alloy nanoparticles on mammalian gametes.

    PubMed

    Tiedemann, Daniela; Taylor, Ulrike; Rehbock, Christoph; Jakobi, Jurij; Klein, Sabine; Kues, Wilfried A; Barcikowski, Stephan; Rath, Detlef

    2014-03-01

    Metal and alloy nanoparticles are increasingly developed for biomedical applications, while a firm understanding of their biocompatibility is still missing. Various properties have been reported to influence the toxic potential of nanoparticles. This study aimed to assess the impact of nanoparticle size, surface ligands and chemical composition of gold, silver or gold-silver alloy nanoparticles on mammalian gametes. An in vitro assay for porcine gametes was developed, since these are delicate primary cells, for which well-established culture systems exist and functional parameters are defined. During coincubation with oocytes for 46 h neither any of the tested gold nanoparticles nor the gold-silver alloy particles with a silver molar fraction of up to 50% showed any impact on oocyte maturation. Alloy nanoparticles with 80% silver molar fraction and pure silver nanoparticles inhibited cumulus-oocyte maturation. Confocal microscopy revealed a selective uptake of gold nanoparticles by oocytes, while silver and alloy particles mainly accumulated in the cumulus cell layer surrounding the oocyte. Interestingly sperm vitality parameters (motility, membrane integrity and morphology) were not affected by any of the tested nanoparticles. Only sporadic association of nanoparticles with the sperm plasma membrane was found by transmission electron microscopy. In conclusion, mammalian oocytes were sensitive to silver containing nanoparticles. Likely, the delicate process of completing meiosis in maternal gametes features high vulnerability towards nanomaterial derived toxicity. The results imply that released Ag(+)-ions are responsible for the observed toxicity, but the compounding into an alloy seemed to alleviate the toxic effects to a certain extent.

  13. Growth mechanism of anisotropic gold nanocrystals via microwave synthesis: formation of dioleamide by gold nanocatalysis.

    PubMed

    Mohamed, Mona B; AbouZeid, Khaled M; Abdelsayed, Victor; Aljarash, Ahlam A; El-Shall, M Samy

    2010-05-25

    A facile and fast one-pot microwave irradiation method has been developed to prepare different shapes of gold nanoparticles capped with a mixture of oleylamine and oleic acid. The size, shape, and morphology of the nanocrystals could be tailored by varying the ratio of oleylamine to oleic acid, the microwave time, and the concentration of the gold ions. These effects are directly reflected in the surface plasmon resonance properties of the resulting nanocrystals in the visible and near-infrared regions. Pure amine leads to the formation of only spherical particles. Introducing oleic acid increases the growth rate and enhances the formation of anisotropic shapes. Experimental evidence and new insights on the reaction mechanism confirm the formation of dioleamide from the reaction of oleic acid and oleylamine catalyzed by the gold nanocrystals. In the absence of gold nanoparticles, the conventional synthesis of dioleamide requires 12 h of reaction time at 120 degrees C. New insights on the reaction mechanism indicate that excess oleic acid enhances the formation of hexagons and more anisotropic shapes of the gold nanocrystals.

  14. Preparation, characterization, and optical properties of gold, silver, and gold-silver alloy nanoshells having silica cores.

    PubMed

    Kim, Jun-Hyun; Bryan, William W; Lee, T Randall

    2008-10-01

    This report describes the structural and optical properties of a series of spherical shell/core nanoparticles in which the shell is comprised of a thin layer of gold, silver, or gold-silver alloy, and the core is comprised of a monodispersed silica nanoparticle. The silica core particles were prepared using the Stöber method, functionalized with terminal amine groups, and then seeded with small gold nanoparticles (approximately 2 nm in diameter). The gold-seeded silica particles were coated with a layer of gold, silver, or gold-silver alloy via solution-phase reduction of an appropriate metal ion or mixture of metal ions. The size, morphology, and elemental composition of the composite nanoparticles were characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, thermal gravimetric analysis (TGA), dynamic light scattering (DLS), and transmission electron microscopy (TEM). The optical properties of the nanoparticles were analyzed by UV-vis spectroscopy, which showed strong absorptions ranging from 400 nm into the near-IR region, where the position of the plasmon band reflected not only the thickness of the metal shell, but also the nature of the metal comprising the shell. Importantly, the results demonstrate a new strategy for tuning the position of the plasmon resonance without having to vary the core diameter or the shell thickness. PMID:18788760

  15. Plasmonic Gold Decorated MWCNT Nanocomposite for Localized Plasmon Resonance Sensing

    NASA Astrophysics Data System (ADS)

    Ozhikandathil, J.; Badilescu, S.; Packirisamy, M.

    2015-08-01

    The synergism of excellent properties of carbon nanotubes and gold nanoparticles is used in this work for bio-sensing of recombinant bovine growth hormones (rbST) by making Multi Wall Carbon Nanotubes (MWCNT) locally optically responsive by augmenting it optical properties through Localized Surface Plasmon Resonance (LSPR). To this purpose, locally gold nano particles decorated gold-MWCNT composite was synthesized from a suspension of MWCNT bundles and hydrogen chloroauric acid in an aqueous solution, activated ultrasonically and, then, drop-casted on a glass substrate. The slow drying of the drop produces a “coffee ring” pattern that is found to contain gold-MWCNT nanocomposites, accumulated mostly along the perimeter of the ring. The reaction is studied also at low-temperature, in the vacuum chamber of the Scanning Electron Microscope and is accounted for by the local melting processes that facilitate the contact between the bundle of tubes and the gold ions. Biosensing applications of the gold-MWCNT nanocomposite using their LSPR properties are demonstrated for the plasmonic detection of traces of bovine growth hormone. The sensitivity of the hybrid platform which is found to be 1 ng/ml is much better than that measuring with gold nanoparticles alone which is only 25 ng/ml.

  16. Plasmonic Gold Decorated MWCNT Nanocomposite for Localized Plasmon Resonance Sensing.

    PubMed

    Ozhikandathil, J; Badilescu, S; Packirisamy, M

    2015-01-01

    The synergism of excellent properties of carbon nanotubes and gold nanoparticles is used in this work for bio-sensing of recombinant bovine growth hormones (rbST) by making Multi Wall Carbon Nanotubes (MWCNT) locally optically responsive by augmenting it optical properties through Localized Surface Plasmon Resonance (LSPR). To this purpose, locally gold nano particles decorated gold-MWCNT composite was synthesized from a suspension of MWCNT bundles and hydrogen chloroauric acid in an aqueous solution, activated ultrasonically and, then, drop-casted on a glass substrate. The slow drying of the drop produces a "coffee ring" pattern that is found to contain gold-MWCNT nanocomposites, accumulated mostly along the perimeter of the ring. The reaction is studied also at low-temperature, in the vacuum chamber of the Scanning Electron Microscope and is accounted for by the local melting processes that facilitate the contact between the bundle of tubes and the gold ions. Biosensing applications of the gold-MWCNT nanocomposite using their LSPR properties are demonstrated for the plasmonic detection of traces of bovine growth hormone. The sensitivity of the hybrid platform which is found to be 1 ng/ml is much better than that measuring with gold nanoparticles alone which is only 25 ng/ml.

  17. Silver and gold nanoparticles for sensor and antibacterial applications

    NASA Astrophysics Data System (ADS)

    Bindhu, M. R.; Umadevi, M.

    2014-07-01

    Green biogenic method for the synthesis of gold and silver nanoparticles using Solanum lycopersicums extract as reducing agent was studied. The biomolecules present in the extract was responsible for reduction of Au3+ and Ag+ ions from HAuCl4 and AgNO3 respectively. The prepared nanoparticles were characterized by UV-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) technique to identify the size, shape of nanoparticles and biomolecules act as reducing agents. UV-visible spectra show the surface plasmon resonance peak at 546 nm and 445 nm corresponding to gold and silver nanoparticles respectively. Crystalline nature of the nanoparticles was evident from TEM images and XRD analysis. TEM images showed average size of 14 nm and 12 nm for prepared gold and silver nanoparticles respectively. FTIR analysis provides the presence of biomolecules responsible for the reduction and stability of the prepared silver and gold nanoparticles. XRD analysis of the silver and gold nanoparticles confirmed the formation of metallic silver and gold. The prepared gold and silver nanoparticles show good sensing and antimicrobial activity.

  18. Plasmonic Gold Decorated MWCNT Nanocomposite for Localized Plasmon Resonance Sensing.

    PubMed

    Ozhikandathil, J; Badilescu, S; Packirisamy, M

    2015-01-01

    The synergism of excellent properties of carbon nanotubes and gold nanoparticles is used in this work for bio-sensing of recombinant bovine growth hormones (rbST) by making Multi Wall Carbon Nanotubes (MWCNT) locally optically responsive by augmenting it optical properties through Localized Surface Plasmon Resonance (LSPR). To this purpose, locally gold nano particles decorated gold-MWCNT composite was synthesized from a suspension of MWCNT bundles and hydrogen chloroauric acid in an aqueous solution, activated ultrasonically and, then, drop-casted on a glass substrate. The slow drying of the drop produces a "coffee ring" pattern that is found to contain gold-MWCNT nanocomposites, accumulated mostly along the perimeter of the ring. The reaction is studied also at low-temperature, in the vacuum chamber of the Scanning Electron Microscope and is accounted for by the local melting processes that facilitate the contact between the bundle of tubes and the gold ions. Biosensing applications of the gold-MWCNT nanocomposite using their LSPR properties are demonstrated for the plasmonic detection of traces of bovine growth hormone. The sensitivity of the hybrid platform which is found to be 1 ng/ml is much better than that measuring with gold nanoparticles alone which is only 25 ng/ml. PMID:26282187

  19. Silver and gold nanoparticles for sensor and antibacterial applications.

    PubMed

    Bindhu, M R; Umadevi, M

    2014-07-15

    Green biogenic method for the synthesis of gold and silver nanoparticles using Solanum lycopersicums extract as reducing agent was studied. The biomolecules present in the extract was responsible for reduction of Au(3+) and Ag(+) ions from HAuCl4 and AgNO3 respectively. The prepared nanoparticles were characterized by UV-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) technique to identify the size, shape of nanoparticles and biomolecules act as reducing agents. UV-visible spectra show the surface plasmon resonance peak at 546 nm and 445 nm corresponding to gold and silver nanoparticles respectively. Crystalline nature of the nanoparticles was evident from TEM images and XRD analysis. TEM images showed average size of 14 nm and 12 nm for prepared gold and silver nanoparticles respectively. FTIR analysis provides the presence of biomolecules responsible for the reduction and stability of the prepared silver and gold nanoparticles. XRD analysis of the silver and gold nanoparticles confirmed the formation of metallic silver and gold. The prepared gold and silver nanoparticles show good sensing and antimicrobial activity. PMID:24657466

  20. Electrical bending actuation of gold-films with nanotextured surfaces

    NASA Astrophysics Data System (ADS)

    Kwan, K. W.; Gao, P.; Martin, C. R.; Ngan, A. H. W.

    2015-01-01

    An actuating material system comprising a gold-film with nanotextured surface was fabricated. Using electroless gold plating onto a substrate of porous anodized aluminum oxide, a thin film of gold with a high density of short gold nanofibers on its surface was made. When one end of such a film was connected to an ion generator, bending was achieved upon electrical charging in air. Experiments showed that the free end of an 8 mm film could be displaced by more than 1.6 mm with a bending strain of 0.08%. In contrast with other types of thin-film artificial muscle materials, the present Au-film did not require any electrolyte to function. With the relatively easy fabrication method, this nanotextured film shows promising actuation behavior in air.

  1. Biological synthesis of triangular gold nanoprisms

    NASA Astrophysics Data System (ADS)

    Shankar, S. Shiv; Rai, Akhilesh; Ankamwar, Balaprasad; Singh, Amit; Ahmad, Absar; Sastry, Murali

    2004-07-01

    The optoelectronic and physicochemical properties of nanoscale matter are a strong function of particle size. Nanoparticle shape also contributes significantly to modulating their electronic properties. Several shapes ranging from rods to wires to plates to teardrop structures may be obtained by chemical methods; triangular nanoparticles have been synthesized by using a seeded growth process. Here, we report the discovery that the extract from the lemongrass plant, when reacted with aqueous chloroaurate ions, yields a high percentage of thin, flat, single-crystalline gold nanotriangles. The nanotriangles seem to grow by a process involving rapid reduction, assembly and room-temperature sintering of 'liquid-like' spherical gold nanoparticles. The anisotropy in nanoparticle shape results in large near-infrared absorption by the particles, and highly anisotropic electron transport in films of the nanotriangles.

  2. Biorecovery of gold

    USGS Publications Warehouse

    Eisler, R.

    2003-01-01

    Recovery of ionic and metallic gold (Au) from a wide variety of solutions by selected species of bacteria, yeasts, fungi, algae, and higher plants is documented. Gold accumulations were up to 7.0 g/kg dry weight (DW) in various species of bacteria, 25.0 g/kg DW in freshwater algae, 84.0 g/kg DW in peat, and 100.0 g/kg DW in dried fungus mixed with keratinous material. Mechanisms of accumulation include oxidation, dissolution, reduction, leaching, and sorption. Uptake patterns are significantly modified by the physicochemical milieu. Crab exoskeletons accumulate up to 4.9 g Au/kg DW; however, gold accumulations in various tissues of living teleosts, decapod crustaceans, and bivalve molluscs are negligible.

  3. Convergent Synthesis of 2-Aryl-Substituted Quinolines by Gold-Catalyzed Cascade Reaction.

    PubMed

    Ueda, Hirofumi; Yamaguchi, Minami; Tokuyama, Hidetoshi

    2016-01-01

    Gold-catalyzed auto-tandem catalysis has been developed for synthesizing 2-aryl-substituted quinolines. The reaction of an aniline bearing an acetal moiety with an aryl alkyne proceeded via formal [4+2]-cycloaddition, which involved the addition of gold acetylide to an oxonium ion to give amino alkyne intermediate and sequential 6-endo-dig cyclization of amino alkyne intermediate by attacking of nitrogen to alkyne moiety activated by gold catalyst. The cationic gold catalyst promoted two different processes by enhancing the nucleophilicity and electrophilicity of alkyne. This convergent synthetic methodology enabled the synthesis of a variety of 2-aryl-substituted quinolines. PMID:27373638

  4. Reversible formation of gold nanoparticle-surfactant composite assemblies for the preparation of concentrated colloidal solutions.

    PubMed

    Shalkevich, Natallia; Shalkevich, Andrey; Si-Ahmed, Lynda; Bürgi, Thomas

    2009-11-21

    We have developed a simple method for the preparation of nearly mono-dispersed stable gold colloids with a fairly high concentration using a two step procedure. First we synthesize citrate capped gold nanoparticles and then exchange the citrate ions with triethyleneglycolmono-11-mercaptoundecylether (EGMUDE). This leads to the immediate precipitation and formation of composite assemblies. The gold nanoparticles were successfully self-redispersed after a few days. The prepared gold colloid can be easily concentrated up to 20 times by separation of the flocculated part. UV-visible spectra, transmission electron microscopy (TEM), and dynamic light scattering (DLS) were used to characterize the products thus formed. PMID:19865774

  5. Reversible formation of gold nanoparticle-surfactant composite assemblies for the preparation of concentrated colloidal solutions.

    PubMed

    Shalkevich, Natallia; Shalkevich, Andrey; Si-Ahmed, Lynda; Bürgi, Thomas

    2009-11-21

    We have developed a simple method for the preparation of nearly mono-dispersed stable gold colloids with a fairly high concentration using a two step procedure. First we synthesize citrate capped gold nanoparticles and then exchange the citrate ions with triethyleneglycolmono-11-mercaptoundecylether (EGMUDE). This leads to the immediate precipitation and formation of composite assemblies. The gold nanoparticles were successfully self-redispersed after a few days. The prepared gold colloid can be easily concentrated up to 20 times by separation of the flocculated part. UV-visible spectra, transmission electron microscopy (TEM), and dynamic light scattering (DLS) were used to characterize the products thus formed.

  6. GOLD CLUSTER LABELS AND RELATED TECHNOLOGIES IN MOLECULAR MORPHOLOGY.

    SciTech Connect

    HAINFELD,J.F.; POWELL,R.D.

    2004-02-04

    Although intensely colored, even the largest colloidal gold particles are not, on their own, sufficiently colored for routine use as a light microscopy stain: only with very abundant antigens or with specialized illumination methods can bound gold be seen. Colloidal gold probes were developed primarily as markers for electron microscopy, for which their very high electron density and selectivity for narrow size distributions when prepared in different ways rendered them highly suited. The widespread use of gold labeling for light microscopy was made possible by the introduction of autometallographic enhancement methods. In these processes, the bound gold particles are exposed to a solution containing metal ions and a reducing agent; they catalyze the reduction of the ions, resulting in the deposition of additional metal selectively onto the particles. On the molecular level, the gold particles are enlarged up to 30-100 nm in diameter; on the macroscale level, this results in the formation of a dark stain in regions containing bound gold particles, greatly increasing visibility and contrast. The applications of colloidal gold have been described elsewhere in this chapter, we will focus on the use of covalently linked cluster complexes of gold and other metals. A gold cluster complex is a discrete molecular coordination compound comprising a central core, or ''cluster'' of electron-dense metal atoms, ligated by a shell of small organic molecules (ligands), which are linked to the metal atoms on the surface of the core. This structure gives clusters several important advantages as labels. The capping of the metal surface by ligands prevents non-specific binding to cell and tissue components, which can occur with colloidal gold. Cluster compounds are more stable and may be used under a wider range of conditions. Unlike colloidal gold, clusters do not require additional macromolecules such as bovine serum albumin or polyethylene glycol for stabilization, and the total

  7. Charged hadron distributions in 19.6-GeV gold+gold collisions

    NASA Astrophysics Data System (ADS)

    Picha, Roppon

    Experimental results from a low-energy heavy ion run in year 2001 at the Relativistic Heavy Ion Collider (RHIC) using the Solenoidal Tracker at RHIC (STAR) detector are presented. From the collisions of gold ions at sNN = 19.6 GeV, six species of particles (pi+/-, K+/-, p, and p¯) are identified via energy loss mechanism and their transverse mass spectra are analyzed at midrapidity (|y| < 0.5) and m T - m0 < 1.0 GeV/c 2. Rapidity distributions, particle ratios, and hadronic freeze-out conditions are discussed. This study provides a low energy measurement at RHIC which is very close to that at the SPS for cross comparison between collider experiments and fixed target experiments. The analysis provides a good reference to study excitation functions of strangeness production, net baryon, and collective flow inside heavy ion collisions.

  8. Mössbauer study of gold sorption on polyurethane foams

    NASA Astrophysics Data System (ADS)

    Jay, W. H.; Cashion, J. D.; Brown, L. J.

    1992-04-01

    Gold sorbed onto different types of flexible polyurethane foams from cyanide solution at pH 11 is shown to remain as the Au(CN)2 - ion. At least two different bonding mechanisms occur, with different recoilles fractions, and possible configurations are suggested.

  9. Chemistry for oncotheranostic gold nanoparticles.

    PubMed

    Trouiller, Anne Juliette; Hebié, Seydou; El Bahhaj, Fatima; Napporn, Teko W; Bertrand, Philippe

    2015-06-24

    This review presents in a comprehensive ways the chemical methods used to functionalize gold nanoparticles with focus on anti-cancer applications. The review covers the parameters required for the synthesis gold nanoparticles with defined shapes and sizes, method for targeted delivery in tumours, and selected examples of anti-cancers compounds delivered with gold nanoparticles. A short survey of bioassays for oncology based on gold nanoparticles is also presented.

  10. 16 CFR Appendix to Part 23 - Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate, Silver, and Platinum Industry...—Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate... in any assay for quality of a karat gold industry product include springs, posts, and separable...

  11. 16 CFR Appendix to Part 23 - Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate, Silver, and Platinum Industry...—Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate... in any assay for quality of a karat gold industry product include springs, posts, and separable...

  12. 16 CFR Appendix to Part 23 - Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate, Silver, and Platinum Industry...—Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate... in any assay for quality of a karat gold industry product include springs, posts, and separable...

  13. Derivatized gold clusters and antibody-gold cluster conjugates

    DOEpatents

    Hainfeld, J.F.; Furuya, F.R.

    1994-11-01

    Antibody- or antibody fragment-gold cluster conjugates are shown wherein the conjugate size can be as small as 5.0 nm. Methods and reagents are disclosed in which antibodies, Fab' or F(ab')[sub 2] fragments are covalently bound to a stable cluster of gold atoms. The gold clusters may contain 6, 8, 9, 11, 13, 55 or 67 gold atoms in their inner core. The clusters may also contain radioactive gold. The antibody-cluster conjugates are useful in electron microscopy applications as well as in clinical applications that include imaging, diagnosis and therapy. 7 figs.

  14. Derivatized gold clusters and antibody-gold cluster conjugates

    DOEpatents

    Hainfeld, James F.; Furuya, Frederic R.

    1994-11-01

    Antibody- or antibody fragment-gold cluster conjugates are shown wherein the conjugate size can be as small as 5.0 nm. Methods and reagents are disclosed in which antibodies, Fab' or F(ab').sub.2 fragments thereof are covalently bound to a stable cluster of gold atoms. The gold clusters may contain 6, 8, 9, 11, 13, 55 or 67 gold atoms in their inner core. The clusters may also contain radioactive gold. The antibody-cluster conjugates are useful in electron microscopy applications as well as in clinical applications that include imaging, diagnosis and therapy.

  15. Earth's continental crustal gold endowment

    NASA Astrophysics Data System (ADS)

    Frimmel, H. E.

    2008-03-01

    The analysis of the temporal distribution of gold deposits, combined with gold production data as well as reserve and resource estimates for different genetic types of gold deposit, revealed that the bulk of the gold known to be concentrated in ore bodies was added to the continental crust during a giant Mesoarchaean gold event at a time (3 Ga) when the mantle temperature reached a maximum and the dominant style of tectonic movement changed from vertical, plume-related to subhorizontal plate tectonic. A magmatic derivation of the first generation of crustal gold from a relatively hot mantle that was characterized by a high degree of partial melting is inferred from the gold chemistry, specifically high Os contents. While a large proportion of that gold is still present in only marginally modified palaeoplacer deposits of the Mesoarchaean Witwatersrand Basin in South Africa, accounting for about 40% of all known gold, the remainder has been recycled repeatedly on a lithospheric scale, predominantly by plate-tectonically induced magmatic and hydrothermal fluid circulation, to produce the current variety of gold deposit types. Post-Archaean juvenile gold addition to the continental crust has been limited, but a mantle contribution to some of the largest orogenic or intrusion-related gold deposits is indicated, notably for the Late Palaeozoic Tien Shan gold province. Magmatic fluids in active plate margins seem to be the most effective transport medium for gold mobilization, giving rise to a large proportion of volcanic-arc related gold deposits. Due to their generally shallow crustal level of formation, they have a low preservation potential. In contrast, those gold deposits that form at greater depth are more widespread also in older rocks. This explains the high proportion of orogenic (including intrusion-related) gold (32%) amongst all known gold deposits. The overall proportion of gold concentrated in known ore bodies is only 7 × 10- 7 of the estimated total

  16. Chemically functionalized gold nanoparticles: Synthesis, characterization, and applications

    NASA Astrophysics Data System (ADS)

    Daniel, Weston Lewis

    This thesis focuses on the development and application of gold nanoparticle based detection systems and biomimetic structures. Each class of modified nanoparticle has properties that are defined by its chemical moieties that interface with solution and the gold nanoparticle core. In Chapter 2, a comparison of the biomolecular composition and binding properties of various preparations of antibody oligonucleotide gold nanoparticle conjugates is presented. These constructs differed significantly in terms of their structure and binding properties. Chapter 3 reports the use of electroless gold deposition as a light scattering signal enhancer in a multiplexed, microarray-based scanometric immunoassay using the gold nanoparticle probes evaluated in Chapter 2. The use of gold development results in greater signal enhancement than the typical silver development, and multiple rounds of metal development were found to increase the resulting signal compared to one development. Chapter 4 describes an amplified scanometric detection method for human telomerase activity. Gold nanoparticles functionalized with specific oligonucleotide sequences can efficiently capture telomerase enzymes and subsequently be elongated. Both the elongated and unmodified oligonucleotide sequences are simultaneously measured. At low telomerase concentrations, elongated strands cannot be detected, but the unmodified sequences, which come from the same probe particles, can be detected because their concentration is higher, providing a novel form of amplification. Chapter 5 reports the development of a novel colorimetric nitrite and nitrate ion assay based upon gold nanoparticle probes functionalized with Griess reaction reagents. This assay takes advantage of the distance-dependent plasmonic properties of the gold nanoparticles and the ability of nitrite ion to facilitate the cross coupling of novel nanoparticle probes. The assay works on the concept of a kinetic end point and can be triggered at the EPA

  17. Controlling the Shape and Crystallinity of Gold and Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Personick, Michelle Louise

    The strong dependence of the optical, electronic, and catalytic properties of noble metal nanoparticles on their shape has necessitated the high-yield synthesis of gold and silver nanostructures with precisely defined morphologies. This directed synthesis requires a detailed mechanistic understanding of the chemical and physical factors which control nanoparticle shape; however, these mechanistic explanations are still incomplete. To this end, the work of this dissertation seeks to enhance the understanding of nanoparticle growth on a mechanistic level, while also developing synthetic methods for producing novel nanoparticle shapes. Chapter 1 describes the state of the art in shape-controlled noble metal nanoparticle synthesis prior to the work conducted in this dissertation. In Chapter 2, a method is reported for synthesizing {110}-faceted bipyramids and rhombic dodecahedra, in which the combination of a chloride-containing surfactant and a low concentration of silver ions leads to the stabilization of the {110} facets. Chapter 3 explores in mechanistic detail the use of silver underpotential deposition to control particle growth in the synthesis of four gold nanoparticle shapes: octahedra, rhombic dodecahedra, truncated ditetragonal prisms, and concave cubes. This mechanistic understanding is expanded in Chapter 4, where the independent and synergistic roles of silver ions and halide ions in the seed-mediated synthesis of gold nanoparticles are systematically probed, culminating in a set of design considerations for controlling the shape of gold nanoparticles. Chapter 5 investigates the role of excitation wavelength in controlling the rate of silver ion reduction in the plasmon-mediated synthesis of silver nanoparticles and describes the synthesis of silver cubes with an unusual twinning structure. Finally, Chapter 6 combines the mechanistic insights gained in Chapters 2-5 to address a standing challenge in shape-controlled gold nanoparticle synthesis: the direct

  18. Study of chemical processes involved in silver staining of gold nanostructures by Raman scattering.

    PubMed

    Ji, Xiaohui; Yang, Wensheng

    2016-05-14

    Strong Raman enhancement contributed by "hot spots" in directly fused gold dimers offer a selective and sensitive tool for understanding the surface processes involved in the silver staining of gold nanostructures. These processes include the interactions of cations, effects of surface adsorbed Cl(-) ions, surface replacement of ligands, and reduction of silver ions on the surface of the gold nanocrystals. Results show that in the commonly applied silver staining scheme for gold nanostructures, i.e., the addition of the Raman probe after the deposition of the silver shell, the Raman signals of the probe (p-mercaptobenzoic acid) were weakened greatly, due to the pre-existence of the Cl(-)-Ag(+)-citrate bridges on the surface of the gold. A new scheme was developed for silver deposition after pre-adsorption of the probe, which achieved a Raman enhancement factor as high as ∼5 × 10(8). PMID:27103376

  19. Gold and silver nanoparticles from Trianthema decandra: synthesis, characterization, and antimicrobial properties

    PubMed Central

    Geethalakshmi, R; Sarada, DVL

    2012-01-01

    Background There is an increasing commercial demand for nanoparticles due to their wide applicability in various markets, including medicine, catalysis, electronics, chemistry, and energy. In this report, a simple and ecofriendly chemical reaction for the synthesis of gold and silver nanoparticles from Trianthema decandra (Aizoaceae) has been developed. Methods and results On treatment of aqueous solutions containing chloroauric acid or silver nitrate with root extract of T. decandra, stable gold or silver nanoparticles were rapidly formed. The kinetics of reduction of gold and silver ions during the reaction was analyzed by ultraviolet-visible spectroscopy. Field emission-scanning electron microscopy showed formation of gold nanoparticles in various shapes, including spherical, cubical, triangular, and hexagonal, while silver nanoparticles were spherical. The size of the gold nanoparticles was 33–65 nm and that of the silver nanoparticles was 36–74 nm. Energy dispersive x-ray and Fourier transform infrared spectroscopy confirmed the presence of metallic gold and metallic silver in the respective nanoparticles. The antimicrobial properties of the synthesized nanoparticles were analyzed using the Kirby-Bauer method. The results show varied susceptibility of microorganisms to the gold and silver nanoparticles. Conclusion It is believed that phytochemicals present in T. decandra extract reduce the silver and gold ions into metallic nanoparticles. This strategy reduces the cost of production and the environmental impact. The silver and gold nanoparticles formed showed strong activity against all microorganisms tested. PMID:23091381

  20. Digging for Gold

    ERIC Educational Resources Information Center

    Waters, John K.

    2012-01-01

    In the case of higher education, the hills are more like mountains of data that "we're accumulating at a ferocious rate," according to Gerry McCartney, CIO of Purdue University (Indiana). "Every higher education institution has this data, but it just sits there like gold in the ground," complains McCartney. Big Data and the new tools people are…

  1. 'Cascade Gold' raspberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Cascade Gold’ is a new gold fruited, floricane fruiting raspberry cultivar (Rubus idaeus L.) jointly released by Washington State University (WSU), Oregon State University (OSU) and the U.S. Department of Agriculture (USDA). It has been evaluated at Puyallup, Wash. in plantings from 1988 to 2008. ...

  2. GOLD PRESSURE VESSEL SEAL

    DOEpatents

    Smith, A.E.

    1963-11-26

    An improved seal between the piston and die member of a piston-cylinder type pressure vessel is presented. A layer of gold, of sufficient thickness to provide an interference fit between the piston and die member, is plated on the contacting surface of at least one of the members. (AEC)

  3. Biosynthesis of anisotropic gold nanoparticles using Maduca longifolia extract and their potential in infrared absorption.

    PubMed

    Fayaz, A Mohammed; Girilal, M; Venkatesan, R; Kalaichelvan, P T

    2011-11-01

    Metal nanoparticles, in general, and gold nanoparticles, in particular, are very attractive because of their size- and shape-dependent properties. Biosynthesis of anisotropic gold nanoparticles using aqueous extract of Madhuca longifolia and their potential as IR blockers has been demonstrated. The tyrosine residue was identified as the active functional group for gold ion reduction. These gold nanoparticles were characterized by of UV-Vis spectrophotometer, FTIR, TEM and HrTEM. The presence of proteins was identified by FTIR, SDS-PAGE, UV-Vis and fluorescence spectroscopy. The micrograph revealed the formation of anisotropic gold nanoaprticles. The biologically synthesized gold nanotriangles can be easily coated in the glass windows which are highly efficient in absorbing IR radiations.

  4. Study of chemical processes involved in silver staining of gold nanostructures by Raman scattering

    NASA Astrophysics Data System (ADS)

    Ji, Xiaohui; Yang, Wensheng

    2016-05-01

    Strong Raman enhancement contributed by ``hot spots'' in directly fused gold dimers offer a selective and sensitive tool for understanding the surface processes involved in the silver staining of gold nanostructures. These processes include the interactions of cations, effects of surface adsorbed Cl- ions, surface replacement of ligands, and reduction of silver ions on the surface of the gold nanocrystals. Results show that in the commonly applied silver staining scheme for gold nanostructures, i.e., the addition of the Raman probe after the deposition of the silver shell, the Raman signals of the probe (p-mercaptobenzoic acid) were weakened greatly, due to the pre-existence of the Cl--Ag+-citrate bridges on the surface of the gold. A new scheme was developed for silver deposition after pre-adsorption of the probe, which achieved a Raman enhancement factor as high as ~5 × 108.Strong Raman enhancement contributed by ``hot spots'' in directly fused gold dimers offer a selective and sensitive tool for understanding the surface processes involved in the silver staining of gold nanostructures. These processes include the interactions of cations, effects of surface adsorbed Cl- ions, surface replacement of ligands, and reduction of silver ions on the surface of the gold nanocrystals. Results show that in the commonly applied silver staining scheme for gold nanostructures, i.e., the addition of the Raman probe after the deposition of the silver shell, the Raman signals of the probe (p-mercaptobenzoic acid) were weakened greatly, due to the pre-existence of the Cl--Ag+-citrate bridges on the surface of the gold. A new scheme was developed for silver deposition after pre-adsorption of the probe, which achieved a Raman enhancement factor as high as ~5 × 108. Electronic supplementary information (ESI) available: Fig. S1-S3. See DOI: 10.1039/c6nr01208f

  5. Assessment of modified gold surfaced titanium implants on skeletal fixation.

    PubMed

    Zainali, Kasra; Danscher, Gorm; Jakobsen, Thomas; Baas, Jorgen; Møller, Per; Bechtold, Joan E; Soballe, Kjeld

    2013-01-01

    Noncemented implants are the primary choice for younger patients undergoing total hip replacements. However, the major concern in this group of patients regarding revision is the concern from wear particles, periimplant inflammation, and subsequently aseptic implant loosening. Macrophages have been shown to liberate gold ions through the process termed dissolucytosis. Furthermore, gold ions are known to act in an anti-inflammatory manner by inhibiting cellular NF-κB-DNA binding. The present study investigated whether partial coating of titanium implants could augment early osseointegration and increase mechanical fixation. Cylindrical porous coated Ti-6Al-4V implants partially coated with metallic gold were inserted in the proximal region of the humerus in ten canines and control implants without gold were inserted in contralateral humerus. Observation time was 4 weeks. Biomechanical push out tests and stereological histomorphometrical analyses showed no statistically significant differences in the two groups. The unchanged parameters are considered an improvement of the coating properties, as a previous complete gold-coated implant showed inferior mechanical fixation and reduced osseointegration compared to control titanium implants in a similar model. Since sufficient early mechanical fixation is achieved with this new coating, it is reasonable to investigate the implant further in long-term studies. PMID:22847873

  6. Spectroscopic study of gold nanoparticle formation through high intensity laser irradiation of solution

    SciTech Connect

    Nakamura, Takahiro Sato, Shunichi; Herbani, Yuliati; Ursescu, Daniel; Banici, Romeo; Dabu, Razvan Victor

    2013-08-15

    A spectroscopic study of the gold nanoparticle (NP) formation by high-intensity femtosecond laser irradiation of a gold ion solution was reported. The effect of varying energy density of the laser on the formation of gold NPs was also investigated. The surface plasmon resonance (SPR) peak of the gold nanocolloid in real-time UV-visible absorption spectra during laser irradiation showed a distinctive progress; the SPR absorption peak intensity increased after a certain irradiation time, reached a maximum and then gradually decreased. During this absorption variation, at the same time, the peak wavelength changed from 530 to 507 nm. According to an empirical equation derived from a large volume of experimental data, the estimated mean size of the gold NPs varied from 43.4 to 3.2 nm during the laser irradiation. The mean size of gold NPs formed at specific irradiation times by transmission electron microscopy showed the similar trend as that obtained in the spectroscopic analysis. From these observations, the formation mechanism of gold NPs during laser irradiation was considered to have two steps. The first is a reduction of gold ions by reactive species produced through a non-linear reaction during high intensity laser irradiation of the solution; the second is the laser fragmentation of produced gold particles into smaller pieces. The gold nanocolloid produced after the fragmentation by excess irradiation showed high stability for at least a week without the addition of any dispersant because of the negative charge on the surface of the nanoparticles probably due to the surface oxidation of gold nanoparticles. A higher laser intensity resulted in a higher efficiency of gold NPs fabrication, which was attributed to a larger effective volume of the reaction.

