Sample records for bioaccumulation

  1. Review of existing terrestrial bioaccumulation models and terrestrial bioaccumulation modeling needs for organic chemicals

    EPA Science Inventory

    Protocols for terrestrial bioaccumulation assessments are far less-developed than for aquatic systems. This manuscript reviews modeling approaches that can be used to assess the terrestrial bioaccumulation potential of commercial organic chemicals. Models exist for plant, inver...

  2. Sediment bioaccumulation testing with fish

    USGS Publications Warehouse

    Mac, Michael J.; Schmitt, Christopher J.; Burton, G. Allen

    1992-01-01

    In this chapter, we discuss methods for conducting bioaccumulation bioassays with fish; the advantages and disadvantages of using fish rather than invertebrates; and problems associated with bioaccumulation testing, with a special emphasis on statistical treatment.

  3. Bioaccumulation and Aquatic System Simulator (BASS) User's Manual Beta Test Version 2.1. EPA/600/R-01/035

    EPA Pesticide Factsheets

    this report describes the theoretical development, parameterization, and application software of a generalized, community-based, bioaccumulation model called BASS (Bioaccumulation and Aquatic System Simulator).

  4. Comparing Laboratory and Field Measured Bioaccumulation Endpoints

    EPA Science Inventory

    The report presents an approach that allows comparisons of all laboratory and field bioaccumulation endpoints measurements. The approach will enable the inclusion of large amounts of field data into evaluations of bioaccumulation potential for legacy chemicals. Currently, these...

  5. Revisiting Bioaccumulation Criteria for POPS and PBT Assessments

    EPA Science Inventory

    Scientists from academia, industry and government reviewed current international regulations for the screening of commercial chemicals for bioaccumulation in the context of the current state of the science in the area of bioaccumulation. Based on this review several recommendat...

  6. Policy Statement on a New Chemicals Category for Persistent, Bioaccumulative, and Toxic (PBT) Chemicals

    EPA Pesticide Factsheets

    On November 4, 1999, EPA issued its policy statement on a category for Persistent Bioaccumulative and Toxic (PBT) new chemicals. The statement provides guidance criteria for persistence, bioaccumulation, and toxicity for new chemicals.

  7. A REVIEW OF BIOACCUMULATION MODELING APPROACHES FOR PERSISTENT ORGANIC POLLUTANTS

    EPA Science Inventory

    Persistent organic pollutants and mercury are likely to bioaccumulate in biological components of the environment, including fish and wildlife. The complex and long-term dynamics involved with bioaccumulation are often represented with models. Current scientific developments in t...

  8. VISUALIZING THE RELATIONSHIP OF PBTS IN WATER AND SEDIMENT TO RESIDUES IN FISH

    EPA Science Inventory

    Bioaccumulation of persistent bioaccumulative toxicants (PBTs) in aquatic organisms results from uptake of the chemicals through several different exposure routes associated with water, sediment, and biota. This paper presents an approach for depicting and interpreting bioaccumul...

  9. Summary of Cefic-LRI sponsored workshop: Recent scientific developments in bioaccumulation research

    EPA Science Inventory

    Current bioaccumulation regulations in most jurisdictions include only the bioconcentration factor (BCF) and the octanol-water partition coefficient (KOW) for screening assessments. Methods for evaluating bioaccumulation continue to evolve and various other metrics have been prop...

  10. Influence of acid volatile sulfide and metal concentrations on metal bioavailability to marine invertebrates in contaminated sediments

    USGS Publications Warehouse

    Lee, B.-G.; Lee, J.-S.; Luoma, S.N.; Choi, H.J.; Koh, C.-H.

    2000-01-01

    An 18-day microcosm study was conducted to evaluate the influence of acid volatile sulfides (AVS) and metal additions on bioaccumulation from sediments of Cd, Ni, and Zn in two clams (Macoma balthica and Potamocorbula amurensis) and three marine polychaetes (Neanthes arenaceodentata, Heteromastus filiformis, and Spiophanes missionensis). Manipulation of AVS by oxidation of naturally anoxic sediments allowed use of metal concentrations typical of nature and evaluation of processes important to chronic metal exposure. A vertical sediment column similar to that often found in nature was used to facilitate realistic biological behavior. Results showed that AVS or porewater (PW) metals controlled bioaccumulation in only 2 of 15 metal-animal combinations. Bioaccumulation of all three metals by the bivalves was related significantly to metal concentrations extracted from sediments (SEM) but not to [SEM - AVS] or PW metals. SEM predominantly influenced bioaccumulation of Ni and Zn in N. arenaceodentata, but Cd bioaccumulation followed PW Cd concentrations. SEM controlled tissue concentrations of all three metals in H. filiformis and S. missionensis, with minor influences from metal-sulfide chemistry. Significant bioaccumulation occurred when SEM was only a small fraction of AVS in several treatments. Three factors appeared to contribute to the differences between these bioaccumulation results and the results from toxicity tests reported previously: differences in experimental design, dietary uptake, and biological attributes of the species, including mode and depth of feeding.An 18-day microcosm study was conducted to evaluate the influence of acid volatile sulfides (AVS) and metal additions on bioaccumulation from sediments of Cd, Ni, and Zn in two clams (Macoma balthica and Potamocorbula amurensis) and three marine polychaetes (Neanthes arenaceodentata, Heteromastus filiformis, and Spiophanes missionensis). Manipulation of AVS by oxidation of naturally anoxic sediments allowed use of metal concentrations typical of nature and evaluation of processes important to chronic metal exposure. A vertical sediment column similar to that often found in nature was used to facilitate realistic biological behavior. Results showed that AVS or porewater (PW) metals controlled bioaccumulation in only 2 of 15 metal-animal combinations. Bioaccumulation of all three metals by the bivalves was related significantly to metal concentrations extracted from sediments (SEM) but not to [SEM - AVS] or PW metals. SEM predominantly influenced bioaccumulation of Ni and Zn in N. arenaceodentata, but Cd bioaccumulation followed PW Cd concentrations. SEM controlled tissue concentrations of all three metals in H. filiformis and S. missionensis, with minor influences from metal-sulfide chemistry. Significant bioaccumulation occurred when SEM was only a small fraction of AVS in several treatments. Three factors appeared to contribute to the differences between these bioaccumulation results and the results from toxicity tests reported previously: differences in experimental design, dietary uptake, and biological attributes of the species, including mode and depth of feeding.Microcosms were used to simulate environmentally realistic metal, acid volatile sulfide (AVS), and geochemical gradients in sediments to evaluate effects of metal bioavailability. The 18-d study involved five test species: two bivalves and three polychaetes. Two series of experiments were designed to evaluate the effects of metal concentration and AVS on bioaccumulation, respectively. The metals of interest were cadmium, nickel, and zinc. Results showed that the concentrations of pore-water Cd, Ni, and Zn were controlled by the concentration of AVS. Organisms bioaccumulated significant amounts of metals from the sediments when the simultaneously extracted metal was only a small fraction of the AVS. Bioavailability increased linearly with the sediment metal concentration irrespective of AVS or pore-w

  11. Evaluating the Relationship between Equilibrium Passive ...

    EPA Pesticide Factsheets

    This review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) as it relates to organism bioaccumulation in the water column and interstitial water. Fifty-five studies were found where both passive samplers and organism bioaccumulation were used to measured water quality. Of these investigations, 19 provided direct comparisons relating passive sampler concentrations and organism bioaccumulation. Passive sampling polymers included in the review were: low density polyethylene (LDPE); polyoxymethylene (POM); and polydimethylsiloxane (PDMS), and organisms ranged from polychaetes and oligochaetes to bivalves, aquatic insects, and gastropods. Log-linear regressions correlating bioaccumulation (CL) and passive sampler concentration (CPS) were used to assess the strength of observed relationships. In general, the passive sampler concentrations resulted in statistically-significant, logarithmic, predictive relationships, most of which were within one to two orders of magnitude of measured bioaccumulation. Overall, bioaccumulation values were greater than passive sampler concentrations. A mean ratio of CL to CPS was 10.8 ± 18.4 (n = 609) for available data. Given that all studies presented resulted in a strong CL versus CPS relationship suggests that using passive sampling as a surrogate for organism bioaccumulation is viable when biomonitoring organisms are not available. Passive sampling based measurements can provide useful information for ma

  12. Evaluating the Relationship between Equilibrium Passive ...

    EPA Pesticide Factsheets

    This Critcal Review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) in water column and interstitial water exposures as a surrogate for organism bioaccumulation. Fifty-seven studies were found where both passive sampler uptake and organism bioaccumulation were measured and 19 of these investigations provided direct comparisons relating passive sampler uptake and organism bioaccumulation. Polymers compared included low-density polyethylene (LDPE), polyoxymethylene (POM), and polydimethylsiloxane (PDMS), and organisms ranged from polychaetes and oligochaetes to bivalves, aquatic insects, and gastropods. Regression equations correlating bioaccumulation (CL) and passive sampler uptake (CPS) were used to assess the strength of observed relationships. Passive sampling based concentrations resulted in log–log predictive relationships, most of which were within one to 2 orders of magnitude of measured bioaccumulation. Mean coefficients of determination (r2) for LDPE, PDMS, and POM were 0.68, 0.76, and 0.58, respectively. For the available raw, untransformed data, the mean ratio of CL and CPS was 10.8 ± 18.4 (n = 609). Using passive sampling as a surrogate for organism bioaccumulation is viable when biomonitoring organisms are not available. Passive sampling based estimates of bioaccumulation provide useful information for making informed decisions about the bioavailability of HOCs. This review evaluates passive sampler uptake of hydrophobi

  13. Zinc bioaccumulation in a terrestrial invertebrate fed a diet treated with particulate ZnO or ZnCl2 solution.

    PubMed

    Pipan-Tkalec, Ziva; Drobne, Damjana; Jemec, Anita; Romih, Tea; Zidar, Primoz; Bele, Marjan

    2010-03-10

    A number of reports on potential toxicity of nanoparticles are available, but there is still a lack of knowledge concerning bioaccumulation. The aim of this work was to investigate how different sources of zinc, such as uncoated and unmodified ZnO nanoparticles, ZnCl(2) in solution, and macropowder ZnO influence the bioaccumulation of this metal in the terrestrial isopod Porcellio scaber. After exposure to different sources of Zn in the diet, the amount of assimilated Zn in whole body, the efficiency of zinc assimilation, and bioaccumulation factors (BAFs) were assessed. The bioaccumulation potential of Zn was found to be the same regardless of Zn source. The amount of assimilated Zn and BAF were dose-dependent, and Zn assimilation efficiency was independent of exposure concentrations. The Zn assimilation capacity was found to be up to 16% of ingested Zn. It is known that as much as approximately 20% of Zn can be accreted from ZnO particles by dissolution. We conclude that bioaccumulation of Zn in isopods exposed to particulate ZnO depends most probably on Zn dissolution from ZnO particles and not on bioaccumulation of particulate ZnO.

  14. Partitioning and bioaccumulation of metals from oil sands process affected water in indigenous Parachlorella kessleri.

    PubMed

    Mahdavi, Hamed; Liu, Yang; Ulrich, Ania C

    2013-02-01

    This paper studies the partitioning and bioaccumulation of ten target metals ((53)Cr, Mn, Co, (60)Ni, (65)Cu, (66)Zn, As, (88)Sr, (95)Mo and Ba) from oil sands tailings pond water (TPW) by indigenous Parachlorella kessleri. To determine the role of extracellular and intracellular bioaccumulation in metal removal by P. kessleri, TPW samples taken from two oil sands operators (Syncrude Canada Ltd. and Albian Sands Energy Inc.) were enriched with nutrient supplements. Results indicate that intracellular bioaccumulation played the main role in metal removal from TPW; whereas extracellular bioaccumulation was only observed to some extent for Mn, Co, (60)Ni, (65)Cu, (88)Sr, (95)Mo and Ba. The FTIR scan and titration of functional groups on the cell surface indicated low metal binding capacity by indigenous P. kessleri. However, it is believed that the dissolved cations and organic ligand content in TPW (such as naphthenic acids) may interfere with metal binding on the cell surface and lower extracellular bioaccumulation. In addition, the total bioaccumulation and bioconcentration factor (BCF) varied during the cultivation period in different growth regimes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Evaluating the Relationship between Equilibrium Passive Sampler Uptake and Aquatic Organism Bioaccumulation..

    EPA Science Inventory

    This review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) in water column and interstitial water exposures as a surrogate for organism bioaccumulation. Fifty-four studies were found where both passive sampler uptake and organism bioaccumulation wer...

  16. INVESTIGATING COMPLEXITY IN FOOD WEB BIOACCUMULATION MODELING USING THE BIOACCUMULATION AND AQUATIC SYSTEM SIMULATOR

    EPA Science Inventory

    Bioaccumulation of methylmercury in exposed fish communities is primarily mediated via dietary uptake rather than direct gill uptake from the ambient water. Consequently, accurate predication of fish methylmercury concentrations demands reasonably realistic presentations of a com...

  17. THE RELATIONSHIP OF BIOACCUMULATIVE CHEMICALS IN WATER AND SEDIMENT TO RESIDUES IN FISH: A VISUALIZATION APPROACH

    EPA Science Inventory

    A visualization approach is developed and presented for depicting and interpreting bioaccumulation relationships and data, i.e., bioaccumulation factors (BAFs), biota-sediment accumulation factors (BSAFs) and chemical residues in fish, using water-sediment chemical concentration ...

  18. RELATIONSHIP BETWEEN METABOLISM AND BIOACCUMULATION OF BENZO[A]PYRENE IN BENTHIC INVERTEBRATES

    EPA Science Inventory

    The potential influence of polycyclic aromatic hydrocarbon (PAH) metabolism on bioaccumulation is well accepted, but rarely has been examined in many species of benthic invertebrates that commonly are found in contaminated sediments, or used in bioaccumulation or toxicity tests. ...

  19. The Dessau workshop on bioaccumulation: state of the art, challenges and regulatory implications.

    PubMed

    Treu, Gabriele; Drost, Wiebke; Jöhncke, Ulrich; Rauert, Caren; Schlechtriem, Christian

    2015-01-01

    Bioaccumulation plays a vital role in understanding the fate of a substance in the environment and is key to the regulation of chemicals in several jurisdictions. The current assessment approaches commonly use the octanol-water partition coefficient (log K OW ) as an indicator for bioaccumulation and the bioconcentration factor (BCF) as a standard criterion to identify bioaccumulative substances show limitations. The log K OW does not take into account active transport phenomena or special structural properties (e.g., amphiphilic substances or dissociating substances) and therefore additional screening criteria are required. Regulatory BCF studies are so far restricted to fish and uptake through the gills. Studies on (terrestrial) air-breathing organisms are missing. Though there are alternative tests such as the dietary exposure bioaccumulation fish test described in the recently revised OECD test guideline 305, it still remains unclear how to deal with results of alternative tests in regulatory decision-making processes. A substantial number of bioaccumulation fish tests are required in regulation. The development of improved test systems following the 3R principles, namely to replace, reduce and refine animal testing, is thus required. All these aspects stress the importance to further develop the assessment of bioaccumulation. The Dessau Workshop on Bioaccumulation which was held from June 26th to 27th 2014, in Dessau, Germany, provided a comprehensive overview of the state of the art of bioaccumulation assessment, provided insights into the problems and challenges addressed by the regulatory authorities and described new research concepts and their regulatory implications. The event was organised by UBA (Dessau, Germany) and Fraunhofer IME (Schmallenberg, Germany). About 50 participants from industry, regulatory bodies and academia listened to 14 lectures on selected topics and joined the plenary discussions.

  20. Age and trophic position dominate bioaccumulation of mercury and organochlorines in the food web of Lake Washington

    USGS Publications Warehouse

    McIntyre, J.K.; Beauchamp, D.A.

    2007-01-01

    Understanding the mechanisms of bioaccumulation in food webs is critical to predicting which food webs are at risk for higher rates of bioaccumulation that endanger the health of upper-trophic predators, including humans. Mercury and organochlorines were measured concurrently with stable isotopes of nitrogen and carbon in key fishes and invertebrates of Lake Washington to explore important pathways of bioaccumulation in this food web. Across the food web, age and trophic position together were highly significant predictors of bioaccumulation. Trophic position was more important than age for predicting accumulation of mercury, ???DDT, and ???-chlordane, whereas age was more important than trophic position for predicting ???PCB. Excluding age from the analysis inflated the apparent importance of trophic position to bioaccumulation for all contaminants. Benthic and pelagic habitats had similar potential to bioaccumulate contaminants, although higher ???-chlordane concentrations in organisms were weakly associated with more benthic carbon signals. In individual fish species, contaminant concentrations increased with age, size, and trophic position (??15N), whereas relationships with carbon source (??13C) were not consistent. Lipid concentrations were correlated with contaminant concentrations in some but not all fishes, suggesting that lipids were not involved mechanistically in bioaccumulation. Contaminant concentrations in biota did not vary among littoral sites. Collectively, these results suggest that age may be an important determinant of bioaccumulation in many food webs and could help explain a significant amount of the variability in apparent biomagnification rates among food webs. As such, effort should be made when possible to collect information on organism age in addition to stable isotopes when assessing food webs for rates of biomagnification. ?? 2006 Elsevier B.V. All rights reserved.

  1. Inter-laboratory comparison of xenobiotic clearance rates determined using cryopreserved trout hepatocytes for improving bioaccumulation predictions

    EPA Science Inventory

    Hepatic biotransformation is an important determinant of chemical bioaccumulation in fish. Consequently, bioaccumulation models can be improved using estimates of chemical biotransformation rates. Cryopreserved trout hepatocytes have been used to measure the clearance rates of so...

  2. Inter-laboratory comparison of clearance rates of xenobiotics by cryopreserved trout hepatocytes for the prediction of bioaccumulation potential

    EPA Science Inventory

    Hepatic biotransformation is an important determinant of chemical bioaccumulation in fish. Consequently, improvements to bioaccumulation models can be made using estimates of chemical biotransformation rates. Cryopreserved trout hepatocytes have previously been used to measure ...

  3. BIOACCUMULATION AND AQUATIC SYSTEM SIMULATOR (BASS) USER'S MANUAL BETA TEST VERSION 2.1

    EPA Science Inventory

    BASS (Bioaccumulation and Aquatic System Simulator) is a Fortran 95 simulation program that predicts the population and bioaccumulation dynamics of age-structured fish assemblages that are exposed to hydrophobic organic pollutants and class B and borderline metals that complex wi...

  4. Evaluating the Relationship between Equilibrium Passive Sampler Uptake and Aquatic Organism Bioaccumulation (IPSW)

    EPA Science Inventory

    This review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) as it relates to organism bioaccumulation in the water column and interstitial water. Fifty-five studies were found where both passive samplers and organism bioaccumulation were used to measur...

  5. Ontogenetic dietary shifts and bioaccumulation of diphenhydramine in Mugil cephalus from an urban estuary.

    PubMed

    Haddad, Samuel P; Du, Bowen; Scott, W Casan; Saari, Gavin N; Breed, Christopher; Kelly, Martin; Broach, Linda; Chambliss, C Kevin; Brooks, Bryan W

    2017-06-01

    Though bioaccumulation of pharmaceuticals has received attention in inland waters, studies of pharmaceutical bioaccumulation in estuarine and marine systems are limited. Further, an understanding of pharmaceutical bioaccumulation across size classes of organisms displaying ontogenetic feeding shifts is lacking. We selected the striped mullet, Mugil cephalus, a euryhaline and eurythermal species that experiences dietary shifts with age, to identify whether a model base, diphenhydramine, accumulated in a tidally influenced urban bayou. We further determined whether diphenhydramine accumulation differed among size classes of striped mullet over a two year study period. Stable isotope analysis identified that ontogenetic feeding shifts of M. cephalus occurred from juveniles to adults. However, bioaccumulation of diphenhydramine did not significantly increase across age classes of M. cephalus but corresponded to surface water levels of the pharmaceutical, which suggests inhalational uptake to diphenhydramine was more important for bioaccumulation than dietary exposure in this urban estuary. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Role of metal mixtures (Ca, Cu and Pb) on Cd bioaccumulation and phytochelatin production by Chlamydomonas reinhardtii.

    PubMed

    Abboud, Pauline; Wilkinson, Kevin J

    2013-08-01

    The goal of the study was to determine whether metal uptake and biological effects could be predicted by free ion concentrations when organisms were exposed to Cd and a second metal. Bioaccumulation and algal phytochelatin (PC) concentrations were determined for Chlamydomonas reinhardtii following a 6-h exposure. Bioaccumulation results, after six hours of exposure, showed that Cd uptake decreased in the presence of relatively high concentrations of Ca, Cu and Pb, however, Cd bioaccumulation increased in the presence of ca. equimolar concentrations of Cu. A good correlation was observed between the production of PCs and the amount of metals bioaccumulated for the binary mixtures of Cd-Pb and Cd-Cu, but not the Cd-Ca mixture. Overall, the results suggested that, in the case of mixtures, bioaccumulated metal rather than free ion concentrations would be a better predictor of biological effect. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Use of terrestrial field studies in the derivation of bioaccumulation potential of chemicals

    USGS Publications Warehouse

    van den Brink, Nico W.; Arblaster, Jennifer A.; Bowman, Sarah R.; Conder, Jason M.; Elliott, John E.; Johnson, Mark S.; Muir, Derek C.G.; Natal-da-Luz, Tiago; Rattner, Barnett A.; Sample, Bradley E.; Shore, Richard F.

    2016-01-01

    Field-based studies are an essential component of research addressing the behavior of organic chemicals, and a unique line of evidence that can be used to assess bioaccumulation potential in chemical registration programs and aid in development of associated laboratory and modeling efforts. To aid scientific and regulatory discourse on the application of terrestrial field data in this manner, this article provides practical recommendations regarding the generation and interpretation of terrestrial field data. Currently, biota-to-soil-accumulation factors (BSAFs), biomagnification factors (BMFs), and bioaccumulation factors (BAFs) are the most suitable bioaccumulation metrics that are applicable to bioaccumulation assessment evaluations and able to be generated from terrestrial field studies with relatively low uncertainty. Biomagnification factors calculated from field-collected samples of terrestrial carnivores and their prey appear to be particularly robust indicators of bioaccumulation potential. The use of stable isotope ratios for quantification of trophic relationships in terrestrial ecosystems needs to be further developed to resolve uncertainties associated with the calculation of terrestrial trophic magnification factors (TMFs). Sampling efforts for terrestrial field studies should strive for efficiency, and advice on optimization of study sample sizes, practical considerations for obtaining samples, selection of tissues for analysis, and data interpretation is provided. Although there is still much to be learned regarding terrestrial bioaccumulation, these recommendations provide some initial guidance to the present application of terrestrial field data as a line of evidence in the assessment of chemical bioaccumulation potential and a resource to inform laboratory and modeling efforts.

  8. Comparison of Laboratory Measured BCFs, BMFs, and BSAFs to Field Measured BAFs, BMFs, and BSAFs

    EPA Science Inventory

    A series of workshops on bioaccumulation science and issues have been held since 2005, and the foci of these past workshops were1) Bioaccumulation Data Sources, 2) In Vitro/ADME (absorption, distribution, metabolism, and excretion) in Bioaccumulation Assessments, and 3) Bioaccumu...

  9. Assessing the bioaccumulation potential of ionizable organic compounds: Current knowledge and research priorities

    EPA Science Inventory

    The objective of the present study is to review current knowledge regarding the bioaccumulation potential of IOCs, with a focus on the availability of empirical data for fish. Aspects of the bioaccumulation potential of IOCs in fish that can be characterized relatively well inclu...

  10. Review of laboratory-based terrestrial bioaccumulation assessment approaches for organic chemicals: Current status and future possibilities.

    PubMed

    Hoke, Robert; Huggett, Duane; Brasfield, Sandra; Brown, Becky; Embry, Michelle; Fairbrother, Anne; Kivi, Michelle; Paumen, Miriam Leon; Prosser, Ryan; Salvito, Dan; Scroggins, Rick

    2016-01-01

    In the last decade, interest has been renewed in approaches for the assessment of the bioaccumulation potential of chemicals, principally driven by the need to evaluate large numbers of chemicals as part of new chemical legislation, while reducing vertebrate test organism use called for in animal welfare legislation. This renewed interest has inspired research activities and advances in bioaccumulation science for neutral organic chemicals in aquatic environments. In January 2013, ILSI Health and Environmental Sciences Institute convened experts to identify the state of the science and existing shortcomings in terrestrial bioaccumulation assessment of neutral organic chemicals. Potential modifications to existing laboratory methods were identified, including areas in which new laboratory approaches or test methods could be developed to address terrestrial bioaccumulation. The utility of "non-ecotoxicity" data (e.g., mammalian laboratory data) was also discussed. The highlights of the workshop discussions are presented along with potential modifications in laboratory approaches and new test guidelines that could be used for assessing the bioaccumulation of chemicals in terrestrial organisms. © 2015 SETAC.

  11. Precipitation and temperature drive seasonal variation in bioaccumulation of polycyclic aromatic hydrocarbons in the planktonic food webs of a subtropical shallow eutrophic lake in China.

    PubMed

    Tao, Yuqiang; Yu, Jing; Xue, Bin; Yao, Shuchun; Wang, Sumin

    2017-04-01

    Hydrophobic organic contaminants (HOCs) are toxic and ubiquitous in aquatic environments and pose great risks to aquatic organisms. Bioaccumulation by plankton is the first step for HOCs to enter aquatic food webs. Trophic status is considered to dominate variations in bioaccumulation of HOCs in plankton in temperate and frigid deep oligotrophic waters. However, long-term driving factors for bioaccumulation of HOCs in planktonic food webs of subtropical shallow eutrophic waters have not been well investigated. China has the largest subtropical lake density in the Northern Hemisphere. Due to limited field data, long-term variations in the bioaccumulation of HOCs in these lakes are almost unknown. Here we take Lake Xuanwu as an example to investigate long-term variations in the bioaccumulation, and biomagnification of polycyclic aromatic hydrocarbon (PAHs) in planktonic food webs of subtropical shallow eutrophic lakes in China, and elucidate the driving factors. Our results indicate that temperature rather than nutrients dominates long-term dynamics of planktonic biomass in this lake. Precipitation significantly enhances the concentrations of the PAHs, and total suspended particles, and consequently affects the distribution of the PAHs in the water column. Biomass dilution induced by temperature dominates bioaccumulation of the PAHs by both phytoplankton and zooplankton (copepods and cladocerans). Biomagnification of the PAHs from phytoplankton to zooplankton is positively correlated with temperature. Our study suggests that temperature and precipitation drive long-term variations in the bioaccumulation of the PAHs in the planktonic food webs of this subtropical shallow eutrophic lake. Lake Xuanwu has a similar mean annual temperature, annual precipitation, sunshine duration, and nutrient levels as other subtropical shallow eutrophic lakes in China. This study may also help to understand the bioaccumulation of HOCs in planktonic food webs of other subtropical shallow eutrophic lakes. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The Effect of Microplastic on the Uptake of Chemicals by the Lugworm Arenicola marina (L.) under Environmentally Relevant Exposure Conditions

    PubMed Central

    2017-01-01

    It has been hypothesized that ingestion of microplastic increases exposure of aquatic organisms to hydrophobic contaminants. To date, most laboratory studies investigated chemical transfer from ingested microplastic without taking other exposure pathways into account. Therefore, we studied the effect of polyethylene (PE) microplastic in sediment on PCB uptake by Arenicola marina as a model species, quantifying uptake fluxes from all natural exposure pathways. PCB concentrations in sediment, biota lipids (Clip) and porewater measured with passive samplers were used to derive lipid-normalized bioaccumulation metrics Clip, Biota sediment accumulation factor (BSAF), Bioaccumulation factor (BAF) and the Biota plastic accumulation factor (BPAF). Small effects of PE addition were detected suggesting slightly increased or decreased bioaccumulation. However, the differences decreased in magnitude dependent on the metric used to assess bioaccumulation, in the order: Clip > BSAF > BPAF > BAF, and were nonsignificant for BAF. The fact that BAF, that is, normalization of Clip on porewater concentration, largely removed all effects of PE, shows that PE did not act as a measurable vector of PCBs. Biodynamic model analysis confirmed that PE ingestion contributed marginally to bioaccumulation. This work confirmed model-based predictions on the limited relevance of microplastic for bioaccumulation under environmentally realistic conditions, and illustrated the importance of assessing exposure through all media in microplastic bioaccumulation studies. PMID:28682597

  13. Bioaccumulation of perfluorochemicals in Pacific oyster under different salinity gradients.

    PubMed

    Jeon, Junho; Kannan, Kurunthachalam; Lim, Han Kyu; Moon, Hyo Bang; Ra, Jin Sung; Kim, Sang Don

    2010-04-01

    Despite the reports of widespread occurrence of perfluorinated compounds (PFCs) in estuarine and coastal waters and open seas, little is known on the effect of salinity on bioaccumulation. In this study, effects of salinity on bioaccumulation of PFCs in Pacific oysters (Crassostrea gigas) were investigated. Furthermore, partitioning of PFCs between water and particles (oysters' food) was examined at different salinities. The distribution coefficients (K(d); partitioning between water and particles) for selected PFCs, that is, PFOS, PFOA, PFDA, and PFUnDA, increased by 2.1- to 2.7-fold with the increase in water salinity from 10 to 34 psu, suggesting "salting-out" effect, and the salting constant (delta) was estimated to range from 0.80 to 1.11. The nonlinear regression analysis of bioaccumulation suggested increase in aqueous and dietary uptake rates (K(w) and K(f)), with the increase in salinity, which resulted in elevated bioaccumulation, although the depuration rates (K(e)) also increased. The relative abundance of long carbon chain length PFCs (i.e., PFDA and PFUnDA) increased as salinity increased, while the proportion of PFOS and PFOA decreased, which is explained by the positive relationship between delta and carbon chain length. The contribution of diet to bioaccumulation in oysters ranged from 18 to 92%. Overall, salinity not only affected the chemistry of PFCs, but also the physiology of oysters, contributing to sorption and bioaccumulation of perfluorochemicals in oysters.

  14. The Effect of Microplastic on the Uptake of Chemicals by the Lugworm Arenicola marina (L.) under Environmentally Relevant Exposure Conditions.

    PubMed

    Besseling, Ellen; Foekema, Edwin M; van den Heuvel-Greve, Martine J; Koelmans, Albert A

    2017-08-01

    It has been hypothesized that ingestion of microplastic increases exposure of aquatic organisms to hydrophobic contaminants. To date, most laboratory studies investigated chemical transfer from ingested microplastic without taking other exposure pathways into account. Therefore, we studied the effect of polyethylene (PE) microplastic in sediment on PCB uptake by Arenicola marina as a model species, quantifying uptake fluxes from all natural exposure pathways. PCB concentrations in sediment, biota lipids (C lip ) and porewater measured with passive samplers were used to derive lipid-normalized bioaccumulation metrics C lip , Biota sediment accumulation factor (BSAF), Bioaccumulation factor (BAF) and the Biota plastic accumulation factor (BPAF). Small effects of PE addition were detected suggesting slightly increased or decreased bioaccumulation. However, the differences decreased in magnitude dependent on the metric used to assess bioaccumulation, in the order: C lip > BSAF > BPAF > BAF, and were nonsignificant for BAF. The fact that BAF, that is, normalization of C lip on porewater concentration, largely removed all effects of PE, shows that PE did not act as a measurable vector of PCBs. Biodynamic model analysis confirmed that PE ingestion contributed marginally to bioaccumulation. This work confirmed model-based predictions on the limited relevance of microplastic for bioaccumulation under environmentally realistic conditions, and illustrated the importance of assessing exposure through all media in microplastic bioaccumulation studies.

  15. How Do High School Science Textbooks in Korea, Japan, and the U.S. Explain Bioaccumulation-Related Concepts?

    ERIC Educational Resources Information Center

    Kim, Heung-Tae; Kim, Jae Geun

    2013-01-01

    Although bioaccumulation-related concepts are important scientific knowledge, a study on whether high school textbooks include appropriate explanations has not been conducted. The present study investigated science and biology textbooks from Korea, Japan, and the U.S., focusing on how bioaccumulation-related concepts were defined, what types of…

  16. Comparing humic substance and protein compound effects on the bioaccumulation of perfluoroalkyl substances by Daphnia magna in water.

    PubMed

    Xia, Xinghui; Dai, Zhineng; Rabearisoa, Andry Harinaina; Zhao, Pujun; Jiang, Xiaoman

    2015-01-01

    The influence of humic substances and protein compounds on the bioaccumulation of six types of perfluoroalkyl substances (PFASs) in Daphnia magna was compared. The humic substances included humic acid (HA) and fulvic acid (FA), the protein compounds included chicken egg albumin (albumin) and peptone, and the PFASs included perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid, perfluoroundecanoic acid, and perfluorododecanoic acid. Four concentrations (0, 1, 10, and 20 mg L(-1)) of the four dissolved organic matter (DOM) types were investigated. At the 1 mg L(-1) level, HA and albumin enhanced all tested PFAS bioaccumulation, whereas FA and peptone only enhanced the bioaccumulation of shorter-chain PFASs (PFOS, PFOA, and PFNA). However, all four DOM types decreased all tested PFAS bioaccumulation at the 20 mg L(-1) level, and the decreasing ratios of bioaccumulation factors caused by FA, HA, albumin, and peptone were 1-49%, 23-77%, 17-58%, and 8-56%, respectively compared with those without DOM. This is because DOM not only reduced the bioavailable concentrations and uptake rates of PFASs but also lowered the elimination rates of PFASs in D. magna, and these opposite effects would change with different DOM types and concentrations. Although the partition coefficients (L kg(-1)) of PFASs between HA and water (10(4.21)-10(4.98)) were much lower than those between albumin and water (10(4.92)-10(5.86)), their effects on PFAS bioaccumulation were comparable. This study suggests that although PFASs are a type of proteinophilic compounds, humic substances also have important effects on their bioavailability and bioaccumulation in aquatic organisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Effects of climate change on bioaccumulation and biomagnification of polycyclic aromatic hydrocarbons in the planktonic food web of a subtropical shallow eutrophic lake in China.

    PubMed

    Tao, Yuqiang; Xue, Bin; Lei, Guoliang; Liu, Fei; Wang, Zhen

    2017-04-01

    To date effects of climate change on bioaccumulation and biomagnification of chemical pollutants in planktonic food webs have rarely been studied. Recruitments of plankton have shifted earlier due to global warming. Global warming and precipitation patterns are projected to shift seasonally. Whether and how the shifts in plankton phenology induced by climate change will impact bioaccumulation and biomagnification of chemical pollutants, and how they will respond to climate change are largely unknown. Here, we combine data analysis of the past seven decades, high temporal resolution monitoring and model development to test this hypothesis with nine polycyclic aromatic hydrocarbons (PAHs) in the planktonic food web of a subtropical shallow eutrophic lake in China. We find biphasic correlations between both bioconcentration factors and bioaccumulation factors of the PAHs and the mean temperature, which depend on the recruitment temperatures of cyanobacteria, and copepods and cladocerans. The positive correlations between bioconcentration factors, bioaccumulation factors and the mean temperature will be observed less than approximately 13-18 days by 2050-2060 due to the shifts in plankton phenology. The PAHs and their bioaccumulation and biomagnification will respond seasonally and differently to climate change. Bioaccumulation of most of the PAHs will decrease with global warming, with higher decreasing rates appearing in winter and spring. Biomagnification of most of the PAHs from phytoplankton to zooplankton will increase with global warming, with higher increasing rates appearing in winter and spring. Our study provides novel insights into bioaccumulation and biomagnification of chemical pollutants in eutrophic waters under climate change scenarios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. How does predation affect the bioaccumulation of hydrophobic organic compounds in aquatic organisms?

    PubMed

    Xia, Xinghui; Li, Husheng; Yang, Zhifeng; Zhang, Xiaotian; Wang, Haotian

    2015-04-21

    It is well-known that the body burden of hydrophobic organic compounds (HOCs) increases with the trophic level of aquatic organisms. However, the mechanism of HOC biomagnification is not fully understood. To fill this gap, this study investigated the effect of predation on the bioaccumulation of polycyclic aromatic hydrocarbons (PAHs), one type of HOC, in low-to-high aquatic trophic levels under constant freely dissolved PAH concentrations (1, 5, or 10 μg L(-1)) maintained by passive dosing systems. The tested PAHs included phenanthrene, anthracene, fluoranthene, and pyrene. The test organisms included zebrafish, which prey on Daphnia magna, and cichlids, which prey on zebrafish. The results revealed that for both zebrafish and cichlids, predation elevated the uptake and elimination rates of PAHs. The increase of uptake rate constant ranged from 20.8% to 39.4% in zebrafish with the amount of predation of 5 daphnids per fish per day, and the PAH uptake rate constant increased with the amount of predation. However, predation did not change the final bioaccumulation equilibrium; the equilibrium concentrations of PAHs in fish only depended on the freely dissolved concentration in water. Furthermore, the lipid-normalized water-based bioaccumulation factor of each PAH was constant for fish at different trophic levels. These findings infer that the final bioaccumulation equilibrium of PAHs is related to a partition between water and lipids in aquatic organisms, and predation between trophic levels does not change bioaccumulation equilibrium but bioaccumulation kinetics at stable freely dissolved PAH concentrations. This study suggests that if HOCs have not reached bioaccumulation equilibrium, biomagnification occurs due to enhanced uptake rates caused by predation in addition to higher lipid contents in higher trophic organisms. Otherwise, it is only due to the higher lipid contents in higher trophic organisms.

  19. Influence of trophic position and spatial location on polychlorinated biphenyl (PCB) bioaccumulation in a stream food web

    Treesearch

    David M. Walters; Ken M. Fritz; Brent R. Johnson; James M. Lazorchak; Frank H. McCormick

    2008-01-01

    Bioaccumulation of persistent organic contaminants (OCs) is well documented in lentic and marine ecosystems, but few studies have addressed OC bioaccumulation in streams. The limited research in streams is surprising given the magnitude and extent of OC pollution. Approximately 9% of wadeable stream length in the U.S. is underlain by contaminated sediments including...

  20. Mercury in mercury(II)-spiked soils is highly susceptible to plant bioaccumulation.

    PubMed

    Hlodák, Michal; Urík, Martin; Matúš, Peter; Kořenková, Lucia

    2016-01-01

    Heavy metal phytotoxicity assessments usually use soluble metal compounds in spiked soils to evaluate metal bioaccumulation, growth inhibition and adverse effects on physiological parameters. However, exampling mercury phytotoxicity for barley (Hordeum vulgare) this paper highlights unsuitability of this experimental approach. Mercury(II) in spiked soils is extremely bioavailable, and there experimentally determined bioaccumulation is significantly higher compared to reported mercury bioaccumulation efficiency from soils collected from mercury-polluted areas. Our results indicate this is not affected by soil sorption capacity, thus soil ageing and formation of more stable mercuric complexes with soil fractions is necessary for reasonable metal phytotoxicity assessments.

  1. Bioaccumulation of organic contaminants by benthic invertebrates of the Chesapeake Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimbrough, K.; Dickhut, R.

    1995-12-31

    In situ partitioning of PCBs and PAHs between benthic invertebrates and the environment has been compared to previously obtained laboratory bioaccumulation results. Previous laboratory studies show a characteristic nonlinear plot when bioaccumulation factors (BAF) are plotted against octanol-water partition coefficients (K{sub ow}), on a log-log scale. This phenomena can be explained by desorption and elimination kinetics. However preliminary in situ studies show a different relationship between field BAFs and K{sub ow} which may be explained by other biogeochemical factors. In situ and laboratory PAH and PCB partitioning measurements will be used to determine major mechanisms affecting contaminant bioaccumulation.

  2. Evaluating the Relationship between Equilibrium Passive ...

    EPA Pesticide Factsheets

    This review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) in water column and interstitial water exposures as a surrogate for organism bioaccumulation. Fifty-four studies were found where both passive sampler uptake and organism bioaccumulation were measured and 19 of these investigations provided direct comparisons relating passive sampler uptake and organism bioaccumulation. Polymers compared included low density polyethylene (LDPE), polyoxymethylene (POM), and polydimethylsiloxane (PDMS), and organisms ranged from polychaetes and oligochaetes to bivalves, aquatic insects, and gastropods. Regression equations correlating bioaccumulation (CL) and passive sampler uptake (CPS) were used to assess the strength of observed relationships. Passive sampling based concentrations resulted in logarithmic predictive relationships, most of which were within one to two orders of magnitude of measured bioaccumulation. Mean coefficients of determination (r2) for LDPE, PDMS and POM were 0.68, 0.76 and 0.58, respectively. For the available raw data, the mean ratio of CL and CPS was 10.8 ± 18.4 (n = 609). This review concludes that in many applications passive sampling may serve as a reliable surrogate for biomonitoring organisms when biomonitoring organisms are not available. When applied properly, passive sampling based estimates of bioaccumulation provide useful information for making informed decisions about the bioavailability of HOCs

  3. Arsenic bio-accessibility and bioaccumulation in aged pesticide contaminated soils: A multiline investigation to understand environmental risk.

    PubMed

    Rahman, M S; Reichelt-Brushet, A J; Clark, M W; Farzana, T; Yee, L H

    2017-03-01

    Bio-accessibility and bioavailability of arsenic (As) in historically As-contaminated soils (cattle tick pesticide), and pristine soils were assessed using 3 different approaches. These approaches included human bio-accessibility using an extraction test replicating gastric conditions (in vitro physiologically-based extraction test); an operationally defined bioaccessibility extraction test - 1.0M HCl extraction; and a live organism bioaccumulation test using earthworms. A sequential extraction procedure revealed the soil As-pool that controls bio-accessibility and bioaccumulation of As. Findings show that As is strongly bound to historically contaminated soil with a lower degree of As bio-accessibility (<15%) and bioaccumulation (<9%) compared with freshly contaminated soil. Key to these lower degrees of bio-accessibility and bioaccumulation is the greater fraction of As associated with crystalline Fe/Al oxy-hydroxide and residual phases. The high bio-accessibility and bioaccumulation of freshly sorbed As in pristine soils were from the exchangeable and specifically sorbed As fractions. Arsenic bioaccumulation in earthworms correlates strongly with both the human bio-accessible, and the operationally defined bioavailable fractions. Hence, results suggest that indirect As bioavailability measures, such as accumulation by earthworm, can be used as complementary lines of evidence to reinforce site-wide trends in the bio-accessibility using in vitro physiologically-based extractions and/or operationally defined extraction test. Such detailed knowledge is useful for successful reclamation and management of the As contaminated soils. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Why is metal bioaccumulation so variable? Biodynamics as a unifying concept

    USGS Publications Warehouse

    Luoma, Samuel N.; Rainbow, Philip S.

    2005-01-01

    Ecological risks from metal contaminants are difficult to document because responses differ among species, threats differ among metals, and environmental influences are complex. Unifying concepts are needed to better tie together such complexities. Here we suggest that a biologically based conceptualization, the biodynamic model, provides the necessary unification for a key aspect in risk:  metal bioaccumulation (internal exposure). The model is mechanistically based, but empirically considers geochemical influences, biological differences, and differences among metals. Forecasts from the model agree closely with observations from nature, validating its basic assumptions. The biodynamic metal bioaccumulation model combines targeted, high-quality geochemical analyses from a site of interest with parametrization of key physiological constants for a species from that site. The physiological parameters include metal influx rates from water, influx rates from food, rate constants of loss, and growth rates (when high). We compiled results from 15 publications that forecast species-specific bioaccumulation, and compare the forecasts to bioaccumulation data from the field. These data consider concentrations that cover 7 orders of magnitude. They include 7 metals and 14 species of animals from 3 phyla and 11 marine, estuarine, and freshwater environments. The coefficient of determination (R2) between forecasts and independently observed bioaccumulation from the field was 0.98. Most forecasts agreed with observations within 2-fold. The agreement suggests that the basic assumptions of the biodynamic model are tenable. A unified explanation of metal bioaccumulation sets the stage for a realistic understanding of toxicity and ecological effects of metals in nature.

  5. Apparent bioaccumulation of cylindrospermopsin and paralytic shellfish toxins by finfish in Lake Catemaco (Veracruz, Mexico).

    PubMed

    Berry, J P; Jaja-Chimedza, A; Dávalos-Lind, L; Lind, O

    2012-01-01

    Compared to the well-characterized health threats associated with contamination of fish and shellfish by algal toxins in marine fisheries, the toxicological relevance of the bioaccumulation of toxins from cyanobacteria (blue-green algae), as the primary toxigenic algae in freshwater systems, remains relatively unknown. Lake Catemaco (Veracruz, Mexico) is a small, tropical lake system specifically characterized by a year-round dominance of the known toxigenic cyanobacterial genus, Cylindrospermopsis, and by low, but detectable, levels of both a cyanobacterial hepatotoxin, cylindrospermopsin (CYN), and paralytic shellfish toxins (PSTs). In the present study, we evaluated, using enzyme-linked immunoassay (ELISA), levels of both toxins in several species of finfish caught and consumed locally in the region to investigate the bioaccumulation of, and possible health threats associated with, these toxins as potential foodborne contaminants. ELISA detected levels of both CYN and PSTs in fish tissues from the lake. Levels were generally low (≤ 1 ng g(-1) tissue); however, calculated bioaccumulation factors (BAFs) indicate that toxin levels exceed the rather low levels in the water column and, consequently, indicated bioaccumulation (BAF >1). A reasonable correlation was observed between measured bioaccumulation of CYN and PSTs, possibly indicating a mutual source of both toxins, and most likely cells of Cylindrospermopsis, the dominant cyanobacteria in the lake, and a known producer of both metabolites. The potential roles of trophic transport in the system, as well as possible implications for human health with regards to bioaccumulation, are discussed.

  6. Toxicity and bioaccumulation of a mixture of heavy metals in Chironomus tentans (Diptera: Chironomidae) in synthetic sediment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrahy, E.A.; Clements, W.H.

    1997-02-01

    This research investigated toxicity and bioaccumulation of a mixture of Cd, Cu, Pb, and Zn in Chironomus tentans in synthetic sediment, and compared predicted to measured steady-state bioaccumulation factors (BAFs). In a toxicity test, C. tentans were exposed to various dilutions of a base concentration (1.0 X) of a mixture of the four metals (5 {micro}g/g Cd. 10 {micro}g/g Cu. 70 {micro}g/g Pb, and 300 {micro}g/g Zn) in synthetic sediment. Mortality ranged from 17 to 100%. To measure bioaccumulation of the metals, C. tentans were exposed to 0.35 X the base concentration for a period of up to 14 dmore » in two uptake tests. Bioaccumulation of all four metals increased over the 14-d uptake phases. Concentrations of metals in chironomids were significantly correlated with exposure time in the uptake phases. Only concentrations of copper approached background levels after 7 d depuration. Uptake rate coefficients and elimination rate constants were determined for each metal. Bioaccumulation factors were highest for Cd and lowest for Pb. With the exception of Pb, steady-state BAFs were within a factor of about two of those calculated using the first-order kinetic model. The high BAFs calculated may indicate greater bioavailability in synthetic sediment. Studies comparing toxicity and bioaccumulation of natural and synthetic sediments are necessary before the use of synthetic sediments is widely adopted.« less

  7. Explaining differences between bioaccumulation measurements in laboratory and field data through use of a probabilistic modeling approach

    USGS Publications Warehouse

    Selck, Henriette; Drouillard, Ken; Eisenreich, Karen; Koelmans, Albert A.; Palmqvist, Annemette; Ruus, Anders; Salvito, Daniel; Schultz, Irv; Stewart, Robin; Weisbrod, Annie; van den Brink, Nico W.; van den Heuvel-Greve, Martine

    2012-01-01

    In the regulatory context, bioaccumulation assessment is often hampered by substantial data uncertainty as well as by the poorly understood differences often observed between results from laboratory and field bioaccumulation studies. Bioaccumulation is a complex, multifaceted process, which calls for accurate error analysis. Yet, attempts to quantify and compare propagation of error in bioaccumulation metrics across species and chemicals are rare. Here, we quantitatively assessed the combined influence of physicochemical, physiological, ecological, and environmental parameters known to affect bioaccumulation for 4 species and 2 chemicals, to assess whether uncertainty in these factors can explain the observed differences among laboratory and field studies. The organisms evaluated in simulations including mayfly larvae, deposit-feeding polychaetes, yellow perch, and little owl represented a range of ecological conditions and biotransformation capacity. The chemicals, pyrene and the polychlorinated biphenyl congener PCB-153, represented medium and highly hydrophobic chemicals with different susceptibilities to biotransformation. An existing state of the art probabilistic bioaccumulation model was improved by accounting for bioavailability and absorption efficiency limitations, due to the presence of black carbon in sediment, and was used for probabilistic modeling of variability and propagation of error. Results showed that at lower trophic levels (mayfly and polychaete), variability in bioaccumulation was mainly driven by sediment exposure, sediment composition and chemical partitioning to sediment components, which was in turn dominated by the influence of black carbon. At higher trophic levels (yellow perch and the little owl), food web structure (i.e., diet composition and abundance) and chemical concentration in the diet became more important particularly for the most persistent compound, PCB-153. These results suggest that variation in bioaccumulation assessment is reduced most by improved identification of food sources as well as by accounting for the chemical bioavailability in food components. Improvements in the accuracy of aqueous exposure appear to be less relevant when applied to moderate to highly hydrophobic compounds, because this route contributes only marginally to total uptake. The determination of chemical bioavailability and the increase in understanding and qualifying the role of sediment components (black carbon, labile organic matter, and the like) on chemical absorption efficiencies has been identified as a key next steps.

  8. Decontamination of sludge by the METIX-AC process. Part II: effects on maize growth and bioaccumulation of metals.

    PubMed

    Barraoui, Driss; Labrecque, Michel; Blais, Jean-François

    2008-03-01

    Given the fact that, according to our knowledge, no study has compared the agro-environmental use of decontaminated with non-decontaminated sludge, a greenhouse experiment was carried out to test the growth of maize (Zea mays L., G-4011 Hybrid) and bioaccumulation of metals in the presence of four different sludges (MUC, QUC, BEC and DAI), before and after their decontamination by a novel process (METIX-AC). Data showed that decontaminated sludge ameliorated plant growth and biomass production, and decreased bioaccumulation of metals, more than control soil, inorganic chemical fertilization, or conventional non-decontaminated sludge. Since chemicals used by the METIX-AC process contained S and Fe, decontaminated sludge introduced large amounts of these elements, while the overall presence of metals was reduced. Often, sludge dose also affected maize growth and bioaccumulation of metals. Overall, no toxicity to plants was noticed and bioaccumulation and transfer of many metals remained below the limits reported in the literature.

  9. Variation in bioaccumulation of persistent organic pollutants based on octanol-air partitioning: Influence of respiratory elimination in marine species.

    PubMed

    Moses, Sara K; Harley, John R; Lieske, Camilla L; Muir, Derek C G; Whiting, Alex V; O'Hara, Todd M

    2015-11-15

    Risk assessments of persistent organic pollutants (POPs) are often based on octanol-water (KOW) partitioning dynamics and may not adequately reflect bioaccumulation in air-breathing organisms. It has been suggested that compounds with low KOW and high octanol-air partitioning (KOA) coefficients have the potential to bioaccumulate in air-breathing organisms, including marine mammals. Here we evaluate differences in concentrations of POPs for two trophically matched Arctic species, spotted seal (Phoca largha) and sheefish (Stenodus leucichthys). We compared concentrations of 108 POPs in matched tissues (liver and muscle) across three ranges of KOW. We found a significant positive correlation between POP concentration and log KOA in spotted seal tissues for low log KOW compounds (log KOW <5.5, p<0.05). This provides further evidence for empirical models and observed bioaccumulation patterns in air-breathing organisms, and highlights the potential for bioaccumulation of these compounds in Arctic marine mammals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Variation in bioaccumulation of persistent organic pollutants based on octanol-air partitioning: Influence of respiratory elimination in marine species

    PubMed Central

    Moses, Sara K.; Harley, John R.; Lieske, Camilla L.; Muir, Derek C.G.; Whiting, Alex V.; O'Hara, Todd M.

    2015-01-01

    Risk assessments of persistent organic pollutants (POPs) are often based on octanol-water (KOW) partitioning dynamics and may not adequately reflect bioaccumulation in air-breathing organisms. It has been suggested that compounds with low KOW and high octanol-air partitioning (KOA) coefficients have the potential to bioaccumulate in air-breathing organisms, including marine mammals. Here we evaluate differences in concentrations of POPs for two trophically matched Arctic species, spotted seal (Phoca largha) and sheefish (Stenodus leucichthys). We compared concentrations of 108 POPs in matched tissues (liver and muscle) across three ranges of KOW. We found a significant positive correlation between POP concentration and log KOA in spotted seal tissues for low log KOW compounds (log KOW <5.5, p<0.05). This provides further evidence for empirical models and observed bioaccumulation patterns in air-breathing organisms, and highlights the potential for bioaccumulation of these compounds in Arctic marine mammals. PMID:26440545

  11. PCDD/F and dioxin-like PCB bioaccumulation by Manila clam from polluted areas of Venice lagoon (Italy).

    PubMed

    Sfriso, Adriano; Facca, Chiara; Raccanelli, Stefano

    2014-01-01

    POP bioaccumulation pathways in the clam Tapes philippinarum were examined for two years from juveniles to adult size. Two polluted sites, one with sandy sediment, the other muddy were compared with a reference site characterized by low contamination levels. Juvenile clams coming from a hatchery were reared both on the sediment and in nets suspended at 30 cm from the bottom. POP changes in clam tissue were related to the concentrations recorded in sediments and in the particulate matter during the entire fattening period. Results provided interesting data on the relationships between environmental contamination and bioaccumulation. Contrary to studies on the decontamination times of the clams collected in polluted areas, this work investigates the preferential clam bioaccumulation pathways during growth under different environmental conditions. In general POP bioaccumulation resulted to be correlated to concentrations in SPM rather than in sediments and was higher in S-clams rather than in B-clams. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Marshall; Brandt, Craig C; Fortner, Allison M

    In December 2008, an ash dike at the Tennessee Valley Authority (TVA) Kingston Fossil Plant ruptured, releasing over one billion gallons of coal fly ash into the Emory and Clinch Rivers. Coal fly ash may contain several contaminants of concern, but of these selenium (Se) and arsenic (As) have been highlighted because of their toxicity and tendency to bioaccumulate in aquatic food chains. To assess the potential impact of the spilled fly ash on humans and the environment, a comprehensive biological and environmental monitoring program was established, for which resident aquatic organisms (among other sample media) are collected to determinemore » contaminant exposure and evaluate the risk to humans and wildlife. Studies on bioaccumulation and fish health are major components of the TVA Biological Monitoring Program for the Kingston fly ash project. These studies were initiated in early Spring 2009 for the purposes of: (1) documenting the levels of fly ash-associated metals in various tissues of representative sentinel fish species in the area of the fly ash spill, (2) determining if exposure to fly ash-associated metals causes short, intermediate, or long-term health effects on these sentinel fish species, (3) assessing if there are causal relationships between exposure (to metals) and effects on fish, (4) evaluating, along with information regarding other ecological and physicochemical studies, the nature and route of contaminant transfer though food chains into higher level consumers, (5) providing important information for the Ecological Risk Assessment (ERA) for the Kingston fly ash project, and (6) serving as an important technology transfer or model study focused on how to best evaluate the environmental effects of fly ash, not only at the Kingston site, but also at sites on other aquatic systems where coal-fired generating stations are located. This report summarizes the bioaccumulation results from the first two years of study after the fly ash spill, including four seasonal collections: Spring 2009, Fall 2009, Spring 2010, and Fall 2010. Both the Spring and Fall studies have focused on 3-4 sentinel fish species that represent different feeding habits, behaviors, and home ranges. In addition to bioaccumulation studies, the Spring investigations also included evaluation of fish health and reproductive integrity on the same fish used for bioaccumulation. Two associated reports present the fish health (Adams et al 2012) and reproductive studies (Greeley et al 2012) conducted in 2009 and 2010. The fish health study conducted in conjunction with the bioaccumulation and reproductive study is critical for assessing and evaluating possible causal relationships between contaminant exposure (bioaccumulation) and the response of fish to exposure as reflected by the various measurements of fish health. This report emphasizes evaluation of arsenic and selenium bioaccumulation in fish and consists of four related studies (Sections 2-5) including, (1) bioaccumulation in liver and ovaries, (2) bioaccumulation in whole body gizzard shad (Dorosoma cepedianum), (3) bioaccumulation in muscle tissue or fillets, and (4) a reconstruction analysis which establishes the relationship between selenium in muscle tissue and that of the whole body of bluegill (Lepomis machrochirus). Metals other than arsenic and selenium are evaluated separately in Section 6. This report focuses on selenium and arsenic for the following reasons: (1) based on baseline studies conducted in early 2009 in the Emory and Clinch River, only two potentially fly-ash related metals, selenium and arsenic, appeared to be elevated above background or reference levels, (2) selenium and arsenic are two of the metals in coal ash that are known to bioaccumulate and cause toxicity in wildlife, and (3) based on bioaccumulation studies of bluegill and carp (Cyprinus carpio) in the Stilling Pond during Spring 2009, which would represent a worst case situation for metal bioaccumulation, selenium and arsenic were the only two metals consistently elevated above background levels in fish. Each of the four selenium and arsenic evaluations presented in this report include an approach section, a results section which addresses primarily spatial and temporal patterns in bioaccumulation, an interpretation and discussion section, and a synthesis section which provides the main summary points of each study. Other metals in fish from near the spill site are evaluated by comparison with reference sites and evaluation of spatial and temporal trends. Statistical approaches to data analysis will be conducted after the third year of bioaccumulation monitoring when there is a larger n size available for analysis, there has been sufficient time for food-chain driven bioaccumulation (2009 data was likely closer to pre-spill exposures), and data correction factors for selenium and mercury (because of poor analytical recoveries for some samples) have been fully codified by the study team.« less

  13. Management of Bottom Sediments Containing Toxic Substances: Proceedings of the U.S./Japan Experts Meeting (10th) Held at Kyoto, Japan on 30-31 October 1984.

    DTIC Science & Technology

    1985-10-01

    potential for bioaccumulation of cadmium, chromium, copper, mercury, silver, pesticides, PCBs, petroleum hydrocarbons , and organotins. The concentration...the dredging projects indicated environmentally significant mortality poten- tial to benthic life. Bioaccumulation analyses for petroleum hydrocarbons ...ocean disposal, bioaccumulation analysis is conducted for total petroleum hydrocarbons (PHC), polychlorinated biphenyls (PCB), DDT, mercury (Hg), and

  14. Cyclic volatile methylsiloxane bioaccumulation in flounder and ragworm in the Humber Estuary.

    PubMed

    Kierkegaard, Amelie; van Egmond, Roger; McLachlan, Michael S

    2011-07-15

    Cyclic volatile methylsiloxanes are being subjected to regulatory scrutiny as possible PBT chemicals. The investigation of bioaccumulation has yielded apparently contradictory results, with high laboratory fish bioconcentration factors on the one hand and low field trophic magnification factors on the other. In this study, octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) were studied along with polychlorinated biphenyls (PCBs) in sediments, ragworm, and flounder from six sites in the Humber Estuary. Bioaccumulation was evaluated using multimedia bioaccumulation factors (mmBAFs) which quantified the fraction of the contaminant present in the aquatic environment that is transferred to the biota. PCB 180, a known strongly bioaccumulative chemical, was used as a benchmark. The mean mmBAF of D5 was about twice that of PCB 180 in both polycheates and flounder, while for D4 it was 6 and 14 times higher, respectively. The mmBAF of D6 was a factor 5-10 lower than that of PCB180. The comparatively strong multimedia bioaccumulation of D4 and D5, even in the absence of biomagnification, was explained by both compounds having a >100 times stronger tendency to partition into lipid rather than into organic carbon, while PCB 180 partitions to a similar extent into both matrices.

  15. Organochlorine bioaccumulation and trophic transfer model for the pilot whale in the northwest Atlantic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisbrod, A.V.; Shea, D.; Moore, M.J.

    1995-12-31

    The goals of this project were: (1) to determine the level of organochlorine exposure to pilot whales; (2) to identify tissue and individual bioaccumulation patterns, and (3) to develop a predictive model to approximate contaminant bioaccumulation into blubber. Samples from eighteen pilot whales beached in 1990--91 on Cape Cod, MA were analyzed by GC/ECD and GC/MS for polychlorinated biphenyls (PCB) and polycyclic aromatic hydrocarbons (PAHs). Individual congeners and total PCBs were identified and found to be high (ppm range) in several individuals. Blubber and liver differences in metabolizable PCB congeners correlate with differences in CYP 1A abundance and activity inmore » mature vs. immature animals. ANOVA and cluster analyses were performed to identify specific bioaccumulation patterns. Pod or exposure conditions appear to be the most important factor in bioaccumulation in these whales. Maturity level, gender, and metabolizability also seem to influence bioaccumulation in various tissues. These patterns were applied in the development of a steady state mass balance model, which focuses on exposure differences rather than metabolic and gender influences. Using a range of environmental contaminant concentrations for seawater, plankton, squid and fish, the model`s low range of output values best approximated blubber residues.« less

  16. Evaluating the Relationship between Equilibrium Passive ...

    EPA Pesticide Factsheets

    Objectives. This review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) in water column and interstitial water exposures as a surrogate for organism bioaccumulation. Approach/Activities. Fifty-five studies were found where both passive sampler uptake and organism bioaccumulation were measured and 19 of these investigations provided direct comparisons relating passive sampler uptake and organism bioaccumulation. Polymers compared included low density polyethylene (LDPE), polyoxymethylene (POM), and polydimethylsiloxane (PDMS), and organisms ranged from polychaetes and oligochaetes to bivalves, aquatic insects, and gastropods. Regression equations correlating bioaccumulation (CL) and passive sampler uptake (CPS) were used to assess the strength of observed relationships. Results/Lessons Learned. Passive sampling based concentrations resulted in strong logarithmic regression relationships, most of which were within one to two orders of magnitude of measured bioaccumulation. Mean coefficients of determination (r2) for LDPE, PDMS and POM were 0.68, 0.76 and 0.58, respectively. For the available raw data, the mean ratio of CL and CPS was 10.8 ± 18.4 (n = 609). Passive sampler uptake and bioaccumulation were not found to be identical (i.e., CPS ≠ CL) but the logarithmic-based relationships between these values were consistently linear and predictive. This review concludes that in many applications passive sampling may serve as a

  17. The role of exopolymeric substances in the bioaccumulation and toxicity of Ag nanoparticles to algae

    NASA Astrophysics Data System (ADS)

    Zhou, Kaijun; Hu, Yi; Zhang, Luqing; Yang, Kun; Lin, Daohui

    2016-09-01

    Exopolymeric substances (EPS) have an important role in bioaccumulation and toxicity of nanoparticles (NPs) to algae, which warrants specific studies. The interaction of EPS with citrate and polyvinyl pyrrolidone (PVP) coated AgNPs (C-AgNPs and P-AgNPs, respectively) and its roles in bioaccumulation and toxicity of the AgNPs to Chlorella pyrenoidosa were investigated. The amino and aromatic carboxylic groups in the EPS were involved in the EPS-AgNP interactions. Compared with Ag+, C-AgNPs had comparable total bioaccumulation but greater absorption by intact algae with EPS; P-AgNPs had the smallest total bioaccumulation and were mainly adsorbed on algal surfaces. With EPS removed, the total bioaccumulations and surface adsorptions for the three Ag species decreased but the cell internalizations increased; the 96 h half growth inhibition concentrations decreased, indicating EPS alleviated the algal toxicity of Ag. The cell-internalized but not the adsorbed AgNPs could contribute to the nanotoxicity. The EPS could bind both AgNPs and Ag+, and thus inhibited the cell internalization and the nanotoxicity. However, the EPS-bound Ag on the cell surfaces would migrate along with the algae and be biologically amplified in the aquatic food chains, presenting ecological risks. These results are helpful for understanding the fate and ecological effects of NPs.

  18. Triple-mixture of Zn, Mn, and Fe increases bioaccumulation and causes oxidative stress in freshwater neotropical fish.

    PubMed

    de Oliveira, Luciana Fernandes; Santos, Caroline; Risso, Wagner Ezequiel; Dos Reis Martinez, Claudia Bueno

    2018-06-01

    Metal bioaccumulation and oxidative stress biomarkers were determined in Prochilodus lineatus to understand the effects of short-term exposure to a triple-mixture of Zn, Mn, and Fe. Three independent tests were carried out, in which fish were exposed to 3 concentrations of Zn (0.18, 1.0, and 5.0 mg L -1 ), Mn (0.1, 0.5, and 5.0 mg L -1 ), and in the mix test to Fe (5.0 mg L -1 ) and a mixture of Zn (1.0 mg L -1 ) + Mn (0.5 mg L -1 ), with and without Fe. After exposure for 96 h, tissues were removed for metal bioaccumulation analysis and oxidative stress biomarkers were determined in liver, along with DNA damage in blood cells. Our results revealed that Zn and Mn were bioaccumulated in fish tissues after exposure to 5.0 mg L -1 , whereas Fe only bioaccumulated in muscle and gills after mixture exposure. Results indicated that 1 metal interfered with the other's bioaccumulation. In P. lineatus, 5 mg L -1 of both Mn and Fe were toxic, because damage was observed (lipid peroxidation [LPO] in liver and DNA damage in blood cells), whereas Zn induced liver responses (metallothionein [MT] and reduced glutathione [GSH] increases) to prevent damage. In terms of bioaccumulation and alterations of oxidative stress biomarkers, we showed that Zn, Mn, and Fe triple-mixture enhances individual metal toxicity in Neotropical fish P. lineatus. Environ Toxicol Chem 2018;37:1749-1756. © 2018 SETAC. © 2018 SETAC.

  19. Influence of algal and bacterial particulate organic matter on benzo[a]pyrene bioaccumulation in Daphnia magna.

    PubMed

    Gourlay, Catherine; Mouchel, Jean-Marie; Tusseau-Vuillemin, Marie-Hélène; Garric, Jeanne

    2005-06-15

    In order to better asses the influence of organic matter on the bioavailability of hydrophobic organic contaminants, the effect of algae and POM of bacterial origin on the bioaccumulation of benzo[a]pyrene in Daphnia magna was evaluated. The bioaccumulation was monitored with increasing concentrations of particulate organic matter (POM) and dissolved organic matter (DOM). In all experiments, the presence of POM greatly reduced the bioaccumulation of benzo[a]pyrene. The reduction was more pronounced in the presence of algae, for which we observed a 99%-reduction effect in the presence of 6 x10 (5) cell/mL (equivalent to 5.3 mg C/L). The bioaccumulation of benzo[a]pyrene was decreased by 49% by organic matter of bacterial origin at 4.7 mg C/L. Assuming that benzo[a]pyrene was partitioned between water, DOM and POM and supposing that D. magna accumulated free benzo[a]pyrene via respiration and POM-bond benzo[a]pyrene via ingestion, bioaccumulation data allowed to estimate the dietary uptake rate of benzo[a]pyrene as well as partitioning coefficients K(POC) and K(DOC). Despite the ingestion of contaminated particles, we could not observe any dietary uptake of benzo[a]pyrene in daphnids. We verified, as usually supposed, that the bioaccumulation of benzo[a]pyrene to D. magna occurs mainly via direct contact. Very high partitioning coefficients (log K(POC) between 5.2 and 6.2) were estimated. This study pointed out the great influence of biogenic organic matter on the fate and the bioavailability of benzo[a]pyrene in aquatic ecosystems.

  20. In vitro to in vivo extrapolation of biotransformation rates for assessing bioaccumulation of hydrophobic organic chemicals in mammals.

    PubMed

    Lee, Yung-Shan; Lo, Justin C; Otton, S Victoria; Moore, Margo M; Kennedy, Chris J; Gobas, Frank A P C

    2017-07-01

    Incorporating biotransformation in bioaccumulation assessments of hydrophobic chemicals in both aquatic and terrestrial organisms in a simple, rapid, and cost-effective manner is urgently needed to improve bioaccumulation assessments of potentially bioaccumulative substances. One approach to estimate whole-animal biotransformation rate constants is to combine in vitro measurements of hepatic biotransformation kinetics with in vitro to in vivo extrapolation (IVIVE) and bioaccumulation modeling. An established IVIVE modeling approach exists for pharmaceuticals (referred to in the present study as IVIVE-Ph) and has recently been adapted for chemical bioaccumulation assessments in fish. The present study proposes and tests an alternative IVIVE-B technique to support bioaccumulation assessment of hydrophobic chemicals with a log octanol-water partition coefficient (K OW ) ≥ 4 in mammals. The IVIVE-B approach requires fewer physiological and physiochemical parameters than the IVIVE-Ph approach and does not involve interconversions between clearance and rate constants in the extrapolation. Using in vitro depletion rates, the results show that the IVIVE-B and IVIVE-Ph models yield similar estimates of rat whole-organism biotransformation rate constants for hypothetical chemicals with log K OW  ≥ 4. The IVIVE-B approach generated in vivo biotransformation rate constants and biomagnification factors (BMFs) for benzo[a]pyrene that are within the range of empirical observations. The proposed IVIVE-B technique may be a useful tool for assessing BMFs of hydrophobic organic chemicals in mammals. Environ Toxicol Chem 2017;36:1934-1946. © 2016 SETAC. © 2016 SETAC.

  1. Comparison in waterborne Cu, Ni and Pb bioaccumulation kinetics between different gammarid species and populations: Natural variability and influence of metal exposure history.

    PubMed

    Urien, N; Farfarana, A; Uher, E; Fechner, L C; Chaumot, A; Geffard, O; Lebrun, J D

    2017-12-01

    Kinetic parameters (uptake from solution and elimination rate constants) of Cu, Ni and Pb bioaccumulation were determined from two Gammarus pulex and three Gammarus fossrum wild populations collected from reference sites throughout France in order to assess the inter-species and the natural inter-population variability of metal bioaccumulation kinetics in that sentinel organism. For that, each population was independently exposed for seven days to either 2.5μgL -1 Cu (39.3nM), 40μgL -1 Ni (681nM) or 10μgL -1 Pb (48.3nM) in laboratory controlled conditions, and then placed in unexposed microcosms for a 7-day depuration period. In the same way, the possible influence of metal exposure history on subsequent metal bioaccumulation kinetics was addressed by collecting wild gammarids from three populations inhabiting stations contaminated either by Cd, Pb or both Pb and Ni (named pre-exposed thereafter). In these pre-exposed organisms, assessment of any changes in metal bioaccumulation kinetics was achieved by comparison with the natural variability of kinetic parameters defined from reference populations. Results showed that in all studied populations (reference and pre-exposed) no significant Cu bioaccumulation was observed at the exposure concentration of 2.5μgL -1 . Concerning the reference populations, no significant differences in Ni and Pb bioaccumulation kinetics between the two species (G. pulex and G. fossarum) was observed allowing us to consider all the five reference populations to determine the inter-population natural variability, which was found to be relatively low (kinetic parameters determined for each population remained within a factor of 2 of the minimum and maximum values). Organisms from the population exhibiting a Pb exposure history presented reduced Ni uptake and elimination rate constants, whereas no influence on Ni kinetic parameters was observed in organisms from the population exhibiting an exposure history to both Ni and Pb. Furthermore Pb bioaccumulation kinetics were unaffected whatever the condition of pre-exposure in natural environment. Finally, these results highlight the complexity of confounding factors, such as metal exposure history, that influence metal bioaccumulation processes and showed that pre-exposure to one metal can cause changes in the bioaccumulation kinetics of other metals. These results also address the question of the underlying mechanisms developed by organisms to cope with metal contamination. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Feasibility Study of Contamination Remediation at Naval Weapons Station, Concord, California. Volume 1. Remedial Action Alternatives.

    DTIC Science & Technology

    1988-09-01

    laboratory contaminants. The surface water sampling program was augmented by clam bioaccumulation 0 studies. In these studies, clams were placed in...water and clam bioaccumulation data indicate that several of the metals found in the contaminated surface soils are also ele- vated in the surface...waters and are potentially bioavailable to aquatic organ- isms and may currently impair water quality in these areas. However, clam bioaccumulation data

  3. Field Verification Program (Aquatic Disposal). Bioenergetic Effects of Black Rock Harbor Dredged Material on the Polychaete Nephtys incisa: A Field Verification.

    DTIC Science & Technology

    1988-03-01

    observed in the laboratory, and to determine the degree of correlation between the bioaccumulation of contaminants and bioenergetic responses...toxicity of liquid, suspended particulate, and solid phases; (c) estimating the potential contami- nant bioaccumulation ; and (d) describing the initial... bioaccumulation of dredged material contami- nants with biological responses from laboratory and field exposure to dredged material. However, this study

  4. Explaining differences between bioaccumulation measurements in laboratory and field data through use of a probabilistic modeling approach.

    PubMed

    Selck, Henriette; Drouillard, Ken; Eisenreich, Karen; Koelmans, Albert A; Palmqvist, Annemette; Ruus, Anders; Salvito, Daniel; Schultz, Irv; Stewart, Robin; Weisbrod, Annie; van den Brink, Nico W; van den Heuvel-Greve, Martine

    2012-01-01

    In the regulatory context, bioaccumulation assessment is often hampered by substantial data uncertainty as well as by the poorly understood differences often observed between results from laboratory and field bioaccumulation studies. Bioaccumulation is a complex, multifaceted process, which calls for accurate error analysis. Yet, attempts to quantify and compare propagation of error in bioaccumulation metrics across species and chemicals are rare. Here, we quantitatively assessed the combined influence of physicochemical, physiological, ecological, and environmental parameters known to affect bioaccumulation for 4 species and 2 chemicals, to assess whether uncertainty in these factors can explain the observed differences among laboratory and field studies. The organisms evaluated in simulations including mayfly larvae, deposit-feeding polychaetes, yellow perch, and little owl represented a range of ecological conditions and biotransformation capacity. The chemicals, pyrene and the polychlorinated biphenyl congener PCB-153, represented medium and highly hydrophobic chemicals with different susceptibilities to biotransformation. An existing state of the art probabilistic bioaccumulation model was improved by accounting for bioavailability and absorption efficiency limitations, due to the presence of black carbon in sediment, and was used for probabilistic modeling of variability and propagation of error. Results showed that at lower trophic levels (mayfly and polychaete), variability in bioaccumulation was mainly driven by sediment exposure, sediment composition and chemical partitioning to sediment components, which was in turn dominated by the influence of black carbon. At higher trophic levels (yellow perch and the little owl), food web structure (i.e., diet composition and abundance) and chemical concentration in the diet became more important particularly for the most persistent compound, PCB-153. These results suggest that variation in bioaccumulation assessment is reduced most by improved identification of food sources as well as by accounting for the chemical bioavailability in food components. Improvements in the accuracy of aqueous exposure appear to be less relevant when applied to moderate to highly hydrophobic compounds, because this route contributes only marginally to total uptake. The determination of chemical bioavailability and the increase in understanding and qualifying the role of sediment components (black carbon, labile organic matter, and the like) on chemical absorption efficiencies has been identified as a key next steps. Copyright © 2011 SETAC.

  5. Bioaccumulation and uptake routes of perfluoroalkyl acids in Daphnia magna.

    PubMed

    Dai, Zhineng; Xia, Xinghui; Guo, Jia; Jiang, Xiaoman

    2013-02-01

    Perfluoroalkyl acids (PFAs), one kind of emerging contaminants, have attracted great attentions in recent years. However, the study about their bioaccumulation mechanism remains scarce. In this research, the bioaccumulation of six kinds of PFAs in water flea Daphnia magna was studied. The uptake rates of PFAs in D. magna ranged from 178 to 1338 L kg(-1) d(-1), and they increased with increasing perfluoroalkyl chain length; the elimination rates ranged from 0.98 to 2.82 d(-1). The bioaccumulation factors (BAFs) of PFAs ranged from 91 to 380 L kg(-1) in wet weight after 25 d exposure; they increased with increasing perfluoroalkyl chain length and had a significant positive correlation with the n-octanol/water partition coefficients (logK(ow)) of PFAs (p<0.05). This indicated that the hydrophobicity of PFAs plays an important role in their bioaccumulation. The BAFs almost kept constant when the PFA concentrations in aqueous phase increased from 1 to 10 μg L(-1). Scenedesmus subspicatus, as the food of D. magna, did not significantly affect the bioaccumulation of PFAs by D. magna. Furthermore, the body burden of PFAs in the dead D. magna was 1.08-2.52 times higher than that in the living ones, inferring that the body surface sorption is a main uptake route of PFAs in D. magna. This study suggested that the bioaccumulation of PFAs in D. magna is mainly controlled by their partition between organisms and water; further research should be conducted to study the intrinsic mechanisms, especially the roles of protein and lipid in organisms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Mathematical relationships between metrics of chemical bioaccumulation in fish.

    PubMed

    Mackay, Don; Arnot, Jon A; Gobas, Frank A P C; Powell, David E

    2013-07-01

    Five widely used metrics of bioaccumulation in fish are defined and discussed, namely the octanol-water partition coefficient (KOW ), bioconcentration factor (BCF), bioaccumulation factor (BAF), biomagnification factor (BMF), and trophic magnification factor (TMF). Algebraic relationships between these metrics are developed and discussed using conventional expressions for chemical uptake from water and food and first-order losses by respiration, egestion, biotransformation, and growth dilution. Two BCFs may be defined, namely as an equilibrium partition coefficient KFW or as a nonequilibrium BCFK in which egestion losses are included. Bioaccumulation factors are shown to be the product of the BCFK and a novel equilibrium multiplier M containing 2 ratios, namely, the diet-to-water concentration ratio and the ratio of uptake rate constants for respiration and dietary uptake. Biomagnification factors are shown to be proportional to the lipid-normalized ratio of the predator/prey values of BCFK and the ratio of the equilibrium multipliers. Relationships with TMFs are also discussed. The effects of chemical hydrophobicity, biotransformation, and growth are evaluated by applying the relationships to a range of illustrative chemicals of varying KOW in a linear 4-trophic-level food web with typical values for uptake and loss rate constants. The roles of respiratory and dietary intakes are demonstrated, and even slow rates of biotransformation and growth can significantly affect bioaccumulation. The BCFK s and the values of M can be regarded as the fundamental determinants of bioaccumulation and biomagnification in aquatic food webs. Analyzing data from food webs can be enhanced by plotting logarithmic lipid-normalized concentrations or fugacities as a linear function of trophic level to deduce TMFs. Implications for determining bioaccumulation by laboratory tests for regulatory purposes are discussed. Copyright © 2013 SETAC.

  7. Field Verification Program (Aquatic Disposal): Comparison of Field and Laboratory Bioaccumulation of Organic and Inorganic Contaminants from Black Rock Harbor Dredged Material

    DTIC Science & Technology

    1988-05-01

    include poly- chlorinated biphenyls (PCBs) and related chlorinated pesticides of similar polarity in addition to the petroleum hydrocarbons . The...Ui It tILL (JV: FIELD VERIFICATION PROGRAM (AQUATIC DISPOSAL).’Wh TECHNICAL REPORT D-87-6 COMPARISON OF FIELD AND LABORATORY BIOACCUMULATION OF...Laboratory Bioaccumulation of Organic and Inorganic Contaminants from Black Rock Harbor Dredged Material 12 PERSONAL AUTHOR(S) Lake, James L.; Galloway

  8. Bioaccumulation factor of 137Cs in some marine biotas from West Bangka Indonesia

    NASA Astrophysics Data System (ADS)

    Suseno, Heny

    2014-03-01

    Radionuclides may be released from nuclear facilities to the marine environment. Concentrations of radionuclides within marine biotic systems can be influenced by a number of factors, including the type of biota, its source, the radionuclide, and specific characteristics of the sampled specimens and the marine environment (salinity, etc.). The bioconcentration factor for a marine organism is the ratio of the concentration of a radionuclide in that organism to the concentration found in its marine water environment - under conditions of equilibrium. Information on the bioaccumulation of Cs-137 in marine organisms is required to risk assessment evaluates the potential risks to human health. Bioaccumulation of Cs was investigated in marine biota from west Bangka such as Marine cat fish (Arius thalassinus), Baramundi (Lates calcarifer), Mackerel (Scomberomorus commerson), Striped eel catfish (Plotosus lineatus), eel tailed fish (Euristhmus microceps), Yellowtail fusilier (Caesio erythrogaster), Coastal crab (Scylla sp), White shrimp (Penaeus merguiensis) and marine bivalve mollusk (Anadara granosa). Muscle of these marine biota, sediments and water were assayed for Cs-137 by HPGe gamma spectrometer. The bioaccumulation factor for fishes were calculated by ratio of concentration Cs-137 in muscle biota to the its concentration in water. The bioaccumulation factor for mollusks were calculates by ratio of concentration Cs-137 in muscle biota to the its concentration in sediments. The bioaccumulation factor were range 4.99 to 136.34.