  7. Gold Nanoparticles Cytotoxicity

    NASA Astrophysics Data System (ADS)

    Mironava, Tatsiana

    Over the last two decades gold nanoparticles (AuNPs) have been used for many scientific applications and have attracted attention due to the specific chemical, electronic and optical size dependent properties that make them very promising agents in many fields such as medicine, imagine techniques and electronics. More specifically, biocompatible gold nanoparticles have a huge potential for use as the contrast augmentation agent in X-ray Computed Tomography and Photo Acoustic Tomography for early tumor diagnostic as well these nanoparticles are extensively researched for enhancing the targeted cancer treatment effectiveness such as photo-thermal and radiotherapy. In most biomedical applications biocompatible gold nanoparticles are labeled with specific tumor or other pathology targeting antibodies and used for site specific drug delivery. However, even though gold nanoparticles poses very high level of anti cancer properties, the question of their cytotoxicity ones they are released in normal tissue has to be researched. Moreover, the huge amount of industrially produced gold nanoparticles raises the question of these particles being a health hazard, since the penetration is fairly easy for the "nano" size substances. This study focuses on the effect of AuNPs on a human skin tissue, since it is fall in both categories -- the side effects for biomedical applications and industrial workers and users' exposure during production and handling. Therefore, in the present project, gold nanoparticles stabilized with the biocompatible agent citric acid were generated and characterized by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). The cytotoxic effect of AuNPs release to healthy skin tissue was modeled on 3 different cell types: human keratinocytes, human dermal fibroblasts, and human adipose derived stromal (ADS) cells. The AuNPs localization inside the cell was found to be cell type dependent. Overall cytotoxicity was found to be dependent

  8. Toxic effects of gold nanoparticles on Salmonella typhimurium bacteria

    PubMed Central

    Wang, Shuguang; Lawson, Rasheeda; Ray, Paresh C; Yu, Hongtao

    2013-01-01

    Nanometer-sized gold, due to its beautiful and bountiful color and unique optical properties, is a versatile material for many industrial and societal applications. We have studied the effect of gold nanoparticles on Salmonella typhimurium strain TA 102. The gold nanoparticles in solution prepared using the citrate reduction method is found not to be toxic or mutagenic but photomutagenic to the bacteria; however, careful control experiments indicate that the photomutagenicity is due to the co-existing citrate and Au3+ ions, not due to the gold nanoparticle itself. Au3+ is also found to be photomutagenic to the bacteria at concentrations lower than 1 µM, but toxic at higher concentrations. The toxicity of Au3+ is enhanced by light irradiation. The photomutagenicity of both citrate and Au3+ is likely due to the formation of free radicals, as a result of light-induced citrate decarboxylation or Au3+ oxidation of co-existing molecules. Both processes can generate free radicals that may cause DNA damage and mutation. Studies of the interaction of gold nanoparticles with the bacteria indicate that gold nanoparticles can be absorbed onto the bacteria surface but not able to penetrate the bacteria wall to enter the bacteria. PMID:21415096

  9. Bio-mediated synthesis, characterization and cytotoxicity of gold nanoparticles.

    PubMed

    Klekotko, Magdalena; Matczyszyn, Katarzyna; Siednienko, Jakub; Olesiak-Banska, Joanna; Pawlik, Krzysztof; Samoc, Marek

    2015-11-21

    We report here a "green" approach for the synthesis of gold nanoparticles (GNPs) in which the Mentha piperita extract was applied for the bioreduction of chloroauric acid and the stabilization of the formed nanostructures. The obtained GNPs were characterized by UV-Vis absorption spectroscopy and transmission electron microscopy (TEM). The reduction of gold ions with the plant extract leads to the production of nanoparticles with various shapes (spherical, triangular and hexagonal) and sizes (from 10 to 300 nm). The kinetics of the reaction was monitored and various conditions of the synthesis were investigated. As a result, we established protocols optimized towards the synthesis of nanospheres and nanoprisms of gold. The cytotoxic effect of the obtained gold nanoparticles was studied by performing MTT assay, which showed lower cytotoxicity of the biosynthesized GNPs compared to gold nanorods synthesized using the usual seed-mediated growth. The results suggest that the synthesis using plant extracts may be a useful method to produce gold nanostructures for various biological and medical applications. PMID:26456245

  10. Bio-mediated synthesis, characterization and cytotoxicity of gold nanoparticles.

    PubMed

    Klekotko, Magdalena; Matczyszyn, Katarzyna; Siednienko, Jakub; Olesiak-Banska, Joanna; Pawlik, Krzysztof; Samoc, Marek

    2015-11-21

    We report here a "green" approach for the synthesis of gold nanoparticles (GNPs) in which the Mentha piperita extract was applied for the bioreduction of chloroauric acid and the stabilization of the formed nanostructures. The obtained GNPs were characterized by UV-Vis absorption spectroscopy and transmission electron microscopy (TEM). The reduction of gold ions with the plant extract leads to the production of nanoparticles with various shapes (spherical, triangular and hexagonal) and sizes (from 10 to 300 nm). The kinetics of the reaction was monitored and various conditions of the synthesis were investigated. As a result, we established protocols optimized towards the synthesis of nanospheres and nanoprisms of gold. The cytotoxic effect of the obtained gold nanoparticles was studied by performing MTT assay, which showed lower cytotoxicity of the biosynthesized GNPs compared to gold nanorods synthesized using the usual seed-mediated growth. The results suggest that the synthesis using plant extracts may be a useful method to produce gold nanostructures for various biological and medical applications.

  11. Folding induced assembly of polypeptide decorated gold nanoparticles.

    PubMed

    Aili, Daniel; Enander, Karin; Rydberg, Johan; Nesterenko, Irina; Björefors, Fredrik; Baltzer, Lars; Liedberg, Bo

    2008-04-30

    Reversible assembly of gold nanoparticles controlled by the homodimerization and folding of an immobilized de novo designed synthetic polypeptide is described. In solution at neutral pH, the polypeptide folds into a helix-loop-helix four-helix bundle in the presence of zinc ions. When immobilized on gold nanoparticles, the addition of zinc ions induces dimerization and folding between peptide monomers located on separate particles, resulting in rapid particle aggregation. The particles can be completely redispersed by removal of the zinc ions from the peptide upon addition of EDTA. Calcium ions, which do not induce folding in solution, have no effect on the stability of the peptide decorated particles. The contribution from folding on particle assembly was further determined utilizing a reference peptide with the same primary sequence but containing both D and L amino acids. Particles functionalized with the reference peptide do not aggregate, as the peptides are unable to fold. The two peptides, linked to the nanoparticle surface via a cysteine residue located in the loop region, form submonolayers on planar gold with comparable properties regarding surface density, orientation, and ability to interact with zinc ions. These results demonstrate that nanoparticle assembly can be induced, controlled, and to some extent tuned, by exploiting specific molecular interactions involved in polypeptide folding. PMID:18380430

  12. Biosynthesis of gold nanoparticles: A green approach.

    PubMed

    Ahmed, Shakeel; Annu; Ikram, Saiqa; Yudha S, Salprima

    2016-08-01

    Nanotechnology is an immensely developing field due to its extensive range of applications in different areas of technology and science. Different types of methods are employed for synthesis of nanoparticles due to their wide applications. The conventional chemical methods have certain limitations with them either in the form of chemical contaminations during their syntheses procedures or in later applications and use of higher energy. During the last decade research have been focussed on developing simple, clean, non-toxic, cost effective and eco-friendly protocols for synthesis of nanoparticles. In order to get this objective, biosynthesis methods have been developed in order to fill this gap. The biosynthesis of nanoparticles is simple, single step, eco-friendly and a green approach. The biochemical processes in biological agents reduce the dissolved metal ions into nano metals. The various biological agents like plant tissues, fungi, bacteria, etc. are used for biosynthesis for metal nanoparticles. In this review article, we summarised recent literature on biosynthesis of gold nanoparticles which have revolutionised technique of synthesis for their applications in different fields. Due to biocompatibility of gold nanoparticles, it has find its applications in biomedical applications. The protocol and mechanism of biosynthesis of gold nanoparticles along with various applications have also been discussed. PMID:27236049

  13. Biosynthesis of gold nanoparticles: A green approach.

    PubMed

    Ahmed, Shakeel; Annu; Ikram, Saiqa; Yudha S, Salprima

    2016-08-01

    Nanotechnology is an immensely developing field due to its extensive range of applications in different areas of technology and science. Different types of methods are employed for synthesis of nanoparticles due to their wide applications. The conventional chemical methods have certain limitations with them either in the form of chemical contaminations during their syntheses procedures or in later applications and use of higher energy. During the last decade research have been focussed on developing simple, clean, non-toxic, cost effective and eco-friendly protocols for synthesis of nanoparticles. In order to get this objective, biosynthesis methods have been developed in order to fill this gap. The biosynthesis of nanoparticles is simple, single step, eco-friendly and a green approach. The biochemical processes in biological agents reduce the dissolved metal ions into nano metals. The various biological agents like plant tissues, fungi, bacteria, etc. are used for biosynthesis for metal nanoparticles. In this review article, we summarised recent literature on biosynthesis of gold nanoparticles which have revolutionised technique of synthesis for their applications in different fields. Due to biocompatibility of gold nanoparticles, it has find its applications in biomedical applications. The protocol and mechanism of biosynthesis of gold nanoparticles along with various applications have also been discussed.

  14. Microbial synthesis of multishaped gold nanostructures.

    PubMed

    Das, Sujoy K; Das, Akhil R; Guha, Arun K

    2010-05-01

    The development of methodologies for the synthesis of nanoparticles of well-defined size and shape is a challenging one and constitutes an important area of research in nanotechnology. This Full Paper describes the controlled synthesis of multishaped gold nanoparticles at room temperature utilizing a simple, green chemical method by the interaction of chloroauric acid (HAuCl4 x 3H20) and cell-free extract of the fungal strain Rhizopus oryzae. The cell-free extract functions as a reducing, shape-directing, as well as stabilizing, agent. Different shapes of gold nanocrystals, for example, triangular, hexagonal, pentagonal, spherical, spheroidal, urchinlike, two-dimensional nanowires, and nanorods, are generated by manipulating key growth parameters, such as gold ion concentration, solution pH, and reaction time. The synthesized nanostructures are characterized by UV/Vis and Fourier-transform infrared spectroscopy, transmission electron microscopy, and energy dispersive X-ray analysis studies. Electron diffraction patterns reveal the crystalline nature of the nanoparticles and a probable mechanism is proposed for the formation of the different structural entities. PMID:20376859

  15. Effect of gold on keV x-ray emission yield from laser produced plasma of gold-copper mix-Z targets

    SciTech Connect

    Arora, V.; Chakera, J. A.; Naik, P. A.; Kumbhare, S. R.; Gupta, P. D.; Gupta, N. K.

    2006-08-01

    The effect of gold on keV x-ray emission from gold-copper (Au-Cu) mix-Z plasma has been experimentally studied. The intensity of the copper L-shell line radiation ({lambda}{approx}7.8-10.9 A) as well as the integrated keV x-ray yield were observed to decrease sharply with increasing atomic fraction of gold in the mix-Z target. The decrease was observed to be by a factor of {approx}2.1 for 0.12 atomic fraction of gold in the Au-Cu mix-Z target with respect to the pure copper target. The results can be explained from physical consideration of the high value of free-bound opacity of gold in the spectral region of the L-shell emission of copper ions and downconversion of the absorbed keV line radiation.

  16. Radioactive gold ring dermatitis

    SciTech Connect

    Miller, R.A.; Aldrich, J.E. )

    1990-08-01

    A superficial squamous cell carcinoma developed in a woman who wore a radioactive gold ring for more than 30 years. Only part of the ring was radioactive. Radiation dose measurements indicated that the dose to basal skin layer was 2.4 Gy (240 rad) per week. If it is assumed that the woman continually wore her wedding ring for 37 years since purchase, she would have received a maximum dose of approximately 4600 Gy.

  17. 'Pot of Gold'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image taken by the panoramic camera on the Mars Exploration Rover Spirit shows the rock dubbed 'Pot of Gold' (upper left), located near the base of the 'Columbia Hills' in Gusev Crater. The rock's nodules and layered appearance have inspired rover team members to investigate the rock's detailed chemistry in coming sols. This picture was taken on sol 158 (June 13, 2004).

  18. Solid phase extraction of gold(III) on Amberlite XAD-2000 prior to its flame atomic absorption spectrometric determination.

    PubMed

    Elci, Latif; Sahan, Derya; Basaran, Aydan; Soylak, Mustafa

    2007-09-01

    A solid phase extraction method for the determination of gold(III) at trace levels by flame atomic absorption spectrometer (FAAS) was developed. The method was based on retention of gold as chloro complexes through the Amberlite XAD-2000. The effect of some analytical parameters including hydrochloric acid concentration, sample volume, sample and eluent flow rates, eluent volume, eluent concentration and interfering ions on the recovery of gold(III) was investigated. The retention of gold(III) from 1.5 mol l(-1) HCl solution and the recovery of gold with 0.07 mol l(-1) NH3 solution were quantitative (>or=95%). The relative standard deviation (RSD) was calculated as 3.2% (n = 10). The detection limit for gold was 2 microg l(-1). The accuracy was checked with the determination of gold spiked an artificial seawater and a pure copper samples.

  19. Solid phase extraction of gold(III) on Amberlite XAD-2000 prior to its flame atomic absorption spectrometric determination.

    PubMed

    Elci, Latif; Sahan, Derya; Basaran, Aydan; Soylak, Mustafa

    2007-09-01

    A solid phase extraction method for the determination of gold(III) at trace levels by flame atomic absorption spectrometer (FAAS) was developed. The method was based on retention of gold as chloro complexes through the Amberlite XAD-2000. The effect of some analytical parameters including hydrochloric acid concentration, sample volume, sample and eluent flow rates, eluent volume, eluent concentration and interfering ions on the recovery of gold(III) was investigated. The retention of gold(III) from 1.5 mol l(-1) HCl solution and the recovery of gold with 0.07 mol l(-1) NH3 solution were quantitative (>or=95%). The relative standard deviation (RSD) was calculated as 3.2% (n = 10). The detection limit for gold was 2 microg l(-1). The accuracy was checked with the determination of gold spiked an artificial seawater and a pure copper samples. PMID:17180414

  20. When gold is not noble: Nanoscale gold catalysts

    SciTech Connect

    Sanchez, A.; Abbet, S.; Heiz, U.; Schneider, W.D.; Haekkinen, H.; Barnett, R.N.; Landman, U.

    1999-12-02

    While inert as bulk material, nanoscale gold particles dispersed on oxide supports exhibit a remarkable catalytic activity. Temperature-programmed reaction studies of the catalyzed combustion of CO on size-selected small monodispersed Au{sub n} (n {le} 20) gold clusters supported on magnesia, and first-principle simulations, reveal the microscopic origins of the observed unusual catalytic activity, with Au{sub 8} found to be the smallest catalytically active size. Partial electron transfer from the surface to the gold cluster and oxygen-vacancy F-center defects are shown to play an essential role in the activation of nanosize gold clusters as catalysts for the combustion reaction.

  1. Annealing Effects on the Surface Plasmon of MgO Implanted with Gold

    NASA Technical Reports Server (NTRS)

    Ueda, A.; Mu, R.; Tung, Y. -S.; Henderson, D. O.; White, C. W.; Zuhr, R. A.; Zhu, Jane G.; Wang, P. W.

    1997-01-01

    Gold ion implantation was carried out with the energy of 1.1 MeV into (100) oriented MgO single crystal. Implanted doses are 1, 3, 6, 10 x 10(exp 16) ions/sq cm. The gold irradiation results in the formation of gold ion implanted layer with a thickness of 0.2 microns and defect formation. In order to form gold colloids from the as-implanted samples, we annealed the gold implanted MgO samples in three kinds of atmospheres: (1)Ar only, (2)H2 and Ar, and (3)O2 and Ar. The annealing over 1200 C enhanced the gold colloid formation which shows surface plasmon resonance band of gold. The surface plasmon bands of samples annealed in three kinds of atmospheres were found to be at 535 nm (Ar only), 524 nm(H2+Ar), and 560 nm (02+Ar), The band positions of surface plasmon can be reversibly changed by an additional annealing.

  2. Quantitation of metal content in the silver-assisted growth of gold nanorods.

    PubMed

    Orendorff, Christopher J; Murphy, Catherine J

    2006-03-01

    The seed-mediated approach to making gold nanorods in aqueous surfactant solutions has become tremendously popular in recent years. Unlike the use of strong chemical reductants to make spherical gold nanoparticles, the growth of gold nanorods requires weak reducing conditions, leading to an unknown degree of gold reduction. The metal content of gold nanorods, made in high yield in the presence of silver ion, is determined by inductively coupled plasma atomic emission spectroscopy. Through the use of the known gold concentration in nanorods, molar extinction coefficients are calculated for nanorods of varying aspect ratios from 2.0 to 4.5. The extinction coefficients at the longitudinal plasmon band peak maxima for these nanorods vary from 2.5x10(9) to 5.5x10(9) M-1 cm-1, respectively, on a per-particle basis. Many of the gold ions present in the growth solution remain unreacted; insights into the growth mechanism of gold nanorods are discussed. PMID:16509687

  3. Setup and performance of RHIC for the 2008 run with deuteron-gold collisions.

    SciTech Connect

    Gardner,C.; Abreu, N.P.; Ahren, L.; Alessi, J.; Bai, M.; et al.

    2008-06-23

    This year (2008) deuterons and gold ions were collided in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) for the first time since 2003. The setup and performance of the collider for the 2008 run is reviewed with a focus on improvements that have led to an order of magnitude increase in luminosity over that achieved in the 2003 run.

  4. Novel solid phase extraction procedure for gold(III) on Dowex M 4195 prior to its flame atomic absorption spectrometric determination.

    PubMed

    Tuzen, Mustafa; Saygi, Kadriye O; Soylak, Mustafa

    2008-08-15

    A method for solid phase extraction (SPE) of gold(III) using Dowex M 4195 chelating resin has been developed. The optimum experimental conditions for the quantitative sorption of gold(III), pH, effect of flow rates, eluent types, sorption capacity and the effect of diverse ions on the sorption of gold(III) have been investigated. The chelating resin can be reused for more than 100 cycles of sorption-desorption without any significant change in sorption of gold(III) ions. The recovery values for gold(III) and detection limit (LOD) of gold were greater than 95% and 1.61 microg L(-1), respectively. The preconcentration factor was 31. The relative standard deviation of the method was <5%. The adsorption capacity of the resin was 8.1 mg g(-1). The proposed method has been applied for the determination of gold(III) in some real samples including water, soil and sediment samples.

  5. Watching single gold nanorods grow.

    PubMed

    Wei, Zhongqing; Qi, Hua; Li, Min; Tang, Bochong; Zhang, Zhengzheng; Han, Ruiling; Wang, Jiaojiao; Zhao, Yuliang

    2012-05-01

    The consecutive evolution process of single gold nanorods is monitored using atomic force microscopy (AFM). The single-crystal gold nanorods investigated are grown directly on surfaces to which gold seed particles are covalently linked. The growth kinetics for single nanorods is derived from the 3D information recorded by AFM. A better understanding of the seed-mediated growth mechanism may ultimately lead to the direct growth of aligned nanorods on surfaces. PMID:22378704

  6. 31 CFR 100.4 - Gold coin and gold certificates in general.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 1 2014-07-01 2014-07-01 false Gold coin and gold certificates in... MONETARY OFFICES, DEPARTMENT OF THE TREASURY EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued...

  7. 31 CFR 100.4 - Gold coin and gold certificates in general.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance: Treasury 1 2012-07-01 2012-07-01 false Gold coin and gold certificates in... MONETARY OFFICES, DEPARTMENT OF THE TREASURY EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued...

  8. 31 CFR 100.4 - Gold coin and gold certificates in general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Gold coin and gold certificates in... EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued before January 30, 1934, are exchangeable, as...

  9. 31 CFR 100.4 - Gold coin and gold certificates in general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance: Treasury 1 2011-07-01 2011-07-01 false Gold coin and gold certificates in... MONETARY OFFICES, DEPARTMENT OF THE TREASURY EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued...

  10. 31 CFR 100.4 - Gold coin and gold certificates in general.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance: Treasury 1 2013-07-01 2013-07-01 false Gold coin and gold certificates in... MONETARY OFFICES, DEPARTMENT OF THE TREASURY EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued...

  11. The extractive metallurgy of gold

    NASA Astrophysics Data System (ADS)

    Kongolo, K.; Mwema, M. D.

    1998-12-01

    Mössbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Mössbauer spectroscopy could be applied.

  12. Surface-stabilized gold nanocatalysts

    DOEpatents

    Dai, Sheng [Knoxville, TN; Yan, Wenfu [Oak Ridge, TN

    2009-12-08

    A surface-stabilized gold nanocatalyst includes a solid support having stabilizing surfaces for supporting gold nanoparticles, and a plurality of gold nanoparticles having an average particle size of less than 8 nm disposed on the stabilizing surfaces. The surface-stabilized gold nanocatalyst provides enhanced stability, such as at high temperature under oxygen containing environments. In one embodiment, the solid support is a multi-layer support comprising at least a first layer having a second layer providing the stabilizing surfaces disposed thereon, the first and second layer being chemically distinct.

  13. Notes on dumping gold beam in the AGS

    SciTech Connect

    Gardner, C.J.; Ahrens, L.; Thieberger, P.

    2010-08-01

    Localized losses of gold beam in the AGS during RHIC Run 8 produced vacuum leaks which required the replacement of several vacuum chambers. A review of what happened and why was given by Leif Ahrens at the Run 8 Retreat. The following notes trace the subsequent development of clean dumping of gold beam on the beam dump in the J10 straight. The novel idea of stripping Au77+ ions in order to put them directly into the upstream face of the dump was introduced by Leif Ahrens and developed by all three of us. George Mahler made the actual stripping device and Dave Gassner developed its control. Leif Ahrens successfully commissioned the device with gold beam during Run 10. The reader may find it helpful to first view the figures herein and then refer to the text for details.

  14. Facile green synthesis of variable metallic gold nanoparticle using Padina gymnospora, a brown marine macroalga

    NASA Astrophysics Data System (ADS)

    Singh, M.; Kalaivani, R.; Manikandan, S.; Sangeetha, N.; Kumaraguru, A. K.

    2013-04-01

    The process of development of reliable and eco-friendly metallic nanoparticles is an important step in the field of nanotechnology. To achieve this, use of natural sources like biological systems becomes essential. In the present work, extracellular biosynthesis of gold nanoparticles using Padina gymnospora has been attempted and achieved rapid formation of gold nanoparticles in a short duration. The UV-vis spectrum of the aqueous medium containing gold ion showed peak at 527 nm corresponding to the plasmon absorbance of gold nanoparticles. Scanning electron microscopy showed the formation of well-dispersed gold nanoparticles. FTIR spectra of brown alga confirmed that hydroxyl groups present in the algal polysaccharides were involved in the gold bioreduction. AFM analysis showed the results of particle sizes (53-67 nm) and average height of the particle roughness (60.0 nm). X-ray diffraction (XRD) spectrum of the gold nanoparticles exhibited Bragg reflections corresponding to gold nanoparticles. This environment-friendly method of biological gold nanoparticle synthesis can be applied potentially in various products that directly come in contact with the human body, such as cosmetics, and foods and consumer goods, besides medical applications.

  15. Mineral resource of the month: gold

    USGS Publications Warehouse

    George, Micheal W.

    2009-01-01

    The article presents information on the valuable mineral called gold. It states that early civilizations valued gold because of its scarcity, durability and characteristics yellow color. By the late 20th century, gold was used as an industrial metal because of its unique physicochemical properties. The U.S. has several productive deposits of gold, including placer, gold-quartz lode, epithermal and Carlin-type gold deposits.

  16. Exploitation of marine bacteria for production of gold nanoparticles

    PubMed Central

    2012-01-01

    Background Gold nanoparticles (AuNPs) have found wide range of applications in electronics, biomedical engineering, and chemistry owing to their exceptional opto-electrical properties. Biological synthesis of gold nanoparticles by using plant extracts and microbes have received profound interest in recent times owing to their potential to produce nanoparticles with varied shape, size and morphology. Marine microorganisms are unique to tolerate high salt concentration and can evade toxicity of different metal ions. However, these marine microbes are not sufficiently explored for their capability of metal nanoparticle synthesis. Although, marine water is one of the richest sources of gold in the nature, however, there is no significant publication regarding utilization of marine micro-organisms to produce gold nanoparticles. Therefore, there might be a possibility of exploring marine bacteria as nanofactories for AuNP biosynthesis. Results In the present study, marine bacteria are exploited towards their capability of gold nanoparticles (AuNPs) production. Stable, monodisperse AuNP formation with around 10 nm dimension occur upon exposure of HAuCl4 solution to whole cells of a novel strain of Marinobacter pelagius, as characterized by polyphasic taxonomy. Nanoparticles synthesized are characterized by Transmission electron microscopy, Dynamic light scattering and UV-visible spectroscopy. Conclusion The potential of marine organisms in biosynthesis of AuNPs are still relatively unexplored. Although, there are few reports of gold nanoparticles production using marine sponges and sea weeds however, there is no report on the production of gold nanoparticles using marine bacteria. The present work highlighted the possibility of using the marine bacterial strain of Marinobacter pelagius to achieve a fast rate of nanoparticles synthesis which may be of high interest for future process development of AuNPs. This is the first report of AuNP synthesis by marine bacteria

  17. When cyclopropenes meet gold catalysts

    PubMed Central

    Miege, Frédéric

    2011-01-01

    Summary Cyclopropenes as substrates entered the field of gold catalysis in 2008 and have proven to be valuable partners in a variety of gold-catalyzed reactions. The different contributions in this growing research area are summarized in this review. PMID:21804867

  18. The Gold at Fort Knox.

    ERIC Educational Resources Information Center

    Wood, William C.

    1994-01-01

    Maintains that, although U.S. currency today is pure fiat money and not backed by gold or any other precious metal, students frequently ask, "But what about the gold at Fort Knox?" Describes what is really located at Fort Knox, why it is there, its implications for public policy. (CFR)

  19. Antibody-gold cluster conjugates

    DOEpatents

    Hainfeld, J.F.

    1988-06-28

    Antibody- or antibody fragment-gold cluster conjugates are shown wherein the conjugate size can be about 5.0 nm. Methods and reagents are disclosed in which antibodies or Fab' fragments thereof are covalently bound to a stable cluster of gold atoms. 2 figs.

  20. Gold-promoted styrene polymerization.

    PubMed

    Urbano, Juan; Hormigo, A Jesús; de Frémont, Pierre; Nolan, Steven P; Díaz-Requejo, M Mar; Pérez, Pedro J

    2008-02-14

    Styrene can be polymerized at room temperature in the presence of equimolar mixtures of the gold(III) complexes (NHC)AuBr3 (NHC = N-heterocyclic carbene ligand) and NaBAr'4, in the first example of a gold-induced olefin polymerization reaction.

  1. Preparation of bicontinuous mesoporous silica and organosilica materials containing gold nanoparticles by co-synthesis method

    SciTech Connect

    Lee, Byunghwan; Zhu, Haoguo; Zhang, Zongtao; Overbury, Steven {Steve} H; Dai, Sheng

    2004-01-01

    Catalytic activities of gold strongly depend on its particle size. It is necessary to have homogeneous distributions of small gold nanoparticles with diameters between 2 and 5 nm for excellent catalytic activities. In this study, gold-containing mesoporous silica materials were prepared by a co-synthesis method. The essence of this sol-gel co-synthesis method is to combine together neutral surfactant template synthesis of mesoporous silica materials with the introduction of metal ions via bifunctional silane ligands, so that the formation of mesostructures and metal-ion doping occur simultaneously. The formation of gold nanoparticles with size less than 5 nm inside mesoporous materials (HMS, MSU, and PMO) has been achieved by this co-synthesis sol-gel process. In addition, the effects of post-treatments, such as calcination and reduction, on pore structures and nanoparticle size distributions were also investigated.

  2. Platinum monolayer electrocatalyst on gold nanostructures on silicon for photoelectrochemical hydrogen evolution.

    PubMed

    Kye, Joohong; Shin, Muncheol; Lim, Bora; Jang, Jae-Won; Oh, Ilwhan; Hwang, Seongpil

    2013-07-23

    Pt monolayer decorated gold nanostructured film on planar p-type silicon is utilized for photoelectrochemical H2 generation in this work. First, gold nanostructured film on silicon was spontaneously produced by galvanic displacement of the reduction of gold ion and the oxidation of silicon in the presence of fluoride anion. Second, underpotential deposition (UPD) of copper under illumination produced Cu monolayer on gold nanostructured film followed by galvanic exchange of less-noble Cu monolayer with more-noble PtCl6(2-). Pt(shell)/Au(core) on p-type silicon showed the similar activity with platinum nanoparticle on silicon for photoelectrochemical hydrogen evolution reaction in spite of low platinum loading. From Tafel analysis, Pt(shell)/Au(core) electrocatalyst shows the higher area-specific activity than platinum nanoparticle on silicon demonstrating the significant role of underlying gold for charge transfer reaction from silicon to H(+) through platinum catalyst. PMID:23750804

  3. Sulfur radical species form gold deposits on Earth.

    PubMed

    Pokrovski, Gleb S; Kokh, Maria A; Guillaume, Damien; Borisova, Anastassia Y; Gisquet, Pascal; Hazemann, Jean-Louis; Lahera, Eric; Del Net, William; Proux, Olivier; Testemale, Denis; Haigis, Volker; Jonchière, Romain; Seitsonen, Ari P; Ferlat, Guillaume; Vuilleumier, Rodolphe; Saitta, Antonino Marco; Boiron, Marie-Christine; Dubessy, Jean

    2015-11-01

    Current models of the formation and distribution of gold deposits on Earth are based on the long-standing paradigm that hydrogen sulfide and chloride are the ligands responsible for gold mobilization and precipitation by fluids across the lithosphere. Here we challenge this view by demonstrating, using in situ X-ray absorption spectroscopy and solubility measurements, coupled with molecular dynamics and thermodynamic simulations, that sulfur radical species, such as the trisulfur ion S3(-), form very stable and soluble complexes with Au(+) in aqueous solution at elevated temperatures (>250 °C) and pressures (>100 bar). These species enable extraction, transport, and focused precipitation of gold by sulfur-rich fluids 10-100 times more efficiently than sulfide and chloride only. As a result, S3(-) exerts an important control on the source, concentration, and distribution of gold in its major economic deposits from magmatic, hydrothermal, and metamorphic settings. The growth and decay of S3(-) during the fluid generation and evolution is one of the key factors that determine the fate of gold in the lithosphere.

  4. Sulfur radical species form gold deposits on Earth.

    PubMed

    Pokrovski, Gleb S; Kokh, Maria A; Guillaume, Damien; Borisova, Anastassia Y; Gisquet, Pascal; Hazemann, Jean-Louis; Lahera, Eric; Del Net, William; Proux, Olivier; Testemale, Denis; Haigis, Volker; Jonchière, Romain; Seitsonen, Ari P; Ferlat, Guillaume; Vuilleumier, Rodolphe; Saitta, Antonino Marco; Boiron, Marie-Christine; Dubessy, Jean

    2015-11-01

    Current models of the formation and distribution of gold deposits on Earth are based on the long-standing paradigm that hydrogen sulfide and chloride are the ligands responsible for gold mobilization and precipitation by fluids across the lithosphere. Here we challenge this view by demonstrating, using in situ X-ray absorption spectroscopy and solubility measurements, coupled with molecular dynamics and thermodynamic simulations, that sulfur radical species, such as the trisulfur ion S3(-), form very stable and soluble complexes with Au(+) in aqueous solution at elevated temperatures (>250 °C) and pressures (>100 bar). These species enable extraction, transport, and focused precipitation of gold by sulfur-rich fluids 10-100 times more efficiently than sulfide and chloride only. As a result, S3(-) exerts an important control on the source, concentration, and distribution of gold in its major economic deposits from magmatic, hydrothermal, and metamorphic settings. The growth and decay of S3(-) during the fluid generation and evolution is one of the key factors that determine the fate of gold in the lithosphere. PMID:26460040

  5. Nanostructured gold microelectrodes for extracellular recording from electrogenic cells

    NASA Astrophysics Data System (ADS)

    Brüggemann, D.; Wolfrum, B.; Maybeck, V.; Mourzina, Y.; Jansen, M.; Offenhäusser, A.

    2011-07-01

    We present a new biocompatible nanostructured microelectrode array for extracellular signal recording from electrogenic cells. Microfabrication techniques were combined with a template-assisted approach using nanoporous aluminum oxide to develop gold nanopillar electrodes. The nanopillars were approximately 300-400 nm high and had a diameter of 60 nm. Thus, they yielded a higher surface area of the electrodes resulting in a decreased impedance compared to planar electrodes. The interaction between the large-scale gold nanopillar arrays and cardiac muscle cells (HL-1) was investigated via focused ion beam milling. In the resulting cross-sections we observed a tight coupling between the HL-1 cells and the gold nanostructures. However, the cell membranes did not bend into the cleft between adjacent nanopillars due to the high pillar density. We performed extracellular potential recordings from HL-1 cells with the nanostructured microelectrode arrays. The maximal amplitudes recorded with the nanopillar electrodes were up to 100% higher than those recorded with planar gold electrodes. Increasing the aspect ratio of the gold nanopillars and changing the geometrical layout can further enhance the signal quality in the future.

  6. Anticancer Gold(III) Porphyrins Target Mitochondrial Chaperone Hsp60.

    PubMed

    Hu, Di; Liu, Yungen; Lai, Yau-Tsz; Tong, Ka-Chung; Fung, Yi-Man; Lok, Chun-Nam; Che, Chi-Ming

    2016-01-22

    Identification of the molecular target(s) of anticancer metal complexes is a formidable challenge since most of them are unstable toward ligand exchange reaction(s) or biological reduction under physiological conditions. Gold(III) meso-tetraphenylporphyrin (gold-1 a) is notable for its high stability in biological milieux and potent in vitro and in vivo anticancer activities. Herein, extensive chemical biology approaches employing photo-affinity labeling, click chemistry, chemical proteomics, cellular thermal shift, saturation-transfer difference NMR, protein fluorescence quenching, and protein chaperone assays were used to provide compelling evidence that heat-shock protein 60 (Hsp60), a mitochondrial chaperone and potential anticancer target, is a direct target of gold-1 a in vitro and in cells. Structure-activity studies with a panel of non-porphyrin gold(III) complexes and other metalloporphyrins revealed that Hsp60 inhibition is specifically dependent on both the gold(III) ion and the porphyrin ligand.

  7. Sulfur radical species form gold deposits on Earth

    PubMed Central

    Pokrovski, Gleb S.; Kokh, Maria A.; Guillaume, Damien; Borisova, Anastassia Y.; Gisquet, Pascal; Hazemann, Jean-Louis; Lahera, Eric; Del Net, William; Proux, Olivier; Testemale, Denis; Haigis, Volker; Jonchière, Romain; Seitsonen, Ari P.; Ferlat, Guillaume; Vuilleumier, Rodolphe; Saitta, Antonino Marco; Boiron, Marie-Christine; Dubessy, Jean

    2015-01-01

    Current models of the formation and distribution of gold deposits on Earth are based on the long-standing paradigm that hydrogen sulfide and chloride are the ligands responsible for gold mobilization and precipitation by fluids across the lithosphere. Here we challenge this view by demonstrating, using in situ X-ray absorption spectroscopy and solubility measurements, coupled with molecular dynamics and thermodynamic simulations, that sulfur radical species, such as the trisulfur ion S3−, form very stable and soluble complexes with Au+ in aqueous solution at elevated temperatures (>250 °C) and pressures (>100 bar). These species enable extraction, transport, and focused precipitation of gold by sulfur-rich fluids 10–100 times more efficiently than sulfide and chloride only. As a result, S3− exerts an important control on the source, concentration, and distribution of gold in its major economic deposits from magmatic, hydrothermal, and metamorphic settings. The growth and decay of S3− during the fluid generation and evolution is one of the key factors that determine the fate of gold in the lithosphere. PMID:26460040

  8. Gold recovery from organic solvents using galvanic stripping

    SciTech Connect

    Flores, C.; O`Keefe, T.J.

    1995-08-01

    A novel process using solid metals for the direct reduction of more noble metal ions from solvent extraction organics has been developed. Base metals recovery has been the principal focus of investigations to date but feasibility tests have now also been made on galvanically stripping selected precious metals. In this study gold (III) was loaded from an aqueous HAuCl{sub 4}{center_dot}3H{sub 2}O solution into a mixed organic 40 vol.% TBP, 10 vol.% D2EHPA in kerosene. The direct precipitation of metallic gold from the loaded organic phase using zinc powder and iron, aluminum and copper slabs at 70 C was successfully demonstrated. The gold reduction rates were relatively fast even though the conductivity of the organic solutions is very low. The reaction rates were studied as a function of the variables zinc particulate size, oxygen and nitrogen atmosphere, water content in the organic phase, organic ratios and temperature. The gold morphology was usually powdery or dendritic in nature but continuous films were obtained in some instances. Activation energies were calculated and possible reaction mechanisms are discussed. In general, the results obtained were very promising and showed that gold can be successfully cemented from selected organic solvents by galvanic stripping using less noble solid metal reductants.

  9. The adjuvanticity of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Dykman, Lev A.; Bogatyrev, Vladimir A.; Staroverov, Sergey A.; Pristensky, Dmitry V.; Shchyogolev, Sergey Yu.; Khlebtsov, Nikolai G.

    2006-06-01

    A new variant of a technique for in vivo production of antibodies to various antigens with colloidal-gold nanoparticles as carrier is discussed. With this technique we obtained highly specific and relatively high-titre antibodies to different antigens. The antibodies were tested by an immunodot assay with gold nanoparticle markers. Our results provide the first demonstration that immunization of animals with colloidal gold complexed with either haptens or complete antigens gives rise to highly specific antibodies even without the use of complete Freund's adjuvant. These findings may attest to the adjuvanticity of gold nanoparticles itself. We provide also experimental results and discussion aimed at elucidation of possible mechanisms of the discovered colloidal-gold-adjuvanticity effect.

  10. Gold electrodes from recordable CDs

    PubMed

    Angnes; Richter; Augelli; Kume

    2000-11-01

    Gold electrodes are widely used in electrochemistry and electroanalytical chemistry. The notable performance when used in stripping analysis of many ionic species and the extraordinary affinity of thio compounds for its surface make these electrodes very suitable for many applications. This paper reports a simple and novel way to construct gold electrodes (CDtrodes) using recordable CDs as the gold source. The nanometer thickness of the gold layer of recordable disks (50-100 nm) favors the construction of band nanoelectrodes with areas as small as 10(-6) cm2. The plane surface can be easily used for the construction of conventional-sized gold electrodes for batch or flow injection analysis or even to obtain electrodes as large as 100 cm2. The low price of commercial recordable CDs allows a "one way use". The evaluation and applicability of these electrodes in the form of nanoelectrodes, in batch and associated with flow cells, are illustrated in this paper.

  11. One-dimensional fossil-like γ-Fe2O3@carbon nanostructure: preparation, structural characterization and application as adsorbent for fast and selective recovery of gold ions from aqueous solution

    NASA Astrophysics Data System (ADS)

    Gunawan, Poernomo; Xiao, Wen; Hao Chua, Marcus Wen; Poh-Choo Tan, Cheryl; Ding, Jun; Zhong, Ziyi

    2016-10-01

    One-dimensional (1D) magnetic nanostructures with high thermal stability have important industrial applications, but their fabrication remains a big challenge. Herein we demonstrate a scalable approach for the preparation of stable 1D γ-Fe2O3@carbon, which is also applicable for other metal oxide-core and carbon-shell nanostructures, such as 1D TiO2@carbon. One-dimensional ferric oxyhydroxide (α-FeO(OH)) was initially prepared by a hydrothermal method, followed by carbon coating through hydrothermal treatment of the resulting metal oxide in glucose solution. After calcination in N2 gas at 500 °C and subsequent exposure to air, the initial carbon-coated 1D α-Fe2O3 was converted to 1D γ-Fe2O3@carbon, which was very stable without any observed changes even after 1.5 years of storage under ambient conditions. The materials were then used as adsorbents and found to be highly selective towards Au (III) adsorption, of which the maximum adsorption capacity is about 600 mg Au/g sorbent (1132 mg Au/g carbon). The spent sorbent containing Au after adsorption can be readily collected by applying a magnetic field due to the presence of the magnetic core, and the adsorbed Au particles are subsequently recovered after the combustion and dissolution of the sorbent. This work demonstrates not only a facile approach to the fabrication of robust 1D magnetic materials with a stable carbon shell, but also a possible cyanide-free process for the fast and selective recovery of gold from electronic waste and industrial water.

  12. One-dimensional fossil-like γ-Fe2O3@carbon nanostructure: preparation, structural characterization and application as adsorbent for fast and selective recovery of gold ions from aqueous solution.

    PubMed

    Gunawan, Poernomo; Xiao, Wen; Chua, Marcus Wen Hao; Tan, Cheryl Poh-Choo; Ding, Jun; Zhong, Ziyi

    2016-10-14

    One-dimensional (1D) magnetic nanostructures with high thermal stability have important industrial applications, but their fabrication remains a big challenge. Herein we demonstrate a scalable approach for the preparation of stable 1D γ-Fe2O3@carbon, which is also applicable for other metal oxide-core and carbon-shell nanostructures, such as 1D TiO2@carbon. One-dimensional ferric oxyhydroxide (α-FeO(OH)) was initially prepared by a hydrothermal method, followed by carbon coating through hydrothermal treatment of the resulting metal oxide in glucose solution. After calcination in N2 gas at 500 °C and subsequent exposure to air, the initial carbon-coated 1D α-Fe2O3 was converted to 1D γ-Fe2O3@carbon, which was very stable without any observed changes even after 1.5 years of storage under ambient conditions. The materials were then used as adsorbents and found to be highly selective towards Au (III) adsorption, of which the maximum adsorption capacity is about 600 mg Au/g sorbent (1132 mg Au/g carbon). The spent sorbent containing Au after adsorption can be readily collected by applying a magnetic field due to the presence of the magnetic core, and the adsorbed Au particles are subsequently recovered after the combustion and dissolution of the sorbent. This work demonstrates not only a facile approach to the fabrication of robust 1D magnetic materials with a stable carbon shell, but also a possible cyanide-free process for the fast and selective recovery of gold from electronic waste and industrial water. PMID:27585547

  13. Liquid metal alloy ion source based metal ion injection into a room-temperature electron beam ion source

    SciTech Connect

    Thorn, A.; Ritter, E.; Zschornack, G.; Ullmann, F.; Pilz, W.; Bischoff, L.

    2012-02-15

    We have carried out a series of measurements demonstrating the feasibility of using the Dresden electron beam ion source (EBIS)-A, a table-top sized, permanent magnet technology based electron beam ion source, as a charge breeder. Low charged gold ions from an AuGe liquid metal alloy ion source were injected into the EBIS and re-extracted as highly charged ions, thereby producing charge states as high as Au{sup 60+}. The setup, the charge breeding technique, breeding efficiencies as well as acceptance and emittance studies are presented.

  14. Experimental and theoretical realization of enhanced light scattering spectroscopy of gold nanorods

    SciTech Connect

    Li, Yunbo; Song, Linlin; Qiao, Yisha

    2015-01-12

    Assisted with transmission electron microscopy and extinction spectra, the enhanced light scattering (ELS) experiments were performed with gold nanoparticles. Although both the nanospheres and nanorods can enhance light scattering in study aggregation, the spectral characteristics of gold nanorods is relatively simple compared to that of nanospheres. This will further extend the application range of ELS method to determinate the amounts of inorganic ions in analytical field and investigate on the macromolecular aggregation in polymeric research due to its simplicity, rapidity, and sensitivity.

  15. Different active biomolecules involved in biosynthesis of gold nanoparticles by three fungus species.

    PubMed

    Zhang, Xiaorong; He, Xiaoxiao; Wang, Kemin; Yang, Xiaohai

    2011-04-01

    In this paper, the intracellular gold nanoparticles were biosynthesized using three fungi including Aureobasidium pullulans (A. pullulans), Fusarium sp. and Fusarium oxysporum (F. oxysporum) after immersion the fungal cells in AuCl4- ions solution. UV-vis and FTIR spectrum, and biochemical compositions analysis of Au nano-fungal cells suggested that active biomolecules of reducing sugar of A. pullulans, and proteins in Fusarium sp. and F. oxysporum were tested positive of providing the function of the reduction of AuCI4- ions and the formation of the gold crystals. SDS-PAGE analysis of purified protein from gold nanoparticles synthesized by three fungi showed that three proteins with molecular weight (WM) about 100 kDa, 25 kDa and 19 kDa were in the gold nanoparticles by Fusarium sp. and two proteins with WM about 25 kDa and 19 kDa were in gold nanoparticles of F oxysporum. Further, three purified fungal proteins with WM about 100 kDa, 25 kDa and 19 kDa from gold nanoparticles by Fusarium sp. identified by LC-MS/MS, named plasma membrane ATPase, 3-glucan binding protein and glyceraldehyde-3-phosphate dehydrogenase, respectively. The Au nano-fungal cells ultrathin sections of Fusarium sp. and F. oxysporum showed that the gold nanoparticles mainly produced in intracellular vacuoles of fungal cells. The growth of gold nanoparticles in three fungal cells indicated the reducing sugar led to the gold nanoparticles in spherical morphology and proteins benefited to the gold aggregates.

  16. Three-dimensional atom probe tomography of oxide, anion, and alkanethiolate coatings on gold.

    PubMed

    Zhang, Yi; Hillier, Andrew C

    2010-07-15

    We have used three-dimensional atom probe tomography to analyze several nanometer-thick and monomolecular films on gold surfaces. High-purity gold wire was etched by electropolishing to create a sharp tip suitable for field evaporation with a radius of curvature of <100 nm. The near-surface region of a freshly etched gold tip was examined with the atom probe at subnanometer spatial resolution and with atom-level composition accuracy. A thin contaminant layer, primarily consisting of water and atmospheric gases, was observed on a fresh tip. This sample exhibited crystalline lattice spacings consistent with the interlayer spacing of {200} lattice planes of bulk gold. A thin oxide layer was created on the gold surface via plasma oxidation, and the thickness and composition of this layer was measured. Clear evidence of a nanometer-thick oxide layer was seen coating the gold tip, and the atomic composition of the oxide layer was consistent with the expected stoichiometry for gold oxide. Monomolecular anions layers of Br(-) and I(-) were created via adsorption from aqueous solutions onto the gold. Atom probe data verified the presence of the monomolecular anion layers on the gold surface, with ion density values consistent with literature values. A hexanethiolate monolayer was coated onto the gold tip, and atom probe analysis revealed a thin film whose ion fragments were consistent with the molecular composition of the monolayer and a surface coverage similar to that expected from literature. Details of the various coating compositions and structures are presented, along with discussion of the reconstruction issues associated with properly analyzing these thin-film systems.

  17. Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles.

    PubMed

    Elavazhagan, Tamizhamudu; Arunachalam, Kantha D

    2011-01-01

    We used an aqueous leaf extract of Memecylon edule (Melastomataceae) to synthesize silver and gold nanoparticles. To our knowledge, this is the first report where M. edule leaf broth was found to be a suitable plant source for the green synthesis of silver and gold nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with M. edule leaf extract, stable silver and gold nanoparticles were rapidly formed. The gold nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and Fourier transform infra-red spectroscopy (FTIR). The kinetics of reduction of aqueous silver and gold ions during reaction with the M. edule leaf broth were easily analyzed by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to M. edule leaf broth, were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20-50 nm. TEM analysis of gold nanoparticles showed formation of triangular, circular, and hexagonal shapes in the size range 10-45 nm. The resulting silver nanoparticles were predominantly square with uniform size range 50-90 nm. EDAX results confirmed the presence of triangular nanoparticles in the adsorption peak of 2.30 keV. Further FTIR analysis was also done to identify the functional groups in silver and gold nanoparticles. The characterized nanoparticles of M. edule have potential for various medical and industrial applications. Saponin presence in aqueous extract of M. edule is responsible for the mass production of silver and gold nanoparticles.

  18. Optical properties of gold-silica-gold multilayer nanoshells.

    PubMed

    Hu, Ying; Fleming, Ryan C; Drezek, Rebekah A

    2008-11-24

    The spectral and angular radiation properties of gold-silica-gold multilayer nanoshells are investigated using Mie theory for concentric multilayer spheres. The spectral tunability of multilayer nanoshells is explained and characterized by a plasmon hybridization model and a universal scaling principle. A thinner intermediate silica layer, scaled by particle size, red shifts the plasmon resonance. This shift is relatively insensitive to the overall particle size and follows the universal scaling principle with respect to the resonant wavelength of a conventional silica-gold core-shell nanoshell. The extra tunability provided by the inner core further shifts the extinction peak to longer wavelengths, which is difficult to achieve on conventional sub-100 nm nanoshells due to limitations in synthesizing ultrathin gold coatings. We found multilayer nanoshells to be more absorbing with a larger gold core, a thinner silica layer, and a thinner outer gold shell. Both scattering intensity and angular radiation pattern were found to differ from conventional nanoshells due to spectral modulation from the inner core. Multilayer nanoshells may provide more backscattering at wavelengths where silica-gold core-shell nanoshells predominantly forward scatter. PMID:19030045

  19. Gold-catalyzed homogeneous oxidative cross-coupling reactions.

    PubMed

    Zhang, Guozhu; Peng, Yu; Cui, Li; Zhang, Liming

    2009-01-01

    Oxidizing gold? A gold(I)/gold(III) catalytic cycle is essential for the first oxidative cross-coupling reaction in gold catalysis. By using Selectfluor for gold(I) oxidation, this chemistry reveals the synthetic potential of incorporating gold(I)/gold(III) catalytic cycles into contemporary gold chemistry and promises a new area of gold research by merging powerful gold catalysis and oxidative metal-catalyzed cross-coupling reactions.

  20. Green Chemistry Approach for the Synthesis of Gold Nanoparticles Using the Fungus Alternaria sp.

    PubMed

    Dhanasekar, Naresh Niranjan; Rahul, Ganga Ravindran; Narayanan, Kannan Badri; Raman, Gurusamy; Sakthivel, Natarajan

    2015-07-01

    The synthesis of gold nanoparticles has gained tremendous attention owing to their immense applications in the field of biomedical sciences. Although several chemical procedures are used for the synthesis of nanoparticles, the release of toxic and hazardous by-products restricts their use in biomedical applications. In the present investigation, gold nanoparticles were synthesized biologically using the culture filtrate of the filamentous fungus Alternaria sp. The culture filtrate of the fungus was exposed to three different concentrations of chloroaurate ions. In all cases, the gold ions were reduced to Au(0), leading to the formation of stable gold nanoparticles of variable sizes and shapes. UV-Vis spectroscopy analysis confirmed the formation of nanoparticles by reduction of Au(3+) to Au(0). TEM analysis revealed the presence of spherical, rod, square, pentagonal, and hexagonal morphologies for 1 mM chloroaurate solution. However, quasi-spherical and spherical nanoparticles/heart-like morphologies with size range of about 7-13 and 15-18 nm were observed for lower molar concentrations of 0.3 and 0.5 mM gold chloride solution, respectively. The XRD spectrum revealed the face-centered cubic crystals of synthesized gold nanoparticles. FT-IR spectroscopy analysis confirmed the presence of aromatic primary amines, and the additional SPR bands at 290 and 230 nm further suggested that the presence of amino acids such as tryptophan/tyrosine or phenylalanine acts as the capping agent on the synthesized mycogenic gold nanoparticles. PMID:25737119

  1. Green Chemistry Approach for the Synthesis of Gold Nanoparticles Using the Fungus Alternaria sp.

    PubMed

    Dhanasekar, Naresh Niranjan; Rahul, Ganga Ravindran; Narayanan, Kannan Badri; Raman, Gurusamy; Sakthivel, Natarajan

    2015-07-01

    The synthesis of gold nanoparticles has gained tremendous attention owing to their immense applications in the field of biomedical sciences. Although several chemical procedures are used for the synthesis of nanoparticles, the release of toxic and hazardous by-products restricts their use in biomedical applications. In the present investigation, gold nanoparticles were synthesized biologically using the culture filtrate of the filamentous fungus Alternaria sp. The culture filtrate of the fungus was exposed to three different concentrations of chloroaurate ions. In all cases, the gold ions were reduced to Au(0), leading to the formation of stable gold nanoparticles of variable sizes and shapes. UV-Vis spectroscopy analysis confirmed the formation of nanoparticles by reduction of Au(3+) to Au(0). TEM analysis revealed the presence of spherical, rod, square, pentagonal, and hexagonal morphologies for 1 mM chloroaurate solution. However, quasi-spherical and spherical nanoparticles/heart-like morphologies with size range of about 7-13 and 15-18 nm were observed for lower molar concentrations of 0.3 and 0.5 mM gold chloride solution, respectively. The XRD spectrum revealed the face-centered cubic crystals of synthesized gold nanoparticles. FT-IR spectroscopy analysis confirmed the presence of aromatic primary amines, and the additional SPR bands at 290 and 230 nm further suggested that the presence of amino acids such as tryptophan/tyrosine or phenylalanine acts as the capping agent on the synthesized mycogenic gold nanoparticles.

  2. Glutathione-facilitated design and fabrication of gold nanoparticle-based logic gates and keypad lock

    NASA Astrophysics Data System (ADS)

    Huang, Zhenzhen; Wang, Haonan; Yang, Wensheng

    2014-06-01

    In this paper, we describe how we developed a simple design and fabrication method for logic gates and a device by using a commercially available tripeptide, namely glutathione (GSH), together with metal ions and disodium ethylenediaminetetraacetate (EDTA) to control the dispersion and aggregation of gold nanoparticles (NPs). With the fast adsorption of GSH on gold NPs and the strong coordination of GSH with metal ions, the addition of GSH and Pb2+ ions immediately resulted in the aggregation of gold NPs, giving rise to an AND function. Either Pb2+ or Ba2+ ions induced the aggregation of gold NPs in the presence of GSH, supporting an OR gate. Based on the fact that EDTA has a strong capacity to bind metal ions, thus preventing the aggregation of gold NPs, an INHIBIT gate was also fabricated. More interestingly, we found that the addition sequence of GSH and Hg2+ ions influenced the aggregation of gold NPs in a controlled manner, which was used to design a sequential logic gate and a three-input keypad lock for potential use in information security. The GSH strategy addresses concerns of low cost, simple fabrication, versatile design and easy operation, and offers a promising platform for the development of functional logic systems.In this paper, we describe how we developed a simple design and fabrication method for logic gates and a device by using a commercially available tripeptide, namely glutathione (GSH), together with metal ions and disodium ethylenediaminetetraacetate (EDTA) to control the dispersion and aggregation of gold nanoparticles (NPs). With the fast adsorption of GSH on gold NPs and the strong coordination of GSH with metal ions, the addition of GSH and Pb2+ ions immediately resulted in the aggregation of gold NPs, giving rise to an AND function. Either Pb2+ or Ba2+ ions induced the aggregation of gold NPs in the presence of GSH, supporting an OR gate. Based on the fact that EDTA has a strong capacity to bind metal ions, thus preventing the

  3. The biodistribution of gold nanoparticles designed for renal clearance

    NASA Astrophysics Data System (ADS)

    Alric, Christophe; Miladi, Imen; Kryza, David; Taleb, Jacqueline; Lux, François; Bazzi, Rana; Billotey, Claire; Janier, Marc; Perriat, Pascal; Roux, Stéphane; Tillement, Olivier

    2013-06-01

    Owing to their tunable optical properties and their high absorption cross-section of X- and γ-ray, gold nanostructures appear as promising agents for remotely controlled therapy. Since the efficiency of cancer therapy is not limited to the eradication of the tumour but rests also on the sparing of healthy tissue, a biodistribution study is required in order to determine whether the behaviour of the nanoparticles after intravenous injection is safe (no accumulation in healthy tissue, no uptake by phagocytic cell-rich organs (liver, spleen) and renal clearance). The biodistribution of Au@DTDTPA nanoparticles which are composed of a gold core and a DTDTPA (dithiolated polyaminocarboxylate) shell can be established by X-ray imaging (owing to the X-ray absorption of the gold core) and by magnetic resonance imaging (MRI) since the DTDTPA shell was designed for the immobilization of paramagnetic gadolinium ions. However scintigraphy appears better suited for a biodistribution study owing to a great sensitivity. The successful immobilization of radioelements (99mTc, 111In) in the DTDTPA shell, instead of gadolinium ions, renders possible the follow up of Au@DTDTPA by scintigraphy which showed that Au@DTDTPA nanoparticles exhibit a safe behaviour after intravenous injection to healthy rats.Owing to their tunable optical properties and their high absorption cross-section of X- and γ-ray, gold nanostructures appear as promising agents for remotely controlled therapy. Since the efficiency of cancer therapy is not limited to the eradication of the tumour but rests also on the sparing of healthy tissue, a biodistribution study is required in order to determine whether the behaviour of the nanoparticles after intravenous injection is safe (no accumulation in healthy tissue, no uptake by phagocytic cell-rich organs (liver, spleen) and renal clearance). The biodistribution of Au@DTDTPA nanoparticles which are composed of a gold core and a DTDTPA (dithiolated polyaminocarboxylate

  4. Alkanephosphonates on hafnium-modified gold: a new class of self-assembled organic monolayers.

    PubMed

    Jespersen, Michael L; Inman, Christina E; Kearns, Gregory J; Foster, Evan W; Hutchison, James E

    2007-03-14

    A new method for assembling organic monolayers on gold is reported that employs hafnium ions as linkers between a phosphonate headgroup and the gold surface. Monolayers of octadecylphosphonic acid (ODPA) formed on gold substrates that had been pretreated with hafnium oxychloride are representative of this new class of organic thin films. The monolayers are dense enough to completely block assembly of alkanethiols and resist displacement by alkanethiols. The composition and structure of the monolayers were investigated by contact angle goniometry, XPS, PM-IRRAS, and TOF-SIMS. From these studies, it was determined that this assembly strategy leads to the formation of ODPA monolayers similar in quality to those typically formed on metal oxide substrates. The assembly method allows for the ready generation of patterned surfaces that can be easily prepared by first patterning hafnium on the gold surface followed by alkanephosphonate assembly. Using the bifunctional (thiol-phosphonate) 2-mercaptoethylphosphonic acid (2-MEPA), we show that this new assembly chemistry is compatible with gold-thiol chemistry and use TOF-SIMS to show that the molecule attaches through the phosphonate functionality in the patterned region and through the thiol in the bare gold regions. These results demonstrate the possibility of functionalizing metal substrates with monolayers typically formed on metal oxide surfaces and show that hafnium-gold chemistry is complementary and orthogonal to well-established gold-thiol assembly strategies.

  5. In situ gold nanoparticles formation: contrast agent for dental optical coherence tomography.

    PubMed

    Braz, Ana K S; de Araujo, Renato E; Ohulchanskyy, Tymish Y; Shukla, Shoba; Bergey, Earl J; Gomes, Anderson S L; Prasad, Paras N

    2012-06-01

    In this work we demonstrate the potential use of gold nanoparticles as contrast agents for the optical coherence tomography (OCT) imaging technique in dentistry. Here, a new in situ photothermal reduction procedure was developed, producing spherical gold nanoparticles inside dentinal layers and tubules. Gold ions were dispersed in the primer of commercially available dental bonding systems. After the application and permeation in dentin by the modified adhesive systems, the dental bonding materials were photopolymerized concurrently with the formation of gold nanoparticles. The gold nanoparticles were visualized by scanning electron microscopy (SEM). The SEM images show the presence of gold nanospheres in the hybrid layer and dentinal tubules. The diameter of the gold nanoparticles was determined to be in the range of 40 to 120 nm. Optical coherence tomography images were obtained in two- and three-dimensions. The distribution of nanoparticles was analyzed and the extended depth of nanosphere production was determined. The results show that the OCT technique, using in situ formed gold nanoparticles as contrast enhancers, can be used to visualize dentin structures in a non-invasive and non-destructive way.

  6. 20th-Century Gold Rush.

    ERIC Educational Resources Information Center

    Wargo, Joseph G.

    1992-01-01

    Presents Nevada's gold rush activities spurred by technological advancements in search methods. Describes the events that led to the twentieth-century gold rush, the techniques for finding deposits and the geological formation process of disseminated gold deposits. Vignettes present the gold extraction process, cross-section, and profile of a…

  7. 41 CFR 101-45.002 - Gold.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 2 2012-07-01 2012-07-01 false Gold. 101-45.002 Section... PERSONAL PROPERTY § 101-45.002 Gold. (a) Gold will be sold in accordance with this section and part 102-38 of the Federal Management Regulation. (b) Sales of gold shall be processed to— (1) Use the sealed...

  8. 41 CFR 101-45.002 - Gold.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 2 2014-07-01 2012-07-01 true Gold. 101-45.002 Section... PERSONAL PROPERTY § 101-45.002 Gold. (a) Gold will be sold in accordance with this section and part 102-38 of the Federal Management Regulation. (b) Sales of gold shall be processed to— (1) Use the sealed...

  9. 41 CFR 101-45.002 - Gold.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Gold. 101-45.002 Section... PERSONAL PROPERTY § 101-45.002 Gold. (a) Gold will be sold in accordance with this section and part 102-38 of the Federal Management Regulation. (b) Sales of gold shall be processed to— (1) Use the sealed...

  10. 41 CFR 101-45.002 - Gold.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 2 2013-07-01 2012-07-01 true Gold. 101-45.002 Section... PERSONAL PROPERTY § 101-45.002 Gold. (a) Gold will be sold in accordance with this section and part 102-38 of the Federal Management Regulation. (b) Sales of gold shall be processed to— (1) Use the sealed...

  11. 41 CFR 101-45.002 - Gold.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Gold. 101-45.002 Section... PERSONAL PROPERTY § 101-45.002 Gold. (a) Gold will be sold in accordance with this section and part 102-38 of the Federal Management Regulation. (b) Sales of gold shall be processed to— (1) Use the sealed...

  12. Enhancement of gold recovery using bioleaching from gold concentrate

    NASA Astrophysics Data System (ADS)

    Choi, S. H.; Cho, K. H.; Kim, B. J.; Choi, N. C.; Park, C. Y.

    2012-04-01

    The gold in refractory ores is encapsulated as fine particles (sometimes at a molecular level) in the crystal structure of the sulfide (typically pyrite with or without arsenopyrite) matrix. This makes it impossible to extract a significant amount of refractory gold by cyanidation since the cyanide solution cannot penetrate the pyrite/arsenopyrite crystals and dissolve gold particles, even after fine grinding. To effectively extract gold from these ores, an oxidative pretreatment is necessary to break down the sulfide matrix. The most popular methods of pretreatment include nitric acid oxidation, roasting, pressure oxidation and biological oxidation by microorganisms. This study investigated the bioleaching efficiency of Au concentrate under batch experimental conditions (adaptation cycles and chemical composition adaptation) using the indigenous acidophilic bacteria collected from gold mine leachate in Sunsin gold mine, Korea. We conducted the batch experiments at two different chemical composition (CuSO4 and ZnSO4), two different adaptation cycles 1'st (3 weeks) and 2'nd (6 weeks). The results showed that the pH in the bacteria inoculating sample decreased than initial condition and Eh increased. In the chemical composition adaptation case, the leached accumulation content of Fe and Pb was exhibited in CuSO4 adaptation bacteria sample more than in ZnSO4 adaptation bacteria samples, possibly due to pre-adaptation effect on chalcopyrite (CuFeS2) in gold concentrate. And after 21 days on the CuSO4 adaptation cycles case, content of Fe and Pb was appeared at 1'st adaptation bacteria sample(Fe - 1.82 and Pb - 25.81 times per control sample) lower than at 2'nd adaptation bacteria sample(Fe - 2.87 and Pb - 62.05 times per control sample). This study indicates that adaptation chemical composition and adaptation cycles can play an important role in bioleaching of gold concentrate in eco-/economic metallurgy process.

  13. Gold-Catalyzed Synthesis of Heterocycles

    NASA Astrophysics Data System (ADS)

    Arcadi, Antonio

    2014-04-01

    The following sections are included: * Introduction * Synthesis of Heterocycles via Gold-Catalyzed Heteroatom Addition to Unsaturated C-C Bonds * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Cyclization of Polyunsaturated Compounds * Synthesis of Heterocyclic Compounds via α-Oxo Gold Carbenoid * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Cycloaddition Reactions * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Activation of Carbonyl Groups and Alcohols * Synthesis of Heterocyclic Compounds through Gold-Mediated C-H Bond Functionalization * Gold-Catalyzed Domino Cyclization/Oxidative Coupling Reactions * Conclusions * References

  14. Protein-mediated autoreduction of gold salts to gold nanoparticles.

    PubMed

    Basu, Nivedita; Bhattacharya, Resham; Mukherjee, Priyabrata

    2008-09-01

    Here we report for the first time that proteins can function as unique reducing agents to produce gold nanoparticles from gold salts. We demonstrate that three different proteins, namely, bovine serum albumin (BSA), Rituximab (RIT--an anti-CD20 antibody) and Cetuximab (C225--anti-EGFR antibody), reduce gold salts to gold nanoparticles (GNP). Interestingly, among all the three proteins tested, only BSA can reduce gold salts to gold nanotriangles (GNT). BSA-induced formation of GNT can be controlled by carefully selecting the reaction condition. Heating or using excess of ascorbic acid (AA) as additional reducing agent shifts the reaction towards the formation of GNP with flower-like morphology, whereas slowing down the reaction either by cooling or by adding small amount of AA directs the synthesis towards GNT formation. GNT is formed only at pH 3; higher pHs (pH 7 and pH 10) did not produce any nanoparticles, suggesting the involvement of specific protein conformation in GNT formation. The nanomaterials formed by this method were characterized using UV-visible (UV-vis) spectroscopy and transmission electron microscopy (TEM). This is an important finding that will have uses in various nanotechnological applications, particularly in the green synthesis of novel nanomaterials based on protein structure.

  15. Ion implanted dielectric elastomer circuits

    NASA Astrophysics Data System (ADS)

    O'Brien, Benjamin M.; Rosset, Samuel; Anderson, Iain A.; Shea, Herbert R.

    2013-06-01

    Starfish and octopuses control their infinite degree-of-freedom arms with panache—capabilities typical of nature where the distribution of reflex-like intelligence throughout soft muscular networks greatly outperforms anything hard, heavy, and man-made. Dielectric elastomer actuators show great promise for soft artificial muscle networks. One way to make them smart is with piezo-resistive Dielectric Elastomer Switches (DES) that can be combined with artificial muscles to create arbitrary digital logic circuits. Unfortunately there are currently no reliable materials or fabrication process. Thus devices typically fail within a few thousand cycles. As a first step in the search for better materials we present a preliminary exploration of piezo-resistors made with filtered cathodic vacuum arc metal ion implantation. DES were formed on polydimethylsiloxane silicone membranes out of ion implanted gold nano-clusters. We propose that there are four distinct regimes (high dose, above percolation, on percolation, low dose) in which gold ion implanted piezo-resistors can operate and present experimental results on implanted piezo-resistors switching high voltages as well as a simple artificial muscle inverter. While gold ion implanted DES are limited by high hysteresis and low sensitivity, they already show promise for a range of applications including hysteretic oscillators and soft generators. With improvements to implanter process control the promise of artificial muscle circuitry for soft smart actuator networks could become a reality.

  16. Colloidal Synthesis of Gold Semishells

    PubMed Central

    Rodríguez-Fernández, Denis; Pérez-Juste, Jorge; Pastoriza-Santos, Isabel; Liz-Marzán, Luis M

    2012-01-01

    This work describes a novel and scalable colloid chemistry strategy to fabricate gold semishells based on the selective growth of gold on Janus silica particles (500 nm in diameter) partly functionalized with amino groups. The modulation of the geometry of the Janus silica particles allows us to tune the final morphology of the gold semishells. This method also provides a route to fabricating hollow gold semishells through etching of the silica cores with hydrofluoric acid. The optical properties were characterized by visible near-infrared (vis-NIR) spectroscopy and compared with simulations performed using the boundary element method (BEM). These revealed that the main optical features are located beyond the NIR region because of the large core size. PMID:24551496

  17. Gold based bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Schroers, Jan; Lohwongwatana, Boonrat; Johnson, William L.; Peker, Atakan

    2005-08-01

    Gold-based bulk metallic glass alloys based on Au-Cu-Si are introduced. The alloys exhibit a gold content comparable to 18-karat gold. They show very low liquidus temperature, large supercooled liquid region, and good processibility. The maximum casting thickness exceeds 5mm in the best glassformer. Au49Ag5.5Pd2.3Cu26.9Si16.3 has a liquidus temperature of 644K, a glass transition temperature of 401K, and a supercooled liquid region of 58K. The Vickers hardness of the alloys in this system is ˜350Hv, twice that of conventional 18-karat crystalline gold alloys. This combination of properties makes the alloys attractive for many applications including electronic, medical, dental, surface coating, and jewelry.

  18. Gold, currencies and market efficiency

    NASA Astrophysics Data System (ADS)

    Kristoufek, Ladislav; Vosvrda, Miloslav

    2016-05-01

    Gold and currency markets form a unique pair with specific interactions and dynamics. We focus on the efficiency ranking of gold markets with respect to the currency of purchase. By utilizing the Efficiency Index (EI) based on fractal dimension, approximate entropy and long-term memory on a wide portfolio of 142 gold price series for different currencies, we construct the efficiency ranking based on the extended EI methodology we provide. Rather unexpected results are uncovered as the gold prices in major currencies lay among the least efficient ones whereas very minor currencies are among the most efficient ones. We argue that such counterintuitive results can be partly attributed to a unique period of examination (2011-2014) characteristic by quantitative easing and rather unorthodox monetary policies together with the investigated illegal collusion of major foreign exchange market participants, as well as some other factors discussed in some detail.

  19. GOLD: The Genomes Online Database

    DOE Data Explorer

    Kyrpides, Nikos; Liolios, Dinos; Chen, Amy; Tavernarakis, Nektarios; Hugenholtz, Philip; Markowitz, Victor; Bernal, Alex

    Since its inception in 1997, GOLD has continuously monitored genome sequencing projects worldwide and has provided the community with a unique centralized resource that integrates diverse information related to Archaea, Bacteria, Eukaryotic and more recently Metagenomic sequencing projects. As of September 2007, GOLD recorded 639 completed genome projects. These projects have their complete sequence deposited into the public archival sequence databases such as GenBank EMBL,and DDBJ. From the total of 639 complete and published genome projects as of 9/2007, 527 were bacterial, 47 were archaeal and 65 were eukaryotic. In addition to the complete projects, there were 2158 ongoing sequencing projects. 1328 of those were bacterial, 59 archaeal and 771 eukaryotic projects. Two types of metadata are provided by GOLD: (i) project metadata and (ii) organism/environment metadata. GOLD CARD pages for every project are available from the link of every GOLD_STAMP ID. The information in every one of these pages is organized into three tables: (a) Organism information, (b) Genome project information and (c) External links. [The Genomes On Line Database (GOLD) in 2007: Status of genomic and metagenomic projects and their associated metadata, Konstantinos Liolios, Konstantinos Mavromatis, Nektarios Tavernarakis and Nikos C. Kyrpides, Nucleic Acids Research Advance Access published online on November 2, 2007, Nucleic Acids Research, doi:10.1093/nar/gkm884]

    The basic tables in the GOLD database that can be browsed or searched include the following information:

    • Gold Stamp ID
    • Organism name
    • Domain
    • Links to information sources
    • Size and link to a map, when available
    • Chromosome number, Plas number, and GC content
    • A link for downloading the actual genome data
    • Institution that did the sequencing
    • Funding source
    • Database where information resides
    • Publication status and information

    • Gold, coal and oil.