  9. Bioaccumulation of organic pollutants in Indo-Pacific humpback dolphin: A review on current knowledge and future prospects.

    PubMed

    Sanganyado, Edmond; Rajput, Imran Rashid; Liu, Wenhua

    2018-06-01

    Indo-Pacific humpback dolphin (Sousa chinensis) are chronically exposed to organic pollutants since they inhabit shallow coastal waters that are often impacted by anthropogenic activities. The aim of this review was to evaluate existing knowledge on the occurrence of organic pollutants in Indo-Pacific humpback dolphins, identify knowledge gaps, and offer recommendations for future research directions. We discussed the trends in the bioaccumulation of organic pollutants in Indo-Pacific humpback dolphins focusing on sources, physicochemical properties, and usage patterns. Furthermore, we examined factors that influence bioaccumulation such as gender, age, dietary intake and tissue-specific distribution. Studies on bioaccumulation in Indo-Pacific humpback dolphin remain scarce, despite high concentrations above 13,000 ng/g lw we previously detected for PFOS, ∑PBDE and chlorinated paraffins. The maximum concentration of organochlorines detected was 157,000 ng/g wt. Furthermore, variations in bioaccumulation were shown to be caused by factors such as usage patterns and physicochemical properties of the pollutant. However, restrictions in sampling inhibit investigations on exposure pathway and toxicity of organic pollutants in Indo-Pacific humpback dolphin. We proposed the use of biopsy sampling, predictive bioaccumulation and toxicity modeling, and monitoring other emerging contaminants such as microplastics and pharmaceuticals for future health risk assessment on this critically endangered marine mammal species. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. A sediment ecotoxicity assessment platform for in situ measures of chemistry, bioaccumulation and toxicity. Part 2: Integrated application to a shallow estuary.

    PubMed

    Rosen, Gunther; Chadwick, D Bart; Burton, G Allen; Taulbee, W Keith; Greenberg, Marc S; Lotufo, Guilherme R; Reible, Danny D

    2012-03-01

    A comprehensive, weight-of-evidence based ecological risk assessment approach integrating laboratory and in situ bioaccumulation and toxicity testing, passive sampler devices, hydrological characterization tools, continuous water quality sensing, and multi-phase chemical analyses was evaluated. The test site used to demonstrate the approach was a shallow estuarine wetland where groundwater seepage and elevated organic and inorganic contaminants were of potential concern. Although groundwater was discharging into the surficial sediments, little to no chemical contamination was associated with the infiltrating groundwater. Results from bulk chemistry analysis, toxicity testing, and bioaccumulation, however, suggested possible PAH toxicity at one station, which might have been enhanced by UV photoactivation, explaining the differences between in situ and laboratory amphipod survival. Concurrently deployed PAH bioaccumulation on solid-phase micro-extraction fibers positively correlated (r(2) ≥ 0.977) with in situ PAH bioaccumulation in amphipods, attesting to their utility as biomimetics, and contributing to the overall improved linkage between exposure and effects demonstrated by this approach. Published by Elsevier Ltd.

  11. Organophosphorus and Organochlorine Pesticides Bioaccumulation by Eichhornia crassipes in Irrigation Canals in an Urban Agricultural System.

    PubMed

    Mercado-Borrayo, B M; Cram Heydrich, Silke; Pérez, Irma Rosas; Hernández Quiroz, Manuel; De León Hill, Claudia Ponce

    2015-01-01

    A natural wetland in Mexico City Metropolitan Area is one of the main suppliers of crops and flowers, and in consequence its canals hold a high concentration of organochlorine (OC) and organophosphorus (OP) pesticides. There is also an extensive population of water hyacinth (Eichhornia crassipes), which is considered a plague; but literature suggests water hyacinth may be used as a phytoremediator. This study demonstrates bioaccumulation difference for the OC in vivo suggesting their bioaccumulation is ruled by their log K(ow), while all the OP showed bioaccumulation regardless of their log K(ow). The higher bioaccumulation factors (BAF) of the accumulated OC pesticides cannot be explained by their log K(ow), suggesting that the OC pesticides may also be transported passively into the plant. Translocation ratios showed that water hyacinth is an accumulating plant with phytoremediation potential for all organophosphorus pesticides studied and some organochlorine pesticides. An equation for free water surface wetlands with floating macrophytes, commonly used for the construction of water-cleaning wetlands, showed removal of the pesticides by the wetland with room for improvement with appropriate management.

  12. Spatial and taxonomic variation in trace element bioaccumulation in two herbivores from a coal combustion waste contaminated stream.

    PubMed

    Fletcher, Dean E; Lindell, Angela H; Stillings, Garrett K; Mills, Gary L; Blas, Susan A; Vaun McArthur, J

    2014-03-01

    Dissimilarities in habitat use, feeding habits, life histories, and physiology can result in syntopic aquatic taxa of similar trophic position bioaccumulating trace elements in vastly different patterns. We compared bioaccumulation in a clam, Corbicula fluminea and mayfly nymph Maccaffertium modestum from a coal combustion waste contaminated stream. Collection sites differed in distance to contaminant sources, incision, floodplain activity, and sources of flood event water and organic matter. Contaminants variably accumulated in both sediment and biofilm. Bioaccumulation differed between species and sites with C. fluminea accumulating higher concentrations of Hg, Cs, Sr, Se, As, Be, and Cu, but M. modestum higher Pb and V. Stable isotope analyses suggested both spatial and taxonomic differences in resource use with greater variability and overlap between species in the more physically disturbed site. The complex but essential interactions between organismal biology, divergence in resource use, and bioaccumulation as related to stream habitat requires further studies essential to understand impacts of metal pollution on stream systems. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Fish bioaccumulation and biomarkers in environmental risk assessment: a review.

    PubMed

    van der Oost, Ron; Beyer, Jonny; Vermeulen, Nico P E

    2003-02-01

    In this review, a wide array of bioaccumulation markers and biomarkers, used to demonstrate exposure to and effects of environmental contaminants, has been discussed in relation to their feasibility in environmental risk assessment (ERA). Fish bioaccumulation markers may be applied in order to elucidate the aquatic behavior of environmental contaminants, as bioconcentrators to identify certain substances with low water levels and to assess exposure of aquatic organisms. Since it is virtually impossible to predict the fate of xenobiotic substances with simple partitioning models, the complexity of bioaccumulation should be considered, including toxicokinetics, metabolism, biota-sediment accumulation factors (BSAFs), organ-specific bioaccumulation and bound residues. Since it remains hard to accurately predict bioaccumulation in fish, even with highly sophisticated models, analyses of tissue levels are required. The most promising fish bioaccumulation markers are body burdens of persistent organic pollutants, like PCBs and DDTs. Since PCDD and PCDF levels in fish tissues are very low as compared with the sediment levels, their value as bioaccumulation markers remains questionable. Easily biodegradable compounds, such as PAHs and chlorinated phenols, do not tend to accumulate in fish tissues in quantities that reflect the exposure. Semipermeable membrane devices (SPMDs) have been successfully used to mimic bioaccumulation of hydrophobic organic substances in aquatic organisms. In order to assess exposure to or effects of environmental pollutants on aquatic ecosystems, the following suite of fish biomarkers may be examined: biotransformation enzymes (phase I and II), oxidative stress parameters, biotransformation products, stress proteins, metallothioneins (MTs), MXR proteins, hematological parameters, immunological parameters, reproductive and endocrine parameters, genotoxic parameters, neuromuscular parameters, physiological, histological and morphological parameters. All fish biomarkers are evaluated for their potential use in ERA programs, based upon six criteria that have been proposed in the present paper. This evaluation demonstrates that phase I enzymes (e.g. hepatic EROD and CYP1A), biotransformation products (e.g. biliary PAH metabolites), reproductive parameters (e.g. plasma VTG) and genotoxic parameters (e.g. hepatic DNA adducts) are currently the most valuable fish biomarkers for ERA. The use of biomonitoring methods in the control strategies for chemical pollution has several advantages over chemical monitoring. Many of the biological measurements form the only way of integrating effects on a large number of individual and interactive processes in aquatic organisms. Moreover, biological and biochemical effects may link the bioavailability of the compounds of interest with their concentration at target organs and intrinsic toxicity. The limitations of biomonitoring, such as confounding factors that are not related to pollution, should be carefully considered when interpreting biomarker data. Based upon this overview there is little doubt that measurements of bioaccumulation and biomarker responses in fish from contaminated sites offer great promises for providing information that can contribute to environmental monitoring programs designed for various aspects of ERA.

  14. Relationship between the lability of sediment-bound Cd and its bioaccumulation in edible oyster.

    PubMed

    Chakraborty, Parthasarathi; Ramteke, Darwin; Chakraborty, Sucharita; Chennuri, Kartheek; Bardhan, Pratirupa

    2015-11-15

    A linkage between Cd speciation in sediments and its bioaccumulation in edible oyster (Crassostrea sp.) from a tropical estuarine system was established. Bioaccumulation of Cd in edible oyster increased with the increasing lability and dissociation rate constants of Cd-sediment complexes in the bottom sediments. Total Cd concentration in sediment was not a good indicator of Cd-bioavailability. Increasing trace metal competition in sediments increased lability and bioavailability of Cd in the tropical estuarine sediment. Low thermodynamic stability and high bioavailability of Cd in the estuarine sediment were responsible for high bioaccumulation of Cd in edible oysters (3.2-12.2mgkg(-1)) even though the total concentration of Cd in the bottom sediment was low (0.17-0.49mgkg(-1)). Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Structural changes in response to bioaccumulation of iron and mercury in Chromolaena odorata (L.) King & Robins.

    PubMed

    Swapna, K S; Salim, Nabeesa; Chandra, Ratheesh; Puthur, Jos T

    2015-09-01

    A comparative study was designed to elucidate the effect of iron and mercury on the morphological and anatomical changes as well as bioaccumulation potential in Chromolaena odorata. Plants were grown in half-strength Hoagland nutrient medium artificially contaminated with known quantities of HgCl2 (15 μM) and FeCl3 (1000 μM). Bioaccumulation of Hg and Fe was maximum in the root, and comparatively reduced bioaccumulation was recorded in the stem and leaves. Microscopic studies on morphology and anatomy revealed development of trichomes and lenticels on the stem and modified trichomes on leaves. Localized deposits of stained masses in various internal parts of the root, stem and leaf also were observed. Differential adaptation/strategy of C. odorata to attain tolerance towards Hg and Fe and phytoremediation potential of the plant is discussed.

  16. Element-specific behaviour and sediment properties modulate transfer and bioaccumulation of trace elements in a highly-contaminated area (Augusta Bay, Central Mediterranean Sea).

    PubMed

    Signa, Geraldina; Mazzola, Antonio; Di Leonardo, Rossella; Vizzini, Salvatrice

    2017-11-01

    High sediment contamination in the coastal area of Priolo Bay, adjacent to the highly-polluted Augusta Harbour, poses serious risks for the benthic communities inhabiting the area. Nevertheless, the transfer of trace elements and consequent bioaccumulation in the biota is an overlooked issue. This study aimed to assess the transfer and bioaccumulation patterns of As, Cd, Ni and Hg to the dominant macroalgae and benthic invertebrates of Priolo Bay. Results revealed different patterns among trace elements (TEs), not driven by sediment contamination but rather by element-specific behaviour coupled with sediment physicochemical properties. Specifically, As accumulated in macroalgae but not in invertebrates, indicating bioavailability of dissolved As only, and a lack of effective trophic transfer. Ni was confined to surface sediment and transfer to biota was not highlighted. Cd and Hg showed the highest concentrations in invertebrates and bioaccumulated especially in filter feeders and carnivores, revealing the importance of suspended particulate and diet as transfer pathways. Total organic carbon (TOC), fine-grained sediments and redox potential were the most important sediment features in shaping the sediment contamination spatial patterns as well as those of TE transfer and bioaccumulation. In particular, As and Cd transfer to macroalgae, and especially Hg bioaccumulation in benthic invertebrates was controlled by sediment properties, resulting in limited transfer and accumulation in the most contaminated stations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Importance of growth rate on mercury and polychlorinated biphenyl bioaccumulation in fish

    USGS Publications Warehouse

    Li, Jiajia; Haffner, G. Douglas; Patterson, Gordon; Walters, David M.; Burtnyk, Michael D.; Drouillard, Ken G.

    2018-01-01

    To evaluate the effect of fish growth on mercury (Hg) and polychlorinated biphenyl (PCB) bioaccumulation, a non–steady‐state toxicokinetic model, combined with a Wisconsin bioenergetics model, was developed to simulate Hg and PCB bioaccumulation in bluegill (Lepomis macrochirus). The model was validated by comparing observed with predicted Hg and PCB 180 concentrations across 5 age classes from 5 different waterbodies across North America. The non–steady‐state model generated accurate predictions for Hg and PCB bioaccumulation in 3 of 5 waterbodies: Apsey Lake (ON, Canada), Sharbot Lake (ON, Canada), and Stonelick Lake (OH, USA). The poor performance of the model for the Detroit River (MI, USA/ON, Canada) and Lake Hartwell (GA/SC, USA), which are 2 well‐known contaminated sites with possibly high heterogeneity in spatial contamination, was attributed to changes in feeding behavior and/or prey contamination. Model simulations indicate that growth dilution is a major component of contaminant bioaccumulation patterns in fish, especially during early life stages, and was predicted to be more important for hydrophobic PCBs than for Hg. Simulations that considered tissue‐specific growth provided some improvement in model performance particularly for PCBs in fish populations that exhibited changes in their whole‐body lipid content with age. Higher variation in lipid growth compared with that of lean dry protein was also observed between different bluegill populations, which partially explains the greater variation in PCB bioaccumulation slopes compared with Hg across sampling sites.

  18. Effects of spatial and temporal variation of acid-volatile sulfide on the bioavailability of copper and zinc in freshwater sediments

    USGS Publications Warehouse

    Besser, John M.; Ingersoll, Christopher G.; Giesty, John P.

    1996-01-01

    Variation in concentrations of acid-volatile sulfide (AVS) in sediments from the upper Clark Fork River of Montana, USA, was associated with differences in bioaccumulation of Cu and Zn and growth of larvae of the midge, Chironomus tentans. Growth of midge larvae was significantly greater and bioaccumulation of Cu was significantly less in surface sections (0–3 cm depth) of sediment cores, which had greater concentrations of AVS and lesser ratios of simultaneously extracted metals to AVS (SEM:AVS ratios) than in subsurface sediments (6–9 cm). Concentrations of AVS were significantly less in sediments incubated with oxic overlying water for 9 weeks than in the same sediments incubated under anoxic conditions. Bioaccumulation of Cu differed significantly between incubation treatments, corresponding to differences in concentrations of AVS and SEM:AVS ratios, although midge growth did not. Bioaccumulation of Zn did not differ significantly between depth strata of sediment cores or between incubation treatments. When results from the two sets of bioassays were combined, bioaccumulation of Cu and Zn, but not growth, was significantly correlated with SEM:AVS ratios and other estimates of bioavailable metal fractions in sediments. Growth of midge larvae was significantly correlated with bioaccumulation of Zn, but not Cu, suggesting that Zn was the greater contributor to the toxicity of these sediments. Assessments of the toxicity of metal-contaminated freshwater sediments should consider the effects of spatial and temporal variation in AVS concentrations on metal bioavailability.

  19. Significance of Xenobiotic Metabolism for Bioaccumulation Kinetics of Organic Chemicals in Gammarus pulex

    PubMed Central

    2012-01-01

    Bioaccumulation and biotransformation are key toxicokinetic processes that modify toxicity of chemicals and sensitivity of organisms. Bioaccumulation kinetics vary greatly among organisms and chemicals; thus, we investigated the influence of biotransformation kinetics on bioaccumulation in a model aquatic invertebrate using fifteen 14C-labeled organic xenobiotics from diverse chemical classes and physicochemical properties (1,2,3-trichlorobenzene, imidacloprid, 4,6-dinitro-o-cresol, ethylacrylate, malathion, chlorpyrifos, aldicarb, carbofuran, carbaryl, 2,4-dichlorophenol, 2,4,5-trichlorophenol, pentachlorophenol, 4-nitrobenzyl-chloride, 2,4-dichloroaniline, and sea-nine (4,5-dichloro-2-octyl-3-isothiazolone)). We detected and identified metabolites using HPLC with UV and radio-detection as well as high resolution mass spectrometry (LTQ-Orbitrap). Kinetics of uptake, biotransformation, and elimination of parent compounds and metabolites were modeled with a first-order one-compartment model. Bioaccumulation factors were calculated for parent compounds and metabolite enrichment factors for metabolites. Out of 19 detected metabolites, we identified seven by standards or accurate mass measurements and two via pathway analysis and analogies to other compounds. 1,2,3-Trichlorobenzene, imidacloprid, and 4,6-dinitro-o-cresol were not biotransformed. Dietary uptake contributed little to overall uptake. Differentiation between parent and metabolites increased accuracy of bioaccumulation parameters compared to total 14C measurements. Biotransformation dominated toxicokinetics and strongly affected internal concentrations of parent compounds and metabolites. Many metabolites reached higher internal concentrations than their parents, characterized by large metabolite enrichment factors. PMID:22321051

  20. Distribution, bioaccumulation and trophic transfer of chlorinated polyfluoroalkyl ether sulfonic acids in the marine food web of Bohai, China.

    PubMed

    Chen, Hong; Han, Jianbo; Cheng, Jiayi; Sun, Ruijun; Wang, Xiaomeng; Han, Gengchen; Yang, Wenchao; He, Xin

    2018-06-04

    Chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs) caused great concerns recently as novel fluorinated alternatives. However, information on their bioconcentration, bioaccumulation and biomagnification in marine ecosystems is limited. In this study, 152 biological samples including invertebrates, fishes, seabirds and mammals collected from Bohai Sea of China were analyzed to investigate the residual level, spatial distribution, bioaccumulation and biomagnification of Cl-PFESAs. 6:2 Cl-PFESA was found in concentrations ranging from

  1. Dietary mercury exposure and bioaccumulation in southern leopard frog (Rana sphenocephala) larvae.

    PubMed

    Unrine, Jason M; Jagoe, Charles H

    2004-12-01

    Aufwuchs was collected from three reservoirs, a constructed wetland used for groundwater treatment, and mercury (Hg)-enriched mesocosms to examine the relationship between inorganic Hg and methylmercury concentrations in the diet of tadpoles. Four diets were then formulated with Hg-enriched aufwuchs to concentrations that bracketed those of Hg observed in aufwuchs from the field and reported in the literature from sites contaminated by atmospheric deposition. The diets were fed to southern leopard frog tadpoles in the laboratory for the entire larval period (60-254 d). Metamorphs and tadpoles were analyzed for inorganic Hg and methylmercury contents by gas chromatography-cold-vapor atomic fluorescence spectrophotometry. Methylmercury concentration increased with total Hg concentration in aufwuchs, but the proportion of methylmercury to inorganic Hg decreased with increasing total Hg concentration. In the feeding experiment, there was an inverse relationship between Hg exposure concentration and the bioaccumulation factor for each Hg species. We concluded that neither methylmercury nor inorganic Hg in aufwuchs is highly bioavailable to tadpoles and that bioaccumulation is not well explained by a simple partitioning model. This suggests that bioaccumulation factors as currently used are not the best predictors of dietary Hg bioaccumulation.

  2. Bioaccumulation of perfluorochemicals in sediments by the aquatic oligochaete Lumbriculus variegatus.

    PubMed

    Higgins, Christopher P; McLeod, Pamela B; MacManus-Spencer, Laura A; Luthy, Richard G

    2007-07-01

    Bioaccumulation of perfluoroalkyl sulfonates, perfluorocarboxylates, and 2-(N-ethylperfluorooctane sulfonamido) acetic acid (N-EtFOSAA) from laboratory-spiked and contaminated field sediments was assessed using the freshwater oligochaete, Lumbriculus variegatus. Semistatic batch experiments were conducted to monitor the biological uptake of these perfluorochemicals (PFCs) over 56 days. The elimination of PFCs was measured as the loss of PFCs in L. variegatus exposed to PFC-spiked sediment for 28 days and then transferred to clean sediment. The resultant data suggest that PFCs in sediments are readily bioavailable and that bioaccumulation from sediments does not continually increase with increasing perfluorocarbon chain length. Perfluorooctane sulfonate (PFOS) and perfluorononanoate were the most bioaccumulative PFCs, as measured by laboratory-based estimated steady-state biota sediment accumulation factors (BSAFs) and BSAFs measured using contaminated field sediments. Elimination rate constants for perfluoroalkyl sulfonates and perfluorocaroboxylates were generally smaller than those previously measured for other organic contaminants. Last, a PFOS precursor, N-EtFOSAA, accumulated in the worm tissues and appeared to undergo biotransformation to PFOS and other PFOS precursors. This suggests that N-EtFOSAA, which has been detected in sediments and sludge often at levels exceeding PFOS, may contribute to the bioaccumulation of PFOS in aquatic organisms.

  3. Toxicity and bioaccumulation of sediment-associated contaminants using freshwater invertebrates: A review of methods and applications

    USGS Publications Warehouse

    Ingersoll, C.G.; Ankley, G.T.; Benoit, D.A.; Brunson, E.L.; Burton, G.A.; Dwyer, F.J.; Hoke, R.A.; Landrum, P.F.; Norberg-King, T. J.; Winger, P.V.

    1995-01-01

    This paper reviews recent developments in methods for evaluating the toxicity and bioaccumulation of contaminants associated with freshwater sediments and summarizes example case studies demonstrating the application of these methods. Over the past decade, research has emphasized development of more specific testing procedures for conducting 10-d toxicity tests with the amphipod Hyalella azteca and the midge Chironomus tentans. Toxicity endpoints measured in these tests are survival for H. azteca and survival and growth for C. tentans. Guidance has also been developed for conducting 28-d bioaccumulation tests with the oligochaete Lumbriculus variegatus, including determination of bioaccumulation kinetics for different compound classes. These methods have been applied to a variety of sediments to address issues ranging from site assessments to bioavailability of organic and inorganic contaminants using field-collected and laboratory-spiked samples. Survival and growth of controls routinely meet or exceed test acceptability criteria. Results of laboratory bioaccumulation studies with L. variegatus have been confirmed with comparisons to residues (PCBs, PAHs, DDT) present from synoptically collected field populations of oligochaetes. Additional method development is currently underway to develop chronic toxicity tests and to provide additional data-confirming responses observed in laboratory sediment tests with natural benthic populations.

  4. Ecological evaluation of proposed dredged material from St. Andrew Bay, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayhew, H.L.; Word, J.Q.; Kohn, N.P.

    1993-10-01

    The US Army Corps of Engineers (USACE), Mobile District, requested that the Battelle/Marine Sciences Laboratory (MSL) conduct field sampling and chemical and biological testing to determine the suitability of potential dredged material for open ocean disposal. Sediment from St. Andrew Bay was chemically characterized and evaluated for biological toxicity and bioaccumulation of contaminants. The Tier III guidance for ocean disposal testing requires tests of water column effects (following dredged material disposal), deposited sediment toxicity, and bioaccumulation of contaminants from deposited sediment (dredged material). To meet these requirements, the MSL conducted suspended-particulate-phase (SPP) toxicity tests, solid-phase toxicity tests, and bioaccumulation testingmore » on sediment representing potential dredged material from Panama City Harbor. Physical and chemical characterization of sediment to support toxicity and bioaccumulation results was also conducted on both the test and reference sediments. The MSL collected sediment samples from five sites in St. Andrew Bay and one reference site near Lands End Peninsula. The five test sediments and the reference sediment were analyzed for physical and chemical sediment characteristics, SPP chemical contaminants, solid-phase toxicity, SPP toxicity, and bioaccumulation of contaminants.« less

  5. Stereoselectivity in bioaccumulation and excretion of epoxiconazole by mealworm beetle (Tenebrio molitor) larvae.

    PubMed

    Lv, Xiaotian; Liu, Chen; Li, Yaobin; Gao, Yongxin; Wang, Huili; Li, Jianzhong; Guo, Baoyuan

    2014-09-01

    Stereoselectivity in bioaccumulation and excretion of stereoisomers of epoxiconazole by mealworm beetle (Tenebrio molitor) larvae through dietary exposure was investigated. Liquid chromatography tandem mass spectrometry (HPLC-MS/MS) method that use a ChiralcelOD-3R[cellulosetris-Tris-(3, 5-dichlorophenyl-carbamate)] chromatography column was applied to carry out chiral separation of the stereoisomers. Wheat bran was spiked with racemic epoxiconazole at two dose levels of 20mg/kg and 2mg/kg (dry weight) to feed T. molitor larvae. The results showed that both the doses of epoxiconazole were taken up by Tenebrio molitor larvae rapidly at the initial stages. There was a significant trend of stereoselective bioaccumulation in the larvae with a preferential accumulation of (-)-epoxiconazole in the 20mg/kg dose. The stereoselectivity in bioaccumulation in the 2mg/kg dosage was not obvious compared to the 20mg/kg group. Results of excretion indicated an active excretion is an important pathway for the larvae to eliminate epoxiconazole which was a passive transport process with non stereoselectivity. The faster elimination might be the reason for the low accumulation of epoxiconazole, as measured by bioaccumulation factor (BAF). Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Distribution and bioaccumulation of selenium in aquatic microcosms

    USGS Publications Warehouse

    Besser, John M.; Huckins, James N.; Little, Edward E.; La Point, Thomas W.

    1989-01-01

    Closed-system microcosms were used to study factors affecting the fate of selenium (Se) in aquatic systems. Distribution and bioaccumulation of Se varied among sediment types and Se species. A mixture of dissolved 75Se species (selenate, selenite and selenomethionine) was sorbed more rapidly to fine-textured, highly organic pond sediments than to sandy riverine sediments. Sulfate did not affect the distribution and bioaccumulation of 75Se over the range 80–180 mg SO4 liter−1. When each Se species was labeled separately, selenomethionine was lost from the water column more rapidly than selenate or selenite. Selenium lost from the water column accumulated primarily in sediments, but volatilization was also an important pathway for loss of Se added as selenomethionine. Loss rates of dissolved Se residues were more rapid than rates reported from mesocosm and field studies, suggesting that sediment: water interactions are more important in microcosms than in larger test systems. Daphnids accumulated highest concentrations of Se, followed by periphyton and macrophytes. Selenium added as selenomethionine was bioaccumulated preferentially compared to that added as selenite or selenate. Organoselenium compounds such as selenomethione may thus contribute disproportionately to Se bioaccumulation and toxicity in aquatic organisms.

  7. Heavy metal bioaccumulation by the important food plant, Olea europaea L., in an ancient metalliferous polluted area of Cyprus.

    PubMed

    Wilson, B; Pyatt, F B

    2007-05-01

    Aspects of the bioaccumulation of heavy metals are reviewed and possible evidence of homeostasis is highlighted. Examination and analysis of olive (Olea europaea L.) trees growing in close proximity to a copper dominated spoil tip dating from at least 2000 years BP, on the island of Cyprus, revealed both bioaccumulation and partitioning of copper, lead and zinc in various parts of the tree. A factor to quantify the degree of accumulation is illustrated and a possible seed protective mechanism suggested.

  8. Environmental Assessment/Section 404(b) Evaluation and Finding of no Significant Impact for the Main-Tenance Dredging of the Black Rock Harbor-Cedar Creek Federal Navigation Channel, Bridgeport, Connecticut.

    DTIC Science & Technology

    1982-07-01

    petroleum hydrocarbons will be bioaccumulated in quantity. In view of the findings noted above special handling of the sediments would appear appropriate...indicate the fractions of the generic group, petroleum hydrocarbons , that were analyzed. This information is needed for interpreting the bioaccumulation ...results for petroleum hydrocarbons . We continue to object to the use of two controls in the bioassay/ bioaccumulation tests. We also question the use of a

  9. Bioaccumulation of short chain chlorinated paraffins in a typical freshwater food web contaminated by e-waste in south china: Bioaccumulation factors, tissue distribution, and trophic transfer.

    PubMed

    Sun, Runxia; Luo, Xiaojun; Tang, Bin; Chen, Laiguo; Liu, Yu; Mai, Bixian

    2017-03-01

    Short chain chlorinated paraffins (SCCPs) are under review for inclusion into the Stockholm Convention on Persistent Organic Pollutants. However, limited information is available on their bioaccumulation and biomagnification in ecosystems, which is hindering evaluation of their ecological and health risks. In the present study, wild aquatic organisms (fish and invertebrates), water, and sediment collected from an enclosed freshwater pond contaminated by electronic waste (e-waste) were analyzed to investigate the bioaccumulation, distribution, and trophic transfer of SCCPs in the aquatic ecosystem. SCCPs were detected in all of the investigated aquatic species at concentrations of 1700-95,000 ng/g lipid weight. The calculated bioaccumulation factors (BAFs) varied from 2.46 to 3.49. The relationship between log BAF and the octanol/water partition coefficient (log K OW ) for benthopelagic omnivorous fish species followed the empirical model of bioconcentration, indicating that bioconcentration plays an important role in accumulation of SCCPs. In contrast, the relationship for the benthic carnivorous fish and invertebrates was not consistent with the empirical model of bioconcentration, implying that the bioaccumulation of SCCPs in these species could be more influenced by other complex factors (e.g., habitat and feeding habit). Preferential distribution in the liver rather than in other tissues (e.g., muscle, gills, skin, and kidneys) was noted for the SCCP congeners with higher log K OW , and bioaccumulation pathway (i.e. water or sediment) can affect the tissue distribution of SCCP congeners. SCCPs underwent trophic dilution in the aquatic food web, and the trophic magnification factor (TMF) values of SCCP congener groups significantly correlated with their corresponding log K OW values (p < 0.0001). The present study results improved our understanding on the environmental behavior and fate of SCCPs in aquatic ecosystem. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Assessing element-specific patterns of bioaccumulation across New England lakes

    PubMed Central

    Ward, Darren M.; Mayes, Brandon; Sturup, Stefan; Folt, Carol L.; Chen, Celia Y.

    2012-01-01

    Little is known about differences among trace elements in patterns of bioaccumulation in freshwater food webs. Our goal was to identify patterns in bioaccumulation of different elements that are large and consistent enough to discern despite variation across lakes. We measured methylmercury (MeHg) and trace element (As, Cd, Hg, Pb, and Zn) concentrations in food web components of seven New England lakes on 3–5 dates per lake, and contrasted patterns of bioaccumulation across lakes, metals and seasons. In each lake, trace element concentrations were compared across trophic levels, including three size fractions of zooplankton, planktivorous fish, and piscivorous fish. The trophic position of each food web component was estimated from N isotope analysis. Trace element concentrations varied widely among taxa, lakes and sampling dates. Yet, we identified four consistent patterns of bioaccumulation that were consistent across lakes: (1) MeHg concentration increased (i.e., was biomagnified) and Pb concentration decreased (i.e., was biodiminished) with increased trophic position. (2) Zinc concentration (as with MeHg) was higher in fish than in zooplankton, but overall variation in Zn concentration (unlike MeHg) was low. (3) Arsenic and Cd concentrations (as with Pb) were lower in fish than in zooplankton, but (unlike Pb) were not significantly correlated with trophic position within zooplankton or fish groups. (4) Average summer concentrations of As, Pb, Hg, and MeHg in zooplankton significantly predicted their concentrations in either planktivorous or piscivorous fish. Our secondary goal was to review sampling approaches in forty-five published studies to determine the extent to which current sampling programs facilitate cross-lake and cross-study comparisons of bioaccumulation. We found that studies include different components of the food web and sample too infrequently to enable strong cross-lake and cross-study comparisons. We discuss sampling strategies that would improve our capacity to identify consistent patterns of bioaccumulation and drivers of elevated trace element concentrations under naturally high levels of variability. PMID:22356871

  11. PHARMACEUTICALS AND PERSONAL CARE PRODUCTS: ISSUES REGARDING HUMAN EXPOSURE

    EPA Science Inventory

    Since the 1970s, the impact of chemical pollution has focused almost exclusively on conventional "priority pollutants", especially on those collectively referred to as "persistent, bioaccumulative, toxic" (PBT) pollutants, persistent organic pollutants" (POPs) or "bioaccumulative...

  12. Bioaccumulation of PCBs Across Concentration Gradients in Sediments

    EPA Science Inventory

    Sediment bioaccumulation tests with Lumbriculus variegatus quantify the relationships between the chemical residues in sediments and benthic invertebrates, and these relationships are expressed as biota-sediment accumulation factors (BSAF). At some field sites, BSAFs decr...

  13. Linkage between speciation of Cd in mangrove sediment and its bioaccumulation in total soft tissue of oyster from the west coast of India.

    PubMed

    Chakraborty, Parthasarathi; Ramteke, Darwin; Gadi, Subhadra Devi; Bardhan, Pratirupa

    2016-05-15

    This study established a mechanistic linkage between Cd speciation and bioavailability in mangrove system from the west coast of India. High bioaccumulation of Cd was found in the oyster (Crassostrea sp.) even at low Cd loading in the bottom sediment. Bioaccumulation of Cd in the oyster gradually increased with the increasing concentrations of water soluble, exchangeable and carbonate/bicarbonate forms of Cd in the sediments. Fe/Mn oxyhydroxide phase was found to control Cd bioavailability in the sediment system. Cd-associated with sedimentary organic matter was bioavailable and organic ligands in the sediments were poor chelating agents for Cd. This study suggests that bioaccumulation of Cd in oyster (Crassostrea sp.) depends not on the total Cd concentration but on the speciation of Cd in the system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Heavy Metal Bioaccumulation Capability of Woody Plants in Mine wasteland of Karst Areas

    NASA Astrophysics Data System (ADS)

    Xiuru, Wang; Zhongliang, Huang; Xuan, Zhang; Zijian, Wu

    2017-04-01

    The bioaccumulation capability and transfer characteristics of Pb, Zn, Cu and Cd in soil and 6 different woody plants collected from a typical lead-zinc mine wasteland of Karst area, Hunan province were investigated, including Cunninghamia lanceolata(Lamb.) Hook., Swida wilsoniana (Wanger.), Koelreuteria paniculata, Paulownia., Cinnamomum camphora (L.) Presl., and Sapium sebiferum (L.) Roxb. The results showed that the 6 plants could adapt to the heavy metal polluted environment, and there was a positive correlation between the heavy metal content in plants and soil.Swida wilsoniana (Wanger.) and Sapium sebiferum (L.) Roxb. had the largest Pb bioaccumulation factor of 0.03; Paulownia. had the highest Zn bioaccumulation factor of 0.37; the largest Pb transfer factor of 1.31 were found in Koelreuteria paniculata; and Zn transfer factor of Paulownia. reached 1.45. These 4 woody plants are suitable for phytoremediation of mine wasteland of Karst areas.

  15. Cylindrospermopsin: A Decade of Progress on Bioaccumulation Research

    PubMed Central

    Kinnear, Susan

    2010-01-01

    Cylindrospermopsin (CYN) is rapidly being recognised as one of the most globally important of the freshwater algal toxins. The ever-expanding distribution of CYN producers into temperate zones is heightening concern that this toxin will represent serious human, as well as environmental, health risks across many countries. Since 1999, a number of studies have demonstrated the ability for CYN to bioaccumulate in freshwater organisms. This paper synthesizes the most current information on CYN accumulation, including notes on the global distribution of CYN producers, and a précis of CYN’s ecological and human effects. Studies on the bioaccumulation of CYN are systematically reviewed, together with an analysis of patterns of accumulation. A discussion on the factors influencing bioaccumulation rates and potential is also provided, along with notes on detection, monitoring and risk assessments. Finally, key gaps in the existing research are identified for future study. PMID:20411114

  16. Enantiomerization and stereoselectivity in bioaccumulation of furalaxyl in Tenebrio molitor larvae.

    PubMed

    Yin, Jing; Gao, Yongxin; Zhu, Feilong; Hao, Weiyu; Xu, Qi; Wang, Huili; Guo, Baoyuan

    2017-11-01

    Furalaxyl is a chiral pesticide and widely used in modern agriculture as racemate mixture. The enantiomerization and enantioselecive bioaccumulation by a single dose of furalaxyl to Tenebrio molitor larvae under laboratory conditions were studied using a high-performance liquid chromatography tandem mass spectroscopy method based on a ChiralPAK IC column. Our results showed that a significant enantiomerization (interconversion between R-enantiomer and S-enantiomer) was observed in Tenebrio molitor larvae under R- or S-furalaxyl exposure. Though the two furalaxyl enantiomers exhibited low-capacity of bioaccumulation in Tenebrio molitor larvae, bioaccumulation of rac-furalaxyl was enantioselective with a preferential accumulation of S-furalaxyl at 10mg/kg dosage exposure. In addition, enantiomerization and enantioselective degradation of the two enantiomers was not observed in wheat bran. These results showed that enantioselectivtiy of furalaxyl enantiomers was an important process combined with degradation, metabolism and enatiomerization in organisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. PERSISTENT, BIOACCUMULATIVE, AND TOXIC POLLUTANTS (PBTS)

    EPA Science Inventory

    Article describes the class of compounds known as persistent, bioaccumulative, and toxic pollutants (known as PBTs), including the mechanisms responsible for ability to build up the food chain and for causing adverse health effects and ecosystem damage. Exposure to numerous PBTs ...

  18. Evaluation of PCB bioaccumulation by Lumbriculus variegatus in field-collected sediments

    EPA Science Inventory

    Sediment bioaccumulation tests with Lumbriculus variegatus were performed on polychlorinated biphenyl (PCBs) contaminated sediment samples from the Hudson, Grasse, and Fox Rivers Superfund sites with concurrent measurement of PCB concentrations in sediment interstitial water. Th...

  19. Bioaccumulation Assessment using Predictive Approaches

    EPA Science Inventory

    Mandated efforts to assess chemicals for their potential to bioaccumulate within the environment are increasingly moving into the realm of data inadequacy. Consequently, there is an increasing reliance on predictive tools to complete regulatory requirements in a timely and cost-e...

  20. Optimizing Stream Water Mercury Sampling for Calculation of Fish Bioaccumulation Factors

    EPA Science Inventory

    Mercury (Hg) bioaccumulation factors (BAFs) for game fishes are widely employed for monitoring, assessment, and regulatory purposes. Mercury BAFs are calculated as the fish Hg concentration (Hgfish) divided by the water Hg concentration (Hgwater) and, consequently, are sensitive ...

  1. ASSESSING BIOACCUMULATION FOR DERIVING NATIONAL HUMAN HEALTH WATER QUALITY CRITERIA

    EPA Science Inventory

    The United States Environmental Protection Agency is revising its methodology for deriving national ambient water quality criteria (AWQC) to protect human health. A component of this guidance involves assessing the potential for chemical bioaccumulation in commonly consumed fish ...

  2. Evaluating the Relationship between Equilibrium Passive Sampler Uptake and Aquatic Organism Bioaccumulation,

    EPA Science Inventory

    Objectives. This review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) in water column and interstitial water exposures as a surrogate for organism bioaccumulation. Approach/Activities. Fifty-five studies were found where both passive sampler uptake...

  3. Revisiting Bioaccumulation Criteria

    EPA Science Inventory

    The objective of workgroup 5 was to revisit the B(ioaccumulation) criteria that are currently being used to identify POPs under the Stockholm Convention and PBTs under CEPA, TSCA, REACh and other programs. Despite the lack of a recognized definition for a B substance, we defined ...

  4. Biochemical basis of mercury remediation and bioaccumulation by Enterobacter sp. EMB21.

    PubMed

    Sinha, Arvind; Kumar, Sumit; Khare, Sunil Kumar

    2013-01-01

    The aims of this study were to isolate metal bioaccumulating bacterial strains and to study their applications in removal of environmental problematic heavy metals like mercury. Five bacterial strains belonging to genera Enterobacter, Bacillus, and Pseudomonas were isolated from oil-spilled soil. Among these, one of the strains Enterobacter sp. EMB21 showed mercury bioaccumulation inside the cells simultaneous to its bioremediation. The bioaccumulation of remediated mercury was confirmed by transmission electron microscopy and energy dispersive X-ray. The mercury-resistant loci in the Enterobacter sp. EMB21 cells were plasmid-mediated as confirmed by transformation of mercury-sensitive Escherichia coli DH5α by Enterobacter sp. EMB21 plasmid. Effect of different culture parameters viz-a-viz inoculum size, pH, carbon, and nitrogen source revealed that alkaline pH and presence of dextrose and yeast extract favored better remediation. The results indicated the usefulness of Enterobacter sp. EMB21 for the effective remediation of mercury in bioaccumulated form. The Enterobacter sp. EMB21 seems promising for heavy metal remediation wherein the remediated metal can be trapped inside the cells. The process can further be developed for the synthesis of valuable high-end functional alloy, nanoparticles, or metal conjugates from the metal being remediated.

  5. Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L.).

    PubMed

    Besseling, Ellen; Wegner, Anna; Foekema, Edwin M; van den Heuvel-Greve, Martine J; Koelmans, Albert A

    2013-01-02

    It has been speculated that marine microplastics may cause negative effects on benthic marine organisms and increase bioaccumulation of persistent organic pollutants (POPs). Here, we provide the first controlled study of plastic effects on benthic organisms including transfer of POPs. The effects of polystyrene (PS) microplastic on survival, activity, and bodyweight, as well as the transfer of 19 polychlorinated biphenyls (PCBs), were assessed in bioassays with Arenicola marina (L.). PS was pre-equilibrated in natively contaminated sediment. A positive relation was observed between microplastic concentration in the sediment and both uptake of plastic particles and weight loss by A. marina. Furthermore, a reduction in feeding activity was observed at a PS dose of 7.4% dry weight. A low PS dose of 0.074% increased bioaccumulation of PCBs by a factor of 1.1-3.6, an effect that was significant for ΣPCBs and several individual congeners. At higher doses, bioaccumulation decreased compared to the low dose, which however, was only significant for PCB105. PS had statistically significant effects on the organisms' fitness and bioaccumulation, but the magnitude of the effects was not high. This may be different for sites with different plastic concentrations, or plastics with a higher affinity for POPs.

  6. Deriving in vivo biotransformation rate constants and metabolite parent concentration factor/stable metabolite factor from bioaccumulation and bioconcentration experiments: An illustration with worm accumulation data.

    PubMed

    Kuo, Dave Ta Fu; Chen, Ciara Chun

    2016-12-01

    Growing concern for the biological fate of organic contaminants and their metabolites and the urge to connect in vitro and in vivo toxicokinetics have prompted researchers to characterize the biotransformation behavior of organic contaminants in biota. The whole body biotransformation rate constant (k M ) is currently determined by the difference approach, which has significant methodological limitations. A new approach for determining k M from the kinetic observations of the parent contaminant and its intermediate metabolites is proposed. In this method, k M can be determined by fitting kinetic data of the parent contaminant and the metabolites to analytical equations that depict the bioaccumulation kinetics. The application of the proposed method is illustrated using worm bioaccumulation-biotransformation data collected from the literature. Furthermore, a metabolite parent concentration factor (MPCF) is also proposed to characterize the persistence of the metabolite in biota. Because both the proposed k M method and MPCF build on the existing theoretical framework for bioaccumulation, they can be readily incorporated into standard experimental bioaccumulation protocols or risk assessment procedures or frameworks. Possible limitations, implications, and future directions are elaborated. Environ Toxicol Chem 2016;35:2903-2909. © 2016 SETAC. © 2016 SETAC.

  7. Biosorption of Strontium from Simulated Nuclear Wastewater by Scenedesmus spinosus under Culture Conditions: Adsorption and Bioaccumulation Processes and Models

    PubMed Central

    Liu, Mingxue; Dong, Faqin; Kang, Wu; Sun, Shiyong; Wei, Hongfu; Zhang, Wei; Nie, Xiaoqin; Guo, Yuting; Huang, Ting; Liu, Yuanyuan

    2014-01-01

    Algae biosorption is an ideal wastewater treatment method when coupled with algae growth and biosorption. The adsorption and bioaccumulation of strontium from simulated nuclear wastewater by Scenedesmus spinosus were investigated in this research. One hundred mL of cultured S. spinosus cells with a dry weight of 1.0 mg in simulated nuclear wastewater were used to analyze the effects on S. spinosus cell growth as well as the adsorption and bioaccumulation characters under conditions of 25 ± 1 °C with approximately 3,000 lux illumination. The results showed that S. spinosus had a highly selective biosorption capacity for strontium, with a maximum bioremoval ratio of 76%. The adsorbed strontium ion on cell walls was approximately 90% of the total adsorbed amount; the bioaccumulation in the cytoplasm varied by approximately10%. The adsorption quantity could be described with an equilibrium isotherm. The pseudo-second-order kinetic model suggested that adsorption was the rate-limiting step of the biosorption process. A new bioaccumulation model with three parameters was proposed and could give a good fit with the experiment data. The results suggested that S. spinosus may be a potential biosorbent for the treatment of nuclear wastewater in culture conditions. PMID:24919131

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suseno, Heny, E-mail: henis@batan.go.id

    Radionuclides may be released from nuclear facilities to the marine environment. Concentrations of radionuclides within marine biotic systems can be influenced by a number of factors, including the type of biota, its source, the radionuclide, and specific characteristics of the sampled specimens and the marine environment (salinity, etc.). The bioconcentration factor for a marine organism is the ratio of the concentration of a radionuclide in that organism to the concentration found in its marine water environment - under conditions of equilibrium. Information on the bioaccumulation of Cs-137 in marine organisms is required to risk assessment evaluates the potential risks tomore » human health. Bioaccumulation of Cs was investigated in marine biota from west Bangka such as Marine cat fish (Arius thalassinus), Baramundi (Lates calcarifer), Mackerel (Scomberomorus commerson), Striped eel catfish (Plotosus lineatus), eel tailed fish (Euristhmus microceps), Yellowtail fusilier (Caesio erythrogaster), Coastal crab (Scylla sp), White shrimp (Penaeus merguiensis) and marine bivalve mollusk (Anadara granosa). Muscle of these marine biota, sediments and water were assayed for Cs-137 by HPGe gamma spectrometer. The bioaccumulation factor for fishes were calculated by ratio of concentration Cs-137 in muscle biota to the its concentration in water. The bioaccumulation factor for mollusks were calculates by ratio of concentration Cs-137 in muscle biota to the its concentration in sediments. The bioaccumulation factor were range 4.99 to 136.34.« less

  9. COMMUNICATING RISKS OF PERSISTANT BIOACCUMULATING TOXICS IN FOODS

    EPA Science Inventory

    The primary route of exposure to many persistant bioaccumulating toxins (PBT) such as methyl mercury, PCDs or Dioxins is though foods. Many people, but particularly subsistence fishermen, pregnant women and children, are at high risk for methyl mercury toxicity because of their c...

  10. Optimizing fish sampling for fish–mercury bioaccumulation factors

    EPA Science Inventory

    Fish Bioaccumulation Factors (BAFs; ratios of mercury (Hg) in fish (Hgfish) and water (Hgwater)) are used to develop total maximum daily load and water quality criteria for Hg-impaired waters. Both applications require representative Hgfish estimates and, thus, are sensitive to s...

  11. LINKING EFFECTS OF PERSISTENT BIOACCUMULATIVE TOXICANTS TO CHEMICAL EXPOSURES IN AQUATIC ECOSYSTEMS

    EPA Science Inventory

    The critical step in characterization of ecological risks associated with exposures of fish and wildlife to persistent bioaccumulative toxicants (PBTs) is linking chemical residue based toxicological data to concentrations of PBTs in sediments, water, and biota. This is necessary...

  12. EVALUATION OF TWO METHODS FOR PREDICTION OF BIOACCUMULATION FACTORS

    EPA Science Inventory

    Two methods for deriving bioaccumulation factors (BAFs) used by the U.S. Environmental Protection Agency (EPA) in development of water quality criteria were evaluated using polychlorinated biphenyls (PCB) data from the Hudson River and Green Bay ecosystems. Greater than 90% of th...

  13. Evaluating the Relationship between Equilibrium Passive Sampler Uptake and Aquatic Organism Bioaccumulation

    EPA Science Inventory

    This Critcal Review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) in water column and interstitial water exposures as a surrogate for organism bioaccumulation. Fifty-seven studies were found where both passive sampler uptake and organism bioaccumulat...

  14. FACTORS INFLUENCING THE DESIGN OF BIOACCUMULATION FACTOR AND BIOTA-SEDIMENT ACCUMULATION FACTOR FIELD STUDIES

    EPA Science Inventory

    A series of modeling simulations were performed to develop an understanding of the underlying factors and principles involved in developing field sampling designs for measuring bioaccumulation factors (BAFs) and biota-sediment accumulation factors (BSAFs. These simulations reveal...

  15. EPA Current Research on Cyanotoxins in Fish Tissue

    EPA Science Inventory

    This is a presentation regarding research into the recovery of microcystins from fish tissue. The potential bioaccumulation of toxins is of potential health both because of the direct risk of consumption and the potential for bioaccumulation of toxins. This is a short presentatio...

  16. Toxicity, Bioaccumulation and Biotransformation of Silver Nanoparticles in Marine Organisms.

    EPA Science Inventory

    The toxicity, bioaccumulation and biotransformation of citrate and polyvinylpyrrolidone (PVP) coated silver nanoparticles (NPs) (AgNP-citrate and AgNP-PVP) in marine organisms via marine sediment exposure was investigated. Results from 7-d sediment toxicity tests indicate that Ag...

  17. Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil.

    PubMed

    Khan, Sardar; Chao, Cai; Waqas, Muhammad; Arp, Hans Peter H; Zhu, Yong-Guan

    2013-08-06

    Biochar addition to soil has been proposed to improve plant growth by increasing soil fertility, minimizing bioaccumulation of toxic metal(liod)s and mitigating climate change. Sewage sludge (SS) is an attractive, though potentially problematic, feedstock of biochar. It is attractive because of its large abundance; however, it contains elevated concentrations of metal(loid)s and other contaminants. The pyrolysis of SS to biochar (SSBC) may be a way to reduce the availability of these contaminants to the soil and plants. Using rice plant pot experiments, we investigated the influence of SSBC upon biomass yield, bioaccumulation of nutrients, and metal(loid)s, and green housegas (GHG) emissions. SSBC amendments increased soil pH, total nitrogen, soil organic carbon and available nutrients and decreased bioavailable As, Cr, Co, Ni, and Pb (but not Cd, Cu, and Zn). Regarding rice plant properties, SSBC amendments significantly (P ≤ 0.01) increased shoot biomass (71.3-92.2%), grain yield (148.8-175.1%), and the bioaccumulation of phosphorus and sodium, though decreased the bioaccumulation of nitrogen (except in grain) and potassium. Amendments of SSBC significantly (P ≤ 0.05) reduced the bioaccumulation of As, Cr, Co, Cu, Ni, and Pb, but increased that of Cd and Zn, though not above limits set by Chinese regulations. Finally regarding GHG emissions, SSBC significantly (P < 0.01) reduced N2O emissions and stimulated the uptake/oxidation of CH4 enough to make both the cultivated and uncultivated paddy soil a CH4 sink. SSBC can be beneficial in rice paddy soil but the actual associated benefits will depend on site-specific conditions and source of SS; long-term effects remain a further unknown.

  18. Uptake pathway for Ag bioaccumulation in three benthic invertebrates exposed to contaminated sediments

    USGS Publications Warehouse

    Yoo, H.; Lee, J.-S.; Lee, B.-G.; Lee, I.T.; Schlekat, C.E.; Koh, C.-H.; Luoma, S.N.

    2004-01-01

    We exposed 3 benthic invertebrates, the clam Macoma balthica, the polychaete Neanthes arenaceodentata and the amphipod Leptocheirus plumulosus, to Ag-contaminated sediments to evaluate the relative importance of various uptake routes (sediments, porewater or overlying water, and supplementary food) for Ag bioaccumulation. Silver bioaccumulation was evaluated at 4 levels of sediment Ag (0.1, 0,3, 1,2 and 3.3 ??mol Ag g-1) and 2 levels of acid-volatile sulfide (AVS), <0.5 or ???40 ??mol g-1, and compared among food treatments with or without Ag contamination, or with different food rations. L. plumulosus were incubated for 35 d in the Ag-contaminated sediments after 3 mo of Ag-sediment equilibration, and M. balthica and N. arenaceodentata for 19 d after 5 mo equilibration. Ag bioaccumulation in the 3 organisms was significantly correlated with 1N HCl-extractable Ag concentrations (Ag-SEM: simultaneously extracted Ag with AVS) in sediments. The Ag concentrations in porewater and overlying water were greatest in the sediments with least AVS, consistent with previous studies. Nevertheless, the amphipod and clam exposed to oxic sediments (<0.5 ??mol AVS g-1) accumulated amounts of Ag similar to those accumulated by organisms exposed to anoxic sediments (???40 ??mol AVS g-1), when Ag-SEM levels were comparable. The dissolved Ag source was important for bioaccumulation in the polychaete N. arenaceodentata. Amphipods fed Ag-contaminated food contained ???1.8-fold more tissue Ag concentrations than those fed uncontaminated food. As suggested in kinetic (DYMBAM) modeling studies, ingestion of contaminated sediments and food were the principle routes of Ag bioaccumulation by the benthic invertebrates during chronic exposure, but the relative importance of each uptake route differed among species.

  19. Understanding Differences in the Body Burden–Age Relationships of Bioaccumulating Contaminants Based on Population Cross Sections versus Individuals

    PubMed Central

    Quinn, Cristina L.

    2012-01-01

    Background: Body burdens of persistent bioaccumulative contaminants estimated from the cross-sectional biomonitoring of human populations are often plotted against age. Such relationships have previously been assumed to reflect the role of age in bioaccumulation. Objectives: We used a mechanistic modeling approach to reproduce concentration-versus-age relationships and investigate factors that influence them. Method: CoZMoMAN is an environmental fate and human food chain bioaccumulation model that estimates time trends in human body burdens in response to time-variant environmental emissions. Trends of polychlorinated biphenyl (PCB) congener 153 concentrations versus age for population cross sections were estimated using simulated longitudinal data for individual women born at different times. The model was also used to probe the influence of partitioning and degradation properties, length of emissions, and model assumptions regarding lipid content and liver metabolism on concentration–age trends of bioaccumulative and persistent contaminants. Results: Body burden–age relationships for population cross sections and individuals over time are not equivalent. The time lapse between the peak in emissions and sample collection for biomonitoring is the most influential factor controlling the shape of concentration–age trends for chemicals with human metabolic half-lives longer than 1 year. Differences in observed concentration–age trends for PCBs and polybrominated diphenyl ethers are consistent with differences in emission time trends and human metabolic half-lives. Conclusions: Bioaccumulation does not monotonically increase with age. Our model suggests that the main predictors of cross-sectional body burden trends with age are the amount of time elapsed after peak emissions and the human metabolic and environmental degradation rates. PMID:22472302

  20. Trait-based modelling of bioaccumulation by freshwater benthic invertebrates.

    PubMed

    Sidney, Livia Alvarenga; Diepens, Noël J; Guo, Xiaoying; Koelmans, Albert A

    2016-07-01

    Understanding the role of species traits in chemical exposure is crucial for bioaccumulation and toxicity assessment of chemicals. We measured and modelled bioaccumulation of polychlorinated biphenyls (PCBs) in Chironomus riparius, Hyalella azteca, Lumbriculus variegatus and Sphaerium corneum. We used a battery test procedure with multiple enclosures in one aquarium, which maximized uniformity of exposure for the different species, such that the remaining variability was due mostly to species traits. The relative importance of uptake from either pore water or sediment ingestion was manipulated by using 28 d aged standard OECD sediment with low (1%) and medium (5%) OM content and 13 months aged sediment with medium OM (5%) content. Survival was ≥76% and wet weight increased for all species. Reproduction of H. azteca and weight gain of H. azteca and S. corneum were significantly higher in the medium OM aged sediments than in other sediments, perhaps due to a more developed microbial community (i.e., increase in food resources). Biota-sediment accumulation factors (BSAF) ranged from 3 to 114, depending on species and PCB congener, with C. riparius (3-10)

  1. Sorption and bioaccumulation behavior of multi-class hydrophobic organic contaminants in a tropical marine food web.

    PubMed

    Zhang, Hui; Kelly, Barry C

    2018-05-01

    While numerous studies have demonstrated the environmental behavior of legacy persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs), information regarding sorption and bioaccumulation potential of other widely used organic chemicals such as halogenated flame retardants (HFRs) is limited. This study involved a comprehensive field investigation of multi-class hydrophobic organic contaminants (HOCs) in environmental media and fish in Singapore Strait, an important tropical maritime strait in Southeast Asia. In total, 90 HOCs were analyzed, including HFRs, synthetic musks, PCBs, OCPs, as well as triclosan and methyl triclosan. The results show that the organic carbon normalized sediment-seawater distribution ratios (C SED /C WD ) of the studied compounds are comparable to the organic carbon-water partition coefficients (K OC ), over a log K OC range of approximately 4-11. The observed species-specific bioaccumulation factors (BAFs), biota-sediment accumulation factors (BSAFs), organism-environment media fugacity ratios (f FISH /f WD and f FISH /f SED ) and trophic magnification factors (TMFs) indicate that legacy POPs and PBDE 47 show bioaccumulation behavior in this tropical marine ecosystem, while triclosan, tonalide, dodecachlorodimethanodibenzocyclooctane stereoisomers (DDC-COs), and hexabromocyclododecanes (HBCDDs) do not. Methyl triclosan and galaxolide exhibit moderate biomagnification. Tetrabromobisphenol A (TBBPA) and 1,2-bis (2,4,6-tribromophenoxy)ethane (BTBPE) were detected in environmental media but not in any of the organisms, suggesting low bioaccumulation potential of these flame retardants. The apparently low bioaccumulation potential of the studied HFRs and synthetic musks is likely because of metabolic transformation and/or reduced bioavailability due to the hydrophobic nature of these compounds. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Contrasting PCB bioaccumulation patterns among Lake Huron lake trout reflect basin-specific ecology.

    PubMed

    Paterson, Gordon; Ryder, Mark; Drouillard, Ken G; Haffner, G Douglas

    2016-01-01

    This study collected multiple age classes of lake trout from Lake Huron's Main Basin, Georgian Bay, and North Channel regions to compare and contrast top predator polychlorinated biphenyl (PCB) bioaccumulation patterns in separate compartments of the same ecosystem. Sum PCB concentrations were highest for Main Basin (260 ± 24.9 ng g(-1) wet wt) fish, followed by Georgian Bay (74.6 ± 16.2 ng g(-1) ) and North Channel (42.0 ± 3.3 ng g(-1)) fish. Discriminant functions analysis of lake trout PCB profiles and stable carbon (δ(13)C) and nitrogen (δ(15)N) isotope values clearly distinguished fish by location, indicating high degrees of basin fidelity throughout their lifetimes in addition to highly contrasting PCB bioaccumulation profiles. These unique profiles were not attributable to significant differences in lake trout lipid contents (p = 0.856) or trophic position (δ(15)N; p = 0.334), with rainbow smelt representing the primary prey across the basins. Furthermore, significant differences were observed among the basins for the relationships between PCB biomagnification factors and hydrophobicity. An empirical model for predicting PCB biomagnification in Lake Huron lake trout indicated that basin-specific population growth rates and prey abundances were significant for explaining these contrasting patterns of PCB bioaccumulation. The results of the present study are fundamental for understanding the role of ecology in legacy persistent organic pollutant (POP) bioaccumulation. Specifically, ecosystem characteristics such as prey abundances, foraging ecology, and ultimately consumer growth can regulate the variability of legacy POP bioaccumulation as observed within and among a wide range of freshwater ecosystems. © 2015 SETAC.

  3. Optimal choice of pH for toxicity and bioaccumulation studies of ionizing organic chemicals.

    PubMed

    Rendal, Cecilie; Kusk, Kresten Ole; Trapp, Stefan

    2011-11-01

    It is recognized that the pH of exposure solutions can influence the toxicity and bioaccumulation of ionizing compounds. The present study investigates whether it can be considered a general rule that an ionizable compound is more toxic and more bioaccumulative when in the neutral state. Three processes were identified to explain the behavior of ionizing compounds with changing pH: the change in lipophilicity when a neutral compound becomes ionized, electrical attraction, and the ion trap. The literature was screened for bioaccumulation and toxicity tests of ionizing organic compounds performed at multiple pH levels. Toxicity and bioconcentration factors (BCFs) were higher for acids at lower pH values, whereas the opposite was true for bases. The effect of pH was most pronounced when pH - pK(a) was in the range of -1 to 3 for acids, and -3 to 1 for bases. The factor by which toxicity and BCF changed with pH was correlated with the lipophilicity of the compound (log K(OW) of the neutral compound). For both acids and bases, the correlation was positive, but it was significant only for acids. Because experimental data in the literature were limited, results were supplemented with model simulations using a dynamic flux model based on the Fick-Nernst-Planck diffusion equation known as the cell model. The cell model predicts that bases with delocalized charges may in some cases show declining bioaccumulation with increasing pH. Little information is available for amphoteric and zwitterionic compounds; however, based on simulations with the cell model, it is expected that the highest toxicity and bioaccumulation of these compounds will be found where the compounds are most neutral, at the isoelectric point. Copyright © 2011 SETAC.

  4. Optimizing the use of rainbow trout hepatocytes for bioaccumulation assessments with fish

    EPA Science Inventory

    Measured rates of biotransformation by cryopreserved trout hepatocytes can be extrapolated to the whole animal as a means of predicting metabolism impacts on chemical bioaccumulation. Future use of these methods within a regulatory context requires, however, that they be standar...

  5. IN SITU BIOASSAY CHAMBER FOR ASSESSMENT OF SEDIMENT TOXICITY AND BIOACCUMULATION USING BENTHIC INVERTEBRATES

    EPA Science Inventory

    In this study, we describe the construction of a simple, inexpensive bioassay chamber for testing sediment toxicity (survival and growth) and bioaccumulation under field conditions using the midge Chironomus tentans and the oligochaete Lumbriculus variegatus. The test chamber is ...

  6. IMPROVED RISK CHARACTERIZATION METHODS FOR DEVELOPING AQUATIC LIFE CRITERIA FOR NON-BIOACCUMULATIVE TOXICANTS

    EPA Science Inventory

    This project will use existing and developing information to evaluate and demonstrate procedures for more fully characterizing risks of non-bioaccumulative toxicants to aquatic organisms, and for incorporating these risks into aquatic life criteria. These efforts will address a v...

  7. Forecasting fish biomasses, densities, productions, and bioaccumulation potentials of Mid-Atlantic wadeable streams

    EPA Science Inventory

    Regional fishery conditions of Mid-Atlantic wadeable streams in the eastern United States are estimated using the BASS bioaccumulation and fish community model and data collected by the U.S. Environmental Protection Agency's Environmental Monitoring and Assessment Program (EMAP)....

  8. Bioaccumulation Data from Laboratory and Field Studies: Are They Comparable?

    EPA Science Inventory

    Once released into the environment, there are a number of chemicals that are known to bioaccumulate in organisms, sometimes to concentrations that may threaten their health or the health of their predators. However, it remains challenging to use physical or chemical properties o...

  9. Comparison and Evaluation of Laboratory and Field Measured Bioaccumulation Endpoints

    EPA Science Inventory

    Evaluation of bioaccumulation endpoints on a fugacity basis allows provides a framework to assess the biomagnification potential of a chemical and assess data deficiencies, i.e., uncertainties and lack of data. In addition, it is suggested that additional guidance is needed in o...

  10. Effects of Feeding Rate and Loading Density on Bioaccumulation of PCBs in Oligochaete Lumbriculus variegatus

    EPA Science Inventory

    Sediment tests with aquatic organisms can provide valuable information about potential toxicity and the bioavailability of polychlorinated biphenyls (PCBs) to the organisms. The USEPA 28-day Lumbriculus variegatus bioaccumulation test for sediments when successfully perfor...

  11. Modeling Bioaccumulation as a Potential Route of Riverine Foodweb Exposures to PFOS

    EPA Science Inventory

    Perfluorinated acids are compounds of interest as bioaccumulators; these persistent chemicals have been found in humans and animals throughout the world. Perfluoroctane sulfonate (PFOS) has an especially high bioconcentration factor in fish, due to the stability of PFOS in the e...

  12. BIOACCUMULATION, BIOTRANSFORMATION, AND METABOLITE FORMATION OF FIPRONIL AND CHIRAL LEGACY PESTICIDES IN RAINBOW TROUT

    EPA Science Inventory

    To assess the fate of current-use pesticides it is important to understand their bioaccumulation and biotransformation by aquatic biota. We examined the dietary accumulation and enantioselective biotransformation of the chiral current-use pesticide fipronil, along with a mixture ...

  13. Selected Issues Associated with the Risk Assessment Process for Pesticides with Persistent, Bioaccumulative, and Toxic Characteristics

    EPA Science Inventory

    This Scientific Advisory Panel meeting will address selected scientific issues associated with assessing the potential ecological risks resulting from use of a pesticide active ingredient which has persistent, bioaccumulative, and toxic (PBT) characteristics. EPA will pose speci...

  14. FACTORS INFLUENCING THE DESIGN OF BIOACCUMULATION FACTOR AND BIOTA-SEDIMENT ACCUMULATION FACTOR FIELD STUDIES

    EPA Science Inventory

    General guidance for designing field studies to measure bioaccumulation factors (BAFs) and biota-sediment accumulation factors (BSAFs) is not available. To develop such guidance, a series of modeling simulations were performed to evaluate the underlying factors and principles th...

  15. Sediment bioaccumulation test with Lumbriculus variegatus: Effects of feeding

    EPA Science Inventory

    Sediment bioaccumulation tests with Lumbriculus variegatus were performed on seven sediments with a series of ratios of total organic carbon in sediment to L. variegatus (dry weight) (TOC/Lv) that spanned the recommendation of no less than 50:1. With increasing loading of organi...

  16. Toxicity, Bioaccumulation and Biotransformation of Silver Nanoparticles in Marine Organisms

    EPA Science Inventory

    The toxicity, bioaccumulation and biotransformation of citrate and polyvinylpyrrolidone (PVP) capped silver nanoparticles (NPs) (AgNP-citrate and AgNP-PVP) and titanium dioxide (TiO2) NPs in marine organisms via marine sediment exposure were investigated. Results from 7-d sedimen...

  17. The influence of salinity on metal uptake and effects in the midge Chironomus maddeni.

    PubMed

    Bidwell, Joseph R; Gorrie, John R

    2006-01-01

    The influence of different porewater salinities (up to 12 g/L) on the toxicity and bioaccumulation of copper, zinc and lead from metal-spiked sediments was assessed using the midge, Chironomus maddeni. Survival of the larvae was significantly reduced at a porewater salinity of 12 g/L, but no effects were observed at 4 or 8 g/L. Both growth and survival of C. maddeni were reduced after exposure to salt/metal spiked sediments as compared to those exposed to sediments spiked with metals or salt alone. Increased salinity resulted in increased bioaccumulation of copper and zinc, but decreased bioaccumulation of lead. The observed patterns of bioaccumulation were not entirely explained by the modelled free ion activities of the metals, indicating that factors such as osmotic stress, consumption of metal-contaminated sediments or metal interactions may have been important as well. These results highlight the need to consider the influence of existing or potential salinization when undertaking hazard assessments of freshwater systems impacted by contaminants such as trace metals.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Gestel, C.A.; Ma, W.C.

    The acute toxicity of five chlorophenols for two earthworm species was determined in two sandy soils differing in organic matter content and the results were compared with adsorption data. Adsorption increased with increasing organic matter content of the soils, but for tetra- and pentachlorophenol was also influenced by soil pH. Earthworm toxicity was significantly higher in the soil with a low level of organic matter. This difference disappeared when LC50 values were recalculated to concentrations in soil solution using adsorption data. Eisenia fetida andrei showed LC50 values lower than those of Lumbricus rubellus although bioaccumulation was generally higher in themore » latter species. Toxicity and bioaccumulation based on soil solution concentrations increased with increasing lipophilicity of the chlorophenols. The present results indicate that the toxicity and bioaccumulation and therefore the bioavailability of chlorophenols in soil to earthworms are dependent on the concentration in soil solution and can be predicted on the basis of adsorption data. Both the toxicity of and bioaccumulation data on chlorophenols in earthworms demonstrated surprisingly good agreement with those on chlorophenols in fish.« less

  19. Nanoparticle interactions with co-existing contaminants: joint toxicity, bioaccumulation and risk.

    PubMed

    Deng, Rui; Lin, Daohui; Zhu, Lizhong; Majumdar, Sanghamitra; White, Jason C; Gardea-Torresdey, Jorge L; Xing, Baoshan

    2017-06-01

    With their growing production and application, engineered nanoparticles (NPs) are increasingly discharged into the environment. The released NPs can potentially interact with pre-existing contaminants, leading to biological effects (bioaccumulation and/or toxicity) that are poorly understood. Most studies on NPs focus on single analyte exposure; the existing literature on joint toxicity of NPs and co-existing contaminants is rather limited but beginning to develop rapidly. This is the first review paper evaluating the current state of knowledge regarding the joint effects of NPs and co-contaminants. Here, we review: (1) methods for investigating and evaluating joint effects of NPs and co-contaminants; (2) simultaneous toxicities from NPs co-exposed with organic contaminants, metal/metalloid ions, dissolved organic matter (DOM), inorganic ligands and additional NPs; and (3) the influence of NPs co-exposure on the bioaccumulation of organic contaminants and heavy metal ions, as well as the influence of contaminants on NPs bioaccumulation. In addition, future research needs are discussed so as to better understand risk associated with NPs-contaminant co-exposure.

  20. Assessment of metals bioaccumulation and bioavailability in mussels Mytilus galloprovincialis exposed to outfalls pollution in coastal areas of Casablanca.

    PubMed

    Mejdoub, Zineb; Zaid, Younes; Hmimid, Fouzia; Kabine, Mostafa

    2018-07-01

    The present work aims to study the metallic contamination of four sampling sites located nearby major sewage outfalls of the Casablanca coast (Morocco), using indigenous mussels Mytilus galloprovincialis as bioindicators of pollution. This research offered the opportunity to study trace metals bioaccumulation mechanisms, which represent a major factor in assessment processes of the pollution effects in coastal ecosystem health. The bioavailability and the bioaccumulation of trace metals (Cu, Zn, Ni, Pb) were evaluated in order to compare the metallic contamination in mussels' tissues and find a possible correlation with physiological parameters of this filter feeding species. Our results showed a significant spatiotemporal variation of bioaccumulation, compared to control. A significant correlation coefficient between metals (Zn and Pb) bioavailability and physiological index (CI) was revealed in mussels from the most polluted location. The seasonal variation of trace metal accumulation was also raised; the highest values recorded during the dry period. Copyright © 2018 Elsevier GmbH. All rights reserved.

  1. Environmental Fate and Bioaccumulation Modelling at the US Environmental Protection Agency: Application to Inform Decision-Making

    EPA Science Inventory

    This chapter reviews the regulatory background and policy applications driving the use of various types of environmental fate and bioaccumulation models at US EPA (air quality, surface water and watersheds, contaminated sites). Comparing current research frontiers with contempora...

  2. Experts Workshop on the Ecotoxicological Risk Assessment of Ionizable Organic Chemicals: Bioaccumulation/ADME

    EPA Science Inventory

    The bioaccumulation potential of neutral organic chemicals (e.g., PCBs, DDT, brominated flame retardants) has received a great deal of attention from scientists in the field of environment toxicology and chemistry over the past four decades. Regulations based on our understanding...

  3. Concentration dependence of in vivo biotransformation rates of organic sunscreen agents in rainbow trout following a dietary exposure

    EPA Science Inventory

    Simple diffusion lipid-partitioning models have historically described the bioaccumulation of hydrophobic chemicals in fish. While these models are sufficient to describe the bioaccumulation of recalcitrant PCBs and other non-metabolized chemicals, they are inadequate for chemica...

  4. Methylmercury in Marine Ecosystems: Spatial Patterns and Processes of Production, Bioaccumulation, and Biomagnification

    EPA Science Inventory

    The spatial variation of MeHg production, bioaccumulation and biomagnification in marine food webs is poorly characterized but critical to understanding the links between sources and higher trophic levels such as fish that are ultimately vectors of human and wildlife exposure. Th...

  5. BIOACCUMULATION AND BIOTRANSFORMATION OF CHIRAL TRIAZOLE FUNGICIDES IN RAINBOW TROUT (ONCORHYNCHUS MYKISS)

    EPA Science Inventory

    There are very little data on the bioaccumulation and biotransformation of current-use pesticides (CUPs) despite the fact that such data are critical in assessing their fate and potential toxic effects in aquatic organisms. To help address this issue, juvenile rainbow trout (Onco...

  6. Sediment Bioaccumulation Test with Lumbriculus variegatus: Effects of Organism Loading

    EPA Science Inventory

    Sediment bioaccumulation tests with Lumbriculus variegatus were performed on seven sediments with a series of ratios of total organic carbon in sediment to L. variegatus (dry weight) (TOC/Lv) that spanned the recommendation of no less than 50:1. With increasing loading of organi...

  7. Metals bioaccumulation mechanism in neem bark

    USDA-ARS?s Scientific Manuscript database

    The aim of this work was to define the bioaccumulation mechanism of metals onto the non-living biomaterial prepared from an extensively available plant bark biomass of neem (Azadirachta indica). Based on maximum ultimate fixation capacities (mmol/g) of the product, metals ions could be arranged as H...

  8. Improving plant bioaccumulation science through consistent reporting of experimental data.

    PubMed

    Fantke, Peter; Arnot, Jon A; Doucette, William J

    2016-10-01

    Experimental data and models for plant bioaccumulation of organic contaminants play a crucial role for assessing the potential human and ecological risks associated with chemical use. Plants are receptor organisms and direct or indirect vectors for chemical exposures to all other organisms. As new experimental data are generated they are used to improve our understanding of plant-chemical interactions that in turn allows for the development of better scientific knowledge and conceptual and predictive models. The interrelationship between experimental data and model development is an ongoing, never-ending process needed to advance our ability to provide reliable quality information that can be used in various contexts including regulatory risk assessment. However, relatively few standard experimental protocols for generating plant bioaccumulation data are currently available and because of inconsistent data collection and reporting requirements, the information generated is often less useful than it could be for direct applications in chemical assessments and for model development and refinement. We review existing testing guidelines, common data reporting practices, and provide recommendations for revising testing guidelines and reporting requirements to improve bioaccumulation knowledge and models. This analysis provides a list of experimental parameters that will help to develop high quality datasets and support modeling tools for assessing bioaccumulation of organic chemicals in plants and ultimately addressing uncertainty in ecological and human health risk assessments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. An assessment of heavy metal bioaccumulation in Asian swamp eel, Monopterus albus, during plowing stages of a paddy cycle.

    PubMed

    Sow, Ai Yin; Ismail, Ahmad; Zulkifli, Syaizwan Zahmir

    2013-07-01

    Livers and muscles of swamp eels (Monopterus albus) were analyzed for bioaccumulation of heavy metals during the plowing stage of a paddy cycle. Results showed heavy metals were bioaccumulated more highly in liver than muscle. Zinc (Zn) was the highest bioaccumulated metal in liver (98.5 ± 8.95 μg/g) and in muscle (48.8 ± 7.17 μg/g). The lowest bioaccumulated metals were cadmium (Cd) in liver (3.44 ± 2.42 μg/g) and copper (Cu) in muscle (0.65 ± 0.20 μg/g). In sediments, Zn was present at the highest mean concentration (52.7 ± 2.85 μg/g), while Cd had the lowest mean concentration (1.04 ± 0.24 μg/g). The biota-sediment accumulation factor (BSAF) for Cu, Zn, Cd and nickel (Ni) in liver tissue was greater than the corresponding BSAF for muscle tissue. For the three plowing stages, metal concentrations were significantly correlated between liver and muscle tissues in all cases, and between sediment and either liver or muscle in most cases. Mean measured metal concentrations in muscle tissue were below the maximum permissible limits established by Malaysian and U.S. governmental agencies, and were therefore regarded as safe for human consumption.

  10. Environmental assessment of depleted uranium used in military armor-piercing rounds in terrestrial systems.

    PubMed

    Stanley, Jacob K; Coleman, Jessica G; Brasfield, Sandra M; Bednar, Anthony J; Ang, Choo Y

    2014-06-01

    Depleted uranium (DU) from the military testing and use of armor-piercing kinetic energy penetrators has been shown to accumulate in soils; however, little is known about the toxicity of DU geochemical species created through corrosion or weathering. The purpose of the present study was to assess the toxic effects and bioaccumulation potential of field-collected DU oxides to the model terrestrial invertebrates Eisenia fetida (earthworm) and Porcellio scaber (isopod). Earthworm studies were acute (72 h) dermal exposures or 28-d spiked soil exposures that used noncontaminated field-collected soils from the US Army's Yuma and Aberdeen Proving Grounds. Endpoints assessed in earthworm testing included bioaccumulation, growth, reproduction, behavior (soil avoidance), and cellular stress (neutral red uptake in coelomocytes). Isopod testing used spiked food, and endpoints assessed included bioaccumulation, survival, and feeding behavior. Concentration-dependent bioaccumulation of DU in earthworms was observed with a maximum bioaccumulation factor of 0.35; however, no significant reductions in survival or impacts to cellular stress were observed. Reproduction lowest-observed-effect concentrations (LOEC) of 158 mg/kg and 96 mg/kg were observed in Yuma Proving Ground and a Mississippi reference soil (Karnac Ferry), respectively. Earthworm avoidance of contaminated soils was not observed in 48-h soil avoidance studies; however, isopods were shown to avoid food spiked with 12.7% by weight DU oxides through digital tracking studies. © 2014 SETAC.

  11. Equilibrium sampling to determine the thermodynamic potential for bioaccumulation of persistent organic pollutants from sediment.

    PubMed

    Jahnke, Annika; MacLeod, Matthew; Wickström, Håkan; Mayer, Philipp

    2014-10-07

    Equilibrium partitioning (EqP) theory is currently the most widely used approach for linking sediment pollution by persistent hydrophobic organic chemicals to bioaccumulation. Most applications of the EqP approach assume (I) a generic relationship between organic carbon-normalized chemical concentrations in sediments and lipid-normalized concentrations in biota and (II) that bioaccumulation does not induce levels exceeding those expected from equilibrium partitioning. Here, we demonstrate that assumption I can be obviated by equilibrating a silicone sampler with chemicals in sediment, measuring chemical concentrations in the silicone, and applying lipid/silicone partition ratios to yield concentrations in lipid at thermodynamic equilibrium with the sediment (CLip⇌Sed). Furthermore, we evaluated the validity of assumption II by comparing CLip⇌Sed of selected persistent, bioaccumulative and toxic pollutants (polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB)) to lipid-normalized concentrations for a range of biota from a Swedish background lake. PCBs in duck mussels, roach, eel, pikeperch, perch and pike were mostly below the equilibrium partitioning level relative to the sediment, i.e., lipid-normalized concentrations were ≤CLip⇌Sed, whereas HCB was near equilibrium between biota and sediment. Equilibrium sampling allows straightforward, sensitive and precise measurement of CLip⇌Sed. We propose CLip⇌Sed as a metric of the thermodynamic potential for bioaccumulation of persistent organic chemicals from sediment useful to prioritize management actions to remediate contaminated sites.