      PubMed

      Dani, Sergio U

      2010-03-01

      Jared Diamond has hypothesized that guns, germs and steel account for the fate of human societies. Here I propose an extension of Diamond's hypothesis and put it in other terms and dimensions: gold, coal and oil account not only for the fate of human societies but also for the fate of mankind through the bodily accumulation of anthropogenic arsenic, an invisible weapon of mass extinction and evolutionary change. The background is clear; arsenic species fulfill seven criteria for a weapon of mass extinction and evolutionary change: (i) bioavailability to all living organisms; (ii) imperceptibility; (iii) acute toxicity; (iv) bioaccumulation and chronic toxicity; (v) adverse impact on reproductive fitness and reproductive outcomes and early-age development and growth in a wide range of microbial, plant and animal species including man; (vi) widespread geographical distribution, mobility and ecological persistence on a centennial to millennial basis and (vii) availability in necessary and sufficient amounts to exert evolutionarily meaningful effects. The proof is becoming increasingly feasible as human exploitation of gold, coal and oil deposits cause sustainable rises of arsenic concentrations in the biosphere. Paradoxically, humans are among the least arsenic-resistant organisms because humans are long-lived, encephalized and complex social metazoans. An arsenic accumulation model is presented here to describe how arsenic accumulates in the human body with increasing age and at different provisionally safe exposure levels. Arsenic accumulates in the human body even at daily exposure levels which are within the lowest possible WHO provisional tolerance limits, yielding bodily arsenic concentrations which are above WHO provisional limits. Ongoing consequences of global scale arsenic poisoning of mankind include age-specific rises in morbidity and mortality followed by adaptive changes. The potential rise of successful forms of inborn resistance to arsenic in humans

  1. Gold, coal and oil.

    PubMed

    Dani, Sergio U

    2010-03-01

    Jared Diamond has hypothesized that guns, germs and steel account for the fate of human societies. Here I propose an extension of Diamond's hypothesis and put it in other terms and dimensions: gold, coal and oil account not only for the fate of human societies but also for the fate of mankind through the bodily accumulation of anthropogenic arsenic, an invisible weapon of mass extinction and evolutionary change. The background is clear; arsenic species fulfill seven criteria for a weapon of mass extinction and evolutionary change: (i) bioavailability to all living organisms; (ii) imperceptibility; (iii) acute toxicity; (iv) bioaccumulation and chronic toxicity; (v) adverse impact on reproductive fitness and reproductive outcomes and early-age development and growth in a wide range of microbial, plant and animal species including man; (vi) widespread geographical distribution, mobility and ecological persistence on a centennial to millennial basis and (vii) availability in necessary and sufficient amounts to exert evolutionarily meaningful effects. The proof is becoming increasingly feasible as human exploitation of gold, coal and oil deposits cause sustainable rises of arsenic concentrations in the biosphere. Paradoxically, humans are among the least arsenic-resistant organisms because humans are long-lived, encephalized and complex social metazoans. An arsenic accumulation model is presented here to describe how arsenic accumulates in the human body with increasing age and at different provisionally safe exposure levels. Arsenic accumulates in the human body even at daily exposure levels which are within the lowest possible WHO provisional tolerance limits, yielding bodily arsenic concentrations which are above WHO provisional limits. Ongoing consequences of global scale arsenic poisoning of mankind include age-specific rises in morbidity and mortality followed by adaptive changes. The potential rise of successful forms of inborn resistance to arsenic in humans

  2. Synthesis and Characterization of Gold Clusters Ligated with 1,3-Bis(dicyclohexylphosphino)propane

    SciTech Connect

    Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

    2013-09-01

    In this multidisciplinary study we combine chemical reduction synthesis of novel gold clusters in solution with high-resolution analytical mass spectrometry (MS) to gain insight into the composition of the gold clusters and how their size, ionic charge state and ligand substitution influences their gas-phase fragmentation pathways. Ultra small cationic gold clusters ligated with 1,3-bis(dicyclohexylphosphino)propane (DCPP) were synthesized for the first time and introduced into the gas phase using electrospray ionization (ESI). Mass-selected cluster ions were fragmented employing collision induced dissociation (CID) and the product ions were analysed using MS. The solutions were found to contain the multiply charged cationic gold clusters Au9L43+, Au13L53+, Au6L32+, Au8L32+ and Au10L42+ (L = DCPP). The gas-phase fragmentation pathways of these cluster ions were examined systematically employing CID combined with MS. In addition, CID experiments were performed on related gold clusters of the same size and ionic charge state but capped with 1,3-bis(diphenylphosphino)propane (DPPP) ligands containing phenyl functional groups at the two phosphine centers instead of cyclohexane rings. It is shown that this relatively small change in the molecular substitution of the two phosphine centers in diphosphine ligands (C6H11 versus C6H5) exerts a pronounced influence on the size of the species that are preferentially formed in solution during reduction synthesis as well as the gas-phase fragmentation channels of otherwise identical gold cluster ions. The mass spectrometry results indicate that in addition to the length of the alkyl chain between the two phosphine centers, the substituents at the phosphine centers also play a crucial role in determining the composition, size and stability of diphosphine ligated gold clusters synthesized in solution.

  3. Gold nanoparticle (AuNPs) and gold nanopore (AuNPore) catalysts in organic synthesis.

    PubMed

    Takale, Balaram S; Bao, Ming; Yamamoto, Yoshinori

    2014-04-01

    Organic synthesis using gold has gained tremendous attention in last few years, especially heterogeneous gold catalysis based on gold nanoparticles has made its place in almost all organic reactions, because of the robust and green nature of gold catalysts. In this context, gold nanopore (AuNPore) with a 3D metal framework is giving a new dimension to heterogeneous gold catalysts. Interestingly, AuNPore chemistry is proving better than gold nanoparticles based chemistry. In this review, along with recent advances, major discoveries in heterogeneous gold catalysis are discussed.

  4. Shape tailored green synthesis and catalytic properties of gold nanocrystals.

    PubMed

    Rajan, Anish; MeenaKumari, M; Philip, Daizy

    2014-01-24

    The use of environmentally benign procedures is highly desirable for the synthesis of nanoparticles. Here we report a simple, versatile, economic, ecofriendly and reproducible green method for the size-tunable synthesis of stable and crystalline gold nanoparticles of varied shape using aqueous extract of Garcinia Combogia fruit. The predominant anisotropic nature in the morphology of synthesized particles at lower quantities of extract gradually shifted to spherical particles with larger quantity of extract and increase of temperature. The onset of reduction, the time-evolution of the Surface Plasmon Resonance (SPR) and the catalytic activity are studied using UV-Visible spectroscopy. The Selected Area Diffraction (SAED) pattern, the lattice fringes in the High Resolution Transmission Electron Microscopic (HRTEM) image and the X-ray Diffraction (XRD) pattern clearly show the pure crystalline nature of the synthesized gold nanoparticles. The role of carboxyl group present in Garcinia Combogia fruit extract in the reduction of chloroaurate ions is established using Fourier Transform Infrared (FTIR) spectra. The size dependent catalytic activity of the green synthesized gold nanoparticles on the reduction of 4-Nitrophenol to 4-Aminophenol using sodium borohydride is studied and reported for the first time. The first order kinetics is fitted and rate constants are calculated. Catalytically active green synthesized gold nanoparticles with controllable size and shape presents an advanced step in future biomedical and chemical applications.

  5. Optimized growth of gold nanobars for energy responsive applications

    NASA Astrophysics Data System (ADS)

    Hobbs, Erik; Johnson, Anthony; Hart, Cacie; Schaefer, David; Kolagani, Rajeswari; Devadas, Mary Sajini

    The aim of this research is to create a reliable protocol for the synthesis of plasmonic gold nano bars for energy responsive applications such as light harvesting. The mechanism of growth in these metallic structures is not fully understood. Symmetry breaking by twinning introduces anisotropy in the shape of the nanostructures. This also results in the formation of highly faceted tip geometries that support the propagation of surface plasmon polaritons. Gold nanobars have been synthesized through chemical reduction in the presence of surfactants: cetyltrimethylammonium bromide (CTAB) and polyvinylpyrrolidone (PVP). Synthesis is executed by varying the concentrations of CTAB and PVP, as well as adjusting the growth temperature. The influence of additives such as metal ions will be presented. Resulting plasmonic gold nanobars are viewed using darkfield microscopy and scanning electron microscopy to visualize the nanoparticle product mixture. Atomic force microscopy is employed to measure the length and width of the nanobelts. X-ray diffraction determines the degree of crystallinity in the synthesized gold nanobars.

  6. Plasmonic Gold Decorated MWCNT Nanocomposite for Localized Plasmon Resonance Sensing

    PubMed Central

    Ozhikandathil, J.; Badilescu, S.; Packirisamy, M.

    2015-01-01

    The synergism of excellent properties of carbon nanotubes and gold nanoparticles is used in this work for bio-sensing of recombinant bovine growth hormones (rbST) by making Multi Wall Carbon Nanotubes (MWCNT) locally optically responsive by augmenting it optical properties through Localized Surface Plasmon Resonance (LSPR). To this purpose, locally gold nano particles decorated gold–MWCNT composite was synthesized from a suspension of MWCNT bundles and hydrogen chloroauric acid in an aqueous solution, activated ultrasonically and, then, drop-casted on a glass substrate. The slow drying of the drop produces a “coffee ring” pattern that is found to contain gold–MWCNT nanocomposites, accumulated mostly along the perimeter of the ring. The reaction is studied also at low-temperature, in the vacuum chamber of the Scanning Electron Microscope and is accounted for by the local melting processes that facilitate the contact between the bundle of tubes and the gold ions. Biosensing applications of the gold–MWCNT nanocomposite using their LSPR properties are demonstrated for the plasmonic detection of traces of bovine growth hormone. The sensitivity of the hybrid platform which is found to be 1 ng/ml is much better than that measuring with gold nanoparticles alone which is only 25 ng/ml. PMID:26282187

  7. Modeling of gold production in Malaysia

    NASA Astrophysics Data System (ADS)

    Muda, Nora; Ainuddeen, Nasihah Rasyiqah; Ismail, Hamizun; Umor, Mohd Rozi

    2013-04-01

    This study was conducted to identify the main factors that contribute to the gold production and hence determine the factors that affect to the development of the mining industry in Malaysia. An econometric approach was used by performing the cointegration analysis among the factors to determine the existence of long term relationship between the gold prices, the number of gold mines, the number of workers in gold mines and the gold production. The study continued with the Granger analysis to determine the relationship between factors and gold production. Results have found that there are long term relationship between price, gold production and number of employees. Granger causality analysis shows that there is only one way relationship between the number of employees with gold production in Malaysia and the number of gold mines in Malaysia.

  8. Ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.

    1984-01-01

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

  9. Gold nanonetwork film on the ITO surface exhibiting one-dimensional optical properties

    PubMed Central

    2012-01-01

    A network of gold nanostructures exhibiting one-dimensional gold nanostructure properties may become a prospective novel structure for optical, electrical and catalytic applications benefited by its unusual characteristics resulting from the collective properties of individual nanostructures in the network. In this paper, we demonstrate a facile method for the formation of high-density gold nanonetwork film on the substrate surface composed of quasi-1D nanoparticles (typically fusiform) with length ca. 10 nm - via reduction of gold ions in the presence of nanoseeds attached surface, binary surfactants of cetyltrimethylammonium bromide and hexamethyleneteramine and Ag+ ions. The length of the nanonetworks can be up to ca. 100 nm, which corresponds to the aspect ratio of ca. 10. The quasi-1D gold nanostructures as well as the nanonetworks were found to be sensitive to the binary surfactants system and the Ag+ ions as they can only be formed if all the chemicals are available in the reaction. The nanonetworks exhibit unique 1D optical properties with the presence of transverse and longitudinal surface plasmon resonance absorption. Owing to their peculiar structures that are composed of small quasi-1D nanoparticles, the nanonetworks may produce unusual optical and catalytic properties, which are potentially used in surface-enhanced Raman scattering, catalysis and optical and non-linear optical applications. PMID:22587640

  10. Green synthesis of gold nanoparticles using Stevia rebaudiana leaf extracts: Characterization and their stability.

    PubMed

    Sadeghi, Babak; Mohammadzadeh, M; Babakhani, B

    2015-07-01

    Various methods invented and developed for the synthesis of gold nanoparticles that increases daily consumed. According to this method, including potential environmental pollution problems and the complexity of the synthesis, in this study, the feasibility of using the leaves extract of Stevia rebaudiana (SR) for the reduction of gold ions to nanoparticles form have been studied. Stevia leaves were used to prepare the aqueous extract for this study. Gold nanoparticles were characterized with different techniques such as UV-vis spectroscopy, FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Transmission electron microscopy experiments showed that these nanoparticles are spherical and uniformly distributed and its size is from 5 to 20 nm. FT-IR spectroscopy revealed that gold nanoparticles were functionalized with biomolecules that have primary amine group (NH2), carbonyl group, OH groups and other stabilizing functional groups. X-ray diffraction pattern showed high purity and face centered cubic structure of gold nanoparticles with size of 17 nm. The scanning electron microscopy (SEM) implies the right of forming gold nanoparticles. The results, confirm that gold nanoparticles have synthesized by the leaves extract of S. rebaudiana (SR). PMID:25900555

  11. Green synthesis of gold nanoparticles using Stevia rebaudiana leaf extracts: Characterization and their stability.

    PubMed

    Sadeghi, Babak; Mohammadzadeh, M; Babakhani, B

    2015-07-01

    Various methods invented and developed for the synthesis of gold nanoparticles that increases daily consumed. According to this method, including potential environmental pollution problems and the complexity of the synthesis, in this study, the feasibility of using the leaves extract of Stevia rebaudiana (SR) for the reduction of gold ions to nanoparticles form have been studied. Stevia leaves were used to prepare the aqueous extract for this study. Gold nanoparticles were characterized with different techniques such as UV-vis spectroscopy, FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Transmission electron microscopy experiments showed that these nanoparticles are spherical and uniformly distributed and its size is from 5 to 20 nm. FT-IR spectroscopy revealed that gold nanoparticles were functionalized with biomolecules that have primary amine group (NH2), carbonyl group, OH groups and other stabilizing functional groups. X-ray diffraction pattern showed high purity and face centered cubic structure of gold nanoparticles with size of 17 nm. The scanning electron microscopy (SEM) implies the right of forming gold nanoparticles. The results, confirm that gold nanoparticles have synthesized by the leaves extract of S. rebaudiana (SR).

  12. Synthesis and characterization of gold glyconanoparticles functionalized with sugars of sweet Sorghum syrup.

    PubMed

    Kumar, C Ganesh; Mamidyala, Suman Kumar; Sreedhar, Bojja; Reddy, Belum V S

    2011-01-01

    Gold glyconanoparticles were synthesized by a simple, rapid, and eco-friendly method by using sweet Sorghum syrup for application in biomedicine and biotechnology. The nanostructures of the prepared gold nanoparticles were confirmed by using UV-visible absorbance, TEM, SAED, FTIR, EDAX, XRD, and photoluminescence analyses. The formation of gold nanoparticles at both room and boiling temperatures and kinetics of the reaction were monitored by UV-visible spectroscopy and TEM studies. TEM analysis revealed that the obtained nanoparticles were mono-dispersed and spherical in shape with an average particle size of 7 nm. The size of the nanoparticles was influenced by the concentration of Sorghum syrup. The presence of elemental gold was confirmed by EDAX analysis. Based on the FTIR analysis, it was observed that the sugars present in the Sorghum syrup possibly acts as capping agents. The zeta potential analysis revealed that the glyconanoparticles were negatively charged with a potential of -25 mV. The XRD and SAED patterns also suggest that the nanoparticles were crystalline in nature and these particles were found to exhibit visible photoluminescence. Fructose and glucose present in sweet Sorghum syrup were demonstrated as responsible sugars for the reduction of gold ions, and sucrose stabilized the formed nanoparticles. The proposed mechanism for the formation and stabilization of gold glyconanoparticles is based on the phenomenon of "macromolecular crowding." This is the first report on the use of sweet Sorghum syrup for the green synthesis of gold glyconanoparticles at both room and boiling temperatures.

  13. Growth of single gold nanofilaments at the apex of conductive atomic force microscope tips.

    PubMed

    Bakhti, S; Destouches, N; Hubert, C; Reynaud, S; Vocanson, F; Ondarçuhu, T; Epicier, T

    2016-04-14

    This paper describes a fast and one-step technique to grow single gold filaments at the apex of commercial conductive AFM tips. It is implemented with an atomic force microscope in air with a high relative humidity at room temperature and is based on a bias-assisted electro-reduction of gold ions directly at the tip apex. The technique requires only ad hoc substrates made of a mesoporous silica layer loaded with gold salt deposited on a conductive electrode. It leads to the growth, at the tip apex, of filaments whose length can be monitored and controlled during the growth between tens and hundreds of nanometers and whose radius of curvature can be as low as 3 nm. Made of polycrystalline gold nanostructures, the filaments are chemically and mechanically stable and conductive. PMID:26848043

  14. Growth of single gold nanofilaments at the apex of conductive atomic force microscope tips

    NASA Astrophysics Data System (ADS)

    Bakhti, S.; Destouches, N.; Hubert, C.; Reynaud, S.; Vocanson, F.; Ondarçuhu, T.; Epicier, T.

    2016-03-01

    This paper describes a fast and one-step technique to grow single gold filaments at the apex of commercial conductive AFM tips. It is implemented with an atomic force microscope in air with a high relative humidity at room temperature and is based on a bias-assisted electro-reduction of gold ions directly at the tip apex. The technique requires only ad hoc substrates made of a mesoporous silica layer loaded with gold salt deposited on a conductive electrode. It leads to the growth, at the tip apex, of filaments whose length can be monitored and controlled during the growth between tens and hundreds of nanometers and whose radius of curvature can be as low as 3 nm. Made of polycrystalline gold nanostructures, the filaments are chemically and mechanically stable and conductive.

  15. Seeded Growth of Monodisperse Gold Nanorods Using Bromide-Free Surfactant Mixtures

    SciTech Connect

    Ye, XC; Gao, YZ; Chen, J; Reifsnyder, DC; Zheng, C; Murray, CB

    2013-05-01

    We demonstrate for the first time that monodisperse gold nanorods (NRs) with broadly tunable dimensions and longitudinal surface plasmon resonances can be synthesized using a bromide-free surfactant mixture composed of alkyltrimethylammonium chloride and sodium oleate. It is found that uniform gold NRs can be obtained even with an iodide concentration approaching 100 mu M in the growth solution. In contrast to conventional wisdom, our results provide conclusive evidence that neither bromide as the surfactant counterion nor a high concentration of bromide ions in the growth solution is essential for gold NR formation. Correlated electron microscopy study of three-dimensional structures of gold NRs reveals a previously unprecedented octagonal prismatic structure enclosed predominantly by high index {310} crystal planes. These findings should have profound implications for a comprehensive mechanistic understanding of seeded growth of anisotropic metal nanocrystals.

  16. Growth of single gold nanofilaments at the apex of conductive atomic force microscope tips.

    PubMed

    Bakhti, S; Destouches, N; Hubert, C; Reynaud, S; Vocanson, F; Ondarçuhu, T; Epicier, T

    2016-04-14

    This paper describes a fast and one-step technique to grow single gold filaments at the apex of commercial conductive AFM tips. It is implemented with an atomic force microscope in air with a high relative humidity at room temperature and is based on a bias-assisted electro-reduction of gold ions directly at the tip apex. The technique requires only ad hoc substrates made of a mesoporous silica layer loaded with gold salt deposited on a conductive electrode. It leads to the growth, at the tip apex, of filaments whose length can be monitored and controlled during the growth between tens and hundreds of nanometers and whose radius of curvature can be as low as 3 nm. Made of polycrystalline gold nanostructures, the filaments are chemically and mechanically stable and conductive.

  17. Controlling formation of gold nanoparticles generated in situ at a polymeric surface

    NASA Astrophysics Data System (ADS)

    Clukay, Christopher J.; Grabill, Christopher N.; Hettinger, Michelle A.; Dutta, Aniruddha; Freppon, Daniel J.; Robledo, Anthony; Heinrich, Helge; Bhattacharya, Aniket; Kuebler, Stephen M.

    2014-02-01

    This work shows that in situ reduction of metal ions bound at a polymer surface can form nanoparticles within the polymer matrix as well as at the interface, and the size and distribution of nanoparticles between the interface and subsurface depends upon the choice of reagents and reaction conditions. Tetrachloroaurate ions were bound to cross-linked SU-8 films that were functionalized using a variety of multi-functional amines, then reduced using one of several reagents. Reduction using sodium borohydride or sodium citrate generates bands of interspersed gold nanoparticles as much as 40 nm deep within the polymer, indicating that both the Au ions and the reducing agent can penetrate the surface enabling formation of nanoparticles within the polymer matrix. Nanoparticle formation can be confined nearer to the polymer interface by reducing with hydroquinone, or by processing the polymer film in aqueous media using high molecular-weight multifunctional amines that confine the gold ions at the interface.

  18. COMMISSIONING OF THE RELATIVISTIC HEAVY ION COLLIDER.

    SciTech Connect

    TRBOJEVIC,D.; AHRENS,L.; BLASKIEWICZ,M.; BRENNAN,M.; BAI,M.; CAMERON,P.; CARDONA,J.; CONNOLLY,R.; ET AL; TSOUPAS,N.; VAN ZEIJTS,J.

    2001-06-18

    This report describes in detail steps performed in bringing the Relativistic Heavy Ion Collider (RHIC) from the commissioning into the operational stage when collisions between 60 bunches of fully striped gold ions, were routinely provided. Corrections of the few power supplies connections by the beam measurements are described. Beam lifetime improvements at injection, along the acceleration are shown. The beam diagnostic results; like Schottky detector, beam profile monitor, beam position monitors, tune meter and others, are shown [1].

  19. Gold(III)-CO and gold(III)-CO2 complexes and their role in the water-gas shift reaction

    PubMed Central

    Roşca, Dragoş-Adrian; Fernandez-Cestau, Julio; Morris, James; Wright, Joseph A.; Bochmann, Manfred

    2015-01-01

    The water-gas shift (WGS) reaction is an important process for the generation of hydrogen. Heterogeneous gold catalysts exhibit good WGS activity, but the nature of the active site, the oxidation state, and competing reaction mechanisms are very much matters of debate. Homogeneous gold WGS systems that could shed light on the mechanism are conspicuous by their absence: gold(I)–CO is inactive and gold(III)–CO complexes were unknown. We report the synthesis of the first example of an isolable CO complex of Au(III). Its reactivity demonstrates fundamental differences between the CO adducts of the neighboring d8 ions Pt(II) and Au(III): whereas Pt(II)-CO is stable to moisture, Au(III)–CO compounds are extremely susceptible to nucleophilic attack and show WGS reactivity at low temperature. The key to understanding these dramatic differences is the donation/back-donation ratio of the M–CO bond: gold-CO shows substantially less back-bonding than Pt-CO, irrespective of closely similar ν(CO) frequencies. Key WGS intermediates include the gold-CO2 complex [(C^N^C)Au]2(μ-CO2), which reductively eliminates CO2. The species identified here are in accord with Au(III) as active species and a carboxylate WGS mechanism. PMID:26601313

  20. Synthesis and optical properties of gold nanorods with controllable morphology.

    PubMed

    Ye, Tianyu; Dai, Zhigao; Mei, Fei; Zhang, Xingang; Zhou, Yuanming; Xu, Jinxia; Wu, Wei; Xiao, Xiangheng; Jiang, Changzhong

    2016-11-01

    Searching for architectural building blocks with tunable morphology and peculiarity is a prominent challenge for novel diagnostic and therapeutic applications. Here, the aqueous-based seed-mediated methods for preparing highly mono-dispersed Au nanorods with a different aspect ratio are systematically studied by controlling the amounts of Ag ions and seeds. We also explore the effect of pH on the synthesis of gold nanorods. The realization of the overlap of longitudinal plasmon band and excitation source with different degrees is made by changing the aspect ratio of nanorod in order to determine its effect on the overall surface enhancement. In addition, the gold octahedra are prepared by overgrowth on Au nanorods. The SERS effects of Au nanorods are researched and the FDTD simulations are performed to reveal the morphology induced plasmon modes. PMID:27602883

  1. Synthesis and optical properties of gold nanorods with controllable morphology

    NASA Astrophysics Data System (ADS)

    Ye, Tianyu; Dai, Zhigao; Mei, Fei; Zhang, Xingang; Zhou, Yuanming; Xu, Jinxia; Wu, Wei; Xiao, Xiangheng; Jiang, Changzhong

    2016-11-01

    Searching for architectural building blocks with tunable morphology and peculiarity is a prominent challenge for novel diagnostic and therapeutic applications. Here, the aqueous-based seed-mediated methods for preparing highly mono-dispersed Au nanorods with a different aspect ratio are systematically studied by controlling the amounts of Ag ions and seeds. We also explore the effect of pH on the synthesis of gold nanorods. The realization of the overlap of longitudinal plasmon band and excitation source with different degrees is made by changing the aspect ratio of nanorod in order to determine its effect on the overall surface enhancement. In addition, the gold octahedra are prepared by overgrowth on Au nanorods. The SERS effects of Au nanorods are researched and the FDTD simulations are performed to reveal the morphology induced plasmon modes.

  2. Sensitive iodate sensor based on fluorescence quenching of gold nanocluster.

    PubMed

    Li, Ruiping; Xu, Pingping; Fan, Jun; Di, Junwei; Tu, Yifeng; Yan, Jilin

    2014-05-27

    In this report we described a highly selective and sensitive iodate sensor. Due to its interaction with fluorescent gold nanoclusters, iodate was capable of oxidizing and etching gold core of the nanoclusters, resulting in fluorescence quenching. Furthermore, it was found that extra iodide ion could enhance this etching process, and even a small amount of iodate could lead to significant quenching. Under an optimized condition, linear relationship between the iodate concentration and the fluorescence quenching was obtained in the range 10 nM-1 μM. The developed iodate sensor was found selective and capable of detecting iodate as low as 2.8 nM. The sensor was then applied for the analysis of iodate in real sample and satisfactory recoveries were obtained.

  3. High Brightness Plasmon-Enhanced Nanostructured Gold Photoemitters

    SciTech Connect

    Gong, Yu; Joly, Alan G.; Kong, Lingmei; El-Khoury, Patrick Z.; Hess, Wayne P.

    2014-12-30

    Plasmonic nanohole arrays are fabricated in gold thin films by focused ion beam (FIB) lithography. Subsequent heat treatment creates sub 100 nm nanometric structures including tips, rods and flakes, all localized in the nanohole array region. The combined nanohole array and nanostructured surface comprise an efficient photoemitter. High brightness photoemission is observed from this construct using photoemission electron microscopy (PEEM), following 780 nm femtosecond (fs) laser irradiation. By comparing our observables to results of finite difference time domain (FDTD) calculations, we demonstrate that photoemission from the sub-100 nm structures is enhanced in the region of propagating surface plasmons launched from the nanohole arrays. Additionally, by tuning hole diameter and separation in the nanohole array, the photoemission intensity of nanostructured photoemitters can be controlled. We observe a photoemission enhancement of over 108, relative to photoemission from the flat region of the gold substrate at laser intensities well below the ablation threshold.

  4. Understanding the evolution of luminescent gold quantum clusters in protein templates.

    PubMed

    Chaudhari, Kamalesh; Xavier, Paulrajpillai Lourdu; Pradeep, Thalappil

    2011-11-22

    We show that the time-dependent biomineralization of Au(3+) by native lactoferrin (NLf) and bovine serum albumin (BSA) resulting in near-infrared (NIR) luminescent gold quantum clusters (QCs) occurs through a protein-bound Au(1+) intermediate and subsequent emergence of free protein. The evolution was probed by diverse tools, principally, using matrix-assisted laser desorption ionization mass spectrometry (MALDI MS), X-ray photoelectron spectroscopy (XPS), and photoluminescence spectroscopy (PL). The importance of alkaline pH in the formation of clusters was probed. At neutral pH, a Au(1+)-protein complex was formed (starting from Au(3+)) with the binding of 13-14 gold atoms per protein. When the pH was increased above 12, these bound gold ions were further reduced to Au(0) and nucleation and growth of cluster commenced, which was corroborated by the beginning of emission; at this point, the number of gold atoms per protein was ~25, suggesting the formation of Au(25). During the cluster evolution, at certain time intervals, for specific molar ratios of gold and protein, occurrence of free protein was noticed in the mass spectra, suggesting a mixture of products and gold ion redistribution. By providing gold ions at specific time of the reaction, monodispersed clusters with enhanced luminescence could be obtained, and the available quantity of free protein could be utilized efficiently. Monodispersed clusters would be useful in obtaining single crystals of protein-protected noble metal quantum clusters where homogeneity of the system is of primary concern.

  5. Chrysopogon zizanioides aqueous extract mediated synthesis, characterization of crystalline silver and gold nanoparticles for biomedical applications

    PubMed Central

    Arunachalam, Kantha D; Annamalai, Sathesh Kumar

    2013-01-01

    The exploitation of various plant materials for the biosynthesis of nanoparticles is considered a green technology as it does not involve any harmful chemicals. The aim of this study was to develop a simple biological method for the synthesis of silver and gold nanoparticles using Chrysopogon zizanioides. To exploit various plant materials for the biosynthesis of nanoparticles was considered a green technology. An aqueous leaf extract of C. zizanioides was used to synthesize silver and gold nanoparticles by the bioreduction of silver nitrate (AgNO3) and chloroauric acid (HAuCl4) respectively. Water-soluble organics present in the plant materials were mainly responsible for reducing silver or gold ions to nanosized Ag or Au particles. The synthesized silver and gold nanoparticles were characterized by ultraviolet (UV)-visible spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) analysis. The kinetics decline reactions of aqueous silver/gold ion with the C. zizanioides crude extract were determined by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to the extract were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20–50 nm. This eco-friendly approach for the synthesis of nanoparticles is simple, can be scaled up for large-scale production with powerful bioactivity as demonstrated by the synthesized silver nanoparticles. The synthesized nanoparticles can have clinical use as antibacterial, antioxidant, as well as cytotoxic agents and can be used for biomedical applications. PMID:23861583

  6. Gold nanoparticles for photoacoustic imaging

    PubMed Central

    Li, Wanwan; Chen, Xiaoyuan

    2015-01-01

    Photoacoustic (PA) imaging is a biomedical imaging modality that provides functional information regarding the cellular and molecular signatures of tissue by using endogenous and exogenous contrast agents. There has been tremendous effort devoted to the development of PA imaging agents, and gold nanoparticles as exogenous contrast agents have great potential for PA imaging due to their inherent and geometrically induced optical properties. The gold-based nanoparticles that are most commonly employed for PA imaging include spheres, rods, shells, prisms, cages, stars and vesicles. This article provides an overview of the current state of research in utilizing these gold nanomaterials for PA imaging of cancer, atherosclerotic plaques, brain function and image-guided therapy. PMID:25600972

  7. A chemiluminescent metalloimmunoassay based on copper-enhanced gold nanoparticles for quantification of human growth hormone.

    PubMed

    Hasanpour, Foroozan; Khayamian, Taghi; Ensafi, Ali A; Rahmani, Hamidreza; Rezaei, Behzad

    2013-01-01

    A chemiluminescence (CL) immunoassay was developed to determine human growth hormone (hGH) based on copper-enhanced gold nanoparticles. In this method, gold nanoparticles were deposited on polystyrene wells for adsorption of human growth antibodies as well as catalyst for reducing of copper ions from the copper enhancer solution. The reduction of copper ions was prevented where the gold nanoparticles were covered by the antibody-antigen immunocomplex. The deposited copper on Au nanoparticles was then dissolved in HNO3 solution and quantified using the CL method. The CL intensity response was logarithmically dependent on the hGH concentrations over the range 0.2-50 ng/mL, with a detection limit (3σ) of 0.036 ng/mL. PMID:23008231

  8. Direct visualization of lead corona and its nanomolar colorimetric detection using anisotropic gold nanoparticles.

    PubMed

    Dwivedi, Charu; Chaudhary, Abhishek; Gupta, Abhishek; Nandi, Chayan K

    2015-03-11

    The study presents dithiothreitol (DTT) functionalized anisotropic gold nanoparticles (GNP) based colorimetric sensor for detection of toxic lead ions in water. Our results demonstrate the selectivity and sensitivity of the developed sensor over various heavy metal ions with detection limit of ∼9 nM. The mechanism of sensing is explained on the basis of unique corona formation around the DTT functionalized anisotropic GNP.

  9. Direct visualization of lead corona and its nanomolar colorimetric detection using anisotropic gold nanoparticles.

    PubMed

    Dwivedi, Charu; Chaudhary, Abhishek; Gupta, Abhishek; Nandi, Chayan K

    2015-03-11

    The study presents dithiothreitol (DTT) functionalized anisotropic gold nanoparticles (GNP) based colorimetric sensor for detection of toxic lead ions in water. Our results demonstrate the selectivity and sensitivity of the developed sensor over various heavy metal ions with detection limit of ∼9 nM. The mechanism of sensing is explained on the basis of unique corona formation around the DTT functionalized anisotropic GNP. PMID:25719820

  10. Recent Developments in Australian Gold Extraction.

    ERIC Educational Resources Information Center

    Thiele, Rodney B.

    1995-01-01

    Describes new technologies that have greatly improved the extraction efficiency of gold ore, including: altering plant layout to promote efficiency, engaging Filiblast forced oxidation and bioxidation systems, and updating the electrowinning procedure at the gold recovery stage. (JRH)

  11. Economic geology: Gold buried by oxygen

    NASA Astrophysics Data System (ADS)

    Gaillard, Fabrice; Copard, Yoann

    2015-03-01

    The Witwatersrand Basin in South Africa contains extraordinary amounts of gold. Thermodynamic calculations suggest that the gold may have accumulated there in response to a perfect storm of conditions available only during the Archaean.

  12. Structural Motifs of Gold Nanoparticles.

    NASA Astrophysics Data System (ADS)

    Cleveland, C. L.; Luedtke, W. D.; Landman, Uzi

    1996-03-01

    Through an extensive search, involving energy minimization using embedded atom potentials, we found(R.L. Whetten et al./), submitted to Nature (1995). that the energetically optimal sequence for AuN clusters (30 <= N <= 3000 atoms) consists of fcc crystallites, with a truncated-octahedral (TO) morphological motif, and variants thereof. These predictions for bare gold particles, and for particles coated by sef-assembled thiol monolayers, are discussed in light of recent experiments on the preparation and characterization (including mass spectrometry, electron microscopy, and X-ray diffraction) of nanocrystalline gold molecules (see Ref. 2).

  13. Formation, structure, and orientation of gold silicide on gold surfaces

    NASA Technical Reports Server (NTRS)

    Green, A. K.; Bauer, E.

    1976-01-01

    The formation of gold silicide on Au films evaporated onto Si(111) surfaces is studied by Auger electron spectroscopy (AES) and low-energy electron diffraction (LEED). Surface condition, film thickness, deposition temperature, annealing temperature, and heating rate during annealing are varied. Several oriented crystalline silicide layers are observed.

  14. Study of Vegetable Biodiesel Enhanced by Gold Nanoparticles Using Thermal-Lens Technique

    NASA Astrophysics Data System (ADS)

    Jiménez-Pérez, J. L.; Fuentes, R. Gutiérrez; Correa-Pacheco, Z. N.; Tánori-Cordova, J.; Cruz-Orea, A.; Gamboa, G. López

    2015-06-01

    In this work, experimental results for the enhancement of the thermal diffusivity of a colloidal suspension of gold nanoparticles in biodiesel oil are reported. Different concentrations of Au nanoparticles are prepared using a microemulsion method, by simultaneous reduction of Au ions in the presence of hydrazine as a reducing agent. The thermal diffusivity was found to increase with increasing nanoparticle concentration.

  15. A new green chemistry method based on plant extracts to synthesize gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Montes Castillo, Milka Odemariz

    solved. In this work, secondary metabolites were extracted from alfalfa biomass in liquid phase by hot water, isopropanol, and methanol, and used to reduce tetrachloroaurate ion (AuCl4-) for the synthesis of gold nanoparticles. Biosyntheses of gold nanoparticles were performed by mixing 0.75, 1.5 and 3.0 mM Au3+ solutions with each one of the extracts at a ratio of 3:1 respectively, and shaken at room temperature for 1h. Resulting gold colloids were characterized by UV-Vis spectrophotometry and electron microscopy techniques, showing size and morphology dependency on the reaction conditions. Isopropanol alfalfa extracts reacted with Au 3+ produced gold nanoparticles with a size range of 15-60 nm. The most abundant were from 40-50 nm, and the morphologies found were polygons, decahedra and icosahedra. Methanol alfalfa extracts produced monodisperse 50 nm decahedral and icosahedral gold nanoparticles. Lastly, water alfalfa extracts reacted with Au3+ produced triangular, truncated triangular and hexagonal nanoplates with diameters ranging from 500 nm to 4 mum and thicknesses of ˜15-40 nm. The production of gold nanoplates by alfalfa extracts has never been reported before. In order to extract the formed gold nanoparticles from the biomass, physical and chemical extractions were used. For the chemical extraction, NaCl, dilute H2SO4, Triton X and DI water were tested. In these cases, the best results were obtained with DI water, followed by NaCl. The extracted nanoparticles had an absorption band at about 539 nm. For the physical extractions, alfalfa biomass containing gold nanoparticles were exposed to 400°C, 500°C, 550°C and 600°C to recover the gold nanoparticles. X-ray diffractograms taken after pyrolysis of the biomass showed that the recovered nanoparticles kept their crystal structure.

  16. Hematite spindles with optical functionalities: growth of gold nanoshells and assembly of gold nanorods.

    PubMed

    Spuch-Calvar, Miguel; Pérez-Juste, Jorge; Liz-Marzán, Luis M

    2007-06-01

    The layer-by-layer (LBL) assembly method, combined with the seeded growth technique, have been used to deposit gold shells on the surface of hematite (alpha-Fe(2)O(3)) spindles. While the LBL method yields dense coatings of preformed Au nanoparticles, when AuCl(-)(4) ions are further reduced by a mild reducing agent, thicker, rough nanostructured shells can be grown. The deposition process was monitored by TEM and UV-visible spectroscopy, demonstrating a gradual change in the optical features of the colloids as the surface is more densely covered. The particles so-prepared can find useful applications in cancer therapy and as SERS substrates. Additionally, we show that Au nanorods can be assembled on hematite spindles, providing a flexible way to tune the optical properties of the resulting composite colloids. PMID:17306291

  17. Generation of quasi-monoenergetic carbon ions accelerated parallel to the plane of a sandwich target

    SciTech Connect

    Wang, J. W.; Murakami, M.; Weng, S. M.; Xu, H.; Ju, J. J.; Luan, S. X.; Yu, W.

    2014-12-15

    A new ion acceleration scheme, namely, target parallel Coulomb acceleration, is proposed in which a carbon plate sandwiched between gold layers is irradiated with intense linearly polarized laser pulses. The high electrostatic field generated by the gold ions efficiently accelerates the embedded carbon ions parallel to the plane of the target. The ion beam is found to be collimated by the concave-shaped Coulomb potential. As a result, a quasi-monoenergetic and collimated C{sup 6+}-ion beam with an energy exceeding 10 MeV/nucleon is produced at a laser intensity of 5 × 10{sup 19} W/cm{sup 2}.

  18. Understanding ligand effects in gold clusters using mass spectrometry.

    PubMed

    Johnson, Grant E; Laskin, Julia

    2016-06-21

    This review summarizes recent research on the influence of phosphine ligands on the size, stability, and reactivity of gold clusters synthesized in solution. Sub-nanometer clusters exhibit size- and composition-dependent properties that are unique from those of larger nanoparticles. The highly tunable properties of clusters and their high surface-to-volume ratio make them promising candidates for a variety of technological applications. However, because "each-atom-counts" toward defining cluster properties it is critically important to develop robust synthesis methods to efficiently prepare clusters of predetermined size. For decades phosphines have been known to direct the size-selected synthesis of gold clusters. Despite the preparation of numerous species it is still not understood how different functional groups at phosphine centers affect the size and properties of gold clusters. Using electrospray ionization mass spectrometry (ESI-MS) it is possible to characterize the effect of ligand substitution on the distribution of clusters formed in solution at defined reaction conditions. In addition, ligand exchange reactions on preformed clusters may be monitored using ESI-MS. Collision induced dissociation (CID) may also be employed to obtain qualitative insight into the fragmentation of mixed ligand clusters and the relative binding energies of differently substituted phosphines. Quantitative ligand binding energies and cluster stability may be determined employing surface induced dissociation (SID) in a custom-built Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS). Rice-Ramsperger-Kassel-Marcus (RRKM) based modeling of the SID data allows dissociation energies and entropy values to be extracted. The charge reduction and reactivity of atomically precise gold clusters, including partially ligated species generated in the gas-phase by in source CID, on well-defined surfaces may be explored using ion soft landing (SL) in a custom

  19. Controlled Light-Mediated Preparation of Gold Nanoparticles by a Norrish Type I Reaction of Photoactive Polymers.

    PubMed

    Mäsing, Florian; Mardyukov, Artur; Doerenkamp, Carsten; Eckert, Hellmut; Malkus, Ursula; Nüsse, Harald; Klingauf, Jürgen; Studer, Armido

    2015-10-19

    Gold nanoparticles (AuNPs) are subjects of broad interest in scientific community due to their promising physicochemical properties. Herein we report the facile and controlled light-mediated preparation of gold nanoparticles through a Norrish type I reaction of photoactive polymers. These carefully designed polymers act as reagents for the photochemical reduction of gold ions, as well as stabilizers for the in situ generated AuNPs. Manipulating the length and composition of the photoactive polymers allows for control of AuNP size. Nanoparticle diameter can be controlled from 1.5 nm to 9.6 nm.

  20. Gold color in dental alloys.

    PubMed

    Cameron, T

    1997-01-01

    This article will help the dental laboratory with alloy selection by exploring how the relationship among color, ductility and strength applies to gold and how color can be quantified. Because higher quality materials translate into higher profits, upselling to the dentist and patient is also discussed.

  1. Shape Stability of Gold Nanorods

    NASA Astrophysics Data System (ADS)

    Robertson, Steve; Bertone, Jane; Cizeron, Joel; Wahi, Raj; Colvin, Vicki

    2000-03-01

    Photoreduction of gold salts in inverse micelles can lead to the formation of colloidal gold. A wide variety of well-defined and facetted shapes are seen in the product; though these nanocrystals are highly crystalline, high resolution transmission electron microscopy reveal the presence of specific crystalline defects, primarily twin planes. These defects are correlated to the nanocrystals shape, and lead us to postulate a shape control mechanism dependent on the presence of crystalline defects. Among the observed shapes from this reaction are anisotropic nanocrystals with aspect ratios ranging from 5 to 10. The rod percentage can be maximized by controlling the water to surfactant ratio in the solution, and is only observed when the reduction process is photoinitiated. Rod growth can be activated, allowing for the formation of gold nanoneedles with aspect ratios exceeding 30. The smallest dimensions of these nanocrystals are 10 nm, which is large enough that melting point depressions because of finite size are expected to be minimal. Nevertheless, anisotropic particles anneal to more symmetric shapes at temperatures of only 600 to 700 C. Electron microscopy studies of these shape changing processes at high temperatures indicate that the nanocrystals anneal quite suddenly, with rapid movements of many gold atoms.

  2. Simulated Permeation and Characterization of PEGylated Gold Nanoparticles in a Lipid Bilayer System.

    PubMed

    Oroskar, Priyanka A; Jameson, Cynthia J; Murad, Sohail

    2016-08-01

    PEGylated gold nanoparticles are considered suitable nanocarriers for use in biomedical applications and targeted drug delivery systems. In our previous investigation with the alkanethiol-functionalized gold nanoparticle, we found that permeation across a protein-free phospholipid membrane resulted in damaging effects of lipid displacement and water and ion leakage. In the present study, we carry out a series of coarse-grained molecular simulations to explore permeation of lipid bilayer systems by a PEGylated gold nanoparticle, especially at the bulk-liquid-lipid interface as well as the interface between the two lipid leaflets. Initially, we examine molecular-level details of a PEGylated gold nanoparticle (constructed from cycled annealing) in water and find a distribution of ligand configurations (from mushroom to brush states) present in nanoparticles with medium to high surface coverage. We also find that the characteristic properties of the PEGylated gold nanoparticle do not change when it is placed in a salt solution. In our permeation studies, we investigate events of water and ion penetration as well as lipid translocation while varying the ligand length, nanoparticle surface coverage, and ion concentration gradient of our system. Results from our studies show the following: (1) The number of water molecules in the interior of the membrane during ligand-coated nanoparticle permeation increases with PEGn-SH surface coverage, ligand length, and permeation velocity but is not sensitive to the ion concentration gradient. (2) Lipid molecules do not leave the membrane; instead they complete trans-bilayer lipid flip-flop with longer ligands and higher surface coverages. (3) The lack of formation of stable water pores prevents ion translocation. (4) The PEGylated nanoparticle causes less damage to the membrane overall due to favorable interactions with the lipid headgroups which may explain why experimentalists observe endocytosis of PEGylated nanocarriers in vivo.

  3. Simulated Permeation and Characterization of PEGylated Gold Nanoparticles in a Lipid Bilayer System.

    PubMed

    Oroskar, Priyanka A; Jameson, Cynthia J; Murad, Sohail

    2016-08-01

    PEGylated gold nanoparticles are considered suitable nanocarriers for use in biomedical applications and targeted drug delivery systems. In our previous investigation with the alkanethiol-functionalized gold nanoparticle, we found that permeation across a protein-free phospholipid membrane resulted in damaging effects of lipid displacement and water and ion leakage. In the present study, we carry out a series of coarse-grained molecular simulations to explore permeation of lipid bilayer systems by a PEGylated gold nanoparticle, especially at the bulk-liquid-lipid interface as well as the interface between the two lipid leaflets. Initially, we examine molecular-level details of a PEGylated gold nanoparticle (constructed from cycled annealing) in water and find a distribution of ligand configurations (from mushroom to brush states) present in nanoparticles with medium to high surface coverage. We also find that the characteristic properties of the PEGylated gold nanoparticle do not change when it is placed in a salt solution. In our permeation studies, we investigate events of water and ion penetration as well as lipid translocation while varying the ligand length, nanoparticle surface coverage, and ion concentration gradient of our system. Results from our studies show the following: (1) The number of water molecules in the interior of the membrane during ligand-coated nanoparticle permeation increases with PEGn-SH surface coverage, ligand length, and permeation velocity but is not sensitive to the ion concentration gradient. (2) Lipid molecules do not leave the membrane; instead they complete trans-bilayer lipid flip-flop with longer ligands and higher surface coverages. (3) The lack of formation of stable water pores prevents ion translocation. (4) The PEGylated nanoparticle causes less damage to the membrane overall due to favorable interactions with the lipid headgroups which may explain why experimentalists observe endocytosis of PEGylated nanocarriers in vivo

  4. Gold recycling; a materials flow study

    USGS Publications Warehouse

    Amey, Earle B.

    2000-01-01

    This materials flow study includes a description of trends in consumption, loss, and recycling of gold-containing materials in the United States in 1998 in order to illustrate the extent to which gold is presently being recycled and to identify recycling trends. The quantity of gold recycled, as a percent of the apparent supply of gold, was estimated to be about 30 percent. Of the approximately 446 metric tons of gold refined in the United States in 1998, the fabricating and industrial use losses were 3 percent.

  5. [Biosynthesis of gold nanoparticles by Azospirillum brasilense].

    PubMed

    Kupriashina, M A; Vetchinkina, E P; Burov, A M; Ponomareva, E G; Nikitina, V E

    2014-01-01

    Plant-associated nitrogen-fixing soil bacteria Azospirillum brasilense were shown to reduce the gold of chloroauric acid to elemental gold, resulting in formation of gold nanoparicles. Extracellular phenoloxidizing enzymes (laccases and Mn peroxidases) were shown to participate in reduction of Au+3 (HAuCl4) to Au(0). Transmission electron microscopy revealed accumulation of colloidal gold nanoparticles of diverse shape in the culture liquid of A. brasilense strains Sp245 and Sp7. The size of the electron-dense nanospheres was 5 to 50 nm, and the size of nanoprisms varied from 5 to 300 nm. The tentative mechanism responsible for formation of gold nanoparticles is discussed.

  6. Relativistic effects in homogeneous gold catalysis.

    PubMed

    Gorin, David J; Toste, F Dean

    2007-03-22

    Transition-metal catalysts containing gold present new opportunities for chemical synthesis, and it is therefore not surprising that these complexes are beginning to capture the attention of the chemical community. Cationic phosphine-gold(i) complexes are especially versatile and selective catalysts for a growing number of synthetic transformations. The reactivity of these species can be understood in the context of theoretical studies on gold; relativistic effects are especially helpful in rationalizing the reaction manifolds available to gold catalysts. This Review draws on experimental and computational data to present our current understanding of homogeneous gold catalysis, focusing on previously unexplored reactivity and its application to the development of new methodology.

  7. Heteroepitaxial gold (111) rings on mica substrates

    SciTech Connect

    Zhang, X.W.; Chen, N.F.; Yan, F.; Goedel, Werner A.

    2005-05-16

    Two-dimensionally arranged gold rings were prepared by depositing a polymeric membrane bearing a dense array of uniform pores onto a mica substrate, filling the pores with a solution of a gold precursor, evaporation of the solvent and calcinations. The epitaxy of gold rings is confirmed by x-ray diffraction measurements, and the epitaxial relationship between gold rings and the mica was found to be Au(111)[1-10] parallel mica(001)[010]. The polar and azimuthal angular spreads are 0.3 deg. and 1 deg., respectively, which is at least equal to or better than the quality of the corresponding epitaxial gold-film on mica.

  8. Gold nephropathy in juvenile rheumatoid arthritis.

    PubMed

    Husserl, F E; Shuler, S E

    1979-01-01

    A 2-year-old girl was treated with gold salts for juvenile rheumatoid arthritis. Treatment had to be discontinued when persistent proteinuria was detected. As this case report indicates, close monitoring of the urine is mandatory during treatment with gold salts to detect early signs of toxicity: hematuria followed by casts and then proteinuria as therapy is continued. Histologic examination with electron microscopy will help to differentiate the different forms of gold toxicity. When the findings are consistent with gold-induced renal involvement, therapy should be discontinued. The gold nephropathy usually resolves in time, with no permanent renal damage.

  9. Bimodal porous gold opals for molecular sensing

    NASA Astrophysics Data System (ADS)

    Chae, Weon-Sik; Yu, Hyunung; Ham, Sung-Kyoung; Lee, Myung-Jin; Jung, Jin-Seung; Robinson, David B.

    2013-11-01

    We have fabricated bimodal porous gold skeletons by double-templating routes using poly(styrene) colloidal opals as templates. The fabricated gold skeletons show a bimodal pore-size distribution, with small pores within spheres and large pores between spheres. The templated bimodal porous gold skeletons were applied in Raman scattering experiments to study sensing efficiency for probe molecules. We found that the bimodal porous gold skeletons showed obvious enhancement of Raman scattering signals versus that of the unimodal porous gold which only has interstitial pores of several hundred nanometers.

  10. Diameter dependent failure current density of gold nanowires

    NASA Astrophysics Data System (ADS)

    Karim, S.; Maaz, K.; Ali, G.; Ensinger, W.

    2009-09-01

    Failure current density of single gold nanowires is investigated in this paper. Single wires with diameters ranging from 80 to 720 nm and length 30 µm were electrochemically deposited in ion track-etched single-pore polycarbonate membranes. The maximum current density was investigated while keeping the wires embedded in the polymer matrix and ramping up the current until failure occurred. The current density is found to increase with diminishing diameter and the wires with a diameter of 80 nm withstand 1.2 × 1012 A m-2 before undergoing failure. Possible reasons for these results are discussed in this paper.

  11. Magnetron Sputtered Gold Contacts on N-gaas

    NASA Technical Reports Server (NTRS)

    Buonaquisti, A. D.; Matson, R. J.; Russell, P. E.; Holloway, P. H.

    1984-01-01

    Direct current planar magnetron sputtering was used to deposit gold Schottky barrier electrical contacts on n-type GaAs of varying doping densities. The electrical character of the contact was determined from current voltage and electron beam induced voltage data. Without reducing the surface concentration of carbon and oxide, the contacts were found to be rectifying. There is evidence that energetic neutral particles reflected from the magnetron target strike the GaAs and cause interfacial damage similar to that observed for ion sputtering. Particle irradiation of the surface during contact deposition is discussed.

  12. Mammalian sensitivity to elemental gold (Au?)

    USGS Publications Warehouse

    Eisler, R.

    2004-01-01

    There is increasing documentation of allergic contact dermatitis and other effects from gold jewelry, gold dental restorations, and gold implants. These effects were especially pronounced among females wearing body-piercing gold objects. One estimate of the prevalence of gold allergy worldwide is 13%, as judged by patch tests with monovalent organogold salts. Eczema of the head and neck was the most common response of individuals hypersensitive to gold, and sensitivity can last for at least several years. Ingestion of beverages containing flake gold can result in allergic-type reactions similar to those seen in gold-allergic individuals exposed to gold through dermal contact and other routes. Studies with small laboratory mammals and injected doses of colloidal gold showed increased body temperatures, accumulations in reticular cells, and dose enhancement in tumor therapy; gold implants were associated with tissue injuries. It is proposed that Au? toxicity to mammals is associated, in part, with formation of the more reactive Au+ and Au3+ species.

  13. Dating native gold by noble gas analyses

    NASA Technical Reports Server (NTRS)

    Niedermann, S.; Eugster, O.; Hofmann, B.; Thalmann, CH.; Reimold, W. U.

    1993-01-01

    Our recent work on He, Ne, and Ar in Alpine gold samples has demonstrated that gold is extremely retentive for He and could thus, in principle, be used for U/Th-He-4 dating. For vein-type gold from Brusson, Northern Italy, we derived a U/Th-He-4 age of 36 Ma, in agreement with the K-Ar formation age of associated muscovites and biotites. However, in placer gold from the Napf area, Central Switzerland, we observed large excesses of both He-4 and radiogenic Ar-40 (Ar-40 sub rad, defined as Ar-40-295.5-Ar-.36). The gas release systematics indicate two distinct noble gas components, one of which is released below about 800 C and the other one at the melting point of gold (1064 C). We now present results of He and Xe measurements in a 1 g placer gold sample from the river Kruempelgraben, as well as He and Ar data for Brusson vein-type gold and for gold from the Lily Gold Mine, South Africa. We calculate reasonable U/Th-He-4 as well as U-Xe ages based on those gases which are released at approximately 800 C. Probably the low-temperature components represent in-situ-produced radiogenic He and fission Xe, whereas the gases evolving when gold melts have been trapped during gold formation. Therefore, only the low-temperature components are relevant for dating purposes.

  14. Electroassisted codeposition of sol-gel derived silica nanocomposite directs the fabrication of coral-like nanostructured porous gold.

    PubMed

    Farghaly, Ahmed A; Collinson, Maryanne M

    2014-05-13

    Herein, we report on a one-step coelectrodeposition method to form gold-silica nanocomposite materials from which high surface area nanostructured gold electrodes can be produced. The as-prepared Au-SiO2 films possess an interconnected three-dimensional porous framework with different silica-gold ratios depending on the deposition solutions and parameters. Chemical etching of the nanocomposite films using hydrofluoric acid resulted in the formation of nanostructured porous gold films with coral-like structures and pores in the nanometer range. The cross-linkage of the gold coral branches resulted in the generation of a porous framework. X-ray photoelectron spectroscopy confirms the complete removal of silica. Well-controlled surface area enhancement, film thickness, and morphology were achieved by manipulating the deposition parameters, such as potential, time, and gold ion and sol-gel monomer concentrations in the deposition solution. An enhancement in the surface area of the electrode up to 57 times relative to the geometric area has been achieved. The thickness of the as-prepared Au-SiO2 nanocomposite films is relatively high and varied from 8 to 15 μm by varying the applied deposition potential while the thickness of the coral-like nanostructured porous gold films ranged from 0.22 to 2.25 μm. A critical sol-gel monomer concentration (CSGC) was determined at which the deposited silica around the gold coral was able to stabilize the coral-like gold nanostructures, while below the CSGC, the coral-like gold nanostructures were unstable and the surface area of the nanostructured porous gold electrodes decreased. PMID:24766096

  15. Shape-controlled synthesis of gold icosahedra and nanoplates using Pluronic P123 block copolymer and sodium chloride

    SciTech Connect

    Lee, Won-Ki; Cha, Sang-Ho; Kim, Ki-Hyun; Kim, Byung-Woo; Lee, Jong-Chan

    2009-12-15

    Gold icosahedra with an average diameter of about 600 nm were easily prepared by heating an aqueous solution of the amphiphilic block copolymer, poly(ethylene oxide){sub 20}-poly(propylene oxide){sub 70}-poly(ethylene oxide){sub 20} (Pluronic P123), and hydrogen tetrachloroaurate(III) trihydrate (HAuCl{sub 4}.3H{sub 2}O) at 60 deg. C for 25 min. When sodium chloride (NaCl:HAuCl{sub 4} molar ratio=10:1) was added to this aqueous solution, gold nanoplates were produced. The chloride ion was found to be a key component in the formation of the gold nanoplates by facilitating the growth of {l_brace}111{r_brace} oriented hexagonal/triangular gold nanoplates, because similar gold nanoplates were produced when LiCl or KCl was added to the aqueous solution instead of NaCl, while gold nanocrystals having irregular shapes were produced when NaBr or NaI was added. - Graphical abstract: Gold icosahedra were prepared by heating an aqueous solution of Pluronic P123 and HAuCl{sub 4}. When NaCl was added to this solution, gold nanoplates were produced.

  16. Selective sodium sensing with gold-coated silicon nanowire field-effect transistors in a differential setup.

    PubMed

    Wipf, Mathias; Stoop, Ralph L; Tarasov, Alexey; Bedner, Kristine; Fu, Wangyang; Wright, Iain A; Martin, Colin J; Constable, Edwin C; Calame, Michel; Schönenberger, Christian

    2013-07-23

    Ion-sensitive field-effect transistors based on silicon nanowires with high dielectric constant gate oxide layers (e.g., Al2O3 or HfO2) display hydroxyl groups which are known to be sensitive to pH variations but also to other ions present in the electrolyte at high concentration. This intrinsically nonselective sensitivity of the oxide surface greatly complicates the selective sensing of ionic species other than protons. Here, we modify individual nanowires with thin gold films as a novel approach to surface functionalization for the detection of specific analytes. We demonstrate sodium ion (Na(+)) sensing by a self-assembled monolayer (SAM) of thiol-modified crown ethers in a differential measurement setup. A selective Na(+) response of ≈-44 mV per decade in a NaCl solution is achieved and tested in the presence of protons (H(+)), potassium (K(+)), and chloride (Cl(-)) ions, by measuring the difference between a nanowire with a gold surface functionalized by the SAM (active) and a nanowire with a bare gold surface (control). We find that the functional SAM does not affect the unspecific response of gold to pH and background ionic species. This represents a clear advantage of gold compared to oxide surfaces and makes it an ideal candidate for differential measurements.

  17. [Contact allergy to gold and its alloys. Pertinence of gold salt patch tests].

    PubMed

    Collet, E; Lacroix, M; Dalac, S; Ponnelle, C; Lambert, D

    1994-01-01

    Allergic contact dermatitis to gold and its alloys is a rare affection and it is difficult to interpret gold salts patch tests. We report two cases of patients with positive patch tests to 0.5% sodium aurothiosulfate discovered during a dermatology exploration of an occupational contact eczema (for the first patient) and an intolerance to gold jewelry (for the second). There is much confusion in the literature concerning the allergologic exploration of contact dermatitis to gold: no standardized test, possible cross reactions between different gold salts, the tests often irritate. The mechanism of sensitization to gold salts is unknown since pure gold is inalterable and does not contain any salts. The pertinence of a positive test to one or more gold salts must therefore be examined carefully and the diagnosis of gold allergy must not be made without sufficient evidence.

  18. High-temperature platinum resistance thermometry: the problem with silver and the case for gold

    NASA Astrophysics Data System (ADS)

    Hill, Kenneth D.

    2015-04-01

    The diffusion of silver through quartz at high temperatures leads to contamination of the platinum sensing element of high temperature platinum resistance thermometers. While some protection of the PRT element may be afforded by the application of appropriate electric fields, the contamination of the quartz elements of silver fixed points causes their premature failure. Contamination is evidenced by the yellowish colour imparted to the glass by the silver particles growing within the quartz glass matrix. The presence of silver as the contaminating element has been confirmed unambiguously through energy dispersive x-ray analysis and secondary ion mass spectrometry. To mitigate the risk of silver contamination, the gold point is proposed as an alternative calibration point. PRT resistance ratios measured at the freezing points of silver and gold in different laboratories at different times are highly correlated. This suggests that the ITS-90 reference function might be extrapolated to 1064.18 °C (the gold fixed point). However, it remains unclear from the gold and silver PRT resistance ratios from the literature whether extrapolation of the reference function leads to the correct value at the gold point. A direct comparison of gold fixed points may be required to resolve the inconsistencies. Additional PRT data may help resolve the discrepancy.

  19. Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix

    NASA Astrophysics Data System (ADS)

    Lamarre, Jean-Michel; Billard, Franck; Kerboua, Chahineze Harkati; Lequime, Michel; Roorda, Sjoerd; Martinu, Ludvik

    2008-01-01

    Nanocomposite films consisting of gold nanospheres or gold nanorods embedded in a silica matrix have been prepared using a hybrid deposition technique consisting of plasma-enhanced chemical vapor deposition of SiO2 and co-sputtering of gold, followed by annealing at 900 °C. Subsequent irradiation with 30 MeV heavy ions (Cu5+) was used to form gold nanorods. Linear and nonlinear optical properties of this material are closely related with the surface plasmon resonance in the visible. The nonlinear absorption coefficient (α2@532 nm) for the films containing gold nanospheres was measured by Z-scan and P-scan techniques, and it was found to be isotropic and equal to -4.8 × 10-2 cm/W. On the contrary, gold nanorods films exhibited two distinct surface plasmon resonance absorption bands giving rise to a strong anisotropic behavior, namely a polarization-dependent linear absorption and saturable absorption. Z-scan and P-scan measurements using various light polarization directions yielded nonlinear absorption coefficient (α2@532 nm) values varying from -0.9 × 10-2 cm/W up to -3.0 × 10-2 cm/W. Linearity of the P-scan method in the context of nanocomposite saturable absorption is also discussed.

  20. Theoretical overview: Light ion lessons, heavy ion hopes

    SciTech Connect

    Gavin, S.

    1992-01-01

    Experiments using light ion beams of atomic masses A [approximately] 30 have been underway since 1986 at the Brookhaven AGS and the CERN SPS at the respective energies [radical]s [approximately] 5 A GeV and 20 A GeV. The first truly heavy ion runs with a gold beam began this spring at the AGS. In this talk I will survey our progress towards an understanding of nuclear collision dynamics, focusing on those issues that are relevant to Au+Au at the AGS. In view of what we have already learned from the light ion data, I will argue that the prospects for producing matter at extreme density in these experiments are excellent.

  1. Theoretical overview: Light ion lessons, heavy ion hopes

    SciTech Connect

    Gavin, S.

    1992-12-31

    Experiments using light ion beams of atomic masses A {approximately} 30 have been underway since 1986 at the Brookhaven AGS and the CERN SPS at the respective energies {radical}s {approximately} 5 A GeV and 20 A GeV. The first truly heavy ion runs with a gold beam began this spring at the AGS. In this talk I will survey our progress towards an understanding of nuclear collision dynamics, focusing on those issues that are relevant to Au+Au at the AGS. In view of what we have already learned from the light ion data, I will argue that the prospects for producing matter at extreme density in these experiments are excellent.

  2. ``Gold corrosion'': red stains on a gold Austrian Ducat

    NASA Astrophysics Data System (ADS)

    Gusmano, G.; Montanari, R.; Kaciulis, S.; Montesperelli, G.; Denk, R.

    Stains of different colours have been observed on historic and modern gold coins in several countries. An Austrian Ducat at the Kunsthistorisches Museum in Vienna has developed some red spots on its surface over the years. The same defects have also been observed in modern coins of higher gold purity. The spots have been examined by OM, SEM, EDS, XPS and AES. Optical microscopy showed that ``red'' defects exhibit in fact a nuance of colours. The surface analysis put in evidence the presence in the stains, in addition to gold, of silver and sulphur. The values of the modified Auger parameter α' of silver correspond to those of Ag2S; thus, it can be assumed that the stains are composed of silver sulphide (Ag2S). It was not possible to determine whether the presence of silver on the surface is due to segregation towards the surface or to external particles of silver embedded in the matrix. Depth profiling performed on modern coins suffering from the same problem allowed us to demonstrate that the nuance of colours is due to the inhomogeneous thickness of the spots. Moreover, it was demonstrated that spots are formed by two layers: an outer layer of silver sulphide and an inner layer of silver.

  3. Benchmark Measurements of the Ionization Balance of Non-LTE Gold

    SciTech Connect

    Heeter, R F; Hansen, S B; Fournier, K B; Foord, M E; Froula, D H; Mackinnon, A J; May, M J; Schneider, M B; Young, B F

    2007-04-20

    The authors present a series of benchmark measurements of the ionization balance of well characterized gold plasmas with and without external radiation fields at electron densities near 10{sup 21} cm{sup -3} and various electron temperatures spanning the range 0.8 to 2.4 keV. They have analyzed time- and space-resolved M-shell gold emission spectra using a sophisticated collisional-radiative model with hybrid level structure, finding average ion changes ranging from 42 to 50. At the lower temperatures, the spectra exhibit significant sensitivity to external radiation fields and include emission features from complex N-shell ions not previously studied at these densities. The measured spectra and inferred provide a stringent test for non-local thermodynamic equilibrium (non-LTE) models of complex high-Z ions.

  4. Removal of Lead Hydroxides Complexes from Solutions Formed in Silver/Gold: Cyanidation Process

    NASA Astrophysics Data System (ADS)

    Parga, José R.; Martinez, Raul Flores; Moreno, Hector; Gomes, Andrew Jewel; Cocke, David L.

    2014-04-01

    The presence of lead hydroxides in "pregnant cyanide solution" decreases the quality of the Dore obtained in the recovery processes of gold and silver, so it is convenient to remove them. The adsorbent capacity of the low cost cow bone powder was investigated for the removal of lead ions from a solution of lead hydroxide complexes at different initial metal ion concentrations (10 to 50 mg/L), and reaction time. Experiments were carried out in batches. The maximum sorption capacity of lead determined by the Langmuir model was found to be 126.58 mg/g, and the separation factor R L was between 0 and 1, indicating a significant affinity of bone for lead. Experimental data follow pseudo-second order kinetics suggesting chemisorption. It is concluded that cow bone powder can be successfully used for the removal of lead ions, and improves the quality of the silver-gold cyanides precipitate.

  5. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry.

    PubMed

    Huang, Jer-Shing; Callegari, Victor; Geisler, Peter; Brüning, Christoph; Kern, Johannes; Prangsma, Jord C; Wu, Xiaofei; Feichtner, Thorsten; Ziegler, Johannes; Weinmann, Pia; Kamp, Martin; Forchel, Alfred; Biagioni, Paolo; Sennhauser, Urs; Hecht, Bert

    2010-01-01

    Deep subwavelength integration of high-definition plasmonic nanostructures is of key importance in the development of future optical nanocircuitry for high-speed communication, quantum computation and lab-on-a-chip applications. To date, the experimental realization of proposed extended plasmonic networks consisting of multiple functional elements remains challenging, mainly because of the multi-crystallinity of commonly used thermally evaporated gold layers. This can produce structural imperfections in individual circuit elements that drastically reduce the yield of functional integrated nanocircuits. In this paper we demonstrate the use of large (>100 μm(2)) but thin (<80 nm) chemically grown single-crystalline gold flakes that, after immobilization, serve as an ideal basis for focused ion beam milling and other top-down nanofabrication techniques on any desired substrate. Using this methodology we obtain high-definition ultrasmooth gold nanostructures with superior optical properties and reproducible nano-sized features over micrometre-length scales. Our approach provides a possible solution to overcome the current fabrication bottleneck and realize high-definition plasmonic nanocircuitry. PMID:21267000

  6. Gold-Speckled Multimodal Nanoparticles for Noninvasive Bioimaging

    PubMed Central

    2008-01-01

    In this report the synthesis, characterization, and functional evaluation of a multimodal nanoparticulate contrast agent for noninvasive imaging through both magnetic resonance imaging (MRI) and photoacoustic tomography (PAT) is presented. The nanoparticles described herein enable high resolution and highly sensitive three-dimensional diagnostic imaging through the synergistic coupling of MRI and PAT capabilities. Gadolinium (Gd)-doped gold-speckled silica (GSS) nanoparticles, ranging from 50 to 200 nm, have been prepared in a simple one-pot synthesis using nonionic microemulsions. The photoacoustic signal is generated from a nonuniform, discontinuous gold nanodomains speckled across the silica surface, whereas the MR contrast is provided through Gd incorporated in the silica matrix. The presence of a discontinuous speckled surface, as opposed to a continuous gold shell, allows sufficient bulk water exchange with the Gd ions to generate a strong MR contrast. The dual imaging capabilities of the particles have been demonstrated through in silicio and in vitro methods. The described particles also have the capacity for therapeutic applications including the thermal ablation of tumors through the absorption of irradiated light. PMID:19466201

  7. Multiplex Electrochemical Immunoassay Using Gold Nanoparticle Probes and Immunochromatographic Strips

    SciTech Connect

    Mao, Xun; Baloda, Meenu; Gurung, Anant; Lin, Yuehe; Liu, Guodong

    2008-10-20

    We describe a multiplex electrochemical immunoassay based on the use of gold nanoparticle (Au-NP) probes and immunochromatographic strips (ISs). The approach takes advantage of the speed and low cost of the conventional IS tests and the high sensitivities of the nanoparticle-based electrochemical immunoassays. Rabbit IgG(R-IgG) and human IgM (H-IgM) were used as model targets for the demonstration of the proof of concept. The Au-NPs based sandwich immunoreactions were performed on the IS, and the captured gold nanoparticle labels on the test zones were determined by highly-sensitive stripping voltammetric measurement of the dissolved gold ions (III) with a carbon paste electrode. The detection limits are 1.0 and 1.5 ng/mL with the linear ranges of 2.5-250 ng/mL for quantitative detection of R-IgG and H-IgM, respectively. The total assay time is around 25 minutes. Such multiplex electrochemical immunoassay could be readily highly multiplexed to allow simultaneous parallel detection of numerous proteins and is expected to open new opportunities for protein diagnostics and biosecurity.

  8. Amorphous carbon interlayers for gold on elastomer stretchable conductors

    NASA Astrophysics Data System (ADS)

    Manzoor, M. U.; Tuinea-Bobe, C. L.; McKavanagh, F.; Byrne, C. P.; Dixon, D.; Maguire, P. D.; Lemoine, P.

    2011-06-01

    Gold on polydimethylsiloxane (PDMS) stretchable conductors were prepared using a novel approach by interlacing an hydrogenated amorphous carbon (a-C : H) layer between the deposited metal layer and the elastomer. AFM analysis of the a-C : H film surface before gold deposition shows nanoscale buckling, the corresponding increase in specific surface area corresponds to a strain compensation for the first 4-6% of bi-axial tensile loading. Without this interlayer, the deposited gold films show much smaller and uni-directional ripples as well as more cracks and delaminations. With a-C : H interlayer, the initial electrical resistivity of the metal film decreases markedly (280-fold decrease to 8 × 10-6 Ω cm). This is not due to conduction within the carbon interlayer; both a-C : H/PDMS and PDMS substrates are electrically insulating. Upon cyclic tensile loading, both films become more resistive, but return to their initial state after 20 tensile cycles up to 60% strain. Profiling experiments using secondary ion mass spectroscopy and x-ray photoelectron spectroscopy indicate that the a-C : H layer intermixes with the PDMS, resulting in a graded layer of decreasing stiffness. We believe that both this graded layer and the surface buckling contribute to the observed improvement in the electrical performance of these stretchable conductors.

  9. Gallium in the Carlin-type gold deposits

    SciTech Connect

    Owens, P.A.; Ikramuddin, M.