  12. ENHANCED BIOACCUMULATION OF HEAVY METAL BY BACTERIA CELLS DISPLAYING SYNTHETIC PHYTOCHELATINS. (R827227)

    EPA Science Inventory

    A novel strategy using synthetic phytochelatins is described for the purpose of developing microbial agents for enhanced bioaccumulation of toxic metals. Synthetic genes encoding for several metal-chelating phytochelatin analogs (Glu-Cys)nGly (EC8 (n = 8), EC11 (n = 11...

  13. THE RELATIONSHIP OF BIOACCUMULATIVE CHEMICALS IN WATER AND SEDIMENT TO CHEMICAL RESIDUES IN FISH: A VISUALIZATION APPROACH

    EPA Science Inventory

    An approach to viewing and evaluating bioaccumulation data by using water-sediment chemical concentration (XY) plots will be presented. One of the difficulties for those outside of the detailed study of PBTs is the relative importance and interrelationships among variables influ...

  14. Intra- and inter-laboratory reliability of a cryopreserved trout hepatocyte assay for the prediction of chemical bioaccumulation potential

    EPA Science Inventory

    Cryopreserved trout hepatocytes provide a convenient in vitro system for measuring the intrinsic clearance of xenobiotics. Measured clearance rates can then be extrapolated to the whole animal as a means of improving modeled bioaccumulation predictions. To date, however, the in...

  15. NATIONAL COW MILK SURVEY FOR PERSISTENT, BIOACCUMULATIVE AND TOXIC (PBT) POLLUTANTS

    EPA Science Inventory

    This is a survey for persistent, bioaccumulative, and toxic (PBT) pollutants in the U.S. milk supply. The EPA Environmental Radiation Ambient Monitoring System (ERAMS) was used to collect two sets of milk samples, one set in July 2000 and the second in January 2001. ERAMS has abo...

  16. MICHTOX: A MASS BALANCE AND BIOACCUMULATION MODEL FOR TOXIC CHEMICALS IN LAKE MICHIGAN

    EPA Science Inventory

    MICHTOX is a toxic chemical mass balance and bioaccumulation model for Lake Michigan. It was developed for USEPA's Region V in support of the Lake Michigan Lake-wide Management Plan (LaMP) to provide guidance on expected water quality improvements in response to critical pollutan...

  17. Exploring the effects of temperature and resource limitation on mercury bioaccumulation in Fundulus heteroclitus using dynamic energy budget modeling

    EPA Science Inventory

    Dynamic energy budget (DEB) theory provides a generalizable and broadly applicable framework to connect sublethal toxic effects on individuals to changes in population survival and growth. To explore this approach, we conducted growth and bioaccumulation studies that contribute t...

  18. Food Pyramids and Bio-Accumulation.

    ERIC Educational Resources Information Center

    Baker, Valerie

    1998-01-01

    Students learn about marine food chains, bioaccumulation, the energy pyramid, and potential ocean pollutants and their effects on ocean ecosystems in this activity which involves having students pull drawings of marine organisms which include diatoms, copepods, anchovies, bonito, and killer whale out of a bag, then demonstrating the food chain by…

  19. DISTRIBUTION OF TOTAL AND METHYLMERCURY IN DIFFERENT ECOSYSTEM COMPARTMENTS IN THE EVERGLADES: IMPLICATIONS FOR MERCURY BIOACCUMULATION

    EPA Science Inventory

    Mercury (Hg) species distribution patterns among ecosystem compartments in the Everglades were analyzed at the landscape level in order to explore the implications of Hg distribution for Hg bioaccumulation, and to investigate major biogeochemical processes that are pertinent to t...

  20. Exploring the Use of Multimedia Fate and Bioaccumulation Models to Calculate Trophic Magnification Factors (TMFs)

    EPA Science Inventory

    The trophic magnification factor (TMF) is considered to be a key metric for assessing the bioaccumulation potential of organic chemicals in food webs. Fugacity is an equilibrium criterion and thus reflects the relative thermodynamic status of a chemical in the environment and in ...

  1. Use of Isolated Trout Hepatocytes to Predict Measured Hepatic Clearance and Whole-animal Bioconcentration Factors for Six Polyaromatic Hydrocarbons

    EPA Science Inventory

    Hepatic metabolism is an important determinant of chemical bioaccumulation in fish. Consequently, measured in vitro hepatic metabolism may improve model predictions of bioaccumulation. In this study, fresh and cryopreserved trout hepatocytes were used to measure in vitro intrin...

  2. EVALUATION OF BIOACCUMULATION AND PHOTOINDUCED TOXICITY OF FLUORANTHENE IN LARVAL AND ADULT LIFE-STAGES OF CHIRONOMUS TENTANS

    EPA Science Inventory

    Laboratory sediment tests were conducted to evaluate the bioaccumulation and photoinduced toxicity of fluoranthene in larval and adult life-stages of Chironomus tentans. In the first of two experiments, fourth-instar and adult C. tentans exposed to spiked sediments were collected...

  3. EVALUATION OF A FIRST-ORDER MODEL FOR THE PREDICTION OF THE BIOACCUMULATION OF PCBS AND DDT FROM SEDIMENT INTO THE MARINE DEPOSIT-FEEDING CLAM MACOMA NASUTA

    EPA Science Inventory

    A first-order model for predicting contaminant bioaccumulation from sediments into benthic invertebrates was validated using a marine deposit-feeding clam, Macoma nasuta, exposed to polychlorobiphenyl (PCB)-spiked and dichlorodiphenyltrichloroethane (DDT)-contaminated sediments. ...

  4. METHOD EVALUATION TO MEASURE PERSISTENT BIOACCUMULATIVE TOXIC POLLUTANTS IN COW MILK

    EPA Science Inventory

    It is important to understand the persistent and bioaccumulative toxic (PBT) levels in milk, as milk fat may be one of the highest dietary sources of PBT exposure. Analysis of milk also allows the opportunity to investigate geographic variability, as milk is produced and distrib...

  5. VALIDATION OF AMBIENT WATER QUALITY CRITERIA (AWQC) BIOACCUMULATION METHODOLOGY USING FIELD DATA FROM GREEN BAY AND THE HUDSON RIVER

    EPA Science Inventory

    In 1998, EPA published its draft revision to the methodology for deriving ambient water quality criteria to protect human health. Four methods were proposed to determine lipid-normalized bioaccumulation factors based on freely-dissolved water concentrations (BAFs) for nonpolar or...

  6. Bioaccumulation and Toxicity of Single-Walled Carbon Nanotubes to Benthic Organisms at the Base of the Marine Food Chain

    EPA Science Inventory

    As the use of single-walled carbon nanotubes (SWNTs) increases over time, so does the potential for environmental release. This research aimed to determine the toxicity, bioavailability, and bioaccumulation of SWNTs in marine benthic organisms at the base of the food chain. The t...

  7. DEPENDENCY OF POLYCHLORINATED BIPHENYL AND POLYCYCLIC AROMATIC HYDROCARBON BIOACCUMULATION IN MYA ARENARIA ON BOTH WATER COLUMN AND SEDIMENT BED CHEMICAL ACTIVITIES

    EPA Science Inventory

    The bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) by the filter-feeding soft-shell clam Mya arenaria was evaluated at three sites near Boston (MA, USA) by assessing the chemical activities of those hydrophobic organic compounds (H...

  8. Effects of feeding and organism loading rate on PCB accumulation by Lumbriculus variegatus in sediment bioaccumulation testing

    EPA Science Inventory

    Sediment bioaccumulation test methods published by USEPA and ASTM in 2000 specify that the Lumbriculus variegatus, a freshwater oligochaete, should not be fed during the 28-day exposure and recommends an organism loading rate of total organic carbon in sediment to organism dry we...

  9. Development of a Dynamic Energy Budget Modeling Approach to Investigate the Effects of Temperature and Resource Limitation on Mercury Bioaccumulation in Fundulus Heteroclitus

    EPA Science Inventory

    Dynamic energy budget (DEB) theory provides a generalizable and broadly applicable framework to connect sublethal toxic effects on individuals to changes in population persistence and growth. To explore this approach, we are conducting growth and bioaccumulation studies that cont...

  10. Development of a dynamic energy budget modeling approach to investigate the effects of temperature and resource limitation on mercury bioaccumulation in Fundulus heteroclitus-presentation

    EPA Science Inventory

    Dynamic energy budget (DEB) theory provides a generalizable and broadly applicable framework to connect sublethal toxic effects on individuals to changes in population survival and growth. To explore this approach, we are conducting growth and bioaccumulation studies that contrib...

  11. Development of a dynamic energy budget modeling approach to investigate the effects of temperature and resource limitation on mercury bioaccumulation in Fundulus heteroclitus.

    EPA Science Inventory

    Dynamic energy budget (DEB) theory provides a generalizable and broadly applicable framework to connect sublethal toxic effects on individuals to changes in population survival and growth. To explore this approach, we are developing growth and bioaccumulation studies that contrib...

  12. Ecological-Evaluation of Organotin-Contaminated Sediment.

    DTIC Science & Technology

    1985-07-01

    the potential for bioaccumulation of cadmium, chromium, copper, mercury , silver, pesticides, PCBs, petroleum hydrocarbons, and organotins RESULTS The...tissues were frozen for subsequent bioaccumulation estimates. Tissues and sediment samples were analyzed for cadmium, chromium, copper, mercury , silver...spectroscopy; mercury was analyzed by cold vapor atomic absorption spectroscopy. Pesticides, PCBs, and petroleum hydrocarbons were measured by gas

  13. Bioaccumulation Patterns Of PCBs In A Temperate, Freshwater Food Web And Their Relationshop To The Octanol-Water Partition Coefficient (Presentation)

    EPA Science Inventory

    We investigated polychlorinated biphenyl (PCB) bioaccumulation relative to octanol-water partition coefficient (KOW) and organism tropic position (TP) at the Lake Hartwell Superfund site (South Carolina, USA). We measured PCBs (127 congeners) and stable isotopes (δ

  14. Respective contributions of diet and medium to the bioaccumulation of pharmaceutical compounds in the first levels of an aquatic trophic web.

    PubMed

    Orias, Frédéric; Simon, Laurent; Perrodin, Yves

    2015-12-01

    Nowadays, pharmaceuticals (PCs) are ubiquitous in aquatic ecosystems. It is known that these compounds have ecotoxic effects on aquatic organisms at low concentrations. Moreover, some of them can bioaccumulate inside organisms or trophic webs exposed at environmental concentrations and amplify ecotoxic impacts. PCs can bioaccumulate in two ways: exposure to a medium (e.g., respiration, diffusion, etc.) and/or through the dietary route. Here, we try to assess the respective contributions of these two forms of contamination of the first two levels of an aquatic trophic web. We exposed Daphnia magna for 5 days to 0, 5, and 50 μg/L (15)N-tamoxifen and then fed them with control and contaminated diets. We used an isotopic method to measure the tamoxifen content inside the daphnids after several minutes' exposure and every day before and after feeding. We found that tamoxifen is very bioaccumulative inside daphnids (BCF up to 12,000) and that the dietary route has a significant impact on contamination by tamoxifen (BAF up to 22,000), especially at low concentrations in medium.

  15. Comparative Use of Tree Leaves, Needles, Tree Barks and Lichens for Air Pollution Biomonitoring

    NASA Astrophysics Data System (ADS)

    El Khoukhi, T.; Cherkaoui El Moursli, R.; Chouak, A.; Moutia, Z.; Lferde, M.; Senhou, A.; Gaudry, A.; Ayrault, S.; Chakir, M.

    2005-01-01

    The aim of this work is to determine the most suitable bioaccumulators for air pollution survey in Morocco. For this, we compare in this paper heavy metals uptake efficiencies for different types of biomonitors: leaves of oak and eucalyptus trees, needles of coniferous trees, tree-barks and lichens collected at the same site. Instrumental neutron activation analysis using the k0 method (INAA-k0) was used for its adequate characteristics to analyze accurately a wide number of elements. Reference materials were analyzed to check the reliability and the accuracy of this technique. The results obtained for all these bioaccumulators lead to the following conclusions. For the major elements, leaves and needles are more accumulating than tree barks and lichens. While for the intermediate and trace elements, there is an obvious accumulation in lichens in comparison with tree barks, leaves and needles. This work shows the possibility to use these four bioaccumulators according to their availability in an area. It will be useful however to set up an inter calibration between these bioaccumulators.

  16. Biogeochemical spatio-temporal transformation of copper in Aspergillus niger colonies grown on malachite with different inorganic nitrogen sources.

    PubMed

    Fomina, Marina; Bowen, Andrew D; Charnock, John M; Podgorsky, Valentin S; Gadd, Geoffrey M

    2017-03-01

    This work elucidates spatio-temporal aspects of the biogeochemical transformation of copper mobilized from malachite (Cu 2 (CO 3 )(OH) 2 ) and bioaccumulated within Aspergillus niger colonies when grown on different inorganic nitrogen sources. It was shown that the use of either ammonium or nitrate determined how copper was distributed within the colony and its microenvironment and the copper oxidation state and succession of copper coordinating ligands within the biomass. Nitrate-grown colonies yielded ∼1.7× more biomass, bioaccumulated ∼7× less copper, excreted ∼1.9× more oxalate and produced ∼1.75× less water-soluble copper in the medium in contrast to ammonium-grown colonies. Microfocus X-ray absorption spectroscopy revealed that as the mycelium matured, bioaccumulated copper was transformed from less stable and more toxic Cu(I) into less toxic Cu(II) which was coordinated predominantly by phosphate/malate ligands. With time, a shift to oxalate coordination of bioaccumulated copper occurred in the central older region of ammonium-grown colonies. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Bioaccumulation of Fe2O3(magnetic) nanoparticles in Ceriodaphnia dubia.

    PubMed

    Hu, Ji; Wang, Demin; Wang, Jiangtao; Wang, Jianmin

    2012-03-01

    While nano-Fe(2)O(3)(magnetic) is generally considered non-toxic, it could serve as a carrier of other toxic chemicals such as As(V) and enhance their toxicity. The bioaccumulation of nano-Fe(2)O(3)(m) with different exposure times, NP concentrations, and pH conditions was investigated using Ceriodaphnia dubia (C. dubia) as the model organism. Under natural pH conditions, C. dubia significantly accumulated nano-Fe(2)O(3)(m) in the gut, with the maximum accumulation being achieved after 6 h of exposure. The concentration of nano-Fe(2)O(3) also impacted its accumulation, with the maximum uptake occurring at 20 mg/L or more. In addition, the highest bioaccumulation occurred in a pH range of 7-8 where the highest feeding rate was reported, confirming that the ingestion of NPs is the main route of nano-Fe(2)O(3)(m) bioaccumulation. In a clean environment without NPs, depuration of nano-Fe(2)O(3)(m) occurred, and food addition accelerated the depuration process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Discrimination of trait-based characteristics by trace element bioaccumulation in riverine fishes

    USGS Publications Warehouse

    Short, T.M.; DeWeese, L.R.; Dubrovsky, N.M.

    2008-01-01

    Relations between tissue trace element concentrations and species traits were examined for 45 fish species to determine the extent to which trait-based characteristics accounted for relative differences among species in trace element bioaccumulation. Percentages of fish species correctly classified by discriminant analysis according to traits predicted by tissue trace element concentrations ranged from 72% to 87%. Tissue concentrations of copper, mercury, selenium, and zinc appeared to have the greatest overall influence on differentiating species according to trait characteristics. Discrimination of trait characteristics did not appear to be strongly influenced by local sources of trace elements in the streambed sediment. Bioaccumulation was greatest for those species classified as primarily detritivores, having relatively large adult body size, considered nonmigratory with respect to reproductive strategy, occurring mostly in large or variable size streams and rivers, preferring depositional areas within the stream channel, and preferring benthic rather than open-water habitats. Our findings provide evidence of the strong relationship between bioaccumulation of environmental trace elements and trait-based factors that influence contaminant exposure. ?? 2008 NRC.

  19. Mercury bioaccumulation and decontamination kinetics in the edible cockle Cerastoderma edule.

    PubMed

    Cardoso, P G; Grilo, T F; Pereira, E; Duarte, A C; Pardal, M A

    2013-02-01

    Mercury bioaccumulation and decontamination kinetics in the edible cockle Cerastoderma edule were studied through a mesocosms experiment after a medium-term exposure to the metal. The results revealed that the bivalve presented distinct bioaccumulation kinetics according to the different tissues. While the gills showed a linear accumulation pattern, the digestive gland and the entire organism presented a saturation model, with higher accumulation during the first 7d of exposure and lower during the rest of the time. In addition, the bioaccumulation rate was not proportional to the Hg concentration, since the organisms under lower contamination presented higher bioconcentration factors than the ones under higher contamination. Gills were the tissues with higher mercury accumulation capability. Concerning the decontamination phase, C. edule lost approximately 80% of the mercury after 24h exposure in clean seawater. Nevertheless, never reached the original condition, showing in the final (20 d detox), Hg levels (>0.5 ppm) higher than those allowed by the legislation regulating human food consumption. This represents a matter of concern for Human health. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Antibiotics in typical marine aquaculture farms surrounding Hailing Island, South China: occurrence, bioaccumulation and human dietary exposure.

    PubMed

    Chen, Hui; Liu, Shan; Xu, Xiang-Rong; Liu, Shuang-Shuang; Zhou, Guang-Jie; Sun, Kai-Feng; Zhao, Jian-Liang; Ying, Guang-Guo

    2015-01-15

    The occurrence, bioaccumulation, and human dietary exposure via seafood consumption of 37 antibiotics in six typical marine aquaculture farms surrounding Hailing Island, South China were investigated in this study. Sulfamethoxazole, salinomycin and trimethoprim were widely detected in the water samples (0.4-36.9 ng/L), while oxytetracycline was the predominant antibiotic in the water samples of shrimp larvae pond. Enrofloxacin was widely detected in the feed samples (16.6-31.8 ng/g) and erythromycin-H2O was the most frequently detected antibiotic in the sediment samples (0.8-4.8 ng/g). Erythromycin-H2O was the dominant antibiotic in the adult Fenneropenaeus penicillatus with concentrations ranging from 2498 to 15,090 ng/g. In addition, trimethoprim was found to be bioaccumulative in young Lutjanus russelli with a median bioaccumulation factor of 6488 L/kg. Based on daily intake estimation, the erythromycin-H2O in adult F. penicillatus presented a potential risk to human safety. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Effects of Selenite on Unicellular Green Microalga Chlorella pyrenoidosa: Bioaccumulation of Selenium, Enhancement of Photosynthetic Pigments, and Amino Acid Production.

    PubMed

    Zhong, Yu; Cheng, Jay J

    2017-12-20

    Microalgae were studied as function bioaccumulators of selenium (Se) for food and feed supplement. To investigate the bioaccumulation of Se and its effects on the unicellular green alga Chlorella pyrenoidosa, the algal growth curve, fluorescence parameters, antioxidant enzyme activity, and fatty acid and amino acid profiles were examined. We found that Se at low concentrations (≤40 mg L -1 ) positively promoted algal growth and inhibited lipid peroxidation and intracellular reactive oxygen species. The antioxidative effect was associated with an increase in the levels of glutathione peroxidase, catalase, linolenic acid, and photosynthetic pigments. Meanwhile, a significant increase in amino acid and organic Se content was also detected in the microalgae. In contrast, we found opposite effects in C. pyrenoidosa exposed to >60 mg L -1 Se. The antioxidation and toxicity appeared to be correlated with the bioaccumulation of excess Se. These results provide a better understanding of the effect of Se on green microalgae, which may help in the development of new technological applications for the production of Se-enriched biomass from microalgae.

  2. Bioaccumulation dynamics and exposure routes of Cd and Cu among species of aquatic mayflies

    USGS Publications Warehouse

    Cain, D.; Croteau, M.-N.; Luoma, S.

    2011-01-01

    Consumption of periphyton is a potentially important route of metal exposure to benthic invertebrate grazers. The present study examined the bioaccumulation kinetics of dissolved and dietary Cd and Cu in five species of mayflies (class Insecta). Artificial stream water and benthic diatoms were separately labeled with enriched stable metal isotopes to determine physiological rate constants used by a biokinetic bioaccumulation model. The model was employed to simulate the effects of metal partitioning between water and food, expressed as the bioconcentration factor (BCF), as well as ingestion rate (IR) and metal assimilation efficiency of food (AE), on the relative importance of water and food to metal bioaccumulation. For all test species, the contribution of dietary uptake of Cd and Cu increased with BCF. For a given BCF, the contribution of food to the body burden increased with kuf, the metal uptake rate constant from food that combined variation in IR and AE. To explore the relative importance of water and diet exposure routes under field conditions, we used estimated site-specific aqueous free-ion concentrations to model Cd and Cu accumulation from aqueous exposure, exclusively. The predicted concentrations accounted for less than 5% of the observed concentrations, implying that most bioaccumulated metal was acquired from food. At least for the taxa considered in this study, we conclude that consumption of metal-contaminated periphyton can result in elevated metal body burdens and potentially increase the risk of metal toxicity. ?? 2011 SETAC.

  3. Different modes of TiO2 uptake by Ceriodaphnia dubia: relevance to toxicity and bioaccumulation.

    PubMed

    Dalai, Swayamprava; Iswarya, V; Bhuvaneshwari, M; Pakrashi, Sunandan; Chandrasekaran, N; Mukherjee, Amitava

    2014-07-01

    The extensive environmental exposure of engineered metal oxide nanoparticles (NPs) may result in their bioaccumulation in aquatic organisms leading to their biotransfer in a food chain through various routes in a freshwater ecosystem. The present study focuses on the possible modes of TiO2 NP trophic transfer to Ceriodaphnia dubia, in presence and/absence of its diet, Scenedesmus obliquus (primary producer). The acute exposure studies (48h) were designed to have daphnids exposed to (i) the free NPs, (ii) both the free and the algae-borne NPs; and (iii) only the algae-borne NPs in separate tests to understand the possible routes of NP transfer. The dietary uptake of TiO2 NPs (algae-borne) was found to be the primary route for NP biotransfer with ∼70% of total NP uptake. Interestingly, in a separate study it was noticed that the NPs coated with algal exudates were easily taken up by daphnids as compared to pristine NPs of same concentrations, leading to their higher bioaccumulation. A chronic toxicity study, where daphnids were exposed to both free and algae-borne NPs for 21 days was undertaken to comprehend the TiO2 NP effect on daphnia growth and reproduction upon chronic exposure and also the bioaccumulation potential. Both acute and chronic exposure studies suggested higher bioaccumulation of TiO2 in daphnids when the particles were less toxic to the diet (algae). Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Comparative investigation of toxicity and bioaccumulation of Cd-based quantum dots and Cd salt in freshwater plant Lemna minor L.

    PubMed

    Modlitbová, Pavlína; Novotný, Karel; Pořízka, Pavel; Klus, Jakub; Lubal, Přemysl; Zlámalová-Gargošová, Helena; Kaiser, Jozef

    2018-01-01

    The purpose of this study was to determine the toxicity of two different sources of cadmium, i.e. CdCl 2 and Cd-based Quantum Dots (QDs), for freshwater model plant Lemna minor L. Cadmium telluride QDs were capped with two coating ligands: glutathione (GSH) or 3-mercaptopropionic acid (MPA). Growth rate inhibition and final biomass inhibition of L. minor after 168-h exposure were monitored as toxicity endpoints. Dose-response curves for Cd toxicity and EC50 168h values were statistically evaluated for all sources of Cd to uncover possible differences among the toxicities of tested compounds. Total Cd content and its bioaccumulation factors (BAFs) in L. minor after the exposure period were also determined to distinguish Cd bioaccumulation patterns with respect to different test compounds. Laser-Induced Breakdown Spectroscopy (LIBS) with lateral resolution of 200µm was employed in order to obtain two-dimensional maps of Cd spatial distribution in L. minor fronds. Our results show that GSH- and MPA-capped Cd-based QDs have similar toxicity for L. minor, but are significantly less toxic than CdCl 2 . However, both sources of Cd lead to similar patterns of Cd bioaccumulation and distribution in L. minor fronds. Our results are in line with previous reports that the main mediators of Cd toxicity and bioaccumulation in aquatic plants are Cd 2+ ions dissolved from Cd-based QDs. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Evaluation of bioaccumulation kinetics of gold nanorods in vital mammalian organs by means of total reflection X-ray fluorescence spectrometry.

    PubMed

    Fernández-Ruiz, Ramón; Redrejo, María Jesús; Friedrich, Eberhardt Josué; Ramos, Milagros; Fernández, Tamara

    2014-08-05

    This work presents the first application of total-reflection X-ray fluorescence (TXRF) spectrometry, a new and powerful alternative analytical method, to evaluation of the bioaccumulation kinetics of gold nanorods (GNRs) in various tissues upon intravenous administration in mice. The analytical parameters for developed methodology by TXRF were evaluated by means of the parallel analysis of bovine liver certified reference material samples (BCR-185R) doped with 10 μg/g gold. The average values (n = 5) achieved for gold measurements in lyophilized tissue weight were as follows: recovery 99.7%, expanded uncertainty (k = 2) 7%, repeatability 1.7%, detection limit 112 ng/g, and quantification limit 370 ng/g. The GNR bioaccumulation kinetics was analyzed in several vital mammalian organs such as liver, spleen, brain, and lung at different times. Additionally, urine samples were analyzed to study the kinetics of elimination of the GNRs by this excretion route. The main achievement was clearly differentiating two kinds of behaviors. GNRs were quickly bioaccumulated by highly vascular filtration organs such as liver and spleen, while GNRs do not show a bioaccumulation rates in brain and lung for the period of time investigated. In parallel, urine also shows a lack of GNR accumulation. TXRF has proven to be a powerful, versatile, and precise analytical technique for the evaluation of GNRs content in biological systems and, in a more general way, for any kind of metallic nanoparticles.

  6. Bioaccumulation and tissue distribution of antibiotics in wild marine fish from Laizhou Bay, North China.

    PubMed

    Liu, Sisi; Bekele, Tadiyose-Girma; Zhao, Hongxia; Cai, Xiyun; Chen, Jingwen

    2018-08-01

    Information about bioaccumulation and tissue distribution of antibiotics in wild marine fish is still limited. In the present study, tissue levels, bioaccumulation and distribution patterns of 9 sulfonamide (SA), trimethoprim (TMP), 5 fluoroquinolone (FQ), and 4 macrolide (ML) antibiotics were investigated in gill, muscle, kidney, and liver tissues of seven wild fish species collected from Laizhou Bay, North China in 2016. All the 19 antibiotics were detected in these fish tissues with the total concentrations ranging from 22ng/g dry weight (dw) to 500ng/g dw. The mean values of logarithm bioaccumulation factors (BAFs) in the gills, muscles, kidneys, and livers ranged from 2.2 to 4.8, 1.9 to 4.0, 2.5 to 4.9, and 2.5 to 5.4, respectively. Log BAFs of antibiotics in these tissues significantly increased (r=0.61-0.77, p<0.001) with their logarithm values of liposome-water distribution coefficient (D lipw ) except in the muscles, suggesting that D lipw can well assess the bioaccumulation potentials of antibiotics in phospholipid-rich tissues. In general, the SAs, TMP, and FQs were primarily accumulated in the muscles and the MLs were primarily in the livers, which may be related to their toxicokinetic processes of these marine fish. The present study for the first time reported the tissue distribution patterns of antibiotics in wild marine fish. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Mercury Speciation and Bioaccumulation In Riparian and Upland Food Webs of the White Mountains Region, New Hampshire, USA

    NASA Astrophysics Data System (ADS)

    Rodenhouse, N.; Gebauer, R.; Lowe, W.; McFarland, K.; Bank, M. S.

    2015-12-01

    The soils and foods webs associated with mid to high elevation, forested, headwater streams are potential hotspots for mercury methylation and bioaccumulation but are not well studied. We tested the hypothesis that spatial variation in mercury bioaccumulation in upland taxa associated with headwater streams can be explained by variation in soil conditions promoting Hg methylation such as soil moisture, pH, and sulfur and organic matter content. We sampled at high (c. 700m) and mid elevation (c. 500m) in northern hardwood forest adjacent to and away from (75m) replicate headwater streams in the Hubbard Brook and Jeffers Brook watersheds of the White Mountains region, New Hampshire, USA. These forested watersheds differed primarily in soil calcium content and pH. We measured and assessed spatial variation in total Hg (THg) and methyl Hg (MeHg) concentrations in soils, insects, spiders, salamanders and birds. We also tested whether trophic position, as determined by nitrogen stable isotopes, was a major predictor of Hg bioaccumulation across these riparian and upland forest taxa. We found elevated levels of THg in all measured components of the food web, and conditions for methylation were better in the upland forest sites compared to the riparian sites located adjacent to headwater streams. Both THg and MeHg in biota were positively correlated with trophic position as indicated by 15N enrichment. In fact, trophic position was a better predictor of THg and MeHg content than spatial location, but the spatial patterning of bioaccumulation differed among taxa. Our data show that that significant Hg bioaccumulation and biomagnification can occur in soils and food webs of mid to high elevation temperate deciduous forests of the Northeast. They also suggest that mercury methylation in forested watersheds is a widespread phenomenon and not limited to areas with high soil moisture, such as lotic environments.

  8. Toxicity and bioaccumulation of 2,4,6-trinitrotoluene in fathead minnow (Pimephales promelas).

    PubMed

    Yoo, Leslie J; Lotufo, Guilherme R; Gibson, Alfreda B; Steevens, Jeffery A; Sims, Jerre G

    2006-12-01

    Few studies have determined the toxicity and bioaccumulation potential of explosive compounds in freshwater fish. In the present study, fathead minnow (Pimephales promelas) were exposed to a range of 2,4,6-trinitrotoluene (TNT) concentrations (0.44-44 micromol/L [0.1-10 mg/L] and 4.4-22.0 micromol/L [1.0-5.0 mg/L] in 4- and 10-d experiments, respectively). Median lethal concentrations of 11.93 micromol/L (2.7 mg/L; 95% confidence limit [CL], 10.29-13.83 micromol/L) and 9.68 micromol/L (2.20 mg/L; 95% CL, 9.17-10.22 micromol/L) were calculated in the 4- and 10-d experiments, respectively, and median lethal body residue of 101.0 micromol/kg (95% CL, 86.0-118.7 micromol/kg) was calculated in 4-d experiments. To study bioaccumulation, fish were exposed to 4.4 micromol/L (1 mg/L) of TNT for 12 h. Rapid bioaccumulation of TNT occurred within the first 10 min of exposure (ku = 30.4 L/kg/ h). Elimination of sigmaTNT (molar sum of TNT and degradation products 2- and 4-aminodinitrotoluenes) was fast, with an elimination rate (ke) of 2.24/h and a short half-life (0.31 h). The bioconcentration factors determined using 6-h mean tissue and water concentrations of sigmaTNT were 8.40 and 4.68 L/kg for the uptake experiment and the uptake portion of the elimination experiments, respectively. To determine the target organ for TNT in fish, juvenile fathead minnow were exposed to 2.2 micromol/L (0.5 mg/L) of [14C]TNT for 10 d. Radiolabeled compounds primarily bioaccumulated in the visceral tissues and spleen in comparison to gill, brain, muscle, and remainder tissue groups. The present study demonstrates the low bioaccumulation potential and rapid uptake of TNT in the fathead minnow.

  9. Bioaccumulation of decamethylcyclopentasiloxane in perch in Swedish lakes.

    PubMed

    Kierkegaard, Amelie; Bignert, Anders; McLachlan, Michael S

    2013-10-01

    Decamethylcyclopentasiloxane (D5), a high production volume chemical used in personal care products, enters the environment both via air and sewage treatment plant (STP) recipients. It has been found in fish, and there is concern that it may be a bioaccumulative substance. In this work D5 was analyzed in perch from six Swedish lakes that did not receive STP effluent, and in perch and sediment from six lakes that received STP effluent. In the lakes receiving the STP effluent, the D5 concentrations in sediment varied over three orders of magnitude and were correlated with the number of persons connected to the STP normalized to the surface area of the receiving body. In the lakes not receiving effluent, the D5 levels in perch were all below the LOQ, while D5 was above the LOQ in almost all perch from lakes that received effluent. The D5 concentrations in perch and sediment from the lakes receiving STP effluent were correlated. This shows that STP effluent is a much more important source of D5 to aquatic ecosystems than atmospheric deposition, and that the risk of adverse effects of D5 on aquatic life will be greatest in small recipients receiving large amounts of STP effluent. The bioaccumulation of D5 was compared to that of PCB 180 on the basis of multimedia bioaccumulation factors (mmBAFs), which describe the fraction of the contaminant present in the whole aquatic environment (i.e. water and surface sediment) that is transferred to the fish. In four of the six lakes the mmBAF of D5 was >0.3 of the mmBAF of PCB 180. Given that PCB 180 is a known highly bioaccumulative chemical, this indicates that the bioaccumulation of D5 in perch is considerable. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Comparative performance evaluation of Aspergillus lentulus for dye removal through bioaccumulation and biosorption.

    PubMed

    Kaushik, Prachi; Malik, Anushree

    2013-05-01

    Dyes used in various industries are discharged into the environment and pose major environmental concern. In the present study, fungal isolate Aspergillus lentulus was utilized for the treatment of various dyes, dye mixtures and dye containing effluent in dual modes, bioaccumulation (employing growing biomass) and biosorption (employing pre-cultivated biomass). The effect of dye toxicity on the growth of the fungal isolate was studied through phase contrast and scanning electron microscopy. Dye biosorption was studied using first and second-order kinetic models. Effects of factors influencing adsorption and isotherm studies were also conducted. During bioaccumulation, good removal was obtained for anionic dyes (100 mg/l), viz. Acid Navy Blue, Fast Red A and Orange-HF dye (99.4 %, 98.8 % and 98.7 %, respectively) in 48 h. Cationic dyes (10 mg/l), viz. Rhodamine B and Methylene Blue, had low removal efficiency (80.3 % [48 h] and 92.7 % [144 h], respectively) as compared to anionic dyes. In addition to this, fungal isolate showed toxicity response towards Methylene Blue by producing larger aggregates of fungal pellets. To overcome the limitations of bioaccumulation, dye removal in biosorption mode was studied. In this mode, significant removal was observed for anionic (96.7-94.3 %) and cationic (35.4-90.9 %) dyes in 24 h. The removal of three anionic dyes and Rhodamine B followed first-order kinetic model whereas removal of Methylene Blue followed second-order kinetic model. Overall, fungal isolate could remove more than 90 % dye from different dye mixtures in bioaccumulation mode and more than 70 % dye in biosorption mode. Moreover, significant color removal from handmade paper unit effluent in bioaccumulation mode (86.4 %) as well as in biosorption mode (77.1 %) was obtained within 24 h. This study validates the potential of fungal isolate, A. lentulus, to be used as the primary organism for treating dye containing wastewater.

  11. Biochars induced modification of dissolved organic matter (DOM) in soil and its impact on mobility and bioaccumulation of arsenic and cadmium.

    PubMed

    Li, Gang; Khan, Sardar; Ibrahim, Muhammad; Sun, Tian-Ran; Tang, Jian-Feng; Cotner, James B; Xu, Yao-Yang

    2018-04-15

    Biochar application has attracted great attention due to its diverse uses and benefits in the fields of environmental management and agriculture. Biochar modifies the composition of dissolved organic matter (DOM) in soil, which directly or indirectly controls the mobility of metal contaminants and their bioaccumulation. In this study, ten different hydrothermal biochars pyrolysed from mushroom waste (MSBC), soybean straw (SBBC), sewage sludge (SSBC), peanut shells (PNBC) and rice straw (RSBC) at two pyrolysis temperatures (200 °C and 350 °C) were used to investigate DOM changes in soil solution and their effects on metal availability and bioaccumulation. Biochar induced modification of soil DOM which was characterized by spectroscopic analysis of water soluble organic carbon, specific absorbance (SUVA 254 ), UV-vis absorption, spectral slope (S R ) and the absorption coefficient. Regarding rice plant growth, the biochar effects on biomass were greatly varied. Biochars (except for RSBC and MSBC) prepared at high temperature significantly (P ≤ 0.05) suppressed the availability of As and Cd in soil and their subsequent bioaccumulation in rice plants. The highest reduction (88%) in bioaccumulated As was observed in rice grown on soil amended with SBBC prepared at 350 °C (the highest temperature for hydrothermal technique). The addition of biochars (except RSBC and MSBC) prepared at high temperature markedly (p < 0.05) decreased AsIII (30-92%), while the effects on dimethylarsenic acid (DMA) and arsenate (AsV) concentrations were not significant except for SSBC350 (prepared at 350 °C) treatment. These results highlight the potential of biochar-DOM interactions as an important mechanism for suppressing the mobility and bioaccumulation of As and Cd in biochar-amended paddy agricultural systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Sediment bioaccumulation test with Lumbriculus variegatus (EPA test method 100.3) effects of feeding and organism loading rate

    EPA Science Inventory

    Sediment bioaccumulation test methodology of USEPA and ASTM in 2000 specifies that the Lumbriculus variegatus should not be fed during the 28-day exposure and recommends an organism loading rate of total organic carbon in sediment to organism dry weight of no less than 50:1. It ...

  13. Thermal inactivation of enteric viruses and bioaccumulation of enteric foodborne viruses in live oysters (Crassostrea virginica)

    USDA-ARS?s Scientific Manuscript database

    Human enteric viruses are one of the main causative agents of shellfish associated outbreaks. In this study, the kinetics of viral bioaccumulation in live oysters and the heat stability of the most predominant enteric viruses were determined in both tissue culture and in oyster tissues. A human nor...

  14. Toxicity and bioaccumulation of cadmium in experimental cultures of Duckweed, Lemna polyrrhiza

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charpentier, S.; Garnier, J.; Flaugnatti, R.

    1987-06-01

    Knowledge of the mechanism of Itai-Itai disease aided the research concerning the bioaccumulation of heavy metals in plants and aquatic organisms. Because of their characteristics, lemnaceae can be considered as an interesting experimental material. Their small size, rapid growth and vegetative reproduction permitted us to obtain experimental cultures and to study the effect of cadmium: toxicity and bioaccumulation. The species Lemna polyrrhiza having a very voluminous root system, was used in this work. The effects of cadmium chloride (Cd Cl/sub 2/-2.5 H/sub 2/O) and Cadmium sulfate (3 Cd SO/sub 4/-8H/sub 2/O) were compared. The toxicity effect was approached by themore » numeration of plants.« less

  15. An investigation of enhanced mercury bioaccumulation in fish from offshore feeding.

    PubMed

    Chételat, John; Cloutier, Louise; Amyot, Marc

    2013-08-01

    We investigated the dietary pathways of mercury transfer in the food web of Morency Lake (Canada) to determine the influence of carbon source and habitat use on mercury bioaccumulation in fish. Whole-body concentrations of methylmercury (MeHg) were significantly different in four fish species (white sucker, brown bullhead, pumpkinseed and smallmouth bass) and increased with both trophic position and greater feeding on offshore (versus littoral) carbon. An examination of fish gut contents and the depth distribution of invertebrates in Morency Lake showed that smallmouth bass and brown bullhead were supplementing their littoral diet with the consumption of either opossum shrimp (Mysis diluviana) or profundal amphipods in offshore waters. The zooplanktivore Mysis had significantly higher MeHg concentrations than zooplankton and benthic invertebrates, and it was an elevated source of MeHg to smallmouth bass. In contrast, profundal amphipods consumed by brown bullhead did not have higher MeHg concentrations than littoral amphipods. Instead, partitioning of benthic invertebrate resources likely explains the greater MeHg bioaccumulation in brown bullhead, associated with offshore feeding of amphipods. White sucker and brown bullhead had a similar trophic position but white sucker consumed more chironomids, which had one-third the MeHg concentration of amphipods. Our findings suggest that offshore feeding in a lake can affect fish MeHg bioaccumulation via two different processes: (1) the consumption of MeHg-enriched pelagic prey, or (2) resource partitioning of benthic primary consumers with different MeHg concentrations. These observations on the mechanisms of habitat-specific bioaccumulation highlight the complexity of MeHg transfer through lake food webs.

  16. Selenium bioaccumulation in fish exposed to coal ash at the Tennessee Valley Authority Kingston spill site.

    PubMed

    Mathews, Teresa J; Fortner, Allison M; Jett, R Trent; Morris, Jesse; Gable, Jennifer; Peterson, Mark J; Carriker, Neil

    2014-10-01

    In December 2008, 4.1 million cubic meters of coal ash were released into the Emory and Clinch Rivers by the Tennessee Valley Authority Kingston Fossil Plant. Coal ash contains several contaminants, including the bioaccumulative metalloid selenium (Se). Because Se is predominantly accumulated in aquatic organisms through dietary rather than aqueous exposure, tissue-based toxicity thresholds for Se are currently being considered. The proposed threshold concentrations range between 4 μg/g and 9 μg/g Se (dry wt.) in whole body fish, with a proposed fillet threshold of 11.8 μg/g. In the present study, the authors examined the spatial and temporal trends in Se bioaccumulation and examined the relationship between the Se content in fillets and in whole bodies of fish collected around the Kingston spill site to determine whether Se bioaccumulation was a significant concern at the ash spill site. Whereas Se concentrations in fish (whole bodies and fillets) were elevated at sampling locations affected by the Kingston ash spill relative to reference locations, concentrations do not appear to be above risk thresholds and have not been increasing over the 5-yr period since the spill. These findings are not only relevant to guiding the human health and ecological risk assessments at the Kingston ash spill site, but because of current national discussions on appropriate guidelines for Se in fish as well for the disposal of coal combustion wastes, the results are also relevant to the general understanding of Se bioaccumulation in contaminated water bodies. © 2014 SETAC.

  17. Modeling (137)Cs bioaccumulation in the salmon-resident killer whale food web of the Northeastern Pacific following the Fukushima Nuclear Accident.

    PubMed

    Alava, Juan José; Gobas, Frank A P C

    2016-02-15

    To track the long term bioaccumulation of (137)Cs in marine organisms off the Pacific Northwest coast of Canada, we developed a time dependent bioaccumulation model for (137)Cs in a marine mammalian food web that included fish-eating resident killer whales. The model outcomes show that (137)Cs can be expected to gradually bioaccumulate in the food web over time as demonstrated by the increase of the apparent trophic magnification factor of (137)Cs, ranging from 0.76 after 1 month of exposure to 2.0 following 30 years of exposure. (137)Cs bioaccumulation is driven by relatively rapid dietary uptake rates, moderate depuration rates in lower trophic level organisms and slow elimination rates in high trophic level organisms. Model estimates of the (137)Cs activity in species of the food web, based on current measurements and forecasts of (137)Cs activities in oceanic waters and sediments off the Canadian Pacific Northwest, indicate that the long term (137)Cs activities in fish species including Pacific herring, wild Pacific salmon, sablefish and halibut will remain well below the current (137)Cs-Canada Action Level for consumption (1000 Bq/kg) following a nuclear emergency. Killer whales and Pacific salmon are expected to exhibit the largest long term (137)Cs activities and may be good sentinels for monitoring (137)Cs in the region. Assessment of the long term consequences of (137)Cs releases from the Fukushima aftermath should consider the extent of ecological magnification in addition to ocean dilution. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Influence of reactive sulfide (AVS) and supplementary food on Ag, Cd and Zn bioaccumulation in the marine polychaete Neanthes arenaceodentata

    USGS Publications Warehouse

    Lee, J.-S.; Lee, B.-G.; Yoo, H.; Koh, C.-H.; Luoma, S.N.

    2001-01-01

    A laboratory bioassay determined the relative contribution of various pathways of Ag, Cd and Zn bioaccumulation in the marine polychaete Neanthes arenaceodentata exposed to moderately contaminated sediments. Juvenile worms were exposed for 25 d to experimental sediments containing 5 different reactive sulfide (acid volatile sulfides, AVS) concentrations (1 to 30 ??mol g-1), but with constant Ag, Cd, and Zn concentrations of 0.1, 0.1 and 7 ??mol g-1, respectively. The sediments were supplemented with contaminated food (TetraMin??) containing 3 levels of Ag-Cd-Zn (uncontaminated, 1?? or 5??1 metal concentrations in the contaminated sediment). The results suggest that bioaccumulation of Ag, Cd and Zn in the worms occurred predominantly from ingestion of contaminated sediments and contaminated supplementary food. AVS or dissolved metals (in porewater and overlying water) had a minor effect on bioaccumulation of the 3 metals in most of the treatments. The contribution to uptake from the dissolved source was most important in the most oxic sediments, with maximum contributions of 8% for Ag, 30% for Cd and 20% for Zn bioaccumulation. Sediment bioassays where uncontaminated supplemental food is added could seriously underestimate metal exposures in an equilibrated system; N. arenaceodentata feeding on uncontaminated food would be exposed to 40-60% less metal than if the food source was equilibrated (as occurs in nature). Overall, the results show that pathways of metal exposure are dynamically linked in contaminated sediments and shift as external geochemical characteristics and internal biological attributes vary.

  19. First evidence of "paralytic shellfish toxins" and cylindrospermopsin in a Mexican freshwater system, Lago Catemaco, and apparent bioaccumulation of the toxins in "tegogolo" snails (Pomacea patula catemacensis).

    PubMed

    Berry, John P; Lind, Owen

    2010-05-01

    Exposure to cyanobacterial toxins in freshwater systems, including both direct (e.g., drinking water) and indirect (e.g., bioaccumulation in food webs) routes, is emerging as a potentially significant threat to human health. We investigated cyanobacterial toxins, specifically cylindrospermopsin (CYN), the microcystins (MCYST) and the "paralytic shellfish toxins" (PST), in Lago Catemaco (Veracruz, Mexico). Lago Catemaco is a tropical lake dominated by Cylindrospermopsis, specifically identified as Cylindrospermopsis catemaco and Cylindrospermopsis philippinensis, and characterized by an abundant, endemic species of snail (Pomacea patula catemacensis), known as "tegogolos," that is both consumed locally and commercially important. Samples of water, including dissolved and particulate fractions, as well as extracts of tegogolos, were screened using highly specific and sensitive ELISA. ELISA identified CYN and PST at low concentrations in only one sample of seston; however, both toxins were detected at appreciable quantities in tegogolos. Calculated bioaccumulation factors (BAF) support bioaccumulation of both toxins in tegogolos. The presence of CYN in the phytoplankton was further confirmed by HPLC-UV and LC-MS, following concentration and extraction of algal cells, but the toxin could not be confirmed by these methods in tegogolos. These data represent the first published evidence for CYN and the PST in Lago Catemaco and, indeed, for any freshwater system in Mexico. Identification of the apparent bioaccumulation of these toxins in tegogolos may suggest the need to further our understanding of the transfer of cyanobacterial toxins in freshwater food webs as it relates to human health. Copyright 2009 Elsevier Ltd. All rights reserved.

  20. Gastropod (Otala lactea) shell nanomechanical and structural characterization as a biomonitoring tool for dermal and dietary exposure to a model metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allison, Paul G.; Seiter, Jennifer M.; Diaz, Alfredo

    Metallic tungsten (W) was initially assumed to be environmentally benign and a green alternative to lead. However, subsequent investigations showed that fishing weights and munitions containing elemental W can fragment and oxidize into complex monomeric and polymeric tungstate (WO 4) species in the environment; this led to increased solubility and mobility in soils and increased bioaccumulation potential in plant and animal tissues. Here we expand on the results of our previous research, which examined tungsten toxicity, bioaccumulation, and compartmentalization into organisms, and present in this research that the bioaccumulation of W was related to greater than 50% reduction in themore » mechanical properties of the snail (Otala lactea), based on depth-sensing nanoindentation. Synchrotron-based X-ray fluorescence maps and X-ray diffraction measurements confirm the integration of W in newly formed layers of the shell matrix with the observed changes in shell biomechanical properties, mineralogical composition, and crystal orientation. With further development, this technology could be employed as a biomonitoring tool for historic metals contamination since unlike the more heavily studied bioaccumulation into soft tissue, shell tissue does not actively eliminate contaminants.« less

  1. Identifying new persistent and bioaccumulative organics among chemicals in commerce II: pharmaceuticals.

    PubMed

    Howard, Philip H; Muir, Derek C G

    2011-08-15

    The goal of this study was to identify commercial pharmaceuticals that might be persistent and bioaccumulative (P&B) and that were not being considered in current wastewater and aquatic environmental measurement programs. We developed a database of 3193 pharmaceuticals from two U.S. Food and Drug Administration (FDA) databases and some lists of top ranked or selling drugs. Of the 3193 pharmaceuticals, 275 pharmaceuticals have been found in the environment and 399 pharmaceuticals were, based upon production volumes, designated as high production volume (HPV) pharmaceuticals. All pharmaceuticals that had reported chemical structures were evaluated for potential bioaccumulation (B) or persistence (P) using quantitative structure property relationships (QSPR) or scientific judgment. Of the 275 drugs detected in the environment, 92 were rated as potentially bioaccumulative, 121 were rated as potentially persistent, and 99 were HPV pharmaceuticals. After removing the 275 pharmaceuticals previously detected in the environment, 58 HPV compounds were identified that were both P&B and 48 were identified as P only. Of the non-HPV compounds, 364 pharmaceuticals were identified that were P&B. This study has yielded some interesting and probable P&B pharmaceuticals that should be considered for further study.

  2. Aquatic bioaccumulation and trophic transfer of tetrabromobisphenol-A flame retardant introduced from a typical e-waste recycling site.

    PubMed

    Tao, Lin; Wu, Jiang-Ping; Zhi, Hui; Zhang, Ying; Ren, Zi-He; Luo, Xiao-Jun; Mai, Bi-Xian

    2016-07-01

    While the flame retardant chemical, tetrabromobisphenol-A (TBBP-A), has been frequently detected in the environment, knowledge regarding its species-specific bioaccumulation and trophic transfer is limited, especially in the highly contaminated sites. In this study, the components of an aquatic food web, including two invertebrates, two prey fish, and one predator fish, collected from a natural pond at an electronic waste (e-waste) recycling site in South China were analyzed for TBBP-A, using liquid chromatography-tandem mass spectrometry. The aquatic species had TBBP-A concentrations ranging from 350 to 1970 pg/g wet weight, with higher concentrations in the invertebrates relative to the fish species. Field-determined bioaccumulation factors of TBBP-A in the two aquatic invertebrates were nearly or greater than 5000, suggesting that TBBP-A is highly bioaccumulative in the two species. The lipid-normalized concentrations of TBBP-A in the aquatic species were negatively correlated with the trophic levels determined from stable nitrogen isotope (δ(15)N) (r = -0.82, p = 0.09), indicating that this compound experienced trophic dilution in the current food web.

  3. The effects of experimental reservoir creation on the bioaccumulation of methylmercury and reproductive success of tree swallows (Tachycineta bicolor).

    PubMed

    Gerrard, P M; St Louis, V L

    2001-04-01

    Reservoir creation results in decomposition of flooded organic matter and increased rates of mercury methylation. Methylmercury (MeHg), the most toxic form of mercury, bioaccumulates through aquatic food webs. Our objective was to quantify the transfer of MeHg from aquatic food webs into terrestrial organisms. We examined rates of MeHg bioaccumulation in an insectivorous songbird, the tree swallow, breeding near an experimentally created reservoir. We also determined the impact of flooding and MeHg bioaccumulation on the reproductive success of these birds. Mean MeHg burdens in nestling swallows from near the experimental reservoir increased from 1,210 +/- 150 ng before flooding to 2,200 +/- 102 ng after flooding. Postflood MeHg concentrations in both the body and feathers of the birds were significantly greater than preflood MeHg concentrations. Although MeHg burdens in swallows were elevated in postflood years, we found no overt toxicological affects. An increase in dipteran productivity (the primary food source of tree swallows) after reservoir creation resulted in earlier nest initiation, larger eggs, and faster growth rates of wing and bill length in nestlings raised during postflood years.

  4. Tungsten toxicity, bioaccumulation, and compartmentalization into organisms representing two trophic levels.

    PubMed

    Kennedy, Alan J; Johnson, David R; Seiter, Jennifer M; Lindsay, James H; Boyd, Robert E; Bednar, Anthony J; Allison, Paul G

    2012-09-04

    Metallic tungsten has civil and military applications and was considered a green alternative to lead. Recent reports of contamination in drinking water and soil have raised scrutiny and suspended some applications. This investigation employed the cabbage Brassica oleracae and snail Otala lactea as models to determine the toxicological implications of sodium tungstate and an aged tungsten powder-spiked soil containing monomeric and polymeric tungstates. Aged soil bioassays indicated cabbage growth was impaired at 436 mg of W/kg, while snail survival was not impacted up to 3793 mg of W/kg. In a dermal exposure, sodium tungstate was more toxic to the snail, with a lethal median concentration of 859 mg of W/kg. While the snail significantly bioaccumulated tungsten, predominately in the hepatopancreas, cabbage leaves bioaccumulated much higher concentrations. Synchrotron-based mapping indicated the highest levels of W were in the veins of cabbage leaves. Our results suggest snails consuming contaminated cabbage accumulated higher tungsten concentrations relative to the concentrations directly bioaccumulated from soil, indicating the importance of robust trophic transfer investigations. Finally, synchrotron mapping provided evidence of tungsten in the inner layer of the snail shell, suggesting potential use of snail shells as a biomonitoring tool for metal contamination.

  5. Gastropod (Otala lactea) shell nanomechanical and structural characterization as a biomonitoring tool for dermal and dietary exposure to a model metal.

    PubMed

    Allison, Paul G; Seiter, Jennifer M; Diaz, Alfredo; Lindsay, James H; Moser, Robert D; Tappero, Ryan V; Kennedy, Alan J

    2016-01-01

    Metallic tungsten (W) was initially assumed to be environmentally benign and a green alternative to lead. However, subsequent investigations showed that fishing weights and munitions containing elemental W can fragment and oxidize into complex monomeric and polymeric tungstate (WO4) species in the environment; this led to increased solubility and mobility in soils and increased bioaccumulation potential in plant and animal tissues. Here we expand on the results of our previous research, which examined tungsten toxicity, bioaccumulation, and compartmentalization into organisms, and present in this research that the bioaccumulation of W was related to greater than 50% reduction in the mechanical properties of the snail (Otala lactea), based on depth-sensing nanoindentation. Synchrotron-based X-ray fluorescence maps and X-ray diffraction measurements confirm the integration of W in newly formed layers of the shell matrix with the observed changes in shell biomechanical properties, mineralogical composition, and crystal orientation. With further development, this technology could be employed as a biomonitoring tool for historic metals contamination since unlike the more heavily studied bioaccumulation into soft tissue, shell tissue does not actively eliminate contaminants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Performance evaluation of two Aspergillus spp. for the decolourization of reactive dyes by bioaccumulation and biosorption.

    PubMed

    Mathur, Megha; Gola, Deepak; Panja, Rupobrata; Malik, Anushree; Ahammad, Shaikh Ziauddin

    2018-01-01

    A biological method was adopted to decolourize textile dyes, which is an economic and eco-friendly technology for textile wastewater remediation. Two fungal strains, i.e. Aspergillus lentulus and Aspergillus fumigatus, were used to study the removal of low to high concentrations (25 to 2000 mg L -1 ) of reactive remazol red, reactive blue and reactive yellow dyes by biosorption and bioaccumulation. The biosorption was successful only at the lower concentrations. A. lentulus was capable of removing 67-85% of reactive dyes during bioaccumulation mode of treatment at 500 mg L -1 dye concentration with an increased biomass uptake capacity. To cope up with the high dye concentration of 2000 mg L -1 , a novel combined approach was successful in case of A. lentulus, where almost 76% removal of reactive remazol red dye was observed during bioaccumulation followed by biosorption. The scanning electron microscopy also showed the accumulation of dye on the surface of fungal mycelium. The results signify the application of such robust fungal strains for the removal of high concentration of dyes in the textile wastewaters.

  7. Retracted: Long-term copper toxicity in apple trees (Malus pumila Mill) and bioaccumulation in fruits.

    PubMed

    Sun, Bai-Ye; Kan, Shi-Hong; Zhang, Yan-Zong; Wu, Jun; Deng, Shi-Huai; Liu, Chun-Sheng; Yang, Gang

    2010-01-15

    The following article from Environmental Toxicology, 'Long-term Copper Toxicity in Apple Trees (Malus pumila Mill) and Bioaccumulation in Fruits' by Bai-Ye Sun, Shi- Hong Kan, Yan-Zong Zhang, Jun Wu, Shi-Huai Deng, Chun-Sheng Liu and Gang Yang, published online on January 15, 2010 in Wiley InterScience (www.interscience.wiley.com; DOI: 10.1002/tox.20565), has been retracted by agreement between the authors, the journal Editor in Chief, Dr. Paul Tchounwou, and Wiley Periodicals, Inc. The retraction has been agreed at the request of the authors due to overlap with 'Copper Toxicity and Bioaccumulation in Chinese Cabbage (Brassica pekinensis Rupr.)' by Zhi-Ting Xiong and Hai Wang, published in Environmental Toxicology, Volume 20, pages 188-194, 2005.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Marshall; Fortner, Allison M

    On December 22, 2008, over 4 million cubic meters of fly ash slurry was released into the Emory River when a dike surrounding a solid waste containment area at the Tennessee Valley Authority's (TVA) Kingston Fossil Plant ruptured. One component of TVA's response to the spill is a biological monitoring program to assess short- and long-term ecological responses to the ash and associated chemicals, including studies on fish health and contaminant bioaccumulation. These studies were initiated in early Spring 2009 for the purposes of: (1) documenting the levels of fly ash-associated metals in various tissues of representative sentinel fish speciesmore » in the area of the fly ash spill, (2) determining if exposure to fly ash-associated metals causes short, intermediate, or long-term health effects on these sentinel fish species, (3) assessing if there are causal relationships between exposure to metals and health effects on fish, (4) evaluating, along with information from other ecological and physicochemical studies, the nature and route of contaminant transfer though food chains into higher level consumers, (5) providing important information for the Ecological Risk Assessment (ERA) for the Kingston fly ash project, and (6) serving as an important technology information transfer or model study focused on how to best evaluate the environmental effects of fly ash (and related environmental stressors), not only at the Kingston site, but also at sites on other aquatic systems where coal-fired generating stations are located. This report presents the results of the first two years of the fish health study. To date, fish health and bioaccumulation studies have been conducted from Spring 2009 though Fall 2011 and includes 6 seasonal studies: Spring 2009, Fall 2009, Spring 2010, Fall 2010, Spring 2011, and Fall 2011. Both the Spring and Fall studies have focused on 3-4 sentinel fish species that represent different feeding habits, behaviors, and home ranges. In addition to fish health and bioaccumulation, the Spring investigations also included reproductive integrity studies on the same fish used for bioaccumulation and fish health. In this report, results of the fish health studies from Spring 2009 through Fall 2010 are presented while an associated report will present the fish reproductive studies conducted during Spring 2009 and Spring 2010. A report on fish bioaccumulation was submitted to TVA in June 2011. The fish health study conducted in conjunction with the bioaccumulation and reproductive study is critical for assessing and evaluating possible causal relationships between contaminant exposure (bioaccumulation) and the response of fish to exposure as reflected by the various measurements of fish health.« less

  9. Ecological Risk Assessment Report, Submerged Quench Incinerator, Task IRA-2, Basin F Liquids Treatment Design. Version 3.0

    DTIC Science & Technology

    1991-03-01

    black bullhead (Ictalurus melas), channel catfish (Ictalurus punctatus), and carp (Cvorinus corpio). Aquatic invertebrates that have been collected...in an aquatic medium); "* Bioaccumulation ( concentration from water and from diet ); and * Biomagnification (systematic increase in concentration as...pathway bioaccumulation is estimated by comparing chemical concentrations in soil and diet to chemical concentrations in tissue levels at

  10. Evaluation of Dredged Material Proposed for Ocean Disposal. Testing Manual

    DTIC Science & Technology

    1991-02-01

    should include a deposit-feeding amphipod and a polychaete. Bioaccumulation tests generally should include a deposit-feeding bivalve mollusc and a...Gibson. 1987. Regulatory identification of petroleum hydrocarbons in dredged material. Proceedings of a Workshop. Misc. Pap. D-87-3, U.S. Army... Bioaccumulation from Whole-Sediment Tests. Polychaetes Molluscs Neanthes sp.* Macoma clam, Macoma sp.* Nereis sp.* Yoldia clam, Yoldia limatula Nephiy sp.* Nucula

  11. Ecological Indication, Bioaccumulation, and Phytoremediation as Tools for Environmental Quality Management

    DTIC Science & Technology

    2004-12-01

    ECOLOGICAL INDICATION, BIOACCUMULATION, AND PHYTOREMEDIATION AS TOOLS FOR ENVIRONMENTAL QUALITY MANAGEMENT ELLY P. H. BEST1, HENRY E. TATEM1...subsequent transport to shoots, and degradation, or prevent contaminants from leaving the site in whatever form, such as leachate , runoff, trophic...transfer ( phytoremediation ). We use risk assessment to evaluate the toxicity and need for cleanup. Cleanup costs are expected to greatly exceed the cost

  12. Climate and productivity affect total mercury concentration and bioaccumulation rate of fish along a spatial gradient of subarctic lakes.

    PubMed

    Ahonen, Salla A; Hayden, Brian; Leppänen, Jaakko J; Kahilainen, Kimmo K

    2018-10-01

    Climate change is resulting in increased temperatures and precipitation in subarctic regions of Europe. These changes are extending tree lines to higher altitudes and latitudes, and enhancing tree growth enabling intensification of forestry into previously inhospitable subarctic regions. The combined effects of climate change and land-use intensification extend the warm, open-water season in subarctic lakes and increase lake productivity and may also increase leaching and methylation activity of mercury within the lakes. To assess the joint effects of climate and productivity on total mercury (THg) bioaccumulation in fish, we conducted a space-for-time substitution study in 18 tributary lakes of a subarctic watercourse forming a gradient from cold pristine oligotrophic lakes in the northern headwaters to warmer and increasingly human-altered mesotrophic and eutrophic systems in the southern lower reaches. Increasing temperature, precipitation, and lake productivity were predicted to elevate length- and age-adjusted THg concentrations, as well as THg bioaccumulation rate (the rate of THg bioaccumulation relative to length or age) in muscle tissue of European whitefish (Coregonus lavaretus), vendace (Coregonus albula), perch (Perca fluviatilis), pike (Esox lucius), roach (Rutilus rutilus) and ruffe (Gymnocephalus cernua). A significant positive relationship was observed between age-adjusted THg concentration and lake climate-productivity in vendace (r 2  = 0.50), perch (r 2  = 0.51), pike (r 2  = 0.55) and roach (r 2  = 0.61). Higher climate-productivity values of the lakes also had a positive linear (pike; r 2  = 0.40 and whitefish; r 2  = 0.72) or u-shaped (perch; r 2  = 0.64 and ruffe; r 2  = 0.50) relationship with THg bioaccumulation rate. Our findings of increased adjusted THg concentrations in planktivores and piscivores reveal adverse effects of warming climate and increasing productivity on these subarctic fishes, whereas less distinct trends in THg bioaccumulation rate suggest more complex underlying processes. Joint environmental stressors such as climate and productivity should be considered in ongoing and future monitoring of mercury concentrations. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Biotransfer, bioaccumulation and effects of herbivore dietary Co, Cu, Ni, and Zn on growth and development of the insect predator Podisus maculiventris (Say).

    PubMed

    Cheruiyot, Dorothy J; Boyd, Robert S; Coudron, Thomas A; Cobine, Paul A

    2013-06-01

    Increased metal availability in the environment can be detrimental for the growth and development of all organisms in a food web. In part, this toxicity is due to biotransfer or bioaccumulation of metals between trophic levels. We evaluated the survival, growth, and development of a generalist Hemipteran predator (Podisus maculiventris) when fed herbivorous prey (Spodoptera exigua) reared on artificial diet amended with Cu, Zn, Ni, and Co. Predator nymphs were fed S. exigua larvae raised on diet amended with sublethal (Minimum Sublethal Concentration or MSC) or lethal (Minimum Lethal Concentration or MLC) concentrations of each metal, as well as control diet. We determined if metals were biotransferred or bioaccumulated from the diet to herbivore and predator, as well as if predator growth or survival was affected by herbivore diet. Podisus maculiventris fed herbivores raised on MLC levels of both Cu and Zn took significantly longer to mature to adults, whereas their overall survival was not affected by prey diet metal concentration for any metal. Adult weights were significantly reduced for predators raised on herbivores reared on diets amended with the MLC of Cu and Zn. Copper and Zn were bioaccumulated from diet to herbivore and from herbivore to predator, whereas Ni was biotransferred (although concentrations decreased as trophic level increased). The pattern for Co was more complex, with biotransfer the main outcome. Our results show that availability of metals in a food web can affect growth and development of a hemipteran predator, and that metals are transferred between trophic levels, with metal-specific biotransfer and bioaccumulation outcomes.

  14. Fluoride bioaccumulation and toxic effects on the survival and behavior of the endangered white-clawed crayfish Austropotamobius pallipes (Lereboullet).

    PubMed

    Aguirre-Sierra, Arantxa; Alonso, Alvaro; Camargo, Julio A

    2013-08-01

    Laboratory experiments were performed to examine the toxic effects of fluoride (F(-)) on the survival and behavior of white-clawed crayfish (Austropotamobius pallipes). Body fluoride contents (bioaccumulation) of test crayfish were also examined. No significant differences between male and female crayfish regarding mortality, escape (tail-flip) response, and fluoride bioaccumulation were detected. For mortality, 48-, 72-, 96-, 120-, 144-, 168-, and 192-h median lethal concentrations (LC50) were estimated to be 93.0, 55.3, 42.7, 36.5, 32.9, 30.6, and 28.9 mg F(-)/l, respectively. For the escape response, 48-, 72-, 96-, 120-, 144-, 168- and 192-h median effective concentrations (EC50) were estimated to be 18.4, 11.1, 8.6, 7.4, 6.7, 6.2 and 5.9 mg F(-)/l, respectively. Average food consumption in test crayfish tended to decrease with increasing water fluoride concentration with a 192-h lowest-observed effect concentration of 10.7 mg F(-)/l. These results indicate that the escape response was the most sensitive end point to fluoride toxicity followed by food consumption and mortality. Fluoride bioaccumulation in test crayfish increased with increasing water fluoride concentration and exposure time. The exoskeleton accumulated more fluoride than muscle. A comparison of the obtained results with previous data for other freshwater invertebrates shows that white-clawed crayfish are relatively tolerant to fluoride toxicity. We conclude that fluoride pollution in freshwater ecosystems should not be viewed as an important risk factor contributing to the catastrophic decrease of A. pallipes in many European countries. Our results indicate that fluoride bioaccumulation in A. pallipes might be used as a bioindicator of fluoride pollution in freshwater ecosystems where it is present.

  15. Distinct toxic interactions of TiO2 nanoparticles with four coexisting organochlorine contaminants on algae.

    PubMed

    Zhang, Shuai; Deng, Rui; Lin, Daohui; Wu, Fengchang

    Engineered nanoparticles are increasingly discharged into the environment. After discharge, these nanoparticles can interact with co-existing organic contaminants, resulting in a phenomena referred to as 'joint toxicity'. This study evaluated joint toxicities of TiO 2 nanoparticles (TiO 2 NPs) with four different (atrazine, hexachlorobenzene, pentachlorobenzene, and 3,3',4,4'-tetrachlorobiphenyl) organochlorine contaminants (OCs) toward algae (Chlorella pyrenoidosa). The potential mechanisms underlying the joint toxicity were discussed, including TiO 2 NPs-OC interactions, effects of TiO 2 NPs and OCs on biophysicochemical properties of algae and effects of TiO 2 NPs and OCs on each other's bioaccumulation in algae. The results indicate that coexposure led to a synergistic effect on the joint toxicity for TiO 2 NPs-atrazine, antagonistic effect for TiO 2 NPs-hexachlorobenzene and TiO 2 NPs-3,3',4,4'-tetrachlorobiphenyl, and an additive effect for TiO 2 NPs-pentachlorobenzene. There was nearly no adsorption of OCs by TiO 2 NPs, and the physicochemical properties of TiO 2 NPs were largely unaltered by the presence of OCs. However, both OCs and NPs affected the biophysicochemical properties of algal cells and thereby influenced the cell surface binding and/or internalization. TiO 2 NPs significantly increased the bioaccumulation of each OC. However, with the exception of atrazine, the bioaccumulation of TiO 2 NPs decreased when used with each OC. The distinct joint toxicity outcomes were a result of the balance between the increased toxicities of OCs (increased bioaccumulations) and the altered toxicity of TiO 2 NPs (bioaccumulation can either increase or decrease). These results can significantly improve our understanding of the potential environmental risks associated with NPs.

  16. Residues, bioaccumulations and biomagnification of perfluoroalkyl acids (PFAAs) in aquatic animals from Lake Chaohu, China.

    PubMed

    Liu, Wenxiu; He, Wei; Wu, Jingyi; Qin, Ning; He, Qishuang; Xu, Fuliu

    2018-05-12

    Residual levels of perfluoroalkyl acids (PFAAs) in seven species of aquatic animals were analyzed by liquid chromatography-mass spectrometry. The distribution, composition, bioaccumulation, and biomagnification of PFAAs and their effect factors were studied. The results showed that: 1) Wet weight concentrations of 17 PFAAs in the aquatic animals ranged from 1.77 to 38.65 ng/g, with a mean value of 12.71 ± 9.21 ng/g. PFOS was the predominant contaminant (4.57 ± 4.57 ng/g, 6.76%-46.25%), followed by PFDA (1.95 ± 1.37 ng/g, 11.68%-21.25%) and PFUdA (1.84 ± 1.21 ng/g, 9.73%-35.34%. 2) PFAA residual levels in Culter erythropterus (30.98 ± 6.65 ng/g) were the highest, followed by Hemibarbus maculatus (16.79 ± 1.88 ng/g), while the PFAA levels in Carassius auratus were the lowest (2.22 ± 0.60 ng/g). 3) Biota-water bioaccumulation factors (BAFs), biota-suspended solid accumulation factors (BSSAFs) and biota-sediment accumulation factors (BSAFs) ranged from 0.35 to 12,370.51, 7.77 to 8452.92 and 9.10 to 6984.61, respectively. Bioaccumulation by shrimp and snails was significantly affected by Kow. 4) Food web magnification factors were greater than 1, indicating that biomagnification of PFAAs occurs across trophic levels. The bioaccumulation and biomagnification of PFAAs were significantly correlated with carbon chain length. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Methylmercury bioaccumulation in an urban estuary: Delaware River USA.

    PubMed

    Buckman, Kate; Taylor, Vivien; Broadley, Hannah; Hocking, Daniel; Balcom, Prentiss; Mason, Rob; Nislow, Keith; Chen, Celia

    2017-09-01

    Spatial variation in mercury (Hg) and methylmercury (MeHg) bioaccumulation in urban coastal watersheds reflects complex interactions between Hg sources, land use, and environmental gradients. We examined MeHg concentrations in fauna from the Delaware River estuary, and related these measurements to environmental parameters and human impacts on the waterway. The sampling sites followed a north to south gradient of increasing salinity, decreasing urban influence, and increasing marsh cover. Although mean total Hg in surface sediments (top 4cm) peaked in the urban estuarine turbidity maximum and generally decreased downstream, surface sediment MeHg concentrations showed no spatial patterns consistent with the examined environmental gradients, indicating urban influence on Hg loading to the sediment but not subsequent methylation. Surface water particulate MeHg concentration showed a positive correlation with marsh cover whereas dissolved MeHg concentrations were slightly elevated in the estuarine turbidity maximum region. Spatial patterns of MeHg bioaccumulation in resident fauna varied across taxa. Small fish showed increased MeHg concentrations in the more urban/industrial sites upstream, with concentrations generally decreasing farther downstream. Invertebrates either showed no clear spatial patterns in MeHg concentrations (blue crabs, fiddler crabs) or increasing concentrations further downstream (grass shrimp). Best-supported linear mixed models relating tissue concentration to environmental variables reflected these complex patterns, with species specific model results dominated by random site effects with a combination of particulate MeHg and landscape variables influencing bioaccumulation in some species. The data strengthen accumulating evidence that bioaccumulation in estuaries can be decoupled from sediment MeHg concentration, and that drivers of MeHg production and fate may vary within a small region.

  18. Role of fluoranthene and pyrene associated with suspended particles in their bioaccumulation by zebrafish (Danio rerio).

    PubMed

    Zhai, Yawei; Xia, Xinghui; Xiong, Xinyue; Xia, Lingzi; Guo, Xuejun; Gan, Jay

    2018-08-15

    Hydrophobic organic compounds (HOCs) tend to be associated with suspended particles in surface aquatic systems, however, the bioavailability of HOCs on suspended particles to fish is not well understood. In this study, a passive dosing device was used to control the freely dissolved concentrations (C free ) of polycyclic aromatic hydrocarbons (PAHs) including fluoranthene and pyrene, and the influence of particle-associated PAHs on their bioaccumulation by zebrafish was investigated. The results showed that, when the C free of PAHs were kept constant, the presence of suspended particles did not significantly affect the steady state of PAH bioaccumulation in zebrafish tissues excluding head and digestive tracts, suggesting that the bioaccumulation steady state was controlled by the freely dissolved concentrations of PAHs. However, suspended particles promoted the uptake and elimination rate constants of PAHs in zebrafish body excluding head and digestive tracts. The uptake rate constants with 0.5 g/L suspended particles were approximately twice of those without suspended particles, and the body burden in zebrafish increased by 16.4% - 109.3% for pyrene and 21.8% - 490.4% for fluoranthene during the first 8-d exposure. This was due to the reasons that suspended particles could be ingested, and part of PAHs associated with them could be desorbed in digestive tract and absorbed by the zebfrafish, leading to the enhancement of uptake rates of PAHs in zebfrafish. The findings obtained from this study indicate that PAHs on suspended particles are partly bioavailable to zebrafish and particle ingestion is an important route in PAH bioaccumulation. Therefore, it is important to consider the bioavailability of HOCs on suspended particles to improve ecological risk assessment. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Bioaccumulation of lead nitrate in freshwater crayfish (Astacus leptodactylus) tissues under aquaculture conditions.

    PubMed

    Naghshbandi, N; Zare, S; Heidari, R; Soleimani Palcheglu, S

    2007-09-15

    The aim of this research was to evaluate the amount of lead in the tissue of Astacus leptodactylus especially in their muscle which the consumed part of their body. In this study the crayfish was exposed to intermediate concentration of lead nitrate (500 microg L(-1)) for periods up to 3 weeks. In the first, second and third weeks bioaccumulation in various tissues was under investigation. The data of toxicological analysis obtained by the method of atomic absorption revealed that the levels of bioaccumulation of metal are different in various tissues of this crayfish. The accumulation of the lead in gills was the highest and in muscles was lowest degree. The amount of heavy metals in the tissues of crayfish was as follow. Gills>exoskeleton>hepatopancreas (digestive glands)>digestive tract>green gland>testis and ovary>muscles.

  20. Optimizing fish and stream-water mercury metrics for calculation of fish bioaccumulation factors

    Treesearch

    Paul Bradley; Karen Riva Murray; Barbara C. Scudder Elkenberry; Christopher D. Knightes; Celeste A. Journey; Mark A. Brigham

    2016-01-01

    Mercury (Hg) bioaccumulation factors (BAFs; ratios of Hg in fish [Hgfish] and water[Hgwater]) are used to develop Total Maximum Daily Load and water quality criteria for Hg-impaired waters. Protection of wildlife and human health depends directly on the accuracy of site-specific estimates of Hgfish and Hgwater and the predictability of the relation between these...

  1. Pre-Construction Biogeochemical Analysis of Mercury in Wetlands Bordering the Hamilton Army Airfield (HAAF) Wetlands Restoration Site. Part 2

    DTIC Science & Technology

    2007-09-01

    2004). Hydrophobic organic contaminants ( petroleum hydrocarbons , polynuclear aromatic hydrocarbons , and polychlorinated biphenyls) dissolved in the...Effect of 3.4% GAC contact on the 56-d bioaccumulation of THg and MeHg in Nereis virens...wetland restoration project. The bioaccumulation factor (BAF) values were greater for MeHg than for THg. The THg and MeHg body burdens of Nereis

  2. Integration of biotic ligand models (BLM) and bioaccumulation kinetics into a mechanistic framework for metal uptake in aquatic organisms.

    PubMed

    Veltman, Karin; Huijbregts, Mark A J; Hendriks, A Jan

    2010-07-01

    Both biotic ligand models (BLM) and bioaccumulation models aim to quantify metal exposure based on mechanistic knowledge, but key factors included in the description of metal uptake differ between the two approaches. Here, we present a quantitative comparison of both approaches and show that BLM and bioaccumulation kinetics can be merged into a common mechanistic framework for metal uptake in aquatic organisms. Our results show that metal-specific absorption efficiencies calculated from BLM-parameters for freshwater fish are highly comparable, i.e. within a factor of 2.4 for silver, cadmium, copper, and zinc, to bioaccumulation-absorption efficiencies for predominantly marine fish. Conditional affinity constants are significantly related to the metal-specific covalent index. Additionally, the affinity constants of calcium, cadmium, copper, sodium, and zinc are significantly comparable across aquatic species, including molluscs, daphnids, and fish. This suggests that affinity constants can be estimated from the covalent index, and constants can be extrapolated across species. A new model is proposed that integrates the combined effect of metal chemodynamics, as speciation, competition, and ligand affinity, and species characteristics, as size, on metal uptake by aquatic organisms. An important direction for further research is the quantitative comparison of the proposed model with acute toxicity values for organisms belonging to different size classes.

  3. Direct and indirect effects of different types of microplastics on freshwater prey (Corbicula fluminea) and their predator (Acipenser transmontanus)

    PubMed Central

    Parnis, J. Mark; Browne, Mark A.; Serrato, Sebastian; Reiner, Eric J.; Robson, Matthew; Young, Thomas; Diamond, Miriam L.; Teh, Swee J.

    2017-01-01

    We examined whether environmentally relevant concentrations of different types of microplastics, with or without PCBs, directly affect freshwater prey and indirectly affect their predators. Asian clams (Corbicula fluminea) were exposed to environmentally relevant concentrations of polyethylene terephthalate (PET), polyethylene, polyvinylchloride (PVC) or polystyrene with and without polychlorinated biphenyls (PCBs) for 28 days. Their predators, white sturgeon (Acipenser transmontanus), were exposed to clams from each treatment for 28 days. In both species, we examined bioaccumulation of PCBs and effects (i.e., immunohistochemistry, histology, behavior, condition, mortality) across several levels of biological organization. PCBs were not detected in prey or predator, and thus differences in bioaccumulation of PCBs among polymers and biomagnification in predators could not be measured. One of the main objectives of this study was to test the hypothesis that bioaccumulation of PCBs would differ among polymer types. Because we could not answer this question experimentally, a bioaccumulation model was run and predicted that concentrations of PCBs in clams exposed to polyethylene and polystyrene would be greater than PET and PVC. Observed effects, although subtle, seemed to be due to microplastics rather than PCBs alone. For example, histopathology showed tubular dilation in clams exposed to microplastics with PCBs, with only mild effects in clams exposed to PCBs alone. PMID:29108004

  4. Bioaccumulation and biomagnification of ultraviolet absorbents in marine wildlife of the Pearl River Estuarine, South China Sea.

    PubMed

    Peng, Xianzhi; Fan, Yujuan; Jin, Jiabin; Xiong, Songsong; Liu, Jun; Tang, Caiming

    2017-06-01

    Bioaccumulation and trophic transfer in ecosystems is an important criterion for assessing environmental risks of contaminants. This study investigated bioaccumulation and biomagnification of 13 organic ultraviolet absorbents (UVAs) in marine wildlife organisms in the Pearl River Estuary, South China Sea. The UVAs could accumulate in the organisms with biota - sediment accumulation factors (BSAF) of 0.003-2.152. UV531 was the most abundant and showed the highest tendency to accumulate in the organisms with a median BSAF of 1.105. The UVAs demonstrated species - and compound-specific accumulation in the marine organism. Fishes showed significantly higher capability than the cephalopods and crustaceans in accumulation of the UVAs. Habitat did not demonstrate obvious impact on accumulation of the UVA. On the other hand, benzophenone-3, UV328, and UV234 showed significantly higher concentration in the detritus feeding fishes than carnivorous and planktivorous fishes, suggesting governing effect of dietary habits of the organisms on bioaccumulation of these UVAs. Direct uptake from growth media was a significant exposure pathway of the organisms to the UVAs. The estimated trophic magnification factors and biomagnification factors revealed that UV329, UV531, and octocrylene could potentially biomagnify in the marine food web. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Influence of contaminant burial depth on the bioaccumulation of PCBs and PBDEs by two benthic invertebrates (Monoporeia affinis and Marenzelleria spp.).

    PubMed

    Josefsson, Sarah; Leonardsson, Kjell; Gunnarsson, Jonas S; Wiberg, Karin

    2011-11-01

    The bioaccumulation of buried polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) added to specific depths in sediment (2.0-2.5, 5.0-5.5 and 10.0-10.5cm) was studied in two infaunal species with similar feeding habits (surface deposit-feeders) but different bioturbation modes. The deep-burrowing polychaetes Marenzelleria spp. (Mz) displayed up to 36 times higher tissue concentrations of buried (spiked) contaminants than the surface-dwelling biodiffusing amphipod Monoporeia affinis. The differences in bioaccumulation were most pronounced for less hydrophobic contaminants due to the bioirrigating activity of Mz. Contaminants buried at shallow depths displayed higher accumulation than more deeply buried contaminants. In contrast, the bioaccumulation of unspiked (native) contaminants with a uniform vertical distribution in the sediment was similar between the species. For Mz, the BSAFs increased with increased K(OW) for the uniformly distributed contaminants, but decreased for the buried contaminants, which indicates that the dominant uptake routes of the buried contaminants can differ from the uniformly distributed contaminants. The surface sediment concentration of buried contaminants increased in Mz treatments, showing that Mz bioturbation can remobilize historically buried contaminants to the biologically active surface layer and increase the exposure for surface-dwelling species. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Chronic sublethal effects of San Francisco Bay sediments on nereis (neanthes) arenaceodentata; bioaccumulation from bedded sediments. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, D.; Dillon, T.M.

    1993-09-01

    In previous studies with San Francisco Bay sediments, minimal chronic sublethal effects were detected (Miscellaneous Paper D-93-1 and another Miscellaneous Paper in preparation by Moore and Dillon). To ensure that the lack of effects was not due to a lack of contaminant uptake, a bioaccumulation experiment was conducted. Bioaccumulation from bedded sediments was evaluated following a 9-week exposure with the marine polychaete worm Nereis (Neanthes) arenaceodentata. Two sediments were evaluated, a contaminated San Francisco Bay test sediment and a clean control sediment from Sequim, WA. Animals were exposed as early juveniles through adulthood. Tissues were analyzed for metals, polyaromatic hydrocarbonsmore » (PAHs), polychlorinated biphenyls (PCBs), and pesticides. Worms exposed to the contaminated San Francisco Bay sediment had significantly higher tissue residues of silver (0.30 mg/kg dry weight) and tributyltin (0.298 mg/kg dry weight). Conversely, tissue residues of control animals were significantly higher in cadmium (0.67 mg/kg dry weight) and lead (1.89 mg/kg dry weight). Small Amounts (0.02 mg/kg dry weight) of aldrin and dieldrin were measured in worms exposed to the contaminated sediment, while dieldrin and 8-BHC were found in Bioaccumulation, Neanthes, Chronic sublethal, San Francisco Bay, Dredged, Material, Sediment.« less

  7. Selenium bioaccumulation and hazards in a fish community affected by coal fly ash effluent

    USGS Publications Warehouse

    Besser, John M.; Giesy, John P.; Brown, Russell W.; Buell, Julie M.; Dawson, G. A.

    1996-01-01

    Bioaccumulation of selenium (Se) in the fish community of Pigeon River/Pigeon Lake, which receives inputs of Se from a coal fly ash disposal facility, was studied to assess potential hazards of Se to fish, wildlife, and humans. Se concentrations in fish from sites receiving seepage and effluents from fly ash disposal ponds were significantly greater than those in fish from upstream, where Se concentrations were near background concentrations. Se concentrations differed among fish species, and interspecific variation was greatest at the most contaminated locations. Differences in Se bioaccumulation among fish species were not consistently associated with differences in trophic status. Although Se concentrations in northern pike were consistently less than those in likely prey species, large yellow perch contained Se concentrations as great as those in spottail shiners, their likely prey. Se bioaccumulation may have been influenced by differences in habitat preferences, as limnetic species generally contained greater Se concentrations than benthic species. Se concentrations in fish from the lower Pigeon River and Pigeon Lake did not exceed lowest observable adverse effect concentrations (LOAECs) for Se in tissues of fish species, but exceeded LOAECs for dietary Se exposure of sensitive species of birds and mammals. Human consumption of moderate quantities of fish from the areas studied should not result in excessive Se intake.

  8. Soil geochemistry and digestive solubilization control mercury bioaccumulation in the earthworm Pheretima guillemi.

    PubMed

    Dang, Fei; Zhao, Jie; Greenfield, Ben K; Zhong, Huan; Wang, Yujun; Yang, Zhousheng; Zhou, Dongmei

    2015-07-15

    Mercury presents a potential risk to soil organisms, yet our understanding of mercury bioaccumulation in soil dwelling organisms is limited. The influence of soil geochemistry and digestive processes on both methylmercury (MeHg) and total mercury (THg) bioavailability to earthworms (Pheretima guillemi) was evaluated in this study. Earthworms were exposed to six mercury-contaminated soils with geochemically contrasting properties for 36 days, and digestive fluid was concurrently collected to solubilize soil-associated mercury. Bioaccumulation factors were 7.5-31.0 and 0.2-0.6 for MeHg and THg, respectively, and MeHg accounted for 17-58% of THg in earthworm. THg and MeHg measured in soils and earthworms were negatively associated with soil total organic carbon (TOC). Earthworm THg and MeHg also increased with increasing soil pH. The proportion of MeHg and THg released into the digestive fluid (digestive solubilizable mercury, DSM) was 8.3-18.1% and 0.4-1.3%, respectively. The greater solubilization of MeHg by digestive fluid than CaCl2, together with a biokinetic model-based estimate of dietary MeHg uptake, indicated the importance of soil ingestion for MeHg bioaccumulation in earthworms. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. In Situ Evaluation of Crop Productivity and Bioaccumulation of Heavy Metals in Paddy Soils after Remediation of Metal-Contaminated Soils.

    PubMed

    Kim, Shin Woong; Chae, Yooeun; Moon, Jongmin; Kim, Dokyung; Cui, Rongxue; An, Gyeonghyeon; Jeong, Seung-Woo; An, Youn-Joo

    2017-02-15

    Soils contaminated with heavy metals have been reused for agricultural, building, and industrial uses following remediation. This study assesses plant growth and bioaccumulation of heavy metals following remediation of industrially contaminated soil. The soil was collected from a field site near a nonferrous smelter and was subjected to laboratory- and field-scale studies. Soil from the contaminated site was remediated by washing with acid or mixed with soil taken from a distant uncontaminated site. The activities of various soil exoenzymes, the rate of plant growth, and the bioaccumulations of six heavy metals were measured to assess the efficacy of these bioremediation techniques. Growth of rice (Oryza sativa) was unaffected in acid-washed soil or the amended soil compared to untreated soil from the contaminated site. The levels of heavy metals in the rice kernels remained within safe limits in treated and untreated soils. Rice, sorghum (Sorghum bicolor), and wheat (Triticum aestivum) cultivated in the same soils in the laboratory showed similar growth rates. Soil exoenzyme activities and crop productivity were not affected by soil treatment in field experiments. In conclusion, treatment of industrially contaminated soil by acid washing or amendment did not adversely affect plant productivity or lead to increased bioaccumulation of heavy metals in rice.

  10. Phylogeny and size differentially influence dissolved Cd and Zn bioaccumulation parameters among closely related aquatic insects.

    PubMed

    Poteat, Monica D; Buchwalter, David B

    2014-05-06

    Evolutionarily distinct lineages can vary markedly in their accumulation of, and sensitivity to, contaminants. However, less is known about variability among closely related species. Here, we compared dissolved Cd and Zn bioaccumulation in 19 species spanning two species-rich aquatic insect families: Ephemerellidae (order Ephemeroptera (mayflies)), generalized to be metal sensitive, and Hydropsychidae (order Trichoptera (caddisflies)), generalized to be metal tolerant. Across all species, Zn and Cd uptake rate constants (k(u)s), efflux rate constants (k(e)s) and bioconcentration factors (BCFs) strongly covaried, suggesting that these metals share transport pathways in these distinct lineages. K(u)s and BCFs were substantially larger in Ephemerellidae than in Hydropsychidae, whereas k(e)s did not dramatically differ between the two families. Body size played an important role in driving ku differences among species, but had no influence on k(e)s. While familial differences in metal bioconcentration were striking, each family exhibited tremendous variability in all bioaccumulation parameters. At finer levels of taxonomic resolution (within families), phylogeny did not account for differences in metal bioaccumulation. These findings suggest that intrafamily variability can be profound and have important practical implications in that we need to better understand how well "surrogate species" represent their fellow congeners and family members.

  11. Bioaccumulation and toxicity of CuO nanoparticles by a freshwater invertebrate after waterborne and dietborne exposures

    USGS Publications Warehouse

    Croteau, Marie-Noele; Misra, Superb K.; Luoma, Samuel N.; Valsami-Jones, Eugenia

    2014-01-01

    The incidental ingestion of engineered nanoparticles (NPs) can be an important route of uptake for aquatic organisms. Yet, knowledge of dietary bioavailability and toxicity of NPs is scarce. Here we used isotopically modified copper oxide (65CuO) NPs to characterize the processes governing their bioaccumulation in a freshwater snail after waterborne and dietborne exposures. Lymnaea stagnalis efficiently accumulated 65Cu after aqueous and dietary exposures to 65CuO NPs. Cu assimilation efficiency and feeding rates averaged 83% and 0.61 g g–1 d–1 at low exposure concentrations (–1), and declined by nearly 50% above this concentration. We estimated that 80–90% of the bioaccumulated 65Cu concentration in L. stagnalis originated from the 65CuO NPs, suggesting that dissolution had a negligible influence on Cu uptake from the NPs under our experimental conditions. The physiological loss of 65Cu incorporated into tissues after exposures to 65CuO NPs was rapid over the first days of depuration and not detectable thereafter. As a result, large Cu body concentrations are expected in L. stagnalis after exposure to CuO NPs. To the degree that there is a link between bioaccumulation and toxicity, dietborne exposures to CuO NPs are likely to elicit adverse effects more readily than waterborne exposures.

  12. Organochlorine exposure and bioaccumulation in the endangered northwest Atlantic right whale (Eubalaena glacialis) population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisbrod, A.V.; Shea, D.; Moore, M.J.

    2000-03-01

    Exposure to toxicants is one factor hypothesized to influence population growth of the northern right whale. Organochlorines in right whale skin, feces, and prey were measured and used to identify factors influencing exposure and bioaccumulation. Concentrations of 30 polychlorinated biphenyls (PCBs) and 20 pesticides in skin biopsies were consistent with other baleenopterids. Concentrations in feces and prey were two orders of magnitude less than in biopsies. In principal component analysis, organochlorines in biopsies matched those from Bay of Fundy, Canada, zooplankton, whereas feces were like Cape Cod, USA, copepods. Year of biopsy collection was the principal factor associated with differentialmore » accumulation of nonmetabolizable PCBs, 4,4{prime}-DDE, and dieldrin. Biopsies collected during winter had lower concentrations of lipid and metabolizable compounds than biopsies collected during summer. Concentrations of metabolizable PCBs increased with age in males. The bioaccumulation patterns implied that blubber burdens change annually because of the ingestion of different prey or prey from distinct locations and the release of some organochlorines stored in blubber during lipid depletion in winter. Because biopsy concentrations were lower than those found in marine mammals affected by PCBs and DDTs, the authors do not have evidence that the endangered whales bioaccumulate hazardous concentrations of organochlorines.« less

  13. Assessing the bioaccumulation potential of ionizable organic ...

    EPA Pesticide Factsheets

    The objective of the present study is to review current knowledge regarding the bioaccumulation potential of IOCs, with a focus on the availability of empirical data for fish. Aspects of the bioaccumulation potential of IOCs in fish that can be characterized relatively well include the pH-dependence of gill uptake and elimination, uptake in the gut, and sorption to phospholipids (membrane-water partitioning). Key challenges include the lack of empirical data for biotransformation and binding in plasma. Fish possess a diverse array of proteins which may transport IOCs across cell membranes. Except in a few cases, however, the significance of this transport for uptake and accumulation of environmental contaminants is unknown. Two case studies are presented. The first describes modeled effects of pH and biotransformation on bioconcentration of organic acids and bases, while the second employs an updated model to investigate factors responsible for accumulation of perfluoroalkylated acids (PFAA). The PFAA case study is notable insofar as it illustrates the likely importance of membrane transporters in the kidney and highlights the potential value of read across approaches. Recognizing the current need to perform bioaccumulation hazard assessments and ecological and exposure risk assessment for IOCs, we provide a tiered strategy that progresses (as needed) from conservative assumptions (models and associated data) to more sophisticated models requiring chemical-speci

  14. Uptake and depuration of PCB-153 in edible shrimp Palaemonetes varians and human health risk assessment.

    PubMed

    Grilo, T F; Cardoso, P G; Pato, P; Duarte, A C; Pardal, M A

    2014-03-01

    A medium-term mesocosm exposure study was conducted to elucidate bioaccumulation and depuration of polychlorinated biphenyl congener 153 (PCB-153) in edible shrimp Palaemonetes varians. Over the 15-day exposure period, shrimp under different exposure concentrations exhibited a significant increase in PCB-153 concentration compared with control organisms. Distinct bioaccumulation patterns and uptake rates were observed depending on the exposure concentrations. For low PCB-153 exposure levels (0.25μgL(-1)), accumulation followed a saturation model, reaching an apparent steady state after fifteen days exposure. For intermediate (2.5μgL(-1)) and high PCB-153 levels (25μgL(-1)), accumulation was faster and linear. In addition, the bioaccumulation rate was not proportional to PCB-153 concentration, and the bioaccumulation was higher at intermediate exposure concentrations. Regarding the depuration phase, P. varians lost up to 30% of PCB-153 after 72h and levels continued slowly to decrease until the end of the 30-d experimental period. However, PCB-153 levels in shrimp did not reach background values, and those exposed to moderate and high PCB-153 concentrations presented contamination levels much higher than the regulatory limit for human food consumption (75ngg(-1) ww for Σ6 PCB). Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Bioaccumulation of metals in plants, arthropods, and mice at a seasonal wetland.

    PubMed

    Torres, K C; Johnson, M L

    2001-11-01

    Concentrations of arsenic, cadmium, copper, lead, and nickel were measured in soils, house mice (Mus musculus), and the main food items of this omnivorous mouse to examine the occurrence of these metals in selected components of a seasonal wetland. Soil concentrations of copper, lead, and (in some areas) nickel were elevated, but extractable soil concentrations indicated low bioavailability of metals. Levels of most metals in mice and composited arthropods were consistent with reference site concentrations from other studies. However, copper was found to be particularly mobile within the local ecosystem and accumulated in house mouse carcasses and composited arthropods at substantial levels. Metal residues in Scirpus robustus (alkali bulrush) roots exceeded those in seeds, consistent with patterns of bioaccumulation commonly observed in plants. Uptake and bioaccumulation factors for S. robustus seeds and roots, arthropods, and mouse carcasses and livers are reported. Concentrations of lead and nickel in S. robustus roots exhibited significant linear relationships with levels in soils. Copper levels in S. robustus seeds varied significantly with those in house mouse livers, suggesting that trophic transfer of copper from this food source to mice occurred. However, other spatial patterns of bioaccumulation in S. robustus and house mice relative to soil/seed concentrations were absent. Metal levels in house mice bore no relation to body weight or estimated age.

  16. Bioaccumulation and trophic transfer of short chain chlorinated paraffins in a marine food web from Liaodong Bay, North China.

    PubMed

    Ma, Xindong; Zhang, Haijun; Wang, Zhen; Yao, Ziwei; Chen, Jingwen; Chen, Jiping

    2014-05-20

    Short chain chlorinated paraffins (SCCPs) are under the evaluation for inclusion into the Stockholm Convention on persistent organic pollutants. However, information on their bioconcentration and biomagnification in marine ecosystems is unavailable, limiting the evaluation of their ecological risks. In this study, seawater, sediment, zooplankton, invertebrates, and fishes collected from Liaodong Bay, Bohai Sea, North China were analyzed to investigate the residual level, congener group profile, bioaccumulation, and trophic transfer of SCCPs in a marine food web. The total concentrations of SCCPs ranged from 4.1 to 13.1 ng L(-1) in seawater, 65 to 541 ng g(-1) (dw) in sediment, and 86 to 4400 ng g(-1) (ww) in organisms. Correspondence analysis indicated the relative enrichment of C10Cl5 and C11Cl5 formula groups in most aquatic organisms. Both the logarithm bioaccumulation factors (log BAFs: 4.1-6.7) and biota-sediment accumulation factors (BSAFs: 0.1-7.3) of individual congeners implied the bioaccumulation of SCCPs. The trophic magnification factor (TMF) of ∑SCCPs was determined to be 2.38 in the zooplankton-shrimp-fish food web, indicating biomagnification potential of SCCPs in the marine ecosystem. The TMF values of individual congener groups significantly correlated with their log KOW values.

  17. Bioremediation of an iron-rich mine effluent by Lemna minor.

    PubMed

    Teixeira, S; Vieira, M N; Espinha Marques, J; Pereira, R

    2014-01-01

    Contamination of water resources by mine effluents is a serious environmental problem. In a old coal mine, in the north of Portugal (São Pedro da Cova, Gondoma),forty years after the activity has ended, a neutral mine drainage, rich in iron (FE) it stills being produced and it is continuously released in local streams (Ribeiro de Murta e Rio Ferreira) and in surrounding lands. The species Lemna minor has been shown to be a good model for ecotoxicological studies and it also has the capacity to bioaccumulate metals. The work aimed test the potential of the species L. minor to remediate this mine effluent, through the bioaccumulation of Fe, under greenhouse experiments and, at the same time, evaluate the time required to the maximum removal of Fe. The results have shown that L. minor was able to grow and develop in the Fe-rich effluent and bioaccumulating this element. Throughout the 21 days of testing it was found that there was a meaningful increase in the biomass of L. minor both in the contaminated and in the non-contaminated waters. It was also found that bioaccumulation of Fe (iron) occurred mainly during the first 7 days of testing. It was found that L. minor has potential for the bioremediation of effluents rich in iron.

  18. Probing the Differential Tissue Distribution and Bioaccumulation Behavior of Per- and Polyfluoroalkyl Substances of Varying Chain-Lengths, Isomeric Structures and Functional Groups in Crucian Carp.

    PubMed

    Shi, Yali; Vestergren, Robin; Nost, Therese Haugdahl; Zhou, Zhen; Cai, Yaqi

    2018-04-17

    Understanding the bioaccumulation mechanisms of per- and polyfluoroalkyl substances (PFASs) across different chain-lengths, isomers and functional groups represents a monumental scientific challenge with implications for chemical regulation. Here, we investigate how the differential tissue distribution and bioaccumulation behavior of 25 PFASs in crucian carp from two field sites impacted by point sources can provide information about the processes governing uptake, distribution and elimination of PFASs. Median tissue/blood ratios (TBRs) were consistently <1 for all PFASs and tissues except bile which displayed a distinct distribution pattern and enrichment of several perfluoroalkyl sulfonic acids. Transformation of concentration data into relative body burdens (RBBs) demonstrated that blood, gonads, and muscle together accounted for >90% of the amount of PFASs in the organism. Principal component analyses of TBRs and RBBs showed that the functional group was a relatively more important predictor of internal distribution than chain-length for PFASs. Whole body bioaccumulation factors (BAFs) for short-chain PFASs deviated from the positive relationship with hydrophobicity observed for longer-chain homologues. Overall, our results suggest that TBR, RBB, and BAF patterns were most consistent with protein binding mechanisms although partitioning to phospholipids may contribute to the accumulation of long-chain PFASs in specific tissues.

  19. Bioaccumulation and biomagnification of emerging bisphenol analogues in aquatic organisms from Taihu Lake, China.

    PubMed

    Wang, Qiang; Chen, Meng; Shan, Guoqiang; Chen, Pengyu; Cui, Shuo; Yi, Shujun; Zhu, Lingyan

    2017-11-15

    Due to regulations on bisphenol A (BPA) in many countries, a variety of bisphenol analogues are being widely manufactured and applied. However, there is a big knowledge gap on bioaccumulation and biomagnification of these emerging bisphenols in aquatic organisms. The bioaccumulation and magnification of nine bisphenol analogues in aquatic organisms at different trophic levels collected from Taihu Lake, China, were evaluated. The total concentrations of the nine bisphenols in the lake waters were in the range of 49.7-3480ng/L (mean, 389ng/L). BPA, bisphenol AF (BPAF) and bisphenol S (BPS) were the most predominant analogues in the water. The mean natural logarithm bioaccumulation factor (log BAFs) of BPAF, bisphenol C (BPC), bisphenol Z (BPZ) and bisphenol E (BPE) were greater than BPA, and there was a significantly positive correlation between log BAFs of the biphenols and their octanol-water partition coefficients (log K ow ). The trophic magnification factors of BPAF, BPC and BPZ were 2.52, 2.69 and 1.71, respectively, suggesting that they had the potential to biomagnify in the food web. The results of this study call for further investigations on risk assessment of these emerging pollutants in the environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Identification, Tissue Distribution, and Bioaccumulation Potential of Cyclic Perfluorinated Sulfonic Acids Isomers in an Airport Impacted Ecosystem.

    PubMed

    Wang, Yuan; Vestergren, Robin; Shi, Yali; Cao, Dong; Xu, Lin; Cai, Yaqi; Zhao, Xiaoli; Wu, Fengchang

    2016-10-18

    The use of cyclic perfluoroalkyl acids as anticorrosive agents in hydraulic fluids remains a poorly characterized source of organofluorine compounds to the environment. Here, we investigated the presence of perfluoroethylenecyclohexanesulfonate (PFECHS) isomers in environmental samples for the first time using a combination of high resolution and tandem mass spectrometry. Five distinct peaks attributed to different isomers of PFECHS and perfluoropropylcyclopentanesulfonate (PFPCPeS) were identified in environmental samples. The sum of PFECHS and PFPCPeS isomers displayed logarithmically decreasing spatial trends in water (1.04-324 ng/L) and sediment samples (

  1. Perfluorinated chemicals in surface waters and sediments from northwest Georgia, USA, and their bioaccumulation in Lumbriculus variegatus

    USGS Publications Warehouse

    Lasier, Peter J.; Washington, John W.; Hassan, Sayed M.; Jenkins, Thomas M.

    2011-01-01

    Concentrations of perfluorinated chemicals (PFCs) were measured in surface waters and sediments from the Coosa River watershed in northwest Georgia, USA, to examine their distribution downstream of a suspected source. Samples from eight sites were analyzed using liquid chromatography-tandem mass spectrometry. Sediments were also used in 28-d exposures with the aquatic oligochaete, Lumbriculus variegatus, to assess PFC bioaccumulation. Concentrations of PFCs in surface waters and sediments increased significantly below a land-application site (LAS) of municipal/industrial wastewater and were further elevated by unknown sources downstream. Perfluorinated carboxylic acids (PFCAs) with eight or fewer carbons were the most prominent in surface waters. Those with 10 or more carbons predominated sediment and tissue samples. Perfluorooctane sulfonate (PFOS) was the major homolog in contaminated sediments and tissues. This pattern among sediment PFC concentrations was consistent among sites and reflected homolog concentrations emanating from the LAS. Concentrations of PFCs in oligochaete tissues revealed patterns similar to those observed in the respective sediments. The tendency to bioaccumulate increased with PFCA chain length and the presence of the sulfonate moiety. Biota-sediment accumulation factors indicated that short-chain PFCAs with fewer than seven carbons may be environmentally benign alternatives in aquatic ecosystems; however, sulfonates with four to seven carbons may be as likely to bioaccumulate as PFOS.

  2. Uptake and Depuration Kinetics Influence Microplastic Bioaccumulation and Toxicity in Antarctic Krill ( Euphausia superba).

    PubMed

    Dawson, Amanda; Huston, Wilhelmina; Kawaguchi, So; King, Catherine; Cropp, Roger; Wild, Seanan; Eisenmann, Pascale; Townsend, Kathy; Bengtson Nash, Susan

    2018-03-06

    The discarding of plastic products has led to the ubiquitous occurrence of microplastic particles in the marine environment. The uptake and depuration kinetics of ingested microplastics for many marine species still remain unknown despite its importance for understanding bioaccumulation potential to higher trophic level consumers. In this study, Antarctic krill ( Euphausia superba) were exposed to polyethylene microplastics to quantify acute toxicity and ingestion kinetics, providing insight into the bioaccumulation potential of microplastics at the first-order consumer level. In the 10 day acute toxicity assay, no mortality or dose-dependent weight loss occurred in exposed krill, at any of the exposure concentrations (0, 10, 20, 40, or 80% plastic diet). Krill exposed to a 20% plastic diet for 24 h displayed fast uptake (22 ng mg -1 h -1 ) and depuration (0.22 h -1 ) rates, but plastic uptake did not reach steady state. Efficient elimination also resulted in no bioaccumulation over an extended 25 day assay, with most individuals completely eliminating their microplastic burden in less than 5 days post exposure. Our results support recent findings of limited acute toxicity of ingested microplastics at this trophic level, and suggest sublethal chronic end points should be the focus of further ecotoxicological investigation.

  3. Long-Term Effects of Dredging Operations Program: Assessing Bioaccumulation in Aquatic Organisms Exposed to Contaminated Sediments

    DTIC Science & Technology

    1991-07-01

    negligible (Bradley and Sprague 1985). 49. Salinity has complex effects , both direct and indirect, on bioac- cumulation and bioavailability. Salinity ... salinity effect on bioaccumulation is present, it will usually be observed at < 1 part per thousand salinity ; increasing the salinity does not increase...the effect . 50. Increasing salinity tends to decrease the water solubility of neu- tral organic chemicals, and also decreases the concentration of both

  4. Bioaccumulation of heavy metals in oysters from the southern coast of Korea: assessment of potential risk to human health.

    PubMed

    Mok, Jong Soo; Yoo, Hyun Duk; Kim, Poong Ho; Yoon, Ho Dong; Park, Young Cheol; Lee, Tae Seek; Kwon, Ji Young; Son, Kwang Tae; Lee, Hee Jung; Ha, Kwang Soo; Shim, Kil Bo; Kim, Ji Hoe

    2015-06-01

    From 2009 to 2013, 80 oyster and 16 seawater samples were collected from the southern coast of Korea, including designated shellfish growing areas for export. The concentrations and bioaccumulation of heavy metals were determined, and a potential risk assessment was conducted to evaluate their hazards towards human consumption. The cadmium (Cd) concentration in oysters was the highest of three hazardous metals, including Cd, lead (Pb), and mercury (Hg), however, below the standards set by various countries. The metal bioaccumulation ratio in oysters was relatively high for zinc and Cd but low for Hg, Pb, arsenic, and chromium. The estimated dietary intakes of all heavy metals for oysters accounted for 0.02%-17.75% of provisional tolerable daily intake. The hazard index for all samples was far <1.0, which indicates that the oysters do not pose an appreciable hazard to humans for the metal pollutants of study.

  5. Barium bioaccumulation by bacterial biofilms and implications for Ba cycling and use of Ba proxies.

    PubMed

    Martinez-Ruiz, Francisca; Jroundi, Fadwa; Paytan, Adina; Guerra-Tschuschke, Isabel; Abad, María Del Mar; González-Muñoz, María Teresa

    2018-04-24

    Ba proxies have been broadly used to reconstruct past oceanic export production. However, the precise mechanisms underlying barite precipitation in undersaturated seawater are not known. The link between bacterial production and particulate Ba in the ocean suggests that bacteria may play a role. Here we show that under experimental conditions marine bacterial biofilms, particularly extracellular polymeric substances (EPS), are capable of bioaccumulating Ba, providing adequate conditions for barite precipitation. An amorphous P-rich phase is formed at the initial stages of Ba bioaccumulation, which evolves into barite crystals. This supports that in high productivity regions where large amounts of organic matter are subjected to bacterial degradation, the abundant EPS would serve to bind the necessary Ba and form nucleation sites leading to barite precipitation. This also provides new insights into barite precipitation and opens an exciting field to explore the role of EPS in mineral precipitation in the ocean.

  6. Influence of eutrophication on metal bioaccumulation and oral bioavailability in oysters, Crassostrea angulata.

    PubMed

    Li, Shun-Xing; Chen, Li-Hui; Zheng, Feng-Ying; Huang, Xu-Guang

    2014-07-23

    Oysters (Crassostrea angulata) are often exposed to eutrophication. However, how these exposures influence metal bioaccumulation and oral bioavailability (OBA) in oysters is unknown. After a four month field experimental cultivation, bioaccumulation factors (BAF) of metals (Fe, Cu, As, Cd, and Pb) from seawater to oysters and metal oral bioavailability in oysters by bionic gastrointestinal tract were determined. A positive effect of macronutrient (nitrate N and total P) concentration in seawater on BAF of Cd in oysters was observed, but such an effect was not significant for Fe, Cu, Pb, and As. Only OBA of As was significantly positively correlated to N and P contents. For Fe, OBA was negatively correlated with N. The regular variation of the OBA of Fe and As may be due to the effect of eutrophication on the synthesis of metal granules and heat-stable protein in oysters, respectively.

  7. Bioaccumulation and toxicodynamics of cadmium to freshwater planarian and the protective effect of N-acetylcysteine.

    PubMed

    Wu, Jui-Pin; Chen, Hon-Cheng; Li, Mei-Hui

    2012-08-01

    Although toxic responses of freshwater planarians after exposure to environmental toxicants can be observed through external toxicological end points, physiological responses inside the bodies of treated planarians have rarely been investigated. The present study was designed, using cadmium (Cd) as a reference toxicant, to determine its bioaccumulation and toxicodynamics in the freshwater planarian, Dugesia japonica, after acute toxicity was obtained. Accumulated Cd concentrations, metallothionein levels, and the oxidative status in planarians were determined after exposure to Cd. Furthermore, we hypothesized that the acute death of Cd-treated planarians was associated with increased oxidative stress. After Cd-treated planarians were coexposed to antioxidant, N-acetylcysteine (NAC), we found that NAC protected planarians from Cd lethality by maintaining the oxidative status and decreasing the bioaccumulation of Cd. The results of the present study support planarians being used as a practical model for toxicological studies of environmental contaminants in the future.

  8. The application of HPLC ESI MS in the investigation of the flavonoids and flavonoid glycosides of a Caribbean Lamiaceae plant with potential for bioaccumulation.

    PubMed

    Peter, Sonia R; Peru, Kerry M; Fahlman, Brian; McMartin, Dena W; Headley, John V

    2015-01-01

    As part of an exchange technology program between the government of Barbados and Environment Canada, methanolic and aqueous extracts from the flavonoid-rich Lamiaceae family were characterized using negative-ion electrospray mass spectrometry. The species investigated is part of the Caribbean Pharmacopoeia, and is used for a variety of health issues, including colds, flu, diabetes, and hypertension. The extracts were investigated for structural elucidation of phenolics, identification of chemical taxonomic profile, and evidence of bio-accumulator potential. The methanolic and aqueous leaf extracts of Plectranthus amboinicus yielded rosmarinic acid, ladanein, cirsimaritin, and other methoxylated flavonoids. This genus also shows a tendency to form conjugates with monosaccharides, including glucose, galactose, and rhamnose. The aqueous extract yielded four isomeric rhamnosides. The formation of conjugates by Plectranthus amboinicus is thus evidence of high bioaccumulator significance.

  9. Influence of global climate change on chemical fate and bioaccumulation: the role of multimedia models.

    PubMed

    Gouin, Todd; Armitage, James M; Cousins, Ian T; Muir, Derek C G; Ng, Carla A; Reid, Liisa; Tao, Shu

    2013-01-01

    Multimedia environmental fate models are valuable tools for investigating potential changes associated with global climate change, particularly because thermodynamic forcing on partitioning behavior as well as diffusive and nondiffusive exchange processes are implicitly considered. Similarly, food-web bioaccumulation models are capable of integrating the net effect of changes associated with factors such as temperature, growth rates, feeding preferences, and partitioning behavior on bioaccumulation potential. For the climate change scenarios considered in the present study, such tools indicate that alterations to exposure concentrations are typically within a factor of 2 of the baseline output. Based on an appreciation for the uncertainty in model parameters and baseline output, the authors recommend caution when interpreting or speculating on the relative importance of global climate change with respect to how changes caused by it will influence chemical fate and bioavailability. Copyright © 2012 SETAC.

  10. Digestive determinants of benzo[a]pyrene and phenanthrene bioaccumulation by a deposit-feeding polychaete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penry, D.L.; Weston, D.P.

    1998-11-01

    The uptake of hydrophobic contaminants from ingested sediment can contribute significantly to body burdens of deposit feeders, and feeding behavior and digestive physiology can play important roles in bioaccumulation. The authors examined the uptake of polycyclic aromatic hydrocarbons (PAHs) by the deposit-feeding polychaete Abarenicola pacifica in experiments in which worms were first acclimated to low or high organic carbon sediments with 0.08 or 0.45% total organic carbon, respectively and then transferred to low or high organic carbon test sediments contaminated with radiolabeled phenanthrene or benzo[a]pyrene. Ingestion rate was measurements are essential in many types of bioaccumulation studies because differences inmore » ingestion rates between sediment types may confound some traditional measures of bioavailability. Physiological acclimation to the low or high organic carbon sediments did not appear to affect PAH uptake from the test sediments, but acclimation did affect biotransformation capabilities, particularly for phenanthrene.« less

  11. Contaminant Interactions and Biological Effects of Single-walled Carbon Nanotubes in a Benthic Estuarine System

    NASA Astrophysics Data System (ADS)

    Parks, Ashley Nicole

    The fate, bioavailability, bioaccumulation and toxicity of single-walled carbon nanotubes (SWNT) have not been extensively studied to date. Pristine SWNT are highly hydrophobic and have been shown to strongly associate with natural particulate matter in aquatic environments. In light of this, I have focused my research to examine the influence of sediment and food exposure routes on bioavailability, bioaccumulation, and toxicity of structurally diverse SWNT in several ecologically-important marine invertebrate species. No significant mortality was observed in any organism at concentrations up to 1000 mg/kg. Evidence of biouptake after ingestion was observed for pristine semiconducting SWNT using NIRF spectroscopy and for oxidized 14C-SWNT using liquid scintillation counting. After a 24 hour depuration period, the pristine semiconducting SWNT were eliminated from organisms to below the method detection limit (5 microg/mL), and the 14C-SWNT body burden was decreased by an order of magnitude to a bioaccumulation factor (BAF) of <0.01. Neither pristine SWNT nor oxidized 14C-SWNT caused environmentally relevant toxicity or bioaccumulation in benthic invertebrates. Overall, the SWNT were not bioavailable and appear to associate with the sediment. In addition to investigating the toxicity and bioaccumulation of SWNT as an independent toxicant, it is important to consider how they will interact with other contaminants in the environment (i.e., increase or decrease toxicity and bioaccumulation of co-contaminants, alter the environmental transport of co-contaminants, induce degradation of co-contaminants, etc.). I wanted to investigate the effects of SWNT on a complex mixture of contaminants already present in a natural system. New Bedford Harbor (NBH) sediment, which is contaminated with polychlorinated biphenyls (PCBs), was amended with pristine SWNT to determine if the presence of SWNT would mitigate the toxicity and bioaccumulation of the PCBs in deposit-feeding invertebrates. A dilution series of the NBH sediment was created using uncontaminated Long Island Sound (LIS) sediment to test 25% NBH sediment, 50% NBH sediment, 75% NBH sediment, and 100% NBH sediment. The results of this work showed increased organism survival and decreased bioaccumulation of PCBs in treatments amended with SWNT, with the greatest reduction observed in the 25% NBH sediment treatment group amended with 10 mg SWNT/g dry sediment. Polyethylene (PE) passive samplers indicated a reduction of interstitial water (ITW) PCB concentration of greater than 90% in the 25% NBH sediment + 10 mg SWNT/g dry sediment amendment. The ITW concentration was reduced because PCBs were not desorbing from the SWNT. Lower bioavailability leads to reduced potential for toxic effects, supporting the observation of increased survival and decreased bioaccumulation. Once in the sediment, not only are SWNT not bioavailable, they act as a highly sorptive phase, such as black carbon (BC), into which hydrophobic organic contaminants (HOCs), such as PCBS and polycyclic aromatic hydrocarbons (PAHs), can partition, thereby reducing the toxicity and bioavailability of co-occurring HOCs. To more fully understand the impact of SWNT in this environment, their biodegradability also needs to be investigated. Biodegradation of SWNT could lead to release and/or transformation of sorbed HOCs as well as a change in the inherent transport, toxicity, and bioaccumulation of SWNT in the estuarine environment. Because the persistence of SWNT will be a primary determinant of the fate of these materials in the environment, I conducted experiments to determine if the fungus Trametes versicolor, the natural bacterial communities present in NBH sediment, and municipal wastewater treatment plant sludge could degrade or mineralize oxidized 14C-SWNT. Over a six month time period, no significant degradation or mineralization was observed. In all treatments, approximately 99% of the 14C-SWNT remained associated with the solid phase, with only approximately 0.8% of added 14C present as dissolved species and only 0.1% present as 14CO2. These small pools of non-SWNT 14C were likely due to trace impurities, as no differences in production were observed between treatments and abiotic (killed) controls. (Abstract shortened by UMI.)

  12. Verifying Food Web Bioaccumulation Models by Tracking Fish Exposure and Contaminant Uptake

    DTIC Science & Technology

    2012-03-01

    Arnot, J. A. and F. A. P. C. Gobas (2004). "A Food Web Bioaccumulation Model for Organic Chemicals in Aquatic Ecosystems." Environmental Toxicology...site in Eagle Harbor, Washington." Aquatic Toxicology 88: 277-288. Myers, M. S., L. L. Johnson, et al. (2003). "Establishing the Causal Relationship...P. Connolly, et al. (1992). "An Equilibrium Model of Organic Chemical Accumulation in Aquatic Food Webs with Sediment Interaction." Environmental

  13. Management of Bottom Sediments Containing Toxic Substances: Proceedings of the U.S./Japan Experts Meeting (11th) Held in Seattle, Washington, on 4-6 November 1985.

    DTIC Science & Technology

    1987-04-01

    biological effects (benthic community structure, bioaccumulation , fish histopathology) indi- cators were used along with historical data to iden...chlorinated pesticides, plasticizers (pthalates), and poly- nuclear aromatic hydrocarbons (PAH)]. Over 425 point and nonpoint discharges have been identified...collected sediments (i.e., amphipod blo- assays as a lethal indicator and oyster larvae bioassays as a sublethal Indi- cator), bioaccumulation of

  14. Bioaccumulation of human pharmaceuticals in fish across habitats of a tidally influenced urban bayou.

    PubMed

    Du, Bowen; Haddad, Samuel P; Luek, Andreas; Scott, W Casan; Saari, Gavin N; Burket, S Rebekah; Breed, Christopher S; Kelly, Martin; Broach, Linda; Rasmussen, Joseph B; Chambliss, C Kevin; Brooks, Bryan W

    2016-04-01

    Though pharmaceuticals and other contaminants of emerging concern are increasingly observed in inland water bodies, the occurrence and bioaccumulation of pharmaceuticals in estuaries and coastal ecosystems are poorly understood. In the present study, bioaccumulation of select pharmaceuticals and other contaminants of emerging concern was examined in fish from Buffalo Bayou, a tidally influenced urban ecosystem that receives effluent from a major (∼200 million gallons per day) municipal wastewater treatment plant in Houston, Texas, USA. Using isotope dilution liquid chromatography-tandem mass spectrometry, various target analytes were observed in effluent, surface water, and multiple fish species. The trophic position of each species was determined using stable isotope analysis. Fish tissue levels of diphenhydramine, which represented the only pharmaceutical detected in all fish species, did not significantly differ between freshwater and marine fish predominantly inhabiting benthic habitats; however, saltwater fish with pelagic habitat preferences significantly accumulated diphenhydramine to the highest levels observed in the present study. Consistent with previous observations from an effluent-dependent freshwater river, diphenhydramine did not display trophic magnification, which suggests site-specific, pH-influenced inhalational uptake to a greater extent than dietary exposure in this tidally influenced urban ecosystem. The findings highlight the importance of understanding differential bioaccumulation and risks of ionizable contaminants of emerging concern in habitats of urbanizing coastal systems. © 2015 SETAC.

  15. Effects of the interaction between TiO2 with different percentages of exposed {001} facets and Cu2+ on biotoxicity in Daphnia magna

    PubMed Central

    Liu, Lingling; Fan, Wenhong; Lu, Huiting; Xiao, Wei

    2015-01-01

    Anatase TiO2 nanosheets (NSs) with exposed {001} facets have been widely used because of their high activity and particular surface atomic configuration. However, investigations on their biotoxicity are rare. In this study, bioaccumulation of five different TiO2 (with 10%, 61%, 71%, 74% and 78% exposed {001} facets), as well as copper and enzyme activities in Daphnia magna, are systematically investigated and rationalized. The results indicated that the addition of Cu2+ enhanced agglomeration–sedimentation of TiO2, resulting in the reduction of TiO2 bioaccumulation by 10% to 26%. TiO2 nanoparticles (NPs) increased copper bioaccumulation by 9.8%, whereas the other four TiO2 nanosheets (NSs) decreased it by 43% to 53%, which depended on TiO2 variant adsorption and free Cu2+ concentrations in the supernatant. The levels of superoxide dismutase (SOD) enzyme and Na+/K+-ATPase activities suggested that oxidative stress, instead of membrane damage, was the main toxicity in D. magna. Meanwhile, the SOD enzyme activities increased with decreasing Cu accumulation and increasing Ti accumulation because of the different functions of Cu and Ti in organisms. This research highlighted the important role of the percentage of exposed {001} facets in nanostructured TiO2 on bioaccumulation and biotoxicity of TiO2 and Cu2+ in Daphnia magna. PMID:26242603

  16. Effects of nanoplastics and microplastics on toxicity, bioaccumulation, and environmental fate of phenanthrene in fresh water.

    PubMed

    Ma, Yini; Huang, Anna; Cao, Siqi; Sun, Feifei; Wang, Lianhong; Guo, Hongyan; Ji, Rong

    2016-12-01

    Contamination of fine plastic particles (FPs), including micrometer to millimeter plastics (MPs) and nanometer plastics (NPs), in the environment has caught great concerns. FPs are strong adsorbents for hydrophobic toxic pollutants and may affect their fate and toxicity in the environment; however, such information is still rare. We studied joint toxicity of FPs with phenanthrene to Daphnia magna and effects of FPs on the environmental fate and bioaccumulation of 14 C-phenanthrene in fresh water. Within the five sizes particles we tested (from 50 nm to 10 μm), 50-nm NPs showed significant toxicity and physical damage to D. magna. The joint toxicity of 50-nm NPs and phenanthrene to D. magna showed an additive effect. During a 14-days incubation, the presence of NPs significantly enhanced bioaccumulation of phenanthrene-derived residues in daphnid body and inhibited the dissipation and transformation of phenanthrene in the medium, while 10-μm MPs did not show significant effects on the bioaccumulation, dissipation, and transformation of phenanthrene. The differences may be attributed to higher adsorption of phenanthrene on 50-nm NPs than 10-μm MPs. Our findings underlined the high potential ecological risks of FPs, and suggested that NPs should be given more concerns, in terms of their interaction with hydrophobic pollutants in the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Bioaccumulation and excretion of enantiomers of myclobutanil in Tenebrio molitor larvae through dietary exposure.

    PubMed

    Lv, Xiaotian; Liu, Chen; Li, Yaobin; Gao, Yongxin; Guo, Baoyuan; Wang, Huili; Li, Jianzhong

    2013-12-01

    The bioaccumulation and excretion of enantiomers of myclobutanil in Tenebrio molitor larvae through dietary exposure under laboratory conditions were investigated using high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) based on a ChiralcelOD-3R [cellulosetris-tris-(3, 5-dichlorophenyl-carbamate)] column. The wheat bran fed to Tenebrio molitor larvae was spiked with racemic myclobutanil at two dose levels of 20 mg/kg and 2 mg/kg (dry weight). The results showed that there was a significant trend of enantioselective bioaccumulation in the larvae with a preferential accumulation of (-)-myclobutanil in 20 mg/kg dose exposure, but it was not obviously observed in the 2 mg/kg dose group. A kinetic model considering enantiomerization between the two enantiomers based on first-order reactions was built and the rate constants were estimated to discuss the kinetic reason for the different concentrations of individual enantiomers in the larvae. The approximations implied an inversion between the two enantiomers with a relatively higher rate of the inversion from (-)-myclobutanil to (+)-myclobutanil. Meanwhile, analysis of data of excretion samples suggested the active excretion is probably an important pathway for the insect to eliminate myclobutanil rapidly with nonenantioselectivity as a passive transport process, which was consistent with the low accumulation efficiency of myclobutanil measured by BAF (bioaccumulation factor). © 2013 Wiley Periodicals, Inc.

  18. Monitoring of trace metals in tissues of Wallago attu (lanchi) from the Indus River as an indicator of environmental pollution

    PubMed Central

    Al-Ghanim, K.A.; Mahboob, Shahid; Seemab, Sadia; Sultana, S.; Sultana, T.; Al-Misned, Fahad; Ahmed, Z.

    2015-01-01

    We aimed to assess the bioaccumulation of selected four trace metals (Cd, Ni, Zn and Co) in four tissues (muscles, skin, gills and liver) of a freshwater fish Wallago attu (lanchi) from three different sites (upstream, middle stream and downstream) of the Indus River in Mianwali district of Pakistan. Heavy metal contents in water samples and from different selected tissues of fish were examined by using flame atomic absorption spectrometry. The data were statistically compared to study the effects of the site and fish organs and their interaction on the bioaccumulation pattern of these metals at P < 0.05. In W. attu the level of cadmium ranged from 0.004 to 0.24; nickel 0.003–0.708; cobalt 0.002–0.768 and zinc 47.4–1147.5 μg/g wet weight. The magnitude of metal bioaccumulation in different organs of fish species had the following order gills > liver > skin > muscle. The order of bioaccumulation of these metals was Ni < Zn < Co < Cd. Heavy metal concentrations were increased during the dry season as compared to the wet season. The results of this study indicate that freshwater fish produced and marketed in Mianwali have concentrations below the standards of FEPA/WHO for these toxic metals. PMID:26858541

  19. Bioaccumulation and Spatiotemporal Trends of Polyhalogenated Carbazoles in Great Lakes Fish from 2004 to 2016.

    PubMed

    Wu, Yan; Tan, Hongli; Zhou, Chuanlong; Crimmins, Bernard S; Holsen, Thomas M; Chen, Da

    2018-04-17

    Polyhalogenated carbazoles (PHCZs) were recently discovered in Great Lakes sediment and other aquatic systems. However, knowledge about their bioaccumulation and potential risks to fish and wildlife remains very limited. The present study investigated PHCZs in Great Lakes lake trout ( Salvelinus namaycush) and walleye ( Sander vitreus; Lake Erie only) composites collected between 2004 and 2016. Median concentrations of ∑PHCZs by lake ranged from 54.7 to 154 ng/g lipid weight or lw (6.8-28.0 ng/g wet weight). Dominant congeners included 3,6-dichlorocarbazole, 1,3,6-tribromocarbazole, and 1,3,6,8-tetrachlorocarbazole. The highest ∑PHCZs concentrations were found in Lakes Michigan and Ontario fish, followed by Lake Huron, whereas Lakes Erie and Superior fish contained the lowest concentrations. Congener profiles of PHCZs also exhibited spatial variations. After age normalization to minimize fish age influence on bioaccumulation rates, fish ∑PHCZs' concentrations declined significantly over time in all lakes except Lake Erie, with slopes ranging from -10.24% to -3.85% per year. The median toxic equivalent (TEQ) of PHCZs due to their dioxin-like activity was determined to range from 8.7 to 25.7 pg/g lw in Great Lakes fish. This study provides the first insight into the bioaccumulation and spatiotemporal trends of PHCZs in Great Lakes and suggests the need for further research on this group of chemicals.

  20. Bioaccumulation patterns of polychlorinated biphenyls and chlorinated pesticides in northwest Atlantic pilot whales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisbrod, A.V.; Shea, D.; Moore, M.J.

    2000-03-01

    Contaminant exposure is widespread among marine mammals but is of unknown significance. This study characterized organochlorine bioaccumulation in pilot whales, and these bioaccumulation patterns are proposed as representative of Northwest (NW) Atlantic cetacea. Samples were collected from whales stranded in Massachusetts and caught in nets. Polychlorinated biphenyl (PCB) and chlorinated pesticide concentrations were determined via GC/ECD and found to be similar to those reported for other NW Atlantic odontocetes. The organochlorine in highest concentration was 4,4{prime}-DDE, followed by trans-nonachlor, 4,4{prime}-DDD, dieldrin, cis-chlordane, C14(52), C15(95), C15(101), C15(118), C16(138), C16(149), C16(153), C17(180), and C17(187). The concentration of 19 pesticides was higher inmore » blubber than liver. The concentration of 26 PCB congeners was also greater in blubber than liver. Principal component analysis and ANOVA indicated that blubber accumulated proportionately more of the most recalcitrant compounds, such as 4,4{prime}-DDE and nonmetabolizable PCBs, compared to liver. Whales that stranded together had more similar bioaccumulation than animals of the same gender or maturity. The high variation among individuals in tissue concentrations and the similarity within a stranding group suggest that pilot whale pods are exposed to a large range of pollutant sources, such as through different prey and feeding locations.« less

  1. Numerical evaluation of bioaccumulation and depuration kinetics of PAHs in Mytilus galloprovincialis.

    PubMed

    Yakan, S D; Focks, A; Klasmeier, J; Okay, O S

    2017-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are important organic pollutants in the aquatic environment due to their persistence and bioaccumulation potential both in organisms and in sediments. Benzo(a)anthracene (BaA) and phenanthrene (PHE), which are in the priority pollutant list of the U.S. EPA (Environmental Protection Agency), are selected as model compounds of the present study. Bioaccumulation and depuration experiments with local Mediterranean mussel species, Mytilus galloprovincialis were used as the basis of the study. Mussels were selected as bioindicator organisms due to their broad geographic distribution, immobility and low enzyme activity. Bioaccumulation and depuration kinetics of selected PAHs in Mytilus galloprovincialis were described using first order kinetic equations in a three compartment model. The compartments were defined as: (1) biota (mussel), (2) surrounding environment (seawater), and (3) algae (Phaeodactylum tricornutum) as food source of the mussels. Experimental study had been performed for three different concentrations. Middle concentration of the experimental data was used as the model input in order to represent other high and low concentrations of selected PAHs. Correlations of the experiment and model data revealed that they are in good agreement. Accumulation and depuration trend of PAHs in mussels regarding also the durations can be estimated effectively with the present study. Thus, this study can be evaluated as a supportive tool for risk assessment in addition to monitoring studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Mercury bioaccumulation in northern two-lined salamanders from streams in the northeastern United States

    USGS Publications Warehouse

    Bank, M.S.; Loftin, C.S.; Jung, R.E.

    2005-01-01

    Mercury (Hg) bioaccumulation in salamanders has received little attention despite widespread Hg contamination of aquatic ecosystems and worldwide amphibian declines. Here we report concentrations of methyl Hg (MeHg) and total Hg in larval northern two-lined salamanders (Eurycea bislineata bislineata) collected from streams in Acadia National Park (ANP), Maine, and Bear Brook Watershed, Maine (BBWM; a paired, gauged watershed treated with bimonthly applications (25 kg/ha/yr) of ammonium sulfate [(NH4)(2)SO4]) since 1989), and Shenandoah National Park (SNP), Virginia. MeHg comprised 73-97% of total Hg in the larval salamander composite samples from ANP. At BBWM we detected significantly higher total Hg levels in larvae from the (NH4)(2)SO4 treatment watershed. At ANP total Hg concentrations in salamander larvae were significantly higher from streams in unburned watersheds in contrast with larval samples collected from streams located in watersheds burned by the 1947 Bar Harbor fire. Additionally, total Hg levels were significantly higher in salamander larvae collected at ANP in contrast with SNP. Our results suggest that watershed-scale attributes including. re history, whole-catchment (NH4)(2)SO4 additions, wetland extent, and forest cover type influence mercury bioaccumulation in salamanders inhabiting lotic environments. We also discuss the use of this species as an indicator of Hg bioaccumulation in stream ecosystems.

  3. Monitoring of trace metals in tissues of Wallago attu (lanchi) from the Indus River as an indicator of environmental pollution.

    PubMed

    Al-Ghanim, K A; Mahboob, Shahid; Seemab, Sadia; Sultana, S; Sultana, T; Al-Misned, Fahad; Ahmed, Z

    2016-01-01

    We aimed to assess the bioaccumulation of selected four trace metals (Cd, Ni, Zn and Co) in four tissues (muscles, skin, gills and liver) of a freshwater fish Wallago attu (lanchi) from three different sites (upstream, middle stream and downstream) of the Indus River in Mianwali district of Pakistan. Heavy metal contents in water samples and from different selected tissues of fish were examined by using flame atomic absorption spectrometry. The data were statistically compared to study the effects of the site and fish organs and their interaction on the bioaccumulation pattern of these metals at P < 0.05. In W. attu the level of cadmium ranged from 0.004 to 0.24; nickel 0.003-0.708; cobalt 0.002-0.768 and zinc 47.4-1147.5 μg/g wet weight. The magnitude of metal bioaccumulation in different organs of fish species had the following order gills > liver > skin > muscle. The order of bioaccumulation of these metals was Ni < Zn < Co < Cd. Heavy metal concentrations were increased during the dry season as compared to the wet season. The results of this study indicate that freshwater fish produced and marketed in Mianwali have concentrations below the standards of FEPA/WHO for these toxic metals.

  4. Evaluating mercury bioaccumulation rates in fish using mark-recapture techniques

    NASA Astrophysics Data System (ADS)

    Mathews, T.; Surendran Nair, S.; McManamay, R.

    2017-12-01

    Mercury (Hg) bioaccumulation can be described by models of varying complexity, from the simplified bioconcentration factor which describes the partitioning of contaminants between water and the organism, to more sophisticated models which take into consideration speciation, complexation, and/or bioavailability. At contaminated sites, especially those that are undergoing remediation, it is helpful to have a dynamic framework to identify critical Hg sources and processes, and to predict time scales to recovery. However, understanding the relationship between changes in exposure concentrations and bioaccumulation rates remains a challenge. East Fork Poplar Creek (EFPC) is a Hg-contaminated stream located in East Tennessee. Over the past 30 years, various remediation actions have succeeded in significantly reducing Hg inputs to this stream. One of the major goals of remediation is to reduce Hg bioaccumulation in resident sunfish in order to meet human health guidelines. Mercury is measured in sunfish fillets bi-annually at various sites along the stream. Because Hg analysis requires only 100 mg of tissue, fish can be sampled non-lethally and released at the site of capture. Since 2008, passive induced transponder (PIT) tags have been used to identify individual fish that are collected from EFPC for Hg analysis. Approximately 10% of PIT tagged fish were recaptured, allowing for the measurement of growth rates and Hg bioaccumulation rates in individual fish. While traditional biomonitoring studies conducted in EFPC have found that the average Hg concentrations in sacrificed fish have not responded to changes in aqueous Hg concentrations over the past 10 years, data from the mark-recapture study show that individual fish may respond to changes in aqueous inorganic Hg concentrations on shorter time scales. Rapid changes in aqueous Hg concentrations over a four year period resulted in measurable increases and decreases in Hg concentrations in individual fish that could not be explained by growth dilution. These findings are relevant to remediation decisions in EFPC and other Hg-contaminated sites.

  5. Assessing the effects of seawater temperature and pH on the bioaccumulation of emerging chemical contaminants in marine bivalves.

    PubMed

    Maulvault, Ana Luísa; Camacho, Carolina; Barbosa, Vera; Alves, Ricardo; Anacleto, Patrícia; Fogaça, Fabiola; Kwadijk, Christiaan; Kotterman, Michiel; Cunha, Sara C; Fernandes, José O; Rasmussen, Rie R; Sloth, Jens J; Aznar-Alemany, Òscar; Eljarrat, Ethel; Barceló, Damià; Marques, António

    2018-02-01

    Emerging chemical contaminants [e.g. toxic metals speciation, flame retardants (FRs) and perfluorinated compounds (PFCs), among others], that have not been historically recognized as pollutants nor their toxicological hazards, are increasingly more present in the marine environment. Furthermore, the effects of environmental conditions (e.g. temperature and pH) on bioaccumulation and elimination mechanisms of these emerging contaminants in marine biota have been poorly studied until now. In this context, the aim of this study was to assess, for the first time, the effect of warmer seawater temperatures (Δ = + 4°C) and lower pH levels (Δ = - 0.4 pH units), acting alone or combined, on the bioaccumulation and elimination of emerging FRs (dechloranes 602, 603 and 604, and TBBPA), inorganic arsenic (iAs), and PFCs (PFOA and PFOS) in two estuarine bivalve species (Mytilus galloprovincialis and Ruditapes philippinarum). Overall, results showed that warming alone or combined with acidification promoted the bioaccumulation of some compounds (i.e. dechloranes 602, 604, TBBPA), but also facilitated the elimination of others (i.e. iAs, TBBPA). Similarly, lower pH also resulted in higher levels of dechloranes, as well as enhanced iAs, PFOA and PFOS elimination. Data also suggests that, when both abiotic stressors are combined, bivalves' capacity to accumulate contaminants may be time-dependent, considering significantly drastic increase observed with Dec 602 and TBBPA, during the last 10 days of exposure, when compared to reference conditions. Such changes in contaminants' bioaccumulation/elimination patterns also suggest a potential increase of human health risks of some compounds, if the climate continues changing as forecasted. Therefore, this first study pointed out the urgent need for further research on the effects of abiotic conditions on emerging contaminants kinetics, to adequately estimate the potential toxicological hazards associated to these compounds and develop recommendations/regulations for their presence in seafood, considering the prevailing environmental conditions expected in tomorrow's ocean. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Mercury in western North America: A synthesis of environmental contamination, fluxes, bioaccumulation, and risk to fish and wildlife

    USGS Publications Warehouse

    Eagles-Smith, Collin A.; Wiener, James G.; Eckley, Chris S.; Willacker, James J.; Evers, David C.; Marvin-DiPasquale, Mark C.; Obrist, Daniel; Fleck, Jacob; Aiken, George R.; Lepak, Jesse M.; Jackson, Allyson K.; Webster, Jackson; Stewart, Robin; Davis, Jay; Alpers, Charles N.; Ackerman, Joshua T.

    2016-10-15

    Western North America is a region defined by extreme gradients in geomorphology and climate, which support a diverse array of ecological communities and natural resources. The region also has extreme gradients in mercury (Hg) contamination due to a broad distribution of inorganic Hg sources. These diverse Hg sources and a varied landscape create a unique and complex mosaic of ecological risk from Hg impairment associated with differential methylmercury (MeHg) production and bioaccumulation. Understanding the landscape-scale variation in the magnitude and relative importance of processes associated with Hg transport, methylation, and MeHg bioaccumulation requires a multidisciplinary synthesis that transcends small-scale variability. The Western North America Mercury Synthesis compiled, analyzed, and interpreted spatial and temporal patterns and drivers of Hg and MeHg in air, soil, vegetation, sediments, fish, and wildlife across western North America. This collaboration evaluated the potential risk from Hg to fish, and wildlife health, human exposure, and examined resource management activities that influenced the risk of Hg contamination. This paper integrates the key information presented across the individual papers that comprise the synthesis. The compiled information indicates that Hg contamination is widespread, but heterogeneous, across western North America. The storage and transport of inorganic Hg across landscape gradients are largely regulated by climate and land-cover factors such as plant productivity and precipitation. Importantly, there was a striking lack of concordance between pools and sources of inorganic Hg, and MeHg in aquatic food webs. Additionally, water management had a widespread influence on MeHg bioaccumulation in aquatic ecosystems, whereas mining impacts where relatively localized. These results highlight the decoupling of inorganic Hg sources with MeHg production and bioaccumulation. Together the findings indicate that developing efforts to control MeHg production in the West may be particularly beneficial for reducing food web exposure instead of efforts to simply control inorganic Hg sources.

  7. Mercury in western North America: A synthesis of environmental contamination, fluxes, bioaccumulation, and risk to fish and wildlife

    USGS Publications Warehouse

    Eagles-Smith, Collin A.; Wiener, James G.; Eckley, Chris S.; Willacker, James J.; Evers, David C.; Marvin-DiPasquale, Mark C.; Obrist, Daniel; Fleck, Jacob; Aiken, George R.; Lepak, Jesse M.; Jackson, Allyson K.; Webster, Jackson; Stewart, Robin; Davis, Jay; Alpers, Charles N.; Ackerman, Joshua T.

    2016-01-01

    Western North America is a region defined by extreme gradients in geomorphology and climate, which support a diverse array of ecological communities and natural resources. The region also has extreme gradients in mercury (Hg) contamination due to a broad distribution of inorganic Hg sources. These diverse Hg sources and a varied landscape create a unique and complex mosaic of ecological risk from Hg impairment associated with differential methylmercury (MeHg) production and bioaccumulation. Understanding the landscape-scale variation in the magnitude and relative importance of processes associated with Hg transport, methylation, and MeHg bioaccumulation requires a multidisciplinary synthesis that transcends small-scale variability. The Western North America Mercury Synthesis compiled, analyzed, and interpreted spatial and temporal patterns and drivers of Hg and MeHg in air, soil, vegetation, sediments, fish, and wildlife across western North America. This collaboration evaluated the potential risk from Hg to fish, and wildlife health, human exposure, and examined resource management activities that influenced the risk of Hg contamination. This paper integrates the key information presented across the individual papers that comprise the synthesis. The compiled information indicates that Hg contamination is widespread, but heterogeneous, across western North America. The storage and transport of inorganic Hg across landscape gradients are largely regulated by climate and land-cover factors such as plant productivity and precipitation. Importantly, there was a striking lack of concordance between pools and sources of inorganic Hg, and MeHg in aquatic food webs. Additionally, water management had a widespread influence on MeHg bioaccumulation in aquatic ecosystems, whereas mining impacts where relatively localized. These results highlight the decoupling of inorganic Hg sources with MeHg production and bioaccumulation. Together the findings indicate that developing efforts to control MeHg production in the West may be particularly beneficial for reducing food web exposure instead of efforts to simply control inorganic Hg sources.

  8. Oligotrophy as a major driver of mercury bioaccumulation in medium-to high-trophic level consumers: A marine ecosystem-comparative study.

    PubMed

    Chouvelon, Tiphaine; Cresson, Pierre; Bouchoucha, Marc; Brach-Papa, Christophe; Bustamante, Paco; Crochet, Sylvette; Marco-Miralles, Françoise; Thomas, Bastien; Knoery, Joël

    2018-02-01

    Mercury (Hg) is a global contaminant of environmental concern. Numerous factors influencing its bioaccumulation in marine organisms have already been described at both individual and species levels (e.g., size or age, habitat, trophic level). However, few studies have compared the trophic characteristics of ecosystems to explain underlying mechanisms of differences in Hg bioaccumulation and biomagnification among food webs and systems. The present study aimed at investigating the potential primary role of the trophic status of systems on Hg bioaccumulation and biomagnification in temperate marine food webs, as shown by their medium-to high-trophic level consumers. It used data from samples collected at the shelf-edge (i.e. offshore organisms) in two contrasted ecosystems: the Bay of Biscay in the North-East Atlantic Ocean and the Gulf of Lion in the North-West Mediterranean Sea. Seven species including crustaceans, sharks and teleost fish, previously analysed for their total mercury (T-Hg) concentrations and their stable carbon and nitrogen isotope compositions, were considered for a meta-analysis. In addition, methylated mercury forms (or methyl-mercury, Me-Hg) were analysed. Mediterranean organisms presented systematically lower sizes than Atlantic ones, and lower δ 13 C and δ 15 N values, the latter values especially highlighting the more oligotrophic character of Mediterranean waters. Mediterranean individuals also showed significantly higher T-Hg and Me-Hg concentrations. Conversely, Me-Hg/T-Hg ratios were higher than 85% for all species, and quite similar between systems. Finally, the biomagnification power of Hg was different between systems when considering T-Hg, but not when considering Me-Hg, and was not different between the Hg forms within a given system. Overall, the different parameters showed the crucial role of the low primary productivity and its effects rippling through the compared ecosystems in the higher Hg bioaccumulation seen in organisms from oligotrophic Mediterranean waters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Agricultural wetlands as potential hotspots for mercury bioaccumulation: Experimental evidence using caged fish

    USGS Publications Warehouse

    Ackerman, Joshua T.; Eagles-Smith, Collin A.

    2010-01-01

    Wetlands provide numerous ecosystem services, but also can be sources of methylmercury (MeHg) production and export. Rice agricultural wetlands in particular may be important sites for MeHg bioaccumulation due to their worldwide ubiquity, periodic flooding schedules, and high use by wildlife. We assessed MeHg bioaccumulation within agricultural and perennial wetlands common to California's Central Valley during summer, when the majority of wetland habitats are shallowly flooded rice fields. We introduced caged western mosquitofish (Gambusia affinis) within white rice (Oryza sativa), wild rice (Zizania palustris), and permanent wetlands at water inlets, centers, and outlets. Total mercury (THg) concentrations and body burdens in caged mosquitofish increased rapidly, exceeding baseline values at introduction by 135% to 1197% and 29% to 1566% among sites, respectively, after only 60 days. Mercury bioaccumulation in caged mosquitofish was greater in rice fields than in permanent wetlands, with THg concentrations at wetland outlets increasing by 12.1, 5.8, and 2.9 times over initial concentrations in white rice, wild rice, and permanent wetlands, respectively. In fact, mosquitofish caged at white rice outlets accumulated 721 ng Hg/fish in just 60 days. Mercury in wild mosquito fish and Mississippi silversides (Menidia audens) concurrently sampled at wetland outlets also were greater in white rice and wild rice than permanent wetlands. Within wetlands, THg concentrations and body burdens of both caged and wild fish increased from water inlets to outlets in white rice fields, and tended to not vary among sites in permanent wetlands. Fish THg concentrations in agricultural wetlands were high, exceeding 0.2 ??g/g ww in 82% of caged fish and 59% of wild fish. Our results indicate that shallowly flooded rice fields are potential hotspots for MeHg bioaccumulation and, due to their global prevalence, suggest that agricultural wetlands may be important contributors to MeHg contamination.

  10. An investigation into ciguatoxin bioaccumulation in sharks.

    PubMed

    Meyer, Lauren; Capper, Angela; Carter, Steve; Simpfendorfer, Colin

    2016-09-01

    Ciguatoxins (CTXs) produced by benthic Gambierdiscus dinoflagellates, readily biotransform and bioaccumulate in food chains ultimately bioconcentrating in high-order, carnivorous marine species. Certain shark species, often feeding at, or near the top of the food-chain have the ability to bioaccumulate a suite of toxins, from both anthropogenic and algal sources. As such, these apex predators are likely sinks for CTXs. This assumption, in conjunction with anecdotal knowledge of poisoning incidents, several non-specific feeding trials whereby various terrestrial animals were fed suspect fish flesh, and a single incident in Madagascar in 1994, have resulted in the widespread acceptance that sharks may accumulate CTXs. This prompted a study to investigate original claims within the literature, as well as investigate CTX bioaccumulation in the muscle and liver of 22 individual sharks from nine species, across four locations along the east coast of Australia. Utilizing an updated ciguatoxin extraction method with HPLC-MS/MS, we were unable to detect P-CTX-1, P-CTX-2 or P-CTX-3, the three primary CTX congeners, in muscle or liver samples. We propose four theories to address this finding: (1) to date, methods have been optimized for teleost species and may not be appropriate for elasmobranchs, or the CTXs may be below the limit of detection; (2) CTX may be biotransformed into elasmobranch-specific congeners as a result of unique metabolic properties; (3) 22 individuals may be an inadequate sample size given the rare occurrence of high-order ciguatoxic organisms and potential for CTX depuration; and (4) the ephemeral nature and inconsistent toxin profiles of Gambierdiscus blooms may have undermined our classifications of certain areas as CTX hotspots. These results, in combination with the lack of clarity within the literature, suggest that ciguatoxin bioaccumulation in sharks remains elusive, and warrants further investigation to determine the dynamics of toxin production, accumulation and transformation throughout the entire food-web. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Crop bioaccumulation and human exposure of perfluoroalkyl acids through multi-media transport from a mega fluorochemical industrial park, China.

    PubMed

    Liu, Zhaoyang; Lu, Yonglong; Shi, Yajuan; Wang, Pei; Jones, Kevin; Sweetman, Andrew J; Johnson, Andrew C; Zhang, Meng; Zhou, Yunqiao; Lu, Xiaotian; Su, Chao; Sarvajayakesavaluc, Suriyanarayanan; Khan, Kifayatullah

    2017-09-01

    Significant quantities of perfluoroalkyl acids (PFAAs) are released to the environment from fluorochemical manufacturing processes through wastewater discharge and air emission in China, which may lead to human exposure and health risks through crop bioaccumulation from PFAAs-contaminated soil and irrigation water. This paper systematically studied the distribution and transport of PFAAs in agricultural soil, irrigation water and precipitation, followed by crop bioaccumulation and finally human exposure of PFAAs within a 10km radius around a mega-fluorochemical industrial park (FIP). Hotspots of contamination by PFAAs were found near the FIP and downstream of the effluent discharge point with the maximum concentrations of 641ng/g in agricultural soil, 480ng/g in wheat grain, 58.8ng/g in maize grain and 4,862ng/L in precipitation. As the distance increased from the FIP, PFAAs concentrations in all media showed a sharp initial decrease followed by a moderate decline. Elevated PFAA concentrations in soil and grains were still present within a radius of 10 km of the FIP. The soil contamination was associated with the presence of PFAAs in irrigation water and precipitation, and perfluorooctanoic acid (PFOA) was the dominant PFAA component in soil. However, due to bioaccumulation preference, short-chain perfluoroalkyl carboxylic acids (PFCAs), especially perfluorobutanoic acid (PFBA), became the major PFAA contaminants in grains of wheat and maize. The bioaccumulation factors (BAFs) for both grains showed a decrease with increasing chain length of PFAAs (approximately 0.5 log decrease per CF 2 group). Compared to maize grain, wheat grain showed higher BAFs, possibly related to its higher protein content. The PFCA (C4-C8) concentrations (on a log 10 basis) in agricultural soil and grain were found to show a linear positive correlation. Local human exposure of PFOA via the consumption of contaminated grains represents a health risk for local residents, especially for toddlers and children. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Modelling the bioaccumulation of persistent organic pollutants in agricultural food chains for regulatory exposure assessment.

    PubMed

    Takaki, Koki; Wade, Andrew J; Collins, Chris D

    2017-02-01

    New models for estimating bioaccumulation of persistent organic pollutants in the agricultural food chain were developed using recent improvements to plant uptake and cattle transfer models. One model named AgriSim was based on K OW regressions of bioaccumulation in plants and cattle, while the other was a steady-state mechanistic model, AgriCom. The two developed models and European Union System for the Evaluation of Substances (EUSES), as a benchmark, were applied to four reported food chain (soil/air-grass-cow-milk) scenarios to evaluate the performance of each model simulation against the observed data. The four scenarios considered were as follows: (1) polluted soil and air, (2) polluted soil, (3) highly polluted soil surface and polluted subsurface and (4) polluted soil and air at different mountain elevations. AgriCom reproduced observed milk bioaccumulation well for all four scenarios, as did AgriSim for scenarios 1 and 2, but EUSES only did this for scenario 1. The main causes of the deviation for EUSES and AgriSim were the lack of the soil-air-plant pathway and the ambient air-plant pathway, respectively. Based on the results, it is recommended that soil-air-plant and ambient air-plant pathway should be calculated separately and the K OW regression of transfer factor to milk used in EUSES be avoided. AgriCom satisfied the recommendations that led to the low residual errors between the simulated and the observed bioaccumulation in agricultural food chain for the four scenarios considered. It is therefore recommended that this model should be incorporated into regulatory exposure assessment tools. The model uncertainty of the three models should be noted since the simulated concentration in milk from 5th to 95th percentile of the uncertainty analysis often varied over two orders of magnitude. Using a measured value of soil organic carbon content was effective to reduce this uncertainty by one order of magnitude.

  13. Lettuce irrigated with contaminated water: Photosynthetic effects, antioxidative response and bioaccumulation of microcystin congeners.

    PubMed

    Bittencourt-Oliveira, Maria do Carmo; Cordeiro-Araújo, Micheline Kézia; Chia, Mathias Ahii; Arruda-Neto, João Dias de Toledo; de Oliveira, Ênio Tiago; dos Santos, Flávio

    2016-06-01

    The use of microcystins (MCs) contaminated water to irrigate crop plants represents a human health risk due to their bioaccumulation potential. In addition, MCs cause oxidative stress and negatively influence photosynthetic activities in plants. The present study was aimed at investigating the effect of MCs on photosynthetic parameters and antioxidative response of lettuce. Furthermore, the bioaccumulation factor (BAF) of total MCs, MC-LR and MC-RR in the vegetable after irrigation with contaminated water was determined. Lettuce crops were irrigated for 15 days with water containing cyanobacterial crude extracts (Microcystis aeruginosa) with MC-LR (0.0, 0.5, 2.0, 5.0 and 10.0 µg L(-1)), MC-RR (0.0, 0.15, 0.5, 1.5 and 3.0 µg L(-1)) and total MCs (0.0, 0.65, 2.5, 6.5 and 13.0 µg L(-1)). Increased net photosynthetic rate, stomatal conductance, leaf tissue transpiration and intercellular CO2 concentration were recorded in lettuce exposed to different MCs concentrations. Antioxidant response showed that glutathione S-transferase activity was down-regulated in the presence of MCs. On the other hand, superoxide dismutase, catalase and peroxidase activities were upregulated with increasing MCs concentrations. The bioaccumulation factor (BAF) of total MCs and MC-LR was highest at 6.50 and 5.00 µg L(-1), respectively, while for MC-RR, the highest BAF was recorded at 1.50 µg L(-1) concentration. The amount of total MCs, MC-LR and MC-RR bioacumulated in lettuce was highest at the highest exposure concentrations. However, at the lowest exposure concentration, there were no detectable levels of MC-LR, MC-RR and total MCs in lettuce. Thus, the bioaccumulation of MCs in lettuce varies according to the exposure concentration. In addition, the extent of physiological response of lettuce to the toxins relies on exposure concentrations. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. A National Pilot Study of Mercury Contamination of Aquatic Ecosystems Along Multiple Gradients: Bioaccumulation in Fish

    USGS Publications Warehouse

    Brumbaugh, William G.; Krabbenhoft, David P.; Helsel, Dennis R.; Wiener, James G.; Echols, Kathy R.

    2001-01-01

    Water, sediment, and fish were sampled in the summer and fall of 1998 at 106 sites from 20 U.S. watershed basins to examine relations of mercury (Hg) and methylmercury (MeHg) in aquatic ecosystems. Bioaccumulation of Hg in fish from these basins was evaluated in relation to species, Hg and MeHg in surficial sediment and water, and watershed characteristics. Bioaccumulation was strongly (positively) correlated with MeHg in water (r = 0.63, p < 0.001) but only moderately with the MeHg in sediment (r = 0.33, p < 0.001) or total Hg in water (r = 0.28, p < 0.01). Of the other significantly measured parameters, pH, DOC, sulfate, sediment LOI, and the percent wetlands of each basin were also significantly correlated with Hg bioaccumulation in fish. The best model for predicting Hg bioaccumulation included Me Hg in water, PH of the water, % wetlands in the basin, and the AVS content of the sediment. These four variables accounted for 45% of the variability of the fish fillet Hg concentration normalized (divided) by total length; however, the majority was described by MeHg in water. A MeHg water concentration 0.12 ng/L was on average, associated with a fish fillet Hg concentration of 0.3 mg/kg wet weight for an age-3 fish when all species were considered. For age-3 largemouth bass, a MeHg water concentration of 0.058 ng/L was associated with the 0.3 mg/kg fillet concentration. Based on rankings for Hg in sediment, water, and fish, sampling sites from the following five study basins had the greatest Hg contamination: Nevada Basin and Range, South Florida Basin, Sacramento River Basin (California), Santee River Basin and Caostal Drainages (South Carolina), and the Long Island and New Jersey Coastal DRainags. A sampling and analysis strategy based on this pilot study is planned for all USGS/NAWQA study units over the next decade.

  15. Regulatory Evaluation of Petroleum Hydrocarbons in Dredged Material: Proceedings of a Workshop Held in Vicksburg, Mississippi on 15-17 March 1988

    DTIC Science & Technology

    1990-07-01

    in Daphnia magna" 8909 Draft TN: Effects of Petroleum Hydrocarbon Bioaccumulation in Aquatic Animals 9009 Input to EPA/CE Implementation Manuals CONT...database for bioaccumulation of the 15 PAHs as indicative of levels of concern for petroleum hydrocarbons in marine and freshwater. ASSESSMENT OF THE PROBLEM...mc I LEIU OCy, JMISCELLANEOUS PAPER EL-90-11 of EREGULATORY EVALUATION OF PETROLEUM HYDROCARBONS IN DREDGED MATERIAL PROCEEDINGS OF A WORKSHOP

  16. Influence of phosphate on toxicity and bioaccumulation of arsenic in a soil isolate of microalga Chlorella sp.

    PubMed

    Bahar, Md Mezbaul; Megharaj, Mallavarapu; Naidu, Ravi

    2016-02-01

    In this study, the toxicity, biotransformation and bioaccumulation of arsenite and arsenate in a soil microalga, Chlorella sp., were investigated using different phosphate levels. The results indicated that arsenate was highly toxic than arsenite to the alga, and the phosphate limitation in growth media greatly enhanced arsenate toxicity. The uptake of arsenate in algal cells was more than that of arsenite, and the predominant species in the growth media was arsenate after 8 days of exposure to arsenite or arsenate, indicating arsenite oxidation by this microalga. Arsenate reduction was also observed when the alga was incubated in a phosphate-limiting growth medium. Similar to the process of biotransformation, the alga accumulated more arsenic when it was exposed to arsenate and preferably more in a phosphate-limiting condition. Although phosphate significantly influences the biotransformation and bioaccumulation of arsenic, the oxidizing ability and higher accumulation capacity of this alga have great potential for its application in arsenic bioremediation.

  17. Copper and lead bioaccumulation by Acacia retinoides and Eucalyptus torquata in sites contaminated as a consequence of extensive ancient mining activities in Cyprus.

    PubMed

    Pyatt, F B

    2001-09-01

    Aspects of the industrial archaeology of the northwestern part of the island of Cyprus are outlined. Wastes resultant from copper mining activities of approximately two millennia ago continue to exert an important influence on organisms. Detailed chemical analysis of two tree species growing on archaeologically important metalliferous spoil tips has indicated their ability to bioaccumulate heavy metals and sulfur primarily from the substratum; the bioaccumulation and biomagnification of lead and sulfur are particularly marked in both Acacia and Eucalyptus. The concentrations of elements in different parts of the two tree species are discussed and partitioning is noted together with the fact that while the pod of Acacia and the fruit capsule of Eucalyptus may have an enhanced metal loading, the values in the seeds are much reduced; the importance of this is discussed. The seeds of Acacia differ chemically from those of Eucalyptus. The importance of these plants as biomonitors of environmental quality is noted. Copyright 2001 Academic Press.