    1985-01-01

    Gallium and aluminum are dispersed elements and are associated with each other because of their similar geochemical characteristics. The somewhat larger size of the Ga ion suggests that it may concentrate in residual melts and hydrothermal solutions. Ga and Al are also presumed to have different mobilities at a pH range of 3.4-4.1 and in alkaline solutions. Very little precise and accurate data exist on the concentration of Ga in hydrothermally altered rocks. In order to understand the behavior of Ga during hydrothermal processes and to explore the possibility of utilizing Ga as a guide to mineral deposits, unmineralized and mineralized rocks from four Carlin-type gold deposits were studied. Ga was analyzed by a newly developed precise and accurate method by electrothermal atomic absorption spectrophotometry. The Carlin-type gold deposits studied include Carlin and Alligator Ridge deposits of Nevada, Mercur deposit of Utah, and north Moccasin deposits of Montana. In all the mineralized areas there is more Ga in hydrothermally altered (mineralized) rocks than in unaltered (unmineralized) rocks. The enrichment factors for Ga differ from deposit to deposit. The highest enrichment of Ga is found in the north Moccasin deposits, where the average values in unmineralized and mineralized rocks are about 2 ppm and 10 ppm respectively. The oxidized mineralized rocks of the Carlin-type gold deposits have higher contents of Ga than carbonaceous rocks, while siliceous rocks contain the lowest Ga concentrations.

  10. Understanding the microscopic origin of gold nanoparticle anisotropic growth from molecular dynamics simulations.

    PubMed

    Meena, Santosh Kumar; Sulpizi, Marialore

    2013-12-01

    We use molecular dynamics simulations in order to understand the microscopic origin of the asymmetric growth mechanism in gold nanorods. We provide the first atomistic model of different surfaces on gold nanoparticles in a growing electrolyte solution, and we describe the interaction of the metal with the surfactants, namely, cetyltrimethylammonium bromide (CTAB) and the ions. An innovative aspect is the inclusion of the role of the surfactants, which are explicitly modeled. We find that on all the investigated surfaces, namely, (111), (110), and (100), CTAB forms a layer of distorted cylindrical micelles where channels among micelles provide direct ion access to the surface. In particular, we show how AuCl2(-) ions, which are found in the growth solution, can freely diffuse from the bulk solution to the gold surface. We also find that the (111) surface exhibits a higher CTAB packing density and a higher electrostatic potential. Both elements would favor the growth of gold nanoparticles along the (111) direction. These findings are in agreement with the growth mechanisms proposed by the experimental groups of Murphy and Mulvaney. PMID:24224887

  11. Gold nanodot and nanowire fabrication by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Pumarol-Crestar, Manuel E.

    In this dissertation work a technique that utilizes an atomic force microscope (AFM) in a non-contact configuration for direct patterning of nanoscale sized gold dots and wires and its characterizations is presented. For the fabrication of gold nanodots an oscillating gold-coated AFM probe is kept in close proximity to a sample surface and the application of a voltage pulse of either polarity leads to the deposition of the dot. Highly reproducible deposition is obtained by the precise control of the tip-sample separation. For controlling this separation, a feedback control enabled by the application of an external electrostatic servo force is implemented. The deposition process is well regulated and it allows for the study of dot formation and the obtaining of relevant statistics. Typical oscillation amplitude is 3 nm and tip sample average separation distance is 6 nm. Generated elect it fields at the tip apex are usually larger than 1 V/nm. The parameters that control the clot dimensions are the amplitude and duration of the pulse, and the tip-sample separation. We found that the deposition process is Field Evaporation Deposition (FED) of gold ions. There is a field threshold that is distinctive of the involved ion species. Typical deposition evaporation rates are of the order of 107 atoms/s and they are obtained for applied fields above the threshold for deposition. For patterning gold nanowires two methods were developed. A fast method where sequential dots are deposited with a pitch that is smaller than their diameter so that neighboring dots overlap, and a slow method in which the clots are deposited sequentially with a pitch that match their diameter and then the gaps between neighboring dots are filled with an interdigitated sequential deposition. Nanowires have an aspect ratio of about 10% and 40%, respectively. In situ electronic transport characterization measurements of a high aspect ratio nanowire revealed an electrical resistivity of 803 O- nm and a cm

  12. Efficient coupling and transport of a surface plasmon at 780 nm in a gold nanostructure

    NASA Astrophysics Data System (ADS)

    Gong, Yu; Joly, Alan G.; El-Khoury, Patrick Z.; Hess, Wayne P.

    2015-08-01

    We study plasmonic nanostructures in single-crystal gold with scanning electron and femtosecond photoemission electron microscopies. We design an integrated laser coupling and nanowire waveguide structure by focused ion beam lithography in single-crystal gold flakes. The photoemission results show that the laser field is efficiently coupled into a propagating surface plasmon by a simple hole structure and propagates efficiently in an adjacent nano-bar waveguide. A strong local field is created by the propagating surface plasmon at the nano-bar tip. A similar structure, with a decreased waveguide width and thickness, displayed significantly more intense photoemission indicating enhanced local electric field at the sharper tip.

  13. One pot, rapid and efficient synthesis of water dispersible gold nanoparticles using alpha-amino acids.

    PubMed

    Wangoo, Nishima; Kaur, Sarabjit; Bajaj, Manish; Jain, D V S; Sharma, Rohit K

    2014-10-31

    A detailed study on the synthesis of spherical and monodispersed gold nanoparticles (AuNPs) using all of the 20 naturally occurring α-amino acids has been reported. The synthesized nanoparticles have been further characterized using various techniques such as absorbance spectroscopy, transmission electron microscopy, dynamic light scattering and nuclear magnetic resonance. Size control of the nanoparticles has been achieved by varying the ratio of the gold ion to the amino acid. These monodispersed water soluble AuNPs synthesized using non-toxic, naturally occurring α-amino acids as reducing and capping/stabilizing agents serve as a remarkable example of green chemistry.

  14. One pot, rapid and efficient synthesis of water dispersible gold nanoparticles using alpha-amino acids

    NASA Astrophysics Data System (ADS)

    Wangoo, Nishima; Kaur, Sarabjit; Bajaj, Manish; Jain, D. V. S.; Sharma, Rohit K.

    2014-10-01

    A detailed study on the synthesis of spherical and monodispersed gold nanoparticles (AuNPs) using all of the 20 naturally occurring α-amino acids has been reported. The synthesized nanoparticles have been further characterized using various techniques such as absorbance spectroscopy, transmission electron microscopy, dynamic light scattering and nuclear magnetic resonance. Size control of the nanoparticles has been achieved by varying the ratio of the gold ion to the amino acid. These monodispersed water soluble AuNPs synthesized using non-toxic, naturally occurring α-amino acids as reducing and capping/stabilizing agents serve as a remarkable example of green chemistry.

  15. Efficient Coupling and Transport of a Surface Plasmon at 780 nm in a Gold Nanostructure

    SciTech Connect

    Gong, Yu; Joly, Alan G.; El-Khoury, Patrick Z.; Hess, Wayne P.

    2015-08-28

    We studied plasmonic nanostructures in single-crystal gold with scanning electron and femtosecond photoemission electron microscopies. We designed an integrated laser coupling and nanowire waveguide structure by focused ion beam lithography in single-crystal gold flakes. The photoemission results show that the laser field is efficiently coupled into a propagating surface plasmon by a simple hole structure and propagates efficiently in an adjacent nano-bar waveguide. A strong local field is created by the propagating surface plasmon at the nano-bar tip. A similar structure, with a decreased waveguide width and thickness, displayed significantly more intense photoemission indicating enhanced local electric field at the sharper tip.

  16. Invisible gold in Colombian auriferous soils

    NASA Astrophysics Data System (ADS)

    Bustos Rodriguez, H.; Oyola Lozano, D.; Rojas Martínez, Y. A.; Pérez Alcázar, G. A.; Balogh, A. G.

    2005-11-01

    Optic microscopy, X-ray diffraction (XRD), Mössbauer spectroscopy (MS), Electron microprobe analysis (EPMA) and secondary ions mass spectroscopy (SIMS) were used to study Colombian auriferous soils. The auriferous samples, collected from El Diamante mine, located in Guachavez-Nariño (Colombia), were prepared by means of polished thin sections and polished sections for EPMA and SIMS. Petrography analysis was made using an optical microscope with a vision camera, registering the presence, in different percentages, of the following phases: pyrite, quartz, arsenopyrite, sphalerite, chalcopyrite and galena. By XRD analysis, the same phases were detected and their respective cell parameters calculated. By MS, the presence of two types of pyrite was detected and the hyperfine parameters are: δ 1 = 0.280 ± 0.01 mm/s and Δ Q 1 = 0.642 ± 0.01 mm/s, δ 2 = 0.379 ± 0.01 mm/s and Δ Q 2 = 0.613 ± 0.01 mm/s. For two of the samples MS detected also the arsenopyrite and chalcopyrite presence. The mean composition of the detected gold regions, established by EPMA, indicated 73% Au and 27% Ag (electrum type). Multiple regions of approximately 200 × 200 μm of area in each mineral sample were analyzed by SIMS registering the presence of “invisible gold” associated mainly with the pyrite and occasionally with the arsenopyrite.

  17. Biomolecular Assembly of Gold Nanocrystals

    SciTech Connect

    Micheel, Christine Marya

    2005-05-20

    Over the past ten years, methods have been developed to construct discrete nanostructures using nanocrystals and biomolecules. While these frequently consist of gold nanocrystals and DNA, semiconductor nanocrystals as well as antibodies and enzymes have also been used. One example of discrete nanostructures is dimers of gold nanocrystals linked together with complementary DNA. This type of nanostructure is also known as a nanocrystal molecule. Discrete nanostructures of this kind have a number of potential applications, from highly parallel self-assembly of electronics components and rapid read-out of DNA computations to biological imaging and a variety of bioassays. My research focused in three main areas. The first area, the refinement of electrophoresis as a purification and characterization method, included application of agarose gel electrophoresis to the purification of discrete gold nanocrystal/DNA conjugates and nanocrystal molecules, as well as development of a more detailed understanding of the hydrodynamic behavior of these materials in gels. The second area, the development of methods for quantitative analysis of transmission electron microscope data, used computer programs written to find pair correlations as well as higher order correlations. With these programs, it is possible to reliably locate and measure nanocrystal molecules in TEM images. The final area of research explored the use of DNA ligase in the formation of nanocrystal molecules. Synthesis of dimers of gold particles linked with a single strand of DNA possible through the use of DNA ligase opens the possibility for amplification of nanostructures in a manner similar to polymerase chain reaction. These three areas are discussed in the context of the work in the Alivisatos group, as well as the field as a whole.

  18. Synthesis and Functionalization of Gold Nanoparticles Using Chemically Modified ssDNA

    NASA Astrophysics Data System (ADS)

    Calabrese, P. G.

    In the first part of this thesis, methods for functionalizing spherical gold nanoparticles with nucleic acid binding ligands (aptamers) that target the VEGF receptor complex were developed. In order to provide a multiplexed labeling strategy for imaging the VEGF receptor complex in electron microscopy, gold nanoparticles of distinct sizes were conjugated to modified ssDNA aptamers that target the VEGF-A cytokine, the VEGFR-2 RTK receptor and a membrane associated co-receptor, Nrp-1. The modified ssDNA gold nanoparticle conjugates were applied to a human lung carcinoma cell line (A549) which has been shown to express each of these proteins and used as a model system for VEGF signaling. Binding constants for the modified aptamers were also determined using a fluorescence polarization anisotropy assay to determine KD and KOFF for the aptamers with their respective proteins. In the latter part of this thesis, a modied ssDNA SELEX protocol was also developed in order to evolve imidazole modied ssDNA sequences that assemble gold nanoparticles from Au3+ precursor ions in aqueous solution. Active sequences bound to nanoparticles were partitioned from inactive sequences based on density via ultracentrifugation through a discontinuous sucrose gradient. Colloidal gold solutions produced by the evolved pool had a distinct absorbance spectra and produced nanoparticles with a narrower distribution of sizes compared to colloidal gold solutions produced by the starting randomized pool of imidazole modified ssDNA. Sequencing data from the evolved pool shows that conserved 5 and 6 nt motifs were shared amongst many of the isolates, which indicates that these motifs could serve as chelation sites for gold atoms or help stabilize colloidal gold solutions in a base specific manner.

  19. Chromosomal instability induced by heavy ion irradiation

    NASA Technical Reports Server (NTRS)

    Limoli, C. L.; Ponnaiya, B.; Corcoran, J. J.; Giedzinski, E.; Morgan, W. F.

    2000-01-01

    PURPOSE: To establish the dose-response relationship for the induction of chromosomal instability in GM10115 cells exposed to high-energy iron ions (1 GeV/nucleon, mean LET 146 keV/microm) and gold ions (11 GeV/nucleon, mean LET 1450 keV/microm). Past work has established that sparsely ionizing X-rays can induce a long-lived destabilization of chromosomes in a dose-dependent manner at an incidence of approximately 3% per gray. The present investigation assesses the capacity of High-Z and High-energy (HZE) particles to elicit this same endpoint. MATERIALS AND METHODS: Clonal populations derived from single progenitor cells surviving heavy-ion irradiation were analyzed cytogenetically to identify those clones showing a persistent destablization of chromosomes. RESULTS: Dose-response data, with a particular emphasis at low dose (< 1.0 Gy), indicate a frequency of approximately 4% per gray for the induction of chromosomal instability in clones derived from single progenitor cells surviving exposure to iron ions. The induction of chromosomal instability by gold ions was, however, less responsive to applied dose, as the observed incidence of this phenotype varied from 0 to 10% over 1-8 Gy. Both iron and gold ions gave dose-dependent increases in the yield of chromosomal aberrations (both chromosome- and chromatid-type) measured at the first mitosis following irradiation, as well as shoulderless survival curves having D0=0.87 and 1.1 Gy respectively. CONCLUSIONS: Based on the present dose-response data, the relative biological effectiveness of iron ions is 1.3 for the induction of chromosomal instability, and this indicates that heavy ions are only slightly more efficient than X-rays at eliciting this delayed phenotype.

  20. Mechanism of ion-beam-induced deposition

    SciTech Connect

    Dubner, A.D.

    1990-01-01

    Ion-beam induced deposition (IBID) is described as well as the system developed for in-situ measurement of IBID. Gold films were deposited on quartz crystal microbalances (QCM) by decomposing C{sub 7}H{sub 7}F{sub 6}O{sub 2}Au (dimethyl gold hexafluoroacetylacetonate, or DMG (hfac)) with 2- to 10-keV Xe{sup +}, Kr{sup +}, Ar{sup +}, Ne{sup +}, or He{sup +} ion beams. A conceptual model for ion beam induced deposition is presented which relates the net deposition yield to the gas adsorption, the decomposition cross section, and the sputter yield. To test this model, the deposition rate with 5-keV Ar{sup +} ions was measured in-situ as a function of ion current, gas pressure, and substrate temperature using the QCM. The deposition yield (mass deposited per incident ion) increased with increasing gas pressure and decreasing substrate temperature. The QCM was also used to measure the adsorption of DMG (hfac). Results demonstrate that the variation in deposition yield with temperature and pressure was proportional to the number of DMG (hfac) molecules adsorbed per cm{sup 2}, and verify the conceptual model. Based on the observed correlation between deposition yield and adsorption, a decomposition cross section for 5-keV argon ions of 2 {times} 10{sup {minus}13} cm{sup 2} was estimated.

  1. Adsorption of metal ions by carboxymethylchitin and carboxymethylchitosan hydrogels

    NASA Astrophysics Data System (ADS)

    Wasikiewicz, Jaroslaw M.; Nagasawa, Naotsugu; Tamada, Masao; Mitomo, Hiroshi; Yoshii, Fumio

    2005-07-01

    Radiation cross-linking of CM-chitin and CM-chitosan has been investigated. Such parameters of radiation cross-linking as gelation doses, cross-linking and degradation radiation yields and ratios of scission to cross-linking has been determined for both polymers. The absorption ability of various metal ions into EB-radiation cross-linked carboxymethylchitin and carboxymethylchitosan has been investigated. The highest adsorption of scandium and gold has been obtained for carboxymethylchitin (CMCht) and carboxymethylchitosan (CMChts), respectively. Kinetic studies showed that adsorption of most of the metal ions occur in a relatively short period of time (2 h). Detail investigation of adsorption of gold ions has been carried out for both hydrogels. The maximum uptake of Au cations, based on Langmuir equation was determined to be 37.59 for CM-chitosan and 11.86 for CM-chitin. Both hydrogels indicate favorable adsorption of gold cations.

  2. CO extrusion in homogeneous gold catalysis: reactivity of gold acyl species generated through water addition to gold vinylidenes.

    PubMed

    Bucher, Janina; Stößer, Tim; Rudolph, Matthias; Rominger, Frank; Hashmi, A Stephen K

    2015-01-26

    Herein, we describe a new gold-catalyzed decarbonylative indene synthesis. Synergistic σ,π-activation of diyne substrates leads to gold vinylidene intermediates, which upon addition of water are transformed into gold acyl species, a type of organogold compound hitherto only scarcely reported. The latter are shown to undergo extrusion of CO, an elementary step completely unknown for homogeneous gold catalysis. By tuning the electronic and steric properties of the starting diyne systems, this new reactivity could be exploited for the synthesis of indene derivatives in high yields.

  3. Visualizing expanding warm dense matter heated by laser-generated ion beams

    SciTech Connect

    Bang, Woosuk

    2015-08-24

    This PowerPoint presentation concluded with the following. We calculated the expected heating per atom and temperatures of various target materials using a Monte Carlo simulation code and SESAME EOS tables. We used aluminum ion beams to heat gold and diamond uniformly and isochorically. A streak camera imaged the expansion of warm dense gold (5.5 eV) and diamond (1.7 eV). GXI-X recorded all 16 x-ray images of the unheated gold bar targets proving that it could image the motion of the gold/diamond interface of the proposed target.

  4. Physiological investigation of gold nanorods toward watermelon.

    PubMed

    Wan, Yujie; Li, Junli; Ren, Hongxuan; Huang, Jin; Yuan, Hong

    2014-08-01

    The objective of the present study was to evaluate the phytotoxicity and oxidant stress of the gold nanorods toward watermelon, and hence give a quantitative risk assessment of both seeds and plants phase. The seed germination, the activity of antioxidant enzymes, and the contents of soluble protein and malondialdehyde (MDA) have been measured while the plant roots were observed by transmission electron microscopy (TEM). It was found that the gold nanorods significantly promoted the root elongation. Furthermore, the results on the enzymes activities of plant indicated that oxidative stress happened in the plant treated with gold nanorods. However, the gold nanorods resulted in the phytotoxicity toward plant especially at high concentration. The TEM images of the plant roots with and without the treatment of gold nanorods showed the significant different size of starch granules. In conclusion, significant physiological changes of plant occurred after treatment with the gold nanorods. PMID:25936063

  5. Target fabrication for ion-beam driven hohlraum experiments

    SciTech Connect

    Aubert, J.H.; Sawyer, P.S.; Smith, M.L.

    1997-05-01

    Ion-beam driven hohlraum targets were designed to absorb the energy of PBFAII lithium ion beams within a foam, which converted the ion beam energy into x-rays. The foam was held within a gold hohlraum. X-ray radiation was observed from the top of the target through a circular diagnostic aperture. On the bottom of the target was a gold-coated aluminum witness plate, which was a component of an active, shock-breakout diagnostic. Surrounding the outside of the hohlraum were five titanium pins which produced ion-induced inner-shell x-rays (4.5 keV) to diagnose the lithium beam. Several different manufacturing processes and characterization techniques were utilized to prepare these targets. Extensive documentation provided quality control on their preparation. This report summarizes the preparation, characterization, and documentation of targets for ion-beam driven hohlraum experiments.

  6. Electrochemical Assay of Gold-Plating Solutions

    NASA Technical Reports Server (NTRS)

    Chiodo, R.

    1982-01-01

    Gold content of plating solution is assayed by simple method that required only ordinary electrochemical laboratory equipment and materials. Technique involves electrodeposition of gold from solution onto electrode, the weight gain of which is measured. Suitable fast assay methods are economically and practically necessary in electronics and decorative-plating industries. If gold content in plating bath is too low, poor plating may result, with consequent economic loss to user.

  7. Native gold in Hawaiian alkalic magma

    USGS Publications Warehouse

    Sisson, T.W.

    2003-01-01

    Native gold found in fresh basanite glass from the early submarine phase of Kilauea volcano, Hawaii, may be the first documented case of the transport of gold as a distinct precious metal phase in a mantle-derived magma. The gold-bearing glass is a grain in bedded volcanic glass sandstone (Japan Marine Science and Technology Center (JAMSTEC) sample S508-R3) collected by the submersible Shinkai 6500 at 3879 m depth off Kilauea's south flank. Extensive outcrops there expose debris-flow breccias and sandstones containing submarine-erupted alkalic rock fragments and glasses from early Kilauea. Precipitation of an immiscible gold liquid resulted from resorption of magmatic sulfides during crystallization-differentiation, with consequent liberation of sulfide-hosted gold. Elevated whole-rock gold concentrations (to 36 ppb) for fresh lavas and clasts from early Kilauea further show that some magmas erupted at the beginning stages of Hawaiian shield volcanoes were distinctly gold rich, most likely owing to limited residual sulfide in their mantle source. Alkalic magmas at other ocean islands may also be gold rich, and oceanic hot-spot provinces may contain underappreciated gold resources.

  8. Gold ink coating of thermocouple sheaths

    DOEpatents

    Ruhl, H. Kenneth

    1992-01-01

    A method is provided for applying a gold ink coating to a thermocouple sheath which includes the steps of electropolishing and oxidizing the surface of the thermocouple sheath, then dipping the sheath into liquid gold ink, and finally heat curing the coating. The gold coating applied in this manner is highly reflective and does not degrade when used for an extended period of time in an environment having a temperature over 1000.degree. F. Depending on the application, a portion of the gold coating covering the tip of the thermocouple sheath is removed by abrasion.

  9. Gold Fever! Seattle Outfits the Klondike Gold Rush. Teaching with Historic Places.

    ERIC Educational Resources Information Center

    Blackburn, Marc K.

    This lesson is based on the National Register of Historic Places registration file, "Pioneer Square Historic District," and other sources about Seattle (Washington) and the Klondike Gold Rush. The lesson helps students understand how Seattle exemplified the prosperity of the Klondike Gold Rush after 1897 when news of a gold strike in Canada's…

  10. Small molecule-capped gold nanoparticles as potent antibacterial agents that target Gram-negative bacteria.

    PubMed

    Zhao, Yuyun; Tian, Yue; Cui, Yan; Liu, Wenwen; Ma, Wanshun; Jiang, Xingyu

    2010-09-01

    This report illustrates a new strategy in designing antibacterial agents--a series of commercially available compounds, amino-substituted pyrimidines (themselves completely inactive as antibiotics), when presented on gold nanoparticles (NPs), show antibacterial activities against multidrug-resistant clinical isolates, without external sources of energy such as IR. These pyrimidine-capped gold NPs exert their antibiotic actions via sequestration of magnesium or calcium ions to disrupt the bacterial cell membrane, resulting in leakage of cytoplasmic contents including nucleic acids from compromised cell membranes, and via interaction with DNA and inhibition of protein synthesis by internalized NPs. These amino-substituted pyrimidine-capped gold NPs induce bacterial resistance more slowly compared with conventional, small-molecule antibiotics and appear harmless to human cells; these NPs may hence be useful for clinical applications.

  11. Observation by photothermal microscopy of increased silica absorption in laser damage induced by gold nanoparticles.

    SciTech Connect

    Bonneau, F.; Combis, P.; Rullier, J. L.; Commandre, M.; During, A.; Natoli, J. Y.; Pellin, M. J.; Savina, M. R.; Cottancin, E.; Pellarin, M.

    2003-11-10

    In order to understand laser-induced damage in glass, we subjected engineered SiO{sub 2} thin films containing sub-micron gold inclusions to high fluences, and observed the results using several means of analysis. We found decoupling in time between the emission of gold and that of silicon with samples containing gold spheres of diameter 3 nm. We have analyzed the changes in the silica optical absorption at 1064 nm, using photothermal deflection microscopy. We find, upon exceeding a sharp fluence threshold, a thousand-fold increase in absorption of the silica matrix around the inclusion. We conclude that ions from the inclusion permeate the surrounding silica, and form a highly absorbent mixture.

  12. Direct electron transfer of Trametes hirsuta laccase adsorbed at unmodified nanoporous gold electrodes.

    PubMed

    Salaj-Kosla, Urszula; Pöller, Sascha; Schuhmann, Wolfgang; Shleev, Sergey; Magner, Edmond

    2013-06-01

    The enzyme Trametes hirsuta laccase undergoes direct electron transfer at unmodified nanoporous gold electrodes, displaying a current density of 28μA/cm(2). The response indicates that ThLc was immobilised at the surface of the nanopores in a manner which promoted direct electron transfer, in contrast to the absence of a response at unmodified polycrystalline gold electrodes. The bioelectrocatalytic activity of ThLc modified nanoporous gold electrodes was strongly dependent on the presence of halide ions. Fluoride completely inhibited the enzymatic response, whereas in the presence of 150mM Cl(-), the current was reduced to 50% of the response in the absence of Cl(-). The current increased by 40% when the temperature was increased from 20°C to 37°C. The response is limited by enzymatic and/or enzyme electrode kinetics and is 30% of that observed for ThLc co-immobilised with an osmium redox polymer. PMID:23274541

  13. Gold/titania composites: An X-ray absorption spectroscopy study on the influence of the reduction method

    NASA Astrophysics Data System (ADS)

    Meire, Mieke; Tack, Pieter; De Keukeleere, Katrien; Balcaen, Lieve; Pollefeyt, Glenn; Vanhaecke, Frank; Vincze, Laszlo; Van Der Voort, Pascal; Van Driessche, Isabel; Lommens, Petra

    2015-08-01

    The functionalization of titania based materials with noble metal cocatalysts such as gold or platinum is a well known procedure to improve the catalytic activity of these materials in for example the degradation of organic pollutants or CO conversion. Parameters such as cocatalyst load, noble metal particle size and oxidation state influence the efficiency of these materials. We have impregnated a mesoporous titania powder with a gold salt and used different synthesis routes to reduce the gold ions. A structural analysis was performed using electron microscopy and nitrogen sorption. An X-ray absorption near edge structure spectroscopy study, in both high and low resolution, was performed to investigate the influence of the different reduction methods on the oxidation state of the gold atoms. This technique can also provide information on the local environment of the gold atoms and their interaction with the titanium dioxide host. We found that varying the reduction method has a significant impact on the oxidation state of the gold cocatalysts. This lead to varying interactions with the titania support and charging of the gold nanoparticles.

  14. Synthesis and characterization of biomatrixed-gold nanoparticles by the mushroom Flammulina velutipes and its heterogeneous catalytic potential.

    PubMed

    Narayanan, Kannan Badri; Park, Hyun Ho; Han, Sung Soo

    2015-12-01

    Sustainable and greener synthesis of intracellular gold nanoparticles using mushroom Flammulina velutipes is reported. Incubation of a mushroom in chloroaurate solution resulted in the synthesis and immobilization of stable gold nanoparticles inside the mushroom mycelia. Transmission electron microscopic (TEM) analysis revealed the presence of gold nanoparticles (⩽20nm) inside the mycelia, primarily on the inner surface of the cell membrane. Inductively coupled plasma-optical emission spectrometry (ICP-OES) revealed that the accumulated gold concentration ranged from 64.4 to 330.5mgkg(-1) dry weight (DW) in the mushroom mycelia. The reduction of Au(3+) ions to Au(0) and stabilization of gold nanoparticles occurred within 1h, and the formation of fcc crystalline gold nanoparticles was confirmed by X-ray diffraction (XRD) analysis. This facile intracellular synthesis of gold nanoparticles by a mushroom without using any toxic chemicals or technologically expensive processes is used as a heterogeneous catalyst in the reduction of organic pollutants methylene blue (MB) and 4-nitrophenol (4NP). The reduction reaction follows pseudo-first order kinetics with a reaction rate constant of 0.0529min(-1) and 0.1236min(-1) for MB and 4NP, respectively. This biological process of biomatrixing of metal nanoparticles for heterogeneous catalytic reactions is simple, nontoxic, environmentally benign, and economically viable compared to the chemical synthetic routes.

  15. Investigation of splashing phenomena during the impact of molten sub-micron gold droplets on solid surfaces.

    PubMed

    Shen, Daozhi; Zou, Guisheng; Liu, Lei; Duley, Walter W; Norman Zhou, Y

    2016-01-01

    The dynamics of splashing accompanying the impact of molten 800 nm diameter gold droplets on silicon, gold coated silicon, gold coated glass and polished solid gold surfaces has been studied. A novel method based on laser induced forward transfer has been developed to generate single submicron molten gold droplets. Splashing morphology has been characterized using Scanning Electron Microscopy (SEM) and Focused Ion Beam (FIB) techniques. It is found that the splashing of submicron gold droplets upon impact is enhanced by high droplet impact energy achieved by reducing the droplet flight distance and that an air layer resulting in a bubble becomes trapped under the impacting droplets even when the size of the droplet is less than one micron. Our results show that, under these conditions, heat transfer between the submicron droplet and the solid substrate is more important than surface roughness and surface tension in the evolution of splashing. A theoretical model has been developed to simulate the splashing characteristics of submicron gold droplets during impact. Both the experimental data and the analytical model show that splashing is enhanced by high heat transfer rates to the surface.

  16. Photo-bio-synthesis of irregular shaped functionalized gold nanoparticles using edible mushroom Pleurotus florida and its anticancer evaluation.

    PubMed

    Bhat, Ravishankar; Sharanabasava, V G; Deshpande, Raghunandan; Shetti, Ullas; Sanjeev, Ganesh; Venkataraman, A

    2013-08-01

    A green chemistry approach to the synthesis of gold nanoparticles using edible mushroom Pleurotus florida (Oyster mushroom) by photo-irradiation method has been attempted. The mixture containing the aqueous gold ions and the mushroom extract was exposed to sunlight; this resulted in the formation of biofunctionalized gold nanoparticles. These nanoparticles were characterized using various techniques like UV-visible spectroscopy; X-ray diffraction studies, Energy dispersive X-ray analysis, Field emission scanning electron microscopy, Atomic force microscopy, Transmission electron microscopy and Fourier transform infrared spectrometry. The obtained biofunctionalized gold nanoparticles showed effective anti-cancer property against four different cancer cell lines A-549 (Human lung carcinoma), K-562 (Human chronic myelogenous leukemia bone marrow), HeLa (Human cervix) and MDA-MB (Human adenocarcinoma mammary gland) and no lethal effect is observed in Vero (African green monkey kidney normal cell) cell lines. PMID:23747539

  17. Gold nanoparticle photosensitized radical photopolymerization.

    PubMed

    Anyaogu, Kelechi C; Cai, Xichen; Neckers, Douglas C

    2008-12-01

    We report the photopolymerization of an acrylic monomer using thiol-stabilized gold nanoparticles (AuNPs) and [4-[(octyloxy)phenyl] phenyl] iodonium hexafluoroantimonate (OPPI) as photoinitiator and coinitiator, respectively. Polymerization occurred only when the AuNPs, in the presence of the iodonium salt, were irradiated at the particle plasmonic absorption region (lambda>450 nm). The AuNPs activate the coinitiator by intermolecular electron transfer since OPPI has no absorption in the visible region. Fourier transform infrared spectroscopy was used to monitor polymerization. UV-Vis spectroscopy and transmission electron microscopy measurements were used to characterize the NPs. PMID:19037499

  18. 16 CFR Appendix to Part 23 - Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate, Silver, and Platinum Industry..., Silver, and Platinum Industry Products (a) Exemptions recognized in the industry and not to be considered... in any assay for quality of a silver industry product include screws, rivets, springs, spring...

  19. 16 CFR Appendix to Part 23 - Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate, Silver, and Platinum Industry..., Silver, and Platinum Industry Products (a) Exemptions recognized in the industry and not to be considered... in any assay for quality of a silver industry product include screws, rivets, springs, spring...

  20. Mineralogical siting and distribution of gold in quartz veins and sulfide ores of the Ashanti mine and other deposits in the Ashanti belt of Ghana: genetic implications

    NASA Astrophysics Data System (ADS)

    Oberthür, T.; Weiser, T.; Amanor, J. A.; Chryssoulis, S. L.

    1997-01-01

    The Ashanti belt of Ghana constitutes a gold province which has produced a total of about 1500 t of gold historically. Gold mineralization is found in steep, NNE-SSW to NE-SW trending shear zones predominantly transecting metasediments of the Palaeoproterozoic Birimian Supergroup (2.2-2.1 Ga), disseminated in ca. 2.1 Ga granitoids, in paleo-conglomerates of the Tarkwaian Group (< 2135 Ma), and in recent placers. The distribution of gold, its chemistry, paragenesis and mineralogical siting in the mesothermal ores of the major mines in the Ashanti belt, namely Konongo, Ashanti, Bogosu and Prestea mine, are the subject of this study. At the localities studied, gold is present in two main types of ores: 1. Quartz veins with free-milling gold. The gold is relatively silver-rich (true fineness values from 730 to 954) and is accompanied by a distinct suite of Cu, Pb, Sb sulfides. 2. Sulfide ores, consisting of arsenopyrite, pyrite and rarer pyrrhotite and marcasite, with refractory gold. The ores have apparent fineness values larger than 910. Arsenopyrite and locally (at Bogosu) pyrite were identified as the hosts of submicroscopic gold. Mean concentrations of gold in arsenopyrite in various samples from the different mines, obtained by secondary ion mass spectrometry (SIMS), range from 67 to 314 ppm Au. Gold concentration mapping in individual arsenopyrite crystals from the different deposits revealed similar patterns of gold distribution: the grains possess a gold-poor core, and elevated gold contents are present along distinct crystal growth zones towards their rims. The outermost crystal layer is usually gold-poor. The well-preserved distribution patterns also indicate that remobilization of gold from the sulfides played an insignificant role in the ores of the Ashanti belt. Multiple quartz veining and growth zoning of the sulfides are interpreted as manifestations of multiple episodes of fluid infiltration, fluid flow and mineral deposition. The bimodal occurrence of

  1. Innate stimulatory capacity of high molecular weight transition metals Au (gold) and Hg (mercury).

    PubMed

    Rachmawati, Dessy; Alsalem, Inás W A; Bontkes, Hetty J; Verstege, Marleen I; Gibbs, Sue; von Blomberg, B M E; Scheper, Rik J; van Hoogstraten, Ingrid M W

    2015-03-01

    Nickel, cobalt and palladium ions can induce an innate immune response by triggering Toll-like receptor (TLR)-4 which is present on dendritic cells (DC). Here we studied mechanisms of action for DC immunotoxicity to gold and mercury. Next to gold (Na3Au (S2O3)2⋅2H2O) and mercury (HgCl2), nickel (NiCl2) was included as a positive control. MoDC activation was assessed by release of the pro-inflammatory mediator IL-8. Also PBMC were studied, and THP-1 cells were used as a substitution for DC for evaluation of cytokines and chemokines, as well as phenotypic, alterations in response to gold and mercury. Our results showed that both Na3Au (S2O3)2⋅2H2O and HgCl2 induce substantial release of IL-8, but not IL-6, CCL2 or IL-10, from MoDc, PBMC, or THP-1 cells. Also gold and, to a lesser extent mercury, caused modest dendritic cell maturation as detected by increased membrane expression of CD40 and CD80. Both metals thus show innate immune response capacities, although to a lower extent than reported earlier for NiCl2, CoCl2 and Na2 [PdCl4]. Importantly, the gold-induced response could be ascribed to TLR3 rather than TLR4 triggering, whereas the nature of the innate mercury response remains to be clarified. In conclusion both gold and mercury can induce innate immune responses, which for gold could be ascribed to TLR3 dependent signalling. These responses are likely to contribute to adaptive immune responses to these metals, as reflected by skin and mucosal allergies.