  18. A comparative study on capability of different tree species in accumulating heavy metals from soil and ambient air.

    PubMed

    Alahabadi, Ahmad; Ehrampoush, Mohammad Hassan; Miri, Mohammad; Ebrahimi Aval, Hamideh; Yousefzadeh, Samira; Ghaffari, Hamid Reza; Ahmadi, Ehsan; Talebi, Parvaneh; Abaszadeh Fathabadi, Zeynab; Babai, Fatemeh; Nikoonahad, Ali; Sharafi, Kiomars; Hosseini-Bandegharaei, Ahmad

    2017-04-01

    Heavy metals (HMs) in the urban environment can be bio-accumulated by plant tissues. The aim of this study was to compare fourteen different tree species in terms of their capability to accumulate four airborne and soilborne HMs including; zinc (Zn), copper (Cu), lead (Pb), and cadmium (Cd). Samplings were performed during spring, summer, and fall seasons. To compare bioaccumulation ability, bio-concentration factor (BCF), comprehensive bio-concentration index (CBCI), and metal accumulation index (MAI) were applied. Species with the highest accumulation for single metal which shown using BCF did not have the highest CBCI and MAI. Based on CBCI and MAI, Pinus eldarica (7.74), Wistaria sinensis (8.82), Morus alba (8.7), and Nigral morus (27.15) had the highest bioaccumulation capacity of HMs, respectively. Therefore, these species can be used for phytoextraction of HMs pollution and green and buffer zone in the urban. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Bioaccumulation of Metals in Tissues of Seahorses Collected from Coastal China.

    PubMed

    Zhang, Wei; Zhang, Yanhong; Zhang, Li; Lin, Qiang

    2016-03-01

    Seahorses, which have been used in Chinese traditional medicine, are poor swimmers and easily affected by regional ecological conditions. In this study, we investigated the bioaccumulation of nine metals in different tissues of four seahorse species (Hippocampus trimaculatus, H. histrix, H. kelloggi, and H. kuda) from six locations along the Chinese coast. The present study found relatively low concentrations of metals in the seahorses compared with those in other marine fishes. There was a location-dependent variation in metal concentrations in the seahorses, especially between developed and less developed cities. Results also showed metal concentrations varied among different seahorse species and tissues, with H. kelloggi having higher bioaccumulation ability compared with H. trimaculatus and higher metal levels were found in visceral mass, muscle, and skin tissues than those in brain, lips gill, endoskeleton, and exoskeleton tissues in the seahorses. Among different metals, Mg had the highest tissue concentrations in all the seahorses, followed by Al and Mn.

  20. Bioaccumulation of heavy metals by freshwater algal species of Bhavnagar, Gujarat, India.

    PubMed

    Jaiswar, Santial; Kazi, Mudassar Anisoddin; Mehta, Shailesh

    2015-11-01

    The present study investigated copper, cadmium, lead and zinc accumulation in algal species Oedogonium, Cladophora, Oscillatoria and Spirogyra from freshwater habitats of Bhavnagar, India. Eight different locations were periodically sampled during August 2009 to March 2011. The general trend of heavy metal concentrations in all the algal species in present study (except at few stations), were found to be in the following order: Zn > Cu > Pb > Cd. Highest accumulation of Cu was recorded in Oedogonium, while Cladophora showed highest accumulation of Pb signifying a good bioaccumulator. Oscillatoria and Oedogonium were highest Zn accumulating algae which showed significant difference between the means at P < 0.05. ANOVA was performed for comparing significance mean between the groups and within the group for heavy metals in water. The concentration of heavy metals in water was in the following order: Zn > Cu > Pb > Cd. The present study showed that Oedogonium, Cladophora, Oscillatoria and Spirogyra were excellent bioaccumulator and could be utilized as biomonitoring agents in water bodies receiving waste contaminated by metals.

  1. Pollutant bioaccumulation in the California spiny lobster (Panulirus interruptus) in San Diego Bay, California, and potential human health implications.

    PubMed

    Loflen, Chad L; Buck, Travis; Bonnema, Autumn; Heim, Wesley A

    2018-03-01

    While the California spiny lobster (Panulirus interruptus) is an important commercial and recreational fishery species in California, there is a lack of data on bioaccumulation for the species. This study examined pollutant tissue concentrations in lobsters from San Diego Bay, California. Observed lobster pollutant tissue concentrations in tail muscle were compared to State of California pollutant advisory levels. Concentrations were then used to conduct risk assessment using catch data from the California Department of Fish and Wildlife. Study results found little bioaccumulation of organic pollutants in tail tissue, likely due to low observed lipids. Mercury was present, predominantly in methyl form, at concentrations above advisory levels. Recreational catch data for San Diego Bay showed increased non-cancer risk for fishers at the 90th percentile or greater of reported annual catch. Further studies should focus on non-tail tissues, as exploratory whole lobster samples (n = 2) showed elevated organic pollutants and metals. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Bioaccumulation of perfluoroalkyl substances in exploited fish and crustaceans: Spatial trends across two estuarine systems.

    PubMed

    Taylor, Matthew D; Beyer-Robson, Janina; Johnson, Daniel D; Knott, Nathan A; Bowles, Karl C

    2018-06-01

    Spatial patterns in perfluoroalkyl substances were quantified for exploited fish and crustaceans across two contrasting Australian estuaries (Port Stephens and Hunter River). Perfluorooctane sulfonate (PFOS) was detected in 77% of composites from Port Stephens and 100% of composites from Hunter River. Most species from Port Stephens showed a clear trend with distance to source. In contrast, only a subset of species showed this trend in the Hunter River, potentially due to species movement patterns and differing hydrology. Spatial modelling showed that PFOS concentrations were expected to exceed the relevant trigger value up to ~13,500 m from the main point source for Port Stephens and ~9000 m for the Hunter River. These results represent the first major investigation of bioaccumulation of PFASs in exploited species in Australian estuaries, and highlight various factors that can contribute to spatial patterns in bioaccumulation. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  3. Bioaccumulation and biotransformation of arsenic compounds in Hediste diversicolor (Muller 1776) after exposure to spiked sediments.

    PubMed

    Gaion, Andrea; Sartori, Davide; Scuderi, Alice; Fattorini, Daniele

    2014-05-01

    This study focused on the exposure of the common ragworm Hediste diversicolor (Müller 1776) to sediments enriched with different arsenic compounds, namely arsenate, dimethyl-arsinate, and arsenobetaine. Speciation analysis was carried out on both the spiked sediments and the exposed polychaetes in order to investigate H. diversicolor capability of arsenic bioaccumulation and biotransformation. Two levels of contamination (acute and moderate dose) were chosen for enriched sediments to investigate possible differences in the arsenic bioaccumulation patterns. The highest value of arsenic in tissues was reached after 15 days of exposure to dimethyl-arsinate (acute dose) spiked sediment (1,172 ± 176 μg/g). A significant increase was also obtained in worms exposed both to arsenate and arsenobetaine. Speciation analysis showed that trimethyl-arsine oxide was the predominant chemical form in tissues of H. diversicolor exposed to all the spiked sediments, confirming the importance of this intermediate in biological transformation of arsenic.

  4. Bioaccumulation of heavy metals in marine organisms and sediments from Admiralty Bay, King George Island, Antarctica.

    PubMed

    Trevizani, Tailisi Hoppe; Figueira, Rubens Cesar Lopes; Ribeiro, Andreza Portella; Theophilo, Carolina Yume Sawamura; Majer, Alessandra Pereira; Petti, Monica Angélica Varella; Corbisier, Thais Navajas; Montone, Rosalinda Carmela

    2016-05-15

    The Antarctic continent is considered a low-impact environment; however, there is a tendency to increase the contaminants' levels due to human activities in the research stations. In this study, As, Cd, Cr, Cu, Hg, Ni, Pb and Zn levels in sediment and biota were determined in the environmental samples from Admiralty Bay (King George Island, Antarctica) collected in 2003. The results demonstrated high concentrations of Cu and Zn in the sediments. There was bioaccumulation of As in the biota from Admiralty Bay and bioaccumulation of Zn specifically in the biota from Martel Inlet. In addition, the results were useful in order to understand the heavy metal levels for the pre-accident condition of Comandante Ferraz Antarctic Station, where an accident occurred in 2012, and also for the comparison with current conditions within the monitoring work developed by INCT-APA (National Institute of Science and Technology for Environmental Research Antarctic). Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Enantiomerization and enantioselective bioaccumulation of metalaxyl in Tenebrio molitor larvae.

    PubMed

    Gao, Yongxin; Wang, Huili; Qin, Fang; Xu, Peng; Lv, Xiaotian; Li, Jianzhong; Guo, Baoyuan

    2014-02-01

    The enantiomerization and enantioselective bioaccumulation of metalaxyl by a single dose of exposure to Tenebrio molitor larvae under laboratory condition were studied by high-performance liquid chromatography tandem mass spectroscopy (HPLC-MS/MS) based on a ChiralcelOD-3R [cellulosetris-tris-(3, 5-dichlorophenyl-carbamate)] column. Exposure of enantiopure R-metalaxyl and S-metalaxyl in Tenebrio molitor larvae exhibited significant enantiomerization, with formation of the R enantiomers from the S enantiomers, and vice versa, which might be attributed to the chiral pesticide catalyzed by a certain enzyme in Tenebrio molitor larvae. Enantiomerization was not observed in wheat bran during the period of 21 d. In addition, bioaccumulation of rac-metalaxyl in Tenebrio molitor larvae was enantioselective with a preferential accumulation of S-metalaxyl. These results showed that enantioselectivity was caused not only by actual degradation and metabolism but also by enantiomerization, which was an important process in the environmental fate and behavior of metalaxyl enantiomers. Copyright © 2013 Wiley Periodicals, Inc.

  6. Bioaccumulation and trophic transfer of pharmaceuticals in food webs from a large freshwater lake.

    PubMed

    Xie, Zhengxin; Lu, Guanghua; Yan, Zhenhua; Liu, Jianchao; Wang, Peifang; Wang, Yonghua

    2017-03-01

    Pharmaceuticals are increasingly detected in environmental matrices, but information on their trophic transfer in aquatic food webs is insufficient. This study investigated the bioaccumulation and trophic transfer of 23 pharmaceuticals in Taihu Lake, China. Pharmaceutical concentrations were analyzed in surface water, sediments and 14 aquatic species, including plankton, invertebrates and fish collected from the lake. The median concentrations of the detected pharmaceuticals ranged from not detected (ND) to 49 ng/L in water, ND to 49 ng/g dry weight (dw) in sediments, and from ND to 130 ng/g dw in biota. Higher concentrations of pharmaceuticals were found in zoobenthos relative to plankton, shrimp and fish muscle. In fish tissues, the observed pharmaceutical contents in the liver and brain were generally higher than those in the gills and muscle. Both bioaccumulation factors (median BAFs: 19-2008 L/kg) and biota-sediment accumulation factors (median BSAFs: 0.0010-0.037) indicated a low bioaccumulation potential for the target pharmaceuticals. For eight of the most frequently detected pharmaceuticals in food webs, the trophic magnification factors (TMFs) were analyzed from two different regions of Taihu Lake. The TMFs for roxithromycin, propranolol, diclofenac, ibuprofen, ofloxacin, norfloxacin, ciprofloxacin and tetracycline in the two food webs ranged from 0.28 to 1.25, suggesting that none of these pharmaceuticals experienced trophic magnification. In addition, the pharmaceutical TMFs did not differ significantly between the two regions in Taihu Lake. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Forecasting fish biomasses, densities, productions, and bioaccumulation potentials of mid-atlantic wadeable streams.

    PubMed

    Barber, M Craig; Rashleigh, Brenda; Cyterski, Michael J

    2016-01-01

    Regional fishery conditions of Mid-Atlantic wadeable streams in the eastern United States are estimated using the Bioaccumulation and Aquatic System Simulator (BASS) bioaccumulation and fish community model and data collected by the US Environmental Protection Agency's Environmental Monitoring and Assessment Program (EMAP). Average annual biomasses and population densities and annual productions are estimated for 352 randomly selected streams. Realized bioaccumulation factors (BAF) and biomagnification factors (BMF), which are dependent on these forecasted biomasses, population densities, and productions, are also estimated by assuming constant water exposures to methylmercury and tetra-, penta-, hexa-, and hepta-chlorinated biphenyls. Using observed biomasses, observed densities, and estimated annual productions of total fish from 3 regions assumed to support healthy fisheries as benchmarks (eastern Tennessee and Catskill Mountain trout streams and Ozark Mountains smallmouth bass streams), 58% of the region's wadeable streams are estimated to be in marginal or poor condition (i.e., not healthy). Using simulated BAFs and EMAP Hg fish concentrations, we also estimate that approximately 24% of the game fish and subsistence fishing species that are found in streams having detectable Hg concentrations would exceed an acceptable human consumption criterion of 0.185 μg/g wet wt. Importantly, such streams have been estimated to represent 78.2% to 84.4% of the Mid-Atlantic's wadeable stream lengths. Our results demonstrate how a dynamic simulation model can support regional assessment and trends analysis for fisheries. © 2015 SETAC.

  8. Bioaccumulation and translocation of polyhalogenated compounds in rice (Oryza sativa L.) planted in paddy soil collected from an electronic waste recycling site, South China.

    PubMed

    Zhang, Yun; Luo, Xiao-Jun; Mo, Ling; Wu, Jiang-Ping; Mai, Bi-Xian; Peng, Yong-Hong

    2015-10-01

    The bioaccumulation and translocation of polyhalogenated compounds (PHCs) in rice planted in the paddy soils of an electronic waste (e-waste) recycling site were investigated, along with the effect of contaminated soils on rice growth. The PHCs included polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane (DBDPE), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), and dechlorane plus (DPs). The morphological development and all measured physiological parameters of rice plants except for peroxidase were significantly inhibited by e-waste contaminated soils. Specifically, soil-root bioaccumulation factors (RCFs) increased with increasing logarithm of octanol-water partition coefficient (logKow) for PCBs, but decreased for PBDEs. During translocation from root to stem, translocation factors (TFs) and logKow were positively correlated. However, the accumulation mechanism in the leaf was concentration-dependent. In the high concentration exposure group, translocation play more important role in determination PHCs burden in leaf than atmospheric uptake, with logTF (from stem to leaf) being positively correlated with logKow. In contrast, in the low exposure and control groups, logTF (from stem to leaf) was negatively correlated with logKow. In addition, Syn-DP was selectively accumulated in plant tissues. In conclusion, this study demonstrates that e-waste contaminated soils affect rice growth, revealed the rule of the bioaccumulation and translocation of PHCs in rice plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Influence of temperature on fluoride toxicity and bioaccumulation in the nonindigenous freshwater mollusk Dreissena polymorpha Pallas, 1769.

    PubMed

    Del Piero, Stefania; Masiero, Luciano; Casellato, Sandra

    2012-11-01

    Fluoride toxicity and bioaccumulation tests (short- and long-term) were performed on the nonindigenous freshwater mollusk Dreissena polymorpha at two different temperatures: 17 ± 0.5°C and 22 ± 0.5°C. Concentrations that did not result in toxicity in short-term experiments (96 h) induced effects over a longer period (17 weeks), especially at the warmest temperature, highlighting the role of this parameter. Fluoride bioaccumulation increased linearly with increasing concentration and temperature, reaching 4,202 µg F(-)/g dry weight in soft tissues only after 48 h of exposure at 22°C at a concentration of 640 mg F(-)/L. Comparing tolerance to fluoride and bioaccumulation values of this species with those of other freshwater invertebrates, D. polymorpha was much more resistant and revealed its capacity to accumulate a great quantity of this xenobiotic substance. The results of the present study demonstrated that fluoride accumulation in the soft tissue of this animal was much higher (up to 1,409.6 µg F(-)/g dry wt) than that in its shell (up to 706.4 µg F(-)/g dry wt). If we consider this datum and the fact that D. polymorpha is widespread in many aquatic ecosystems around the world, representing a food source for many birds and other vertebrates, we must acknowledge the possibility that it can represent a serious danger in view of fluoride biomagnification in the aquatic environment. Copyright © 2012 SETAC.

  10. Tissue Distribution and Whole Body Burden of the Chlorinated Polyfluoroalkyl Ether Sulfonic Acid F-53B in Crucian Carp (Carassius carassius): Evidence for a Highly Bioaccumulative Contaminant of Emerging Concern.

    PubMed

    Shi, Yali; Vestergren, Robin; Zhou, Zhen; Song, Xiaowei; Xu, Lin; Liang, Yong; Cai, Yaqi

    2015-12-15

    Following the global actions to phase out perfluoroctanesulfonic acid (PFOS) a large number of alternative per- and polyfluoroalkyl substances, with poorly defined hazard properties, are being used in increasing quantities. Here, we report on the first detection of the chlorinated polyfluoroalkyl ether sulfonic acid F-53B in biological samples and determine the tissue distribution and whole body bioaccumulation factors (BAFwhole body) in crucian carp (Carassius carassius). Analysis of fish samples from Xiaoqing River (XR) and Tangxun Lake (TL) demonstrated a similar level of F-53B contamination with median concentrations in blood of 41.9 and 20.9 ng/g, respectively. Tissue/blood ratios showed that distribution of F-53B primarily occurs to the kidney (TL: 0.48, XR: 0.54), gonad (TL: 0.36, XR: 0.54), liver (TL: 0.38, XR: 0.53), and heart (TL: 0.47, XR: 0.47). Median Log BAFwhole body values for F-53B (XR: 4.124, TL: 4.322) exceeded regulatory bioaccumulation criterion and were significantly higher than those of PFOS in the same data sets (XR: 3.430, TL: 3.279). On the basis of its apparent omnipresence and strong bioaccumulation propensity, it is hypothesized that F-53B could explain a significant fraction of previously unidentified organofluorine in biological samples from China, and regulatory actions for this compound are encouraged.

  11. Bioaccumulation of Multiwall Carbon Nanotubes in Tetrahymena thermophila by Direct Feeding or Trophic Transfer

    DOE PAGES

    Mortimer, Monika; Petersen, Elijah J.; Buchholz, Bruce A.; ...

    2016-07-11

    We report that consumer goods contain multiwall carbon nanotubes (MWCNTs) that could be released during product life cycles into the environment, where their effects are uncertain. Here, we assessed MWCNT bioaccumulation in the protozoan Tetrahymena thermophila via trophic transfer from bacterial prey (Pseudomonas aeruginosa) versus direct uptake from growth media. The experiments were conducted using 14C-labeled MWCNT ( 14C-MWCNT) doses at or below 1 mg/L, which proved subtoxic since there were no adverse effects on the growth of the test organisms. A novel contribution of this study was the demonstration of the ability to quantify MWCNT bioaccumulation at low (submore » μg/kg) concentrations accomplished by employing accelerator mass spectrometry (AMS). After the treatments with MWCNTs at nominal concentrations of 0.01 mg/L and 1 mg/L, P. aeruginosa adsorbed considerable amounts of MWCNTs: (0.18 ± 0.04) μg/mg and (21.9 ± 4.2) μg/mg bacterial dry mass, respectively. At the administered MWCNT dose of 0.3 mg/L, T. thermophila accumulated up to (0.86 ± 0.3) μg/mg and (3.4 ± 1.1) μg/mg dry mass by trophic transfer and direct uptake, respectively.Finally, aAlthough MWCNTs did not biomagnify in the microbial food chain, MWCNTs bioaccumulated in the protozoan populations regardless of the feeding regime, which could make MWCNTs bioavailable for organisms at higher trophic levels.« less

  12. Lead (Pb) bioaccumulation; genera Bacillus isolate S1 and SS19 as a case study

    NASA Astrophysics Data System (ADS)

    Arifiyanto, Achmad; Apriyanti, Fitria Dwi; Purwaningsih, Puput; Kalqutny, Septian Hary; Agustina, Dyah; Surtiningsih, Tini; Shovitri, Maya; Zulaika, Enny

    2017-06-01

    Lead (Pb) includes a group of large heavy metal in nature was toxic either on animal or human and did not provide an advantage function biologically. Bacillus isolates S1 and SS19 known resistant to lead up to 50 mg / L PbCl2. In this research will be examined whether genera Bacillus isolates S1 and SS19 could accumulate metal lead (Pb), their capability in accumulating and profile protein differences when the bacteria genera Bacillus isolates S1 and SS19 get exposed metal lead (Pb). Inoculum at age ± 9 hours are used, with a Nutrient Broth (NB) containing 50, 75 and 100 mg / L PbCl2. Inductively Coupled Plasma Atomic Emission Spectrometry (ICP) used to assessed Pb2+ concentrations. Bioaccumulation levels of Pb2+ by Bacillus isolate S1 and SS19 related to the distinction of beginning concentration to the final concentration. Bacillus isolate S1 achieved 53% and 51% bioaccumulation efficiency rate in lead presence concentration (75 and 100 mg/L) and 51% (50 mg/L). Another way Bacillus isolate SS19 was able to accumulate 57% (50 mg/L PbCl2) and kept stable on 36% bioaccumulation efficiency rate (75 and 100 mg/L PbCl2). Regarding SDS-PAGE electrophoresis protein profile result, protein in ± 127 kDa, molecule mass detected in the presence of Lead for Bacillus isolate S1.

  13. Bioaccumulation and biotransformation of brominated and chlorinated contaminants and their metabolites in ringed seals (Pusa hispida) and polar bears (Ursus maritimus) from East Greenland.

    PubMed

    Letcher, Robert J; Gebbink, Wouter A; Sonne, Christian; Born, Erik W; McKinney, Melissa A; Dietz, Rune

    2009-11-01

    We report on the comparative bioaccumulation, biotransformation and/or biomagnification from East Greenland ringed seal (Pusa hispida) blubber to polar bear (Ursus maritimus) tissues (adipose, liver and brain) of various classes and congeners of persistent chlorinated and brominated contaminants and metabolic by-products: polychlorinated biphenyls (PCBs), chlordanes (CHLs), hydroxyl (OH-) and methylsulfonyl (MeSO(2)-) PCBs, polybrominated biphenyls (PBBs), OH-PBBs, polybrominated diphenyl ether (PBDE) and hexabromocyclododecane (HBCD) flame retardants and OH- and methoxyl (MeO-) PBDEs, 2,2-dichloro-bis(4-chlorophenyl)ethene (p,p'-DDE), 3-MeSO(2)-p,p'-DDE, pentachlorophenol (PCP) and 4-OH-heptachlorostyrene (4-OH-HpCS). We detected all of the investigated contaminants in ringed seal blubber with high frequency, the main diet of East Greenland bears, with the exception of OH-PCBs and 4-OH-HpCS, which indicated that these phenolic contaminants were likely of metabolic origin and formed in the bears from accumulated PCBs and octachlorostyrene (OCS), respectively, rather than being bioaccumulated from a seal blubber diet. For all of the detectable sum of classes or individual organohalogens, in general, the ringed seal to polar bear mean BMFs for SigmaPCBs, p,p'-DDE, SigmaCHLs, SigmaMeSO(2)-PCBs, 3-MeSO(2)-p,p'-DDE, PCP, SigmaPBDEs, total-(alpha)-HBCD, SigmaOH-PBDEs, SigmaMeO-PBDEs and SigmaOH-PBBs indicated that these organohalogens bioaccumulate, and in some cases there was tissue-specific biomagnification, e.g., BMFs for bear adipose and liver ranged from 2 to 570. The blood-brain barrier appeared to be effective in minimizing brain accumulation as BMFs were

  14. The effect of sulfate on selenate bioaccumulation in two freshwater primary producers: A duckweed (Lemna minor) and a green alga (Pseudokirchneriella subcapitata).

    PubMed

    Lo, Bonnie P; Elphick, James R; Bailey, Howard C; Baker, Josh A; Kennedy, Christopher J

    2015-12-01

    Predicting selenium bioaccumulation is complicated because site-specific conditions, including the ionic composition of water, affect the bioconcentration of inorganic selenium into the food web. Selenium tissue concentrations were measured in Lemna minor and Pseudokirchneriella subcapitata following exposure to selenate and sulfate. Selenium accumulation differed between species, and sulfate reduced selenium uptake in both species, indicating that ionic constituents, in particular sulfate, are important in modifying selenium uptake by primary producers. © 2015 SETAC.

  15. Flow-through bioassay for measuring bioaccumulation of toxic substances from sediment

    USGS Publications Warehouse

    Mac, Michael J.; Edsall, Carol C.; Hesselberg, Robert J.; Sayers, Richard E.

    1984-01-01

    Over 10 million cubic meters of sediment are dredged annually from Great Lakes waterways. Because much of this material is taken from harbors, connecting channels, and other nearshore areas that often are contaminated with toxic substances, the sediments proposed for dredging need to be evaluated for the presence of bioavailable contaminants and the potential for toxicity to the biota. Sound decisions on the appropriate disposal of the dredged material can be made only after such an evaluation. Presently, no standardized procedure exists for evaluating dredged material in freshwater systems although current criteria for discharge of dredged material into marine water have been developed (USEPA/CE 1977). In the ocean discharge guideline, it is recommended that bioassays be conducted on liquid, solid, and suspended particulate phases of dredged material. because it appears that the solid phase has the greatest potential for environmental damage and because measurement of bioaccumulation must be made to evaluate sediments for disposal (USEPA/CE 1977, Seeyle and Mac 1983), we developed a bioassay for testing the solid phase of dredged material that measures the survival of organisms and, perhaps more important, the bioaccumulation of toxic substances by aquatic organisms from naturally contaminated sediments (Peddicord et al. 1980; Rubinstein et al. 1980, 1983; Seeyle st al. 1982), several have used testing methods that result in unacceptable mortality to control organisms (Bahnick et al. 1981, Prater et al. 1983). Our bioassay is intended to estimate the potential for bioaccumlation of contaminants from sediments that are not acutely toxic to test organisms, but are suspected of containing persistent contaminants. By using test organisms that are not highly susceptible to toxic compounds, the bioaccumulation test allows estimation of the potential food-chain accumulation of contaminants that may occur in local biota from surficial sediments. In practice, bioaccumulation observed in this bioassay by organisms exposed to test sediments (sediments to be dredged) would be compared to bioaccumulation observed from sediments collected from a reference site (e.g. a disposal site or open lake), and also from control sediments (relatively clean sediment). Decisions could then be based on a comparison of results between tests and reference sediments to determine if disposal would cause dehydration to the habitat, and between reference and control sediment to determine if even the reference material is seriously contaminated. Although the test is not intended to be a toxicity test per se, use of test, reference, and control sediments enables interpretation of any mortality of organisms that may occur during the bioassays. High mortality in bioassays with test or reference sediment would indicate acute toxicity of sediments in the project area. However if high mortality occurs in all three sediments, it can be assumed that the organisms were not in a healthy state at the time of testing. We describe the results of 10-day sediment bioassays in which both mortality and bioaccumulation were measured in four aquatic organisms. We exposed two infaunal organisms and two species of fish to test and control sediments in the laboratory.

  16. Bioaccumulation of total mercury in the earthworm Eisenia andrei.

    PubMed

    Le Roux, Shirley; Baker, Priscilla; Crouch, Andrew

    2016-01-01

    Earthworms are a major part of the total biomass of soil fauna and play a vital role in soil maintenance. They process large amounts of plant and soil material and can accumulate many pollutants that may be present in the soil. Earthworms have been explored as bioaccumulators for many heavy metal species such as Pb, Cu and Zn but limited information is available for mercury uptake and bioaccumulation in earthworms and very few report on the factors that influence the kinetics of Hg uptake by earthworms. It is known however that the uptake of Hg is strongly influenced by the presence of organic matter, hence the influence of ligands are a major factor contributing to the kinetics of mercury uptake in biosystems. In this work we have focused on the uptake of mercury by earthworms (Eisenia andrei) in the presence of humic acid (HA) under varying physical conditions of pH and temperature, done to assess the role of humic acid in the bioaccumulation of mercury by earthworms from soils. The study was conducted over a 5-day uptake period and all earthworm samples were analysed by direct mercury analysis. Mercury distribution profiles as a function of time, bioaccumulation factors (BAFs), first order rate constants and body burden constants for mercury uptake under selected conditions of temperature, pH as well as via the dermal and gut route were evaluated in one comprehensive approach. The results showed that the uptake of Hg was influenced by pH, temperature and the presence of HA. Uptake of Hg(2+) was improved at low pH and temperature when the earthworms in soil were in contact with a saturating aqueous phase. The total amount of Hg(2+) uptake decreased from 75 to 48 % as a function of pH. For earthworms in dry soil, the uptake was strongly influenced by the presence of the ligand. Calculated BAF values ranged from 0.1 to 0.8. Mercury uptake typically followed first order kinetics with rate constants determined as 0.2 to 1 h(-1).

  17. Bioaccumulation factors and the steady state assumption for cesium isotopes in aquatic foodwebs near nuclear facilities.

    PubMed

    Rowan, D J

    2013-07-01

    Steady state approaches, such as transfer coefficients or bioaccumulation factors, are commonly used to model the bioaccumulation of (137)Cs in aquatic foodwebs from routine operations and releases from nuclear generating stations and other nuclear facilities. Routine releases from nuclear generating stations and facilities, however, often consist of pulses as liquid waste is stored, analyzed to ensure regulatory compliance and then released. The effect of repeated pulse releases on the steady state assumption inherent in the bioaccumulation factor approach has not been evaluated. In this study, I examine the steady state assumption for aquatic biota by analyzing data for two cesium isotopes in the same biota, one isotope in steady state (stable (133)Cs) from geologic sources and the other released in pulses ((137)Cs) from reactor operations. I also compare (137)Cs bioaccumulation factors for similar upstream populations from the same system exposed solely to weapon test (137)Cs, and assumed to be in steady state. The steady state assumption appears to be valid for small organisms at lower trophic levels (zooplankton, rainbow smelt and 0+ yellow perch) but not for older and larger fish at higher trophic levels (walleye). Attempts to account for previous exposure and retention through a biokinetics approach had a similar effect on steady state, upstream and non-steady state, downstream populations of walleye, but were ineffective in explaining the more or less constant deviation between fish with steady state exposures and non-steady state exposures of about 2-fold for all age classes of walleye. These results suggest that for large, piscivorous fish, repeated exposure to short duration, pulse releases leads to much higher (137)Cs BAFs than expected from (133)Cs BAFs for the same fish or (137)Cs BAFs for similar populations in the same system not impacted by reactor releases. These results suggest that the steady state approach should be used with caution in any situation where reactor releases are episodic or pulse in nature, even if the magnitude of these releases is small. Copyright © 2012. Published by Elsevier Ltd.

  18. Resistance, bioaccumulation and solid phase extraction of uranium (VI) by Bacillus vallismortis and its UV-vis spectrophotometric determination.

    PubMed

    Ozdemir, Sadin; Oduncu, M Kadir; Kilinc, Ersin; Soylak, Mustafa

    2017-05-01

    Bioaccumulation, resistance and preconcentration of uranium(VI) by thermotolerant Bacillus vallismortis were investigated in details. The minimum inhibition concentration of (MIC) value of U(VI) was found as 85 mg/L and 15 mg/L in liquid and solid medium, respectively. Furthermore, the effect of various U(VI) concentrations on the growth of bacteria and bioaccumulation on B. vallismortis was examined in the liquid culture media. The growth was not significantly affected in the presence of 1.0, 2.5 and 5.0 mg/L U(VI) up to 72 h. The highest bioaccumulation value at 1 mg/L U(VI) concentration was detected at the 72nd hour (10 mg/g metal/dry bacteria), while the maximum bioaccumulation value at 5 mg/L U(VI) concentration was determined at the 48th hour (50 mg metal/dry bacteria). In addition to these, various concentration of U(VI) on α-amylase production was studied. The α-amylase activities at 0, 1, 2.5 and 5 mg/L U(VI) were found as 3313.2, 3845.2, 3687.1 and 3060.8 U/mg, respectively at 48th. Besides, uranium (VI) ions were preconcentrated with immobilized B. vallismortis onto multiwalled carbon nanotube (MWCNT) and were determined by UV-vis spectrophotometry. The surface macro structure and functionalities of B. vallismortis immobilized onto multiwalled carbon nanotube with and without U(VI) were examined by FT-IR and SEM. The optimum pH and flow rate for the biosorption of U(VI) were 4.0-5.0 and 1.0 mL/min, respectively. The quantitative elution occurred with 5.0 mL of 1 mol/L HCl. The loading capacity of immobilized B. vallismortis was determined as 23.6 mg/g. The certified reference sample was employed for the validation of developed solid phase extraction method. The new validated method was applied to the determination of U(VI) in water samples from Van Lake-Turkey. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Assessment of soil stabilization by chemical extraction and bioaccumulation using earthworm, Eisenia fetida

    NASA Astrophysics Data System (ADS)

    Lee, Byung-Tae; Abd Aziz, Azilah; Han, Heop Jo; Kim, Kyoung-Woong

    2014-05-01

    Soil stabilization does not remove heavy metals from contaminated soil, but lowers their exposures to ecosystem. Thus, it should be evaluated by measuring the fractions of heavy metals which are mobile and/or bioavailable in soils. The study compared several chemical extractions which intended to quantify the mobile or bioaccessible fractions with uptake and bioaccumulation by earthworm, Eisenia fetida. Soil samples were taken from the abandoned mine area contaminated with As, Cd, Cu, Pb and/or Zn. To stabilize heavy metals, the soils were amended with limestone and steel slag at 5% and 2% (w/w), respectively. All chemical extractions and earthworm tests were applied to both the contaminated and the stabilized soils with triplicates. The chemical extractions consisted of six single extractions which were 0.01M CaCl2 (unbufferred), EDTA or DTPA (chelating), TCLP (acidic), Mehlich 3 (mixture), and aqua regia (peudo-total). Sequential extractions were also applied to fractionate heavy metals in soils. In earthworm tests, worms were exposed to the soils for uptake of heavy metals. After 28 days of exposure to soils, worms were transferred to clean soils for elimination. During the tests, three worms were randomly collected at proper sampling events. Worms were rinsed with DI water and placed on moist filter paper for 48 h for depuration. Filter paper was renewed at 24 h to prevent coprophagy. The worms were killed with liquid nitrogen, dried in the oven, and digested with aqua regia for ICP-MS analysis. In addition to the bioaccumulation, several toxicity endpoints were observed such as burrowing time, mortality, cocoon production, and body weight changes. Toxicokinetics was applied to determine the uptake and elimination heavy metals by the earthworms. Bioaccumulation factor (BAF) was estimated using total metal concentrations and body burdens. Pearson correlation and simple linear regression were applied to evaluate the relationship between metal fractions by single extractions or sequential extractions with bioaccumulations. Finally, we discussed the advantages or disadvantages of simple chemical extractions which are commonly used to estimate the efficacy of stabilization.

  20. Differential bioaccumulation and translocation patterns in three mangrove plants experimentally exposed to iron. Consequences for environmental sensing.

    PubMed

    Arrivabene, Hiulana Pereira; Campos, Caroline Quenupe; Souza, Iara da Costa; Wunderlin, Daniel Alberto; Milanez, Camilla Rozindo Dias; Machado, Silvia Rodrigues

    2016-08-01

    Avicennia schaueriana, Laguncularia racemosa and Rhizophora mangle were experimentally exposed to increasing levels of iron (0, 10, 20 and 100 mg L(-1) added Fe(II) in Hoagland's nutritive medium). The uptake and translocation of iron from roots to stems and leaves, Fe-secretion through salt glands (Avicennia schaueriana and Laguncularia racemosa) as well as anatomical and histochemical changes in plant tissues were evaluated. The main goal of this work was to assess the diverse capacity of these plants to detect mangroves at risk in an area affected by iron pollution (Vitoria, Espírito Santo, Brazil). Results show that plants have differential patterns with respect to bioaccumulation, translocation and secretion of iron through salt glands. L. racemosa showed the best environmental sensing capacity since the bioaccumulation of iron in both Fe-plaque and roots was higher and increased as the amount of added-iron rose. Fewer changes in translocation factors throughout increasing added-iron were observed in this species. Furthermore, the amount of iron secreted through salt glands of L. racemosa was strongly inhibited when exposed to added-iron. Among three studied species, A. schaueriana showed the highest levels of iron in stems and leaves. On the other hand, Rhizophora mangle presented low values of iron in these compartments. Even so, there was a significant drop in the translocation factor between aerial parts with respect to roots, since the bioaccumulation in plaque and roots of R. mangle increased as iron concentration rose. Moreover, rhizophores of R. mangle did not show changes in bioaccumulation throughout the studied concentrations. So far, we propose L. racemosa as the best species for monitoring iron pollution in affected mangroves areas. To our knowledge, this is the first detailed report on the response of these plants to increasing iron concentration under controlled conditions, complementing existing data on the behavior of the same plants under field exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. A critical comparison of different approaches to sediment-quality assessments in the Santos Estuarine System in Brazil.

    PubMed

    Torres, Ronaldo J; Cesar, Augusto; Pastor, Victor A; Pereira, Camilo D S; Choueri, Rodrigo B; Cortez, Fernando S; Morais, Rodofley D; Abessa, Denis M S; do Nascimento, Marcos R L; Morais, Cassia R; Fadini, Pedro S; Casillas, Tomas A Del Valls; Mozeto, Antônio A

    2015-01-01

    This study focuses on the discussion of different lines of evidence (LoEs) applied to a sediment-quality assessment that considered the following: chemical concentrations of metals; polycyclic aromatic hydrocarbons (PAHs) in estuarine waters, sediments, and oysters (native and caged Crassostrea brasiliana); PAHs in semipermeable membrane devices (SPMDs); simultaneously extracted metals-acid volatile sulfides (SEM-AVS); benthic community assessment (the exploratory benthic index and the relative benthic index); chronic toxicity tests with the sea urchin Lytechinus variegatus; and bioaccumulation models. Significantly contaminated sediments from the Santos Estuarine System and the consequent toxicity of tested organisms were measured. Caged oysters presented bioaccumulation rates ≤2,500% of total PAH content and 200% of metal content when compared with control organisms from an uncontaminated area. SPMD results presented the same bioaccumulation pattern as caged oysters but at lower concentrations. Benthic communities presented some alterations, and there was a predominance of tolerant species in the inner part of the estuary. According to the SEM-AVS approach, metals should be assumed to be nonbioavailable, but experiments with transplanted C. brasiliana showed metal bioaccumulation, particularly in the cases of chromium, copper, mercury, and zinc. The weight-of-evidence approach was applied to compare and harmonize LoEs commonly used in sediment-quality assessments and to then classify estuary environments according to both their potential for having adverse effects on the biota and their possible ecological risks. All of the results of these approaches (except for SEM-AVS) were found to complement each other.

  2. Mercury contamination in deposited dust and its bioaccumulation patterns throughout Pakistan.

    PubMed

    Eqani, Syed Ali Musstjab Akber Shah; Bhowmik, Avit Kumar; Qamar, Sehrish; Shah, Syed Tahir Abbas; Sohail, Muhammad; Mulla, Sikandar I; Fasola, Mauro; Shen, Heqing

    2016-11-01

    Mercury (Hg) contamination of environment is a major threat to human health in developing countries like Pakistan. Human populations, particularly children, are continuously exposed to Hg contamination via dust particles due to the arid and semi-arid climate. However, a country wide Hg contamination data for dust particles is lacking for Pakistan and hence, human populations potentially at risk is largely unknown. We provide the first baseline data for total mercury (THg) contamination into dust particles and its bioaccumulation trends, using scalp human hair samples as biomarker, at 22 sites across five altitudinal zones of Pakistan. The human health risk of THg exposure via dust particles as well as the proportion of human population that are potentially at risk from Hg contamination were calculated. Our results indicated higher concentration of THg in dust particles and its bioaccumulation in the lower Indus-plain agricultural and industrial areas than the other areas of Pakistan. The highest THg contamination of dust particles (3000ppb) and its bioaccumulation (2480ppb) were observed for the Lahore district, while the highest proportion (>40%) of human population was identified to be potentially at risk from Hg contamination from these areas. In general, children were at higher risk of Hg exposure via dust particles than adults. Regression analysis identified the anthropogenic activities, such as industrial and hospital discharges, as the major source of Hg contamination of dust particles. Our results inform environmental management for Hg control and remediation as well as the disease mitigation on potential hotspots. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Facilitated Bioaccumulation of Perfluorooctanesulfonate in Common Carp (Cyprinus carpio) by Graphene Oxide and Remission Mechanism of Fulvic Acid.

    PubMed

    Qiang, Liwen; Chen, Meng; Zhu, Lingyan; Wu, Wei; Wang, Qiang

    2016-11-01

    As one of the most popular carbon-based nanomaterials, graphene oxide (GO) has the potential to be released in aquatic environment and interact with some coexistent organic pollutants, such as perfluorooctanesulfonate (PFOS), which is an emerging persistent organic pollutant. In this study, the adsorption of PFOS on GO in the presence of fulvic acid (FA), the impacts of GO and FA on PFOS toxicokinetics in carp (Cyprinus carpio), and in vitro digestion behaviors were examined. The results indicated that PFOS could be strongly adsorbed on GO with a Freundlich affinity coefficient K F of 580 ± 205 (mg/g)/(mg/L) n , while the adsorption was suppressed by FA due to competitive adsorption. GO significantly enhanced the bioaccumulation of PFOS in blood, kidney, liver, gill, intestine, and muscle of carp, and the corresponding bioaccumulation factor (BAF) was in the range of 2026-53513 L/kg. The enhancement was greatest for liver and intestine, which was 10.3 and 9.33 times of that without GO, respectively. In vivo toxicokinetic and in vitro digestion-absorption experiments indicated that GO could carry PFOS to penetrate the intestine cells. There herein, PFOS absorption, especially via intestine, and the uptake rate coefficient (k u ) were greatly enhanced, leading to distinctly promoted bioaccumulation of PFOS in fish. However, FA could facilitate the flocculation of GO in the intestine and also accelerate excretion of GO-PFOS complex. Thus, in the presence of FA, PFOS absorption was reduced and the promotion effect of GO on PFOS accumulation was remitted.

  4. Activated carbon mitigates mercury and methylmercury bioavailability in contaminated sediments.

    PubMed

    Gilmour, Cynthia C; Riedel, Georgia S; Riedel, Gerhardt; Kwon, Seokjoon; Landis, Richard; Brown, Steven S; Menzie, Charles A; Ghosh, Upal

    2013-11-19

    There are few available in situ remediation options for Hg contaminated sediments, short of capping. Here we present the first tests of activated carbon and other sorbents as potential in situ amendments for remediation of mercury and methylmercury (MeHg), using a study design that combined 2 L sediment/water microcosms with 14 day bioaccumulation assays. Our key end points were pore water concentrations, and bioaccumulation of total Hg and MeHg by a deposit-feeding oligochaete Lumbriculus variegatus. Four amendments were tested: an activated carbon (AC); CETCO Organoclay MRM (MRM); Thiol-SAMMS (TS), a thiol-functionalized mesoporous silica; and AMBERSEP GT74, an ion-exchange resin. Amendments were tested in four separate microcosm assays using Hg-contaminated sediments from two freshwater and two estuarine sites. AC and TS amendments, added at 2-7% of the dry weight of sediments significantly reduced both MeHg concentrations in pore waters, relative to unamended controls (by 45-95%) and bioaccumulation of MeHg by Lumbriculus (by between 30 and 90%). Both amendments had only small impacts on microcosm surface water, sediment and pore water chemistry, with the exception of significant reductions in pore water dissolved organic matter. The effectiveness of amendments in reducing bioaccumulation was well-correlated with their effectiveness in increasing sediment:water partitioning, especially of MeHg. Sediments with low native sediment:water MeHg partition coefficients were most effectively treated. Thus, in situ sediment sorbent amendments may be able to reduce the risk of biotic Hg and MeHg uptake in contaminated sediments, and subsequent contamination of food webs.

  5. Linkage of bioaccumulation and biological effects to changes in pollutant loads in south San Francisco Bay

    USGS Publications Warehouse

    Hornberger, Michelle I.; Luoma, S.N.; Cain, D.J.; Parchaso, F.; Brown, C.L.; Bouse, R.M.; Wellise, C.; Thompson, J.K.

    2000-01-01

    The developed world has invested billions of dollars in waste treatment since the 1970s; however, changes in ecological or biological responses are rarely associated with reductions in metal pollutants. Here we present a novel, 23-yr time series of environmental change from a San Francisco Bay mudflat located 1 km from the discharge of a suburban domestic sewage treatment plant. Samples of surface sediment, the bioindicator Macoma balthica, and metals loading data were used to establish links between discharge, bioaccumulation, and effects. Mean annual Ag concentrations in M. balthica were 106 ??g/g in 1978 and 3.67 ??g/g in 1998. Concentrations of Cu declined from 287 ??g/g in 1980 to a minimum of 24 ??g/g in 1991. Declining Cu bioaccumulation was strongly correlated with decreasing Cu loads from the plant between 1977 and 1998. Relationships with bioaccumulation and total annual precipitation suggested that inputs from nonpoint sources were most important in controlling Zn bioavailability during the same period. Ecoepidemiological criteria were used to associate failed gamete production in M. balthica to a metals-enriched environment. Reproduction persistently failed between the mid-1970s and mid-1980s; it recovered after metal contamination declined. Other potential environmental causes such as food availability, sediment chemistry, or seasonal salinity fluctuations were not related to the timing of the change in reproductive capability. The results establish an associative link, suggesting that it is important to further investigate the chemical interference of Cu and/or Ag with invertebrate reproduction at relatively moderate levels of environmental contamination.

  6. Relationship between selenium body burdens and tissue concentrations in fish exposed to coal ash at the Tennessee Valley Authority Kingston spill site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathews, Teresa J; Fortner, Allison M; Jett, Robert T

    2014-01-01

    In December 2008, 4.1 million m3 of coal ash were released into the Emory and Clinch Rivers by the Tennessee Valley Authority (TVA) Kingston Fossil Plant. Coal ash contains several contaminants, including the bioaccumulative metalloid selenium (Se). Because Se is predominantly accumulated in aquatic organisms through dietary, rather than aqueous exposure, tissue-based toxicity thresholds for Se are currently being considered. The proposed threshold concentrations range between 4-9 g/g Se (dry wt.) in whole body fish, with a proposed fillet threshold of 11.8 g/g. In the present study we examined the spatial and temporal trends in Se bioaccumulation and examined themore » relationship between the Se content in fillets and in whole bodies of fish collected around the Kingston spill site to determine whether Se bioaccumulation was a significant concern at the ash spill site. While Se concentrations in fish (whole bodies and fillets) were elevated at sampling locations affected by the Kingston ash spill relative to reference locations, concentrations do not appear to be above risk thresholds and have not been increasing over the five year period since the spill. Our results are not only relevant to guiding the human health and ecological risk assessments at the Kingston ash spill site, but because of current national discussions on appropriate guidelines for Se in fish as well for the disposal of coal combustion wastes, our results are also relevant to the general understanding of Se bioaccumulation in contaminated water bodies.« less

  7. Do we really need in-situ bioassays?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salazar, M.H.; Salazar, S.M.

    1995-12-31

    In-situ bioassays are needed to validate the results from laboratory testing and to understand biological interactions. Standard laboratory protocols provide reproducible test results, and the precision of those tests can be mathematically defined. Significant correlations between toxic substances and levels of response (bioaccumulation and bioeffects) have also been demonstrated with natural field populations and suggest that the laboratory results can accurately predict field responses. An equal number of studies have shown a lack of correlation between laboratory bioassay results and responses of natural field populations. The best way to validate laboratory results is with manipulative field testing; i.e., in-situ bioassaysmore » with caged organisms. Bioaccumulation in transplanted bivalves has probably been the most frequently used form of an in-situ bioassay. The authors have refined those methods to include synoptic measurements of bioaccumulation and growth. Growth provides an easily-measured bioeffects endpoint and a means of calibrating bioaccumulation. Emphasis has been on minimizing the size range of test animals, repetitive measurements of individuals and standardization of test protocols for a variety of applications. They are now attempting to standardize criteria for accepting and interpreting data in the same way that laboratory bioassays have been standardized. Others have developed methods for in-situ bioassays using eggs, larvae, unicellular organisms, crustaceans, benthic invertebrates, bivalves, and fish. In the final analysis, the in-situ approach could be considered as an exposure system where any clinical measurements are possible. The most powerful approach would be to use the same species in laboratory and field experiments with the same endpoints.« less

  8. Mercury in Pacific bluefin tuna (Thunnus orientalis):bioaccumulation and trans-Pacific Ocean migration

    USGS Publications Warehouse

    Colman, John A.; Nogueira, Jacob I.; Pancorbo, Oscar C.; Batdorf, Carol A.; Block, Barbara A.

    2015-01-01

    Pacific bluefin tuna (Thunnus orientalis) have the largest home range of any tuna species and are well known for the capacity to make transoceanic migrations. We report the measurement of mercury (Hg) concentrations in wild Pacific bluefin tuna (PBFT), the first reported with known size-of-fish and capture location. The results indicate juvenile PBFT that are recently arrived in the California Current from the western Pacific Ocean have significantly higher Hg concentrations in white muscle (0.51 ug/g wet mass, wm) than PBFT of longer California Current residency (0.41 ug/g wm). These new arrivals are also higher in Hg concentration than PBFT in farm pens (0.43 ug/g wm) that were captured on arrival in the California Current and raised in pens on locally derived feed. Analysis by direct Hg analyzer and attention to Hg by tissue type and location on the fish allowed precise comparisons of mercury among wild and captive fish populations. Analysis of migration and nearshore residency, determined through extensive archival tagging, bioaccumulation models, trophic investigations, and potential coastal sources of methylmercury, indicates Hg bioaccumulation is likely greater for PBFT juvenile habitats in the western Pacific Ocean (East China Sea, Yellow Sea) than in the eastern Pacific Ocean (California Current). Differential bioaccumulation may be a trophic effect or reflect methylmercury availability, with potential sources for coastal China (large hypoxic continental shelf receiving discharge of three large rivers, and island-arc volcanism) different from those for coastal Baja California (small continental shelf, no large rivers, spreading-center volcanism).

  9. Enantiomerization and enantioselective bioaccumulation of benalaxyl in Tenebrio molitor larvae from wheat bran.

    PubMed

    Gao, Yongxin; Chen, Jinhui; Wang, Huili; Liu, Chen; Lv, Xiaotian; Li, Jianzhong; Guo, Baoyuan

    2013-09-25

    The enantiomerization and enatioselecive bioaccumulation of benalaxyl by dietary exposure to Tenebrio molitor larvae under laboratory conditions were studied by HPLC-MS/MS. Exposure of enantiopure R-benalaxyl and S-benalaxyl in T. molitor larvae revealed significant enantiomerization with formation of the R enantiomers from the S enantiomers, and vice versa. Enantiomerization was not observed in wheat bran during the period of 21 days. For the bioaccumulation experiment, the enantiomer fraction in T. molitor larvae was maintained approximately at 0.6, whereas the enantiomer fraction in wheat bran was maintained at 0.5; in other words, the bioaccumulation of benalaxyl was enantioselective in T. molitor larvae. Mathematical models for a process of uptake, degradation, and enantiomerization were developed, and the rates of uptake, degradation, and enantiomerization of R-benealaxyl and S-benealaxyl were estimated, respectively. The results were that the rate of uptake of R-benalaxyl (kRa = 0.052 h(-1)) was slightly lower than that of S-benalaxyl (kSa = 0.061 h(-1)) from wheat bran; the rate of degradation of R-benalaxyl (kRd = 0.285 h(-1)) was higher than that of S-benalaxyl (kSd = 0.114 h(-1)); and the rate of enantiomerization of R-benalaxyl (kRS = 0.126 h(-1)) was higher than that of S-benalaxyl (kSR = 0.116 h(-1)). It was suggested that enantioselectivtiy was caused not only by actual degradation and metabolism but also by enantiomerization, which was an important process in the environmental fate and behavior of chiral pesticides.

  10. Bioaccumulation and biomagnification of mercury and methylmercury in four sympatric coastal sharks in a protected subtropical lagoon.

    PubMed

    Matulik, Adam G; Kerstetter, David W; Hammerschlag, Neil; Divoll, Timothy; Hammerschmidt, Chad R; Evers, David C

    2017-03-15

    Mercury bioaccumulation is frequently observed in marine ecosystems, often with stronger effects at higher trophic levels. We compared total mercury (THg) and methylmercury (MeHg) from muscle with length, comparative isotopic niche, and diet (via δ 13 C and δ 15 N) among four sympatric coastal sharks in Florida Bay (USA): blacknose, blacktip, bull, and lemon. Mercury in blacknose and blacktip sharks increased significantly with size, whereas bull and lemon sharks had a high variance in mercury relative to size. Both δ 13 C and δ 15 N were consistent with general resource use and trophic position relationships across all species. A significant relationship was observed between δ 13 C and mercury in blacktip sharks, suggesting an ontogenetic shift isotopic niche, possibly a dietary change. Multiple regression showed that δ 13 C and δ 15 N were the strongest factors regarding mercury bioaccumulation in individuals across all species. Additional research is recommended to resolve the mechanisms that determine mercury biomagnification in individual shark species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Mercury cycling in agricultural and non-agricultural wetlands in the Yolo Bypass Wildlife Area, California: bioaccumulation in small fish

    NASA Astrophysics Data System (ADS)

    Ackerman, J. T.; Eagles-Smith, C. A.; Miles, K. A.; Ricca, M. A.

    2007-12-01

    We examined the bioaccumulation of mercury in small fish within white rice, wild rice, and permanent wetland habitats at the Yolo Wildlife Area during the 2007 rice growing season. We introduced 30 mosquito fish in each of four cages placed at the inlet, center, and outlet (two cages) of each wetland in June, immediately after the white rice fields were re-flooded after being seeded. All fish were removed from their cages 60-days after their introduction, with the exception that ten fish from each of the second cages at the outlets were removed 30-days after introduction to assess temporal trends in mercury exposure. Mercury concentrations will be compared between fish that were introduced into cages and reference fish that originated from the same fish stock (Sacramento County Vector Control). We also measured fish length and mass both when they were introduced and collected to 1) control for growth effects on mercury bioaccumulation and 2) examine whether wetland habitat influenced growth rates. Fish are currently being analyzed for mercury and results will be available by the conference.

  12. A sediment ecotoxicity assessment platform for in situ measures of chemistry, bioaccumulation and toxicity. Part 1: System description and proof of concept.

    PubMed

    Burton, G Allen; Rosen, Gunther; Chadwick, D Bart; Greenberg, Marc S; Taulbee, W Keith; Lotufo, Guilherme R; Reible, Danny D

    2012-03-01

    In situ-based testing using aquatic organisms has been widely reported, but is often limited in scope and practical usefulness in making decisions on ecological risk and remediation. To provide this capability, an integrated deployment system, the Sediment Ecotoxicity Assessment (SEA) Ring was developed, which incorporates rapid in situ hydrological, chemical, bioaccumulation, and toxicological Lines-of-Evidence (LoE) for assessing sediment and overlying water contamination. The SEA Ring system allows for diver-assisted, or diverless, deployment of multiple species of ecologically relevant and indigenous organisms in three different exposures (overlying water, sediment-water interface, and bulk sediment) for periods ranging from two days to three weeks, in a range of water systems. Measured endpoints were both sublethal and lethal effects as well as bioaccumulation. In addition, integrated passive sampling devices for detecting nonpolar organics (solid phase micro-extraction fibers) and metals (diffusive gradients in thin films) provided gradient measures in overlying waters and surficial sediments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Bioaccumulation of polybrominated diphenyl ethers (PBDEs) in sediment aged for 2 years to carps (Cyprinus carpio)

    NASA Astrophysics Data System (ADS)

    Tian, S. Y.; Li, J. Y.; Jia, X. M.

    2017-08-01

    In order to understand the risk of polybrominated diphenyl ethers (PBDEs) existing in sediment for years, the accumulation of PBDEs in sediment aged for 2 years to fish was investigated. Simulated aquatic system microcosms were conducted with PBDE contaminated sediment aged for 2 years and carps were cultured in the microcosms for 20 days. PBDE concentrations in carp tissues were analyzed to estimate the bioavailability of aged PBDEs in carps. The main spiked PBDE congeners were detected in sediment even though the contaminated sediment was aged for 2 years. Similarly, the five PBDE (BDE-28, 47, 100, 153 and 154) congeners which probably were bioaccumulated by carp were detected in fish tissues, indicating that PBDEs could be bioaccumulated after aging for 2 years. The PBDEs distribution revealed that the concentrations of polybrominated diphenyl ethers in tissues of Cyprinus carpio is in this order of magnitude: gut > liver > gill > fillet. The PBDEs concentrations in fillet were as high as 67.9 ng/g dry wt, in which BDE-47 contributed almost 50% in profile.

  14. Organochlorine compounds in the Gulf of Bothnia: sediment and benthic species.

    PubMed

    Strandberg, B; Bandh, C; van Bavel, B; Bergqvist, P A; Broman, D; Ishaq, R; Näf, C; Rappe, C

    2000-01-01

    Surface sediment, amphipods (Monoporeia affinis), isopods (Saduria entomon) and fourhorn sculpins (Oncocottus quadricornis) were collected at two coastal stations in the Gulf of Bothnia, one in the Bothnian Bay and the other in the Bothnian Sea. The objective was to study the concentrations, composition profiles, bioaccumulation features and spatial differences of organochlorine compounds such as hexachlorocyclohexanes (HCHs), DDTs, hexachlorobenzene (HCBz), chlordanes (CHLs), dieldrin, Mirex and polychlorinated biphenyls (PCBs). All groups of compounds were found in every sample investigated, with the exception of Mirex that was not detected in the sediment samples. The concentrations for e.g. PCBs and CHLs ranged from 700 to 2400 and 70 to 400 ng/g lipid in the specimens. For the corresponding sediments the results were 9.0-9.3 ng/g dw for PCBs and 0.54-0.57 ng/g dw for CHLs, respectively. Bioaccumulation differences between the species with regard to both degree of and type of compound were observed. The highest accumulation potential was found for the cyclodiene compounds including CHLs and Mirex in isopod. Finally, there were only small concentration and bioaccumulation differences between the two stations.

  15. Cyanotoxins: bioaccumulation and effects on aquatic animals.

    PubMed

    Ferrão-Filho, Aloysio da S; Kozlowsky-Suzuki, Betina

    2011-12-01

    Cyanobacteria are photosynthetic prokaryotes with wide geographic distribution that can produce secondary metabolites named cyanotoxins. These toxins can be classified into three main types according to their mechanism of action in vertebrates: hepatotoxins, dermatotoxins and neurotoxins. Many studies on the effects of cyanobacteria and their toxins over a wide range of aquatic organisms, including invertebrates and vertebrates, have reported acute effects (e.g., reduction in survivorship, feeding inhibition, paralysis), chronic effects (e.g., reduction in growth and fecundity), biochemical alterations (e.g., activity of phosphatases, GST, AChE, proteases), and behavioral alterations. Research has also focused on the potential for bioaccumulation and transferring of these toxins through the food chain. Although the herbivorous zooplankton is hypothesized as the main target of cyanotoxins, there is not unquestionable evidence of the deleterious effects of cyanobacteria and their toxins on these organisms. Also, the low toxin burden in secondary consumers points towards biodilution of microcystins in the food web as the predominant process. In this broad review we discuss important issues on bioaccumulation and the effects of cyanotoxins, with emphasis on microcystins, as well as drawbacks and future needs in this field of research.

  16. Integrated survey on toxic effects of lindane on neotropical fish: Corydoras paleatus and Jenynsia multidentata.

    PubMed

    Pesce, Silvia F; Cazenave, Jimena; Monferrán, Magdalena V; Frede, Silvia; Wunderlin, Daniel A

    2008-12-01

    We report the effect of lindane on fish experimentally exposed to lindane. Sublethal toxicity was assessed through (a) changes in histopathology; (b) the activity of GST in different organs; and (c) bioaccumulation in exposed fish. We present a survey on toxic effects of lindane at these three levels, proposing a sequence of dose-dependent effects. Physiological damage was reversible at lowest doses, but severe at the highest, including damage consistent with fibrosis in liver and karyolitic nucleus in brain of both studied species. Exposure of Jenynsia multidentata above 6 microg L(-1) caused activation a GST in liver and gills, followed by inhibition at 75 microg L(-1). Interestingly, the bioaccumulation rate was suddenly increased when GST was inhibited. Corydoras paleatus exposed to 6.0 microg L(-1) lindane did not present significant changes in GST activity; however, enzymatic inhibition was observed above 25 microg L(-1). The bioaccumulation rate in C. paleatus remained constant throughout the experiments. All in all, these results evidence that C. paleatus is more sensitive to lindane than J. multidentata.

  17. Integrated testing strategy (ITS) for bioaccumulation assessment under REACH.

    PubMed

    Lombardo, Anna; Roncaglioni, Alessandra; Benfentati, Emilio; Nendza, Monika; Segner, Helmut; Fernández, Alberto; Kühne, Ralph; Franco, Antonio; Pauné, Eduard; Schüürmann, Gerrit

    2014-08-01

    REACH (registration, evaluation, authorisation and restriction of chemicals) regulation requires that all the chemicals produced or imported in Europe above 1 tonne/year are registered. To register a chemical, physicochemical, toxicological and ecotoxicological information needs to be reported in a dossier. REACH promotes the use of alternative methods to replace, refine and reduce the use of animal (eco)toxicity testing. Within the EU OSIRIS project, integrated testing strategies (ITSs) have been developed for the rational use of non-animal testing approaches in chemical hazard assessment. Here we present an ITS for evaluating the bioaccumulation potential of organic chemicals. The scheme includes the use of all available data (also the non-optimal ones), waiving schemes, analysis of physicochemical properties related to the end point and alternative methods (both in silico and in vitro). In vivo methods are used only as last resort. Using the ITS, in vivo testing could be waived for about 67% of the examined compounds, but bioaccumulation potential could be estimated on the basis of non-animal methods. The presented ITS is freely available through a web tool. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. The fate of isoproturon in a freshwater microcosm with Lemna minor as a model organism.

    PubMed

    Böttcher, Thomas; Schroll, Reiner

    2007-01-01

    Degradation, bioaccumulation and volatile loss of the 14C-labeled phenylurea herbicide isoproturon (IPU) was examined in a freshwater microcosm with the free floating macrophyte species Lemna minor during a 21-day exposure time. Isoproturon volatilisation was very low with 0.13+/-0.01% of the initially applied herbicide. Only a minor amount of the herbicide was completely metabolised, presumably by rhizosphere microorganisms and released as 14CO2. In total, about 9% isoproturon was removed from the aquatic medium during 21 days. The major portion of the pesticide was removed by bioaccumulation of Lemna minor (5.0+/-0.8%) and the bioconcentration factor (BCF) based on freshweight was 15.8+/-0.2. However, this study indicated a high persistence of IPU in freshwater ecosystems and a potential hazard due to bioaccumulation in non-target species. The novel experimental system of this study, developed for easy use and multiple sampling abilities, enabled quantitatively studying the fate of isoproturon and showed high reproducibility with a mean average (14)C-recovery rate of 97.1+/-0.7%.

  19. Evaluation of PAH bioaccumulation and DNA damage in mussels (Mytilus galloprovincialis) exposed to spilled Prestige crude oil.

    PubMed

    Pérez-Cadahía, Beatriz; Laffon, Blanca; Pásaro, Eduardo; Méndez, Josefina

    2004-08-01

    We analyzed the hydrocarbon composition of the Prestige oil as it reached the shores, its solubility in sea water, its bioaccumulation, and the genotoxic damage associated to oil exposure, using Mytilus galloprovincialis as sentinel organism. Mussels were exposed to two oil volumetric ratios (1:500 and 2:500) for 12 days. Great concentrations of total polycyclic aromatic hydrocarbons (TPAH) have been obtained, being in general higher in the samples from the dose of 1:500, both in sea water (55.14 vs. 41.96 microg/l) and mussel tissue (16,993.80 vs. 17,033.00 microg/kg), probably due to the great tendency of these compounds to link to particles in water. Comet assay results reflected an increase in the DNA damage associated to oil exposure, higher in the mussels exposed to the higher aqueous TPAH content. In the view of our results, the importance of the evaluation of biodisponibility, bioaccumulation and DNA damage in the assessment of the effects of xenobiotic pollutants to marine environments could be highlighted.

  20. Bioaccumulation and glutathione-mediated detoxification of copper and cadmium in Sphagnum squarrosum Crome Samml.

    PubMed

    Saxena, Anuj; Saxena, Anjali

    2012-07-01

    Physiological and biochemical responses, metal bioaccumulation and tolerance potential of Sphagnum squarrosum Crome Samml. to Cu and Cd were studied to determine its bioindication and bioremediation potential. Results suggest that glutathione treatment increases the metal accumulation potential and plays a definite role in heavy metal scavenging. High abundance of Sphagnum in metal-rich sites strongly suggests its high metal tolerance capabilities. This experiment demonstrates that S. squarrosum is able to accumulate and tolerate a high amount of metals and feasibility of its application as bioindicator and remediator test species of metal-contaminated environment.

  1. Studies on fate and toxicity of nanoalumina in male albino rats: Lethality, bioaccumulation and genotoxicity.

    PubMed

    Morsy, Gamal M; El-Ala, Kawther S Abou; Ali, Atef A

    2016-02-01

    The purpose of this study is to follow-up the distribution, lethality percentile doses (LDs) and bioaccumulation of aluminium oxide nanoparticles (Al2O3-NPs, average diameter 9.83 ± 1.61 nm) in some tissues of male albino rats, and to evaluate its genotoxicity to the brain tissues, during acute and sublethal experiments. The LDs of Al2O3-NPs, including median lethal dose (LD50), were estimated after intraperitoneal injection. The computed LD50 at 24 and 48 h were 15.10 and 12.88 g/kg body weight (b.w.), respectively. For acute experiments, the bioaccumulation of aluminium (Al) in the brain, liver, kidneys, intestine and spleen was estimated after 48 h of injection with a single acute dose (3.9, 6.4 and 8.5 g/kg b.w.), while for sublethal experiments it was after 1, 3, 7, 14 and 28 days of injection with 1.3 g/kg b.w. once in 2 days. Multi-way analysis of variance affirmed that Al uptake, in acute experiments, was significantly affected by the injected doses, organs (brain, liver, kidneys, intestine and spleen) and their interactions, while for sublethal experiments an altogether effect based on time (1, 3, 7, 14, 28 days), doses (0 and 1.3 g), organs and their interactions was reported. In addition, Al accumulated in the brain, liver, kidney, intestine and spleen of rats administered with Al2O3-NPs were significantly higher than the corresponding controls, during acute and sublethal experiments. The uptake of Al by the spleen of rats injected with acute doses was greater than that accumulated by kidney>brain>intestine>liver, whereas the brain of rats injected with sublethal dose accumulated lesser amount of Al followed by the kidney

  2. The potential of selected macroalgal species for treatment of AMD at different pH ranges in temperate regions.

    PubMed

    Oberholster, Paul J; Cheng, Po-Hsun; Botha, Anna-Maria; Genthe, Bettina

    2014-09-01

    The metal bioaccumulation potential of selected macroalgae species at different pH ranges was study for usage as part of a possible secondary passive acid mine drainage (AMD) treatment technology in algae ponds. Two separate studies were conducted to determine the suitability of macroalgae for passive treatment when metabolic processes in macrophytes and microorganisms in constructed wetlands decrease during winter months. In the field study, the bioconcentration of metals (mg/kg dry weight) measured in the benthic macroalgae mats was in the following order: site 1. Oedogonium crassum Al > Fe > Mn > Zn; site 2. Klebsormidium klebsii, Al > Fe > Mn > Zn; site 3. Microspora tumidula, Fe > Al > Mn > Zn and site 4. M. tumidula, Fe > Mn > Al > Zn. In the laboratory study, cultured macroalgae K. klebsii, O. crassum and M. tumidula isolated from the field sampling sites were exposed to three different pH values (3, 5 and 7), while bioaccumulation of the metals, Al, Fe, Mn and Zn and glutathione S-transferase (GST) activity were measured in the different selected algae species at a constant water temperature of 14 °C. Bioaccumulation of Al was the highest for O. crassum followed by K. klebsii and M. tumidula (p < 0.0001). From the study it was evident that the highest metal bioaccumulation occurred in the macroalgae O. crassum at all three tested pH values under constant low water temperature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Bioaccumulation of heavy metals both in wild and mariculture food chains in Daya Bay, South China

    NASA Astrophysics Data System (ADS)

    Qiu, Yao-Wen

    2015-09-01

    Bioaccumulation and trophic transfer of heavy metals both in the natural marine ecosystem (seawater, sediment, coral reef, phytoplankton, macrophyte, shrimp, crab, shellfish, planktivorous and carnivorous fish) and in the mariculture ecosystem (compound feed, trash fish, farmed pompano and snapper) were studied at Daya Bay, a typical subtropical bay in Southern China. The levels of Cu, Zn, Pb and Cd in sediment were 11.7, 10.2, 53.8 and 2.8 times than those in coral reef, respectively. Pb and Zn levels were markedly higher in phytoplankton than in macrophyte, probably caused by the larger specific surface area in phytoplankton. The highest levels of Zn (98.1), Pb (1.87) and Cd (5.11 μg g-1 dw) in wild organisms were all found in clam (Veremolpa scabra), indicating that these metals were apt to bioaccumulate in shellfish. The average concentrations of Cu, Zn, Pb and Cd in wild fish were 3.7, 2.1, 0.4 and 22.2 times than those in farmed fish, confirming the "growth dilution" hypothesis in farmed fish. Heavy metal bioconcentration factors (BCFs) in algae, bioaccumulation factors (BAFs) in wild species and transfer factors (TFs) in organism were calculated and discussed. The results suggested that biologically essential Cu and Zn were easier to accumulate in fish than non-essential Cd. Concentrations of Cu, Zn and Cd were several times higher in wild fish than in farmed fish whereas the opposite was observed for Pb. This metal also showed the highest transfer factor from food, which means that special attention must be given to fish feed production in relation to metal contamination.

  4. A dynamic and mechanistic model of PCB bioaccumulation in the European hake ( Merluccius merluccius)

    NASA Astrophysics Data System (ADS)

    Bodiguel, Xavier; Maury, Olivier; Mellon-Duval, Capucine; Roupsard, François; Le Guellec, Anne-Marie; Loizeau, Véronique

    2009-08-01

    Bioaccumulation is difficult to document because responses differ among chemical compounds, with environmental conditions, and physiological processes characteristic of each species. We use a mechanistic model, based on the Dynamic Energy Budget (DEB) theory, to take into account this complexity and study factors impacting accumulation of organic pollutants in fish through ontogeny. The bioaccumulation model proposed is a comprehensive approach that relates evolution of hake PCB contamination to physiological information about the fish, such as diet, metabolism, reserve and reproduction status. The species studied is the European hake ( Merluccius merluccius, L. 1758). The model is applied to study the total concentration and the lipid normalised concentration of 4 PCB congeners in male and female hakes from the Gulf of Lions (NW Mediterranean sea) and the Bay of Biscay (NE Atlantic ocean). Outputs of the model compare consistently to measurements over the life span of fish. Simulation results clearly demonstrate the relative effects of food contamination, growth and reproduction on the PCB bioaccumulation in hake. The same species living in different habitats and exposed to different PCB prey concentrations exhibit marked difference in the body accumulation of PCBs. At the adult stage, female hakes have a lower PCB concentration compared to males for a given length. We successfully simulated these sex-specific PCB concentrations by considering two mechanisms: a higher energy allocation to growth for females and a transfer of PCBs from the female to its eggs when allocating lipids from reserve to eggs. Finally, by its mechanistic description of physiological processes, the model is relevant for other species and sets the stage for a mechanistic understanding of toxicity and ecological effects of organic contaminants in marine organisms.

  5. Dietary Exposure of Fathead Minnows to the Explosives TNT and RDX and to the Pesticide DDT using Contaminated Invertebrates

    PubMed Central

    Houston, Jerre G.; Lotufo, Guilherme R.

    2005-01-01

    Explosive compounds have been released into the environment during manufacturing, handling, and usage procedures. These compounds have been found to persist in the environment and potentially promote detrimental biological effects. The lack of research on bioaccumulation and bioconcentration and especially dietary transfer on aquatic life has resulted in challenges in assessing ecological risks. The objective of this study was to investigate the potential trophic transfer of the explosive compounds 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) using a realistic freshwater prey/predator model and using dichlorodiphenyltrichloroethane (DDT), a highly bioaccumulative compound, to establish relative dietary uptake potential. The oligochaete worm Lumbriculus variegatus was exposed to 14C-labeled TNT, RDX or DDT for 5 hours in water, frozen in meal-size packages and subsequently fed to individual juvenile fathead minnows (Pimephales promelas). Fish were sampled for body residue determination on days 1, 2, 3, 4, 7, and 14 following an 8-hour gut purging period. Extensive metabolism of the parent compound in worms occurred for TNT but not for RDX and DDT. Fish body residue remained relatively unchanged over time for TNT and RDX, but did not approach steady-state concentration for DDT during the exposure period. The bioaccumulation factor (concentration in fish relative to concentration in worms) was 0.018, 0.010, and 0.422 g/g for TNT, RDX and DDT, respectively, confirming the expected relatively low bioaccumulative potential for TNT and RDX through the dietary route. The experimental design was deemed successful in determining the potential for trophic transfer of organic contaminants via a realistic predator/prey exposure scenario. PMID:16705829

  6. Bioaccumulation trends of arsenic and antimony in a freshwater ecosystem affected by mine drainage

    USGS Publications Warehouse

    Dovick, Meghan A.; Kulp, Thomas R.; Arkle, Robert .; Pilliod, David S.

    2015-01-01

    We compared As and Sb bioaccumulation and biomagnification when these metalloids co-occurred at varying environmental concentrations in a stream and wetlands near a contaminated mine site in Idaho (USA). We measured As and Sb concentrations in water and substrate samples, and in tissues of organisms representing several trophic levels. Bioaccumulation of both As and Sb was observed in stream organisms with the following trend of bio-diminution with increasing trophic level: primary producers > tadpoles > macroinvertebrates > trout. We also note reductions in metalloid concentrations in one of two stream remediation reaches engineered within the past 17 years to ameliorate metalloid contamination in the stream. Several wetlands contained thick microbial mats and were highly populated with boreal toad tadpoles that fed on them. The mats were extremely contaminated (up to 76 564 mg kg–1 As and 675 mg kg–1 Sb) with amorphous As- and Sb-bearing minerals that we interpret as biogenic precipitates from geomicrobiological As- and Sb-cycling. Ingested mat material provided a direct source of metalloids to tadpoles, and concentrations of 3867 mg kg–1 (As) and 375 mg kg–1 (Sb) reported here represent the highest whole body As and Sb levels ever reported in living tadpoles. The bulk of tadpole metalloid burden remained in the gut despite attempts to purge the tadpoles prior to analysis. This study adds to a number of recent investigations reporting bioaccumulation, but not biomagnification, of As and Sb in food webs. Moreover, our results suggest that tadpoles, in particular, may be more resistant to metalloid contamination than previously assumed.

  7. Bioaccumulation and oxidative stress caused by pesticides in Cyprinus carpio reared in a rice-fish system.

    PubMed

    Clasen, Barbara; Loro, Vania L; Murussi, Camila R; Tiecher, Tadeu Luis; Moraes, Bibiana; Zanella, Renato

    2018-06-01

    Nowadays, many irrigated rice producers have adopted the rice-fish farming systems, in which fish are reared in the same environment as rice is grown. These animals can biologically control many pests that disturb the crop, as well as increase the income of producers when they are reared in the same area as rice. However, a large variety of pesticides is often used for pest control in conventional irrigated rice crops, and fish are exposed to different pesticide concentrations and active ingredients. Thus, the aim of the current study is to assess the potential risks of these pesticides to freshwater fish (Cyprinus carpio) cultured in integrated rice-fish farming systems. We assessed five pesticides widely used in rice culture. This is the first report on the bioaccumulation of the insecticides lambda-cyhalothrin + thiamethoxam and clorantraniliprole and of the fungicide tebuconazole + trifloxystrobin associated with oxidative stress and with enzymatic and non-enzymatic parameters in edible fish samples reared in integrated in rice-fish farming systems. After 100 days of exposure, lambda-cyhalothrin and tebuconazole bioaccumulated in carp muscles. Acethylcholinesterase activity in the brain was lower in the experimental group than in the control group. Overall, the biochemical analyses showed increased responses in the experimental groups in comparison to the controls. Lipid peroxidation levels increased in the liver, gills and muscles. Protein oxidation increased in the liver and muscles. Catalase activity increased in the liver, and glutathione S-transferase increased in the liver, gills and muscles. Results demonstrate that these pesticides have severe adverse consequences in fish and indicate their potential risk to human health due to their bioaccumulation in farmed fish. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Biochars mitigate greenhouse gas emissions and bioaccumulation of potentially toxic elements and arsenic speciation in Phaseolus vulgaris L.

    PubMed

    Ibrahim, Muhammad; Li, Gang; Khan, Sardar; Chi, Qiaoqiao; Xu, Yaoyang; Zhu, Yongguan

    2017-08-01

    Anthropogenic and natural activities can lead to increased greenhouse gas emissions and discharge of potentially toxic elements (PTEs) into soil environment. Biochar amendment to soils is a cost-effective technology and sustainable approach used to mitigate greenhouse gas emissions, improve phytoremediation, and minimize the health risks associated with consumption of PTE-contaminated vegetables. Greenhouse pot experiments were conducted to investigate the effects of peanut shell biochar (PNB) and sewage sludge biochar (SSB) on greenhouse gas (GHG) emissions, plant growth, PTE bioaccumulation, and arsenic (As) speciation in bean plants. Results indicated that amendments of PNB and SSB increased plant biomass production by increasing soil fertility and reducing bioavailability of PTEs. Addition of biochars also increased soil pH, total nitrogen (TN), total carbon (TC), dissolved organic carbon (DOC), and ammonium-nitrogen (NH 4 -N) but decreased available concentrations of PTEs such as cadmium (Cd), lead (Pb), and As. The concentration of nitrate-nitrogen (NO 3 - -N) was also decreased in biochar-amended soils. In addition, PNB and SSB amendments significantly (P < 0.01) reduced the bioaccumulation of chromium (Cr), As, Cd, Pb, and nickel (Ni) in stalks, leaves, and fruits of Phaseolus vulgaris L. Similarly, PNB and SSB amendments significantly (P ≤ 0.05) reduced inorganic As species like arsenite (As (III)) and arsenate (As (V)). Greenhouse gases such as carbon dioxide (CO 2 ) and methane (CH 4 ) emissions were significantly (P < 0.01) reduced but nitrous oxide (N 2 O) emissions first increased and then decreased amended with both biochars. Current findings demonstrate that SSB and PNB are two beneficial soil amendments simultaneous mitigating greenhouse gas emissions and PTE bioaccumulation as well as arsenic speciation in P. vulgaris L.

  9. Mercury cycling in stream ecosystems. 3. Trophic dynamics and methylmercury bioaccumulation

    USGS Publications Warehouse

    Chasar, L.C.; Scudder, B.C.; Stewart, A.R.; Bell, A.H.; Aiken, G.R.