  2. Sesquicentennial: Gold Rush to Golden Statehood.

    ERIC Educational Resources Information Center

    Sabato, George

    1998-01-01

    Provides an annotated bibliography of educational resources that can be used to support instructional units on the Gold Rush or the sesquicentennial of California's statehood. The materials include workbooks, videos, teacher's guides, monographs, and magazines. Offers a brief history of the Gold Rush and a set of relevant discussion questions.…

  3. A Placer-Gold Evaluation Exercise.

    ERIC Educational Resources Information Center

    Tunley, A. Tom

    1984-01-01

    A laboratory exercise allowing students to use drillhole data to simulate the process of locating a placer gold paystreak is presented. As part of the activity students arithmetically compute the value of their gold, mining costs, and personal profits or losses, and decide on development plans for the claim. (BC)

  4. Gold-Collar Workers. ERIC Digest.

    ERIC Educational Resources Information Center

    Wonacott, Michael E.

    The gold-collar worker has problem-solving abilities, creativity, talent, and intelligence; performs non-repetitive and complex work difficult to evaluate; and prefers self management. Gold-collar information technology workers learn continually from experience; recognize the synergy of teams; can demonstrate leadership; and are strategic thinkers…

  5. Gold-nickel-titanium brazing alloy

    DOEpatents

    Mizuhara, Howard

    1995-01-03

    A brazing alloy in accordance with this invention has the following composition, by weight: 91 to 99 gold, 0.5 to 7% nickel; 0.10 to 2% titanium. Alternatively, with palladium present, the composition is as follows, by weight: 83 to 96% gold; 3 to 10% palladium; 0.5 to 5% nickel; 0.10 to 2% titanium.

  6. Gold-nickel-titanium brazing alloy

    DOEpatents

    Mizuhara, Howard

    1990-07-03

    A brazing alloy in accordance with this invention has the following composition, by weight: 91 to 99% gold, 0.5 to 7% nickel; 0.10 to 2% titanium. Alternatively, with palladium present, the composition is as follows, by weight: 83 to 96% gold; 3 to 10% palladium; 0.5 to 5% nickel; 0.10 to 2% titanium.

  7. The Gold Mining Camp: A Simulation Game.

    ERIC Educational Resources Information Center

    Stoltman, Joseph P.; Keach, Everett T., Jr.

    This economics simulation game complements the third grade Gold Mining Unit developed by Project Social Studies at the University of Minnesota. The simulation is designed for three purposes: 1) to reinforce the prior learning which occurs in the gold mining camp unit; 2) to involve eight-year-olds in the process of solving simulated economic…

  8. Computational approaches to homogeneous gold catalysis.

    PubMed

    Faza, Olalla Nieto; López, Carlos Silva

    2015-01-01

    Homogenous gold catalysis has been exploding for the last decade at an outstanding pace. The best described reactivity of Au(I) and Au(III) species is based on gold's properties as a soft Lewis acid, but new reactivity patterns have recently emerged which further expand the range of transformations achievable using gold catalysis, with examples of dual gold activation, hydrogenation reactions, or Au(I)/Au(III) catalytic cycles.In this scenario, to develop fully all these new possibilities, the use of computational tools to understand at an atomistic level of detail the complete role of gold as a catalyst is unavoidable. In this work we aim to provide a comprehensive review of the available benchmark works on methodological options to study homogenous gold catalysis in the hope that this effort can help guide the choice of method in future mechanistic studies involving gold complexes. This is relevant because a representative number of current mechanistic studies still use methods which have been reported as inappropriate and dangerously inaccurate for this chemistry.Together with this, we describe a number of recent mechanistic studies where computational chemistry has provided relevant insights into non-conventional reaction paths, unexpected selectivities or novel reactivity, which illustrate the complexity behind gold-mediated organic chemistry.

  9. RF Sputtering of Gold Contacts On Niobium

    NASA Technical Reports Server (NTRS)

    Barr, D. W.

    1983-01-01

    Reliable gold contacts are deposited on niobium by combination of RF sputtering and photolithography. Process results in structures having gold only where desired for electrical contact. Contacts are stable under repeated cycling from room temperature to 4.2 K and show room-temperature contact resistance as much as 40 percent below indium contacts made by thermalcompression bonding.

  10. Spherical aggregates composed of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Chi-Chang; Kuo, Ping-Lin; Cheng, Yu-Chen

    2009-02-01

    Alkylated triethylenetetramine (C12E3) was synthesized and used as both a reductant in the preparation of gold nanoparticles by the reduction of HAuCl4 and a stabilizer in the subsequent self-assembly of the gold nanoparticles. In acidic aqueous solution, spherical aggregates (with a diameter of about 202 ± 22 nm) of gold nanoparticles (with the mean diameter of ~18.7 nm) were formed. The anion-induced ammonium adsorption of the alkylated amines on the gold nanoparticles was considered to provide the electrostatic repulsion and steric hindrance between the gold nanoparticles, which constituted the barrier that prevented the individual particles from coagulating. However, as the amino groups became deprotonated with increasing pH, the ammonium adsorption was weakened, and the amino groups were desorbed from the gold surface, resulting in discrete gold particles. The results indicate that the morphology of the reduced gold nanoparticles is controllable through pH-'tunable' aggregation under the mediation of the amino groups of alkylated amine to create spherical microstructures.

  11. Gold nanoparticles for nucleic acid delivery.

    PubMed

    Ding, Ya; Jiang, Ziwen; Saha, Krishnendu; Kim, Chang Soo; Kim, Sung Tae; Landis, Ryan F; Rotello, Vincent M

    2014-06-01

    Gold nanoparticles provide an attractive and applicable scaffold for delivery of nucleic acids. In this review, we focus on the use of covalent and noncovalent gold nanoparticle conjugates for applications in gene delivery and RNA-interference technologies. We also discuss challenges in nucleic acid delivery, including endosomal entrapment/escape and active delivery/presentation of nucleic acids in the cell. PMID:24599278

  12. Single particle optical investigation of gold shell enhanced upconverted fluorescence emission

    NASA Astrophysics Data System (ADS)

    Green, Kory; Lim, Shuang Fang; Hallen, Hans

    2014-03-01

    Upconverting nanoparticles (UCNPs) excited in the near IR offer novel advantages as fluorescent contrast agents, allowing for background free bio-imaging. However, their fluorescence brightness is hampered by low quantum efficiency due to the low absorption cross section of Ytterbium and Erbium ions in the near IR. We enhance the efficiency of these particles by investigating the plasmonic coupling of 30nm diameter core NaYF4: Yb, Er upconverting particles (UCNPs) with a gold shell coating. An enhancement of green emission by a factor of five and a three times overall increase in emission intensity has been achieved for single particle spectra. UV-Vis absorption has confirmed the surface plasmon resonance (SPR) of the gold shell to the near IR and transmission electron microscope (TEM) images demonstrates successful growth of a gold shell around the upconversion particle. Time-resolved spectroscopy shows that gold shell coupling changes the lifetime of the energy levels of the Erbium ion that are relevant to the emission process.

  13. Bimetallic silver-gold clusters by matrix-assisted laser desorption/ionization.

    PubMed

    Kéki, Sándor; Nagy, Lajos; Deák, György; Zsuga, Miklós

    2004-10-01

    Pure gold clusters (Aun+) were produced up to the cluster size of n = 100 by matrix-assisted laser desorption/ionization (MALDI). The mass spectrum of the resulting clusters showed alteration in the ion intensity at odd-even clusters size. On the other hand, intensity drops at cluster size predicted by the jellium model theory was also observed. Positively and negatively charged bimetallic silver-gold clusters were produced under MALDI conditions from the mixture of HAuCl4/silver trifluoroacetate and the 2-(4-hydroxyphenylazo)benzoic acid (HABA) matrix. A linear correlation was found between the intensity ratio of AunAgm+ to Au(n+1)Ag(m-1)+ cluster ions and the molar ratio of the gold to silver salt. It was observed that the composition and the distribution of the clusters can be varied with the molar ratio of the silver and gold salts. It was also found that the resulting cluster sizes obey the lognormal distribution. PMID:15465358

  14. Switchable imbibition in nanoporous gold

    PubMed Central

    Xue, Yahui; Markmann, Jürgen; Duan, Huiling; Weissmüller, Jörg; Huber, Patrick

    2014-01-01

    Spontaneous imbibition enables the elegant propelling of nano-flows because of the dominance of capillarity at small length scales. The imbibition kinetics are, however, solely determined by the static host geometry, the capillarity, and the fluidity of the imbibed liquid. This makes active control particularly challenging. Here we show for aqueous electrolyte imbibition in nanoporous gold that the fluid flow can be reversibly switched on and off through electric potential control of the solid–liquid interfacial tension, that is, we can accelerate the imbibition front, stop it, and have it proceed at will. Simultaneous measurements of the mass flux and the electrical current allow us to document simple scaling laws for the imbibition kinetics, and to explore the charge transport in the metallic nanopores. Our findings demonstrate that the high electric conductivity along with the pathways for fluid/ionic transport render nanoporous gold a versatile, accurately controllable electrocapillary pump and flow sensor for minute amounts of liquids with exceptionally low operating voltages. PMID:24980062

  15. Colloidal Gold--Collagen Protein Core--Shell Nanoconjugate: One-Step Biomimetic Synthesis, Layer-by-Layer Assembled Film, and Controlled Cell Growth.

    PubMed

    Xing, Ruirui; Jiao, Tifeng; Yan, Linyin; Ma, Guanghui; Liu, Lei; Dai, Luru; Li, Junbai; Möhwald, Helmuth; Yan, Xuehai

    2015-11-11

    The biogenic synthesis of biomolecule-gold nanoconjugates is of key importance for a broad range of biomedical applications. In this work, a one-step, green, and condition-gentle strategy is presented to synthesize stable colloidal gold-collagen core-shell nanoconjugates in an aqueous solution at room temperature, without use of any reducing agents and stabilizing agents. It is discovered that electrostatic binding between gold ions and collagen proteins and concomitant in situ reduction by hydroxyproline residues are critically responsible for the formation of the core-shell nanoconjugates. The film formed by layer-by-layer assembly of such colloidal gold-collagen nanoconjugates can notably improve the mechanical properties and promote cell adhesion, growth, and differentiation. Thus, the colloidal gold-collagen nanoconjugates synthesized by such a straightforward and clean manner, analogous to a biomineralization pathway, provide new alternatives for developing biologically based hybrid biomaterials toward a range of therapeutic and diagnostic applications.

  16. A simple soft lithographic nanopatterning of gold on gallium arsenide via galvanic displacement.

    PubMed

    Lim, Hyuneui; Noh, Jung-Hyun; Choi, Dae-Geun; Kim, Wan-Doo; Maboudian, Roya

    2010-08-01

    Nanoscale patterning of gold layers on GaAs substrate is demonstrated using a combination of soft lithographic molding and galvanic displacement deposition. First, an electroless deposition method has been developed to plate gold on GaAs with ease and cost-effectiveness. The electroless metallization process is performed by dipping the GaAs substrates into a gold salt solution without any reducing agents or additives. The deposition proceeds via galvanic displacement in which gold ions in the aqueous solution are reduced by electrons arising from the GaAs substrate itself. The deposition rate, surface morphology and adhesion property can be modulated by the plating parameters such as the choice of acids and the immersion time. Second, soft lithographic patterning of nanodots, nanorings, and nanolines are demonstrated on GaAs substrates with hard-polydimethylsiloxane (h-PDMS) mold and plasma etching. This method can be easily applied to the metallization and nanopatterning of gold on GaAs surfaces.

  17. CO oxidation over gold supported on Cs, Li and Ti-doped cryptomelane materials.

    PubMed

    Carabineiro, Sónia A C; Santos, Vera P; Pereira, M Fernando R; Órfão, José J M; Figueiredo, José L

    2016-10-15

    Cryptomelane-type manganese oxides were synthesized by redox reaction under acid and reflux conditions. Different metals (cesium, lithium and titanium) were incorporated into the tunnel structure by the ion-exchange technique. Gold was loaded onto these materials (1wt%) by a double impregnation method. The obtained catalysts were characterized by high-resolution transmission electron microscopy, energy-dispersive X-ray spectrometry, scanning electron microscopy, X-ray diffraction and temperature-programmed reduction. The catalytic activity of these materials was evaluated in the oxidation of carbon monoxide. The incorporation of Cs, Li or Ti into cryptomelane was detrimental in terms of catalytic activity. Further addition of gold to cryptomelane doped materials significantly improved the catalytic performance, especially for Cs-K-OMS-2 and Li-K-OMS-2 (to a smaller extent). Addition of gold to the Ti containing material did not show a significant improvement. The observed trends are related to the effect of gold on samples reducibility and to the gold particle size. The lattice oxygen can also be considered accountable for the activity of the materials, since the most active cryptomelane catalysts are those with higher lattice oxygen donating ability for the oxidation of the CO molecule.

  18. CO oxidation over gold supported on Cs, Li and Ti-doped cryptomelane materials.

    PubMed

    Carabineiro, Sónia A C; Santos, Vera P; Pereira, M Fernando R; Órfão, José J M; Figueiredo, José L

    2016-10-15

    Cryptomelane-type manganese oxides were synthesized by redox reaction under acid and reflux conditions. Different metals (cesium, lithium and titanium) were incorporated into the tunnel structure by the ion-exchange technique. Gold was loaded onto these materials (1wt%) by a double impregnation method. The obtained catalysts were characterized by high-resolution transmission electron microscopy, energy-dispersive X-ray spectrometry, scanning electron microscopy, X-ray diffraction and temperature-programmed reduction. The catalytic activity of these materials was evaluated in the oxidation of carbon monoxide. The incorporation of Cs, Li or Ti into cryptomelane was detrimental in terms of catalytic activity. Further addition of gold to cryptomelane doped materials significantly improved the catalytic performance, especially for Cs-K-OMS-2 and Li-K-OMS-2 (to a smaller extent). Addition of gold to the Ti containing material did not show a significant improvement. The observed trends are related to the effect of gold on samples reducibility and to the gold particle size. The lattice oxygen can also be considered accountable for the activity of the materials, since the most active cryptomelane catalysts are those with higher lattice oxygen donating ability for the oxidation of the CO molecule. PMID:27399615

  19. Biogenic Preparation of Gold Nanostructures Reduced from Piper longum Leaf Broth and Their Electrochemical Studies.

    PubMed

    Mallikarjuna, K; Narasimha, G; John Sushma, N; Dillip, G R; Subba Reddy, B V; Sreedhar, B; Deva Prasad Raju, B

    2015-02-01

    Exploitation of green chemical procedures for the synthesis of metal nanoparticles by biological process has received great attention in the field of nanotechnology. To demonstrate a biogenic method that involves the reduction of aqueous gold ions by the extract of Piper longum leaves leading to the formation of different morphological gold nanoparticles (AuNPs). The formation of gold nano-structures has been characterized by UV-Vis absorption spectroscopy. The X-ray diffraction (XRD) and selected area electron diffraction (SAED) patterns indicates the AuNPs are highly crystalline nature with the face-centered cubic (111), (200), (220) and (311) facets, respectively. The AuNPs have different sizes and morphologies that are identified by TEM studies. The involvement of water soluble bio-molecules such as carboxylic acids, flavonoids, proteins and terpenoids were identified by Fourier transform infrared (FT-IR) and Raman spectrum. The responsible mechanism of improving acidic nature and the process of encapsulation of gold nanoparticles by Piper longum extract was discussed. Additionally, we have demonstrated the modified carbon paste electrode using gold nanoparticles by means of cyclic voltammetry in a solution of 1 M KCI and 1 mM [Fe(CN)6]3-/4-. The analysis of cyclic voltammetry shows electronic transmission rate between modified Au-CPE and Bare-CPE electrode increased. PMID:26353644

  20. Microstructured Hydrogel Templates for the Formation of Conductive Gold Nanowire Arrays.

    PubMed

    Wünnemann, Patrick; Noyong, Michael; Kreuels, Klaus; Brüx, Roland; Gordiichuk, Pavlo; van Rijn, Patrick; Plamper, Felix A; Simon, Ulrich; Böker, Alexander

    2016-09-01

    Microstructured hydrogel allows for a new template-guided method to obtain conductive nanowire arrays on a large scale. To generate the template, an imprinting process is used in order to synthesize the hydrogel directly into the grooves of wrinkled polydimethylsiloxane (PDMS). The resulting poly(N-vinylimidazole)-based hydrogel is defined by the PDMS stamp in pattern and size. Subsequently, tetrachloroaurate(III) ions from aqueous solution are coordinated within the humps of the N-vinylimidazole-containing polymer template and reduced by air plasma. After reduction and development of the gold, to achieve conductive wires, the extension perpendicular to the long axis (width) of the gold strings is considerably reduced compared to the dimension of the parental hydrogel wrinkles (from ≈1 μm down to 200-300 nm). At the same time, the wire-to-wire distance and the overall length of the wires is preserved. The PDMS templates and hydrogel structures are analyzed with scanning force microscopy (SFM) and the gold structures via scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy. The conductivity measurements of the gold nanowires are performed in situ in the SEM, showing highly conductive gold leads. Hence, this method can be regarded as a facile nonlithographic top-down approach from micrometer-sized structures to nanometer-sized features. PMID:27386787

  1. A simple strategy to fabricate poly (acrylamide-co-alginate)/gold nanocomposites for inactivation of bacteria

    NASA Astrophysics Data System (ADS)

    Zhang, Yanan; Lou, Zhichao; Zhang, Xiaohong; Hu, Xiaodan; Zhang, Haiqian

    2014-12-01

    A facile and efficient approach to prepare uniform gold nanoparticles (Au NPs) in hybrid hydrogel consisting of acrylamide (AM) and alginate (SA) for antibacterial applications is reported. In this study, reduction of gold ions by acrylamide and alginate (AM-SA) occurred before the polymerization and as-obtained gold colloids are stabilized by AM-SA immediately in the absence of commonly used reducing agents and protective reagents. Via transmittance electron microscopy results, we can conclude that the obtained gold nanoparticles in hydrogel are well dispersed. Furthermore, ultraviolet-visible absorption spectroscopy, Fourier transform infrared and thermogravimetric analysis were used to characterize the structure and composition of the synthetic nanocomposites. Our approach provides well-dispersed nanoparticles around 8 mm in size. It is important to underline that nanoparticle aggregation was not observed during and after gel formation. The prepared Au NPs exhibited remarkable stability in the presence of high pH s, and a range of salt concentrations. Importantly, the hydrogel/gold nanocomposites showed a non-compromised activity to inhibit the growth of a model bacterium, Escherichia coli. With their excellent mechanical behavior, as well as the remained antibacterial activity, the nanocomposites should get various potential applications in the fields of pharmaceutical science and tissue engineering.

  2. Hydrofluorination of Alkynes Catalysed by Gold Bifluorides

    PubMed Central

    Nahra, Fady; Patrick, Scott R; Bello, Davide; Brill, Marcel; Obled, Alan; Cordes, David B; Slawin, Alexandra M Z; O'Hagan, David; Nolan, Steven P

    2015-01-01

    We report the synthesis of nine new N-heterocyclic carbene gold bifluoride complexes starting from the corresponding N-heterocyclic carbene gold hydroxides. A new methodology to access N,N′-bis(2,6-diisopropylphenyl)imidazol-2-ylidene gold(I) fluoride starting from N,N′-bis(2,6-diisopropylphenyl)imidazol-2-ylidene gold(I) hydroxide and readily available potassium bifluoride is also reported. These gold bifluorides were shown to be efficient catalysts in the hydrofluorination of symmetrical and unsymmetrical alkynes, thus affording fluorinated stilbene analogues and fluorovinyl thioethers in good to excellent yields with high stereo- and regioselectivity. The method is exploited further to access a fluorinated combretastatin analogue selectively in two steps starting from commercially available reagents. PMID:26236406

  3. The interaction of gold with gallium arsenide

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1988-01-01

    Gold and gold-based alloys, commonly used as solar-cell contact materials, are known to react readily with gallium arsenide. Experiments designed to identify the mechanisms involved in these GaAs-metal interactions have yielded several interesting results. It is shown that the reaction of GaAs with gold takes place via a dissociative diffusion process. It is shown further that the GaAs-metal reaction rate is controlled to a very great extent by the condition of the free surface of the contact metal, an interesting example of which is the previously unexplained increase in the reaction rate that has been observed for samples annealed in a vacuum environment as compared to those annealed in a gaseous ambient. A number of other hard-to-explain observations, such as the low-temperature formation of voids in the gold lattice and crystallite growth on the gold surface, are also explained by invoking this mechanism.

  4. Tumor necrosis factor interaction with gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Tsai, De-Hao; Elzey, Sherrie; Delrio, Frank W.; Keene, Athena M.; Tyner, Katherine M.; Clogston, Jeffrey D.; Maccuspie, Robert I.; Guha, Suvajyoti; Zachariah, Michael R.; Hackley, Vincent A.

    2012-05-01

    We report on a systematic investigation of molecular conjugation of tumor necrosis factor-α (TNF) protein onto gold nanoparticles (AuNPs) and the subsequent binding behavior to its antibody (anti-TNF). We employ a combination of physical and spectroscopic characterization methods, including electrospray-differential mobility analysis, dynamic light scattering, polyacrylamide gel electrophoresis, attenuated total reflectance-Fourier transform infrared spectroscopy, fluorescence assay, and enzyme-linked immunosorbent assay. The native TNF used in this study exists in the active homotrimer configuration prior to conjugation. After binding to AuNPs, the maximum surface density of TNF is (0.09 +/- 0.02) nm-2 with a binding constant of 3 × 106 (mol L-1)-1. Dodecyl sulfate ions induce desorption of monomeric TNF from the AuNP surface, indicating a relatively weak intermolecular binding within the AuNP-bound TNF trimers. Anti-TNF binds to both TNF-conjugated and citrate-stabilized AuNPs, showing that non-specific binding is significant. Based on the number of anti-TNF molecules adsorbed, a substantially higher binding affinity was observed for the TNF-conjugated surface. The inclusion of thiolated polyethylene glycol (SH-PEG) on the AuNPs inhibits the binding of anti-TNF, and the amount of inhibition is related to the number ratio of surface bound SH-PEG to TNF and the way in which the ligands are introduced. This study highlights the challenges in quantitatively characterizing complex hybrid nanoscale conjugates, and provides insight on TNF-AuNP formation and activity.We report on a systematic investigation of molecular conjugation of tumor necrosis factor-α (TNF) protein onto gold nanoparticles (AuNPs) and the subsequent binding behavior to its antibody (anti-TNF). We employ a combination of physical and spectroscopic characterization methods, including electrospray-differential mobility analysis, dynamic light scattering, polyacrylamide gel electrophoresis

  5. Ion colliders

    SciTech Connect

    Fischer, W.

    2011-12-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions [77Asb1, 81Bou1]. The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  6. ION SOURCE

    DOEpatents

    Martina, E.F.

    1958-04-22

    An improved ion source particularly adapted to provide an intense beam of ions with minimum neutral molecule egress from the source is described. The ion source structure includes means for establishing an oscillating electron discharge, including an apertured cathode at one end of the discharge. The egress of ions from the source is in a pencil like beam. This desirable form of withdrawal of the ions from the plasma created by the discharge is achieved by shaping the field at the aperture of the cathode. A tubular insulator is extended into the plasma from the aperture and in cooperation with the electric fields at the cathode end of the discharge focuses the ions from the source,

  7. Fabrication of gold nanorods with tunable longitudinal surface plasmon resonance peaks by reductive dopamine.

    PubMed

    Su, Gaoxing; Yang, Chi; Zhu, Jun-Jie

    2015-01-20

    Hydroxyphenol compounds are often used as reductants in controlling the growth of nanoparticles. Herein, dopamine was used as an effective reductant in seed-mediated synthesis of gold nanorods (GNRs). The as-prepared GNRs (83 × 16 nm) were monodisperse and had a high degree of purity. The conversion ratio from gold ions to GNRs was around 80%. In addition, dopamine worked as an additive. At a very low concentration of hexadecyltrimethylammonium bromide (CTAB; 0.025 M), thinner and shorter GNRs (60 × 9 nm) were successfully prepared. By regulating the concentration of silver ions, CTAB, seeds, and reductant, GNRs with longitudinal surface plasmon resonance (LSPR) peaks ranging from 680 to 1030 nm were synthesized. The growth process was tracked using UV-vis-NIR spectroscopy, and it was found that a slow growth rate was beneficial to the formation of GNRs. PMID:25521416

  8. Bubble template synthesis of hollow gold nanoparticles and their applications as theranostic agents

    NASA Astrophysics Data System (ADS)

    Huang, Chienwen

    Hollow gold nanoparticle with a sub-30nm polycrystalline shell and a 50 nm hollow core has been successfully synthesized through the reduction of sodium gold sulfite by electrochemically evolved hydrogen. Such hollow gold nanoparticles exhibit unique plasmonic properties. They strongly scatter and absorb near infrared light. In this thesis we seek to understand the formation mechanism of hollow gold nanoparticles in this new synthesis process and their plasmonic properties. Also, we explore their biomedical applications as theranostic agents (therapeutic and diagnostic imaging). A lithographically patterned electrode consisting of Ag stripes on a glass substrate was used to investigate the formation process of hollow gold nanoparticles. Ag stripes served as working electrode for electrochemically evolution of hydrogen, and adjacent glass areas provided supporting surface for hydrogen nanobubbles nucleation and growth. Hydrogen nanobubbles served as both templates and reducing agents to trigger the autocatalytic disproportionation reaction of sodium gold sulfite. The effects of applied potential and the additives in the electrolyte have been studied. It has been found that the size and size distribution of hollow gold nanoparticle are directly relative to the applied potential, i.e. the hydrogen evolution rate. It has also been found the addition of Ni2+ ions can greatly improve the size distribution of hollow gold nanoparticles that can be contributed to that the newly electrodeposited nickel metal can enhance the hydrogen evolution efficiency. Another additive, ethylenediamine (EDA) can suppress the autocatalytic reaction of gold sulfite to increase the stability of sodium gold sulfite electrolyte. To capture such electrochemically evolved hydrogen nanobubbles, and subsequently to generate hollow gold nanoparticles in large numbers, alumina membranes were placed on the top of the working electrode. Anodic alumina membrane consists of ~200 nm pores, which provides

  9. Enzyme-catalysed deposition of ultrathin silver shells on gold nanorods: a universal and highly efficient signal amplification strategy for translating immunoassay into a litmus-type test.

    PubMed

    Yang, Xinjian; Gao, Zhiqiang

    2015-04-25

    On the basis of enzyme-catalysed reduction of silver ions and consequent deposition of ultrathin silver shells on gold nanorods, a highly efficient signal amplification method for immunoassay is developed. For a model analyte prostate-specific antigen, a 10(4)-fold improvement over conventional enzyme-linked immunosorbent assay is accomplished by leveraging on the cumulative nature of the enzymatic reaction and the sensitive response of plasnomic gold nanorods to the deposition the silver shells.

  10. Concurrent in situ ion irradiation transmission electron microscope

    DOE PAGESBeta

    Hattar, K.; Bufford, D. C.; Buller, D. L.

    2014-08-29

    An in situ ion irradiation transmission electron microscope has been developed and is operational at Sandia National Laboratories. This facility permits high spatial resolution, real time observation of electron transparent samples under ion irradiation, implantation, mechanical loading, corrosive environments, and combinations thereof. This includes the simultaneous implantation of low-energy gas ions (0.8–30 keV) during high-energy heavy ion irradiation (0.8–48 MeV). In addition, initial results in polycrystalline gold foils are provided to demonstrate the range of capabilities.

  11. Molecular Beam Optical Study of Gold Sulfide and Gold Oxide

    NASA Astrophysics Data System (ADS)

    Zhang, Ruohan; Yu, Yuanqin; Steimle, Timothy

    2016-06-01

    Gold-sulfur and gold-oxygen bonds are key components to numerous established and emerging technologies that have applications as far ranging as medical imaging, catalysis, electronics, and material science. A major theoretical challenge for describing this bonding is correctly accounting for the large relativistic and electron correlation effects. Such effects are best studied in diatomic, AuX, molecules. Recently, the observed AuS electronic state energy ordering was measured and compared to a simple molecular orbital diagram prediction. Here we more thoroughly investigate the nature of the electronic states of both AuS and AuO from the analysis of high-resolution (FWHM\\cong35MHz) optical Zeeman spectroscopy of the (0,0){B}2Σ--{X}2Π3/2 bands. The determined fine and hyperfine parameters for the {B}2Σ- state of AuO differ from those extracted from the analysis of a hot, Doppler-limited, spectrum. It is demonstrated that the nature of the {B}2Σ- states of AuO and AuS are radically different. The magnetic tuning of AuO and AuS indicates that the {B}2Σ- states are heavily contaminated. Supported by the National Science Foundation under Grant No.1265885. D. L. Kokkin, R. Zhang, T. C. Steimle, I. A. Wyse, B. W. Pearlman and T. D. Varberg, J. Phys. Chem. A., 119(48), 4412, 2015. L. C. O'Brien, B. A. Borchert, A. Farquhar, S. Shaji, J. J. O'Brien and R. W. Field, J. Mol. Spectrosc., 252(2), 136, 2008

  12. Seed-mediated biomineralizaton toward the high yield production of gold nanoprisms.

    PubMed

    Geng, Xi; Roth, Kristina L; Freyman, Megan C; Liu, Jianzhao; Grove, Tijana Z

    2016-07-28

    Gold nanotriangles (Au NTs) with tunable edge length were synthesized via a green chemical route in the presence of the designed consensus sequence tetratricopeptide repeat (CTPR) protein, halide anions (Br(-)) and CTPR-stabilized Ag seeds. The well-defined morphologies, tailored plasmonic absorbance from visible-light to the near infrared (NIR) region, colloidal stability and biocompatibility are attributed to the synergistic action of CTPR, halide ions, and CTPR-stabilized Ag seeds. PMID:27424736

  13. Gold-silver alloy nanoshells: a new candidate for nanotherapeutics and diagnostics.

    PubMed

    Gheorghe, Dana E; Cui, Lili; Karmonik, Christof; Brazdeikis, Audrius; Penaloza, Jose M; Young, Joseph K; Drezek, Rebekah A; Bikram, Malavosklish

    2011-01-01

    We have developed novel gold-silver alloy nanoshells as magnetic resonance imaging (MRI) dual T1 (positive) and T2 (negative) contrast agents as an alternative to typical gadolinium (Gd)-based contrast agents. Specifically, we have doped iron oxide nanoparticles with Gd ions and sequestered the ions within the core by coating the nanoparticles with an alloy of gold and silver. Thus, these nanoparticles are very innovative and have the potential to overcome toxicities related to renal clearance of contrast agents such as nephrogenic systemic fibrosis. The morphology of the attained nanoparticles was characterized by XRD which demonstrated the successful incorporation of Gd(III) ions into the structure of the magnetite, with no major alterations of the spinel structure, as well as the growth of the gold-silver alloy shells. This was supported by TEM, ICP-AES, and SEM/EDS data. The nanoshells showed a saturation magnetization of 38 emu/g because of the presence of Gd ions within the crystalline structure with r1 and r2 values of 0.0119 and 0.9229 mL mg-1 s-1, respectively (Au:Ag alloy = 1:1). T1- and T2-weighted images of the nanoshells showed that these agents can both increase the surrounding water proton signals in the T1-weighted image and reduce the signal in T2-weighted images. The as-synthesized nanoparticles exhibited strong absorption in the range of 600-800 nm, their optical properties being strongly dependent upon the thickness of the gold-silver alloy shell. Thus, these nanoshells have the potential to be utilized for tumor cell ablation because of their absorption as well as an imaging agent. PMID:21995302

  14. Gold-silver alloy nanoshells: a new candidate for nanotherapeutics and diagnostics

    NASA Astrophysics Data System (ADS)

    Gheorghe, Dana E.; Cui, Lili; Karmonik, Christof; Brazdeikis, Audrius; Penaloza, Jose M.; Young, Joseph K.; Drezek, Rebekah A.; Bikram, Malavosklish

    2011-10-01

    We have developed novel gold-silver alloy nanoshells as magnetic resonance imaging (MRI) dual T 1 (positive) and T 2 (negative) contrast agents as an alternative to typical gadolinium (Gd)-based contrast agents. Specifically, we have doped iron oxide nanoparticles with Gd ions and sequestered the ions within the core by coating the nanoparticles with an alloy of gold and silver. Thus, these nanoparticles are very innovative and have the potential to overcome toxicities related to renal clearance of contrast agents such as nephrogenic systemic fibrosis. The morphology of the attained nanoparticles was characterized by XRD which demonstrated the successful incorporation of Gd(III) ions into the structure of the magnetite, with no major alterations of the spinel structure, as well as the growth of the gold-silver alloy shells. This was supported by TEM, ICP-AES, and SEM/EDS data. The nanoshells showed a saturation magnetization of 38 emu/g because of the presence of Gd ions within the crystalline structure with r 1 and r 2 values of 0.0119 and 0.9229 mL mg-1 s-1, respectively (Au:Ag alloy = 1:1). T 1- and T 2-weighted images of the nanoshells showed that these agents can both increase the surrounding water proton signals in the T 1-weighted image and reduce the signal in T 2-weighted images. The as-synthesized nanoparticles exhibited strong absorption in the range of 600-800 nm, their optical properties being strongly dependent upon the thickness of the gold-silver alloy shell. Thus, these nanoshells have the potential to be utilized for tumor cell ablation because of their absorption as well as an imaging agent.

  15. Oligopeptide-heavy metal interaction monitoring by hybrid gold nanoparticle based assay.

    PubMed

    Politi, Jane; Spadavecchia, Jolanda; Iodice, Mario; de Stefano, Luca

    2015-01-01

    Phytochelatins are small peptides that can be found in several organisms, which use these oligopeptides to handle heavy metal elements. Here, we report a method for monitoring interactions between lead(ii) ions in aqueous solutions and phytochelatin 6 oligopeptide bioconjugated onto pegylated gold nanorods (PEG-AuNrs). This study is the first step towards a high sensitive label free optical biosensor to quantify heavy metal pollution in water. PMID:25360445

  16. A Chemical-Medical Mystery: Gold Jewelry and Black Marks on Skin

    NASA Astrophysics Data System (ADS)

    Kebbekus, Barbara B.

    2000-10-01

    Gold jewelry at times makes a black mark or smudge on skin. This may be caused by abrasive powders on the skin (e.g. zinc oxide) but the phenomenon may also be caused by other skin conditions, possibly the presence of chloride ion, acidity, or sulfur-containing amino acids. Some anecdotal evidence is published, but properly designed studies to clarify the actual causes are not available.

  17. Gold-silver alloy nanoshells: a new candidate for nanotherapeutics and diagnostics

    PubMed Central

    2011-01-01

    We have developed novel gold-silver alloy nanoshells as magnetic resonance imaging (MRI) dual T1 (positive) and T2 (negative) contrast agents as an alternative to typical gadolinium (Gd)-based contrast agents. Specifically, we have doped iron oxide nanoparticles with Gd ions and sequestered the ions within the core by coating the nanoparticles with an alloy of gold and silver. Thus, these nanoparticles are very innovative and have the potential to overcome toxicities related to renal clearance of contrast agents such as nephrogenic systemic fibrosis. The morphology of the attained nanoparticles was characterized by XRD which demonstrated the successful incorporation of Gd(III) ions into the structure of the magnetite, with no major alterations of the spinel structure, as well as the growth of the gold-silver alloy shells. This was supported by TEM, ICP-AES, and SEM/EDS data. The nanoshells showed a saturation magnetization of 38 emu/g because of the presence of Gd ions within the crystalline structure with r1 and r2 values of 0.0119 and 0.9229 mL mg-1 s-1, respectively (Au:Ag alloy = 1:1). T1- and T2-weighted images of the nanoshells showed that these agents can both increase the surrounding water proton signals in the T1-weighted image and reduce the signal in T2-weighted images. The as-synthesized nanoparticles exhibited strong absorption in the range of 600-800 nm, their optical properties being strongly dependent upon the thickness of the gold-silver alloy shell. Thus, these nanoshells have the potential to be utilized for tumor cell ablation because of their absorption as well as an imaging agent. PMID:21995302

  18. Two-photon induced fabrication of gold microstructures in polystyrene sulfonate thin films using a ruthenium(II) dye as photoinitiator

    SciTech Connect

    Vurth, Laeticia; Baldeck, Patrice; Stephan, Olivier; Vitrant, Guy

    2008-04-28

    Gold microstructures are produced with a femtosecond laser in thin films of a polystyrene sulfonate matrix containing gold ions. Two-photon induced metal reduction is obtained by addition of 0.1 wt % of ruthenium(II)tris(bipyridine) in the formulation. Laser power is reduced to 5 mW, thereby limiting thermal effects. Lines of typically 150 nm heights and 1 {mu}m widths are fabricated as well as freestanding bidimensional structures. An additional electroless plating step produces gold structures with conductivities only ten times smaller than the bulk metal.