    2009-01-01

    Trophic dynamics (community composition and feeding relationships) have been identified as important drivers of methylmercury (MeHg) bioaccumulation in lakes, reservoirs, and marine ecosystems. The relative importance of trophic dynamics and geochemical controls on MeHg bioaccumulation in streams, however, remains poorly characterized. MeHg bioaccumulation was evaluated in eight stream ecosystems across the United States (Oregon, Wisconsin, and Florida) spanning large ranges in climate, landscape characteristics, atmospheric Hg deposition, and stream chemistry. Across all geographic regions and all streams, concentrations of total Hg (THg) in top predator fish and forage fish, and MeHg in invertebrates, were strongly positively correlated to concentrations of filtered THg (FTHg), filtered MeHg (FMeHg), and dissolved organic carbon (DOC); to DOC complexity (as measured by specific ultraviolet absorbance); and to percent wetland in the stream basins. Correlations were strongest for nonurban streams. Although regressions of log[Hg] versus ??15N indicate that Hg in biota increased significantly with increasing trophic position within seven of eight individual streams, Hg concentrations in top predator fish (including cutthroat, rainbow, and brown trout; green sunfish; and largemouth bass) were not strongly influenced by differences in relative trophic position. Slopes of log[Hg] versus ??15N, an indicator of the efficiency of trophic enrichment, ranged from 0.14 to 0.27 for all streams. These data suggest that, across the large ranges in FTHg (0.14-14.2 ng L-1), FMeHg (0.023-1.03 ng L-1), and DOC (0.50-61.0 mg L-1) found in this study, Hg contamination in top predator fish in streams likely is dominated by the amount of MeHg available for uptake at the base of the food web rather than by differences in the trophic position of top predator fish. ?? 2009 American Chemical Society.

  10. Conifer density within lake catchments predicts fish mercury concentrations in remote subalpine lakes

    USGS Publications Warehouse

    Eagles-Smith, Collin A.; Herring, Garth; Johnson, Branden L.; Graw, Rick

    2016-01-01

    Remote high-elevation lakes represent unique environments for evaluating the bioaccumulation of atmospherically deposited mercury through freshwater food webs, as well as for evaluating the relative importance of mercury loading versus landscape influences on mercury bioaccumulation. The increase in mercury deposition to these systems over the past century, coupled with their limited exposure to direct anthropogenic disturbance make them useful indicators for estimating how changes in mercury emissions may propagate to changes in Hg bioaccumulation and ecological risk. We evaluated mercury concentrations in resident fish from 28 high-elevation, sub-alpine lakes in the Pacific Northwest region of the United States. Fish total mercury (THg) concentrations ranged from 4 to 438 ng/g wet weight, with a geometric mean concentration (±standard error) of 43 ± 2 ng/g ww. Fish THg concentrations were negatively correlated with relative condition factor, indicating that faster growing fish that are in better condition have lower THg concentrations. Across the 28 study lakes, mean THg concentrations of resident salmonid fishes varied as much as 18-fold among lakes. We used a hierarchal statistical approach to evaluate the relative importance of physiological, limnological, and catchment drivers of fish Hg concentrations. Our top statistical model explained 87% of the variability in fish THg concentrations among lakes with four key landscape and limnological variables: catchment conifer density (basal area of conifers within a lake's catchment), lake surface area, aqueous dissolved sulfate, and dissolved organic carbon. Conifer density within a lake's catchment was the most important variable explaining fish THg concentrations across lakes, with THg concentrations differing by more than 400 percent across the forest density spectrum. These results illustrate the importance of landscape characteristics in controlling mercury bioaccumulation in fish.

  11. Patterns of organochlorine contamination in lake trout from Wisconsin waters of the Great Lakes

    USGS Publications Warehouse

    Miller, Michael A.; Madenjian, Charles P.; Masnado, Robert G.

    1992-01-01

    To investigate spatial and temporal patterns of organochlorine contamination in lake trout from Wisconsin waters of the Great Lakes, we examined laboratory contaminant analysis data of muscle tissue samples from Lake Michigan (n=317) and Lake Superior (n=53) fish. Concentrations of polychlorinated biphenyls (PCBs), chlordane, and dieldrin, reported as mg/kg wet weight in 620 mm to 640 mm mean length Lake Michigan lake trout, decreased over time. Mean total PCB concentration declined exponentially from 9.7 in 1975 to 1.9 in 1990. Total chlordane concentration declined 63 percent from 0.48 in 1983 to 0.18 in 1990, and dieldrin declined 52 percent during this same period, from 0.21 to 0.10. The bioaccumulation rate of PCBs is significantly lower for lake trout inhabiting Lake Michigan's midlake reef complex, compared to lake trout from the nearshore waters of western Lake Michigan. Organochlorine compound concentrations were greater in Lake Michigan lake trout than Lake Superior fish. Lake Superior lean lake trout and siscowet exhibited similar rates of PCB bioaccumulation despite major differneces in muscle tissue lipid content between the two subspecies. The lack of a significant difference in the PCB bioaccumulation rates of lean trout and siscowet suggests that lipid content may not be an important factor influencing PCB bioaccumulation in lake trout, within the range of lipid concentrations observed. Relative concentrations of the various organochlorine contaminants found in lake trout were highly correlated, suggesting similar mass balance processes for these compounds. Evidence presented revealing spatial and temporal patterns of organochlorine contamination may be of value in reestablishing self-sustaining populations of lake trout in Lake Michigan.

  12. Heavy metals bioaccumulation in selected tissues of red swamp crayfish: An easy tool for monitoring environmental contamination levels.

    PubMed

    Goretti, E; Pallottini, M; Ricciarini, M I; Selvaggi, R; Cappelletti, D

    2016-07-15

    In this paper we explored the heavy metal bioaccumulation (Cd, Cu, Pb and Zn) in Procambarus clarkii, a crayfish recently suggested as a potential bioindicator for metals pollution in freshwater systems. The present study is focused on crayfishes populations caught in a heavily polluted industrial and in a reference sites (Central Italy), though the results are generalized with a thorough analysis of literature metadata. In agreement with the literature, the hepatopancreas (Hep, detoxification tissues) of the red swamp crayfish showed a higher concentration of heavy metals in comparison to the abdominal muscle (AbM, not detoxification tissues) in the sites under scrutiny. Hep/AbM concentration ratio was dependent on the specific metal investigated and on its sediment contamination level. Specifically we found that Hep/AbM ratio decreases as follows: Cd (11.7)>Cu (5.5)>Pb (3.6)>Zn (1.0) and Pb (4.34)>Cd (3.66)>Zn (1.69)>Cu (0.87) for the industrial and reference sites, respectively. The analysis of our bioaccumulation data as well as of literature metadata allowed to elaborate a specific contamination index (Toxic Contamination Index, TCI), dependent only on the bioaccumulation data of hepatopancreas and abdominal muscle. In the industrial site, TCI expressed values much higher than the unit for Cd and Cu, confirming that these metals were the main contaminants; in contrast for lower levels of heavy metals, as those observed in the reference site for Cu, Zn and Pb, the index provided values below unit. TCI is proposed as a useful and easy tool to assess the toxicity level of contaminated sites by heavy metals in the environmental management. Copyright © 2016. Published by Elsevier B.V.

  13. Bioaccumulation of organic and inorganic selenium in a laboratory food chain

    USGS Publications Warehouse

    Besser, John M.; Canfield, Timothy J.; La Point, Thomas W.

    1993-01-01

    Aquatic organisms accumulated selenium (Se) from inorganic and organic Se species via aqueous and food-chain exposure routes. We measured aqueous and food-chain Se bioaccumulation from selenate, selenite, and seleno-L-methionine in a laboratory food chain of algae (Chlamydomonas reinhardtii), daphnids (Daphnia magna), and fish (bluegill, Lepomis macrochirus). Selenium concentrations were monitored radiometrically with 75Se-labeled compounds. All three organisms concentrated Se more strongly from aqueous selenomethionine than from either inorganic Se species. Bioconcentration factors (BCFs) estimated from 1 μg Se/L Se-methionine exposures were approximately 16,000 for algae, 200,000 for daphnids, and 5,000 for bluegills. Algae and daphnids concentrated Se more strongly from selenite (BCFs = 220–3,600) than selenate (BCFs = 65–500) whereas bluegills concenrated Se about equally from both inorganic species (estimated BCFs = 13 to 106). Bioaccumulation of foodborne Se by daphnids and bluegills was similar in food chains dosed with different Se species. Daphnids and bluegills did not accumulate Se concentrations greater than those in their diet, except at very low dietary Se concentrations. Food-chain concentration factors (CFs) for daphnids decreased from near 1.0 to 0.5 with increases in algal Se concentrations, whereas CFs estimated from bluegill exposures averaged 0.5 over a range of foodborne Se concentrations. In exposures based on selenite, bluegills accumulated greater Se concentrations from food than from water. Aqueous and food-chain Se uptakes were approximately additive, and depuration rates were similar in aqueous, food-chain, and combined exposures. Our results suggest that bluegills in Secontaminated habitats accumulate inorganic Se species primarily via food-chain uptake, although organoselenium compounds such as Se-methionine may contribute significantly to Se bioaccumulation by bluegills via both aqueous and food-chain uptake.

  14. Tissue-specific bioaccumulation, depuration and metabolism of 4,4'-dichlorodiphenyl sulfide in the freshwater mussel Anodonta woodiana.

    PubMed

    Zhang, Xuesheng; Fang, Bingxin; Wang, Tantan; Liu, Hui; Feng, Mingbao; Qin, Li; Zhang, Rui

    2018-06-17

    Polychlorinated diphenyl sulfides (PCDPSs) are considered as a class of sulfur-containing dioxin-like pollutants with ubiquitous occurrence in natural waters and potential ecotoxicity to aquatic organisms. However, to date, no information is available regarding the bioaccumulation and biotransformation of PCDPSs in aquatic species. In this study, the uptake and depuration kinetics of 4,4'-dichlorodiphenyl sulfide (4,4'-di-CDPS) in the freshwater mussel Anodonta woodiana were investigated through semi-static exposure. The uptake rates (k 1 ), depuration rates (k 2 ), biological half-lives (t 1/2 ) and tissue-specific bioconcentration factors (BCFs) of 4,4'-di-CDPS in the gill, liver and muscle were measured in the range of 0.509-21.734 L d -1  g -1 d.w., 0.083-0.221 d -1 , 3.14-8.35 d and 3.662 × 10 3 -124.979 × 10 3  L kg -1 l.w., respectively. With the increase in exposure dose, the values of k 1 and BCFs were significantly reduced, indicating that low-dose exposure to 4,4'-di-CDPS could lead to more severe bioaccumulation. Based on the analysis of mass spectra of the extracted liver samples, the structures of four metabolites of 4,4'-di-CDPS were identified. Moreover, the levels of these metabolites were also quantitatively measured. The proposed metabolic pathways of 4,4'-di-CDPS in mussel liver included sulfur-oxidation, dechlorination and methoxylation. Comparatively, sulfur-oxidation was the predominant metabolic pathway of 4,4'-di-CDPS in the liver of A. woodiana. These results provide valuable data and fill the information gap on the bioaccumulation and metabolism of PCDPSs in freshwater species. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Toxicokinetics of Zn and Cd in the earthworm Eisenia andrei exposed to metal-contaminated soils under different combinations of air temperature and soil moisture content.

    PubMed

    González-Alcaraz, M Nazaret; Loureiro, Susana; van Gestel, Cornelis A M

    2018-04-01

    This study evaluated how different combinations of air temperature (20 °C and 25 °C) and soil moisture content (50% and 30% of the soil water holding capacity, WHC), reflecting realistic climate change scenarios, affect the bioaccumulation kinetics of Zn and Cd in the earthworm Eisenia andrei. Earthworms were exposed for 21 d to two metal-contaminated soils (uptake phase), followed by 21 d incubation in non-contaminated soil (elimination phase). Body Zn and Cd concentrations were checked in time and metal uptake (k 1 ) and elimination (k 2 ) rate constants determined; metal bioaccumulation factor (BAF) was calculated as k 1 /k 2 . Earthworms showed extremely fast uptake and elimination of Zn, regardless of the exposure level. Climate conditions had no major impacts on the bioaccumulation kinetics of Zn, although a tendency towards lower k 1 and k 2 values was observed at 25 °C + 30% WHC. Earthworm Cd concentrations gradually increased with time upon exposure to metal-contaminated soils, especially at 50% WHC, and remained constant or slowly decreased following transfer to non-contaminated soil. Different combinations of air temperature and soil moisture content changed the bioaccumulation kinetics of Cd, leading to higher k 1 and k 2 values for earthworms incubated at 25 °C + 50% WHC and slower Cd kinetics at 25 °C + 30% WHC. This resulted in greater BAFs for Cd at warmer and drier environments which could imply higher toxicity risks but also of transfer of Cd within the food chain under the current global warming perspective. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Effects of soil type, prepercolation, and ageing on bioaccumulation and toxicity of zinc for the springtail Folsomia candida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smit, C.E.; Van Gestel, C.A.M.

    1998-06-01

    Soil properties are a major influence on the bioavailability and toxicity of metals and represent one of the important factors that complicate the extrapolation of results from laboratory tests to field situations. The influence of soil characteristics and way of contamination on the bioaccumulation and toxicity of zinc was investigated for the springtail Folsomia candida, and the applicability of chemical extraction techniques for the prediction of zinc uptake and toxicity was evaluated. Bioaccumulation of zinc in F. candida was related to water-soluble zinc concentrations, and uptake was dependent on the test soil used. Effects of zinc for F. candida couldmore » not be fully explained by bioaccumulation. This indicates that the existence of a fixed internal threshold concentration of zinc above which physiological functions are impaired is not likely for F. candida. In freshly contaminated soils, zinc toxicity was related to organic matter and clay content of the soil; however, the use of these soils overestimated the effects of zinc for F. candida by a factor of 5 to 8 compared to a test soil that was subjected to ageing under field conditions for 1.5 years. Equilibration of the zinc contamination by percolating the soils with water before use in the toxicity experiment strongly reduced the difference in zinc toxicity between laboratory-treated and aged soils. Water-soluble concentrations are most appropriate to predict effects of zinc on reproduction of F. candida in soils with unknown contamination histories. For laboratory toxicity tests, it is recommended to percolate soils with water after contamination and to include an equilibration period prior to use to achieve a more realistic exposure situation.« less

  17. Bioaccumulation and biotransformation of the beta-blocker propranolol in multigenerational exposure to Daphnia magna.

    PubMed

    Jeong, Tae-Yong; Kim, Tae-Hun; Kim, Sang Don

    2016-09-01

    Multigenerational bioaccumulation and biotransformation activity and short-term kinetics (e.g., uptake and depuration) of propranolol in Daphnia magna were investigated at environmental concentration. The body burden and the major metabolite, desisopropyl propranolol (DIP), of propranolol were quantified using LC-MS/MS at the end of each generation after exposure for 11 generations. The accumulation of propranolol in D. magna at an environmental concentration of 0.2 μg/L was not much different between the parent (F0) and the eleventh filial (F10) generation. However, at 28 μg/L, its accumulation was 1.6 times higher-up to 18.9 μg/g-in the F10 generation relative to the F0. In contrast to propranolol, DIP intensity gradually increased from F0 to F10 at 0.2 μg/L, reflecting an increase in detoxification load and biotransformation performance; no increasing trend was observed at 28 μg/L. The bioaccumulation factor (BAF) showed higher values with a lower concentration and longer period of exposure. The average values of the BAF for 21 days of long-term exposure in successive 11 generations were 440.4 ± 119.7 and 1026.5 ± 208.6 L/kg for 28 μg/L and 0.2 μg/L, respectively. These are comparable to the BAF of 192 for the short-term 72-h exposure at 28 μg/L in the parent generation. It is also recommended that future studies for pharmaceutical ingredients be conducted on drug-drug interaction and structural characteristics on the prediction of biotransformation activity and bioaccumulation rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effects of manufactured nano-copper on copper uptake, bioaccumulation and enzyme activities in cowpea grown on soil substrate.

    PubMed

    Ogunkunle, Clement O; Jimoh, Mahboob A; Asogwa, Nnaemeka T; Viswanathan, K; Vishwakarma, Vinita; Fatoba, Paul O

    2018-07-15

    Increased use of nanoparticles-based products in agriculture portends important implications for agriculture. Therefore, the impact of nano-copper particles (<25 nm and 60-80 nm) on Cu uptake, bioaccumulation (roots, leaves and seeds), activity of ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), and lipid peroxidation in leaves and roots of Vigna unguiculata (cowpea) was studied. Plants were exposed to four levels (0, 125, 500 and 1000 mg/kg) of 25 nm or 60-80 nm nano-Cu for 65 days. Results indicated significant (P<.05) uptake of Cu at all nano-Cu levels compared to control, and bioaccumulation increased in seeds by at least 250%. Response of antioxidant enzymes to both nano-Cu types was concentration-dependent. Activity of APX and GR was enhanced in leaves and roots in response to both nano-Cu treatments in similar patterns compared to control. Both nano-Cu increased CAT activity in roots while SOD activity reduced in both leaves and roots. This shows that response of antioxidant enzymes to nano-Cu toxicity was organ-specific in cowpea. Malondialdehyde, a measure of lipid peroxidation, increased at 500 -1000 mg/kg of 25 nm nano-Cu in leaves by average of 8.4%, and 60-80 nm nano-Cu in root by 52.8%, showing particle-size and organ-dependent toxicity of nano-Cu. In conclusion, exposure of cowpea to nano-Cu treatments increased both the uptake and bioaccumulation of Cu, and also promoted the activity of APX and GR in root and leaf tissues of cowpea. Therefore, APX- and GR-activity level could be a useful predictive biomarker of nano-Cu toxicity in cowpea. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Physiological impacts and bioaccumulation of dietary Cu and Cd in a model teleost: The Amazonian tambaqui (Colossoma macropomum).

    PubMed

    Giacomin, Marina; Vilarinho, Gisele C; Castro, Katia F; Ferreira, Márcio; Duarte, Rafael M; Wood, Chris M; Val, Adalberto L

    2018-06-01

    Increasing anthropogenic activities in the Amazon have led to elevated metals in the aquatic environment. Since fish are the main source of animal protein for the Amazonian population, understanding metal bioaccumulation patterns and physiological impacts is of critical importance. Juvenile tambaqui, a local model species, were exposed to chronic dietary Cu (essential, 500 μg Cu/g food) and Cd (non-essential, 500 μg Cd/g food). Fish were sampled at 10-14, 18-20 and 33-36 days of exposure and the following parameters were analyzed: growth, voluntary food consumption, conversion efficiency, tissue-specific metal bioaccumulation, ammonia and urea-N excretion, O 2 consumption, P crit , hypoxia tolerance, nitrogen quotient, major blood plasma ions and metabolites, gill and gut enzyme activities, and in vitro gut fluid transport. The results indicate no ionoregulatory impacts of either of the metal-contaminated diets at gill, gut, or plasma levels, and no differences in plasma cortisol or lactate. The Cd diet appeared to have suppressed feeding, though overall tank growth was not affected. Bioaccumulation of both metals was observed. Distinct tissue-specific and time-specific patterns were seen. Metal burdens in the edible white muscle remained low. Overall, physiological impacts of the Cu diet were minimal. However dietary Cd increased hypoxia tolerance, as evidenced by decreased P crit , increased time to loss of equilibrium, a lack of plasma glucose elevation, decreased plasma ethanol, and decreased NQ during hypoxia. Blood O 2 transport characteristics (P 50 , Bohr coefficient, hemoglobin, hematocrit) were unaffected, suggesting that tissue level changes in metabolism accounted for the greater hypoxia tolerance in tambaqui fed with a Cd-contaminated diet. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Sediment toxicity and bioaccumulation of nano and micron-sized aluminum oxide.

    PubMed

    Stanley, Jacob K; Coleman, Jessica G; Weiss, Charles A; Steevens, Jeffery A

    2010-02-01

    Nano-aluminum oxide (Al(2)O(3)) is used commercially in coatings and abrasives. Nano-Al(2)O(3) can also be generated through the oxidation of nano-aluminum in military propellants and energetics. The purpose of the present study was to assess toxicity and bioaccumulation of nano-Al(2)O(3) to a variety of sediment organisms (Tubifex tubifex, Hyalella azteca, Lumbriculus variegatus, and Corbicula fluminea). The bioaccumulation and toxicity of nano-Al(2)O(3) was compared with that of micron-sized Al(2)O(3) to investigate potential size-related effects. Results of the present study show species-specific differences in relative bioaccumulation of nano and micron-sized Al(2)O(3). Significant toxic effects (survival and growth) were observed in H. azteca testing, but only at high concentrations unlikely to be found in the environment. Nano-Al(2)O(3) was found to be more toxic than micron-sized Al(2)O(3) to H. azteca survival in a 14-d study in which organisms were in direct contact with a thin layer of 625 or 2,500 mg of Al(2)O(3) dispersed on the surface of either sediment or sand. A significant growth effect was also observed for nano but not micron-sized Al(2)O(3) at the highest treatment level tested (100 g/kg Al(2)O(3)) in a 10-d H. azteca bioassay in which Al(2)O(3) was homogenized with sediment. However, differences in measured sediment Al concentrations (micron-sized = 55.1 [+/-0.6] g/kg Al; nano-sized = 66.2 [+/-0.6] g/kg Al) in the nano and micron-sized Al(2)O(3) preclude direct comparison of the toxicity of these two treatments based on particle size. Copyright 2009 SETAC.

  1. Bioaccumulation of chemical warfare agents, energetic materials, and metals in deep-sea shrimp from discarded military munitions sites off Pearl Harbor

    NASA Astrophysics Data System (ADS)

    Koide, Shelby; Silva, Jeff A. K.; Dupra, Vilma; Edwards, Margo

    2016-06-01

    The bioaccumulation of munitions-related chemicals at former military deep-water disposal sites is poorly understood. This paper presents the results of human-food-item biota sampling to assess the potential for bioaccumulation of chemical warfare agents, energetic materials, arsenic, and additional munitions-related metals in deep-sea shrimp tissue samples collected during the Hawai'i Undersea Military Munitions Assessment (HUMMA) project to date. The HUMMA investigation area is located within a former munitions sea-disposal site located south of Pearl Harbor on the island of O'ahu, Hawai'i, designated site Hawaii-05 (HI-05) by the United States Department of Defense. Indigenous deep-sea shrimp (Heterocarpus ensifer) were caught adjacent to discarded military munitions (DMM) and at control sites where munitions were absent. Tissue analysis results showed that chemical warfare agents and their degradation products were not present within the edible portions of these samples at detectable concentrations, and energetic materials and their degradation products were detected in only a few samples at concentrations below the laboratory reporting limits. Likewise, arsenic, copper, and lead concentrations were below the United States Food and Drug Administration's permitted concentrations of metals in marine biota tissue (if defined), and their presence within these samples could not be attributed to the presence of DMM within the study area based on a comparative analysis of munitions-adjacent and control samples collected. Based on this current dataset, it can be concluded that DMM existing within the HUMMA study area is not contributing to the bioaccumulation of munitions-related chemicals for the biota species investigated to date.

  2. A dynamic model using monitoring data and watershed characteristics to project fish tissue mercury concentrations in stream systems.

    PubMed

    Chan, Caroline; Heinbokel, John F; Myers, John A; Jacobs, Robert R

    2012-10-01

    A complex interplay of factors determines the degree of bioaccumulation of Hg in fish in any particular basin. Although certain watershed characteristics have been associated with higher or lower bioaccumulation rates, the relationships between these characteristics are poorly understood. To add to this understanding, a dynamic model was built to examine these relationships in stream systems. The model follows Hg from the water column, through microbial conversion and subsequent concentration, through the food web to piscivorous fish. The model was calibrated to 7 basins in Kentucky and further evaluated by comparing output to 7 sites in, or proximal to, the Ohio River Valley, an underrepresented region in the bioaccumulation literature. Water quality and basin characteristics were inputs into the model, with tissue concentrations of Hg of generic trophic level 3, 3.5, and 4 fish the output. Regulatory and monitoring data were used to calibrate and evaluate the model. Mean average prediction error for Kentucky sites was 26%, whereas mean error for evaluation sites was 51%. Variability within natural systems can be substantial and was quantified for fish tissue by analysis of the US Geological Survey National Fish Database. This analysis pointed to the need for more systematic sampling of fish tissue. Analysis of model output indicated that parameters that had the greatest impact on bioaccumulation influenced the system at several points. These parameters included forested and wetlands coverage and nutrient levels. Factors that were less sensitive modified the system at only 1 point and included the unfiltered total Hg input and the portion of the basin that is developed. Copyright © 2012 SETAC.

  3. Thermal Inactivation of Enteric Viruses and Bioaccumulation of Enteric Foodborne Viruses in Live Oysters (Crassostrea virginica)

    PubMed Central

    Araud, Elbashir; DiCaprio, Erin; Ma, Yuanmei; Lou, Fangfei; Gao, Yu; Kingsley, David; Hughes, John H.

    2016-01-01

    Human enteric viruses are among the main causative agents of shellfish-associated outbreaks. In this study, the kinetics of viral bioaccumulation in live oysters and the heat stabilities of the predominant enteric viruses were determined both in tissue culture and in oyster tissues. A human norovirus (HuNoV) GII.4 strain, HuNoV surrogates (murine norovirus [MNV-1], Tulane virus [TV]), hepatitis A virus (HAV), and human rotavirus (RV) bioaccumulated to high titers within oyster tissues, with different patterns of bioaccumulation for the different viruses. We tested the thermal stability of each virus at 62, 72, and 80°C in culture medium. The viruses can be ranked from the most heat resistant to the least stable as follows: HAV, RV, TV, MNV-1. In addition, we found that oyster tissues provided protection to the viruses during heat treatment. To decipher the mechanism underlying viral inactivation by heat, purified TV was treated at 80°C for increasing time intervals. It was found that the integrity of the viral capsid was disrupted, whereas viral genomic RNA remained intact. Interestingly, heat treatment leading to complete loss of TV infectivity was not sufficient to completely disrupt the receptor binding activity of TV, as determined by the porcine gastric mucin–magnetic bead binding assay. Similarly, HuNoV virus-like particles (VLPs) and a HuNoV GII.4 strain retained some receptor binding ability following heat treatment. Although foodborne viruses have variable heat stability, 80°C for >6 min was sufficient to completely inactivate enteric viruses in oysters, with the exception of HAV. PMID:26826225

  4. Conifer density within lake catchments predicts fish mercury concentrations in remote subalpine lakes.

    PubMed

    Eagles-Smith, Collin A; Herring, Garth; Johnson, Branden; Graw, Rick

    2016-05-01

    Remote high-elevation lakes represent unique environments for evaluating the bioaccumulation of atmospherically deposited mercury through freshwater food webs, as well as for evaluating the relative importance of mercury loading versus landscape influences on mercury bioaccumulation. The increase in mercury deposition to these systems over the past century, coupled with their limited exposure to direct anthropogenic disturbance make them useful indicators for estimating how changes in mercury emissions may propagate to changes in Hg bioaccumulation and ecological risk. We evaluated mercury concentrations in resident fish from 28 high-elevation, sub-alpine lakes in the Pacific Northwest region of the United States. Fish total mercury (THg) concentrations ranged from 4 to 438 ng/g wet weight, with a geometric mean concentration (±standard error) of 43 ± 2 ng/g ww. Fish THg concentrations were negatively correlated with relative condition factor, indicating that faster growing fish that are in better condition have lower THg concentrations. Across the 28 study lakes, mean THg concentrations of resident salmonid fishes varied as much as 18-fold among lakes. We used a hierarchal statistical approach to evaluate the relative importance of physiological, limnological, and catchment drivers of fish Hg concentrations. Our top statistical model explained 87% of the variability in fish THg concentrations among lakes with four key landscape and limnological variables: catchment conifer density (basal area of conifers within a lake's catchment), lake surface area, aqueous dissolved sulfate, and dissolved organic carbon. Conifer density within a lake's catchment was the most important variable explaining fish THg concentrations across lakes, with THg concentrations differing by more than 400 percent across the forest density spectrum. These results illustrate the importance of landscape characteristics in controlling mercury bioaccumulation in fish. Published by Elsevier Ltd.

  5. Bioaccumulation of polycyclic aromatic compounds: 2. Modeling bioaccumulation in marine organisms chronically exposed to dispersed oil.

    PubMed

    Baussant, T; Sanni, S; Skadsheim, A; Jonsson, G; Børseth, J F; Gaudebert, B

    2001-06-01

    Within the frame of a large environmental study, we report on a research program that investigated the potential for bioaccumulation and subsequent effect responses in several marine organisms exposed to chronic levels of dispersed crude oil. Body burden can be estimated from kinetic parameters (rate constants for uptake and elimination), and appropriate body burden-effect relationships may improve assessments of environmental risks or the potential for such outcomes following chronic discharges at sea. We conducted a series of experiments in a flow-through system to describe the bioaccumulation kinetics of polycyclic aromatic hydrocarbons (PAH) at low concentrations of dispersed crude oils. Mussels (Mytilus edulis) and juvenile turbot (Scophthalmus maximus) were exposed for periods ranging from 8 to 21 d. Postexposure, the organisms were kept for a period of 9 to 10 d in running seawater to study elimination processes. Rate constants of uptake (k1) and elimination (k2) of the PAHs during and following exposure were calculated using a first-order kinetic model that assumed a decrease of the substances in the environment over time. The estimated bioconcentration factor was calculated from the ratio of k1/k2. The kinetic parameters of two-, three-, and four-ring PAHs in mussel and fish are compared with estimates based on hydrophobicity alone, expressed by the octanol-water partition coefficient, Kow (partitioning theory). A combination of reduced bioavailability of PAHs from oil droplets and degradation processes of PAHs in body tissues seems to explain discrepancies between kinetic rates based on Kow and actual kinetic rates measured in fish. Mussels showed a pattern more in compliance with the partitioning theory.

  6. Influences on copper bioaccumulation, growth, and survival of the midge, Chironomus tentans, in metal-contaminated sediments

    USGS Publications Warehouse

    Besser, John M.; Kubitz, Jody A.; Ingersoll, Chris G.; Braselton, W. Emmett; Giesy, John P.

    1995-01-01

    Sediment bioassays with larvae of the midge, Chironomus tentans, were used to evaluate influences on the bioavailability and toxicity of copper (Cu) in sediments with a wide range of concentrations of metals, acid-volatile sulfide (AVS), and other physicochemical characteristics. Sediments were collected from sixteen lakes in Michigan, USA, and from twelve sites in the Clark Fork River drainage of Montana, USA, which are contaminated with metals from mining activities and from other anthropogenic sources. Bioassays with C. tentans larvae were conducted for ten days in a static-renewal test system, with endpoints of survival, growth, and metal bioaccumulation. Bioaccumulation of copper (Cu) was strongly correlated with Cu concentrations in porewater, and was increased significantly at Cu concentrations less than those affecting growth or survival. Midge survival and growth were not significantly correlated with concentrations of Cu in sediment or porewater, and were poorly predicted by ratios of acid-extractable metals to AVS in sediments. Principal components analysis indicated that Cu concentrations in porewater and bioaccumulation of Cu by midge larvae were influenced by AVS, sediment organic carbon, and porewater pH, and that toxicity was associated with high concentrations of Cu, high concentrations of zinc (Zn) and ammonia. No toxicity was observed in several sediments which contained low concentrations of AVS and high concentrations of Cu and Zn. In sediments which contain little AVS, bioavailability of metals may be controlled by constituents other than sulfides, such as organic matter and metal hydrous oxides. These results indicate that assessments of toxicity in metal-contaminated sediments should evaluate the importance of metal-binding phases other than sulfides, and the possible contributions of ammonia or other toxicants to toxicity in sediment bioassays.

  7. Enantioselective bioaccumulation of diniconazole in Tenebrio molitor larvae.

    PubMed

    Liu, Chen; LV, Xiao Tian; Zhu, Wen Xue; QU, Hao Yang; Gao, Yong Xin; Guo, Bao Yuan; Wang, Hui Li

    2013-12-01

    The enantioselective bioaccumulation of diniconazole in Tenebrio molitor Linne larva was investigated with liquid chromatography tandem mass spectrometry based on the ChiralcelOD-3R[cellulose tri-(3,5-dimethylphenyl carbamate)] column. In this study we documented the effects of dietary supplementation with wheat bran contaminated by racemic diniconazole at two dose levels of 20 mg kg(-1) and 2 mg kg(-1) (dry weight) in Tenebrio molitor. The results showed that both doses of diniconazole were taken up by Tenebrio molitor rapidly in the first few days, the concentrations of R-enantiomer and S-enantiomer at high doses reached the highest level of 0.55 mg kg(-1) and 0.48 mg kg(-1) , respectively, on the 1(st) d, and the concentrations of them obtained a maxima of 0.129 mg kg(-1) and 0.128 mg kg(-1) at low dose, respectively, on the 3(rd) d, which means that the concentration of diniconazole was proportional to the time of achieving the highest accumulated level. It afterwards attained equilibrium after a sharp decline at both 20 mg kg(-1) and 2 mg kg(-1) of diniconazole. The determination results from the feces of Tenebrio molitor demonstrated that the extraction recovery (ER) values of the high dose group were higher than that of the low dose group and the values were all above 1; therefore, it could be inferred that enantiomerization existed in Tenebrio molitor. Additionally, the biota accumulation factor was used to evaluate the bioaccumulation of diniconazole enantiomers, showing that the bioaccumulation of diniconazole in Tenebrio molitor was enantioselective with preferential accumulation of S-enantiomer. © 2013 Wiley Periodicals, Inc.

  8. A bioaccumulation bioassay for freshwater sediments

    USGS Publications Warehouse

    Mac, Michael J.; Noguchi, George E.; Hesselberg, Robert J.; Edsall, Carol C.; Shoesmith, John A.; Bowker, James D.

    1990-01-01

    A laboratory bioassay is described for determining the bioavailability of contaminants from freshwater sediments. The bioassay consists of 10-d exposures to whole sediments under flow-through conditions. After testing five species, the fathead minnow (Pimephales promelas) and the earthworm (Lubricus terrestris) were recommended for use in the test. When the availability of polychlorinated biphenyls (PCBs), Hg and Zn from Great Lakes sediments was examined in laboratory exposures, only the PCBs were accumulated. A field validation study demonstrated that the magnitude of accumulation in laboratory exposures was similar to that in organisms caged in the field. A protocol is recommended for using the test as a standardized bioaccumulation bioassay.

  9. Zinc and copper bioaccumulation in fish from Laizhou Bay, the Bohai Sea

    NASA Astrophysics Data System (ADS)

    Liu, Jinhu; Cao, Liang; Huang, Wei; Zhang, Chuantao; Dou, Shuozeng

    2014-05-01

    Zinc (Zn) and copper (Cu) concentrations were determined in the tissues (muscle, stomach, liver, gills, skin, and gonads) of five commercial fish species (mullet Liza haematocheilus, flathead Platycephalus indicus, mackerel Scomberomorus niphonius, silver pomfret Pampus argenteus, and sea bass Lateolabrax japonicus) from Laizhou Bay in the Bohai Sea. Metal bioaccumulation was highest in the metabolically active tissues of the gonads and liver. Bioconcentration factors for Zn were higher in all tissues (gonads 44.35, stomach 7.73, gills 7.72, liver 5.61, skin 4.88, and muscle 1.63) than the corresponding values for Cu (gonads 3.50, stomach 3.00, gills 1.60, liver 5.43, skin 1.50, and muscle 0.93). Mackerel tissues accumulated metal to higher concentrations than did other fish species, but bioaccumulation levels were not significantly correlated with the trophic levels of the fish. Zn and Cu concentrations in the tissues were generally negatively correlated with fish length, except for a few tissues of sea bass. Risk assessment based on national and international permissible limits and provisional tolerances for weekly intake of Zn and Cu revealed that the concentrations of these two metals in muscle were relatively low and would not pose hazards to human health.

  10. Species- and tissue-specific mercury bioaccumulation in five fish species from Laizhou Bay in the Bohai Sea of China

    NASA Astrophysics Data System (ADS)

    Liu, Jinhu; Cao, Liang; Huang, Wei; Dou, Shuozeng

    2013-05-01

    Mercury (Hg) concentrations in the tissues (muscle, stomach, liver, gills, skin, and gonads) of five fish species (mullet Liza ha em atocheil us, flathead fish Platycephalus indicus, sea bass Lateolabrax japonic u s, mackerel Scomberomorus niphonius and silver pomfret Pampus argenteus) collected from Laizhou Bay in the Bohai Sea of China were investigated. The results indicate that Hg bioaccumulation in the five fish was tissue-specific, with the highest levels in the muscle and liver, followed by the stomach and gonads. The lowest levels were found in the gills and skin. Fish at higher trophic levels (flathead fish and sea bass) exhibited higher Hg concentrations than consumers at lower trophic levels. Mercury bioaccumulation tended to be positively correlated with fish length in mullet, silver pomfret, mackerel, and flathead fish, but was negatively correlated with fish length in sea bass. The Hg concentrations in the muscles of all fish species in Laizhou Bay were within the permissible limits of food safety set by national and international criteria. However, the suggesting maximum consumption of sea bass is 263 g per week for human health.

  11. Marine foraging ecology influences mercury bioaccumulation in deep-diving northern elephant seals

    USGS Publications Warehouse

    Peterson, Sarah H.; Ackerman, Joshua T.; Costa, Daniel P.

    2015-01-01

    Mercury contamination of oceans is prevalent worldwide and methylmercury concentrations in the mesopelagic zone (200–1000 m) are increasing more rapidly than in surface waters. Yet mercury bioaccumulation in mesopelagic predators has been understudied. Northern elephant seals (Mirounga angustirostris) biannually travel thousands of kilometres to forage within coastal and open-ocean regions of the northeast Pacific Ocean. We coupled satellite telemetry, diving behaviour and stable isotopes (carbon and nitrogen) from 77 adult females, and showed that variability among individuals in foraging location, diving depth and δ13C values were correlated with mercury concentrations in blood and muscle. We identified three clusters of foraging strategies, and these resulted in substantially different mercury concentrations: (i) deeper-diving and offshore-foraging seals had the greatest mercury concentrations, (ii) shallower-diving and offshore-foraging seals had intermediate levels, and (iii) coastal and more northerly foraging seals had the lowest mercury concentrations. Additionally, mercury concentrations were lower at the end of the seven-month-long foraging trip (n = 31) than after the two-month- long post-breeding trip (n = 46). Our results indicate that foraging behaviour influences mercury exposure and mesopelagic predators foraging in the northeast Pacific Ocean may be at high risk for mercury bioaccumulation.

  12. Methylmercury in fish from the South China Sea: geographical distribution and biomagnification.

    PubMed

    Zhu, Aijia; Zhang, Wei; Xu, Zhanzhou; Huang, Liangmin; Wang, Wen-Xiong

    2013-12-15

    We conducted a large-scale investigation of methylmercury (MeHg) in a total of 628 marine wild fish covering 46 different species collected from the South China Sea between 2008 and 2009. Biological and ecological characteristics such as size (length and wet weight), feeding habit, habitat, and stable isotope (δ(15)N) were examined to explain MeHg bioaccumulation in marine fish and their geographical distribution. MeHg levels in the muscle tissues of the 628 individuals ranged from 0.010 to 1.811 μg/g dry wt. Log10MeHg concentration was significantly related to their length and wet weight. Feeding habit and habitat were the primary factors influencing MeHg bioaccumulation. Demersal fish were more likely to be contaminated with MeHg than the epipelagic and mesopelagic varieties. Linear relationships were obtained between Log10(MeHg) and δ(15)N only for one location, indicating that biomagnification was site-specific. Results from this study suggest that dietary preference and trophic structure were the main factors affecting MeHg bioaccumulation in marine fish from the South China Sea. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Tests of bioaccumulation models for polychlorinated biphenyl compounds: a study of young-of-the-year bluefish in the Hudson River estuary, USA.

    PubMed

    Leblanc, Lawrence A; Buckel, Jeffrey A; Conover, David O; Brownawell, Bruce J

    2006-08-01

    A field-based study regarding uptake of polychlorinated biphenyl compounds (PCBs) by young-of-the-year (YOY) bluefish (Pomatomus saltatrix) was initiated to test a steady-state model of bioaccumulation and trophic transfer in a rapidly growing fish. Determination of prey composition as well as size-dependent growth and specific consumption rates for YOY bluefish from separate field and laboratory studies enabled the input of these species-specific parameters into the model. Furthermore, the time and duration of the exposure of YOY bluefish to dissolved PCBs from a well-characterized system (Hudson River, USA) was well known. Patterns of accumulation of individual PCB congeners differed relative to the accumulation of total PCBs, with the greatest net accumulation occurring for the higher-molecular-weight congeners. Comparison of lipid-normalized bioaccumulation factors (BAFs) with the octanol-water partition coefficients of individual PCB congeners revealed bluefish to be above the BAFs predicted by lipid-based equilibrium partitioning, suggesting that uptake from food is an important source of PCBs in YOY bluefish. Comparison of measured BAFs with values predicted by a steady-state, food-chain model showed good first-order agreement.

  14. Cyanotoxins: Bioaccumulation and Effects on Aquatic Animals

    PubMed Central

    Ferrão-Filho, Aloysio da S.; Kozlowsky-Suzuki, Betina

    2011-01-01

    Cyanobacteria are photosynthetic prokaryotes with wide geographic distribution that can produce secondary metabolites named cyanotoxins. These toxins can be classified into three main types according to their mechanism of action in vertebrates: hepatotoxins, dermatotoxins and neurotoxins. Many studies on the effects of cyanobacteria and their toxins over a wide range of aquatic organisms, including invertebrates and vertebrates, have reported acute effects (e.g., reduction in survivorship, feeding inhibition, paralysis), chronic effects (e.g., reduction in growth and fecundity), biochemical alterations (e.g., activity of phosphatases, GST, AChE, proteases), and behavioral alterations. Research has also focused on the potential for bioaccumulation and transferring of these toxins through the food chain. Although the herbivorous zooplankton is hypothesized as the main target of cyanotoxins, there is not unquestionable evidence of the deleterious effects of cyanobacteria and their toxins on these organisms. Also, the low toxin burden in secondary consumers points towards biodilution of microcystins in the food web as the predominant process. In this broad review we discuss important issues on bioaccumulation and the effects of cyanotoxins, with emphasis on microcystins, as well as drawbacks and future needs in this field of research. PMID:22363248

  15. Accumulation of sediment-associated viruses in shellfish.

    PubMed Central

    Landry, E F; Vaughn, J M; Vicale, T J; Mann, R

    1983-01-01

    The present study focused on the importance of contaminated sediments in shellfish accumulation of human viruses. Epifaunal (Crassostrea virginica) and infaunal (Mercenaria mercenaria) shellfish, placed on or in cores, were exposed to either resuspended or undisturbed sediments containing bound poliovirus type 1 (LSc 2ab). Consistent bioaccumulation by oysters (four of five trials) was only noted when sediment-bound viruses occurred in the water column. Virus accumulation was observed in a single instance where sediments remained in an undisturbed state. While the incidence of bioaccumulation was higher with resuspended rather than undisturbed contaminated sediment, the actual concentration of accumulated viruses was not significantly different. The accumulation of viruses from oysters residing on uninoculated sediments. When clams were exposed to undisturbed, virus-contaminated sediments, two of five shellfish pools yielded viral isolates. Bioaccumulation of undisturbed sediments by these bivalves was considered marginal when related to the concentration of virus in contaminated sediments; they would only represent a significant threat when suspended in the water column. Arguments were advanced for water-column sampling in the region of the water-sediment interface to provide an accurate determination of the virological quality of shellfish harvesting waters. PMID:6297392

  16. Stereoselective bioaccumulation of chiral PCB 91 in earthworm and its metabolomic and lipidomic responses.

    PubMed

    He, Zeying; Wang, Yuehua; Zhang, Yanwei; Cheng, Haiyan; Liu, Xiaowei

    2018-07-01

    Stereoselective bioaccumulation, elimination, metabolomic and lipidomic responses of earthworm Eisenia fetida exposed to chiral polychlorinated biphenyl (PCB) 91 in an earthworm-soil system were investigated. Preferential bioaccumulation of (-)-PCB 91 and elimination of (+)-PCB 91 were observed following 50 and 500 μg/kg dwt exposures. Enantiomer fraction (EF) values decreased over time during the uptake and elimination periods. Metabolomics and lipidomics techniques based on ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) revealed significant changes in 108 metabolites after earthworms exposure to (+)-, (-)-, and (±)-PCB 91, compared to control groups. Forty two of these metabolites were identified as amino acids, nucleosides, fatty acids, dicarboxylic acids, vitamins or others. Lysophospholipids including six lysophosphatidylcholines (LPC), six lysophosphatidylethanolamine (LPE), eight lysophosphatidylinositol (LPI) and five lysophosphatidylserine (LPS) were also differentially expressed between exposure and control groups. Alterations in the levels of metabolites and lipids indicated stereoselective effects of chiral PCB 91 on earthworm amino acid, energy, and nucleotide metabolism, neurodevelopment and gene expression. Overall, the effects of (+)-PCB 91 were more pronounced than that of (-)- and (±)-PCB 91. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. The brown mussel Perna perna (L., 1758) as a sentinel species for chlorinated pesticide and dioxin-like compounds.

    PubMed

    Galvao, Petrus; Henkelmann, Bernhard; Longo, Renan; Torres, João Paulo Machado; Malm, Olaf; Schramm, Karl-Werner

    2015-09-01

    To contribute to the use of the tropical brown mussel Perna perna as a sentinel species for organochlorine pesticides (OCP) and polychlorinated biphenyls (PCB), the present study reports data on the toxicokinetics of these compounds in P. perna. Specifically, the authors present data on OCP and PCB bioaccumulation for eight sampling months from three bays (SE Brazil) and two transplant experiments (each 1 month long). Although seasonality is observed in the total lipid content of the whole soft tissue, with summer samples showing higher values, no such seasonality is observed in the OCP and PCB concentrations bioaccumulated by the mussel P. perna. Because no seasonal effect is observed in the annual OCP and PCB concentrations bioaccumulated by P. perna, the use of this species as a sentinel organism to monitor organochlorinated compounds is encouraged. One month of transplantation is not enough to allow the transplanted specimens to reach the concentrations observed in animals reared at the destination site. Nevertheless, P. perna showed a clear tendency to depurate the DDT metabolites p,p'-DDD and p,p'-DDE after 1 month of transplantation.

  18. Fluoride bioaccumulation by hydroponic cultures of camellia (Camellia japonica spp.) and sugar cane (Saccharum officinarum spp.).

    PubMed

    Camarena-Rangel, Nancy; Rojas Velázquez, Angel Natanael; Santos-Díaz, María del Socorro

    2015-10-01

    The ability of hydroponic cultures of camellia and sugar cane adult plants to remove fluoride was investigated. Plants were grown in a 50% Steiner nutrient solution. After an adaptation period to hydroponic conditions, plants were exposed to different fluoride concentrations (0, 2.5, 5 and 10 mg L(-1)). Fluoride concentration in the culture medium and in tissues was measured. In sugar cane, fluoride was mainly located in roots, with 86% of it absorbed and 14% adsorbed. Sugar cane plants removed 1000-1200 mg fluoride kg(-1) dry weight. In camellia plants the highest fluoride concentration was found in leaf. Roots accumulated fluoride mainly through absorption, which was 2-5 times higher than adsorption. At the end of the experiment, fluoride accumulation in camellia plants was 1000-1400 mgk g(-1) dry weight. Estimated concentration factors revealed that fluoride bioaccumulation is 74-221-fold in camellia plants and 100-500-fold in sugar cane plants. Thus, the latter appear as a suitable candidate for removing fluoride from water due to their bioaccumulation capacity and vigorous growth rate; therefore, sugar cane might be used for phytoremediation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Distribution and bioaccumulation of endocrine disrupting chemicals in water, sediment and fishes in a shallow Chinese freshwater lake: Implications for ecological and human health risks.

    PubMed

    Dan Liu; Wu, Shengmin; Xu, Huaizhou; Zhang, Qin; Zhang, Shenghu; Shi, Lili; Yao, Cheng; Liu, Yanhua; Cheng, Jie

    2017-06-01

    The occurrence, distribution and bioaccumulation of six endocrine disrupting compounds (EDCs) were investigated in water, sediment and biota samples from Luoma Lake, a shallow Chinese freshwater lake. Total concentrations of ∑phenolic EDCs were much higher than ∑estrogens EDCs in both waters and sediments. There were not obvious differences on the concentrations of target compounds [except nonylphenol (NP)] in upstream, lake and downstream locations, these may be suggested that they were mainly affected by non-point discharges in this area. However, the high concentration of NP in water may be associated with the discharge of rural domestic wastewater without thorough treatment. Furthermore, concentrations of NP were about 2-3 order magnitude higher than those of OP in both water and sediment compartments. Relatively higher bioaccumulation factors (BAF) were obtained for DES and EE2. Ecological risk assessment revealed greater risk of NP in surface water, which may pose a serious threat to aquatic ecosystems. The estrogen equivalent concentration (EEQ) of male were higher than those in female, and occurred in the order of city >rural-urban>countryside. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Application of granular activated carbon/MnFe2O4 composite immobilized on C. glutamicum MTCC 2745 to remove As(III) and As(V): Kinetic, mechanistic and thermodynamic studies

    NASA Astrophysics Data System (ADS)

    Podder, M. S.; Majumder, C. B.

    2016-01-01

    The main objective of the present study was to investigate the efficiency of Corynebacterium glutamicum MTCC 2745 immobilized on granular activated carbon/MnFe2O4 (GAC/MnFe2O4) composite to treat high concentration of arsenic bearing wastewater. Non-linear regression analysis was done for determining the best-fit kinetic model on the basis of three correlation coefficients and three error functions and also for predicting the parameters involved in kinetic models. The results showed that Fractal-like mixed 1,2 order model for As(III) and Brouser-Weron-Sototlongo as well as Fractal-like pseudo second order models for As(V) were proficient to provide realistic description of biosorption/bioaccumulation kinetic. Applicability of mechanistic models in the current study exhibited that the rate governing step in biosorption/bioaccumulation of both As(III) and As(V) was film diffusion rather than intraparticle diffusion. The evaluated thermodynamic parameters ΔG0, ΔH0 and ΔS0 revealed that biosorption/bioaccumulation of both As(III) and As(V) was feasible, spontaneous and exothermic under studied conditions.

  1. Metal contamination in benthic macroinvertebrates in a sub-basin in the southeast of Brazil.

    PubMed

    Chiba, W A C; Passerini, M D; Tundisi, J G

    2011-05-01

    Benthic macroinvertebrates have many useful properties that make possible the use of these organisms as sentinel in biomonitoring programmes in freshwater. Combined with the characteristics of the water and sediment, benthic macroinvertebrates are potential indicators of environmental quality. Thus, the spatial occurrence of potentially toxic metals (Al, Zn, Cr, Co, Cu, Fe, Mn and Ni) in the water, sediment and benthic macroinvertebrates samples were investigated in a sub-basin in the southeast of Brazil in the city of São Carlos, São Paulo state, with the aim of verifying the metals and environment interaction with benthic communities regarding bioaccumulation. Hypothetically, there can be contamination by metals in the aquatic environment in the city due to lack of industrial effluent treatment. All samples were analysed by the USEPA adapted method and processed in an atomic absorption spectrophotometer. The sub-basin studied is contaminated by toxic metals in superficial water, sediment and benthic macroinvertebrates. The Bioaccumulation Factor showed a tendency for metal bioaccumulation by the benthic organisms for almost all the metal species. The results show a potential human and ecosystem health risk, contributing to metal contamination studies in aquatic environments in urban areas.

  2. Biomagnification of mercury and selenium in blue shark Prionace glauca from the Pacific Ocean off Mexico.

    PubMed

    Escobar-Sánchez, Ofelia; Galván-Magaña, Felipe; Rosíles-Martínez, René

    2011-12-01

    The aim of this study was to determine the biomagnification of mercury through the principal prey of the blue shark, Prionace glauca, off the western coast of Baja California Sur, Mexico, as well as the relationship between mercury and selenium in blue sharks. High levels of mercury were found in shark muscle tissues (1.39 ± 1.58 μg/g wet weight); these values are above the allowed 1.0 μg/g for human consumption. The mercury to selenium molar ratio was 1:0.2. We found a low correlation between mercury bioaccumulation and shark size. Juveniles have lower concentrations of mercury than adults. Regarding the analyzed prey, the main prey of the blue shark, pelagic red crab, Pleuroncodes planipes, bioaccumulated 0.04 ± 0.01 μg/g Hg wet weight, but the prey with higher bioaccumulation was the bullet fish Auxis spp. (0.20 ± 0.02 μg/g wet weight). In terms of volume, the red crab P. planipes can be the prey that provides high levels of mercury to the blue shark.

  3. Mazzaella laminarioides and Sarcothalia crispata as possible bioindicators of heavy metal contamination in the marine coastal zone of Chile.

    PubMed

    Encina-Montoya, Francisco; Vega-Aguayo, Rolando; Díaz, Oscar; Esse, Carlos; Nimptsch, Jorge; Muñoz-Pedreros, Andrés

    2017-10-26

    The suitability of Mazzaella laminarioides and Sarcothalia crispata as heavy metal biomonitors of Cd, Cu, Hg, Pb, and Zn was assessed by comparing bioaccumulation of these elements in different life stages and frond sizes in samples from three locations, San Vicente Bay (industrial area), Coliumo, and Quidico (the latter as a reference station), where different degrees of heavy metal pollution are recorded. Bioaccumulation and bioconcentration factors of Cd, Cu, Hg, Pb, and Zn were evaluated. The two macroalgae species showed similar patterns, with higher values of Cu, Hg, Pb, and Zn in polluted areas. M. laminarioides bioaccumulated higher concentrations of all metals assessed than S. crispata, independent of life stage and frond size. The results also showed significantly higher Cu, Hg, Pb, and Zn concentrations (p < 0.05) in water samples from San Vicente Bay than those measured in Coliumo and Quidico. Concentrations of Cd, Hg, Pb, and Zn in San Vicente Bay and Cd, Hg, and Pb in Coliumo and Quidico exceed the mean values considered to represent natural concentrations (Cu = 3.00 μg L -1 ; Zn = 5.00 μg L -1 ; Pb = 0.03 μg L -1 ; Cd = 0.05 μg L -1 ; Hg = 0.05 μg L -1 ); however, the concentrations recorded do not cause negative effects on the growth and survival of macroalgae. The assessment of heavy metals bioaccumulated in M. laminarioides and S. crispata, particularly Hg, Pb, and Zn, offers a reliable approach for pollution assessment in rocky intertidal environments. Cu and Cd concentrations in seawater samples from San Vicente and Coliumo Bays were significantly higher than in those from Quidico (p value < 0.05); no significant differences in Cd concentrations were observed between San Vicente and Coliumo Bays (p < 0.05). Exceptionally, Cd is bioaccumulated at high levels independent of its availability in the water, thus reaching high concentrations in control areas. High concentrations of metals like Cu and Zn may limit or inhibit Cd uptake in macroalgae, since the transport channels are saturated by some metals, reducing the accumulation of others. These macroalgae species offer good potential for the development of suitable heavy metal pollution survey tools in rocky intertidal environments.

  4. Metal bioaccumulation and biomarkers of effects in caged mussels exposed in the Athabasca oil sands area.

    PubMed

    Pilote, M; André, C; Turcotte, P; Gagné, F; Gagnon, C

    2018-01-01

    The Athabasca oil sands deposit is the world's largest known reservoir of crude bitumen and the third-largest proven crude oil reserve. Mining activity is known to release contaminants, including metals, and to potentially impact the aquatic environment. The purpose of this study was to determine the impacts of oil sands mining on water quality and metal bioaccumulation in mussels from the Fort McMurray area in northern Alberta, Canada. The study presents two consecutive years of contrasting mussel exposure conditions (low and high flows). Native freshwater mussels (Pyganodon grandis) were placed in cages and exposed in situ in the Athabasca River for four weeks. Metals and inorganic elements were then analyzed in water and in mussel gills and digestive glands to evaluate bioaccumulation, estimate the bioconcentration factor (BCF), and determine the effects of exposure by measuring stress biomarkers. This study shows a potential environmental risk to aquatic life from metal exposure associated with oil sands development along with the release of wastewater from a municipal treatment plant nearby. Increased bioaccumulation of Be, V, Ni and Pb was observed in mussel digestive glands in the Steepbank River, which flows directly through the oil sands mining area. Increased bioaccumulation of Al, V, Cr, Co, Ni, Mo and Ni was also observed in mussel gills from the Steepbank River. These metals are naturally present in oil sands and generally concentrate and increase with the extraction process. The results also showed different pathways of exposure (particulate or dissolved forms) for V and Ni resulting from different river water flows, distribution coefficient (K d ) and BCF. Increasing metal exposure downstream of the oil sands mining area had an impact on metallothionein and lipid peroxidation in mussels, posing a potential environmental risk to aquatic life. These results confirm the bioavailability of some metals in mussel tissues associated with detoxification of metals (metallothionein levels), and oxidative stress in mussels located downstream of the oil sands mining area. These results highlight a potential ecotoxicological risk to biota and to the aquatic environment downstream of the oil sands mining area, even at low metal exposure levels. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  5. Microplastics are not important for the cycling and bioaccumulation of organic pollutants in the oceans-but should microplastics be considered POPs themselves?

    PubMed

    Lohmann, Rainer

    2017-05-01

    The role of microplastic particles in the cycling and bioaccumulation of persistent organic pollutants (POPs) is discussed. Five common concepts, sometimes misconceptions, about the role of microplastics are reviewed. While there is ample evidence that microplastics accumulate high concentrations of POPs, this does not result in microplastics being important for the global dispersion of POPs. Similarly, there is scant evidence that microplastics are an important transfer vector of POPs into animals, but possibly for plastic additives (flame retardants). Last, listing microplastics as POPs could help reduce their environmental impact. Integr Environ Assess Manag 2017;13:460-465. © 2017 SETAC. © 2017 SETAC.

  6. Bioaccumulation of toxic substances associated with dredging and dredged material disposal: a literature review

    USGS Publications Warehouse

    Seelye, James G.; Mac, Michael J.

    1984-01-01

    A literature review of sediment bioassessment was conducted as the first step in the development of a more standardized and ecologically sound test procedure for evaluating sediment quality. Based on the review, the authors concluded that 1) a standardized laboratory bioassessment test should consist of flowthrough exposure of at least 10 days duration using more than one aquatic organism including at least an infaunal benthic invertebrate and a fish species. 2) Before adoption of a laboratory sediment bioassessment procedure, the laboratory results should be evaluated by comparison with field conditions. 3) Most current sediment bioassessment regulatory tests measure acute toxicity or bioaccumulation. Development of tests to evaluate chronic, sublethal effects is needed.

  7. The influence of chemical degradation during dietary exposures to fish on biomagnification factors and bioaccumulation factors.

    PubMed

    Arnot, Jon A; Mackay, Donald

    2018-01-24

    The chemical dietary absorption efficiency (E D ) quantifies the amount of chemical absorbed by an organism relative to the amount of chemical an organism is exposed to following ingestion. In particular, E D can influence the extent of bioaccumulation and biomagnification for hydrophobic chemicals. A new E D model is developed to quantify chemical process rates in the gastrointestinal tract (GIT). The new model is calibrated with critically evaluated measured E D values (n = 250) for 80 hydrophobic persistent chemicals. The new E D model is subsequently used to estimate chemical reaction rate constants (k R ) assumed to occur in the lumen of the GIT from experimental dietary exposure tests (n = 255) for 165 chemicals. The new k R estimates are corroborated with k R estimates for the same chemicals from the same data derived previously by other methods. The roles of k R and the biotransformation rate constant (k B ) on biomagnification factors (BMFs) determined under laboratory test conditions and on BMFs and bioaccumulation factors (BAFs) in the environment are examined with the new model. In this regard, differences in lab and field BMFs are highlighted. Recommendations to address uncertainty in E D and k R data are provided.

  8. Mercury speciation in plankton from the Cabo Frio Bay, SE--Brazil.

    PubMed

    Silva-Filho, Emmanoel V; Kütter, Vinicius T; Figueiredo, Thiago S; Tessier, Emmanuel; Rezende, Carlos E; Teixeira, Daniel C; Silva, Carlos A; Donard, Olivier F X

    2014-12-01

    Mercury (Hg) is considered a global pollutant, and the scientific community has shown great concern about its toxicity as it may affect the biota of entire systems, through bioaccumulation and bioamplification processes of its organic form, methylmercury (MeHg), along food web. However, few research studies deal with bioaccumulation of Hg from marine primary producers and the first-order consumers. So, this study aims to determine Hg distribution and concentration levels in phytoplankton and zooplankton in the Cabo Frio Bay, Brazil, a site influenced by coastal upwelling. The results from Hg speciation analyses show that inorganic mercury Hg(II) was the predominant specie in plankton from this bay. The annual Hg species distribution in plankton shown mean concentration of 2.00 ± 1.28 ng Hg(II) g(-1) and 0.15 ± 0.08 ng MeHg g(-1) wet weight (phytoplankton) and 2.5 ± 2.03 ng Hg(II) g(-1) and 0.25 ± 0.09 ng MeHg g(-1) wet weight (zooplankton). Therefore, upwelling zones should be considered in the Hg biogeochemical cycle models as a process that enhances Hg(II) bioaccumulation in plankton, raising its bioavailability and shelf deposition.

  9. Marine foraging ecology influences mercury bioaccumulation in deep-diving northern elephant seals

    PubMed Central

    Peterson, Sarah H.; Ackerman, Joshua T.; Costa, Daniel P.

    2015-01-01

    Mercury contamination of oceans is prevalent worldwide and methylmercury concentrations in the mesopelagic zone (200–1000 m) are increasing more rapidly than in surface waters. Yet mercury bioaccumulation in mesopelagic predators has been understudied. Northern elephant seals (Mirounga angustirostris) biannually travel thousands of kilometres to forage within coastal and open-ocean regions of the northeast Pacific Ocean. We coupled satellite telemetry, diving behaviour and stable isotopes (carbon and nitrogen) from 77 adult females, and showed that variability among individuals in foraging location, diving depth and δ13C values were correlated with mercury concentrations in blood and muscle. We identified three clusters of foraging strategies, and these resulted in substantially different mercury concentrations: (i) deeper-diving and offshore-foraging seals had the greatest mercury concentrations, (ii) shallower-diving and offshore-foraging seals had intermediate levels, and (iii) coastal and more northerly foraging seals had the lowest mercury concentrations. Additionally, mercury concentrations were lower at the end of the seven-month-long foraging trip (n = 31) than after the two-month- long post-breeding trip (n = 46). Our results indicate that foraging behaviour influences mercury exposure and mesopelagic predators foraging in the northeast Pacific Ocean may be at high risk for mercury bioaccumulation. PMID:26085591

  10. Molecular Characterization of Voltage-Gated Sodium Channels and Their Relations with Paralytic Shellfish Toxin Bioaccumulation in the Pacific Oyster Crassostrea gigas

    PubMed Central

    Boullot, Floriane; Castrec, Justine; Bidault, Adeline; Dantas, Natanael; Payton, Laura; Perrigault, Mickael; Tran, Damien; Amzil, Zouher; Boudry, Pierre; Soudant, Philippe; Hégaret, Hélène; Fabioux, Caroline

    2017-01-01

    Paralytic shellfish toxins (PST) bind to voltage-gated sodium channels (Nav) and block conduction of action potential in excitable cells. This study aimed to (i) characterize Nav sequences in Crassostrea gigas and (ii) investigate a putative relation between Nav and PST-bioaccumulation in oysters. The phylogenetic analysis highlighted two types of Nav in C. gigas: a Nav1 (CgNav1) and a Nav2 (CgNav2) with sequence properties of sodium-selective and sodium/calcium-selective channels, respectively. Three alternative splice transcripts of CgNav1 named A, B and C, were characterized. The expression of CgNav1, analyzed by in situ hybridization, is specific to nervous cells and to structures corresponding to neuromuscular junctions. Real-time PCR analyses showed a strong expression of CgNav1A in the striated muscle while CgNav1B is mainly expressed in visceral ganglia. CgNav1C expression is ubiquitous. The PST binding site (domain II) of CgNav1 variants possess an amino acid Q that could potentially confer a partial saxitoxin (STX)-resistance to the channel. The CgNav1 genotype or alternative splicing would not be the key point determining PST bioaccumulation level in oysters. PMID:28106838

  11. The potential accumulation of polycyclic aromatic hydrocarbons in phytoplankton and bivalves in Can Gio coastal wetland, Vietnam.

    PubMed

    Thuy, Hoang Thi Thanh; Loan, Tu Thi Cam; Phuong, Trinh Hong

    2018-05-12

    Polycyclic aromatic hydrocarbons (PAHs) are one of the most important classes of anthropogenic persistent organic contaminants in the marine environment. This review discusses a whole range of findings that address various aspects of the bioaccumulation of PAHs in two common marine biota (phytoplankton and bivalves) globally and especially for Can Gio coastal wetland, Vietnam. The published information and collected data on the bioconcentration and accumulation mechanisms of PAHs as well as implications for Can Gio coastal wetland are compiled for phytoplankton and bivalves. PAHs are still released to Can Gio coastal environments from various sources and then transported to coastal environments through various physical processes; they may enter marine food chains and be highly accumulated in phytoplankton and bivalves. Thus, PAHs' bioaccumulation should be considered as one important criterion to assess the water's quality, directly linked to human health due to seafood consumption. Ecologically, Can Gio coastal wetland plays an important role to the South Vietnam key economic zone. However, it is also an area of potential PAHs inputs. With the abundant phytoplankton and bivalves in Can Gio coastal wetland, the PAHs bioaccumulation in these biota is inevitably detected. Thus, further study on the bioavailability of these contaminants is urgently needed in order to mitigate their negative effects and protect the ecosystems.

  12. Cross-Species Extrapolation of Uptake and Disposition of Neutral Organic Chemicals in Fish Using a Multispecies Physiologically-Based Toxicokinetic Model Framework.

    PubMed

    Brinkmann, Markus; Schlechtriem, Christian; Reininghaus, Mathias; Eichbaum, Kathrin; Buchinger, Sebastian; Reifferscheid, Georg; Hollert, Henner; Preuss, Thomas G

    2016-02-16

    The potential to bioconcentrate is generally considered to be an unwanted property of a substance. Consequently, chemical legislation, including the European REACH regulations, requires the chemical industry to provide bioconcentration data for chemicals that are produced or imported at volumes exceeding 100 tons per annum or if there is a concern that a substance is persistent, bioaccumulative, and toxic. For the filling of the existing data gap for chemicals produced or imported at levels that are below this stipulated volume, without the need for additional animal experiments, physiologically-based toxicokinetic (PBTK) models can be used to predict whole-body and tissue concentrations of neutral organic chemicals in fish. PBTK models have been developed for many different fish species with promising results. In this study, we developed PBTK models for zebrafish (Danio rerio) and roach (Rutilus rutilus) and combined them with existing models for rainbow trout (Onchorhynchus mykiss), lake trout (Salvelinus namaycush), and fathead minnow (Pimephales promelas). The resulting multispecies model framework allows for cross-species extrapolation of the bioaccumulative potential of neutral organic compounds. Predictions were compared with experimental data and were accurate for most substances. Our model can be used for probabilistic risk assessment of chemical bioaccumulation, with particular emphasis on cross-species evaluations.

  13. Human Excretion of Polybrominated Diphenyl Ether Flame Retardants: Blood, Urine, and Sweat Study

    PubMed Central

    Genuis, Shelagh K.; Birkholz, Detlef

    2017-01-01

    Commonly used as flame retardants, polybrominated diphenyl ethers (PBDEs) are routinely detected in the environment, animals, and humans. Although these persistent organic pollutants are increasingly recognized as having serious health implications, particularly for children, this is the first study, to our knowledge, to investigate an intervention for human elimination of bioaccumulated PBDEs. Objectives. To determine the efficacy of blood, urine, and perspiration as PBDE biomonitoring mediums; assess excretion of five common PBDE congeners (28, 47, 99, 100, and 153) in urine and perspiration; and explore the potential of induced sweating for decreasing bioaccumulated PBDEs. Results. PBDE congeners were not found in urine samples; findings focus on blood and perspiration. 80% of participants tested positive in one or more body fluids for PBDE 28, 100% for PBDE 47, 95% for PBDE 99, and 90% for PBDE 100 and PBDE 153. Induced perspiration facilitated excretion of the five congeners, with different rates of excretion for different congeners. Conclusion. Blood testing provides only a partial understanding of human PBDE bioaccumulation; testing of both blood and perspiration provides a better understanding. This study provides important baseline evidence for regular induced perspiration as a potential means for therapeutic PBDE elimination. Fetotoxic and reproductive effects of PBDE exposure highlight the importance of further detoxification research. PMID:28373979

  14. Elevated levels of perfluoroalkyl acids in family members of occupationally exposed workers: the importance of dust transfer.

    PubMed

    Fu, Jianjie; Gao, Yan; Wang, Thanh; Liang, Yong; Zhang, Aiqian; Wang, Yawei; Jiang, Guibin

    2015-03-20

    The exposure pathways of perfluoroalkyl acids (PFAAs) to humans are still not clear because of the complex living environment, and few studies have simultaneously investigated the bioaccumulative behaviour of different PFAAs in humans. In this study, serum, dust, duplicate diet, and other matrices were collected around a manufacturing plant in China, and homologous series of PFAAs were analysed. PFAA levels in dust and serum of local residents in this area were considerably higher than those in non-polluted area. Although dietary intake was the major exposure pathway in the present study, dust ingestion played an important role in this case. Serum PFAAs in local residents was significantly correlated with dust PFAAs levels in their living or working microenvironment. Serum PFAAs and dust PFAAs were significantly higher in family members of occupational workers (FM) than in ordinary residents (OR) (p < 0.01). After a careful analysis of the PFAAs exposure pathway, a potential pathway in addition to direct dust ingestion was suggested: PFAAs might transferred from occupational worker's clothes to dinners via cooking processes. The bioaccumulative potential of PFHxS and PFOS were higher than other PFAAs, which suggested a substantial difference between the bioaccumulative ability of perfluorinated sulfonic acids and perfluorinated carboxylic acids.

  15. Using SEM-EDX and ICP-OES to investigate the elemental composition of green macroalga Vaucheria sessilis.

    PubMed

    Michalak, Izabela; Marycz, Krzysztof; Basińska, Katarzyna; Chojnacka, Katarzyna

    2014-01-01

    The biomass of Vaucheria sessilis forms algal mats in many freshwaters. There is a need to find the method of algal biomass utilization. Vaucheria sessilis is a rich source of micro- and macronutrients and can be used as a soil amendment. In the paper, the elemental composition of enriched, via bioaccumulation process, macroalga was investigated. For this purpose, two independent techniques were used: scanning electron microscopy with an energy dispersive X-ray analytical system (SEMEDX) and inductively coupled plasma optical emission spectroscopy (ICP-OES). The biomass was exposed to two microelemental solutions, with Cu(II) and Zn(II) ions. After two weeks of the experiment, macroalga accumulated 98.5 mg of Zn(II) ions in 1 g of dry biomass and 68.9 mg g(-1) of Cu(II) ions. Micrographs performed by SEM proved that bioaccumulation occurred. Metal ions were bound on the surface and in the interior of cells. Mappings of all cations showed that in the case of the surface of biomass (biosorption), the elements constituted aggregations and in the case of the cross section (bioaccumulation) they were evenly distributed. The algal biomass with permanently bound microelements can find an application in many branches of the industry (feed, natural fertilizers, etc.).

  16. Subcellular distributions of metals and metal induced stress: A field study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, K.D.; Howe, S.; Sanders, B.M.

    This paper reports the results of a field study which took place around an exploratory well located in the Santa Barbara Channel. This study was designed to test for significant temporal and spatial differences in the concentrations of a number of drilling fluid-associated metals in both the sediments and biota. Temporal changes in the distribution of Ba, Cd, Cr, Cu, Hg, Ni, Pb, and Zn were examined in the sediments, and the bioaccumulation and subcellular distribution of these metals were examined in three benthic invertebrate species before and after drilling. Statistically significant increases in the accumulation of several of themore » metals were found in the surface sediments down current from the site after drilling with Ba showing the most pronounced increase. Statistically significant increases in the bioaccumulation of Ba were also observed in two of the three species examined, Cyclocardia ventricosa and Pactinaria californiensis. Within these organisms the majority of the Ba was localized in the granular pellets (>97%) and less than 0.1% accumulated in the cytosol. These data indicate that although bioaccumulation of Ba occurs in some species immediately down current from the well, most of it remains in an insoluble for, presumably as BaSO{sub 4}.« less

  17. Newly Identified DDT-Related Compounds Accumulating in Southern California Bottlenose Dolphins.

    PubMed

    Mackintosh, Susan A; Dodder, Nathan G; Shaul, Nellie J; Aluwihare, Lihini I; Maruya, Keith A; Chivers, Susan J; Danil, Kerri; Weller, David W; Hoh, Eunha

    2016-11-15

    Nontargeted GC×GC-TOF/MS analysis of blubber from 8 common bottlenose dolphins (Tursiops truncatus) inhabiting the Southern California Bight was performed to identify novel, bioaccumulative DDT-related compounds and to determine their abundance relative to the commonly studied DDT-related compounds. We identified 45 bioaccumulative DDT-related compounds of which the majority (80%) is not typically monitored in environmental media. Identified compounds include transformation products, technical mixture impurities such as tris(chlorophenyl)methane (TCPM), the presumed TCPM metabolite tris(chlorophenyl)methanol (TCPMOH), and structurally related compounds with unknown sources, such as hexa- to octachlorinated diphenylethene. To investigate impurities in pesticide mixtures as possible sources of these compounds, we analyzed technical DDT, the primary source of historical contamination in the region, and technical Dicofol, a current use pesticide that contains DDT-related compounds. The technical mixtures contained only 33% of the compounds identified in the blubber, suggesting that transformation products contribute to the majority of the load of DDT-related contaminants in these sentinels of ocean health. Quantitative analysis revealed that TCPM was the second most abundant compound class detected in the blubber, following DDE, and TCPMOH loads were greater than DDT. QSPR estimates verified 4,4',4″-TCPM and 4,4'4,″-TCPMOH are persistent and bioaccumulative.

  18. Bioaccumulation and toxicity of zinc in the green alga, Cladophora glomerata.

    PubMed

    McHardy, B M; George, J J

    1990-01-01

    The bioaccumulation and toxicity of zinc in Cladophora glomerata from two populations in the River Roding, Essex, UK, were examined in experimental laboratory flowing-water channels. Plants were subjected to zinc concentrations ranging from 0 to 4.0 mg litre(-1) at current velocities of 20-33 cm s(-1) for up to 3 h. Zinc in algal tissue was then quantified and toxicity was assessed by the ability of the alga to grow in a recovery medium after the experimental treatment. There was little difference in zinc bioaccumulation between Cladophora from the site showing mild organic pollution and that from the site subjected to considerable inputs from urban and motorway runoff. Uptake of zinc increased with increasing concentration in the test solution and was linear and proportional up to 0.4 mg litre(-1). Three stages of uptake were identified with the most dramatic accumulation occurring in the first 10 min. Experimental concentration factors ranged from 1.9-5.2 x 10(3), which were in agreement with those previously obtained in the field. Cellular damage was evident in Cladophora subjected to 0.4 mg litre(-1) zinc, and this increased with increasing zinc concentration, thus leading to the conclusion that, at times, the levels of zinc found in the river could be potentially damaging.

  19. Corynebacterium glutamicum MTCC 2745 immobilized on granular activated carbon/MnFe2O4 composite: A novel biosorbent for removal of As(III) and As(V) ions

    NASA Astrophysics Data System (ADS)

    Podder, M. S.; Majumder, C. B.

    2016-11-01

    The optimization of biosorption/bioaccumulation process of both As(III) and As(V) has been investigated by using the biosorbent; biofilm of Corynebacterium glutamicum MTCC 2745 supported on granular activated carbon/MnFe2O4 composite (MGAC). The presence of functional groups on the cell wall surface of the biomass that may interact with the metal ions was proved by FT-IR. To determine the most appropriate correlation for the equilibrium curves employing the procedure of the non-linear regression for curve fitting analysis, isotherm studies were performed for As(III) and As(V) using 30 isotherm models. The pattern of biosorption/bioaccumulation fitted well with Vieth-Sladek isotherm model for As(III) and Brouers-Sotolongo and Fritz-Schlunder-V isotherm models for As(V). The maximum biosorption/bioaccumulation capacity estimated using Langmuir model were 2584.668 mg/g for As(III) and 2651.675 mg/g for As(V) at 30 °C temperature and 220 min contact time. The results showed that As(III) and As(V) removal was strongly pH-dependent with an optimum pH value of 7.0. D-R isotherm studies specified that ion exchange might play a prominent role.

  20. Effects of extracellular polymeric substances on the bioaccumulation of mercury and its toxicity toward the cyanobacterium Microcystis aeruginosa.

    PubMed

    Chen, Ho-Wen; Huang, Winn-Jung; Wu, Ting-Hsiang; Hon, Chen-Lin

    2014-01-01

    This investigation examines how extracellular polymeric substances (EPSs) and environmental factors affect the bioaccumulation and toxicity of inorganic mercury (+2 oxidation state, Hg(II)) using a culture of Microcystis aeruginosa, which dominates eutrophic reservoir populations. The identified EPSs were classified as carbohydrates and proteins. Evaluation of the bioaccumulation of Hg(II) in cells by multiple regression analysis reveals that the concentration of EPSs in filtrate, the initial concentration of Hg(II) in medium, and the culture age significantly affected the amount of Hg(II) accumulated. Composition profiles revealed that the concentrations of soluble carbohydrates were significantly higher in Hg(II)-accumulated cells than in the control ones. Preliminary results based on scanning electron microscopic (SEM) map investigations suggest that most of the Hg(II) was accumulated in the cytoplasm (intracellular). Additionally, the effective concentrations (EC50) of Hg(II) that inhibit the growth of M. aeruginosa were 38.6 μg L(-1) in the logarithmic phase and 17.5 μg L(-1) in the stationary phase. As expected, the production of more EPSs in the logarithmic phase typically implies higher EC50 values because EPSs may be regarded as a protective barrier of cells against an external Hg(II) load, enabling them to be less influenced by Hg(II).

  1. Using SEM-EDX and ICP-OES to Investigate the Elemental Composition of Green Macroalga Vaucheria sessilis

    PubMed Central

    Michalak, Izabela; Marycz, Krzysztof; Basińska, Katarzyna; Chojnacka, Katarzyna

    2014-01-01

    The biomass of Vaucheria sessilis forms algal mats in many freshwaters. There is a need to find the method of algal biomass utilization. Vaucheria sessilis is a rich source of micro- and macronutrients and can be used as a soil amendment. In the paper, the elemental composition of enriched, via bioaccumulation process, macroalga was investigated. For this purpose, two independent techniques were used: scanning electron microscopy with an energy dispersive X-ray analytical system (SEMEDX) and inductively coupled plasma optical emission spectroscopy (ICP-OES). The biomass was exposed to two microelemental solutions, with Cu(II) and Zn(II) ions. After two weeks of the experiment, macroalga accumulated 98.5 mg of Zn(II) ions in 1 g of dry biomass and 68.9 mg g−1 of Cu(II) ions. Micrographs performed by SEM proved that bioaccumulation occurred. Metal ions were bound on the surface and in the interior of cells. Mappings of all cations showed that in the case of the surface of biomass (biosorption), the elements constituted aggregations and in the case of the cross section (bioaccumulation) they were evenly distributed. The algal biomass with permanently bound microelements can find an application in many branches of the industry (feed, natural fertilizers, etc.). PMID:25180212

  2. A probabilistic model for silver bioaccumulation in aquatic systems and assessment of human health risks

    USGS Publications Warehouse

    Warila, James; Batterman, Stuart; Passino-Reader, Dora R.

    2001-01-01

    Silver (Ag) is discharged in wastewater effluents and is also a component in a proposed secondary water disinfectant. A steady-state model was developed to simulate bioaccumulation in aquatic biota and assess ecological and human health risks. Trophic levels included phytoplankton, invertebrates, brown trout, and common carp. Uptake routes included water, food, or sediment. Based on an extensive review of the literature, distributions were derived for most inputs for use in Monte Carlo simulations. Three scenarios represented ranges of dilution and turbidity. Compared with the limited field data available, median estimates of Ag in carp (0.07-2.1 Iμg/g dry weight) were 0.5 to 9 times measured values, and all measurements were within the predicted interquartile range. Median Ag concentrations in biota were ranked invertebrates > phytoplankton > trout > carp. Biotic concentrations were highest for conditions of low dilution and low turbidity. Critical variables included Ag assimilation eficiency, specific feeding rate, and the phytoplankton bioconcentration factor. Bioaccumulation of Ag seems unlikely to result in txicity to aquatic biota and humans consuming fish. Although the highest predicted Ag concentrations in water (>200 ng/L) may pose chronic risks to early survival and development of salmonids and risks of argyria to subsistence fishers, these results occur under highly conservative conditions.

  3. AGRO-2014: A time dependent model for assessing the fate and food-web bioaccumulation of organic pesticides in farm ponds: Model testing and performance analysis.

    PubMed

    Gobas, Frank A P C; Lai, Hao-Feng; Mackay, Donald; Padilla, Lauren E; Goetz, Andy; Jackson, Scott H

    2018-10-15

    A time-dependent environmental fate and food-web bioaccumulation model is developed to improve the evaluation of the behaviour of non-ionic hydrophobic organic pesticides in farm ponds. The performance of the model was tested by simulating the behaviour of 3 hydrophobic organic pesticides, i.e., metaflumizone (CAS Number: 139968-49-3), kresoxim-methyl (CAS Number: 144167-04-4) and pyraclostrobin (CAS Number: 175013-18-0), in microcosm studies and a Bluegill bioconcentration study for metaflumizone. In general, model-calculated concentrations of the pesticides were in reasonable agreement with the observed concentrations. Also, calculated bioaccumulation metrics were in good agreement with observed values. The model's application to simulate concentrations of organic pesticides in water, sediment and biota of farm ponds after episodic pesticide applications is illustrated. It is further shown that the time dependent model has substantially better accuracy in simulating the concentrations of pesticides in farm ponds resulting from episodic pesticide application than corresponding steady-state models. The time dependent model is particularly useful in describing the behaviour of highly hydrophobic pesticides that have a potential to biomagnify in aquatic food-webs. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Elevated levels of perfluoroalkyl acids in family members of occupationally exposed workers: the importance of dust transfer

    NASA Astrophysics Data System (ADS)

    Fu, Jianjie; Gao, Yan; Wang, Thanh; Liang, Yong; Zhang, Aiqian; Wang, Yawei; Jiang, Guibin

    2015-03-01

    The exposure pathways of perfluoroalkyl acids (PFAAs) to humans are still not clear because of the complex living environment, and few studies have simultaneously investigated the bioaccumulative behaviour of different PFAAs in humans. In this study, serum, dust, duplicate diet, and other matrices were collected around a manufacturing plant in China, and homologous series of PFAAs were analysed. PFAA levels in dust and serum of local residents in this area were considerably higher than those in non-polluted area. Although dietary intake was the major exposure pathway in the present study, dust ingestion played an important role in this case. Serum PFAAs in local residents was significantly correlated with dust PFAAs levels in their living or working microenvironment. Serum PFAAs and dust PFAAs were significantly higher in family members of occupational workers (FM) than in ordinary residents (OR) (p < 0.01). After a careful analysis of the PFAAs exposure pathway, a potential pathway in addition to direct dust ingestion was suggested: PFAAs might transferred from occupational worker's clothes to dinners via cooking processes. The bioaccumulative potential of PFHxS and PFOS were higher than other PFAAs, which suggested a substantial difference between the bioaccumulative ability of perfluorinated sulfonic acids and perfluorinated carboxylic acids.

  5. Elevated levels of perfluoroalkyl acids in family members of occupationally exposed workers: the importance of dust transfer

    PubMed Central

    Fu, Jianjie; Gao, Yan; Wang, Thanh; Liang, Yong; Zhang, Aiqian; Wang, Yawei; Jiang, Guibin

    2015-01-01

    The exposure pathways of perfluoroalkyl acids (PFAAs) to humans are still not clear because of the complex living environment, and few studies have simultaneously investigated the bioaccumulative behaviour of different PFAAs in humans. In this study, serum, dust, duplicate diet, and other matrices were collected around a manufacturing plant in China, and homologous series of PFAAs were analysed. PFAA levels in dust and serum of local residents in this area were considerably higher than those in non-polluted area. Although dietary intake was the major exposure pathway in the present study, dust ingestion played an important role in this case. Serum PFAAs in local residents was significantly correlated with dust PFAAs levels in their living or working microenvironment. Serum PFAAs and dust PFAAs were significantly higher in family members of occupational workers (FM) than in ordinary residents (OR) (p < 0.01). After a careful analysis of the PFAAs exposure pathway, a potential pathway in addition to direct dust ingestion was suggested: PFAAs might transferred from occupational worker's clothes to dinners via cooking processes. The bioaccumulative potential of PFHxS and PFOS were higher than other PFAAs, which suggested a substantial difference between the bioaccumulative ability of perfluorinated sulfonic acids and perfluorinated carboxylic acids. PMID:25791573

  6. Bioaccumulation and risk assessment of organochlorine pesticides in fish from a global biodiversity hotspot: iSimangaliso Wetland Park, South Africa.

    PubMed

    Buah-Kwofie, Archibold; Humphries, Marc S; Pillay, Letitia

    2018-04-15

    Organochlorine pesticides (OCPs) have been used extensively in the eastern regions of South Africa for agricultural and malaria control purposes, yet few data exist on the local environmental and social impacts of these compounds. Such issues have become of increasing concern in the iSimangaliso World Heritage Site, where the continued use of OCPs may pose risks to several sensitive and protected species. This study was designed to examine the bioaccumulation of OCPs in two common fish species, Oreochromis mossambicus (Mozambique tilapia) and Clarias gariepinus (African sharptooth catfish) from iSimangaliso Wetland Park. These species are targeted by local subsistence fishermen and sustain substantial bird and crocodile populations. Our findings indicate widespread contamination of the aquatic environment, with ΣOCP fish tissue concentrations in the range of 6907-8740ngg -1 lw and 2953-5874ngg -1 lw for C. gariepinus and O. mossambicus, respectively. HCHs (471-1570ngg -1 lw), DDTs (645-2399ngg -1 lw), drin-related residues (589-1960ngg -1 lw), chlor-related residues (455-2162ngg -1 lw) and endosulfans (457-1495ngg -1 lw) were detected in all tissue samples. Concentrations detected in the majority of samples exceeded European Commission maximum residue limits and a health risk assessment indicated potential dietary risk associated with exposure to heptachlor, heptachlor epoxide and dieldrin. This study represents the first investigation into OCP bioaccumulation in fish species from iSimangaliso Wetland Park. Our findings highlight the need for more detailed investigations into the bioaccumulation and ecotoxicological effects of these contaminants in the food web and the associated risks to local ecosystems and human health. High levels of OCPs detected in two common fish species at iSimangaliso Wetland Park highlight potential human health and ecotoxicological threats to a globally important biodiversity conservation hotspot. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Effects of clay minerals and organic matter in formulated sediments on the bioavailability of sediment-associated uranium to the freshwater midge, Chironomus dilutus.

    PubMed

    Crawford, Sarah E; Liber, Karsten

    2015-11-01

    It is well established that bioavailability influences metal toxicity in aquatic ecosystems. However, the factors and mechanisms that influence uranium (U) bioavailability and toxicity in sediment have not been thoroughly evaluated, despite evidence that suggests different sediment components can influence the sorption and interaction of some metals. Given that dissolved U is generally accepted as being the primary bioavailable fraction of U, it is hypothesized that adsorption and interaction of U with different sediment components will influence the bioavailability of U in sediment. We investigated the effects of key sediment physicochemical properties on the bioavailability of U to a model freshwater benthic invertebrate, Chironomus dilutus. Several 10-day spiked sediment bioaccumulation experiments were performed, exposing C. dilutus larvae to a variety of formulated sediments spiked with different concentrations of U (5, 50 and/or 200 mg U/kg d.w.). Mean accumulation of U in C. dilutus larvae decreased significantly from 1195 to 10 mg U/kg d.w. as kaolin clay content increased from 0% to 60% in sediment spiked with 50 mg U/kg d.w. Similarly, higher organic matter content also resulted in a significant reduction of U bioaccumulation in C. dilutus larvae, indicating a reduction in U bioavailability. Concentrations of U in both the overlying water and sediment pore water displayed a strong positive relationship to U bioaccumulation in C. dilutus larvae (r(2) = 0.77, p<0.001 and r(2) = 0.57, p < 0.001, respectively) for all experiments, while total U concentrations in the sediment had a poor relationship to U bioaccumulation (r(2) = 0.10, p = 0.028). Results from this research confirm that sediment clay and organic matter content play a significant role in altering U bioavailability, which is important in informing risk assessments of U contaminated sites and in the development of site-specific sediment quality guidelines for U. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Hot Spots of Mercury Bioaccumulation in Amphibian Populations From the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Bank, M. S.

    2008-12-01

    Mercury (Hg) contamination in the United States (U.S.) is well-documented and continues to be a public- health issue of great concern. Fish consumption advisories have been issued throughout much of the U.S. due to elevated levels of methylmercury (MeHg). Methylmercury contamination in the developing fetus and in young children is a major public health issue for certain sectors of the global human population. Moreover, identifying MeHg hot spots and the effects of MeHg pollution on environmental health and biodiversity are also considered a high priority for land managers, risk assessors, and conservation scientists. Despite their overall biomass and importance to aquatic and terrestrial ecosystems, Hg and MeHg bioaccumulation dynamics and toxicity in amphibians are not well studied, especially when compared to other vertebrate taxa such as birds, mammals, and fish species. Population declines in amphibians are well documented and likely caused by synergistic and interacting, multiple stressors such as climate change, exposure to toxic pollutants, fungal pathogens, and habitat loss and ecosystem degradation. Protecting quality of terrestrial ecosystems in the U.S. has enormous ramifications for economic and public health of the nation's residents and is fundamental to maintaining the biotic integrity of surface waters, riparian zones, and environmental health of forested landscapes nationwide. Determining Hg concentration levels for terrestrial and surface water ecosystems also has important implications for protecting the nation's fauna. Here I present an overview of the National Amphibian Mercury Program and evaluate variation in MeHg hotspots, Hg bioaccumulation and distribution in freshwater and terrestrial habitats across a broad gradient of physical, climatic, biotic, and ecosystem settings to identify the environmental conditions and ecosystem types that are most sensitive to Hg pollution. The role of geography, disturbance mechanisms, and abiotic and biotic factors governing Hg distribution and bioaccumulation are also discussed.

  9. PBT assessment under REACH: Screening for low aquatic bioaccumulation with QSAR classifications based on physicochemical properties to replace BCF in vivo testing on fish.

    PubMed

    Nendza, Monika; Kühne, Ralph; Lombardo, Anna; Strempel, Sebastian; Schüürmann, Gerrit

    2018-03-01

    Aquatic bioconcentration factors (BCFs) are critical in PBT (persistent, bioaccumulative, toxic) and risk assessment of chemicals. High costs and use of more than 100 fish per standard BCF study (OECD 305) call for alternative methods to replace as much in vivo testing as possible. The BCF waiving scheme is a screening tool combining QSAR classifications based on physicochemical properties related to the distribution (hydrophobicity, ionisation), persistence (biodegradability, hydrolysis), solubility and volatility (Henry's law constant) of substances in water bodies and aquatic biota to predict substances with low aquatic bioaccumulation (nonB, BCF<2000). The BCF waiving scheme was developed with a dataset of reliable BCFs for 998 compounds and externally validated with another 181 substances. It performs with 100% sensitivity (no false negatives), >50% efficacy (waiving potential), and complies with the OECD principles for valid QSARs. The chemical applicability domain of the BCF waiving scheme is given by the structures of the training set, with some compound classes explicitly excluded like organometallics, poly- and perfluorinated compounds, aromatic triphenylphosphates, surfactants. The prediction confidence of the BCF waiving scheme is based on applicability domain compliance, consensus modelling, and the structural similarity with known nonB and B/vB substances. Compounds classified as nonB by the BCF waiving scheme are candidates for waiving of BCF in vivo testing on fish due to low concern with regard to the B criterion. The BCF waiving scheme supports the 3Rs with a possible reduction of >50% of BCF in vivo testing on fish. If the target chemical is outside the applicability domain of the BCF waiving scheme or not classified as nonB, further assessments with in silico, in vitro or in vivo methods are necessary to either confirm or reject bioaccumulative behaviour. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Chemical composition and bioaccumulation ability of Boletus badius (Fr.) Fr. collected in western Poland.

    PubMed

    Proskura, Natalia; Podlasińska, Joanna; Skopicz-Radkiewicz, Lidia

    2017-02-01

    The aim of the study was to determine content of 17 elements (Co, Cd, Cu, Cr, Ni, Pb, Zn, Mn, Fe, Mg, Na, Ca, K, N, C, S and P) and their bioaccumulation factors (BCF) in bay bolete (Boletus badius (Fr.) Fr.) fruiting bodies (caps and stalks) and underneath soil samples collected from forest sites in lubuskie voivodeship in Poland. Forty-eight samples of Boletus badius (Fr.) Fr. fruiting bodies and the same number of underneath soil substrate samples were collected in forest sites of Sulęcin Forest District in western Poland. Copper and zinc were absorbed most strongly from soil substrate, which is performed by bioaccumulation factors (BCF Cap/Soil  = 16.57 and 11.60, respectively), wherein Pb, Co, Cr, Fe and Mn were excluded from bioaccumulation (BCF < 1.0). The mean content of Cd in caps and stalks was 1.44 ± 0.88 and 2.01 ± 1.26 mg kg -1 dry weight, respectively and in contrary to Pb (≈3.00 ± 2.66 and 2.01 ± 1.26 mg kg -1 d. w.) this metal is strongly accumulated from subsoil (BCF Cap/Soil  = 11.12 and BCF Stipe/Soil  = 10.83). The fruiting bodies of Boletus badius were distinguished by elevated content of Cr, Zn, Pb and Cd. Few statistically significant metal-to-metal correlations were observed. The correlation between forest habitat types and metals concentrations was also analysed. An attempt of estimation of Pb and Cd safe dose for human consumption was made. mushrooms can be a good source of some micro- and macroelements, but they also contain a great amount of toxic heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Interactions between Zooplankton and Crude Oil: Toxic Effects and Bioaccumulation of Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Almeda, Rodrigo; Wambaugh, Zoe; Wang, Zucheng; Hyatt, Cammie; Liu, Zhanfei; Buskey, Edward J.

    2013-01-01

    We conducted ship-, shore- and laboratory-based crude oil exposure experiments to investigate (1) the effects of crude oil (Louisiana light sweet oil) on survival and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in mesozooplankton communities, (2) the lethal effects of dispersant (Corexit 9500A) and dispersant-treated oil on mesozooplankton, (3) the influence of UVB radiation/sunlight exposure on the toxicity of dispersed crude oil to mesozooplankton, and (4) the role of marine protozoans on the sublethal effects of crude oil and in the bioaccumulation of PAHs in the copepod Acartia tonsa. Mortality of mesozooplankton increased with increasing oil concentration following a sigmoid model with a median lethal concentration of 32.4 µl L−1 in 16 h. At the ratio of dispersant to oil commonly used in the treatment of oil spills (i.e. 1∶20), dispersant (0.25 µl L−1) and dispersant- treated oil were 2.3 and 3.4 times more toxic, respectively, than crude oil alone (5 µl L−1) to mesozooplankton. UVB radiation increased the lethal effects of dispersed crude oil in mesozooplankton communities by 35%. We observed selective bioaccumulation of five PAHs, fluoranthene, phenanthrene, pyrene, chrysene and benzo[b]fluoranthene in both mesozooplankton communities and in the copepod A. tonsa. The presence of the protozoan Oxyrrhis marina reduced sublethal effects of oil on A. tonsa and was related to lower accumulations of PAHs in tissues and fecal pellets, suggesting that protozoa may be important in mitigating the harmful effects of crude oil exposure in copepods and the transfer of PAHs to higher trophic levels. Overall, our results indicate that the negative impact of oil spills on mesozooplankton may be increased by the use of chemical dispersant and UV radiation, but attenuated by crude oil-microbial food webs interactions, and that both mesozooplankton and protozoans may play an important role in fate of PAHs in marine environments. PMID:23840628

  12. Bioaccumulation of toxaphene congeners in the lake superior food web

    USGS Publications Warehouse

    Muir, D.C.G.; Whittle, D.M.; De Vault, D. S.; Bronte, C.R.; Karlsson, H.; Backus, S.; Teixeira, C.

    2004-01-01

    The bioaccumulation and biotransformation of toxaphene was examined in the food webs of Lake Superior and Siskiwit Lake (Isle Royale) using congener specific analysis as well as stable isotope ratios of carbon and nitrogen to characterize food webs. Toxaphene concentrations (calculated using technical toxaphene) in lake trout (Salvelinus namaycush) from the western basin of Lake Superior (N = 95) averaged (±SD) 889 ± 896 ng/g wet wt and 60 ± 34 ng/g wet wt in Siskiwit Lake. Major congeners in lake trout were B8-789 (P38), B8-2226 (P44), B9-1679 (P50), and B9-1025 (P62). Toxaphene concentrations were found to vary seasonally, especially in lower food web organisms in Lake Superior and to a lesser extent in Siskiwit Lake. Toxaphene concentrations declined significantly in lake herring (Coregonus artedii), rainbow smelt (Omerus mordax), and slimy sculpin (Cottus cognatus) as well as in zooplankton (> 102 &mn;m) and Mysis (Mysis relicta) between May and October. The seasonal variation may reflect seasonal shifts in the species abundance within the zooplankton community. Trophic magnification factors (TMF) derived from regressions of toxaphene congener concentrations versus δ15N were > 1 for most octa- and nonachlorobornanes in Lake Superior except B8-1413 (P26) and B9-715. Log bioaccumulation factors (BAFs) for toxaphene congeners in lake trout (ng/g lipid/ng/L dissolved) ranged from 4.54 to 9.7 and were significantly correlated with log octanol-water partition coefficients. TMFs observed for total toxaphene and congener B9-1679 in Lake Superior were similar to those in Arctic lakes, as well as to previous studies in the Great Lakes, which suggests that the bioaccumulation behavior of toxaphene is similar in pelagic food webs of large, cold water systems. However, toxaphene concentrations were lower in lake trout from Siskiwit Lake and lakes in northwestern Ontario than in Lake Superior possibly because of shorter food chains and greater reliance on zooplankton or other pelagic invertebrates.

  13. Accumulation and Sublethal Effects of Triclosan and its Transformation Product Methyl-triclosan in the Earthworm Eisenia andrei Exposed to Environmental Concentrations in an Artificial Soil.

    PubMed

    Chevillot, Fanny; Guyot, Mélanie; Desrosiers, Mélanie; Cadoret, Nicole; Veilleux, Éloïse; Cabana, Hubert; Bellenger, Jean-Philippe

    2018-04-18

    Municipal biosolids are increasingly used as a low-cost fertilizer in agricultural soil. Biosolids are contaminated by low concentrations (ng g -1 dw range) of a large variety of organic contaminants, such as triclosan (TCS). The effect of exposure to low concentrations of organic contaminants on soil biota remains largely undocumented. We evaluated the sublethal effects of TCS on the earthworm Eisenia andrei using an artificial soil amended with a nominal concentration of TCS of 50 ng g -1 dry weight soil. Using a 56-d reproduction test, we monitored the effect of TCS exposure on adult earthworm survival, growth, and reproduction. The bioaccumulation of TCS in earthworm tissue (adults and juveniles) and degradation of TCS were monitored. The genotoxicity of TCS was evaluated using a comet assay (DNA damage) on adult earthworm coelomocytes. Exposure to a low concentration of TCS had no significant effects on adult earthworm survival and DNA damage, but significantly stimulated growth (P <0.05) by 2-fold compared to controls. It also significantly affected E. andrei reproduction parameters (P <0.05), as evidenced by an increase in the number of cocoons and juveniles, and a decrease in the mean dry weight of juveniles. The bioaccumulation of TCS in earthworms was moderate (bioaccumulation factor ∼ 2). In biosolid-borne trials, the bioaccumulation of methyl-triclosan in earthworm tissues was higher than the parent compound TCS. We conclude that exposure to low concentrations of TCS in artificial soil can significantly affect the growth and reproductive performance of earthworms (i.e., E. andrei). More research is required with natural soils to assess TCS bioavailability for earthworms. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Tolerance and bioaccumulation of U(VI) by Bacillus mojavensis and its solid phase preconcentration by Bacillus mojavensis immobilized multiwalled carbon nanotube.

    PubMed

    Özdemir, Sadin; Oduncu, M Kadir; Kilinc, Ersin; Soylak, Mustafa

    2017-02-01

    In this study, uranium(VI) tolerance and bioaccumulation were investigated by using thermo -tolerant Bacillus mojavensis. The level of U(VI) was measured by UV-VIS spectrophotometry. The minimum inhibition concentration (MIC) value of U(VI) was experimented. Bacterial growth was not affected in the presence of 1.0 and 2.5 mg/L U(VI) at 36 h and the growth was partially affected in the presence of 5 mg/L U(VI) at 24 h. What was obtained from this study is that there was diversity in the various periods of the growth phases of metal bioaccumulation capacity, which was shown by B. mojavensis. The maximum bioaccumulation capacities were found to be 12.8, 22.7, and 48.2 mg/g dried bacteria, at 24th hours at concentration of 1.0, 2.5 and 5 mg/L U(VI), respectively. In addition to these, U(VI) has been preconcentrated on B. mojavensis immobilized MWCNT. Several factors such as pH, flow rate of solution, amount of biosorbent and support materials, eluent type, concentration and volume, the matrix interference effect on retention have been studied, and extraction conditions were optimized. Preconcentration factor was achieved as 60. Under the optimized conditions, the limit of detection (LOD) and quantification (LOQ) were calculated as 0.74 and 2.47 μg/L. The biosorption capacity of immobilized B. mojavensis was calculated for U(VI) as 25.8 mg/g. The results demonstrated that the immobilized biosorbent column could be reused at least 30 cycles of biosorption and desorption with the higher than 95% recovery. FT-IR and SEM analysis were performed to understand the surface properties of B. mojavensis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Multi-Ecosystem Assessment of Mercury Bioaccumulation in Fishes: Habitat, Landscape, and Biogeochemical Drivers of Fish Mercury

    NASA Astrophysics Data System (ADS)

    Eagles-Smith, C.; Ackerman, J.; Herring, G.; Willacker, J.; Flanagan, C.

    2014-12-01

    Mercury (Hg) is a globally distributed contaminant that threatens ecosystem health across aquatic environments. The complexity of the Hg cycle and its primary drivers, coupled with dynamic food web processes that govern biomagnification, result in marked spatial variability in Hg bioaccumulation across aquatic ecosystems. However, it is unclear if patterns of bioaccumulation are consistent in magnitude and direction across ecosystem types. We synthesized data from several studies spanning more than 200 individual sites, comprising four distinct ecosystem classifications (estuaries, sub-alpine lakes, rivers, and managed wetlands). Within each ecosystem, we compared fish Hg concentrations among replicated sub-habitats and also evaluated the influence of land use, landscape composition, and biogeochemical drivers on fish Hg concentrations. We found substantial variability in fish Hg concentrations among adjacent sub-habitats within ecosystems. In estuarine environments, fish Hg concentrations were 7.4x higher in seasonal-saline wetlands than adjacent tidal wetland habitats. In riverine alcoves, preliminary data suggest that fish Hg concentrations were 1.5x higher than in fishes from paired mainstem river habitat. Among managed wetland habitats, fish Hg concentrations in rice fields were 2x higher than those in managed seasonal wetlands that were subjected to identical wetting and drying patterns. Across ecosystems, dissolved organic carbon (DOC) concentrations in surface waters were consistently correlated with fish Hg concentrations, highlighting its importance in Hg methylation and transport processes. Yet, the strength and direction of the relationships varied among habitat types. For example, fish Hg concentrations were positively correlated with DOC concentrations in riverine environments, whereas we found a negative correlation in alpine lakes. Instead, the most important determinant of fish Hg concentrations in alpine lakes was conifer tree density within a lake's catchment, resulting in a 4x increase in fish Hg concentration in lakes with the lowest to the highest catchment conifer tree density. Together, this integrated ecosystem analysis highlights the importance of understanding small-scale variation in bioaccumulation processes in order to better predict Hg risk.

  16. Assessments of chromium (and other metals) in vegetables and potential bio-accumulations in humans living in areas affected by tannery wastes.

    PubMed

    Chen, Hualin; Arocena, Joselito M; Li, Jianbing; Thring, Ronald W; Zhou, Jiangmin

    2014-10-01

    Chromium (Cr) commonly enters the food chain through uptake by vegetables. However, accurate prediction of plant uptake of Cr (and other metals) still remains a challenge. In this study, we evaluated 5 indices of availability for Cr (and other metals) to identify reliable predictors of metal transfer from soils to garlic, onion, bokchoy, radish and celery grown in soils impacted by tannery wastes. The potential bio-accumulation of Cr in humans was calculated from the Cr content of vegetable predicted by the best bio-availability index, amounts of vegetable consumed and recommended daily doses for Cr. Our results show that soil total Cr is the best predictor of Cr transfer from soils to onion (Cr in onion=8.51+0.005 Total Cr) while Cr extractable by Synthetic Precipitation Leaching Procedure at pH 5 correlates very well with Cr uptake by bokchoy (Cr bokchoy=5.86+7.32 SPLP-5 Cr) and garlic (Cr garlic=7.63+2.36 SPLP-5 Cr). The uptake of Cr by radish and celery could not be reliably estimated by any of the 5 indices of availability tested in this study. Potential bio-accumulation of Cr in humans (BA-Cr) increases from soils with low Cr (BA-Cr=11.5) to soil with high total Cr (BA-Cr=31.3). Due to numerous soil factors affecting the behavior of Cr in soils and the physiological differences among vegetables, we suggest that the prediction of the transfer of Cr (and other metals) from soils to plants should be specific to site, metal and vegetable. Potential bio-accumulation of Cr in humans can be derived from a transfer function of Cr from soils to plants and the human consumption of vegetables. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. UO(2) 2+ speciation determines uranium toxicity and bioaccumulation in an environmental Pseudomonas sp. isolate.

    PubMed

    Vanengelen, Michael R; Field, Erin K; Gerlach, Robin; Lee, Brady D; Apel, William A; Peyton, Brent M

    2010-04-01

    In the present study, experiments were performed to investigate how representative cellulosic breakdown products, when serving as growth substrates under aerobic conditions, affect hexavalent uranyl cation (UO(2) (2+)) toxicity and bioaccumulation within a Pseudomonas sp. isolate (designated isolate A). Isolate A taken from the Cold Test Pit South (CTPS) region of the Idaho National Laboratory (INL), Idaho Falls, ID, USA. The INL houses low-level uranium-contaminated cellulosic material and understanding how this material, and specifically its breakdown products, affect U-bacterial interactions is important for understanding UO(2) (2+) fate and mobility. Toxicity was modeled using a generalized Monod expression. Butyrate, dextrose, ethanol, and lactate served as growth substrates. The potential contribution of bicarbonate species present in high concentrations was also investigated and compared with toxicity and bioaccumulation patterns seen in low-bicarbonate conditions. Isolate A was significantly more sensitive to UO(2) (2+) and accumulated significantly more UO(2) (2+) in low-bicarbonate concentrations. In addition, UO(2) (2+) growth inhibition and bioaccumulation varied depending on the growth substrate. In the presence of high bicarbonate concentrations, sensitivity to UO(2) (2+) inhibition was greatly mitigated, and did not vary between the four substrates tested. The extent of UO(2) (2+) accumulation was also diminished. The observed patterns were related to UO(2) (2+) aqueous complexation, as predicted by MINTEQ (ver. 2.52) (Easton, PA, USA). In the low- bicarbonate medium, the presence of positively charged and unstable UO(2) (2+)-hydroxide complexes explained both the greater sensitivity of isolate A to UO(2) (2+), and the ability of isolate A to accumulate significant amounts of UO(2) (2+). The exclusive presence of negatively charged and stable UO(2) (2+)-carbonate complexes in the high bi-carbonate medium explained the diminished sensitivity of isolate A to UO(2) (2+) toxicity, and limited ability of isolate A to accumulate UO(2) (2+). (c) 2010 SETAC.

  18. Effects of Crude Oil Exposure on Bioaccumulation of Polycyclic Aromatic Hydrocarbons and Survival of Adult and Larval Stages of Gelatinous Zooplankton

    PubMed Central

    Almeda, Rodrigo; Wambaugh, Zoe; Chai, Chao; Wang, Zucheng; Liu, Zhanfei; Buskey, Edward J.

    2013-01-01

    Gelatinous zooplankton play an important role in marine food webs both as major consumers of metazooplankton and as prey of apex predators (e.g., tuna, sunfish, sea turtles). However, little is known about the effects of crude oil spills on these important components of planktonic communities. We determined the effects of Louisiana light sweet crude oil exposure on survival and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in adult stages of the scyphozoans Pelagia noctiluca and Aurelia aurita and the ctenophore Mnemiopsis leidyi, and on survival of ephyra larvae of A. aurita and cydippid larvae of M. leidyi, in the laboratory. Adult P. noctiluca showed 100% mortality at oil concentration ≥20 µL L−1 after 16 h. In contrast, low or non-lethal effects were observed on adult stages of A. aurita and M. leidyi exposed at oil concentration ≤25 µL L−1 after 6 days. Survival of ephyra and cydippid larva decreased with increasing crude oil concentration and exposition time. The median lethal concentration (LC50) for ephyra larvae ranged from 14.41 to 0.15 µL L−1 after 1 and 3 days, respectively. LC50 for cydippid larvae ranged from 14.52 to 8.94 µL L−1 after 3 and 6 days, respectively. We observed selective bioaccumulation of chrysene, phenanthrene and pyrene in A. aurita and chrysene, pyrene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, and benzo[a]anthracene in M. leidyi. Overall, our results indicate that (1) A. aurita and M. leidyi adults had a high tolerance to crude oil exposure compared to other zooplankton, whereas P. noctiluca was highly sensitive to crude oil, (2) larval stages of gelatinous zooplankton were more sensitive to crude oil than adult stages, and (3) some of the most toxic PAHs of crude oil can be bioaccumulated in gelatinous zooplankton and potentially be transferred up the food web and contaminate apex predators. PMID:24116004

  19. Bioaccumulation of metals in sediments, fish and plant from Tisza river (Serbia)

    NASA Astrophysics Data System (ADS)

    Štrbac, Snežana; Gajica, Gordana; Kašanin-Grubin, Milica; Šajnović, Aleksandra; Vasić, Nebojša; Jovančićević, Branimir; Simonović, Predrag

    2014-05-01

    In the aquatic environments metals originate from various natural and anthropogenic sources. The purpose of the study was to assess the bioaccumulation level of metals in sediments fish and common reed at four different localities of the Tisza River stretch in Serbia. For purpose of this study concentrations of Al, As, B, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, Sr and Zn were determined in sediment, common reed (Phragmites australis (Cav.) Trin. ex Steud. 1841) and four ecologically different fish species (piscivorous northern pike (Esox lucius L.), benthivorous sterlet (Acipenser ruthenus L.) silver bream (Brama brama L.), omnivorous common carp (Cyprinus carpio L.)). Analysis of metals was carried out for liver, gills, brain, testicles and ovaries in fish and in the rhizome, stem and leaves of the common reed and sediment fraction <0,0063mm. The concentrations of metals have been assessed using the Inductively Coupled Plasma - optical emission spectrometry. Obtained results revealed that Al and Fe had the highest concentrations in sediment, fish and common reed samples. The research proved a strong positive correlation between the concentrations of all metals in the sediment, fish and common reed. The highest concentration of heavy metals was recorded in omnivorous common carp Cyprinus carpio, and organs that the most intensively accumulated the greatest number of them were liver and gills. Accumulated metals in the common reed were not distributed evenly, but there are target organs for bioaccumulation. Concentrations in below-ground organs were usually higher than above-ground organs, and the general decreasing trend of element content was rhizome>leaves>stems. Obtained results indicate that the location does not have impact to the level of bioaccumulation. On the basis of this research the under-ground organ (rhizome) of common reed, liver and gills and omnivorous fish species could be recommended as environmental indicators for the presence of metals during environmental monitoring.

  20. Seasonal pattern of metal bioaccumulation and their toxicity on Sphagnum squarrosum.

    PubMed

    Saxena, Anuj

    2006-01-01

    Present study was undertaken as an attempt to study the effect of pollutants on biological responses of Sphagnum growing at Kainchi, Kumaon hills (Uttranchal). Sphagnum plants of almost identical size, collected from the marked sites of Kainchi in different seasons viz., monsoon, winter, summer and again in monsoon, were analysed for chlorophyll, protein, shoot length and nitrate reductase and peroxidase activities. Maximum chlorophyll, protein, shoots length and nitrate reductase activities were observed during the monsoon while minimum in summers. The abundance of Sphagnum and two other bryophytes, Marchantia and Plagiochasma was also higher in monsoon than in other seasons. The study also indicated that Sphagnum has more bioaccumulation and tolerance potential for heavy metals than Marchantia and Plagiochasma.

  1. Copper treatment of the digestive gland of the slug Arion ater L. 2. Morphometrics and histophysiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marigomez, J.A.; Angulo, E.; Moya, J.

    1986-04-01

    In order to have a clear image of processes involved in copper bioaccumulation-detoxication mechanisms in the terrestrial slug, Arion ater, the authors planned a histophysiological analysis based on morphometrics and on the variations in morphological characteristics of epithelia. This study is the completion of the histochemical analysis, in which the authors suggest a close relationship between copper and calcium in the digestive gland of Arion ater. They had observed that copper was exclusively stored within calcium cells and that calcium cells secretion was more intensive at higher copper dosages and at larger bioassay times. Therefore, histophysiological analysis was necessary formore » explaining the nature of copper bioaccumulation-detoxication mechanisms.« less

  2. In the presence of fluoride, free Sc³⁺ is not a good predictor of Sc bioaccumulation by two unicellular algae: possible role of fluoro-complexes.

    PubMed

    Crémazy, Anne; Campbell, Peter G C; Fortin, Claude

    2014-08-19

    We investigated the effect of fluoride complexation on scandium accumulation by two unicellular algae, Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata. This trivalent metal was selected for its chemical similarities with aluminum and for its convenient radioisotope (Sc-46), which can be used as a tracer in short-term bioaccumulation studies. Scandium surface-bound concentrations (Sc(ads)) and uptake fluxes (J(int)) were estimated in the two algae over short-term (<1 h) exposures at pH 5 and in the presence of 0 to 40 μM F(-). Although the computed proportion of dissolved Sc(3+) dropped from 20% to 0.01% over this [F(-)] range, Sc(ads) and J(int) values for both algae decreased only slightly, suggesting a participation of Sc fluoro-complexes in both processes. Surface adsorption and uptake of fluoride complexes with aluminum have been reported in the literature. These observations are not taken into account by current models for trace metal bioaccumulation (e.g., the biotic ligand model). Results from a previous study, where the effects of pH on Sc uptake were investigated, suggested that Sc hydroxo-complexes were internalized by C. reinhardtii. There is thus growing evidence that the free ion concentration may not be adequate to predict the accumulation of Sc (and potentially of other trivalent metals) in aquatic organisms.

  3. Identifying new persistent and bioaccumulative organics among chemicals in commerce. III: byproducts, impurities, and transformation products.

    PubMed

    Howard, Philip H; Muir, Derek C G

    2013-05-21

    The goal of this series of studies was to identify commercial chemicals that might be persistent and bioaccumulative (PB) and that were not being considered in current wastewater and aquatic environmental measurement programs. In this study, we focus on chemicals that are not on commercial chemical lists such as U.S. EPA's Inventory Update Rule but may be found as byproducts or impurities in commercial chemicals or are likely transformation products from commercial chemical use. We evaluated the 610 chemicals from our earlier publication as well as high production volume chemicals and identified 320 chemicals (39 byproducts and impurities, and 281 transformation products) that could be potential PB chemicals. Four examples are discussed in detail; these chemicals had a fair amount of information on the commercial synthesis and byproducts and impurities that might be found in the commercial product. Unfortunately for many of the 610 chemicals, as well as the transformation products, little or no information was available. Use of computer-aided software to predict the transformation pathways in combination with the biodegradation rules of thumb and some basic organic chemistry has allowed 281 potential PB transformation products to be suggested for some of the 610 commercial chemicals; more PB transformation products were not selected since microbial degradation often results in less persistent and less bioaccumulative metabolites.

  4. Bioaccumulation and distribution of selenium in Enterococcus durans.

    PubMed

    Pieniz, Simone; Andreazza, Robson; Mann, Michele Bertoni; Camargo, Flávio; Brandelli, Adriano

    2017-03-01

    Selenium is an essential nutrient for all living organisms. Under appropriate conditions lactic acid bacteria (LAB) are capable for accumulating large amounts of trace elements, such as selenium, and incorporating them into organic compounds. In this study, the capacity of selenium bioaccumulation by Enterococcus durans LAB18s was evaluated. The distribution of organic selenium in selenium-enriched E. durans LAB18s biomass was analyzed, and the highest percentage of organic selenium was found in the fraction of total protein, followed by the fractions of polysaccharides and nucleic acids. When the protein fraction was obtained by different extractions (water, NaCl, ethanol and NaOH) it was demonstrated that alkali-soluble protein showed the higher Selenium content. Analysis of protein fractions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed that selenium was present in the proteins ranging from 23 to 100kDa. The cells were analyzed by scanning electron microscopy (SEM); scanning electron microscopy/energy dispersive spectrometry (SEM/EDS) and transmission electron microscopy (TEM). SEM, TEM and SEM/EDS showed the morphology, the selenium particles bioaccumulated into and on the cells and the amounts of selenium present into the cells, respectively. Thus, the isolate E. durans LAB18s can be a promising probiotic to be used as selenium-enriched biomass in feed trials. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Bioaccumulation of 14C-Labeled Graphene in an Aquatic Food Chain through Direct Uptake or Trophic Transfer.

    PubMed

    Dong, Shipeng; Xia, Tian; Yang, Yu; Lin, Sijie; Mao, Liang

    2018-01-16

    The growing applications of graphene materials warrant a careful evaluation of their environmental fate in aquatic food webs. Escherichia coli (Bacteria), Tetrahymena thermophila (protozoa), Daphnia magna (zooplankton), and Danio rerio (vertebrate) were used to build aquatic food chains to investigate the waterborne uptake and trophic transfer of 14 C-labeled graphene. Body burden factor (BBF) and trophic transfer factor (TTF) were analyzed for each organism and food chain to assess the bioaccumulation and biomagnification of graphene. The test organisms have high potential of accumulating graphene via direct uptake from culture medium with log-transformed BBF (log BBF) values of 3.66, 5.1, 3.9, and 1.62 for each organism, respectively. In the food chain from E. coli to T. thermophila, the calculated TTFs of 0.2 to 8.6 indicate the high trophic transfer potential in this aquatic food chain. However, the TTFs calculated for the food chain from T. thermophila to D. magna and from D. magna to D. rerio are much lower than 1, indicating that biomagnification was unlikely to occur in these food chains. Body burden measured for dietary uptake by T. thermophila, D. magna, and D. rerio are higher than that via waterborne exposure in a similar nominal concentration, respectively, indicating that trophic transfer is a nonnegligible route for the bioaccumulation of graphene in organisms.

  6. Species-specific mercury bioaccumulation in a diverse fish community.

    PubMed

    Donald, David B; Wissel, Björn; Anas, M U Mohamed

    2015-12-01

    Mercury bioaccumulation models developed for fish provide insight into the sources and transfer of Hg within ecosystems. Mercury concentrations were assessed for 16 fish species of the western reach of Lake Diefenbaker, Saskatchewan, Canada. For top predators (northern pike, Esox Lucius; walleye, Sander vitreum), Hg concentrations were positively correlated to δ(15)N, and δ(15)N to fish age, suggesting that throughout life these fish fed on organisms with increasingly higher trophic values and Hg concentrations. However, fish mass and/or age were the principal parameters related to Hg concentrations for most species. For 9 common species combined, individual variation in Hg concentration was explained in declining order of importance by fish mass, trophic position (δ(15)N), and fish age. Delta (15)N value was not the leading variable related to Hg concentration for the assemblage, probably because of the longevity of lower--trophic-level species (3 species ≥ 20 yr), substantial overlap in Hg concentration and δ(15)N values for large-bodied fish up to 3000 g, and complex relationships between Hg concentration and δ(15)N among species. These results suggest that the quantity of food (and Hg) consumed each year and converted to fish mass, the quantity of Hg bioaccumulated over years and decades, and trophic position were significant determinants of Hg concentration in Lake Diefenbaker fish. © 2015 SETAC.

  7. Chemical elements in pearl oysters (Paxyodon ponderosus), phytoplankton and estuarine sediments from eastern Amazon (Northern Brazil): Bioaccumulation factors and trophic transfer factors

    NASA Astrophysics Data System (ADS)

    Vilhena, Maria P. S. P.; Costa, Marcondes L.; Berrêdo, José F.; Paiva, Rosildo S.; Souza, Crisvaldo C. S.

    2016-04-01

    The current study was conducted near Barcarena County, which is a mid-sized urban center where aluminum ore processing industries (bauxite) and Vila do Conde cargo terminal are located. It aims to discuss the bioaccumulation factors as well as factors related to the trophic transfer of chemical elements in water, oyster, phytoplankton and bottom sediments from an estuary in the Brazilian Northern coast. The bioaccumulation factor (BAF), trophic transfer factor (TTF) and biota-sediment-water were used to correlate the contents of chemical elements found in organisms. The sediment, surface water, phytoplankton and pearl oysters chemical composition was analyzed by ICP-OES and ICP-MS. Pearl oysters showed K, Ca, Mg, P, Mn, Fe, Zn, Al, Ba and Pb accumulation, which concentration increase is associated with their diet (phytoplankton). Al concentrations are 14 times higher in pearl oysters (Paxyodon ponderosus), assuming that they are associated with wastewater emissions and with industrialization processes in the area. BAF and BSAF values are 1000 times higher than the metal concentrations in water and bioavailable fraction concentrations. The oyster-phytoplankton trophic transfer factor indicates that P, Ba, Ca, Na, Cd and Zn showed the largest transfers (from 5 to 19). These trophic transfers may be sufficient to cause significant ecotoxicological effects on the region biota.

  8. Mercury bioaccumulation in estuarine fishes: Novel insights from sulfur stable isotopes

    USGS Publications Warehouse

    Willacker, James J.; Eagles-Smith, Collin A.; Ackerman, Joshua T.

    2017-01-01

    Estuaries are transitional habitats characterized by complex biogeochemical and ecological gradients that result in substantial variation in fish total mercury concentrations (THg). We leveraged these gradients and used carbon (δ13C), nitrogen (δ15N), and sulfur (δ34S) stable isotopes to examine the ecological and biogeochemical processes underlying THg bioaccumulation in fishes from the San Francisco Bay Estuary. We employed a tiered approach that first examined processes influencing variation in fish THg among wetlands, and subsequently examined the roles of habitat and within-wetland processes in generating larger-scale patterns in fish THg. We found that δ34S, an indicator of sulfate reduction and habitat specific-foraging, was correlated with fish THg at all three spatial scales. Over the observed ranges of δ34S, THg concentrations in fish increased by up to 860% within wetlands, 560% among wetlands, and 291% within specific impounded wetland habitats. In contrast, δ13C and δ15N were not correlated with THg among wetlands and were only important in low salinity impounded wetlands, possibly reflecting more diverse food webs in this habitat. Together, our results highlight the key roles of sulfur biogeochemistry and ecology in influencing estuarine fish THg, as well as the importance of fish ecology and habitat in modulating the relationships between biogeochemical processes and Hg bioaccumulation.

  9. In Vivo Biotransformation Rates of Organic Chemicals in Fish: Relationship with Bioconcentration and Biomagnification Factors.

    PubMed

    Lo, Justin C; Letinski, Daniel J; Parkerton, Thomas F; Campbell, Dave A; Gobas, Frank A P C

    2016-12-20

    In vivo dietary bioaccumulation experiments for 85 hydrophobic organic substances were conducted to derive the in vivo gastrointestinal biotransformation rates, somatic biotransformation rates, bioconcentration factors (BCF), and biomagnification factors (BMF) for improving methods for bioaccumulation assessment and to develop an in vivo biotransformation rate database for QSAR development and in vitro to in vivo biotransformation rate extrapolation. The capacity of chemicals to be biotransformed in fish was found to be highly dependent on the route of exposure. Somatic biotransformation was the dominant pathway for most chemicals absorbed via the respiratory route. Intestinal biotransformation was the dominant metabolic pathway for most chemicals absorbed via the diet. For substances not biotransformed or transformed exclusively in the body of the fish, the BCF and BMF appeared to be closely correlated. For substances subject to intestinal biotransformation, the same correlation did not apply. We conclude that intestinal biotransformation and bioavailability in water can modulate the relationship between the BCF and BMF. This study also supports a fairly simple rule of thumb that may be useful in the interpretation of dietary bioaccumulation tests; i.e., chemicals with a BMF L of <1 tend to exhibit BCFs based on either the freely dissolved (BCF WW,fd ) or the total concentration (BCF WW,t ) of the chemical in the water that is less than 5000.

  10. Integrated use of biomarkers and bioaccumulation data in Zebra mussel (Dreissena polymorpha) for site-specific quality assessment.

    PubMed

    Binelli, A; Ricciardi, F; Riva, C; Provini, A

    2006-01-01

    One of the useful biological tools for environmental management is the measurement of biomarkers whose changes are related to the exposure to chemicals or environmental stress. Since these responses might vary with different contaminants or depending on the pollutant concentration reached in the organism, the support of bioaccumulation data is needed to prevent false conclusions. In this study, several persistent organic pollutants -- 23 polychlorinated biphenyl (PCB) congeners, 11 polycyclic aromatic hydrocarbons (PAHs), six dichlorodiphenyltricholroethane (DDT) relatives, hexachlorobenzene (HCB), chlorpyrifos and its oxidized metabolite -- and some herbicides (lindane and the isomers alpha, beta, delta; terbutilazine; alachlor; metolachlor) were measured in the soft tissues of the freshwater mollusc Zebra mussel (Dreissena polymorpha) from 25 sampling sites in the Italian portions of the sub-alpine great lakes along with the measure of ethoxyresorufin dealkylation (EROD) and acetylcholinesterase (AChE) activity. The linkage between bioaccumulation and biomarker data allowed us to create site-specific environmental quality indexes towards man-made chemicals. This classification highlighted three different degrees of xenobiotic contamination of the Italian sub-alpine great lakes: a high water quality in Lake Lugano with negligible pollutant levels and no effects on enzyme activities, an homogeneous poor quality for Lakes Garda, Iseo and Como, and the presence of some xenobiotic point-sources in Lake Maggiore, whose ecological status could be jeopardized, also due to the heavy DDT contamination revealed since 1996.

  11. Toxic responses of cytochrome P450 sub-enzyme activities to heavy metals exposure in soil and correlation with their bioaccumulation in Eisenia fetida.

    PubMed

    Cao, Xiufeng; Bi, Ran; Song, Yufang

    2017-10-01

    The dose- and time- dependent responses of cytochrome P450 (CYP) sub-enzyme activities to heavy metals in soil, and the relationships between biomarker responses and metal bioaccumulation in Eisenia fetida were evaluated. Earthworms were exposed to soils spiked with increasing doses of Cd, Cu, Pb or Zn for 21 d. Results demonstrated that EROD and CYP3A4 activities responded significantly with increasing dose and exposure duration. EROD activity significantly (P < 0.05) correlated with CYP3A4 activity exposed to Pb and Cu. The earthworm metal burdens had significant correlation with the total metal concentrations in soil (P < 0.01). The bioaccumulation factor (BAF) decreased with the increasing metal concentration in soil. The order of metal bioavailability to E. fetida was Cd > Zn > Cu > Pb. CYP3A4 activity in Pb-exposed earthworms had a significant correlation with the accumulated metal (P < 0.05). Both EROD and CYP3A4 activities in Cu-exposed worms negatively correlated with BAF (P < 0.05). Based on Discriminant Analysis (DA), CYPs activities were sensitive biomarkers of heavy metals exposure, and we also concluded that different biomarkers with multiple durations could be conducted in the eco-toxicological diagnosis of soil pollution. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Effects of Feeding Strategy, Sediment Characteristics, and Chemical Properties on Polychlorinated Biphenyl and Polybrominated Diphenyl Ether Bioaccumulation from Marine Sediments in Two Invertebrates.

    PubMed

    Frouin, H; Jackman, P; Dangerfield, N D; Ross, P S

    2017-08-01

    Shellfish and sediment invertebrates have been widely used to assess pollution trends over space and time in coastal environments around the world. However, few studies have compared the bioaccumulation potential of different test species over a range of sediment-contaminant concentrations and profiles. The bioavailability of sediment-related contaminants was evaluated using sediments collected from sites (n = 12) throughout the Salish Sea, British Columbia, Canada. Two benthic marine invertebrates-the Baltic clam Macoma balthica and the polychaete worm Neanthes arenaceodentata-were exposed for 28 days in a controlled environment to these field-collected coastal sediments. The congener-specific uptake of legacy polychlorinated biphenyls (PCBs) and emergent polybrominated diphenyl ethers (PBDEs) was determined using high-resolution gas chromatography/mass spectrometry in sediments and in invertebrates after the experimental exposure. The polychaete Neanthes accumulated lower concentrations of PCBs but higher concentrations of PBDEs. The present study indicates that differences in bioaccumulation between these two invertebrates shape the accumulation of PCB and PBDE congeners, reflect differences in feeding strategies, and reveal the physicochemical properties of the contaminants and sediment properties. Because biota-sediment accumulation factor values are often calculated for environmental monitoring or site-specific impact assessments, our results provide insight into potentially confounding factors and the need for caution when selecting indicator species for coastal marine pollution.

  13. Biological uptake of polychlorinated biphenyls by Macoma balthica from sediment amended with activated carbon

    USGS Publications Warehouse

    McLeod, Pamela B.; van den Heuvel-Greve, Martine J.; Luoma, S.N.; Luthy, R.G.

    2007-01-01

    This work characterizes the efficacy of activated carbon amendment in reducing polychlorinated biphenyl (PCB) bioavailability to clams (Macoma balthica) from field-contaminated sediment (Hunters Point Naval Shipyard, San Francisco Bay, CA, USA) Test methods were developed for the use of clams to investigate the effects of sediment amendment on biological uptake. Sediment was mixed with activated carbon for one month. Bioaccumulation tests (28 d) were employed to assess the relationships between carbon dose and carbon particle size on observed reductions in clam biological uptake of PCBs. Extraction and cleanup protocols were developed for the clam tissue. Efficacy of activated carbon treatment was found to increase with both increasing carbon dose and decreasing carbon particle size. Average reductions in bioaccumulation of 22, 64, and 84% relative to untreated Hunters Point sediment were observed for carbon amendments of 0.34, 1.7, and 3.4%, respectively. Average bioaccumulation reductions of 41, 73, and 89% were observed for amendments (dose = 1.7% dry wt) with carbon particles of 180 to 250, 75 to 180, and 25 to 75 ??m, respectively, in diameter, indicating kinetic phenomena in these tests. Additionally, a biodynamic model quantifying clam PCB uptake from water and sediment as well as loss through elimination provided a good fit of experimental data. Model predictions suggest that the sediment ingestion route contributed 80 to 95% of the PCB burdens in the clams. ?? 2007 SETAC.

  14. Somatic and gastrointestinal in vivo biotransformation rates of hydrophobic chemicals in fish.

    PubMed

    Lo, Justin C; Campbell, David A; Kennedy, Christopher J; Gobas, Frank A P C

    2015-10-01

    To improve current bioaccumulation assessment methods, a methodology is developed, applied, and investigated for measuring in vivo biotransformation rates of hydrophobic organic substances in the body (soma) and gastrointestinal tract of the fish. The method resembles the Organisation for Economic Co-operation and Development (OECD) 305 dietary bioaccumulation test but includes reference chemicals to determine both somatic and gastrointestinal biotransformation rates of test chemicals. Somatic biotransformation rate constants for the test chemicals ranged between 0 d(-1) and 0.38 (standard error [SE] 0.03)/d(-1) . Gastrointestinal biotransformation rate constants varied from 0 d(-1) to 46 (SE 7) d(-1) . Gastrointestinal biotransformation contributed more to the overall biotransformation in fish than somatic biotransformation for all test substances but 1. Results suggest that biomagnification tests can reveal the full extent of biotransformation in fish. The common presumption that the liver is the main site of biotransformation may not apply to many substances exposed through the diet. The results suggest that the application of quantitative structure-activity relationships (QSARs) for somatic biotransformation rates and hepatic in vitro models to assess the effect of biotransformation on bioaccumulation can underestimate biotransformation rates and overestimate the biomagnification potential of chemicals that are biotransformed in the gastrointestinal tract. With some modifications, the OECD 305 test can generate somatic and gastrointestinal biotransformation data to develop biotransformation QSARs and test in vitro-in vivo biotransformation extrapolation methods. © 2015 SETAC.

  15. Bioaccumulation and toxicity assessment of irrigation water contaminated with boron (B) using duckweed (Lemna gibba L.) in a batch reactor system.

    PubMed

    Türker, Onur Can; Yakar, Anıl; Gür, Nurcan

    2017-02-15

    The present study assesses ability of Lemna gibba L. using a batch reactor approach to bioaccumulation boron (B) from irrigation waters which were collected from a stream in largest borax reserve all over the world. The important note that bioaccumulation of B from irrigation water was first analyzed for first time in a risk assessment study using a Lemna species exposed to various B concentrations. Boron toxicity was evaluated through plant growth and biomass production during phytoremediation process. The result from the present experiment indicated that L. gibba was capable of removing 19-63% B from irrigation water depending upon contaminated level or initial concentration. We also found that B was removed from aqueous solution following pseudo second order kinetic model and Langmuir isotherm model better fitted equilibrium obtained for B phytoremediation. Maximum B accumulation in L. gibba was determined as 2088mgkg -1 at average inflow B concentration 17.39mgL -1 at the end of the experiment. Conversely, maximum bioconcentration factor obtained at lowest inflow B concentrations were 232 for L. gibba. The present study suggested that L. gibba was very useful B accumulator, and thus L. gibba-based techniques could be a reasonable phytoremediation option to remove B directly from water sources contaminated with B. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Corynebacterium glutamicum MTCC 2745 immobilized on granular activated carbon/MnFe2O4 composite: A novel biosorbent for removal of As(III) and As(V) ions.

    PubMed

    Podder, M S; Majumder, C B

    2016-11-05

    The optimization of biosorption/bioaccumulation process of both As(III) and As(V) has been investigated by using the biosorbent; biofilm of Corynebacterium glutamicum MTCC 2745 supported on granular activated carbon/MnFe2O4 composite (MGAC). The presence of functional groups on the cell wall surface of the biomass that may interact with the metal ions was proved by FT-IR. To determine the most appropriate correlation for the equilibrium curves employing the procedure of the non-linear regression for curve fitting analysis, isotherm studies were performed for As(III) and As(V) using 30 isotherm models. The pattern of biosorption/bioaccumulation fitted well with Vieth-Sladek isotherm model for As(III) and Brouers-Sotolongo and Fritz-Schlunder-V isotherm models for As(V). The maximum biosorption/bioaccumulation capacity estimated using Langmuir model were 2584.668mg/g for As(III) and 2651.675mg/g for As(V) at 30°C temperature and 220min contact time. The results showed that As(III) and As(V) removal was strongly pH-dependent with an optimum pH value of 7.0. D-R isotherm studies specified that ion exchange might play a prominent role. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Mercury Bioaccumulation in Estuarine Fishes: Novel Insights from Sulfur Stable Isotopes.

    PubMed

    Willacker, James J; Eagles-Smith, Collin A; Ackerman, Joshua T

    2017-02-21

    Estuaries are transitional habitats characterized by complex biogeochemical and ecological gradients that result in substantial variation in fish total mercury concentrations (THg). We leveraged these gradients and used carbon (δ 13 C), nitrogen (δ 15 N), and sulfur (δ 34 S) stable isotopes to examine the ecological and biogeochemical processes underlying THg bioaccumulation in fishes from the San Francisco Bay Estuary. We employed a tiered approach that first examined processes influencing variation in fish THg among wetlands, and subsequently examined the roles of habitat and within-wetland processes in generating larger-scale patterns in fish THg. We found that δ 34 S, an indicator of sulfate reduction and habitat specific-foraging, was correlated with fish THg at all three spatial scales. Over the observed ranges of δ 34 S, THg concentrations in fish increased by up to 860% within wetlands, 560% among wetlands, and 291% within specific impounded wetland habitats. In contrast, δ 13 C and δ 15 N were not correlated with THg among wetlands and were only important in low salinity impounded wetlands, possibly reflecting more diverse food webs in this habitat. Together, our results highlight the key roles of sulfur biogeochemistry and ecology in influencing estuarine fish THg, as well as the importance of fish ecology and habitat in modulating the relationships between biogeochemical processes and Hg bioaccumulation.

  18. Bioaccumulation of organic contaminants in the liver and blubber of pilot whales (Globicephala melaena) beached on Cape Cod, MA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisbrod, A.V.; Shea, D.; Moore, M.J.

    1995-12-31

    Populations of many marine organisms in Boston Harbor and Massachusetts Bay have been declining for decades. Overfishing, habitat loss, disease, and exposure to toxic contaminants have been implicated as causative factors for reductions in both commercially important species and endangered marine mammal populations. The purpose of this study was to determine if exposure to organic contaminants could be a factor in the pilot whale population decline and to develop a simple bioaccumulation model to assess the relative importance of the route of uptake and the significance of total elimination. Liver and blubber samples from ten individuals beached in 1991 onmore » Cape Cod, MA were analyzed by gas chromatography/electron capture detection (GC/ECD) and gas chromatography/mass spectrometry (GC/MS) for polychlorinated biphenyls (PCBs), chlorinated pesticides, polycyclic aromatic hydrocarbons (PAHs), and linear alkyl benzenes (LABs). PCBs, DDT, DDE, DDD, and other chlorinated pesticides were identified and found to be high (ppm range) in several individuals. PAHs and LABs were typically below one ppb. Concentrations of these contaminants in the water and food that pilot whales consume were used in a bioaccumulation model. The model predicted lower concentrations in the whale than the authors observed. For all but the least hydrophobic contaminants (e.g., naphthalene) they predict that food (biomagnification) is the dominant route of uptake into the whales.« less

  19. Bioaccumulation of selenium from coal fly ash and associated environmental hazards in a freshwater fish community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Besser, J.; Giesy, J.; Brown, R.

    1995-12-31

    Bioaccumulation of Se by fish from Pigeon River and Pigeon Lake, Michigan, which receive inputs of Se from a coal fly-ash disposal facility, was studied to assess potential hazards of Se toxicity to fish and wildlife. Se concentrations in fish from sites receiving Se inputs from fly ash disposal ponds were significantly greater than concentrations in fish from upstream sites, which were near normal background concentrations. Se bioaccumulation differed substantially among fish species, especially in the most contaminated site, where whole-body Se concentrations for the five species analyzed ranged from 1.4 to 3.8 {micro}g/g (wet wt.). The top predator inmore » the community, northern pike (Esox lucius), had Se concentrations less than those in likely prey species. Among lower-order consumers, Se concentrations were greater in limnetic species (spottail shiner, Notropis hudsonius, and yellow perch, Perca flavescens), than in benthic species (white sucker, Catostomus commersoni, and rock bass, Ambloplites rupestris). Se concentrations in tissues of fish from the lower Pigeon River and Pigeon Lake approached, but did not exceed lowest observable effect concentrations (LOAECs) for Se in tissues of sensitive fish species. However, Se concentrations in several fish species exceeded LOAECs for dietary Se exposure of sensitive species of birds and mammals, suggesting that consumption of fish in these areas may pose a hazard to piscivorous wildlife.« less

  20. Intestinal solubilization of particle-associated organic and inorganic mercury as a measure of bioavailability to benthic invertebrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, A.L.; McAloon, K.M.; Mason, R.P.

    1999-06-01

    The bioavailability of particle-associated inorganic mercury (Hg{sub I}) and monomethylmercury (MMHg) was evaluated in vitro using digestive fluid of the deposit feeding lugworm, Arenicola marina. Digestive fluid, removed from the midgut of the polychaete, was incubated with contaminated sediment, and the proportion of Hg{sub I} or MMHg solubilized by the digestive fluid was determined. Digestive fluid was found to be a more effective solvent than seawater in solubilizing particle-associated Hg{sub I} or MMHg. A greater percentage of MMHg than Hg{sub I} was solubilized from most sediments, suggesting that sediment-associated MMHg is generally more readily available from sediment for biological uptake.more » The proportion of MMHg released from the sediment was inversely correlated with sediment organic matter content, decreasing exponentially with increasing organic matter content of the sediment. The results for Hg{sub I} were equivocal. MMHg bioaccumulation factors (BAFs) from previous studies showed a similar trend with organic content of sediment, suggesting that solubilization may be the process limiting the bioaccumulation of particle-bound MMHg. It is concluded that in vitro extraction with a deposit feeder`s digestive fluid provides a potential tool to study the process of Hg bioaccumulation via ingestion routes, although its application to various sediments and organisms needs further investigation.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mortimer, Monika; Petersen, Elijah J.; Buchholz, Bruce A.

    We report that consumer goods contain multiwall carbon nanotubes (MWCNTs) that could be released during product life cycles into the environment, where their effects are uncertain. Here, we assessed MWCNT bioaccumulation in the protozoan Tetrahymena thermophila via trophic transfer from bacterial prey (Pseudomonas aeruginosa) versus direct uptake from growth media. The experiments were conducted using 14C-labeled MWCNT ( 14C-MWCNT) doses at or below 1 mg/L, which proved subtoxic since there were no adverse effects on the growth of the test organisms. A novel contribution of this study was the demonstration of the ability to quantify MWCNT bioaccumulation at low (submore » μg/kg) concentrations accomplished by employing accelerator mass spectrometry (AMS). After the treatments with MWCNTs at nominal concentrations of 0.01 mg/L and 1 mg/L, P. aeruginosa adsorbed considerable amounts of MWCNTs: (0.18 ± 0.04) μg/mg and (21.9 ± 4.2) μg/mg bacterial dry mass, respectively. At the administered MWCNT dose of 0.3 mg/L, T. thermophila accumulated up to (0.86 ± 0.3) μg/mg and (3.4 ± 1.1) μg/mg dry mass by trophic transfer and direct uptake, respectively.Finally, aAlthough MWCNTs did not biomagnify in the microbial food chain, MWCNTs bioaccumulated in the protozoan populations regardless of the feeding regime, which could make MWCNTs bioavailable for organisms at higher trophic levels.« less

  2. Polybrominated Diphenyl Ethers (PBDEs) Action Plan

    EPA Pesticide Factsheets

    Polybrominated diphenyl ethers (PBDEs) have been widely used as flame retardants in a number of applications. EPA is concerned that some of the component congeners are persistent, bioaccumulative and toxic.

  3. Persistent, Bioaccumulative, and Toxic (PBT) Chemicals under TSCA Section 6(h)

    EPA Pesticide Factsheets

    EPA's existing chemicals programs address pollution prevention, risk assessment, hazard and exposure assessment and/or characterization, and risk management for chemicals substances in commercial use.

  4. Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex.

    PubMed

    Lengke, Maggy F; Ravel, Bruce; Fleet, Michael E; Wanger, Gregory; Gordon, Robert A; Southam, Gordon

    2006-10-15

    The mechanisms of gold bioaccumulation by cyanobacteria (Plectonema boryanum UTEX 485) from gold(III)-chloride solutions have been studied at three gold concentrations (0.8,1.7, and 7.6 mM) at 25 degrees C, using both fixed-time laboratory and real-time synchrotron radiation absorption spectroscopy (XAS) experiments. Interaction of cyanobacteria with aqueous gold(III)-chloride initially promoted the precipitation of nanoparticles of amorphous gold(I)-sulfide at the cell walls, and finally deposited metallic gold in the form of octahedral (111) platelets (approximately 10 nm to 6 microm) near cell surfaces and in solutions. The XAS results confirm that the reduction mechanism of gold(III)-chloride to metallic gold by cyanobacteria involves the formation of an intermediate Au(I) species, gold(I)-sulfide.

  5. Bioaccumulation and phyto-translocation of arsenic, chromium and zinc by Jatropha curcas L.: impact of dairy sludge and biofertilizer.

    PubMed

    Yadav, Santosh Kumar; Juwarkar, Asha A; Kumar, G Phani; Thawale, Prashant R; Singh, Sanjeev K; Chakrabarti, Tapan

    2009-10-01

    The present study was planned to remediate the metalloid and metal contaminated soil by using non-edible and economic plant species Jatropha curcas L. The experiment was conducted on pots to improve the survival rate, metal tolerance and growth response of the plant on soil; having different concentrations of arsenic, chromium and zinc. The soil was amended with dairy sludge and bacterial inoculum (Azotobacter chroococcum) as biofertilizer. The results of the study showed that the bioaccumulation potential was increased with increase in metalloid and metal concentration in soil system. Application of dairy sludge significantly reduces the DTPA-extractable As, Cr and Zn concentration in soil. The application of organic amendment stabilizes the As, Cr and Zn and reduced their uptake in plant tissues.

  6. First evidence of persistent organic contaminants as potential anthropogenic stressors in the Barndoor Skate Dipturus laevis.

    PubMed

    Lyons, Kady; Adams, Douglas H

    2017-03-15

    Although exploited populations of elasmobranchs may be able to recover from fishing pressure, there is little information regarding the Barndoor Skate's ability to cope with other anthropogenic stressors such as organic contaminants (OCs). Legacy OCs were measured in liver, muscle and ova from fourteen Barndoor Skates with mature skates having significantly greater mean concentrations of OCs than immature skates, demonstrating bioaccumulation with age. Using Toxic Equivalency Factors, skates were found to have levels of PCBs that have been shown to elicit negative physiological responses in other fishes and these results highlight the need for future studies to investigate the potential impacts that bioaccumulated organic contaminants have on the recovery and conservation of this vulnerable species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Mercury methylation, export and bioaccumulation in rice agriculture - model results from comparative and experimental studies in 3 regions of the California Delta, USA

    NASA Astrophysics Data System (ADS)

    Windham-Myers, L.; Fleck, J.; Eagles-Smith, C.; Ackerman, J.

    2013-12-01

    Seasonally flooded wetland ecosystems are often poised for mercury (Hg) methylation, thus becoming sources of methylmercury (MeHg) to in situ and downstream biota. The seasonal flooding associated with cultivation of rice (Oryza sativa) also generates MeHg, which may be stored in sediment or plants, bioaccumulated into fauna, degraded or exported, depending on hydrologic and seasonal conditions. While many U.S. waters are regulated for total Hg concentrations based on fish targets, California's Sacramento-San Joaquin Delta (Delta) will soon implement the first MeHg total maximum daily load (TMDL) control program. Since 2007, a conceptual model (DRERIP-MCM) and several ecosystem-level studies have been advanced to better understand the mechanisms behind Hg methylation, export and bioaccumulation within Delta wetlands, including rice agriculture. Three Delta rice-growing regions (Yolo Bypass, Cosumnes River, Central Delta) of varied soil characteristics, mining influences and hydrology, were monitored over full crop years to evaluate annual MeHg dynamics. In addition to fish tissue Hg accumulation, a broad suite of biogeochemical and hydrologic indices were assessed and compared between wetland types, seasons, and regions. In general, Delta rice fields were found to export MeHg during the post-harvest winter season, and promote MeHg uptake in fish and rice grain during the summer growing season. As described in a companion presentation (Eagles-Smith et al., this session), the experimental Cosumnes River study suggests that rice-derived dissolved organic carbon (DOC) fuels MeHg production and uptake into aquatic foodwebs. Explicit DRERIP-MCM linkages for the role of rice-DOC in MeHg production, export and bioaccumulation were verified across two summers (2011, 2012): rice biomass and root productivity influenced porewater DOC availability and microbial processes, which drove sediment MeHg production and flux to surface water, promoting MeHg bioaccumulation in fish. Linkages from plant biomass to fish Hg concentrations were less evident in non-agricultural wetlands (seasonal or permanent flooding), where aromatic DOC and physical controls (e.g. hydrology, photodemethylation) appeared to have a greater role. Winter rice straw management had no measurable impact on summer MeHg dynamics, but wetland data suggest that the inclusion of deepwater cells within fields may reduce MeHg exposure. As concern grows over MeHg concentrations in rice grains, research on cultivars and field management is expanding in China, but ecosystem-level studies remain rare. Broader global monitoring and research are needed to address these pathways of Hg exposure given the global expansion of rice agriculture and ongoing atmospheric Hg deposition. Dense root and canopy structure of California rice fields (Oryza sativa), August 2007

  8. Retention and characteristics of microplastics in natural zooplankton taxa from the East China Sea.

    PubMed

    Sun, Xiaoxia; Liu, Tao; Zhu, Mingliang; Liang, Junhua; Zhao, Yongfang; Zhang, Bo

    2018-05-30

    The ubiquitous presence and persistence of microplastics (MPs) in aquatic environments have become of particular concern in recent years. Biological interactions are among the key processes that affect the impact and fate of MPs in the oceans. Zooplankton is one of the most sensitive taxa because their prey is approximately the same size as MPs. However, the status of MPs in zooplankton within natural marine environments remains largely unknown. By focusing on zooplankton in the East China Sea, the characteristics, bioaccumulated concentration, and retention of MPs for 10 zooplankton groups were systematically studied. Three types of MPs were found in zooplankton: fibres, pellets, and fragments. The fibres (54.6%) were more common than the other two types. The average lengths of the fibres, pellets, and fragments were 295.2 ± 348.6 μm, 20.3 ± 11.0 μm, and 82.4 ± 80.5 μm, respectively. Nineteen polymers were detected in the zooplankton via the Thermo Scientific Nicolet iN10 Infrared Microscope. Polymerized oxidized organic material and polyester were dominant, accounting for 35.9% and 25.6% of the polymers, respectively. The bioaccumulated concentration of MPs in the 10 zooplankton taxa varied from 0.13 pieces/zooplankton for Copepoda to 0.35 pieces/zooplankton for Pteropoda. The bioaccumulated concentration was negatively correlated with the abundance of zooplankton, showing a significant biological dilution effect. The bioaccumulated concentration was also influenced by the feeding mode of zooplankton, showing a trend of omnivorous > carnivorous > herbivorous. High retention of MPs was found in the zooplankton community of the East China Sea, achieving 19.7 ± 22.4 pieces/m 3 . This is much higher than the MP retention in zooplankton from other reported sea areas. By revealing the characteristics and retention of MPs in the natural zooplankton taxa from the East China Sea, this research identified the influence that MPs have on zooplankton in a typical coastal environment. This information can be utilized for subsequent controlled experiments and risk assessments. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Dissolved organic carbon modulates mercury concentrations in insect subsidies from streams to terrestrial consumers

    PubMed Central

    Chaves-Ulloa, Ramsa; Taylor, Brad W.; Broadley, Hannah J.; Cottingham, Kathryn L.; Baer, Nicholas A.; Weathers, Kathleen C.; Ewing, Holly A.; Chen, Celia Y.

    2016-01-01

    Mercury (Hg) concentrations in aquatic environments have increased globally, exposing consumers of aquatic organisms to high Hg levels. For both aquatic and terrestrial consumers, exposure to Hg depends on their food sources as well as environmental factors influencing Hg bioavailability. The majority of the research on the transfer of methylmercury (MeHg), a toxic and bioaccumulating form of Hg, between aquatic and terrestrial food webs has focused on terrestrial piscivores. However, a gap exists in our understanding of the factors regulating MeHg bioaccumulation by non-piscivorous terrestrial predators, specifically consumers of adult aquatic insects. Because dissolved organic carbon (DOC) binds tightly to MeHg, affecting its transport and availability in aquatic food webs, we hypothesized that DOC affects MeHg transfer from stream food webs to terrestrial predators feeding on emerging adult insects. We tested this hypothesis by collecting data over two years from 10 low-order streams spanning a broad DOC gradient in the Lake Sunapee watershed in New Hampshire. We found that streamwater MeHg concentration increased linearly with DOC concentration. However, streams with the highest DOC concentrations had emerging stream prey and spiders with lower MeHg concentrations than streams with intermediate DOC concentrations; a pattern that is similar to fish and larval aquatic insects. Furthermore, high MeHg concentrations found in spiders show that MeHg transfer in adult aquatic insects is an overlooked but potentially significant pathway of MeHg bioaccumulation in terrestrial food webs. Our results suggest that although MeHg in water increases with DOC, MeHg concentrations in stream and terrestrial consumers did not consistently increase with increases in streamwater MeHg concentrations. In fact, there was a change from a positive to a negative relationship between aqueous exposure and bioaccumulation at streamwater MeHg concentrations associated with DOC above around 5 mg/L. Thus, our study highlights the importance of stream DOC for MeHg dynamics beyond stream boundaries, and shows that factors modulating MeHg bioavailability in aquatic systems can affect the transfer of MeHg to terrestrial predators via aquatic subsidies. PMID:27755696

  10. Dissolved organic carbon modulates mercury concentrations in insect subsidies from streams to terrestrial consumers.

    PubMed

    Chaves-Ulloa, Ramsa; Taylor, Brad W; Broadley, Hannah J; Cottingham, Kathryn L; Baer, Nicholas A; Weathers, Kathleen C; Ewing, Holly A; Chen, Celia Y

    2016-09-01

    Mercury (Hg) concentrations in aquatic environments have increased globally, exposing consumers of aquatic organisms to high Hg levels. For both aquatic and terrestrial consumers, exposure to Hg depends on their food sources as well as environmental factors influencing Hg bioavailability. The majority of the research on the transfer of methylmercury (MeHg), a toxic and bioaccumulating form of Hg, between aquatic and terrestrial food webs has focused on terrestrial piscivores. However, a gap exists in our understanding of the factors regulating MeHg bioaccumulation by non-piscivorous terrestrial predators, specifically consumers of adult aquatic insects. Because dissolved organic carbon (DOC) binds tightly to MeHg, affecting its transport and availability in aquatic food webs, we hypothesized that DOC affects MeHg transfer from stream food webs to terrestrial predators feeding on emerging adult insects. We tested this hypothesis by collecting data over 2 years from 10 low-order streams spanning a broad DOC gradient in the Lake Sunapee watershed in New Hampshire, USA. We found that streamwater MeHg concentration increased linearly with DOC concentration. However, streams with the highest DOC concentrations had emerging stream prey and spiders with lower MeHg concentrations than streams with intermediate DOC concentrations; a pattern that is similar to fish and larval aquatic insects. Furthermore, high MeHg concentrations found in spiders show that MeHg transfer in adult aquatic insects is an overlooked but potentially significant pathway of MeHg bioaccumulation in terrestrial food webs. Our results suggest that although MeHg in water increases with DOC, MeHg concentrations in stream and terrestrial consumers did not consistently increase with increases in streamwater MeHg concentrations. In fact, there was a change from a positive to a negative relationship between aqueous exposure and bioaccumulation at streamwater MeHg concentrations associated with DOC above ~5 mg/L. Thus, our study highlights the importance of stream DOC for MeHg dynamics beyond stream boundaries, and shows that factors modulating MeHg bioavailability in aquatic systems can affect the transfer of MeHg to terrestrial predators via aquatic subsidies. © 2016 by the Ecological Society of America.

  11. Bioaccumulation and cancer risk of polycyclic aromatic hydrocarbons in leafy vegetables grown in soils within automobile repair complex and environ in Uyo, Nigeria.

    PubMed

    Inam, Edu; Ibanga, Felicia; Essien, Joseph

    2016-12-01

    Using gas chromatography-mass spectrometry and an incremental lifetime cancer risks (ILCRs) assessment model, the bioaccumulation and cancer risk of 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) in leafy vegetables (Vernonia amygdalina and Lasianthera africanum) grown in soils within an automobile repair complex environment in Uyo, Nigeria was studied. The total PAHs concentrations recorded for soils ranged from 0.02 to 1.77 mg/kg. The highest level of 1.77 mg/kg was recorded for soils from the main automobile repair complex (site 1). Low molecular weight (LMW) PAHs were predominant although some high molecular weight (HMW) PAHs suites (0.04 mg/kg of chrysene and 0.04 of benzo[k]fluoranthene) were also found in site 1. The leafy vegetables accumulated PAHs were mostly LMW. Accumulation levels were similar but the extent of PAH uptake in vegetables was species dependent as V. amygdalina accumulated more (0.81 mg/kg). The bioaccumulation factors (BaFs) calculated ranged from 0.22 to 0.63 for L. africanum, and 0.18 to 0.55 for V. amygdalina in site 1 where high PAH levels were recorded in soil. Pearson correlation coefficient analysis revealed a strong positive relation between the PAH content of soil and the amount accumulated by L. africanum (r = 0.5) and V. amygdalina (r = 0.8) at p = 0.05. The vegetable's potential to bioaccumulate PAHs is indicative of their use as good bioindicators for PAH contamination in soil. Only two of the USEPA possible human carcinogenic PAHs were detected, and carcinogenic risk assessment based on occupational exposures to soil particles by adults revealed that the total risk level (7.17 × 10 -5 ) contribution from incidental soil ingestion, dermal contact, and soil particle dust inhalation slightly exceed the USEPA acceptable limits (< 1.00 × 10 -5 ). There is a need for public education on consumption of vegetables grown in and around automobile repair complexes across Nigeria.

  12. The research progress in mechanism and influence of biosorption between lactic acid bacteria and Pb(II): A review.

    PubMed

    Lin, Derong; Ji, Ran; Wang, Dan; Xiao, Mengshi; Zhao, Jingjing; Zou, Jinpeng; Li, Yutong; Qin, Tao; Xing, Baoshan; Chen, Yuan; Liu, Peng; Wu, Zhijun; Wang, Lilin; Zhang, Qing; Chen, Hong; Qin, Wen; Wu, Dingtao; Liu, Yuntao; Liu, Yaowen; Li, Suqing

    2017-09-08

    Currently, due to high surface to volume ratio; large availability, rapid kinetics of adsorption and desorption and low cost, the exploitation of microbial biosorption of heavy metals is regarded as a reliable alternative compared to the conventional bioremediation approaches. In parallel with the increasing attractiveness of biosorption research, its pace of advance is also boosted. The barrier that prevent biosorption as an effective method from being applied into wastewater purification is listed, (1) There is not enough data on multi-component biosorption, (2) It remains to be seen that physical-chemical characteristics of different biomasses. (3) Studies on surface modification of strains for enhancement of heavy metals removal efficiency is lack. And extensive literatures involving the mechanism and model of biosorption for particular metal and microbial strains are not available. The present literatures lack systematization, the theory on interaction between lactic acid bacteria and Pb is far from complete. Therefore, the review tries to give a comprehensive explanation about the mechanism of Pb removal from Lactic acid bacteria and provide a brief overview of distinction between biosorption and bioaccumulation, biosorption technology, highlight the underlying features of biosorption and the various affecting factors such as pH, dose required, initial concentration, temperature, and treatment performance as a reference. Biosorption mechanisms can be briefly generalized into several pathways, which are ion exchange, complexation, precipitation, reduction and chelation. Many views holds that complexation is the major absorption mechanisms of Pb. Biosorption mechanisms can be roughly classified as biosorption and bioaccumulation, which have great differences between each other. Biosorption is metabolism-independent but fast, while bioaccumulation is metabolism-dependent but slow. The slight advantages of the bioaccumulation are the metabolite (lactic acid), lactobacillus surface-layers, enzymes and so on. Many factors can greatly affect adsorption process, different factors have different influence and the effects of pretreatment, pH and temperature are relatively greater. Desorption is not a fully reversible process of biosorption, but could not only achieve the goal of the recycle of microorganism, but also contribute to release of trace metal elements. Also the technologies for observation of biosorbents characterics and effect on the metal binding process are reviewed.