  19. Facile Decoration of Multiwalled Carbon Nanotubes with Hetero-oligophenylene Stabilized-Gold Nanoparticles: Visible Light Photocatalytic Degradation of Rhodamine B Dye.

    PubMed

    Kaur, Sharanjeet; Bhalla, Vandana; Kumar, Manoj

    2015-08-01

    A hetero-oligophenylene derivative 3 has been designed and synthesized which forms fluorescent spherical aggregates in mixed aqueous media due to its aggregation-induced emission enhancement characteristics. These fluorescent aggregates act as a ratiometric probe for the detection of gold ions in aqueous media and serve as reactors and stabilizers for the preparation of gold nanoparticles. The in situ generated gold nanoparticles have been decorated on multiwalled carbon nanotubes to form AuNPs@MWCNTs nanohybrid materials, which serve as recyclable photocatalysts for carrying out degradation of rhodamine dye in aqueous media.

  20. The 'price' of Olympic Gold.

    PubMed

    Hogan, K; Norton, K

    2000-06-01

    In 1981 the Commonwealth Government established the Australian Institute of Sport (AIS). The Australian Sports Commission (ASC) which administers the AIS has 2 objectives: (1) excellence in sports performances; and (2) increased participation in sports and sports activities. State-based institutes of sport have also been established with the same or very similar objectives. Federal policy directs the bulk of the ASC budget to elite athlete programs. A smaller proportion goes towards community participation. The official reason is based on the notion of the 'trickle-down' or 'demonstration' effect. That is, a flow-on of benefits to the broader community in the form of increased participation as a direct result of elite sports success. The aims of this study were to determine the (1) spending pattern to elite sports programs for the 5 Olympics 1976/77 to 1995/96, (2) evidence for the two ASC objectives having been met, and (3) expected medal tally at the 2000 Olympic Games. Results show funding (in 1998 dollars), has accelerated from about $1.2 million (1976/77) to $106 million in (1997/98), particularly since the Games were awarded to Sydney. The total amount spent on elite athletes was $0.918 billion. In the period 1980-96 Australia won 25 gold and 115 total Olympic medals. This equates to approximately $37 million per gold and $8 million per medal in general. There was a significant linear relationship between money spent and total medals won. This was also found when all medal types were analysed independently. The predicted medal tally in 2000 (based on the cost per medal and the expenditure towards Sydney) indicates the medal count will be about 14+/-1 gold, 15+/-2 silver and 33+/-4 bronze. Based on our nation's record of international sporting achievement, there is little doubt we have fulfilled the ASC's first objective. Current data on physical activity patterns of Australians suggest the second objective has not been met. Focusing attention on and achieving

  1. Microirradiation of cells with energetic heavy ions

    NASA Astrophysics Data System (ADS)

    Dollinger, G.; Hable, V.; Hauptner, A.; Krücken, R.; Reichart, P.; Friedl, A. A.; Drexler, G.; Cremer, T.; Dietzel, S.

    2005-04-01

    The ion microprobe SNAKE (superconducting nanoscope for applied nuclear (Kern) physics experiments) at the Munich 14 MV tandem accelerator achieves beam focusing by a superconducting quadrupole doublet and can make use of a broad range of ions and ion energies, from 20 MeV protons to 200 MeV gold ions. This allows to adjust the number of DNA single strand breaks (SSBs) and double strand breaks (DSBs) per ion and per cell nucleus from about 0.1 DSBs per ion to several 100 DSBs per ion. When irradiating with single 100 MeV 16O ions, the adapted setup permits a fwhm irradiation accuracy of 0.55 μm in x-direction and 0.4 μm in y-direction, as demonstrated by retrospective track etching of polycarbonate foils. The experiments point to investigate protein dynamics after targeted irradiation. As an example for such experiments we show a kind of three dimensional representation of foci of γ-H2AX which are visible 0.5 h after the irradiation with 100 MeV 16O ions took place. It shows the gross correlation with the irradiation pattern but also distinct deviations which are attributed to protein dynamics in the cell.

  2. Coal-gold agglomeration: an alternative separation process in gold recovery

    SciTech Connect

    Akcil, A.; Wu, X.Q.; Aksay, E.K.

    2009-07-01

    Considering the increasing environmental concerns and the potential for small gold deposits to be exploited in the future, the uses of environmentally friendly processes are essential. Recent developments point to the potential for greatly increased plant performance through a separation process that combines the cyanide and flotation processes. In addition, this kind of alternative treatment processes to the traditional gold recovery processes may reduce the environmental risks of present small-scale gold mining. Gold recovery processes that applied to different types of gold bearing ore deposits show that the type of deposits plays an important role for the selection of mineral processing technologies in the production of gold and other precious metals. In the last 25 years, different alternative processes have been investigated on gold deposits located in areas where environmental issues are a great concern. In 1988, gold particles were first recovered by successful pilot trial of coal-gold agglomeration (CGA) process in Australia. The current paper reviews the importance of CGA in the production of gold ore and identifies areas for further development work.

  3. Hierarchical organization and molecular diffusion in gold nanorod/silica supercrystal nanocomposites

    NASA Astrophysics Data System (ADS)

    Hamon, Cyrille; Sanz-Ortiz, Marta N.; Modin, Evgeny; Hill, Eric H.; Scarabelli, Leonardo; Chuvilin, Andrey; Liz-Marzán, Luis M.

    2016-04-01

    Hierarchical organization of gold nanorods was previously obtained on a substrate, allowing precise control over the morphology of the assemblies and macroscale spatial arrangement. Herein, a thorough description of these gold nanorod assemblies and their orientation within supercrystals is presented together with a sol-gel technique to protect the supercrystals with mesoporous silica films. The internal organization of the nanorods in the supercrystals was characterized by combining focused ion beam ablation and scanning electron microscopy. A mesoporous silica layer is grown both over the supercrystals and between the individual lamellae of gold nanorods inside the structure. This not only prevented the detachment of the supercrystal from the substrate in water, but also allowed small molecule analytes to infiltrate the structure. These nanocomposite substrates show superior Raman enhancement in comparison with gold supercrystals without silica owing to improved accessibility of the plasmonic hot spots to analytes. The patterned supercrystal arrays with enhanced optical and mechanical properties obtained in this work show potential for the practical implementation of nanostructured devices in spatially resolved ultradetection of biomarkers and other analytes.Hierarchical organization of gold nanorods was previously obtained on a substrate, allowing precise control over the morphology of the assemblies and macroscale spatial arrangement. Herein, a thorough description of these gold nanorod assemblies and their orientation within supercrystals is presented together with a sol-gel technique to protect the supercrystals with mesoporous silica films. The internal organization of the nanorods in the supercrystals was characterized by combining focused ion beam ablation and scanning electron microscopy. A mesoporous silica layer is grown both over the supercrystals and between the individual lamellae of gold nanorods inside the structure. This not only prevented the

  4. Gold-catalyzed naphthalene functionalization.

    PubMed

    Pérez, Pedro J; Díaz-Requejo, M Mar; Rivilla, Iván

    2011-01-01

    The complexes IPrMCl (IPr = 1,3-bis(diisopropylphenyl)imidazol-2-ylidene, M = Cu, 1a; M = Au, 1b), in the presence of one equiv of NaBAr'(4) (Ar' = 3,5-bis(trifluoromethyl)phenyl), catalyze the transfer of carbene groups: C(R)CO(2)Et (R = H, Me) from N(2)C(R)CO(2)Et to afford products that depend on the nature of the metal center. The copper-based catalyst yields exclusively a cycloheptatriene derivative from the Buchner reaction, whereas the gold analog affords a mixture of products derived either from the formal insertion of the carbene unit into the aromatic C-H bond or from its addition to a double bond. In addition, no byproducts derived from carbene coupling were observed.

  5. Gold-catalyzed naphthalene functionalization

    PubMed Central

    Rivilla, Iván

    2011-01-01

    Summary The complexes IPrMCl (IPr = 1,3-bis(diisopropylphenyl)imidazol-2-ylidene, M = Cu, 1a; M = Au, 1b), in the presence of one equiv of NaBAr'4 (Ar' = 3,5-bis(trifluoromethyl)phenyl), catalyze the transfer of carbene groups: C(R)CO2Et (R = H, Me) from N2C(R)CO2Et to afford products that depend on the nature of the metal center. The copper-based catalyst yields exclusively a cycloheptatriene derivative from the Buchner reaction, whereas the gold analog affords a mixture of products derived either from the formal insertion of the carbene unit into the aromatic C–H bond or from its addition to a double bond. In addition, no byproducts derived from carbene coupling were observed. PMID:21647320

  6. Citrate-Stabilized Gold Nanorods

    PubMed Central

    2015-01-01

    Stable aqueous dispersions of citrate-stabilized gold nanorods (cit-GNRs) have been prepared in scalable fashion by surfactant exchange from cetyltrimethylammonium bromide (CTAB)-stabilized GNRs, using polystyrenesulfonate (PSS) as a detergent. The surfactant exchange process was monitored by infrared spectroscopy, surface-enhanced Raman scattering (SERS), and X-ray photoelectron spectroscopy (XPS). The latter established the quantitative displacement of CTAB (by PSS) and of PSS (by citrate). The Cit-GNRs are indefinitely stable at low ionic strength, and are conducive to further ligand exchange without loss of dispersion stability. The reliability of the surface exchange process supports the systematic analysis of ligand structure on the hydrodynamic size of GNRs, as described in a companion paper. PMID:25254292

  7. Gold-catalyzed naphthalene functionalization.

    PubMed

    Pérez, Pedro J; Díaz-Requejo, M Mar; Rivilla, Iván

    2011-01-01

    The complexes IPrMCl (IPr = 1,3-bis(diisopropylphenyl)imidazol-2-ylidene, M = Cu, 1a; M = Au, 1b), in the presence of one equiv of NaBAr'(4) (Ar' = 3,5-bis(trifluoromethyl)phenyl), catalyze the transfer of carbene groups: C(R)CO(2)Et (R = H, Me) from N(2)C(R)CO(2)Et to afford products that depend on the nature of the metal center. The copper-based catalyst yields exclusively a cycloheptatriene derivative from the Buchner reaction, whereas the gold analog affords a mixture of products derived either from the formal insertion of the carbene unit into the aromatic C-H bond or from its addition to a double bond. In addition, no byproducts derived from carbene coupling were observed. PMID:21647320

  8. Smart textile device using ion polymer metal compound.

    PubMed

    Nakamura, Taro; Ihara, Tadashi

    2013-01-01

    We have developed a smart textile device that detects angular displacement of attached surface using ion polymer metal compound. The device was composed of ion polymer metal compound (IPMC) which was fabricated from Nafion resin by heat-press and chemical gold plating. The generated voltage from IPMC was measured as a function of bending angle. Fabricated IPMC device was weaved into a cotton cloth and multidirectional movements were detected.

  9. Smart textile device using ion polymer metal compound.

    PubMed

    Nakamura, Taro; Ihara, Tadashi

    2013-01-01

    We have developed a smart textile device that detects angular displacement of attached surface using ion polymer metal compound. The device was composed of ion polymer metal compound (IPMC) which was fabricated from Nafion resin by heat-press and chemical gold plating. The generated voltage from IPMC was measured as a function of bending angle. Fabricated IPMC device was weaved into a cotton cloth and multidirectional movements were detected. PMID:24109750

  10. Gel Electrophoresis of Gold-DNA Nanoconjugates

    DOE PAGESBeta

    Pellegrino, T.; Sperling, R. A.; Alivisatos, A. P.; Parak, W. J.

    2007-01-01

    Gold-DNA conjugates were investigated in detail by a comprehensive gel electrophoresis study based on 1200 gels. A controlled number of single-stranded DNA of different length was attached specifically via thiol-Au bonds to phosphine-stabilized colloidal gold nanoparticles. Alternatively, the surface of the gold particles was saturated with single stranded DNA of different length either specifically via thiol-Au bonds or by nonspecific adsorption. From the experimentally determined electrophoretic mobilities, estimates for the effective diameters of the gold-DNA conjugates were derived by applying two different data treatment approaches. The first method is based on making a calibration curve for the relation between effectivemore » diameters and mobilities with gold nanoparticles of known diameter. The second method is based on Ferguson analysis which uses gold nanoparticles of known diameter as reference database. Our study shows that effective diameters derived from gel electrophoresis measurements are affected with a high error bar as the determined values strongly depend on the method of evaluation, though relative changes in size upon binding of molecules can be detected with high precision. Furthermore, in this study, the specific attachment of DNA via gold-thiol bonds to Au nanoparticles is compared to nonspecific adsorption of DNA. Also, the maximum number of DNA molecules that can be bound per particle was determined.« less

  11. Accumulation of Gold Nanoparticles in Brassic Juncea

    SciTech Connect

    Marshall, A.T.; Haverkamp, R.G.; Davies, C.E.; Parsons, J.G.; Gardea-Torresdey, J.L.; Agterveld, D.van

    2009-06-03

    Enzymatic digestion is proposed as a method for concentrating gold nanoparticles produced in plants. The mild conditions of digestion are used in order to avoid an increase in the gold particle size, which would occur with a high-temperature process, so that material suitable for catalysis may be produced. Gold nanoparticles of a 5-50-nm diameter, as revealed by transmission electron microscopy (TEM), at concentrations 760 and 1120 ppm Au, were produced within Brassica juncea grown on soil with 22-48 mg Au kg{sup -1}. X-ray absorption near edge spectroscopy (XANES) reveals that the plant contained approximately equal quantities of Au in the metallic (Au{sup 0}) and oxidized (Au{sup +1}) states. Enzymatic digestion dissolved 55-60 wt% of the plant matter. Due to the loss of the soluble gold fraction, no significant increase in the total concentration of gold in the samples was observed. However, it is likely that the concentration of the gold nanoparticles increased by a factor of two. To obtain a gold concentration suitable for catalytic reactions, around 95 wt% of the starting dry biomass would need to be solubilized or removed, which has not yet been achieved.

  12. Nature vs. nurture: gold perpetuates "stemness".

    PubMed

    Paul, Willi; Sharma, Chandra P; Deb, Kaushik Dilip

    2011-01-01

    Adult tissues contain quiescent reservoirs of multipotent somatic stem cells and pluripotent embryonic-like stem cells (ELSCs). Credited with regenerative properties gold is used across both -contemporary and -ancient medicines. Here, we show that gold exerted these effects by enhancing the pool of pluripotent ELSC while improving their stemness. We used hESCs as an in-vitro model to understand if gold could enhance self-renewal and pluripotency. Swarna-bhasma (SB), an ancient Indian gold microparticulate (41.1 nm), preparation, reduced spontaneous-differentiation, improved self-renewal, pluripotency and proliferation of hESCs. Colloidal gold-nanoparticles (GNP) (15.59 nm) were tested to confirm that the observations were attributable to nanoparticulate-gold. SB and GNP exposure: maintained -stemness, -karyotypic stability, enhanced pluripotency till day-12, increased average colony-sizes, and reduced the number of autonomously-derived differentiated FGFR1 positive fibroblast-niche-cells/colony. Particulate-gold induced upregulation of FGFR1 and IGF2 expression, and decrease in IGF1 secretion indicates IGF1/2 mediated support for enhanced pluripotency and self-renewal in hESCs.

  13. Nature vs. nurture: gold perpetuates "stemness".

    PubMed

    Paul, Willi; Sharma, Chandra P; Deb, Kaushik Dilip

    2011-01-01

    Adult tissues contain quiescent reservoirs of multipotent somatic stem cells and pluripotent embryonic-like stem cells (ELSCs). Credited with regenerative properties gold is used across both -contemporary and -ancient medicines. Here, we show that gold exerted these effects by enhancing the pool of pluripotent ELSC while improving their stemness. We used hESCs as an in-vitro model to understand if gold could enhance self-renewal and pluripotency. Swarna-bhasma (SB), an ancient Indian gold microparticulate (41.1 nm), preparation, reduced spontaneous-differentiation, improved self-renewal, pluripotency and proliferation of hESCs. Colloidal gold-nanoparticles (GNP) (15.59 nm) were tested to confirm that the observations were attributable to nanoparticulate-gold. SB and GNP exposure: maintained -stemness, -karyotypic stability, enhanced pluripotency till day-12, increased average colony-sizes, and reduced the number of autonomously-derived differentiated FGFR1 positive fibroblast-niche-cells/colony. Particulate-gold induced upregulation of FGFR1 and IGF2 expression, and decrease in IGF1 secretion indicates IGF1/2 mediated support for enhanced pluripotency and self-renewal in hESCs. PMID:23550337

  14. Functionalization of gold nanoparticles as antidiabetic nanomaterial

    NASA Astrophysics Data System (ADS)

    Venkatachalam, M.; Govindaraju, K.; Mohamed Sadiq, A.; Tamilselvan, S.; Ganesh Kumar, V.; Singaravelu, G.

    2013-12-01

    In the present investigation, functionalization of gold nanoparticles synthesized using propanoic acid 2-(3-acetoxy-4,4,14-trimethylandrost-8-en-17-yl) (PAT) an active biocomponent isolated from Cassia auriculata is studied in detail. On reaction of PAT with aqueous HAuCl4, rapid formation of stable gold nanoparticles was achieved. Formation of gold nanoparticles was confirmed by UV-vis spectroscopy, XRD, GC-MS, FTIR, TEM and SEM with EDAX. Gold nanoparticles mostly were monodisperse, spherical in shape and ranged in size 12-41 nm. Gold nanoparticles synthesised using PAT was administered to alloxan (150 mg/kg body weight) induced diabetic male albino rats at different doses (0.25, 0.5, 0.75 and 1.0 mg/kg body weight) for 28 days. Plasma glucose level, cholesterol and triglyceride were significantly (p < 0.001) reduced in experimental animals treated with gold nanoparticles at dosage of 0.5 mg/kg body weight and plasma insulin increased significantly. The newly genre green gold nanoparticles exhibit remarkable protein tyrosine phosphatase 1B inhibitory activity.

  15. Brightening gold nanoparticles: new sensing approach based on plasmon resonance energy transfer.

    PubMed

    Shi, Lei; Jing, Chao; Gu, Zhen; Long, Yi-Tao

    2015-05-11

    Scattering recovered plasmonic resonance energy transfer (SR-PRET) was reported by blocking the plasmon resonance energy transfer (PRET) from gold nanoparticle (GNP) to the adsorbed molecules (RdBS). Due to the selective cleavage of the Si-O bond by F- ions, the quenching is switched off causing an increase in the brightness of the GNPs,detected using dark-field microscopy (DFM) were brightened. This method was successfully applied to the determination of fluoride ions in water. The SR-PRET provides a potential approach for a vitro/vivo sensing with high sensitivity and selectivity.

  16. Brightening Gold Nanoparticles: New Sensing Approach Based on Plasmon Resonance Energy Transfer

    PubMed Central

    Shi, Lei; Jing, Chao; Gu, Zhen; Long, Yi-Tao

    2015-01-01

    Scattering recovered plasmonic resonance energy transfer (SR-PRET) was reported by blocking the plasmon resonance energy transfer (PRET) from gold nanoparticle (GNP) to the adsorbed molecules (RdBS). Due to the selective cleavage of the Si-O bond by F− ions, the quenching is switched off causing an increase in the brightness of the GNPs,detected using dark-field microscopy (DFM) were brightened. This method was successfully applied to the determination of fluoride ions in water. The SR-PRET provides a potential approach for a vitro/vivo sensing with high sensitivity and selectivity. PMID:25959016

  17. The Relativistic Heavy Ion Collider at Brookhaven

    SciTech Connect

    Hahn, H.

    1988-01-01

    The conceptual design of a Relativistic Heavy Ion Collider (RACK) to be constructed in the existing 3.8 km tunnel at Brookhaven has been developed. The collider has been designed to provide collisions of gold ions at six intersection points with a luminosity of about 5 /times/ 10/sup 26/cm/sup /minus/2/sec/sup /minus/1/ at an energy of 100 GeV/u in each beam. Collisions with different ion species, including protons, will be possible. The collider consists of two interlaced, but otherwise separate, superconducting magnet rings. The 9.7 m long dipoles will operate at 3.5 T. Their 8 cm aperture was determined by the dimensions of gold ion beams taking into account diffusion due to intrabeam scattering. Heavy ion beams will be available from the Tandem Van de Graaff/Booster/AGS complex. The salient design features and the reasons for major design choices of the proposed machine are discussed in this paper. 24 refs., 7 figs., 2 tabs.

  18. Investigation of thiol derivatized gold nanoparticle sensors for gas analysis

    NASA Astrophysics Data System (ADS)

    Stephens, Jared S.

    Analysis of volatile organic compounds (VOCs) in air and exhaled breath by sensor array is a very useful testing technique. It can provide non-invasive, fast, inexpensive testing for many diseases. Breath analysis has been very successful in identifying cancer and other diseases by using a chemiresistor sensor or array with gold nanoparticles to detect biomarkers. Acetone is a biomarker for diabetes and having a portable testing device could help to monitor diabetic and therapeutic progress. An advantage to this testing method is it is conducted at room temperature instead of 200 degrees Celsius. 3. The objective of this research is to determine the effect of thiol derivatized gold nanoparticles based on sensor(s) detection of VOCs. The VOCs to be tested are acetone, ethanol, and a mixture of acetone and ethanol. Each chip is tested under all three VOCs and three concentration levels (0.1, 1, and 5.0 ppm). VOC samples are used to test the sensors' ability to detect and differentiate VOCs. Sensors (also referred to as a chip) are prepared using several types of thiol derivatized gold nanoparticles. The factors are: thiol compound and molar volume loading of the thiol in synthesis. The average resistance results are used to determine the VOC selectivity of the sensors tested. The results show a trend of increasing resistance as VOC concentration is increased relative to dry air; which is used as baseline for VOCs. Several sensors show a high selectivity to one or more VOCs. Overall the 57 micromoles of 4-methoxy-toluenethiol sensor shows the strongest selectivity for VOCs tested. 3. Gerfen, Kurt. 2012. Detection of Acetone in Air Using Silver Ion Exchanged ZSM-5 and Zinc Oxide Sensing Films. Master of Science thesis, University of Louisville.

  19. Ion Chromatography.

    ERIC Educational Resources Information Center

    Mulik, James D.; Sawicki, Eugene

    1979-01-01

    Accurate for the analysis of ions in solution, this form of analysis enables the analyst to directly assay many compounds that previously were difficult or impossible to analyze. The method is a combination of the methodologies of ion exchange, liquid chromatography, and conductimetric determination with eluant suppression. (Author/RE)

  20. The adsorption of gold, palladium and platinum from acidic chloride solutions on mesoporous carbons.

    DOE PAGESBeta

    Zalupski, Peter R.; McDowell, Rocklan; Dutech, Guy

    2014-08-05

    Studies on the adsorption characteristics of gold, palladium and platinum on mesoporous carbon (CMK-3) and sulfur-impregnated mesoporous carbon (CMK-3/S) evaluated the benefits/drawbacks of the presence of a layer of elemental sulfur inside mesoporous carbon structures. Adsorption isotherms collected for Au(III), Pd(II) and Pt(IV) on those materials suggest that sulfur does enhance the adsorption of those metal ions in mildly acidic environment (pH 3). The isotherms collected in 1 M HCl show that the benefit of sulfur disappears due to the competing influence of large concentration of hydrogen ions on the ion-exchanging mechanism of metal ions sorption on mesoporous carbon surfaces.more » The collected acid dependencies illustrate similar adsorption characteristics for CMK-3 and CMK-3/S in 1-5 M HCl concentration range. Sorption of metal ions from diluted aqueous acidic mixtures of actual leached electronic waste demonstrated the feasibility of recovery of gold from such liquors.« less

  1. The adsorption of gold, palladium and platinum from acidic chloride solutions on mesoporous carbons.

    SciTech Connect

    Zalupski, Peter R.; McDowell, Rocklan; Dutech, Guy

    2014-08-05

    Studies on the adsorption characteristics of gold, palladium and platinum on mesoporous carbon (CMK-3) and sulfur-impregnated mesoporous carbon (CMK-3/S) evaluated the benefits/drawbacks of the presence of a layer of elemental sulfur inside mesoporous carbon structures. Adsorption isotherms collected for Au(III), Pd(II) and Pt(IV) on those materials suggest that sulfur does enhance the adsorption of those metal ions in mildly acidic environment (pH 3). The isotherms collected in 1 M HCl show that the benefit of sulfur disappears due to the competing influence of large concentration of hydrogen ions on the ion-exchanging mechanism of metal ions sorption on mesoporous carbon surfaces. The collected acid dependencies illustrate similar adsorption characteristics for CMK-3 and CMK-3/S in 1-5 M HCl concentration range. Sorption of metal ions from diluted aqueous acidic mixtures of actual leached electronic waste demonstrated the feasibility of recovery of gold from such liquors.

  2. Variation in the uptake of nanoparticles by monolayer cultured cells using high resolution MeV ion beam imaging

    NASA Astrophysics Data System (ADS)

    Tao, Ye; Mi, Zhaohong; Vanga, Sudheer Kumar; Chen, Ce-Belle; Bettiol, Andrew A.; Watt, Frank

    2015-04-01

    Gold nanoparticle uptake by cells is being increasingly studied because of its potential in biomedical applications. In this work, we show how scanning transmission ion microscopy can be employed to visualize and quantify 50 nm gold nanoparticles taken up by individual cells. Preliminary studies have indicated that the cellular content of gold nanoparticles exhibits a wide variation (up to a factor of 10) among individual cells. This cell-to-cell variation can affect the efficiency of utilizing gold nanoparticles for therapeutic or diagnostic purposes.

  3. Designing Hollow Nano Gold Golf Balls

    PubMed Central

    2015-01-01

    Hollow/porous nanoparticles, including nanocarriers, nanoshells, and mesoporous materials have applications in catalysis, photonics, biosensing, and delivery of theranostic agents. Using a hierarchical template synthesis scheme, we have synthesized a nanocarrier mimicking a golf ball, consisting of (i) solid silica core with a pitted gold surface and (ii) a hollow/porous gold shell without silica. The template consisted of 100 nm polystyrene beads attached to a larger silica core. Selective gold plating of the core followed by removal of the polystyrene beads produced a golf ball-like nanostructure with 100 nm pits. Dissolution of the silica core produced a hollow/porous golf ball-like nanostructure. PMID:24937196

  4. Electrochemical control of creep in nanoporous gold

    SciTech Connect

    Ye, Xing-Long; Jin, Hai-Jun

    2013-11-11

    We have investigated the mechanical stability of nanoporous gold (npg) in an electrochemical environment, using in situ dilatometry and compression experiments. It is demonstrated that the gold nano-ligaments creep under the action of surface stress which leads to spontaneous volume contractions in macroscopic npg samples. The creep of npg, under or without external forces, can be controlled electrochemically. The creep rate increases with increasing potential in double-layer potential region, and deceases to almost zero when the gold surface is adsorbed with oxygen. Surprisingly, we also noticed a correlation between creep and surface diffusivity, which links the deformation of nanocrystals to mobility of surface atoms.

  5. Colloidal-gold electrosensor measuring device

    DOEpatents

    Wegner, Steven; Harpold, Michael A.; McCaffrey, Terence M.; Morris, Susan E.; Wojciechowski, Marek; Zhao, Junguo; Henkens, Robert W.; Naser, Najih; O'Daly, John P.

    1995-01-01

    The present invention provides a new device for use in measuring lead levels in biological and environmental samples. Using square wave coulometry and colloidal gold particles impregnated on carbon electrodes, the present invention provides a rapid, reliable, portable and inexpensive means of detecting low lead levels. The colloidal gold modified electrodes have microelectrode array characteristics and produce significantly higher stripping detection signals for lead than are produced at bulk gold electrode surfaces. The method is effective in determining levels of lead down to at least 5 .mu.g/dL in blood samples as small as 10 .mu.L.

  6. Colloidal-gold electrosensor measuring device

    DOEpatents

    Wegner, S.; Harpold, M.A.; McCaffrey, T.M.; Morris, S.E.; Wojciechowski, M.; Zhao, J.; Henkens, R.W.; Naser, N.; O`Daly, J.P.

    1995-11-21

    The present invention provides a new device for use in measuring lead levels in biological and environmental samples. Using square wave coulometry and colloidal gold particles impregnated on carbon electrodes, the present invention provides a rapid, reliable, portable and inexpensive means of detecting low lead levels. The colloidal gold modified electrodes have microelectrode array characteristics and produce significantly higher stripping detection signals for lead than are produced at bulk gold electrode surfaces. The method is effective in determining levels of lead down to at least 5 {micro}g/dL in blood samples as small as 10 {micro}L. 9 figs.

  7. Electrically Conductive Polyimide Films Containing Gold Surface

    NASA Technical Reports Server (NTRS)

    Caplan, Maggie L.; Stoakley, Diane M.; St. Clair, Anne K.

    1994-01-01

    Polyimide films exhibiting high thermo-oxidative stability and including electrically conductive surface layers containing gold made by casting process. Many variations of basic process conditions, ingredients, and sequence of operations possible, and not all resulting versions of process yield electrically conductive films. Gold-containing layer formed on film surface during cure. These metallic gold-containing polyimides used in film and coating applications requiring electrical conductivity, high reflectivity, exceptional thermal stability, and/or mechanical integrity. They also find commercial potential in areas ranging from thin films for satellite antennas to decorative coatings and packaging.

  8. 33 CFR 13.01-10 - Gold and silver bars.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Gold and silver bars. 13.01-10... DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-10 Gold and silver bars. No person shall receive more than one Gold Lifesaving Medal and...

  9. 33 CFR 13.01-10 - Gold and silver bars.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Gold and silver bars. 13.01-10... DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-10 Gold and silver bars. No person shall receive more than one Gold Lifesaving Medal and...

  10. 33 CFR 13.01-10 - Gold and silver bars.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Gold and silver bars. 13.01-10... DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-10 Gold and silver bars. No person shall receive more than one Gold Lifesaving Medal and...

  11. 33 CFR 13.01-10 - Gold and silver bars.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Gold and silver bars. 13.01-10... DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-10 Gold and silver bars. No person shall receive more than one Gold Lifesaving Medal and...

  12. 16 CFR 23.4 - Misrepresentation as to gold content.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Misrepresentation as to gold content. 23.4... JEWELRY, PRECIOUS METALS, AND PEWTER INDUSTRIES § 23.4 Misrepresentation as to gold content. (a) It is unfair or deceptive to misrepresent the presence of gold or gold alloy in an industry product, or...

  13. 16 CFR 23.4 - Misrepresentation as to gold content.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Misrepresentation as to gold content. 23.4... JEWELRY, PRECIOUS METALS, AND PEWTER INDUSTRIES § 23.4 Misrepresentation as to gold content. (a) It is unfair or deceptive to misrepresent the presence of gold or gold alloy in an industry product, or...

  14. 33 CFR 13.01-10 - Gold and silver bars.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Gold and silver bars. 13.01-10... DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-10 Gold and silver bars. No person shall receive more than one Gold Lifesaving Medal and...

  15. 16 CFR 23.4 - Misrepresentation as to gold content.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Misrepresentation as to gold content. 23.4... JEWELRY, PRECIOUS METALS, AND PEWTER INDUSTRIES § 23.4 Misrepresentation as to gold content. (a) It is unfair or deceptive to misrepresent the presence of gold or gold alloy in an industry product, or...

  16. 16 CFR 23.4 - Misrepresentation as to gold content.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Misrepresentation as to gold content. 23.4... JEWELRY, PRECIOUS METALS, AND PEWTER INDUSTRIES § 23.4 Misrepresentation as to gold content. (a) It is unfair or deceptive to misrepresent the presence of gold or gold alloy in an industry product, or...

  17. 16 CFR 23.4 - Misrepresentation as to gold content.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Misrepresentation as to gold content. 23.4... JEWELRY, PRECIOUS METALS, AND PEWTER INDUSTRIES § 23.4 Misrepresentation as to gold content. (a) It is unfair or deceptive to misrepresent the presence of gold or gold alloy in an industry product, or...

  18. Symmetry breaking and silver in gold nanorod growth.

    PubMed

    Walsh, Michael J; Barrow, Steven J; Tong, Wenming; Funston, Alison M; Etheridge, Joanne

    2015-01-27

    Formation of anisotropic nanocrystals from isotropic single-crystal precursors requires an essential symmetry breaking event. Single-crystal gold nanorods have become the model system for investigating the synthesis of anisotropic nanoparticles, and their growth mechanism continues to be the subject of intense investigation. Despite this, very little is known about the symmetry breaking event that precedes shape anisotropy. In particular, there remains limited understanding of how an isotropic seed particle becomes asymmetric and of the growth parameters that trigger and drive this process. Here, we present direct atomic-scale observations of the nanocrystal structure at the embryonic stages of gold nanorod growth. The onset of asymmetry of the nascent crystals is observed to occur only for single-crystal particles that have reached diameters of 4-6 nm and only in the presence of silver ions. In this size range, small, asymmetric truncating surfaces with an open atomic structure become apparent. Furthermore, {111} twin planes are observed in some immature nanorods within 1-3 monolayers of the surface. These results provide direct observation of the structural changes that break the symmetry of isotropic nascent nanocrystals and ultimately enable the growth of asymmetric nanocrystals.

  19. Nano-imprint gold grating as refractive index sensor

    NASA Astrophysics Data System (ADS)

    Kumari, Sudha; Mohapatra, Saswat; Moirangthem, Rakesh S.

    2016-05-01

    Large scale of fabrication of plasmonic nanostructures has been a challenging task due to time consuming process and requirement of expensive nanofabrication tools such as electron beam lithography system, focused ion beam system, and extreme UV photolithography system. Here, we present a cost-effective fabrication technique so called soft nanoimprinting to fabricate nanostructures on the larger sample area. In our fabrication process, a commercially available optical DVD disc was used as a template which was imprinted on a polymer glass substrate to prepare 1D polymer nano-grating. A homemade nanoimprinting setup was used in this fabrication process. Further, a label-free refractive index sensor was developed by utilizing the properties of surface plasmon resonance (SPR) of a gold coated 1D polymer nano-grating. Refractive index sensing was tested by exposing different solutions of glycerol-water mixture on the surface of gold nano-grating. The calculated bulk refractive index sensitivity was found to be 751nm/RIU. We believed that our proposed SPR sensor could be a promising candidate for developing low-cost refractive index sensor with high sensitivity on a large scale.

  20. Plasmonic interaction of visible light with gold nanoscale checkerboards

    NASA Astrophysics Data System (ADS)

    Ramakrishna, S. Anantha; Mandal, P.; Jeyadheepan, K.; Shukla, N.; Chakrabarti, S.; Kadic, M.; Enoch, S.; Guenneau, S.

    2011-12-01

    Intersecting corners and checkerboards of negative refractive index materials (NRIM) represent highly singular electromagnetic systems that involve very highly enhanced local fields and the local density of modes. It is well known that plasmonic metallic systems can mimic the behavior of NRIM in the near-field limit at optical frequencies. Opaque gold films have been structured by focused ion-beam technologies at submicrometer scales in a checkerboard fashion and their optical properties measured. Subwavelength square holes in thick gold films placed in checkerboard fashion show a broadband extraordinary transmission of light at visible wavelengths. We find that the smaller the square holes, the larger is the transmission over a band of wavelengths from 650 to 950 nm suggesting that such structured surfaces have very unusual effective medium properties, which is confirmed by the band-structure diagrams computed with finite elements. Theoretical results also confirm the experimental transmission measured to be well over 80% from 750 to 950 nm for a checkerboard with 150nm×150 nm square holes. This unusual broadband nature of checkerboard structured films is confirmed by the dark-field reflection spectra. Microscopic studies reveal that these structures have enhanced interaction of light at the edges and corners. These checkerboards are also found to give rise to an enhancement of fluorescence by imbedded dye molecules. There is a strong correspondence between the theoretical predictions and the experimental measurements.