  13. Mercury in fish from Norwegian lakes: The complex influence of aqueous organic carbon.

    PubMed

    Braaten, Hans Fredrik Veiteberg; de Wit, Heleen A; Larssen, Thorjørn; Poste, Amanda E

    2018-06-15

    Mercury (Hg) concentrations in water and biota are often positively correlated to organic matter (OM), typically measured as total or dissolved organic carbon (TOC/DOC). However, recent evidence suggests that higher OM concentrations inhibit bioaccumulation of Hg. Here, we test how TOC impacts the Hg accumulation in fish in a synoptic study of Methyl-Hg (MeHg) in water and total Hg (THg) in perch (Perca fluviatilis) in 34 boreal lakes in southern Norway. We found that aqueous MeHg (r 2  = 0.49, p < 0.0001) and THg (r 2  = 0.69, p < 0.0001), and fish THg (r 2  = 0.26, p < 0.01) were all positively related with TOC. However, we found declining MeHg bioaccumulation factors (BAF MeHg ) for fish with increasing TOC concentrations. The significant correlation between fish THg concentrations and aqueous TOC suggests that elevated fish Hg levels in boreal regions are associated with humic lakes. The declining BAF MeHg with increasing TOC suggest that increased OM promotes increased aqueous Hg concentrations, but lowers relative MeHg bioaccumulation. A mechanistic understanding of the response from OM on BAF MeHg might be found in the metal-complexation properties of OM, where OM complexation of metals reduces their bioavailability. Hence, suggesting that MeHg bioaccumulation becomes less effective at higher TOC, which is particularly relevant when assessing potential responses of fish Hg to predicted future changes in OM inputs to boreal ecosystems. Increased browning of waters may affect fish Hg in opposite directions: an increase of food web exposure to aqueous Hg, and reduced bioavailability of Hg species. However, the negative relationship between BAF MeHg and TOC is challenging to interpret, and carries a great deal of uncertainty, since this relationship may be driven by the underlying correlation between TOC and MeHg (i.e. spurious correlations). Our results suggest that the trade-off between Hg exposure and accumulation will have important implications for the effects of lake browning on Hg transport, bioavailability, and trophodynamics. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Toxicological Threats of Plastic

    EPA Pesticide Factsheets

    Plastics pose both physical (e.g., entanglement, gastrointestinal blockage, reef destruction) and chemical threats (e.g., bioaccumulation of the chemical ingredients of plastic or toxic chemicals sorbed to plastics) to wildlife and the marine ecosystem.

  15. Discovery of Emerging Per-and Polyfluoroalkyl Substances

    EPA Science Inventory

    Legacy perfluorinated compounds exhibit significant environmental persistence and bioaccumulation potential, which has spawned an ongoing effort to introduce replacement compounds with reduced toxicological risk profiles. Many of these emerging chemical species lack validated qua...

  16. Methylmercury bioaccumulation across a productivity gradient in streams

    EPA Science Inventory

    Conceptual models have identified periphyton as a potentially improtant pathway for biomagnifying pollutants in streams. This hypothesis, however, has neither been tested experimentally, norinvestigated form ethylmercury (MeHg) a ubiquitous aquatic contaminant.

  17. Ecotoxicological assessment of metal-polluted urban soils using bioassays with three soil invertebrates.

    PubMed

    Santorufo, Lucia; Van Gestel, Cornelis A M; Maisto, Giulia

    2012-07-01

    This study aimed at assessing the quality of urban soils by integrating chemical and ecotoxicological approaches. Soils from five sites in downtown Naples, Italy, were sampled and characterized for physical-chemical properties and total and water-extractable metal concentrations. Bioassays with Eisenia andrei, Enchytraeus crypticus and Folsomia candida were performed to assess toxicity of the soils, using survival, reproduction and growth as the endpoints. Metal bioaccumulation in the animals was also measured. The properties and metal concentrations of the soils strongly differed. Metal bioaccumulation was related with total metal concentrations in soil and was highest in E. crypticus, which was more sensitive than E. andrei and F. candida. Responses of the three species to the investigated soils seemed due to both metal contamination and soil properties. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Analysis of heavy metals from water, sediment, and tissues of Labeo angra (Hamilton, 1822), from an Ox-box lake- an wetland site from Assam, India.

    PubMed

    Das, Suchismita; Choudhury, Shamim Sultana

    2016-01-01

    The aim of this study was to assess the regional impacts of heavy metals (Mn, Fe, Mg, Ca, Cu, Zn, Cd, Cr, Pb and Ni) on water, sediment and a native, teleost fish species, Labeo angra, inhabiting a flood plain wetland of Barak River in Assam, India. Heavy metal concentrations in the water, sediments and fish were measured; bioaccumulation factor, metal pollution index as well as condition indices were calculated, to assess the pollution load and health status of the fish. Multivariate statistical analysis was used on wetland water and sediment heavy metals to ascertain the possible sources and seasonal variations of the pollutants. Results showed that most heavy metals in the wetland water and sediments exceeded the water (drinking and irrigation) and sediment quality guidelines, respectively. Seasonal variations were observed for geogenic heavy metals, Mn, Fe, Mg and Ca while no seasonal variations were observed for anthropogenic heavy metals, Cu, Cd, Cr, Pb and Ni. Multivariate statistical analysis showed that there was strong correlation between geogenic and anthropogenic heavy metals in water and sediment, both originating from the common anthropogenic sources. Accumulation of most of the metals in all the tissues was above the safe limits as recommended by the Food and Agriculture Organization. High bioaccumulation factors and metal pollution index for these metals in the different tissues revealed that metals were extensively bio-accumulated and bioconcentrated. Condition indices in fish from the wetland suggested metabolic abnormalities.

  19. Titanium dioxide nanoparticles enhance inorganic arsenic bioavailability and methylation in two freshwater algae species.

    PubMed

    Luo, Zhuanxi; Wang, Zhenhong; Yan, Yameng; Li, Jinli; Yan, Changzhou; Xing, Baoshan

    2018-07-01

    The effect of titanium dioxide nanoparticles (nano-TiO 2 ) on the bioaccumulation and biotransformation of arsenic (As) remains largely unknown. In this study, we exposed two freshwater algae (Microcystis aeruginosa and Scenedesmus obliquus) to inorganic As (arsenite and arsenate) with the aim of increasing our understanding on As bioaccumulation and methylation in the presence of nano-TiO 2 . Direct evidence from transmission electron microscope (TEM) images show that nano-TiO 2 (anatase) entered exposed algae. Thus, nano-TiO 2 as carriers boosted As accumulation and methylation in these two algae species, which varied between inorganic As speciation and algae species. Specifically, nano-TiO 2 could markedly enhance arsenate (As(V)) accumulation in M. aeruginosa and arsenite (As(III)) accumulation in S. obliquus. Similarly, we found evidence of higher As methylation activity in the M. aeruginosa of As(III) 2 mg L -1 nano-TiO 2 treatment. Although this was also true for the S. obliquus (As(V)) treatment, this species exhibited higher As methylation compared to M. aeruginosa, being more sensitive to As associated with nano-TiO 2 compared to M. aeruginosa. Due to changes in pH levels inside these exposed algae, As dissociation from nano-TiO 2 inside algal cells enhanced As methylation. Accordingly, the potential influence of nanoparticles on the bioaccumulation and biotransformation of their co-contaminants deserves more attention. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Bioaccumulation and public health implications of trace metals in edible tissues of the crustaceans Scylla serrata and Penaeus monodon from the Tanzanian coast.

    PubMed

    Rumisha, Cyrus; Leermakers, Martine; Mdegela, Robinson H; Kochzius, Marc; Elskens, Marc

    2017-09-30

    The coastal population in East Africa is growing rapidly but sewage treatment and recycling facilities in major cities and towns are poorly developed. Since estuarine mangroves are the main hotspots for pollutants, there is a potential for contaminants to accumulate in edible fauna and threaten public health. This study analysed trace metals in muscle tissues of the giant mud crabs (Scylla serrata) and the giant tiger prawns (Penaeus monodon) from the Tanzanian coast, in order to determine the extent of bioaccumulation and public health risks. A total of 180 samples of muscle tissues of S. serrata and 80 of P. monodon were collected from nine sites along the coast. Both species showed high levels of trace metals in the wet season and significant bioaccumulation of As, Cu and Zn. Due to their burrowing and feeding habits, mud crabs were more contaminated compared to tiger prawns sampled from the same sites. Apart from that, the measured levels of Cd, Cr and Pb did not exceed maximum limits for human consumption. Based on the current trend of fish consumption in Tanzania (7.7 kg/person/year), the measured elements (As, Cd, Co, Cu, Mn, Pb and Zn) are not likely to present health risks to shellfish consumers. Nevertheless, potential risks of As and Cu cannot be ruled out if the average per capita consumption is exceeded. This calls for strengthened waste management systems and pollution control measures.

  1. Influence of titanium dioxide nanoparticles on cadmium and lead bioaccumulations and toxicities to Daphnia magna

    NASA Astrophysics Data System (ADS)

    Li, Ling; Sillanpää, Markus; Schultz, Eija

    2017-06-01

    Titanium dioxide nanoparticles (TiO2 NPs) have attracted considerable concerns due to the increasing production and widespread applications, while their influences on other co-existing pollutants in real environment are not well studied. In this paper, the colloidal stability of TiO2 NPs in the exposure medium was first evaluated, and then, the medium was modified so that TiO2 NP suspension remained stable over the exposure period. Finally, using the optimized exposure medium, the effects of cadmium (Cd) and lead (Pb) on Daphnia magna both in the absence and presence of TiO2 NPs were investigated. Results showed that 2 mg L-1 of TiO2 NPs was well dispersed in 1:20 diluted Elendt M7 medium without EDTA, and no immobility was observed. The presence of the nanoparticles increased the bioaccumulation and toxicity of Cd to the daphnias. On the contrary, while Pb bioaccumulation was enhanced by three to four times, toxicity of Pb was reduced in the presence of TiO2 NPs. The decreased toxicity of Pb was more likely attributed to the decreased bioavailability of free Pb ion due to adsorption and speciation change of Pb in the presence of TiO2 NPs. Additionally, surface-attached TiO2 NPs combined with adsorbed heavy metals caused adverse effects on daphnia swimming and molting behavior, which is supposed to lead to chronic toxicity.

  2. Mercury bioaccumulation in bats reflects dietary connectivity to aquatic food webs.

    PubMed

    Becker, Daniel J; Chumchal, Matthew M; Broders, Hugh G; Korstian, Jennifer M; Clare, Elizabeth L; Rainwater, Thomas R; Platt, Steven G; Simmons, Nancy B; Fenton, M Brock

    2018-02-01

    Mercury (Hg) is a persistent and widespread heavy metal with neurotoxic effects in wildlife. While bioaccumulation of Hg has historically been studied in aquatic food webs, terrestrial consumers can become contaminated with Hg when they feed on aquatic organisms (e.g., emergent aquatic insects, fish, and amphibians). However, the extent to which dietary connectivity to aquatic ecosystems can explain patterns of Hg bioaccumulation in terrestrial consumers has not been well studied. Bats (Order: Chiroptera) can serve as a model system for illuminating the trophic transfer of Hg given their high dietary diversity and foraging links to both aquatic and terrestrial food webs. Here we quantitatively characterize the dietary correlates of long-term exposure to Hg across a diverse local assemblage of bats in Belize and more globally across bat species from around the world with a comparative analysis of hair samples. Our data demonstrate considerable interspecific variation in hair total Hg concentrations in bats that span three orders of magnitude across species, ranging from 0.04 mg/kg in frugivorous bats (Artibeus spp.) to 145.27 mg/kg in the piscivorous Noctilio leporinus. Hg concentrations showed strong phylogenetic signal and were best explained by dietary connectivity of bat species to aquatic food webs. Our results highlight that phylogeny can be predictive of Hg concentrations through similarity in diet and how interspecific variation in feeding strategies influences chronic exposure to Hg and enables movement of contaminants from aquatic to terrestrial ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Aquatic insect ecophysiological traits reveal phylogenetically based differences in dissolved cadmium susceptibility.

    PubMed

    Buchwalter, David B; Cain, Daniel J; Martin, Caitrin A; Xie, Lingtian; Luoma, Samuel N; Garland, Theodore

    2008-06-17

    We used a phylogenetically based comparative approach to evaluate the potential for physiological studies to reveal patterns of diversity in traits related to susceptibility to an environmental stressor, the trace metal cadmium (Cd). Physiological traits related to Cd bioaccumulation, compartmentalization, and ultimately susceptibility were measured in 21 aquatic insect species representing the orders Ephemeroptera, Plecoptera, and Trichoptera. We mapped these experimentally derived physiological traits onto a phylogeny and quantified the tendency for related species to be similar (phylogenetic signal). All traits related to Cd bioaccumulation and susceptibility exhibited statistically significant phylogenetic signal, although the signal strength varied among traits. Conventional and phylogenetically based regression models were compared, revealing great variability within orders but consistent, strong differences among insect families. Uptake and elimination rate constants were positively correlated among species, but only when effects of body size and phylogeny were incorporated in the analysis. Together, uptake and elimination rates predicted dramatic Cd bioaccumulation differences among species that agreed with field-based measurements. We discovered a potential tradeoff between the ability to eliminate Cd and the ability to detoxify it across species, particularly mayflies. The best-fit regression models were driven by phylogenetic parameters (especially differences among families) rather than functional traits, suggesting that it may eventually be possible to predict a taxon's physiological performance based on its phylogenetic position, provided adequate physiological information is available for close relatives. There appears to be great potential for evolutionary physiological approaches to augment our understanding of insect responses to environmental stressors in nature.

  4. Applicability of a neuroprobabilistic integral risk index for the environmental management of polluted areas: a case study.

    PubMed

    Nadal, Martí; Kumar, Vikas; Schuhmacher, Marta; Domingo, José L

    2008-04-01

    Recently, we developed a GIS-Integrated Integral Risk Index (IRI) to assess human health risks in areas with presence of environmental pollutants. Contaminants were previously ranked by applying a self-organizing map (SOM) to their characteristics of persistence, bioaccumulation, and toxicity in order to obtain the Hazard Index (HI). In the present study, the original IRI was substantially improved by allowing the entrance of probabilistic data. A neuroprobabilistic HI was developed by combining SOM and Monte Carlo analysis. In general terms, the deterministic and probabilistic HIs followed a similar pattern: polychlorinated biphenyls (PCBs) and light polycyclic aromatic hydrocarbons (PAHs) were the pollutants showing the highest and lowest values of HI, respectively. However, the bioaccumulation value of heavy metals notably increased after considering a probability density function to explain the bioaccumulation factor. To check its applicability, a case study was investigated. The probabilistic integral risk was calculated in the chemical/petrochemical industrial area of Tarragona (Catalonia, Spain), where an environmental program has been carried out since 2002. The risk change between 2002 and 2005 was evaluated on the basis of probabilistic data of the levels of various pollutants in soils. The results indicated that the risk of the chemicals under study did not follow a homogeneous tendency. However, the current levels of pollution do not mean a relevant source of health risks for the local population. Moreover, the neuroprobabilistic HI seems to be an adequate tool to be taken into account in risk assessment processes.

  5. Trace Detection of Organophosphorus Chemical Warfare Agents in Wastewater and Plants by Luminescent UIO-67(Hf) and Evaluating the Bioaccumulation of Organophosphorus Chemical Warfare Agents.

    PubMed

    Lian, Xiao; Yan, Bing

    2018-05-02

    Organophosphorus chemical warfare agents (OPCWAs) are a group of organic pollutants characterized by high toxicity and chemical stability, and they are very difficult to be degraded. The trace quality of OPCWAs in water and food will cause great harm to the human body. Therefore, the detection of OPCWAs is a difficult challenge, which has become the research hotspot over the world. In this work, a Hf-based luminescent metal-organic framework (Eu@1) is prepared, and the reactivity of Hf 12 results in a methanephosphonic acid (MPA)-induced luminescence quenching and the charge transfer from MPA to Hf(IV) and generated exciplexes which are responsible for this quenching effect. The excellent performance of Eu@1 in the detection of MPA, with its finer selectivity, high sensitivity (LOD = 0.4 ppm), and large linear range (10 -7 to 10 -3 M), is encouraging for application in wastewater detection. Importantly, MPA is a pollutant that can be absorbed by plants and causes the bioaccumulation effect, and thus, the detection of MPA in real plant samples is a purposeful topic. Eu@1 also achieved satisfactory results in actual plant sample testing, and the bioaccumulation of MPA in onions, turnips, and cabbages is determined via our sensor. This fabricated detector provides a feasible path for the detection of ppm-level OPCWAs in a complex environment, which will help humans to avoid OPCWA-contaminated foods.

  6. Time dependent uptake, bioaccumulation and biotransformation of cell free crude extract microcystins from Lake Amatitlán, Guatemala by Ceratophyllum demersum, Egeria densa and Hydrilla verticillata.

    PubMed

    Romero-Oliva, Claudia Suseth; Contardo-Jara, Valeska; Pflugmacher, Stephan

    2015-10-01

    Recent studies evidence that macrophytes can uptake and bioaccumulate microcystins (MC) from contaminated environments, suggesting their use in phytoremediation. In the present study Ceratophyllum demersum, Egeria densa and Hydrilla verticillata were exposed to cell free crude extracts (CE) containing three MC congeners MC-LR, MC-RR and MC-YR at a total MC concentration of 104.4 ± 7.6 μg/L from Lake Amatitlán, Guatemala. Time dependent total glutathione (tGSH), glutathione disulfide (GSSG), disappearance of MC from exposure medium and macrophyte uptake as well as calculated uptake and biotransformation rates and bioconcentration factors (BCF) were monitored after 1, 4, 8 hours (h) and 1, 3, 7 and 14 days (d). Results showed that tGSH concentrations in all exposed macrophytes were enhanced by CE. Disappearance of 62.1 ± 13, 40.8 ± 3.1 and 37.8 ± 3.5 μg/L total MCs from exposure mediums with E. densa, H. verticillata and C. demersum were observed after 1 h. Followed by the total elimination of MCs in exposure medium from H. verticillata after 14 d. Highest MC bioaccumulation capacity (BCF), was observed in E. densa followed by C. demersum and H. verticillata. The here presented results imply the strong MC phytoremediation potential of the evaluated macrophytes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Food Web Bioaccumulation Model for Resident Killer Whales from the Northeastern Pacific Ocean as a Tool for the Derivation of PBDE-Sediment Quality Guidelines.

    PubMed

    Alava, Juan José; Ross, Peter S; Gobas, Frank A P C

    2016-01-01

    Resident killer whale populations in the NE Pacific Ocean are at risk due to the accumulation of pollutants, including polybrominated diphenyl ethers (PBDEs). To assess the impact of PBDEs in water and sediments in killer whale critical habitat, we developed a food web bioaccumulation model. The model was designed to estimate PBDE concentrations in killer whales based on PBDE concentrations in sediments and the water column throughout a lifetime of exposure. Calculated and observed PBDE concentrations exceeded the only toxicity reference value available for PBDEs in marine mammals (1500 μg/kg lipid) in southern resident killer whales but not in northern resident killer whales. Temporal trends (1993-2006) for PBDEs observed in southern resident killer whales showed a doubling time of ≈5 years. If current sediment quality guidelines available in Canada for polychlorinated biphenyls are applied to PBDEs, it can be expected that PBDE concentrations in killer whales will exceed available toxicity reference values by a large margin. Model calculations suggest that a PBDE concentration in sediments of approximately 1.0 μg/kg dw produces PBDE concentrations in resident killer whales that are below the current toxicity reference value for 95 % of the population, with this value serving as a precautionary benchmark for a management-based approach to reducing PBDE health risks to killer whales. The food web bioaccumulation model may be a useful risk management tool in support of regulatory protection for killer whales.

  8. Cyanobacterial toxins: modes of actions, fate in aquatic and soil ecosystems, phytotoxicity and bioaccumulation in agricultural crops.

    PubMed

    Corbel, Sylvain; Mougin, Christian; Bouaïcha, Noureddine

    2014-02-01

    The occurrence of harmful cyanobacterial blooms in surface waters is often accompanied by the production of a variety of cyanotoxins. These toxins are designed to target in humans and animals specific organs on which they act: hepatotoxins (liver), neurotoxins (nervous system), cytotoxic alkaloids, and dermatotoxins (skin), but they often have important side effects too. When introduced into the soil ecosystem by spray irrigation of crops they may affect the same molecular pathways in plants having identical or similar target organs, tissues, cells or biomolecules. There are also several indications that terrestrial plants, including food crop plants, can bioaccumulate cyanotoxins and present, therefore, potential health hazards for human and animals. The number of publications concerned with phytotoxic effects of cyanotoxins on agricultural plants has increased recently. In this review, we first examine different cyanotoxins and their modes of actions in humans and mammals and occurrence of target biomolecules in vegetable organisms. Then we present environmental concentrations of cyanotoxins in freshwaters and their fate in aquatic and soil ecosystems. Finally, we highlight bioaccumulation of cyanotoxins in plants used for feed and food and its consequences on animals and human health. Overall, our review shows that the information on the effects of cyanotoxins on non-target organisms in the terrestrial environment is particularly scarce, and that there are still serious gaps in the knowledge about the fate in the soil ecosystems and phytotoxicity of these toxins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Bioaccumulation and translocation of metals in the natural vegetation growing on fly ash lagoons: a field study from Santaldih thermal power plant, West Bengal, India.

    PubMed

    Maiti, Subodh Kumar; Jaiswal, Shishir

    2008-01-01

    A field study was conducted in the fly ash lagoons of Santandih Thermal Power Plant located in West Bengal (India) to find out total, EDTA and DTPA extractable metals in fly ash and their bioaccumulation in root and shoot portion of the naturally growing vegetation. Fly ash sample has alkaline pH and low conductivity. The concentration of total Cu, Zn, Pb and Ni were found higher than weathered fly ash and natural soil, where as Co, Cd and Cr were found traces. Five dominant vegetation namely, Typha latifolia, Fimbristylis dichotoma, Amaranthus defluxes, Saccharum spontaenum and Cynodon dactylon were collected in the winter months (November-December). Bioaccumulation of metals in root and shoot portions were found varied significantly among the species, but all concentration were found within toxic limits. Correlation between total, DTPA and EDTA extractable metals viz. root and shoot metals concentration were studied. Translocation factor (TF) for Cu, Zn and Ni were found less than unity, indicates that these metals are immobilized in the root part of the plants. Metals like Mn have TF greater than unity. The study infers that natural vegetation removed Mn by phytoextraction mechanisms (TF > 1), while other metals like Zn, Cu, Pb and Ni were removed by rhizofiltration mechanisms (TF < 1). The field study revealed that T. latifolia and S. spontaenum plants could be used for bioremediation of fly ash lagoon.

  10. Aquatic insect ecophysiological traits reveal phylogenetically based differences in dissolved cadmium susceptibility

    PubMed Central

    Buchwalter, David B.; Cain, Daniel J.; Martin, Caitrin A.; Xie, Lingtian; Luoma, Samuel N.; Garland, Theodore

    2008-01-01

    We used a phylogenetically based comparative approach to evaluate the potential for physiological studies to reveal patterns of diversity in traits related to susceptibility to an environmental stressor, the trace metal cadmium (Cd). Physiological traits related to Cd bioaccumulation, compartmentalization, and ultimately susceptibility were measured in 21 aquatic insect species representing the orders Ephemeroptera, Plecoptera, and Trichoptera. We mapped these experimentally derived physiological traits onto a phylogeny and quantified the tendency for related species to be similar (phylogenetic signal). All traits related to Cd bioaccumulation and susceptibility exhibited statistically significant phylogenetic signal, although the signal strength varied among traits. Conventional and phylogenetically based regression models were compared, revealing great variability within orders but consistent, strong differences among insect families. Uptake and elimination rate constants were positively correlated among species, but only when effects of body size and phylogeny were incorporated in the analysis. Together, uptake and elimination rates predicted dramatic Cd bioaccumulation differences among species that agreed with field-based measurements. We discovered a potential tradeoff between the ability to eliminate Cd and the ability to detoxify it across species, particularly mayflies. The best-fit regression models were driven by phylogenetic parameters (especially differences among families) rather than functional traits, suggesting that it may eventually be possible to predict a taxon's physiological performance based on its phylogenetic position, provided adequate physiological information is available for close relatives. There appears to be great potential for evolutionary physiological approaches to augment our understanding of insect responses to environmental stressors in nature. PMID:18559853

  11. A novel approach for acid mine drainage pollution biomonitoring using rare earth elements bioaccumulated in the freshwater clam Corbicula fluminea.

    PubMed

    Bonnail, Estefanía; Pérez-López, Rafael; Sarmiento, Aguasanta M; Nieto, José Miguel; DelValls, T Ángel

    2017-09-15

    Lanthanide series have been used as a record of the water-rock interaction and work as a tool for identifying impacts of acid mine drainage (lixiviate residue derived from sulphide oxidation). The application of North-American Shale Composite-normalized rare earth elements patterns to these minority elements allows determining the origin of the contamination. In the current study, geochemical patterns were applied to rare earth elements bioaccumulated in the soft tissue of the freshwater clam Corbicula fluminea after exposure to different acid mine drainage contaminated environments. Results show significant bioaccumulation of rare earth elements in soft tissue of the clam after 14 days of exposure to acid mine drainage contaminated sediment (ΣREE=1.3-8μg/gdw). Furthermore, it was possible to biomonitor different degrees of contamination based on rare earth elements in tissue. The pattern of this type of contamination describes a particular curve characterized by an enrichment in the middle rare earth elements; a homologous pattern (E MREE =0.90) has also been observed when applied NASC normalization in clam tissues. Results of lanthanides found in clams were contrasted with the paucity of toxicity studies, determining risk caused by light rare earth elements in the Odiel River close to the Estuary. The current study purposes the use of clam as an innovative "bio-tool" for the biogeochemical monitoring of pollution inputs that determines the acid mine drainage networks affection. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Bioremediation trial on aged PCB-polluted soils--a bench study in Iceland.

    PubMed

    Lehtinen, Taru; Mikkonen, Anu; Sigfusson, Bergur; Ólafsdóttir, Kristín; Ragnarsdóttir, Kristín Vala; Guicharnaud, Rannveig

    2014-02-01

    Polychlorinated biphenyls (PCBs) pose a threat to the environment due to their high adsorption capacity to soil organic matter, stability and low reactivity, low water solubility, toxicity and ability to bioaccumulate. With Icelandic soils, research on contamination issues has been very limited and no data has been reported either on PCB degradation potential or rate. The goals of this research were to assess the bioavailability of aged PCBs in the soils of the old North Atlantic Treaty Organization facility in Keflavík, Iceland and to find the best biostimulation method to decrease the pollution. The effectiveness of different biostimulation additives (N fertiliser, white clover and pine needles) at different temperatures (10 and 30 °C) and oxygen levels (aerobic and anaerobic) were tested. PCB bioavailability to soil fauna was assessed with earthworms (Eisenia foetida). PCBs were bioavailable to earthworms (bioaccumulation factor 0.89 and 0.82 for earthworms in 12.5 ppm PCB soil and in 25 ppm PCB soil, respectively), with less chlorinated congeners showing higher bioaccumulation factors than highly chlorinated congeners. Biostimulation with pine needles at 10 °C under aerobic conditions resulted in nearly 38 % degradation of total PCBs after 2 months of incubation. Detection of the aerobic PCB degrading bphA gene supports the indigenous capability of the soils to aerobically degrade PCBs. Further research on field scale biostimulation trials with pine needles in cold environments is recommended in order to optimise the method for onsite remediation.

  13. Contamination assessments of surface water in coastal lagoon (Maluan Bay, China) incorporating biomarker responses and bioaccumulation in hepatopancreas of exposed shrimp (Litopenaeus vannamei)--an integrative approach.

    PubMed

    Wang, Zaosheng; Dong, Xiaoxia; Zhou, Shilei; Yan, Changzhou; Yan, Yijun; Chi, Qiaoqiao

    2014-01-01

    Maluan Bay, characterized by various degrees of anthropogenic contamination, is considered as one of the most industrialized and urbanized coastal lagoon in China, where large amounts of metal contaminants in surface water and biota were detected in previous studies. However, no clear discriminating power among sampling sites could be made only through comparisons between contaminant levels and Environmental Quality Standards and especially biological-based monitoring integrating biomarkers and bioaccumulation of exposure are scarce. For this purpose, antioxidants enzymes (superoxide dismutase, catalase, and glutathione peroxidase) and glutathione-S-transferase were assessed using the hepatopancreas of shrimp Litopenaeus vannamei after 7 days laboratory exposure under controlled conditions to characterize the effects of polluted waters to shrimps. The metal concentrations of sampled water and bioaccumulation in hepatopancreatic tissues were also analyzed, and data were linked to biomarkers' responses by multivariate (principal component analysis-factor) analysis. A representation of estimated factor scores was performed to confirm the factor descriptions classifying the pollution status and characterizing the studied sites, which pointed out the impact of multiple sources of contaminants to the water quality and provided further evidences to the existence of clear pollution and toxicological gradients in critical areas. The results of the present investigation underlined that the integrated approach could be a powerful tool for the identification of causal toxic contaminants in complex mixtures and the assessment of human-induced environmental quality of the system in coastal zones.

  14. Bioaccumulation of Pb2+ and its effects on growth, morphology and pigment contents of Spirulina ( Arthrospira) platensis

    NASA Astrophysics Data System (ADS)

    Arunakumara, K. K. I. U.; Zhang, Xuecheng; Song, Xiaojin

    2008-11-01

    A laboratory experiment was conducted to assess the bioaccumulation of Pb2+ and its effects on growth, morphology and pigment contents of Spirulina (Arthrospira) platensis. The specimen cultured in Zarrouk liquid medium was treated with various initial metal concentrations (0, 5, 10, 30, 50 and 100 μg mL-1). The growth of S. platensis was adversely affected by Pb2+ at high concentrations (30, 50 and 100 μg mL-1). However, at low concentrations (5 μg mL-1), Pb2+ could stimulate its growth slightly. The pigment contents (chlorophyll α and β carotene) were decreased in a dose-dependent manner. The highest reductions (67% and 53% respectively in chlorophyll α and β carotene) were observed in 100 μg mL-1 treatment group. The LC50 (96 h) of Pb2+ was measured as 75.34 μg mL-1. Apart from a few cases of filament breakages at elevated concentrations (50 and 100 μg mL-1), morphological abnormalities are not specific. Metal bioaccumulation increased with Pb2+ concentrations, but decreased with exposure time. The maximum accumulated amount was 188 mg g-1 dry weight. The bioconcentration factor (BCF) reached to a peak at day 2, followed by a gradual reduction for all the exposure concentrations. S. platensis is able to tolerate considerably high Pb2+ concentrations. Consequently it can be used as a potential species to remove heavy metal from contaminated waters.

  15. Hydrocarbons and surfactants: Ecotoxicology in a marine pelagic food chain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skadsheim, A.; Hoivangli, V.; Labes-Carrier, C.

    1996-12-31

    Accidental spills and production lead to discharges of petroleum hydrocarbons and surface active agents to the sea. The Norwegian government has set guidelines adopted from the OSPAR commission for assessment and studies of the environmental load from these discharges. The free water masses are poorly studied compared to the benthic processes in this context and we question how oil and surfactants might bioaccumulate in a simplified marine pelagic food chain comprised of algae, crustaceans and fish. When test methods and species recommended for initial water based acute toxicity studies are to be implemented in more comprehensive studies like assessment ofmore » bioaccumulation various problems arose. An improvement of the OSPAR method for the production of Water Accommodated Fractions (WAFs) of oil is presented. Emphasis is on control of oil concentration and distribution in water, and on applicability for studies where larger volumes of WAF are required than for the demand in acute toxicity tests. Acute toxicity assessments of one oil, Blended Arabian Light topped at 150{degrees}C, and two non-ionic dispersants, hexaetoxyparanonylphenol and a sophorolipid, were conducted on OSPAR recommended species. The toxicity responses were in line with observations made by others. At a given concentration the oil particle size during WAF preparation might influence subsequent expression of toxic effects. The same applied for the presence of emulsified oil particles in the WAR where the organisms were exposed. Reasons for selecting other test organisms than those officially recommended for continued studies on bioaccumulation are presented and discussed.« less

  16. Trophic magnification of PCBs and its relationship to the octanol-water partition coefficient

    USGS Publications Warehouse

    Walters, D.M.; Mills, M.A.; Cade, B.S.; Burkard, L.P.

    2011-01-01

    We investigated polychlorinated biphenyl (PCB) bioaccumulation relative to octanol-water partition coefficient (KOW) and organism trophic position (TP) at the Lake Hartwell Superfund site (South Carolina). We measured PCBs (127 congeners) and stable isotopes (??15N) in sediment, organic matter, phytoplankton, zooplankton, macroinvertebrates, and fish. TP, as calculated from ??15N, was significantly, positively related to PCB concentrations, and food web trophic magnification factors (TMFs) ranged from 1.5-6.6 among congeners. TMFs of individual congeners increased strongly with log KOW, as did the predictive power (r2) of individual TP-PCB regression models used to calculate TMFs. We developed log KOW-TMF models for eight food webs with vastly different environments (freshwater, marine, arctic, temperate) and species composition (cold- vs warmblooded consumers). The effect of KOW on congener TMFs varied strongly across food webs (model slopes 0.0-15.0) because the range of TMFs among studies was also highly variable. We standardized TMFs within studies to mean = 0, standard deviation (SD) = 1 to normalize for scale differences and found a remarkably consistent KOW effect on TMFs (no difference in model slopes among food webs). Our findings underscore the importance of hydrophobicity (as characterized by KOW) in regulating bioaccumulation of recalcitrant compounds in aquatic systems, and demonstrate that relationships between chemical KOW and bioaccumulation from field studies are more generalized than previously recognized. ?? This article not subject to U.S. Copyright. Published 2011 by the American Chemical Society.

  17. Comment on and reinterpretation of Gabriel et Al. (2014) 'fish mercury and surface water sulfate relationships in the everglades protection area'.

    PubMed

    Julian, Paul; Gu, Binhe; Redfield, Garth

    2015-01-01

    Mercury (Hg) methylation and bioaccumulation is a major environmental issue in the Everglades Protection Area (EvPA). Therefore, it is critical to improve our predictive understanding of Hg dynamics. This commentary critically reviews a recently published manuscript concerning the possible relationship between Hg in fish tissue and surface water sulfate within EvPA marshes. The commentary addresses fundamental issues with the authors' data analysis, results and interpretation as well as highlights inconsistencies with published literature and the lack of support for their suggested ecosystem management actions. A number of chemical, biological, and physical factors influence Hg methylation and bioaccumulation, and water sulfate is sometimes viewed as a keystone factor, Gabriel et al. (2014) conclude that Hg bioaccumulation is favored at elevated sulfate concentrations, and suggest mitigation strategies to reduce sulfate inputs to the EvPA. A careful review of their data and conclusions reveals major flaws and in fact, a more straightforward and defensible interpretation of their data would be that no predictable relationship exists between fish tissue Hg and surface water sulfate concentrations in south Florida. Given the complexity of Hg cycling and the influence of trophic and habitat characteristics on aquatic consumer Hg accumulation, expecting one parameter to predict Hg accumulation dynamics within fish species within a dynamic marsh environment is unrealistic. Furthermore, proposing any management guidance from this relationship with little to no quantitative statistical analysis is inappropriate and misleading.

  18. Changes in fish diets and food web mercury bioaccumulation induced by an invasive planktivorous fish

    USGS Publications Warehouse

    Eagles-Smith, Collin A.; Suchanek, Thomas H.; Colwell, Arthur E.; Anderson, Norman L.; Moyle, Peter B.

    2008-01-01

    The invasion, boom, collapse, and reestablishment of a population of the planktivorous threadfin shad in Clear Lake, California, USA, were documented over a 20-year period, as were the effects of changing shad populations on diet and mercury (Hg) bioaccumulation in nearshore fishes. Threadfin shad competitively displaced other planktivorous fish in the lake, such as inland silversides, young-of-year (YOY) largemouth bass, and YOY bluegill, by reducing zooplankton abundance. As a result, all three species shifted from a diet that was dominated by zooplankton to one that was almost entirely zoobenthos. Stable carbon isotopes corroborated this pattern with each species becoming enriched in δ13C, which is elevated in benthic vs. pelagic organisms. Concomitant with these changes, Hg concentrations increased by ∼50% in all three species. In contrast, obligate benthivores such as prickly sculpin showed no relationship between diet or δ13C and the presence of threadfin shad, suggesting that effects of the shad were not strongly linked to the benthic fish community. There were also no changes in Hg concentrations of prickly sculpin. The temporary extirpation of threadfin shad from the lake resulted in zooplankton densities, foraging patterns, isotope ratios, and Hg concentrations in pelagic fishes returning to pre-shad values. These results indicate that even transient perturbations of the structure of freshwater food webs can result in significant alterations in the bioaccumulation of Hg and that food webs in lakes can be highly resilient.

  19. Bioaccumulation and biomagnification of persistent organic pollutants in Indo-Pacific humpback dolphins (Sousa chinensis) from the Pearl River Estuary, China.

    PubMed

    Gui, Duan; Yu, Riqing; He, Xuan; Tu, Qin; Chen, Laiguo; Wu, Yuping

    2014-11-01

    Indo-Pacific humpback dolphins (Sousa chinensis) are apex predators in the Pearl River Estuary waters (PRE) of China. PCBs, DDTs and other organochlorine pesticides (OCPs) (e.g., HCHs, HCB, mirex and dieldrin) were analysed in blubber samples of 45 dolphins and 10 prey fishes of S. chinensis collected from 2004 to 2013 in the PRE region to investigate the bioaccumulation and potential biomagnification of persistent organic pollutants (POPs). DDTs were the most abundant residue in the dolphins, with an average of 6,2700 ng g(-1) wet weight (ww), followed by PCBs (average: 1,790 ng g(-1) ww) and other OCPs including ∑HCHs, mirex, endrin, ∑chlordanes, HCB, dieldrin, aldrin, heptachlor, and pentachlorobenzene. The concentrations of PCBs and DDTs in male dolphins significantly increased with age and length. In contrast, female dolphins did not show obvious bioaccumulation trends with age and body length, possibly due to the lactational and parturitional transfer of these compounds. Compared with the POP residues in the prey fishes, the concentrations of PCBs, DDTs, and HCHs in the dolphin blubber increased by factors of 99, 212, and 5, respectively, whereas the residue levels of the other OCPs increased 2-185 times, indicating a potentially significant biomagnification in the top predators. The potential biomagnification factors calculated for most POPs were significantly higher than those in the cetacean species from other regions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Effects of open dumping of MSW on metal contamination of soil, plants, and earthworms in Ranchi, Jharkhand, India.

    PubMed

    Singh, Monika; Verma, Mohini; Kumar, R Naresh

    2018-02-13

    Influence of open dumping of municipal solid wastes (MSW) on metal contamination of soil, plants, and earthworms in Ranchi, Jharkhand, India, was studied over 6-month period. Dumpsite in the study area exists in two sections, old section where waste dumping has stopped and new section where wastes are currently disposed. Soil around dumpsite had high concentration of Co, Cr, Cu, Pb, and Zn than that at control site. Geoaccumulation index indicated uncontaminated to moderate level of soil contamination at old dumpsite and soil at new dumpsite was found to be uncontaminated. Parthenium hysterophorus, Lantana camara, and Calotropis procera were the main plants found in patchy distribution around dumpsite. Plants exhibited almost similar levels of metal concentration in roots and shoots. P. hysterophorus and L. camara showed high bioaccumulation capacity and low translocation capacity. C. procera showed moderate bioaccumulation capacity and high translocation capacity as the concentration of metals was higher in the shoot. P. hysterophorus and L. camara due to higher bioaccumulation capacity and lower translocation capacity appear to be suitable for phytostabilization of metal-contaminated soil. Earthworms present at the dumpsite showed high concentration of Cr, Cu, Pb, and Zn with bioconcentration factor > 1. Results highlights that soil contamination due to metals is occurring at the dumpsite which is also leading to transfer of metals to plants and earthworms which can pose serious risk to environment and human health. The plants identified can be used for decontamination of metals from the dumpsite.

  1. Interactions of metal-based engineered nanoparticles with aquatic higher plants: A review of the state of current knowledge.

    PubMed

    Thwala, Melusi; Klaine, Stephen J; Musee, Ndeke

    2016-07-01

    The rising potential for the release of engineered nanoparticles (ENPs) into aquatic environments requires evaluation of risks to protect ecological health. The present review examines knowledge pertaining to the interactions of metal-based ENPs with aquatic higher plants, identifies information gaps, and raises considerations for future research to advance knowledge on the subject. The discussion focuses on ENPs' bioaccessibility; uptake, adsorption, translocation, and bioaccumulation; and toxicity effects on aquatic higher plants. An information deficit surrounds the uptake of ENPs and associated dynamics, because the influence of ENP characteristics and water quality conditions has not been well documented. Dissolution appears to be a key mechanism driving bioaccumulation of ENPs, whereas nanoparticulates often adsorb to plant surfaces with minimal internalization. However, few reports document the internalization of ENPs by plants; thus, the role of nanoparticulates' internalization in bioaccumulation and toxicity remains unclear, requiring further investigation. The toxicities of metal-based ENPs mainly have been associated with dissolution as a predominant mechanism, although nano toxicity has also been reported. To advance knowledge in this domain, future investigations need to integrate the influence of ENP characteristics and water physicochemical parameters, as their interplay determines ENP bioaccessibility and influences their risk to health of aquatic higher plants. Furthermore, harmonization of test protocols is recommended for fast tracking the generation of comparable data. Environ Toxicol Chem 2016;35:1677-1694. © 2016 SETAC. © 2016 SETAC.

  2. Biomonitoring Heavy Metal Pollution Using an Aquatic Apex Predator, the American Alligator, and Its Parasites

    PubMed Central

    Tellez, Marisa; Merchant, Mark

    2015-01-01

    Monitoring the bioaccumulation of chemical elements within various organismal tissues has become a useful tool to survey current or chronic levels of heavy metal exposure within an environment. In this study, we compared the bioaccumulations of As, Cd, Cu, Fe, Pb, Se, and Zn between the American alligator, Alligator mississippiensis, and its parasites in order to establish their use as bioindicators of heavy metal pollution. Concomitant with these results, we were interested to determine if parasites were more sensitive bioindicators of heavy metals relative to alligators. We found parasites collectively accumulated higher levels of As, Cu, Se, and Zn in comparison to their alligator hosts, whereas Fe, Cd, and Pb concentrations were higher in alligators. Interestingly, Fe levels were significantly greater in intestinal trematodes than their alligator hosts when analyzed independently from other parasitic taxa. Further analyses showed alligator intestinal trematodes concentrated As, Cu, Fe, Se, and Zn at significantly higher levels than intestinal nematodes and parasites from other organs. However, pentastomids also employed the role as a good biomagnifier of As. Interestingly, parasitic abundance decreased as levels of As increased. Stomach and intestinal nematodes were the poorest bioaccumulators of metals, yet stomach nematodes showed their ability to concentrate Pb at orders of magnitude higher in comparison to other parasites. Conclusively, we suggest that parasites, particularly intestinal trematodes, are superior biomagnifiers of As, Cu, Se, and Zn, whereas alligators are likely good biological indicators of Fe, Cd, and Pb levels within the environment. PMID:26555363

  3. Trophic magnification of PCBs and Its relationship to the octanol-water partition coefficient.

    PubMed

    Walters, David M; Mills, Marc A; Cade, Brian S; Burkard, Lawrence P

    2011-05-01

    We investigated polychlorinated biphenyl (PCB) bioaccumulation relative to octanol-water partition coefficient (K(OW)) and organism trophic position (TP) at the Lake Hartwell Superfund site (South Carolina). We measured PCBs (127 congeners) and stable isotopes (δ¹⁵N) in sediment, organic matter, phytoplankton, zooplankton, macroinvertebrates, and fish. TP, as calculated from δ¹⁵N, was significantly, positively related to PCB concentrations, and food web trophic magnification factors (TMFs) ranged from 1.5-6.6 among congeners. TMFs of individual congeners increased strongly with log K(OW), as did the predictive power (r²) of individual TP-PCB regression models used to calculate TMFs. We developed log K(OW)-TMF models for eight food webs with vastly different environments (freshwater, marine, arctic, temperate) and species composition (cold- vs warmblooded consumers). The effect of K(OW) on congener TMFs varied strongly across food webs (model slopes 0.0-15.0) because the range of TMFs among studies was also highly variable. We standardized TMFs within studies to mean = 0, standard deviation (SD) = 1 to normalize for scale differences and found a remarkably consistent K(OW) effect on TMFs (no difference in model slopes among food webs). Our findings underscore the importance of hydrophobicity (as characterized by K(OW)) in regulating bioaccumulation of recalcitrant compounds in aquatic systems, and demonstrate that relationships between chemical K(OW) and bioaccumulation from field studies are more generalized than previously recognized.

  4. Bioaccumulation kinetics of the conventional energetics TNT and RDX relative to insensitive munitions constituents DNAN and NTO in Rana pipiens tadpoles.

    PubMed

    Lotufo, Guilherme R; Biedenbach, James M; Sims, Jerre G; Chappell, Pornsawan; Stanley, Jacob K; Gust, Kurt A

    2015-04-01

    The manufacturing of explosives and their loading, assembling, and packing into munitions for use in testing on training sites or battlefields has resulted in contamination of terrestrial and aquatic sites that may pose risk to populations of sensitive species. The bioaccumulative potential of the conventional explosives 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and of the insensitive munitions (i.e., less shock sensitive) compound 2,4-dinitroanisole (DNAN) were assessed using the Northern leopard frog, Rana pipiens. Trinitrotoluene entering the organism was readily biotransformed to aminodinitrotoluenes, whereas no transformation products were measured for RDX or DNAN. Uptake clearance rates were relatively slow and similar among compounds (1.32-2.19 L kg(-1) h(-1) ). Upon transfer to uncontaminated water, elimination rate was very fast, resulting in the prediction of fast time to approach steady state (5 h or less) and short elimination half-lives (1.2 h or less). A preliminary bioconcentration factor of 0.25 L kg(-1) was determined for the insensitive munitions compound 3-nitro-1,2,4-trizole-5-one (NTO) indicating negligible bioaccumulative potential. Because of the rapid elimination rate for explosives, tadpoles inhabiting contaminated areas are expected to experience harmful effects only if under constant exposure conditions given that body burdens can rapidly depurate preventing tissue concentrations from persisting at levels that may cause detrimental biological effects. © 2014 SETAC.

  5. Overview of ecotoxicological studies performed in the Venice Lagoon (Italy).

    PubMed

    Losso, C; Ghirardini, A Volpi

    2010-01-01

    This work reports on the state of the art of the bioindicators used to assess environmental quality (regarding chemical pollutant impacts) in the Venice lagoon. After a brief description of the roles, advantages and limitations of bioindicators in marine and transitional environments and a summary of the Venice lagoon characteristics, the ecotoxicological methods used during scientific studies and research projects in the Lagoon are reported. Since not all data are available and no database can be formulated, the main evidence from toxicity bioassays, biomarkers and bioaccumulation analyses since the end of the 1970s is spatially synthesized using maps and discussed according to the four Venice lagoon basins. The majority of indicators showed that the Lido basin (north-central lagoon), affected by the presence of the industrial area and the city of Venice, is the one most highly impacted (particularly in the sites located within or in front of the industrial area, which showed very high sediment toxicity and high levels of DNA damage). The Malamocco basin (south-central lagoon) seems to be the least problematic. The southern basin (Chioggia basin) was shown to be impacted by urban contaminants from the town of Chioggia. The northern basin (Treporti basin) presented both impacted sites (high toxicity and high bioaccumulation factor) and relatively unpolluted sites (absence of toxicity, absence of imposex and low levels of bioaccumulation). This review can serve as a basis on which to select pragmatic, cost-effective biomonitoring techniques for environmental effects in lagoon ecosystems.

  6. Bioaccumulation of polychlorinated biphenyls in ranid frogs and northern water snakes from a hazardous waste site and a contaminated watershed.

    PubMed

    Fontenot, L W; Noble, G P; Akins, J M; Stephens, M D; Cobb, G P

    2000-04-01

    Livers of bullfrogs (Rana catesbeiana) from a polychlorinated biphenyl (PCB) contaminated watershed and hazardous waste site located in Pickens County, South Carolina, contained significantly higher concentrations of PCBs (2.33 and 2.26 ppm, respectively) than those from a reference site (0.05 ppm). Green frogs (R. clamitans) from the two contaminated sites also accumulated higher levels of PCBs (2.37 and 3.88 ppm, respectively) than those from the reference site (0.02 ppm). No temporal variation was observed in PCB concentrations of bullfrogs or green frogs from the contaminated sites between 1992 and 1993. Levels of PCBs in the livers of northern water snakes (Nerodia sipedon) were significantly higher in snakes from the contaminated watershed (13.70 ppm) than in those from the waste site (2.29 ppm) and two reference sites (2.50 and 1.23 ppm). When compared to frogs, significantly higher bioaccumulation occurred in water snakes from the contaminated watershed. No significant differences in PCB levels were found with respect to sex or body size (snout-vent length (SVL) or body mass) for frogs or snakes. PCBs were detected also in eggs of both frogs and snakes. Results of this study provide baseline data and document the bioaccumulation of PCB residues in frog and snake tissues; however, the significance of these tissue residues to reproduction, survival, growth/development, and population dynamics in contaminated habitats is unknown.

  7. Sampling and Analysis of Emerging Pollutants

    EPA Science Inventory

    Historically, environmental monitoring programs have focused on organic chemicals which are known to resist degradation, bioaccumulate in the fatty tissues of organisms and have a known adverse toxicological effect. The Stockholm Convention identified several classes of chemical...

  8. ENANTIOMER-SPECIFIC FATE AND EFFECTS OF MODERN CHIRAL PESTICIDES

    EPA Science Inventory

    This slide presentation presents enantiomer-specific fate and effects of modern chiral pesticides. The research areas presented were analytical separation of enantiomers; environmental occurrence of enantiomers; transformation rates and enantioselectivity; bioaccumulation; and e...

  9. POSSIBLE MOLECULAR TARGETS OF HALOGENATED ARMOATIC HYDROCARBONS IN NEURONAL CELLS.

    EPA Science Inventory

    Halogenated aromatic hydrocarbons including polychlorinated biphenyls (PCBs) are persistent bioaccumulative toxicants. Due to these characteristics, there is considerable regulatory concern over the potential adverse health affects, especially to children, associated with exposur...

  10. RELATIONSHIPS BETWEEN OYSTER (CRASSOSTREA VIRGINICA) DEFENSE MEASUREMENTS AND TISSUE CONTAMINANTS

    EPA Science Inventory

    Bivalve mollusks such as Crassostrea virginica typically inhabit estuaries and coastal areas that are increasingly contaminated with anthropogenic chemicals. Oysters may bioaccumulate large quantities of metals, polyaromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCB...

  11. Chiral Chlordane Components in Environmental Matrices

    EPA Science Inventory

    Chlordane, a persistent, bioaccumulative and toxic organochlorine pesticide, has been studied for many years. Since the advent of chiral analysis for environmental samples, over 2,400 measurements have been made of various chiral chlordane components. Chlordane enantiomer fractio...

  12. Brominated Flame Retardants.

    EPA Science Inventory

    BFRs belong to a growing group of organohalogen chemicals. They can be highly persistent, bioaccumulative and cause adverse effects in humans and wildlife. Although some BFRs are banned or voluntarily withdrawn from usage by the manufacturer, emerging and existing BFRs continue t...

  13. Emerging Environmental Contaminants: What’s New

    EPA Science Inventory

    Much has been achieved in the way of environmental protection over the last 30 years. However, as we learn more, new concerns arise (including potential adverse health effects, bioaccumulation, and widespread distribution). This presentation will discuss emerging environmental c...

  14. 40 CFR 227.6 - Constituents prohibited as other than trace contaminants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... petroleum, oil sludge, oil refuse, crude oil, fuel oil, heavy diesel oil, lubricating oils, hydraulic fluids... undesirable effects due -either to chronic toxicity or to bio-ac-cumu-la-tion in marine organisms after...

  15. 40 CFR 227.6 - Constituents prohibited as other than trace contaminants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... petroleum, oil sludge, oil refuse, crude oil, fuel oil, heavy diesel oil, lubricating oils, hydraulic fluids... undesirable effects due -either to chronic toxicity or to bio-ac-cumu-la-tion in marine organisms after...

  16. 40 CFR 227.6 - Constituents prohibited as other than trace contaminants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... petroleum, oil sludge, oil refuse, crude oil, fuel oil, heavy diesel oil, lubricating oils, hydraulic fluids... undesirable effects due -either to chronic toxicity or to bio-ac-cumu-la-tion in marine organisms after...

  17. PERSISTENT CONTAMINANTS: NEW PRIORITIES, NEW CONCERNS

    EPA Science Inventory


    The Stockholm Convention on persistent organic pollutants (POPs) was adopted in 2001 to protect human health and the environment from chemicals that are highly toxic, persistent, bioaccumulative, and undergo long range transport. These POPs include 9 pesticides, polychlorin...

  18. Polychlorinated biphenyls: persistent pollutants with immunological, neurological, and endocrinological consequences.

    PubMed

    Crinnion, Walter J

    2011-03-01

    Polychlorinated biphenyls (PCBs) are considered "persistent organic pollutants;" fat-soluble compounds that bioaccumulate in individuals and bio-magnify in the food chain. PCBs were the first industrial compounds to experience a worldwide ban on production because of their potent toxicity. These compounds are still present in our food supply (fish, dairy, hamburger, and poultry being the most contaminated) and our bodies. Once in the body, they can cause long-term problems, especially for those exposed in utero. PCB bioaccumulation can lead to reduced infection fighting ability, increased rates of autoimmunity, cognitive and behavioral problems, and hypothyroidism. Some research also links PCBs to increased rates of type 2 diabetes. Testing is currently available for some of the most damaging PCBs. The testing compares individual levels to national reference values and can be interpreted to determine current exposure. Dietary measures can be enacted that will reduce PCB half-lives in humans by increasing excretion.

  19. Evaluation of dredged material proposed for ocean disposal from Shark River Project area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antrim, L.D.; Gardiner, W.W.; Barrows, E.S.

    1996-09-01

    The objective of the Shark River Project was to evaluate proposed dredged material to determine its suitability for unconfined ocean disposal at the Mud Dump Site. Tests and analyses were conducted on the Shark River sediments. The evaluation of proposed dredged material consisted of bulk sediment chemical and physical analysis, chemical analyses of dredging site water and elutriate, water-column and benthic acute toxicity tests, and bioaccumulation tests. Individual sediment core samples collected from the Shark River were analyzed for grain size, moisture content, and total organic carbon (TOC). One sediment composite was analyzed for bulk density, specific gravity, metals, chlorinatedmore » pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAHs), and 1,4- dichlorobenzene. Dredging site water and elutriate, prepared from suspended-particulate phase (SPP) of the Shark River sediment composite, were analyzed for metals, pesticides, and PCBs. Benthic acute toxicity tests and bioaccumulation tests were performed.« less

  20. Identifying new persistent and bioaccumulative organics among chemicals in commerce.

    PubMed

    Howard, Philip H; Muir, Derek C G

    2010-04-01

    The goal of this study was to identify commercial chemicals that might be persistent and bioaccumulative (P&B) and that were not being considered in current Great Lakes, North American, and Arctic contaminant measurement programs. We combined the Canadian Domestic Substance List (DSL), a list of 3059 substances of "unknown or variable composition complex reaction products and biological materials" (UVCBs), and the U.S. Environmental Protection Agency (U.S. EPA) Toxic Substances Control Act (TSCA) Inventory Update Rule (IUR) database for years 1986, 1990, 1994, 1998, 2002, and 2006 yielding a database of 22263 commercial chemicals. From that list, 610 chemicals were identified by estimates from U.S EPA EPISuite software and using expert judgment. This study has yielded some interesting and probable P&B chemicals that should be considered for further study. Recent studies, following up our initial reports and presentations on this work, have confirmed the presence of many of these chemicals in the environment.

  1. Optimizing fish sampling for fish - mercury bioaccumulation factors

    USGS Publications Warehouse

    Scudder Eikenberry, Barbara C.; Riva-Murray, Karen; Knightes, Christopher D.; Journey, Celeste A.; Chasar, Lia C.; Brigham, Mark E.; Bradley, Paul M.

    2015-01-01

    Fish Bioaccumulation Factors (BAFs; ratios of mercury (Hg) in fish (Hgfish) and water (Hgwater)) are used to develop Total Maximum Daily Load and water quality criteria for Hg-impaired waters. Both applications require representative Hgfish estimates and, thus, are sensitive to sampling and data-treatment methods. Data collected by fixed protocol from 11 streams in 5 states distributed across the US were used to assess the effects of Hgfish normalization/standardization methods and fish sample numbers on BAF estimates. Fish length, followed by weight, was most correlated to adult top-predator Hgfish. Site-specific BAFs based on length-normalized and standardized Hgfish estimates demonstrated up to 50% less variability than those based on non-normalized Hgfish. Permutation analysis indicated that length-normalized and standardized Hgfish estimates based on at least 8 trout or 5 bass resulted in mean Hgfish coefficients of variation less than 20%. These results are intended to support regulatory mercury monitoring and load-reduction program improvements.

  2. Bioaccumulation of trace element concentrations in common dolphins (Delphinus delphis) from Portugal.

    PubMed

    Monteiro, Sílvia S; Pereira, Andreia T; Costa, Élia; Torres, Jordi; Oliveira, Isabel; Bastos-Santos, Jorge; Araújo, Helder; Ferreira, Marisa; Vingada, José; Eira, Catarina

    2016-12-15

    The common dolphin (Delphinus delphis) is one of the most abundant species in Atlantic Iberia, representing a potentially important tool to assess the bioaccumulation of trace elements in the Iberian marine ecosystem. Nine elements (As, Cd, Cu, Hg, Mn, Ni, Pb, Se and Zn) were evaluated in 36 dolphins stranded in continental Portugal. Dolphins had increasing Hg concentrations (16.72μg·g -1 ww, liver) compared with previous studies in Atlantic Iberia, whereas Cd concentrations (2.26μg·g -1 ww, kidney) fell within reported ranges. The concentrations of some trace elements (including Cd and Hg) presented positive relationships with dolphin length, presence of parasites and gross pathologies. Common dolphins may help biomonitoring more offshore Atlantic Iberian areas in future studies, which would otherwise be difficult to assess. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. 238,234U contents on Lepomis Cyanellus from San Marcos dam located in a uraniferous area

    NASA Astrophysics Data System (ADS)

    Lares, Magaly Cabral; Luna-Porres, Mayra Y.; Montero-Cabrera, María E.; Renteria-Villalobos, Marusia

    2014-07-01

    Fish species are suitable biomonitors of radioisotopes in aquatic systems. In the present study, it was made the determination of uranium isotopic contents on fish fillet (Lepomis Cyanellus) from San Marcos dam which is located in uranium mineralized zone. Uranium activity concentrations (AC) in fish samples were obtained on wet weight (ww), using liquid scintillation. 238U and 234U AC in fish fillet ranged from 0.0004 to 0.0167 Bq kg-1, and from 0.0013 to 0.0394 Bq kg-1, respectively. The activity ratio (234U/overflow="scroll">238U) in fish fillet ranged from 2.2 to 8.8. Lepomis cyanellus from San Marcos dam shows bioaccumulation factor (FB) of 0.6 L kg-1. The results suggest that the Lepomis Cyanellus in environments with high U contents tends to have a greater bioaccumulation compared to others.

  4. Trace element and stable isotope analysis of fourteen species of marine invertebrates from the Bay of Fundy, Canada.

    PubMed

    English, Matthew D; Robertson, Gregory J; Mallory, Mark L

    2015-12-15

    The Bay of Fundy, Canada, is a macrotidal bay with a highly productive intertidal zone, hosting a large abundance and diversity of marine invertebrates. We analysed trace element concentrations and stable isotopic values of δ(15)N and δ(13)C in 14 species of benthic marine invertebrates from the Bay of Fundy's intertidal zone to investigate bioaccumulation or biodilution of trace elements in the lower level of this marine food web. Barnacles (Balanus balanus) consistently had significantly greater concentrations of trace elements compared to the other species studied, but otherwise we found low concentrations of non-essential trace elements. In the range of trophic levels that we studied, we found limited evidence of bioaccumulation or biodilution of trace elements across species, likely due to the species examined occupying similar trophic levels in different food chains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Assessing genotoxic effects in fish from a marine protected area influenced by former mining activities and other stressors.

    PubMed

    Gusso-Choueri, Paloma Kachel; Choueri, Rodrigo Brasil; Santos, Gustavo Souza; de Araújo, Giuliana Seraphim; Cruz, Ana Carolina Feitosa; Stremel, Tatiana; de Campos, Sandro Xavier; Cestari, Marta Margarete; Ribeiro, Ciro Alberto Oliveira; Abessa, Denis Moledo de Sousa

    2016-03-15

    The goal of the current study was to evaluate different genotoxicity tools in order to assess a marine protected area (MPA) affected by former mining activities and urban settlements. A catfish (Cathorops spixii) was analyzed for genotoxic effects at the (i) molecular and at the (ii) chromosomal levels. Through factor analysis, genotoxicity was found to be linked to levels of metals bioaccumulated and PAH metabolites in the bile. Micronucleus and nuclear alteration were less vulnerable to the effects of confounding factors in mildly contaminated areas since they were more frequently associated with bioaccumulated metals than the DNA analysis. The different genotoxicity responses allowed for the identification of sources of pollution in the MPA. This approach was important for detecting environmental risks related to genotoxic contaminants in a mildly contaminated MPA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. A factor influence study of trace element bioaccumulation in moss bags.

    PubMed

    Cesa, M; Campisi, B; Bizzotto, A; Ferraro, C; Fumagalli, F; Nimis, P L

    2008-10-01

    Moss bags of Rhynchostegium riparioides were exposed to different water concentrations of 11 trace elements under laboratory conditions, according to a saturated fractional factorial design (67 treated combinations), with the aim of measuring (1) element uptake and (2) the main effects and first-order interactions of influent factors. Bioaccumulation was directly proportional to water concentration, but the uptake ratio (ranging from 10(2) to 10(5)) also depended on the concentration of other metals. The highest uptake ratios were observed for Al, Cu, Cr, Hg, and Pb. The multiple regression model showed that interactions among elements exist and induce both antagonism (Fe is the most frequent competitor) and synergism (Cr exerts a great influence on Pb and Zn uptake). Interactions might be relatively strong (as for As, Cr, and Pb) or weak (Cd and Hg). This evidence should be taken into consideration in biomonitoring surveys of industrial sites, where effluents release more than one contaminant.

  7. Bioaccumulation of lead, copper, iron, and zinc by fish in a transect of the Santa Catarina River in Cadereyta Jimenez, Nuevo Leon, Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-09-01

    Changes have been observed in the ichthyic species community, upriver in the San Juan River in Nuevo Leon, Mexico. A disappearance of Notropis amabilis, Notropis stramineus, Dionda episcopa and Campostoma anomalum and an increased mortality of Astyanax mexicanus, Lepomis macrochirus and Cichlasoma cyanoguttatum have been found. These changes were probably due to industrial and domestic discharges which produced high levels of lead, copper, iron and detergents in the water. The investigation reported here was done in order to detect the possible presence of lead, copper, iron and zinc in the river waters and also, to determine a probable bioaccumulation ofmore » these metals in fish species of the Santa Catarina River in the state of Nuevo Leon in northeastern Mexico, since this river transports domestic and industrial wastes of urban and suburban zones.« less

  8. Enantioselective Bioaccumulation, Tissue Distribution, and Toxic Effects of Myclobutanil Enantiomers in Pelophylax nigromaculatus Tadpole.

    PubMed

    Cheng, Cheng; Di, Shanshan; Chen, Li; Zhang, Wenjun; Diao, Jinling; Zhou, Zhiqiang

    2017-04-19

    Research on the enantioselective behavior of chiral pesticides on amphibians has received growing attention, because amphibians are experiencing a population decline and amphibian metamorphosis shares many similarities with human fetal development. In this study, the enantioselective behavior of myclobutanil on Pelophylax nigromaculatus tadpole was studied. The antioxidant enzyme (SOD, GST) activities and malondialdehyde (MDA) content were investigated to assess the different toxic effects when tadpoles were exposed to myclobutanil enantiomers for 96 h. In the chronic exposure experiment, the bioaccumulation concentration of (-)-myclobutanil in tadpoles is significantly higher than that of (+)-myclobutanil, and the concentration of myclobutanil in tadpole intestine and liver was higher compared with other tissues. During the elimination experiment, about 95% of myclobutanil in tadpoles was eliminated within only 24 h. On the basis of these data, the enantiomeric differences should be taken into consideration in the risk assessment of myclobutanil.

  9. Oribatid communities and heavy metal bioaccumulation in selected species associated with lichens in a heavily contaminated habitat.

    PubMed

    Skubała, Piotr; Rola, Kaja; Osyczka, Piotr

    2016-05-01

    The study examines oribatid communities and heavy metal bioaccumulation in selected species associated with different microhabitats of a post-smelting dump, i.e. three lichen species of Cladonia with various growth forms and the slag substrate. The abundance of oribatids collected from the substrate was significantly lower than observed in lichen thalli. The morphology and chemical properties of lichens, and to some extent varying concentrations of heavy metals in thalli, are probably responsible for significant differences in oribatid communities inhabiting different Cladonia species. Some oribatids demonstrate the ability to accumulate zinc and cadmium with unusual efficiency, whereas lead is the most effectively regulated element by all species. A positive correlation was found between Zn content in all studied oribatids and their microhabitats. Oribatids exploring different food resources, i.e. fungivorous and non-fungivorous grazers, show considerable differences in bioconcentrations of certain elements.

  10. Mercury bioaccumulation studies in the National Water-Quality Assessment Program--biological data from New York and South Carolina, 2005-2009

    USGS Publications Warehouse

    Beaulieu, Karen M.; Button, Daniel T.; Eikenberry, Barbara C. Scudder; Riva-Murray, Karen; Chasar, Lia C.; Bradley, Paul M.; Burns, Douglas A.

    2012-01-01

    The U.S. Geological Survey National Water-Quality Assessment Program conducted a multidisciplinary study from 2005–09 to investigate the bioaccumulation of mercury in streams from two contrasting environmental settings. Study areas were located in the central Adirondack Mountains region of New York and the Inner Coastal Plain of South Carolina. Fish, macroinvertebrates, periphyton (attached algae and associated material), detritus, and terrestrial leaf litter were collected. Fish were analyzed for total mercury; macroinvertebrates, periphyton, and terrestrial leaf litter were analyzed for total mercury and methylmercury; and select samples of fish, macroinvertebrates, periphyton, detritus, and terrestrial leaf litter were analyzed for stable isotopes of carbon (δ13C) and nitrogen (δ15N). This report presents methodology and data on total mercury, methylmercury, stable isotopes, and other ecologically relevant measurements in biological tissues.

  11. Bioaccumulation of Copper (Cu) and Chromium (Cr) on export comodity vanamei shrimp from Karawang, West Java

    NASA Astrophysics Data System (ADS)

    Rahman, A.; Takarina, N. D.; Siswantining, T.; Pin, T. G.; Soedjiarti, T.

    2018-05-01

    Karawang is one of regencies in West Java which has great potential for vannamei culture. The farm here was modern farm and using Citarum River as water source. Human activities like household and industry around the river cause its quality decrease and give negative impact to shrimp farm. This research was aimed to investigate the bioaccumulation of copper (Cu) and chromium (Cr) on vannamei shrimp from Karawang, West Java. Amount of shrimp’s meat and carapace were used for heavy metal measurement using Atomic Absorption Specthrophotometry. Result showed that contents of copper both in meat and carapace were higher than content of chromium. Moreover, the content of both metals was higher on carapace compared to meat. Since the content of meat were below threshold, so it is safe for consumption. There is no significant difference content of both metals in carapace.

  12. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress

    PubMed Central

    Rochman, Chelsea M.; Hoh, Eunha; Kurobe, Tomofumi; Teh, Swee J.

    2013-01-01

    Plastic debris litters aquatic habitats globally, the majority of which is microscopic (< 1 mm), and is ingested by a large range of species. Risks associated with such small fragments come from the material itself and from chemical pollutants that sorb to it from surrounding water. Hazards associated with the complex mixture of plastic and accumulated pollutants are largely unknown. Here, we show that fish, exposed to a mixture of polyethylene with chemical pollutants sorbed from the marine environment, bioaccumulate these chemical pollutants and suffer liver toxicity and pathology. Fish fed virgin polyethylene fragments also show signs of stress, although less severe than fish fed marine polyethylene fragments. We provide baseline information regarding the bioaccumulation of chemicals and associated health effects from plastic ingestion in fish and demonstrate that future assessments should consider the complex mixture of the plastic material and their associated chemical pollutants. PMID:24263561

  13. Immune effects of HFO on European sea bass, Dicentrarchus labrax, and Pacific oyster, Crassostrea gigas.

    PubMed

    Bado-Nilles, Anne; Quentel, Claire; Auffret, Michel; Le Floch, Stéphane; Gagnaire, Béatrice; Renault, Tristan; Thomas-Guyon, Hélène

    2009-07-01

    The European sea bass, Dicentrarchus labrax, and the Pacific oyster, Crassostrea gigas, were exposed to a soluble fraction of heavy fuel oil for 5 and 9 days, respectively. The organisms were then transferred to non-contaminated seawater for 1 month. The bioaccumulation and elimination of PAHs in contaminated tissues were dissimilar between species. In fish, acenaphthene and naphthalene were detected and naphthalene was still detectable 30 days after the beginning of the recovery period. In oysters, on the other hand, pyrene and phenanthrene were bioaccumulated and 14 days after exposure no more PAHs were detected. Concerning innate immune parameters, the increase of haemolytic activity of the alternative complement pathway in fish and the reduction of phenoloxidase activity in oysters endured, respectively, 1 and 2 weeks in contaminated organisms. This indicates that these two enzymatic cascades could be quite useful for monitoring pollution by oil.

  14. POP bioaccumulation in macroinvertebrates of alpine freshwater systems.

    PubMed

    Bizzotto, E C; Villa, S; Vighi, M

    2009-12-01

    This study serves to investigate the uptake of POPs in the different trophic levels (scrapers, collectors, predators, shredders) of macroinvertebrate communities sampled from a glacial and a non-glacial stream in the Italian Alps. The presented results show that the contaminant concentrations in glacial communities are generally higher compared to those from non-glacial catchments, highlighting the importance of glaciers as temporary sinks of atmospherically transported pollutants. Moreover, the data also suggests that in mountain systems snow plays an important role in influencing macroinvertebrate contamination. The main chemical uptake process to the macroinvertebrates is considered to be bioconcentration from water, as similar contaminant profiles were observed between the different trophic levels. The role of biomagnification/bioaccumulation is thought to be absent or negligible. The enrichment of chemicals observed in the predators is likely to be related to their greater lipid content compared to that of other feeding groups.

  15. Bioacumulation of trace elements in the crab Ucides cordatus (Linnaeus, 1763) from the macrotidal mangrove coast region of the Brazilian Amazon.

    PubMed

    Silva, Bruna Mariáh da S E; Morales, Gundisalvo P; Gutjahr, Ana Lúcia N; Freitas Faial, Kelson do C; Carneiro, Bruno S

    2018-03-14

    In this study, trace element concentrations were measured in chelipod and gill samples of the crab U. cordatus by induced coupled plasma optical emission spectrometry (ICP OES). The element average concentrations between the structures were statistically compared. Gill concentrations of Cu and Zn were higher in female crabs, while in chelipods, Pb concentrations were higher in males. The concentration of Zn in crabs from Curuçá City were higher than the recommended by health agencies, but the provisional tolerable daily intake value (PTDI), for Zn and Cu, showed only 10 and 23% contribution, respectively. The bioaccumulation factor was higher than 1 for Cu (gills and chelipods) and Zn (only for chelipods), which suggests bioaccumulation for these elements. Further metallomic and oxidative stress analyses are suggested, in order to evaluate possible protein and/or enzymatic biomarkers of toxicity.

  16. Fate, bioavailability and toxicity of silver in estuarine environments

    USGS Publications Warehouse

    Luoma, S.N.; Ho, Y.B.; Bryan, G.W.

    1995-01-01

    The chemistry and bioavailability of Ag contribute to its high toxicity in marine and estuarine waters. Silver is unusual, in that both the dominant speciation reaction in seawater and the processes important in sorbing Ag in sediments favour enhanced bioavailability. Formation of a stable chloro complex favours dispersal of dissolved Ag, and the abundant chloro complex is available to biota. Sequestration by sediments also occurs, but with relatively slow kinetics. Amorphous aggregated coatings enhance Ag accumulation in sediments, as well as Ag uptake from sediments by deposit feeders. In estuaries, the bioaccumulation of Ag increases 56-fold with each unit of increased Ag concentration in sediments. Toxicity for sensitive marine species occurs at absolute concentrations as low as those observed for any nonalkylated metal, partly because bioaccumulation increases so steeply with contamination. The environmental window of tolerance to Ag in estuaries could be narrower than for many elements.

  17. Metabolic biotransformation half-lives in fish: QSAR modeling and consensus analysis.

    PubMed

    Papa, Ester; van der Wal, Leon; Arnot, Jon A; Gramatica, Paola

    2014-02-01

    Bioaccumulation in fish is a function of competing rates of chemical uptake and elimination. For hydrophobic organic chemicals bioconcentration, bioaccumulation and biomagnification potential are high and the biotransformation rate constant is a key parameter. Few measured biotransformation rate constant data are available compared to the number of chemicals that are being evaluated for bioaccumulation hazard and for exposure and risk assessment. Three new Quantitative Structure-Activity Relationships (QSARs) for predicting whole body biotransformation half-lives (HLN) in fish were developed and validated using theoretical molecular descriptors that seek to capture structural characteristics of the whole molecule and three data set splitting schemes. The new QSARs were developed using a minimal number of theoretical descriptors (n=9) and compared to existing QSARs developed using fragment contribution methods that include up to 59 descriptors. The predictive statistics of the models are similar thus further corroborating the predictive performance of the different QSARs; Q(2)ext ranges from 0.75 to 0.77, CCCext ranges from 0.86 to 0.87, RMSE in prediction ranges from 0.56 to 0.58. The new QSARs provide additional mechanistic insights into the biotransformation capacity of organic chemicals in fish by including whole molecule descriptors and they also include information on the domain of applicability for the chemical of interest. Advantages of consensus modeling for improving overall prediction and minimizing false negative errors in chemical screening assessments, for identifying potential sources of residual error in the empirical HLN database, and for identifying structural features that are not well represented in the HLN dataset to prioritize future testing needs are illustrated. © 2013.

  18. Applying acoustic telemetry to understand contaminant exposure and bioaccumulation patterns in mobile fishes.

    PubMed

    Taylor, Matthew D; van der Meulen, Dylan E; Brodie, Stephanie; Cadiou, Gwenaël; Knott, Nathan A

    2018-06-01

    Contamination in urbanised estuaries presents a risk to human health, and to the viability of populations of exploited species. Assessing animal movements in relation to contaminated areas may help to explain patterns in bioaccumulation, and assist in the effective management of health risks associated with consumption of exploited species. Using polychlorinated dibenzodioxin and polychlorinated dibenzofuran (PCDD/Fs) contamination in Sydney Harbour estuary as a case study, we present a study that links movement patterns resolved using acoustic telemetry to the accumulation of contaminants in mobile fish on a multi-species basis. Fifty-four individuals across six exploited species (Sea Mullet Mugil cephalus; Luderick Girella tricuspidata; Yellowfin Bream Acanthopagrus australis; Silver Trevally Pseudocaranx georgianus; Mulloway Argyrosomus japonicus; Yellowtail Kingfish Seriola lalandi) were tagged with acoustic transmitters, and their movements tracked for up to 3years. There was substantial inter-specific variation in fish distribution along the estuary. The proportion of distribution that overlapped with contaminated areas explained 84-98% of the inter-specific variation in lipid-standardised biota PCDD/F concentration. There was some seasonal variation in distribution along the estuary, but movement patterns indicated that Sea Mullet, Yellowfin Bream, Silver Trevally, and Mulloway were likely to be exposed to contaminated areas during the period of gonadal maturation. Acoustic telemetry allows examination of spatial and temporal patterns in exposure to contamination. When used alongside biota sampling and testing, this offers a powerful approach to assess exposure, bioaccumulation, and potential risks faced by different species, as well as human health risks associated with their consumption. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  19. Monitoring Fish Contaminant Responses to Abatement Actions: Factors that Affect Recovery

    NASA Astrophysics Data System (ADS)

    Southworth, George R.; Peterson, Mark J.; Roy, W. Kelly; Mathews, Teresa J.

    2011-06-01

    Monitoring of contaminant accumulation in fish has been conducted in East Fork Poplar Creek (EFPC) in Oak Ridge, Tennessee since 1985. Bioaccumulation trends are examined over a twenty year period coinciding with major pollution abatement actions by a Department of Energy facility at the stream's headwaters. Although EFPC is enriched in many contaminants relative to other local streams, only polychlorinated biphenyls (PCBs) and mercury (Hg) were found to accumulate in the edible portions of fish to levels of human health concern. Mercury concentrations in redbreast sunfish were found to vary with season of collection, sex and size of individual fish. Over the course of the monitoring, waterborne Hg concentrations were reduced >80%; however, this did not translate into a comparable decrease in Hg bioaccumulation at most sites. Mercury bioaccumulation in fish did respond to decreased inputs in the industrialized headwater reach, but paradoxically increased in the lowermost reach of EFPC. As a result, the downstream pattern of Hg concentration in fish changed from one resembling dilution of a headwater point source in the 1980s to a uniform distribution in the 2000s. The reason for this remains unknown, but is hypothesized to involve changes in the chemical form and reactivity of waterborne Hg associated with the removal of residual chlorine and the addition of suspended particulates to the streamflow. PCB concentrations in fish varied greatly from year-to-year, but always exhibited a pronounced downstream decrease, and appeared to respond to management practices that limited episodic inputs from legacy sources within the facility.

  20. Rare earth elements in freshwater, marine, and terrestrial ecosystems in the eastern Canadian Arctic.

    PubMed

    MacMillan, Gwyneth Anne; Chételat, John; Heath, Joel P; Mickpegak, Raymond; Amyot, Marc

    2017-10-18

    Few ecotoxicological studies exist for rare earth elements (REEs), particularly field-based studies on their bioaccumulation and food web dynamics. REE mining has led to significant environmental impacts in several countries (China, Brazil, U.S.), yet little is known about the fate and transport of these contaminants of emerging concern. Northern ecosystems are potentially vulnerable to REE enrichment from prospective mining projects at high latitudes. To understand how REEs behave in remote northern food webs, we measured REE concentrations and carbon and nitrogen stable isotope ratios (∂ 15 N, ∂ 13 C) in biota from marine, freshwater, and terrestrial ecosystems of the eastern Canadian Arctic (N = 339). Wildlife harvesting and tissue sampling was partly conducted by local hunters through a community-based monitoring project. Results show that REEs generally follow a coherent bioaccumulation pattern for sample tissues, with some anomalies for redox-sensitive elements (Ce, Eu). Highest REE concentrations were found at low trophic levels, especially in vegetation and aquatic invertebrates. Terrestrial herbivores, ringed seal, and fish had low total REE levels in muscle tissue (∑REE for 15 elements <0.1 nmol g -1 ), yet accumulation was an order of magnitude higher in liver tissues. Age- and length-dependent REE accumulation also suggest that REE uptake is faster than elimination for some species. Overall, REE bioaccumulation patterns appear to be species- and tissue-specific, with limited potential for biomagnification. This study provides novel data on the behaviour of REEs in ecosystems and will be useful for environmental impact assessment of REE enrichment in northern regions.

Top